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SYNOPSIS

Introduction: Over the last decade, the topological insulating phase of matter
has emerged through the continuous evolution from two-dimensional (2D) quan-
tum spin Hall (QSH) state to three-dimensional (3D) topological insulators (TT)
[1]. The materials with 3D topological insulating state exhibit bulk band gap like
an ordinary insulator, but have protected conducting state on the surfaces. The
novelty of this conducting surface state is the linear energy-momentum dispersion
of charge carriers, unlike quadratic dispersion in conventional materials, and the
spin-momentum locking associated to the motion of the charge carrier, which makes
the transport insensitive to non-magnetic impurity [1]. 3D Dirac and Weyl type
electronic materials are the most recently (2014-15) discovered quantum phases
of matter, described as topological semimetal (TSM) [2, 3, 4]. Unlike topological
insulator, they exhibit semimetallic bulk with linear electronic dispersion and as
a consequence, the quasi-particles behave as the relativistic Dirac/Weyl fermion
in three dimensions. The surface state of TSMs is also distinct from the closed
constant energy contour in 3D TIs, identified as Fermi arc. Due to the unique
band topology, these materials show different exotic electronic properties of both
fundamental and technological interest, mostly governed by the bulk electronic
contribution [5, 6, 7, 8]. The aim of the present thesis work is, to explore different
exotic magneto-transport properties, nature of Fermi surfaces, topological response
and thermoelectronic properties in some 3D Dirac semimetals.

Experimental Details: The materials which have been studied in this thesis
work are CdsAss, ZrTes and TaShs. Single crystals were grown by standard va-
por transport technique. Phase purity and the structural analysis were done by

using high-resolution powder x-ray diffraction (XRD) and high-resolution trans-



mission electron microscopy (HRTEM). The transport measurements were done
by standard four-probe technique in a 9 T physical property measurement system
(Quantum Design) and cryogen free measurement system (Cryogenic). Magneti-
zation was measured in a 7 T MPMS3 (Quantum Design).

Probing the Fermi surface of three-dimensional Dirac semimetal Cd;As,
through the de Haas-van Alphen technique: After the discovery of 3D Dirac
semimetal phase in CdzAs,, angle-resolved photoemission spectroscopy (ARPES)
measurements have shown that two almost identical ellipsoidal Fermi surfaces are
located on opposite sides of the I' point along the k, direction |9]. Band structure
calculation suggests that these two Fermi pockets touch each other at the critical
value of the Fermi energy (~133 meV), known as Lifshitz saddle point [8]. The
Fermi energy of Cd3zAss has been reported to have much larger value than the crit-
ical one [5]. So, the complex mixing of Fermi surfaces is expected to happen above
the Lifshitz transition. However, the analysis of Shubnikov-de Haas (SdH) oscilla~
tions suggests the existence of single or two equivalent Fermi surface cross sections,
associated to the single frequency of oscillation [5]. In this context, probing the
Fermi surface (FS) of CdsAs, using the de Haas-van Alphen (dHvA) oscillation,
which has been established to be more accurate technique due to absence of local
heating and quantum interference effects or noise from the electrical contacts, may
provide some finer details of the FS [10].

As shown in Fig.1(a), good match between the experimental and calculated inten-
sities in XRD peaks implies the absence of any impurity phase. Resistivity (pg.)
shows metallic behaviour over the whole range of temperature with a residual re-
sistivity ratio [p.(300 K)/p..(2 K)| ~ 6 [Fig.1(b)]. Large and non-saturating MR

(= %leoo%) with prominent signature of Shubnikov-de Haas oscilla-
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Figure 1: (a) X-ray diffraction pattern of powdered sample of CdzAs, single crys-
tal. (b) Resistivity (p..) as a function of temperature. (c) Magnetic field (B)
dependence of the transverse magnetoresistance (TMR) when B|[[100] and [1[[012]
direction.

tions are evident from Figure 1(c).

The fast Fourier transform (FFT) spectra of AR,, versus 1/B curve shows only

Experimental data at 2 K
—— Theoretical fit with p=0.62 ]
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Figure 2: (a) The oscillatory component AR,, of MR as a function of 1/B for
B||[100]; the inset shows the corresponding fast Fourier transformation spectrum.
(b) Oscillating part of the susceptibility Ax= d(M)/dB versus 1/B for B along the
[100] direction. The inset shows the corresponding FFT spectrum. (c¢) Theoretical
fitting to the Ay vs 1/B plot at representative temperature 2 K for the detection
of Berry’s phase.

one oscillation frequency at around 53 T |inset of Fig. 2(a)| for B||[100]. The SdH
oscillations for the other directions of B also give single frequency. This implies
the presence of single or two equivalent Fermi surfaces, similar to that observed
in earlier SAH oscillation study [5]. However, the dHvA oscillation revealed two

well-resolved frequency at 46 T and 53 T [inset of Fig. 2(b)| for the same direction
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of B. This indicates two inequivalent FS cross-sections in the present material.
For better understanding, we have performed magnetization measurements with
B||[021] and B||[012]. But, single frequency has been detected for both the config-
urations. The above study clearly demonstrates that two ellipsoidal Fermi surfaces
superpose with each other along certain directions and form a complex nesting,
without merging into a single contour. Later on, it has been confirmed by other
group [11]. The theoretical fit to Ay vs 1/B plot [Fig. 2(c)| with Lifshitz-Kosevich
formula [10] for the superposition of two oscillating components gives the value of
Berry’s phase |27 3] ~ 1.24w. This value is within the range 2r|3+4| for 3D Dirac
fermion, and far away from the value 0 for Schrodinger fermion.

Tuning the scattering mechanism in three-dimensional Dirac semimetal
Cd3As,: From the magnetoresistivity and Hall measurements, a strong field de-
pendence of scattering time has been observed in CdsAss and this behavior has
been ascribed to the field-induced changes in the FS [6]. But, the measurement of
resistivity alone is not sufficient to understand the details of the scattering mech-
anism. As thermoelectric power (S) is a powerful tool to probe the relaxation
process in metals and semiconductors and provides complementary information to
resistivity, we use S as a probe to study the effects of the FS evolution on the scat-
tering of charge carrier in Cd3zAsy, under application of magnetic field and with
carrier doping.

In Fig. 3(a), S is plotted as a function of 7" up to 350 K at 0, 5 and 9 T magnetic
fields for Cd3Ass. The negative sign suggests electron as majority carrier. Remark-
ably, S shows linear T" dependence almost up to 350 K at zero and 9 T magnetic
field, whereas at 5 T, it shows a weak sublinear behavior at high temperature. As

shown in Fig. 3(b), S increases monotonically with ficld and tends to saturate
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Figure 3: (a) Temperature dependence of thermoelectric power (S) up to 350 K
at 0, 5 and 9 T fields for Cd3Asy. Solid line is the guide to eye for the linear T°
dependence of S. (b) B dependence of the normalized S for the undoped sample.
(¢) T dependence of S for (CdgggIngoz)sAss up to 350 K.

at high fields. Irrespective of temperature, the S(B)/S(0) emerges to a definite
value with the increase in B. However, S(B)/S(0) converges faster at lower tem-
perature. According to the theory of Korenblit and Sherstobitov, the saturation

value of S (S4) at high field in terms of the energy (¢) dependence of the electron

concentration (p) at the Fermi energy (Ey) is given by [12, 13], Soo = %%%.

2 .
kg kT ¢ In three dimen-
3e EF

Considering p o €%, the expression simplifies to S,o=
sions, s is 3/2 for a usual parabolic band and 3 for a linear band [12, 13|. Now, using
the values of Er (~270 meV from quantum oscillation) and Sy, we find that s is
~ 3 for all T. Thus, S(B) clearly demonstrates linear dispersion due to 3D Dirac
semimetal state in CdszAss. Considering linear dispersion and energy-dependent
scattering time (7 o €™), a simplified expression of the Mott’s semiclassical for-
mula for thermoelectric power [14], S = 7T;’%%(m +2) has been obtained. Using
the slope of S vs. T plot, both at zero and at applied field, it has been found that
the scattering time crosses over from being nearly energy independent (m~0.15)
to a regime of linear dependence with the increase in B. On the other hand, it is

evident from S(7') in Fig. 3(c) that the 7 enters into the inverse energy-dependent

regime with 2% In doping at Cd site.



TMR of (CdpgsIngoz)sAss single crystal is measured in B||[100] and []|[012] con-
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Figure 4: (a) B dependence of MR for (CdgosIngoz)sAse single crystal. (b) The
oscillatory component AR, of MR as a function of 1/B in B||[100] configuration;
the inset shows the corresponding FFT spectrum. (¢) B dependence of MR for
(Cd0,961n0.04)3A82 Single crystal.

figurations [Fig. 4(a)]. Unlike the parent compound, MR is small and non-linear in
B in In-doped single crystal. At 2 K and 9 T, MR is about 280 % which suppresses
to only ~10% at 300 K. Analysing the SAH oscillation [Fig. 4(b)], two distinct
frequencies (F') at 159.3 and 184.6 T have been obtained, which indicate two much
larger F'S cross-sections in the doped sample compared to the single smaller cross-
sectional area in CdszAss. This also suggests larger overlap between the two Fermi
surfaces beyond Lifshitz transition in the doped sample. Fig. 4(c) shows large and
nearly linear MR for (Cdg.gsIngps)3Asy like the undoped sample. At 9 T, MR is
as high as ~ 1650% at 2 K and ~ 250% at room temperature. But, due to large
disorder, SAH oscillation has not been observed within the experimental field and
temperature range. The observed behaviour of MR is consistent with the statis-
tical model, which states that large spatial fluctuation in carrier mobility due to
presence of disorder, can generate large linear MR [15].

Coexistence of topological Dirac fermions on the surface and three-
dimensional Dirac cone state in the bulk of ZrTe; single crystal: Al-

though, the long-standing debate on the anomalous resistivity peak of ZrTes has



been explained recently by ARPES [16], the exact topological nature of the elec-
tronic band structure was remained elusive. Theoretical calculations predicted
that bulk ZrTes to be either a weak or a strong 3D TI [17]. However, the ARPES
and transport measurements clearly demonstrate 3D Dirac cone state with a small
mass gap between the valence band and conduction band in the bulk [16, 18]. Do
theory and experiment contradict each other or the 2D Dirac cone surface state
and 3D Dirac cone state in the bulk can coexist simultaneously in ZrTes? The aim
of the present work is to resolve the ambiguity.

Typical size and morphology of single crystals of ZrTes are shown in Fig. 5(a).
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Figure 5: (a) Typical size and morphology of ZrTes single crystal. (b) B depen-
dence of MR at I|| B configuration. (¢) MR (B) at 20 K, fitted with the theoretical
expression, p.= 1 . Inset shows the T" dependence of 1/a.

[o0+a(1). B2+ ——>

The consequence of Adler-Bell-Jackiw (ABJ) chiral anomaly [19] in condensed
matter electronic systems with 3D Dirac Fermion as quasi-particle excitation is
the negative MR in E||B configuration [20]. B dependence of this negative lon-

gitudinal MR (LMR) along with the small conventional positive MR contribution

is given by, p.= [18]. The constant due to ABJ chiral anomaly,

1
[o’o+a(T).Bz]+m

a(T), exhibits inverse T? dependence [18]. The chiral anomaly induced negative
LMR in ZrTe; has been confirmed in earlier magneto-transport study [18]. For

the sake of completeness, we have also measured LMR of present ZrTes crystal by
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applying both I and B along the a axis. As shown in Fig. 5(b), p gradually de-
creases with increasing field until an upturn occurs at high field. A positive TMR
component due to unavoidable misalignment between I and B in parallel config-
uration is responsible for this high field upturn. The negative LMR region is well
fitted with the above mentioned theoretical expression and shown at a representa-
tive temperature 20 K in Figure 5(c¢). By fitting LMR at several temperatures, we
have calculated the values of a. One can see from the inset of Fig. 3(c) that a™*
is almost linear in 72, as predicted theoretically [18]. This B and T' dependence
of LMR confirms 3D Dirac fermionic excitation in the bulk state of ZrTes.

The low-energy physics of the surface state for a 3D TI can be described by

" 8 — .
i
2f! (b) - H (c)

- 2K Q A e 2K
€ 1t - 20K £ a4} L 20K
5 = 400K 2 e 100 K
= -+ 300K g & 300 K
E o} - 350K E 3% 350 K
[ - of g °
"?O =1 s b
= 1} X i
R Jus]
= g 4 M——.—

2} £ 33 3y
5 0 5 -5 0 5
B (kOe) B (kOe)

Figure 6: (a) Surface Dirac cone of 3D TI and its spin-momentum texture. (b)

Magnetization as a function of B for ZrTe; single crystal. (c¢) x=4%4 as a function

~dB
of B.

the Dirac type effective Hamiltonian, Hgy, (ks ky)=hvr(0¥ky-0vk,), where vp is
the Fermi velocity. As a consequence, the spin (&) is always perpendicular to its
motnentum (E) for the eigenstate of the Hamiltonian. This leads to left-handed
spin texture for the upper Dirac cone and right-handed spin texture for the lower
Dirac cone [Fig. 6(a)]. Whereas at the Dirac point, the electron spin should be

free to align along B due to the singularity in spin orientation [21]. This predicts

a low-field paramagnetic peak in susceptibility (x(B)).
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The magnetization of ZrTes with B along the a axis is shown in Fig. 6(b). Over
the whole range of temperature from 2 to 350 K, it shows diamagnetic signal ex-
cept a paramagnetic upturn in the low-field region, unlike standard diamagnetic
materials. Fig. 6(c) shows that a cusp-like paramagnetic susceptibility sharply
rises above the diamagnetic floor in a narrow field range of ~2 kOe around zero
field. The height of the peak from the diamagnetic floor and its sharpness are
insensitive to 7. Similar robust and singular paramagnetic response have been
reported for 3D TT candidates BipSeg, SbyTes and BisTeg [21]. Thus, the complete
results of magnetization and magneto-transport measurements allow one to con-
clude that ZrTes is a novel quantum phase of matter, which hosts both topological
Dirac fermions on the surface and 3D Dirac cone state in the bulk.
Anisotropic Fermi surface probed by the de Haas-van Alphen oscillation
in proposed Dirac Semimetal TaSb,: TaSbh, has been predicted theoretically
to be a weak topological insulator [22]. Whereas, the earlier magnetotransport ex-
periment has established it as a topological semimetal [23]. In the previous work,
the Shubnikov-de Haas oscillation has been analyzed to probe the FS, with mag-
netic field along a particular crystallographic axis only [23|. However, the crystal-
lographic direction dependence of magnetotransport properties and the anisotropy
of the Fermi surfaces have not been probed. Due to lower crystal symmetry (mon-
oclinic) of TaSbs, the above mentioned knowledge is important from both the
fundamental and application point of view.

Fig. 7(a) shows a representative piece of TaSh, single crystal with different crys-
tal directions. To probe the anisotropy in MR and FS, we have considered three
mutually perpendicular directions on the crystal [a-axis, b-axis, and perpendicular

to ab plane, i.e., (001) direction]| as references. The zero-field resistivity (pz.) is
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Figure 7: (a) Typical morphology and different crystallographic directions of a
representative single crystal of TaSby. (b) p..(7') both in presence and absence of
B at I||b-axis and B_lab-plane. (c¢) Angular variation of MR at 2 K when the
direction of B changes from (001) to a-axis, making an angle 6.

metallic over the whole temperature range, as shown in Fig. 7 (b). With the appli-
cation of B, the low-temperature resistivity is enhanced drastically. As a result, a
metal to semiconductor-like crossover behavior starts to appear with decreasing 7.
At low T, p.o(T') shows a saturation-like behavior. Fig. 7(c) shows TMR (B L I)
at 2 K with the rotation of sample about b-axis, making an angle 6 with the field
direction. At B|[(001), the MR is ~ 1.3x10*% at 9 T. As the direction of B is
changed from (001) towards a direction, the value of MR is observed to increase
and becomes maximum (~ 2x10*% at 9 T) at around 6 = 75°. The minimum
value of MR is found to be ~ 9500% at around 165°. The two-fold rotational sym-
metry in MR(0), which is expected for monoclinic crystal structure, is evident from
the polar plot. The tilted pattern of MR(f) with respect to the crystallographic
axis may be due to the complex geometry of the Fermi surfaces and their relative

contribution to transport [24].

The FFT spectrum of d(M)/dB vs 1/B in Fig. 8(a) for Blja configuration

shows three distinct oscillation frequencies (F') at 156, 327 and 598 T, which im-
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with the expression, o=y Ti 4%z and Toy= iy SZ-H%BZ, respectively, at
2 k3

representative temperature 2 K. The density and mobility for each types of charge
carrier have been mentioned in the inset.

plies the presence of three Fermi pockets in TaShy. The dHvA oscillation for
B||(001) direction gives three closely spaced frequency peaks at 370, 421 and 452
T [Fig. 8(b)]. Similar magnetic measurements have also been done for B ||b
and three closely spaced frequency at 462, 512 and 548 T have been found. The
details analysis of oscillation amplitude by Lifshitz-Kosevich formula implies that
the smallest Fermi pocket is ~ 140% and the medium one is ~ 30% higher in
B {|(001) than the corresponding smallest and medium ones in B ||a, respectively.
Whereas, the largest cross-sectional area in B ||(001) configuration is 25% smaller
compared to its counterpart in B ||a. The values of effective mass of the charge
carrier (mesp) in B |[(001) for the two lighter Fermi pockets are nearly equal to
that observed in B ||a, and the massive one (also the largest one) is only 30% less
in the previous configuration compared to later. The three-band fit to o,,(B), as
shown in Fig.8(c), reveals two high mobility (~3.48x10* ¢cm?/Vs) electron-type
Fermi pockets of smaller volume and one large hole-type Fermi pocket of very low

mobility (~ 0.42x10" cm?/Vs).
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TMR of orbital origin has been determined by the component of the mobility
(1) tensor in the plane perpendicular to B and it increases with increasing p [24].
Again, 1 is set by the ratio of the scattering time (7) to mess, p ~ #ff Cross-
sectional area (Ap) of Fermi pockets for B ||(001) and B ||a implies smaller phase
space for the scattering of charge carrier from the two electron-type Fermi pockets
in the plane perpendicular to a-axis, and as a result, the value of 7 is larger [24].
Whereas, the m.sy for the two pockets remains almost equal for the two directions.
As a consequence, the mobility of the charge carriers in the plane perpendicular
to a appears to be higher for these channels of charge conduction. On the other
hand, Ar and mey; of largest hole-type Fermi pocket have been found to be 25%
and 30% smaller, respectively, for B ||(001) compared to the B ||a configuration.
So, it appears that the larger Fermi pocket has higher mobility for B [[(001),
unlike to that observed in two smaller Fermi pockets. However, p of hole-type
carriers from the largest Fermi pocket is itself very small; close to one-third of the
values for electron-type charge carriers from the smaller Fermi pockets. Thus, the
transport properties in TaSby will be dominated by the two electron pockets of

small and intermediate volume. As a consequence, the value of magnetoresistance

is expected to enhance with the rotation of field from (001) to a direction.
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Introduction

In this chapter, we review the theoretical foundation and experimental discov-
ery of different topological electronic states of material. As phonon plays no role
in determining the topological nature of these electronic states, all the physical
phenomena associated to electronic band topology can be explained without in-
corporating temperature as a parameter, i.e., without considering the Boltzmann
statistics. At first, we briefly discuss the conventional electronic states, which
have been realized in band theory of solid. Next, the simplest non-trivial insulat-
ing phase (known as Integer Quantum Hall State), and the topological order in
condensed matter electronic system are introduced. Depending on the presence
of symmetries in an electronic system and its dimensionality, the non-trivial in-
sulating states can have different topological structure. In the following section,
we present Quantum Spin Hall (QSH) State in two dimensions (2D) and another
type of topological classification in solid state electronic systems. We review the
theoretical and experimental developments from 2D QSH state to 3D topological

insulators (TI). Finally, a brief description on recently discovered 3D Dirac and



Weyl semimetals is given, which are characterized as topological semimetals. We
discuss the earlier experimental advancements, and elaborate how these previous
works inspire us to look for different electronic properties and its possible micro-
scopic origin, to verify the non-trivial nature of electronic band structure, and to

discover new electronic phases allowed by topological fine structure.

1.1 Band theory and conventional electronic phases

CRYSTALLINE SOLID - 102 ATOMS
(only 24 atoms drawn here)

INDIVIDUAL ATOM

DISCRETE S RANGES of
" ENERGY ENERGY

' 25 LEVELS or « LEVELS or

k=], 'STATES' «— 'BANDS’

Figure 1.1: A schematic diagram to show the discrete energy levels of an isolated
atom and energy band of crystalline solid. Reproduced from Ref. [1].

In the case of a single isolated atom, there are various discrete energy levels,
known as atomic orbitals. When two atoms join together to form a molecule,
their atomic orbitals overlap, and each atomic orbital splits into two molecular
orbitals of different energy. In a solid, a large number of atoms are arranged
systematically in space lattice and each atom is influenced by neighbouring atoms.

As a consequence, each atomic orbital splits into large number of discrete molecular
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Figure 1.2: Electronic phases of matter classified by band theory.

orbitals, each with a different energy. The energy of adjacent levels is so close that
they can be considered as a continuum, forming an energy band. Figure 1.1 is
a schematic diagram, representing the above discussion. The highest completely
occupied band is called the valence band and the partially filled or completely
empty band is known as conduction band. For the conduction of electrical energy
in a material, there must be partially filled band. In case of a metal, as shown in
Figure 1.2, the valence and conduction band overlap with each other in such a way
that the conduction band is partially filled and participates in charge conduction.
A semimetal, where the valence and conduction band just touch at a point without
introducing any well-defined Fermi surface, is also a conductor of charge. For an
insulator, due to gap between valence and conduction band, the conduction band
is completely empty and there is no charge conduction under external electric
field. In the materials where the gap is small (< 1 eV), electrons thermally excited
from valence to conduction band near room temperature, and participate in charge
conduction. These materials are known as semiconductors. It can be shown that
via smooth deformation of the Hamiltonian, an insulating gap can be tuned to
an arbitrarily small value or to an exceptionally large value, without closing the

gap. In mathematical language, all the conventional insulating states are related



via an equivalence relation. In that sense, vacuum, which, according to the Dirac
equation, has a band gap that corresponds to the pair production (~ 10° eV), is
also a trivial insulator. Thus, the band theory of solid is extremely successful in
grouping a wide variety of materials into just two categories: metals and insulators.
It has been thought to be most powerful quantum mechanical tool available to
understand the electronic properties of crystalline solids, until the discovery of

Integer Quantum Hall Effect (IQHE).

