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SYNOPSIS

Phenomenal success of experimental research in neutrino physics in the last two

decades have led not only to unequivocally establishing that neutrinos have mass

but also to an almost complete determination of flavor mixing between the different

lepton generations. From theoretical perspective, their masses and mixing require

physics beyond the Standard Model (SM), making them ‘ghostly beacons of new

physics’. Notwithstanding a sizable number of extensions of the SM, the leptonic

flavor mixing is an aspect of a more general problem, the so called “flavor puzzle”;

lepton mixing angles have apparently no relationship to the quark mixing angles,

despite the fact that in Grand Unified Theories (GUT), where fermion quantum

numbers find a natural justification, there is no fundamental distinction between

leptons and quarks. Besides, there are open questions; the nature of the neutrinos

– Dirac versus Majorana, the mass ordering, the absolute mass scale and the CP

violating phases. Although, the measured nonvanishing value of reactor mixing angle

θ13 opens up the prospect of measuring CP violation in leptonic sector which may have

implications for the observed dominance of matter over antimatter in the universe, the

theoretical significance of the reactor angle splits the model builders in three different

communities. i) Models incorporating sequential dominance (SD), which predicts a

normal neutrino mass hierarchy (m1 < m2 < m3) and a large reactor angle θ13. ii)

The Anarchy approach, according to which the reactor angle is on the same footing

as the atmospheric and solar angles, and hence was generally expected to be large.

iii) Models with discrete family symmetries [1–3] which predict a vanishing value of

θ13 in general. Equally attractive the first two models have a disadvantage that they

are intrinsically untestable. By contrast, models with discrete family symmetries are

highly testable as far as the mixing angles are concerned. In our work, we have

focused on some neutrino mass models that belongs to the third category, i.e., the



models motivated by discrete family symmetries.

After the breaking of a particular discrete symmetry, it is the mismatch between

the residual symmetries of charged lepton and neutrino sector that generates mixing

angles closed to their observed values. Beside predicting a zero value of the reactor

angle, since the popular flavor symmetry groups such as A4, S3,4, D4 etc. are unable to

speculate the mass ordering of the light neutrinos, testable values of the CP phases and

the absolute mass scale, they should be modified to perpetuate a phenomenologically

viable theory. In our work, we have done that abatement in two different ways. First,

we assume that the remnant (residual) symmetry in the low energy Lagrangian is

broken with a small breaking parameter thus generates a nonzero θ13, and along with

that mildly broken remnant symmetry, there are also some vanishing elements in

the neutrino mass matrix, commonly known as the texture zeros [4], predicting the

mass ordering, constraint ranges of CP phases and the mass of the lightest neutrino.

Without going into the detailed theoretical justification of the breaking which might

be rationalized with several top-down approaches, such as the refinement of the model

with an extended matter content which serves as a breaking of the remnant symmetry

through a loop contribution [5] or adding soft breaking terms to the initially symmetric

theory [6] at high energy etc., we zero in on the low energy predictions of the neutrino

parameters such as CP phases, sum of the light neutrino masses Σimi and neutrinoless

double (ββ0ν) decay parameter |mee|.

The second approach is to some extent different than the first one. Although the

basic idea is the same, i.e., the residual symmetry in the Lagrangian determines the

flavor mixing, it can be proved for the Majorana neutrinos, that whatever may be the

high energy flavor symmetry group, the existing residual symmetry in the neutrino

mass term is Z2×Z2 [7–9]. Again due to the nonexistence of nonvanishing θ13 in such a

model, we have supplemented the latter with a nonstandard CP transformation; CP-

transformations followed by a flavor symmetry operation [10]. Unlike the canonical



(standard) CP transformation, which is a CP conserving theory, this nonstandard

CP transformation predicts maximally violating value π/2 or 3π/2 for the Dirac CP

phase δ and a CP conserving value for the Majorana phases α or β by restricting

them to either 0 or π. High energy symmetry group for models of this kind may be

constructed through the induced automorphism approach [11,12].

In the simplest extension of the SM, popularly known as the Type-I seesaw,

the light neutrino Majorana masses are generated through the incorporation of

three extra right chiral (RH) singlet neutrino fields νRi and a corresponding lepton

number violating Majorana mass term with a new mass scale close to the GUT

(1012 GeV). The CP violating and the out of equilibrium decays of the heavy

Majorana neutrinos which also violate lepton number intrinsically by construction,

creates a lepton asymmetry YL. Further conversion of this YL through the sphaleron

process leads to the observed baryon asymmetry YB = (8.7 ± 0.1) × 10−11. The

entire process is known as the baryogenesis through leptogenesis. The models with

nonstandard CP transformation are also intriguing from the leptogenesis standpoint.

Interesting upshots such as nonoccurrence of unflavored leptogenesis and nonvanishing

baryon asymmetry preconditioned by a nonzero θ13 can be drawn by a suitable

implementation of the symmetries under consideration, as explained briefly in an

ephemeral description of my research works in the next few paragraphs.

Two of my research works [13, 14] are based on texture zeros along with the

discrete residual symmetries; the Scaling Ansatz (SA) [15,16] and a cyclic permutation

symmetry. The former is motivated by models with the high energy flavor symmetry

groups such as a nonabelian D4×Z2 and an abelian U(1)Le−Lµ−Lτ while the latter is

implemented by a discrete A4 × Z3 × Z2 family symmetry. Some attractive variants

of seesaw mechanism, namely, the inverse and the linear seesaw are also considered

in both the cases here owing to the fact that the heavy neutrinos originated from

these mechanisms are of masses of the order of TeV, thus accessible to the LHC. Due



to the significant reduction of the number of parameters in the light neutrino mass

matrices, absorbing conclusions regarding the low energy neutrino parameters are

drawn for each of the cases. For example, the first case, i.e, the model with Scaling

Ansatz, predicts almost a vanishing value of the Dirac CP phase δ thus confronting

with testability since T2K’s new data (2016) [17] continue to prefer a value of the

Dirac CP phase near the maximally violating value 3π/2. Along with an inverted

ordering, both the models predict a constraint ranges of the light neutrino masses as

well the ββ0ν parameter |mee|.

So far in the existing literature, CP-violating Majorana phases are calculated

in a model dependent way. In one of my work [18] a general recipe for the evaluation

of the Majorana phases is presented assuming the hierarchical mass spectrum of

the light neutrinos. To evaluate the Majorana phases in Mohapatra-Rodejohann’s

phase convention [16], we use the rephasing invariant quantities [19] which remain

unchanged even after the rotation of the light neutrino mass matrix in the phase

space. In this prescription, the Majorana phases are calculable in a model independent

way even for the vanishing values of the lightest neutrino masses m1 and m3, for

normal and inverted hierarchy respectively. Furthermore, constraining the general

methodology with the upper limits on Σimi and |mee| dictated by PLANCK [20] and

GERDA-I [21] respectively, ranges of the Majorana phases are presented in a general

context. Emphatic statement such as given any hierarchical neutrino mass model,

our prescription is able to compute the corresponding Majorana phases is also made.

In the residual Z2 × Z2 approach, as mentioned earlier, we have generalized

the well known Simple Real Scaling ansatz (SRS) [15, 16] on the neutrino Majorana

mass matrix to its complex extension and named the latter as Complex Extended

Scaling (CES). In this case, the Z2×Z2 symmetry is complemented by a nonstandard

CP-transformation on the neutrino fields as νLα → iGαβγ
0νCLβ with Gαβ being

the generators of one of the Z2 symmetry and νCLβ represents the usual charged



conjugated left chiral neutrino field. As a consequence, the usual horizontal symmetry

GTMSRS
ν G = MSRS

ν is replaced with its complex version; GTMCES
ν G = (MCES

ν )∗.

The entire work is divided into two parts, first one [22] of which focuses on the

predictions of low energy neutrino parameters; specifically the robust prediction

of cos δ = 0 and sinα = sin β = 0 or π plus the ββ0ν decay parameter |mee|

and the measurement of CP-asymmetry parameter Aµe in the baseline oscillation

experiments. In the other [23], we concentrate on the hierarchical flavored leptogenesis

within the framework of Type-I seesaw mechanism. We assume strongly hierarchical

mass eigenvalues for the RH Majorana neutrino mass matrix MR. The leptonic

CP asymmetry parameter εα1 with lepton flavor α, originating from the decays of

the lightest of the heavy neutrinos N1 (of mass M1) at a temperature T ∼ M1, is

what matters here with the lepton asymmetry originating from the decays of N2,3,

being washed out. Interesting feature is the structure of the Dirac mass matrix mD,

imaginary part of which generates the nonzero θ13, maximal Dirac CP violation as

well as a nonvanishing εα1 , thus serves as a common source of the said quantities.

The light leptonic and heavy neutrino number densities (normalized to the entropy

density) are evolved via Boltzmann equations down to electroweak temperatures to

yield a baryon asymmetry through sphaleronic transitions. The effect of flavored vs.

unflavored leptogenesis in the three mass regimes (1) M1 < 109 GeV, (2) 109 GeV

< M1 < 1012 GeV and (3) M1 > 1012 GeV are numerically worked out for both a

normal and an inverted mass ordering of the light neutrinos. For best-fit values of

the input neutrino mass and mixing parameters, obtained from neutrino oscillation

experiments, successful baryogenesis is achieved for the mass regime (1) and a normal

mass ordering of the light neutrinos with a nonzero θ13 playing a crucial role.

Although there have been significant developments in understanding the

neutrino properties from an experimental as well as a theoretical perspective, there

still exist some open questions to be answered as previously mentioned. With the



construction of some highly predictive models we have tried to address on the those

yet indecisive issues such as the CP violation in the neutrino sector, measurement

of ββ0ν decay parameter |mee|, masses of the lightest neutrinos etc. Regarding

the predictions of our works, presently some efficacious experiments with greater

sensitivity are going on and planned to draw credible conclusions on these issues in

the near future.

The existence of leptonic CP violation would show up as the difference of

oscillation probabilities between neutrino and anti-neutrinos. For the experiments

like T2K, NOνA and DUNE, the relevant quantity is Aµe in which δ will appear

explicitly. Unlike the Dirac CP phase, the Majorana phases appear in neutrino →

antineutrino oscillation experiments which are purely academic at this moment and

practically difficult to design since the oscillation probability is highly suppressed by

the factor m2
i /E

2, where mi being the mass of the light neutrino with E as the beam

energy. Taking E ∼ MeV and mi to be less than 1 eV, an estimation of m2
i /E

2 might

be done to be O(10−12). Although to improvemi/E, a novel suggestion [24]is to lower

the value of E, the size of the base line length as well as the detectors in that case

are beyond the reach of the present experimental facilities. Nevertheless, search for

the ββ0ν decay might be a probe to yield one of the Majorana phases.

There are several experiments such as EXO [25], GERDA-I, KamLAND-Zen [26]

are ongoing to measure |mee|. Among them GERDA-I puts a strong upper limits of

0.22 eV on |mee|. This limit is likely to be lowered by GERDA-II [27] to 0.098 eV.

Thus predictions from our models on |mee| will be tested in these experiments.

In summary, two very important physical issues of present day particle physics

and cosmology – small but nonzero neutrino mass and baryon asymmetry of the

universe are addressed from the symmetry point of view towards the quest of an

ultimate elusive model.
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Chapter 1

Introduction

“A theory is a supposition which we hope to be true, a hypothesis is a supposition

which we expect to be useful; fictions belong to the realm of art; if made to intrude

elsewhere, they become either make-believes or mistakes".

— George Johnstone Stoney, 1826 to 1911

Starting from the era of Greek philosopher Democritus (430 BC), when

speculation about the fundamental invisible particles of the universe started, to the

present time, it has been an exciting journey for the particle physicists. The ups

and downs of the subject through this time line made people inquisitive towards

the fundamental structure of nature. Gradual uncoiling of mystery of the universe

still inspire us to hunt for the extreme elementary particles. It was the discovery of

radio activity (1896) followed by the discovery of electron that had probably given

a major breakthrough to the subatomic physics. Then came the 20th century, the

golden era of particle physics, which started with Planck’s blackbody radiation law

and ended up with the discovery of neutrino oscillation at Super-Kamiokande [32]. In
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between, the actual revolution in particle physics happened, when envisioned by some

fascinating theoretical frameworks, so many fundamental particles such as neutrinos,

W , Z bosons, quarks etc. were discovered which then enforced physicists to knock the

door of high energy colliders to search for the rest. Now we are celebrating two major

recent time discoveries: 1. Neutrino Oscillation, which confirms the tiny masses of

the light neutrinos and 2. The Higgs boson, a prediction of the Standard Model (SM)

of particle physics.

The scope of this thesis is to discuss some of the aspects related to the former,

i.e. the neutrinos. Speculated by Wolfgang Pauli in 1931 from the analysis of the

continuous energy spectrum of β decay, the neutrinos are now one of the major subject

area of research in modern particle physics. The mysterious nature of changing their

flavor identities (neutrino oscillation) made people think about their tiny masses. The

Nobel prize in physics, 2015, was given to Takaaki Kajita and Arthur B. McDonald for

implementing those thoughts in experiments and showing those ideas a light of reality.

In the following, we discuss a brief history of the neutrinos and some theoretical

aspects related to them.

1.1 Neutrinos: The chameleons of space

1.1.1 A brief history of neutrino oscillation

Despite the elegant idea of Wolfgang Pauli of the spin-half and charge neutral particle

to explain the ‘missing energy’ in β−decay of radioactive ions, actual discovery of the

neutrinos happened in 1956 in Reines and Cowan’s experiment [33]. They detected an

electron anti-neutrino (ν̄e) from a radioactive source. The idea of neutrino oscillation

was first pioneered by B. Pontecorvo in 1957-58 [34, 35]. In his paper Pontecorvo
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proposed an oscillation between a right handed neutrino (νR) and its anti-particle

analogous to the K0 − K̄0 oscillation. Then a theory of virtual transformation of

νµ to νe [36] was proposed by Maki, Nakagawa and Sakata (MNS) in the same year

1962, when the muon neutrino was discovered at Brookhaven National Laboratory, in

an experiment led by Lederman, Schwartz and Steinberger [37]. In 1967 Pontecorvo

formulated a theory of νµ → νe oscillation. He also pointed out that the flux of the

solar νe could be only the half of its expected flux in the solar neutrino experiment

by Davis and collaborators. Davis’s experiment was designed to detect the solar

neutrinos produced by thermo-nuclear fusion at the core of the sun to study the

stellar structure and evolution. However, the observed electron neutrino flux was

only the one third of the expected flux from Standard Solar Model (SSM) Prediction.

This was an anomaly commonly known at that time as the “Solar Neutrino Problem

(SNP)". Apart from various alternative solutions [38–40] neutrino oscillation was one

of the strong plausible one, since Pontecorvo already theoretically anticipated this

deficit. Before discussing the absolute experimental confirmations of this deficit, let’s

recapitulate another strong evidence for neutrino oscillation. From the interactions of

atomic nuclei and cosmic ray at the Earth’s atmosphere, an unstable pion is created.

Then through the following reactions

π±(K±)→ µ± + νµ(ν̄µ),

µ± → e± + νe(ν̄e) + ν̄µ(νµ) (1.1)

the atmospheric neutrinos are produced. It is obvious from the above reactions

that, the approximate number of muon neutrinos should be twice the number of

electron neutrinos. However, water Cerenkov detectors like Kamiokande [41], and

iron calorimeter detector Soudan2 [42] reported results contrary to this expectation.

Again, it was thought that the neutrinos might loose their flavor identities during
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their flight to the Earth and thus causing that flavor crisis. This convincingly

strengthen the possibility of neutrino flavor oscillation further. Let’s now come back

to the SNP. In 1981-82, the neutrino-electron scattering experiment Kamiokande [43]

confirmed the deficit observed in the Davis experiment along with the proof that

the detected neutrinos actually came from the Sun. After few years, Gallium based

experiments such as GALLEX [44] and SAGE [45] ratified the fact that the measured

neutrino signal was indeed smaller than the SSM prediction. Then the Super-

Kamiokande (SK), a modern version of the Kamiokande experiment [46] further

established the solar neutrino deficit with significantly enhanced statistics. Now in

the case of atmospheric neutrinos, oscillation of the neutrinos was established in a

firm footing when the SK-detector showed a strong zenith angle dependence in the

oscillation probabilities of upward going neutrinos. On the other hand, despite the

confirmation of solar neutrino deficit from several experiments, there were no full-

proof experimental evidence of neutrino oscillation as far as the results on the solar

neutrinos were concerned. In 1975, the discovery of τ -lepton made people curious

about the existence of the third neutrino, the τ -neutrino. Moreover existence of

three light neutrinos was confirmed further by the LEP experiment [47] from the

invisible decay width of the Z boson. However, the third species was not observed

until 2000 by the DONUT experiment [48] in which the τ -neutrino was detected

from the decay of charmed particle. Finally in 2002, Sudbery Neutrino Observatory

(SNO) [49] convincingly confirmed the phenomenon of neutrino oscillation in solar

neutrinos. Due to the sensitivity to both Charged Current (CC) and Neutral Current

(NC) events, SNO measured contributions from all the three neutrinos. Measuring

CC/NC < 1, SNO confirmed the νµ and ντ components in solar neutrino flux.

Again the measurement of NC also confirmed that the total solar neutrino flux

was in very good agreement with the SSM prediction. Thus neutrino oscillation

served undoubtedly as the clear solution to the SNP. Presently some of the low
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energy neutrino parameters have been measured with significant confidence level

while the rest are yet to be determined. Before going to a brief discussion about

the determination of these parameters in different neutrino experiments, we should

have an expeditious look at the mathematical formulation of neutrino oscillation both

in vacuum as well as in matter and find out what are the oscillation parameters we

are taking about.

In the next subsection, we first review the basic theoretical formulation of

the oscillation probability within the three flavor scenario in vacuum and in a two

flavor scenario in matter. We then discuss some recent experiments relevant to the

measurement of these oscillation parameters and present the latest global-fit results

in a tabular form.

1.1.2 Formulation of neutrino oscillation theory

The derivation of the oscillation probability is based on a simple quantum mechanical

calculation that deals with the time evolution of a quantum mechanical state following

the Schrodinger’s Equation (SE). A neutrino with flavor eigenstate |να〉 can be written

as a coherent superposition of mass eigenstates |νi〉:

|να〉 =
n∑
i

U∗αi |νi〉 , (1.2)

where U is a unitary matrix, as we shall see, sometime it is also called as the UPMNS

after the name of the authors, Pontecorvo, Maki, Nakagawa and Sakata. The mass

eigenstates are evolved according to SE as

i
d

dt
|νi〉 = H |νi〉 , (1.3)
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where H = pi +
m2
i

2E
for extremely relativistic neutrinos (pi � mi). Now following SE,

the time dependence of |να〉 comes out as

|να(t)〉 =
∑
i

U∗αie
−iHt |νi〉 ≡

∑
i

U∗αie
−i(pi+

m2
i

2E
)t |νi〉 . (1.4)

Further, assuming equal momentum for each mass state at the time of production,

(1.4) can be simplified to

|να(t)〉 = e−ipt
∑
i

U∗αie
−im

2
i

2E
t |νi〉 . (1.5)

The amplitude of a flavor state |νβ〉 to be found in |να〉 after a time t is given by

〈νβ|να(t)〉 =
∑
i

UβiU
∗
αie
−im

2
i

2E
L, (1.6)

where we assume L ∼ t for extreme relativistic neutrinos. Therefore, in a neutrino

beam of |να〉 the probability of finding |νβ〉 state is

Pαβ ≡ P (να → νβ) =

∣∣∣∣∣∑
i

UβiU
∗
αie
−im

2
i

2E
L

∣∣∣∣∣
2

=
∑
ij

U∗αiUβiUαjU
∗
βje
−i

∆m2
ij

2E
L (1.7)

where ∆m2
ij = m2

i −m2
j is the mass squared difference between the mass states. Eq.

(1.7) can further be simplified to

Pαβ = δαβ − 2
∑
i 6=j

Re(U∗αiUβiUαjU
∗
βj) sin2 ∆ij + 2

∑
i 6=j

Im(U∗αiUβiUαjU
∗
βj) sin2 ∆ij (1.8)

with ∆ij =
∆m2

ijL

4E
.

Despite the hints of a light sterile neutrino in LSND [50] and Mini-Boone

[51], let’s stick to the three-flavor case (e, µ and τ) while deriving the oscillation

probabilities. Now the U in (1.8) is a 3× 3 mixing matrix that connects the flavored
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neutrino fields νe, νµ and ντ to the massive neutrino fields ν1, ν2 and ν3. In a simplistic

scenario, the mixing matrix U can be parametrized as a product of three orthogonal

matrices:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13

0 1 0

−s13 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 (1.9)

where sij ⇒ sin θij and cij ⇒ cos θij with θij as the mixing angles. Now, if U follows

the parametrization of (1.9), one can conclude that the rate of the process in (1.8)

and the rate of its complex conjugate, i.e. P (ν̄α → ν̄β) are same, i.e. there is no CP

violation in the leptonic sector. Therefore to include CP violation (presently T2K

result is in favor of a CP violating theory [17]) in the theory of neutrino oscillation, we

should consider atleast one unremovable phase in the mixing matrix. In the diagonal

basis of charged leptons, the U matrix is parametrized (PDG convention [52]) as

UPMNS ≡


c12c13 ei

α
2 s12c13 s13e

−i(δ−β
2

)

−s12c23 − c12s23s13e
iδ ei

α
2 (c12c23 − s12s13s23e

iδ) c13s23e
iβ

2

s12s23 − c12s13c23e
iδ ei

α
2 (−c12s23 − s12s13c23e

iδ) c13c23e
iβ

2

 ,(1.10)

where the δ and α, β are commonly known as the Dirac (δ) and the Majorana phases

(α, β). Appearance of these phases in the UPMNS depends upon the nature of the

neutrinos. In case of Dirac type neutrinos, α and β do not appear in (1.10).

For the time being let’s leave an elaborate discussion about these phases for

chapter 2 and have an emphatic look on the oscillation probabilities for this three-

flavor case. In the experiments with small L/E, a vanishing value of sin2(∆m2
12
L
E

) can

be assumed. Then with a reasonable approximation ∆m2
23 ≈ ∆m2

13, the expressions
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for the oscillation probabilities are derived as

P (νµ → ντ ) = cos2 θ13 sin2 θ23 sin2
(∆m2

23L

4E

)
, (1.11)

P (νe → νµ) = sin2 2θ13 sin2 θ23 sin2
(∆m2

23L

4E

)
, (1.12)

P (νe → ντ ) = sin2 2θ13 cos2 θ23 sin2
(∆m2

23L

4E

)
. (1.13)

For the experiments with large L/E, one can have

P (νe → νµ+τ ) = cos2 θ13 sin2 2θ12 sin2
(∆m2

12L

4E

)
+

1

2
sin2 2θ13. (1.14)

An intriguing point is to be noticed: For θ13 → 0, Eq. (1.11)-Eq. (1.13) reduce to

P (νµ → ντ ) = sin2 θ23 sin2
(∆m2

23L

4E

)
, (1.15)

P (νe → νµ) = 0, (1.16)

P (νe → ντ ) = 0 (1.17)

for small L/E and

P (νe → νµ+τ ) = sin2 2θ12 sin2
(∆m2

12L

4E

)
(1.18)

for large L/E. These are the same equations one derives for a two flavor case [53].

Usually (1.15) and (1.18) are attributed to the atmospheric and solar neutrino

oscillation respectively. In deriving the above expressions, the effect of CP violation

has been neglected. However, in chapter 4, more compact expressions for the

oscillation probabilities with nonvanishing CP violation effect are discussed. Now

let’s consider a more realistic scenario–propagation of the neutrinos through matter.

For simplicity here we address only the two flavor case. The unitary mixing matrix

8
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U having a form

U =

 cos θ sin θ

− sin θ cos θ

 (1.19)

connects the flavor and the massive neutrino fields through the equation

να
νβ

 = U

ν1

ν2

 . (1.20)

Thus in terms of quantum fields (1.3) can be written as

i
d

dt

να
νβ

 = UHU †

να
νβ

 . (1.21)

This transformed Hamiltonian Hf = UHU † has an expression

Hf = H0 +
∆m2

4E

− cos 2θ sin 2θ

sin 2θ cos 2θ

 (1.22)

with H0 =
m2

1+m2
2

4E
and ∆m2 = m2

2 −m2
1. Let’s now add an interaction potential term

V = diag (Vα, Vβ) to the Hamiltonian Hf with the subtle assumption that the flavors

α and β interact differently with matter. Eq.(1.21) can now be written as

i
d

dt

να
νβ

 = [H0 +

−∆m2

4E
cos 2θ + Vα

∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ + Vβ

]

να
νβ

 . (1.23)

We can always add a constant to the effective Hamiltonian since that constant will

ultimately appear as a overall phase with the neutrino fields and will vanish when

one takes modulus square for calculating the probability. Thus through the addition

9
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of a constant term −Vβ, (1.23) can be written as

i
d

dt

να
νβ

 = [H0 +

−∆m2

4E
cos 2θ + (Vα − Vβ) ∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

]

να
νβ

 . (1.24)

Now, transforming this flavor Hamiltonian into the vacuum mass basis we get

i
d

dt

ν1

ν2

 = [
1

2E

m2
1 + ∆V cos2 θ ∆V cos θ sin θ

∆V cos θ sin θ m2
2 + ∆V sin2 θ

]

ν1

ν2

 (1.25)

where ∆V = Vα − Vβ. From (1.25) we can see that the effective Hamiltonian is no

longer diagonal. Thus the mass states in the vacuum are not the same mass states in

matter [54,55]. To obtain the mass eigenstates in matter, we need to diagonalize the

Hamiltonian given in (1.25). After a short algebra one finds

∆m2
m = ∆m2

√
(∆V/∆m2 − cos 2θ)2 + sin2 2θ, (1.26)

sin 2θm =
sin 2θ√

(∆V/∆m2 − cos 2θ)2 + sin2 2θ
(1.27)

where ∆m2
m is the mass splitting in the matter and θm is the mixing angles between

the flavor states in vacuum and the mass states in matter. Therefore, the expression

for the probability of νe → νµ oscillation can be written as

P (νe → νµ) = sin2 2θm sin2
(∆m2

mL

4E

)
. (1.28)

Let’s now have a quick look at some of the interesting points related this discussion:

• When ∆V = 0, the mass splitting and the mixing angle in matter become

∆m2
m = ∆m2 and sin2 2θm = sin2 2θ. That is, in absence of the interaction

potential the matter parameters reduce to the vacuum parameters.
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• If θ = 0, then θm vanishes (cf. Eq.(1.27)). Therefore, oscillation to occur in

matter, there should be a possibility for vacuum mixing.

• In the case of a very dense matter, i.e., ∆V →∞, sin 2θm → 0. Thus in a very

dense matter there will be no oscillation.

• If ∆V = ∆m2 cos 2θ, then the matter mixing angle is π/4–irrespective of vacuum

mixing angle. Thus even if the vacuum mixing is tiny, the probability of

oscillation in matter might be maximum for a certain value of matter potential.

This is known as the MSW resonance. For a positive value of ∆V , and with

the sign convention cos 2θ > 1, one finds ∆m2 to be positive. Thus from matter

effect we can determine the sign of ∆m2.

This is the two flavor case of neutrino oscillation in matter. Similarly, a three flavor

calculation can also be done with certain assumptions [56, 57] to simplify the long

and complicated algebra. In realistic scenarios, the matter effect plays a crucial role

for computation of the oscillation probabilities. As for example, for the calculation of

solar neutrino flux, one has to consider the effect of matter in the Sun. Again, in the

measurement of CP violation in the long baseline experiments such as T2K, NOνA,

DUNE etc., matter of the Earth plays a significant role.

As we can see, basically there are eight relevant parameters (for Majorana

type neutrinos) to deal with; three mixing angles
{
θ12, θ23, θ13

}
, two mass squared

differences
{

∆m2
12, |∆m2

23|
}

and three CP violating phases
{
δ, α, β

}
. These are

commonly known as the low energy neutrino parameters. Apart from the CP violating

phases, all the parameters have been measured at a strong confidence level in Baseline,

reactor and accelerator neutrino experiments. There have been a lot of efficient

experiments devoted to the measurement of the neutrino parameters. Let’s have a

transitory look at some of the recent experiments, especially those that are relevant
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to the latest global fit data.

Solar neutrino experiments:

As mentioned earlier, solar neutrino experiment was first proposed by Davis and

collaborators [58]. Thereafter several experiments have been developed. The Cl37 [59],

SK [46], and SNO [49] experiments measured the neutrinos having high energy (∼ 5

MeV), followed by Borexino [60] that measured intermediate energy solar neutrinos.

Then there are SAGE [45], GALLEX [44] and GNO [61] experiments which dealt

with low energy neutrinos. After the analysis of solar data it has been found that it

can be explained with the parameters

∆m2
12 = (7.6± 0.2)× 10−5eV2, sin2 θ12 = 0.8± 0.1. (1.29)

which is again verified by the long baseline KamLAND experiment [62].

Atmospheric neutrino experiments:

The SK was the first atmospheric neutrino experiment that provided the compelling

evidence of neutrino oscillation in 1998. It is mentioned earlier that the atmospheric

neutrinos are produced in the decays of π± and K±. Now, since those particles are

also produced in the accelerator when protons are thrown to a fixed target, there

is a scope of verification of the atmospheric neutrino experimental results in the

accelerator experiments. Different accelerator experiments such as K2K [63], T2K [17]

and MINOS [64] confirmed those results at a high confidence level. A combined

analysis of the above experiments leads to the best fit values for the parameters

∆m2
23 and θ23 as:

|∆m23|2 = (2.41± 0.1)× 10−3eV2, sin2 θ23 = 0.95± 0.035. (1.30)

Reactor neutrino experiments:

The mixing angle θ13 is measured from the ν̄e disappearance in the reactor
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experiments. An upper bound of sin2 θ13 < 0.16 has been set by CHOOZ at 90%

C.L for a neutrino beam of energy E ∼ 3 MeV. A nonzero value of the mixing

angle has also been confirmed by the experiments such as T2K, MINOS, Double

Chooz [65]. Recently, in the year 2012, two reactor experiments Daya Bay [66] and

RENO [67] have confirmed the result with enhanced statistics. Particularly Daya Bay

has confirmed a nonzero value of θ13 at the 5.2σ level. The best fit value of the Daya

Bay data yields

sin2 θ13 = 0.090± 0.009. (1.31)

Beside the parameters mentioned above, there are experiments such as T2K,

NOνA, DUNE that measure the Dirac CP phase δ. However, there is no scope

for the measurement of the Majorana phases, since those do not appear in the

usual neutrino→neutrino (ν → ν) oscillation experiments. In chapter 2 a brief

discussion about neutrino→anti-neutrino (ν → ν̄) oscillation has been presented

with an emphasis on the Majorana phases that appear explicitly in the expression

of ν → ν̄ oscillation probability. Although different experiments are devoted to the

measurement of different parameters, a global fit analysis is needed to constrain the

parameter space of a particular neutrino mass model.

Recent global-fit data and future prospects

In Table 1.1 the recent global-fit data [30] from various oscillation experiment are

tabulated. Here we present only the 3σ data and the best fit points (Bfp). A subtle

point in the global-fit analysis should be focused. As we found before, the sign of

∆m2
12 is determined from the MSW effect. However, till now we do not have a firm

statement about the sign of ∆m2
13. Thus the mass ordering of the light neutrinos

has not been fixed yet. Again, since |∆m13|2 � ∆m2
12, the two masses m1 and m2

are taken to be nearly degenerate. In the global-fit analysis, |∆m13|2 is calculated

13
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as |∆m13|2 ' |∆m23|2 ≡ |∆m|2 = m2
3 − (m2

1+m2
2)

2
. Thus for a normal (inverted) mass

ordering, ∆m2 takes a positive (negative) value.

Table 1.1: Recent global-fit data [30] (Bfp: Best fit point, NO: Normal Ordering, IO:

Inverted Ordering)

Parameters θ12 θ23 θ13 ∆m2
21/10−5 |∆m2

31|/10−3

(in deg.) (in deg.) (in deg.) (in eV2) (in eV2)

3σ 31.29 −

35.91

38.3−53.3 7.87−9.11 7.02− 8.09 2.32− 2.59

Bfp(NO) 33.48 42.3 8.50 7.50 2.46

Bfp(IO) 33.48 49.5 8.51 7.50 2.45

Some concluding remarks: As one finds, basically there are five parameters;
{
θ12,

θ23, θ13, |∆m13|2,∆m12

}
that have been measured by several neutrino experiments.

However, still there is no statistically significant result on δ. Nevertheless, it is worth

mentioning that recently T2K has announced CP violation in the leptonic sector at

90% C.L.. In addition, there are some open problems; the nature of the neutrinos-

Dirac or Majorana, the octant of θ23, values of the Majorana phases-if neutrinos are

Majorana, needed to be addressed to pin down our knowledge about leptonic sector

of the SM and beyond.

1.2 Neutrino masses and a journey beyond the

Standard Model

Neutrinos are massless in the standard SU(2)L × U(1)Y model (SM) which has been

celebrated as the most successful model of particle physics. Before the discussion of
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1.2. Neutrino masses and a journey beyond the Standard Model

neutrino masses in the SM and beyond, we would like to have a brief view on the

fermionic mass terms in field theory. With ψ as a fermionic field, the Lagrangian for

the mass term is written as

−Lm = ψmψ = m(ψL + ψR)(ψL + ψR) = mψLψR +mψRψL, (1.32)

where ψL = PLψ and ψR = PRψ with PR,L = 1±γ5

2
as the right and left chirality

projectors. From Eq. (1.32) it is clear that the mass of the fermion couples

simultaneously to the both, left chiral as well as the right chiral components. Thus

a massive fermionic field must possess both the components. Now if the right chiral

component is completely independent from the left chiral one, then the corresponding

mass term is a Dirac type mass term. Before, going to the other possibility, a

subtle point should be addressed. The terms "left chiral" or "right chiral" imply

the handedness of a relativistic particle. To be more precise, handedness or helicity

of a particle is defined with the operator

Ĥ± =
1

2
(1± τ.p

|p| ) (1.33)

which is not Lorentz invariant but does not change with time. On the other hand,

chirality is a Lorentz invariant quantity and not being a constant of motion. But in the

limit m→ 0, both of them coincide. Thus for a relativistic particle chirality and the

handedness or helicity is identical. Now let’s come back again to the construction of

the fermionic mass terms. This can be proved that upon charge conjugation chirality

of a ferminon flips. For an example, with a charge conjugation operation ‘C’, the

chiral fields transform as

C : ψL → (ψL)c = (ψc)R, ψR → (ψR)c = (ψc)L (1.34)
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with C = iγ0γ2. Thus unlike the Dirac composition of fermion field, i.e., ψ = ψL+ψR,

now one can write ψ as

ψ = ψL + eiα1(ψL)C , ψ = ψR + eiα2(ψR)C , (1.35)

where α1,2 are some arbitrary phases. From the decomposition of ψ in (1.35), one can

have

ψC = e−iα1,2ψ (1.36)

which means the particles described by the field ψ of (1.35) are basically their own

anti-particles. These particles are commonly known as the Majorana fermions. Thus

the Majorana mass term for a massive fermion can be written as

−LM =
1

2
ψCLmψL + h.c.. (1.37)

Note that unlike the Dirac mass term, this does not conserves any U(1) quantum

number. For n species of fermions (1.37) can easily be generalized to

−LM =
1

2
[ϕTLCMϕL + h.c.], (1.38)

where ϕ = (ψ1, ψ2...ψn)T is a state vector in the flavor space and M is a complex,

symmetric n × n mass matrix. Let’s now come back to the discussion regarding the

accommodation of neutrino masses in the SM. Unlike the charged leptons and the

quarks there are no SU(2)L-singlet right handed components for the neutrinos and

thus they are massless in the SM. However, as discussed above, one can construct a

Majorana mass term using left handed neutrino components as

−LνM =
1

2
νCLMννL. (1.39)
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Now since a neutrino νiL is a part of the lepton doublet /L = (νiL `iL)T , the operator

νCL νL is constructed by means of an isotriplet /L
T
Ciτ2τa/L. Therefore in order to

generate the Majorana mass term in a gauge invariant way, one should introduce an

isotriplet Higgs field ∆a which was not there in the SM. Obviously a gauge invariant

and d = 5 term (/L
T
Ciτ2τa/L)(φTCiτ2τaφ) might also be constructed through the SM

Higgs doublet φ = (φ+ φ0)T . However, this term is not allowed, since it violates

the lepton number L which is conserved at perturbative level as well as the number

B − L, a quantity that is conserved at nonperturbative level [68] in the SM. Thus

convincingly, we should extend the SM to accommodate a nonzero neutrino mass.

