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SYNOPSIS

The theory of inflation, predicting a quasi-exponential expansion of the universe at very

early times (energy scale ∼ 1016GeV), was proposed as a solution to the horizon and flat-

ness problems of hot big bang cosmology [1]. Moreover, quantum perturbations during

inflation can act as seeds for generation of the large-scale structures in the universe. The

observations of the cosmic microwave background (CMB) through the decades (COBE,

1989 [2]; WMAP 2003 [3]; PLANCK 2018 [4]) have mapped the free streaming photons

from the last scattering surface (LSS) (at redshift ∼ 1100) to measure the temperature and

polarization power spectra in the sky. The latest observed power spectra are in excellent

agreement with the predictions of the ΛCDM cosmology considering the primordial spec-

tra to be generated from inflation [4].

The simplest dynamics of inflation is given by constructing a model where a single

scalar field φ (inflaton), minimally coupled to gravity, is slowly rolling down a potential

V (φ) [5]. The action S for such a simple scenario can be written (in natural units and with

reduced Planck mass set to unity) as:

S =

∫
d4x
√−g

[
1

2
R +

1

2
gµν∂

µφ∂νφ− V (φ)

]
, (1)

v



where gµν is the Friedman-Robertson-Walker (FRW) metric,
√−g is the determinant of

gµν and R is the Ricci scalar.

The scalar field can be decomposed into a background homogenerous part and fluctu-

ations as: φ(t, x) = φ(t) + δφ(t, x). The spacetime can also be written as a summation

of a background part g̃µν and perturbations δgµν (contains scalar, vector and tensor com-

ponents) in a similar way. The background equations of motion can be derived from the

action in Eq. (1) with only the background field and metric. The fluctuations in the field

and spacetime, which can be combined in a gauge-invariant formR known as the comoving

curvature perturbation, grow during inflation and eventually exit the horizon [5, 6]. The

perturbations can be decomposed into various modes of different wavenumbers k = 2π/λ,

and horizon exit for a particular mode occurs when the wavelength of that mode becomes

larger than the horizon size. These perturbations are frozen in the superhorizon regime

and they re-enter the horizon only after the end of inflation to evolve further. Later at the

time of recombination, photons decouple from the thermal bath and free-stream through

the universe to reach us as the cosmic microwave background radiation. Therefore, the

perturbations at the surface of last scattering of the photons are embedded as fluctuations

in the CMB sky.

The 2-point correlation functions of the primordial fluctuations can be written as scalar

and tensor power spectra, which can be paramterised in almost scale-invariant forms as:

∆2
R(k) = As

(
k

k∗

)ns−1

and ∆2
t (k) = At

(
k

k∗

)nt
(2)

where k∗ is a pivot scale that exits the horizon Npivot e-folds before the end of inflation. As

andAt are the amplitude of the scalar and tensor power spectra at the pivot scale, and ns and

nt are the respective spectral indices at the pivot scale. The ratio r of the tensor and scalar

vi



fluctuations: r = ∆2
t (k)/∆2

R(k) is a measure of the energy scale of inflation. Therefore,

precise measurement of r, which is a challenge even in modern CMB experiments, is very

useful to understand the inflationary energy scale, which is theoretically predicted to be

different for different models of inflation.

Model building in the inflationary scenario is attributed to different forms of V (φ), non-

minimal gravitational coupling of the inflaton and non-canonical kinetic function. Different

models of inflation in the literature are constrained by mainly using their predictions of ns

and r and comparing them with their observed values from CMB experiments. Single-field

models can be either large-field models where the field excursion ∆φ is larger than the

Planck mass MPl, or small-field models where ∆φ < MPl or hybrid of these two cases.

Several canonical single-field models have been studied and compared statistically [7, 8]

using CMB observations. Specifically, power law models of single-field inflation of the

form V (φ) = λφp are tightly constrained by observations, where p ≥ 2 cases are strongly

disfavoured by the PLANCK2018+BK14 data [4]. Latest observations have ruled out the

particle physics motivated quartic inflation model V (φ) = λφ4 [9] by more than 3−σ con-

fidence level. On the other hand, observations strongly favour single-field plateau inflation

models where the inflaton rolls very slowly in a flat part of the potential for a large number

of e-folds. Plateau inflation models include Starobinsky inflation [10], where the dynamics

is driven by a R2 term in the Lagrangian, and the Einstein frame potential has a large flat

plateau. The value of r for Starobinsky inflation (r ' 0.003) acts as a point of convergence

for α-attractor models (E models and T models) [11] and for models where the inflaton is

non-minimally coupled to gravity (e.g. ξ-attractors) [12].

In [13], we have studied cosmological attractor models of inflation (α and ξ-attractors)

to explore their connection with scalar-tensor theories of gravity, e.g f(R) gravity and

Brans-Dicke theory. We have demonstrated the conditions on the Lagrangian under which
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f(R) and Brans-Dicke theories exhibit the attractor mechanism and converge to the Starobin-

sky prediction. We have also explored the stability of the attractor mechanism by vary-

ing the functional degrees of freedom of (i) the non-minimal coupling and (ii) the non-

canonical kinetic term. We have shown that the attractor has a robust dependence on the

functional forms and coefficients present in those forms.

Since the pivot number of e-folds of inflation Npivot can be related to ns using ns =

1−2/Npivot, the existence of non-trivial post-inflationary epochs in a model can lead to in-

teresting predictions in the ns−r plane. Different non-standard scenarios like non-minimal

gravitational coupling, energy dissipation of inflaton during the time of inflation and non-

canonical kinetic functions can modify the ns and r values and change the significance of

different inflationary models by allowed by data.

Evidently, it is interesting to statistically explore different theoretically inspired scenar-

ios of inflation with rigorous numerical analysis, e.g. Markov Chain Monte Carlo (MCMC)

analysis, in light of present CMB data. COSMOMC [14] is a publicly available package

that uses the Boltzman solver CAMB and MCMC simulations to constrain the cosmologi-

cal parameters. The default algorithm uses spatially flat 6-parameter ΛCDM model where

the varying cosmological parameters are baryon density Ωb, cold dark matter density Ωc,

acoustic peak angular scale θ, reionization optical depth τ and inflationary parameters As

and ns. Extensions of this model in the inflationary sector can include other parameters like

r, running of the spectral index αs etc. The primordial power spectra (scalar and tensor)

depend on the underlying inflationary model. Given an almost scale-invariant primordial

spectrum of the form Eq. (2), different modes (k) of inflation can be evolved from the time

each of them re-enter the horizon in a matter dominated epoch upto the LSS through a

transfer function. The cumulative amplitude of different modes at LSS can be written in

terms of spherical harmonics with amplitude C`. The C` generated by simulations in COS-
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MOMC are compared with observed C` values at different CMB experiments and the best

fit to data is obtained by χ2 minimization. The parmeters of the model can be constrained

using Bayesian analysis, where marginalized posterior probabilities for the parameters are

calculated using their prior probabilities and likelihood functions.

One of the non-trivial inflationary scenarios is warm inflation [15], where the inflaton

is energetically coupled to relativistic degrees of freedom (d.o.f.) present during inflation

and therefore the inflaton energy density is continuously transformed into radiation energy

density. Different warm inflation theories can be constructed based on which fields are

present in the radiation bath and the nature of energy dissipation of inflaton into the thermal

bath For the case of “warm little inflation” [16], the inflaton is a pseudo Nambu-Goldstone

Boson (pNGB), coupled to the light relativistic d.o.f., and the inflation potential is protected

from quantum corrections using symmetries. In [17], we have constrained the warm little

inflation scenario using PLANCK2015+BICEP2 [18] data where the inflation potential

is quartic chaotic V (φ) = λφ4 and the maximum contribution to dissipation is linear in

temperature T (dissipative coefficient: Υ = CTT ). The posterior probabilities and best-

fit values of the model parameters CT , λ and g∗ (effective number of relativistic d.o.f. in

the thermal bath) are calculated using COSMOMC for non-thermal (inflaton excluded from

thermal bath) and thermal (inflaton included in thermal bath) scenarios. The predictions

for the cosmological observables are within 1 − σ limit of the current observations by

PLANCK for the thermal (ns = 0.9631 and r = 0.03) case and just at the 2−σ limit for the

non-thermal case (ns = 0.9736 and r = 0.06). These predictions re-establish the quartic

potential as a possible candidate for inflation in a warm dissipative picture. Moreover, since

by the end of warm inflation most of the inflaton energy is already converted into radiation,

the (p)reheating epoch can be avoided without loss of generality. Therefore, for instant

reheating we have also kept Npivot as a variable which is computed to be Npivot = 58 and
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Npivot = 58.5 for the mean values of the model parameters in non-thermal and thermal

cases respectively.

String theory can also provide potential candidates for inflation through different mech-

anisms. Models evolving from the Large Volume Scenario (LVS) in string theory [19] are

widely explored as inflationary models due to their predictions of low values for tensor-to-

scalar ratio (r) and post-inflationary modular cosmology. Such a model, the Kähler moduli

inflation [20], is set in LVS for moduli stabilisation of IIB flux compactifications and the

complex structured moduli can be stabilised and integrated out. The heavy moduli particles

are stable during inflation, but at the end of inflation with sufficient decrease in the value

of the Hubble parameter, these moduli particles dominate and then decay. Therefore, the

moduli dominated epoch and reheating by moduli decay alter the predictions for inflation-

ary and reheating number of e-folds. In [21], we have studied the Kähler moduli inflation,

to explore the possible predictions about reheating in such a scenario. With the number of

e-foldsNmod of muduli domination given in terms of the model parameters, in [21] we have

computed the inflationary number of e-folds Npivot while keeping the model parameters at

theoretically inspired values. Then using the relation between Npivot and ns, we have in-

spected the dependence of the reheating number of e-folds Nre and reheating temperature

Tre on ns for different reheating equations of state wre. We have shown that wre = 2/3

exotic reheating case reaches closest to the observed central value of ns.

In [22], we have done MCMC analysis for the Kähler moduli inflation where we have

constrained the model parameters for general reheating scenario (wre not specified) and

for particular values of wre in the range −1/3 < wre < 1. This analysis was done using

COSMOMC with modified version of MODECODE [23], where the later is a public package

to calculate the primordial power spectra for a given inflationary model which allows to

vary the model parameters and Npivot directly. We found that the central value ns = 0.953

x



from simulations for the general reheating case is shifted to the left from the observed

central value of ns(from PLANCK 2015 [18]). Analysis with fixed wre showed that the

exotic reheating scenarios are preferred with the maximum value ns = 0.9575 reached for

wre = 1. r has a very low value ∼ 10−8 for all these cases, complying to the current upper

limit for r [18].

In my doctoral work, I have studied the phenomenology of the above inflationary cases

in light of CMB data.
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CHAPTER 1

INTRODUCTION

Curious minds of ancient times were baffled by the exquisite design in the night sky. Look-

ing at the spectacular celestial objects, they wondered about the enormity of ‘space’ and

inquired about the beginning of ‘everything’. Technological development allowed hu-

mankind to be amazed by “the grand design” of stars and galaxies using telescopes. The

relentless effort in scientifically understanding the laws of nature with respect to observa-

tions resulted in several fundamental theories. The study of the origin and evolution of our

universe is known as Cosmology.

Tremendous technological advances have enabled the modern-day telescopes to reach

immense precision and sensitivity in observations. Current experiments in cosmology use

much more sophisticated telescopes to explore the universe at different length scales and

at different frequency windows of the electromagnetic spectrum, and now, even with the

gravitational wave. The huge influx of data from such observations helps test the viability

of the theories in cosmology. Thus, validating and constraining the cosmological theories

with data from different experimental surveys (known as “phenomenological analysis”)
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is crucial to converge towards a complete theory describing the correct dynamics of our

universe.

Although the universe looks clustered and clumpy at a glance, several galaxy surveys

have observed it as homogeneous and isotropic at large scales (> 100 Mpc) [36, 37]. The

dynamics of the universe is derived using the theory of general relativity (GR), where the

spacetime is described by a fundamental quantity known as a metric and is related to the

constituents in the universe through Einstein’s equations. Our homogeneous and isotropic

universe is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric [38],

which is characterized by two quantities: the curvature of the spatial geometry and the

scale factor. The scale factor a(t) describes the expansion of the universe over cosmic time

t such that any length scale d becomes a(t) × d after time t when the scale factor grew

from 1 to a(t) over that time. The rate of expansion is described in terms of the Hubble

parameter H(t), which, by definition, is the ratio of the velocity with which two galaxies

are receding from each other to their distance. Therefore, H(t) can also be written as:

H(t) =
ȧ

a
, (1.1)

where the dot signifies derivative with respect to t. The curvature κ of the 3-space is

observed to be extremely close to zero at present, which means that we live in a spatially

flat universe. We will discuss about the FLRW metric extensively in the next chapter.

The standard model that predicts the cosmological evolution starting from a radiation

dominated universe filled with relativistic fields is known as the hot big bang model. These

relativistic particles eventually cooled down with the expansion of the universe and a matter

dominated epoch began. With further expansion, matter density fell below the constant en-

ergy density of dark energy, which is the dominating component now. The average equation
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of state parameter w = p/ρ for radiation, matter and dark energy are different, where p is

the pressure and ρ is the energy density. The evolution of the a(t) with t depends on w and

therefore, the universe expands differently according to the energy-dominant component at

each epoch. However, both radiation and matter domination predict decelerating expansion

of the universe, whereas dark energy domination results in accelerated expansion due to its

negative pressure.

In the time that takes the light from distant objects to reach us, the expansion of the

universe stretches the wavelength of the incoming light. The redshift z is thus defined as:

z =
λobs − λem

λem

=
λobs

λem

− 1 =
aobs

aem

− 1, (1.2)

where λem and λobs are the emitted and observed wavelengths respectively; aem and aobs

are the scale factors at the time of emission and observation respectively. Evidently (1 + z)

is a measure of the evolution of the scale factor where z = 0 signifies the present time. In

Fig. 1.1, the energy density of the universe is shown as a function (1 + z).

The thermal history of the universe predicts that different constituent particles fell out

of the thermal equilibrium when their rate of interaction became smaller than the rate of

expansion of the universe. At a certain point during matter domination, when the universe

cooled down below 0.1 eV, the photons decoupled from the electrons which went on to

recombine with the protons to form the first neutral hydrogen atoms. These photons have

traveled almost unscattered from decoupling to reach us now with redshifted energy in

the microwave range. The snapshot of the last scattering surface (LSS) of the photons

is thus known as the cosmic microwave background (CMB) radiation. The CMB, first

discovered by Penzias and Wilson, is an excellent probe to the cosmology of the early

universe. Almost three decades ago the Cosmic Background Explorer (COBE) [2] satellite
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Figure 1.1: Variation of the energy density with the evolution of the universe. Figure borrowed
from ref. [24].

Figure 1.2: The Cosmic Microwave background as observed by PLANCK 2018 mission. The hot
spots are coloured red whereas the colored spots are shown in blue. The anisotropy of the hottest
and coldest spots are measured to be |∆T | ∼ 300 µK. Picture credit: ESA/PLANCK Collaboration
(www.esa.int).
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observed that CMB temperature follows an almost exact black-body spectrum with very

small anisotropies. The latest results from modern-day telescopes like WMAP [3] and

PLANCK [39] (Fig. 1.2) have observed the temperature of CMB to be is almost constant all

over the sky at TCMB = 2.725 K with very small average fluctuations 〈δT/T 〉 ∼ 10−5. It

is essential to have early causal connections between different patches of the CMB sky to

achieve such a homogeneous temperature distribution at the last scattering. However, the

hot big bang model predicts decelerating radiation and matter dominated expansions before

LSS and therefore, cannot explain early causal history among different length scales that

entered the horizon at different times. This fault of the standard model to explain the high

degree of homogeneity in the CMB sky is known as the homogeneity problem or horizon

problem. On the other hand, the hot big bang cosmology predicts that the initial curvature

of the universe has to be tuned to an unnaturally small value to reach the observed flatness

of the current universe. This issue is known as the flatness problem. The horizon and

flatness problems, both explained in details in the next chapter, are the main two pitfalls of

the standard picture which compelled cosmologists to think beyond.

The theory of inflation proposed by Alan Guth in 1981 [40] suggested that an addi-

tional early (pre-radiation) epoch of accelerated expansion of the universe can take care of

the problems mentioned above through its default mechanism. This accelerated phase of

the universe is known as inflation, during which the physical horizon maintained an almost

constant size, whereas the physical length scales grew due to expansion and eventually

exited the horizon. These scales re-enter the horizon at later epochs of decelerating ex-

pansion during radiation and matter domination. Therefore, the addition of the inflationary

paradigm to the standard picture ensures that two points, which are separated even by the

largest distance in the CMB sky, were causally connected when the corresponding length

scale was inside the inflationary horizon before growing out of it.
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The virtue of inflation is that it not only solves the horizon and flatness problems of the

hot big bang model but also the quantum perturbations during this epoch can serve as initial

seeds for structure formation in the universe. Eventually, the temperature fluctuations in

the CMB sky can be related to the primordial density fluctuations during inflation. Latest

CMB surveys such as PLANCK [39] observes two-point correlations in temperature (T ) as

well as polarization (E andB type) at CMB. These observed power spectra for temperature

and polarization are in excellent agreement with the predictions of the ΛCDM model of the

universe.

The ΛCDM model, also known as the concordance model, predicts that the present

universe is mainly constituted of dark energy (∼ 70%) and dark matter (∼ 25%), both of

whose exact physical nature are still under speculation. The baryons (i.e. visible matter)

and photons (i.e. radiation) constitute only about 5% of the energy density of the current

universe. In this model, the primordial fluctuations are theorized to be produced during

inflation which, after horizon re-entry, evolve up to the last scattering surface through ra-

diation and/or matter dominated epochs. Therefore, the ΛCDM model includes six ba-

sic cosmological parameters: two (or more) parameters to describe the inflationary power

spectra, 3 parameters accounting for the evolution of the primordial spectra up until CMB

and one parameter accounting for the reionization epoch of the universe, which affects the

propagation of the CMB photons at very late times.

The phenomenology of the early universe involves comparing the theoretically pro-

duced ΛCDM power spectra with the observed spectra in CMB to constrain these param-

eters of the model. Particularly, constraints on the inflationary model parameters in this

method helps uncover the details about the dynamics of inflation. But the most prominent

motive of inflationary phenomenology is to resolve between the predictions of different

inflationary models with CMB data so that we can converge towards the correct theory of
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inflation.

Models of inflation are plenty in number and design in current literature, the number of

only single field models being ∼ 50 as per reference [7]. The simplest yet elegant model

of inflation is where a single scalar field slowly rolls down an almost constant potential,

which will be discussed in detail in the following chapter. Other than single field models,

there are models where two or more fields participate in the inflationary dynamics [41–43].

The CMB observations predict that the universe expanded 50-60 e-folds during inflation

which indicates that the energy scale of inflation can be as large as 1016 GeV. Therefore,

it is always a challenge to embed models of inflation in ultraviolet complete theories at

such high energies. Moreover, the predictions of big bang nucleosynthesis (BBN) confirm

that the universe was in thermal equilibrium below the energy scale 10 MeV. There is no

independent constraint on the post-inflationary reheating (or preheating) epoch when the

scalar field driving inflation decays into (beyond) standard model fields (in particle physics)

through oscillation. Therefore, observationally there is no way to distinguish between a

purely inflationary epoch and any post-inflationary (p)reheating epoch that may contribute

to the observed number of e-folds together up until the onset of BBN. This confusion about

the beginning and end of inflation and therefore the indetermination about the exact number

of inflationary e-folds gives room for exquisite models of inflation.

Especially, models of inflation which are motivated by high energy theories are partic-

ularly interesting from the phenomenological perspective, even by allowing such models

in non-trivial dynamical settings such as non-minimal gravitational coupling, energetic

coupling to radiation etc. The phenomenology of such theoretically inspired models of

inflation in light of the CMB data is the main focus of this thesis.

The rest of this thesis is arranged as follows:

♣ Chapter 2 discusses the basics of the standard big bang model, the ‘homogeneity’ and
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‘flatness’ problem encountered in this model and how the theory of inflation solves these

problems. This chapter also derives a basic inflationary dynamics, both at the background

and perturbation level, through the single field slow roll model of inflation, focusing on the

prediction of cosmological observables for such models.

♣ Chapter 3 discusses the cosmological implications of the cosmic microwave back-

ground (CMB) radiation in terms of the angular power spectra. The basic construction

of the numerical simulations and statistical analysis required to perform precision phe-

nomenology of inflation with this power spectra is also described in detail at the end of this

chapter.

♣ Chapter 4 involves the phenomenology of attractor models of inflation emerging

from scalar-tensor theories such as f(R) theory and Brans-Dicke gravity. Here, we derive

the attractor dynamics for two cases: the α-attractor and the ξ-attractor and discuss the

robustness of this mechanism upon the parameters and functional forms in the Lagrangian

with their implications on the inflationary observables.

♣ Chapter 5 describes how a warm inflation model can be constrained with obser-

vations. In a generic setting where inflaton is energetically coupled to radiation during

inflation, the dynamics gets modified and depends on the thermal parameters as well as

couplings in the theory. We discuss the constraints from CMB data on a particular model,

the ‘warm little inflation’ and show that the V (φ) = λφ4 model of inflation that is theoret-

ically motivated, but ruled out in its default cold inflation scenario, can be consistent with

the observations in a warm setting.

♣ In Chapter 6, we discuss the effects of post-inflationary moduli domination and

reheating for Kähler moduli inflation. We first analyze the model for typical order-of-

magnitude values of the model parameters to understand the possible reheating scenarios

allowed in such a case. In the next part, we provide a full numerical analysis of the Kähler
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moduli inflation using various statistical tools and constrain the reheating parameters in this

case. Through precision analysis, we find that the Kähler moduli inflation predicts a lower

scalar spectral index than observed unless an exotic reheating epoch with matter decaying

faster than radiation is considered.

♣ Chapter 7 presents a phenomenological analysis of the theoretically motivated Gold-

stone inflation scenario in the non-canonical regime. Here, we embed the Goldstone po-

tential in two types of generic non-canonical scenarios: one where the kinetic term in the

Lagrangian depends only on the inflaton field and another where the term depends on the

derivatives of inflaton. We find that the first case lowers the predicted primordial tensor

amplitude only in the super-Planckian symmetry breaking scales, whereas the second case

has moderate predictions for the primordial tensor amplitude in the sub-Planckian breaking

scales.

♣ In Chapter 8, we present a full summary of the analysis done for several inflationary

models throughout this doctoral thesis. We also provide a brief outlook for the contempo-

rary research in inflationary phenomenology.
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CHAPTER 2

MOTIVATION FOR INFLATION

This chapter encloses the background dynamics of standard big bang cosmology leading up

to the inflationary paradigm. The evolution of the radiation and matter dominated universe

are discussed in Sec. 2.1.2, whereas the inadequacy of the standard picture in terms of the

horizon and flatness problem are discussed in Sec. 2.1.3 and Sec. 2.1.4. Sec. 2.2 introduces

the basic notion of inflation and Sec.2.2.2 discusses the solution of the horizon and flatness

problem through inflation. Sec. 2.2.3 and Sec. 2.2.5 are dedicated to the background and

perturbation dynamics of inflation respectively. The reader may consult references [5, 10,

44–47] for further detailed analysis of the inflation picture.
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2.1 The standard big bang theory

2.1.1 Metric
The (3+1) dimensional FLRW metric gµν representing our homogeneous and isotropic

universe has the following line element:

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

)
, (2.1)

where a(t) is the scale factor and κ is the spatial curvature. κ can take values −1,0 and +1

when the spatial geometry is open, flat and closed respectively. It is to be noted here that

the equations throughout this text are written in natural units unless otherwise specified1.

Now, various observations suggest that the present universe is spatially flat. Therefore, in

terms of the conformal time τ =
∫
dt/a(t), the flat FLRW metric is:

ds2 = a2(t)(−dτ 2 + dx2), (2.2)

where x = (r, θ, φ) is the vector in 3-dimensional space. The components of the universe

are described in the simplest case as an ideal fluid such that the corresponding stress-energy

tensor is:

T µν = (ρ+ p)uµuν − pgµν , (2.3)

where ρ and p are the energy density and pressure of the fluid respectively. uµ is the 4-

velocity of the fluid, which in the rest frame takes the form: uµ = (1, 0, 0, 0). Therefore, in

1The natural unit here refers to ~ = c = 1. The reduced Planck mass MPl = 1√
8πG

is equated to unity
unless written explicitly.
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the rest frame of the fluid, the stress-energy tensor takes the following simpler form:

T µν = diag(ρ,−p,−p,−p). (2.4)

2.1.2 Background dynamics
The Einstein equations relating spacetime with constituents of the universe are:

Gµν = Rµν − gµνR = 8πGT µν , (2.5)

where Rµν is the Ricci tensor, R is the Ricci scalar, Gµν is the Einstein tensor, G is the

universal gravitational constant. In a FLRW universe of line element as given in Eq. (2.1)

with the stress-energy tensor given in the form of Eq. (2.4), the Einstein equations are:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (2.6)

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3p). (2.7)

Eq. (2.6) and Eq. (2.7) are also known as Friedman equations. In addition to the Friedman

equations, the conservation of the stress-energy tensor gives the equation of continuity as:

ρ̇+ 3H(ρ+ p) = 0. (2.8)

Now, the equation of state for a constituent matter species is defined asw = p/ρ. Therefore,

Eq. (2.8) yields the dependence of energy density on the scale factor as:

ρ ∝ a−3(1+w). (2.9)
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In case of a flat universe, Eq. (2.6) combined with Eq. (2.9) gives

a(t) ∝ t2/3(1+w), if w 6= −1, (2.10)

∝ eHt, if w = 1. (2.11)

The evolution of the energy density and scale factor for different epochs are given in Ta-

ble 2.1 below.

Table 2.1: The energy density ρ(a), scale factor a(t) and Hubble parameter H(t) for different
cosmological epochs from FLRW solutions in a flat universe

Epoch w ρ(a) a(t) H(t)

Radiation dominated (RD) 1/3 a−4 t1/2 1/2t

Matter dominated (MD) 0 a−3 t2/3 2/3t
Cosmological constant (Λ) dominated (ΛD) −1 Const. eHt Const.

In case of an universe with multiple constituents, the total energy density is ρ =
∑

i ρi

and pressure is p =
∑

i pi, where ρi and pi are respectively the energy density and pres-

sure i-th component. The energy density of the i-th component can also be written in a

dimensionless form as

Ωi =
8πGρi
3H2

, (2.12)

such that the first Friedman equation can be rewritten as

∑
i

Ωi + Ωκ = 1, (2.13)

where Ωκ = −κ/a2H2 is the curvature density, which vanishes for an exactly flat space-

time. The quantity ρc = 3H2/8πG is known as the critical density. Cosmological observa-

tions claim that the total energy density of the universe today is extremely close to the crit-

ical density with the Hubble parameter given in its present value H0 = 67.66 km/s/Mpc,
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which means that we live in a spatially flat universe so that the curvature density now is

Ω0
κ ≈ 0.

This standard picture of cosmology starting from a radiation dominated universe after

the big bang is also termed as the hot big bang theory. As discussed previously, radia-

tion domination was followed by matter domination when the constituents became non-

relativistic with the expansion of the universe. Therefore, the Friedman equation can be

written as:
H2

H2
0

= Ω0
r

(
a0

a

)4

+ Ω0
m

(
a0

a

)3

+ Ω0
Λ, (2.14)

where Ω0
r , Ω0

m and Ω0
Λ represent the dimensionless density parameters today for radiation,

matter and cosmological constant Λ and a0 is the scale factor in the present universe. The

superscript 0 stands for the present time and, by convention, a0 = 1. It is to be noted

that the cosmological constant Λ can be considered as a particular form of dark energy, for

which the energy density is constant over time and the pressure is exactly negative of the

energy density.

The standard hot big bang model is excellent in describing the thermal history of the

universe. Given seed fluctuations at very early times, the hot big bang model can predict the

generation and evolution of the large scale structures in the late-time universe. However,

there are certain puzzles related to the initial state from which the hot universe started to

expand in a standard model. The two most important and interesting of these puzzles are

the horizon problem and the flatness problem.
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2.1.3 Horizon problem
The particle horizon is defined as the maximum distance that a particle can travel

throughout the age of the universe. Therefore, the comoving particle horizon is:

τH =

∫ t

0

dt′

a(t′)
=

∫ af

ai

d ln a

aH
, (2.15)

where the lower limit signifies initial big bang (scale factor ai) in the standard cosmological

model and t is the age of the universe when the scale factor is af . It can be seen from

Table 2.1 that for both the cases of radiation and non-relativistic matter dominated epochs,

the comoving particle horizon increases with the expansion of the universe (τH ∼ a for RD

and τH ∼
√
a for MD). In general, the universe dominated by any perfect fluid satisfying

the strong energy condition (SEC) of GR 1 + 3w > 0 will always have a monotonically

increasing comoving horizon τH ∼ a(1+3w)/2. Therefore, according to the standard model,

the comoving length scales that enter the comoving particle horizon at any time could never

have causal contact among them at an earlier epoch.