1.2 The Integer Quantum Hall State and introduc-

tion of topology in electronic systems

1.2.1 Experimental discovery and the strange observation

The experimental discovery of Integer Quantum Hall Effect in 1980 by von Klitzing,
led to think a different classification paradigm, beyond conventional band theory
of solid [2, 3]|. IQHE is the simplest example of insulator which is fundamentally
not equivalent to vacuum. Two-dimensional electron gas under application of out-
of-plane external magnetic field forms cyclotron orbits well-inside the boundary
[Figure 1.3(a)]. The single particle Hamiltonian (H) describing the motion of

electron is given by the expression,

where p, m, and A are momentum of electron, effective mass, and magnetic vec-
tor potential, respectively. In this situation, each electronic energy band of parent

state splits into several sub-bands, known as Landau levels. The energy of n** Lan-
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Figure 1.3: (a) Schematic of two-dimensional electron gas under out-of-plane exter-
nal magnetic field. (b) Formation of Landau levels under application of magnetic
field, and the variation in the electronic density of states across the Fermi level with
the increasing field. (c) Hall measurement configuration. Vy is the Hall voltage.

dau level is E,, = hw.(n + %), where w, = eB/m} and m} is the effective cyclotron
mass of the charge carrier. When N Landau levels are filled, there is an energy gap
between N filled band and (N+1)" empty band, which causes the bulk to behave
as an insulator. Being a function of external magnetic field, the degeneracy of
Landau levels increases with increasing field strength. As a consequence, the Lan-
dau levels pass through the Fermi level of the system, which results in oscillations
of the electronic density of states at the Fermi level. This phenomenon produces
oscillations in several electronic properties of a material including electrical resis-
tance (Shubnikov-de Haas effect) and magnetization (de Haas-van Alphen effect),
which is familiar as quantum oscillations. The frequency of this oscillation in a
material is proportional to the cross-sectional area of the Fermi surface, perpendic-

ular to the direction of magnetic field. By applying magnetic field along different



directions of a crystals, one can measure the cross sections of the Fermi surface.
This technique has been established as a powerful tool to probe the Fermi surface

of a material.

However, the electrons at the edge of the two-dimensional electron gas will
behave differently from that of the bulk, as shown in Figure 1.3(a). Due to the
bending of the path by the Lorentz force, electrons form skipping orbits. Hall
conductivity (o), which has been obtained by measuring the Hall resistivity as
shown in Figure 1.3(c), is found to be finite, unlike trivial insulators, and o, is
quantized depending on the number (N) of filled Landau levels. The quantized
value of Hall conductivity is given by the expression, o,, = N}—LCQ [2, 4]. The myste-
rious thing about the value of o, is that the quantization can be measured to an
accuracy 1 part in a billion. Irrespective of material forming the two-dimensional
electron system and presence of disorder, which modify the Hamiltonian of the
system, the value of o,, has been found to have such precise quantization. To
explain the robust and quantized value of o,,, concept of topological order has

been introduced in solid state electronic systems.

1.2.2 Topology in Geometry

Topology is a mathematical structure in Geometry, and this allows us to study
the properties of an object, which remain unaffected by the smooth deformation of
shape or size. In Figure 1.4, four three-dimensional objects have been shown, which
belong to different topological class. The topological quantity which distinguishes

a sphere from a torus, is called genus (g). The values of genus for sphere, torus,
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Figure 1.4: Geometrical objects with different topology. The objects are classified
by the value of Genus, which is basically the number of holes in the object.

double torus, and triple torus are zero, one, two, and three, respectively. So, the
value of g is basically the number of holes in an object. Since an integer can
not change smoothly, objects with different genus can not be deformed into one
another; and are said to be topologically distinct. In that sense, a clay ball and
a plate, both of which have g = 0, can be deformed smoothly into one another.
In other words, any two objects with the same value of g can be connected by a
smooth deformation in size or shape. The genus of an object with arbitrary shape

is calculated by the Gauss-Bonnet theorem,

/ KdS = 2n(2 — 2g), (1.2)
Sur face

where K = mlm is the Gaussian curvature, and r; and ry are the radius along two

perpendicular directions from a point on the surface of an object [2, 5]. Consid-
ering, K = Tiz on the surface of a sphere, |, Sur face KdS has been calculated to be
4. This implies that the value of g for a sphere is zero. If we perform similar

calculation for a plate like object, it will give us the same value for g.



1.2.3 Topology in Quantum Hall Physics

How the concept of topology can be used to characterize Integer Quantum Hall
states? We will explain this in this paragraph. From the mathematical point
of the view, the Gaussian curvature of geometry, the Berry curvature of elec-
tronic band theory and magnetic field are same. All of them are described by
the same mathematical structure: fiber bundles [5]. Now the question is: How
the Berry’s phase arises in solid state electronic systems? The band theory of
solid classifies electronic states in terms of their crystal momentum k, defined in
a periodic Brillouin zone. The Bloch states |u,,(k) >, defined in a single unit
cell of the crystal, are eigenstates of the Bloch Hamiltonian, H (k). The eigen-
values E,,(k) for all m, collectively form the band structure. However, the Bloch
wave function, |u,,(k) >, has an intrinsic phase ambiguity, ¢/*®). The band struc-
ture remains unaffected under the transformation, |uy, (k) >— ¢®® |y, (k) >,
which is similar to gauge transformation in electromagnetic theory. This leads
to introduce a quantity similar to electromagnetic vector potential, which trans-
forms A,, — A,, + Vko(k) under gauge transformation. So, there must be
an analog of magnetic flux, F,, = Vi X A,,, which is invariant under the trans-
formation |2|. This quantity is known as Berry curvature, and A,, is defined as
A, =1 < up|Vk|uy, >. Thouless, Kohmoto, Nightingale, and den Nijs have found
that the surface integral of Berry curvature over the Brillouin zone is an integer,
S5 7 Fmd®k = ny,, similar to genus in geometry [2, 6]. The topological invariant
n,, is called Chern invariant, and the total Chern number, summed over all occu-
pied bands, n = Zgzl € 7 (7 denotes the integer, i.e., 1, 2, ....., 00) is invariant,
provided the gap separating occupied and empty bands remains finite. n is also

known as TKNN invariant. It has been identified that this n is nothing but the



integer number in the expression, o,, = NT‘Q [6]. Being a topological invariant, n
in a system can not be changed under smooth deformation of Hamiltonian, i.e.,
without closing the gap between the occupied and empty bands. This helps us to

explain the robust quantization of 0., in quantum Hall state.

Conduction Band

Insulator n=0
(a) (b)
A A A ]  Er

Quantum Hall
State n=1

Valence Band
1

—mt/a 0 k -m/a

Figure 1.5: (a) The interface between a quantum Hall ground state and an trivial
insulator /vacuum. (b) The electronic band structure, where a single edge state
connects the bulk valence band to the bulk conduction band. Reproduced from
Ref. [2].

The existence of skipping electron orbits or metallic edge state at the interface
of Quantum Hall state and vacuum is the fundamental consequence of the topo-
logical classification in gapped states. Topological protection prevents states to
deform smoothly from one value of n to another, across the interface of two topo-
logically different insulators. As shown in Figure 1.5(a), the Quantum Hall ground
state has the value of n equals to one [2]. Whereas, a trivial insulator/vacuum
has n equals to zero. As a consequence, the Hamiltonian can not be smoothly
deformed from Integer Quantum Hall state to trivial insulating state. The gap
between the valence and conduction band must be close to change the value of n

at the boundary. This provides an one-dimensional band dispersion for the edge



state, residing in the bulk band gap |Figure 1.5(b)| [2]. The number of edge chan-
nels at the interface of two topologically different systems is determined by the
‘bulk-boundary correspondence’ [2]. This relates the number of edge modes (N)
intersecting the Fermi energy to the change in the bulk topological invariant (n)
across the interface by the expression, N = An. So, a Quantum Hall state with N
number of filled Landau levels will have N number of edge channels at the interface

with vacuum.

1.3 Quantum Spin Hall (QSH) State

1.3.1 Discovery of QSH effect and failure of TKNN charac-

terization

/'7‘? -

.

quartim Hall system quantum Hall system ‘
B0 for up-spin) \ / (B<0 for down—spin)

cuantum spin Hall system

Figure 1.6: Schematic picture of the QSH system as a superposition of two QH
systems. Reproduced from Ref. [§].

Discovery of Quantum spin Hall insulator state in HgTe quantum-well by

Molenkamp and his collaborators, in the year 2007, is the next milestone in clas-

10



sifying electronic states of matter in terms of their underlying topology [7]. The
two-dimensional quantum-well structure was made by sandwiching a thin layer of
mercury telluride (HgTe) between layers of cadmium telluride (CdTe). In QSH
state, time reversal symmetry is preserved due to absence of external magnetic
field and spin-orbit coupling plays an important role in generating intrinsic mag-
netic field, unlike IQH state. The single particle effective Hamiltonian, governing

the Quantum Spin Hall physics is,

(p - 6AO‘Z)2
2m

H= , (1.3)

where o, is the z-component of Pauli matrices. It is evident from the second term
(within the bracket) in the numerator that an effective magnetic field acts in the
upward direction on up-spin and in the downward direction on down-spin. As a
result, electrons with upward spin move in a separate conducting channel, oppo-
site to the spin-down electrons, at the edge of the sample. So, a QSH phase can
be realized by a superposition of two quantum Hall systems for the up and down
spins, as shown in Figure 1.6 [8]. However, there is no net flow of charge, but
net spin current in QSH state. A QSH insulator can not be characterized by the
TKNN invariant (n € Z). This is because the integer topological invariant for
up-spin electrons (n 1) is equal and opposite to the down-spin electrons (n |) in
presence of time reversal symmetry, and as a consequence, n ( =n T + n |) is zero.
Considering the role of spin-orbit interaction and time-reversal (7 ) symmetry,

Kane, Mele, and others have introduced a new topological invariant, v |9, 10].
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1.3.2 Role of time-reversal symmetry

To understand this new topological class, we have to examine the role of 7 symme-
try for spin—% particles. The 7 symmetry in an arbitrary spin system is represented
by an anti-unitary operator, © = exp(%wSy)K , where Sy is the spin operator and
K is the complex conjugate. Existence of time-reversal symmetry implies that
© commutes with the Hamiltonian of the system (where U represents the wave
function of the system), i.e.,

O, H|¥ =0

= OHV - HOV =0

= OHV = HOV

Let, U is the r'* eigen state of H, i.e., HU = ¢,¥. This implies, HOU = ¢,00.
So, OV is also the ' eigen state of H. Now, there are two possibilities: (a) ¥ and
OV are same, and (b) ¥ and OV are different wave functions, i.e., &, is doubly
degenerate. To identify the right one, we have to consider the following effect of
T symmetry operation on spin-half system. In a spin-half system, © flips the di-
rection of the spin by 180° and wave function gains a minus sign by the two times
operation of O, i.c., O2¥ = —,

Suppose, ¥ = O¥

=00 =00 =y

= U # OV

So, condition (b) is right, which states W and ©W are independent wave functions,
i.e., g, is doubly degenerate. This is the famous Kramer’s theorem, which states
that “all eigenstates of a 7-invariant Hamiltonian of spin-half system are twofold

degenerate".
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Figure 1.7: (a) The edge states cross the Fermi level an even (zero) number of
times. (b) The edge states cross the Fermi level once. (c) The edge states cross
the Fermi level an odd number of times. Reproduced from Ref. [2].

If the Kramer’s theorem is applied for the Bloch wave state of solid, it will be
found that for any Bloch wave state Wy, there is another state OW, = ¥_ of same
energy. So, Kramer’s doublets are located at different momentum point k and -k.
Only at k = 0 and k = 7 (considering lattice parameter is a unit quantity), both
the points are the same. This implies that at k = 0 and k = 7, each Bloch state
comes in pair. On the other hand, single particle Hamiltonian of an electronic
system smoothly deforms from the bulk to edges. If any edge state is induced
inside the bulk band gap, at k — 0 and k — 7, it will be doubly degenerate. Away
from these special points, the spin-orbit interaction will split the degeneracy. As
electronic band dispersion is continuous, the states at k = 0 and k = 7 have to be
connected. But there is only two possible ways [Figure 1.7|, through which they
can connect. For the first case |Figure 1.7 (a)|, edge state crosses the Fermi level
at an even (zero) number of points. So, there will be even numbers of conducting
channels or no channel at the edge. In this case, the edge states can be eliminated
by tuning the Fermi level, or by smooth deformation of Hamiltonian in such a way
that all the Kramer’s doublets appear outside the gap. In conclusion, pairwise in-

terconnection of states at k = 0 and k = 7 gives rise to trivial insulating phase. For

13



the second case [Figure 1.7(b)|, when the edge band crosses the Fermi level once,
there is single conducting edge channel. This type of edge state is unavoidable
under any smooth deformation of Hamiltonian or shifting of Fermi level. In this
context, one can suggest the third possibility [Figure 1.7(c)|, where the edge band
crosses the Fermi levels three times. However, this type of connection will generate
two right-moving and one left-moving channel, and as a consequence, there will be
an effective single conducting edge state. The one-to-one connection of states at k
= 0 and k = 7, as shown in Figure 1.7(b) and Figure 1.7(c), leads to topologically
protected metallic boundary states. Which of the above-mentioned scenarios will
occur at the edge, will be determined by the topological class of the bulk band

structure?

1.3.3 Z, topological classification

, “ré ®
. ‘ | E Conduction Band ( i Iy
onventional _ _ c)
Insulator v=0
(a) (b) ! f e
EF | ‘ 1 2._.
N -
Quantum spin l T
Hall insulator  v=1 Valence Band 7! I
| o T
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Figure 1.8: (a) The interface between a QSH insulator and an ordinary insula-
tor.(b) The edge state dispersion. (c¢) High-symmetry points in 2D bulk Brillouin
zone. Figure (a) and (b) are reproduced from Ref. [2].

According to the ‘bulk-boundary correspondence’ principle, the number of

edge modes has to be equal to the change in the bulk topological invariant (Av)
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across the interface. This implies that the bulk topological invariant (v) for two-
dimensional insulating states in presence of time-reversal symmetry, has to be
either zero or one. v obeys all the group operations of two-dimensional cyclic
group (Z,) such as, a ® a = a, a® b= b and b® b= a, where a and b are
the two group elements, and a is the unity element of Zs. As a consequence,
v has been named as ‘Zs topological invariant’. As shown in Figure 1.8(a), for
Quantum Spin Hall insulator, v encounters a unit change across the interface with
trivial insulator /vacuum. This leads to single edge state for spin-up electron state
and spin-down electron state, separately. Figure 1.8(b) shows the corresponding
band structure in first Brillouin zone. Now the question is: “how the value of v
is determined for a two-dimensional insulating state in presence of time-reversal
symmetry?" There are several mathematical formalisms for determining the value
of v, however, the method, which has been developed by Fu and Kane, will be
mentioned here [11]. In order to calculate v, the authors have initially defined a
unitary matrix Wi, (k) =< (k) | © | u,(k) >, using the occupied Bloch func-
tions. As ©% = —1, it can be shown that w’ (k) = —w(—k). For a two-dimensional
electronic system, there are four inequivalent special points in the bulk Brillouin
zone, which have been identified as ;= 234, in Figure 1.8(c). In these points, k
and -k are equivalent, which makes w(I',) antisymmetric matrix. The determinant

of an antisymmetric matrix is the square of its pfaffian, which allows us to define a

Pflw(Ta)]

quantlt% 5‘1 = det[w(Ta)]

= +1. The invariant v is determined by the expression,

(1" =[] 0 (1.4)
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1.4 Three-dimensional Topological Insulators

Shortly after the discovery of QSH insulator in two-dimension, its three-dimensional
(3D) counterpart has been realized theoretically, which has been named as * 3D
topological insulator (3D TI) [12, 13]. Similar to the conducting edge state of 2D-
QSHI, 3D TI has topology protected surface state which crosses the Fermi level,
residing in the bulk band gap. Time-reversal invariant 3D bulk insulating state
has also been characterized by Z, topological invariant. However, 3D topological
insulators are described by four Zs, topological invariants (vo;viver3), instead of
single invariant in two dimensions. 1 is known as strong topological index, and
the other three are known as weak topological indices. It is customary to write the
combination of the four invariants in the form (vo;v11913), because (v41513) can be
interpreted as Miller indices to specify the direction of vector I', in the reciprocal
space. In the following section, we will discuss two types of 3D TI state, depending

on the value of vy [2, 3].

1.4.1 Weak topological insulators

vg = 0 represents the simplest 3D TI, which can be understood by stacking the
layers of QSHI, with weak interlayer coupling. The orientation of layers is described
by (v1v913) such as, (0 0 1) represents stacking along z-axis. The conducting
edge-state of monolayers, as shown by the blue arrows in the Figure 1.9, forms
a topological surface state in bulk sample. A simple cubic Brillouin zone for the
three-dimensional bulk electronic system has eight time-reversal invariant points,

which have been shown by red dots in Figure 1.9(b). Each of the planes in the
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Brillouin zone (e.g., k; = 0,7 planes) containing four such points, is characterized

by a 2D invariant, which is calculated using the equation,

1
(=)= =] ] ba. (1.5)
a=1

Earlier, it was believed that the surface state is present for a clean sample of a weak
TI (WTI), but in presence of disorder, it can be localized. Later on, the surface
states of WTT are found to be protected from random impurities and disorders,
which do not break the time-reversal symmetry and close the bulk energy gap
[14]. As a consequence, the surface conductance of a WTI remains finite even in
presence of strong disorder. BiyjyRhslg is one of the compounds, which has been

experimentally addressed to be a weak TI [15].

(b)

Figure 1.9: (a) Weak three-dimensional topological insulators. (b) High-symmetry
points in 3D bulk Brillouin zone.
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Figure 1.10: (a) High-symmetry points in 3D bulk Brillouin zone. (b) Constant
energy contour at the Fermi level. (c¢) 2D Dirac cone surface state and spin-
momentum locking.

1.4.2 Strong topological insulators

The strong topological invariant, vy, for a three-dimensional bulk insulating state

is determined by the expression,

(—1)" =[] ba: (1.6)

where ‘a’ is the index of time-reversal invariant points [Figure 1.10(a)] of bulk
Brillouin zone. The materials, where the value of vq is found to be one, are known
as strong topological insulators. As all the eight time-reversal invariant points
are involved in determining the value of vy, strong TI state cannot be interpreted
as a descendant of the 2D-QSHI. The surface Brillouin zone, as shown in Figure
1.10(b), consists of four time-reversal invariant points, where the surface state must
be Kramers degenerate. Away from these special points, the spin-orbit interaction
lifts the degeneracy. As discussed in Section 1.3.2, for non-trivial surface state, the

surface band structure must resemble the situation in Figure 1.7(b). By looking
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the constant energy contour of the Fermi level [Figure 1.10(b)|, one can see that
the surface Fermi circle encloses odd number of time-reversal invariant points for
strong 3D TI. The novelty of this conducting surface state is the rich physics
associated with the electronic band dispersion [2, 3|. It has been found that the
dynamics of charge carriers on the surface of a 3D T1 is governed by the Dirac-type
effective Hamiltonian,

Hyp (o, k) = —hopz x G.k. (1.7)

As a consequence, the energy and momentum of charge carriers follow gapless lin-
ear dispersion [Figure 1.10(c)|, unlike conventional electronic system, where the
dispersion relation is quadratic in nature. Another interesting characteristic of 3D
TT surface state is that the spin of the charge carriers is always perpendicular to its
momentum direction, known as spin-momentum locking. This makes the motion
of charge carriers robust, against the non-magnetic impurity in a sample. This
can be inferred from a simple logic. If there is any non-magnetic impurity in the
system, to change the direction of motion of charge carrier, the impurity has to
flip the direction of the spin. However, a scalar field (impurity potential) cannot
affect a vector field (spin). So, there will be no backscattering of charge carriers.
Following the specific prediction of Fu and Kane [16], the 3D TI state has been
first experimentally identified in BiggSbg; by Princeton University group led by
Hasan, through the angle-resolved photoemission spectroscopy (ARPES) experi-
ment [17]. This material is an alloy of Bi and Sb, which possesses two essential
features: (i) band inversion at odd number of time-reversal invariant momentum
points in the bulk Brillouin zone, and (ii) opening of band gap at these points.
This leads to non-trivial bulk Z, topological invariant, which has been identified

as (1; 1 1 1). The surface electronic band structure of this compound has been
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Figure 1.11: (a)-(d) Energy and momentum dependence of the local density of
states for the BisSe; family of materials on the [111] surface. A warmer color
represents a higher local density of states. Red regions indicate bulk energy bands
and blue regions indicate a bulk energy gap. The surface states can be clearly seen
around the I' point as red lines dispersing inside the bulk gap. Reproduced from

Ref. [18].

found to be complicated and the bulk band has a small insulating gap. As a con-
sequence, at finite temperature, due to presence of thermally excited carriers, the
quadratic bulk band has significant contribution in electronic transport. However,
the overwhelming goal in the research on 3D TI is the realization of transport
properties associated with the conducting surface state and utilization of this in
next generation electronic device. To achieve this goal, it is necessary to find new
materials, which have single spin-momentum locked Dirac cone surface state and
large insulating gap in the bulk. Zhang et al. came up with a concrete prediction
that BisSes, BigTes, and ShyTes are 3D TIs but SheSes is not [18|. The electronic
band structures of these materials, containing isolated surface and bulk states, are

shown in Figure 1.11(a)-(d). Experimentally, the existence of a single Dirac-cone
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surface state was reported in 2009 for BisSez by Xia et al. [19], for Bi;Te; by Chen
et al.|20] and also by Hsieh et al. [21], and for SbyTes by Jiang et al. [22].

1.5 Three-dimensional Dirac semimetal

The research on TI and the experimental discovery of graphene band structure
[Figure 1.12] have triggered a tremendous interest in condensed matter physics,
over the past decade. The energy-momentum dispersion of charge carrier as well
as the form of the underlying Hamiltonian for the surface state of 3D TI and in the
bulk of graphene are reminiscent of those for massless fermions, usually studied in
high-energy physics, with two relevant differences. First, the characteristic veloc-
ity that appears in condensed matter physics is roughly two orders of magnitude
smaller than the speed of light. And second, both in graphene and 3D TIs, the elec-
trons are constrained to move in two spatial dimensions, whereas the framework
of relativistic quantum mechanics was established to describe fermions in three
spatial dimensions. However, the constant efforts for the realization of relativistic
particles in table top experiments result in new quantum phases of matter, which
have linear dispersion along all the three momentum (k,, k,, k.) directions in the
shape of a cone. The materials, which host this type of electronic band structure

are known as 3D Dirac semimetals.
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Figure 1.12: Left: Honeycomb lattice of graphene. A and B are the two types of
lattice, identified for band structure calculations, using tight-binding model. Right:
Energy bands of graphene obtained from the tight-binding model and zoom around
the Dirac point at K. Reproduced from Ref. [23].