There have been quite a large number of extensions of the SM by enlarging the field

contents. With the introduction of new RH singlets (NiR), the simplest extension is

done by writing a Dirac mass term

−LD = fij /LiLiτ2φNjR + h.c. = /LiL(mD)ijNjR + h.c. (1.40)

for the neutrinos. However, given the same vacuum expectation value 〈φ0〉, unlike the

charged leptons, an unnaturally smallness of the coupling fij is required to generate a

neutrino mass of O(eV). For this typical characteristic, despite being a theoretically

correct model, this simplest extension of the SM fails to draw much attention.

Although there are several neutrino mass models that deal with possible extensions

of the SM, here we explore some simplistic scenarios which are also intriguing from

various aspects, apart from generating the tiny neutrino masses.

Type-I seesaw: This is one of the most fundamental mechanisms to generate small

Majorana neutrino masses. With the addition of extra RH singlets NRi to the SM,

the pertinent Lagrangian can be written as

−LT1 =
1

2
νLmLν

C
L +

1

2
NC
RMRNR + νLmDNR + h.c., (1.41)
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where we assume all the possible mass terms constructed by νL and NR are present

in the Lagrangian. Here we have omitted the generation indices that imply three

generations of light neutrinos and for simplicity, three generations for the heavy

neutrinos as well. Now using the properties of the charge conjugation matrix C,

it can easily be shown that the concerned Lagrangian LT1 is of form

−LT1 =
1

2
(νCL )TCmLν

C
L +

1

2
(NR)TCmT

Dν
C
L +

1

2
(νCL )TCmDNR +

1

2
NT
RCMRNR + h.c..

(1.42)

In the basis (νcL NR), one can write the above Lagrangian in a more compact form

with a 6× 6 mass matrixM as

−LT1 =
1

2

(
νCL NR

)
C

mL mD

mT
D MR


νCL
NR

+ h.c. (1.43)

=
1

2
nTCMn+ h.c., (1.44)

where n = (νCL NR)T . Now with the approximation MR � mD � mL the matrixM

can be diagonalized by a unitary matrix U of form

U =

 1 %

−%† 1

 , (1.45)

where U †U = 1+O(%2). With the diagonalization condition UTMU = diag (M1, M2)

and a reasonable approximation of % being real, one evaluates

UTMU =

 mL − %mT
d −mD%

T mL%+mD − %MR

%TmL +mT
D −MR%

T mT
D%+ %TmD +MR

 . (1.46)

Now recalling the assumption MR � mD � mL, from ‘12’ and ‘21’ elements of the
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matrix in the RHS of (1.46), % can be calculated as

% ' mDM
−1
R . (1.47)

Thus from the ‘11’ and ‘22’ elements, M1 and M2 are calculated as

M1 ' mL −mDM
−1
R mT

D, M2 'MR. (1.48)

Note that the matrixM is now block diagonalized and M1,2 are 3× 3 mass matrices.

Eq. (1.44) can now be written as

1

2
nTCMn+ h.c.. =

1

2
χTCMdχ+ h.c. =

1

2
χT1CM1χ1 +

1

2
χT2CM2χ2 + h.c., (1.49)

where

χ =

χ1

χ2

 = U †n = U †

νCL
NR

 =

 νCL − %NR

%TνCL +NR

 '
νCL −mDM

−1
R NR

M−1
R mT

Dν
C
L +NR

 . (1.50)

Finally, taking into account the hermitian conjugate term, Eq. (1.49) can be rewritten

as

−LT1 =
1

2
ϕT1CM1ϕ1 +

1

2
ϕT2CM2ϕ2 (1.51)

with

ϕ1 ' (νL + νCL )−mDM
−1
R (NR +NC

R ),

ϕ2 ' (NR +NC
R ) +M−1

R mT
D(νL + νCL ). (1.52)

This is worth mentioning that the states in (1.52) are the Majorana states where
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the first one is predominantly made of νL while NR dominates in the other. Thus

starting from a general Lagrangian which contains all the mass terms constructed out

of νL and NR, we end up with two Majorana mass state ϕ1 and ϕ2 having masses

M1 ' mL −mDM
−1
R mT

D and M2 ' MR respectively. Now with the values mL = 0,

mD ∼ 102 GeV and MR ∼ 1014 GeV, the elements of the mass matrix M1 become

O(0.1) eV. Thus M1 can be referred as the light neutrino mass matrix Mν upon

diagonalization of which, O(eV) neutrinos are produced. Note that introduction

of a new heavy scale (∼ 1014) GeV is needed to have tiny neutrino masses in the

theory. Philosophically, this may be compared to a seesaw, lowering of one end of

which requires an upliftment of the other side. The whole procedure discussed here

is known as the Type-I seesaw mechanism. Beside generating light neutrino masses,

Type-I seesaw has an appealing implication on baryogenesis. From the decay of heavy

RH Majorana neutrinos a lepton asymmetry is produced which is further converted

into a baryon asymmetry by spheleronic transition. We have elaborately discussed

this phenomena of baryogenesis via leptogenesis in the next section. There are some

other variants of the seesaw model, a brief discussion regarding which is what follows.

Inverse seesaw: In addition to the field content of Type-I seesaw, if another species

of fermionic singlets (SL) are added for each generation to the Lagrangian as

−LIS = LT1 + ν̄LMDSS
C
L + SLMRSNR +

1

2
SLµS

C
L + h.c., (1.53)

then in the basis (νCL NR SCL ), the effective mass matrixM takes the form

M =


mL mD MDS

mT
D MR MT

RS

MT
DS MRS µ

 . (1.54)

Note that now this M in (1.54) is a 9 × 9 mass matrix if all the three flavors are
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taken into account for each mass terms. Assuming ‘zeros’ (obviously dictated by

some symmetry) in different positions inM, varieties of seesaw mechanism might be

explored [69]. Here we discuss only the Inverse seesaw mechanism in detail, due to

its relevance to this thesis. A vanishing value in the ‘11’, ‘13’, ‘22’ and ‘31’ elements

leads to the structure ofM given by

M =


0 mD 0

mT
D 0 MT

RS

0 MRS µ

 . (1.55)

Now in this case also we follow the seesaw like diagonalization procedure with the

hierarchical assumption MRS � mD � µ. The matrix M in (1.55) can be block

diagonalized as

M =


0 mD 0

mT
D 0 MT

RS

0 MRS µ

 =

 03×3 (MD)3×6

(MD)T6×3 (MRS)6×6

 ,

where

MD =

(
mD 0

)
, MRS =

 0 MT
RS

MRS µ

 . (1.56)

Now similar to Type-I seesaw, a diagonalizing matrix U can be taken as

U =

 13×3 %3×6

−%†6×3 16×6

 (1.57)

with U †U = 1 +O(%2). Thus the low energy effective light neutrino mass matrix Mν
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comes out as

Mν = −%MT
D = −MDM−1

RSM
T
D. (1.58)

Writing explicitly the forms of MD and MRS from (1.56), one finds

Mν = −
(
mD 0

)M−1
RSµ(MT

RS)−1 M−1
RS

(MT
RS)−1 0


mT

D

0


= −mDM

−1
RSµ(M−1

RS)TmT
D, (1.59)

where we have used the block inversion formula for a 2× 2 block matrix MB as

M−1
B =

W X

Y Z


−1

=

Y −1ZX−1 Y −1

X−1 W

 . (1.60)

Now taking mD ∼ 100 GeV, MRS ∼ 10 TeV and the lepton number breaking mass

µ ∼1 KeV one can generate neutrino mass O(eV). Interesting point in this variant

of seesaw is that only O(TeV) heavy neutrinos are now required to realize the light

neutrino masses. Thus unlike the conventional Type-I seesaw, inverse seesaw can be

tested through collider experiments.

Neutrino mixing implies the generational lepton numbers such as electron

number, muon number are not conserved. This gives rise to the flavor changing

processes that involve the charged leptons. Amplitude of a lepton flavor violating

(LFV) decay `i → `jγ is proportional to the mass square of the light neutrino

propagators (cf. Fig 1.1) and hence the decay width is very much suppressed.

However, in the models like seesaw and inverse seesaw that contain extra heavy neutral

fermions, this LFV decay amplitude gets an additional contribution O(%2) [70]. Thus

one expect an enhancement in the LFV decay width.
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µ e

γ

W

νi

Figure 1.1: One loop diagram for µ → eγ decay mediated by light neutrinos. Here

W is a gauge boson.

In the case of Type-I seesaw, this additional contribution is much smaller since

it is suppressed by the heavy neutrinos of masses O(1014) GeV. On the contrary, in

the inverse seesaw mechanism % ∼ O(mD/MRS) is much higher than that in the case

of Type-I seesaw. Thus there are significant enhancements in the branching ratios

(BR) for the LFV decays. Given the upper limits on the BRs of three LFV decays as

B(µ→ eγ) < 2× 10−12, B(τ → eγ) < 2.7× 10−6, B(τ → µγ) < 2.7× 10−6, one can

constrain a TeV scale seesaw model like inverse seesaw and check its viability. [71].

Type-II seesaw: In this extension of the SM, a triplet scalar field ∆ having a form

∆ =

δ+/
√

2 δ++

δ0 −δ+/
√

2

 (1.61)

is introduced in addition to the regular matter content of the SM. A SU(2)L×U(1)Y

invariant Majorana mass term is then generated with ∆ through the operator

/L
T
Ciτ2τa/L as

−LT2 = (Y∆)ij /L
T
i Ciτ2∆/Lj + h.c.. (1.62)

Thus a nonzero vacuum expectation value (VEV) of the neutral component of ∆
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triggers nonvanishing neutrino masses. Note that although the triplet operator carries

a lepton number 2, one can assign the same of value -2 to the triplet scalar. Thus

the term in (1.62) is not necessarily a lepton number violating term–a requirement

for the Majorana neutrinos. However when the neutral component δ0 acquires VEV

after spontaneous symmetry breaking (SSB) the lepton number symmetry is broken

and thus nonvanishing neutrino masses are generated through a mass term with

spontaneously broken lepton number. Now in Ref [72, 73] it has been shown that

spontaneous breaking of a global U(1) leads to a massless pseudo scalar particle (J)

called ‘Majoron’. In the present model, after SSB a ‘triplet Majoron’ will appear.

However, this triplet Majoron model is now ruled out experimentally [74]. To avoid

this Majoron problem a self-renormalized trilinear term Λ6√
2
φT iτ2∆†φ + h.c which

violates the lepton number explicitly is added to the interaction potential. Thus

the scalar potential for Type-II seesaw can be written as

V(φ,∆) = −µ2φ†φ+
λ

2
(φ†φ)2 +M2

∆Tr(∆†∆) +
λ1

2
[Tr(∆†∆)]2

+
λ2

2

(
[Tr(∆†∆)]2 − Tr[(∆†∆)2]

)
+ λ4(φ†φ)Tr(∆†∆) + λ5φ

†[∆†,∆]φ

+

(
Λ6√

2
φT iτ2∆†φ+ h.c.

)
. (1.63)

Now minimizing the scalar potential of (1.63) with respect to φ and ∆ we get

m2
φ =

1

2
λv2 − Λ6v∆ +

1

2
(λ4 − λ5)v2

∆, (1.64)

M2
∆ =

1

2

Λ6v
2

v∆

− 1

2
(λ4 − λ5)v2 − 1

2
λ1v

2
∆, (1.65)

where 〈φ0〉 = v/
√

2 and 〈δ0〉 = v∆/
√

2.

Note that the triplet VEV v∆ also contributes to the W and Z masses, hence to

the ρ parameter of the SM. Taking into account the electroweak (EW) precision data

one can derive an upper limit v∆/v < 0.2 which in turn implies v∆ <5 GeV. Thus in
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the limit v � v∆, Eq. (1.65) can be simplified to

v∆ =
Λ6v

2

2M2
∆ + (λ4 − λ5)v2

, (1.66)

in the limit M∆ � v2 or λ4 = λ5 which becomes

v∆ =
Λ6v

2

2M2
∆

. (1.67)

From (1.62), one can now write the neutrino mass matrix as

(Mν)ij =
√

2v∆(Y∆)ij ≡
Λ6v

2

√
2M2

∆

(Y∆)ij. (1.68)

Taking v ∼ 246 GeV, Mν ∼ 0.05 eV and Y∆ ∼ 1, Λ6 can be calculated as

Λ6 ∼ 0.8

(
M∆

1TeV

)2

eV. (1.69)

Thus for M∆ ∼ 1 TeV, Λ6 is O(eV) which is much smaller than mφ and M∆. An

interesting point is to be noted that since the trilinear term in V(φ,∆) is lepton

number violating, Λ6 could be naturally small for a theory symmetric in lepton

number. Due to the presence of O(TeV) triplet scalar, Type-II seesaw has an enriched

collider phenomenology [75]. This model is also intriguing from the leptogenesis

perspective [76, 77].

Radiative neutrino masses: In the loop induced or radiative neutrino mass models,

naturally small neutrino mass can be generated without an introduction of a much

heavier scale that is beyond the collider reach. Here we discuss three economical loop

induced neutrino mass models that are realized through minimal extensions of the

SM field content.

Zee model:
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Zee model [78] contains an extra singlet charged Higgs h− and a Higgs doublet φ′.

The source of lepton number violation is introduced through the dimension three

trilinear term

−LD3 = µφT iτ2φ
′h− + h.c.. (1.70)

In principle both the Higgs fields φ and φ′ might couple to the fermion fields. However,

in that case the Higgs mediated flavor changing neutral current (FCNC) might appear.

In order to restrict FCNC, a more simplified version of the Zee model (Zee-Wolfenstein

(ZW) model) where only one Higgs field, say φ, couples to the fermions, was proposed

in Ref. [79]. In the left panel of Fig.1.2, an one loop flavor diagram of the simplified

Zee model has been presented. Despite the predictive structure of the effective light

neutrino mass matrix, current experimental data excludes this simplistic Zee model

at 3σ level. Nevertheless, there are lot of extensions of the model that have been

proposed to accommodate the oscillation data.

νL ℓR ℓL νCL

φ−
h−

φ′
0

ℓCL ℓCR ℓR ℓLνL νCL

h−h+

k−−

Figure 1.2: Left side: One loop flavor diagram for neutrino masses (Zee-Wolfenstein

model). Right side: Two loop flavor diagram for neutrino masses (Zee-Babu) model.

In both the figures we omit the flavor indices for simplicity.

Zee-Babu (ZB) model:

In this model [80] in addition to the SM field content, two SU(2)L-singlets, a singly
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charged scalar h− and a doubly charged scalar k++ are introduced. The doubly

charged singlet can have interaction like

−L′ =
∑
``′

¯̀C
R`
′
Rk

++ + h.c.. (1.71)

The violation of lepton number in this model is then ensured by the dimension three

trilinear coupling

−LD3 = µh−h−k++ + h.c.. (1.72)

Thus small neutrino mass is generated at the two loop level as shown in the right

panel of Fig.1.2. One of the interesting feature of this model is a vanishing eigenvalue

which leads a particular mass ordering of the light neutrinos. In both the models, ZW

and ZB, due to the presence of the charged singlets there a is great scope of collider

phenomenology.

Ma model:

In the Ma model [81], three RH handed singlet fields NRi and an inert (vanishing

VEV) scalar doublet η = (η± η0
R + iη0

I )
T are introduced to generate tiny neutrino

masses at one loop level, as shown in Fig.1.3. In addition to the SU(2)L × U(1)Y

νL NR NC
R νCL

η0 η0

φ0φ0

Figure 1.3: One loop diagram for light neutrino masses in Ma model.
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symmetry an additional Z2 symmetry is imposed on the field contents. Two newly

added fields NRi and η transform under Z2 operation while the other remain singlets.

One of the motivation for this model is to introduce the Dark Matter (DM) candidate

in a model of neutrino mass. Due the presence of an exact Z2 symmetry, it is easy to

find out the stable DM particle between the freshers; NRi and ηI,R, depending upon

their masses. One realizes this upon a percipient look at the interaction terms. The

scalar potential under the SU(2)L × U(1)Y × Z2 symmetry can be written as

Vscalar = m2
1φ
†φ+m2

2η
†η +

1

2
λ1(φ†φ)2 +

1

2
λ2(η†η)2

+ λ3(φ†φ)(η†η) + λ4(φ†η)(η†φ) +
1

2
λ5

[
(φ†η)2 + h.c.

]
. (1.73)

Note that due to the assumed Z2 and the vanishing VEV for η, there will be no term

in the potential that contains a single η–the decay term for η. Thus, apparently η is

a stable particle in this model. However, the Dirac type term

−LY uk = (Yν)ij /Liiτ2ηNRj (1.74)

might also act as a decay term for the both, either NRi or η. Therefore the lightest

among them will serve as a suitable candidate for the DM in this model.

Before closing this section we would like to emphasize on the following. In the

entire thesis, only Type-I and the inverse seesaw have been taken under consideration

as the basic mechanisms for the generation of light neutrino mass. Nevertheless,

apart from the said mechanisms, the discussion about the other, e.g., Type-II seesaw,

radiative mass generation etc. makes sense, since, we see later in this thesis that

we have assumed some arbitrary perturbation to the effective light neutrino matrices

without addressing the source for the former. Thus those mechanisms might give rise

to the perturbation terms [5] if suitably implemented.
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Other absorbing theories such as double seesaw [69], Type-III seesaw [82], Left-

Right symmetric model [83,84], GUT models such as SU(5) [85] and SO(10) [86,87],

super symmetric theories [88] are also the subject of research for the generation of

light neutrino masses. These are beyond the scope of this thesis.

1.3 Neutrino masses and matter anti-matter asym-

metry via leptogenesis

1.3.1 Introduction and a general setup

Our cardinal principles of the corpuscular world are encapsulated in the SM of particle

physics that contains twelve types of matter particles: six quarks and six leptons.

They all have animatter partners those which are identical with the matters in every

aspects exceptthe electric charge. Particle physics has taught us that matter and anti

matter behave essentially identically. On the other hand the standard cosmological

theory are based on the assumption that the early universe was hot and energetic; an

environment in which one would expect equal number of baryon and antibaryon to be

copiously produced. This early state of the universe stands in stark contrast to what

we observe in the universe today; the universe contains mostly matter but hardly

antimatter. The theory of primordial nucleosynthesis allows the accurate prediction

of the cosmological abundances of all the light elements requiring [20]

ηB =
nB − nB̄

nγ
= (5.94− 6.17)× 10−10,

YB =
nB − nB̄

s
= (8.43− 8.76)× 10−11 (1.75)
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with nB(B̄), nγ and s as the number densities of baryon (anti), photon and entropy

respectively. Precise temperature measurement of the CMB observation constrain the

total baryon content of the universe. As shown in the left panel of Fig. 1.4, the first

acoustic peak of the CMB is especially sensitive to the amount of baryons in the
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Figure 1.4: Sensitivity of the first acoustic peak in the CMB to the average baryon

density of the universe (left). Concordance between the cosmic abundance of the

lightest elements and η as required by BBN. Taken from [28] and [29].

universe. The latest CMB measurement by the PLANCK experiment constrains the

average energy density of the baryons to

ΩB = 0.0490± 0.0007. (1.76)

This result is consitent with the amount of baryons required by the observed

abundances of the lightest elements and the predictions of BBN.

As pointed out by Sakharov, a small baryon asymmetry might have been

produced dynamically in the early universe if the following three conditions are

satisfied [89]. i) Baryon number (B) violation, ii) violation of C and CP and iii)
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1.3. Neutrino masses and matter anti-matter asymmetry via leptogenesis

departure from thermal equilibrium. The first point is trivial, since starting from

an initially symmetric universe, baryon number violation should take place for the

universe to evolve in a state where baryon number is nonvanishing. Violation of the

second condition implies the rate of the process in which an excess amount of baryon

is created should be equal to the rate of the complementary process that creates an

excess of antibaryons and thus no net baryon number is produced. Finally for the

third condition one calculates an equilibrium average of B as

〈B〉 = Tr(e−βHB) = Tr[ÔÔ−1e−βHB]

= Tr[e−βHÔ−1BÔ] = −Tr(e−βHB) (1.77)

with Ô as a CPT operator and [Ô,H] = 0. Thus thermal average of B in equilibrium

vanishes and consequently no net baryon number is produced. A large amount of

theoretical and experimental works suggest that within the framework of the SM the

Sakharov conditions can not be fulfilled. At a glance, if we look up to the amount

of CP violation provided by the CKM phase, we see that it is too small to generate

YB in the observed range. Many extensions of the SM generate the observed YB

by addressing this issue. However we focus on the ‘baryogenesis via leptogenesis’ [90]

due to its direct connection to the neutrino physics, especially with the Type-I seesaw

scenario. In this mechanism, newly introduced heavy RH Majorana neutrinos decay

out of equilibrium in a lepton number and CP violating way. The produced lepton

number is then converted to baryon number by the nonperturbative sphalerons [91].

Before the construction of an explicit theoretical framework let’s first construct a

general setup that acts as a prerequisite.

CP violation in L: For a simplified picture let’s take one lepton doublet /L and three

RH neutrinos N1,2,3. The relevant part of the Lagrangian responsible for leptogenesis
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is then written as

L ⊂ λ1N1φ/L+
M1

2
N2

1

+ vλ2,3N2,3φ/L+
M2,3

2
N2

2,3 + h.c.. (1.78)

Here we also assume that N1 is the lightest among the three heavy RH neutrinos and

essentially asymmetry produced only by the decays of N1 contributes to the final YB.

Now by redefining the phases of the N1,2,3 and /L fields one sets M1, M2,3 and λ1 real

leaving an unremovable CP violating phase in λ2,3. The expression for CP asymmetry

parameter ε1 is then given by

ε1 =
Γ(N1 → /Lφ)− Γ(N1 → /̄Lφ̄)

Γ(N1 → /Lφ) + Γ(N1 → /̄Lφ̄)
∼ M1

4πM2,3

Imλ2
2,3. (1.79)

Thus in this scenario, in order to achieve CP violation, introduction of more than one

heavy RH neutrinos are required.

Out of equilibrium condition and efficiency: If the N1 → /Lφ decays are slow

enough (Γ < H), the abunndancy of N1 does not decrease according to the Boltzmann

equilibrium statistics nN 1 ∼ e−M1/T demanded by thermal equilibrium. So late out

of equilibrium decays of N1 generate a lepton asymmetry YL. At T ∼M1 one has

K =
Γ

H(M1)
∼ m̃1

m∗
, (1.80)

where Γ is the decay width, H is the Hubble parameter, m∗ = 2.3 × 10−3 eV fixed

by cosmology and m̃1 ≡ λ2
1v

2/M1 is the effective mass which is related to the solar

and atmospheric mass splitting in a model dependent way. Thus when K << 1, the

N1 decays are strongly out of equilibrium thus the production efficiency for the YL

is close to one. This is known as the ‘weak washout scenario’. On the other hand
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K � 1 leads to a suppression of YL due to the fact that the inverse decays that try

to maintain the thermal equilibrium by regenerating N1, have rates suppressed by a

Boltzmann factor at T < M1: ΓID ∼ ΓIDe
−M1/T . The N1 quanta that decay when

K < 1 leads to an unwashed asymmetry. This regime is named as the ‘strong washout

scenario’. This is worth mentioning that the current neutrino oscillation data favors

the latter.

Boltzmann equation for leptogenesis: In absence of interaction the number of

particles in a comoving volume remains constant. However, the change in the number

of particles due to different types of interactions can be estimated through Boltzmann

Equation (BE). As an example, for the process 1↔ 2+3, the rate of change of number

density n1 of the particle ‘1’ is given by

d

dt
(n1V ) = V

∫
p

d~p1d~p2d~p3(2π4)δ4(p1 − p2 − p3)

× [−|Af |2f1(1± f2)(1± f3) + |Ab|2f1f3(1± f1)], (1.81)

where d~pi = d3pi
2Ei(2π)3 is the phase space factor, |Af,b| is the amplitudes of the forward

and backward processes with summed over initial and final state spins and fi is

the energy distribution function. Now assuming f(p) as f(p) ' feqn/n
eq (kinetic

equilibrium), |Af | = |Ab|, feq ∼ e−E/T and 1± f ' 1, (1.81) is simplified as

1

V

d

dt
(n1V ) =

∫
p

d~p1d~p2d~p3(2π4)δ4(p1 − p2 − p3)

× |A|2[− n1

neq1
e−E1/T +

n2n3

neq2 n
eq
3

e−(E2+E3)/T ]

= Γ1n
eq
1 [

n2n3

neq2 n
eq
3

− n1

neq1
], (1.82)

where Γ1 is the Lorntz dilated decay width and is given by

Γ1 =
1

2E1

∫
d~p1d~p2d~p3(2π4)δ4(p1 − p2 − p3)|A|2. (1.83)
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In the case of leptogenesis the final state particles i.e., /L and φ have fast gauge

interactions and thus they are kept in equilibrium. Therefore, (1.82) can be written

in this case as

1

V

d

dt
(n1V ) = −Γ1(n1 − neq1 ). (1.84)

It is convenient to recast the above equation in terms of N1 = n1/nγ(T )–number

density normalized by photon density as

dN1

dz
= −D[N1 −N eq

1 ] (1.85)

with z = M1/T , D = Γ1

Hz
and Hdt = dlnz. In principle D should be written as

D = (Γ1 + Γ̄1)/Hz, since the the process N1 → /̄Lφ̄ is also involved. Now one can

derive the Boltzmann equation for the produced lepton asymmetry NL = YLs/nγ as

dNL

dz
=

dN /̄L

dz
− dN/L

dz

= −ε1D(N1 −N eq
1 )−WNL (1.86)

with W = 1
2

ΓID1 +Γ̄ID1
Hz

and YL =
n/L−n /̄L

s
. Here the evolutions of the normalized lepton

number densities are controlled by the production due to the decay and dilution due

to the inverse decay (ID). Thus they can be written as

dN/L

dz
=

Γ1

Hz
N1 −

ΓID1
Hz

N/L, s
dN /̄L

dz
=

Γ̄1

Hz
N1 −

Γ̄ID1
Hz

N /̄L. (1.87)

We also assume

N /̄L =
1

2
(N /̄L +N/L) +

1

2
NL, N/L =

1

2
(N /̄L +N/L)− 1

2
NL. (1.88)

In a realistic leptogenesis scenario there will be additional contributions from ∆L =
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1, 2 terms which leads the complete set of BE for leptogenesis as

dN1

dz
= −(D + S∆L=1)[N1 −N eq

1 ], (1.89)

dNL

dz
= −ε1D(N1 −N eq

1 )− (W + S∆L=1,2)NL. (1.90)

Flavor effect: So far we have focused on the single flavor leptogenesis. Inclusion

of flavor dependence needs more careful formalism which we discuss below. To start

with, let’s denote the quantum states produced from N1 by |1〉 and |1̄〉 which are

state vectors in the flavor space as shown in Fig.1.5. They can now be expressed a

linear combination of flavor eigenstate e, µ, τ as

|1〉 = c1 |α〉 , |1̄〉 = c2 |ᾱ〉 (1.91)

with c1 = 〈α|1〉, c2 = 〈ᾱ|1̄〉 are the normalization constants.

1

e

Μ

Τ

2

Τ1
¦

Τ2
¦

Τ1¦

¦

Figure 1.5: Geometric representaion of convenient bases in the flavor space for a two

flavor scenario.
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The regime where the interactions mediated by the charged lepton Yukawas

are neglected, i.e., flavor plays no role in the process of leptogenesis is called the

unflavored regime which is characterized by the scale M1 > 1012 GeV. In this regime

the quantum states |1, 1̄〉 propagate coherently between the production from decays

and absorption by inverse decays, since the gauge interactions are flavor blind. Now

in the regime 109 GeV < M1 < 1012 GeV, the coherent evolution of the quantum

states break down prior to inverse decay with φ, due to the collision with fast RH tau

particles (Γτ > H). At the inverse decays the lepton states then can be described

as an incoherent mixture of tauon eigenstates |τ〉 and |τ⊥〉. The second state (τ⊥) is

now a coherent mixture of e and µ eigenstates and can be regarded as a projection

of |1〉 on the plane orthogonal to |τ〉 (c.f Fig.1.5). The produced lepton asymmetry is

now no longer flavor blind, rather it is shared along τ and τ⊥ direction in the charged

lepton flavor space. In the literature, this regime is denoted as the τ−flavor regime.

Therefore in this regime the evolution of the produced lepton asymmetry has to be

tracked by writing BE for each flavor as

dN1

dz
= −D(N1 −N eq

1 ), (1.92)

dN τ
L
⊥

dz
= −ετ1⊥D(N1 −N eq

1 )−W τN τ
L, (1.93)

dN τ
L
⊥

dz
= −ετ1⊥D(N1 −N eq

1 )−W τ⊥N τ
L
⊥. (1.94)

Similarly in the regime M1 < 109 GeV, the coherence of the |τ⊥〉 is lost due to the

fast interactions mediated by µ flavor in the thermal bath, consequently, |τ⊥〉 loses

its flavor identity and become an incoherent mixture of e and µ flavors. Thus all the

charged lepton flavors are distinguishable separately–fully flavored leptogenesis occur

in this regime. Similar to the two flavor case, the evolution of the produced lepton

asymmetry can be described through the BE for each flavor.
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Baryon number violation and inclusion of sphalerons and Yukawas: As

previously mentioned, starting from a baryon symmetric universe, to evolve to B 6= 0,

violation of baryon number is necessary. In the SM, L or B are not violated due to

an accidental symmetry in the model. However, in Ref. [68] it is shown that the

non-perturbative instanton effects can give rise to the processes that violates B + L,

but conserve B − L. Even though B and L are individually conserved at the tree

level, Adler-Bell-Jackiw (ABJ) triangular anomalies [92] nevertheless do not vanish

and thus B and L are anomalous at the quantum level through the intaractions with

EW gauge field in the triangle diagrams. In other words, the divergences associated

with B and L do not vanish at the quantum level, and they are given by

∂µJ
µ
B = ∂µJ

µ
L =

Nf

32π2
(g2W λ

µνW̃
λµν − g′2BµνB̃

µν), (1.95)

where Wµν and Bµν are the SM gauge field strengths with the forms

W λ
µν = ∂µW

λ
ν − ∂νW λ

µ ,

Bλ
µν = ∂µBν − ∂νBµ (1.96)

respectively and g, g′, Nf are the gauge coupling constants and number of fermion

generations. Since, ∂µ(JBµ − JLµ ) = 0, B − L is conserved. However, the B + L term

is violated with the divergence of the current given by

∂µ(JBµ + JLµ ) = 2Nf∂µK
µ, (1.97)

where

Kµ = − g2

32π2
2εµνρσW λ

ν (∂ρW
λ
σ +

g

3
ελqrW q

ρW
r
σ

+
g′2

32π2
εµνρσBνBρσ. (1.98)
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This violation is due to the vacuum structure of the non-abelian gauge theories.

Changes in B and L are related to the change in topological charges (Chern-Simons

number),

B(tf )−B(ti) = Nf [Ncs(tf )−Ncs(ti)], (1.99)

where the topological charge of the gauge field is given by

Ncs(t) =
g3

96π2

∫
d3xεαβγε

ijkW iαW jβW kγ. (1.100)

Therefore there are infinitely many degenerate ground states with ∆Ncs = ±1, ±2

..., separated by a potential barrier. The instanton configuration that determines the

tunneling between one vacua to the other, gives rise to the effective operator at the

leading order

OB+L = Πi(QLiQLiQLi/Li). (1.101)

At zero temperature, the transition rate is given by Γ ∼ e4π/α ≈ O(10−160) [68].

However, in thermal bath, the transition between different gauge vacua can be made

not by tunneling [93] but through thermal fluctuations over the barrier. When the

temperature is higher than the barrier hight B + L violating interactions may occur

at a significant rate and they can be in equilibrium in the expanding universe as well.

The transition rate at finite temperature in EW theory is determined by sphelaron

configurations [94], which are static configurations that correspond to the unstable

solution of the equation of motion. Below the EW phase transition (T < TEW ) the

transition rate [95] is given by

ΓB+L

V
∼ e−

MW
αkT , (1.102)
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which is still very suppressed. However, above the EW phase transition (T > TEW ),

the rate [96,97] is

ΓB+L

V
∼ α5lnα−1T 4. (1.103)

Thus baryon number violating processes is not suppressed in the T > TEW phase and

give rise to the required baryon asymmetry of the universe.

As we have already seen for a realistic computation of BE one should also include

the scattering terms (cf. Eq. 1.90) in addition with the decay terms. However, for a

more accurate scenario, the sphaleronic scattering and the processes that contain the

SM Yukawa couplings, should also be included. At a certain temperature when these

processes are fast enough, the following chemical equilibrium conditions are satisfied:

eR/Lφ Yukawa : µeR + µ/L + µφ = 0;

dRQφ Yukawa : µdR + µQ + µφ = 0;

uRQφ̃ Yukawa : µuR + µQ − µφ = 0;

QQQ/L sphalerons : 3µQ + µ/L = 0. (1.104)

In addition to these relations, irrespective of the temperature regime, there will be

another condition due the hypercharge neutrality and is given by

Nf (µQ − 2µuR + µdR − µ/L + µeR)− 2Nφµφ = 0, (1.105)

where Nφ is the number of Higgs doublets. Now the expressions for YB and YL can

be written as

YB =
T 3

6s
(2µQ − µuR − µdR), YL =

T 3

6s
(2µ/L − µeR). (1.106)
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It is convenient to express the final baryon asymmetry YB in terms of the asymmetry

in the conserved quantum number YB − YL ≡ Y∆ since the latter is not affected by

the processes as discussed above. For Nf = 3 and Nφ = 1 one can solve the above

equations given in (1.104) and (1.105) and can have a relation between YB and Y∆ as

YB =
28

79
Y∆. (1.107)

Note that all the chemical potential equations have been written assuming only a

single generation. A discussion including all the generations and their relevance to the

produced asymmetry is presented in the next section where we discussed leptogenesis

in more detail including all the active flavor indices. In this thesis we use all the

relevant equations related to leptogenesis from the next section.

1.3.2 Explicit calculation of CP asymmetry parameter and BE

with active flavor indices

The part of our Lagrangian relevant to the generation of a CP asymmetry is

−LD = fNiαNRiφ̃
†/Lα + h.c., (1.108)

where /Lα = (νLα `
−
Lα)T is the left-chiral SM lepton doublet of flavor α, while φ̃ =

(φ0∗ − φ−)T is the charge conjugated Higgs scaler doublet. It is evident from (1.108)

that the decay products of Ni can be `−αφ+, ναφ
0, `+

αφ
− and νCα φ0∗. We are interested

in the flavor dependent CP asymmetry parameter εαi which is given by

εαi =
Γ(Ni → /Lαφ)− Γ(Ni → /L

C
αφ
†)

Γ(Ni → /Lαφ) + Γ(Ni → /L
C
αφ
†)
, (1.109)
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Γ being the corresponding partial decay width. A nonzero value of εαi needs to arise

out of the interference between the tree level and one loop contributions [90]. This is

since at the tree level we have

Γtree(Ni → /Lαφ) = Γtree(Ni → /L
C
αφ
†) = (16π)−1(fN†iα f

N
iα)Mi, (no sum over i).(1.110)

One loop contributions come both from vertex correction and self-energy terms

(cf. Fig.1.6). For leptogenesis with hierarchical heavy RH neutrinos, (1.109) can be

evaluated to be

εαi =
1

4πv2Hii

∑
j 6=i

g(xij) ImHij(mD)iα(m∗D)jα

+
1

4πv2Hii

∑
j 6=i

ImHji(mD)iα(mD
∗)jα

(1− xij)
. (1.111)

In (1.111), 〈φ0〉 = v/
√

2 so that mD = vfN/
√

2, H ≡ mDmD
† and xij = Mj/Mi.