The COBE satellite first measured the CMB sky to be extremely homogeneous in tem-

perature, which was later verified and precisely quantified by WMAP [3] and PLANCK [39].

But the hot big bang model predicts that the scales at last scattering were never causally

connected which definitely contradicts the observed high degree of homogeneity. In Fig. 2.1,

it is shown that the past light cones of two points separated in the CMB sky do not overlap

in the standard big bang scenario starting from τi = 0, implying that the causal histories

of those two points are disconnected. This caveat of the standard theory is known as the

horizon problem or the homogeneity problem.
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Figure 2.1: Representation of the horizon problem in terms of light cones. The past light cones
of two points separated at the last scattering surface do not overlap back in time in the standard big
bang picture. Figure borrowed from [5].

2.1.4 Flatness problem
Eq. (2.13) can be rewritten as:

1− Ω(a) = − κ

(aH)2
, (2.16)

where Ω(a) =
∑

i Ωi(a) is the total energy density of the universe (dimensionless). In the

standard model, the comoving Hubble radius (aH)−1 increases with time
(
(aH)−1 ∼ a(1+3w)/2

)
.

Therefore, Ω(a) deviates from the unstable fixed point Ω = 1 with the expansion of the

universe. The curvature density |Ωκ| also increases with time.
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Several cosmological surveys at different scales and by different probes observe the

present universe to be spatially flat. The exact value of present curvature density is mea-

sured to be very small Ω0
κ = −0.0106 ± 0.0065 by PLANCK 20182 [4]. It can be shown

that to achieve such a negligible spatial curvature now, the initial conditions have to be

tremendously fine-tuned (e.g. |1 − Ω(a)| ∼ O(10−64) at the Planck scale). Such a con-

stricted value of the initial parameters required in the standard case definitely contradicts

the generic nature of the theory. This is known as the flatness problem (Fig. 2.2).

Ω
(a
)

a

flat

open

closed

Figure 2.2: Representation of the flatness problem which shows that the tiniest deviation in the
initial conditions in the standard hot big bang model would be very different from the flat universe
(black curve).

2.2 Inflation
The theory of inflation was proposed [40] as a solution to the above mentioned initial

condition problems of standard big bang cosmology. The paradigm of inflation is intro-

duced as an early epoch of expansion, even before radiation domination, where a tiny
2The quoted value of Ω0

κ is at 68% confidence level for the data combination: PLANCK TT+TE+EE +
lowE + lensing.
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homogeneous and isotropic patch of the universe expanded quasi-exponentially and the

comoving Hubble radius decreased in size (Fig. 2.3). Such an accelerating expansion of

Figure 2.3: The evolution of the comoving horizon during and after inflation with time. Figure
courtesy [5]

the universe is characterized by a quasi-de Sitter manifold, where the Hubble parameter

remains almost constant. The addition of the inflationary epoch to the standard picture

of cosmological evolution not only aids to the shortcomings of the standard theory (see

Sec. 2.2.2) but also the quantum fluctuations during inflation (see Sec. 2.2.5) act as initial

seed perturbations for the evolution of large scale structures.

2.2.1 Basic dynamics of inflation
The shrinking comoving Hubble radius implies an accelerated expansion phase:

d

dt
(aH)−1 < 0⇒ ä > 0. (2.17)
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This accelerating epoch can be expressed in terms of a quasi-de Sitter metric where the

scale factor grows nearly exponentially a ∼ eHt and the Hubble parameter H is almost

constant. In such a scenario, Eq. (2.7) satisfies:

ρ+ 3p < 0⇒ p < −ρ
3
⇒ 1 + 3w < 0. (2.18)

Therefore, the inflationary universe was filled with some matter that does not comply with

the SEC. In the simplest scenario, the inflationary universe is described in terms of a single

scalar field whose potential energy is much larger than its kinetic energy (see Sec. 2.2.3),

which is consistent with the violation of the strong energy condition.

2.2.2 Solution to the puzzles in standard theory
The key to solving the shortcomings of the hot big bang theory is the modified causal

history of the universe with an additional early universe inflationary epoch when the co-

moving Hubble radius (aH)−1 decreased with time.

• Due to the shrinking of the comoving Hubble radius, the scales inside the same Hubble

patch exit the comoving horizon during inflation. These scales re-entered the comoving

horizon at later epochs of decelerating expansion and evolved through the standard dynam-

ics. Therefore, the scales that are observed at the CMB sky are all expected to have early

causal connections at the time of inflation before their horizon exit. Even the largest scale

that went out of the inflationary horizon at the earliest and enters the comoving horizon

now is also expected to have a causal connection to the other length scales at the beginning

of inflation (Fig. 2.4). This early causal contact between different length scales efficiently

describes the homogeneity in the CMB sky and therefore inflation evidently solves the

horizon/ homogeneity problem in the standard theory.
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Figure 2.4: Solution of the horizon problem in terms of light cones is shown here. The past light
cones of two points separated at the last scattering surface are now causally connected in the past
as addition of the inflationary paradigm pushes the conformal time for big bang singularity back to
τi ≈ −∞. Figure borrowed from [5].

• The curvature density of the universe |Ωκ| = κ/(aH)2 decreases in an inflationary

universe. So, even if the universe starts with an arbitrary spatial curvature at the beginning

of inflation, spatial flatness is rapidly restored due to the exponential expansion during

inflation. So, the introduction of the inflationary epoch helps to include the initial curvature

of the universe as a generic initial condition rather than a fine-tuned value, thereby taking

care of the flatness problem of the standard big bang theory.
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2.2.3 Single field slow roll dynamics of inflation
As mentioned earlier, in the simplest scenario, the dynamics of inflation can be ex-

pressed in terms of a single scalar field (known as ‘inflaton’) rolling down an almost con-

stant potential 2.6. The action S for the inflaton, minimally coupled to gravity, can be

written as:

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
gµν∂

µφ∂νφ− V (φ)

]
, (2.19)

where V (φ) is the potential energy of the inflaton φ, R is the Ricci scalar in the quasi-de

Sitter spacetime and MPl = 1/
√

8πG is the reduced Planck mass. The tiny primordial

patch of the universe at the beginning of inflation is considered to be homogeneous and

isotropic. Therefore, the background inflaton field φ is considered to be homogeneous and

evolves only with time: φ(t, x) ≡ φ(t). So, the total energy density and pressure of the

inflaton are respectively:

ρ(φ) =
φ̇2

2
+ V (φ), p(φ) =

φ̇2

2
− V (φ). (2.20)

The Friedman equations during inflation are therefore:

H2 =
1

3M2
Pl

(
φ̇2

2
+ V (φ)

)
, (2.21)

Ḣ = − φ̇2

2M2
Pl

. (2.22)

The equation of motion for the inflaton field is obtained by minimizing the above action

in Eq. (2.19). The resulting Klein-Gordon equation (can also be derived directly from the
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equation of continuity (2.8)) is:

�φ+ V,φ = 0 ⇒ φ̈+ 3Hφ̇+ V,φ = 0, (2.23)

where �φ = 1√
−g∂µ(

√−ggµν∂νφ) and V,φ = ∂V/dφ. The term 3Hφ̇ is in Eq. (2.23) is

proportional to the velocity of the inflaton and is therefore known as the Hubble friction

term.

The equation of state parameter for inflaton is:

w =
p(φ)

ρ(φ)
=

φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

. (2.24)

Now, in a perfect de Sitter universe, the strong energy condition is violated as w = −1,

such that the energy density is exactly negative of the pressure ρ = −p. So, for the quasi-de

Sitter inflationary universe, the violation of the strong energy condition requires w ≈ −1.

This leads to the first assumption for the background inflationary dynamics in terms of the

slow roll (SR) condition. The SR assumption enables the inflaton to roll very slowly along

the constant part of the potential so that the potential energy dominates of over the kinetic

energy at the time of inflation (Fig. 2.5). So, from Eq. (2.24),

φ̇2

2
� V (φ). (2.25)

Now, the Friedmann equation for acceleration (Eq. (2.7)) can be written as:

ä

a
= H2(1− ε), where ε ≡ − Ḣ

H2
=
φ̇2/2M2

Pl

H2
. (2.26)

Therefore, SR inflation requires ε � 1 and ε is conventionally termed as the first SR
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Figure 2.5: Slow Roll of the scalar field during inflation is depicted for a prototype potential. The
onset of fast roll drives inflation towards the end. Figure courtesy: [25]

parameter. Moreover, to sustain such a slow rolling of the inflaton, the acceleration of the

field also needs to be small which leads to the second SR condition:

η = − φ̈

Hφ̇
� 1. (2.27)

η is known as the second SR parameter. In general, the n-th SR parameters can be defined

as:

εn = −d ln εn−1

dN
, and ε1 = ε = −d lnH

dN
, (2.28)

where N = ln a =
∫
Hdt is known as the number of e-folds of the inflationary expansion.

ε and η are known as Hubble slow roll (HSR) parameters as opposed to the potential slow

roll parameters εV and ηV , which represent the SR conditions in terms of the potential

function. The potential SR parameters are given as:

εV =
M2

Pl

2

(
V,φ
V

)2

, (2.29)

ηV = M2
Pl

V,φφ
V

. (2.30)
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εV and ηV are very useful while analysing the background dynamics for a particular model

of inflation. The two kinds of SR parameters are related as:

ε ≈ εV and η ≈ ηV − εV . (2.31)

Under the SR assumption εV , |ηV | � 1, the EoM of inflaton and the first Friedman equation

can be written as:

φ̇ ≈ − V,φ
3H

, (2.32)

H2 ≈ V

3M2
Pl

≈ constant (2.33)

2.2.4 End of Inflation
Eventually, the inflaton rolls down the potential and gains larger velocity when the slow

roll conditions are violated:

εV = 1, and ηV = 1. (2.34)

The number of e-folds of inflation can also be calculated as a function of εV .

N =

∫ te

ti

Hdt =

∫ φe

φi

H

φ̇
dφ =

1

MPl

∫ φe

φi

dφ√
2εV

, (2.35)

where te and φe correspond to end of inflation and ti and φi correspond to the time and

field value at which the largest observable scale at CMB exits the horizon. In general,

given a model of inflation with a potential V (φ), Eq. (2.34) is used to evaluate φe and then

Eq. (2.35) is used to find the initial field value φi for a given number of e-folds.
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After rolling down the potential, the inflaton oscillates around the minimum of the po-

tential. During this oscillation, the inflaton energy density is transformed into the standard

fields found in the standard model theory or beyond the standard model theory of particle

physics. This process of post-inflationary oscillation and decay of inflaton into other fields

is known as reheating since the cold expanded universe at the end of inflation is populated

by relativistic fields. The current CMB experiments have measured the number of observ-

able e-folds of inflation to lie between 50 - 60. This observable number of e-folds depends

on the inflationary dynamics as well as the reheating history of the universe. We will de-

rive the number of e-folds in terms of inflationary observables and reheating parameters

towards the end of this chapter.

2.2.5 Quantum fluctuations during inflation
In the classical analysis of the background dynamics, the inflaton is assumed to be spa-

tially homogeneous. But a complete analysis of the inflationary picture contains quantum

fluctuations in the field as well as spacetime (Fig. 2.6). Therefore, the inflaton and metric

can have the following expansion in perturbations up to the linear order:

φ(t, x) = φ(t) + δφ(t, x) and gµν = g0
µν + δgµν , (2.36)

where g0
µν corresponds to the background FLRW metric given in Eq. (2.1).

Metric perturbations

The metric perturbation can be decomposed into scalar, vector and tensor components

so that the full perturbed line element can be written as:

ds2 = gµνdx
µdxν = −(1 + 2Φ)dt2 + 2aBidx

idt+ a2[(1− 2Ψ)δij + Eij]dx
idxj, (2.37)
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Figure 2.6: Background slow roll evolution of the inflaton field φ with quantum fluctuations δφ.
Figure borrowed from [26].

where

Bi ≡ ∂iB − Si where ∂iSi = 0 and (2.38)

Eij ≡ 2∂ijE + 2∂(iFj) + hij where ∂iFi = 0, hii = ∂ihij = 0. (2.39)

The scalar, vector and tensor (SVT) decomposition in real space is suitable since each of

these components obey distinct transformation properties on the spatial hypersurfaces. The

vector components decay with the expansion of the universe and therefore, we focus only

on the scalar and tensor perturbations. In general, relation between the quantities in the

perturbed and the unperturbed spacetime depend on what transformation is chosen relating

these two spacetimes (gauge choice). For example, under the following gauge choice:

t→ t+ α (2.40)

xi → xi + δijβ,j, (2.41)
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the scalar perturbations transform as:

Φ→ Φ− ȧ (2.42)

B → B + a−1α− aβ̇ (2.43)

E → E − β (2.44)

Ψ→ Ψ +Hα, (2.45)

whereas, the tensor perturbation hij is itself gauge-invariant. Therefore, we need to look

for gauge-invariant quantities as physical observables which do not depend on the choice

of coordinate transformations.

Field perturbations

The perturbed stress-energy tensor in Eq. (2.3) is:

T 0
0 = −(ρ̄+ δρ) (2.46)

T 0
i = (ρ̄+ p̄)avi (2.47)

T i0 = −(ρ̄+ p̄)(vi −Bi)/a (2.48)

T ij = δij(p̄+ δp) + Σi
j, (2.49)

where the momentum density is (δq),i ≡ (ρ̄ + p̄)vi. With the gauge choice given in

Eq. (2.41), the above perturbations transform as:

δρ→ δρ− ˙̄ρα (2.50)

δp→ δp− ˙̄pα (2.51)

δq → δq + (ρ̄+ p̄)α. (2.52)
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Gauge-invariant variables

• The curvature density on uniform density hypersurfaces is a gauge-invariant quantity

which is defined as:

− ζ ≡ Ψ +
H
˙̄ρ
δρ. (2.53)

For slow roll inflation, this can be written as:

− ζ ≈ Ψ +
H
˙̄φ
δφ. (2.54)

The matter perturbations are adiabatic when they satisfy:

δpen ≡ δp−
˙̄p
˙̄ρ
δρ = 0. (2.55)

ζ remains constant on superhorizon scales for adiabatic perturbations.

• Another gauge-invariant quantity is the comoving curvature perturbationR given as:

R ≡ Ψ− H

ρ̄+ p̄
δq, (2.56)

which, for slow roll inflationary scenario takes the following form:

R = Ψ +
H
˙̄φ
δφ. (2.57)

Eq. (2.54) and Eq. (2.57) show that ζ and R are equal (modulo a negative sign) during

slow roll inflation. Now, the constraint relation between ζ andR derived from the Einstein

equation is:

− ζ = R+
k2

(aH)2

2ρ̄

3(ρ̄+ p̄)
ΨB, (2.58)
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where ΨB = Ψ + a2H(Ė − B/a) is the Bardeen potential. Therefore, on superhorizon

scales k � aH , −ζ and R are equal. On the other hand, the evolution of the comoving

curvature perturbation follows:

Ṙ = − H

ρ̄+ p̄
δpen +

k2

(aH)2

(
...

)
. (2.59)

Therefore, R is conserved on superhorizon scales k � aH for adiabatic matter perturba-

tions. Therefore, the dynamics of quantum perturbations during inflation involves deriving

the evolution equations for the scalar perturbation in terms of R and the tensor perturba-

tions in terms of hij .

2.2.6 Power Spectra of inflation
We choose the comoving gauge where

δφ = 0, and (2.60)

gij = a2[(1− 2R)δij + hij] with ∂ihij = hii = 0. (2.61)

In such a gauge, the second order action for scalar perturbations during inflation can be

written in terms of the Mukhanov variable v = zR as:

S(2) =
1

2

∫
dτdx3

[
(v′)2 − (δiv)2 +

z′′

z
v2

]
, (2.62)

where τ is the conformal time and primes denote derivatives with respect to τ ; z2 =

a2 φ̇2

H2 = 2a2ε. The variable v can be expanded in the Fourier space as:

v(τ, x) =

∫
d3k

(2π)3
vk(τ)eikx. (2.63)
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The equation of motion for the Mukhanov variable can be obtained varying the above

action:

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.64)

This second order differential equation can be solved exactly only when the background

dynamics is completely defined so that the evolution of z is known. The first boundary

condition comes from the normalization of the mode functions vk through the quantization

process. The dependence on the background dynamics is prominent again with the choice

of the vacuum state for the fluctuations which is the second boundary condition. If the

background dynamics is chosen to be exactly de Sitter and the vacuum is chosen to be

Minkowski vacuum:

lim
τ→− inf

vk =
e−ikτ√

2k
, (2.65)

then the two-point correlation function for vk can be calculated. In this case, the two-point

correlation function for the comoving curvature perturbation is:

〈RkRk′〉 = (2π)3δ(k + k′)
H2

2k3

H2

φ̇2
. (2.66)

Now, this correlation function can be related to the power spectrum as:

〈RkRk′〉 = (2π)3δ(k + k′)PR(k), ∆2
R(k) ≡ k3

2π2
PR(k). (2.67)

Therefore, the dimensionless scalar power spectrum for slow roll inflation is:

∆2
R =

H2
∗

(2π)2

H2
∗

φ̇2
∗
. (2.68)
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The ∗ in the subscript corresponds to the horizon exit where all the relevant perturbation

quantities are calculated, owing to their conservation at superhorizon scales. In a similar

manner, the tensor fluctuations can be calculated using the tensor part of the second order

action and the tensor power spectrum turns out to be:

∆2
t =

2

π2

H2
∗

M2
Pl

. (2.69)

The scale dependence of the power spectra are defined in terms of spectral indices:

ns − 1 =
d ln ∆2

R(k)

d ln k
(2.70)

nt =
d ln ∆2

t (k)

d ln k
. (2.71)

In a similar manner, the running (αs) and running of running (βs) of ns can also be defined

as:

αs =
dns
d ln k

and βs =
dαs
d ln k

, (2.72)

so that the scalar power spectrum can be approximated in the following form:

∆2
R = As(k∗)

(
k

k∗

)ns−1+αs
2

(k∗) ln(k/k∗)+βs
6

(ln(k/k∗))2

, (2.73)

where k∗ is an arbitrary pivot scale chosen to fit the power spectrum, which varies from

one CMB observation survey to another3. It can be shown that to the first order in Hubble

slow roll parameters,

ns − 1 = 2η∗ − 4ε∗ and nt = −2ε∗. (2.74)

3PLANCK 2018 usually calculates pivot quantities at k∗ = 0.05Mpc−1 and k∗ = 0.002Mpc−1.
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The ratio of tensor and scalar power spectra is:

r =
∆2
t

∆2
R
, (2.75)

which is known as the tensor-to-scalar ratio. r is a direct measure of the energy scale of

inflation since:

V 1/4 ∼
(

r

0.01

)
× 1016GeV. (2.76)

Slow roll results

Under the slow roll approximation, the scalar and tensor power spectra can be written

in terms of the inflaton potential V (φ) as:

∆2
R(k) ≈ 1

24π2

V

M2
Pl

1

εV

∣∣∣∣
k=aH

and ∆2
t (k) ≈ 2

3π2

V

M3
Pl

∣∣∣∣
k=aH

. (2.77)

Furthermore, using Eq. (2.31),

ns − 1 = 2η∗V − 6ε∗V (2.78)

nt = −2ε∗V . (2.79)

The tensor-to-scalar ratio is:

r = 16ε∗V , (2.80)

and therefore, slow roll models of inflation satisfy the consistency relation:

r = −8nt. (2.81)
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The Lyth bound

The excursion of the inflaton field during inflation can also be written in terms of the

tensor-to-scalar ratio as:
∆φ

MPl

= O(1)×
(

r

0.01

)1/2

, (2.82)

which is known as the Lyth bound.

2.2.7 Number of e-folds of inflation
The number of e-folds before the end of inflation when a certain mode of wavenumber

k leaves the horizon is:

N(k) = ln

(
ae
ak

)
(2.83)

= ln

(
aeHe

arehHreh

)
− ln

(
k

k∗

)
+ ln

(
Hk

He

)
+ ln

(
arehHreh

a0H0

)
− ln

(
k∗
a0H0

)
,

(2.84)

where, ak, ae, areh and a0 correspond to the scale factors respectively at the time when the

mode k leaves the horizon during inflation, at the end of inflation, at the end of reheating

and today. Hk = k/ak, He, Hreh and H0 are the Hubble parameters N(k) e-folds before

the end of inflation, at the end of inflation, at reheating and at present day respectively

(Fig. 2.7). Eq. (2.84) evidently shows that N(k) depends on the full evolution history of

the horizon (aH)−1 from the end of inflation until today. Now, the knowledge about big

bang nucleosynthesis (BBN) imply that the universe was thermalised below MeV tempera-

tures. The cosmological evolution from BBN to today is well understood. But, the cosmic

history before BBN is vague since no observation can extract the exact energy density of

the universe at the end of reheating when the universe is completely thermalised and radi-

ation starts to dominate. However, one can put a lower bound to the reheating temperature
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Figure 2.7: The evolution of the Hubble horizon for the inflationary universe is shown, where
the x-axis describes the cosmological scale factor a(t) on a logarithmic scale. The parameter w̃
describes the growth during the reheating epoch. For smaller w̃, the value of N at which the pivot
leaves the horizon is decreased. Figure courtesy: [26].

from BBN. Therefore, while counting the inflationary number of e-folds N(k), there is an

inherent dependence on the reheating number of e-folds Nreh. Due to our lack of knowl-

edge about the reheating, the average equation of state of this epoch is parameterised as w̃,

such that

w̃ =
1

∆(ln a)

∫
w(a)d(ln a), (2.85)
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where the integration runs from the end of inflation until the beginning of radiation domi-

nation. Therefore,

ln

(
aeHe

arehHreh

)
= − 1 + 3w̃

6(1 + w̃)
ln

(
ρreh

ρe

)
(2.86)

and Nreh =
1

3(1 + w̃)
ln

(
ρe
ρreh

)
, (2.87)

where ρe and ρreh are the energy densities at the end of inflation and reheating respectively.

By the end of inflation, accelerated expansion stops so that ä = ρ + 3p = 0, which

implies ρe = 3Ve/2, where Ve is the inflation potential at the end of inflation. Moreover,

after inflation, the comoving particle horizon starts to grow so that w̃ ≥ −1/3. On the

other hand, if the universe thermalized instantaneously at the end of inflation then the

post-inflationary expansion starts from a radiation epoch and w̃ = 1/3. Therefore, w̃ is

considered to lie in the limit −1/3 < w̃ < 1/3 in general. However, in some non-trivial

post-inflationary history the reheating epoch can have an exotic equation of state so that the

most generic bound is −1/3 < w̃ < 1, where the upper bound is imposed from the SEC in

GR.

Therefore, using Eq. (2.86) and with some algebraic jugglery, Eq. (2.84) can now be

written as:

N(k) =56.12− ln

(
k

k∗

)
+

1

3(1 + w̃)
ln

(
2

3

)
+ ln

(
V

1/4
k

V
1/4
e

)
(2.88)

+
1− 3w̃

3(1 + w̃)
ln

(
ρ

1/4
reh

V
1/4
e

)
+ ln

(
V

1/4
k

1016GeV

)
, (2.89)

which is famously known as the matching equation. Now, the Hubble parameter at ak can

also be written in terms of the power spectrum Hk = πMPl(r(k)∆R(k))
1/2/
√

2. On the
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other hand the energy density at reheating can be written as:

ρreh =
π2

30
grehT

4
reh, (2.90)

where Treh =

(
43

11gs,reh

)1/3
a0

aeq

aeq

areh

(2.91)

=

(
43

11gs,reh

)1/3(
ρ0

ρeq

)1/3(
ρeq

ρreh

)1/4

. (2.92)

Here, Treh is the reheating temperature, greh and gs,reh are the number of degrees of freedom

and entropy number of degrees of freedom respectively during reheating. The subscript 0

denotes present day whereas the subscript eq denotes the matter-radiation equality epoch.

Thus,

Nreh =
1

4
ln ρe +

1

4
ln

(
30

π2greh

)
+

1

3

(
11gs,reh

43

)
− lnT0 −

1

3
ln

(
ρ0

ρeq

)
− 1

4
ln

(
ρeq

ρreh

)
.

(2.93)

Now, at pivot scale k∗ = 0.05Mpc−1, assuming greh = gs,reh and replacing the current

observed values T0 = 2.725 K and ln(1010 ×∆2
R) = 3.0444, we arrive at the following:

Npivot +
1

4
(1− 3w̃)Nreh ≈ 55.43 +

1

4
ln r∗ +

1

4
ln

(
ρk
ρe

)
, (2.94)

where r∗ is the tensor-to-scalar ratio at the pivot scale. Once again, it is important to note

that the pivot number of e-folds depends on the reheating history of the universe. CMB

observations predict the pivot number of e-folds 50 < Npivot < 60 which comes from the

uncertainty in the prediction of the scalar spectral index ns. These uncertainties in Npivot

accounts for the unknown dynamics of the reheating epoch in Eq. (2.94), known as the

4The quoted values are at 68% confidence level for the PLANCK 2018 data combination: TT+TE+EE +
lowE + lensing.
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consistency relation.

Eq. (2.89) and Eq. (2.94) are profusely used in the phenomenological studies of infla-

tion, especially to understand post-inflationary history. Several non-trivial models of infla-

tion and early universe predict non-standard evolution after inflation, but the low energy

constraint from BBN has to be satisfied for all of them.
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CHAPTER 3

PHENOMENOLOGY OF INFLATION

In the last chapter, we have derived the groundwork of inflationary dynamics, both in the

background and perturbation regime. In this chapter, we will relate theoretical quantities

with the observables in CMB. We will discuss the power spectra observed by CMB and

how it relates to the cosmological parameters. Later in this chapter, we will mention the

statistical and numerical methodology to constrain inflationary theories with CMB obser-

vations.

3.1 The Cosmic Microwave Background
In the early universe (z > 1100), photons were tightly coupled to the electrons by

Thomson scattering process and electrons were coupled to the baryons via Coulomb in-

teractions. This hot photon-baryon plasma was embedded upon the density fluctuations,

whose primordial seeds were created by inflation. The inflationary fluctuations that grew

out of the horizon during inflation, re-entered the horizon at post-inflationary times to sup-

ply initial fluctuations for structure formation. These fluctuations created potential wells

and hills in regions of high and low energy density respectively. While gravity tries to com-
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press the photon-baryon fluid in such a potential well, the radiation pressure from the fluid

tries to resist the compression. Under such gravitational instabilities, the plasma executes

acoustic oscillations generating the cosmological sound waves.

When the universe is cooled down to ∼ 3000 K, (age 378, 000 yrs) the photons are

released from the plasma as the electrons combine with the protons (recombination) to

produce the first neutral Hydrogen atoms. These photons travel freely almost unscattered

to us and serve as a snapshot of the epoch of recombination. Due to expansion in the

universe, these photons from recombination reach us now with redshifted energy in the

microwave range and therefore, the snapshot of the last scattering surface of the photons

is known as the Cosmic Microwave Background (CMB). At recombination, the acoustic

oscillations stop due to photon decoupling and hence patterns of the cosmic sound waves

is imprinted on the CMB temperature profile.

The distance traveled by the photon-baryon plasma until recombination is known as

the sound horizon. Since inflation generates potential fluctuations on all scales, the general

method of CMB analysis involves decomposing the fluctuations in Fourier space into plane

wave modes of various wavelengths. The angular power spectrum is computed by taking

two-point correlation function of the fluctuations. Since the CMB photons arrive at us

from all directions, the spatial inhomogeneities at the last scattering surface are visualized

as angular anisotropies in the CMB sky.

3.1.1 CMB angular power spectra
The harmonic expansion of the temperature fluctuations ∆T relative to the average

temperature T0 = 2.725 K in the CMB sky can be written as:

Θ(n̂) ≡ ∆T (n̂)

T0

=
∑
`,m

a`mY`m(n̂), (3.1)
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where n̂ is a particular direction in the sky, Y`m(n̂) are the standard spherical harmonics,

and a`m =
∫
dΩY ∗`m(n̂)Θ(n̂). The monopole, dipole and quadrupole moments correspond

to ` = 0, 1, 2 respectively and for a particular value of `, the magnetic quantum number

m can take the values m = −`, ....,+`. The rotationally invariant temperature power

spectrum is given as:

CTT
` =

1

2`+ 1

∑
m

〈a∗`ma`m〉 so that 〈a∗`ma`′m′〉 = CTT
` δ``′δmm′ . (3.2)

On the other hand, the linear evolution relating the scalar fluctuationsRk (discussed in the

previous chapter) with the temperature fluctuations ∆T in Eq. (3.1) is:

a`m = 4π(−i)`
∫

d3k

(2π)3
∆T`(k)RkY`m(k̂). (3.3)

Here, ∆T`(k) is the transfer function in the k-space, responsible for the evolution of the

scalar perturbations Rk from horizon re-entry up to recombination. Therefore, using the

identity
∑+`

m=−` Y`m(k̂)Y`m(k̂
′
) = 2`+1

4π
P`(k̂, k̂

′
), the angular power spectrum can then be

written as:

CTT
` =

2

π

∫
k2dkPR(k)∆T`(k)∆T`(k). (3.4)

The angular power spectrum is the most important probe in the statistical analysis of CMB

since it contains information about the primordial universe (through PR(k)) as well as

of the late time universe (through transfer functions). CTT
` is a compact and effective

representation of the CMB temperature fluctuation map (like Fig. 1.2). The angular power

spectrum can be determined for the E and B polarizations in CMB and also for the cross

correlations of T , E and B in a similar way. The general form of angular power spectrum
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for any two quantities X and Y is:

CXY
` =

2

π

∫
k2dkP (k)∆X`(k)∆Y `(k). (3.5)

However, discussion of the polarization powers spectra in details in out of the scope of this

thesis, since here we concentrate on the temperature power spectra CTT
` to understand the

evolution of fluctuations from the tiny perturbations at inflationary epoch.