1.5.1 3D Dirac semimetal state at quantum critical point

It has been predicted that 3D Dirac semimetal state can be realized at a quantum
critical point in the phase transition from a trivial insulator to a topological insula-
tor [8, 16]. In an insulating material, the bulk band gap can be tuned by chemical
doping or external pressure, which actually changes the lattice parameters and
spin-orbit coupling in the system. This type of physical operation can even change
the parity of an insulating gap from trivial to non-trivial, and vice versa. In the
process of band evolution, the insulating gap for an inversion symmetric crystal has
been found to be zero at some unique value of tuning parameter. At this critical
value, the bulk conduction and valence bands touch at a special point in momen-
tum space (which is known as ‘Dirac node’), and the dynamics of quasi-particles

in the bulk electronic band of the material is governed by the Dirac-type equation
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Figure 1.13: Schematic band inversion between two bands: The trivial band gap
in (a) closes at a critical point in (b), and reopens inverted in (c¢) with the two
states swapping their orbital characters at the symmetry point.

for massless fermion in three dimensions,

7K 0
Y gy - AV 0. (1.8)

dt R

Here, o, ? and Vj are the Pauli spinor, crystal momentum, and Fermi velocity of
charge carriers, respectively. In solid state crystallographic environment, speed of
light (c) and linear momentum (7') of original Dirac equation are replaced by Vi
and ?, respectively. As the Pauli matrices are two-dimensional, H is a 4 x4 matrix,
and the Equation 1.8 has four components. Following the theoretical prediction
[16, 24|, the 3D Dirac semimetal state has been naively identified in Bi; ,Sh, at
a quantum critical point x = 0.04, through ARPES experiment [17]. Later on,
similar topological phase transition has been observed in BiT1(S;_sSes)s, which is
shown in Figure 1.14 [25]. With increasing selenium concentration, the direct bulk

band gap reduces from 0.15eV at 6 = 0.0 to 0.05eV at 6 = 0.4. At 9 = 0.6, the bulk
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conduction and valence bands touch each other, resulting a 3D Dirac dispersion.
For compositions 6 > 0.6, the material becomes an inverted indirect band gap
insulator with spin-polarized topological surface state. However, Bi;_,Sb, and
BiTI1(S;-sSe;s). fail to create significant excitement due to some limitations. As the
Dirac cone state appears at a particular chemical composition in these compounds,
it is not robust against uncontrolled doping during sample preparation. In addition,
it has been found that the presence of conventional quadratic band masks the non-

trivial band, which undergoes topological phase transition with chemical doping.

Figure 1.14: Topological phase transition in BiT1(S;_sSes)2. (A) High-resolution
ARPES dispersion maps from a spin-orbit band insulator (left panel) to a topo-
logical insulator (right panel). Topological quantum numbers (TQN) are denoted
by topological invariant vy. (B) ARPES-mapped native Fermi surfaces and their
spin-texture for different chemical compositions (from left to right, 6 = 0.0 to
0 = 1.0). (C) Left and right panels: Energy distribution curves for stoichiometric
compositions 0 = 0.0 and 6 = 1.0, respectively. Center panels: ARPES spectra
indicating band gap and Dirac node for compositions § = 0.2 to § = 0.8. Figures
are adopted from Ref. [25].
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1.5.2 Crystalline symmetry protected 3D Dirac semimetal

It is important to note that the previously discussed scenario of topological phase
transition and the emergence of Dirac cone state at the quantum critical point do
not take into account any additional space group symmetries, which, if present may
alter the conclusion [8]|. Several theoretical studies have predicted the existence
of second generation 3D Dirac semimetals, where the Dirac cone band appears
from the protection of certain space group crystalline symmetries, and are, there-
fore, proposed to be more robust to disorders or chemical alloying [26, 27, 28].
For example, theoretical studies have identified NagBi and CdsAs, as 3D Dirac
semimetals, which are protected by the Cs and C4 crystalline rotational symme-
try, respectively |27, 28]. This type of Dirac semimetal, which is also known as
3D topological Dirac semimetal (TDS), differs from the earlier-mentioned type be-
cause it possesses strong spin-orbit coupling driven inverted bulk band structure.
At the special momentum points along the symmetry axis, the band crossings are
protected by the space group symmetry. Since both time-reversal and inversion
symmetries are present, there is a fourfold degeneracy at these points, around
which the band dispersions can be linearized, resulting in a 3D massless Dirac
semimetal. The C, rotational symmetry protected unavoidable band crossing in
CdsAs, is shown in Figure 1.15(a), as a representative. The surface state of TDS
is also distinct from the closed constant energy contour in 3D TIs [Figure 1.15(b)],
identified as Fermi arc. As shown in Figure 1.15(c), spin-momentum locked arc-like
contour at the Fermi level connects two discrete points in surface Brillouin zone,
which are the projection of bulk Dirac nodes on the surface. There is another im-
portant difference between the surface state of 3D TI and TDS in the spin texture

on the constant energy contour. The magnitude of spin projection perpendicular
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to momentum directions is constant throughout the closed loop in case of 3D TI.
Whereas, in TDS, it gradually tends to zero as the Fermi-arc approaches towards
the points of discontinuity.

Understanding the dynamics of relativistic Dirac fermions in table-top experi-
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Figure 1.15: (a) C, rotational symmetry protected unavoidable band crossing in
CdzAs,, as a representative. Here, k3 is the third momentum direction, i.e., k3 di-
rection. (b) Schematic of the spin-polarized surface states in a 3D TI. (¢) Schematic
of a TDS with spin-polarized Fermi arcs on its surface connecting projections of
two bulk Dirac nodes. The red and blue balls, surrounded by a black boundary
indicates that one Dirac node is the degeneracy of two Weyl nodes, which will be
discussed in the following section. Figure (b) and (c) are reproduced from Ref.
[29].

ments is not the only fundamental importance of TDS phase in solid state elec-
tronic systems. It has been predicted that by breaking different symmetries of a
crystal, having this novel electronic phase, different new quantum phases of matter
can be observed [27, 28]. It has been theoretically understood that under broken
time-reversal symmetry scenario, in external magnetic field or upon magnetic im-
purity doping, TDS acts like a 3D Topological Weyl semimetal (TWS). Breaking
the inversion symmetry of a TDS, 3D TI state or TWS state can be induced, de-

pending on the crystalline space group symmetry of the material. By tuning the

space group symmetry of a TDS, axion insulator state can be induced. Chemical
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doping can also lead to new exotic phases such as, topological superconductivity.
However, discussion on all the topological phase transitions is beyond the scope of
the present thesis. Only the first one is relevant to this thesis. We will provide a
brief overview on TWS state of matter, before going to discuss the experimental
discovery of space group symmetry protected Dirac semimetals and the recent ad-

vancement in experiment.

1.5.3 Understanding TWS as a transmuted state of TDS
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Figure 1.16: Weyl nodes of opposite chirality. The arrows indicate the direction of
the spin vector, which can be parallel or antiparallel to the momentum vector.

In the year 1929, Hermann Weyl proposed that a four-component massless
Dirac equation [Equation 1.8] in three dimensions can be separated into two two-

component equations [30],

i% — HU = +c¢0. 7 0. (1.9)

The above equation describes particles with a definite projection of spin to its
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Figure 1.17: (a) A four-component 3D Dirac node in a TDS as a superposition
of two two-component Weyl nodes, and the splitting of Dirac cone into two Weyl
cones of opposite chirality under broken time-reversal symmetry. (b) Schematic of
a WSM with spin-polarized Fermi arcs on its surfaces connecting the projections of
two Weyl nodes with opposite chirality. The red and blue colors of the bulk Weyl
cones and the corresponding projection points on the surfaces represent opposite
chirality of the Weyl nodes. The red arrows on the surfaces indicate the spin
texture of the Fermi arcs. Figure (b) is reproduced from Ref. [29].

momentum, known as Weyl fermions. When the sign on the right hand side of
the equation is positive, @ has to be antiparallel to ?, to minimize the energy.
Massless fermions, obeying this specific spin orientation, are the positive chirality
Weyl fermions. Again for the particles, which obey the above-mentioned equation
with the negative sign, the spin has to be parallel to the momentum direction. This
type of particles are called negative chirality Weyl fermions. If we look at the mo-
mentum space |Figure 1.16], it will be found that the expectation value of 7 in an
eigenstate of a given chirality forms a vector field, like a hedgehog. In condensed-
matter physics, specifically in solid-state band structures, Weyl fermions appear
when two electronic bands cross and low energy effective Hamiltonian around the
band crossing point mimics the expression, H = ic?.?. The crossing point is

called a Weyl node, away from which the bands disperse linearly in the lattice mo-

mentum, giving rise to 3D Weyl semimetal state. As illustrated in Figure 1.17(a),
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the TWS state can also be generated by breaking the time-reversal symmetry or
inversion symmetry of a 3D Dirac semimetal, where a single four-component Dirac
cone splits into two two-component Weyl cones. Theory also predicts that the
materials, which possess Weyl fermions in the bulk electronic state, would exhibit
a new kind of surface state: an open Fermi arc that would connect two Weyl nodes
and then continue on the opposite surface of the material [Figure 1.17(b)| [31].
In the year 2015, two groups simultaneously predicted the existence of Weyl-type
electronic excitations in TaAs, TaP, NbAs, and NbP [32, 33]|. Subsequent after the
theoretical predictions, the first experimental discovery of Weyl semimetal state in

TaAs family of materials has been done by Xu et al. [34] and Lv et al. [35].

1.5.4 Experimental discovery of TDS

Following the theoretical prediction [27, 28|, investigation on electronic band struc-
ture of NazBi and Cd3As, through ARPES experiment have established the Dirac
cone band dispersion in these compounds [36, 37]. Stacking plots of constant-
energy contours at different binding energies for both the compounds are shown in
Figure 1.18, where the gradually increasing radius of the circular contours lies on
a straight line passing through the Dirac nodes. Immediate after the observation
of bulk Dirac cone band, Yi et al. and Xu et al. have revealed the existence of
Fermi-arc surface state in Cds3As, and NagBi [38, 39]. Although both the materials
are equally compelling, experimental research on Na3Bi has been found to be little
challenging compared to Cd3zAssy due to its extreme sensitivity to air. Later on, 3D
topological Dirac semimetal phase was theoretically predicted and experimentally
proposed in plenty of compounds. However, the existence of this novel electronic

phase has been unambiguously established in a very few materials. ZrTes; and
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Figure 1.18: Stacking plot of constant-energy contours at different binding energies
shows Dirac cone band structure. (a) White dashed lines are the guide to the eye
that trace the linear dispersions in NagBi. Figure reproduced from Ref. |[36].
(b) Red dotted lines are guide to the eye that indicate the linear dispersions and
intersect at the Dirac point in CdzAs,. Figure reproduced from Ref. [37]

ZrSiS are the examples of materials, which have emerged as suitable candidates

for extensive experimental research [40, 41, 42].

1.6 Context, goal and outline of the thesis

Just after the experimental discovery of topological Dirac semimetal state in CdzAs,
and NagBi, we have found great interest to this novel electronic phase of matter.
At that time, TDS state in other compounds was not discovered, and very few
transport experiments including SdH oscillation study on Cd3zAss were reported in

preprint server, which will be mentioned in the following chapters. Although the
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complete picture of electronic band topology was not known and different unique
electronic phenomena were not explored, it was realized that the materials having
TDS state are equally compelling for fundamental physics research and technolog-
ical application. Considering our existing transport and magnetization measure-
ments facility, we have focused our research on different exotic magneto-transport
properties, nature and geometry of Fermi surfaces through quantum oscillation,
non-trivial electronic or magnetic responses from topological fine structure, and
scattering mechanism of charge carriers in some 3D Dirac semimetals. Three com-
pounds CdzAs,, ZrTes, and TaSby have been considered for the present thesis.
This selection is based on earlier First Principles Calculation, ARPES, or trans-
port experiments. In the respective chapters, we discuss the specific motivation

behind each research. The organization of the thesis is as follows.

In Chapter 2, we describe briefly the method through which we have prepared
the single crystals of relevant materials. A short description on the instruments
and the techniques, which have been used to characterize and measure different
physical properties of a material, is also given in this chapter. In chapter 3, we
present the results on the Fermi surface of CdsAs,, which has been probed by
both the de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) oscillations
techniques. The geometry of the Fermi surface is determined and the values of
the Fermi wave vector, Fermi velocity, and effective cyclotron mass of the charge
carrier are calculated. We compare and contrast our results from dHvA technique
with the results from SdH oscillations. Chapter 4 is devoted to the systematic
temperature and magnetic field dependence study of the Seebeck coefficient (.5),

to determine the carrier scattering mechanism in CdzAs, single crystal. We also
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present the effect of carrier doping on scattering mechanism, magnetotransport
properties and Fermi surface, with 2% and 4% In doping at Cd site. In Chapter
5, following the ambiguity between the earlier experimental results and theoretical
predictions, we describe the results of our magnetotransport and magnetization
measurements on ZrTes single crystal. We have measured magnetoresistance in
current parallel to magnetic field configuration to detect 3D Dirac fermion in the
bulk and magnetization to probe the surface state. We combine the results of trans-
port and magnetic measurements to address the ambiguity in topological nature
of electronic band structure. Chapter 6 covers our research on the single crystal of
proposed Dirac Semimetal TaSby. We reveal angular variation in transverse mag-
netoresistance (TMR) by applying magnetic field along different crystallographic
directions through a sample rotator. To probe the anisotropy in the Fermi sur-
face, we have measured dHvA oscillations for the magnetic field applied along a
and b axes as well as perpendicular to ab plane of the crystals. We qualitatively
explain the angle dependence of TMR using the results of dHvA oscillations and
Hall measurements. Finally, a summary of this thesis work has been presented in

Chapter 7.
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Experimental details

2.1 Sample preparation

The key feature of topology protected electronic phases of material is its well de-
fined surface and bulk state, electronically distinct from each other. Delicate elec-
tronic properties in these types of materials have been found to exist in extremely
clean samples, in absence of any undesirable microscopic factor. The polycrys-
talline sample of any material is composed of many individual grain, oriented in
random fashion. The sizes of individual grains vary from nanometer to microm-
eters scale. As a consequence, polycrystalline phase can hinder the rich physics
of these materials in several ways, unlike bulk single crystalline phase. Due to
presence of multiple grains and their boundaries in a piece of polycrystalline sam-
ple, the surface and bulk state contribution are ill-defined in electronic transport
phenomena. The grain boundary scattering drastically affects the dynamics of
high mobility charge carriers in these materials. So, it is almost impossible to

identify the unique electronic response. Due to extremely low effective mass of the
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charge carriers, these materials show quantum oscillation in moderate magnetic
field strength. The quantum oscillation, as mentioned in the earlier chapter, is a
fine probe to determine the detail geometry and nature of the Fermi surface. The
cyclotron orbit of the charge carriers is comparable to the grains size of polycrys-
talline sample. As a results, incomplete cyclotron orbit precludes the formation
of Landau levels, which is responsible for quantum oscillation. In addition, these
materials usually host complex and anisotropic Fermi surface, unlike to that ob-
served in conventional metals. As a consequence, the transport properties are
highly anisotropic with respect to the crystallographic directions, which have im-
mense impact in technological applications. The grains in polycrystalline sample
are randomly oriented. So, the concept of a crystallographic direction is not valid
for a piece of material in polycrystalline phase. One gets a response in electronic
transport, averaged over all the crystallographic directions. Form the above dis-
cussion, it is evident that high-quality single crystalline sample is necessary for
the research on topological 3D Dirac semimetal. All the high purity (at least 3N)
chemical elements, which have been used for the sample preparation, are obtained
from Alfa-Aesar and Sigma-Aldrich. Single crystals of all the studied materials
were grown by chemical vapor transport technique. Details of sample preparation

will be discussed in the respective chapters.

2.1.1 Chemical vapor transport technique

A condensed phase has an insufficient pressure for its own volatilization. Chem-
ical vapour transport (CVT) is a process where a condensed phase, typically a

solid is volatilised in presence of a gaseous reactant (known as ‘transport agent’)



Gradient furnace

Source temperature (T;) > Sink temperature (T,)

¢ Polycrystallinesample

* Transport agent &= Single crystal

Figure 2.1: Schematic of experimental set-up for chemical vapor transport.

and deposited elsewhere in the form of crystals. The deposition will take place if
there are different external conditions for the chemical equilibrium at the position
of crystallization (sink) than at the position of volatilization (source). Usually,
different temperatures are applied for volatilization and crystallization in a CVT.
The various parameters that must be optimised for a successful CVT are growth
temperature, transport direction, rate of the mass transport, choice of the trans-
port agent and the free energy of the reaction. Typical transport agents include
halogens and halogen compounds such as iodine, bromine, and potassium iodide.
The set-up consists of a 2-zone or 3-zone furnace, reactant, and a transport agent.
The reactant and transport agent are sealed in an ampoule (such as, quartz tube,
tantalum tube) under high vacuum (~ 107 Torr). The schematic of experimental
set-up and microscopic mechanism have been shown in Figure 2.1. The source

end of the ampoule containing the precursor must be maintained at an optimal
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temperature (T7), which is usually higher than the sink end temperature (Ty).
The temperature difference between the source and sink has to be optimized for
the growth of high quality single crystals at the sink end. Depending on the free
energy of the reaction between the species, the source and sink temperature will

be adjusted.

2.2 Characterization

We determined the phase purity, structural details, crystalline nature, and chem-
ical stoichiometry of the crystals using x-ray diffraction (XRD) and transmission
electron microscope (TEM). Structural and phase purity analysis were done by
high-resolution XRD of the powdered sample using Rietveld profile refinement. To
confirm crystalline nature and chemical stoichiometry of grown samples, selected
area diffraction (SAD), TEM image, and energy dispersive X-ray (EDX) mea-
surements were done for some crystals, using high-resolution transmission electron

microscopy (HRTEM).

2.2.1 Powder x-ray diffraction

Powder x-ray diffraction (XRD) is perhaps the most widely used technique for
the characterization of materials. The term powder means that the crystalline
domains are randomly oriented in the sample. When the atom is exposed to a
monochromatic beam of x-rays, the x-ray photons collide with electrons and as

a result some photons will be deflected away from their original direction. If
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the wavelength of these scattered x-rays does not change, the process is called
elastic scattering. In diffraction experiments, we measured the scattered x-rays
as they carry the information about the electron distribution in the materials.
Although the individual atoms scatter radiation in all directions, there are only
a few directions in which the scattered waves interfere constructively and sharp
interference maxima (peaks) with the same symmetry as in the distribution of
atoms are observed in solids. The peaks in an XRD pattern are directly related to
the atomic distances. Let us consider an incident x-ray beam interacting with the
atoms arranged in a periodic manner [Figure 2.2|. The atoms can be viewed as
forming different sets of lattice planes which are represented by the Miller indices
(hkl). For a given set of (hkl) planes with an inter-plane distance of dpg, the
condition for diffraction [4] is

2dsinf = nA. (2.1)

This is known as Bragg’s law. Here 6 is angle between incident beam and lattice
plane, integer n is the order of diffraction, and )\ is the wavelength of x-ray. The
diffraction data can be collected either in transmission or in reflection mode. As
the particles in the powder sample are randomly oriented, these two methods yield
the same data.

Powder XRD patterns of the studied samples were taken by means of a RIGAKU
diffractometer (TTRAX III) with a rotating anode, operating at 9 kW using Cu
K, radiation. Samples for powder XRD were prepared by grinding the crystals
and pressed on a glass holder to achieve a smooth flat surface. The patterns were
recorded in a range of 20 between 10° and 90° at a step of 0.02°. All the diffraction
patterns were analyzed by a Rietveld method [43| using the FULLPROF program

[44]. The crystal structure and lattice parameters of the samples were determined,
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Figure 2.2: Schematic diagram of x-ray diffraction by crystallographic planes.

and the absence of any impurity phase was verified.

2.2.2 Transmission electron microscope (TEM)

In general, microscope is an instrument used for magnifying an object too small
to see with the naked eye. The smallest distance between two points that we can
resolve with our eyes is about 0.1-0.2 mm. This distance is the resolution or the
resolving power of our eyes. So any instrument that can show us images revealing
details finer than 0.1 mm could be considered as a microscope, and its highest
useful magnification will be determined by its resolution. Visible-light microscope
(VLM) is the most widely spread and familiar type of microscope where photon

is used to magnify an object. The smallest distance (J) that can be resolved by a

0.61\
psinf

VLM is determined by Rayleigh criterion, and is given approximately by § =
Here, A is the wavelength of the radiation, u is the refractive index of the viewing

medium, and J is the semi-angle of collection of the magnifying lens [45]. The
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term psinf, which is known as numerical aperture, can be approximated to unity
and as a consequence, the resolution is equal to about half the wavelength of light.
For green light in the middle of the visible spectrum, A is about 550 nm, and so the
resolution of a good VLLM is about 300 nm. Although 300 nm appears to be a small
dimension to us, it corresponds to about 1000 atom diameters. So, many features

that control the properties of materials are on a scale, well below the resolution of

a VLM.

TEM works on the principle similar to that of an optical microscope with the
key difference that it uses electrons and not photons as the source. The main mo-
tivation for developing a transmission electron microscope is that, since electrons
arc smaller than atoms, it should be possible to build a microscope, by which one

can see the details below the atomic level. In TEM, the resolution (J) is given by

the expression, § = % [45]. Louis de Broglie’s famous equation shows that the
wavelength of electrons is related to their energy, E, by the expression, A = 512/22

So, higher the energy, lower the de Broglie wavelength of electrons, and as a con-
sequence, the resolution of a TEM will be higher. Using the above expression,
one can work out that for a 100 keV electron, A is ~ 4 pm (0.004 nm), which is
much smaller than the diameter of an atom. This resolution can now be used to
probe the details in atomic and subatomic scale. During TEM analysis, a thin
sample is bathed with a collimated beam of accelerating electrons, uniformly over
the illuminated area. Electrons being charged in nature, can be easily deflected
using an external electric or magnetic field and can be accelerated using external
potential. A simplified diagram of a transmission electron microscope is given in

Figure 2.3(a). As the electrons travel through the sample, they are either scattered
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or are transmitted through the sample. The probability of scattering is described
in terms of the interaction cross-section or the mean free path and can be elas-
tic or inelastic. This results in nonuniform distribution of electrons in the beam
that comes out of the sample, which contains all the structural information of the
sample [45]. Figure 2.3(b) shows different types of scattered and transmitted elec-
trons, and x-ray radiation, which are used to probe different microscopic features
of a sample.

The scattered (diffracted) electrons deflected away from the optical axis of the

(a) (b)
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Figure 2.3: (a) Simplified diagram of a transmission electron microscope. (b)A
schematic diagram showing different types scattered and transmitted electrons,
and emitted x-ray, which are produced by the interaction of electron beam and
sample.

microscope are blocked using an aperture and thus the transmitted electron beam
generates a contrast on the fluorescent screen depending on its varying intensity.
The intensity of the diffraction depends on the orientation of the planes of atom in

the crystal relative to the electron beam. Angular distribution of electrons due to

40



diffraction can be viewed in the form of scattering patterns, usually called diffrac-
tion patterns, and spatial distribution of electrons can be observed as contrast in
images of the sample. The transmitted electron beam strikes the fluorescent screen
and generates an image with varying contrast. The darker areas with higher con-
trast are those from where fewer electrons have been transmitted due to high
density or thickness of the sample while the areas of lower contrast show the ar-
eas in the sample, which have less density or thickness, and thus more number
of transmitted electrons are present. HRTEM measurements of the crystals were
done with a FEI TECNAI G* F30 S-TWIN microscope operating at 300 kV and
equipped with a GATAN Orius SC1000B CCD camera.

2.3 Physical and magnetic properties measurements

2.3.1 Electrical resistivity

The dc/ac electrical resistivity of the samples was measured by standard four-probe
technique [46, 47|. Four ohmic contacts were made on plate-like or niddle-like
crystals, using thin gold wires (~ 50 um diameter) and silver paint or silver epoxy
paste. These four wires act as voltage and current terminals, in which current is
allowed to flow between two outer probes and voltage is measured between two
inner probes. The four contact regions are coated by silver paint and the contacts
were made at room temperature. The dc resistivity was measured as a function
of temperature from 300 K to 2 K, and as a function of applied magnetic field up
to 9 tesla in a variable temperature insert (VTI) of a cryogen free measurement
system (CFMS, Cryogenic Ltd.). The ac resistivity was measured for the same

temperature and magnetic field range at 13.7 Hz in a 9 tesla physical property
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measurement system (PPMS, Quantum Design). Typical values of current for the
resistivity measurements were about 5 mA.