Furthermore, g(xij) is given by

g(xij) =

√
xij

1− xij
+ f(xij), (1.112)

where the first RHS term arises from the one loop self energy term interfering with

the tree level contribution. The second RHS term in (1.112), originating from the

interference of the contribution from the one loop vertex correction diagram with the

tree level term, is given by

f(xij) =
√
xij

[
1− (1 + xij)ln

(
1 + xij
xij

)]
. (1.113)

We would like to stress once again that the expression for εαi in (1.111) is valid only

for the hierarchical RH neutrino masses. For a quasi-degenerate scenario one should
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follow the formalism given in Ref. [98].

N1

φ

ℓα

φ

N1

ℓβ

N2,3

ℓβ

N2,3

φ

ℓα

N1

φ

φ

ℓα

fN fN∗ fN
fN∗ fN fN

fN

Figure 1.6: Tree level as well as one loop vertex correction and self energy diagrams

that contribute to the CP asymmetry parameter εα1 . The flavor of the internal charged

lepton `β is summed and the Yukawa coupling fN is supplied with appropriate flavor

indices in the interference amplitude.

Let us discuss some physics aspects of (1.111). As already mentioned, depending

upon the temperature regime in which leptogenesis occurs, lepton flavors may be

fully distinguishable, partly distinguishable or indistinguishable. It is reasonable to

assume that leptogenesis takes place at T ∼ M1. It is known [99] that lepton flavors

cannot be treated separately if the concerned process occurs above a temperature

T ∼ M1 > 1012 GeV. In case the said temperature is lower, two possibilities arise.

When T ∼ M1 < 109 GeV all three (e, µ, τ) flavors are individually active and we

need three CP asymmetry parameters εei , ε
µ
i , ε

τ
i for each generation of RH neutrinos.

On the other hand when we have 109 GeV < T ∼ M1 < 1012 GeV, only the τ -flavor

can be identified separately while the e and µ act indistinguishably. Here we need two

CP asymmetry parameters ε(2)
i = εei + εµi and ετi for each of the RH neutrinos. As an

aside, let us point out a simplification of the CP asymmetry parameter for unflavored

leptogenesis which is relevant for the high temperature regime. Summing over all α,

∑
α

ImHji(mD)iα(mD
∗)jα = Im HjiHij = Im HjiH∗ji = Im |Hji|2 = 0, (1.114)

i.e. the second term in the RHS of (1.111) vanishes. The flavor-summed CP
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asymmetry parameter is therefore given by the simplified expression

εi =
∑
α

εαi

=
1

4πv2Hii

∑
j 6=i

[
f(xij) +

√
xij

(1− xij)

]
ImHijHij. (1.115)

The Boltzmann equations of concern to us govern the evolution of the number

densities of the hierarchical heavy neutrinos Ni and the left chiral lepton doublets

/Lα. The equations involve decay transitions between Ni and /Lαφ as well as /LCαφ†

plus scattering transitions QuC ↔ Ni/Lα, /LαQ
C ↔ Niu

C , /Lαu ↔ NiQ, /Lαφ ↔

NiVµ, φ
†Vµ ↔ Ni/Lα, /LαVµ ↔ Niφ

†. Here Q represents the left-chiral quark doublet

with QT = (uL dL) and Vµ can stand for either B or W1,2,3. Now we are using the

parametric function ηa(z) instead of NL(z). When in thermal equilibrium, the former

is denoted by ηeqa (z). The number density of a particle of species a and mass ma with

ga internal degrees of freedom is given by [100]

na(T ) =
gam

2
a T eµa(T )/T

2π2
K2

(
ma

T

)
, (1.116)

K2 being the modified Bessel function of the second kind with order 2. The

corresponding equilibrium density, as given by setting the chemical potential µa(T )

equal to zero, is

neq
a (T ) =

gam
2
a T

2π2
K2

(
ma

T

)
. (1.117)

We are now in a position to make use of the Boltzmann evolution equations

given in Ref. [98] – generalized with flavor [101]. In making this generalization, one

comes across a subtlety: the active flavor in the mass regime (given by the value of

M1) under consideration may not be individually e, µ or τ but some combination
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thereof. So we use a general flavor index λ for the lepton asymmetry. Now we write

dηNi
dz

=
z

H(z = 1)

[(
1 − ηNi

ηeq
Ni

) ∑
β=e,µ,τ

(
ΓβDi + ΓβSiYukawa + ΓβSiGauge

)
−1

4

∑
β=e,µ,τ

ηβLε
β
i

(
ΓβDi + Γ̃βSiYukawa + Γ̃βSiGauge

)]
,

dηλL
dz

= − z

H(z = 1)

[ 3∑
i=1

ελi

(
1 − ηNi

ηeq
Ni

) ∑
β=e,µ,τ

(
ΓβDi + ΓβSiYukawa + ΓβSiGauge

)

+
1

4
ηλL

{ 3∑
i=1

(
ΓλDi + ΓλWi

Yukawa + ΓλWi
Gauge

)
+ Γλ∆L=2

Yukawa

}]
. (1.118)

In each RHS of (1.118), apart from the Hubble rate of expansion H at the decay

temperature, we have various transition widths Γ originally introduced in Ref. [98]

which are linear combinations (normalized to the photon density) of different CP

conserving collision terms γXY for the transitions X → Y and X̄ → Ȳ . Here γXY is

defined as

γXY ≡ γ(X → Y ) + γ(X → Y ) , (1.119)

with

γ(X → Y ) =

∫
dπX dπY (2π)4 δ(4)(pX − pY ) e−p

0
X/T |M(X → Y )|2 . (1.120)

In (1.120) one has used a short hand notation for the phase space

dπx =
1

Sx

nx∏
i=1

d4pi
(2π)3

δ(p2
i −m2

i )θ(p
0
i ) (1.121)

with SX = nid! being a symmetry factor in case the initial state X contains a number

nid of identical particles. Moreover, the squared matrix element in (1.120) is summed

(not averaged) over the internal degrees of freedom of the initial and final states.
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The transition widths Γ in (1.118) are given as follows:

ΓλDi =
1

nγ
γNi/Lλφ†

, (1.122)

ΓλSiYukawa =
1

nγ

(
γNi

/Lλ
QuC

+ γNiu
C

/LλQ
C + γNiQ/Lλu

)
, (1.123)

Γ̃λSiYukawa =
1

nγ

(
ηNi
ηeq
Ni

γNi
/Lλ

QuC
+ γNiu

C

/LλQ
C + γNiQ/Lλu

)
, (1.124)

ΓλSiGauge =
1

nγ

(
γ
NiVµ
/Lλ φ

+ γNi
/Lλ

φ†Vµ
+ γNiφ

†

/LλVµ

)
, (1.125)

Γ̃λSiGauge =
1

nγ

(
γ
NiVµ
/Lλφ

+
ηNi
ηeq
Ni

γNi
/Lλ

φ†Vµ
+ γNiφ

†

/LλVµ

)
, (1.126)

ΓλWi
Yukawa =

2

nγ

(
γNi

/Lλ
QuC

+ γNiu
C

/LλQ
C + γNiQ/Lλu

+
ηNi
2ηeq

Ni

γNi
/Lλ

QuC

)
, (1.127)

ΓλWi
Gauge =

2

nγ

(
γ
NiVµ
/Lλφ

+ γNi
/Lλ

φ†Vµ
+ γNiφ

†

/LλVµ
+

ηNi
2ηeq

Ni

γNi
/Lλ

φ†Vµ

)
, (1.128)

Γλ∆L=2
Yukawa =

2

nγ

∑
β=e,µτ

(
γ ′

/Lλφ

LCβ φ
† + 2γ

/Lλ/Lβ
φ†φ†

)
. (1.129)

The explicit expressions for γ and γ′ are given in Appendix B of Ref. [98]. The

subscripts D, S and W stand for decay, scattering and washout respectively. We

rewrite the Boltzmann equations in terms of YNi(z) = ηNinγ(z)s−1 and certain D-

functions of z that are defined below.

Consider the first equation in (1.118) to start with. Its second RHS term has

been neglected for an assumed hierarchical leptogenesis since both ηβL and εβi are each

quite small and their product much smaller1. Using some shorthand notation, as

explained in Eqs. (1.131) - (1.133) below, we can now write

dYNi(z)
dz

= {Di(z) +DSY
i (z) +DSG

i (z)}{(Y eq
Ni

(z)− YNi(z)}, (1.130)

1In order of magnitude this product is 10−6 × 10−5 ∼ 10−11, as compared with the first term
which is O(1).
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where

Di(z) =
∑

β=e,µ,τ

Dβ
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβDi

ηeq
Ni

(z)
, (1.131)

DSY
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβSiYukawa

ηeq
Ni

(z)
, (1.132)

DSG
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβSiGauge

ηeq
Ni

(z)
. (1.133)

Turning to the second equation in (1.118) and neglecting the ∆L = 2 scattering

terms, we rewrite it as

dηλL(z)

dz
= −

3∑
i=1

ελi {Di(z) +DSY
i (z) +DSG

i (z))(ηeq
Ni

(z)− ηNi(z)}

− 1

4
ηλL

3∑
i=1

{1

2
Dλ
i (z)z2K2(z) +DλYW

i (z) +DλGW
i (z))} (1.134)

with

DYW
i (z) =

∑
β=e,µ,τ

z

H(z = 1)
ΓβWi

Yukawa, (1.135)

DGW
i (z) =

∑
β=e,µ,τ

z

H(z = 1)
ΓβWi

Gauge. (1.136)

We are now ready to calculate the baryon asymmetry from the lepton asymmetry.

To this end, it is first convenient to define the variable

Yλ =
nλL − nλL̄

s
=
nγ
s
ηλL, (1.137)

i.e. the leptonic minus the antileptonic number density of the active flavor λ

normalized to the entropy density. The factor s/ηγ is known to equal 1.8g∗s with

g∗ being the relativistic degrees of freedom. For T > 102 GeV, g∗s is known to remain

nearly constant with temperature at a value (with three right chiral neutrinos) of
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about 112 [102]. Sphaleronic processes convert the lepton asymmetry created by

the decay of the right chiral heavy neutrinos into a baryon asymmetry by keeping

∆λ = 1
3
B − Lλ conserved. Y∆λ

, defined as s−1{1/3(nB − nB̄) − (nL − nL̄)}, and Yλ
are linearly related, as under

Yλ =
∑
ρ

AλρY∆ρ , (1.138)

where Aλρ is a set of numbers which are obtained by the chemical equilibrium

conditions of the redistributor processes as explained in the previous section and

depends on which of the three mass regimes M1 lies in. These are discussed in detail

later in this section. Meanwhile, we can rewrite (1.134) as

dY∆λ

dz
=

3∑
i=1

[ελi {Di(z) +DSY
i (z) +DSG

i (z)}{Y eq
Ni

(z)− YNi(z)}]

+
1

4

∑
ρ

AλρY∆ρ

3∑
i=1

{1

2
Dλ
i (z)z2K2(z) +Dλ YW

i (z) +Dλ GW
i (z)}.(1.139)

We need to solve (1.130) and (1.139) and evolve YNi as well as Y∆λ
upto a value of

z where the quantities Y∆λ
become constant with z, i.e. do not change with z. The

final baryon asymmetry YB which varies linearly with Y∆λ
[103] can be obtained

depending upon the mass regime in which M1 is located. We discuss this in detail in

the following.

M1 < 109 GeV: Here all the three lepton flavors are separately distinguishable.

Therefore the flavor index λ can just be λ = e or µ or τ . In this regime, the QCD

sphalerons, EW sphalerons, top, bottom, charm, tau, strange and muon Yukawa

interactions are taken to be in chemical equilibrium. Solving these equations along

with the hypercharge neutrality condition in (1.105), one obtains the 3× 3 A matrix
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as

A =


−151/179 20/179 20/179

25/358 −344/537 14/537

25/358 14/537 −344/537

 . (1.140)

Now the final baryon asymmetry normalized to the entropy density, is given by [103]

YB =
28

79
(Y∆e + Y∆µ + Y∆τ ). (1.141)

Another important parameter, namely the baryon asymmetry normalized to the

photon density, obtains as

ηB =

(
s

nγ

)
0

YB = 7.0394YB, (1.142)

the subscript zero denoting the present epoch.

109 GeV <M1 < 1012 GeV: In this regime, the QCD sphalerons, EW sphalerons,

top, bottom, charm and tau Yukawas are taken to be in chemical equilibrium. Among

the charged lepton flavors, τ is distinguishable but one cannot differentiate between

the e and µ flavors. It is therefore convenient to define two sets of CP asymmetry

parameters ετ and ε(2) = εe+εµ. Therefore the index λ takes the values τ and 2. The

Boltzmann equations lead to the two asymmetries Y∆τ and Y∆2 . These are related

to Yτ and Y2 = Ye + Yµ by a 2 × 2 A-matrix derived from the relevant chemical

equilibrium conditions as

A =

 −417/589 120/589

30/589 −390/589

 . (1.143)
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The final baryon asymmetry YB is then calculated as

YB =
28

79
(Y∆2 + Y∆τ ). (1.144)

M1 > 1012 GeV: In this case all the lepton flavors act indistinguishably leading to a

single CP asymmetry parameter εi =
∑
λ

ελi . Thus it is similar to a single flavor

leptogenesis scenario. However, since in this temperature regime EW sphaleron

interactions are out of equilibrium, no net baryon asymmetry is produced in the

leptogenesis phase and thus Y∆ and YL are related as

Y∆ = −YL. (1.145)

Thus one can have an expression for the final baryon asymmetry as

YB = −28

79
YL. (1.146)

Given the general setup to realize neutrino masses in the extended SM, the

main aim of this thesis is to construct viable neutrino mass models that are testable

in the forthcoming experiments. The next section is devoted to the prerequisites,

some new discrete symmetries which are needed to construct such models in addition

to the standard SU(2)L × U(1)Y gauge symmetry. Although in general a symmetry

should be implemented at the Lagrangian level, we will see, however, it is the residual

symmetry at the end that dictates the texture of the effective light neutrino mass

matrix Mν and hence the mixing matrix Uν that diagonalizes Mν . The entire work

of this thesis is based on few predictive residual symmetries which can generate the

neutrino mass and mixing at least at the leading order. A brief insight of the strategy

is given in what follows.
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1.4 Discrete residual symmetries in the neutrino

mass matrix

1.4.1 Importance of residual symmetries

The nature of the neutrinos–whether they are Dirac or Majorana type is yet to be

established. Furthermore, there are some low energy neutrino parameters such as the

leptonic CP violating phases δ, α, β which are not determined till date. In addition

one has to establish the mass ordering of the light neutrinos. For a given low energy

neutrino mass matrix, presumably originates from the mechanism as discussed earlier,

one cannot predict those undetermined parameters, since a general Mν contains

eighteen (twelve) independent parameters for a Dirac (Majorana) type neutrinos.

Thus to construct a viable model one has to invoke some symmetry/ansatz that

reduces the number of parameters. There have been a lot of approaches [104–109]

in the Beyond Standard Model (BSM) framework to establish relation between the

parameters of Mν . Inclusion of discrete symmetries [1–3, 110] in addition to the SM

gauge group turns out to be the most attractive one to uncover the flavor structure

of the neutrino mass matrix. Impact of these symmetries are mostly intriguing from

the mixing perspective. A closer look to the the oscillation data given in Table 1.1

reveals that one can parametrize the mixing matrix U at leading order as

U =


√

1− λ2 λ 0

− λ√
2

1√
2

√
1− λ2 1√

2

λ√
2

− 1√
2

√
1− λ2 1√

2

 , (1.147)

where λ = sin θ12. Note that here we assume a vanishing value of θ13 and a maximal

value of θ23. Although a nonzero value of θ13 is well established presently, the mixing
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matrix in (1.147) can be derived from an well motivated low energy symmetry, namely,

the µτ−interchange symmetry. To be precise, given a neutrino Majorana mass term

(for example)

−L =
1

2
νCLαMναβνLβ + h.c. (1.148)

if one demands an invariance of the mass term under the exchange of two flavor fields

as νµ ↔ ντ , the following structure of Mν is obtained:

Mµτ
ν =


a b −b

b c d

−b d c

 , (1.149)

where all the parameters are complex in general and the minus sign is considered to

be in conformity with the PDG convention of UPMNS. Now the matrix Mµτ
ν can be

diagonalized by the matrix U given in (1.147) with λ→ λ(a, b, c, d). One can also fix

the solar mixing angle for λ being 1/
√

3 as a consequence of a TBM [1] symmetry.

Besides, there are other interesting residual symmetries such as scaling ansatz in

neutrino mass matrix that predicts vanishing values for θ13 and m3 along with a

nonmaximal θ23 in general. All these effective symmetries are well motivated from the

larger symmetry group such as A4, S3, D4 etc. However, to comply with the present

data, these effective residual symmetries should be broken. As a consequence, apart

from generating a nonzero value of θ13 one can have predictions on the CP violating

phases as well. A part of this thesis deals with such broken effective symmetries and

their impact on low energy neutrino observables.

There is another way to realize the residual symmetries in the low energy

neutrino mass matrix. In Ref [7, 8] C.S Lam has proved that whatever be the

structure of Mν , if it is Majorana type, the existing residual symmetry should
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always be a Z2 × Z2. Unlike the previous case, these symmetries may not have a

deep flavor meaning at the effective Lagrangian. Nevertheless, it possesses highly

constraint relations among the mixing parameters. Due to its immense testability

in the forthcoming experiments, a high attention is being paid to this scheme now a

days. In chapter 4 where we elaborate this scheme, one finds the key equation that

implements a couple of Z2 invariance in the neutrino mass term is given by

GT
2,3MνG2,3 = Mν , (1.150)

where G2,3 are the Z2 generators and the neutrino fields transform as να → Gαβνβ.

This real invariance may also be extended to its complex counter part by means

of a nonstandard CP transformation να → iGαβγ
0νCβ [111–113] that leads to the

invariance

GT
2,3MνG2,3 = M∗

ν . (1.151)

Note that the R.H.S of (1.150) is now replaced with its complex conjugate in (1.151).

Thus one can implement a nonstandard ZCP2 transformation in the low energy effective

Lagrangian.

It is highly nontrivial to combine a flavor group with a CP symmetry. However,

it has been shown in Ref. [114] that this can be done if they satisfy certain consistency

conditions. In a top-down approach, a flavor group combined with a CP symmetry

Gf × GCP at high energy spontaneously breaks down to two different symmetries;

G`
f×G`

CP in the charged lepton sector and Gν
f×Gν

CP neutrino sector [111]. A testable

neutrino mixing scenario is obtained due to this mismatch between the residual

symmetries of the two sectors. A bottom-up approach has also been proposed [12] to

construct a minimal flavor group with the residual symmetries of the charged lepton
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and the neutrino sector.

1.4.2 Relevant residual symmetries connected to this thesis:

A presummary of the present work

After the breaking of a particular discrete symmetry, it is the mismatch between

the residual symmetries of charged lepton and neutrino sector that generates mixing

angles closed to their observed values. Beside predicting a zero value of the reactor

angle, since the popular flavor symmetry groups such as A4, S3,4, D4 etc. are unable

to speculate the mass ordering of the light neutrinos, testable values of the CP phases

and the absolute mass scale, they should be modified in a certain way to produce a

phenomenologically viable theory. In our work, we have done the modification in

two different ways. First, we assume that the remnant (residual) symmetry in the

low energy Lagrangian is broken with a small breaking parameter and thus generates

a nonzero θ13. Along with that mildly broken remnant symmetry, we also consider

some vanishing elements in the neutrino mass matrix, commonly known as the texture

zeros [4]. Due to the presence of the zeros in the neutrino mass matrix, constraint

ranges for the CP violating phases are determined along with a definite mass ordering.

Theoretical justification of the breaking might be rationalized with several top-down

approaches, such as the refinement of the model with an extended matter content

which serves as a breaking of the remnant symmetry through a loop contribution [5]

or adding soft breaking terms to the initially symmetric theory [6] at high energy etc..

Without going into the explicit model building, we rather zero in on the low energy

predictions of the neutrino parameters such as CP phases, sum of the light neutrino

masses Σimi and neutrinoless double (ββ0ν) decay parameter |Mee|.

We also explore the other approach, i.e., invariance of Mν under a Z2 × Z2
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symmetry. Again due to the nonexistence of a nonvanishing θ13 in the model under

consideration, we have supplemented it with a nonstandard CP transformation; CP-

transformations followed by a flavor symmetry operation [10]. Unlike the canonical

(standard) CP transformation, which is a CP conserving theory, this nonstandard

CP transformation predicts maximally violating value π/2 or 3π/2 for the Dirac CP

phase δ and a CP conserving value for the Majorana phases α or β by restricting

them to either 0 or π. High energy symmetry group for models of this kind may be

constructed through the induced automorphism approach [11,12].

Two of my research works [13, 14] are based on texture zeros along with the

discrete residual symmetries; the Scaling Ansatz (SA) [15,16] and a cyclic permutation

symmetry. The former is motivated by the models with the high energy flavor

symmetry groups such as a nonabelian D4×Z2 and an abelian U(1)Le−Lµ−Lτ while the

latter is implemented by a discrete A4 × Z3 × Z2 family symmetry. Some attractive

variants of seesaw mechanism, namely, the inverse and the linear seesaw are also

considered in both the cases here owing to the fact that the heavy neutrinos originated

from these mechanisms are of masses of the order of TeV, thus accessible to the LHC.

Due to the significant reduction of the number of parameters in the light neutrino

mass matrices, interesting conclusions regarding the low energy neutrino parameters

are drawn for each of the cases. For example, the first case, i.e, the model with

Scaling Ansatz, predicts almost a vanishing value of the Dirac CP phase δ and thus

confronting with testability since T2K’s new data (2016) [17] continue to prefer a

value of the Dirac CP phase near the maximally violating value 3π/2. Along with an

inverted ordering, both the models predict a constraint ranges of the light neutrino

masses as well the ββ0ν parameter |Mee|. On the other hand a cyclic permutation

symmetry invariant theory at the leading order has been modified with soft breaking

terms. To constrain the number of parameters we also assume here the existence

of texture zeros. This model is quite interesting from the neutrinoless double beta
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(ββ0ν) decay perspective.

In the residual Z2×Z2 approach, as mentioned earlier, we have generalized the

well known Simple Real Scaling ansatz (SRS) [15,16] on the neutrino Majorana mass

matrix to its complex extension and named it as Complex Extended Scaling (CES). In

this case, the Z2×Z2 symmetry is complemented by a nonstandard CP-transformation

on the neutrino fields as νLα → iGαβγ
0νCLβ with Gαβ being the generators of one

of the Z2 symmetry and νCLβ represents the usual charged conjugated left chiral

neutrino field. As a consequence, the usual horizontal symmetry GTMSRS
ν G = MSRS

ν

is replaced with its complex version; GTMCES
ν G = (MCES

ν )∗. The entire work is

divided into two parts, first one [22] of which focuses on the predictions of low energy

neutrino parameters; specifically the robust predictions of cos δ = 0 and sinα =

sin β = 0 or π thus |Mee| and the measurement of CP-asymmetry parameter Aµe

in the baseline oscillation experiments. In the other [23], we concentrate on the

hierarchical flavored leptogenesis within the framework of Type-I seesaw mechanism.

We assume strongly hierarchical mass eigenvalues for the RH Majorana neutrino

mass matrix MR. The leptonic CP asymmetry parameter εα1 with lepton flavor α,

originating from the decays of the lightest of the heavy neutrinos N1 (of mass M1) at

a temperature T ∼M1, is what matters here with the lepton asymmetry originating

from the decays of N2,3, being washed out. Due to the presence of the residual Z2×Z2

and a CP transformation, a typical structure of the Dirac mass matrix mD emerges.

Imaginary part of the latter generates a nonzero θ13, maximal Dirac CP violation as

well as a nonvanishing εα1 , thus it serves as a common source of the said quantities.

The entire thesis is based on a study of these models that deal with various aspects

of residual symmetries.

Before going to the explicit details of these works, we would first like to include

a general technique for calculating the Majorana phases. As discussed in the next
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chapter in detail, given any hierarchical neutrino mass model, our prescription is

able to compute the corresponding Majorana phases and thus useful to evaluate the

Majorana phases for some of the models under consideration. Leaving an explicit

discussion for the next chapter, let us present a brief introduction of the methodology

adapted.

So far in the existing literature, CP-violating Majorana phases are calculated

in a model dependent way. We present a general recipe for the evaluation of the

Majorana phases assuming the hierarchical mass spectrum of the light neutrinos. To

evaluate the Majorana phases in Mohapatra-Rodejohann’s phase convention [16], we

use the rephasing invariant quantities [19] which remain unchanged even after the

rotation of the light neutrino mass matrix in the phase space (low energy phases of

the effective Mν). In this prescription, the Majorana phases are calculable in a model

independent way even for a vanishing value of the lightest neutrino mass m1 (m3),

for normal (inverted) hierarchy. Furthermore, constraining the general methodology

with the upper limits on Σimi and |Mee| dictated by PLANCK [20] and GERDA-I [21]

respectively, ranges of the Majorana phases are presented in a general context.

The next chapters are based on following publications:

Chapter 2: Nucl. Phys. B 904, 86 (2016).

Chapter 3: JHEP 1505, 077 (2015) & Nucl. Phys. B 911, 846

(2016).

Chapter 4: Eur. Phys. J. C 76, 662 (2016).

Chapter 5: JCAP 1703, 025 (2017).

Coauthors: Ambar Ghosal, Probir Roy and Mainak Chakraborty.
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Chapter 2

Evaluation of the Majorana phases

2.1 Introduction

Apart from hierarchical structure of massive neutrinos a fundamental qualitative

nature of these elusive particles whether they are Dirac or Majorana type is yet

unknown. Neutrinoless double beta decay (ββ0ν) mode [21, 27, 115–122] is able

to discriminate between the two different types. Positive evidence of the above

experimental search will be able to determine the Majorana nature of neutrinos.

Several ββ0ν experiments are ongoing and planned. In Ref. [123] a brief discussion

about some of the important experiments is presented. Among those experiments,

EXO-200 [25] experiment puts an upper limit on the relevant neutrino mass matrix

element1 |m11| within a range as |m11| < (0.14-0.35 eV). Further, experiments like

GERDA-II [27], NEXT-100 [124] will be able to bring down the above value of the

order of 0.1 eV. Thus in an optimistic point of view such a property of neutrinos could

be testified by the next generation experiments. However, even if it is possible to pin

down the value of |m11|, it is still difficult to predict the values of the Majorana phases
1In this chapter we refer |Mee| as |m11| throughout.

57



Chapter. Evaluation of the Majorana phases

until we can fix the absolute neutrino mass scale. It is shown in Ref. [125] that in

addition to the ββ0ν decay experiments, lepton number violating processes in which

the Majorana phases show up, are also corroborative to determine the individual

Majorana phases. Another interesting physical aspect, such as contribution of the

Majorana phases to generate a nonvanishing θ13 within the present 3σ range of

neutrino oscillation global fit data is also studied in the literature [126]. Ref. [127]

discusses how to constrain the Majorana phases using the results from cosmology and

double beta decay. Thus it is worthwhile to study the calculability of the Majorana

phases in terms of a general neutrino mass matrix (Mν) parameters.

In the present work we evaluate individual Majorana phases in terms of the

parameters of a generalMν using three rephasing invariants I12, I13 and I23 presented

in Ref. [19] on the basis of Mohapatra-Rodejohann’s phase convention [16]. Although

there are several papers which discusses the general procedure for calculating the

Majorana phases, motivation behind taking the rephasing invariants is that the

methodology we present here is capable of calculating the Majorana phase in a model

independent way even if one of the eigenvalue is zero which is still allowed as far as

the present neutrino oscillation global fit data is concerned. Moreover, as one of the

rephasing invariant (I23) is directly proportional to m3, therefore it vanishes if m3 = 0

and hence shows a strong dependency of the Majorana phases with the light neutrino

masses. In the present work we evaluate the Majorana phases for a general complex

symmetric neutrino mass matrix (Mν) taking into account the global fit oscillation

data and the upper bound on the sum of the three light neutrino masses (Σimi) along

with the ββ0ν decay parameter for both the hierarchical cases. Except the case of

quasi degeneracy2, it is then concluded that the methodology presented in this work

is able to calculate the Majorana phases, given any model of neutrino masses. For

2For the quasi-degenerate case the procedures of calculating the Majorana phases are stated in
Sec.2.4
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convenience, we further numerically estimate the ranges of each Majorana phase for

both types of hierarchies, in the context of a cyclic symmetric model as well as a

model with scaling ansatz property. Let us now have a brief look at the contents of

this chapter.

In Section 2.2 we briefly discuss the basic formalism to set the convention

of the Majorana phase representation within the framework of neutrino oscillation

phenomena. CP violating rephasing invariants are presented in Section 2.3. Section

2.4 contains explicit calculation of the Majorana phases for both types of neutrino

mass hierarchies along with phenomenologically viable different sub cases. Numerical

estimation of the Majorana phases, their connection to the physical observables and

their testability for the general case are presented in Section 2.5. In Section 2.6

application of the above methodology in the context of cyclic symmetric and scaling

ansatz invariant models is presented. Section 2.7 contains summary of the present

chapter.

2.2 Basic formalism

Experimental observation of neutrino flavor oscillation constitutes a robust evidence

in favor of nonzero neutrino masses. The flavor transition process is basically a

quantum mechanical interference phenomena with the explicit relationship between

the quantum fields (ναL) in the flavor basis and the mass basis (νiL) as

ναL = ΣiU
∗
ναiνiL, (2.1)

where α (= 1, 2, ....,m) corresponds to the flavor and i (= 1, 2, ...., n) implies the

mass index. The matrix Uν is the corresponding neutrino mixing matrix. For three

59



Chapter. Evaluation of the Majorana phases

generation of fermions, i.e, for n = m = 3, the weak Lagrangian containing the

charged lepton fields and the neutrino fields can be written in the mass basis as

−Lcc = g√
2

l̄αLγ
µ(U †l U

∗
ν )αiνiLW

−
µ + h.c., (2.2)

where Ul is the unitary mixing matrix in the charged lepton sector. The matrix U †l Uν

is the leptonic mixing matrix and is known as the Pontecorvo−Maki−Nakagawa−

Sakata mixing matrix (UPMNS) which contains 3 mixing angles and 6 phases in

general. It is useful to redefine the mixing matrix by absorbing the unphysical phases

into the charged lepton fields and the neutrino fields (Dirac type). If the neutrinos

are Majorana type, they break the global U(1) symmetry and hence, redefinition of

the neutrino fields is not possible. Therefore, out of 6 phases 3 unphysical phases can

be absorbed by redefining only the charged lepton fields and thus the UPMNS matrix

is parametrized as

UPMNS = UCKMPM . (2.3)

UCKM is the usual CKM type matrix as defined in the previous section:

UCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 . (2.4)

PM is a 3 × 3 diagonal phase matrix and following Mohapatra-Rodejohann’s phase

convention [16] it is given by

PM = (1, eiα, ei(β+δ)), (2.5)
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2.3. CP violating phase invariants

where α and β + δ are the Majorana phases which do not appear in the neutrino→

neutrino oscillation experiments [128, 129]. Regarding the structure of PM matrix,

we would like to mention the following: The advantage of using the above Majorana

phase convention is that for m3 = 0 it is possible to calculate the single existing

Majorana phase α while, for m1 = 0, only the phase difference α − (β + δ) is

calculable. The result will be reversed if we utilize the convention of Ref. [130].

Explicitly, with this convention, a vanishing value of m3 implies, only the phase

difference is calculable, however ifm1 is vanishing it is possible to calculate the existing

Majorana phase. A detailed calculation to evaluate both the Majorana phases in the

context of a general Mν is presented in Ref. [130]. However, if one of the eigenvalue

is zero which is still allowed by the present neutrino experimental data, it is not

possible to calculate individual phases in that case. The above mentioned problem is

successfully resolved in the present work. CP violating effect of Majorana phases in

neutrino→ antineutrino oscillation [24,131,132] and some lepton number violating

(LNV) processes are studied in detail in Ref. [125]. In this work, using the rephasing

invariants constructed out of the neutrino mass matrix elements [19] we determine

the Majorana phases for two different hierarchical cases.

2.3 CP violating phase invariants

Considering the neutrinos as the Majorana fermions in an extended standard model

one can parametrize the UPMNS with the CP violating phases following (2.3) where we

redefine the charged lepton fields by absorbing the unphysical phases of total mixing

matrix U . Hence, in principle the mixing matrix U can be defined as

U ≡ PφUPMNS, (2.6)
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where Pφ is a 3× 3 diagonal phase (unphysical) matrix and is given by

Pφ = diag(eiφ1 , eiφ2 , eiφ3). (2.7)

Now, as the low energy neutrino mass matrix is complex symmetric it can be put into

a diagonal form through the equation

U †MνU
∗ = dν , (2.8)

where

dν = diag(m1,m2,m3). (2.9)

Substituting (2.6) in (2.8) we get

U †PMNSP
†
φMνP

∗
φU
∗
PMNS = dν . (2.10)

Thus Pφ rotates the mass matrix Mν in phase space. Therefore, the rephasing

invariants (remain invariant under phase rotation) of Mν contain the informations

about the CP violating phases. It has been shown explicitly in Ref. [19] that for three

generations of neutrinos, there are three independent rephasing invariants which are

given by

I12 = Im[m11m22m
∗
12m

∗
21];

I23 = Im[m22m33m
∗
23m

∗
32];

I13 = Im[m11m33m
∗
13m

∗
31]; (2.11)

where mαβ is the element of Mν at αβ position with α, β = 1, 2, 3. Now, since the

invariants of (2.11) are independent of phase rotation of Mν , therefore to evaluate

62



2.3. CP violating phase invariants

them in terms of mixing angles, CP violating phases and the eigenvalues we can

rewrite (2.10) as

Mν = UPMNSdνU
T
PMNS, (2.12)

where without any loss of generality we assume φi = 0 which corresponds to the

structure of Pφ given by

Pφ = diag(1, 1, 1). (2.13)

Now writing down (2.12) explicitly one can find the mass matrix elements as

m11 = c2
12c

2
13m1 + s2

12c
2
13m2e

2iα +m3s
2
13e
−2iδ+2i(β+δ), (2.14)

m12 = c13{−m1(c12s12c23 + c2
12s13s23e

iδ)

+m2e
2iα(c12s12c23 − s2

12s13s23e
iδ)}+m3c13s13s23e

−iδ+2i(β+δ), (2.15)

m13 = c13{m1(c12s12s23 − c2
12s13c23e

iδ)

−m2e
2iα(c12s12s23 + s2

12s13c23e
iδ)}+m3c13s13c23e

−iδ+2i(β+δ), (2.16)

m22 = m1(s12c23 + c12s23s13e
iδ)2

+m2e
2iα(c12c23 − s12s23s13e

iδ)2 +m3c
2
13s

2
23e

2i(β+δ), (2.17)

m23 = m1{c12s12s13(c2
23 − s2

23)eiδ + c2
12c23s23s

2
13e

2iδ − s2
12s23c23}

−m2e
2iα{c12s12s13(c2

23 − s2
23)eiδ − s2

12c23s23s
2
13e

2iδ + c2
12s23c23}

+m3c23s23c
2
13e

2i(β+δ), (2.18)

m33 = m1(c12c23s13e
iδ − s12s23)2

+m2e
2iα(s12c23s13e

iδ + c12s23)2 +m3c
2
23c

2
13e

2i(β+δ). (2.19)
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It is now straightforward to calculate I12 and I13 using (2.14) to (2.19). Neglecting

terms O(s2
13) and higher order we obtain I12 and I13 as

I12 = Ac3
23[Bc23 − 2s23s13{c2

12m1Φ1 + s2
12m2Φ2}]

+m2
3c12c

4
13s12c23[−2c2

12s
3
23c

2
13m1s13A1 + 2s3

23c
2
13s

2
12m2s13A2]

+m3c12c
4
13s12c23[s12s

2
23c

2
13m1c

3
12c23A3 + s3

12s
2
23c

2
13m2c12c23A4

−2c4
12s23m1m2c

2
23s13A5 − 2s23m1m2s

4
12c

2
23s13A5 + 2c2

12s23s
2
12s13c

2
23A6

+2c4
12s

3
23c

2
13m

2
1s13A7 + 4 cos(2α)c2

12s
2
23c

2
13m1m2s

2
12s13A7

+2s3
23c

2
13m

2
2s

4
12s13A7], (2.20)

I13 = As3
23[Bs23 + 2c23s13{c2

12m1Φ1 + s2
12m2Φ2}]

−m2
3c12c

4
13s12s23[−2c2

12c
3
23c

2
13m1s13A1 + 2c3

23c
2
13m2s

2
12s13A2]

+m3c12c
4
13s12s23[c3

12c
2
23c

2
13m1s12s23A3 + c12c

2
23c

2
13m2s

3
12s23A4

+2c4
12c23m1m2s

2
23s13A5 + 2c23m1m2s

4
12s

2
23s13A5 − 2c2

12c23s
2
12s13s

2
23A6

−2c4
12c

3
23c

2
13m

2
1s13A7 − 4 cos(2α)c2

12c
3
23c

2
13m1m2s

2
12s13A7

−2c3
23c

2
13m

2
2s

4
12s13A7], (2.21)

where

A = −c12s12m1m2c
4
13, (2.22)

B = sin(2α)c12s12(m2
2 −m2

1), (2.23)

Φ1 = {sin(2α− δ)m1 + sin[δ]m2}, (2.24)

Φ2 = {sin(2α + δ)m2 − sin[δ]m1} (2.25)
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2.3. CP violating phase invariants

and

A1 = sin(δ)m1 + sin(2α− δ)m2,

A2 = sin(δ)m2 − sin(2α + δ)m1,

A3 = sin 2(β + δ)m2
1 + 2 sin(2α− 2β − 2δ)m1m2 − sin(4α− 2β − 2δ)m2

2,

A4 = sin 2(α + β + δ)m2
1 − 2 sin 2(β + δ)m1m2 − sin(2α− 2β − 2δ)m2

2,

A5 = sin(2α− 2β − δ)m1 + sin(2β + δ)m2,

A6 = sin(2β + δ)m3
1 − sin(2α + 2β + δ)m2

1m2 − sin(4α− 2β − δ)m1m
2
2 + sin(2α− 2β − δ),

A7 = sin(2β + δ)m1 + sin(2α− 2β − δ)m2. (2.26)

A careful inspection reveals that the invariants are expressed in a tricky way. To be

more precise, they are written as

Iij = ζ1 + s13ζ2 +m2
3ζ3 +m3ζ4, (2.27)

where ‘ζi’ is some combination of parameter dictated by (2.20) and (2.21). The

reason behind such a way to write down the invariants are the following: the popular

paradigm in the neutrino mass models is to generate vanishing θ13 at the leading order

and thereafter nonzero value of the same is generated by means of some perturbation

to the mass matrix and finally since the oscillation data dictates the mass squared

differences only, there is also a possibility of a vanishing neutrino mass (e.g, models

with scaling ansatz, Zee-Babu model etc.). Therefore one can see the direct impact

of their presence or absence in the measures of CP violation.