Figure 3.1: CMB angular power spectra from PLANCK 2018 [27] whereDTT` = `(`+1)CTT` /2π.
The red data points from PLANCK TT + TE + EE + low E + lensing are plotted with error bars
whereas the blue curve represents the best fit base ΛCDM value.

The positions and amplitudes of different peaks in the angular power spectra in Fig. 3.1

exhibit features that can relate to many dynamical quantities in the early universe. The

fluctuation mode k1 whose wavelength is equal to the sound horizon had the chance to

compress just once after horizon re-entry and recombination and therefore is known as the

fundamental mode k1 = 2π/λ1, where λ1 is the sound horizon. Thus, the first acoustic
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peak of the spectrum at around ` ≈ 220 corresponds to the fundamental mode k1 and acts

as a measure of the sound horizon. The later peaks signify multiples of the fundamental

frequency mode, e.g. the second peak corresponds to the wavenumber k2 = 2k1 and so on.

Evidently, odd-numbered peaks in CMB are caught at the maxima of the oscillations (com-

pactification of the plasma), whereas the even peaks represent minima of energy density

(rarefication of the plasma).

The temperature anisotropy profile in Fig. 3.1 are distinctly related to the spatial curva-

ture in the universe. If the curvature (κ) decreases (open universe) such that the curvature

density is higher than its observed value today Ω0
κ = −0.0106± 0.0065, then the hot spots

(potential wells) in CMB appear smaller in size1 and the peaks shift to higher multipoles `.

Secondly, if the baryon density Ωb is increased then the potential wells are deeper and as a

result, the odd peaks in CMB are enhanced, but the even peaks do not change. Increasing

Ωb also slows down the acoustic oscillation and therefore peaks move to a higher ` value

(smaller scales). The duration of the radiation dominated epoch before matter domination

also influences the CMB angular power spectrum. Since the smaller length scales of pertur-

bation re-entered the horizon before the larger scales, the potential wells at smaller scales

are affected by the stretching of the modes due to radiation domination (unlike matter dom-

ination). Therefore, the relative amplitude as moving from lower to higher multipoles (`)

is a measure of the radiation to matter density at recombination, which also provides a

measure for the age of the universe at recombination.

The higher ` correspond to the smaller scales in CMB, which are of the order of the

mean free path of the photons engaged in Thomson scattering with the electrons before re-

combination. Therefore, the photons can move from maxima to minima of the smaller scale

1In an open universe, the paths of two photons from opposite ends of an extended object in sky bend
towards each other and the object appears smaller, whereas in a closed universe, the paths move away from
each other and the object appears larger.
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oscillations between two consequent scatterings and therefore can smoothen the amplitude

of oscillations. This results in the damping of the angular power spectrum at smaller scales

(high `) known as ‘diffusion damping’ or ‘Silk damping’. Since the curvature, baryon

density and matter-to-radiation density ratio are measured by the positions and peaks of

the power spectrum, the damping tail provides a consistency test for the standard big bang

model of cosmology.

The photons coming from the surface of recombination to us today are also affected

by a few late-time cosmological effects. The presence of massive objects like galaxies

and galaxy clusters at low redshifts bends the path of CMB photons through gravitational

lensing [48] and what we observe through present CMB telescopes is a lensed spectrum of

CMB. On the other hand, when a photon enters a gravitational potential well at its path,

it gains energy, but by the time the photon leaves the well, the depth of the well changes

due to the expansion of the universe. This affects the energy carried by individual photon

and its effect along the full line of sight is known as the integrated Sachs-Wolfe (ISW)

effect [49]. Moreover, when the photons encounter large scale structures in its path, the

inverse Compton scattering with the high energy electrons in galaxies and galaxy clusters

give rise to the photon energy accounting for a spectral distortion in the CMB energy spec-

trum. This is known as the Sunyayev-Zel’dovich (SZ) effect [50]. The recent analysis of

the observed power spectra of CMB by surveys like PLANCK takes all these effects into

account to recover the true power spectra at recombination. These late time effects have

interesting implications for large scale structures of the universe as well, but they are out

of the focus of this thesis.
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3.1.2 Constraints from CMB
The latest measurement of the temperature angular power spectrum measured by PLANCK

2018 [27] is give in Fig. 3.1 where the data (red points) are fitted with the base six-

parameter ΛCDM model of cosmology (blue curve). The six parameters of the minimal

ΛCDM model are

As: amplitude of primordial scalar power spectrum,

ns: spectral index of the primordial scalar power spectrum,

Ωbh
2: baryon density,

Ωch
2: cold dark matter density,

θ: sound horizon and

τ : optical depth at reionization.

Table 3.1: Central values with 1σ errors of cosmological parameters by PLANCK (2018) [27].

Parameter TT+lowE TE+lowE TT+TE+EE+lowE TT+TE+EE+lowE+lensing+BAO
Ωbh

2 0.02212± 0.00022 0.02249± 0.00025 0.02236± 0.00015 0.02242± 0.00014
Ωch

2 0.1206± 0.0021 0.1177± 0.0020 0.1202± 0.0014 0.11933± 0.00091
100θMC 1.04077± 0.00047 1.04139± 0.00049 1.04090± 0.00031 1.04101± 0.00029
τ 0.0522± 0.0080 0.0496± 0.0085 0.0544+0.0070

−0.0081 0.0561± 0.0071
ln(1010 × As) 3.040± 0.016 3.018+0.020

−0.018 3.045± 0.016 3.047± 0.014
ns 0.9626± 0.0057 0.967± 0.011 0.9649± 0.0044 0.9665± 0.0038

As and ns are the parameters related to the primordial history of fluctuations and thus

contain information about the inflationary dynamics, whereas the other four parameters are

responsible for the evolution of the fluctuations after horizon re-entry in the decelerating

epochs of matter domination. Therefore, recounting the definition of inflationary power

spectrum from the previous chapter, the dynamics of inflation contributes to the derivation

of CTT
` through Eq. (3.4). The extensions of this standard ΛCDM model in the infla-

tionary sector can involve more parameters such as the tensor-to-scalar ratio (r), running

and running-of-running of the spectral index (αs and βs), amplitude and spectral index of
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the tensor power spectrum (At and nt) etc. The fitting of the theoretical angular power

spectrum from ΛCDM model with that from CMB data provides constraints to the cosmo-

logical parameters discussed above which is the primary method of constraining models in

cosmology.

The main statistical limitations in the measurement of CMB come from instrumental

noise and angular resolution. The latest observation of CMB angular power spectrum by

PLANCK in 2018 [27] can estimate the cosmological parameters with errors at sub-percent

levels. In this era of precision cosmology, the theoretical models of inflation are extremely

constrained with data. The phenomenology of inflation in this modern era is primarily

based on comparing the theoretically computed scalar and tensor angular power spectra

with observed C`s from CMB experiments for the correlations of temperature as well as

polarization. The tensor fluctuations being smaller in amplitude than scalar fluctuations do

not contribute much into the angular power spectra and therefore current CMB experiments

only put an upper bound on r. Upcoming CMB surveys like CORE [30], CMB-S4 [29]

etc. are very hopeful as they propose to measure the inflationary observables like ns and r

with tremendous precision. Future prospects of observing primordial gravitational waves

in advanced experiments with interferometry [51, 52] are very promising in understanding

the primordial tensor fluctuations.

The work included in this thesis is based on constraining models of inflation using CMB

observations from PLANCK 2015 [18] and 2018 [27]. The models considered in this work

are inspired by particle physics or string theory. The motivation lies in accommodating

these models in dynamically non-trivial scenarios like warm inflation and modified post-

inflationary history.

The methodology used here in confronting the models of inflation with CMB data in-

volves statistical and numerical analysis. Given a set of base ΛCDM parameters listed
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above, the CAMB (Code for Anisotropies in the Microwave Background) module [53] can

generate the angular power spectra for temperature and polarizations. The default CAMB

code uses the almost scale invariant inflationary power spectrum for the scalar fluctuations:

∆2
R = As(k∗)

(
k

k∗

)ns−1

. (3.6)

where As and ns are the input parameters and k∗ is the pivot scale. The tensor power

spectrum:

∆2
t = At(k∗t)

(
k

k∗t

)nt
(3.7)

can be calculated in the extended model by one of the following ways: (i) usingAt = r×As
with r as a parameter; (ii) using ∆2

t = r × ∆2
R with r as a parameter, which yields same

results as the previous option only if the pivot scales for scalar and tensor fluctuations are

taken to be the same; (iii) using Eq. (3.7) and directly parameterizing At. k∗t is the pivot

scale for calculating tensor power spectrum and in general, is equal to k∗. While calculating

tensor power spectrum, nt can either be a derived parameter using the gravitational wave

consistency relation r = −8nt or can be treated as an independent input parameter.

In the works [17, 22] discussed in this thesis we have used the Cosmological Monte

Carlo (COSMOMC) code [14] which is a publicly available tool that includes the CAMB

module. The n number of parameters of the base or extended ΛCDM model can be varied

in COSMOMC in a prior range and for each point in the n-dimensional parameter space,

CAMB feeds back the temperature and polarization angular power spectra at recombina-

tion. These simulated power spectra are then compared with the observed CMB power

spectra. The statistical analysis for comparing simulation to data involves Bayesian analy-

sis technique to minimize the value of χ2. If χ2 at a particular coordinate in the parameter

space is smaller than the χ2 value at the previous point in the chain then the run accepts
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the later point, otherwise rejects it. Running the simulation until a considerable accuracy

in χ2 results in reaching the best fit values of the cosmological parameters. The method of

moving across the parameter space uses Bayesian approach where a prior likelihood π(θi)

is provided for each parameter θi, and the posterior probability for θi is calculated using

Bayes’ theorem. The posterior probability for θi is:

p(θi|D) =
p(D|θi)× π(θi)

p(D)
=

p(D|θi)× π(θi)∫
dθip(D|θi)× π(θi)

, (3.8)

which uses the likelihood p(D|θi) for a particular set of data D. The marginal likelihood

p(D) =
∫
dθip(D|θi)× π(θi) signifies the probability of obtaining a particular data set D

given a set of priors for θi with i = 1, ..., n. The posterior probabilities for the cosmological

parameters can be plotted in individually for each parameter, or as cross-correlation of

the posterior probabilities for two parameters with 1σ and 2σ confidence levels marked

distinctly.

In work [17], we have used COSMOMC while modifying the module for computing

inflationary power spectra inside CAMB into a subroutine for calculating the warm infla-

tionary power spectra given in Eq. (5.22) and Eq. (5.29) in terms of the parameters of the

model under consideration. In work [22], we have used an additional module MODECODE

with COSMOMC. MODECODE is also a publicly available Fortran package that computes

the primordial power spectra for a given model of inflation. Using MODECODE with COS-

MOMC allows for independently varying the model parameters for inflation. Additionally,

MODECODE also keeps the inflationary number of e-folds as a varying parameter to be

estimated via simulation, which was found very useful in [22] as this model includes a

modification of the number of inflationary and post-inflationary e-folds.

Usage of advanced statistical and numerical methods of comparing inflationary models
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with CMB data is very appealing as it helps probe the parameter space with a tremendous

level of precision. The constrained values of the model parameters can be compared with

the theoretically proposed order-of-magnitude values for them to understand the underlying

dynamics better. It is crucial to utilize these numerical tools phenomenologically to validate

models of inflation with well-defined levels of confidence.
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CHAPTER 4

ATTRACTOR MODELS IN

SCALAR-TENSOR THEORIES

4.1 Introduction
The recent advances in parameter estimation in cosmology from CMB observations is

extremely helpful in knowing the details about the dynamics in the early universe. The

PLANCK 2015 [28] observation of CMB measures the observables of inflation very pre-

cisely: the scalar spectral index ns = 0.968±0.006 and the tensor-to-scalar ratio r < 0.11.

Interestingly, the observable predictions of Starobinsky model R + R2 [10], the model

with a non-minimal coupling ξφ2R and V (φ) ∼ φ4 [54–57] fall into the sweet spot of the

PLANCK 2-σ contour. For a large number of e-folds N , the observables for these models

are given by

ns = 1− 2/N, r = 12/N2 (4.1)
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where N = 50-60 is the time when the CMB scales leave the horizon during inflation1. In

terms of a canonically normalised scalar field in minimal gravity, all the above mentioned

models have exponentially flat potential in large field values.

Among large varieties of potentials, the models with a plateau-like behaviour are gener-

ically favoured by the recent data [61]. Subsequently, interests renewed in understanding

models that can produce little amount of gravitational waves with spectral index in the

above-mentioned limit. Using Lyth bound, that relates the value of r with the field excur-

sion ∆φ during inflation, these type of models would require ∆φ . O(MPl) [62]. It has

been achieved in two ways. Firstly it was noticed that a coupling between the inflaton with

heavy fields can effectively flatten the inflaton potential [63]. Secondly, Kallosh and Linde

discovered a class of models whose observable predictions are attracted towards the point

of Eq. (4.1) when one parameter in the model is continuously modified [11]. In fact, the

models with arbitrarily small r were also proposed. The predictions of the Starobinsky

model just sit at this attractor point. It was found that these class of attractor models have

underlying conformal symmetry structure, and their supergravity realizations have been

discussed extensively in the literature [12, 64–73].

One type of attractor model, namely the α-attractor, finds its attractor nature from the

second-order pole in the kinetic energy term [74]. In terms of the field variable, the poten-

tial must be smooth at the position of the pole. In this case, the potential of the canonically

normalised field asymptotes to a constant value. In terms of the canonical field, the pole

is shifted to infinity and so is never reached physically through its dynamical evolution

during inflation. We get a nearly shift symmetric plateau asymptotically. For the case of ξ-

attractor models, the gravity is non-minimally coupled to the scalar field. In this case with

1Unconventional post inflationary dynamics can affect the preferred number of e-folds, and thus infla-
tionary observables. For example, see [58–60].
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the proper choice of the non-minimal coupling function, the kinetic term, and the potential

function, the predictions of the model quickly converge to the asymptotic value given by

Eq. (4.1) as we increase ξ. Both these attractor models can be unified in the picture of

kinetic formulation of the theory, where ns is related to the order of the pole of the kinetic

term in its Laurent series expansion and r primarily depends both on the leading order pole

and also on the residue corresponding to that pole in the expansion.

In this work, we have studied f(R) theories of gravity and Brans-Dicke theory in the

context of attractor models for inflation. We show explicitly how these models can be

rewritten in terms of the attractor models with an appropriate kinetic term that is suitable

for attractor mechanism to work. For some particular choice of the functional degrees of

freedom in these theories, one obtains Starobinsky like predictions in the ns-r observable

plane. Any choice of these functions fixes the potential in the Jordan frame or in the Ein-

stein frame in terms of the non-canonical field. Whether any model would show attractor

properties crucially depends on the asymptotic nature of these potential functions. For ex-

ample, any deviation fromR+R2 gravity distorts the asymptotic nature of the potential and

makes the potential unstable for the attractor. Our work is complementary to the approach

taken by Ref [75] where the effects of the asymptotic shift symmetry breaking corrections

to the potential corresponding toR2 term have been studied. Similar studies have been also

carried out in [76–84].

We also discuss the robustness of the attractor mechanism by varying conformal func-

tion in the case of the ξ-attractor, and analyzing the effect of higher order pole in the kinetic

energy term. In the case of ξ attractor, even when the conformal function is changed by

adding higher order monomial, for a sufficiently large value of ξ the predictions come back

to the attractor point. On the other hand, when the kinetic function is changed with a

higher order pole, the predictions deviate from the attractor curve. This is consistent with
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the conclusion of [85] where changes to the observables have been calculated in the limit

of perturbative corrections to the kinetic function.

We emphasise the point that even when a model has a kinetic term with a suitable pole

structure (as we will recast), the potential in the Jordan frame is fixed from the underlying

structure of the model. We get the attractor behaviour only for certain functional choices.

In the case of Brans-Dicke theory, we choose only these functions judiciously and show

how predictions for the attractor models are guaranteed to be reproduced when certain

limits of the model parameters are taken.

The motivation of this work is two-fold:

• After reviewing the explicit mechanism of the attractor dynamics, we check the robust-

ness of this mechanism for higher order corrections in the functional degrees of freedom

for α and ξ- attractors.

• We theorize how attractor mechanism can be obtained from scalar-tensor theories and

explicitly show the f(R) theory and Brans-Dicke theory as examples. For this, we study

the allowed range of the parameters in the functional degrees of freedom in light of the

observables in CMB.

We will see that the plateau nature of the effective potential for large fields values in at-

tractors is governed by the dynamics of the functional forms of the non-minimal coupling

(for ξ-attractors) and the pole-containing kinetic term (for α-attractors). Therefore, both

the analyses mentioned above relate to this dynamics and its outcomes.

This chapter is organized as follows. In the next section, we summarize the attractor

mechanism. In Sec. 4.3, we analyze the robustness of the attractor mechanism. In Sec. 4.4,

we discuss f(R) inflation models in the language of attractor models and discuss phe-

nomenology when polynomial terms are present in the action. In section V, we discuss

Brans-Dicke theory in the context of attractor models and find potentials which suitably
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provide attractor solutions. Finally, we conclude in Sec. 4.6.

4.2 Attractor mechanism for inflation models
A class of inflationary models has been identified whose predictions in the space of

observables are not so sensitive to the specific potential function due to particular non-

canonical nature of the kinetic term. The data coming from PLANCK experiment shows this

coincidence amongst various inflation models like - Starobinsky model [1,45], Goncharov-

Linde Model [86], supersymmetric version of non-minimal chaotic inflation with φ4 poten-

tial [12, 87, 88] and Higgs inflation [54]. In the leading approximation of 1/N , where N

being the number of e-folds of inflation, the observable predictions i.e. scalar spectral in-

dex (ns) and tensor-to-scalar ratio (r) of all these models are attracted to a common point

given by Eq. (4.1). These models are collectively known as cosmological attractors.

The cosmological attractors broadly come into two categories, where the Lagrangian

either has a non-minimal coupling to the Ricci scalar or may feature a characteristic kinetic

term with a second-order pole. The former description is known as non-minimal ξ-attractor

and the later one is called α-attractor, where ξ or α is a free dimensionless parameter of the

theory which when varied the predictions converge to Eq. (4.1). The origin of the attractor

properties of both kinds can be traced back to the pole structure of the Kinetic function in

its Laurent expansion and the potential function is smooth at the position of that pole [11].

Under special condition, these models can be mapped to each other.

4.2.1 α and ξ attractors
The Lagragian for the models of cosmological attractor is given by

L =
√−gE

[
1

2
RE −

1

2

(
ap
φp

+ · · ·
)

(∂φ)2 − VE(φ)

]
, (4.2)
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where the kinetic function is given by a Laurent series expansion with a pole of order p at

φ = 0 (without loss of generality), and the dots denote subleading terms. We approximate

the potential energy by a Taylor series expansion VE(φ) = V0(1+cφ+· · · ) near the vicinity

of the pole. Here φ is the inflaton field with non-canonical kinetic energy term, and gravity

is minimally coupled. The constant V0 sets the asymptotic value of the potential in term of

the canonical field.

It turns out that the observable predictions of this model are uniquely characterised by

the properties of the pole. In particular, the scalar spectral index ns and the tensor-to-scalar

ratio r at leading order in 1/N are given by [11]

ns = 1−
(

p

p− 1

)
1

N
, r =

8c
p−2
p−1a

1/(p−1)
p

(p− 1)
p
p−1

1

N
p
p−1

. (4.3)

Note that whereas the spectral index depends only on the order of the pole, the tensor-to-

scalar ratio depends both on the order and the residue of the pole. For p = 2 and ap = 1,

this yields the famous Starobinsky inflation prediction for the scalar spectral index given

by Eq. (4.1). Depending on the value of ap, the tensor-to-scalar ratio can be arbitrarily

small. The second-order pole with p = 2 is special as its origin can be traced back to some

superconformal supergravity theories [12, 64–73], and to non-minimal gravity theories in

the Jordan frame [89].

As mentioned earlier, there are primarily two classes of cosmological attractors. Both

of them can be interpreted as having a pole in the kinetic term of order p = 2. The

Lagrangian for the cosmological α-attractor is given by,

L =
√−gE

[
1

2
RE −

1

2

α(∂φ)2

(1− φ2/6)2
− αf 2(φ/

√
6)

]
, (4.4)
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where α is a dimensionless parameter of the model. If we make a field redefinition as

φ/
√

6 = (1− ρ)/(1 + ρ), we can write the above Lagrangian as2

L =
√−gE

[
1

2
RE −

3α

2ρ2

(∂ρ)2

2
− αf 2(ρ)

]
. (4.5)

This is similar to what is written in Eq. (4.2) with the specified form of the kinetic function

with a2 = 3
2
α. Therefore, the Lagrangian of an α-attractor model also features a second-

order pole at ρ = 0.

In terms of the canonical field φ̂, the pole at ρ = 0 is shifted to large field values, and

the potential is given by

VE(φ̂) = αf 2
[
tanh(φ̂/

√
6α)
]

(4.6)

where ρ = e−
√

2
3α
φ̂. For monomial functions, the potential reduces to the form of T-

models of conformal attractors. For the choice of f(x) = cx
1+x

, one finds the generalization

of Starobinsky potential [11]

VE =
αc2

4

(
1− e−

√
2
3α φ̂
)2

. (4.7)

This potential has a long plateau at large φ̂. It is this particular functional form of VE that

makes the potential asymptotically flat at large values of the canonically normalized field.

The predictions of this model varies from quadratic chaotic inflation model (for large α) to

2Instead of making this field redefinition, if we make the Laurent series expansion of the kinetic function
KE , at the leading order we get a second-order pole at φ =

√
6 with a residue of 3α/2. The subleading terms

in the expansion do not contribute to the observables in the large N limit.
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Starobinsky model (for α = 1) with [74]

ns = 1− 2/N, r = 12α/N2 . (4.8)

This model can also produce arbitrarily small r for α� 1.

Note that the choice of the function f(x) can be more general than what has been

mentioned above. Because of the nature of tanh(φ̂) function, when the argument of the

function becomes of order one, the potential is stretched with a constant asymptotic plateau.

But the function must be chosen appropriately such that the post-inflationary vacua are

consistent with observations.

The other description for the cosmological attractor with non-minimal coupling to grav-

ity is given by [89, 90]3

LJ =
√−gJ

[
1

2
Ω2(φ)RJ −

1

2
KJ(φ)(∂φ)2 − VJ(φ)

]
, (4.9)

where Ω2(φ) = 1 + ξf(φ) is the conformal factor. Here the theory is defined in a Jordan

frame. The corresponding Einstein frame description after a conformal transformation of

the metric tensor gEµν = Ω2(xµ)gµν is

LE =
√−gE

[
1

2
RE −

1

2

(
KJ

Ω2
+ 6

Ω′2

Ω2

)
(∂φ)2 − VE

]
. (4.10)

Here VE = VJ/Ω
4, and the prime is w.r.t the field variable φ. If KJ(φ)� 6Ω′2, the above

3For multifield models of inflation with non-minimal couplings, the expressions for ns and r in the
leading approximation in 1/N is different [91]. Higher order correlation functions for these models are
studied in [92].
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Lagrangian reduces to the usual form of the attractor model.

LE =
√−gE

[
1

2
RE − 3

(∂Ω)2

Ω2
− VE(Ω)

]
. (4.11)

In this case, the canonically normalised field φ̂ is related to the conformal factor by Ω2 =

e
√

2
3
φ̂. Now, with ξ being negative, Ω2(φ) = 1+ξf(φ) has a pole of order two in the kinetic

term. However, with positive ξ, the pole structure is clear if we make the transformation

Ω2 → 1/ρ, and the above Lagrangian becomes

LE =
√−gE

[
1

2
RE −

3

4

(∂ρ)2

ρ2
− VE(ρ)

]
. (4.12)

Thus, at large ξ or large φ, the pole at ρ → 0 is accessible. If VE(ρ) is smooth at the

position of the pole, the potential w.r.t to the canonically normalised field is going to be

flattened for large field values. Therefore both the classes of cosmological attractors are

basically a realisation of the same description given in Eq. (4.2) through redefined field

variables. For the case of ξ-attractor, the residue at pole is a2 = 3/2, and the predictions

are given by Eq. (4.1) for a suitable choice of VJ . For the particular choice of VJ(φ) =

c2(Ω2 − 1)2 this yields the famous Starobinsky model. On the other hand, for the choice

of VJ = Ω4f 2
(

Ω2−1
Ω2+1

)
, the resulting theory in the Einstein frame becomes a T-model of

α-attractor [93]. See [94] for some other attractor models where the form of the potential

function has to be approximately close to this form to show attractor mechanism.

In summary, any choice of the potential function of the non-canonical field having

second-order pole in the Einstein frame will show attractor nature if it satisfies the follow-

ing three criteria:

• Potential must be a smooth function at the location of the pole,
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• the potential has to be a positive definite function, and

• at large field values, the potential must asymptotically approach to a constant (or nearly

constant) value.

The second criterion is a statement about the boundedness of the potential from below. The

last one is seemingly significant as this asymptotic domain of the potential is responsible

for the attractor type predictions in the ns-r plane.

We note that the way the Einstein frame scalar potential of a canonical field manifesting

an asymptotically long plateau is slightly different for the two kinds of attractor models.

In the case of α-attractor, the potential in the Einstein frame after canonical normalization

is controlled by the canonical conversion function tanh φ̂, and it causes flattening of the

potential. It happens because in the defining Lagrangian of the α-attractor, the pole in the

Kinetic term appears at some finite value of φ. Nevertheless, a suitable field redefinition

can make the pole to appear at zero field value. But in that case, the potential still remains

a tanh φ̂ function in the canonical field. Therefore, for the α-attractor viewing the pole in

the non-canonical field either at zero or at finite value does not make any difference in the

argument of the potential function of the canonically normalized field. In contrast, for the

ξ-attractor, the canonical conversion generates an exponential function Ω2 ∼ eφ̂. But in

this case, a tacit choice of the potential function VJ makes the potential exponentially flat.

However, in either case, the asymptotic behaviour of the Einstein frame scalar potential

is similar. In summary, in addition to the pole structure in the kinetic energy term, the

attractor behaviour also crucially depends on the properties of the potential functions.

In Sec. 4.4 we are going to study how the inflationary predictions of some well studied

scalar-tensor theories can be reinterpreted in the language of attractor models.
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4.3 Robustness of attractor mechanism
The attractor mechanism works due to the existence of a second-order pole in the ki-

netic term, and the potential being smooth at the position of the pole. As we have seen in the

previous section, for the case of ξ-attractor, a certain condition has to be satisfied between

the conformal factor and the potential function. Specifically, the order of the monomial in

both these functions must be the same such that asymptotically the potential in the Einstein

frame becomes constant. On the other hand, the shift symmetric potential in the asymptotic

limit can be broken by including higher order poles. These higher order poles, in general,

can appear when the Kinetic function is expanded in Laurent series [11, 85]. For the non-

minimal ξ-attractor, higher order corrections arise when the conformal function is Taylor

expanded [89]. In this section, we will analyze the robustness of the attractor mechanism

by modifying the conformal factor4 and the pole structure of the kinetic function. If the

corresponding corrections arise at field values much larger than the field value φ60 when the

CMB scales goes outside the horizon, the attractor prediction remains robust. For the case

of perturbative corrections to the leading order pole in the kinetic function, the corrections

to the inflationary observables have been shown to be universal [85]. We analyze this case

when the corrections are not necessarily perturbative.

Here we would like to see how a correction term in the non-minimal coupling function

is going to affect an otherwise attractor like predictions. For the purpose of our analysis

we start with the Lagrangian density of Eq. (4.9). For simplicity, the non-minimal function

and the potential function of this theory are taken to be

Ω2(φ) = 1 + ξ(b1φ+ b2φ
2), VJ(φ) = m2φ2, (4.13)

4Note that here we modify the conformal factor perturbatively which is different from quantum correc-
tions to the attractor models, which is studied extensively in [95].
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where b1, b2 are arbitrary constants of the theory. Recasting the Lagrangian density into the

Einstein frame through a conformal transformation we obtain for the potential function to

be

VE(φ) =
m2φ2

[1 + ξ(b1φ+ b2φ2)]2
. (4.14)

With b2 = 0 and after eliminating φ in terms of Ω2, the potential can be written as VE =

m2

ξ2
(1 − Ω−2)2. This represents a ξ-type attractor model with predictions interpolating

between quadratic chaotic model and Eq. (4.1) when ξ is varied from zero to large values.