To measure the dc resistivity a constant dc current of appropriate level was
sent through the sample from a Keithley 224 current source and the voltage across
the sample’s voltage leads was measured by using a Keithley 2182A nanovoltmeter
with current flowing in the forward and reverse direction to eliminate the con-
tributions of thermoelectric effect and offset voltage of the nanovoltmeter. The
sample temperature was measured using a calibrated Cernox (ceramic-oxynitride)
sensor and temperature was controlled using a Lake Shore temperature controller
(Model 340). The signals from the voltage probes, Cernox temperature sensor, and
magnet power supply of VTI are recorded by a Labview software program on the
computer to get the temperature and magnetic field dependence of the resistance
(R) of the samples.

The ac resistivity was measured using the ac transport measurement option of
physical property measurement system. The ac resistivity was measured for the
samples which are highly conducting as the quality of the data are better than
that of dc resistivity. A constant sinusoidal current of appropriate amplitude and
of frequency 13.7 Hz was allowed to flow through the current leads and the ac
voltage across the sample’s voltage leads was measured and amplified by a lock-in
amplifier. The resistance of the samples was recorded as a function of temperature
and magnetic field by PPMS Multiview software on the computer.

The resistivity (p) of the sample has been estimated from the formula:
A

where A is the cross sectional area and [ is the separation between two voltage
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leads. It should be mentioned that there is some degree of ambiguity as to the
appropriate cross sectional area, as the value will depend on the precise path of the
current through the sample. It has been assumed that the current flows uniformly

throughout the width of the sample.

2.3.2 Seebeck coefficient

HEATER SHOE

COPPER LEAD

T hot HEAT

@

EPOXY
BOND
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Figure 2.4: Schematic diagram of thermal and electrical connections to the sample
with heater and sensors. T}, and T.,4 are the temperatures of two Cernox chip
thermometers, V+ and V- are the two voltage leads, I+ and I- are the current
leads and Q representing the heater terminal. Reproduced from Ref.[48].

The Seebeck coefficient and thermal conductivity measurements were carried
out in the Physical Property Measurement System using its Thermal Transport
Option (TTO) [48]. TTO uses a 2 kOhm metal chip resistor as a heater and Cernox
thermometer for measuring temperatures of the hot and cold ends of the sample.

These commercial Cernox thermometers are excellent for use in high magnetic
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field. Typical errors in temperature [AT/T| due to magnetic field, are —0.15%
at 4.2 K, 0.022% at 77 K, and very small at higher temperature and 8 T field.
The high vacuum option of TTO reduces the heat leak due to thermal convec-
tion. The TTO option also estimates the radiation loss at different temperatures
based on the sample dimensions and emissivity as inputs and takes this loss into
account while estimating thermal conductivity. We employed standard four-probe
mounting technique as shown in Figure 2.4. Four oxygen-free high-conducting
gold coated Cu leads are glued to the sample with conducting silver epoxy for
good thermal anchoring. The opposite ends of the leads are then attached to the
heater and temperature sensors. Before measurements on the single crystal sam-
ple, TTO were calibrated using standard Ni 201 alloy for the experimental range

of temperature from 350 to 1.9 K and magnetic field up to 9 T.

2.3.3 dc magnetization

To study the de Hass-van Alphen oscillation, the magnetic field dependence of
dc magnetization was measured in Superconducting Quantum Interference De-
vice (SQUID) magnetometers viz., MPMS 3 (SQUID VSM) equipped with 7 T
superconducting magnet. This section describes the measurement of the dc mag-
netization by MPMS 3 SQUID VSM magnetometer which has the magnetization
sensitivity of 5x10~% emu and can operate in the temperature range 1.8 K to 400
K with a maximum temperature sweep rate of 50 K/min and fields up to 7 T
with a maximum field sweep rate of 700 Oe/sec. Figure 2.5 illustrates a simplified
model of the MPMS SQUID VSM detection system [49]. The superconducting

detection coils are configured as a second-order gradiometer, with counter-wound
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Figure 2.5: A simplified schematic diagram of SQUID VSM detection system.
Figure reproduced from Ref.[49].
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outer loops which make the set of coils non-responsive to uniform magnetic fields
and linear magnetic field gradients. The detection coils only generate a current in
response to local magnetic field disturbances due to the vibrating magnetic sam-
ple. If sample dimensions are much smaller than the dimensions of the detection
coils, the current in the detection coils is a function of the sample position. The
current in the detection coils is inductively coupled to the instrument’s SQUID,
which serves as an extremely sensitive current-to-voltage converter. The SQUID
function is based on the two phenomena viz., flux quantization in a superconduct-
ing ring and Josephson effect. The Josephson effect refers to the phenomenon of
current flow across two weakly coupled superconductors, separated by a very thin
insulating barrier. The SQUID feedback nulls the current in the detection coils
so no current actually flows in them, and the feedback current yields the actual
SQUID voltage that gives the sample magnetization value. The SQUID voltage is

amplified and digitized by the instrument electronics.
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Using the VSM linear motor system, the sample can be vibrated at frequency
w about the very center of the detection coils, where the signal peaks as a function

of sample position, z. This generates a SQUID signal, V', as a function of time, ¢:

V(t) = AB?sin®(wt), (2.3)

because V(z) = Az? for small vibration amplitudes, and z(¢) = B sin(wt). Here,
A is a scaling factor relating to the magnetic moment of the sample. B is the
amplitude of sample vibration. Since sin*(wt) = £(1- cos(2wt)) (by identity), a
lock-in amplifier is used to isolate and quantify the signal occurring at frequency
2w, which should be caused exclusively by the sample if the vibration frequency is
selected properly. Briefly, this is achieved by multiplying the measured signal with
a phase-corrected reference signal at 2w and then extracting the dc component
of the result. This dc component is proportional to the 2w component of the
measured signal. This technique quickly and precisely isolates the sample signal
from other noise sources, including drifting SQUID signal and mechanical noise
sources synchronized to the sample vibration. The lock-in amplification of the

SQUID signal is performed by digital electronics in the SQUID control module.
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Probing the Fermi surface of

three-dimensional Dirac semimetal
CdgAs9 through the de Haas-van Alphen

technique

3.1 Introduction

After the discovery of 3D Dirac semimetal phase in CdgAs,, angle-resolved photoe-
mission spectroscopy (ARPES) measurements have shown that two almost identi-
cal ellipsoidal Fermi surfaces are located on the opposite sides of the I' point along
the k, direction [50, 51|. As real material is subject to uncontrolled doping during
sample preparation, the Fermi energy in bulk single crystals can be as high as few
hundreds of meV. With the increasing value of Fermi energy, the size of the Fermi

surfaces also increase. Earlier, it was believed that these two Fermi surfaces merge
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into a single ellipsoidal contour around the I' point beyond the Lifshitz transition,
where the two Fermi surfaces started to overlap each other [52]. However, first-
principles calculations suggest that this transition should occur very close to the
Fermi energy ~133 meV and a complex mixing of Fermi surfaces is expected to
happen [53]. This could be observed in quantum oscillation measurements, which
has been established to be a useful tool to probe the Fermi surface of a material
accurately. But, the analysis of Shubnikov-de Haas (SdH) oscillations indicates
the existence of one or two equivalent Fermi surface cross sections corresponding
to the single frequency of oscillation, and the Fermi energy of the single crystal
sample has been reported to have much larger value than 133 meV [53, 54, 55, 56].
Under such circumstances, probing the Fermi surface (FS) of Cd3As, using the de
Haas-van Alphen (dHvA) oscillation, which has been established to be a more ac-
curate technique due to absence of local heating and quantum interference effects
or noise from the electrical contacts, may provide some finer details of the FS. In
this chapter, along with the SdH oscillation and high nonsaturating linear magne-
toresistance (MR), we report the observation of two different Fermi surface cross
sections from the dHvA effect, which can be associated to the complex mixing of
two identical Fermi surfaces above the Lifshitz transition. Furthermore, the dHvA

effect also confirms the nontrivial Berry’s phase (signature of 3D Dirac fermion)

in CdzAs,.
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3.2 Sample preparation, characterization, and ex-
perimental details

Single crystals of CdsAs, were synthesized using the chemical vapor transport
technique. First, we prepared polycrystalline CdsAs, samples by heating the stoi-
chiometric mixture of high-purity (5N) Cd pieces and As powder at 500°C for 8 h
and at 850°C for 24 h in a vacuum-sealed quartz tube 15 cm long and 16 mm in
diameter. The product was then heated again at 550°C for another 48 h for ho-
mogenization. Finally, the quartz tube was placed in a gradient furnace and heated
for 48 h. During heating, the end of the quartz tube which contains the compound
was maintained at 690°C, while the other end was kept at 600°C. The furnace was
then cooled slowly to room temperature. Several small-size shiny plate-like crystals
formed at the cold end of the tube were mechanically extracted for transport and
magnetic measurements. Image of a representative piece of CdsAs, single crystal
is shown in Figure 3.1(a). Phase purity and the structural analysis of the samples
were done using the high-resolution powder x-ray diffraction (XRD) technique with
Cu-K,, radiation. Figure 3.1(b) shows the x-ray diffraction pattern of powdered
sample of CdsAs, single crystals at room temperature. Within the resolution of
XRD, we did not see any peaks due to the impurity phase. Using the Rietveld
profile refinement program of diffraction patterns, we calculated the lattice param-
eters a=b=12.644 A and ¢=25.447 A with space-group symmetry I3 /acd. The
resistivity measurements of CdzAsy single crystals were done using the standard
four-probe technique. Electrical contacts were made using conductive silver paste
(DuPont) or silver epoxy paste (EPO-TEK). The electrical and thermal transport

measurements were carried out in a 9-T physical property measurement system
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Figure 3.1: (a) Image of a representative piece of CdzAs, single crystal with elec-
trical contacts. (b) X-ray diffraction pattern of powdered single crystals of CdzAs,.
Black, experimental data; red, the calculated pattern; blue, the difference between
experimental and calculated intensities; green, the Bragg positions.

(Quantum Design). The magnetization was measured using a superconducting

quantum interference device vibrating-sample magnetometer (Quantum Design).

3.3 Results and Discussions

Figure 3.2(a) shows the temperature dependence of the resistivity p,, of a CdzAs,
single crystal. p,, is metallic over the whole range of temperature. p,, exhibits ap-
proximately T'* dependence above 100 K and becomes almost 7" independent for
T<20 K, which reveals a residual resistivity p..(0) ~ 50 uQ2cm. Both the value and
the nature of temperature dependence of resistivity are similar to those reported
earlier [53, 54]. We have also measured the temperature dependence of resistivity
for different other crystals of CdzAs,. For all the cases, we found almost similar 7'
dependence of p,, and comparable values of p,,. This implies that the variation in
the strength of disorder and doping from sample to sample is not significant in the

present crystals. Figure 3.2(b) displays the field dependence of the magnetoresis-
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Figure 3.2: (a) Temperature dependence of the resistivity of CdzAss crystal. (b)
Magnetic field dependence of magnetoresistance (MR) at various temperatures
when the field was applied along the [100] direction. The inset shows the temper-
ature dependence of MR at a field of 9 T.

tance at different temperatures. MR is defined as [pz(B) - pzz(0)]/pzz(0). Here,
current and magnetic field are applied along the [012] and [100] directions of the
crystal, respectively. We have followed the convention of Feng et al. for indexing
the crystallographic directions [53]. Even at room temperature and 9 T magnetic
field, MR shows no sign of saturation, and its value is as high as 263%. Except at
low field, MR is approximately linear. Such a large linear MR at room temperature
is quite unusual and needs further research to understand the microscopic origin.
With decreasing temperature, MR increases rapidly, and reaches ~1600% at 2 K
and 9 T. In the inset of Figure 3.2(b), we have shown the temperature dependence
of MR at 9 T in log-log scale. It is clear from the figure that, unlike conventional
metal, MR is almost T-independent in the low-temperature region below 30 K.
Similar behavior has also been observed in other crystals.

AR,,, obtained after subtracting a smooth background from MR, is plotted in
Figure 3.3(a) and Figure 3.3(b) as a function of 1/B for fields along [021] and
[100], respectively. The presence of SAH oscillations can be traced down to a field

of ~2 T and up to 50 K. With increasing temperature, the amplitude of oscilla-
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Figure 3.3: (a) The oscillatory component AR,, of MR (after subtracting a smooth
background) as a function of 1/B at various temperatures with magnetic field along
the [021] direction; the inset shows the oscillation frequency after fast Fourier
transform. (b) AR, for magnetic field along the [100] direction; the inset shows
the corresponding frequency.

tion decreases rapidly. The fast Fourier transform spectrum of AR,, versus 1/B
curve show a single oscillation frequency at around 56 T [inset of Figure 3.3(a)|
and 53 T [inset of Figure 3.3(b)] for the field along [021] and [100], respectively.
According to the Onsager relation F=(¢o/272)Ap, the cross-sectional areas of the
Fermi surface normal to the field directions are A;=5.32x1073 and 5.04 x 1073
A2 Assuming a circular cross section, a small Fermi momentum kp ~0.04 At
is calculated. The presence of single frequency and the value of Ap are in good
agreement with that obtained in earlier SAH oscillation experiments |54, 56].

The magnetization of CdzAs, crystal has been measured at different temperatures
with B parallel to the [100] direction, which displays a very clear dHvA effect [Fig-
ure 3.4(a)]. We have been able to observe the oscillations down to 1 T and up to 50
K. This indicates that the quantization of the electron orbit does not get blurred
by collisions with phonon or any impurity due to the high mobility of the charge
carriers. In Figure 3.4(b), the magnetic susceptibility Ay (= dM /dB) versus 1/B

plot shows how the oscillation amplitude decreases with increasing temperature.

52



—K
a K — 10K
() (b) —
1L : 3 30K
s = | —— 50K
(o] o
3 =
g il 1 g DA o
o e 40 F(Meo
9 % “é’ T T
e e =l
=3l | 3 sf 1
g L 4
4 . 1 L L L L . ! L L 1
0 1 2 3 4 S 6 T 0.2 03 04 05 0.6
B(T) B )

Figure 3.4: (a) Magnetic field (along the [100] direction) dependence of the dia-
magnetic moment at temperature of 2 and 20 K. (b) Oscillating part of the sus-
ceptibility Ax= d(M)/dB versus 1/B; de Haas-van Alphen (dHvA) effect. The
inset shows the oscillation frequency after the fast Fourier transform is found from
the dHVA effect.

The inset of Figure 3.4(b) shows the oscillation frequency obtained by the Fourier
transformation of the dM/dB curve. Unlike magnetoresistance data, we observe
two distinct oscillation frequencies: one at 46 T and the other at 53 T. This reveals
two cross-sectional areas of the Fermi surface perpendicular to B, 4.39 x 1072 and
5.04 x 107® A~2 respectively.

To understand the phenomenon, we have performed magnetization measurements
with the field along the [021] direction as shown in Figure 3.5(a). But the dHvA
oscillation along this direction gives only one frequency which is close to the fre-
quency determined from the SAH oscillation along that direction. Although the
dHvA oscillation along the [021] direction establishes the equivalence between two
ellipsoidal Fermi surfaces found in ARPES [51] or a single ellipsoidal contour after
Lifshitz transition, the magnetization measurement along the [100] direction indi-
cates two Fermi surface cross sections corresponding to two different frequencies.

Also, we have carried out magnetization measurements by applying magnetic field
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perpendicular to both [021] and [100], i.e., along the [012] direction. Similar to
[021] direction, the dHvA oscillations for B ||[012] reveal a single frequency peak
at 46.5 T, as shown in Figure 3.5(b). The above observations suggest that two
equivalent cross sections from two ellipsoidal Fermi surfaces superpose with each
other along certain directions, leading to two frequencies of oscillation in the dHvA
effect. This has been schematically illustrated in Figure 3.5(c). It shows that the
magnetic field along [021] and [012] directions generate pair of extremal cyclotron
orbits with identical areas. Whereas, the two Fermi surface cross sections for
B |[100] overlap with each other, which can lead to two frequencies of oscillations
due to complex mixing of cyclotron orbits. The presence of two frequency peaks
along certain crystallographic directions has been confirmed through SdH oscilla-
tion study under high magnetic fields, where the authors have also argued that the
Fermi surface of CdsAs, consists of two nested ellipsoids beyond the Lifshitz sad-
dle point [57]. As 3D Dirac semimetals have a well-defined surface state, another
possible explanation for the occurrence of two frequencies may be the contribution
from surface and bulk states. From theory, it has been clearly shown that the
surface state contribution can play a considerable role only when the sample is
few nm thin [55]. However, thickness of the present CdsAs, single crystal is ~0.4
mm, which seems to be much larger than the critical thickness and eliminate the
possibility of quantum oscillation from surface states.

The temperature and field dependence of SAH oscillations in a real material is

well-described by the Lifshitz-Kosevich (LK) formula [58, 59:

2m2kpT 9
2m°kpT; Fo1
hewe BLD
ARmm X W X B.IJP(—TC) X COS27T(§ + 5 - 5 + (5), (31)
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Figure 3.5: (a) Oscillating part of susceptibility Ax= d(M)/dB vs 1/B ( dHvA
effect) for magnetic field along the [021] direction; the inset shows oscillation fre-
quency at 55.20 T after the fast Fourier transformation. (b) Oscillating part of
magnetization Am vs 1/B (dHvA effect) for magnetic field along the [012] direc-
tion; the inset shows the frequency of oscillation after fast Fourier transform found
from dHVA effect. (c) Schematic diagram of the possible nested Fermi surface
above the Lifshitz transition, and the Fermi surface cross-sections along different
crystallographic directions.

where AR, and hw, are the oscillating part of resistivity and energy gap between
two successive Landau levels, respectively. In the above equation, the first and the
second term are the thermal damping (Ry) and Dingle (Rp) factors of quantum
oscillations, respectively. The cosine term at the end is the phase term of the
oscillations, where 273 and 276 are the Berry’s phase and an additional phase
associated to dimensionality, respectively. Here, S can take values from 0 to 1/2
(0 for parabolic dispersion as in the case of conventional metals and 1/2 for the
Dirac system), and § can change from 0 for a quasi-two-dimensional cylindrical
Fermi surface to +1/8 for a corrugated 3D Fermi surface [54, 58]. Similar to SdH
oscillations, the dHvA oscillations can also be described by the Lifshitz-Kosevich
formula. Although, for a Dirac system, the linear spectrum implies zero rest mass
of the charge carriers and gives the Landau energy level E,=vp\/(2nheB), the

cyclotron mass of the carriers is not zero [60, 61]. So the above-mentioned LK for-
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Figure 3.6: (a) Temperature dependence of the relative amplitude of quantum os-
cillation for the ninth Landau level, where Ra and Rb are the oscillation amplitudes
in the SAH oscillation for B|[[021] and B||[100], respectively, and m corresponds to
the oscillation amplitudes in Ay for BJ|[100]. The solid line is a fit to the thermal
damping term (Ryr) of Lifshitz-Kosevich formula [Equation 3.1]. (b) Landau index
n plotted against 1/B (Solid circles denote the peak positions) from the SAH os-
cillations. Solid lines are the linear fit to the experimental data points. From the
linear extrapolation of the fitted lines, as shown in the inset, the obtained values
of x-axis intercept are ~ 0.20 and ~ 0.32 for B || [100] and B || [021], respectively.
(¢) Theoretical fitting to the Ax(1/B) for BJ|[100] by the two-band LK formula,
at representative temperature 2 K.

mula with w. = eB/m} is a widely accepted expression for analyzing the quantum
oscillation amplitude in Dirac-type electronic systems [60, 61]. Here, m} is the
effective cyclotron mass of the charge carrier and the Fermi velocity vp=hkp/m} .

In Figure 3.6(a), we have plotted the normalized amplitude of oscillation with
increasing temperature for given oscillation peaks, for both the SdH and dHvA
oscillations. The decay of oscillation amplitudes with increasing temperature has
been fitted with the thermal damping term, Ry, of Lifshitz-Kosevich formula. From
the obtained values of fitting parameters for the SdH oscillations, we deduced m*
~ 0.045m, for B ||[100] and ~ 0.05m, for B ||[[021] configurations. The values
of vp for B ||[100] and B ||[021] are ~ 1.03x10% m/s and ~ 0.96x10% m/s, re-
spectively. From the similar analysis of dHVA oscillations for B ||[100], the values

of vi and m} are determined to be ~ 1.04x 10%m/s and ~0.044m,, respectively,
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considering the frequency peak at 53 T. Thus, the calculated values of vp and m}
from transport and magnetization data are close to each other. These values are
also close to those reported by different groups [53, 54, 55, 56]. Now, using the
Fermi momentum and Fermi velocity, we have deduced the Fermi energy (Ep),
which is ~ 270 meV. So, we are well-above the Lifshitz transition point, predicted
in earlier works [52, 53|. By fitting the SAH oscillation amplitude with magnetic
field to exp(—2m2kpTp/hw.), we have deduced the Dingle temperature Tp=16.8
K. To get a quantitative estimate about the mobility of the charge carriers in the
system, we have calculated the quantum mobility (y,) ~ 3.2 x10* cm? V=! s7!
using the expression, p, = (eh/2rkpm*Tp). The quantum mobility in a system
is always lower than the classical Drude mobility (1), as y, is sensitive to both

large and small angle scattering, while p. is sensitive to only large angle scattering.