The remaining invariant (I23) has a special character; that it vanishes for m3 =

0. The expression for I23 can be written as
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I23 = m3
3c23s23c

2
13B1 +m2

3c23s23c
2
13[2c3

12c
2
13m2s12s13(c2

23 − s2
23)B2

−2c12c
2
13m1s

3
12s13(c2

23 − s2
23)B3] +m3c23s23c

2
13[c6

12c23m
3
2s23B4

+c4
12c23m1m

2
2s

2
12s23B5 + c2

12c
2
23m

2
1m2s

4
12s23B6 + c23m

3
1s

6
12s23B7

−2c5
12m

2
2s12s13(c2

23 − s2
23)B8 − 4 cos(2α)c3

12m1m2s
3
12s13(c2

23 − s2
23)B8]

−2c12m
2
1s

5
12s13(c2

23 − s2
23)B8], (2.28)

where

B1 = sin 2(α− β − δ)c2
12c

2
23c

4
13m2s2 − sin 2(β + δ)c23c

4
13m1s

2
12s23

= Φ1,

B2 = sin(2α− δ)m1 + sin(δ)m2

= −Φ2,

B3 = sin(δ)m1 − sin(2α + δ)m2,

B4 = − sin(2α− 2β − 2δ),

B5 = 2 sin 2(β + δ)− sin(4α− 2β − 2δ),

B6 = −2 sin(2α− β − δ) + sin 2(2α + β + δ),

B7 = sin 2(β + δ),

B8 = sin(2β + δ)m1 + sin(2α− 2β − δ)m2. (2.29)

2.4 The Majorana phases

At the outset, first we would like to mention that the three independent invariants

I12, I13 and I23 stand for the three CP violating phases α, β+δ and δ, however, in this
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section we solve the invariants only for the Majorana phases (α, β+δ) while the Dirac

CP phase δ is calculable from the usual Jarlskog measure of CP violation. Next, for

a general Mν where all the parameters are present and all the eigenvalues and mixing

angles are nonzero, all the invariants are independent and in principle one can extract

the α and β + δ phases without any specific hierarchical assumption which is also

useful for the quasi-degenerate case. However, the calculation is too cumbersome in

this general situation. In the present work we consider a simplified approach assuming

hierarchical structure of neutrino masses and calculate the Majorana phases utilizing

the invariants I12, I13 and I23 for both the hierarchical cases.

• Inverted hierarchy (m2 > m1 >> m3)

Case I: m1,m2,m3 6= 0, θ13 6= 0: Three independent invariants.

In this case utilizing (2.20) and (2.21) the Majorana phase α comes out as

α =
1

2
sin−1

{
− I12s

2
23 + I13c

2
23

c2
23s

2
23c

4
13c

2
12s

2
12m1m2∆m2

�

}
(2.30)

where ∆m2
� = m2

2−m2
1 and we neglect the terms containing m3(mmin) in both

the invariants (I12 and I13). Another equivalent expression of α can also be

obtained from (2.14) (neglecting the term containing m3s
2
13) showing explicit

relationship with ββ0ν decay parameter |m11| as

α =
1

2
cos−1

{ |m11|2
2c2

12s
2
12c

4
13m1m2

− (c4
12m

2
1 + s4

12m
2
2)

2c2
12s

2
12m1m2

}
. (2.31)

In principle we can use any of the equations, (2.30) or (2.31), to find α. The first

one depends upon the explicit construction of I12 and I13 in terms of the neutrino

mass matrix (Mν) elements while the second one requires the knowledge of ββ0ν

decay parameter |m11|.

In order to calculate β + δ from (2.28) the terms involving s13(c2
23 − s2

23) can
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be neglected. Therefore, assuming inverted hierarchy I23 can be approximated

with dominant term as

I23 = m3
2m3c23s23c

2
13c

6
12c23s23B4

= −m3
2m3c

2
23s

2
23c

2
13c

6
12 sin(2α− 2[β + δ]). (2.32)

Reverting the above equation the Majorana phase β + δ is expressed as

β + δ = −1

2
sin−1

{
− I23

m3
2m3c2

23s
2
23c

2
13c

6
12

}
+ α. (2.33)

Case II: m1,m2, θ13 6= 0, m3 = 0: Two independent invariants.

In this case utilizing (2.20), (2.21) and (2.28) the three rephasing invariants

I12, I13 and I23 come out as

I12 = Ac3
23[Bc23 − 2s23s13{c2

12m1Φ1 + s2
12m2Φ2}] (2.34)

= I0
12 − 2Ac3

23s23s13{c2
12m1Φ1 + s2

12m2Φ2}, (2.35)

I13 = As3
23[Bs23 + 2c23s13{c2

12m1Φ1 + s2
12m2Φ2}] (2.36)

= I0
13 + 2As3

23c23s13{c2
12m1Φ1 + s2

12m2Φ2}, (2.37)

I23 = 0, (2.38)

where

I0
12 = ABc4

23, (2.39)

I0
13 = ABs4

23 (2.40)

with A, B already defined in (2.22) and (2.23) respectively. As one of the

invariant vanishes due to the conditionm3 = 0, therefore, the three independent

CP phases can not be solved from the above invariants and thus the two nonzero
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invariants corresponds to one Majorana phase (α) and the Dirac CP phase (δ) as

β + δ vanishes for m3 = 0. Proceeding as previous we get the same expression

for the Majorana phase α as given in (2.31). Furthermore, solving (2.34) to

(2.36) an equivalent expression of α, same as (2.30) is also obtained.

Case III: m1,m2 6= 0, m3, θ13 = 0: One independent invariant.

In this case the invariants given in (2.34), (2.36) and (2.38) become

I12 = I0
12, (2.41)

I13 = I0
13 (2.42)

and

I23 = 0. (2.43)

It is amply clear that the first two invariants I12 and I13 are not independent

of each other and their correlated relationship leads to the estimation of only

one Majorana phase α while the information about the Dirac CP phase is lost.

Similarly one can calculate the invariants for a normal mass hierarchy in the

following way as demonstrated below.

• Normal hierarchy (m3 >> m2 > m1)

Case I: m1,m2,m3 6= 0, θ13 6= 0: Three independent invariants.

In this case since m1 = mmin and m3 >> m2 > m1, we simplify I12 and I13 as

I12 = κ sin(2α− 2[β + δ]) + ηs13s
2
23 sin[δ],

I13 = κ sin(2α− 2[β + δ])− ηs13c
2
23 sin[δ], (2.44)

where the parameters κ and η are defined through the equations
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κ = −c2
12c

2
23c

6
13m

3
2m3s

4
12s

2
23, (2.45)

η = 2c12c23c
6
13m

2
2m

2
3s

3
12s23. (2.46)

Now from (2.44) we get

sin(2α− 2[β + δ]) =

{
c2

23I12 + s2
23I13

κ

}
= Γ. (2.47)

Again due to the hierarchical condition m3 >> m2 > m1, I23 can be

approximated as

I23 ' m3
3c23s23B1

= m3
3c23s23[sin(2α− 2[β + δ])c2

12c23c
4
13m2s2

− sin 2(β + δ)c23c
4
13m1s

2
12s23]. (2.48)

Inserting (2.47) in (2.48) we get

β + δ =
1

2
sin−1

{
m2

m1

ct212Γ− I23

m3
3m1c2

23s
2
23s

2
12c

6
13

}
, (2.49)

where ct12 ⇒ cot θ12.

It is now straight forward to calculate the other Majorana phase α from (2.47)

and it comes out as

α =
sin−1 Γ + 2(β + δ)

2
. (2.50)
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Case II: m2,m3, θ13 6= 0, m1 = 0: Two independent invariants.

In this case neglecting terms like s2
13 and s13(c2

23− s2
23) in I23 only the Majorana

phase difference (α− [β + δ]) is calculable and is given by

α− [β + δ] =
1

2
sin−1

{
I23m

2
2s

4
12

−κm2
3

}
(2.51)

along with an explicit relationship between the three invariants as

I23

c2
23I12 + s2

23I13

' − m2
3

m2
2 sin4 θ12

. (2.52)

Therefore, essentially we get two independent invariants corresponding to the

Majorana phase difference and the Dirac CP phase.

Case III: m2,m3 6= 0, m1, θ13 = 0: One independent invariant.

In such a condition the three invariants come out in a correlated manner as

I12 = κ sin 2(α− [β + δ])

= − sin 2(α− [β + δ])c2
12c

2
23s

2
23c

6
13s

4
12m

3
2m3

= I13,

I23 = sin 2(α− [β + δ])c2
12c

2
23s

2
23c

6
13m2m

3
3

=

(
−m

2
3

m2
2

s−4
12

)
I12

=

(
−m

2
3

m2
2

s−4
12

)
I13. (2.53)

In this case only independent invariant I12 is connected to the Majorana phase

difference (α− [β + δ]).

• Quasi-degenerate case

Although in the present work we are not discussing the quasi-degenerate case

which is relevant in the cosmological context [133], however, one can calculate
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the Majorana phases in a model independent way by directly solving the

invariants as mentioned at the beginning of Sec.2.4. To be precise, using (2.20),

(2.21) and (2.28) one can extract all the CP violating phases without any

hierarchical assumption. However, the calculation is tedious and will be studied

elsewhere. Another alternative way is to follow the calculations presented in

Ref. [130] in which the phase convention is different. However, utilizing the

phase convention presented in this work one can also calculate all the phases

following the method presented in Ref. [130].

2.5 Numerical estimation

This section is devoted to the discussion on a numerical estimation of our methodology

in a general context, taking all the available constraints from the oscillation data, sum

of the the light neutrino masses and neutrino-less double beta decay and a proposed

technique (within textbook yet) for the measurement of the Majorana phase.

• Parametrization, diagonalization and the ranges of the Majorana

phases

A general solution for a three generation complex symmetric Majorana mass

matrix is given in Ref. [130]. In order to estimate the Majorana phases obtained

in the present work we utilize the expressions of the three eigenvalues and the

three mixing angles. Unlike the oscillation data presented in Chapter.1, here

we use a data set, older a bit than the said one [31] and the upper limits on

the sum of the neutrino masses (Σimi(= m1 + m2 + m3) < 0.23 eV) [20] and

the ββ0ν parameter (|m11| < 0.35 eV) [25] to obtain model independent ranges

of the Majorana phases. We consider a most general 3× 3 complex symmetric
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neutrino mass matrix Mν as

Mν =


P Q R

Q S T

R T V

 (2.54)

with all parameter complex. Mν can further be parametrized as

Mν = m0e
iαm


1 xeiαx yeiαy

xeiαx zeiαz weiαw

yeiαy weiαw veiαv

 , (2.55)

where P = m0e
iαm , Q/P = xeiαx , R/P = yeiαy , S/P = zeiαz , T/P =

weiαw , V/P = veiαv . We can now give a phase rotation to the matrix of (2.55)

by a diagonal phase matrix K = diag (eiφ1 , eiφ2 , eiφ3) as

M ′
ν = KTMνK (2.56)

and consequently the rotated matrix comes out with 9 parameters as

M ′
ν = m0


1 x y

x zeiΩ1 weΩ2

y weiΩ2 veiΩ3

 (2.57)

where x, y, z, w are the real parameters and the other parameters are defined

as

Ω1 = αz − 2αx,Ω2 = αw − αx − αy,Ω3 = αv − 2αy (2.58)

73



Chapter. Evaluation of the Majorana phases

and

φ1 = −αm
2
, φ2 = −(αx −

αm
2

), φ3 = −(αy −
αm
2

). (2.59)

Now using (2.11) we can explicitly calculate the rephasing invariants in terms

of the elements of M ′
ν . It is to be noted, that in the general case the number

of parameters are 9 and we have only 7 experimental inputs. However, among

the 9 parameters there are three angle parameters (Ω1, Ω2 and Ω3). We set the

values of these angle parameters in an arbitrary manner within the range 0−2π

and vary the other parameters in a wide range to estimate the overall ranges

of the Majorana phases which are depicted in Fig.2.1. We first constrain the

rephasing invariants which in turn generate the correlated plot of the Majorana

phases. The correlation between the phases are the consequences of (2.50) and

(2.33) respectively.

Figure 2.1: Plots of the Majorana phases (α vs β + δ) for normal (left) and inverted

(right) hierarchies .

Upon numerical estimation, the model independent ranges for α and β+δ come

out as −90o < α < 90o and −71o < β + δ < 71o for normal hierarchy (m1 6= 0,

θ13 6= 0) and −45o < α < 45o, −70o < β + δ < 700 for inverted hierarchy
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(m3 6= 0, θ13 6= 0) and are shown explicitly in Fig.2.1. For m3 = 0 case, the

range of α is obtained as −45o < α < 45o and for the case m1 = 0, the phase

difference is constrained as −82o < α − [β + δ] < 82o. We also present the

parameter ranges in Table 2.1.

Table 2.1: Parameter ranges for a phenomenologically viable Mν .

Hierarchies ↓ m0 × 103 x y z w v

NH : m1 6= 0 0.24− 1.7 0.15− 3.7 0.15− 4.6 0.14− 9.5 0.1− 8.6 0.13− 8.4

NH : m1 = 0 0.2− 1.2 0.1− 3.2 0.14− 4.7 0.09− 7.5 0.09− 8 0.11− 8.1

IH : m3 6= 0 0.12− 1.8 0.5− 3.5 0.5− 3.47 0.1− 2.6 0− 1.8 0− .4

IH : m3 = 0 0.11− 1.4 0.1− 3 0.2− 3.4 0− 2.4 0− 1.7 0− 2.4

• Connection to the physical observables and future of the Majorana

phases

As previously mentioned, unlike the Dirac CP phase δ, the Majorana phases do

not appear in the neutrino→neutrino oscillation. Therefore, a natural question

arises how and where these phases can be measured. As a direct detection,

in Ref. [24] Xing has suggested a thought experiment (neutrino→ antineutrino

oscillation) in which it has been pointed out that these phases may appear in the

probability expression of the favour oscillation and thus also in the expression

of the CP asymmetry parameter Aαβ which is the measure of CP violation.

However, this kind of experiment is purely academic at this moment and

practically difficult to design as the oscillation probability is highly suppressed

by the factor m2
i /E

2, where mi is the mass of the light neutrino and E is the

beam energy. Now considering E ∼ MeV and the masses of the neutrinos to be

less than 1 eV, one can calculate m2
i /E

2 to be O(10−12). To improve mi/E, a

novel suggestion [24, 125] is to lower the value of E, however, in that case the
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estimated size of the base line length and the detector are beyond the reach of

the present experimental facilities.

Figure 2.2: Plots of the Majorana phases (α, β + δ) vs |m11| for normal (left) and

inverted (right) hierarchies for best fit values of ∆m2
21.

But from an optimistic point of view we expect these kind of experiments will be

designed in future and thus the prediction of the Majorana phases will be tested.

Beside neutrino→ antineutrino oscillation there are several LNV processes like

ββ0ν decay, ∆++ → l+α l
+
β (in Type II seesaw model) [125] etc., which play a

crucial role for the indirect measurement of the Majorana phases.

Now coming into our work, we present a table in the appendix which shows the

ranges of the obtained Majorana phases for some typical values of |m11| and for

convenience, in Fig.2.2 we present variation of the Majorana phases with |m11|
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for the best fit value of ∆m2
21 and taking all the other constraints in their 3σ

ranges for both the hierarchies. We would like to mention that even if we take

the 3σ range of ∆m2
21, over all ranges of the Majorana phases do not differ much,

however, unlike the plots of Fig.2.2, the plots in that case become more wide for

the larger values of |m11| (> 0.08 eV). Although, the present experimental upper

bound on |m11| is 0.35 eV, NEXT will be able to bring down the value to 0.1

eV and thus the approximate ranges of the Majorana phases can be predicted.

Thus far we have estimated the Majorana phases in a general context. Latter, we

apply the expressions obtained for α and β+ δ for few testable flavor models (models

with lesser number of parameters) as an application of the general result although

our analysis is true for any hierarchical model of neutrino masses.

2.6 Some testable flavor models

The reason we discuss this section is to make certain whether the results obtained in

the general case are consistent with the other models or not. Moreover, the models

with certain flavor symmetries are highly predictive in nature. Therefore, precise

measurement of the CP violating phases might act as an important tool to verify the

testability of the flavor models [134]. In inverted hierarchy section we present a model

with scaling ansatz and texture zeros within the framework of inverse seesaw through

which all the sub cases presented in Sec.2.4 can be realized while in the normal

hierarchy section we present a model with cyclic symmetry within the framework

of Type-I seesaw. Obviously the choices are for illustration. One can also consider

inverse or linear seesaw for normal hierarchy [135,136] and Type I seesaw for inverted

hierarchy [137]. In principle one can use the technique in any hierarchical flavor

models.
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The above numerical results are obtained for the general Mν where all the 9

independent parameters are present. However, as previously said, one can reduce the

number of parameters by invoking some symmetry or ansatz in the Lagrangian which

is more predictive in nature and thus testable in the experiments. In this section we

provide applications of the general results in few typical cases for both the hierarchies,

normal and inverted.

2.6.1 Normal hierarchy

In this case we explore a model that corresponds to Case I of the normal hierarchical

scenario mentioned in Sec.(2.4). The model is based on cyclic symmetry on the left-

chiral neutrino fields within the framework of Type-I seesaw mechanism. Inspired by

the models of Harrison et. al. [138] and later Wolfenstein et. al. [139], we have taken

advantage of this symmetry to reduce the number of parameters in the effective

light neutrino mass matrix. In the fundamental level the symmetry exists in the

neutrino sector of the Lagrangian and due to this symmetry a degeneracy in masses

occurs removal of which therefore requires breaking of the symmetry. It is shown

that a minimal breaking in the Majorana mass matrix is sufficient to fit the extant

data. In this model the low energy broken symmetric Majorana type mass matrix

Mν(= −mDM
−1
R mT

D) originated from Type-I seesaw mechanism is given by Mν =

m0


p2e2iα + q2e2iβ

1+
ε1
m

+ 1
1+

ε2
m

peiα + pqei(α+β)

1+
ε1
m

+ qeiβ

1+
ε2
m

peiα

1+
ε2
m

+ pqei(α+β) + qeiβ

1+
ε1
m

peiα + pqei(α+β)

1+
ε1
m

+ qeiβ

1+
ε2
m

1 + p2e2iα

1+
ε1
m

+ q2e2iβ

1+
ε2
m

peiα

1+
ε1
m

+ pqei(α+β)

1+
ε2
m

+ qeiβ

peiα

1+
ε2
m

+ pqei(α+β) + qeiβ

1+
ε1
m

peiα

1+
ε1
m

+ pqei(α+β)

1+
ε2
m

+ qeiβ p2e2iα

1+
ε2
m

+ q2e2iβ + 1
1+

ε1
m

 ,(2.60)

where

MR = diag(m+ ε1,m+ ε2,m), (2.61)
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mD =


y1 y2 y3

y3 y1 y2

y2 y3 y1

 . (2.62)

Here ε1 and ε2 are the breaking parameters while the other parameters are defined as

m0 = −y
2
3

m
, peiα =

y1

y3

, qeiβ =
y2

y3

. (2.63)

Figure 2.3: Correlation of α vs β + δ.

For numerical analysis we choose the mass scale of MR to be of the order of 1015 GeV

and mD to be at electroweak scale. Further redefining the breaking parameters as

ε′1 = ε1
m

and ε′2 = ε2
m

we allow them to vary in between −0.1 < ε′1, ε
′
2 < 0.1 to keep the

effect of symmetry breaking small. We then constrain the parameter space by taking

into account the 3σ ranges of neutrino oscillation global fit data and explicitly
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Figure 2.4: Variation of α and β + δ with |m11| for cyclic symmetric case (normal

hierarchy).

Figure 2.5: Correlated plots of the rephasing invariants, I12 vs I23 (left) and I13 vs

I23 (right).

evaluate both the Majorana phases. From Fig.2.3 the ranges read as −77.2o < α <

76.7o and −45.3o < β + δ < 45.5o. Note that the ranges of both the phases are

embedded within the values obtained for the general case. Similar to the general

case, in Fig.2.4 we also present the variation of the Majorana phases with the ββ0ν

parameter. One can see the upper limit of |m11| is ∼ 0.07 eV which is well within the

reach of the future planned experiments.
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Although the rephasing invariants are not physically measurable quantity, they

are crucial for the computation of the CP violating phases. Since the model consists

of lesser number of parameters, we also expect a significant correlation between the

phase invariants which are depicted in Fig.2.5.

2.6.2 Inverted hierarchy

In this case, we explore a model based on scaling ansatz with inverse seesaw

mechanism [69, 140–150] . In the next chapter we explore this model with much

more detailed descriptions. In this mechanism Mν is given by

Mν = mDM
−1
RSµ(mDM

−1
RS)T , (2.64)

where mD is the usual Dirac type matrix and the other two matrices µ (Majorana

type) andMRS (Dirac type) arise due to the interaction between the additional singlet

fermion and right handed neutrino considered in this type of seesaw mechanism. To

further reduce the number of parameters texture zeros [136,137,151–176] are assumed

in the constituent mD and µ matrices. Scaling ansatz invariance dictates m3 = 0 and

θ13 = 0 and this case corresponds to Case III of Sec.2.4. Thus to generate non zero

θ13 breaking of the ansatz is necessary. Incorporating breaking in mD through a small

parameter ε, there are two different phenomenologically survived textures which are

given by

M1
ν = m0


1 k1p p

k1p k2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

+m0ε


0 0 0

0 2k2
1q

2eiθ k1q
2eiθ

0 k1q
2eiθ 0


(2.65)
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and

M2
ν = m0


1 k1(p+ qeiθ) p+ qeiθ

k1(p+ qeiθ) k2
1(2pqeiθ + p2) k1(2pqeiθ + p2)

p+ qeiθ k1(2pqeiθ + p2) (2pqeiθ + p2)



+m0ε


0 k1qe

iθ 0

k1qe
iθ 2k2

1pqe
iθ k1pqe

iθ

0 k1pqe
iθ 0

 , (2.66)

where all the parameters are complex [13]. In both the cases θ13 6= 0 however, m3 = 0

due to singular nature of µmatrix and this case corresponds toCase II in the inverted

hierarchy part of Sec.2.4. We further consider the most general version of the above

case through the breaking of the ansatz in both mD and µ matrices through two small

parameters ε and ε′ respectively and the neutrino mass matrix m3
ν comes out as

m3
ν = m0


1 k1p p

k1p k2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

+m0ε


0 0 0

0 2k2
1q

2eiθ k1q
2eiθ

0 k1q
2eiθ 0



+m0ε
′


0 k1p p

k1p 0 0

p 0 0

 .(2.67)

In this case both θ13 and m3 are nonzero and that corresponds to Case I (inverted) of

Sec.2.4. Thus the whole inverted hierarchical sector is generated through the choice

of the above model. Now, with explicit construction of the rephasing invariants we

calculate the Majorana phases in each case. Interestingly, for all the cases, the value of

JCP comes out very small due to smallness of the Dirac CP phase δ, or more precisely,

due to almost real nature of the mass matrices. Therefore, such typical nature of the
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mass matrices also constrain the Majorana phases approximately as −1.2o < α < 0.8o

for the first two matrices (M1
ν and M2

ν ) and −0.17o < α < 0.17o,−1.5o < β+ δ < 1.5o

for the matrix M3
ν along with an approximate range of ββ0ν decay parameter |m11|

as 0.01 eV < |m11| < 0.0148 eV and 0.01 eV < |m11| < 0.0152 eV respectively.

Figure 2.6: Correlation plot of α vs β + δ (upper panel) and variation of α and β + δ

with |m11| for inverted hierarchy : scaling ansatz case (lower panel).

As an illustration, in Fig.2.6 we plot α and β + δ with |m11| for M3
ν . For other

two matrices (M1
ν and M2

ν ) the variation of α with |m11| is almost same as that of

the extreme left plot of the lower panel of Fig.2.6. The model is highly predictive and

hence, if significant CP violation is observed, the model will be ruled out. We plot

the correlation between the invariants in Fig.2.7.
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Figure 2.7: Correlated plots of the rephasing invariants, I12 vs I23 (left) and I13 vs

I23 (right).

Table 2.2: Summary of the numerical results.

General case Cyclic symmetry Scaling ansatz

Hierarchies → NH IH NH IH IH

Cases → m1 6= 0

θ13 6= 0

m3 6= 0

θ13 6= 0

m1 6= 0 θ13 6= 0 m3 6= 0

θ13 6= 0

m3 = 0

θ13 6= 0

α (deg.) −90− 90 −45− 45 −77.2− 76.7 −0.17 −

0.17

−1.2− 0.8

β + δ (deg.) −71− 71 −70− 70 −45.3− 45.5 −1.5− 1.5 absent

Finally, we summarize our results in Table 2.2 that shows the ranges of the

Majorana phases for all the cases.
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2.7 Summary

In this chapter we have presented a methodology for the evaluation of the Majorana

phases of a general complex symmetric 3 × 3 neutrino mass matrix utilizing the

three rephasing invariant quantities I12, I13 and I23 proposed by Sarkar and Singh.

Using Mohapatra-Rodejohann’s phase convention, we explore both the hierarchical

structures of the light neutrinos. Motivation behind the usage of the invariants to

calculate the Majorana phases is that such a methodology enables us to evaluate

the existing Majorana phase even if one of the eigenvalue (m3) is zero in a model

independent way. However, if m1 = 0, this methodology only enables us to calculate

the difference between the Majorana phases. Following the presentation of the

generalized prescription, we have further estimated the maximal allowed ranges of

the Majorana phases in a general context for both the hierarchical structures of the

light neutrinos and have shown that our methodology is applicable for any model

except the case of quasi degeneracy in light neutrino masses. We have also studied

the connection of the Majorana phases with physical observables like ββ0ν decay

parameter |m11| and the branching ratios of charged Higgs (∆++) decay where these

phases appear. As a direct measurement of the Majorana phases we have given

the example of neutrino→ antineutrino oscillation which is a thought experiment

right now, however, well studied in the literature. After discussing the general

case we have further exemplified our methodology in two testable models (models

with lesser number of parameters) leading to a normal and an inverted hierarchy

respectively. For a normal hierarchical case, we have given an example of a model

based on cyclic symmetry with Type-I seesaw mechanism. We have then estimated

the Majorana phases for the broken symmetric case, since cyclic symmetry dictates

a degeneracy in the mass eigenvalues. As an example of inverted hierarchy, we

have cited a model comprised of scaling ansatz, texture zeros and inverse seesaw
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mechanism. It has been observed that all the sub cases belonging to inverted

hierarchy (Sec.2.4) can be tested depending upon the scheme of incorporation of

ansatz breaking mechanism while a phenomenologically viable sub case (m1 = 0)

of the normal hierarchy is yet to be established through the choice of a suitable model.
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Scaling ansatz, Cyclic symmetry and

texture zeros in inverse seesaw

3.1 Introduction

Among the variants of the seesaw mechanism, inverse seesaw [69, 71, 135, 140–143,

147–150, 177, 178] stands out as an attractive one due to its characteristic feature of

generation of small neutrino mass without invoking high energy scale in the theory.

Although to realize such feature one has to pay the price in terms of incorporation of

additional singlet fermions, nevertheless, in different GUT models accommodation of

such type of neutral fermions are natural. Furthermore, such mechanism appeals to

the foreseeable collider experiments to be testified due to its unique signature. The

9× 9 neutrino mass matrix in this mechanism is written as

Mν =


0 mD 0

mT
D 0 MRS

0 MT
RS µ

 (3.1)
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with the choice of basis (νL, ν
c
R, SL). The three matrices appear in Mν are mD, MRS

and µ among them mD and MRS are Dirac type whereas µ is Majorana type mass

matrix. After diagonalization, the low energy effective neutrino mass comes out as

Mν = mDM
−1
RSµ(mDM

−1
RS)T

= FµF T (3.2)

where F = mDM
−1
RS . Such definition resembles the above formula as a conventional

type-I seesaw expression of Mν . However, this general mν contains large number

of parameters and it is possible to fit them with neutrino oscillation experimental

data [31,179,180] (but the predictability is less). Our goal in this work is to find out a

phenomenologically viable texture of mD and µ with minimum number of parameters

or equivalently maximum number of zeros. We bring together two theoretical ideas

to find out a minimal texture and they are

i) Scaling ansatz [137,151–155,181,182],

ii) Texture Zeros [4, 156,157,159,164–171,173].

At the outset of the analysis, we choose a basis where the charged lepton mass

matrix (mE) and MRS are diagonal along with texture zeros in mD and µ matrices.

We also start by assuming the scaling property in the elements of mD and µ to reduce

the number of relevant matrices. Although, we are not addressing the explicit origin

of such choice of matrices, however, qualitatively we can assume that this can be

achieved due to some flavour symmetry [183] which is required to make certain that

the texture zeros appear in mD and µ are in the same basis in which mE and MRS

are diagonal. We restrict ourselves within the frame work of SU(2)L × U(1)Y gauge

group however, explicit realization of such scheme obviously more elusive which will

be studied elsewhere.
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3.2 Scaling property and texture zeros

We consider scaling property between the second and third row of mD matrix and

the same for µ matrix also. Explicitly the relationships are written as

(mD)2i

(mD)3i

= k1, (3.3)

(µ)2i

(µ)3i

= k2, (3.4)

where i = 1, 2, 3 is the column index. We would like to mention that although we

have considered different scale factors for mD and µ matrices, however, the effective

Mν is still scale invariant and leads to θ13 = 0. Thus, it is obvious to further break

the scaling ansatz. In order to generate nonzero θ13 it is necessary to break the ansatz

in mD since, breaking in µ does not affect the generation of nonzero θ13 although in

some cases it provides m3 6= 0. In our scheme texture zero format is robust and it

remains intact while the scaling ansatz is explicitly broken. Such a scenario can be

realized by considering the scaling ansatz and texture zeros to have a different origin.

Another point is to be noted that, since the µ matrix is complex symmetric

whereas mD is asymmetric, the scale factor considered in µ matrix is different from

that of mD to keep the row wise invariance as dictated by (3.3) (for mD), and (3.4)

(for µ). Finally, since the texture of MRS matrix is diagonal it is not possible to

accommodate row wise scaling ansatz.

Let us further constrain the matrices assuming texture zeros in different entries.

Since, in our present scheme the matrix MRS is diagonal, we constrain the other two

matrices. We start with the maximal zero textures with scaling ansatz of general

3× 3 matrices and list different cases systematically in Table 3.1.
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Table 3.1: Texture zeros with scaling ansatz of a general 3× 3 matrix

7 zero texture

m7
1 =


0 0 0

k1c1 0 0

c1 0 0

 m7
2 =


0 0 0

0 k1c2 0

0 c2 0

 m7
3 =


0 0 0

0 0 k1c3

0 0 c3


6 zero texture

m6
1 =


d1 0 0

k1c1 0 0

c1 0 0

 m6
2 =


0 d2 0

k1c1 0 0

c1 0 0

 m6
3 =


0 0 d3

k1c1 0 0

c1 0 0



m6
4 =


d1 0 0

0 k1c2 0

0 c2 0

 m6
5 =


0 d2 0

0 k1c2 0

0 c2 0

 m6
6 =


0 0 d3

0 k1c2 0

0 c2 0



m6
7 =


d1 0 0

0 0 k1c3

0 0 c3

 m6
8 =


0 d2 0

0 0 k1c3

0 0 c3

 m6
9 =


0 0 d3

0 0 k1c3

0 0 c3


5 zero texture

m5
1 =


0 0 0

k1c1 k1c2 0

c1 c2 0

 m5
2 =


0 0 0

k1c1 0 k1c3

c1 0 c3

 m5
3 =


0 0 0

0 k1c1 k1c3

0 c1 c3



m5
4 =


d1 d2 0

k1c1 0 0

c1 0 0

 m5
5 =


0 d2 d3

k1c1 0 0

c1 0 0

 m5
6 =


d1 0 d3

k1c1 0 0

c1 0 0



m5
7 =


d1 d2 0

0 k1c2 0

0 c2 0

 m5
8 =


0 d2 d3

0 k1c2 0

0 c2 0

 m5
9 =


d1 0 d3

0 k1c2 0

0 c2 0


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m5
10 =


d1 d2 0

0 0 k1c3

0 0 c3

 m5
11 =


0 d2 d3

0 0 k1c3

0 0 c3

 m5
12 =


d1 0 d3

0 0 k1c3

0 0 c3


4 zero texture

m4
1 =


d1 0 0

0 k1c2 k1c3

0 c2 c3

 m4
2 =


0 d2 0

0 k1c2 k1c3

0 c2 c3

 m4
3 =


0 0 d3

0 k1c2 k1c3

0 c2 c3



m4
4 =


d1 0 0

k1c1 0 k1c3

c1 0 c3

 m4
5 =


0 d2 0

k1c1 0 k1c3

c1 0 c3

 m4
6 =


0 0 d3

k1c1 0 k1c3

c1 0 c3



m4
7 =


d1 0 0

k1c1 k1c2 0

c1 c2 0

 m4
8 =


0 d2 0

k1c1 k1c2 0

c1 c2 0

 m4
9 =


0 0 d3

k1c1 k1c2 0

c1 c2 0



m4
10 =


d1 d2 d3

k1c1 0 0

c1 0 0

 m4
11 =


d1 d2 d3

0 k1c2 0

0 c2 0

 m4
12 =


d1 d2 d3

0 0 k1c3

0 0 c3



We consider all the matrices1 listed in Table 3.1 as the Dirac type matrices(mD).