Here ξ is the attractor parameter when its value is increased. Without loss of generality, for

the purpose of our analysis we have taken b1 = 1 as it can be absorbed in the redefinition

of ξ. We now want to see how this attractor like behaviour changes when we include b2φ
2

term in the non-minimal function.

Let us now investigate the predictions of this potential in the light of PLANCK 2015

data. With the form of the Einstein frame potential specifield, one can calculate the scalar

spectral index and the tensor-to-scalar ratio from the following expressions respectively,

ns = 1− 6εE + 2ηE, r = 16εE

where εE and ηE are the inflationary slow roll parameters which are given as,

εE =
1

2

(
V ′E(φ̂)

VE

)2

, ηE =
V ′′E (φ̂)

VE
(4.15)

These parameters have to be calculated when observable CMB modes go outside the hori-

zon.

The theory now contains three free parameters m, ξ and b2. But m gets fixed from the
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amplitude of curvature perturbation, and ξ and b2 remain free parameters that we vary. For

several representative values of b2, we change ξ from zero to 104 and calculate the scalar

spectral index and the tensor-to-scalar ratio. The observable predictions, in this case, are

shown in Fig. 4.1a. In this figure, the various colored curves correspond to fixed values of

the b2 parameter. All of them approach to the attractor point in the ns-r plane from their

ξ = 0 limit of quadratic chaotic inflation limit. The rightmost black curve with b2 = 10−4

goes directly into the attractor point. But the way other two curves with larger values

of b2 (red, blue) approaches towards the attractor point is quite different from the first.

With the increasing value of the ξ-parameter they initially deviate from the attractor point.

Thereafter, for a further increase of ξ, the curves once again return to the attractor point.

To understand this behaviour let us have a close look at the expression for the Einstein

frame potential in Eq. (4.14). There is a maximum of the potential at φ = φ0 = 1√
b2 ξ

when

the effect of b2φ
2-term in the denominator is comparable to φ-term. Note that this is true

for any non-zero value of b2 with φ0 → ∞ when b2 → 0. The potential now develops

two branches. For values of φ > φ0, it asymptotes to zero while it acquires a flat part for

φ < φ0. For viable inflation, we must have φ60 < φ0, and necessary inflation can proceed

in the flat part of the potential.

Now the value of φ60 depends on both ξ and b2. For smaller values of b2 ∼ O(10−4),

the value of φ60 & 1, but due to the smallness of b2 parameter the effect of the quadratic

term is negligible, and the curve directly moves towards the attractor point. On the other

hand for b2 ∼ O(10−3), the curve initially moves away from the attractor point for up to

a certain value of ξ. In this case, up to the turning point, even though φ60 & 1, the effects

of larger b2 in the quadratic correction term is appreciable. With further increasing value

of ξ, the potential distorts and inflation happens with φ60 . 1 in an asymptotic flat part.

In this case, the quadratic term becomes negligible in the region where inflation proceeds
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Figure 4.1: Plots show the variations of ns-r with the 68% and 95% confidence contours from
2015 PLANCK data. In Fig. (a) the arrow in each line shows the direction of increasing ξ. The
green triangle in the plot shows the attractor point given by Eq. (4.1). In Fig. (b) the blue dots
correspond to the quadratic pole only, and the red dots correspond to the cubic pole. The arrow in
each dotted lines shows the direction of decreasing a for various b values. The magenta triangle and
the blue square correspond to Eq. (4.3) with p = 2 and p = 3 respectively for ap = 1.

and the attractor point is reached. In conclusion, we find that if we increase the value of ξ

sufficiently, we regain the attractor behaviour even with the correction term with b2 ∼ O(1)

in the conformal factor. Therefore, we conclude that the attractor behaviour is very robust

to the perturbations in the functions that define the attractor Lagrangian as long as the

attractor parameter is increased sufficiently.

We now would like to understand how an attractor theory is sensitive with respect to

the variations in its kinetic function. For this analysis, we pick up the Einstein frame

Lagrangian density given in Eq. (4.2). The kinetic and the potential functions are taken as5

KE(φ) =
a

φ2
+

b

φ3
, V (φ) = V0(φ− 1)2 . (4.16)

5For a general discussion on poles of higher orders in relation to attractor models, see [85, 96]
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From Eq. (4.3), we know that the attractor point in ns vs. r space is reached for a pole of

order two with b = 0. We are now going to study what happens to the curve reaching to the

attractor point when a third order pole is additionally present. In the absence of third order

pole term, the attractor parameter is a when its value is decreased. For a = 1, we reach

Starobinsky point.

Here both a and b are free parameters of the theory, and V0 will be fixed from the

amplitude of scalar curvature perturbations. To perform the analysis we have kept the

parameter b fixed at some representative values. For each fixed value of b we change a

from large values of order∼ 104 to small values and calculate the inflationary observables.

The predictions of this model are shown in Fig. 4.1b. In this figure, the blue curve on the

left represents the prediction when b = 0 i.e., there is only second-order pole in the kinetic

function. The curve approaches the attractor point (magenta triangle) with decreasing value

of a (from top to bottom), and it is consistent with general predictions of Eq. (4.3). The

red curve on the right shows the predictions for having only the third order pole (a = 0)

in the kinetic function. Between these two curves, the various (dotted) curves show how

inflationary predictions are changing when poles of both orders are present in the theory.

For b = 0.01 (dotted green curve) the value of φ60 ∼ O(10−3), and in this case initially the

effect of b/φ3-term is subdominant compared to a/φ2-term. But with a gradual lowering

of attractor parameter a, φ60 remains constant and the third order pole starts to affect the

observables. Finally, with a sufficiently small value of a, the predictions finally hit the line

for only having third order pole in KE . For other values of b, this behaviour remains the

same.

In all these dotted curves, it turns out that after a certain critical value a . a0 (say),

when the curves start to deviate from the blue line, the value of φ60 at first decreases. After

that with further decreasing a, φ60 practically becomes unchanging. Therefore, the strength
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of the cubic pole becomes dominant over the quadratic pole. For certain non-zero values

of b, even though some curves pass through the attractor point, they never come back to

the same point with further decreasing the attractor parameter a. In summary, it is the

dependence of φ60 upon the attractor parameter (ξ for the case modifying the conformal

factor, and a for modifying the kinetic term) that determines whether the predictions will

approach back to the attractor point or not.

4.4 f (R) theory as attractor models
The modification of Einstein’s theory of gravity is an interesting avenue in exploring

physics beyond the standard picture of Big Bang cosmology. Because of high curvature

in the early universe during inflation, the corrections to the Einstein-Hilbert gravity turns

out to be generic [10]. In general, these corrections are such that either the geometry can

be non-minimally coupled to some scalar field or higher derivative term in the metric can

appear. Study of these higher derivative theories are important when gravity is quantized

in a curved spacetime background and the issue of renormalization is addressed [97, 98].

Moreover, they also appear in studies of inflation in early universe [76–78].In its simplest

version, the corrections may take the form of some arbitrary function of the Ricci scalar R.

The action for this modified theory of gravity is given by [99],

S =
1

2κ̂2

∫
d4x
√−gf(R), (4.17)

where κ̂2 = 8πG = 1/M2
Pl and the Ricci scalar R = gµνRµν is the contracted version of

Ricci Tensor Rµν . Each choice of the function f(R) corresponds to a different theory and

a large number of viable theories exist in the literature for both late time and early universe

cosmology. Out of the diverse possibilities of f(R), from the standpoint of inflationary
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cosmology the form f(R) = R+R2, proposed by Starobinsky, grew with alluring attention

for its remarkable agreement with PLANCK observations.

By a conformal transformation gEµν = Ω2(xµ)gµν of the metric tensor, the above theory

can be recasted in the form of a scalar field minimally coupled to gravity. For the following

choice of the conformal factor

Ω2 = F (R) =
∂f(R)

∂R
> 0 , (4.18)

the Eq. (4.17) becomes

LE =
√−gE

[
1

2κ̂2
RE −

1

2
gµνE ∂µφ̂∂νφ̂− VE(φ̂)

]
, (4.19)

where,

φ̂ =
1

κ̂

√
3

2
lnF. (4.20)

In Eq. (4.19), we have dropped a surface term that vanishes at the boundaries. Now the

potential function for the field is given by

VE(φ̂) =
FR− f(R)

2κ̂2F 2
. (4.21)

Eq. (4.19) and Eq. (4.21) show that any f(R) theory is dynamically equivalent to a mini-

mally coupled scalar field with a potential function determined by the form of f(R). This

scalar field is responsible for driving inflation. In the next subsections, we are going to

demonstrate that any f(R) theory can be reformulated with the desired pole structure in

the kinetic term of the scalar degree of freedom. But whether the theory shows attractor
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behaviour or not depends on the potential function, that is uniquely determined by the f(R)

function.

4.4.1 Relating f (R) Theories to ξ-attractor
Let us now investigate when attractor properties exists for an f(R) theory in its Jordan

frame description. For our purpose, we can write the action of Eq. (4.17) as [99]

S =
1

2κ̂2

∫
d4x
√−g

[
F (φ)(R− φ) + f(φ)

]
. (4.22)

The equation of motion of the scalar field φ yields R = φ, and it is clear that the above

action describes the same theory given by Eq. (4.17). With the identification of Ω2 = F (R),

the action becomes

S =

∫
d4x
√−g

[
Ω2(φ)R

2κ̂2
−
(
F (φ)φ− f(φ)

2κ̂2

)]
. (4.23)

Comparing this theory with what has been defined earlier in Eq. (4.9), we find that the

resulting structure of the theory is analogous to a ξ-attractor with KJ(φ) = 0 and VJ =

(F (φ)φ − f(φ))/(2κ̂2) in the Jordan frame. So the behaviour of the resulting potential

in this theory is now dependent upon the functional form of f(R). The important differ-

ence of this theory with the corresponding ξ-attractor is that whereas for the cosmological

ξ-attractor some particular choices of the Jordan frame potential show attractor like predic-

tions, here the attractor property will rely upon the choice f(R).

To have a more clearer picture, we go to the Einstein frame. In this frame, in terms of

the variable Ω (conformal factor) we obtain

S =

∫
d4x
√−gE

[
1

2κ̂2
RE−3

(∂Ω)2

Ω2
−VJ(Ω(R))

Ω4

]
. (4.24)
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As we are interested in the nature of the potential at large positive field values, the vari-

able Ω2 also becomes large. By using the simple transformation Ω2 → 1/ρ, the above

Lagrangian transform to Eq. (4.12) with pole at ρ = 0. Thus in terms of Ω2, the kinetic

term in the Einstein frame has a second-order pole. However, now we can not simply

choose V (Ω) so as to make it, for an example, VJ ∝ (Ω2 − 1)2. Let us investigate some

specific form of f(R) that leads us to attractor like predictions. As we are only interested

in understanding the asymptotic behaviour of the potential, here we will not be explicitly

careful about dimensionful constants except for one case. The following analysis is com-

plementary to the discussion in Ref [75] where an investigation has been done to see how

functional form f(R) changes when small distortions are made to the case of asymptotic

flat potential.

Case (a): f (R) ∼ R +R2

This is the famous Starobinsky model [10]. Here we are not careful about the exact

coefficients as we we are interested in finding the asymptotic behaviour of the potential.

The predictions of this model indeed show attractor nature of Eq. (4.1). Here we are looking

at this model through the non-canonical structure in the Lagrangian density in the Einstein

frame. Solving for the Ricci scalar from Eq. (4.18) and expressing the potential function in

terms of the canonical field we get R = Ω2−1
2

, and it gives

V (φ) ' (1− Ω−2)2 ' (1− ρ)2 (4.25)

In terms of the non-canonical field ρ, the Lagrangian has a second-order pole in the kinetic

term, and the potential is finite positive at the position of the pole ρ → 0. When written

in terms of the canonical field as Eq. (4.7), the potential asymptotes to the constant value
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which is equal to the value at the position of the pole. In terms of φ̂ however this pole shifts

to infinity and at large φ̂, V (φ̂) approaches to an exponentially flat plateau. The form of the

potential remains the same as in the standard case.

Case (b): f (R) ∼ R +R3

In this case, we get R =
√

Ω2−1
3

and the potential function

V (ρ) '
(

1

Ω2/3
− 1

Ω8/3

)3/2

'
(
ρ1/3 − ρ4/3

)3/2

(4.26)

We see that both at the position of ρ = 0(Ω → ∞), and ρ = 1(Ω = 1), the potential

vanishes, and in this case, the potential makes a local maximum that is unsuitable for

asymptotically flat potential. In fact, the potential in terms of the canonically normalized

field looks like

V ' e−2
√

2/3κ̂ φ̂(e
√

2/3κ̂ φ̂ − 1)3/2 (4.27)

For ρ → 0 or at large value of the canonical field φ̂, the potential vanishes because of an

overall exponential factor - no suitable vacuum energy to drive inflation. Hence no attractor

solution is possible.

Case (c): f (R) = R + aR2 + bR3

Here by solving for R in terms of Ω we get,

R =
−1 +

√
1 + 3 ε

a
(Ω2 − 1)

3ε
(4.28)
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The potential now depends upon two dimensionful parameters a and ε, where ε = b/a. We

here want to investigate the manner in which the predictions of this model are going to be

affected due to presence of the correction term bR3. The Einstein frame potential for this

f(R) theory is,

VE = a
(1−

√
1 + 3 ε

a
(Ω2−1))2 (1+2

√
1+ ε

a
(Ω2−1))

54ε2Ω4
(4.29)

It is easy to check that in the limit ε → 0 we get back to the results of Eq. (4.25) of Case

(a). The Fig. 4.2a shows how the nature of the potential with respect to the canonical field

φ̂ changes as we vary the parameter ε for a given value of the parameter a. The potential
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Figure 4.2: Fig. (a) shows Einstein frame potential with respect to the canonically normalized
field φ̂ for various choices of the parameter ratio ε = b/a, taking a ∼ 109. Fig. (b) is the plot
showing the variations of ns-r with the 68% and 95% CL contours from 2015 PLANCK data. With
decreasing b predictions approaches to Starobinsky model shown here by blue triangle.

depicts different behaviour according to the sign of the ε parameter. We can see that as we

keep on increasing |ε| beyond 104 the strength ofR3-term begins to dominate. For ε > 0 the

asymptotic behaviour of the potential is such that it gradually looses its height at large field

71



values. This is in contrast to what is found in case of attractor type potentials. However,

for ε < 0 the potential is real only if Ω >
√

1− a
3ε

. Moreover for negative values of ε the

potential develops a steep rising branch [100]. As we lower the value of ε the steep branch

appears at lower values of φ̂. It turns out that in this case decreasing ε beyond −106 would

not allow to have 60-efolds of inflation.

Observable predictions of this model are shown in Fig. 4.2b. The above figure shows

variations of the spectral tilt ns and tensor-to-scalar ratio r with respect to the parameter

ε. The plot consists of two branches. In the left branch, the green coloured dots indicate

points for ε ranging from 104 to about 106 (right to left). The diamond indicates the usual

attractor point. It turns out that keeping a ∼ 109 (fixed by the amplitude of scalar curva-

ture perturbation) the predictions lie within the PLANCK 2σ contours as long as ε ∼ 105.

Beyond that value of ε, the strength of R3 term is such that it will violate the spectral index

constraint. In the right branch of the plot the violet data points correspond to the range

−106 < ε < −104. The requirement of real potential restricts ε being larger than−106 and

hence constrains the range of e-folds.

Case (d): f (R) ∼ R +Rn

Here n is a finite integer and R =
[

Ω2−1
n

] 1
n−1 . Therefore, in terms of the Ω variable the

potential function can be written as,

V (Ω) =
(n− 1)

(
Ω2−1
n

) n
n−1

Ω4

' (1− ρ)
n
n−1 ρ

n−2
n−1 (4.30)

The above form of the potential function is a generalization of the Starobinsky model when

n = 2, for which it approaches to a constant at at smaller values of ρ (or equivalently
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at asymptotically large values of Ω). However, for n > 2 the potential has an overall

ρ-dependence due to the ρ
n−2
n−1 factor. Hence at large values of φ̂ the potential vanishes.

In summary, we can think of the corrections to Einstein gravity in a f(R) theory as

equivalent to the higher order corrections in the conformal factor of the theory. For f(R)

theory, the conformal factor term is appearing like Ω2(φ)R = F (R)R = (1 + c0φ +

c1φ
2 + . . .)R, since φ = R following from Eq. (4.22). Therefore any modification in the

f(R) function amounts to a likewise modification in the non-minimal function of Sec. 4.3

. Hence the robustness of attractor model investigated in Sec 4.3 can be directly correlated

with the various f(R) models envisaged here. Similar analysis in [101] also shows that the

modifications to potential function give corrections which are suppressed for power n > 3

in f(R).

4.4.2 Relating f (R) theories to α-attractor
In the previous subsection we have written down f(R) gravity in terms of conformal

factor variable Ω2, and that clearly spells out the speciality of R2 in terms of its asymptotic

nature. Now we will recast the f(R) Lagrangian directly in the form of α-attractor given

by Eq. (4.4). It can be easily done if instead of the choice given by Eq. (4.18) we choose

F =

√
6 + κ̂ φ√
6− κ̂ φ

. (4.31)

Then the kinetic term becomes

6κ̂2

(6− κ̂2φ2)2
(∂φ)2 .

Note that this choice does not affect the expression for the potential function in Eq. (4.21).

For a given f(R) one solves for R in terms of φ using Eq. (4.31). The Lagrangian density
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for this choice turns out to be,

L =
√−g

[
RE

2κ̂2
− 1

2

gµνE(
1− φ2κ̂2

6

)2∂µφ∂νφ− V (φ)

]
. (4.32)

Thus the theory now has a non-canonical field with a pole of order two in the coefficient of

its kinetic term. One can also describe the same theory through a canonically normalized

scalar field

φ̂ =

√
6

κ̂
tanh−1 φκ̂√

6
(4.33)

One can easily verify that the two canonical description given by Eq. (4.20) and Eq. (4.33)

are exactly equivalent. To feature the attractor properties in the ns-r plane we require in

addition a smooth potential function at the location of the pole.

4.5 Brans-Dicke theory as attractor models
In this section we will analyze Brans-Dicke models of inflation explicitly. A Brans-

Dicke model is an example of f(R)-theory. In fact, f(R)-theory in metric formalism can

be reformulated to the Brans-Dicke theory with Brans-dicke parameter w = 0. We will

study here the attractor properties of the generalised Brans-Dicke theory defined by the

following Lagrangian density,

LJ =
1

2
φR− 1

2

ω

φ
gµν(∂µφ)(∂νφ)− U(φ) , (4.34)

where U(φ) is the potential function. Because of the presence of non-minimal coupling

term, the description here is in Jordan frame. Now comparing this Lagrangian with the

general conformal attractor in Eq. (4.9), we see that Ω2(φ) = φ andKJ(φ) = ω
φ

. Switching
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to the Einstein frame we obtain

LE =
√
−g̃
[

1

2
R̃− 1

2

(2ω + 3)

2φ2
(∂φ)2 − U(φ)

φ2

]
. (4.35)

The above equation has second-order pole in the kinetic term. It is clear that with the

proper choice of the potential function U(φ), we can always construct models whose pre-

dictions are converged to the attractor point. For the kinetic term in the Einstein frame to

be canonical we define,

dφ̂

dφ
=

√
(2ω + 3)

2φ2
(4.36)

Now we want to see for which choice of the potential function U(φ), the Brans-Dicke

theory gives rise to the attractor like predictions. From our previous discussion in Sec. 4.2,

we know that the choice of the potential must satisfy the three conditions mentioned there

to show attractor properties. As the Lagrangian in Eq. (4.34) is exactly equivalent to that

of the ξ-attractor, choice of potential in the Jordan frame can be either of the two forms:

f [(φ− 1)2n] or f
[(

φ−1
φ+1

)2n
]

. In the Brans-Dicke case, the attractor mechanism is highly

sensitive to the form of the higher order corrections to the potential. Even if we add these

higher order corrections, the corrections have to take the forms as ame−cφ̂ to preserve the

attractor behaviour of the Lagrangian. See [89] for more discussion about the forms of the

correction terms in the potential.

We make two following choices:

4.5.1 U(φ) = U0(φ− 1)2

where U0 is a potential parameter that is to be fixed from the value of the scalar power

spectrum. Even though there is a second-order pole at φ = 0 in the kinetic term, however
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in terms of the canonical field obtained from Eq. (4.36), this pole shifts to infinity. In this

case, the potential in terms of the canonical field in the Einstein frame is given by

VE(φ̂) = U0(1− e−cφ̂)2, (4.37)

where c =
√

2
2ω+3

.

Let us now investigate the predictions of this potential in the light of PLANCK 2015

data. The observable predictions for this potential are shown in Fig. 4.3. The black dots

Figure 4.3: The variaton of ns-r with the 68% and 95% CL contours from 2015 PLANCK data is
shown here. The predictions asymptotically approaches to Starobinsky model (blue triangle) with
decreasing ω .

indicate variations in the inflationary predictions with respect to the Brans-Dicke parameter

ω ranging from 1 to about 106. The plot depicts that with decreasing the value of ω (top to

bottom) the predictions of this model interpolates between quadratic chaotic inflation and

Starobinsky model. Taking amplitude of scalar curvature perturabtions, As to lie within the

99.7% CL of the PLANCK data we fix U0 ∼ 10−10. We now turn to a different choice of

the potential function:
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4.5.2 U(φ) = U0φ
2
(
φ−1
φ+1

)2
In this case the potential function in the Einstein frame in terms of the canonically normal-

ized inflaton field is given by

VE(φ̂) = U0 tanh2 φ̂√
4ω + 6

(4.38)

This potential is nothing but the simplest generalization of the T-model of α-attractor with

the identification α = 2
3
ω + 1 [93]. Therefore, in the leading order approximation in the

inverse efolds the inflationary predictions are

ns = 1− 2

N
, r =

12(1 + 2ω
3

)

N2
. (4.39)

We numerically solve the dynamics in the above potential, and the observable predictions

are plotted in Fig. 4.3.

4.6 Conclusions and Discussions
PLANCK 2015 data prefers inflation models with plateau-like potential with asymptotic

flatness [28, 61]. Among many models, the modified gravity model proposed by Starobin-

sky has attracted a lot of attention due to its observational predictions that are nearly in the

middle of 2-σ contours of spectral index and tensor-to-scalar ratio plane. A class of cos-

mological models has been found subsequently whose observational predictions in the ns-r

plane are attracted to this Starobinsky value when a parameter of the model is changed con-

tinuously. These models termed as attractor models, draw their attractor properties from

certain pole structure of the kinetic term.

In this work, we have analysed the scalar-tensor theories of gravity in the light of the
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attractor models. In particular, we work with f(R) gravity models and recast the models in

the form of attractor models. Any particular choice of f(R) automatically fixes the form

of the scalar potential function. Therefore, even though any f(R) model can be recast with

the desired form of the kinetic energy with a certain pole structure, only for a certain case

it satisfies the required condition for the scalar potential. This behaviour singles out R2

gravity models from any other modifications. Any higher order term does not satisfy the

desired asymptotic properties of the potential. We have analysed inflationary phenomenol-

ogy when higher order terms in the action are also present. We also look at the Brans-Dicke

theory of inflation and find suitable potential functions that automatically provides the at-

tractor predictions when the Brans-Dicke parameter w is varied appropriately.

We also analyzed the stability of the attractor mechanism. Only for a certain choice

of the potential function in the Jordan frame, the potential is asymptotically flat with con-

stant vacuum energy. Any higher order term in the conformal function makes the po-

tential asymptotically zero. But, if the attractor parameter ξ is increased sufficiently, the

field range where observable inflation happens remains sufficiently flat, and the predic-

tions return to the Starobinsky attractor point. This shows the robustness of the attractor

mechanism. We also discuss how the predictions change when higher order poles are si-

multaneously present in the kinetic function. In this case, the existence of higher order pole

always makes the predictions away from the usual attractor curve for second-order pole. If

we decrease the residue of the second-order pole sufficiently, the effect of the second-order

pole term becomes subdominant as φ60 remains almost constant.

The analysis can be extended to different generalised versions of scalar-tensor theo-

ries. In particular, it would be interesting to find attractor type solutions for theories with

derivative couplings [102], and non-local modifications of gravity [103]. In these cases,

the crucial point is to find a suitable conformal transformation that can recast the kinetic
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energy term with a certain pole structure in the Einstein frame and then design the proper

functional form for attractor solutions. Further exploration along this line is interesting and

we hope to come back to this later.
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CHAPTER 5

WARM INFLATION

5.1 Introduction
Cosmological observations are in very good agreement with a universe that is ex-

panding, spatially flat, homogeneous and isotropic on large scales, and where the large

scale structure originated from primordial perturbations with a nearly Gaussian and scale-

invariant spectrum [104–106]. On the theoretical side, in the standard paradigm of slow

roll inflation, the inflaton quantum fluctuations are stretched out of the horizon due to the

expansion and transferred to the curvature perturbation with constant amplitude spectrum

on super-horizon scales.

However, since the Cosmic Microwave Background (CMB) radiation spectrum can be

well explained with just a power-law primordial spectrum [28], we have information on the

amplitude and the spectral index, but so far not much more than that. For example, there is

as yet no detection of a primordial tensor component, which translates in an upper limit on

the energy scale at which inflation took place. For single field models, where the dynamics

during inflation is just controlled by a potential energy density, this seems to favor plateau-
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like potentials [10,54,55,107] or small field models [45,108,109], as opposed to large field

models [9,110,111] for which the potential energy (and the tensor-to-scalar ratio) is larger.

This is the situation in the standard scenario of slow-roll inflation, which we can call

“Cold Inflation” (CI), given that any other component of the energy density, and in partic-

ular radiation, will be quickly redshifted away even if present initially. However, inflation

has to be followed by a radiation dominated period to allow for the synthesis of primordial

nuclei (BBN), which requires the conversion of the inflaton energy density into radiation

during the so-called (p)reheating period [112–115]. This necessarily implies interactions

among the inflaton field and other light degrees of freedom, which may already play a role

during inflation. Thus, the transfer of energy between the inflaton and radiation may start

during inflation. This is the warm inflation (WI) scenario [15,116], where the energy trans-

fer translates into extra friction or dissipative term Υ in the field EOM. The extra friction,

therefore, favours slow-roll inflation, slowing down even further the evolution of the in-

flaton. Inflation can last for longer, and the relevant part of inflation when the primordial

spectrum originates can happen at a smaller energy density value, which gives rise to a

suppressed tensor-to-scalar ratio. The nature of the primordial spectrum can be completely

different in WI due to the influence of the thermal bath fluctuations on the inflatons, such

that the fluctuations will have now a thermal origin [117, 118].

The specific functional form of the dissipative coefficient Υ with the inflaton field φ

and the temperature T of the plasma will depend on the pattern of the inflaton interactions

with other degrees of freedom [119–121]. Dissipation for example, may originate from the

coupling of the inflaton and a heavy field mediator, which in turn decays into relativistic

particles. This pattern does not introduce any thermal correction in the inflaton potential,

the contribution of the mediators with mass mχ > T being Boltzmann suppressed. There-

fore, it does easily overcome the main difficulty faced originally to build viable warm
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inflation models [122, 123], i.e, preserving the required flatness of the potential to allow

slow-roll inflation. However, the dissipative coefficient is only power law suppressed and

one gets Υ ∝ T (T/mχ)α, where the power α of the ratio T/mχ . 1 depends on the

bosonic/fermionic nature of the mediator and its decay products. Although it can give rise

to viable models of inflation consistent with observations1 [129, 130], it typically requires

a large number of mediator fields for the effects of dissipation to be sizeable.

When the mediators are light, for example, fermions directly coupled to the inflaton,

one has to check that the induced thermal corrections to the inflaton potential are under

control, while still having strong enough interactions to allow the thermalization of the

light degrees of freedom, and giving rise to enough dissipation. A scenario fulfilling these

conditions has been recently proposed in [16]. In the same spirit as “Little Higgs” models,

the inflaton is a pseudo-Nambu Goldstone boson (PNGB) of a broken gauge symmetry,

its T = 0 potential being protected against large radiative corrections by the symmetry.

Similarly, in order to avoid large T corrections due to the light fermions, a discrete (ex-

change) symmetry is imposed in the inflaton and fermionic sectors. This ensures that the

leading field dependent thermal mass correction cancels out, leaving only the subleading

T -dependent logarithmic one. This leads to a dissipative coefficient just linear in T , and to

enough dissipation without the need of large no. of fields.

Given the possibilities for inflationary model building open up by the combination of

symmetries and interactions/dissipation with a linear T coefficient, it is worth exploring

the observational consequences and in particular, confront directly the model with CMB

data. We will use the COSMOMC package to perform a multi-dimensional Markov Chain

Monte Carlo (MCMC) analyses and derive constraints directly on the model parameters.