In Figure 3.6(b), we have plotted the index of the Landau levels with its posi-
tion (1/B), which is known as Landau level index plot. The integer index n, corre-
sponding to the peaks in SAH oscillations, are assigned in such a way that a linear
extrapolation of the straight line yields an intercept closest to the zero. From the
plot, we have found that the value of magnetic field at n=1 is ~ 50 T, above which
the system will be at the quantum limit (n=0). The deduced value of the critical
field is very close to that observed in quantum limit magnetotransport experiments
under high magnetic fields [57, 62]. The cosine term Equation 3.1, provides the
Lifshitz-Onsager quantization rule, which states Ap(h/eB) = 2n(n + 5 — f 4 9),
when n is assigned to the peak positions in the oscillation in resistivity [54, 58].
As the value of 3 is % for Dirac type electronic system with an additional phase

shift ¢ in three dimensions, the ideal value of x-axis intercept in the index plot is
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0+1/8 [58]. From the linear extrapolation of the index plot in the SdH oscillation
with B along [100]([021]) direction, the obtained value of intercept is ~ 0.20 (0.32),
which reflects the Dirac semimetal state in Cd3As,. Since the intercept has been
obtained by fitting a set of data points obtained for much higher values of n, we
have estimated the errors in the values of intercepts. It has been found that, the
difference in the values of intercept from linear fit to 50% of data points at lower n
side, and from the linear fit to 50% of data points at high n side, is no more than
0.05. As there are two distinct frequency peaks in dHvA oscillations for B [|[100],
the actual peak positions in Ax may not be same as the peak positions in Figure
3.4(b), due to interference between two oscillations of different frequencies. To
determine the Berry’s phase from dHvA oscillations, we have fitted the d(M)/dB
vs 1/B plot for B ||[100] direction, with the superposition of two LK equations
dM

for the two frequencies 46 T and 53 T [Figure 3.6(c)|. In the expression, &z =

A eap(— 2kt ) x cos2m( B4 — B+6)+ i eap(— ZEETR ) x cos2m(£2 + 1~ B+9),
we have ignored the thermal damping term [59]. This is because it is a very slowly
varying function of B, compared to the other terms. The theoretical fit provides
the value of Berry’s phase [2m/3] ~ 1.24w. This value is within the range 2r|3+4]
for 3D Dirac fermion, but far away from the value 0 for Schrodinger fermion. Due
to presence of single frequency in dHvA oscillations in other experimental config-
urations, we have determined the Berry’s phase from Landau level index plots,
which is also found to be close to the above-mentioned value. Slightly higher value

of the intercept in previous technique, from the prescribed range, may be due to

poor resolution of SAH oscillations compared to the dHvA oscillations.
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3.4 Conclusion

In conclusion, we have studied dHvA and SdH oscillations as two parallel methods
to probe the Fermi surface of CdsAs,, and the values of the Fermi wave vector,
Fermi velocity, and effective cyclotron mass of the charge carrier have been calcu-
lated from both the techniques. The dHvVA effect reveals two distinct frequencies
of oscillations 46 and 53 T along [100], and single frequency along [021] and [012].
This observation confirms the existence of two Fermi surface cross sections along
certain directions. Both the transport (SdH) and magnetic (dHvA) measurements
reveal a nontrivial m Berry’s phase, which is the signature of the existence of 3D

Dirac semimetal phase in CdzAss.
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Tuning the scattering mechanism in

three-dimensional Dirac semimetal

CdaAs9

4.1 Introduction

After the discovery of Dirac fermionic excitations in CdzAsy, major attention has
been focused on the electronic transport properties for understanding the nature
and origin of ultrahigh magnetoresistance, mobility of charge carriers, and the
Fermi surface (FS) geometry [53, 54, 56, 57, 62, 63, 64]. It has been predicted
theoretically [27, 28] that the breaking of time reversal symmetry by external
magnetic field rearranges the Fermi surface of CdzAsy. From the magnetoresis-
tivity and Hall measurements, a strong field dependence of scattering time has
been observed and this behavior has been ascribed to the field-induced changes

in the Fermi surface [56]. In this context, we would like to focus on some im-
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portant differences between the FS proposed from angle-resolved photoemission
spectroscopy (ARPES) and quantum oscillation measurements. ARPES results
show that CdszAs, hosts two ellipsoidal F'S with negligible anisotropy, i.e, two al-
most spherical FS [37, 51]. A 3D plot of spectra intensity clearly shows linear
dispersion with little anisotropy along two perpendicular directions in [111]| plane
[37]. Whereas the Shubnikov-de Haas (SdH) [57, 62, 65| and de Haas-van Alphen
(dHvA) [64] oscillations reveal anisotropic FS with different frequencies, Fermi ve-
locities and carrier effective mass. Furthermore, no surface experiment has been
able to detect the Lifshitz transition in CdsAss [37, 51]. On the other hand, the
Lifshitz transition and, as a consequence, the FS nesting has been detected both
from the SAH oscillation [57, 66] and dHvA effect [64] well below 300 meV, which is
consistent with the theoretical predication. Band structure calculations show that
this transition is expected to occur at around ~133 meV [53|. As quantum oscilla-
tions are observed in presence of high magnetic field, the associated features from
this kind of study may arise as a result of reconstruction of the FS by magnetic
field. So, it is worthwhile to study how this change in the Fermi surface is reflected
in the scattering of charge carriers and which relaxation process dominates the
charge transport at high magnetic field. Doping also affects the Fermi surface by
either reducing or enlarging its area. Thus, it is important to study the effect
of doping and magnetic field simultaneously on the charge transport mechanism.
The measurement of resistivity alone is not sufficient to understand the details of
the scattering mechanism. Thermoelectric power (S) has been used as a power-
ful tool to probe the relaxation process in metals and semiconductors because it
provides complementary information to resistivity due to its proportionality with

the energy-derivative of the electrical conductivity. Indeed, the inverse square-root
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Figure 4.1: (a) X-ray diffraction pattern of powdered single crystals of
(Cdp.osIng.p2)3Ass. Black (Yops), experimental data; red (Y.q), the calculated pat-
tern; blue (Yops-Year), the difference between experimental and calculated intensi-
ties; green, the Bragg positions. (b) X-ray diffraction pattern of powdered single
crystals of (Cdgoglngos)3Ase. (c) Selective area electron diffraction (SAD) pattern
obtained through HRTEM measurement for (CdgggIngoz2)sAss.

dependence of the thermoelectric power on carrier density clearly reflects the linear
dispersion relation in graphene which is the fingerprint of massless Dirac fermions
[67]. In this work, we present a thorough study on thermoelectric properties of
CdsAs, to probe the possible scattering mechanisms. We have shown that the re-
laxation process can be widely tuned upon carrier doping and by applying external

magnetic field, which is a step forward towards understanding the material.

4.2 Sample preparation, characterization, and ex-
perimental details

Single crystals of CdsAs, were synthesized by chemical vapor transport technique.
The details of sample preparation and characterization have been described in

previous chapter. As the ionic radii of cadmium and indium are close to each
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other, we choose to dope In at Cd site in CdsAs, to minimize the doping induced
lattice disorder. Single crystals of (Cdj_,In,)3Asy with =0.02 and 0.04 were pre-
pared using the same technique as that for the undoped one. Phase purity and
the structural analysis of the samples were done using the high-resolution powder
x-ray diffraction (XRD) technique with Cu-K, radiation. Figure 4.1(a) and Figure
4.1(b) show the room-temperature x-ray diffraction pattern for the powdered sam-
ples of single crystals with =0.02 and 0.04, respectively. Within the resolution
of XRD, we have not observed any peak due to the impurity phase as a result of
In doping. Using the Rietveld profile refinement program for the diffraction pat-
terns, we have calculated the lattice parameters a=b=12.643 A and ¢=25.440 A for
2=0.02 while a=b=12.663 A and ¢=25.466 A for —0.04 with space-group symme-
try I4;/acd. These values of lattice parameters are very close to that for CdzAs,
[64]. Selected area electron diffraction for the doped single crystal has been done
using the high resolution transmission electron microscopy. Figure 4.1(c) shows
the SAD pattern for the £=0.02 crystal. Very clear periodic diffraction spots in
the SAD pattern implies well-stacked crystal planes and absence of any crystal de-
fects in the doped compound. The thermoelectric power (Seebeck coefficient) and
magneto-transport measurements on undoped and doped CdsAss single crystals
were done by four-probe technique using thermal and ac transport measurement
options, respectively, in physical property measurement system (Quantum Design).
The typical dimensions of the undoped, 2% In-doped and 4% In-doped samples,
used in both the thermopower and transport measurements, are ~3x2x0.55 mm?,
~3x1.5x0.6 mm?® and ~3.5x1.5x0.25 mm?, respectively. All the measurements
were carried out by applying magnetic field along [100] direction. Both the current

and temperature gradient are along [012] direction; perpendicular to the applied
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Figure 4.2: (a) A representative image of electrical and thermal contacts on a piece
of Cd3As, single crystal. 1, 2, 3, and 4 are the terminals for electrical resistivity and
thermopower measurements. 5 and 6 are the voltage terminals in Hall resistivity
measurements. (b) Temperature dependence of resistivity (p..) of CdsAss single
crystal from 2 to 350 K. (¢) The field dependence of the Hall resistance at 2 K.

magnetic field. Though several single crystals have been studied, we present the
data for one single crystal as a representative for each composition. Qualitatively

similar behavior has been observed for other crystals.

4.3 Results and Discussions

4.3.1 Resistivity and Hall resistance of Cd3;As, single crystal

Figure 4.2(a) shows the contact configuration on a piece of CdsAs, single crystal
for electronic transport and thermopower measurements. The temperature depen-
dence of resistivity (p..) for a CdsAs, single crystal is shown in Figure 4.2(b).
Over the entire temperature range from 350 to 2 K, p,, exhibits metallic behavior
(dp/dT>0). The upward curvature of p,, versus T' curve suggests that p,, exhibits
superlinear temperature dependence. In Figure 4.2(c), the Hall resistivity (p,,) is
plotted as a function of magnetic field at 2 K. Figure shows that p,, is negative

and increases linearly with field. From the slope of the Hall resistivity, the den-
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Figure 4.3: (a) Temperature dependence of the Seebeck coefficient (S) of CdzAss
single crystal up to 350 K at 0, 5 and 9 T fields. Solid line shows the linear T
dependence of S. (b) Magnetic field dependence of the normalized thermoelectric
power at different temperatures between 50 and 350 K up to 9 T, where S(0) is
the zero-field Seebeck coefficient at the respective temperatures.

3

sity of charge carrier (n) is calculated to be ~6.8x10™ cm™3. Using the value

of resistivity, we have calculated carrier mobility () at 2 K ~1.3x10* cm? V~!

s~!. These values of carrier density and mobility are close to the earlier reports

|54, 56, 62, 63).

4.3.2 Temperature and magnetic field dependence of the
Seebeck coefficient of Cdj;Ass

In Figure 4.3(a), the Seebeck coefficient for CdsAs, is plotted as a function of T'
up to 350 K both in presence and absence of external magnetic field. The negative
sign of S implies that the charge transport is dominated by electrons, which is
consistent with the negative sign of the Hall coefficient. Remarkably, S shows a
linear T' dependence almost up to 350 K at zero and 9 T magnetic field, whereas
at 5 T, it shows a weak sublinear behavior at high temperature. A qualitatively

similar temperature dependence of S has been observed earlier in polycrystalline
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sample over the temperature range 77-270 K in absence of external magnetic field
[68]. It will be worthy to compare the temperature dependence of the Seebeck
coefficient of Cd3zAss with that of graphene because of their striking similarities in
electronic properties and band dispersion. The linear behavior of the Seebeck coef-
ficient over a wide temperature range has also been reported for graphene [67, 69].
In graphene, however, both the type and density of charge carrier can be tuned
by applying gate voltage. Figure 4.3(b) shows the magnetic field evolution of S at
some representative temperatures. S increases monotonically with field and tends
to saturate at high fields. At lower temperatures, below T'< 200 K, the relative
enhancement of S from its zero-field value depends very weakly on field and almost
insensitive to temperature above ~2 T. This indicates that the % as well as the
slope of S(T') curves in the low-temperature region converge faster with field to a
definite value. At higher temperatures, the saturation behaviour of %ﬁ; appears at
higher field strengths. For example, at 350 K, about 30% increase in S is observed
at 5 T and, above 8 T, S tends to saturate at ~95 pV /K. The weak sublinear
behaviour of S(T") at 5 T in the high temperature region |Figure 4.3(a)] can be

explained from such kind of field dependence of S.

In past, it was believed that CdzAsy belongs to the same family as InSb. Ko-
renblit and Sherstobitov developed a semiclassical theory for the transport phe-
nomenon for InSb-type degenerate semiconductors, assuming that the change in
energy of the electrons on scattering is less than 2kgT [70]. The validity of the
above approach has also been experimentally verified for CdsAs, [71]. According
to the semiclassical theory, the saturation value of S (S) at high field, in terms

of the energy (g) dependence of the electron concentration (p) at the Fermi energy
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(EFr), is given by |70, 71]
g 72kp kT dInp
® " 3¢ Epdlne

(4.1)

[t was also assumed that p o< £, where s determines the nature of energy dispersion

of the system. Thus, the above expression simplifies to, SOOZW?ZB kB—gs. In three
dimensions, s is 3/2 for a usual parabolic band and 3 for a linear band. For
CdsAsy crystal, we have deduced Erp~270 meV from the magnetotransport and
magnetization measurements |64]. This value of Ey is close to that determined by
several other groups from magnetotransport studies [54, 56, 63, 72]. Now, using
the experimental value of Sy, at 350 K in the simplified expression of Equation 4.1,
we find s ~ 2.9. The field dependence of S has also been analyzed for temperatures
below 350 K. With decreasing T', S tends to saturate at a lower field. The value of
S, however, turns out to be very close to 3 at all the temperatures. Thus, the field
dependence of the Seebeck coefficient clearly demonstrates the linear dispersion of
3D Dirac fermion in CdszAs,. In graphene, by tuning the carrier density through

gate voltage, an inverse square-root dependence of S on carrier density has been

observed, which is a signature of the linear dispersion in this compound [67].

4.3.3 Analysis of the magnetic field evolution of the scatter-
ing time in Cd;As,

For T'<<Tp, where Tr is the Fermi temperature, the linear 7" dependence of S has

been ascribed to the Mott formula,

- wky T 80(£)|
" 3¢ o(p) 0

(4.2)
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where o(¢) is the energy-dependent conductivity. o(e) can be expressed in terms
of Fermi velocity (vg), density of states (D) and energy-dependent scattering time
7; o(e) = e*viD(e)7(g)/2 [73]. For graphene, D(s)=gl|e|/2mh?v? where g is the
total degeneracy. Assuming the energy-dependent scattering time 7 o~ €™, one
gets S = %%—g(m +1).

It has been shown that the Mott formula for graphene holds good up to tem-
perature 7' ~ 0.27% [67, 69]. As D(¢g) = ﬁ for a 3D Dirac system, considering

Equation 4.2 and the energy-dependent scattering time 7 o €™, we get

7T2/€B kBT
= —_— 2). 4.
S e B (m+ 2) (4.3)

We have analyzed the linear T' dependence of S using Equation 4.3 and deduced
m~0.15 at zero field, i.e, 7 is very weakly energy dependent. Similarly, the values
of m, determined from the linear region of S(7") curves at 5 and 9 T, are found
to be close to 1. The energy independence of 7 at zero field is consistent with
the random mass model of Dirac fermion, where a randomly fluctuating gap is
introduced by randomly distributed scatterers (i.e. disorder) |74, 75]. Though
the linear 7" dependence of S has been predicted for the charged impurity (m=2)
and short-range disorder (m-—-2) scattering, we observe a quite different energy
dependence of 7 for CdsAs, [76]. However, in graphene, the dominant transport
mechanism is the screened Coulomb scattering from charged impurities [77]. In

CdsAss, we observe that m increases with field and tends to saturate at m=1 at

high fields.

The magnetic field dependence of m can be understood qualitatively from Fig-

68



ure 4.3(b). In the high-field region, where S shows a saturation-like behavior, the
value of m, determined from Equation 4.3, is very close to 1. However, the field
above which S starts to saturate is extremely sensitive to temperature. At low
temperature, the saturation occurs at a relatively small applied field. For exam-
ple, at 50 K, S increases very rapidly with the application of field and becomes
almost independent of B above 2 T, i.e., m increases sharply from 0.15 at zero
field to about 1 at 2 T. As S(B) curve shifts progressively leftward with decreasing
T, m is expected to increase very sharply and reach 1 at a much smaller field
strength when the temperature is decreased further below 50 K. This implies that
the relaxation process at high fields is dominated by the unscreened charged impu-
rity [73]. The evolution of m with field and its saturation are possibly due to the
reconstruction of FS by magnetic field. It may be mentioned that SAH and dHvA
oscillation studies have probed the FS in the field and temperature region where
the value of m is very close to 1. Further studies are necessary to resolve the dif-
ference in Fermi surface geometry, constructed from zero-field probe and quantum
oscillation technique, as mentioned in the introduction of the present chapter and

also to understand the role of magnetic field on charge scattering.

4.3.4 Tuning of charge carrier by In doping

From the above discussion on field and temperature dependence of thermoelectric
power, it is clear that one can tune the Fermi surface by applying magnetic field.
As a result, m increases from nearly zero to 1. As S depends inversely on the
carrier density, one expects that S will decrease upon electron doping in CdsAs,.
If the linear temperature dependence of S persists with doping, it may be possible

to tune the FS to make m negative. With this idea in mind, we have doped a
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very small amount of In (2%) at Cd site in CdzAss. To determine the carrier
density, the Hall measurement was done at different temperatures in the range
2-300 K, as shown in Figure 4.4(a). The density of electronic charge carrier is
calculated to be ~1.5x10' cm ™3, which is higher than the typical carrier density
in CdzAsy. At zero field, the resistivity (pu.) of (CdgoesIngge)sAss single crystal
decreases monotonically with decreasing temperature down to 2 K as shown in
Figure 4.4(b). The residual resistivity ratio [p.,(300 K)/p..(2 K)] is about 7 at
zero field. At 2 K, p is calculated to be ~6x10* cm? V=1 s71, which is comparable
to that for the undoped crystal. Under application of magnetic field, resistivity
shows a metal-semiconductor like crossover as in the case of parent compound
[56]. With the increase in field strength, this anomaly enhances and shifts towards
higher temperature. Except very few semimetals, like WTey, NbP, Big96Sbg o4, €tc.
[78, 79, 80|, conventional semimetals do not exhibit such behavior, which may be
due to the opening of a gap at the Dirac point. Considering the thermally activated
type carrier transport as in the case of semiconductors, p.,(T)=poexp(E,/x5T),
a very small energy gap was obtained from the slope of In(p,,) vs T~! plots, as
shown in Figure 4.4(c). Inset shows the magnetic field variation of the induced

energy gap. The gap increases rapidly with the increase in magnetic field.

4.3.5 Analysis of magnetoresistance and Shubnikov-de Haas
oscillations in (CdygsIngp2)3Asy crystal

The transverse magnetoresistance of (CdggsIngp2)3Ase single crystal is measured
in the temperature range from 2 to 300 K with magnetic field along [100| direction
and current along [012] direction. The results are shown in Figure 4.5(a). Unlike

CdsAsg, In-doped single crystal shows non-linear MR [54, 57, 62, 64]. At low tem-

70



T T ¥ T
-15.1
—300K .
03} —00k (@ e =
——20K
s o 7 _ g -15.2
S 02t i~ 5 £
. z : >
E ! o153
01 S =
-15.4
0.0 - L L ! L ! 1 I
0 2 4 6 8 0 100 200 300 20 40 80 80 100
B(T) T(K) 1000/T (K™

Figure 4.4: (a) Field dependence of the Hall resistance (R,,) at some representa-
tive temperatures and (b) temperature dependence of resistivity (p,,) for different
applied fields for (CdggsIng.p2)3Ass single crystal. (c) In(p,,) versus 1000T~! plot
for (Cdg.oglng2)3Ass crystal. Using the slope in linear region, the thermal acti-
vation energy gap induced by the magnetic field has been calculated. Inset shows
the field variation of the energy gap above 7 T.

perature, MR is approximately linear only below a threshold value of magnetic
field (except in a very narrow region around B=0), while it is quadratic at high
field. The quadratic component of MR gradually suppresses with increasing tem-
perature. The first-order derivative of MR [d(MR)/dB] at 50 K has been plotted
in Figure 4.5(b) to show the exact magnetic field dependence. The low-field re-
gion, which broadens with increasing temperature, is also present in CdzAsy [56].
d(MR)/dB is flat in the intermediate-field region and linear at high field, which
correspond to linear and quadratic nature of MR, respectively. d(MR)/dB vs B
in Figure 4.5(c) shows that the high-field quadratic region gradually shrinks and
the linear region gradually expands with increasing temperature. At 2 K and 9 T,
MR is about 280 % which suppresses to only ~10% at 300 K.

In(Cdg.ggIngg2)3Ass crystal, the Shubnikov-de Haas oscillation has been observed
up to 20 K. The oscillatory component of MR has been calculated by subtracting a
smooth polynomial background from the total MR and is shown in Figure 4.6(a).

The amplitude of oscillation reduces with increasing temperature and suppresses

71



= Ats0K  (b)
250 = - dMR/dB ,,f"'f
s P4
2 0.0
o
200| £ |,
-D 1

150

MR (%)

100

50

dMR/dB (a. u.)

B (T)

Figure 4.5: (a) Magnetoresistance of (CdgggIngg2)sAsy single crystal at some se-
lected temperatures between 2 to 300 K. (b) The first-order derivative of MR
[d(MR)/dB| at 50 K. The black and green solid lines represents linear MR and
quadratic MR region respectively. (c) d(MR)/dB at some representative temper-
atures above 50 K.

completely above 20 K. The fast Fourier transform of the oscillation, as shown in
the inset of Figure 4.6(a), reveals two distinct frequencies (F') at around 159.3 and
184.6 T, which indicate the presence of two Fermi surface cross sections perpendic-
ular to the applied field direction [100]. The presence of two frequencies in CdzAs,
has been ascribed to the nesting of two equivalent ellipsoidal Fermi surfaces beyond
the Lifshitz transition [57, 64]. Employing the Onsager relation F=(¢/21%)Ap,
the Fermi surface cross sections (Ap) perpendicular to |100] direction are calcu-
lated to be 1.52 x 1072 and 1.76 x 102 A2 respectively, which are at least 3
times higher than the undoped compound [54, 57, 62, 64]. Assuming circular cross
sections, the Fermi wave vectors (kp) are determined to be ~0.07 A~! and ~0.075

A1 respectively.

The thermal damping of the amplitude of oscillation ARy (FFT peak intensity)
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Figure 4.6: (a) The oscillatory component AR,, of MR as a function of 1/B
at various temperatures with magnetic field along the [100] direction; the inset
shows the oscillation frequency after fast Fourier transform in (CdgggInggz)3Ass.
(b) Thermal damping of oscillation amplitude in (CdgggInggo)3Ass crystal. Solid
points are the experimental data and the red line is the fit to the experimental
data. (c¢) The oscillatory component AR,, of MR at 2 K (after subtracting a
smooth background). Black, experimental curve; green, fit with 5=0; red, fit with
non-zero value of 3.

[Figure 4.6(b)| can be described by the temperature-dependent part of the Lifshitz-

Kosevich formula, as discussed in earlier chapter:

212kpT [ hw,.
Afr = asinh(QWQkBT/hwc)’ (4.4)

where a is proportionality constant. The energy gap hAw,. has been determined by
fitting the thermal damping of FFT peak intensity at 184 T with Equation 4.4,
as a representative. The effective cyclotron mass of the charge carrier (m}) and
the Fermi velocity are obtained from the relations w.=eB/m} and vp=hkp/m}
respectively. m} is calculated to be ~0.13 m,, which is almost three times heavier

than that for the parent compound [64]. v is found to be ~ 6.1x 10° m/s.

In Figure 4.6(c), the oscillatory component of MR is shown to be fitted by the
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Lifshitz-Kosevich formula, AR,,=A exp(—4) cos 2 (F/B +0.5+ 3), excluding the
thermal damping term [Equation 4.4]. We have excluded the thermal damping
term because it is a much slower varying function of B than the other two terms.
Here, =212k Tpm?/he and 27/ is the Berry’s phase, where 3 can take values
from 0 to 1/2 (0 for the parabolic dispersion as in the case of conventional metals
and 1/2 for the linear dispersion in 3D Dirac system). Taking into account the
presence of two frequencies, we have used superposition of two oscillatory compo-
nents correspond to F; = 159.3 and Fy = 184.6 T to fit the experimental data.
Initially, we have fixed § to 0 for parabolic band. But, as shown in Figure 4.6(c),
the fitting to the experimental curve is much inferior. By tuning 3 from 0 to 1/2
in successive steps, the fitting to the experimental data improves progressively.
Figure 4.6(c) shows fitting with §=0.35 in the theoretical expression. With fur-
ther increase in  above (.35, we observe that the fitting becomes inferior. >0
demonstrates that the Fermi energy is in the linear dispersing region. This is fully
consistent with the earlier STM [52] and ARPES [37] reports, which state that
the linear dispersion in CdzAss persists up to as high as 500 meV from the Dirac

point.