As the lepton number violating mass matrix µ is complex symmetric, therefore, the

maximal number of zeros with scaling invariance is 5. Therefore, only m5
3 and m5

5

type matrices can be made complex symmetric with the scaling property and are

shown in Table 3.2 where they are renamed as µ5
1 and µ5

2 with a different scale factor

k2. Now using (3.2) we can construct Mν and it is found that all the mass matrices

constructed out of these matrices are not suitable to satisfy the neutrino oscillation

data. The reason goes as follows:

1From now on we use mn as a mass matrix where n(= 4, 5, 6, 7) is the number of zeros in that
matrix.
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Chapter. Scaling ansatz, Cyclic symmetry and texture zeros in inverse seesaw

Table 3.2: Maximal zero texture of µ matrix

µ5
1 =

0 0 0
0 k2

2s3 k2s3

0 k2s3 s3

 µ5
2 =

 0 k2s3 s3

k2s3 0 0
s3 0 0



Case A: mD (7, 6 zero) + µ5
1, µ5

2 (5 zero):

We can not generate nonzero θ13 by breaking the scaling ansatz because in this case

all the structures of mD are scaling ansatz invariant. This can be understood in the

following way: if we incorporate scaling ansatz breaking by k′1 → k1(1 + ε) all the

structures of mD are still invariant and Mν matrix will still give θ13 = 0 as breaking

of scaling in µ5
1 and µ5

2 plays no role for the generation of nonzero value of θ13. To

generate nonzero θ13 it is necessary to break scaling ansatz in the Dirac sector.

Case B: mD (5 zero) + µ5
1, µ5

2 (5 zero):

The matrices in the last three rows (m5
4 to m5

12) of the ‘5 zero texture’ part of Table

3.1 are ruled out due to the same reason as mentioned in Case A while, the matrices

in the first row i.e. m5
1, m5

2 and m5
3 give rise to the structure of Mν as

A1 =


0 0 0

0 ∗ ∗

0 ∗ ∗

 (3.5)

where ‘∗’ represents some nonzero entries in Mν . This structure leads to complete

disappearance of one generation. Moreover it has been shown in Ref. [156] that if

the number of independent zeros in an effective neutrino mass matrix (Mν) is ≥ 3 it

doesn’t favour the oscillation data and hence, ‘A1’ type mass matrix is ruled out.

Case C: mD (4 zero) + µ5
1 (5 zero):

There are 12 mD matrices with 4 zero texture and they are designated as m4
1,...m4

12 in
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3.2. Scaling property and texture zeros

Table 3.1. Due to the same reason as discussed in Case A, m4
10, m4

11 and m4
12 are not

considered. Furthermore, Mν arises through m4
1, m4

4 and m4
7 also correspond to the

‘A1’ type matrix (shown in (3.5)) and hence are also discarded. Finally, remaining

six mD matrices m4
2, m4

3, m4
5, m4

6, m4
8 and m4

9 lead to the structure of Mν with two

zero eigenvalues.

Case D: mD (4 zero) + µ5
2 (5 zero):

In this case, for m4
2 and m4

3 the low energy mass matrixMν comes out as a null matrix

while for m4
1 the structure of Mν is given by

A2 =


0 ∗ ∗

∗ 0 0

∗ 0 0

 (3.6)

which is also neglected since the number of independent zeros ≥ 3.

On the other hand rest of the mD matrices ( m4
4 to m4

9 ) correspond to the structure

of Mν as

A3 =


0 ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

 . (3.7)

Interestingly, a priori we cannot rule out the matrices of type A3, however it is

observed that Mν of this type fails to generate θ13 within the present experimental

bound (details are mentioned in section (3.6.2)). It is also observed that in this

scheme to generate viable neutrino oscillation data, four zero texture of both mD and

µ matrices are necessary. Therefore, let’s now discuss extensively the 4 zero texture

in both the matrices, mD and µ.
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Chapter. Scaling ansatz, Cyclic symmetry and texture zeros in inverse seesaw

3.3 4 zero texture

There are 126 ways to choose 4 zeros out of 9 elements of a general 3 × 3 matrix.

Hence there are 126 textures. Incorporation of scaling ansatz leads to a drastic

reduction to only 12 textures as given in the Table 3.1. In our chosen basis since

MRS is taken as diagonal, therefore, the structure of mD leads to the same structure

of F . On the other hand the lepton number violating mass matrix µ is complex

symmetric and therefore from the matrices listed in Table 3.1, only m4
1 and m4

10

type matrices are acceptable. We renamed those matrices as µ4
1 and µ4

2 and explicit

structures of them are presented in Table 3.3.

Table 3.3: Four zero texture of µ matrix

µ4
1 =

r1 0 0
0 k2

2s3 k2s3

0 k2s3 s3

 µ4
2 =

 r1 k2s3 s3

k2s3 0 0
s3 0 0



There are now 2 × 12 = 24 types of Mν due to both the choices of µ matrices. We

discriminate different types of mD matrices in the following way:

i) First of all, the texture m4
10, m4

11 and m4
12 are always scaling ansatz invariant due

to the same reason mentioned earlier in Case A and hence are all discarded.

Next the matrices m4
1, m4

2 and m4
3 are also ruled out due to the following:

a) When µ4
1 matrix is taken to generate Mν along with m4

1, m4
2 and m4

3 as the Dirac

matrices, then the structure of the effective Mν appears such that, one generation is

completely decoupled thus leading to two mixing angles zero for the matrix m4
1 and

two zero eigenvalues in addition, when we consider m4
2 and m4

3 matrices.
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3.3. 4 zero texture

b) In case of µ4
2 matrix, the form of Mν for m4

1 comes out as

A4 =


∗ ∗ ∗

∗ 0 0

∗ 0 0

 (3.8)

which is phenomenologically ruled out. For other two matrices (m4
2 and m4

3), Mν

becomes a null matrix. For a compact view of the above analysis we present the ruled

out and survived structures of Mν symbolically in Table 3.4.

Table 3.4: Compositions of the discarded and survived structures of Mν

mD

µ m4
1 m4

2 m4
3 m4

4 m4
5 m4

6 m4
7 m4

8 m4
9 m4

10 m4
11 m4

12

µ4
1 × × × X X X X X X × × ×

µ4
2 × × × X X X X X X × × ×

Thus we are left with same six textures of mD for both the choices of µ and they are

renamed in Table 3.5 as m4
D1, m4

D2, .... m4
D6
. It is clear that the above analysis leads

Table 3.5: Four zero textures of the Dirac mass matrices

m4
D1 =

 d1 0 0
k1c1 0 k1c3

c1 0 c3

 m4
D2 =

 0 d2 0
k1c1 0 k1c3

c1 0 c3

 m4
D3 =

 0 0 d3

k1c1 0 k1c3

c1 0 c3


m4
D4 =

 d1 0 0
k1c1 k1c2 0
c1 c2 0

 m4
D5 =

 0 d2 0
k1c1 k1c2 0
c1 c2 0

 m4
D6 =

 0 0 d3

k1c1 k1c2 0
c1 c2 0



to altogether 12 effective Mν matrices arising due to six mD (m4
D1 to m4

D6) and two

µ (µ4
1 and µ4

2) matrices.
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3.4 Parametrization

Depending upon the composition of mD and µ we subdivide those 12 Mν matrices

in four broad categories and each category is again separated in few cases and the

decomposition is presented in Table 3.6 and Table 3.7.

Table 3.6: Different composition of mD and µ1 matrices to generate Mν .

Category A Category B

Matrices IA IIA IB IIB IIIB IVB

mD m4
D2 m4

D6 m4
D1 m4

D3 m4
D4 m4

D5

µ µ4
1 µ4

1 µ4
1 µ4

1 µ4
1 µ4

1

Table 3.7: Different composition of mD and µ2 matrices to generate Mν .

Category C Category D

Matrices IC IIC ID IID IIID IVD

mD m4
D1 m4

D4 m4
D2 m4

D3 m4
D5 m4

D6

µ µ4
2 µ4

2 µ4
2 µ4

2 µ4
2 µ4

2

Throughout our analysis we consider MRS to be diagonal and is form MRS =

diag (p1, p2, p3). Following (3.2), the Mν matrix arises in Category A and Category

B can be written in a generic way as

MAB
ν = m0


1 k1p p

k1p k2
1(q2 + p2) k1(q2 + p2)

p k1(q2 + p2) (q2 + p2)

 (3.9)
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with the definition of parameters as following

Set IA : m′0 =
d2

3s3

p2
3

, p′ =
p3c2

p2d3

, q′ =
c1p3

d3p1

√
r1

s3

,m0 = m′0, p = k2p
′, q = q′,

Set IIA : m′0 =
d2

2s3

p2
2

, p′ =
p2c2

p3d2

, q′ =
c1p2

d2p1

√
r1

s1

,m0 = m′0k
2
2, p =

p′

k2

, q =
q′

k2

,

Set IB : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1

, q′ =
c3p1

d1p3

√
s3

r1

,m0 = m′0, p = p′, q = q′,

Set IIB : m′0 =
d2

3s3

p2
3

, p′ =
c3

d3

, q′ =
c1p3

d3p1

√
r1

s1

,m0 = m′0, p = p′, q = q′,

Set IIIB : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1

, q′ =
c2p1

d1p2

√
s3

r1

,m0 = m′0, p = p′, q = k2q
′,

Set IVB : m′0 =
d2

2s3

p2
2

, p′ =
c2

d2

, q′ =
c1p2

d2p1

√
r1

s1

,m0 = m′0k
2
2, p = p′, q =

q′

k2

. (3.10)

Similarly the Mν matrix arises in Category C can be written as

MC
ν = m0


1 k1(p+ q) p+ q

k1(p+ q) k2
1(2pq + p2) k1(2pq + p2)

p+ q k1(2pq + p2) (2pq + p2)

 (3.11)

with the following choice of parameters

Set IC : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1

, q′ =
c2p1

d1p2

√
s3

r1

,m0 = m′0, p = p′, q = k2q
′,

Set IIC : m′0 =
d2

1r1

p2
1

, p′ =
c1

d1

, q′ =
c3p1

d1p3

√
s3

r1

,m0 = m′0, p = p′, q = q′. (3.12)

For the Category D, the effective Mν comes out as

MD
ν = m0


0 k1p p

k1p k2
1(q2 + 2rp) k1(q2 + 2rp)

p k1(q2 + 2rp) (q2 + 2rp)

 (3.13)
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with the definition of parameters as

Set ID : m′0 =
d2

2r1

p2
1

, p′ =
c1p1s3

d2p2r1

, q′ =
c1

d2

, r′ =
c3

d2

,m0 = m′0, p = k2p
′, q = q′, r = r′,

Set IID : m′0 =
d2

3r1

p2
1

, p′ =
c1p1s3

d3p3r1

, q′ =
c1

d3

, r′ =
c2

d3

,m0 = m′0, p = p′, q = q′r = k2r
′,

Set IIID : m′0 =
c1p1s3

d3p3r1

, p′ =
c1

d1

, q′ =
c1

d3

, r′ =
c3

d3

,m0 = m′0, p = p′, q = k2q
′, r = r′,

Set IVD : m′0 =
d2

2r1

p2
1

, p′ =
c1p1s3

d2p2r1

, q′ =
c1

d2

, r′ =
c2

d2

,m0 = m′0, p = k2p
′, q = q′, r = r′.

(3.14)

Here we consider all the parameters m0, k1, p, r and q are complex.

3.5 Phase Rotation

As mentioned earlier, all the parameters of Mν are complex and therefore we

can rephase Mν by a phase rotation to remove the redundant phases. Here, we

systematically study the phase rotation for each category.

• Category A,B

The Majorana type mass matrix Mν can be rotated in phase space through

M ′AB
ν = P TMAB

ν P, (3.15)

where P is a diagonal phase matrix and is given by P = diag(eiΦ1 , eiΦ2 , eiΦ3).

Now redefining the parameters of Mν as m0 → m0e
iαm , p → peiθp , q →

qeiθq , k1 → k1e
iθ1 and choosing the phases of P as Φ1 = −αm

2
,Φ2 = −(θ1 +

θp + αm
2

),Φ3 = −(θp + αm
2

) the phase rotated Effective neutrino mass matrix
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appears as

M ′AB
ν = m0


1 k1p p

k1p k2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

 , (3.16)

where θ = 2(θq− θp) and all the parameters m0, p, q and k1 are real. Thus there

is only a single phase parameter in M ′AB
ν .

• Category C

In a similar way, the mass matrix of Category C can be rephased as

M ′C
ν = m0


1 k1(p+ qeiθ) p+ qeiθ

k1(p+ qeiθ) k2
1(2pqeiθ + p2) k1(2pqeiθ + p2)

p+ qeiθ k1(2pqeiθ + p2) (2pqeiθ + p2)

 (3.17)

with the same set of redefined parameters as mentioned earlier along with θ =

θq − θp.

• Category D

For this category the rephased mass matrix comes out as

M ′D
ν = m0


0 k1p p

k1p k2
1(q2eiα + 2rpeiβ) k1(q2eiα + 2rpeiβ)

p k1(q2eiα + 2rpeiβ) (q2eiα + 2rpeiβ)

 (3.18)

with r → reiθr , α = 2(θq − θp), β = (θr − θp) and the rest of the parameters are

defined identically similar to the previous case.
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3.6 Breaking of the scaling ansatz

Since the neutrino mass matrix obtained in (3.16), (3.17) and (3.18) are all invariant

under scaling ansatz and thereby give rise to θ13 = 0 as well as m3 = 0. Although

vanishing value of m3 is yet not ruled out however, the former, θ13 = 0 is refuted

by the reactor experimental results. Popular paradigm is to consider θ13 = 0 at

the leading order and by further perturbation nonzero value of θ13 is generated.

We follow the same way to produce nonzero θ13 through small breaking of scaling

ansatz. It is to be noted in our scheme that generation of nonzero θ13 always requires

breaking in mD. To generate nonzero m3 breaking in µ matrix is also necessary

along with mD. However, in Category B since det (mD = 0), even after breaking

in the µ matrix, Mν still gives rise to a vanishing eigenvalue. On the other hand

for Category C and D, µ4
2 has always a zero determinant for being a scaling ansatz

invariant matrix. Thus it leads to one zero eigenvalue similar to Category B. It is

the Category A for which we get nonzero θ13 as well as nonzero m3 after breaking

the scaling ansatz in both the matrices (mD and µ).

We invoke breaking of scaling ansatz in all four categories in two ways:

• breaking in the Dirac sector (θ13 6= 0, m3 = 0),

• breaking in the Dirac sector as well as Majorana sector (θ13 6= 0, m3 6= 0). A

systematic analysis with numerical discussion is demonstrated in the following

way.

3.6.1 Breaking in the Dirac sector

• Category A, B
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3.6. Breaking of the scaling ansatz

We consider minimal breaking of the scaling ansatz through a dimensionless

real parameter ε in a single term of different mD matrices of those categories as

m4
D2 =


0 d2 0

k1(1 + ε)c1 0 k1c3

c1 0 c3

 ,m4
D6 =


0 0 d3

k1(1 + ε)c1 k1c2 0

c1 c2 0

 (3.19)

for Category A and

m4
D1 =


d1 0 0

k1c1 0 k1(1 + ε)c3

c1 0 c3

 ,m4
D3 =


0 0 d3

k1(1 + ε)c1 0 k1c3

c1 0 c3

 ,

m4
D4 =


d1 0 0

k1c1 k1(1 + ε)c2 0

c1 c2 0

 ,m4
D5 =


0 d2 0

k1(1 + ε)c1 k1c2 0

c1 c2 0

 (3.20)

for Category B. We further want to mention that breaking considered in any

element of the second row are all equivalent. For example, if we consider

breaking in the ‘23’ element of m4
D2 it is equivalent to as considered in (3.19).

Neglecting the O(ε2) and higher order terms, the effectiveMν matrix comes out

as

M ′ABε
ν = m0


1 k1p p

k1p k2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

+m0ε


0 0 0

0 2k2
1q

2eiθ k1q
2eiθ

0 k1q
2eiθ 0

 .

(3.21)

As mentioned earlier, that for Category B, det (mD) = 0 and it is not possible

to generate m3 6= 0 even if we consider breaking in the µ matrices. On the other
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Chapter. Scaling ansatz, Cyclic symmetry and texture zeros in inverse seesaw

hand , the matrices in Category A posses det (mD) 6= 0 and thereby give rise to

m3 6= 0. Now for the numerical computation of the eigenvalues, mixing angles,

JCP , the Dirac and Majorana phases we utilize the results obtained in ref. [130],

for a general complex matrix. We should mention that the formula obtained in

ref. [130], for Majorana phases is valid when all three eigenvalues are nonzero.

However, when one of the eigenvalue is zero (in this case m3 = 0) one has to

utilize the methodology given in ref. [16]. We follow the same diagonalization

procedure of the effective light neutrino mass matrix as defined in the previous

section. Similar to the previous chapter here we parametrize UPMNS as U =

UCKMPM , where PM is the Majorana phase matrix given as

PM = diag(1, eαM , ei(βM+δCP )). (3.22)

Writing (2.12) explicitly with m3 = 0 we can have expressions for six

independent elements of Mν in terms of the mixing angles, two eigenvalues

and the Dirac CP phase, from which the m11 element can be expressed as

m11 = c2
12c

2
13m1 + s2

12c
2
13m2e

2iαM (3.23)

and therefore the Majorana phase αM comes out as

αM =
1

2
cos−1

{ |m11|2
2c2

12s
2
12c

4
13m1m2

− (c4
12m

2
1 + s4

12m
2
2)

2c2
12s

2
12m1m2

}
. (3.24)

The Jarlskog measure of CP violation JCP is defined in usual way as

JCP =
Im(h12h23h31)

(∆m2
21)(∆m2

32)(∆m2
31)
, (3.25)

where h is a hermitian matrix constructed out of Mν as h = MνM
†
ν . For all
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3.6. Breaking of the scaling ansatz

the categories, we follow the same numerical technique as done for this category

(Category A).

• Category C

In this case breaking is considered in mD as

m4
D1 =


d1 0 0

k1(1 + ε)c1 k1c2 0

c1 c2 0

 ,m4
D4 =


d1 0 0

k1(1 + ε)c1 0 k1c3

c1 0 c3

 (3.26)

and the scaling ansatz broken Mν appears as

M ′Cε
ν = m0


1 k1(p+ qeiθ) p+ qeiθ

k1(p+ qeiθ) k2
1(2pqeiθ + p2) k1(2pqeiθ + p2)

p+ qeiθ k1(2pqeiθ + p2) (2pqeiθ + p2)



+m0ε


0 k1qe

iθ 0

k1qe
iθ 2k2

1pqe
iθ k1pqe

iθ

0 k1pqe
iθ 0

 . (3.27)

• Category D

Breaking in mD in this case is incorporated through

m4
D2 =


0 d2 0

k1c1 0 k1(1 + ε)c3

c1 0 c3

 ,m4
D3 =


0 0 d3

k1c1 0 k1(1 + ε)c3

c1 0 c3

 (3.28)
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m4
D5 =


0 d2 0

k1c1 k1(1 + ε)c2 0

c1 c2 0

 ,m4
D6 =


0 0 d3

k1c1 k1(1 + ε)c2 0

c1 c2 0

 (3.29)

and the corresponding Mν comes out as

M ′Dε
ν = m0


0 k1p p

k1p k2
1(q2eiα + 2rpeiβ) k1(q2eiα + 2rpeiβ)

p k1(q2eiα + 2rpeiβ) (q2eiα + 2rpeiβ)



+m0ε


0 0 0

0 2k2
1rpe

iβ k1rpe
iβ

0 k1rpe
iβ 0

 . (3.30)

3.6.2 Numerical Analysis

In order to perform the numerical analysis to obtain allowed parameter space we

utilize the neutrino oscillation data obtained from global fit shown in Table 3.8.

Table 3.8: Input experimental values [31]

Quantity 3σ ranges
|∆m2

31| N 2.31< ∆m2
31(103eV −2) < 2.74

|∆m2
31| I 2.21< ∆m2

31(103eV −2) < 2.64
∆m2

21 7.21< ∆m2
21(105eV −2) < 8.20

θ12 31.3o < θ12 < 37.46o

θ23 36.86o < θ23 < 55.55o

θ13 7.49o < θ13 < 10.46o

• Category A, B

We first consider Category A,B for which the neutrino mass matrix is given

in (3.21). The parameter ε is varied freely to fit the extant data and it is
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3.6. Breaking of the scaling ansatz

constrained as 0.04 < ε < 0.7. However, to keep the ansatz breaking effect

small we restrict the value of ε only upto 0.1. For this range of ε (0 < ε < 0.1)

under consideration the parameter spaces are obtained as 1.78 < p < 3.40,

1.76 < q < 3.42 and 0.66 < k1 < 1.3. It is interesting to note a typical feature

of this category is that the Dirac CP phase δCP comes out too tiny and thereby

generating almost vanishing value of JCP (≈ 10−6) while the range of the only

Majorana phase in this category is obtained as 77o < αM < 90o.

Figure 3.1: Plot of p vs k1 (left), q vs k1 (right) for the Category A,B with ε = 0.1.

Since one of the eigenvalue m3 = 0 therefore, the hierarchy of the masses

is clearly inverted in this category. The sum of the three neutrino masses

Σimi(= m1 + m2 + m3) and |m11| are obtained as 0.088 eV < Σimi < 0.104

eV and 0.0102 eV < |m11| < 0.0181 eV which predict the value of the two

quantities below the present experimental upper bounds. To illustrate the

nature of variation, in Fig.3.1 we plot p vs k1 and q vs k1 while in Fig.3.2 a

correlation plot of Σimi with |m11| is shown for ε = 0.1 and it is also seen from

Fig.3.1 and 3.2 that the ranges of the parameters do not differ much compare

to the values obtained for the whole range of ε parameter.
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Figure 3.2: Plot of |m11| vs Σimi for Category A,B with ε = 0.1.

In brief, distinguishable characteristics of this category are i) tiny JCP and δCP

ii) inverted hierarchy of the neutrino masses. At the end of this section we

will further discuss the experimental testability of these quantities for all the

categories.

• Category C

In this case it is found that a small breaking of ε (0.02 < ε < 0.09) is sufficient

to accommodate all the oscillation data. We explore the parameter space and

the ranges obtained as 3.42 < p < 6.07, 1.68 < q < 3.02 and 0.7 < k1 < 1.32.

The hierarchy obtained in this case is also inverted due to the vanishing value of

m3. The other two quantities Σimi and |m11| come out as 0.0118 eV < |m11| <

0.019 eV and 0.088 eV < Σimi < 0.105 eV. Similar to the previous category JCP

is vanishingly small due to low value of δCP . The range of the Majorana phase

αM is obtained as 81o < αM < 89o. In Fig.3.3 we plot k1 vs p and k1 vs q for

ε = 0.09 that predicts almost the same ranges of the parameters (p, q and k1)

and all other quantities (|m11|, Σimi, αM and JCP ) as obtained from the whole

range of ε. We present a correlation plot of Σimi with |m11| in Fig.3.4.
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3.6. Breaking of the scaling ansatz

Figure 3.3: Plot of p vs k1 (left), q vs k1 (right) for the Category C with ε = 0.09.

Figure 3.4: Plot of |m11| vs Σimi for Category C with ε = 0.09.

• Category D

In case of Category D, although a priori it is not possible to rule out M ′Dε
ν

without going into the detailed numerical analysis, however in this case even if

with ε = 1 it is not possible to accommodate the neutrino oscillation data.

Specifically, the value of θ13 is always beyond the reach of the parameter

space. Exactly for the same reason the Mν matrix of type A3 in (3.7) is

phenomenologically ruled out.
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3.6.3 Breaking in Dirac+Majorana sector

In this section we focus on the phenomenology of the neutrino mass matrix where the

scaling ansatz is broken in both the sectors. This type of breaking is only relevant

for Category A since in this case mD is nonsingular after breaking of the ansatz

and the resultant Mν gives rise to nonzero θ13 along with m3 6= 0. In all the other

categories due to the singular nature of mD, inclusion of symmetry breaking in the

Majorana sector will not generate m3 6= 0. Thus we consider only Category A under

this scheme. We consider the breaking in mD as mentioned in (3.19) and the ansatz

broken texture of µ4
1 matrix is given by

µ4
1 =


r1 0 0

0 k2
2s3 k2(1 + ε′)s3

0 k2(1 + ε′)s3 s3

 , (3.31)

where ε′ is a dimensionless real parameter. The effective neutrino mass matrix Mν

comes out as

m′Aενε′ = m0


1 k1p p

k1p k2
1(q2eiθ + p2) k1(q2eiθ + p2)

p k1(q2eiθ + p2) (q2eiθ + p2)

+m0ε


0 0 0

0 2k2
1q

2eiθ k1q
2eiθ

0 k1q
2eiθ 0



+m0ε
′


0 k1p p

k1p 0 0

p 0 0

 .(3.32)

• Numerical results

As mentioned above, ε′ = 0 leads to inverted hierarchy with m3 = 0 and thus

to generate nonzero m3 a small value of ε′ is needed. Similar to the previous

cases two breaking parameters ε and ε′ can be varied freely through the ranges
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3.6. Breaking of the scaling ansatz

that are sensitive to the oscillation data and are obtained as 0.06 < ε < 0.68

and 0 < ε′ < 1. It is to be noted that although the ε parameter is restricted due

to θ13 value, ε′ is almost insensitive to θ13 and it can vary within a wide range

as 0 < ε′ < 1. A correlation plot of ε with ε′ is shown in Fig.3.5. However,

as mentioned earlier, the effect of the breaking term should be smaller than

the unbroken one, therefore, to obtain the parameter space for this category

we consider breaking of the scaling ansatz in both the sectors only upto 10

% and consequently for all combinatorial values of ε and ε′ the parameters p,

q and k1 vary within the ranges as 1.07 < p < 3.10, 1.03 < q < 3.12 and

0.67 < k1 < 1.31. Interestingly, although all the eigenvalues are nonzero in this

case, the hierarchy is still inverted. JCP is found to be tiny (≈ 10−6) again due

to small value of δCP . The Majorana phases are obtained as −96o < αM < 74o

and −1000 < βM + δCP < 102o followed by the bounds on Σimi and |m11| as

0.088 eV < Σimi < 0.11 eV and 0.010 eV < |m11| < 0.022 eV which are well

below the present experimental upper bounds.

Figure 3.5: Correlated plot of ε with ε′.

In Fig.3.6 we demonstrate the above predictions for ε = ε′ = 0.1. In the left
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panel of Fig.3.6 the inverted hierarchical nature is shown and in the right panel

variation of the Majorana phases is demonstrated.

Figure 3.6: Plot of (m1/m3) vs (m2/m1) (left) and βM + δCP vs αM (right) after
breaking of the scaling ansatz in both the sectors of Category A for a representative
value of ε = ε′ = 0.1.

Some comments are in order regarding predictions of the present scheme:

1. After precise determination of θ13 taking full account of reactor neutrino

experimental data, it is shown that the hierarchy of the light neutrino masses can

be probed through combined utilization of NOνA and T2K [184] neutrino oscillation

experimental results in near future. Thus the speculation of hierarchy in the present

scheme will be clearly verified. Moreover, taking the difference of probabilities

between P (νµ → νe) and P (ν̄µ → ν̄e) information on the value of JCP can be

obtained using neutrino and anti neutrino beams. This procedure elaborately clarified

in chapter 4.

2. More precise estimation of the sum of the three light neutrino masses will be

obtained utilizing a combined analysis with PLANCK data [185] and other cosmolog-

ical and astrophysical experiments [186] such as, Baryon oscillation spectroscopic

survey, The Dark energy survey, Large Synoptic Survey Telescope or the Euclid
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satellite data etc. Such type of analysis will push Σimi ∼ 0.1 eV (at the 4σ level

for inverted ordering) and Σimi ∼ 0.05 eV (at the 2σ level for normal ordering).

Thus the prediction of the value of Σimi in the different categories discussed in the

present work will also be tested in the near future. Furthermore, GERDA-II [27] and

NEXT-100 [124] will probe the value of |m11| up to 0.1 eV which is a more precise

value than the EXO-200 [25] experimental range (0.14-0.38 eV).

3.7 Cyclic symmetry and texture zeros

So far in the above analysis we discuss the scaling ansatz as an effective residual

symmetry in the low energy light neutrino mass matrix. In the following, within

the framework of same mechanism, i.e. the inverse seesaw, we deal with the effect

of cyclic permutation symmetry on the neutrino fields. It will be shown that this

is a Z3 type symmetry, that might arise from a larger symmetry group such as

A4. Explicit matrix representation of the former also replicates a group element

of S3 that leads to a rotation of a equilateral triangle by 1200. As mention in the

previous chapter, application of the permutation symmetry to the neutrino physics

was primarily introduced by Harrison and co-authors [138], later this has been a

topic of great interest [130, 139, 187, 188] in neutrino physics. In the following, some

interesting effects of cyclic symmetry as well as texture zeros on neutrino mass matrix

are discussed.

• Explicit cyclic symmetry and texture zeros

We assume the following cyclic symmetry in νiL, νiR and SiL fields as

νeL,R → νµL,R → ντL,R → νeL,R, (3.33)

SeL → SµL → SτL → SeL. (3.34)
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After imposition of the above cyclic symmetry general Dirac and Majorana type

mass matrices look like

mD =


y1 y2 y3

y3 y1 y2

y2 y3 y1

 ,M =


x1 x2 x2

x2 x1 x2

x2 x2 x1

 . (3.35)

Now if we consider texture zeros along with the cyclic symmetry, clearly

maximum number of zeros that can be accommodated within the above matrices

are 6. In Table 3.9 all the 6 zero textures of mD and MRS are presented.

Table 3.9: Texture zeros with cyclic symmetry of mD and MRS

6 zero textures of mD and MRS

m1
D =


y1 0 0

0 y1 0

0 0 y1

, M1
RS =


M1 0 0

0 M1 0

0 0 M1



m2
D =


0 y2 0

0 0 y2

y2 0 0

, M2
RS =


0 M2 0

0 0 M2

M2 0 0



m3
D =


0 0 y3

y3 0 0

0 y3 0

, M3
RS =


0 0 M3

M3 0 0

0 M3 0



Since the low energy lepton number violating mass matrix µ is Majorana type,

only one texture with 6 zeros is possible and is given as

µ1 = diag (µ1, µ1, µ1). (3.36)
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Now, utilizing (3.36) we construct Mν and interestingly it is seen that

along with diagonal µ any matrix presented in Table 3.9 can not generate

phenomenologically viable Mν , to be precise, all the emerged mass matrices

(Mν) are diagonal. We now consider the next maximal texture zero (3 zero)

structure of µ, and is given by

µ2 =


0 µ2 µ2

µ2 0 µ2

µ2 µ2 0

 . (3.37)

The above choice of µ matrix, along with the matrices presented in Table 3.9

enforces the Mν to be nondiagonal. However, since the emerged Mν is also

cyclic symmetry invariant and hence leading to a degeneracy in the eigenvalues,

therefore removal of the degeneracy requires a small breaking of the symmetry.

Since our philosophy is to find out a viable texture with least number of

parameters, we consider minimal symmetry breaking in the different elements

of MRS matrix only. For a compact view we present Table 3.10 which contains

all the combinations and the corresponding neutrino mass matrices (Mν) with

Table 3.10: Different Composition of mD and µ matrices to generate Mν .

mD and µ M1ε
RS M2ε

RS M3ε
RS

m Mν

m1
D µ2 N1 N3 N2

m2
D µ2 N2 N1 N3

m3
D µ2 N3 N2 N1

m1,2,3
D µ1 d1,2,3 d3,1,2 d2,3,1

the definitions M1ε
RS = diag (M1 + ε,M1,M1), M2ε

RS = diag (M1,M1 + ε,M1),

M3ε
RS = diag (M1,M1,M1 + ε). The di(i=1,2,3) matrices are diagonal and not

our concern since those are obtained due to 6 zero texture of µ as discussed
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earlier. The matrices N1, N2 and N3 arise due to 3 zero texture of µ matrix

and explicitly their forms are given by

N1 =


0 A1 A1

A1 0 B1

A1 B1 0

 , N2 =


0 B2 A2

B2 0 A2

A2 A2 0

 , N3 =


0 A3 B3

A3 0 A3

B3 A3 0

 (3.38)

with the definition of the parameters as

Ai =
µ2y

2
i

M1(M1 + ε)
, Bi =

µ2y
2
i

M2
1

. (3.39)

Phenomenological consequences : As the left chiral neutrino fields obey cyclic

symmetry, their charged lepton partners also follow the same. Hence, the

charged lepton mass matrix (ml) is diagonalized by trimaximal mixing matrix

[189]. In the basis where the ml is diagonal the effective neutrino mass matrix

will be modified by the trimaximal mixing matrix. However, it is found that

due to the lack of sufficient number of parameters, all the mixing angles cannot

be obtained simultaneously in their 3σ range. We also consider the nondiagonal

forms of MRS matrices (i.e., all the possible cases given in Table 3.9) and find

that the above conclusion is valid for all the cases. Now at this stage one could

move one step ahead, i.e. one may consider three zero texture of mD and MRS.

In that case all the constraints from the oscillation data can be accommodated

undoubtedly. However, in such a scenario as the effective number of parameters

in the Mν itself (without considering the charged lepton correction) increase,

thus, the predictions on the light neutrino masses (mi), their sum (Σimi) and

neutrinoless double beta decay parameter (|m11|) are less significant (vary in a

wide range). Thus, since the maximality of zeros is our concern, in the next

section we present an alternative approach to preserve the maximal zero textures

114



3.7. Cyclic symmetry and texture zeros

of the constituent neutrino mass matrices. In this approach the required texture

zero mass matrices with cyclic symmetry in the neutrino sector and simple four

zero textures with naturally broken Z3 in the charged lepton sector are realized

from an effective residual symmetry to reproduce the forms of Mν matrices

presented in Table 3.10.

• Cyclic symmetry and texture zeros as an effective residual symmetry

In this section we present a toy model based on A4 symmetry as a bigger

symmetry group. Due to spontaneous breaking of A4, cyclic symmetry (Z3)

is preserved only in the neutrino sector while the charged lepton mass matrix

is obtained with four zero Yukawa texture with decoupled third generation.

Thus charged lepton correction also plays a crucial role to fit the extant data.

However, before going into the detailed discussion, we would like to mention that

although there are several cases in the analysis, we present a toy model only for

one case. Furthermore, the symmetry group A4 is not the only group to realize

the cyclic symmetry with the texture zeros. Other symmetry groups such as S4,

U(1)B−L etc. [187–190] can also lead to Z3 invariance in the neutrino sector due

to their spontaneous breaking. Now let us recall the problem we faced in the

previous section. First, the maximal zero textures with cyclic symmetry in the

neutrino sector do not entertain cyclic symmetry invariant form of the charged

lepton mass matrix as far as the present experimental data is concerned. Apart

from that one also needs to break cyclic symmetry in the neutrino sector since

at the leading order it leads to a degeneracy in masses. Here, in the charged

lepton sector, breaking of Z3 is obtained due to spontaneous breaking of A4

whereas in the neutrino sector the breaking scheme is similar to the previous

section, i.e. the degeneracy is removed by due to a soft breaking term (ε) in the

elements of MRS. Thus we need the structure of MRS due to minimal breaking
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as

MRS = diag (M1,M2,M2) (3.40)

with M1 = M2 + ε, to generate N1,2,3 type mas matrices shown in Table 3.10.

Obviously such choice of MRS matrices with all nondegenerate eigenvalues are

also consistent with the oscillation data. Although there are several effective

Mν arises due to suitable combinations of mD, µ and MRS, of them N1 type

matrix is a two parameter µτ symmetric matrix with zero diagonal entries.

Consequently, the matrix leads to vanishing θ13 which is discarded by the present

oscillation data at > 10σ level [191]. Thus to generate nonzero θ13 corrections

from the charged lepton sector [155,192–194] should be taken into account. As

a simplistic scenario, in this section we consider corrections from all the three

sectors of ml. These simple structures of ml are well motivated by popular

discrete flavor groups which are used to explain neutrino mass and mixing.