We will focus on the simpler potential, the quartic chaotic potential λφ4 model, which

1See Refs. [124–128] for consistent models of warm inflation with other dissipative coefficients.
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although excluded in its CI version2, it is compatible with data once the effects of the

interactions are included [16]. Therefore the inflationary dynamics and the spectrum will

be given by three parameters: the coupling λ in the inflaton potential; the combination

of couplings CT leading to linear dissipation Υ = CTT ; and the effective no. of light

degrees of freedom contributing to the thermal bath, g∗. The amplitude of the primordial

spectrum and its scale dependence can be derived as a function of these parameters, and

the prediction compared directly with the data without the need a priori of assuming a

power-law parametrization. The scale dependence, given in terms of the comoving k scale

at which perturbations exit the horizon during inflation, can be related to the no. of efolds

N but implies some assumption about the (p)reheating period [26]. Typically one gets

N ∈ [50, 60] for the no. of efolds at which the largest observable scale crosses the horizon,

and predictions are quoted varying N in this range. Our choice of the potential allows us

to avoid this uncertainty in the predictions, given that the quartic potential will behave as

radiation once inflation ends.

Recently in Ref. [134] the authors performed a thorough analysis of the different popu-

lar models of inflation in both the low and high-temperature regimes. The low-temperature

regime is defined by the cubic dissipative coefficient whereas the high-temperature regime

is described by a linear dissipative coefficient. In this work, our focus is on this high-

temperature regime which has been first described in [16]. Ref. [134] did a statistical anal-

ysis of the models using CMB data and showed the viability of the scenario for different

models which are excluded in CI scenario from present and (projected) future observa-

tions. Their work, besides the predictions for the spectral index and the tensor-to-scalar

ratio, is largely motivated to accommodate the latest observed values of the running and

2Although it has been pointed out that 1-loop radiative corrections due to the interactions with other
species can render the potential flat enough to lower the tensor-to-scalar ratio below the observable upper
limit [131–133].
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the running of the running of the spectral index3. Instead, in [17], we have chosen to work

only with a particular, well motivated model as the quartic chaotic model, and study how

well the data can constrain the parameters of the model. Some of the main differences in

approach between Ref. [134] and our work are that, firstly, they fixed the potential param-

eters with the observable value of the amplitude of the spectrum, and g∗ depending on the

model; while we have kept both the model parameter (λ) and g∗ as variables. Secondly,

they chose to work with a fixed no. of e-folds, N = 55, while we vary the number of

e-folds of infation because of its implicit dependence on the model dynamics. Moreover,

they focus on the dependence with respect to the dissipative ratio, Q = Υ/(3H), i.e, the

dissipative coefficient normalized to the Hubble parameter H . This would be equivalent

to our choice of parameter CT . And more crucially, they always consider the inflaton to

be included in the thermal bath which is equivalent to the thermal case discussed in our

work, but we additionally analysed the case where the inflaton does not have a thermal

distribution (non-thermal case).

The plan of the chapter is as follows. In Sec. 5.2 we describe the basic mechanism of the

warm inflation dynamics and the validity of slow-roll approximation during inflation. In

Sec. 5.3 we give the expression for the primordial spectrum as a function of the parameters

of the model, and how to get its scale dependence. Using the analytical expressions, we

explore the parameter dependence of the predictions in Sec. 5.4. In Sec. 5.5 we describe

the technical details of the analyses done with the MCMC and the CMB data, while in

Sec. 5.6 we present the main results. Finally, a summary and the conclusions of this work

are given in Sec. 5.7.

3General consistency relations for WI including the scale dependence of the spectral index were first
considered in [135].
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5.2 Basics of Warm Inflation
In warm inflation, the transfer of energy between the inflaton scalar field φ and the

plasma leads to an additional friction term in the inflaton equation of motion [116, 136],

described by the damping coefficient Υ(φ, T ). When dissipation leads to the production of

light degrees of freedom which thermalize in less than a Hubble time, then a radiation fluid

ρr is produced, continually replenished by the effective decay of the inflaton field. The

background evolution equations for the inflaton-radiation system are given by:

φ̈+ (3H + Υ)φ̇+ V,φ = 0, (5.1)

ρ̇r + 4Hρr = Υ φ̇2 , (5.2)

where a “dot” denotes time derivatives, V,φ = dV/dφ, V is the potential energy density,

and H the Hubble parameter:

3H2 =
ρ

M2
Pl

, (5.3)

ρ being the total energy density of both field and radiation, and MPl is the reduced Planck

mass. The radiation fluid is made of g∗ relativistic degrees of freedom at temperature T ,

with:

ρr =
π2

30
g∗T

4 = CRT
4 . (5.4)

Prolonged inflation requires the slow-roll conditions |εX | � 1, where εX = −d lnX/Hdt,

andX is any of the background field quantities. The background equations at leading order

86



in the slow-roll approximation of small εX become

3H(1 +Q)φ̇ ' −V,φ , (5.5)

4ρr ' 3Qφ̇2 , (5.6)

3H2 ' V

M2
Pl

, (5.7)

where Q = Υ/(3H) is the dissipative ratio.

We will consider a linear T dissipative coefficient like in Ref. [16]. Dissipation comes

from the coupling of the inflaton field to a pair of fermions with coupling g, while the

latter interacting with a light scalar field with coupling h. We stress that the calculation

of the dissipative coefficient is done in the adiabatic and quasi-equilibrium approximation,

which impose some restrictions on the values of the parameters. First, once the inflaton

excites the fermions to which it directly couples, they decay into scalars which have to

thermalize in less than a Hubble time, i.e., the decay rate must be larger thanH . In addition,

we require T > H , such that dissipation can be computed in the limit of flat spacetime

with the standard tools of Thermal Quantum Field Theory [137]. Under those restrictions,

the dissipative coefficient is then given by Υ = CTT , with CT being a function of the

couplings:

CT '
3g2/h2

1− 0.34 lnh
. (5.8)

For the inflaton potential, we work with the single-field chaotic quartic potential,

V (φ) = λφ4 , (5.9)

which is not excluded by observations once dissipation is taken into account [16, 129]: the

extra friction slows down the motion and effectively “flattens” the potential seen by the
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inflaton, and therefore it tends to lower the predicted tensor-to-scalar ratio. The slow-roll

parameters are given by:

εφ =
M2

Pl

2

(
Vφ
V

)2

= 8

(
MPl

φ

)2

, (5.10)

ηφ = M2
Pl

(
Vφφ
V

)2

= 12

(
MPl

φ

)2

, (5.11)

σφ = M2
Pl

(
Vφ/φ

V

)
= 4

(
MPl

φ

)2

. (5.12)

Notice that, given the extra friction term Υ, to have slow-roll inflation we now require:

εφ < 1 +Q , ηφ < (1 +Q) , σφ < (1 +Q) . (5.13)

From the slow-roll equations (Eq. (5.5)-Eq. (5.7)), one can get the relation between Q and

φ:

Q3(1 +Q)2 =
4

9

(
C4
T

CRλ

)(
MPl

φ

)6

. (5.14)

Similarly, one can write directly the evolution equation for the dissipative ratio Q, with

respect to the no. of e-folds dN = Hdt:

dQ

dN
' Q

3 + 5Q
(6εφ − 2ηφ) , (5.15)

which for the quartic potential, and using Eq. (5.14) reduces to:

dQ

dN
' CQ

Q2(1 +Q)2/3

3 + 5Q
, (5.16)
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where:

CQ = 24

(
4C4

T

9CRλ

)−1/3

. (5.17)

Eq. (5.16) can be integrated in terms of hypergeometric functions:

CQN = f(Qe)− f(Q∗) ,

f(x) = −3

(
(1 + x)1/3

x
+

3

x5/3 2F1[2/3, 2/3, 5/3,−1/x]

)
. (5.18)

By Q∗ we denote the value at horizon crossing of observable modes at CMB at N e-folds

before the end of inflation, and byQe the value of the dissipative ratio at the end of inflation.

We take the condition ηφ = 1 + Qe signaling the end of inflation, and using this condition

in Eq. (5.14) we have:
Q3
e

(1 +Qe)
=

C4
T

24 × 35 × CRλ
. (5.19)

Given a value of N , Eq. (5.18) can be inverted (numerically) to get the value of Q∗ (and

then φ∗), needed to evaluate the amplitude of the primordial spectrum. We will revise this

in the next section.

5.3 Warm inflation: primordial spectrum
The general expression for the amplitude of the primordial spectrum, independent of

the nature of the dissipative coefficient, is given by [117, 118]:

PR = (PR, diss + PR, vac) =

(
H∗

φ̇∗

)2(
H∗
2π

)2
[
T∗
H∗

2πQ∗√
1 + 4πQ∗/3

+ 1 + 2N∗
]
, (5.20)

where all variables are evaluated at horizon crossing. The first term is the contribution

due to the effect of dissipation on the inflaton fluctuations. In the limit of no dissipation,

we would recover the standard expression for the primordial spectrum, but allowing the
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inflaton fluctuations to be in a statistical state other than the vacuum; for example being in

a thermal excited state with N∗ = nBE(a∗H∗) = (eH∗/T∗ − 1)−1. The standard Bunch-

Davies vacuum is given by N∗ = 0. The latter case will be called in the following as

“non-thermal” inflaton fluctuations, while we use “thermal” for theN∗ = nBE(a∗H∗) case.

In [118] it has been checked that indeed the analytic solution of Eq. (5.20) reproduces the

spectrum of warm inflation up to valuesQ∗ . 0.1, by numerically integrating the equations

for the fluctuations.

For larger dissipation at horizon crossing, the spectrum gets enhanced due to the cou-

pling between inflation and radiation fluctuations. This effect depends on Q∗, and can be

accounted for by multiplying the spectrum in Eq. (5.20) by a a function G[Q∗] [118],

G[Q∗] ' 1 + 0.0185Q2.315
∗ + 0.335Q1.364

∗ . (5.21)

This parametrization however depends on both the inflaton potential and the T dependence

of the dissipative parameter. We quote in Eq. (5.21) the values obtained for a quartic

potential with a linear T dependent Q [16].

In the above expression for the spectrum, one can replace T∗/H∗ by 3Q∗/CT and the

field dependence (in H∗ and φ̇∗) in terms of Q∗ using Eq. (5.14):

PR =
C4
T

4π2 × 36CR
Q−3
∗

[
3Q∗
CT

2πQ∗√
1 + 4πQ∗/3

+ 1 + 2N∗
]
×G[Q∗] . (5.22)

Therefore, the spectrum is given implicitly as a function of the parameters of the model,

CT , CR(g∗) and λ, and the no. of e-folds N through Eq. (5.18). In the case of having a
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thermal spectrum for the inflaton fluctuations, we also have:

1 + 2N∗ = coth
H∗
2T∗

= coth
CT
6Q∗

. (5.23)

The no. of e-folds can be related to the scale at which the fluctuation exits the horizon

k = a∗H∗ so that finally we have the spectrum as a function of the comoving scale k. How-

ever, the relation between N and k depends on the details of reheating [26, 138–140], the

period between the end of inflation and a radiation dominated universe [58–60]. Modeling

our ignorance about reheating with an effective equation of state w̃, the relation between

the no. of efolds and the comoving wavenumber is given by [26]:

N(k) =56.12− ln
k

k0

+
1

3(1 + w̃)
ln

2

3
+ ln

V
1/2
k

V
1/2

end

+
1− 3w̃

3(1 + w̃)
ln
ρ

1/4
reh

V
1/4

end

+ ln
V

1/4
end

1016 GeV

(5.24)

where k0 = 0.05 Mpc−1 is the pivot scale for PLANCK, Vk and Vend the potential values

at the end and N(k) e-folds before the end of inflation respectively, and ρreh the energy

density at the end of reheating when the universe becomes radiation dominated. Typically

the no. of efolds at which the largest observable scale leaves the horizon lies between

50 − 60. But this intrinsic uncertainty in the inflationary predictions on the no. of e-folds

is avoided in warm inflation with a quartic potential. In this case the dissipative ratio Q

increases during inflation, such that the radiation by the end becomes comparable to the

inflaton energy density (signalling also the end of inflation). And for a quartic potential,

once the field starts oscillating around the minimum of the potential, the average energy

density behaves as radiation. It does not matter when the inflaton finally decays after

inflation, because the universe is already radiation dominated. This is equivalent to having
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instant reheating (i.e., and instant transition between inflation and the radiation dominated

epoch), with w̃ = 1/3 and ρreh = Vend in Eq. (5.24):

N(k) = 56.02− ln
k

k0

+ ln
V

1/2
k

V
1/2

end

+ ln
V

1/4
end

1016 GeV
. (5.25)

Therefore, instead of taking a certain N interval to derive the observable predictions of

the model, like in other studies [134], we will compute directly the k-dependent power

spectrum using Eq. (5.25). The value of the potential at the end of inflation can be obtained

with the value of Qe in Eq. (5.19) and

12
M2

Pl

φ2
e

=
12λ

V
1/2

end

= 1 +Qe . (5.26)

And for the ratio (Vk/Vend)1/2 = (φk/φe)
2 we have:

(
φk
φe

)2

=
Qe(1 +Qe)

2/3

Qk(1 +Qk)2/3
. (5.27)

Through the field dependence in Vk and Vend, the relation between the scale k and the no.

of efolds depends on the parameters of the model CT , λ and CR(g∗).

The primordial tensor spectrum is not affected by dissipation, so we have the standard

prediction:

PT = 8

(
H∗

2πMPl

)2

, (5.28)

which for a quartic potential is just given by:

PT =
8λ

4π2

(
φ∗
MPl

)4

=
8λ1/3

4π2

(
4C4

T

9CR

)2/3
1

Q2
∗(1 +Q∗)2/3

, (5.29)

where we have used Eq. (5.14). Finally, the tensor-to-scalar-ratio in terms of the parameters
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of the model (and Q∗) is given by:

r =
PT
PR

= 32

(
16C4

T

9λCR

)−1/3

Q3
∗

[
3Q∗
CT

2πQ∗√
1 + 4πQ∗/3

+ 1 + 2N∗
]−1

×G[Q∗]
−1 . (5.30)

In the next section, we will calculate the scalar and tensor power spectrum as a function

of k and will determine its parameter dependence followed by the the best fit parameter

estimation in the following section.

5.4 Analysing parameter dependence on observables
In this section, we will analyse the parameter dependences of warm inflation model

on inflationary observables. In particular, we will consider the scalar spectral index ns

and the scalar amplitude As as observables, which are functions of the parameters CT ,

λ and g∗. For the choices of the parameters, the upper bound on the tensor amplitude

r would be trivially satisfied, and for that purpose, we do take it as a constraint in this

section. But, for parameter estimation in the next section, the tensor amplitude would be

incorporated accordingly. For our consideration, we will see that the running of the spectral

index would be very small (being consistent with recent observations [134, 141]), and we

will not consider it as a constraining observable. The analysis of this section would be

useful in determining the range of parameters as priors for the COSMOMC simulations and

parameter estimation later.

Our first goal is to calculate the scalar amplitude given by Eq. (5.22) as a function of

comoving wavenumber k. Other than the model parameters, the expression depends on the

dissipative ratio Q that needs to be calculated at horizon crossing for each wavenumber.

The k dependence of the scalar amplitude is implicit via its dependence in Q. For a par-

ticular set of CT , λ and g∗, the value Qe (the value at the end of inflation) is determined
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from Eq. (5.19), and φe can be calculated using Eq. (5.14). Note that, Eq. (5.14) gives one

to one relation between φ and Q. On the other hand, using Eq. (5.18) and Eq. (5.25), Q

can be solved as a function of k. But instead of inverting the hypergeometric function of

Eq. (5.18), we solve Eq. (5.16) and Eq. (5.25) iterataively (numerically) and find Q(k).

We plug it in Eq. (5.22) to find the scalar amplitude as a function of k/k0 for both the

non-thermal (N∗ = 0) and thermal (N∗ 6= 0) cases. We follow the same procedure in

calculating the tensor amplitude from Eq. (5.29). This algorithm is incorporated in the

CAMB code [142] in the form of a subroutine in calculating the C` s for the two-point

correlation functions. The pivot scale is taken at usual k = 0.05 Mpc−1 throughout the

analysis.

The results for the spectrum as a function of the scale k/k0 are shown in Fig. 5.1. We

have done an example for the parameter values: λ = 10−14, g∗ = 12.5, and different

values of CT as indicated in the figure. The lowest value of CT included in the plot gives

a value Q∗ ∼ 10−7, whereas for CT ∼ 10−1 , Q∗ ∼ 10. The minimum allowed value of

Q∗ can be calculated from the condition T∗/H∗ ' 1. We note that increasing the value

of CT increases the scalar amplitude, and for the non-thermal case, the amplitude reaches

to an asymptotic lower value when CT becomes very small. To inspect the nature of the

parameters better, it is judicious to compare the warm inflation power spectrum given by

Eq. (5.22) to the standard power law power spectrum defined as:

PR(k) = PR(k0)

(
k

k0

)ns−1

. (5.31)

The spectral index is plotted as a function of the model parameters in Fig. 5.2. The de-

pendence is shown for three different values of λ as indicated in the figure. In Fig. 5.2a,

the variation is over CT with g∗ = 12.5 and in Fig. 5.2b, the variation is over g∗ with
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Figure 5.1: Primordial spectrum as a function of k/k0, for different values of the parameter CT =
10−7, 10−6, ...10−1 and for fixed λ = 10−14, g∗ = 12.5. Fig. (a) is for a non-thermal inflaton, i.e,
N∗ = 0 and Fig. (b) is for a thermal inflation, i.e., N∗ 6= 0.

CT = 0.004. For warm inflation with N∗ = 0, the CT -ns plot in Fig. 5.2a shows that for

small values of CT . O(10−4), well in the weak dissipative regime with Q∗ � 1, the first

term within the brackets in Eq. (5.22) is negligible. Therefore, one recovers the standard

expression in cold inflation where the spectrum is red-tilted and hardly depends on4 λ. As

CT (Q∗) increases, the dissipative contribution tends to make the spectrum less red-tilted,

and for values CT & 0.1, the growing mode will render the spectrum blue-tilted. In the

intermediate regime, the spectral index shows oscillatory behaviour while being roughly

consistent with PLANCK 2-σ limits. In the case N∗ 6= 0, the spectral tilt has a little higher

value than the non-thermal case for small CT due to non-zero value of N∗ in Eq. (5.22)

where the contribution depends on CT as Eq. (5.23). For CT & 1, the contribution from

growing mode makes the spectrum blue-tilted in a similar way as in the non-thermal case.

The observational bounds on ns exclude the blue-tilt part. The Fig. 5.2b shows that for

both non-thermal and thermal warm inflation scenarios, the variation of ns with g∗ is small.

4The mild dependence on λ comes from the relation between the no. of e-folds and k in Eq. (5.25).
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From this observation, we can anticipate that in the process of parameter estimation to be

done in the next section, g∗ might not be well constrained from the limits of the spectral

index.
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Figure 5.2: Spectral index as a function of CT with g∗ = 12.5 in Fig. (a) and as a function
of g∗ with CT = 0.004 in Fig. (b) for different values of λ as indicated in the plot. The solid
lines are for N∗ = 0 and the dashed lines are for N∗ 6= 0. The horizontal black line denotes the
marginalised central value for PLANCK TT,TE,EE+lowP data and the light brown band represents
the observational 2-σ bounds on ns from the same data combination.

In Fig. 5.3 we fit PR(k0) = As for the same specification of the parameters mentioned

in the previous paragraph. Both Fig. 5.3a and Fig. 5.3b show that the observed range for

As allows the parameter ranges for CT and g∗ with tighter constraints. It is important to

note that in contrast to the cold inflation scenario with a quartic potential, the amplitude of

scalar perturbations in the case of warm inflation depends substantially on other parameters,

namely CT and g∗. Analysis from Figs. 5.2 and 5.3 helps us to choose prior ranges for the

parameters to be inserted in the COSMOMC run for parameter estimations in the next

section.

In all the above discussions, we have neglected the running of the spectral index. In-

stead of a simple power law, we could include the running (αs(k0) = dns
d(ln k)

) or other higher
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Figure 5.3: Amplitude of spectrum As as a function of CT with g∗ = 12.5 in Fig. (a) and as
a function of g∗ with CT = 0.004 in Fig. (b) for different values of λ as indicated in the plot.
The solid lines are for N∗ = 0 and dashed lines are for N∗ 6= 0. The horizontal dotted black line
denotes the marginalised central value for PLANCK TT,TE,EE+lowP data and the light brown band
represents the observational 2-σ bounds on As from the same data combination. In Fig. (b), the
thermal case with λ = 10−14 is not inlcuded because it gives an amplitude larger than As ∼ 10−8

for g∗ . 103.

order derivatives of the spectral index in the fit as well,

PR(k) = PR(k0)

(
k

k0

)ns(k)−1

, (5.32)

ns(k) = ns(k0) +
1

2
αs(k0) ln

k

k0

+ · · · . (5.33)

However, as shown in Fig. 5.4 this is always small with |αs| . 10−4, as it was also found

in [134]. And again, the change from negative to positive values of αs when increasing CT

is due to the growing mode. Nevertheless, given that the estimated value of the running

in this model is below the sensitivity of current and future CMB experiments [141] and

assuming that higher order contributions will be lesser, we will not include the running or

other higher order terms in our current analysis.
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Figure 5.4: Running of the spectral index as a function of CT with g∗ = 12.5 in Fig. (a), and as a
function of g∗ with CT = 0.004 in Fig. (b), for different values of λ as indicated in the plot. The
solid lines are for N∗ = 0 and dashed lines are for N∗ 6= 0.

5.5 Methodology of analysis
From the analysis of the previous section, we know the range for which we expect to find

the best fit parameters. In our case, inflationary power spectrum, both scalar and tensor, are

known in terms of three parameters: (i) CT , the proportionality constant for the dissipative

coefficient, (ii) λ, the quartic coupling constant for the inflaton scalar potential, and (iii)

g∗, the total number of relativistic d.o.f in radiation bath. These three parameters can be

thought equivalent to the usual parameterization by the scalar spectral amplitude As, scalar

spectral index ns, and tensor-to-scalar ratio r representing the amplitude of tensor fluctua-

tions. In addition to these primordial parameters, the spatially flat background cosmology

is described by four other parameters, namely Ωbh
2 and Ωch

2 (h is related to the present

Hubble parameter) representing baryon and dark matter densities respectively, the acoustic

peak angular scale θ, and the reionization optical depth τ . Effectively, we have exactly the

same number of parameters as like the usual ΛCDM+r model. Although our goal is to

constrain the model parameters CT , λ and g∗, for convenient comparison with the data we

98



will quote values of ns and r for the marginalised and best fit values of the parameters with

the usual assumption of power spectrum given by Eq. (5.31) with flat tensor spectrum.

We analyse the warm inflation scenario using a multi-dimensional Markov Chain Monte

Carlo (MCMC) simulation provided by the publicly available COSMOMC package [14]

coupled to the PLANCK 2015 data [106] and BICEP2/KECK array data [31]. This analysis

uses Bayesian parameter estimation to constrain the model parameters CT , λ and g∗ and

find respective posterior probability distributions. As outlined in the previous section, we

calculate the primordial scalar and tensor spectrum for all wave vectors required by CAMB

that calculate C`s using the following relation [143]:

C` =

∫
d(ln k)PR(k)T 2

l (k), (5.34)

where Tl(k) is the transfer function that evolves the power spectrum from the end of infla-

tion to the last scattering surface, and it depends only on the background parameters. These

C` values are fed into COSMOMC for different points in the multi-dimensional parameter

space. These theoretically calculated C`’s are then compared to the data using Bayesian

analysis, given the prior probability distributions for the parameters that are varied. COS-

MOMC code analyses the parameter spaces, provides posterior probability distributions for

the parameters and determines a marginalised χ2 for these distributions. We emphasise that

we have modified only the inflationary sector by plugging in the power spectrum PR(k/k0)

for the warm inflation as a function of the model parameters instead of a usual power-law

expression.

While doing the MCMC analysis for the warm inflation case, instead of CT we have

constrained ln(CT × 1010) in COSMOMC so that we can simply use the standard param-

eters already defined in the CAMB code. The parametrisations of λ and g∗ are different
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for the non-thermal and thermal cases which are discussed later. The prior ranges for the

warm inflation parameters are chosen after analysing the dependence of the parameters on

the pivot scalar amplitude and spectral index (see Figs. 5.2, 5.3). But, even then, there

are multiple sets of values in the parameter space (λ, CT , g∗) that correspond to the same

value of χ2 when compared to the CMB data. We have checked it explicitly. This degen-

eracy is shown in Fig. 5.5 for the case of non-thermal warm inflation (N∗ = 0), where the

scattered points are plotted in the 3-dimensional parameter space ln(CT × 1010),
√
λ× 107

and g∗, with log(χ2) represented in the colour spectrum. The points with the darkest blue

colour in the parameter space are the degenerate points for minimum or near-to-minimum

value of χ2. The lack of clustering of these dark blue points around a single point in this

plot implies that multiple degenerate points can be sampled while minimising χ2 using

a typical MCMC procedure. Therefore, the posterior probability distribution of these pa-

rameters can have multiple peaks and subpeaks (multimodal systems). This was practically

encountered many times while performing the MCMC analysis. Similar degeneracy can be

observed in the parameter space for thermal warm inflation scenario also. For this reason,

the warm inflation COSMOMC sampling faced the challenge of slow mixing and therefore

slow convergence.

For the non-thermal case (N∗ 6= 0), this problem was statistically dealt with the use

of higher temperature (t) of the MCMC chains with the default sampling algorithm. The

temperature (t) defines how likely it is to sample from a low-density part of the target

distribution. The advantage of low t system is more precise sampling but on the other

hand, it can get trapped in a local region of the phase space. Especially, in case of a

theory with multiple modes, keeping low t would mean definite entrapment in local modes.

Though high t-analysis is less precise in sampling with respect to those with low t, it

ensures sampling of a large volume of the phase space. Thus, increasing the temperature
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of the chains saved computation time without making too much compromise. The standard

procedure is to set temperature t = 1 in COSMOMC, and we have taken t = 2 to serve our

purpose5.

Figure 5.5: Scattered points in the 3-dimensional parameter space with different values of log(χ2)
for warm inflation with non-thermal fluctuations. The points with colour in the extreme blue end
of the spectrum correspond to minimum χ2. Instead of centred around a region, multiple dark blue
points along a strip represent multiple modes in the probability space.

For the thermal case, careful reparametrisation is needed due to the presence of non-

zero N∗ in the expression for the power spectrum given by Eq. (5.20). Through the

term N∗, there is an overall factor of C4
T/CRλ. Therefore, the dependence on g∗ is dif-

ferent from the non-thermal case. For our convenience we have reparametrised g∗ as

19 − log(30C4
T/π

2g∗λ). This reparametrisation is done following hierarchical center-

ing [144] which is an algorithm to replace original parameters in a model with modified

parameters that are less correlated with each other in the joint posterior distribution. The

multimodality in the posterior distribution becomes more cumbersome in this case due

to more mixing between the model parameters. Therefore the sampling method for the

MCMC chains was also changed to Wang-Landau sampling algorithm6 [145,146] which is
5Note that this temperature(t) is merely a technical term used in the MCMC statistics and is to be dis-

tinguished from the warm inflation temperature (T ) defined in Eq. (5.4). The temperature of the chains can
be changed in the common.ini file in COSMOMC. If the temperature is modified, the corresponding post-
processing can be taken care of in GETDIST by modifying the cool parameter.

6sampling method=6 in the COSMOMC package
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better sampling to tackle unknown target distributions. In addition, the temperature of the

chains is also increased to 2. All these statistical tweaks help to deal with the secondary

peaks and long tails in the posterior distributions and lead to faster and better convergence

as well.

5.6 Results and Discussions
In this section, we present our results both for the thermal and non-thermal case. The

COSMOMC code constrains the model parameters as well as the late time cosmologi-

cal parameters for warm inflation and estimates the posterior probability distribution with

marginalised central values and standard deviations.

The following Figs. 5.6 and 5.8 show the posterior distributions for the model param-

eters. The parametrisation is done as (ln(CT × 1010),
√
λ × 107, g∗) for the non-thermal

case (Fig. 5.6) and as (ln(CT × 1010),
√
λ × 107, 19 − log(30C4

T/π
2g∗λ)) for the thermal

case (Fig. 5.8) respectively as mentioned in the earlier section. The likelihoods used here

are PLANCK TT+TE+EE, PLANCK lowP, estimated using commander, PLANCK lensing

and BICEP2/KECK array and PLANCK joint analysis likelihood [18, 31, 35]. These plots

show both one-dimensional and two-dimensional marginalised posterior distributions for

these parameters. The marginalised central values are determined by post-processing using

GETDIST package included in COSMOMC.