4.3.6 Temperature dependence of S in (CdggsIng2)3Ass

Figure 4.7(a) shows the temperature dependence of the thermoelectric power of
(Cdo.gsIng p2)3Ass crystal. Similar to undoped compound, S exhibits linear 7" de-
pendence, whereas the value of S reduces significantly upon carrier doping. Using
the experimental values of kp and m} in the Fermi energy expression for the rel-
ativistic excitation, Ep=nh?k%/m?*, we get Ep~ 302 meV. Now, using the slope of

S(T') in Equation 4.3, the scattering exponent m is calculated to be ~-0.6 for the
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Figure 4.7: (a) Temperature dependence of the thermoelectric power (S) of
(Cdo.gsIngp2)3Ase up to 350 K. (b) High resolution transmission electron mi-
croscopy (HRTEM) image of the crystal.

relaxation process in (CdggsIngoz)sAsy crystal. For both acoustic phonon scatter-
ing and neutral white-noise short-range disorder, the value of m is known to be -1
[81]. However, the high resolution transmission electron microscopy image of the
crystal does not show any signature of short-range disorder |Figure 4.7(b)]. Very
clear selective area electron diffraction pattern obtained in HRTEM measurements
also consistent with the absence of any kind of disorder [Figure 4.1(c)]. So, the
value of scattering exponent can be attributed to the emergence of acoustic phonon

scattering.

4.3.7 Magnetotransport and thermoelectric properties of
(Cdo.gsIng g4)3As;y crystal

With the intension to tune the scattering exponent further, we have doped 4%
In at the Cd site in CdzAs,. Figure 4.8(a) shows the temperature dependence of
resistivity for (Cdgoglngs)sAsy crystal. From the figure, it is clear that p..(T),

in absence of magnetic field, shows metallic behavior (dp,,/d7>0) down to lowest



temperature similar to 2% In-doped crystal. However, the value of p,, at a given
temperature is larger than that for x=0.02 sample but smaller than x=0 sample.
The value of residual resistivity ratio (~5) is smaller compared to that for both
x=0 and x=0.02 samples. So, the electrical resistivity and residual resistivity ratio
exhibit non-monotonic dependence on In content. We have also measured the Hall
resistivity to determine the carrier concentration in this sample. The Hall resistiv-
ity has been plotted with B in Figure 4.8(b) at two representative temperatures,
2 and 300 K. Figure shows that p,, is independent of temperature and p,, vs B is
linear up to 9 T. From the slope of p,, vs B plot, the carrier density is calculated
to be ~2.4x10'Y cm™3. The deduced value of n is larger than the carrier density
for =0 and 0.02, implying In doping continue to increase carrier concentration.
However, the carrier mobility reduces to ~1.1x10* ecm? V=1 s7!. From the above
discussion, it is evident that disorder dominates the charge conduction mechanism

in Cd3As, above a certain In doping level, in spite of increase in carrier density.

In order to understand the effect of magnetic field on resistivity, we have also
measured p,, at different applied fields |Figure 4.8(a)|. Figure 4.8(a) shows that
the resistivity enhances with the application of magnetic field as in the case of z=0
and 0.02 samples. Similar to x=0 and 0.02, p,, for £=0.04 also shows the field-
induced metal-semiconductor like crossover with decreasing temperature. However,
this phenomenon is weaker than that observed in 0 and 0.02 samples. MR as a
function of magnetic field has also been measured and plotted in Figure 4.9(a).
However, for this sample, we have not observed any SdH oscillation up to 9 T
magnetic field and temperature down to 2 K. We have already shown that the

effective mass of the carrier increases significantly with the increase in carrier den-
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sity resulting from In doping. Also, the conductivity for the 4% In-doped sample
reduces due to the increase of disorder. The absence of quantum oscillation within
the measured magnetic field range is possibly due to the increase in carrier effec-
tive mass and disorder with In doping. But, surprisingly, Figure 4.9(a) shows large
and nonsaturating MR for (Cdpoglngos)3Asy like the undoped sample. At 9 T,
the MR is as high as ~ 1650% at 2 K and ~ 250% at room temperature. How-
ever, the nature of MR is weakly superlinear compared to weakly sublinear MR
in undoped CdzAs,, which has been shown in Figure 3.2(b) of previous chapter.
As pointed out by Parish and Littlewood [82] through statistical simulation, large
spatial fluctuations in mobility due to presence of disorder, can lead to large linear
magnetoresistance. This benefit of imperfection was first experimentally realized
in doped sample of AgsSe and AgyTe by several groups [83, 84|. Recently, fluctu-
ation in electron mobility due to collision with randomly distributed low-mobility
islands (i.e., disorders), has been ascribed as a possible source of large and linear
magnetoresistance in CdsAsy [62]. It has also shown that the value of MR scales
with the mobility of charge carrier. As shown in Table I, with further indium
doping in CdzAs, above 2%, the large linear MR is recovered and the mobility
of charge carrier is reduced from what is observed in 2% In-doped sample. This
disorder-induced MR in 4% In-doped sample is consistent with the above men-
tioned statistical model. Controlling MR by tuning disorder through doping may
be a potential route for the fabrication of magnetic field sensors.

In Figure 4.9(b), the Seebeck coefficient for (Cdgoglngos)3Ass is plotted as a
function of temperature up to 300 K. Consistent with the increase in carrier den-
sity, the value of S reduces further. Similar to undoped and 2% In-doped sample,

S vs T is linear throughout the temperature range, i.e., the Mott semiclassical
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Figure 4.8: (a) Resistivity (p.) as a function of temperature for (Cdg gglng g4 )3Ass.
(b) Field dependence of the Hall resistance (R,,) at 2 and 300 K.
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Figure 4.9: (a) Magnetoresistance of (CdggsIngos)sAse at a few representative
temperatures from 2 to 300 K. (b) Temperature dependence of the thermoelectric
power (S) of (Cdg.gsIngos)sAss up to 300 K.



formula [Equation 4.2] is obeyed. However, due to the absence of quantum oscil-
lations in the magnetoresistance data, it is not possible to comment whether 0.04
In-doped sample hosts Dirac semimetallic phase or not. Also, we cannot deduce

m using Equation 4.3 due to the lack of knowledge on Fp.

Table 4.1: The values of Seebeck coefficient at 300 K (S500x ), resistivity at 2 K
(pax ), carrier density (n), carrier mobility () and magnetoresistance at 2 K and 9
T for CdzAs,, 2% indium-doped [Cd3As,(02)] and 4% indium-doped [CdzAs,(04)]
samples.

S300K P2k n % MR

puV/K  pQ-cm 108em=3  10%em?/Vs %
Cd3zAsy 60 70 6.8 1.3 1600
CdsAsy(02) 34 7 15 6 280
CdsAso(04) 27 23 24 11 1650

4.4 Conclusion

In conclusion, the Seebeck coefficient shows linear temperature dependence over
a wide range, which is in agreement with the Mott’s relation. The signature of
three-dimensional linear dispersion in CdsAs, has been clearly reflected from the
magnetic field dependence of S. The relaxation process of charge carrier in CdsAs,
is found to be extremely sensitive to magnetic field and carrier doping. Analysis
reveals that the scattering time evolves from being nearly energy independent to
becoming linearly dependent on energy as the magnetic field increases. Fermi
surface is strongly affected and the scattering time enters into the inverse energy-
dependent regime with 2% indium doping at Cd ion site. Further doping (4%)

increases disorder in the system and SdH oscillation is no more traceable down
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to 2 K and up to 9 T applied magnetic field. Surprisingly, this higher doped
sample shows large and linear magnetoresistance like the undoped compound. The
observed behaviour of MR is consistent with the statistical model, which states
that large spatial fluctuation in carrier mobility due to presence of disorder, can
generate large linear MR. This disorder controlled MR in Cd3Ass may have the

potential benefit in magnetic sensors, magnetic switches, memory devices, etc.
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Coexistence of topological Dirac fermions
on the surface and three-dimensional
Dirac cone state in the bulk of Zr'Tes

single crystal

5.1 Introduction

The low-dimensional pentatellurides, ZrTe; and HfTes, synthesized in 1973 [85],
exhibit a peak in the resistivity (p) as a function of temperature [86]. This anomaly
in the resistivity has been observed at Tp ~ 145 K for ZrTe; and Tp ~ 80 K for
HfTes, however, the exact temperature varies from sample to sample [87]. It was
shown that the anomalous peak in resistivity shifts to lower temperature with re-
duced level of impurity in the sample [87]. Recent works on ZrTes reported Tp

as low as ~60 K, which has been ascribed to very low defect and impurity con-
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centration in the samples [41, 88]. Most of the earlier works have been directed
towards understanding the origin of this peak. The charge carrier switches from
holes at T'>Tp to electrons for T'<Tp, which is reflected in the sign change of
thermoelectric power [89] and Hall coefficient [90]. Initially, it was believed that
this resistive anomaly arises due to charge-density wave transition, similar to that
occurs in NbSes [91]. But the absence of lattice modulation, etc., eliminate the idea
of charge density wave formation in ZrTes [92]. Subsequently, the concept of po-
laronic conduction 93|, semimetal-semiconductor phase transition [94] and so on,
have emerged until a recent theoretical work suggests that the monolayer of ZrTes
and HfTes is the most promising candidate for the quantum spin Hall due to the
large bulk gap [40]. Suddenly, a material known for its large thermoelectric power
[89], resistivity anomaly [85] and large positive magnetoresistance [95], has been
brought to our attention to study the topological properties of relativistic Dirac

fermion in condensed matter physics [41, 88, 96, 97, 98, 99, 100, 101, 102, 103].

In recent times, it has been established from angle resolved photoemission spec-
troscopy (ARPES) measurement that the temperature dependence of the electronic
band structure across the Fermi energy is responsible for the anomalous peak in
resistivity [96]. However, ZrTes is not free from debate, facing a bigger question.
Theoretical calculation shows that electronic property of bulk ZrTe; is very sensi-
tive to the lattice parameters. Depending on the values of lattice parameters it can
be either a weak or a strong three-dimensional topological insulator [40]. On the
other hand, ARPES [41, 96|, infrared spectroscopy |88, 97| and magneto transport
[41] studies show three-dimensional linear dispersion with a small semiconducting

gap between the valence and conduction band, i.e., 3D Dirac fermionic excitation
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with a small mass gap. Do theory and experiment contradict each other or the
topological Dirac fermions on the surface and three-dimensional Dirac cone state
in the bulk can coexist simultaneously in ZrTe;? We have addressed the ambiguity

in the present chapter .

5.2 Sample preparation, characterization, and ex-
perimental details

High quality single crystals of ZrTes were grown by iodine vapor transport method
similar to that reported earlier [104]. A stoichiometric mixture of Zr (Alfa Aesar
99.9%) and Te (Alfa Aesar 99.99%) was sealed in a 15 cm long quartz tube with
iodine (~ 5 mg/cc) and placed in a box furnace. It was then heated for seven days
at 520°C and cooled to room temperature at 10°C/h. Next, the tube was shifted
to a two-zone gradient furnace. One end of the tube containing the product was
placed at 540°C while the other end of the tube was placed at the cooler zone
of the furnace at 450 °C to provide a temperature gradient for four days. After
slowly cooling (~30°C/h) it to room temperature, single crystals with needlelike
morphology were obtained at the cooler end. Typical size and morphology of few

representative single crystals are shown in Figure 5.1(a).

Phase purity and the structural analysis of the samples were done by high
resolution powder x-ray diffraction (XRD) technique (Rigaku, TTRAX II) using
Cu-K,, radiation [Figure 5.1(b)]. Within the resolution of XRD, we have not seen
any peak due to the impurity phase. The calculated value of the lattice parameters

are a=3.96 A, b=14.50 A and ¢=13.78 A with space group symmetry C'mem, sim-
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Figure 5.1: (a) Typical size and morphology of few representative single crystals
of ZrTes. (b) X-ray diffraction pattern of powdered single crystals of ZrTes. Black
open circle, experimental data; red, the calculated pattern; blue, the difference
between experimental and calculated intensities; green, the Bragg positions. (c)
Atomic structure of ZrTes. Reproduced from Ref. [40].

ilar to the earlier reports [105, 106, 107]. As shown in Figure 5.1(c), the structure
of the pentatellurides consists of trigonal prismatic chains of ZrTes along a axis
connected via parallel zigzag chains of Te atoms along the c axis, which together
form 2D planes weakly bonded via van der Waals force along the b axis [40]. Fig-
ure 5.2(a) shows the crystallographic directions of a typical ZrTes single crystal
and electrical contacts for resistivity measurements.

The resistivity measurements were done by standard four-probe technique. Elec-
trical contacts were made using conductive silver paste. The electrical trans-
port measurements were carried out in 9 T physical property measurement sys-
tem (Quantum Design) and cryogen free measurement system (Cryogenic Lim-
ited). Magnetization was measured using a Superconducting Quantum Interfer-
ence Device—Vibrating Sample Magnetometer (SQUID-VSM) (Quantum Design).
Before the magnetization measurements, the system was standardized using single
crystal of diamagnetic bismuth (Alfa Aesar 99.99%) and paramagnetic palladium

[Appendix A].
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5.3 Results

5.3.1 Temperature dependence of resistivity both in pres-

ence and absence of external magnetic field

Resistivity and transverse magnetoresistance measurements are done by applying
current along the a axis and magnetic field perpendicular to the ac plane, i.e.,
along b axis. Figure 5.2(b) shows the temperature dependence of resistivity of
ZrTes single crystal both in presence and absence of magnetic field. The zero-
field p exhibits metallic behavior (dp/d7'>0) down to 25 K. Below 25 K, p shows
a weak upturn, i.e., a crossover from metallic to semiconducting like behavior.
However, several earlier reports show that a broad peak appears in the temperature
dependence of p, which is known as the resistivity anomaly of ZrTes [41, 85, 86,
87, 88]. We have already mentioned in the introduction that the temperature
at which p shows peak varies widely; from 60 K to 170 K. It was believed in
the past that the position of the peak depends on the strength of impurity and
defect in the sample [87]. However, in the light of new observations, chemical
doping can also play a crucial role in determining the peak position [96, 103].
It has been argued that the binding energy shift of the valence and conduction
bands as a function of temperature is responsible for the peak at Tp [96, 103].
With increasing temperature from 2 K, the sign of the charge carrier changes
from negative (electron) to positive (hole) and the peak in p(T") appears when the
chemical potential crosses the gap (~50£10 meV) from conduction band to valence
band. The absence of resistivity peak down to 2 K in the present sample could

be attributed to hole doping, unlike electron doping in all the previously reported
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Figure 5.2: (a) Different crystallographic directions and electrical contacts in a
representative piece of ZrTes single crystals. (b) Temperature dependence of resis-
tivity (p) both in presence and absence of external magnetic field.

samples 41, 85, 86, 87, 88, 96]. A very recent experimental research has observed
similar temperature dependence of resistivity, and established this behaviour as a
characteristic of hole doped ZrTes [108]. Under application of magnetic field, p
increases sharply at low temperature and the metal-semiconductor crossover shifts
to higher temperature, which are consistent with the earlier reports [41, 107]. But,

no re-entrant metallic state has been observed up to 9 T.

5.3.2 Hall resistivity and transverse magnetoresistance

To further ensure the absence of resistivity anomaly, which has been ascribed to
the switching of p-type semimetal to n-type semimetal state, we have done Hall
measurements down to 2 K. Figure 5.3(a) shows that the Hall resistivity (puy)
remains positive over the entire temperature range 2-300 K. The absence of sign
change in p,, is consistent with the observed 17" dependence of p. One can see that
Pay is linear over the entire field range except at low temperature, where an upward
curvature appears at high fields due to the Shubnikov-de Haas oscillations. A

systematic increase of the slope of the Hall resistivity with decreasing temperature
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Figure 5.3: (a) Hall resistivity (p,,) of ZrTe; single crystal at several representative
temperatures over the range 2-300 K. (b) Transverse magnetoresistance (I_LB)
normalized to the zero field value upto 9 T.

is consistent with the temperature evolution of electronic band structure in ZrTes
[96, 103]. From the slope of p,,(H), the bulk carrier density (n) is calculated
to be ~4x10%cm ™2 and ~7x10'"%m 3 at 2 and 300 K, respectively. We would
like mention that the carrier density in the present crystal is almost one order of
magnitude smaller than the earlier reported ones [100, 109]. Figure 5.3(b) shows
the normalized magnetoresistance (MR) up to 9 T magnetic field. MR is large,
positive and shows no sign of saturation in the measured temperature and field
range. The observed behavior of MR is similar to the earlier reports [95, 98, 99]. At
low temperature, MR is dominated by a very low frequency (~3 T) Shubnikov-de
Haas oscillation, which implies the presence of a tiny Fermi pocket, consistent with
the low carrier density determined from the Hall measurements. Employing the
Onsager relation F=(¢o/27?)Ap, we have calculated the cross-sectional area (Ar)
of the Fermi surface normal to the field ~6.2x1075 A=2. At high temperature,

where the quantum oscillation suppresses, MR becomes linear.
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5.3.3 Longitudinal magnetoresistance and Chiral anomaly

As proposed by Hermann Weyl in 1929, the four-component massless Dirac equa-
tion in three spatial dimensions can be separated into two two-component equa-
tions, z%—f:icﬁ.ﬁﬁl , where & and p are the Pauli matrices and momentum respec-
tively. The above equation describes particles with a definite chirality &.p, known
as Weyl fermions. Also, according to the classical equation of motion the number
of fermions with plus or minus chirality is conserved separately. The relativistic
theory of charged chiral fermions in three spatial dimensions holds the so-called
chiral anomaly— non-conservation of chiral charge induced by external gauge fields
with non-trivial topology, known as Adler-Bell-Jackiw anomaly [110, 111]. Nielsen
and Ninomiya provided a physical picture of the chiral anomaly in the context of
condensed matter physics [112]. Considering a band structure in three dimensions
which supports two Weyl nodes with opposite chirality separated in momentum
space and applying a magnetic field along the line joining the Weyl nodes, they
predicted an enhanced magneto-conductance due to the charge pumping from one
node to another in presence of an electric field E parallel to B.

In 3D Dirac semimetals, a four-component massless Dirac fermion is nothing
but the two copies of distinct Weyl fermions. The application of magnetic field
splits the four-fold degenerate Dirac node into two Weyl nodes of opposite chiral-
ity, along the direction of magnetic field [113, 114]. Initially, the plus and minus
chirality fermions in the different Weyl nodes have same chemical potential u* =
1~ . Whereas, E parallel to B creates an imbalance (uT#p~) between the two
Weyl nodes with opposite chirality, which induces a charge pumping from one

Weyl node to another. The net current generation due to the chiral imbalance is

je = 4§§§C(M+'M_) [41, 114]. Again, (u*-p™) is proportional to E.B. As a result,
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the enhanced magneto-conductance is expected to show quadratic B dependence
in the form, o. — oot a(T).B?, where oy is the zero-field conductivity. The field

independent constant, a(T') has the inverse T? dependence,

2 2,2
o(ry= L3EV T (5.1)

%8?107731?4_/;_2’

where v, 7, and p are the Fermi velocity, chirality changing scattering time and
chemical potential, respectively [41]. But, in addition to the negative quadratic
MR associated to chiral anomaly, a small positive MR component associated to
different physical phenomena may contribute to transport [115, 116, 117|. Con-
ventional nonlinear band contribution around the Fermi level, which has the field
dependence, oy = pﬁ—iLBQ, is common [115, 116, 117|. As a result, the longitudinal
magneto-conductance can be fitted with the theoretical expression, o = o.+oy =
loo ta(T).B?| + —L—s

po+A.B?"

To probe the chiral anomaly, we have measured longitudinal magnetoresistance

89



100f
0.96
S 5
< 092 &
m m
= st
088
8 6 4202 486 8 -8 6-4-202 46 8
B (T) B (T)
=) =)
a et
= %
= &)
8 64202 46 8 8 64202 46 8
B (T) B (M)

Figure 5.5: (a) Longitudinal magnetoresistance measured at temperatures 5 K, 25
K, 30 K and 40 K, when applied current and magnetic field are parallel to each
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retical expression, p.=

[oo+a(T). B3]+ pOJriLBz
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(LMR) by applying both the current and magnetic field along the a axis. As shown
in Figure 5.4(a), the resistance at 10 K gradually decreases with increasing field
until an upturn occurs at high field. A small positive transverse MR component
due to unavoidable misalignment in parallel configuration is responsible for this
high field upturn. As the positive MR component rapidly suppresses with increas-
ing temperature, the longitudinal negative MR becomes more clearly visible at
higher temperatures. LMR at several other temperatures from 5 to 40 K, has been
shown in Figure 5.5(a). Due to large positive transverse MR component at low
temperatures from small misalignment in / || B configuration, the field dependence
of LMR at 5 K shows weak negative MR in a narrow field range. With the increase
in temperature above 40 K, however, the negative MR itself becomes very weak.
The negative LMR was reproduced by several independent measurements and also
verified in different crystals. Chiral anomaly induced negative LMR has also been
observed in earlier magneto-transport studies in ZrTes [41, 117]. The nature and
strength of negative LMR in the present sample are comparable to that reported
earlier [41, 117]. LMR has been fitted with the inverse of the above mentioned
theoretical expression for the longitudinal magneto-conductance and shown at a
temperature 20 K in Figure 5.4(b). A good fitting between the theoretical expres-
sion and experimental data is reflected in the above mentioned figure. By fitting
LMR at different temperatures in the range 10-50 K |[Figure 5.5(b)-(f)], we have
calculated the values of the parameter a. As the negative LMR is much weaker
compared to large transverse MR component, we have not considered the LMR vs
B plot at 5 K for fitting. Observed values of a(7") at 10 to 50 K indicate that the
strength of induced chiral current for the present sample is comparable with the

1

carlier report on ZrTes [41]. In Figure 5.4(c), we have plotted a~! vs T?. One can
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!is almost linear in 72, as predicted theoretically. Thus,

see from the figure that a~
the negative longitudinal MR in E ||§ configuration implies four-component mass-
less Dirac fermionic excitation in the bulk state of ZrTe; single crystal [41, 117].
It may be noted that the negative MR due to induced chiral anomaly is a well
established phenomenon in three-dimensional Dirac semimetals, which has also
been observed in CdsAs, [114] and NagBi [118]|. Presence of a small gap between

the upper and lower Dirac cone in bulk may reduce the magnitude of the chiral

current, but cannot destroy it fully [41].

5.3.4 Signature of topological surface state from magnetiza-

tion measurements

The low-energy physics of the surface state for a three-dimensional topological insu-
lator can be described by the Dirac type effective Hamiltonian, Hy,, (ks ,ky) =hvp (0% k-
oYk, ), where vp is the Fermi velocity |119, 120|. Thus, for a fixed translational
momentum E, the “spin", denoted by the Pauli matrix &, has a fixed direction for
the eigenstate of the Hamiltonian. This is the most important property of the
nontrivial topological surface state in 3D topological insulators, known as “spin-
momentum locking". As the “spin" is always perpendicular to the momentum, one
can introduce a helicity operator for the spin texture on circular constant energy
contour of the Dirac cones [120], h=(1/k)2.(kx&). This leads to left-handed spin
texture for the upper Dirac cone and right-handed spin texture for the lower Dirac
cone in the momentum space. Whereas at the Dirac point, as long as the Dirac
spectrum is not gapped, the electron spin should be free to align along the applied
magnetic field due to the singularity in spin orientation [121]. This predicts a

low-field paramagnetic peak in the susceptibility curve x(H).
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Figure 5.6: (a) Magnetization of ZrTes single crystal, measured at several rep-
resentative temperatures from 2 to 350 K. (b) Differential susceptibility (y=4%%)
obtained after taking derivative of the magnetization with respect to external mag-
netic field. Inset shows the linear B dependence of x, as B tending towards zero
on both side of the zero field cusp at representative temperature 350 K.