Here we consider A4 as the flavor symmetry group. However, there are other

groups, e.g. S4 [134], Z6 [155] etc. which can also lead to these structures of ml.

Interestingly, all the emerged Mν which arises from MRS = diag (M1,M2,M3)

also require charged lepton correction which we discuss in the next section.

Although there are several papers on A4 symmetry we are motivated by Ref [71].

We discuss the required A4 model in brief.

Table 3.11: Field content of the model with lepton and scalar assignment

L llR NlR SlL ξch, φch ξD ξRS φµ
SU(2)L 2 1 1 1 2 2 1 1
Z3 ω 1 ω ω2 ω 1 ω ω2

Z2 + + − + + − − +
A4 3 3 3 3 1, 3 1 1 3
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Fermionic part of the Lagrangian consists of four part as shown below

LA4
mass = Lch + LDirac + LRS + Lss. (3.41)

Explicitly each term is written as

LA4
mass = YchL̄lR(φch + ξch) + YDL̄NRξD

+YM S̄LNRξRS + YuS̄CLSLφµ + h.c (3.42)

with the following choice of the alignment ξch ∼< vξch >, φch ∼< 0, 0, vφch >,

ξD ∼< vξD >, ξRS ∼< vξRS > and φµ ∼< vφµ, v
φ
µ, v

φ
µ >. With such choice of

VEV one can realize the charged lepton correction from 1 − 2 sector and the

structures of m1
D and µ2 along with MRS as MRS = diag(M,M,M). Here we

assume A4 group is generated by two generators

S =


1 0 0

0 −1 0

0 0 −1

 , T =


0 1 0

0 0 1

1 0 0

 . (3.43)

The three dimensional representation satisfy the product rule

3× 3 = 1 + 1′ + 1′′ + 3S + 3A, (3.44)

where

1 = a1b1 + a2b2 + a3b3, (3.45)

1′ = a1b1 + ω2a2b2 + ωa3b3, (3.46)

1′′ = a1b1 + ωa2b2 + ω2a3b3 (3.47)
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and

3S = (
a2b3 + a3b2

2
,
a3b1 + a1b3

2
,
a1b2 + a2b1

2
), (3.48)

3A = (
a2b3 − a3b2

2
,
a3b1 − a1b3

2
,
a1b2 − a2b1

2
). (3.49)

Thus, A4 is spontaneously broken in the charged lepton sector such that there

is no effective Z3 symmetry, however, the neutrino sector enjoys an effective

residual Z3 symmetry. As previously mentioned, Z3 in MRS should be broken,

we consider soft A4 breaking term in the Lagrangian which is well studied

earlier [5, 6, 195]. We consider Lsoft as

Lsoft = εαβS̄αLNβR, (3.50)

where εαβ (α,β=1,2,3) is a coupling constant with mass dimension one and the

double indices do not mean the summation over the indices. The term

contributes to the (α, β) element of MRS and breaks the residual Z3 symmetry.

Now if we choose (α, β = 1) then the soft term contributes to (1,1) element of

MRS which in turn generates N1 type Mν with m1
D and µ2. In the following

two sections we present detailed analysis of all the emerged Mν .

Two degenerate eigenvalues of MRS

The matrix of type N1,2,3 can be realized by changing the nondegenerate value

at three different diagonal entries of MRS matrix given in (3.40) along with m1
D

and µ2. First we consider the N1 matrix which is given by

N1 = Mν =


0 yp yp

yp 0 y

yp y 0

 (3.51)
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with y = µ2y
2
1/M

2
2 , p = M2/M1. The matrix of (3.51) is diagonalized by the

unitary mixing matrix Uν given by

Uν =


c12 s12 0

− 1√
2
s12

1√
2
c12 − 1√

2

− 1√
2
s12

1√
2
c12

1√
2

 , (3.52)

where

c12 =

√
1 + 1√

1+8p2

√
2

, s12 =

√
1

2
− 1

2
√

1 + 8p2
. (3.53)

Interestingly, if p → ∞ (M2 >> M1) we can have the well known bi-maximal

mixing of neutrino masses. The eigenvalues of Mν are given by

−m1 =
1

2
(y −

√
1 + 8p2y),

m2 =
1

2
(y +

√
1 + 8p2y),

−m3 = −y, (3.54)

where m2 > m1 > m3. Now defining ∆m2
sol = m2

2 −m2
1 and ∆m2

atm = m2
2 −m2

3

we get an explicit relationship between ∆m2
sol and ∆m2

atm as

∆m2
atm =

1

2

∆m2
sol√

1 + 8p2
(4p2 − 1) +

∆m2
sol

2
(3.55)

from which we obtain an approximate range for p through the experimental

inputs of 3σ ranges. In order to generate nonzero θ13 we invoke contribution

from the charged lepton sector in the following way. We consider Altarelli-

Ferugilo-Masina parametrization [196] for UPMNS which is written as UPMNS =

U †l Uν = Ũ †l diag(−eiφ1 , eiφ2 , 1)Uν × diag(1, eiα, ei(β+δCP )), where Ul diagonalizes
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Chapter. Scaling ansatz, Cyclic symmetry and texture zeros in inverse seesaw

the charged lepton mass matrix and Ũl follows usual CKM type parametrization

and is given by

Ũl = R̃(θ23)R̃(θ13, δ)R̃(θ12),

(3.56)

where

R̃(θ23) =


1 0 0

0
√

1− λ2
23 λ23

0 −λ23

√
1− λ2

23

 , R̃(θ13, δ) =


√

1− λ2
13 0 λ13e

iδ

0 1 0

−λ13e
−iδ 0

√
1− λ2

13


(3.57)

and

R̃(θ12) =


√

1− λ2
12 λ12 0

−λ12

√
1− λ2

12 0

0 0 1

 , (3.58)

where λij = sin θij. Since we are considering CKM type mixing matrix therefore,

we expect small mixing in the charged lepton sector. Moreover the small value

of reactor mixing angle also enforces the value of λ to be small. The textures

of the charged lepton mass matrices are presented in Table 3.12

Table 3.12: Texturs of the charged lepton mass matrix (ml)

4 zero textures of ml

m12
l =

× × 0
× × 0
0 0 ×

 m13
l =

× 0 ×
0 × 0
× 0 ×

 m23
l =

× 0 0
0 × ×
0 × ×



where ‘×’ corresponds to some nonzero entries in ml. Considering |eα=(e,µ,τ) >
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3.7. Cyclic symmetry and texture zeros

to be the flavour eigenstate and |ei > the mass eigenstate of the charged leptons

we address three possible cases corresponding to the three textures of ml for

modifications of Uν .

Case I: |eτ >flavour= |ei >mass, ml ⇒ m12
l

In this case Uν is modified by the 1-2 sector (R̃(θ12)) of Ul and the elements of

UPMNS can be written as

U11 = −eiφ1

√
1− λ2

12c12 −
1√
2
λ12e

iφ2s12,

U12 = −eiφ1

√
1− λ2

12s12 +
1√
2
λ12e

iφ2c12,

U13 = − 1√
2
λ12e

iφ2 ,

U22 = −λ12e
iφ1s12 +

1√
2

√
1− λ2

12e
iφ2c12,

U23 = − 1√
2

√
1− λ2

12e
iφ2 , U33 =

1√
2
. (3.59)

and hence the three mixing angles come out as

sin θ13 = |U13| =
λ12√

2
,

tan θ12 =
|U12|
|U11|

=
s12(s12 −

√
2 cos[φ1 − φ2]c12λ12)

c12(c12 +
√

2 cos[φ1 − φ2]s12λ12)
,

tan θ23 =
|U23|
|U33|

=
√

1− λ2
12. (3.60)

The measure of CP violation JCP can be written in terms of the mixing matrix

elements as

JCP =
sin(φ2 − φ1)c12s12λ12

2
√

2
(3.61)
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and hence the Dirac CP phase δCP is obtained as

sin δCP =
JCP
Ω

(3.62)

with the definition of Ω as

Ω = c′12c
′2
13c
′
23s
′
12s
′
13s
′
23, (3.63)

where s′ij ⇒ sin θij and c′ij ⇒ cos θij are the usual mixing parameters in the

CKM part of UPMNS which is defined as

UPMNS = PαUCKMPM , (3.64)

where Pα = diag(eiα1 , eiα2 , eiα3) as the unphysical phase matrix, UCKM =

Ũ †l diag(−eiφ1 , eiφ2 , 1)Uν and PM = diag(1, eiα, ei(β+δCP )) as the Majorana phsae

matrix. We use other two rephasing invariant quantities to calculate the

Majorana phases as [192]

α = arg(U∗11U12),

β = arg(U13U
∗
11). (3.65)

Therefore the Majorana phases come out as

tanα =

√
2 sin(φ2 − φ1)λ12√

2 cos(φ2 − φ1)(c2
12 − s2

12)λ12 − 2c12s12

(3.66)

and

tan β =
sin(φ2 − φ1)c12√

2 cos(φ2 − φ1)c12 + s12λ12

. (3.67)
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3.7. Cyclic symmetry and texture zeros

Case II: |eµ >flavour= |ei >mass, ml ⇒ m13
l

In this case modification to Uν originates from 1-3 sector (R̃(θ13, δ)) of Ul and

the elements of UPMNS can be written as

U11 = −eiφ1

√
1− λ2

13c12 −
1√
2
λ13e

iδs12,

U12 = −eiφ1

√
1− λ2

13s12 +
1√
2
λ13e

iδc12,

U13 = − 1√
2
λ13e

iδ,

U22 =
1√
2
c12, U23 = − 1√

2
, U33 =

1√
2

√
1− λ2

13. (3.68)

Thus the three mixing angles come out as

sin θ13 = |U13| =
λ13√

2

tan θ12 =
|U12|
|U11|

=
s12(s12 −

√
2 cos[δ − φ1]c12λ13)

c12(c12 +
√

2 cos[δ − φ1]s12λ13)

tan θ23 =
|U23|
|U33|

=
1√

1− λ2
13

. (3.69)

Proceeding in the same way as discussed in Case I, JCP can be written in terms

of the mass matrix elements as

JCP =
sin(φ1 − δ)c12s12λ13

2
√

2
(3.70)

and

sin δCP =
JCP
Ω

, (3.71)

where Ω is already defined in (3.63). Finally the Majorana phases are calculated
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as

tanα =

√
2 sin(δ − φ1)λ13√

2 cos(δ − φ1)(c2
12 − s2

12)λ13 − 2c12s12

(3.72)

and

tan β =
sin(δ − φ1)c12√

2 cos(δ − φ1)c12 + s12λ13

. (3.73)

Case III: |ee >flavour= |ei >mass, ml ⇒ m23
l

For this texture of ml (alternatively R̃(θ23) as the mixing matrix) it is not

possible to generate θ13, hence is not taken into account. We also consider

the other two matrices N2 and N3 and obtained all the mixing angles and

eigenvalues. However, from numerical estimation it is found that both the cases

do not admit the present experimental data and hence discarded.

All nondegenerate eigenvalues of MRS

Taking three different 6 zero textures of mD(m1,2,3
D ) and one 3 zero texture of

µ(µ2) with MRS = diag(M1,M2,M3), we construct three different textures of

Mν using inverse seesaw formula and they lead to

M1
ν =


0 yp ypq

yp 0 yq

ypq yq 0

 ,M2
ν =


0 yq yp

yq 0 ypq

yp ypq 0

 ,M3
ν =


0 ypq yq

ypq 0 yq

yq yp 0

(3.74)

where p = M2/M1 and q = M2/M3 and y = µy2
i /M

2
2 for each M i

ν . Now in the

basis where the charged lepton mass matrix is diagonal one can easily construct

the effective Mνs as mνf = U †lM
i
νU
∗
l , where Ul is already defined earlier in

Sec.3.7. Since we are considering three specific textures of the charged lepton
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3.8. Numerical analysis and phenomenological discussion

mass matrices (Table 3.12), therefore, for a givenMν we can construct threemνf

taking contribution from each sectors of the charged leptons. Hence, we have

altogether 9 effective mνf . We consistently denote them as mνfij after getting

correction from the ‘ij’th sector of Ul. We do not present explicit structures of

all the mass matrices. However, numerical estimation for each viable matrix is

presented in the next section.

3.8 Numerical analysis and phenomenological dis-

cussion

i) Two degenerate eigenvalues of MRS

Before going into the details of the numerical analysis an important point is to be

noted that except tan θ23 the expressions for the physical parameters obtained in Case

II are the same as that of the Case I if we replace λ13 by λ12 and δ by φ2 and therefore

the numerical estimation for one case can be automatically translated to the other.

Therefore from now on in a generic way we rename λ12 and λ13 as λ.

We consider small mixing arises from the charged lepton sector and accordingly

written down the expressions for the physical parameters with the terms dominant

in λ. Moreover, the smallness of θ13 automatically implies that the order of λ should

be of the order of Sine of the reactor mixing angle. Taking into account the neutrino

oscillation global fit data presented in Table 3.8 we randomly vary λ and φ2−φ1 within

the ranges as 0 < λ < 0.3 and −180o < φ2−φ1 < 180o and scan the parameter space.

It is seen that the matrices of type N2 and N3 are not phenomenologically viable

(even after considering charged lepton contribution ) as far as the present neutrino

oscillation data is concerned.
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Figure 3.7: (colour online) Correlation plots: Extreme left plot represents y Vs p

while the middle one shows λ Vs φ2−φ1 for Case I. For Case II we get the same plot

just by replacing φ2 − φ1 with δ − φ1 and finally the plot in the extreme right shows

the variation of λ with θ13 for both the cases.

Figure 3.8: (colour online) The first figure (the red line) shows the variation of the

atmospheric mixing angle (θ23) with λ for Case I while the second one (the green line)

shows the same for Case II. The last one represents the correlation between θ12 and

φ2 − φ1 for case I. We get the same plot for case II by replacing φ2 − φ1 with δ − φ1.

For N1 type matrix we plot in Fig.3.7 the variation of p Vs y, λ Vs Φ2−Φ1 and

λ Vs θ13 and it is depicted from the plots that the parameters y and p vary within the

ranges as 0.00071 < y < 0.00087 and 38 < p < 51 which is presented in the extreme

left of Fig.3.7. The ranges of λ and φ2 − φ1 are obtained as 0.197 < λ < 0.231 and

35.50 < φ2 − φ1 < 74o, −35.50 < φ2 − φ1 < −74o as one can read from the middle

plot of Fig.3.7.
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3.8. Numerical analysis and phenomenological discussion

Figure 3.9: (colour online) The plot in the extreme left side shows the variation of

φ2−φ1 with δCP for Case I and we get the same plot for Case II by replacing φ2−φ1

with δ − φ1 while the other two plots show the correlation between the Majorana

phases with δCP and are same for both the cases.

Figure 3.10: (colour online) The first one shows the variation of JCP with δCP , the

second one stands for the inverted hierarchy of neutrino masses and last one shows a

correlation between Σimi with m3 and all the plots presented in this figure are same

for both the cases.

Now since |Ue3| is directly proportional to λ it is needless to say that there is a

linear variation of |Ue3| with λ and is depicted in the last plot of Fig.3.7. As tan θ12

has a strong dependence on φ2−φ1 we also present the variation of θ12 with φ2−φ1 in

the extreme right panel of Fig.3.8. The atmospheric mixing angle θ23 doesn’t deviate

much from 45o. For Case I, θ23 is smaller than the bi-maximal value while for the Case

II it is slightly enhanced and we plot them in the first two figures of Fig.3.8. This
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is a distinguishable characteristic between the two cases. Now as the CP violation

in UPMNS is solely controlled by the phases arising from the charged lepton sector

therefore we expect a great dependency of δCP on φ2 − φ1 (δ − φ1 for Case II) and

a correlation between the CP phases. We plot δCP with φ2 − φ1 in the extreme left

panel of Fig.3.9 while the correlation of the Majorana phases with δCP is shown in

the other two figures of Fig.3.9. The ranges of the Dirac CP phase δCP is obtained as

38o < |δCP | < 85o while the Majorana phases are constrained as 30o < |β| < 650 and

8o < |α| < 17o. The JCP value is obtained within the range as 0.017 < |JCP | < 0.04

as one can read from the extreme left plot of Fig.3.10.

Figure 3.11: (colour online) Lightest eigenvalue (m3) Vs |m11| plot. The gray band

shows the range of |m11| allowed by the present oscillation data with all the CP phases

within the range 0− 2π. The small red coloured band is allowed in our model.

The model predicts inverted hierarchy of the neutrino masses which is explicit

from the second figure of Fig.3.10. We also obtain a range on the sum of three light

neutrino masses as 0.0953 eV < Σimi < 0.1026 eV and a range of |m11| as 0.03 eV

< |m11| < 0.048 eV which are well bellow the present experimental upper bound 0.23

eV and 0.35 eV respectively [185].
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Before closing the discussion we would like to mention that although charged

lepton correction to µτ symmetric matrix is studied before [155, 192–194], here we

consider a two parameter structure of a µτ symmetric matrix which is much more

predictive than the previous ones. As for example in our model CP violation arises

completely from the charged lepton sector as our mass matrix consist of two real

parameters. Thus mixing in the charged lepton sector dictates a common origin of

θ13 and the CP-violating phases. In our analysis the Dirac and Majorana phases

are significantly correlated. Thus only the measurement of CP violating phases can

challenge the viability of the present model [134]. With the recent hint of T2K,

nearly maximal CP violation is also allowed here which in turn fixes the Majorana

phases and thus the double beta decay parameter |m11|. The allowed occurrence of

inverted hierarchy puts a lower limit to |m11| as shown in Fig.3.11. One can see a very

narrow range of |m11| is allowed. Thus significant development of the experiments

like GERDA and EXO can test the viability of the model. Finally the constraint

range of the sum of the light neutrino masses is also a major result of the analysis

as Σimi ∼ 0.1 eV at 4σ level is expected to be probed by the future astrophysical

experiments.

ii) All nondegenerate eigenvalues of MRS

In this category there are 9 structures of effective Mν matrices. We diagonalize them

through a direct diagonalization procedure [130] and calculate the eigenvalues, mixing

angles. It is seen that the matrices m1
νf23, m2

νf23 and m3
νf23 are phenomenologically

ruled out. To be more specific one needs λ23 � 1 which is not be the case. Proceeding

in the same way as that of the previous section we estimate the ranges of JCP , δCP ,

α, β, |m11| and |Σimi| for the survived matrices. The hierarchy of the neutrino masses

for all the cases is inverted. The predictions of the viable matrices are listed in Table

3.13. In Fig.3.12 we plot the lightest eigenvalue with |m11|.
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Figure 3.12: (colour online) Lightest eigenvalue (m3) Vs |m11| plot: For all

nondegenerate eigenvalues of MRS. The first three figures of the first row are shown

for the matrices mi(=1,2,3)
νf12 and the figures in the second row are shown for the matrices

m
i(=1,2,3)
νf13 .

Before concluding this section we would like to mention that the charged lepton

correction to the matrices given in (3.74) (with all diagonal entries zero) are also

studied in Ref. [4]. Particularly the classes 44 and 31 [4] respectively resemble ml and

Mν matrices considered here in the present work. However, in Ref. [4] these cases are

categorized as less predictive due to large number of parameters (10 real parameters)

and hence the results are not presented. However in the present work, those cases

contain less number of parameters (7 real parameters) since the structure of MRS

matrix is flavour diagonal (p and q parameters defined in Sec.3.7 are real) and we

estimate the prediction for these cases regarding |m11|, Σimi, δCP etc.

130



3.9. Summary

Table 3.13: Predictions of the viable matrices.

Six predicted quantities
|δCP |
(deg.)

|α| (deg.) |β| (deg.) |JCP | Σimi (eV) |m11| (eV)

m1
νf12 100− 23 80− 12 63− 23 0.01−0.04 0.09−0.12 0.026−0.048

m2
νf12 98− 34 92− 18 78− 0 0.015 −

0.38
0.07 −
0.108

0.029−0.049

m3
νf12 88− 0 71− 37 62− 35 0.012 −

0.036
0.07− 0.1 0.029−0.048

m1
νf13 100− 20 85− 10 60− 20 0.01−0.04 0.09−0.14 0.031− 0.05

m2
νf13 94− 35 100− 18 81− 14 0.012 −

0.038
0.07 −
0.132

0.032−0.049

m3
νf13 102− 17 82− 26 62− 21 0.017 −

0.04
0.08−0.15 0.028−0.048

3.9 Summary

Within the framework of inverse seesaw, we study the phenomenology of maximal

zero textures with scaling ansatz and cyclic symmetry in the neutrino matrices.

Through out the analysis we focus on the effective structures of the low energy light

neutrino mass matrices that lead to some intriguing testable predictions. These

effective symmetries might arise from larger groups such as D4, A4 etc. as discussed

in the chapter 1. We also present an explicit model with A4 symmetry to realize

one of the textures of the mass matrices under consideration. Both the symmetries,

i.e. the scaling ansatz and the cyclic symmetry have to be broken softly due their

inconsistency with oscillation data in the unbroken schemes. Each of the cases

predicts a highly constrained ranges of CP violating phases, |m11| and Σimi along

with an inverted ordering of light neutrino masses. Thus our results are likely to be

tested in the planned and forthwith experiments.
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Chapter 4

Complex Scaling and residual

symmetry

4.1 Introduction

The masses and mixing properties of the three light neutrinos are beginning to get

pinned down. Though the precise mass values are still unknown, upper limits on them

have been pushed down to fractions of electron volts. Furthermore, it is already known

that at least one of the neutrinos must be heavier than about 50 meV. Additionally,

the three angles which describe their mixing have become reasonably well-known

with θ12 ∼ 34o, θ23 ∼ 45o and θ13 ∼ 8o. Understanding this mixing phenomenon

(with one small and two large angles) has emerged as a major challenge. As ongoing

experiments feed in more and more information on neutrino masses and mixing, the

flavor structure of the 3×3 neutrino mass matrixMν is being slowly uncovered. Many

of its features still remain unknown nonetheless and continue to intrigue theoretical

investigators. (Uptodate overviews of these issues and their investigations along with
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original references may be found in the two review articles quoted in Ref. [104,197]).

Especially tantalizing is the predicted phenomenon of leptonic CP-violation which

likely to have implications for leptogenesis [90,103,198]. As yet, there is no statistically

reliable definitive experimental result on leptonic CP-violation. However, hints of

a near-maximal CP-violation, with the phase δ being ' 3π/2, have emerged from

results reported by the T2K [17] and NOνA [199] experiments. Similarly, a recent

global analysis [30] of all neutrino data is hinting at a nonmaximal value of sin2 2θ23.

Another yet unresolved question of great interest is that of neutrino mass ordering :

normal vs. inverted. In addition, one would like to know if the three neutrinos are

Majorana or Dirac particles − to be presumably determined by a future observation

of nuclear 0νββ decay [200].

Let us start with the minimal supposition that there are only three light and

flavored left-chiral neutrinos and that they are Majorana in character. The neutrino

mass term in the Lagrangian density now reads

−Lνmass =
1

2
ν̄Cl (Mν)lmνm + h.c. (4.1)

with νCl = Cν̄l
T and the subscripts l,m spanning the lepton flavor indices e, µ, τ . Mν

is a complex symmetric matrix (M∗
ν 6= Mν = MT

ν ) which can be put into a diagonal

form by a similarity transformation with a unitary matrix U :

UTMνU = Md
ν ≡ diag (m1,m2,m3). (4.2)

Here mi (i = 1, 2, 3) are real and positive masses. We choose to work in a Weak Basis

in which the charged lepton mass matrix is diagonal with real and positive elements,

i.e. Ml = diag. (me,mµ,mτ ) and the unphysical phases of U are absorbed into the
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neutrino fields. Now

U = UPMNS ≡


c12c13 ei

α
2 s12c13 s13e

−i(δ−β
2

)

−s12c23 − c12s23s13e
iδ ei

α
2 (c12c23 − s12s13s23e

iδ) c13s23e
iβ

2

s12s23 − c12s13c23e
iδ ei

α
2 (−c12s23 − s12s13c23e

iδ) c13c23e
iβ

2

(4.3)

with cij ≡ cos θij, sij ≡ sin θij and θij = [0, π/2]. CP-violation enters through

nontrivial values of the Dirac phase δ and of the Majorana phases α, β with δ, α, β =

[0, 2π]. We follow the PDG convention [201] on these angles and phases except that

we denote the Majorana phases by α and β. In principle there could also be a phase

matrix with UPMNS if we work in a Weak Basis where Ml is diagonal but where the

unphysical phases are not absorbed in the neutrino fields. It is demonstrated later

that even if we include the unphysical phase matrix, our result remains the same

which is obvious, since physical results are basis independent.

Quite a few different hypotheses have been advanced over several decades on

the flavor structure of Mν , as reviewed in the first article of Ref. [104]. We zero in on

an ansatz made some years ago [15,16] that we call Simple Real Scaling (SRS). This

posits the relations

(MSRS
ν )eµ

(−MSRS
ν )eτ

=
(MSRS

ν )µµ
(−MSRS

ν )µτ
=

(MSRS
ν )τµ

(−MSRS
ν )ττ

= k, (4.4)

where k is a real and positive dimensionless scaling factor. It is straightforward to

induce from (4.4) the form of the neutrino Majorana mass matrix:

MSRS
ν =


X −Y k Y

−Y k Zk2 −Zk

Y −Zk Z

 . (4.5)

Here X, Y , Z are complex mass dimensional quantities that are a priori unknown. We
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consistently denote complex (real) quantities by capital (small) letters throughout.

We have chosen appropriate negative signs in (4.4) and (4.5) to be in conformity

with the PDG convention [201] on the form of UPMNS that emerges from (4.5).

It was pointed out by Mohapatra and Rodejohann [16] that - in the basis where

the charged lepton mass matrix is diagonal - (4.5) can be realized from the larger

symmetry group D4 × Z2. This ansatz of Simple Real Scaling led to a sizable body

of research as we cited in the earlier chapters. But it predicts a vanishing s13 (and

hence no measurable leptonic Dirac CP-violation) as well as an inverted neutrino

mass hierarchy (i.e. m2,1 > m3) with m3 = 0. While the latter result is still allowed

within current experimental bounds, a null value of s13 has been ruled out at more

than 10σ [191]. Thus SRS, as it stands, has to be abandoned.

We want to consider an extended version of (4.5) which allows a nonvanishing

s13. To this end, we employ the method of complex extension which in turn is based

on the idea of the residual symmetry Z2 × Z2 [7–9] of Mν . This is explained in Sec.

4.3 below. As detailed in the subsequent Sec. 4.4, the complex extension (CES for

Complex Extended Scaling) leads to the neutrino mass matrix

MCES
ν =


x −y1k + iy2k

−1 y1 + iy2

−y1k + iy2k
−1 z1 − wk−1(k2 − 1)− iz2 w − iz2(2k)−1(k2 − 1)

y1 + iy2 w − iz2(2k)−1(k2 − 1) z1 + iz2

 . (4.6)

Here x, y1,2, z1,2 and w are real mass dimensional quantities that are a priori unknown.

It will be shown that MCES
ν of (4.6) can accommodate a nonzero value for each of

m1, m2, m3 and can fit the extant data on ∆m2
21 ≡ m2

2 −m2
1, |∆m2

32| ≡ |m2
3 −m2

2|

as well as on θ12 and θ13. The relation tan θ23 = k−1 is a consequence so that the

presently allowed range of tan θ23 around unity would yield the permitted domain

of the variation of the scaling parameter k close to 1. Furthermore, (4.6) leads
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4.2. Meaning of residual flavor symmetry of Mν

to the result that α, β = 0 or π, i.e. there is no Majorana CP-violation, and the

verifiable/falsifiable prediction that cos δ = 0, i.e. leptonic Dirac CP-violation is

maximal. We have no statement on the sign of sin δ so that δ can be either π/2 or

3π/2. Furthermore, we show that a normal mass ordering (withm2,1 < m3) is allowed

in addition to an inverted one (m2,1 > m3) in the parameter space of the model.

The rest of the paper is organized as follows. In Sec.4.2 we elucidate the meaning

of the residual Z2 ×Z2 discrete symmetry of Mν in terms of its invariance under two

separate similarity transformations. Simple real scaling and its real generalization

are discussed in Sec.4.3. Sec.4.4 contains a presentation of the procedure of complex

extension; this is first illustrated for µτ interchange symmetry and then applied to

the scaling transformation to lead to the proposed MCES
ν of (4.6) as well as its main

consequences, namely tan θ23 = k−1 and cos δ = 0 plus the allowed occurrence of

a normal mass ordering. The origin of the neutrino mass matrix MCES
ν in our

scheme from type-I seesaw mechanism is shown in Sec.4.5. Detailed phenomenological

implications ofMCES
ν are worked out numerically in Sec.4.6 and fitted with the current

data yielding various 3σ-allowed regions in the parameter space; the application of our

results to forthcoming experiments on nuclear 0νββ decay and neutrino oscillations

is also discussed in the same section. Sec.4.8 summarizes our conclusions.

4.2 Meaning of residual flavor symmetry of Mν

It would be useful to focus on the feature [7–9] ofMν that it has a residual (sometimes

called ‘remnant’ [202]) Z2 × Z2 flavor symmetry and at the same time review the

representation content of the latter. Such an exercise will enable us to set up the

theoretical machinery needed to apply the idea to Simple Real Scaling. In addition,

this will lead us to its real generalization as well as to its complex extension.
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Chapter. Complex Scaling and residual symmetry

Let G be a generic 3 × 3 unitary matrix representation of some horizontal

symmetry of Mν effected through the similarity transformation

GTMνG = Mν . (4.7)

Eqs. (4.2) and (4.7) lead to the conclusion that the unitary matrix U ′ ≡ GU also

puts Mν into a diagonal form by a similarity transformation, i.e. U ′TMνU
′ = Md

ν . It

can then be shown [7] that, if m1, m2 and m3 are nondegenerate, G has eigenvalues

±1 and is diagonalized by U . Thus

GU = Ud, (4.8)

d2 = I. (4.9)

Here d is a 3 × 3 diagonal matrix in flavor space with dlm = ±δlm. There are eight

possible distinct forms for d. Two of these are trivial ˘ being the unit and the negative

unit matrices. Of the remaining six, three are negatives of the other three. Finally,

we have three Ga’s (a = 1, 2, 3) but it is sufficient to consider any two of those

as independent on account of the relation Ga = εabcGbGc. The two independent

Ga’s (chosen here as G2,3) are representations of a residual Z2 × Z2 symmetry in the

Majorana mass term of the neutrino Lagrangian. It follows from (4.8) and (4.9) that

G2 = I, det G = ±1. (4.10)

The eigenvalue equation (4.8) needs to be considered for the two independent d ,s, i.e.

d2 and d3, corresponding respectively to G2 and G3. Suppose we choose

d2 = diag (−1, 1,−1), (4.11)

d3 = diag (−1,−1, 1) (4.12)
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4.2. Meaning of residual flavor symmetry of Mν

for det G =1. (The choice for the case det G = −1 is a trivial extension with −d2

and −d3.) Now

G2,3 = Ud2,3U
† (4.13)

can be obtained by use of the explicit form of U as given in (4.3). For instance, let

us consider the situation for µτ interchange symmetry [10] which implies θ23 = π/4

and θ13 = 0. Now we obtain

G2 =


− cos 2θ12 2−

1
2 sin 2θ12 −2−

1
2 sin 2θ12

2−
1
2 sin 2θ12 −1

2
(1− cos 2θ12) −1

2
(1 + cos 2θ12)

−2−
1
2 sin 2θ12 −1

2
(1 + cos 2θ12) −1

2
(1− cos 2θ12)

 , Gµτ
3 =


−1 0 0

0 0 1

0 1 0

 .(4.14)

The above G3 explicitly implements µτ interchange in the neutrino flavor basis and

hence has been labeled with the superscript µτ . Thus one can now identify one of

the two residual Z2
,s as Zµτ2 . The full residual symmetry in this case is Z2 × Zµτ2 .

Our aim would be to undertake a similar task with scaling symmetry in obtaining a

Zscaling2 . It may be mentioned that some authors [203] have generalized Gµτ
3 to

GGµτ
3 =


−1 0 0

0 cos 2θ23 sin 2θ23

0 sin 2θ23 cos 2θ23

 (4.15)

which can accommodate an arbitrary θ23 but still has θ13 = 0. A somewhat different

use of the residual symmetry approach with another pair of Z2
,s was made in Ref.

[204–206].

A comment on the use of the residual Z2×Z2 symmetry would be in order. One

could start from any arbitrary ansatz on UPMNS, reconstruct the residual Z2 × Z2

symmetry and work out the consequences. However, the Z2×Z2 symmetry emerging
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Chapter. Complex Scaling and residual symmetry

from an arbitrary ansatz may not follow from a larger symmetry group or have some

deeper flavor meaning. The SRS ansatz has been shown to follow [15,16] from a larger

flavor symmetry group D4 × Z2.

4.3 Simple Real Scaling and its real generalization

Simple Real Scaling and the corresponding MSRS
ν , cf. (4.5), were already introduced

in Sec.4.1. It is evident from (4.5) that the latter has a vanishing determinant, i.e. one

null eigenvalue. The corresponding eigenvector, given that θ12 and θ23 are known to

be hugely nonzero, can be identified only with the third column of USRS and written

as

CSRS
3 =

[
0, (1 + k2)−

1
2 ei

β
2 , k(1 + k2)−

1
2 ei

β
2

]T
. (4.16)

Two immediate consequences are that m3 = 0, i.e. the neutrino mass ordering

is inverted (m2,1 > m3), and θ13 = 0. The full USRS can be written with an

undetermined angle θ12 and the corresponding c12, s12 as

USRS =


c12 s12e

iα
2 0

−k(1 + k2)−
1
2 s12 k(1 + k2)−

1
2 c12e

iα
2 (1 + k2)−

1
2 ei

β
2

(1 + k2)−
1
2 s12 −(1 + k2)−

1
2 c12e

iα
2 k(1 + k2)−

1
2 ei

β
2

 . (4.17)

A comparison between (4.3) and (4.17) immediately yields

tan θ23 = k−1. (4.18)

As we shall see, (4.18) is going to survive both the real generalization and the complex

CP-transformed extension of SRS. An expression for Gscaling
3 as a representation for
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4.3. Simple Real Scaling and its real generalization

Zscaling2 can now be derived by use of (4.13) . On utilizing USRS from (4.17) and d3

from (4.12), we have

Gscaling
3 =


−1 0 0

0 (1− k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1− k2)(1 + k2)−1

 = (Gscaling
3 )T . (4.19)

The Zscaling2 symmetry of MSRS
ν ensures that

(Gscaling
3 )TMSRS

ν Gscaling
3 = MSRS

ν . (4.20)

It may be noted that (4.20) does not lead uniquely to the form (4.5). Further, while

the form of Gscaling
3 follows uniquely from USRS of (4.17) via the relation been G3 and

d3, the reverse is not the case. Indeed, though the third column of U , reconstructed

from Gscaling
3 , must be CSRS

3 of (4.16) since (d3)33 = 1, its first two columns could be

an arbitrary orthogonal pair. That occurs because of the degeneracy of the (1,1) and

(2,2) elements in d3. The full residual symmetry of MSRS
ν is Zk2 × Zscaling2 , where a

representation for Zk2 is Gk
2 = USRSd2U

SRS†. Explicitly,

Gk
2 =


− cos 2θ12 k(1 + k2)−1/2 sin 2θ12 −(1 + k2)−1/2 sin 2θ12

k(1 + k2)−1/2 sin 2θ12 −(1 + k2)−1(1− k2 cos 2θ12) −k(1 + k2)−1(1 + cos 2θ12)

−(1 + k2)−1/2 sin 2θ12 −k(1 + k2)−1(1 + cos 2θ12) −(1 + k2)−1(k2 − cos 2θ12)


(4.21)

which obeys

(Gk
2)TMSRS

ν Gk
2 = MSRS

ν . (4.22)
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Chapter. Complex Scaling and residual symmetry

A good check is that, for k = 1, the scaling procedure just reduces to µτ interchange

with the additional constraint Mν
µµ = Mν

µτ . But the point of real interest is that

MSRS
ν of (4.5) is not the most general form obeying (4.20). The latter may be worked

out to be

MGRS
ν =


x −Y k Y

−Y k Z −Wk−1(k2 − 1) W

Y W Z

 , (4.23)

whereW is another a priori unknown mass dimensional complex quantity. We call this

form ofMν the Generalized Real Scaling ansatz and denote it by the superscript GRS.