In Table 5.1, the marginalised values for the model parameters along with the late time

cosmological parameters in ΛCDM model are quoted with their respective 1-σ errors. In

the case of the non-thermal warm inflation, it can be seen from Fig. 5.6 that the posterior

probability for g∗ has a long tail and is far from a Gaussian distribution. This can be

interpreted as an effect of the degeneracy in the parameter space as mentioned earlier in
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Figure 5.6: Triangle plot for the model parameters CT , λ and g∗ when N∗ = 0. Diagonal plots
are the marginalised probability densities for these parameters and off diagonal plots represent 68%
and 95% confidence limits for the variation of two sets of model parameters.

Table 5.1: Constraints on cosmological parameters for non-thermal and thermal case compared
with ΛCDM +r using PLANCK 2015+BICEP2/KECK Array [18, 31, 35] observations .

Warm Inflation Cold Inflation
N∗ = 0 N∗ 6= 0 ΛCDM+r

parameters mean value 1σ mean value 1σ parameters mean value 1σ
Ωbh

2 0.02233 0.00022 0.02224 0.00019 Ωbh
2 0.02224 0.00017

Ωch
2 0.1178 0.0015 0.1194 0.0013 Ωch

2 0.1192 0.0016
100θMC 1.04097 0.00046 1.04088 0.00038 100θMC 1.04085 0.00034

τ 0.077 0.019 0.068 0.021 τ 0.064 0.018
CT 0.0043 0.0018 0.0104 0.0077 ln(As × 1010) 3.06 0.031
λ 9.77×10−15 5.41×10−15 9.74×10−16 6.78×10−16 ns 0.966 0.0052
g∗ 20.03 10.39 139.91 487.98 r < 0.07

Sec. 5.5. Therefore, the marginalised mean value and standard deviation for g∗ in Table 5.1

is not completely conclusive as marginalisation is done by fitting the posterior distribution

as a Gaussian. The marginalised mean value for the inflationary parameters are as follows:
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CT = 0.0043, λ = 9.77×10−15, and g∗ = 20.03. Looking at the 1-σ values, the current set

of data along with the default algorithm [147] that we use for the MCMC analysis cannot

constrain the g∗ parameter stringently. On the other hand, CT and λ are well constrained.

To have a better understanding of this, we also quote the best-fit values of the warm inflation

parameters for the non-thermal case: λ ∼ 1.38 × 10−14, CT ∼ 0.0030, g∗ ∼ 12.32. It is

interesting to note that the most likely value of g∗ is close to the particle content proposed

in the model in Ref. [16]. These values denote the positions of the maximum posterior

probability in the triangle plot of Fig. 5.6. We note that for the case of g∗, the position of the

maximum posterior probability and the mean value from the marginalised one-dimensional

plot differs by 1-σ. The marginalised mean values for other background cosmological

parameters in Table 5.1 are consistent up to 1-σ confidence level for ΛCDM+r model for

the same data combinations.
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Figure 5.7: The predictions for the spectral index and tensor-to-scalar ratio for the best-fit (black)
and mean value (red) of parameters for non-thermal case. The vertical black dotted line corresponds
to the best-fit value of CT , whereas dotted red lines corresponds to the mean value (central), and its
2-σ limit as given in Table 5.1. In Fig. (a), the horizontal lines correspond to the 2-σ constraints
for different data combinations, whereas horizontal line in Fig. (b) corresponds to the current upper
limit on r.

To understand the consistency of the model, it is instructive to find the inflationary
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observables for the best-fit parameters and compare those with bounds from the recent data.

We show this in Fig. 5.7 where we plot the scalar spectral index ns and the tensor-to-scalar

ratio r as a function of CT for both the best-fit parameter and marginalised mean values

for λ and g∗, and those are not much different from each other. The best-fit parameters

are ns = 0.9709, r = 0.09 with running αs = −6.7 × 10−5, whereas parameters for the

marginalised mean values are ns = 0.9736, r = 0.06 with αs = −7.2 × 10−5. For the

marginalised mean value of the parameters, we find Q∗ = 0.031 with T/H∗ = 21.3, and

the pivot scale exits the horizon N∗ = 58 e-folds before the end of inflation, whereas for

the case of best-fit values, we find Q∗ = 0.019 with T/H∗ = 19.3, and the horizon exit

scale happened N∗ = 58. As we have argued earlier, the running is always negligible. The

vertical lines in Fig. 5.7 correspond to the mean value for CT and their 2-σ error bars, and

the best fit value. The horizontal lines correspond to the observational constraints. We see

that smaller values of CT . 10−3 are excluded as it predicts larger tensor amplitude and

too small scalar tilt. CT in the range of 10−3 and 10−2 could have been consistent with both

the constraints from ns and r, but in that range, it predicts too large scalar amplitude as can

be seen in Fig. 5.3a. Therefore, we see that for the non-thermal case, the preferred values

of the parameters predict r that is close to the current upper limit, and further constraint on

r would either validate or exclude the set-up. In particular, non-observation of r ∼ 0.01

would strongly constrain the scenario.

Now, we turn to the discussion of the thermal case with N∗ 6= 0. In thermal warm

inflation scenario, the marginalised mean values of the parameters are (see Table 5.1):

CT = 0.0104, λ = 9.74 × 10−16, and g∗ = 139.91. Here, we note that the observations

are unable to tightly constrain the number of thermal degrees of freedom g∗ as compared

to the non-thermal case, and this was anticipated from the analyses in Sec. 5.4. Both CT

and λ values are well constrained in this case, and CT is larger by one order of magnitude
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Figure 5.8: Triangle plot for the model parameters CT , λ and g∗ when N∗ 6= 0. Diagonal plots
are the probability density for these parameters and off diagonal plots represent 68% and 95%
confidence limits for the variation of two sets of model parameters

compared to the non-thermal case, whereas λ is smaller by a similar amount. We also

quote the best-fit values of the parameters here: CT = 0.0032, λ = 9.6145 × 10−16, and

g∗ = 126.7637. The marginalised mean values of the background cosmological parameters

are consistent with those from the ΛCDM+r run up to 1− σ confidence level for the same

set of data combinations.

We also find the inflationary observables for the mean and best-fit values of the model

parameters for comparison with recent observations. Fig. 5.9 shows ns and r as a function

of CT for mean and best-fit values of λ and g∗, and these two curves are almost overlaps.

The vertical dashed red and black lines correspond to the mean and best-fit values of CT

whereas the thin red dotted lines correspond to the 2-σ error in CT . Horizontal lines are
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the bounds from recent PLANCK observations. The marginalised mean values of the pa-

rameters predict ns = 0.9631, r = 0.03 with running αs = −1.6 × 10−4 whereas, for the

best-fit values of the parameters, the observables are ns = 0.9648, r = 0.06 with running

αs = −1.6× 10−4. The running is very small as discussed earlier. The marginalised mean

values of the parameters predict Q∗ = 0.14 with T/H∗ = 40.70 and N∗ = 58.5 for the

horizon exit of the pivot scale. The best-fit values of the parameters give Q∗ = 0.24 with

T/H∗ = 22.5 and N∗ = 58.07. We note that the thermal scenario predicts lower values of

the tensor-to-scalar ratio r than that predicted in non-thermal warm inflation case and r for

thermal warm inflation is well within the bounds of the present observations.
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Figure 5.9: The predictions for the spectral index and tensor-to-scalar ratio for the best-fit (black)
and mean value (red) of parameters for thermal case. The vertical black dotted line corresponds to
the best-fit value of CT , whereas dotted red lines corresponds to the mean value (central), and its
1-σ limit as given in Table 5.1. In Fig. (a), the horizontal lines correspond to the 2-σ constraints
for different data combinations, whereas horizontal line in Fig. (b) corresponds to the current upper
limit on r.

In Fig. 5.10, the difference in the temperature power spectrum for non-thermal and

thermal warm inflation cases with the ΛCDM+r model is plotted for the best-fit values of

the model parameters quoted above in the corresponding cases for the data combination

PLANCK 2015+BICEP2/KECK Array.
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Figure 5.10: Temperature power spectrum residual plots for the best-fit values of the model pa-
rameters for both non-thermal (green) and thermal (blue) cases with respect to the ΛCDM+r model
for the data combination same as Table 5.1

Although Ref. [134] did a similar MCMC analysis, there are considerable differences

between our methodology of analysis with respect to theirs. Here, the complete power

spectra PR and PT are calculated numerically using Eq. (5.22) and Eq. (5.29) while feed-

ing them inside CAMB rather than a power-law fitting approximation in [134]. More-

over, [134] used Bound Optimization BY Quadratic Approximation (BOBYQA) algorithm

which is not the case in our MCMC methodology. Finally, ns is calculated as a function of

the marginalised (and best-fit) values of the model parameters and corresponding r values

are also quoted in this section which is different from the approach in [134] where all the

observables are calculated for ns = 0.9655, the mean value from PLANCK TT+low P [106].

Therefore, the values of Q∗ at the pivot scale are different in our case than that mentioned

in [134]. This explains the difference in observables such as r and αs in our thermal case

from that of quartic potential with linear dissipation in [134]. Recently ref. [148] anal-

ysed warm inflation model with Υ ∝ T 3 whereas we concentrated on the linear dissipative

regime.

The difference in the mean (and best-fit) values of g∗ for non-thermal and thermal cases

108



is due to the difference in effective thermalisation in these two cases. The minimum number

of d.o.f. required to get this kind of linear dissipation is g∗ = 11.5 for the non-thermal case.

For the thermal case, the inflaton, having a thermal (BE) distribution, contributes to g∗ and

increases the minimum required g∗ to be 12.5 [16]. Whether or not SM or BSM fields are

present in the thermal bath depend on how the inflaton+dissipation sector couples to those

fields. Incomplete thermalization of the (B)SM fields due to weak coupling can result in a

suppressed value of effectively thermalized d.o.f. g∗ (< O(100)). The marginalised values

of g∗ from Table 5.1 imply that for a warm non-thermal inflation, the preference is for a

thermal bath made of the dissipative sector, but not yet thermalised (B)SM sector; whereas,

for warm thermal inflation, more d.o.f. are included in the thermal bath than the minimal

sector. Whether those are SM or BSM fields is a question of model building.

It is worth mentioning here, there are some of the other features in the observables

that can help to distinguish between WI from CI. One feature as discussed in [134] is the

sign of the running of the running of the spectral index (β). The recent observations by

PLANCK [28] hint that β (β = 0.025 ± 0.013) could be positive, which contradicts the

expectation from the standard CI models, whereas a quartic potential in WI scenario can

predict a positive β. Another way to distinguish is by studying the non-Gaussianities as

WI have some distinct features in the shapes of the bispectrum when compared to the CI

picture [149].

5.7 Conclusions
In this work, we have explored the possibility of constraining parameters of the warm

inflationary scenario when comparing its predictions directly with the latest CMB data.

Warm inflation just takes into account possible dissipative effects induced by the interac-

tions of the inflaton field with other species; interactions needed anyway in order to be
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able to reheat the universe after inflation ends. But given the variety of possibilities when

combining inflationary models with patterns of dissipation, we have chosen to work (a)

with a simple model of inflation, a chaotic model with a quartic coupling λ; (b) a linear

T dissipative coefficient, given by the interactions of a few fermions and scalars with the

inflaton. Consistency of the model with observations has been already established studying

its background dynamics and the primordial spectrum [16], by varying the parameters of

the model. Indeed, for chaotic models dissipation helps in sustaining inflation for longer,

lowering the value of potential at horizon crossing, and therefore the tensor-to-scalar ratio.

We have used COSMOMC to get the parameter estimation. As parameters of the model

we have: the combination of coupling constants giving rise to dissipation, CT in Eq. (5.8),

the effective number of relativistic degrees of freedom contributing to the thermal bath

g∗, and the quartic coupling in the inflaton potential λ. We work directly with the scale-

dependent primordial spectrum, PR(k). In principle, the calculation of the primordial spec-

trum is done as a function of the no. of e-folds, Eq. (5.22), and to get the relation with the

scale k one needs to assume something about reheating: at least an effective equation of

state during reheating w̃, and how long it will take for the universe to become radiation

dominated. However, these extra assumptions are avoided in our case given that (a) we

already have radiation produced during inflation, (b) the quartic chaotic model behaves as

radiation once the field starts oscillating after inflation so that w̃ = 1/3. Therefore we have

used Eq. (5.25) to convert the N dependence into k-dependence.

In warm inflation, the presence of the thermal bath and its fluctuations can affect also

the statistical state of the inflaton fluctuations, and this is taken into account with the term

N∗ in Eq. (5.22). We have considered in our analyses that either the inflaton remains in its

standard Bunch-Davies vacuum, withN∗ = 0 (nonthermal case), or that it is in a thermally

excited state with N∗ = nBE (thermal case). The main results of our analyses are given in
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Fig. 5.6 for the nonthermal case and Fig. 5.8 for the thermal case. The constraints on the

model parameters are given in Table 5.1. Notice that we have the same no. of parameters in

our analyses than in the standard cold inflation one, but we have traded the three parameters

related to the primordial spectrum with our model parametrisation: CT , λ and g∗. While

studying the parameter dependence of the observables in Sec. 5.4, we checked that in this

model the running of the spectral index is always small: |αs| . O(10−4), so the power

spectrum can be well fitted by a simple power law.

In both cases, thermal and non-thermal, the less constrained parameter is the effective

no. of relativistic degrees of freedom g∗; mainly because this parameter always appears

in the combination C4
T/(λCR), with CR = π2g∗/30. Still, in the non-thermal case the

behaviour of the spectral index with CT (see Fig. 5.2a) selects a preferred range for this

value, the amplitude of the spectrum do the same for λ, and therefore g∗ ' O(20). This

is of the same order as the minimum no. of degrees of freedom needed to get this kind

of linear dissipation, g∗ = 12.5 [16]. The Monte Carlo analyses indeed returns values for

the parameters such that the spectral index is as close as possible to the ΛCDM + Cold

Inflation analyses mean value, i.e., ns ' 0.966, which in this case implies a slightly larger

value for the tensor-to-scalar ratio than in Cold Inflation, close to the upper limit. Future

data providing a more restrictive upper limit on r may then disfavor this scenario.

In the thermal case, the problem of the degeneracy among the parameters is stronger.

In addition, the behavior of the spectral index with CT is rather flat (until it does increase

owing to the growing mode), as can be seen in Fig. 5.2a, which does not help with the

parameter estimation. This is the reason for which we have explored different parametri-

sations and method in order to get the best possible estimation. Still, we hardly get any

constraint on g∗. Nevertheless, the typical value for the spectral index is again very close

to the ΛCDM + CI, whereas in this scenario the tensor-to-scalar ratio is further suppressed
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with r ' 0.006. Still, it may be within the range of next generation CMB experiments.
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CHAPTER 6

KÄHLER MODULI INFLATION

The most commonly adopted method to constrain models of inflation is to express the pri-

mordial perturbations in terms of empirical parameters such as As (the amplitude of the

scalar power spectrum), ns (the scalar spectral tilt), r (the tensor-to-scalar ratio), fnl (the

non-Gaussianity parameter) etc. The most likely values of these parameters are determined

by evolving the initial fluctuations (as expressed in terms of these parameters) and then

comparing with the observed CMB fluctuations. Given a model of inflation, its theoretical

prediction for the empirical parameters are computed as a function of model parameters,

and a model is considered successful if the predicted values match the constraints on the

empirical parameters from the observations. This indeed is the general procedure followed

by the PLANCK collaboration to obtain constraints on several inflation models [28]. The

next generation of CMB experiments is very promising in improving the accuracy in de-

termining the observables of cosmological inflation. For example, it is expected that the

scalar spectral index ns is going to be measured with an accuracy of ∆ns ∼ 0.002 (1-σ)

by forthcoming ground-based CMB-S4 experiment [29], and satellite-based experiment

113



CORE [30]. If approved, it is expected that these experiments are going to be operational

within ten years.

The slow-roll conditions require the inflationary potential to be flat in Planck units. Any

inflation model is sensitive to ultraviolet degrees of freedom, and therefore, inflation mod-

els should be embedded in ultraviolet complete theories. String theory being our best hope

for an ultraviolet complete theory, inflationary models obtained from string theory deserve

to be analysed in detail. The central input for obtaining predictions of an inflationary model

is the number of e-foldings between horizon exit and the end of inflation (Npivot). This,

in turn, depends on the entire post-inflationary history of the universe (including reheat-

ing). A generic feature of the post-inflationary history of models of inflation constructed in

string theory (and supergravity) is an epoch in which the energy density of the universe is

dominated by cold moduli particles (which arises as a result of vacuum misalignment dur-

ing the inflationary epoch) - See [150] for a recent review. Thus, in order to obtain precise

theoretical predictions, it is necessary to incorporate the effect of this epoch along with the

reheating epoch.

In [21] and [22], we have analysed a particular model of this sort, namely the Kähler

moduli inflation [20] in details. Kähler moduli inflation is a model of inflation in the Large

Volume Scenario (LVS) for moduli stabilisation [19, 151] in IIB flux compactifications

[152]. Recently, a ‘global’ embedding of the model in compact oreintifold was provided

in [153]. The post-inflationary history of this model was analysed in [60] – in particular the

dynamics of the epoch in which the energy density is dominated by cold moduli particles

was studied in detail; the effect of this epoch on the value of Npivot was computed.

Although in general the precise microscopic details of reheating can be complicated,

in [21], we followed the usual approach of parameterizing the effect of the reheating epoch

on Npivot by the number of e-foldings during reheating (Nre) and the effective equation
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of state (wre) during the epoch (see for e.g. [154]). With this the inflationary predictions

can be expressed in terms of Nre and wre. Interesting constraints arise from the fact that

wre cannot be arbitrary; physical arguments and simulations constrain the range of wre.

Overall our analysis is similar in spirit to [26, 140, 155, 156], subsequent analysis along

these lines using PLANCK data has been carried out in in [154, 157–161]. Recently, an

analysis similar to ours has been carried out for the fibre inflation model in [162]. We note

that fibre inflation does not lead to an epoch of modulus domination in the post-inflationary

history. In the case of Kähler moduli inflation, this epoch plays a crucial role.

Moreover, if one is interested in confronting a particular model of inflation with data,

then a robust approach can be taken, as developed in [23, 139, 140]. One takes the coeffi-

cients of the inflaton potential and the parametrization of the reheating epoch as the ‘model

inputs’. Observational predictions are examined directly in terms of the coefficients of the

potential; estimates and errors for the coefficients of the potential are directly obtained.

One of the ways, this can be achieved is by making use of MODECHORD1 [23] which

provides a numerical evaluation of the inflationary perturbation spectrum (even without

relying on the slow-roll approximation) taking the potential coefficients as input; which is

then used as a plug-in for CAMB [142] and COSMOMC [14]. The parameters are then

estimated using a nested sampling method [163]. The importance of reheating effects in

constraining inflation models using current cosmological data was first discussed in [140],

and was subsequently applied to the WMAP data in [164] and to the PLANCK data in [8].

Given the dependence of Npivot on the model parameters, it is crucial to also determine

inflationary observables with precision. With this motivation, a complete numerical anal-

ysis for Kähler moduli inflation using MODECHORD+COSMOMC [14, 23] is carried out

in [22]. We note that Kähler moduli inflation in light of Bayesian model selection was dis-

1MODECHORD is publicly available at www.modecode.org
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cussed in [7, 165, 166], but the key difference between those analysis and the present one

is the incorporation the effects of the epoch (exact duration) of modulus domination in the

post-inflationary history, that depends on the model parameters.

This chapter, which contains the work of both [21] and [22], is organized as follow-

ing: we first review some basic aspects of Kähler moduli inflation and briefly outline the

post-inflationary history of the model in Sec. 6.1. We then mention the duration of mod-

ulus dominated epoch at the end of inflation Nmod for the model in Sec. 6.2 and analyse

the dependences of Npivot on the dynamics of post-inflationary modulus domination and

modulus reheating. In Sec. 6.2.1, we obtain the expression for the spectral tilt ns in terms

of the reheating parameters and compare the model predictions to observational data. Our

results are summarized in the plots in the same section. Given the number of e-foldings

during the reheating epoch, the temperature at the end of reheating Tre of the Standard

Model is determined; thus predictions for the spectral tilt in terms of Nre and wre can be

parametrized in terms of Tre andwre. As in [154], we also present our results in terms of the

later parametrization. The analysis and estimations of the Sec. 6.2 and Sec. 6.2.1 are based

on theoretically inspired values for the parameters of the inflationary model. In Sec. 6.3 we

discuss the methodology for analysing the model parameters and how the required mod-

ification in Npivot can be implemented in MODECHORD. In Sec. 6.3.1, we analyse and

discuss the results for Generalised Reheating (GRH) scenario where Npivot is varied be-

tween 20 and the number corresponding to the instantaneous reheating case. This analysis

is independent of average equation of state parameter wre during reheating. The case for

specific values of wre with the requirement of Tre > TBBN is analysed in Sec. 6.3.2. We

conclude in Sec. 6.4.
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6.1 A brief review of Kähler moduli inflation
We begin by briefly reviewing Kähler moduli inflation, the reader may consult [20] for

further details. Kähler moduli inflation is set in the Large Volume Scenario (LVS) [19,151]

for moduli stabilisation of IIB flux compatifications [152]. The complex structure moduli

of the underlying Calabi-Yau are stabilised by fluxes. The simplest models of LVS are the

ones in which the volume of the Calabi-Yau takes the Swiss-cheese form: V = α

(
τ

3/2
1 −∑n

i=2 λiτ
3/2
i

)
. Note that the overall volume is set by τ1; the moduli τ2, ..., τn are blow-

up modes and correspond to the size of the holes in the compactification. Incorporating

the non-perturbative effects in the superpotential, the leading α′ correction to the Kähler

potential and an uplift term (so that a nearly Minkowski vacuum can be obtained), the

potential for the scalars in the regime V � 1 and τ1 � τi (for i > 1) is

VLVS =
n∑
i=2

8(aiAi)
2√τi

3Vλi
e−2aiτi −

n∑
i=2

4aiAiW0

V2
τie
−aiτi +

3ξ̂W 2
0

4V3
+
D

Vγ . (6.1)

Here Ai, ai are the pre-factors and coefficients in the exponents of the non-perturbative

terms in the superpotential and W0 is the vacuum expectation value of flux superpotential.

The uplift term is Vup = D
Vγ with D > 0, 1 ≤ γ ≤ 3 (see [167–173] for mechanisms that

can lead to such as term).

In Kähler moduli inflation, one of the blow-up moduli (τn) acts as the inflaton. For

simplicity, we will focus on Calabi-Yau’s of the Swiss Cheese form (although the analysis

can be carried out in more general settings, [174]). Inflation takes place in region eanτn �
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V2, here the potential is well approximated by:

Vinf =
n−1∑
i=2

8(aiAi)
2√τi

3Vλi
e−2aiτi−

n−1∑
i=2

4aiAiW0

V2
τie
−aiτi+

3ξ̂W 2
0

4V3
+
D

Vγ−
4anAnW0

V2
τne
−anτn .

(6.2)

It is exponentially flat in the inflaton direction (τn). The other directions (V , τi with

i = 2, .., n−1) in field space are heavy during inflation. Integrating out the heavy directions

and canonically normalising the inflaton (we denote the canonically normalised field by σ),

one finds its potential (in Planck units) to be

V =
gs
8π

(
V0 −

4W0anAn
V2

in

(
3Vin

4λn

)2/3

σ4/3 exp

[
−an

(
3Vin

4λn

)2/3

σ4/3

])
, (6.3)

where
σ

MPl

=

√
4λn
3Vin

τ
3
4
n with V0 =

W
¯

2
0

V3
in

. (6.4)

Vin is the value of the volume during inflation and β = 3
2
λna

−3/2
n (lnV)3/2. Phenomenolog-

ical considerations put the volume at Vin ≈ 105 − 107, and we will discuss cosmological

constraints on it in the next section. We note that ‘gobal embedding’ of the model (realisa-

tion in a compact Calabi-Yau with a semi-realistic Standard Model sector) was carried out

in [153].

Vacuum misalignment and the resulting post-inflationary moduli dynamics in this model

was studied in detail in [60], here we summarise its conclusions. During inflation, the vol-

ume modulus gets displaced from its global minimum. The displacement of the canonically

normalised field in Planck units is:

Y = 2R

(
ξ̂

2P

)2/3
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with

R =
λna

−3/2
n(∑n

i λia
−3/2
i

) , P =
n∑
i

λia
−3/2
i , and ξ̂ =

χ

2(2π)3g
3/2
s

, (6.5)

where χ is the Euler number of the Calabi-Yau and gs is the vacuum expectation value of

the dilaton. For typical values of the microscopic parameters, Y ≈ 0.1 which is consistent

with effective field theory expectations. This leads to an epoch in the post-inflationary

history in which the energy density is dominated by cold particles of the volume modulus.

The number of e-foldings that the universe undergoes in this epoch is [60]

Nmod =
2

3
ln

(
16πa

2/3
n V5/2Y 4

10λn(lnV)1/2

)
. (6.6)

The presence of this epoch reduces the number of e-foldings between horizon exit of the

pivot mode and the end of inflation by an amount 1
4
Nmod. The spectral index can be calcu-

lated by using the usual slow-roll formula ns ≈ 1 − 2/Npivot, but at the reduced value of

Npivot. For typical values of the volume V ∼ 105− 106 and other parameters in this model,

Nmod can be calculated. In Kähler moduli inflation, the inflaton decays to relativistic d.o.f

at the end of inflation, the energy density of these relativistic degrees of freedom becomes

subdominant quickly in comparison with the energy density of the oscillating volume mod-

ulus (which arises as a result of vacuum misalignment). For typical values of the model

parameter parameters, this epoch of between inflation and modulus domination has a small

duration and hence a negligible effect on Npivot [60]. Therefore, we neglect this epoch in

our analysis. After the decay of the volume modulus, the universe has a thermal history.

6.2 Post-inflationary History and Reheating
Phenomenological considerations, including the constraints from the strength of the

amplitude of scalar perturbations, require Vin ≈ 105 to 106 [60]. In this region of the
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parameter space, the spectral tilt (ns) can be expressed in terms of the number of e-foldings

between horizon exit and the end of inflation by the formula

ns ≈ 1− 2

Npivot

. (6.7)

The tensor-to-scalar ratio is rather insensitive to Npivot; r ≈ 10−10 to 10−11 is in the phe-

nomenologically viable range. Of course, the above expression of Eq. (6.7) for the spectral

index is not exact, and in principle can be evaluated by solving for the evolution of the

inflation field numerically. The tensor to scalar ratio, r also has mild dependence on the

model parameters. Therefore, theoretical predictions are sensitive to the global embedding

of the model in a compactification and given a global embedding, numerical evolution of

the fields has to be performed to obtain the predictions as in [153]. For the present analysis

we will take a phenomenological approach (as in [60]) – we will use the expression of

Eq. (6.7) for ns whereas r will be taken to be in the above range. Finally, we note that the

above expression for the spectral index and the value of the tensor-to-scalar ratio are also

essentially independent of the post-inflationary history of the universe.

As mentioned in the introduction, the key feature of the post-inflationary history of the

model that is relevant for our analysis is the epoch in which the energy density is dominated

by cold moduli particles. This arises as a result of vacuum misalignment; the volume

modulus is displaced from its post-inflationary minimum during the inflationary epoch.

This displacement was computed explicitly in [60] by analysing the scalar potential in the

inflationary epoch. The displacement of the canonically normalised field in Planck units

was found be O(0.1MPl), in keeping with generic expectations from effective field theory.

At the end of inflation, with the expansion of the universe, the Hubble friction term can

no longer keep the volume modulus away from its post-inflationary minimum; the volume
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modulus begins to perform coherent oscillations about its post-inflationary minimum. The

energy density associated with this falls off as a−3(t), thus it quickly dominates over the

energy density associated with radiation produced from the decay products of the inflaton

which falls off as a−4(t). This epoch of modulus domination lasts until the decay of the

moduli particles.

Now, let us come to the determination of Npivot for the model. In any cosmological

model, Npivot is determined by tracking the evolution of the energy density of the universe

from the point of horizon exit of the CMB modes to the present epoch. The formula for the

strength of density perturbations

As =
2

3π2r

(
ρ∗
M4

Pl

)

gives the energy density of the universe at the time of horizon exit (ρ∗); demanding that

this energy density evolves to the energy density observed today gives the equation that de-

termines Npivot. For the standard cosmological timeline (consisting of inflation, reheating,

epoch of radiation domination, epoch of matter domination and finally the present epoch

of dark energy domination) this yields

Npivot +
1

4
(1− 3wre)Nre ≈ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρend

)
.