Figure 5.6(a) shows the magnetization of single crystal of ZrTes; with magnetic
field along the a axis. Over the whole range of temperature from 2 to 350 K,
ZrTe; shows diamagnetic signal except a paramagnetic upturn in the low-field re-
gion. It might be worthy to mention that single crystals of standard diamagnetic
bismuth and three-dimensional Dirac semimetal CdsAs, do not show this type of
behaviour [Appendix A]. On the other hand, similar paramagnetic response has
been observed in single crystals of well established three-dimensional topological
insulator Bij 5SbgsTe; 7Se; s [Appendix A|. Figure 5.6(b) shows that a cusp-like
paramagnetic susceptibility sharply rises above the diamagnetic floor in a nar-
row field range of ~2 kOe around zero field. The height of the peak from the
diamagnetic floor and its sharpness are insensitive to temperature. This singular
response of susceptibility shows no sign of thermal rounding up to as high as 350
K (~32 meV), which is almost one-half of the bulk band gap [41, 103]. Similar
robust and singular paramagnetic response have been reported for the family of

three-dimensional topological insulators which is the fingerprint of the helical spin
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Figure 5.7: (Color online) (a) Magnetization of ZrTes single crystal, which was
kept for three weeks in desiccator from the first measurements |Figure 5.6|. (b)
Differential susceptibility (X:%) obtained after taking derivative of the magneti-
zation with respect to external magnetic field. Inset shows the linear B dependence
of x as B tending towards zero on both sides of the zero field cusp at representative

temperature 350 K.

texture of the topological Dirac fermions on the surface [121, 122]. Setting both
the chemical potential 1 and temperature to zero, one can show that, at low field,

this paramagnetic Dirac susceptibility decays linearly from its zero-field value [121]

as, xp(B) = %[(gg)i)zf\— 2(,%%)3 |B|+...]. Where g is the Landé g-factor and A is
the effective size of the momentum space contributing to the singular part of the
free energy. It has been argued [121] that the maximum of the susceptibility, i.e.,
the peak height at zero field over the diamagnetic floor, depends on A, and thus
controlled by the bulk bands. Whereas the nature of the singularity (i.e. cuspiness
and linear-in-field decay of susceptibility at low fields, almost absence of thermal
smearing, etc.,) is universal to the entire family of 3D topological insulators. Inset
of Figure 5.6(b) shows the linear fit to the experimental data on the both sides of
the zero-field cusp. The linear-in-field decay of the paramagnetic response, even

at the highest measuring temperature 350 K, is evident from the figure.

Often, surface states show ageing effect, which has been attributed to surface re-
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construction and the formation of two-dimensional electron gas due to the bending
of the bulk band at the surface [121, 123, 124]. To see whether such behaviour
is visible in the present material, magnetization measurements have been done
on the same pieces of single crystals after three weeks of the first measurement.
The observed field dependence of magnetization and susceptibility are shown in
Figure 5.7(a) and Figure 5.7(b). Although the nature of the peak and its robust-
ness against temperature remain unaffected, the reduction in peak height over time
may be attributed to the expected ageing effect, similar to that observed in BisSes,
SbyTey and BiyTes [121]. It has been pointed out that the spin/orbit texture may
also exist in the bulk state of the material with strong spin-orbit coupling, such as
in BiTel [125] and WTe, [126]. Keeping this information in mind, one may think
the possibility of the singular paramagnetic response from the bulk of ZrTes. But,
as reported by the earlier ARPES measurements [41, 96, 103|, the bulk state of
ZrTes holds a band gap (~50+10 meV) between the upper and lower Dirac cone,
which disobeys the primary condition for the singularity in electron spin orientation
from the spin/orbit texture. Secondly, the negative longitudinal magnetoresistance
due to chiral charge imbalance under non-trivial gauge field and ARPES results,
established the presence of four-component massless Dirac fermion in the bulk 3D
Dirac cone state of ZrTes. As far as we know, a four-component 3D Dirac fermion
originating from the spin-degenerate band, cannot have any spin-orbit texture.
The age dependent reduction of the peak height, whereas the diamagnetic back
ground is unaffected, also confirms the surface origin of this singular paramagnetic

response.
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Figure 5.8: A schematic diagram, representing the minimum nontrivial topological
nature of the electronic band structure of ZrTes single crystal. ZrTes; monolayers,
which lie in the ac-plane, stack together along the b-axis by weak van der Waals
attraction. Independent conducting edge state of monolayers, as shown by the
blue arrows in the figure, forms a topological surface state in bulk sample, known
as weak three-dimensional topological insulating state.

5.4 Discussion

We have detected a robust zero-field paramagnetic peak in the susceptibility of
Zr'Tes due to the helical spin texture associated with the Dirac fermions of the
surface state of the three-dimensional topological insulator. Also, the negative
longitudinal magnetoresistance implies induced chiral anomaly in ZrTes, which is
the signature of the three-dimensional Dirac fermion in the bulk. This allows one
to conclude that ZrTes is a novel quantum phase of matter, which hosts both topo-
logical Dirac fermions on the surface and three-dimensional Dirac cone state with
a mass gap between valence and conduction bands in the bulk. As mentioned ear-
lier, Zr'Tes can be cither a weak or a strong three-dimensional topological insulator

depending on the values of the lattice parameters [40|. The simplest kind of topo-
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logical insulator in three-dimension can be understood by stacking the layers of the
2D quantum spin Hall insulator with weak van der Waals bonding between them
[127], similar to the stacking of monolayers of ZrTes; along b axis. A schematic
diagram has been shown in Figure 5.8, representing the possible minimum nontriv-
ial electronic state in ZrTe;s single crystal. Blue arrows represent the conducting
edge state of a monolayer, which together form a topological surface state in the
bulk sample. On the other hand, the bulk band with semiconducting gap is linear
enough to show the signature of massless Dirac fermionic excitation in electronic

transport.

In condensed matter electronic system, the topological classes are defined on
the basis of the elementary concept, which states that the Hamiltonian cannot be
smoothly deformed from one class of materials to another without closing the gap
in electronic band structure. As a result, at the interface of the two materials
with different topological band gap, there should be a conducting surface state
[127, 128]. Unless there is a bulk gap, there should be no well-defined topological
surface state. So, either band crossing in the bulk, i.e., 3D Dirac node or the 2D
Dirac cone surface state can survive. In all 3D topological insulators reported so
far, the semiconducting bulk band is highly non-linear and the gap is significantly
large (~300 meV) compared to ZrTes [121, 129, 130]. That is why the coexistence
of 2D Dirac cone surface state and 3D Dirac fermions in the bulk is difficult. To
the best of our knowledge, ZrTe; is the only 3D topological insulator in the history
of material science, which has Dirac fermionic excitation in the bulk. Following
the present work, the above-mentioned conclusion has been supported by Manzoni

et al. through ARPES experiments [131].
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5.5 Conclusion

Although, the long-standing debate on the resistivity anomaly in ZrTes somewhat
comes to an end, the exact topological nature of the electronic band structure
remains elusive till today. Theoretical calculations predicted that bulk ZrTes to be
cither a weak or a strong three-dimensional (3D) topological insulator. However,
the angle resolved photoemission spectroscopy and transport measurements clearly
demonstrate 3D Dirac cone state with a small mass gap between the valence band
and conduction band in the bulk. From the magnetization and magneto-transport
measurements on ZrTe; single crystal, we have detected both the signature of
helical spin texture from topological surface state and chiral anomaly associated
with the 3D Dirac cone state in the bulk. This implies that ZrTe; hosts a novel
electronic phase of material, having massless Dirac fermionic excitation in its bulk
gap state, unlike earlier reported 3D topological insulators. Apart from the band
topology, it is also apparent from the resistivity and Hall measurements that the
anomalous peak in the resistivity can be shifted to a much lower temperature (1'<2

K) by controlling doping.
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Anisotropic transverse magnetoresistance

and Fermi surface in TaSho

6.1 Introduction

Without taking into account the role of spin-orbit coupling, TaSby has been pro-
posed to be a topological semimetal. Upon inclusion of spin-orbit coupling, how-
ever, gap opens-up at each band crossing point [132, 133, 134, 135]. This leads to
the possibility of suppressed linear electronic dispersion in TaSbhs. On the other
hand, the transport experiments have established the 3D Dirac fermionic excita-
tion through the observation of negative longitudinal magnetoresistance (LMR)
and detection of non-trivial = Berry’s phase in Landau level index plot [132, 135].
So, every further investigation is complementary to the previous results on the
electronic band topology of TaSby. Apart from this unconventional nature of elec-
tronic band structure, large magnetoresistance and the presence of two or three

Fermi pockets depending on the position of the Fermi level, have been reported in
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earlier works by analyzing the Shubnikov-de Haas (SAH) oscillation for magnetic
field along one of the crystallographic axes [132, 134, 135]. Due to the lower sym-
metry (monoclinic) of crystal structure of TaSby, one expects a strong anisotropy
in Fermi surface of this system. However, the crystallographic direction depen-
dence of magnetotransport properties and the anisotropy of the Fermi surfaces
have not been probed so far. This is important not only for understanding differ-
ent electronic properties controlled by the Fermi surface but also helpful for the
application point of view. In the present work, we have observed large anisotropy
in magnetoresistance when the angle between magnetic field and crystallographic
axes is varied in transverse experimental configuration (i.e., field is perpendicu-
lar to the current direction). In this set up, the field direction is kept fixed and
the sample is rotated with respect to the field direction. Besides this, employing
magnetization measurements along three mutually perpendicular directions on the
same single crystal and by analysing the de Haas-van Alphen oscillation, we report

the anisotropic nature of the Fermi pockets.

6.2 Sample preparation, characterization, and ex-

perimental details

6.2.1 Sample preparation

Single crystals of TaSby were grown using iodine vapor transport technique in two
steps. At first, polycrystalline sample is prepared by heating the stoichiometric
mixture of high-purity Ta powder and Sb pieces at 650°C for 8 h and at 750°C for

48 h in a vacuum-sealed quartz tube. Next, the polycrystalline sample along with
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the required amount of iodine were sealed under vacuum in another quartz tube.
Finally, the quartz tube was placed in a gradient furnace and heated for 7 days.
During heating, the end of the quartz tube containing the sample was maintained
at 1000°C, while the other end was kept at 900°C. The furnace was then cooled
slowly to room temperature. Several small, shiny and niddle-like crystals formed
at the cold end of the tube were mechanically extracted for transport and magnetic

measurements.

6.2.2 Characterization

Phase purity and the structural analysis of the samples were done by using both
the high resolution transmission electron microscopy (HRTEM) and the powder
x-ray diffraction (XRD) technique. The HRTEM image of a representative piece
of sample, which has been taken from a single crystal of TaSby is shown in Figure
6.1(a). Very clear periodic lattice structure implies that there is no secondary
phase or atom clustering or disorder in the present sample. The Fourier-filtered
image of the selected region in the inset, shows inter-planar spacings (d-spacing)
of 2.88 A and 2.32 A. These measured d-spacings are close to the (111), and (003)
inter-planar spacings of TaSby (JCPDS # 65-7656). Figure 6.1(b) and Figure
6.1(c) show the selected area electron diffraction (SAD) pattern recorded along
[100] and [110] zone axis, respectively. The periodic pattern of the spots in SAD
implies high-quality single crystalline nature of the grown samples. The diffraction
pattern was indexed using the lattice parameters of monoclinic TaSby. The energy-
dispersive x-ray (EDX) spectrum, as shown in Figure 6.1(d), confirms the presence
of the elements in desired stoichiometry. Please note that the carbon and copper

peaks in spectrum appear from the carbon coated copper grid on which the sample
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Figure 6.1: (a) High resolution TEM image, taken on a representative piece of
TaSb, single crystal. Inset shows the Fourier-filtered image of the red dotted
region. (b) and (c) are the selected area electron diffraction (SAD) patterns taken
along [100] and [110] zone axis, respectively. (d) The energy-dispersive X-ray
(EDX) spectroscopy data.

was mounted for TEM analysis. Figure 6.2(a) shows the high-resolution x-ray
diffraction pattern of the powdered sample of TaSb, crystals at room temperature.
Within the resolution of XRD, we did not see any peak due to the impurity phase.
Using the Rietveld profile refinement, we have calculated the lattice parameters
a=10.221, b=3.645 and ¢=8.291 A, and $=120.40° with space-group symmetry
Cha/m1- A sketch map of the crystal structure of TaSb, has been shown in Figure

6.2(b).
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Figure 6.2: (a) X-ray diffraction pattern of powdered single crystals of TaShs.
Black open circles are experimental data (Y,s), red line is the calculated pattern
(Year), blue line is the difference between experimental and calculated intensities
(Yops-Year), and green lines show the Bragg positions. (b) Schematic diagram for
the crystal structure of TaShs.

6.2.3 Experimental details

The transport measurements on TaSbhy single crystals were done with the help of
standard four-probe technique in a 9 T physical property measurement system
(Quantum Design). The electrical contacts were made using silver epoxy [Epotec,
USA] and thin gold wire. The magnetization was measured in a 7 T MPMS3

(Quantum Design).

6.3 Results

6.3.1 Temperature dependence of resistivity

Figure 6.3(a) shows a representative single crystal of TaSby with four electrical

contacts. The typical length of the single crystals is ~2 mm. This type of material,
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known as transition metal dipnictide MPny [M = V, Nb, Ta, Cr, Mo, and W, Pn
= P, As, and Sb|, grows preferentially along b-axis. As a consequence, the longer
direction of the crystal is the b-axis [136, 137]. The crystallographic a-axis is
perpendicular to b-axis, and both the axes lie on the largest flat plane of the
crystal. Because of the monoclinic structure of the material, crystallographic c-
axis is not perpendicular to ab plane. For convenience, we have considered three
mutually perpendicular directions on the crystal as reference. Two of them are
the crystallographic a- and b-axis, and the third one is perpendicular to ab plane,
i.e., (001) direction. The zero-field resistivity (p,,) is metallic over the whole
temperature range, as shown in Figure 6.3(b). p,, shows strong T dependence.
Small value of py, at 2 K (~ 0.75 pf2 cm) and the large residual resistivity ratio,
Pre(300 K)/pre (2 K)~ 130, indicate good quality of the single crystals. With the
application of magnetic field, the low-temperature resistivity drastically enhances.
As aresult, a metal- to semiconductor-like crossover behavior starts to appear with
decreasing temperature. With the increase in field strength, the semiconducting-
like behavior becomes more and more prominent, and the metal- to semiconductor-
like crossover temperature (7;,) shifts towards higher temperature side, as evident
from the inset of Figure 6.3(b). Unlike 7}, the temperature (7;) at which dp,./dT’
exhibits a minimum is almost independent of the strength of the magnetic field and
remains fixed at ~ 20 K. Slightly below T}, the saturation-like behavior in p,,(T)
starts to appear. The magnetic field induced metal-semiconductor crossover and
the low-temperature resistivity plateau are the common phenomena in topological
semimetals |78, 79, 80, 132, 134, 138, 139]. Different explanations such as magnetic
field induced gap opening at the Dirac node [79, 139] and Kohler’s scaling of

magnetoresistance [140] have been proposed as possible origin.

104



100 150
T(K)

Figure 6.3: (a) Typical morphology and different crystallographic directions of a
representative single crystal of TaSby, and (b) Temperature dependence of resis-
tivity (p..) both in presence and absence of external magnetic field. Current (/) is
applied along b-axis and magnetic field (B) is perpendicular to the ab plane. Inset
shows the first order derivative of p,, with respect to T'. Metal- to semiconductor-
like crossover temperature is named as 1,,, and T; is the temperature for the
inflection point of p,(T).

6.3.2 Angular dependence of magnetoresistance

Several topological semimetals like NbSbhy, ZrSiS and TaAsy show highly crystallo-
graphic direction dependent magnetoresistance, which arises due to the anisotropy
in their Fermi surface [136, 137, 141, 142, 143, 144, 145|. Figure 6.4(a) shows the
transverse magnetoresistance (B L I) for the TaSb, single crystal at 2 K with
the rotation of sample about b-axis. When the field is along the (001) direction,
the MR, which is defined as [py(B)-pzz(0)]/pze(0), is ~ 1.3x10"% at 9 T and ~
4x10*% at 5 T. As the sample is rotated from BJ|(001) to Bl|a, the value of MR is
observed to increase and becomes maximum (~ 2x10%% at 9 T) at around § = 75°.
MR is minimum ~ 9500% at around 165°. The polar plot in Figure 6.4(a) shows
a two-fold rotational symmetry, which is consistent with the monoclinic crystal

structure of the present sample. The tilted pattern of MR(6) with respect to the
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Figure 6.4: (a) Anisotropic magnetoresistance of a representative TaSh, single
crystal at 2 K when the sample is rotated form B ||(001) to B ||a-axis configuration,
making an angle 6 between B and (001) direction. (b) Magnetoresistance of the
same piece of single crystal at 2 K when the angle (90° - ¢) between I and B has
been changed at two representative field strengths 5 and 9 T.

crystallographic axis may be due to the complex geometry of the Fermi surfaces

and their relative contribution to transport [137, 146].

Figure 6.4(b) shows the typical behavior of MR at 2 K when the angle (90°-¢)
between I and B has been varied continuously. As expected, due to the orbital
origin of MR, the maximum and minimum in MR appear at ¢ = 0° and ¢ = 90°,
respectively. This also confirms that there is no intrinsic misalignment between [
and B in our crystal. Within the resolution of the angular variation of horizontal
sample rotator, we have not observed any detectable negative MR under B||I
configuration, i.e., in longitudinal set up. To further verify, we have also measured
the field dependence of MR at small angle interval (~ 1°) around ¢ = 90°. The

field dependence of MR at ¢ = 90° configuration has been shown and discussed in
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the next section. We have repeated the same experiment on other single crystals
but failed to detect any negative MR for ¢ close to 90°. This implies that the
negative longitudinal MR (NLMR) is either absent or weak in competition with
unavoidable misalignment induced positive MR in the present compound. In this
context, it is worthy to mention that the NLMR has been reported in isostructural
compounds TaAs, and NbAsy by Li et al. [135]. But, the subsequent work has
established that the NLMR in TaAs, and NbAss is due to the inhomogeneous
current distribution inside the sample, i.e., due to the current jetting effect [137].

The NLMR disappears when the electrical contacts are made correctly [137].

6.3.3 Field dependence of MR

We have measured the field dependence of magnetoresistance in longitudinal con-
figuration to confirm the absence of negative LMR. Over the entire window from
zero to 9 T, the LMR is positive and increases with increasing field, as shown in
Figure 6.5(a) at some representative temperatures from 2 to 100 K. Considering
magnetoresistance ~ 13000-20000 % in transverse experimental configuration, one
can find that the misalignment angle between current and magnetic field is very
small ~ 0.5° in longitudinal configuration. This unavoidable misalignment induced
small positive LMR is very hard to eliminate in an experiment, and frequently
found in literature [137]. Additionally, the asymmetry between the negative and
positive field sections of MR is less than 3% of the total MR in longitudinal con-
figuration. This also implies that the Hall contribution to our resistivity data is
very small and contacts are good in quality.

Figure 6.5(b) shows the field dependence of MR for BJ[(001) and I||b configura-

tion. The large non-saturating MR up to 9 T suppresses with increasing temper-
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Figure 6.5: Magnetoresistance as a function of magnetic field at some representa-
tive temperatures for (a) B || I ||b configuration, (b) BJ|(001) and I||b configura-
tion, and (c) for Blja and I||b configuration.

ature. Over the entire field range, MR shows approximately ~ B® dependence.
Below 5 K, a high frequency Shubnikov-de Haas effect has been observed in the
high-field region. Due to very small amplitude of the oscillation, it is difficult to
extract the oscillatory part from the large background, using polynomial fit. The
amplitude of oscillation also suppresses very rapidly with increasing temperature.
So, we have employed the de Haas-van Alphen oscillation in magnetization mea-
surements to probe the Fermi surface. Figure 6.5(c) shows MR vs B for B|la and
I||b configuration. The value of MR is larger in this direction as evident from

Figure 6.4(a), and suppresses rapidly with increasing temperature.

6.3.4 Hall measurements and multi-band analysis

We have also measured the field dependence of Hall resistivity (p,.), and this has
been shown in Figure 6.6(a). Over the whole temperature and field range p,, is neg-
ative and exhibits weak superlinear B dependence. This indicates the presence of
more than one types of charge carriers and electron dominated transport in TaSb,.

As three Fermi pockets have been detected in the present de Haas-van Alphen
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Figure 6.6: (a) The field dependence of Hall resistivity (p,,) and its evolution with
temperature. The Hall measurement has been performed in B|[(001) and [I|/b
configuration. Inset shows the schematic of the Hall measurement setup. (b), (c),
(d), and (e) show the simultaneous (i.e., global) three-band analysis of electrical
conductivity (o,,) and Hall conductivity (o,,) data at 2 K, 50 K, 100 K, and 200
K, respectively. The black dots represent the field dependence of Hall conductivity
(04y) and the red dots represent the field dependence of electrical conductivity
(022). The green and magenta curves are the three-band fit to the experimental

: : 3 en; i, 3 en;pu?B .
data with the expression, o= ;| T- 453 ey and ogy=) :_, S"Tugﬁ’ respectively.

The density and mobility for each types of charge carrier have been mentioned in
the inset.
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oscillation, which will be discussed in the following sections, we have performed
three-band analysis of the electrical conductivity (o,,) and Hall conductivity (o)

to determine p and carrier density (n) of the individual Fermi pockets. At first, the

0pe(B)==22+ and o,,(B)==~— have been determined, using the experimen-
PatPys Y Pia TPy

tal py.(B) and py,(B) [56]. The field dependence of o, in a system of N carrier

species is given by the expression, o, (B)= ZZ 1 S5 fZ”f;BQ, where S; is +1 for holes

and -1 for electrons [147|. The analogous expression for electrical conductivity is

om(B):Zfi ) 11’::;%2 Figures 6.6(b)-(e) represent the simultaneous three-band fit

to the electrical conductivity (o,,) and Hall conductivity (o,,) data at representa-
tive temperatures 2 K, 50 K, 100 K, and 200 K. This type of fitting, which is also
known as global fitting, includes parameter sharing between the two expressions
to obtain the best fit solutions. Analysis reveals two electron-type Fermi pockets
with carrier density ne; ~ 4.5(1) and ngo ~ 3.2(1) x10' cin=3, and one hole-type
Fermi pocket with ny ~ 5.4(1)x10'" em™. It has been found that the mobility
of hole-type carrier (~ 1.6x10* cm?/Vs at 2 K) is much smaller compared to the
electrons from the smaller Fermi pockets. The mobility of electrons from the Fermi
pockets of intermediate and smallest volume are ~ 4.6(2) and 4.3(2)x10% ¢cm?/ Vs,
respectively, at 2 K. This coexistence of electron- and hole-type charge carriers
supports the earlier experimental and theoretical works on TaShy [133, 134, 135].
The ratio Zf ~ 1 also supports the electron-hole compensation mechanism as a
possible origin for large and non-saturating magnetoresistance in this family of

materials (MPny) [132, 137, 148, 149].
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6.3.5 Probing the Fermi surface through de Haas-van Alphen

oscillation
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Figure 6.7: Field dependence of magnetization (M) for (a) B ||a, (b) B ||(001),
and (c) B ||b configurations.