Evidently, the specific choice W = −Zk reduces MGRS
ν to MSRS

ν . The neutrino mass

matrixMGRS
ν of (4.23) has interesting properties. For one thing, it has a determinant

which does not appear to vanish. Therefore, we take all neutrino masses to be nonzero

and can accommodate a nonzero m3 and in principle a normal mass ordering with

m2,1 < m3. However, being invariant under a similarity transformation by Gscaling
3

of (4.19), the third column of the corresponding UGRS is constrained to be CSRS
3 of

(4.16). Consequently, one obtains a vanishing θ13 which is now experimentally known

to be nonzero. Thus MGRS
ν of (4.23) is unacceptable. A more extended version of

scaling in the neutrino mass matrix is needed to describe nature. This is what will

be provided in the next section.

4.4 Complex extension of scaling ansatz

It would be useful to first recall how the complex extension of µτ interchange

symmetry was originally made [10]. The µτ interchange invariant Mµτ
ν obeys the
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4.4. Complex extension of scaling ansatz

condition

(Gµτ
3 )TMµτ

ν Gµτ
3 = Mµτ

ν (4.24)

with Gµτ
3 given by (4.14). Eq. (4.24) forces Mµτ

ν to have the form

Mµτ
ν =


A B −B

B C D

−B D C

 , (4.25)

with A, B, C, D as mass dimensional complex quantities. It is well-known that (4.25)

leads to θ13 = 0 and cannot be accepted as it stands.

Grimus and Lavoura made an alternative proposal, namely the complex-

extended invariance relation

(Gµτ
3 )TMνG

µτ
3 = M∗

ν . (4.26)

This was justified [10] by means of a non-standard CP-transformation [112, 207, 208]

on the να field which is generally represented as1

νLα → iGαβγ
0νCLβ (4.27)

with Gαβ as the matrix element of the flavor symmetry. Eq. (4.27) along with (4.1)

leads to (4.26) if Gαβ is considered as Gµτ
3 . Suffice it to say that (4.26) leads to a

1It is a theoretically interesting question whether such an extended CP-invariance can arise from
an automorphism of a larger flavor symmetry like in the top-down approach of Ref. [11]. But we do
not explore this possibility here.
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complex-extended µτ (CEµτ) symmetric form of Mν :

MCEµτ
ν =


a B B∗

B C d

B∗ d C∗

 , (4.28)

where a, d are real and B, C are complex mass dimensional quantities in general.

Once again, since the determinant does not vanish, we take all neutrino masses to be

nonzero. The observable consequences of (4.28) are: θ23 = π/4, cos δ = 0, α, β = 0

or π while θ13 is in general nonzero. A further extension of this approach has recently

been made [202,209] allowing nonmaximal values for θ23 and Dirac CP-violation.

We have derived (4.18), i.e. tan θ23 = k−1, so that atmospheric neutrino mixing

is not forced to be strictly maximal. On the other hand, the observed fact that tan θ23

is not far from unity implies that so is k. Our proposed relation, in place of (4.26), is

(Gscaling
3 )TMνG

scaling
3 = M∗

ν , (4.29)

with Gscaling
3 as given in (4.19) and, as stated earlier, in the basis where the charged

lepton mass matrix is diagonal and positive. The general form of MCES
ν , as given

in (4.6), follows in consequence. It is important to note that MCES
ν of (4.6) has a

structure that is quite different from that of either MSRS
ν of (4.5) or MGRS

ν of (4.23).

If all imaginary parts in MCES
ν are set equal to zero, a form similar to that of MGRS

ν

is recovered but with all real entries while those in MGRS
ν of (4.23) are in general

complex. Therefore, no special choice in MCES
ν can yield MSRS

ν or MGRS
ν in their

respective generalities.

Grimus and Lavoura [10] had proved a corollary of complex-extended invariance.
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4.4. Complex extension of scaling ansatz

This can be stated with respect to a relation such as (4.26) or (4.29) as

Gscaling
3 U∗ = Ud̃ (4.30)

with d̃ as a diagonal matrix. Once again, d̃lm = ± δlm if the neutrino masses m1, m2,

m3 are all nonzero and nondegenerate. The key difference between (4.30) and (4.8)

is the complex conjugation of U in the LHS. Let us take

d̃ = diag (d̃1, d̃2, d̃3), (4.31)

where each d̃i (i = 1, 2, 3) can be +1 or −1. With G3 = Gscaling
3 , (4.30) can be written

explicitly :


−(UCES

e1 )∗ −(UCES
e2 )∗ −(UCES

e3 )∗

1−k2

1+k2 (UCES
µ1 )∗ + 2k

1+k2 (UCES
τ1 )∗ 1−k2

1+k2 (UCES
µ2 )∗ + 2k

1+k2 (UCES
τ2 )∗ 1−k2

1+k2 (UCES
µ3 )∗ + 2k

1+k2 (UCES
τ3 )∗

2k
1+k2 (UCES

µ1 )∗ − 1−k2

1+k2 (UCES
τ1 )∗ 2k

1+k2 (UCES
µ2 )∗ − 1−k2

1+k2 (UCES
τ2 )∗ 2k

1+k2 (UCES
µ3 )∗ − 1−k2

1+k2 (UCES
τ3 )∗



=


d̃1U

CES
e1 d̃2U

CES
e2 d̃3U

CES
e3

d̃1U
CES
µ1 d̃2U

CES
µ2 d̃3U

CES
µ3

d̃1U
CES
τ1 d̃2U

CES
τ2 d̃3U

CES
τ3

 . (4.32)

It is evident from (4.32) that the choice d̃1 = 1 leads to an imaginary Ue1 in

contradiction with the real (1,1) element of (4.3); this choice is hence excluded. Note

that the choice of UPMNS in (4.3) is simply due to the choice of the Weak Basis where

the neutrino fields are phase rotated. However, in Sec. 4.7, we demonstrate that the

physical results derived here are basis independent, i.e., the inclusion of an unphysical

phase matrix does not impair our predictions. There are now four permitted cases a,
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b, c, d with the following four combinations allowed for d̃:

d̃a ≡ diag (−1, 1, 1), (4.33)

d̃b ≡ diag (−1, 1,−1), (4.34)

d̃c ≡ diag (−1,−1, 1), (4.35)

d̃d ≡ diag (−1,−1,−1). (4.36)

The above can be written compactly as

d̃a,b,c,d = diag (−1, η, ξ) (4.37)

ηa,b = 1, ηc,d = −1, (4.38)

ξa,c = 1, ξb,d = −1. (4.39)

Comparing with (4.3), we obtain

e−iα = −η (4.40)

ei(2δ−β) = −ξ. (4.41)

Thus we are led to the result that α = π, 0 for η = +1,−1 respectively; in a similar

manner 2δ−β = π, 0 for ξ = +1,−1 respectively. We can derive from (4.32) altogether

six independent constraint conditions as linear relations among various elements of

UCES and (UCES)∗. These are listed in Table 4.1. More information is obtained by

use of the explicit expressions of UCES
lα from (4.3). Consider the real and imaginary

parts of the constraint condition on UCES
τ3 given in the bottom line in Table 4.1.
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Since c13 is known to be nonzero, it can be canceled from both sides. Now, from the

respective real and imaginary parts, we have the relations

2kc23 cos
β

2
= [k2(1 + ξ)− 1 + ξ]s23cos

β

2
, (4.42)

2kc23 sin
β

2
= [k2(1− ξ)− 1− ξ]s23 sin

β

2
. (4.43)

Table 4.1: Constraint equations on elements of the mixing matrix

Element of UCES Constraint condition

µ1 2kUCES
µ1 = (1− k2)UCES

τ1 − (1 + k2)(UCES
τ1 )∗

τ1 2kUCES
τ1 = −(1− k2)UCES

µ1 − (1 + k2)(UCES
µ1 )∗

µ2 2kUCES
µ2 = (1− k2)UCES

τ2 + η(1 + k2)(UCES
τ2 )∗

τ2 2kUCES
τ2 = −(1− k2)UCES

µ2 + η(1 + k2)(UCES
µ2 )∗

µ3 2kUCES
µ3 = (1− k2)UCES

τ3 + ξ(1 + k2)(UCES
τ3 )∗

τ3 2kUCES
τ3 = −(1− k2)UCES

µ3 + η(1 + k2)(UCES
µ3 )∗

Since ξ2 = 1, the product of the above two equations leads to the result

sin β = 0, (4.44)

or β = 0 or π. There are now four options:

β = 0, ξ = 1⇒ tan θ23 = k−1, (4.45)

β = 0, ξ = −1⇒ tan θ23 = −k, (4.46)

β = π, ξ = 1⇒ tan θ23 = −k, (4.47)

β = π, ξ = −1⇒ tan θ23 = k−1. (4.48)
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The option β = 0, ξ = 1 for cases a and c, cf. (4.33) and (4.35), as well as β = π,

ξ = 1 for cases b and d, cf. (4.34) and (4.36), yield the scaling relation (4.18) while

the other two options require tan θ23 to equal −k. As will be shown below, the latter

possibility is inconsistent with other constraint conditions. Our final result on the

Majorana phases is that both α and β are restricted to be 0 or π. A combination

of information from 0νββ decay, the cosmological upper bound on Σimi and the

effective mass Σi|Uei|2mi measured in single β-decay is expected to experimentally

constrain [127] these phases.

To proceed further, consider the constraint condition on UCES
τ2 given in the

4th line from the top of Table 4.1. The corresponding real and imaginary parts

respectively yield

2k[c12s23 cos
α

2
+ s12s13c23 cos(δ +

α

2
)]

= [1− k2 − η(1 + k2)][c12c23 cos
α

2
− s12s13s23 cos(δ +

α

2
)], (4.49)

2k[c12s23 sin
α

2
+ s12s13c23 sin(δ +

α

2
)]

= [1− k2 − η(1 + k2)][c12c23 sin
α

2
− s12s13s23 sin(δ +

α

2
)]. (4.50)

Let us now take the two cases at hand.

Case 1: η = 1, α = π

On utilizing that each of s12, s13 and c23 is nonzero, one obtains from (4.49) and

(4.50) the respective relations

(tan θ23 − k−1) sin δ = 0, (4.51)

c12(tan θ23 − k−1) + s12s13(1 + k−1 tan θ23) cos δ = 0. (4.52)

Case 2: η = −1, α = 0

It is easy to see that here one obtains the same pair of equations, namely (4.51) and
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(4.52), but in a reverse sequence.

Eq. (4.52) has important implications. If tan θ23 is put equal to −k, instead of

k−1, one is led to c12 = 0 in contradiction with experiment [30]. Therefore, the two

options β = 0, ξ = 1 and β = π, ξ = −1 need to be retained with the other two

options β = 0, ξ = −1 and β = π, ξ = 1 discarded. Now that tan θ23 does equal k−1,

i.e. (4.18) holds, from (4.52) we have

cos δ = 0, (4.53)

i.e. leptonic Dirac CP-violation is maximal with δ being either π/2 or 3π/2. However,

we are unable to distinguish between these two options since we have no statement

on the sign of sin δ.

Table 4.2: Predictions of the CP phases

d̃ α β cos δ

d̃a = diag (−1,+1,+1) π 0 0

d̃b = diag (−1,+1,−1) π π 0

d̃c = diag (−1,−1,+1) 0 0 0

d̃d = diag (−1,−1,−1) 0 π 0

We have checked that (4.53) consistently follows from the remaining four

constraint equations of Table 4.1 and that no new condition emerges. Finally, we

are left with four options, as shown in Table 4.2. Each of these implies (4.53), i.e.

the maximality of leptonic Dirac CP violation which enters via UPMNS.
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4.5 Origin of neutrino masses from type-I seesaw

So far the analysis was based on an effective light neutrino mass matrix; no specific

origin of neutrino masses has been considered. There are plenty of neutrino mass

models that deal with Majorana neutrinos. However, here we discuss the realization

of the complex extended scaling neutrino mass matrix MCES
ν through the type-I

seesaw mechanism via three heavy right-handed neutrino fields NlR (l = 1, 2, 3) with

a Majorana mass matrix MR. We choose a Weak Basis in which the charged lepton

and the right-handed neutrino mass matrices are diagonal and nondegenarate. With

mD as the Dirac mass matrix and MR = diag (M1,M2,M3), the neutrino mass terms

read

−Lν,Nmass = N̄lR(mD)lαLα +
1

2
N̄lR(MR)lδlmN

C
mR + h.c. (4.54)

The effective light neutrino mass matrix is given by the standard seesaw relation

Mν = −mT
DM

−1
R mD. (4.55)

We represent the G’s, introduced earlier for left handed fields, generically by GL and

define a corresponding GR for NR. The residual CP transformations on the neutrino

fields are defined as [209]

νLα → i(GL)αβγ
0νCLβ, NRα → i(GR)αβγ

0NC
Rβ. (4.56)

The invariance of the mass terms of (4.54) under the CP transformations defined in

(4.56) leads to the relations

G†RmDGL = m∗D, G†RMRG
∗
R = M∗

R. (4.57)
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Eqs. (4.55) and (4.57) together imply GT
LMνGL = M∗

ν . Now, specifying GL by

Gscaling
3 , we obtain the key equation

(Gscaling
3 )TMνG

scaling
3 = M∗

ν . (4.58)

Since we choose the right handed neutrino mass matrix MR to be diagonal, the

symmetry matrix GR is diagonal with entries ±1, i.e.

GR = diag (±1,±1,±1). (4.59)

Hence there are eight different structures of GR. Correspondingly, from the first

relation of (4.57), there are eight different structures of mD. Unlike the complex

transformations of mD andMR in (4.57), we now have real symmetry transformations

G†RmDGL = mD and G†RMRG
∗
R = MR. It can be shown by tedious algebra that,

except for GR = diag(−1,−1,−1), all other structures of GR are incompatible with

scaling symmetry, i.e. cannot generate MGRS
ν . Thus we take GR = diag(−1,−1,−1)

as the only viable residual symmetry on the right-handed neutrino field. Now,

G†RmDGL = m∗D can be written asmDGL = −m∗D which is basically a complex

extension of the Joshipura-Rodejohann result mDGL = −mD [210]. In our context,

this can be rewritten as

mDG
scaling
3 = −m∗D. (4.60)

The most general mD that satisfies (4.60) is

mCES
D =


a b1 + ib2 −b1/k + ib2k

e c1 + ic2 −c1/k + ic2k

f d1 + id2 −d1/k + id2k

 , (4.61)
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where a, b1,2, c1,2, d1,2, e and f are arbitrary real mass dimensional quantities. Using

(4.55), MCES
ν of (4.6) is obtained with the parameters as given in Table 4.3. Some

detailed interesting consequences of mCES
D , specifically with respect to leptogenesis,

will be studied elsewhere.

Table 4.3: Parameters of MCES
ν in terms of the parameters of mD and MR

x = −( a
2

M1
+ e2

M2
+ f2

M3
)

y1 = 1
k
(ab1
M1

+ ec1
M2

+ fd1

M3
)

y2 = k(ab2
M1

+ ec2
M2

+ fd2

M3
)

z1 = − 1
k2 (

b21
M1

+
c21
M2

+
d2

1

M3
) + k2(

b22
M1

+
c22
M2

+
d2

2

M3
)

z2 = 2b1b2
M1

+ 2c1c2
M2

+ 2d1d2

M3

w = 1
k
(
b21
M1

+
c21
M2

+
d2

1

M3
) + k(

b22
M1

+
c22
M2

+
d2

2

M3
)

4.6 Phenomenological constraints and consequences

We need to numerically pin down the mass dimensional six real parameters x, y1,

y2, z1, z2 and w of MCES
ν by inputting the 3σ ranges of quantities measured in

neutrino oscillation experiments. To that end, we use the values from a recent global

analysis [30]. In addition, we use the cosmological upper limit [20] of 0.23 eV on the

sum m1 + m2 + m3 of the masses of the neutrinos. These input numbers are shown

Table 4.4: Input values used
θ12 θ23 θ13 ∆m2

21 |∆m2
31| Σimi

(deg) (deg) (deg) ×105eV2 ×103(eV2) (eV)
31.29− 35.91 38.3− 53.3 7.87− 9.11 7.02− 8.09 2.32− 2.59 < 0.23

in Table 4.4. In terms of output, we obtain the 3σ allowed intervals of the above

mentioned six real parameters and from those the 3σ allowed ranges of the individual
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4.6. Phenomenological constraints and consequences

neutrino masses m1, m2, m3. Both types of neutrino mass ordering, normal as well

as inverted, are found to be allowed. All these values are listed in Tables 4.5 and 4.6

respectively for the two separate categories of mass ordering. We notice that, for

Table 4.5: Output values obtained for normal mass ordering with the best fit m’s
given within brackets

x y1 y2 z1 z2 w
(eV) (eV) (eV) (eV) (eV) (eV)
−0.20 −
+0.21

−0.12 −
+0.11

−0.05 −
+0.05

−0.17 −
+0.17

−0.18 −
+0.17

−0.16 −
+0.15

m1 m2 m3

(eV) (eV) (eV)
9.2× 10−5 − 0.071 (0.052) 0.01− 0.077 (0.054) 0.051− 0.082 (0.072)

Table 4.6: Output values obtained for inverted mass ordering with the best fit m’s
given within brackets

x y1 y2 z1 z2 w
(eV) (eV) (eV) (eV) (eV) (eV)
−0.44 −
+0.46

−0.16 −
+0.16

−0.14 −
+0.14

−0.01 −
+0.01

−0.01 −
+0.01

−0.05 −
+0.06

m1 m2 m3

(eV) (eV) (eV)
0.049− 0.079 (0.068) 0.051− 0.085 (0.069) 8.2× 10−5 − 0.068 (0.048)

both types of ordering, the neutrino masses become hierarchical, i.e. m2,1 << m3 for

normal ordering and m2,1 >> m3 for inverted ordering, for low values of the lightest

neutrino mass. However they tend towards quasi-degeneracy m1 ∼ m2 ∼ m3 as the

latter increases to its permitted maximum value ∼ 0.07 eV. This is clear from the

mass bands shown in Fig. 4.1.

Neutrinoless double beta decay 0νββ:

This is the lepton number violating process

(A,Z) −→ (A,Z + 2) + 2e− (4.62)
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Figure 4.1: Plots of the mass band for normal (left) and inverted (right) mass ordering.
We have choosen to plot the lightest eigenvalue also in the ordinate to bring three
mass bands together. Color code: green (m3), red (m2) and blue (m1).

with no final state neutrinos. An observation of the decay will confirm the Majorana

nature of neutrinos which is yet to be established. The corresponding the half-life [211]

is given by

1

T 0ν
1 /2

= G0ν |M0ν |2|Mν
ee|2m−2

e . (4.63)

where G0ν is a phase space factor,M0ν is the nuclear matrix element (NME),me is the

electron mass and finally |Mν
ee| is the (1,1) element of Mν which can also be written

as ΣimiU
2
ei. Following the PDG parametrization of the mixing matrix UPMNS, one

can write Mν
ee as

Mν
ee = c2

12c
2
13m1 + s2

12c
2
13m2e

iα + s2
13m3e

i(β−2δ). (4.64)

There are several ongoing experiments which have put significant upper limits on

|Mν
ee|. Some recent experiments like KamLAND-Zen [26] and EXO [25] have improved

this upper bound to 0.35 eV. However, the most significant upper bound on |Mν
ee| to

date is put by GERDA phase-I data [21] to be 0.22 eV; this is likely to be lowered by

GERDA phase -II data [27] to around 0.098 eV.
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4.6. Phenomenological constraints and consequences

In our model there are four sets of values of the CP-violating phases α and

β for each neutrino mass ordering . Since |Mν
ee| is sensitive to the CP phases, we

get four different plots for each mass ordering as shown in Fig. 4.2. The same

plots are valid for both types of mass ordering provided the horizontal axis is taken

to represent the lightest neutrino mass m1 or m3 - depending on the ordering. As

Figure 4.2: Plot of |Mν
ee| vs. the lightest neutrino mass: the top two figures represent

Case A (left) and Case B (right) while the figures in the lower panel represent Case
C (left) and Case D (right).

mentioned earlier, we have used the upper bound of 0.23 eV on Σimi. These plots

lead to upper bounds on the lightest neutrino mass for both cases of mass ordering.

For hierarchical neutrinos, |Mν
ee| is found to lead to an upper limit which is below

the reach of the GERDA phase-II data. The latter appears close to being obtainable

only for a quasidegenerate neutrino mass spectrum (mlightest > 0.07 eV). However
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the value predicted in our model could be probed by a combination of GERDA

and MAJORANA experiments [212]. In order to explain the nature of the plots

analytically, let us first consider the inverted mass ordering: In this case, with the

approximations m3 ' 0 and m1 ' m2, the probed effective mass |Mν
ee| simplifies to

|Mν
ee| =

√
|∆m32|2c2

13[{1− s2
12(1− cosα)}2 + s4

12 sin2 α]1/2. (4.65)

Clearly, |Mν
ee| is insensitive to the phases β and δ. On the other hand, for α = 0 and

π (4.65) simplifies to

|Mν
ee| =

√
|∆m32|2c2

13 (4.66)

and

|Mν
ee| =

√
|∆m32|2c2

13[{1− 2s2
12}2] (4.67)

respectively. Hence, for α = π (cases A, B ), |Mν
ee| is suppressed as compared

to the case α = 0 ( C, D). For a normal mass ordering, in addition to the s13

suppression, there is a significant interference between the first two terms, thus

lowering the value of |Mν
ee|. However, if α = 0, the first two terms interfere

constructively and then we obtain a lower bound (∼ 10−3 eV for Case C and

∼ 5 × 10−3 eV for Case D) despite this being a case of normal mass ordering.

This is one of the remarkable results of the present analysis. On the other hand,

for α = π, the first two terms interfere destructively, for the case of a normal

mass ordering; consequently, a sizable cancellation between them brings down the

value of |Mν
ee| and results in the kinks shown by the lower curves in the top two figures.

CP asymmetry in neutrino oscillations:
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4.6. Phenomenological constraints and consequences

Here we discuss the determination of our predicted maximal Dirac CP-violating phase

δ by means of neutrino oscillation studies. This δ will show up in the asymmetry

parameter Aαβ, defined as

Aαβ = P (να → νβ)− P (ν̄α → ν̄β), (4.68)

where α, β = (e, µ, τ) are flavor indices and the P ,s are transition probabilities. Let

us consider first νµ → νe oscillation in vacuum. The transition probability can now

be written (with the superscript zero indicating oscillations in vacuum) as

P 0
µe ≡ P 0(νµ → νe) = P 0

atm + P 0
sol + 2

√
P 0
atm

√
P 0
sol cos(∆32 + δ), (4.69)

where ∆ij =
∆m2

ijL

4E
is the kinematic phase factor (L being the baseline length and E

being the beam energy) and P 0
atm, P

0
sol are respectively defined as

√
P 0
atm = sin θ23 sin 2θ13 sin ∆31, (4.70)√

P 0
sol = cos θ23 cos θ13 sin 2θ12 sin ∆21. (4.71)

For an antineutrino beam, δ is replaced by −δ and thus we have

P̄ 0
µe ≡ P 0(ν̄µ → ν̄e) = P 0

atm + P 0
sol + 2

√
P 0
atm

√
P 0
sol cos(∆32 − δ). (4.72)

Now the CP asymmetry parameter A0
µe in vacuum [213] can be calculated as

A0
µe =

P 0
µe − P̄ 0

µe

P 0
µe + P̄ 0

µe

=
2
√
P 0
atm

√
P 0
sol sin ∆32 sin δ

P 0
atm + P 0

sol + 2
√
P 0
atm

√
P 0
sol cos ∆32 cos δ

. (4.73)

With our prediction cos δ = 0, (4.73) can be rewritten as

A0
µe = ±2

√
P 0
atm

√
P 0
sol sin ∆32

P 0
atm + P 0

sol

, (4.74)
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with a + (−) sign for δ = π/2 (3π/2).

In order to realistically describe neutrino oscillations in long baseline experi-

ments, matter effects in neutrino propagation through the earth need to be taken

into account. In that case P 0
atm and P 0

sol will be modified to

√
Patm = sin θ23 sin 2θ13

sin(∆31 − aL)

∆31 − aL
∆31, (4.75)

and

N N

I I

N N
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I I

Figure 4.3: Plots of the transition probability (Pµe) and CP asymmetry parameter

(Aµe) with baseline length L for δ = π/2 (left panel) and δ = 3π/2 (right panel) with

E = 1 GeV. Cases for normal (inverted) mass ordering have been labelled on top by

N (I). The bands are caused by the atmospheric mixing angle θ23 being allowed to

vary within the 3σ region while the other parameters are kept at their best fit values.

√
Psol = cos θ23 cos θ13 sin 2θ12

sin aL

aL
sin ∆21 (4.76)

respectively. Here a = GFNe/
√

2 with GF as the Fermi constant and Ne as the

number density of electrons in the medium of propagation. An approximate value

of a for the earth is 3500 km−1 [213]. Now the same formulae for Pµe, P̄µe and Aµe

will hold as in (4.69), (4.72) and (4.73) but with P 0
atm and P 0

sol replaced by Patm and

Psol respectively. In Fig.4.3 we plot Pµe and Aµe against the baseline length L in the

two cases δ = π/2 and δ = 3π/2 for both normal and inverted mass ordering. The

lengths corresponding to T2K, NOνA and DUNE are indicated in these figures. In

Fig.4.4 the CP asymmetry Aµe is plotted against the beam energy E again for the

cases δ = π/2 and δ = 3π/2 separately for the three above cited experiments; both

normal and inverted mass ordering cases are included. As expected, Aµe has opposite

signs for δ = π/2 and δ = 3π/2.
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N N

I I

N N

I I
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4.7. Inclusion of unphysical phase

N N

I I

Figure 4.4: Plots of the CP asymmetry parameter Aµe against beam energy E for

δ = π/2 (left panel) and δ = 3π/2 (right panel) for various experiments as shown.

Cases for normal (inverted) mass ordering have been labelled on top by N (I). The

atmospheric mixing angle θ23 is allowed to vary within the 3σ region, leading to the

bands, while the other parameters are kept at their best fit values.

It is further interesting that the extrema of the CP-asymmetry parameter

exhibit opposite behavior as a function of E for δ = π/2 and δ = 3π/2.

4.7 Inclusion of unphysical phase

As mentioned in Sec.4.1, our calculations have been done in a Weak Basis where

the unphysical phases are absorbed in the neutrino fields. However, one can also

reproduce our results including this unphysical phase matrix in the calculation. In
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that case the UPMNS of (4.3) writes as

UPMNS = PφU, (4.77)

with Pφ = diag. (eiφ, 1, 1). Note that there is only a single unphysical phase in the

phase matrix Pφ, since the symmetry under consideration dictates MCES
ν in (4.6) to

contain seven real parameters which correspond to three nonzero masses, three mixing

angles and an unphysical phase. Now for d̃1 = −1, Eq. (4.32) and (1,1) element of

the UPMNS in (4.77) gives

e−2iφ = 1, (4.78)

therefore, φ = 0 or π. From (1,2) element we get

e−i(α+2φ) = −η. (4.79)

Thus for both the values of φ, (4.79) leads to (4.40); therefore, for each d̃ matrix with

d̃1 = −1, the prediction for α, i.e, α = 0 or π remain the same. Now, following the

same way as in Sec.4.4, the results presented in Table 4.2 can be reproduced.

Unlike the previous case, now d̃1 = 1 cannot be ruled out. In this case, from the

(1,1) element of UPMNS in (4.77), we get φ = π/2 or 3π/2. Now, for both the values

of φ, Eq. (4.79) with η = 1 leads to α = 0, and with η = −1 leads to α = π. Since

the predictions for α remain the same, so do the other parameters which are solved

exactly in the same way as in Sec.4.4, by use of both real and imaginary parts of the

relevant complex equations. We put the more general statements regarding the CP

phases for each d̃ with d̃1 = 1 in Table 4.7. In comparison with Table 4.2, the values
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4.8. Summary

Table 4.7: Predictions of the CP phases for d̃1 = 1

d̃ α β cos δ

d̃e = diag (−1,+1,+1) 0 0 0

d̃f = diag (−1,+1,−1) 0 π 0

d̃g = diag (−1,−1,+1) π 0 0

d̃h = diag (−1,−1,−1) π π 0

of α have changed relative to those of β, but the final result that both α and β are

either 0 or π remain the same, though the value of d̃1 has changed.

4.8 Summary

In this paper we have proposed a complex extension of the scaling ansatz for the

neutrino Majorana mass matrix Mν . To that end, we have made use of the residual

Z2 × Zscaling2 symmetry of Mν by obtaining the representation Gscaling
3 from the

original simple scaling ansatz on Mν . The resultant form of the neutrino Majorana

matrix is given by MCES
ν of (4.6). We have shown that it admits nonzero values

of all the physical neutrino masses as well as both normal and inverted types of

mass ordering. We have shown how a nonvanishing θ13 emerges from MCES
ν . The

additional result k−1 = tan θ23, k being the real positive scaling factor, has also been

derived. Dirac CP-violation has been shown to be maximal with cos δ = 0 while

Majorana CP-violation has been demonstrated to be absent with α, β = 0 or π. The

type-I seesaw mechanism which yields nonzero neutrino masses within our scheme

has also been constructed. Phenomenological implications for both 0νββ decay and

neutrino/antineutrino oscillation studies at long baselines have been worked out and
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projections made that will be testable in forthcoming experiments.
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Chapter 5

Complex Scaling and flavored

leptogenesis

5.1 Introduction

Much effort has already been made towards understanding the origin of the baryon

asymmetry of the universe YB = (nB − nB̄)/s ' (8.7 ± 0.1) × 10−11 [20] – the

number density (nB) of baryons minus that (nB̄) of antibaryons normalized to

the entropy density s. A comprehensive review with references may be found

in Ref. [29]. Various possible mechanisms have been considered for this purpose,

e.g. GUT baryogenesis, electroweak baryogenesis, the Affleck-Dine mechanism and

baryogenesis via leptogenesis. We concentrate on the last-mentioned possibility

[90,99,103,214–216] which has been elaborated in section 1. Here a CP odd particle-

antiparticle asymmetry is first generated at a high scale in the leptonic sector; that

is thereafter converted into a baryon asymmetry by sphaleron processes during the

electroweak phase transition. In the most popular extension of the Standard Model
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(SM) for generating light neutrino masses, three1 heavy right-chiral (RH) singlet

neutrinos are added to induce tiny neutrino masses and their mixing angles through

the type-1 seesaw mechanism [142,217–219]. The complex Yukawa couplings fNiα , that

connect those singlet RH neutrinos Ni to the SM-doublet left-chiral leptons of flavor

α, generate the necessary CP violation in the decays of those heavy RH neutrinos into

the Higgs scalar plus the SM leptons. The occurrence of Majorana mass terms for

the heavy neutrinos in the Lagrangian provides the required lepton nonconservation.

The rate of interaction with those Yukawa couplings being smaller than the Hubble

expansion rate, departure from thermal equilibrium ensues. Hence all the Sakarav

conditions [220] are fulfilled for generating YB. The present work is devoted to a

quantitative study of the origin of YB via leptogenesis in a model [22] of neutrino

masses with complex scaling – proposed by some of us. As a step towards that, we

shall summarize the relevant features of the concerned model in the next Sec. 5.2.

First, let us establish our notation and convention by choosing without loss of

generality the Weak Basis (sometimes called the leptogenesis basis [209]) in which

the 3 × 3 mass matrices, not only of the charged leptons but also of the heavy RH

neutrinos, are diagonal with nondegenerate real and positive entries, e.g. MR =

diag (M1,M2,M3), Mi (i = 1, 2, 3) > 0. We shall work in the strongly hierarchical

scenario in the right-chiral neutrino sector in which those masses will be taken to be

widely spaced. Specifically, we assume that M1 << M2 << M3. A crucial input into

these scenarios is the flavor structure of the neutrino Dirac mass matrix mD. The

latter appears in the neutrino mass terms of the Lagrangian as

−Lν,Nmass = N̄iR(mD)iανLα +
1

2
N̄iR(MR)iδijN

C
jR + h.c. (5.1)

with NC
j = CN̄T

j . The effective light neutrino Majorana mass matrix Mν is then

1This can be done with two heavy RH singlet neutrinos but not with just one.
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given by the standard seesaw result

Mν = −mT
DM

−1
R mD. (5.2)

This Mν enters the effective low energy neutrino mass term in the Lagrangian as

−Lνmass =
1

2
¯νCLα(Mν)αβνLβ + h.c. (5.3)

It is a complex symmetric 3 × 3 matrix (M∗
ν 6= Mν = MT

ν ) which can be put into a

diagonal form by a similarity transformation with a unitary matrix U :

UTMνU = Md
ν ≡ diag (m1,m2,m3) (5.4)

with mi (i = 1, 2, 3) taken to be nonzero, real and small positive masses < O(eV). In

our Weak Basis we can take same U as defined in (4.3) of the previous chapter.

In the main body of this analysis we calculate the CP asymmetry originating

from the decays Ni → /Lαφ, /L
C
αφ
† where /Lα and φ are the respective fields of the SM

left-chiral lepton doublet of flavor α and the Higgs doublet. This is done in terms of

the imaginary parts of appropriately defined quartic products of the neutrino Dirac

mass matrix mD and its hermitian conjugate m†D, as well as of an explicit function of

the variable xij ≡ M2
j /M

2
i . Clearly, the calculation depends sensitively on the flavor

structure of mD and hence on the specific neutrino mass model under consideration.

The CP asymmetries (and therefore leptogenesis as a whole) may be flavor dependent

or independent according to the temperature regime in which the CP violating decays

take place. For an evolution down to the electroweak scale, one needs to solve the

corresponding Boltzmann Equations. We therefore consider the Boltzmann evolution

equation for the number density na of a particle of type a (either a right-chiral heavy

neutrino Ni or a left-chiral lepton doublet /Lα) normalized to the photon number
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density nγ. For this purpose, we take

ηa(z) =
na(z)

nγ(z)
, nγ(z) =

2M3
1

π2z3
(5.5)

as functions of z ≡ M1/T . We rewrite these equations for the variable Ya where

Ya = na/s =
nγ
s
ηa = 1.8g∗sηa, (5.6)

g∗s being the total number of effective and independent massless degrees of freedom

at the concerned temperature. The evolution of Ya is studied for different a’s from a

temperature of the order of the lightest right-chiral neutrino mass M1 to that of the

electroweak phase transition where sphaleron-induced processes take place converting

the lepton asymmetry into a baryon asymmetry YB.

In pursuing YB, we need to zero in on Y∆λ
where ∆λ = 1

3
B − Lλ with B

being the baryon number and Lλ the lepton number of the active flavor λ. The

analysis is done numerically but in three different regimes [99, 216] depending on

where M1 lies: (1) M1 < 109 GeV where all the lepton flavor are distinctly active,

(2) 109 GeV < M1 < 1012 GeV where e and µ flavors are indistinguishable but the

τ -flavor is separately active and (3) M1 > 1012 GeV where all lepton flavors are

indistinguishable. The quantity YB and Y∆λ
are linearly related but with different

numerical coefficients for the three different regimes. In our numerical analysis, six

constraints from experimental and observational data are inputted: the 3σ ranges of

the solar and atmospheric neutrino mass squared differences as well as of the three

neutrino mixing angles plus the cosmological upper bound on the sum of the three

light neutrino masses. The analysis is done separately in each regime for a normal

mass ordering (m3 > m2 > m1) as well as for an inverted ordering (m2 > m1 > m3)

of the light neutrinos. The final results are tabulated numerically as well as displayed
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graphically.

We have already mentioned the content of Section 5.2. The rest of the chapter

is organized as follows. In Section 5.3 we calculate the CP asymmetry parameters

generated in the decays of Ni into /Lαφ and /LCαφ†. The numerical analysis that follows

is detailed with a discussion of its consequences in Section 5.4. Section 5.5 addresses

the possible role played by the heavier neutrinos N2,3. A summary of our work is

given in the last Section 5.6.