For Kähler moduli inflation (or any cosmological model with a non-standard post-inflationary

history), the equation determining Npivot gets modified. The equation determining Npivot
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for Kähler moduli inflation was obtained in [60] (using the analysis of [58, 59])2

Npivot +
1

4
Nmod +

1

4
(1− 3wre)Nre ≈ 57 +

1

4
ln r +

1

4
ln

(
ρ∗
ρend

)
. (6.8)

Here Nmod is the number of e-foldings that the universe undergoes during the epoch in

which the energy density is dominated by the volume modulus. The R.H.S of the above

equation is entirely determined by the details of inflation. We note that the dependence on

r is mild, but the size of the term involving r is appreciable as Kähler moduli inflation has

a very small value of r (r ≈ 10−10). Also, since the potential for Kähler Moduli inflation

is exponentially flat, it is a good approximation to take ρ∗
ρend
≈ 1. Our ignorance about the

detailed mechanism of the reheating epoch is parametrised by the effective equation of state

parameter wre, and the number of e-folding during the epoch Nre. Of course, for a model

in which all the couplings between the modulus field with the Standard Model degrees of

freedom are known, the mechanism for reheating can be determined and Nre and wre can

be computed. In [60], post inflationary dynamics of the volume modulus was discussed in

detail, and it was found that Nmod ≈ 25. Taking these inputs, Eq. (6.8) becomes

2

1− ns
+

1

4
(1− 3wre)Nre ≈ 45 . (6.9)

The above equation will be central for our analysis to confront the model with the data in

the next section. Before proceeding to this analysis, let us discuss some points which will

play an important role.

Firstly, the range of the equation of state parameter wre. The simplest model for re-

heating is the canonical reheating scenario – the scalar field oscillates coherently around a
2In addition to the terms in Eq. (6.8), reference [60] found a term associated with the number of e-

foldings in which cold inflaton particles dominate the energy density. This term was found to be small in
comparison with the other; we will drop it in our analysis.
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quadratic minimum producing a cold gas of particles, these decay to the Standard Model

sector producing a thermal bath of temperature Tre ∼
√

ΓMPl (where Γ is the total de-

cay width). This has wre = 0. More generally, if the oscillations take place around

a minimum of the form φn (with n even), the equation of state parameter is given by

wre = (n − 2)/(n + 2). Thus wre > 0 requires higher dimensional operators domi-

nating the minimum. More exotic possibilities for the physics of reheating involve res-

onant production of particles, tachyonic instabilities, inhomogeneous modes, and turbu-

lence (see [175] for a review). Recent numerical studies indicate that for all these cases

0 . wre . 1/4 [176]; we will mainly focus on this range while carrying out our analy-

sis. We note that instant thermalisation to radiation corresponds to wre = 1/3, and this is

hard to achieve in practice. For the sake of completeness, we will take a very broad range

−1/3 ≤ wre ≤ 2/3 (recall that w ≤ −1/3 gives an inflationary epoch) for the analysis in

the next section.

As discussed in the introduction, it is possible to trade the parameter Nre for the last

reheat temperature Tre in Eq. (6.9). For a fixed value of wre, the equation then relates the

last reheating temperature to the spectral index. The relationship between Nre and Tre for

Kähler moduli inflation can be easily obtained from the analysis in [60]. Sec. 4.2 of [60]

provides expressions for the energy density at the beginning and end of each epoch of

the post-inflationary history of Kähler moduli inflation. Using these and incorporating the

effect of the reheating epoch we find the Hubble constant at the end of the reheating epoch

to be

H(t̂) =
MPlW

3
0

16πV9/2(lnV)3/2
exp

(
− 3

2
(1 + wre)Nre

)
. (6.10)

Here the exponential factor takes care of the effects of reheating, and Nre = 0 corresponds

to the instant reheating case. Combining this with the usual relationship between the asso-
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ciated energy density and the reheating temperature, 3M2
PlH

2(t̂) = ρ(t̂) ≈ π2

30
g∗T

4
re (where

g∗ is the effective number of degrees of freedom of the Standard Model sector); and taking

V ≈ 105, g∗ ≈ 100 (the exact value of g∗ has only logarithmic dependence) we find

Tre ' 103 exp

(
− 3

4
(1 + wre)Nre

)
GeV . (6.11)

In the next section, we will present our main results by analysing the dependence of Nre

and Tre on scalar spectral index ns.
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Figure 6.1: Fig. (a) shows Tre as a function of ns for different values of the equation of state
parameter wre: wre = −1/3 red, wre = 0 blue, wre = 1/4 green, wre = 1/3 magneta and
wre = 2/3 cyan. These lines meet each other at the point corresponding to Nre = 0. The vertical
dashed black line shows the PLANCK central value (ns = 0.968) for TT+lowP+lensing data [28].
The dark brown band corresponds to the 1-σ region (∆ns ∼ 0.006) and the light brown band to the
2-σ region. The green band marks the projected future 1-σ sensitivity region with ∆ns ∼ 0.002;
assuming that the central value remains unchanged [29, 30]. The blue region corresponds to the
parameter space for a physically well motivated reheating scenario with 0 < wre < 1/4. The
horizontally marked mesh region is excluded from BBN constraints; Tre & 10MeV. On the other
hand, the region with right slanted lines requires a non-standard scenario for cosmology at the
electroweak scale, TEW = 100GeV. Fig. (b) shows Nre as a function of ns with lines and regions
marked with the same colour coding as Fig. (a).
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6.2.1 Comparison to Observations
We now have all the ingredients necessary to compare the model predictions with the

observational data. For fixed values of the equation of state parameter wre, we plot Tre and

Nre as a function of the spectral index ns (using Eq. (6.9) and Eq. (6.11)) in Fig. 6.1a and

Fig. 6.1b respectively. We choose five benchmark values for wre in the range discussed in

the previous section (−1/3 ≤ wre ≤ 2/3). Recall that canonical reheating corresponds to

wre = 0, and wre = 1/3 corresponds to instantaneous thermalisation to radiation. Although

the region wre > 1/3 is not very well motivated physically, we also present plots for

wre = 2/3 for the purposes of illustration. Numerical simulations of reheating suggest

0 < wre < 1/4 [176]; we explicitly mark this range in the plots.
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Figure 6.2: Fitting the reheating temperature in terms of the spectral tilt ns for wre = 0 case.

Fig. 6.1a and Fig. 6.1b are based on observational data from PLANCK 2015 TT+lowP+lensing

for the ΛCDM + r model; ns = 0.968 ± 0.006 at 1-σ [28]. It is clear from the plots that

the predicted value of ns is outside the PLANCK 2-σ lower bound for the physically well

motivated range of wre. It is only for wre = 2/3 that the predicted ns can become consis-

tent with the 2-σ limit; but this requires an extended reheating epoch with Nre & 30. If we

demand Tre & 100 GeV so as to have a standard scenario for electroweak phase transition,

even this comes under a lot of tension. The only way the model can be viable with a real-

istic reheating scenario is if the observed value of ns shifts to become further red tilted in
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future observations3. For comparison with various data sets, it is useful to obtain a simple

relationship between ns and Tre, and this can be done using least square fitting method.

For canonical reheating (wre = 0) we find: log10(Tre/103 GeV) ' 1190(ns − 0.956) (see

Fig. 6.2). This clearly exhibits the difficultly in matching with data since the reheating

temperature in the model is bounded by 103 Gev.

Next, let us consider PLANCK TT,TE,EE+lowP data for which the central value for

ns becomes smaller ns ' 0.965, but the associated error also decreases. Our analysis is

summarised in Fig. 6.3a and Fig. 6.3b. It is easily seen that the conclusion is unchanged.

T
re
[G

eV
]

ns

Planck TT+TE+EE+lowP

wre =−1/3
wre = 0

wre = 1/4
wre = 1/3
wre = 2/3

10−2

10−1

100

101

102

103

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

(a)

N
re

ns

Planck TT+TE+EE+lowP

wre =−1/3
wre = 0

wre = 1/4
wre = 1/3
wre = 2/3

0

5

10

15

20

25

30

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

(b)

Figure 6.3: Plots for PLANCK TT,TE,EE+lowP data with the same colour specifications as Fig. 6.1.

Dark radiation is a generic feature of string models. In LVS, the axionic partner of the

volume modulus is a natural candidate for dark radiation [177]. Comparison to PLANCK

data TT+lowP+lensing+r+Neff with dark radiation4 included in the post-inflationary history

is presented in Fig. 6.4a and Fig. 6.4b. Note that with this the predicted value of ns is within

the 2-σ bound for Nre = 0 (this was previously noted in [153]), and remains within it for

large values of Nre. But we note that for this data set, the 2-σ range is large compared to

the other sets.
3We would like to emphasise that the statements being made are for the theoretical predictions being

made on the basis of the analysis of [60], global embeddings of the model can potentially change these.
4In this case, the central value of the marginalised ∆Neff = 0.24.
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Figure 6.4: Plots for PLANCK data TT+lowP+lensing+r+Neff with dark radiation incorpo-
rated, the colour specifications are same as Fig. 6.1.

Future experiments will bring down ∆ns, and might as well shift the central value

of ns. But with the current measurement of the spectral index, we see that the model

can be viable only for an exotic reheating scenario or with dark radiation. We stress that

due to the existence of a matter-dominated post-inflationary epoch, the predicted value ns

becomes smaller as we measure the cosmologically relevant modes at a smaller number

of e-folds. The effect of reheating just exacerbates the problem further. If the background

cosmological model is extended from ΛCDM + r, the constraint can be relaxed in certain

cases, but that is highly dependent on what extra physics is added.

6.3 Methodology of precision analysis
The analysis is dependent on the exact definition of the number of e-foldings Npivot.

The correctly measured number of e-foldings at the horizon exit is crucial to constrain

models of inflation with an additional epoch of post-inflationary moduli domination. This

analysis is devised to see how the change in the predicted number of e-foldings during

inflation due to the secondary moduli dominated epoch effects the observables and there-

fore constrains the model parameters. But, even though the modulus dominated epoch is

considered carefully, there are inherent uncertainties with the exact value of Npivot due
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to our poor knowledge about the details of reheating/preheating at the end of modulus

domination. With a better understanding in future of the several couplings between the

inflation/modulus with Standard Model d.o.f, we will possibly find the total duration of the

thermalization process Nre with its average equation of state parameter wre. Until this is

available, it is practical to consider the reheating parameters wre and Nre as variables when

analysing the model in light of the recent CMB data.

The analysis is carried out using the publicly available COSMOMC [14] and MODE-

CHORD [23] plugged together through MULTINEST [163]. Given a typical model of infla-

tion, MODECHORD numerically computes the primordial scalar and tensor power spectra.

These primordial spectra are fed to the CAMB in the COSMOMC package with the help

of the plug-in software MULTINEST to evolve through transfer functions. The theoretically

calculated perturbations at the CMB redshift is then compared to the observed fluctuations

using COSMOMC. COSMOMC is a multi-dimensional Markov Chain Monte Carlo simula-

tor which in this case compares the C` values computed numerically for the given inflation-

ary model with the observed C` values by PLANCK and BICEP-KECK array [18,31,178].

In general, all the model parameters of inflation and late time cosmological parameters

(e.g. Ωb, Ωc, θ and τ ) are variables in this MODECHORD+COSMOMC set up. In addition,

the number of e-folds of inflation can also be set as a variable due to our lack of knowl-

edge of the (p)reheating epoch. In this work, we have varied all the late time cosmological

parameters in the six-parameter ΛCDM model as well as the number of e-folds during in-

flation. The ranges of the inflationary model parameters which are varied in the simulation

are chosen carefully and explained in the following paragraphs.

For the generic inflation scenario with instantaneous reheating (IRH) where the uni-

verse thermalizes instantly after inflation and makes a quick transition to the radiation
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dominated epoch, the number of e-foldings at the pivot scale is given by [23]:

N IRH
pivot = 55.75− log

[
1016Gev

V
1/4
pivot

]
+ log

[
V

1/4
pivot

V
1/4

end

]
. (6.12)

Here, Vpivot is the value of the inflation potential at which the pivot scale leaves the horizon

and Vend is the potential at the end of inflation. From the observational upper limit of the

strength of the gravitational wave (r < 0.11 [28]), the second term in the above equation

is negative, whereas the third term is positive definite, but it can be very small for observa-

tionally favoured flat inflaton potential. In the usual implementation of MODECHORD, the

cosmological perturbations are evaluated without assuming slow-roll conditions, and the

best-fit potential parameters can be estimated using COSMOMC. But this also requires that

the uncertainties associated with reheating are accounted for, and this can be done by vary-

ing Npivot between 20 < Npivot < N IRH
pivot. This is termed as the general reheating (GRH)

scenario [23]. The upper limit is motivated from the assumption that the average dilution

of energy density during the reheating epoch is not faster than radiation, i.e wre ≤ 1/3. The

lower limit comes from the requirement that at the end of inflation, all the cosmologically

relevant scales are well outside of the horizon. The shortcoming of this approach is that

the reheating scenarios with wre > 1/3 are not considered; the possibility that Npivot can

be above NIRH is excluded in this analysis.

If there is an epoch of moduli domination in the post-inflationary history, then Eq. (6.12)

gets modified. For Kähler moduli inflation Nmod is given by Eq. (6.6), and in this case

N IRH
pivot is:

N IRH
pivot = 55.75− log

[
1016Gev

V
1/4
pivot

]
+ log

[
V

1/4
pivot

V
1/4

end

]
− 1

6
ln

(
16πa

2/3
n V5/2Y 4

10λn(lnV)1/2

)
. (6.13)
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Note the additional dependence on the model parameters that arises from the last term in

Eq. (6.13). In our analysis for −1/3 < wre ≤ 1/3, we will vary Npivot between 20 and

N IRH
pivot given by Eq. (6.13).

In general, Npivot is determined by N IRH
pivot (as determined by equation (6.13)), wre and

Nre:

Npivot = N IRH
pivot −

1

4
(1− 3wre)Nre. (6.14)

The most general reheating case for the modulus can be treated with considering −1/3 <

wre < 1, where the upper bound comes from the positivity conditions in general relativ-

ity. The GRH analysis as previously discussed in this section implicitly scans the region

−1/3 < wre < 1/3, where Npivot becomes maximum when the contribution of the last

term in Eq. (6.14) is minimum (vanishes) for wre = 1/3, i.e. instantaneous reheating.

This allows us to put N IRH
pivot as the upper bound for Npivot while varying it inside MOD-

ECHORD+COSMOMC for −1/3 < wre < 1/3. But, in the region 1/3 < wre < 1, the

contribution from the last term in Eq. (6.14) becomes positive which increases the value

of Npivot beyond N IRH
pivot. Therefore, we cannot use the previous prior range for Npivot to

analyse for 1/3 < wre < 1.

We note that for the case 1/3 < wre < 1 the last term in Eq. (6.14) contributes max-

imum when wre is maximum (wre = 1) and Nre is maximum also. Now, Nre becomes

maximum for the lowest allowed reheating temperature that must be above the BBN bound,

namely Tre > TBBN = 5.1 MeV [179]. Therefore, we have examined the general reheating

scenario by simulating with MODECHORD+COSMOMC for a few fixed values of wre with

the minimum reheating temperature with Tre = TBBN. For particular values of wre in the

range 1/3 < wre < 1, we set the upper bound on Npivot as
(
N IRH

pivot − 1
4
(1− 3wre)N

max
re

)
,

whereNmax
re isNre|Tre=TBBN=5.1MeV for a fixed value ofwre. In Sec. 6.3.2, we will discuss in
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detail how we find Nmax
re for Tre = TBBN. Our methodology here differs from the previous

analyses done in Ref. [7, 165, 166] since the parametrisation of the post-inflationary epoch

is done in terms of the underlying model parameters and statistical techniques are used for

parameter estimation.

In summary, we incorporate the effects of reheating using two different methods and

carry out the analysis to obtain the preferred value of the model parameters using both the

methods. These two methods are the following:

(i) Analysis using the GRH scenario: Here, we vary Npivot from 20 up to the value of

N IRH
pivot given (6.13).

(ii) Analysis for specific values of wre: In this case, Npivot varies between N IRH
pivot and the

N̂wre .N̂wre is determined by the requirement that the reheating temperature is above

the temperature needed for successful BBN.

6.3.1 Analysis and results in the GRH scenario
As described above, in the GRH scenario reheating uncertainties are accounted for by

varying Npivot between minimum value of 20 and N IRH
pivot given by Eq. (6.13). The model

parameters (as defined in Sec. 6.1) are varied in the following ranges: W0 : 0.001 to 130,

log10 V : 5 to 8 and An : 1.80 to 1.95. We take gs = 0.06 (as required for a local

realisation of the Standard Model from D3 branes), λn = 1 and an = 2π. We keep these

parameters fixed as its dependence on the observables is very mild, and these choices of

the parameters are well motivated from the theoretical stand point. Note that among all

these parameters log10 V also determines the duration of modulus domination epoch, and

therefore also affects Npivot. The likelihoods used are PLANCK TT+TE+EE, PLANCK

lowP, estimated using commander, PLANCK lensing and PLANCK+BICEP2/KECK array
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joint analysis likelihood [18, 31, 178].

W
0

100 101 102

lo
g

10
V

3

4

5

6

7

8

9

10

(a)

W
0

100 101 102

A
n

1.75

1.8

1.85

1.9

1.95

(b)

Figure 6.5: Fig. (a) represents the favoured regions in the W0 - log10 V plane where as Fig. (b)
shows the favoured regions in the W0 - An plane. The 1-σ region is shaded as dark blue, the 2-σ
region is shaded as light blue, with W0 axis is in log scale for both the cases.

In Fig. 6.5, we show the 1-σ and 2-σ bounds on the model parameters. While Fig. 6.5a

shows the marginalised constraint on the parameters W0 and log10 V , Fig. 6.5b shows the

marginalised constraint on W0 and An. These plots represent the most favourable region

of the model parameters when Npivot is varied between 20 to N IRH
pivot for this given model.

The marginalised central value and the 1-σ errors are quoted in the Table 6.1. Note that

W0 is not constrained as tightly as the other two parameters. The central value of the

spectral index ns ∼ 0.953 obtained from the simulation corresponds to number of e-folds

Npivot = 43. This is in keeping with the theoretical expectation with ns ≈ 1 − 2/Npivot,

derived under the slow-roll approximations.

The favoured region in the ns-r plane is presented in Fig 6.6a. Note that the results are

in agreement with earlier analytic treatments [60, 153]. But, here we would like to empha-

sise the difference also. In [60], the shift in the Npivot was calculated by using Eq. (6.6)
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Figure 6.6: Fig. (a) shows Favoured region in the ns-r plane. The 1-σ region is shaded as dark
blue, the 2-σ region is shaded as light blue. Fig. (b) shows the 1-D probability distribution of the
number of e-foldings Npivot.

Table 6.1: Constraints on the model parameters and the cosmological parameters. Data combina-
tion used: PLANCK TT+TE+EE+ low P +lensing + BKPLANCK14.

Parameters Central Value 1σ

W0 57 46
log10 V 5.9 0.3
An 1.87 0.04
ns 0.953 0.002
r/10−8 1.34 0.1
Npivot 43 2

where V ∼ 105−106, fixed by the amplitude of scalar perturbations for typical microscopic

parameters. Effectively, the spectral index was calculated at Npivot ∼ 45 with ns ∼ 0.955.

But now, we have kept both V and Npivot as variables under the generalised reheating

scheme, and find preferred values comparing with the data. We present the distribution of

Npivot (marginalised over all other parameters) in Fig. 6.6b. We see that as an effect of

precision analysis to determine exact values of the model parameters, the central value of

Npivot shifts to 43 for 45 as found in [60].
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Note that the lower 2-σ bound on Npivot is 39, which is well above 20 and closer to

N IRH
pivot = 45. As is evident from the best fit value of ns = 0.953 ± 0.002, the model is

outside of the PLANCK (ΛCDM+r) 2-σ lower limit [28]5. Our analysis also provides a χ2

value for the model, and we find that with equal number of parameters to be varied, there

is a deterioration of the fit in this case by ∆χ2 ' 13 with respect to the ΛCDM+r model

for the same combination of the CMB data.

6.3.2 Analysis and results for specific values of wre

In this section we carry out our analysis by making specific choices for wre (wre =

1, 2/3, 0). As discussed earlier, we will determine the range for variation of Npivot by

using the expression for N IRH
pivot and the requirement of successful nucleosynthesis. Before

going on to analyse the model for the various values of wre, let us first describe how we

determine this range.

The Hubble parameter at the end of the reheating epoch (after the modulus decay) is

given by [60]

H(t̂) =
MPlW

3
0

16πV9/2(lnV)3/2
exp

(
− 3

2
(1 + wre)Nre

)
. (6.15)

Moreover, the reheating temperature is given by 3M2
PlH

2(t̂) = ρ(t̂) ≈ π2

30
g∗T

4
re, where g∗ is

the effective number of degrees of freedom of the Standard Model sector. Thus Nre can be

expressed in terms of the model parameters, the effective equation of state during reheating

and the reheating temperature:

Nre = −2

3

(
1

1 + wre

)
ln

[
16π2g

1/2
∗ V9/2(lnV)3/2T 2

re√
90M2

PlW
3
0

]
. (6.16)

5Although the model can be consistent when the effects of dark radiation is considered [153, 177, 180].
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Successful BBN requires Tre > TBBN = 5.1 MeV [179]. Plugging this condition in

(6.16) we find an upper bound for Nre. We will denote this value by Nmax
re (note that this

quantity depends on wre). Now, in general, Npivot is determined by Eq. (6.14).

Since for a given value of wre, Nre is bounded to lie in the range (0, Nmax
re ), the allowed

range for Npivot is between N IRH and N IRH − 1
4
(1− 3wre)N

max
re . Note that N IRH − 1

4
(1−

3wre)N
max
re is greater than N IRH for wre > 1/3, thus for wre > 1/3, Npivot lies in the

interval of

(N IRH, N IRH − 1

4
(1− 3wre)N

max
re ).

On the other hand forwre < 1/3,Npivot lies in the interval of (N IRH−1
4
(1−3wre)N

max
re , N IRH).

Next, we carry out the analysis to obtain the preferred value of the model parameters for

wre = 1, 2/3, 0. Npivot is taken to lie withinN IRH andN IRH− 1
4
(1−3wre)N

max
re . For all the

analyses below, we vary the model parameters W0, log10 V and An in the prior ranges same

as Sec. 7.4, i.e., W0 : 0.001 to 130, log10 V : 5 to 8 and An : 1.80 to 1.95. The values

of the fixed parameters gs and an are also same as Sec. 7.4. For the case of wre = 2/3,

Fig. 6.7a and Fig. 6.7b are the 2-D marginalised plots for the model parameters, and for

wre = 1, the plots are similar looking.

For the sake of completeness, we also do the analysis in this mechanism for a single

wre < 1/3 case, wre = 0. Here, the lower bound to Npivot can be specified as N IRH
pivot −

1
4
(1−3wre)N

max
re . Therefore, here, we varyNpivot in the rangeN IRH

pivot− 1
4
(1−3wre)N

max
re <

Npivot < N IRH
pivot.

The best-fit values and 1-σ errors for the above three cases wre = 2/3, 1, 0 are quoted

in Table 6.2. The values of the model parameters are well within 1-σ of the values quoted

in Table 6.1 in Sec. 6.3.1. The 2-D marginalised plot in the ns-r plane is given in Fig. 6.8a

for the above three cases. The 1-D marginalised posterior distribution for corresponding
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Figure 6.7: Fig. (a) shows favoured regions in the W0 - log10 V plane for wre = 2/3. Fig. (b)
shows favoured regions in the W0 - An plane for wre = 2/3. The 1-σ region is shaded as dark blue,
the 2-σ region is shaded as light blue in both the plots.

Npivot are shown in Fig. 6.8b.

Table 6.2: Constraints on the model parameters and cosmological parameters for wre = 2/3, 1, 0.
Data combination used: PLANCK TT+TE+EE+ low P + lensing + BKPLANCK14.

wre = 0 wre = 2/3 wre = 1

Parameters Best-fit±1σ Best-fit±1σ Best-fit±1σ

W0 56.9±46.5 58±45 59±48
log10 V 5.9±0.3 5.9±0.3 5.9±0.3
An 1.87±0.04 1.867±0.03 1.865±0.05
ns 0.9535±0.002 0.9555±0.003 0.9575±0.003
r/10−8 1.34±0.1 1.33±0.1 1.31±0.1
Npivot 43±2.5 45.2±2.25 47.7±2

From Table 6.2, the best-fit values of the the scalar spectral index (ns) for the cases with

wre > 1/3 is greater than ns for wre = 0 and also greater than the value quoted in Table 6.1

for general wre < 1/3 cases. Moreover, exotic reheating scenarios produce ns values closer

to the current marginalised mean values given by PLANCK 2015 (ΛCDM+r) [28] than for

the wre < 1/3 cases. For wre = 2/3, the value of ns is just at the lower 2-σ bound given by

PLANCK, whereas for the wre = 1 case, ns is inside the PLANCK 2-σ bound6. Projected
6This is consistent to the analysis in Ref [21] presented in Sec. 6.2.
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Figure 6.8: Fig. (a) shows 1-σ and 2-σ confidence levels in the ns-r plane for wre = 0 (blue
contours), wre = 2/3 (green contours) and wre = 1 (red contours). Fig. (b) shows 1-D posterior
probability distribution of the number of e-foldings Npivot for wre = 0 (in blue), wre = 2/3 (in
green) and wre = 1 (in red).

sensitivity of ns in future CMB experiments [29] are expected to resolve this situation

with stronger constraints. If we look at the Fig. 6.8a, we note that all possible reheating

scenarios are consistent to each other at 2-σ level. But it is important to appreciate that

future observations are going to measure ns with σ(ns) ∼ 0.002 at 1-σ level, and in that

case, attempts to make meaningful statements about the value of the scalar spectral index

automatically requires our better understanding regarding the reheating epoch. We also

note that Npivot has a larger value in the exotic reheating cases, which is expected from the

positive contribution of the last term in Eq. (6.14). The tensor-to-scalar ratio r is of the

same order (∼ 10−8) in all of the above cases.

6.4 Conclusion
We have found that for the model to be consistent with either PLANCK TT+lowP+lensing

or PLANCK TT,TE,EE+lowP data, one requires an exotic epoch of reheat (wre ≈ 2/3).

With dark radiation PLANCK TT+lowP+lensing for ΛCDM+r+Neff , the model is within
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the 2-σ range even after the effects of reheating are incorporated. While we have focussed

on a single model in both [21] and [22], the results exhibit the importance of carrying

out a similar analysis for any model of inflation while confronting it with precision data.

A crucial input for our analysis was the contribution to Npivot from the epoch in which

the energy density of the universe is dominated by cold moduli particles. To compute this

contribution for a model it is necessary to embed the model in a compactification (where

the masses and widths of the moduli fields can be determined). Thus to confront precision

data, “global embedding” of models (as in [153]) is absolutely necessary. We note that

our analysis is not limited to the case of Kähler moduli inflation. The effect is relevant

for any inflation model with late decaying scalar field dominating the energy density at the

end of inflation (see e.g. [181]). We would like to emphasise that future experiments like

ground based CMB-S4 experiment [29], and satellite based experiment CORE [30] are

going to measure the spectral index of the CMB with a projected error of ∆ns ∼ 0.002

(1-σ); therefore, analysis in the spirit of the present work is going to become more and

more important.

In [22], we have initiated the analysis of string models of inflation using MODECHORD.

Given the ultraviolet sensitivity of inflation and the fact that so far the number of inflation-

ary models that have been obtained from string theory is not large [182], it is natural to

use MODECHORD when we try to confront them with data. As data becomes more and

more preciseNpivot has to be determined very accurately. Npivot itself can explicitly depend

on the model parameters for string/supergravity models. Thus, analysis along the line of

this work will become more pertinent as cosmological observations become more precise.

Here, we constrained model parameters for Kähler moduli inflation, for which the ranges

of observables are sensitive to future precision CMB measurements. The full work on Käh-

ler moduli inflation discussed in this chapter presents a compact analysis of the model, and
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a similar analysis is applicable to models of inflation inspired by moduli masses in string

theory.

It is known in the literature that an additional post-inflationary era (like moduli dom-

ination in our case) is completely degenerate with the re-heating from the CMB point of

view [164] unless the dynamics of the reheated epoch is related to the model parameters7.

But this is precisely what happens in the model at hand, the number of e-folds during re-

heating is known in terms of inflation model parameters which in turn also fixes inflationary

observables (this is also the novel feature in the theoretical aspects our analysis of Kähler

moduli inflation in comparison with [7,165,166]). We would like to emphasise that the re-

lation between the epoch of modulus dominated and the model parameters arose from the

embedding of the model our knowledge of the low energy effective action in the setting.

There are several interesting directions to pursue. The parameters in the inflationary

potentials in string models themselves might have a statistical distribution, and one can

try to incorporate the effect of this into the analysis. Another interesting direction is to

understand degeneracies that can arise across the parameters and the model space. It will

also be interesting to cross-correlate with particle physics observables (see for e.g. [185–

189]) and dark radiation [177, 180] in LVS. Note that the constraints of volume and W0

will have direct implications for the supersymmetry breaking scale. The possibility of

analysing multi-field models8 can be explored using MULTIMODECODE. [191]. Another

exciting avenue is to develop a better understanding of the reheating epoch9 in these models

so that associated uncertainties can be reduced. A recent development in this direction is

the possibility that the number of e-foldings during the reheat epoch is bounded [192,193].

7The degeneracy can also be broken by the detection of primordial gravitational waves, see [183], [184]
8For Kähler moduli inflation, the single field approximation is valid for a large class of initial conditions

[190].
9See [21, 162] for a phenomenological approach towards reheating for inflationary models in LVS.
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We hope to return to these questions in near future.
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CHAPTER 7

GOLDSTONE INFLATION IN THE

NON-CANONICAL DOMAIN

7.1 Introduction
One of the major challenges with the standard inflationary models is that most of the

textbook models are ruled out or disfavoured by the recent observations of CMB such as

PLANCK and WMAP [104,106]. In early 90’s, an elegant solution was proposed by [194]

from the idea of symmetry breaking to produce the inflation potential where the inflaton

is a Goldstone boson (Natural inflation). Due to the shift symmetry property embedded

through the symmetry breaking, the flatness of the potential is naturally maintained, which

is essential for the model building of inflation. But after the recent data release by PLANCK

collaboration [4], Natural inflation is almost ruled out in the standard ΛCDM model. The

BIC 1 calculated for such models puts it right on the fence for getting invalidated by data.

1The Bayesian information criterion (BIC) is an approximate measure of the Bayes factorB, which is the
ratio of the Bayesian evidence of the candidate model to that of a reference model. For details, see [195,196]
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Natural inflation is one particular limiting case of a general class of inflation models

known as Goldstone inflation. To have a successful Goldstone inflation, all scales related

to the theory have to be sub-Planckian, thus keeping the inflaton guarded against the UV

correction from the quantum gravity effects. Now in the standard scenario of inflation, the

scalar field is taken to be canonical. But, it was realised after the initial proposal of kinetic

driven non-canonical inflation (NCI) in [197] that NCI’s are more natural to fit with the

fundamental theories like String theory.

After the proposal of tachyon inflation in [198–200], non-canonical realisation of differ-

ent inflationary models have gained growing interest. Thus, in [201] we move on to study

the Goldstone inflation in the non-canonical domain and check the viability of the model

from direct constraints by the current observation. In this work we tried to explore the

general Goldstone inflation in non-canonical domain and then studied the non-canonical

natural inflation as a special case.

This chapter is based on the work [201] and is organised as follows: in the next sec-

tion 7.2 we will make a brief review of the standard Goldstone inflation along with the

basic ingredients to build up the non-canonical inflationary dynamics. In Sec. 7.3, we have

reported the analysis part and in Sec. 7.4 we present the main results obtained through that

analysis and finally the conclusions are drawn in the final section.

7.2 Revisiting the canonical Goldstone and non-canonical

inflation

7.2.1 Reviewing Goldstone inflation
The originally proposed model of Natural inflation has an axion as the inflaton, which

is the Goldstone of a spontaneously broken Peccei-Quinn symmetry. But, as mentioned in
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the previous section, it is almost ruled out in the standard ΛCDM paradigm by recent CMB

observations. The model is still in the 2σ allowed region with an associated breaking scale

of 10MPl or higher. This is problematic as the effective field theory dynamics could get

completely jeopardised by the effects of the Quantum Gravity(QG) which should robustly

kick into the picture in the super-Planckian regime. QG in general does not conserve global

symmetry and therefore to have a super-Planckian breaking scale in case of a vanilla natural

inflation model is philosophically very disturbing.

Different exquisite models have been proposed to explain the super-Planckian break-

ing scale, such as Extra-natural inflation [202], hybrid axion models [203, 204], N-flation

[205–207], axion monodromy [111] and other pseudo-natural inflation models in Super-

symmetry [208]. Some or most of these models require a large amount of tuning or the

existence of extra dimensions. But even with these theoretical explanations, with the

recent release of PLANCK data, the idea of Natural inflation faces survival crisis. The

vanilla model is disfavoured by the PLANCK 2018 plus BK14 data with a Bayes factor

lnB = −4.2 (Models are strongly disfavoured when lnB < −5). Therefore, it is high

time to reevaluate the original motivation and development of the models of Natural infla-

tion where the potential is generated through the breaking of a global symmetry.

In [209], there is a proposal of a model where a generalised Goldstone inflation is

developed from the idea of minimal Composite Higgs model [210, 211].

The form of the potential to obtain successful inflation is given as :

V (φ) = Λ4(CΛ + α cos(φ/f) + β sin2(φ/f)) (7.1)

In [209], it has been shown that with an appropriate amount of fine tuning, one obtains

a successful model of Goldstone inflation with a sub-Planckian breaking scale related to
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the global symmetry breaking. Now, with the recent results from PLANCK 2018, even a

canonical Goldstone inflation faces problem to survive. Since, this model is motivated by

the minimal Composite Higgs model, it is expected to have a non-canonical origin in the

dynamics of the inflation. It is also clear from Eq. (7.1) that, for the choice of the parameter

α = 1, β = 0 one gets back the standard form of the natural inflation potential.

7.2.2 Revisiting NCI
Here, we will briefly review the non-canonical inflation before introducing the Gold-

stone inflation in the non-canonical regime. NCI model features a single scalar field with

the action [197, 212]:

S =

∫ √−g p(φ,X)d4x , (7.2)

where φ is the inflaton field. Here p(φ,X) = K(X,φ)−V (φ), where V (φ) is the potential

and X ≡ 1
2
∂µφ∂

µφ. Now, it is very import to understand that the kinetic term K(X,φ) can

be any arbitrary function ofX and φwith proper dimensional attributions to the pre-factors.

Here, let us write K(X,φ) as :

K(X,φ) = Knc(φ)Kkin(X) , (7.3)

here, Knc(φ) can be any arbitrary function of φ. On the other hand, assuming a power law

function, Kkin(X) ≡ Kn+1X
n, where n is the power. Thus for n > 1, we find higher order

contribution of the pure kinetic term even with dimensionful constant Kn+1 = 1. From

Eq. (7.3), it is expected to get back the canonical picture once we set n = 1, Kn+1 = 1 and

Knc(φ) = 1 respectively.

For the purpose of this work we separate the contributions of the field dependent kinetic

term Knc(φ) and of the derivative dependent kinetic term Kkin(X). The scenario with
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Knc(φ) switched on and Kkin(X) = X is termed as Case- 1. The case where we consider

Knc(φ) = 1 and Kkin(X) is non trivially switched on is called Case- 2.

Case- 1

In this case, Knc(φ) is switched on and Kkin(X) ≡ X . Thus, in this case there is no

higher order kinetic term present and the effective Lagrangian for genericKnc(φ) and V (φ)

can be written as:

L = Knc(φ)X − V (φ). (7.4)

Then the Equation of Motion (EoM) for the field φ turns out to be:

φ̈+ 3Hφ̇+
Knc,φ

2Knc

φ̇2 +
V,φ
Knc

= 0, (7.5)

where V,φ = dV/dφ and Knc,φ = dKnc/dφ. If the canonical field is given as ψ such that

1
2
∂µψ∂

µψ = 1
2
Knc(φ)∂µφ∂

µφ then the slow roll parameters are modified as:

εV =
M2

Pl

2

(
V,ψ
V

)2

=
M2

Pl

2Knc

(
V,φ
V

)2

, (7.6)

ηV = M2
Pl

(
V,ψψ
V

)
=
M2

Pl

V

(
V,φφ
Knc

− V,φKnc,φ

2K2
nc

)
. (7.7)

The number of inflationary e-folds in the slow roll regime is:

N =
1

MPl

∫ φe

φi

V

V,φ
√
Knc

dφ. (7.8)

The above relations (Eq. (7.4) to Eq. (7.8)) are true for any inflaton potential V (φ) and

we will speculate the particular form of Goldstone inflation in this non-canonical setting in
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Sec. 7.3.1. The inflationary observables in this case are:

ns − 1 = 2ηV − 6εV (7.9)

r = 16εV (7.10)

Case- 2

In this case, Knc(φ) ≡ 1 and Kkin(X) ≡ Kn+1X
n (for a comprehensive review reader

is suggested to consult [213]). Here, the total background dynamics can be constructed in

terms of p(φ,X) = K(X)− V (φ). The Hubble equation is given as:

H2 = ρ/3, (7.11)

where

ρ = 2Xp,X − p. (7.12)

The speed of sound is

c2
s =

p,X
ρ,X

=
K,X

2XK,XX +K,X

, (7.13)

using Eq. (7.12). For the given form ofK(X), the sound speed is a constant c2
s = 1/(2n−1)

and the equation of motion (EoM) for the inflaton in this case is modified to:

φ̈+
3H

2n− 1
φ̇+

V,φ
(2n2 − n)Kn+1Xn−1

= 0 (7.14)
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Now, the slow roll parameters are needed to be calculated to get the expressions for the

observables. The two potential slow roll parameters are given as:

εV =
1

2

(
6n−1

n

) 1
2n−1

(
V ′2n

V (3n−1)

) 1
2n−1

(7.15)

ηV =

(
6n−1

n

) 1
2n−1

(
V ′′(2n−1)

V nV ′(2n−2)

) 1
2n−1

(7.16)

The scalar and tensor power spectra are given as:

Ps =
1

8π2M2
Pl

H2

εV cs
|csk=aH , (7.17)

Pt =
2

π2M2
Pl

H2|k=aH . (7.18)

Then the inflationary observables can be calculated to be:

ns − 1 =
1

2n− 1
[2nηV − 2(5n− 2)εV ] (7.19)

r = 16csεV (7.20)

Finally, the number of e-folds can be expressed in this case as:

N =

∫ φi

φe

( n

6n−1

) 1
2n−1
√
V

(√
V

V ′

) 1
2n−1

dφ (7.21)

Here, φi and φe represents the field values of the inflaton field at the horizon exit and end

of inflation respectively.
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7.3 Analysis for Goldstone inflation
Here, we analyse the effect of non-canonial scenarios Case- 1 and Case- 2 on the dy-

namics of Goldstone inflation. We consider the potential for the Goldstone inflation in the

form of Eq. (7.1) with CΛ = α = 1, β ≡ β
α

.

7.3.1 Case-1

ε
V

φ/ f
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1e-06

0.0001
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3.5 4 4.5 5 5.5 6

f=10MPl

f=MPl

f=0.1MPl

Figure 7.1: The variation of εV as a function of the field. The dashed lines represent canonical
Goldstone inflation whereas the solid lines represent non-canonical Goldstone inflation with Knc

switched on and Kkin = X (Case-1). The pivot field values for 55 e-folds of inflation for the cases
f = MPl and f = 10MPl are marked with crosses in the curves.

Using the following non-canonical form:

Kkin(X) = X, (7.22)

Knc(φ) = 1 + α cos(φ/f) + β sin2(φ/f) =
V (φ)

Λ4
, (7.23)
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we arrive at the EoM:

φ̈+ 3Hφ̇+

(
φ̇2

2
+ Λ4

)[ −α sin(φ/f) + β sin(2φ/f)

f(1 + α cos(φ/f) + β sin2(φ/f))

]
= 0. (7.24)

The slow roll parameters are:

εV =
Λ4M2

Pl

2

(
(−α sin(φ/f) + β sin(2φ/f))2

f 2(1 + α cos(φ/f) + β sin2(φ/f))3

)
, (7.25)

ηV = M2
PlΛ

2−α cos(φ/f) + 2β cos(2φ/f)− α2 − β2(1− cos(2φ/f) + αβ cos(φ/f)(1 + cos2(φ/f))

f 2(1 + α cos(φ/f) + β sin2(φ/f))3
.

(7.26)

In Fig. 7.1, the variation of εV is shown as a function of the normalised field value φ/f .

For the breaking scale f = 10MPl (red line), the εV at pivot (marked with cross) is lower

in case of non-canonical Goldstone inflation than the canonical case, therefore pointing

towards a lower energy scale of inflation. But for f ≤ MPl, the pivot energy scale for

non-canonical case is higher than the canonical case. This has been depicted by the blue

and green lines in the Fig. 7.1. It should be noted that varying α also as a parameter may

improve the predictions for observables.

7.3.2 Case- 2
The Natural inflation is a limiting case of the generalised goldstone inflation with α = 1

and β = 0. We start with the analysis of Natural inflation to clarify the dependence of

the inflationary observables on the parameters of the model, which is also applicable by

extension to generic Goldstone inflation. For Natural inflation, the potential and the kinetic
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Figure 7.2: The variation of εV as a function of the field. The dashed lines represent canonical
Goldstone inflation whereas the solid lines represent non-canonical Goldstone inflation with Kkin

switched on andKnc = 1. The plots are for f = 10MPl (in red), f = MPl (in blue) and f = 0.1MPl

(in green).

functions are given as:

V = Λ4(1 + cos(φ/f)) (7.27)

K = Kn+1X
n (7.28)

Then, the slow roll parameters are:

εV =
1

2

V ′

V
γ(n)

(
V ′

V n

) 1
2n−1

=
1

2

1

(K3Λ4)1/3

[
sin4(φ/f)

(1 + cos(φ/f))5

]1/3

(7.29)
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ηV = γ(n)

(
V ′′(2n−1)

V nV ′(2n−1)

) 1
2n−1

=
1

(K3Λ4)1/3

[
cos(φ/f)

sin(φ/f)(1 + cos(φ/f))2/3

]
, (7.30)

where γ(n) =

(
6n−1

nKn+1

) 1
2n−1

and in each of the above two equations, the second line is

the expression for n = 2. The ratio of the scalar power spectra in case of kinetic natural

inflation (n = 2) to the canonical natural inflation (n = 1) can be written as:

P n=2
s

P n=1
s

=
1

γ(2)cs
× V 8/3

V ′4/3
× V ′2

V 3
=

1

γ(2)cs
× V 2/3

V ′1/3
=

(
K3

3

)1/3

× 31/3 × V 2/3

V ′1/3

= 31/6 ×K1/3
3

[
(Λ4/f)2 sin2(φ/f)

Λ4(1 + cos(φ/f))

]1/3

= 31/6 ×
(

1

f 2/3

)
× (K3Λ4)1/3 ×

[
sin2(φ/f)

1 + cos(φ/f)

]1/3

(7.31)

Thus, from the equation (7.31) it is clear that:

P n=2
s

P n=1
s

∝ (K3Λ4)1/3

f 2/3
(7.32)

From the dependences of εV and ηV for Natural inflation here, on the factor (K3Λ4)1/3

and on f , it is evident that the slow roll parameters have values (> 1) not compatible with

the slow roll condition for most of the inflaton’s journey on the slope of the potential. To

summarise the point, let us take f = 10MPl. For the sake of a simplistic analysis, let us

assume the term in the square bracket in the equation (7.31) is O(1). Then, the first slow

roll parameter is: εV ' 31/3

2
× 10−4 × 1

(K3Λ4)1/3
. Thus, for K3 = 1, for any realistic scale

of inflation (value of Λ4) the pivot value of εV is quite large to have 50 − 60 e-folds of
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inflation, which is required from observations. Therefore, it is difficult to achieve enough

number of inflationary e-folds for Case-2 of kinetic natural inflation.

By analogy, for the case of Goldstone inflation in the non-canonical regime of Case-2,

the combination of parameters (K3αΛ4)1/3 influences the dynamics of inflation in a similar

way. The factor α1/3 appears since we have considered it as an overall factor in the potential

and varied the normalised value of β ≡ β/α in this case. The variations of the first slow

roll parameter εV as a function of φ/f is shown in Fig. 7.2, where, unlike Case-1, εV for

a non-canonical case-2 is higher than that for a canonical case for a particular value of

φ/f . But, as shown in Eq. (7.20) in Sec. 7.2.2, the energy scale of inflation depends on the

speed of sound cs = 1
2n−1

= 1/
√

3. This factor appears in the EoM Eq. (7.14) and also

in the expression of the pivot quantities. A variation of εV /
√

3 in Fig. 7.2 shows that for

a particular field value, the non-canonical Goldstone inflation (Case-2) points to a lower

effective energy scale of inflation (plotted as εV /
√

3 in Fig. 7.2) compared to its canonical

picture, although at the cost of very steep rolling during inflation.

Therefore, to achieve enough number of e-folds (taken to be N = 55 in the analysis) in

this case,the combination of (K3αΛ4)1/3 needs to be modified (increased).

7.4 Result
The main observables for inflation in CMB for the ΛCDM model are the scalar spectral

index ns and the tensor-to-scalar ratio r which are measured by PLANCK 2018 [4] with

immense precision. The exact values of these parameters with 1σ errors as constrained by

PLANCK 2018 are ns = 0.9665 ± 0.0038 (TT, TE, EE+ lowE+ lensing data ), r < 0.064

(TT, TE, EE+ lowE +lensing data+ BK14). In this section, we discuss the predictions of

the Goldstone inflation in the canonical regime for ns and r with respect to their values in

1σ and 2σ confidence levels given by PLANCK 2018. We consider two different datasets
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Figure 7.3: Comparison in the ns-r plane between canonical natural inflation (red), non-canonical
natural inflation (blue), canonical Goldstone inflation (magenta) and non-canonical Goldstone in-
flation (cyan). The Goldstone inflation curves plotted here are for β = 0.5. The dark and light grey
regions signify 68% and 96% confidence limits respectively for PLANCK TT,TE,EE+lowE+lensing
data (2018) [4], whereas dark and light yellow regions signify 68% and 96% confidence limits
respectively for PLANCK TT,TE,EE+lowE (2018)+lensing+BK14 [31]+BAO data [32–34].

in our analysis: (i) the most constrained PLANCK TT,TE,EE+lowE + lensing + BK14 +

BAO and (ii) PLANCK TT,TE,EE+lowE+lensing.

In Fig. 7.3, we compared the predictions for natural inflation and Goldstone inflation

in the canonical regime and in the non-canonical regime (Case-1). The non-canonical plot

here is just for comparison and plotted for β = 0.5 (CΛ = 1, α = 1). It is evident from

this plot that non-canonical picture Knc(φ) = V (φ)/Λ4 does improve the predictions for

inflation by a significant suppression of r.

In Fig. 7.4, we explored the observables in the ns-r plane for Case-1 of non-canonical

Goldstone inflation while varying the model parameter β. For each value of β, the solid line
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β = 0.5 in magenta and β = 0.75 in green. The green dot-dashed line connects the points with
f = 5MPl in all the curves. The yellow dark and light regions signify 68% and 96% confidence
limits respectively for PLANCK TT,TE,EE+lowE+lensing data (2018) [4], whereas grey ark and
light regions signify 68% and 96% confidence limits respectively for PLANCK TT,TE,EE+lowE
(2018)+lensing+BK14 [31]+BAO data [32–34].

runs for variation of the breaking scale f up to 16MPl. The plot shows that for most of the

super-Planckian breaking scales f > MPl, the non-canonical scenario (Case-1) lowers the

tensor-to-scalar ratio r for all values of β < α. But, similar to the default canonical Natural

inflation case, this does not improve the predictions for ns and r in the sub-Planckian scales

f < MPl. This was hinted from Fig. 7.1, where the pivot field value for the non-canonical

Case-1 predicted higher value of εV for f ≤ MPl. Particularly, for β = 0.5, even though

r decreases rapidly with the decrease in f below MPl, the spectral index ns is outside the
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current precision bounds by PLANCK.
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Figure 7.5: The ns-r plot for kinetic inflation. Kinetic natural inflation curve is plotted in red,
whereas kinetic Goldstone inflation curves for β = 0.2 is in magenta, for β = 0.5 is in blue.
The light grey region pervading all through the plot signifies 96% confidence limit for PLANCK

TT,TE,EE+lowE+lensing data (2018) [4], whereas the dark grey contour signifies 68% confidence
limit for the same data combination. The yellow shaded region signifies 96% confidence level for
PLANCK TT,TE,EE+lowE (2018)+lensing+BK14 [31]+BAO data [32–34]. For each curve, the
lowest value of r is for f = 0.5MPl.

Fig. 7.5 shows the predictions for the inflationary observables for Case-2 of non-canonical

Goldstone inflation. Here, we see that the ns and r values for the sub-Planckian breaking

scales f < MPl are inside the 2σ bounds give by PLANCK dataset (i) for all values of

β. But the prediction of r is larger compared to Case-1, which makes the Goldstone in-

flation in kinetc non-canonical regime Case-2 vulnerable to future precision detections of

primordial tensor modes.

In Fig. 7.6, the three solid lines all refer to the same f , but differ in inputs of β. In

each of the solid lines, we have compared the three cases: canonical (leftmost point), non-
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Figure 7.6: Comparison in the ns-r plane between natural inflation and Goldstone inflation for
f = 5MPl (fixed). The natural inflation curve is plotted in red whereas Goldstone inflation curve
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magenta. The three points from left to right in each of the curves are for the canonical, non-canonical
and kinetic cases respectively. The dark and light grey regions signify 68% and 96% confidence
limits respectively for PLANCK TT,TE,EE+lowE+lensing data (2018) [4], whereas dark and light
yellow regions signify 68% and 96% confidence limits respectively for PLANCK TT,TE,EE+lowE
(2018)+lensing+BK14 [31]+BAO data [32–34].

canonical Case-1 (middle point) and non-canonical Case-2 (rightmost point). As hinted

in the previous figures, we can see that of the all three cases, the non-canonical Case-1

provides best predictions for the super-Planckian case f = 5MPl with reference to current

bounds from PLANCK.

7.5 Conclusions and Discussions
With future observations like CMB-S4 [29] and CORE [30] with promising prospects

to measure the spectral tilt very precisely (∆ns ∼ 0.002), and with future possibilities to

constrain the primordial tensor modes, a systematic study of the unconventional scenar-
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ios of inflation for theoretically motivated models has become essential. Models that are

well motivated from theory but facing trouble to predict observable parameters within ex-

perimental bounds need to be reevaluated in scenarios such as non-minimal coupling to

gravity [214] or non-canonical inflation. Inflaton being a pNGB has a very promising theo-

retical justification and therefore, a Goldstone potential to drive the inflationary expansion

is studied here in the non-canonical scenario constrained from latest CMB data.

We emphasize that using a non-canonical framework in [201] helped to avoid fine-tuning

of model parameters, which is unavoidable in the canonical case of Goldstone inflation.

For Case-1, the prototype Knc(φ) = V (φ)/Λ4 is just to give an effective flatness to the

potential. More forms of Knc(φ) arising from non-minimal gravitational coupling will be

interesting to analyse, as they come naturally from non-trivial Lagrangians in the Jordan

frame [13, 85, 215]. We have done the analysis for Case-2 with only n = 2 due to mainly

two reasons. Firstly, renormalization of the theory is an issue in any case of kinetic infla-

tion and therefore, it is safe to start with the minimal deviation from the canonical case.

Secondly, the observational bound on the cosmological sound speed cs restricts the power

n of the kinetic term.

For non-canonical Case- 1 we get smaller tensor-to-scalar ratio (r), however we do not

achieve enough e-folds of inflation for sub-Planckian f . On the other hand, for Case- 2 we

achieve ∼ 55 e-folds of inflation even for sub-Planckian f , but at the cost of r values lying

outside the current 68% bound. A generalised kinetic term with both the cases switched

on will be interesting in terms of the prediction for observables, if their effects combine in

a constructive manner. The next natural step should be to test these models with thorough

numerical analysis using Bayesian techniques. Another exciting case would be to check the

effects of non-canonical inflation in the brane-world scenarios. As expected in the brane-

world scenario, there is a natural tendency of increasing r [216], it would be interesting to
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check NCI in that paradigm. We hope to return to these problems in near future. Another

issue which might need a serious theoretical explanation is the observed anomaly at the

low multipole in the CMB power spectrum as observed by PLANCK as well as WMAP.

Many explanations [217–221] are being put forward and on that note it would be exciting to

check if a non-canonical initial condition could orchestrate such an imprint on such scales.

Finally, we comment regarding the recently proposed Swampland Criteria (fiasco!)

[222] which created some sensation in the cosmology community. On that regard, we

would like to emphasize that non-canonical inflation, specifically Case- 2, with a theoret-

ically well-motivated potential could actually evade the problem and might be a natural

answer to it since the Lagrangian for NCI is expected and motivated from String theory.

The bounds on cs from CMB could also play a key role in that as indicated in [223]. This

is another interesting problem that we would like to address soon.
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CHAPTER 8

CONCLUSIONS

In this chapter, we summarize the results obtained in the works included in the thesis to

conclude and discuss future prospects of studies along this line of research. This thesis is

focussed on analysing some models of inflation in non-trivial settings that are motivated

by high energy theories. These analyses involved establishing deep connections between

theoretical studies of the inflationary models to the observables for the primordial power

spectrum in CMB, sometimes with a rigorous numerical methodology.

In chapter 1, the idea of cosmology has been introduced. In chapter 2, the standard hot

big bang model, its pitfalls and their solutions by the introduction of the inflation epoch

have been discussed in detail. In the same chapter, the background and perturbation dy-

namics of inflation have been produced with an emphasis on the observable quantities in

the CMB experiments. In chapter 3, we have discussed how the observed temperature

fluctuations in CMB experiments can be related to the power spectrum, which is a func-

tion of the basic ΛCDM and inflationary parameters. In the same chapter, the numerical

methodology for comparing theoretical predictions for the primordial power spectrum for
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a particular model of inflation with the observed spectrum at recombination has been dis-

cussed. In the chapters 4, 5, 6 and 7, we move on to present the new works done during

the time of doctoral research.

It is crucial to understand the true dynamics during inflation since the physics of the

universe at such high energies (∼ GUT scale) and such early times is a potential probe of

the UV energy scales, which is beyond the access of the standard model of particle physics.

In this context, the nature of the scalar field driving inflation and the possible couplings

of the inflaton with other degrees of freedom that may be present during inflation is an

important input to study the underlying energy budget and evolution during the pre-BBN

epoch. For these reasons, model-building to provide the correct action for the epoch of

inflation is a major topic in contemporary research of early universe cosmology.

Deviation from the minimal gravitational coupling of the inflaton can accommodate

theories that consider modification of gravity at early universe. The generic implications

of scalar-tensor theories of gravity, e.g. f(R) theory, Brans-Dicke gravity etc., are studied

in [13], specifically with respect to the dependence of the inflationary observables upon

the degrees of freedom present in the Lagrangian. Inflation theories arising from such

scalar-tensor models has been studied in [13] in the context of attractor models.

In a scenario where the inflaton is energetically coupled to other fields present in a

thermal bath during inflation (warm inflation picture) is interesting with respect to various

plausible particle physics models including Beyond Standard Model physics. Such warm

inflationary scenarios may accommodate inflationary models that are motivated from parti-

cle physics, but ruled out by data in their cold inflation descriptions. A thorough numerical

analysis of such a model V = λφ4 has been carried out in [17], where the parameters of

‘warm little inflation’ have been constrained. The predictions of the previously refuted

quartic chaotic model are found to be consistent in the warm inflation picture with recent
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observations.

The models of inflation that emerge from effective field theory descriptions of string

theory are particularly interesting to study due to their prediction of an additional post-

inflationary epoch where the energy density is dominated by cold moduli particles. Such a

prototype model, namely the Kähler moduli inflation, has been studied from the reheating

perspective in [21] and with precision numerical analysis in [22]. Here, the model parame-

ters determine both inflationary observables as well as post-inflationary moduli dominated

epoch. Confronting this model with the latest CMB data in [22] by full numerical analysis

resulted in the prediction of inflationary observables. We concluded that these models re-

quire either exotic reheating scenarios, where the energy density decreases even faster than

radiation, or possible introduction of dark radiation in the theory to comply with the recent

bounds from CMB observations.

A non-canonical kinetic term is also very frequently encountered in high energy the-

ories; e.g. many inflation models in string theory have a kinetic term of a higher order

than the canonical case (kinetic inflation). On the particle physics front, Goldstone bosons

are natural candidates for obtaining a quasi-flat inflation potential via shift symmetry. The

study of Goldstone inflation in the non-canonical kinetic regime in [201] has concluded

that a kinetic treatment of Goldstone inflation can achieve sub-Planckian symmetry break-

ing scales, while being consistent with the current observations (within 2σ limit) at the

same time.

To summarise, the study of this thesis emphasises the importance of precision numeri-

cal analysis for the inflationary models which can emerge from viable high energy theories,

and to understand the significance of the model parameters and their predictions for infla-

tionary observables. Other than the outlooks discussed at the end of each chapter for each

of the scenarios analysed in this thesis, there are many more arenas of inflation that are

161



very interesting to explore, especially with the prospect of future cosmological observa-

tions. Detection of primordial B modes by future CMB surveys and direct/indirect detec-

tion of primordial gravitational waves will be elemental in resolving among the plethora

of inflationary models and also to indicate the energy scale of inflation. The excursion of

inflaton is also sensitive to the primordial tensor fluctuations and therefore is a key feature

for the viability of inflation models. The possibility of setting a quasi-de Sitter manifold

of inflation in swampland is also exciting to explore, especially with non-trivial inflation-

ary scenarios that can evade the slow roll condition for the inflaton potential. Moreover,

our lack of knowledge about the post-inflationary epochs up to BBN may be attempted to

be improved by better parametrization of the reheating epoch and future detection of pri-

mordial gravitational waves from preheating. A better understanding about cosmological

inflation and (p)reheating epochs are necessary to obtain a complete picture of the history

of the evolution of our universe and this can be achieved by judicially combining relevant

theories with latest data via precision numerical and statistical analysis.
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