5.2 Complex scaling with Type-I seesaw

Let’s recall the application of complex scaling in the case of Type-I seesaw. A

key feature of Mν is the Z2 × Z2 residual symmetry [7] that it possesses. This is

implemented in the effective Mν by considering the nonstandard CP transformations

νLα → i(GL)αβγ
0νCLβ, NRi → i(GR)ijγ

0NC
Rj (5.7)

and demanding the invariance relations

G†RmDGL = m∗D, G†RMRG
∗
R = M∗

R. (5.8)

Eqs. (5.2) and (5.8) together imply

GT
LMνGL = M∗

ν (5.9)

which is our complex-extended invariance statement on the low energy neutrino
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Majorana mass matrix Mν . At this point, GL is taken to be [22]

GL = Gscaling
3 =


−1 0 0

0 (1− k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1− k2)(1 + k2)−1

 , (5.10)

k being a real scaling factor. This Gscaling
3 is the operative residual symmetry generator

for the original scaling ansatz [16]. It now obeys the relation

Gscaling
3 U∗ = Ud̃, (5.11)

where d̃αβ equals ±δαβ and hence admits eight possibilities. Only four of these were

shown [22] to be viable and led independently to the results

tan θ23 = k−1, (5.12)

sinα = sin β = cos δ = 0. (5.13)

The detailed phenomenological consequences of (5.12) and (5.13) were worked out in

Ref. [22]. The most general Mν , that satisfies

(Gscaling
3 )TMνG

scaling
3 = M∗

ν , (5.14)

is given by the complex-extended scaling (CES) form of Mν which has been discussed

in the previous chapter.

SinceMR has been taken to be diagonal, the corresponding symmetry generator
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matrix GR, cf. the second of Eqs. (5.8), is diagonal with entries ±1, i.e.

GR = diag (±1,±1,±1). (5.15)

Thus there are eight different structures of GR. Correspondingly, from the first

relation of (5.8), there could be eight possible different structures of mD. It can

be shown by tedious algebra that all other structures of GR, except for

GR = diag (−1,−1,−1), (5.16)

are incompatible with scaling symmetry. Thus we take GR of (5.16) as the only viable

residual symmetry of MR. We can now write the first of (5.8) as

mDGL = −m∗D (5.17)

which is really a complex extension of the Joshipura-Rodejohann result2 [210]

mDGL = −mD.

The most general form of mD that satisfies (5.17) is

mCES
D =


a b1 + ib2 −b1/k + ib2k

e c1 + ic2 −c1/k + ic2k

f d1 + id2 −d1/k + id2k

 , (5.18)

where a, b1,2, c1,2, d1,2, e and f are nine a priori unknown real mass dimensional

quantities apart from the real, positive, dimensionless k. Using (5.2), MCES
ν of (4.4)

obtains with the real mass parameters x, y1,2, z1,2 and w related to those of (5.18),

2Those authors followed a different phase convention; they obtained mDGL = mD instead of
mDGL = −mD.
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as given in Table 5.1. It is noteworthy that whereas mCES
D has ten real parameters,

Table 5.1: Parameters of MCES
ν in terms of the parameters of mD and MR.

x = −( a
2

M1
+ e2

M2
+ f2

M3
)

y1 = 1
k
(ab1
M1

+ ec1
M2

+ fd1

M3
)

y2 = k(ab2
M1

+ ec2
M2

+ fd2

M3
)

z1 = − 1
k2 (

b21
M1

+
c21
M2

+
d2

1

M3
) + k2(

b22
M1

+
c22
M2

+
d2

2

M3
)

z2 = 2b1b2
M1

+ 2c1c2
M2

+ 2d1d2

M3

w = 1
k
(
b21
M1

+
c21
M2

+
d2

1

M3
) + k(

b22
M1

+
c22
M2

+
d2

2

M3
)

MCES
ν has only seven. One can count the real parameters, as given in mD of (5.18).

Along with the RH neutrino masses M1, M2, M3, one obtains a set of thirteen real

parameters for Mν . In order to reduce the number of parameters towards attaining

the goal of a tractable result, we first use the assumed hierarchical nature of the RH

neutrino masses M1 << M2 << M3. We then take the parameters d1,2, e and f in

Table 5.1 to be of the same order of magnitude as a, b1,2 and c1,2. That enables us

to neglect all terms in Table 5.1 with M3 in the denominator. Now we rescale the

remaining parameters of Table 5.1 as follows:

a −→ a′ =
a√
M1

, (5.19)

b1,2 −→ b′1,2 =
b1,2√
M1

, (5.20)

c1,2 −→ c′1,2 =
c1,2√
M2

, (5.21)

e −→ e′ =
e√
M2

. (5.22)

Consequently, the entries of Table 5.1 can be written in terms of the rescaled

parameters as in Table 5.2. We are now left with a six-dimensional parameter space

with the real parameters x, y1,2, z1,2 and w as given in Table 5.2. Note that, had we

172



5.2. Complex scaling with Type-I seesaw

Table 5.2: Parameters of mCES
D in the rescaled version.

x = −(a′2 + e′2)

y1 = 1
k
(a′b′1 + e′c′1)

y2 = −k(a′b′2 + e′c′2)

z1 = − 1
k2 (b′1

2 + c′1
2) + k2(b′2

2 + c′2
2)

z2 = 2b′1b
′
2 + 2c′1c

′
2

w = 1
k
(b′1

2 + c′1
2) + k(b′2

2 + c′2
2)

neglected the terms with M2 in the denominator too, we would have been left with

a three dimensional parameter space which would have been in a danger of being

overdetermined by the six experimental and observational constraints mentioned in

the Introduction. We shall latter discuss how to estimate the missing parameters f

and d1,2.

Before concluding this section, let us make an important point. In the absence

of of any imaginary part of the matrix mCES
D of (5.18), the seesaw relation (5.2) gives

rise to the Generalized Real Scaling form of Mν , namely [22]

MGRS
ν =


x −y1k y1

−y1k z1 − wk−1(k2 − 1) w

y1 w z1

 (5.23)

with real mass-dimensional entries. However, as was explained in Ref. [22], in this

case θ13 vanishes and so information about the Dirac CP violating phase δ is lost.

Moreover, owing to the real nature of the associated mGRS
D , there is no Majorana

CP violation either. Thus we see that the imaginary part of mCES
D is the common

source of an operative nonzero θ13 as well as CP violation in leptonic sector. The
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latter is in fact crucial to leptogenesis which is effected through a nonzero value of

the CP asymmetry parameter ε, as explained in the next section. It is through the

nonvanishing nature of ImmCES
D that the final matter-antimatter asymmetry in the

universe gets directly related to the low energy parameters θ13 and δ.

5.3 Calculation of CP asymmetry parameter and

relevant Boltzmann equations

A general discussion regarding the CP asymmetry parameter εi has been presented

in chapter 1 where the simplified expression for εi is given by

εi =
∑
α

εαi

=
1

4πv2Hii

∑
j 6=i

[
f(xij) +

√
xij

(1− xij)

]
ImHijHij. (5.24)

In the mass model being considered, it follows from (5.18) that

HCES =


a2 + b2

1p+ b2
2q ae+ b1c1p+ b2c2q af + b1d1p+ b2d2q

ae+ b1c1p+ b2c2q e2 + c2
1p+ c2

2q ef + c1d1p+ c2d2q

af + b1d1p+ b2d2q ef + c1d1p+ c2d2q f 2 + d2
1p+ d2

2q

 (5.25)

with p = 1 + k−2 and q = 1 + k2. Since (5.25) implies that Im HCES=0, it follows

from (5.24) that

εi = 0, (5.26)

i.e.flavored-summed leptogenesis does not take place for any Ni. With the assumption

that only the decay of N1 matters in generating the CP asymmetry, ε1 is the pertinent
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5.3. Calculation of CP asymmetry parameter and relevant Boltzmann equations

quantity for unflavored leptogenesis, but it vanishes. This nonoccurrence of unflavored

leptogenesis is one of the robust predictions of the model.

Next, we focus on the calculation of the α-flavored CP asymmetry in terms of

x12, x13 and the elements of mCES
D . These are relevant for the fully flavored as well

as the τ -flavored regimes. We find that

εe1 = 0, (5.27)

while

εµ1 = ξ[b2k
2(χ1 + χ2) + b1(χ3 + χ4)− b2

1χ5] = −ετ1. (5.28)

In (5.28) the real parameters ξ and χi (i = 1− 5) are defined as

ξ =
1

4[b2
1 + (a2 + b2

1 + b2
2)k2 + b2

2k
4]πv2

,

χ1 = b2(1 + k2)[c1c2{1 + g(x12)− x12}+ d1d2{1 + g(x13)− x13}],

χ2 = a[c1e{1 + g(x12)− x12}+ d1f{1 + g(x13)− x13}],

χ3 = b2(1 + k2)[c2
1{1 + g(x12)− x12} − k2[c2

2{1 + g(x12)

− x12}+ d2
2{1 + g(x13)− x13}] + d2

1{1 + g(x13)− x13}],

χ4 = −ak2[c2e{1 + g(x12)− x12}+ d2f{1 + g(x13)− x13}],

χ5 = ((1 + k2)[c1c2{1 + g(x12)− x12}+ d1d2{1 + g(x13)− x13}]. (5.29)

Thus the nonzero leptonic CP asymmetry parameter εµ1 = −ετ1 depends on all ten

parameters of mCES
D as well as on x12 and x13.

We had earlier identified Im mCES
D as the common source of the origin of a

nonzero θ13 and leptonic CP violation. A real mCES
D implies vanishing values for b2,
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c2 and d2 in which case εµ1 = −ετ1 vanishes identically and, as explained in Ref. [22],

so does θ13. However, the reverse statement is not true. One could have a vanishing

leptonic CP asymmetry simply by setting b1,2 to zero in (5.28). But, so long as

Im mCES
D is nonzero, e.g. through nonvanishing values of c2 and d2, θ13 need not

vanish. Indeed, the leptonic CP asymmetry depends rather sensitively on b1,2. We

shall elaborate on this later in our numerical discussion.

A major simplification (1.118) occurs in our model when the active flavor λ

equals e since εe1 = 0 and only the second RHS term contributes to the evolution of

ηλ. Then the solution of the equation becomes [221]

ηeL(z) = ηeL(z = 0) exp[−1

4

∫ z

0

W e(z′)dz′], (5.30)

where W e(z) = 1
2
De

1(z)z2K2(z) + DeYW
1 (z) + DeGW

1 (z). However, at a very high

temperature, the lepton asymmetries get efficiently washed out. Therefore ηeL(z → 0)

vanishes and from (5.30) ηeL(z) = 0 for all z. Similarly, for an unflavored (i.e flavor-

summed) leptogenesis in our model, ηe + ηµ + ητ = 0 since εµ1 = −ετ1.

We have to focus on Y∆λ
, defined as s−1{1/3(nB−nB̄)−(nL−nL̄)} as mentioned

in the Introduction. We consider the BE of (1.139) for the evolution of Y∆λ
, for

convenience which is written again as

dY∆λ

dz
=

3∑
i=1

[ελi {Di(z) +DSY
i (z) +DSG

i (z)}{Y eq
Ni

(z)− YNi(z)}]

+
1

4

∑
ρ

AλρY∆ρ

3∑
i=1

{1

2
Dλ
i (z)z2K2(z) +Dλ YW

i (z) +Dλ GW
i (z)}. (5.31)

We need to solve (1.130) and (5.31) and evolve YNi as well as Y∆λ
upto a value of z

where the quantities Y∆λ
become constant with z, i.e. do not change as z is varied.

The final baryon asymmetry YB is obtained [222] linearly in terms Y∆λ
, the coefficient
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5.4. Numerical analysis: methodology and discussion

depending on the mass regime in which M1 is located, as explained in chapter 1.

A complete and detail numerical discussion of the present work is given in the

following section.

5.4 Numerical analysis: methodology and discussion

In order to numerically check the viability of our theoretical results, the allowed (3σ)

values of globally fitted neutrino oscillation data [30] and the upper bound of 0.23

eV on the sum of the light neutrino masses have been used, cf. Table 5.3. We first

constrain the parameter space constructed with the six rescaled parameters defined in

Eqs. (5.19) - (5.22). Both normal and inverted types of light neutrino mass ordering

are found to be allowed over a sizable region of the parameter space consistent with

the input constraints. The ranges of

Table 5.3: Input values used

Parameters θ12 θ23 θ13 ∆m2
21 |∆m2

31| Σimi

degrees (deg) (deg) ×105eV2 ×103(eV2) (eV)

3σ/others 31.29 −

35.91

38.3−53.3 7.87−9.11 7.02−8.09 2.32−2.59 < 0.23

Bfp(NO) 33.48 42.3 8.50 7.50 2.46 −

Bfp(IO) 33.48 49.5 8.51 7.50 2.45 −

the rescaled parameters are graphically shown in Fig.5.1 and Fig.5.2 respectively for

the normal and the inverted ordering of the light neutrino masses. This is the primary

constraining procedure since the CP asymmetry parameters εαi and the different Γ’s
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Chapter. Complex Scaling and flavored leptogenesis

Figure 5.1: Plots of the reduced parameters for a normal mass ordering of the light
neutrinos.

of the Boltzmann equations depend individually upon the elements ofmD and the RH

neutrino massesMi (i = 1, 2, 3). Therefore, merely restricting the rescaled parameters

is not sufficient for the computation of the final baryon asymmetry. In order to obtain

the allowed ranges of the parameters a, b1,2, c1,2 and e, included inmD, we incorporate

the strong hierarchy assumption of the RH neutrino masses (M1 << M2 << M3), as

mentioned in earlier sections. For numerical purposes, we arbitrarily choose M2/M1

= M3/M2 = 103. We shall later discuss in Section 5.5 the effects of changing these

mass ratios. Depending upon the mass regime, for a fixed value ofM1, we then obtain

the allowed ranges of the parameters of mD from the relations defined in Eqs. (5.19)

- (5.22).
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5.4. Numerical analysis: methodology and discussion

Figure 5.2: Plots of the reduced parameters for an inverted mass ordering of the light
neutrinos.

Even after constraining the six unprimed parameters of mD and the masses

of the three right handed heavy neutrinos, three undetermined parameters remain

– namely f , d1 and d2. The latter have been neglected earlier in the primary

implementation of the input constraints since their contributions to the light neutrino

mass matrix Mν are suppressed by the heaviest RH neutrino mass M3. However, for

a quantitatively successful treatment of leptogenesis, one needs to estimate these

missing parameters too, as mentioned in Sec. 5.2. We discuss here some technical

details regarding this estimation. For example, let us consider the first equation of

Table 5.1, namely

x = −
(
a2

M1

+
e2

M2

+
f 2

M3

)
. (5.32)
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The last RHS term was earlier neglected on the grounds that the parameter f , which

is presumably of same the order of magnitude as a or e, is suppressed by M3. Now,

in order to estimate f , we first set it at a value which is larger i.e. between a and e.

Then we keep on decreasing it until the quantity f 2M−1
3 /(a2M−1

1 + e2M−1
2 ) becomes

less than a very small number which we choose to be 10−5. In a similar manner one

can estimate approximate values of d1 and d2. Thus, knowing the numerical values of

all the parameters of mD as well as those of MR, we can make a realistic estimate of

the final value of the baryon asymmetry. The first step towards the last-mentioned

goal is the estimation of ελ1 in the three mass regimes of M1. We have carried out

our numerical analysis over a wide range of values of M1 in the τ -flavored and in

the fully flavored regimes. As mentioned in the last paragraph of Sec. 5.3, εµ,τ1 are

mostly sensitive to b1,2. In order to see the nature of the variation of εµ,τ1 with b1,2 for

constant values of c2 and d2, we first set c2 and d2 to be zero.

Figure 5.3: Plot of εµ1 with b1 (left), b2 (right) for a normal light neutrino mass

ordering . A sample value of M1 = 3.62× 1011 GeV has been chosen.

Now the simplified expression of the relevant CP asymmetry parameter becomes

εµ1 = ξ(b2k
2χ2 + b1χ

′
3) = −ετ1, (5.33)
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where ξ and χ2 as are defined in (5.29), and χ′3 is given by

χ′3 = b2(1 + k2)[c2
1{1 + g(x12)− x12) + d2

1(1 + g(x13)− x13}]. (5.34)

For a graphical representation of the variation of the CP asymmetry parameter

εµ1 with b1,2, we choose a sample value of M1 = 3.62 × 1011 GeV and assume a

normal mass ordering3 of the light neutrinos. The corresponding scatter plots are

shown in Fig. 5.3. The vanishing of b1,2 implies εµ1 = 0; therefore, in our numerical

computation, only those values of εµ1 are allowed which correspond to b1,2 6= 0. One

can have a similar plot for ετ1 since εµ1 = −ετ1 and the plots in Fig. 5.3 are symmetric

about the origin. The corresponding plots for an inverted mass ordering of the light

neutrinos can also be generated. However, with the same computational technique

as used for normal ordering, we find a much smaller number of allowed points which

hardly show a fair variation of εµ1 with b1,2.

Finally, knowing the numerical range of ελ1 is the last step needed to solve the

Boltzmann equations given in (1.130) and (5.31) leading to the parameter Y∆λ
upto a

fairly large value of z where Y∆λ
becomes constant. Then, using the suitable equations

(1.141), (1.144), depending upon the energy regime, one can compute the final value of

YB. However, this final step needs to overcome the following hurdle. Unlike estimating

ελ1 for the entire allowed parameter ranges of mD and MR, it becomes impractical in

terms of computer time to solve the Boltzmann equations for this huge data set even

if M1 is fixed to a constant value. So we were obliged to use only those values of the

members of parameter set for which the neutrino oscillation observables are restricted

close to their best fit values. For this purpose we choose a χ2 for every observable

3 As we shall see later, in our model an inverted mass ordering is disfavored in terms of a realistic
baryogenesis.
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deviating from its experimentally measured best fit value as

χ2 =
5∑
i=1

[Oi(th)−Oi(bf)

∆Oi

]2

. (5.35)

In (5.35) Oi denotes the ith neutrino oscillation observable from among

(∆m2
21,∆m

2
32, θ12, θ23, θ13) and the summation runs over all the five observables.

The parenthetical th stands for the theoretical prediction, i.e the numerical value

of the observable given by our model, whereas bf denotes the best fit value

(cf. Table 5.3). ∆Oi in the denominator stands for the measured 1σ range of

Oi. After calculating χ2 for all the points {a′, e′, b′1, c′1, b′2, c′2}, as allowed by the

oscillation data, we start from the minimum value of the χ2 (= χ2
min) and keep

on increasing the latter until we get YB to be positive as well as in the observed

range. It is to be noted that for a particular value of χ2, i.e. for a particular

primed data set, we are able to generate a large number of unprimed points

(parameters of mD) by varying the values of M1 in Eqs.(5.19)-(5.22). To be more

precise, ‘n’ values of M1 lead to ‘n’ values of the unprimed set of parameters for

the particular primed set under consideration. The other three parameters f , d1

and d2 are again computed by means of the previously mentioned approximation

technique. We vary M1 over a wide range in the relevant mass regimes for both

types of mass ordering and present our final result systematically in the following way.

YB for normal mass ordering of light neutrinos:

M1 < 109 GeV: In this regime all lepton flavors (e, µ, τ) act distinguishably.

However, since εe1 = 0, we first need to evaluate εµ,τ1 individually. It is found that

|εµ,τ1 | can have values at most ∼ 10−8. YB of the right amount cannot be generated

with such a small CP asymmetry parameter [103].
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109 GeV <M1 < 1012 GeV: After carrying out the χ2 analysis for this regime, we

first calculate the final YB for χ2
min(= 0.002). It is found that the final YB saturates

to a negative value. Then we keep on increasing χ2 and find that a positive value

for the final YB within the observed range may be obtained for χ2 = 0.003 which is

close enough to the best-fit value of χ2 = 0.002. In the entire analysis, for each value

of χ2, i.e. for this single primed set, M1 is varied over a wide range. Then, for each

value of M1, a set of values of the unprimed parameters {a, e, f, b1, c1, d1, b2, c2, d2} is

generated. The Boltzmann equations are solved for each set of values of M1. Since,

in this regime, the τ flavor acts distinguishably, we need to solve

Table 5.4: parameters corresponding χ2 = 0.003 for normal mass ordering.

a′ e′ b′1 c′1 b′2 c′2 χ2

0.026 0.054 0.019 0.095 −0.080 0.095 0.003

the Boltzmann equations for two flavors (τ and 2) in order to obtain the variation of

Y∆τ,2 or of YB with z. For each set of the primed parameters, we take thirty values of

M1 within the range 109 GeV to 1012 GeV and solve the Boltzmann equations thirty

times for each M1 along with the corresponding unprimed set of rescaled parameters.

For a concise presentation, in Table 5.5, we tabulate only ten such values of M1 for

which YB is near or inside the observed range.

Table 5.5: YB for different masses of lightest right handed neutrino.

M1

1011 (GeV) 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66

YB × 1011 8.55 8.57 8.59 8.61 8.64 8.66 8.69 8.71 8.74 8.77

Fig.5.4 contains a graphical presentation of the variation of the asymmetries
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Y∆2 , Y∆τ and YB with z for a definite value of M1 which is taken to be 3.62 × 1011

GeV. It may be seen that YB is inside the observed range [20] for large z corresponding

to the present epoch.

Figure 5.4: Variation of Y∆µ (left), Y∆τ (middle), YB (right) with z in the mass regime

(2) for a definite value of M1. N.B. since these become negative for certain values of

z, their negatives have been plotted on the log scale for those values of z. A normal

mass ordering for the light neutrinos has been assumed.

Figure 5.5: A plot of the final YB for different values ofM1 for a normal light neutrino

mass ordering.

A careful surveillance of Table 5.5 leads to the conclusion that we can obtain

upper and lower bounds on M1 due to the constraint from the observed range of YB.

One can appreciate this fact more clearly from the plot of YB vs. M1 in Fig.5.5.

Two straight lines have been drawn parallel to the abscissa in Fig.5.5: one at YB =
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8.55×10−11 and the other at YB = 8.77×10−11. The values ofM1, where the straight

lines meet the YB vs z curve, yield the allowed lower and upper bounds onM1, namely

(M1)lower = 3.57× 1011 GeV and (M1)upper = 3.66× 1011 GeV.

M1 > 1012 GeV: It has been shown that YB = 0 here for our model.

YB for inverted mass ordering of light neutrinos:

In this case too the numerical estimation of the baryon asymmetry parameter has been

made exactly in the same manner as for a normal mass ordering. A final discussion

for each regime goes as follows.

M1 < 109 GeV: As in the case of normal ordering, the values of εµ,τ1 can reach up

to at most the order of 10−8 which is not adequate to let YB come within its observed

range.

109 GeV <M1 < 1012 GeV: In this regime we first calculate the minimum value

of χ2 for the full set of primed parameters constrained by the oscillation data. We

find that for χ2
min = 0.246 the final baryon asymmetry saturates to a negative value.

As in the previous case we then keep on increasing the value of χ2 and check the final

YB by varying M1 over a wide range for each value of χ2. It turns out that though YB

attains a positive value for χ2 = 0.952, it is below the observed range. Then, using

the χ2 enhancement technique, for YB to be in the observed range the minimum value

of χ2 is found to be 1.67 which is far away from the best-fit point. The set of primed

parameters for χ2 = 1.67 is tabulated in Table 5.6.
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Table 5.6: parameters corresponding χ2 = 1.67 for inverted hierarchy

a′ e′ b′1 c′1 b′2 c′2 χ2

0.15 0.16 −0.017 −0.022 0.10 −0.096 1.67

M1 > 1012 GeV: Once again, YB = 0 here for the present model.

A compact presentation of the final conclusions regarding YB from the numerical

analysis is given in Table 5.7 where only the results on YB for the regimes M1 < 109

GeV and 109 GeV < M1 < 1012 GeV are shown since M1 > 1012 GeV regime is

theoretically ruled out due the vanishing CP asymmetry parameter.

Table 5.7: Final statements on YB for two mass regimes.

Type M1 < 109 GeV 109 GeV < M1 < 1012 GeV

Normal

Ordering

Ruled out since YB

is below the observed range

for any χ2.

YB within the observed range for χ2=0.003

close to χ2
min = 0.002.

Inverted

Ordering

Ruled out since YB

is below the observed range

for any χ2.

YB within the observed range for χ2=1.67

far away from χ2
min = 0.246.

We would like to make a further statement before finishing this numerical

discussion . Though we had earlier enumerated the difficulties in numerically solving

the Boltzmann equations for each data point within the entire 3σ parameter range

of mD, we have been able to perform the task only for a few data points in that

range. We actually find that there is no monotonic variation of YB with the chosen

data points. For example, given a normal ordering of the light neutrino masses,

suppose we take the data set that corresponds to the worst fit point (χ2
max) and solve
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the Boltzmann equations for 109 GeV < M1 < 1012 GeV. Such a procedure yields

a negative final value of YB contrary to the result obtained in the χ2 = 0.003 case.

For the other data points also, YB varies widely with the parameters of mD from

one neutrino mass model to another [223–226]. This conclusion is true for all mass

regimes (except for M1 > 1012 GeV, where
∑
λ

ελ1 = 0 and hence YB vanishes) as well

as for an inverted mass ordering of the light neutrinos. Table 5.7 shows that, for data

points close to the best fit values, an inverted mass ordering is not favored in this

model. However, we cannot completely rule out this mass ordering here since such is

not the case as one moves further away from the best-fit values while still remaining

within the 3σ range. There may exist certain data sets (e.g. χ2 = 1.67) in the allowed

3σ ranges for which the proper value of YB can be generated even with an inverted

light neutrino mass ordering.

5.5 Sensitivity to the heavier neutrinos

In our analysis so far, the effect of the two heavier neutrinos (N2, N3) on the produced

final lepton asymmetry has been neglected. We have assumed that the asymmetries

produced by the decays of both of them get washed out [227]. We examine this

issue in this section. Is YB sensitive to N2 and N3? There are two ways that such a

sensitivity might arise: (1) directly, if the contributions to Yλ from N2,3 decays do not

get washed out for some reason and (2) indirectly, even if those do get washed out, a

dependence of YB on the heavier RH neutrino masses might persist through the CP

asymmetry parameter εα1 .

• Indirect effect of N2,3:

Though the neutrino oscillation data have been fitted with the primed param-

eters, cf (5.19)–(5.22), for computing the quantities related to leptogenesis, we
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need to examine the unprimed ones, i.e. the Dirac mass matrix elements. Is the

final baryon asymmetry affected by the chosen hierarchies of the RH neutrinos?

Interestingly, we find that the final YB is not so sensitive to M2,3. One can

justify this statement by simplifying the CP asymmetry parameters of (1.111)

to

εα1 = −κ
[ ∑
j=2,3

3M1

2Mj

Im[H1j(mD)1α(m∗D)jα]−
∑
j=2,3

M2
1

M2
j

Im[Hj1(mD)1α(mD
∗)jα]

]
(5.36)

with κ = 1
4πv2H11

. Here we approximate g(x1j) of Eqs. (1.111) to be g(x1j) =

− 3
2
√
x1j

for x1j � 1. The last term of Eq. (5.36) is much suppressed since it

is of second order in x−1
1j . The first term has two parts for j = 2, 3. However,

since M3 is much larger than M1 and f, d1 and d2 are taken to have values of

the order of the other Dirac components, the j = 3 term has a negligible effect

on εα1 . Now, for j = 2, εα1 is simplified as

εµ1 = − 3M1

8πv2H11

[(ae′ + b1c
′
1 + b2c

′
2)(b2c

′
1 + b1c

′
2)] = −ετ1 (5.37)

with εe1 = 0. Since e′ and c′1,2 are fixed by the oscillation data, εµ,τ1 are insensitive

to the value ofM2. In order to numerically compute the final baryon asymmetry

for a normal mass ordering of the light neutrinos, we consider each term in

(5.37) and two different mass hierarchical schemes for the RH neutrinos, e.g,

Mi+1/Mi = 102 andMi+1/Mi = 104 where i can take the values 1,2. Recall that

in the previous section we have presented YB for Mi+1/Mi = 103. A careful

inspection of Fig.5.5 and Fig.5.6 reveals an interesting fact. Though the chosen

mass ratios of the RH neutrinos have been altered, changes in the lower and

upper bounds on M1 are not significant for the observed range of YB. For

convenience, we present in Table 5.8 the variation of YB with M1 for different
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mass ratios.

Figure 5.6: Plots of final YB for different values of M1 for Mi+1/Mi = 102 (left) and

Mi+1/Mi = 104 (right).

Table 5.8: Lower and upper bounds on M1 for different mass ratios of the RH

neutrinos (i = 1, 2).

Hierarchies → Mi+1/Mi = 102 Mi+1/Mi = 103 Mi+1/Mi = 104

Upper bound (GeV) 3.64× 1011 3.66× 1011 3.67× 1011

Lower bound (GeV) 3.55× 1011 3.57× 1011 3.58× 1011

• Direct effect of N2:

Here we consider only N2, neglecting N3 for simplicity. It is argued in Ref. [228]

that, due to a decoherence effect, a finite lepton asymmetry generated by N2

decays might remain protected against N1-washout and could survive down to

the electroweak scale. Thus it itself might generate the final baryon asymmetry

if a sizable amount of lepton asymmetry survives. This procedure is subject

to the condition that two washout factors K1 (related to N1-washout) and K2

(related to N2-washout) need not be of the same order. These are defined as

K1 =
H11

M1m∗
, K2 =

H22

M2m∗
, (5.38)
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where m∗ = 1.66
√
g∗πv2/MPl ≈ 10−3 eV.

Figure 5.7: A plot of the two washout parameters K1 and K2 appears in the left

panel. The red dot corresponds to χ2 = 0.003 for which we estimate YB. The green

shaded area indicates a possibility of N2 leptogenesis. A plot of χ2 with K1 for

K2 < 10 is given in the right panel. A normal mass ordering for the light neutrinos

has been assumed.

The conditions that are needed can be stated as [228]

K1 � 1 and K2 6� 1. (5.39)

Here K1 � 1 indicates that faster N1 interactions break coherence among the

states produced by N2, i.e. a part of the lepton asymmetry produced by N2

gets protected against N1-washout. On the other hand, K2 6� 1 implies a mild

washout of the lepton asymmetry produced by N2 from N2-related interactions

in a way that a sizable N2-generated lepton asymmetry survives during the N1-

leptogenesis phase. Quantitatively, our allowed parametric region (blue shaded

area in the K2 vs. K1 plot in the left panel of Fig.5.7) prefers large values of K2

in excess of 10 except at the bottom (green band). Thus the K2 6� 1 condition

is strongly violated in most of the region. On the other hand, the few allowed
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points with K2 < 10, displayed in a χ2 vs. K1 plot in the right panel of Fig.5.7,

correspond to values of χ2 above 0.5 far in excess of χ2 = 0.003 for which we

obtain YB in the observed range. Therefore, for our calculation, any direct effect

of N2 does not appear to be relevant.

5.6 Summary

Some of us has recently proposed a complex-extended scaling model of the light

neutrino Majorana mass matrix Mν , generated by a type-1 seesaw induced by heavy

RH neutrinos. Unlike the Simple Real Scaling model advanced earlier, this new model

can accommodate a nonzero θ13 and has a sizable region of parameter space allowed

by all current and relevant experimental data. The atmospheric mixing angle θ23 is

given by tan−1(1/k), k being a real positive scaling factor which can be either greater

or less than unity. Most interesting are the predictions of the model in regard to CP

violation: maximal (cos δ = 0) for the Dirac type and absent (α, β = 0 or π) for the

Majorana type. Since CP violation is crucially related to baryogenesis, we have been

motivated in this paper to investigate the latter quantitatively in the model under

consideration.

We first performed a general calculation of the CP asymmetries εαi in the decays

Ni → /Lαφ, /L
C
αφ
† in terms of the parameters of the model. This led to a vanishing

value of εei with a generally nonvanishing εµi = −ετi . A common source of the origin of

a nonzero θ13 and these CP asymmetries was found in the imaginary part of mD. We

then evolved Y2 = Ye+Yµ and Yτ , respectively equal to (n
(2)
L −n

(2)

L̄
)/s and (nτL−nτL̄)/s,

from a high temperature (depending on the mass regime in which M1 lies) down to

that of the electroweak phase transition. In doing so we have had to consider the

Boltzmann equations for YNi and Yλ, respectively equal to nNi/s and (nλL − nλL̄)/s, λ
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being an active lepton flavor index which can sometimes be a combination of e, µ, τ .

We then utilized the different linear relations between Yλ and Y∆λ
, with ∆λ = 1

3
B−Lλ,

for the three different specified regimes of M1 to arrive at the baryon asymmetry of

the universe for each regime. The latter values have been evaluated numerically and

their implications discussed.

In a nutshell, realistic baryogenesis has been found to be possible in this model

for values close to best fit values of the input neutrino oscillation observables only

in the 109 GeV < M1 < 1012 GeV regime and for a normal mass ordering of the

light neutrinos. This analysis excludes (from a baryogenesis standpoint) the regimes

M1 < 109 GeV and M1 > 1012 GeV and disfavors an inverted mass ordering of the

light neutrinos. However, the latter is still allowed for values of the input parameters

away from their best-fit numbers but within a 3σ range. As neutrino oscillation data

improve, the conclusions from our analysis will be sharpened.
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Chapter 6

Summary and conclusions

Masses and mixing of light neutrinos are well established now by the neutrino

oscillation experiments. The required various extensions of the SM to explain these

small masses open up the possibility to explore new physics beyond the standard

model. Despite the measurements of the low energy neutrino parameters at a great

significant level, there are some low energy observable, such as the Dirac CP phase

and the Majorana phases which are yet to be determined. The mass ordering of the

neutrinos–normal or inverted has not been fixed yet. A more fundamental question–

the nature of the neutrinos; whether they are Dirac or Majorana type has not

been answered. To probe a Majorana neutrino through ββ0ν decay several efficient

experiments are going on and planned. This is a high time in neutrino physics as far

as the experimental confrontation of a predictive neutrino mass model is concerned.

In this thesis, we have presented some highly testable neutrino mass models based

on some BSM framework such as Type-I and Inverse seesaw mechanisms with some

interesting discrete residual symmetries as an added feature.

Before describing the models in detail, we have developed a general methodology
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for the evaluation of Majorana phases in a model independent way. In chapter 2, we

have shown that with the construction of some rephasing invariants by the elements

of Mν , one can calculate the CP violating phases. Our methodology is valid for any

hierarchical neutrino mass model even if it possesses a vanishing eigenvalue. We have

also constrained the Majorana phases of a general mass matrix using the constraints

on |Mee| and the upper bounds on the sum of the light neutrino masses (
∑

imi)

in addition to the standard oscillation constraints. To exemplify our methodology,

we have also presented two predictive mass models for each mass ordering and

demonstrated the application of the developed general methodology.

In chapter 3, we have presented two mass models based on scaling ansatz

and cyclic symmetry as an effective residual symmetry along with some vanishing

elements in Mν . As an immediate consequence, the number of parameters are

drastically reduced and we end up with some interesting predictions for the low energy

parameters in each of the cases. For example, both the models predict a constraint

ranges of δ which will be tested in the various ongoing experiments like T2K etc..

Each of the models predicts a particular mass ordering along with a constraint range

of |Mee|.

In chapter 4, we have investigated a model based on a residual Z2×Z2 symmetry

complemented by a nonstandard CP transformation. We have presented the scaling

hypothesis as a residual Z2 × Z2 symmetry. We have then extended the latter to its

complex version with a CP transformation, since the real invariance could predict

a vanishing θ13 and hence undetermined Dirac CP violation. As a consequence, we

have obtained a maximally violating value 3π/2 for δ with θ23 not being maximal in

general. The Majorana phases are found to be either 0 or π.

In chapter 5 we have extended this discussion to a Type-I seesaw framework

and examined the impact of this symmetry on leptogenesis in detail. Due to a typical
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structure of mD, a common origin of nonzero θ13, CP violation in the leptonic sector

and matter antimatter asymmetry has been found.

At the end, neutrino physics is now playing a pivotal role to probe physics

beyond the standard model. Within the purview of different experimental results

this is our endeavour to investigate the central role played by the neutrinos in the

other issues of BSM physics.
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