To probe the Fermi surface of TaShs, we measured the field dependence of mag-
netization (M) of the representative piece of single crystal, and observed prominent
de Haas-van Alphen oscillations within 7 T magnetic fields (Figure 6.7). Taking
the first order derivative of M with respect to B, the oscillating component of
the susceptibility has been obtained and shown in the Figure 6.8(a) for Blja con-
figuration. From the figure, it is evident that the oscillation amplitude rapidly
suppresses with increasing temperature and above 6 K, the amplitude is too small
to detect within the experimental field range. The fast Fourier transform (FFT)
spectrum in Figure 6.8(b) shows three distinct oscillation frequencies (F') at 156,
327 and 598 T. Oscillations in the field range 4 to 7 T has been used in FFT for
all experimental configurations. Below 4 T, the dHvA oscillation amplitude is too
weak to analyze accurately. The obtained values of frequency imply that there are
three Fermi pockets in the present sample, similar to that observed in earlier SAH

oscillation measurement, where the frequency peaks have been reported at 55, 234
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and 487 T [134]. On the other hand, Li et al. have observed only two frequency
peaks at 220 and 465 T in their SAdH oscillation study [132]. Although there are
considerable differences between the experimental findings, all of these appear to
be allowed for TaShy crystals. This is due to the fact that TaSby hosts multiple
electronic bands close to the Fermi level and it is not a perfectly compensated

semimetal [133]. The elaborated discussion is given in the following paragraph.

MPns; class of materials show non-saturating magnetoresistance, which can be
ascribed to near compensation of electrons and holes. However, in some com-
pounds including TaSb,, the electron and hole density have not been always found
to be very close or completely equal to each other in spite of the fact that all the
samples show non-saturating MR [132, 144, 150]. Although, the magnetotransport
experiment on TaShy by Wang et al. [134] shows the near perfect compensation
of electrons and holes, Li et al. [132] have observed electron dominated transport.
Besides the experimental observations, the band structure and density functional
theory calculation also show that the ratio of electron to hole density of states
at the Fermi level is 1.25:1 for TaSb,, and it is not a completely compensated
semimetal [133]. This experimental and reported theoretical findings suggest that
there is a redundancy in the prefect carrier compensation in TaShy, which does
not affect the non-saturation field dependence of MR. If we consider a small devi-
ation in the value of Z—: from 1, it can include or exclude the contribution of small
Fermi pocket or change the volume of Fermi pockets significantly, depending on

the position of Fermi level from sample to sample due to uncontrolled doping.

Employing the Onsager relation F=(¢o/27%) A, the cross-sectional areas of
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the Fermi surfaces normal to the field direction (Bl|a) have been calculated and
listed in TABLE 1. A significant difference in Ar of the Fermi pockets has been
observed along this direction. The damping of the oscillation amplitude (FFT
peak intensity) with temperature can be described by the thermal damping term

of the Lifshitz-Kosevich formula, as discussed in chapter 3 and chapter 4:

212k T/ hw..
ARy = : 1
B asinh(ZWQkBT/hwc) (6.1)

Figure 6.8(c) shows the fitting of the FFT peak intensity as a function of tem-
perature with equation (1). Using the extracted value of w,. from the fitting, the
effective cyclotron mass of the charge carrier (m.ss) and the Fermi velocity (vp)
are obtained from the relations w.=eB/mes; and vp=nhkp/mesy, respectively. The
calculated parameters are shown in TABLE I. The effective mass of the charge car-
rier for all the three Fermi pockets are smaller than the rest mass of free electron
and similar to that reported in earlier SAH oscillation study [134]. Considering
spherical approximation with frequency 598 T along all the momentum directions,
the over-estimated value of carrier density for the largest Fermi pocket has been
found to be ~ 8 x 10" ¢m™, using the expression, A (§) = % (%)2/3 [59].
Here, A (%)7 gs, and g, are the period of the oscillation, spin degeneracy, and
valley degeneracy of the Fermi pockets, respectively. This value of carrier density
from the quantum oscillation study is comparable with the value obtained from
three-band analysis. The above comparison for a representative Fermi pocket sup-

ports the reliability of the values of parameters, determined by the three-band

fitting.

The results of magnetization measurement and the details of dHvA oscillation
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Figure 6.8: (a) Oscillating part of de susceptibility (Ax), which has been obtained
by taking the first order derivative of magnetization (M), as a function of 1/B
for B|la-axis configuration. (b) The oscillation frequencies after the fast Fourier
transformation (FFT). Oscillations in the field range 4 to 7 T has been used for
FFT. (¢) Thermal damping of the normalized FFT peak intensity. The solid line
is a fit to the Lifshitz-Kosevich formula [equation (1)].

Table 6.1: Parameters associated to the Fermi surface of TaSby, when the field
is applied along the a-axis. Ap is the Fermi surface cross-section. m.ss is the
effective mass of the charge carrier and vg is the Fermi velocity.

Frequency Ap Meff vp
T 10342 my  10°m/s
156(2) 148  032(1) 25
327(2) 3.1 0.35(1) 3.3
598(3) 56.8  0.59(1) 2.6

Table 6.2: Parameters associated to the Fermi surface of TaSby, when the field is

applied perpendicular to ab plane i.e., along the (001) direction.

Frequency Ap Meff vp
T 1073A2 my  10°m/s
370(2) 35.2 0.32(1) 3.9
421(4) 401 037(1) 35
452(3) 430  041(1) 34
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Figure 6.9: a) Ay versus 1/B for B||(001) configuration. (b) The oscillation fre-
quencies after the fast Fourier transformation. Oscillations in the field range 4 to
7 T has been used for FFT. (c¢) Theoretical fitting of the frequency distribution
plot for B||(001) configuration has been shown at different temperatures. The
solid circles are the experimental data and the continuous lines are the theoreti-
cal fit with the expression.7 y:1+b(xaff1)2+‘l+d(afff2)2+l+f(afff3.)2' .(d)'Temperature
dependence of the normalized FF'T peak intensity. The solid line is a fit to the
Lifshitz-Kosevich formula [equation (1)].
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analysis for the field along (001) direction of the same piece of TaSh, single crys-
tal, have been demonstrated in Figures 6.9(a)-(d). Employing the fast Fourier
transformation of the oscillations in Figure 6.9(a), three closely spaced frequency
peaks 370, 421 and 452 T have been obtained [Figure 6.9(b)|. As these frequency
peaks are not well resolved, there will be significant modification in the peak in-
tensities due to overlap of three frequency distribution curves. So, it will not be
wise to calculate m. s, using these intensities of the peaks. To deal with the situa-
tion, we have performed extensive theoretical fitting to the intensity vs frequency
curves. The frequency distribution of quantum oscillation has been found to be

Lorentzian in nature [59]. So, the superposition of three Lorentzian distribution

a C e
Toe—m)? | Trde—)2 | TH T

functions, y= 7 where a, b, ¢, d ,e, f, fi, fo and f3
are the parameters, has been used to fit the experimental data [59]. Good quality
of the theoretical fit to the frequency distribution plot is evident from Figure 6.9(c)

at the representative temperatures.

The parameters a, ¢ and e, which are nothing but the actual intensity of the
frequency peaks, have been determined. The obtained positions of the peaks (fi,
fo and f3), from the fitting, have been found to be within +5 T of the apparent
peak positions in Figure 6.9(b) and listed in TABLE II. The calculated values
of Ap reveal nearly equal cross-sectional area of Fermi pockets, unlike to that
observed in Blla. If we compare the values of Ap, the smallest one is ~ 140%
and the medium one is ~ 30% higher in B ||(001) than the corresponding smallest
and medium ones in B ||a, respectively. Whereas, the largest cross-sectional area
in B [|(001) configuration is 25% smaller compared to its counterpart in B |a.

The intensity of the FFT peaks, deduced from the fittings, have been plotted as
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Figure 6.10: (a) Ax versus 1/B for B||/b-axis configuration. (b) The oscillation
frequencies after the fast Fourier transformation. Oscillations in the field range 4 to
7 T has been used for FFT. A specimen of the theoretical fitting to the frequency
distribution plots has been shown in the inset at 2 K. (¢) Thermal damping of
the normalized FFT peak intensity. The solid line is a fit to the Lifshitz-Kosevich
formula [equation (1)].

a function of temperature in Figure 6.9(d). Employing the thermal damping term
of the Lifshitz-Kosevich formula, we have calculated m.s; and vp for all the Fermi
pockets and listed in TABLE II. The values of m.s; in B ||(001) for the two lighter
Fermi pockets are nearly equal to that observed in B |la, and the massive one
(also the largest one) is only 30% less in the previous configuration compared to
later. Similar magnetic measurements and dHvA oscillation analysis have been
done for the field along b crystallographic direction and shown in Figures 6.10(a)-
(¢). Three Fermi pockets of equivalent cross-sectional area have also been found
in this configuration. The values of Ap, m.f; and vp for all the frequencies are
presented in TABLE III. The values of mey are close to each other and comparable
to that observed in BJ[(001). Theoretical fit to the thermal damping of FFT peak
intensity has been found to have maximum deviation for 548 T frequency. Even in

this case, the standard deviation in the calculated value of m.s; is ~ 40.02m,.
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Table 6.3: Parameters associated to the Fermi surface of TaSby, when the field is

applied along the b-axis direction.

Frequency Ap Meff Vg
T 10%A2  my  10°m/s
462(3) 44.0 0.34(1) 4.0
512(5) 48.6 0.39(1) 3.7
548(4) 52.1 0.35(2) 4.2

6.4 Discussions

Transverse magnetoresistance of orbital origin has been shown to scale with the
mobility of charge carriers in the plane perpendicular to the applied B [146, 151].
For an example, the typical field dependence of electrical conductivity is given by
o(B) ~ % [146, 150, 152]. As mobility is a tensor quantity in presence of
B, the anisotropic behavior of magnetoresistance can be explained by taking into
account the anisotropy in the mobility tensor [151]. The following discussion on
angular dependence of MR in terms of anisotropy in Fermi surfaces is based on
the assumption ‘each pocket provides only one dHvA frequency and the dHvA

frequencies do not interchange among the three pockets when the field direction

is changed’. The mobility of charge carrier in a material is determined by the

—. From the analysis of dHvA

ratio of the scattering time (7) to the meyps, g~ — ot

oscillation, we have seen that two Fermi pockets of small and intermediate volume
have much larger cross-section for B along (001) direction, i.e., perpendicular to ab
plane, compared to the a-axis. This implies smaller phase space for the scattering
of charge carrier from the two Fermi pockets in the plane perpendicular to a-axis
under application of B, and as a result, the value of 7 is larger [151]. Whereas,

meyry of charge carriers in these pockets for the above two directions are almost
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equal. So, the anisotropy in the scattering time of charge carrier from these two
Fermi pockets will govern the anisotropy in their respective mobility tensor. As a
consequence, p of the charge carriers in the plane perpendicular to a appears to be
higher for these conduction channels. On the other hand, Ay and m.;; of largest
Fermi pocket have been found to be 25% and 30% smaller, respectively, for B
along (001) direction compared to the a-axis. So, it appears that the larger Fermi
pocket has higher mobility for B along (001) direction compared to the a, unlike
to that observed in two smaller Fermi pockets. However, the three-band fitting
of electrical conductivity and Hall conductivity reveals that p for the hole-type
carriers from the largest Fermi pocket is itself very small; close to one-third of the
electron-type charge carriers from the smaller Fermi pockets, and the carrier den-
sity of hole pocket is not significantly higher than the individual electron pockets.
This suggests that we can ignore the contribution of the largest Fermi pocket in
qualitative explanation of anisotropic transverse magnetoresistance, which will be
governed by the two electron pockets of small and intermediate volume. As a con-
sequence, the value of magnetoresistance is expected to enhance with the rotation

of sample from B [|(001) to B ||a configuration.

It is evident from the above discussion that details knowledge on the three-
dimensional geometry of the Fermi surface is crucial to explain the direction de-
pendence of electronic properties. Fermi surface anisotropy also determines the
effect of uniaxial external perturbation such as, pressure and strain, on electronic
properties of a material. In addition, to understand the complex angular variation
of different physical properties in a metal such as, specific heat, resistivity, and

Pauli paramagnetic susceptibility, information on the anisotropy of electron/hole
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effective mass is important. The crystallographic direction dependent MR, ob-
served in present research, can have significant impact in technological application
and device fabrication. For example, it can be used in magnetic switches, angular
position sensors, etc. We strongly believe that the present result on the Fermi
surface anisotropy and magnetotransport properties of TaSb, will motivate the
material science community for similar or more extensive research on other mem-
bers of MPny family. The three-dimensional geometry of the Fermi surfaces can
be constructed by observing the continuous evolution of the frequency peak associ-
ated to a particular Fermi pocket, through extensive magnetization measurements
at a small angle interval between the crystallographic directions and B. However,

such type of facility is beyond our reach at this moment.

6.5 Conclusion

In conclusion, we have observed a large anisotropy in transverse magnetoresistance
of TaSbh, single crystal, by varying the angle between magnetic field and crystallo-
graphic axes. The large nonsaturating magnetoresistance has the maximum value
~ 2x10*% and the minimum value ~ 9.5x103% at 2 K and 9 T, with the rotation
of sample about b-axis, keeping the field direction fixed. Employing the magneti-
zation measurement and analyzing the prominent de Haas-van Alphen oscillation,
we observe three Fermi pockets. Applying field along three mutually perpendicu-
lar directions of the crystal, the cross-sectional area of the Fermi pockets has been
observed to vary. Three-band fitting of electrical and Hall conductivity reveals
two high mobility electron-type Fermi pockets with smaller carrier density, and
a larger hole pocket with much lower carrier mobility. However, no large differ-

ence has been found between the density of electrons and holes. The coexistence
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of electrons and holes of comparable density supports the electron-hole compensa-
tion mechanism as a possible origin for large and non-saturating magnetoresistance
in MPn, family of materials. Combining the present results of three-band anal-
ysis and quantum oscillation study, the crystallographic direction dependence of

transverse magnetoresistance in TaSbsy has been qualitatively explained.
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Summary and future directions

7.1 Summary

The present thesis addresses some unique magnetotransport properties, nature and
geometry of Fermi surfaces, non-trivial transport or magnetic responses from novel
electronic states, and scattering mechanism of charge carriers in some 3D Dirac
semimetals. We have grown high quality single crystal of the compound through
chemical vapor transport technique, and performed extensive electronic transport,
quantum oscillations, magnetic, and thermopower measurements. CdzAss, ZrTes,
and TaSb, are the candidate materials, which have been chosen for the present

thesis.

We have probed the Fermi surface of Cd3As, through de Haas-van Alphen os-
cillation technique. The results are presented and discussed in chapter 3. The
values of the Fermi wave vector, Fermi velocity, and effective cyclotron mass of the

charge carrier have been calculated and compared to that obtained in Shubnikov-
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de Haas oscillation studies. Our dHvA experiment reveals two distinct frequencies
of oscillations 46 and 53 T along [100], unlike the single frequency along [021] and
[012]. This suggests that two equivalent cross sections from the two ellipsoidal
Fermi surfaces superpose with each other along certain directions. Both the SdH
and dHvA oscillation measurements support a nontrivial 7 Berry’s phase, which

is the signature of 3D Dirac semimetal phase in Cd3As,.

From the magnetoresistivity and Hall measurements, a strong field dependence
of scattering time has been observed in Cd3Ass and this behavior has been ascribed
to the field-induced changes in the FS. As thermoelectric power (5) is a powerful
tool to probe the relaxation process in metals and semiconductors and provides
complementary information to resistivity, we use S as a probe to study the scat-
tering of charge carrier in Cd3zAs,, under application of magnetic field and with
carrier doping. In chapter 4, the saturation value of Seebeck coefficient at high field
clearly demonstrates the linear energy dispersion in bulk electronic state. A wide
tunability of the charge scattering mechanism has been realized by varying the
strength of the magnetic field and carrier density via In doping. With the increase
in magnetic field, the scattering time crosses over from being nearly energy inde-
pendent to a regime of linear dependence. On the other hand, the scattering time
enters into the inverse energy-dependent regime and the Fermi surface strongly
modifies with 2% In doping at Cd site. With further increase in In content from
2 to 4%, we did not observe SAH oscillation up to 9 T field possibly due to the
presence of strong disorder. However, the magnetoresistance is found to be quite
large as in the case of undoped sample and unlike to that observed in 2% In doped

sample.
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Theoretical calculations predicted that bulk ZrTes to be either a weak or a
strong three-dimensional (3D) topological insulator. However, the angle resolved
photoemission spectroscopy and transport measurements clearly demonstrate 3D
Dirac cone state with a small mass gap between the valence band and conduction
band in the bulk. Chapter 5 describes the results of our magneto-transport and
magnetization measurements on ZrTes single crystal to address the ambiguity. We
have detected a robust zero-field paramagnetic peak in susceptibility due to the
helical spin texture associated with the Dirac fermions of the surface state of 3D
TI. On the other hand, resistivity measurement under current parallel to magnetic
field configuration shows negative magnetoresistance. This implies induced chiral
anomaly in ZrTes, which is the signature of the three-dimensional Dirac fermion in
the bulk. Combining both the results, we conclude that ZrTes is a novel quantum
phase of matter, which hosts both topological Dirac fermions on the surface and
three-dimensional Dirac cone state with a mass gap between valence and conduc-
tion bands in the bulk. Apart from the band topology, it is also apparent from the
resistivity and Hall measurements that the anomalous peak in the resistivity can

be shifted to a much lower temperature (7'<2 K) by doping.

Chapter 6 is devoted to our magnetotransport and quantum oscillation ex-
periments on the single crystal of TaSb,. By employing a sample rotator, we
have revealed highly anisotropic transverse magnetoresistance by rotating the mag-
netic field along different crystallographic directions. To probe the anisotropy in
the Fermi surface, we have performed magnetization measurements and detected

strong de Haas-van Alphen (dHvA) oscillations for the magnetic field applied along
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a and b axes as well as perpendicular to ab plane of the crystals. Three Fermi
pockets have been identified by analyzing the dHvA oscillations. With the applica-
tion of magnetic field along different crystallographic directions, the cross-sectional
areas of the Fermi pockets have been found significantly different, i.e., the Fermi
pockets are highly anisotropic in nature. Three-band fitting of Hall conductivity
and electrical conductivity reveals two high mobility electron pockets and one low
mobility hole pocket. The angular variation of transverse magnetoresistance has
been qualitatively explained using the results of dHvA oscillations and Hall mea-

surements.

7.2 Future directions

The discovery of topological semimetals has emerged as a subject of enormous
interest in recent time. These materials having Dirac/Weyl type quasi-particle
excitations show different exotic properties of both fundamental and technological
interest, some of which have been presented in the thesis. The focus of the cur-
rent research is to observe new quantum phenomena or to explore new quantum
phases of materials, and to understand its microscopic origin for benefit to fun-
damental research and technological applications. There are some effective paths
such as, tuning bulk to surface channel contribution to transport, applying high
magnetic field and pressure, and search for new materials beyond the existing elec-
tronic/topological classification paradigm, by which the above-mentioned goal can

be achieved.
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7.2.1 Thickness-dependent magneto-transport in thin films

of Dirac/Weyl semimetals

As mentioned in the introduction of this thesis, a 3D Dirac/Weyl semimetal has
Fermi arc surface state, electronically decoupled from the bulk. This spin-polarized
Fermi-arc surface state can have immense technological impact in spintronic appli-
cations. It has been predicted to be a dissipationless channel for charge conduction,
useful in fabrication of low-power electronics. However, due to uncontrolled dop-
ing during sample preparation, single crystals of these materials, grown so far for
transport measurements, have Fermi level much above the bulk Dirac/Weyl nodes,
within the range of linear band dispersion. As a consequence, there is huge bulk
density of states contribution to transport from 3D Fermi surface, compared to
spin-polarized Fermi-arc surface state. The bulk dominated transport phenomena
in single crystals of topological semimetals hide the unique electronic response from
the surface state. The electronic phenomena associated to the surface state can
only be realized in the thin films, where the bulk state contribution to transport
will be very low. The magnetotransport measurements on the thin films of differ-
ent thicknesses can be a useful tool to tune the relative contribution between the
surface and bulk state. In addition, gate voltage dependent transport phenomena
can also be studied in the thin films. Although, we have a pool of topological
semimetals such as, Cd3Asy, WHM (W = Zr, Hf, La; H = Si, Ge, Sn, Sb; M =
O, S, Se, Te), XYBi (X = Ba, Eu, Y = Cu, Ag, Au), Co,TiX (X = Si, Ge, Sn),
RAIX (R — rare-earth, X — Si, Ge), YbMnBi,, LaAlGe, PtSey, PtSny, PtTe,,
TaAs, TaP, NbAs, NbP, ZrTes, Hf;TesP, ZryTeo P, CaMnBiy, SrMnBiy, BaMnBis,

BaZnBiy, WP,, MoTe,, PdTaSe; and so on, the electronic transport in thin films
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have been reported in a very few compounds [153, 154, 155|. So, thickness depen-
dent magneto-transport study on this class of compounds, can be an interesting

topic of research in future.

7.2.2 Study of quantum phenomena under extreme condi-

tions (high magnetic field and pressure)

External pressure and magnetic field have been regarded as clean parameters for
tuning electronic band structure and electron-electron correlation in a material.
High pressure and large magnetic field have been found to create exotic phases in
these quantum materials, for example, superconductivity under pressure in CdzAs,
and ZrTes [156, 157], breakdown of cyclotron orbits in ZrSiS at high magnetic
fields [158], magnetic field induced topological phase transition in ZrTes [159],
quantum limit transport under extreme external field strength , etc. However, the
experiments under extreme conditions have been reported in a very few materials.
In addition, different new quantum states, other than the above mentioned phases
can be observed under extreme conditions, and the new electronic phases can
have immense impact in fundamental research and possibly useful in technological
applications. In this context, investigating quantum phenomena of topological

semimetals under high magnetic field and pressure, is an emerging area of research.

7.2.3 Probing electronic transport and Fermi surface of novel

materials beyond Dirac/Weyl semimetals

In high-energy physics, the relativistic fermions are protected by Poincare symme-

try, while in condensed matter, they respect one of the 230 space group symietries.
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The variation of crystal symmetry from one material to another escalates the po-
tential to explore free fermionic excitations such as Dirac, Weyl, Majorana and be-
yond. Very recently, Bradlyn et al. have predicted the existence of exotic fermions
near the Fermi level in several materials, governed by their respective space group
symmetry [160]. Unlike two- and four-fold degeneracy in 3D Weyl/Dirac semimet-
als, these systems exhibit three-, six- , and eight-fold degenerate band crossing at
high symmetry points in the Brillouin zone. For example, three-component fermion
has recently been observed in molybdenum phosphide [161] and tungsten carbide
[162]. Bradlyn et al. [160] have suggested several materials, and some of them
have reported to exist in single crystal form. So, similar research, as presented in
this thesis, can be very useful to understand unique electronic transport and Fermi

surface topology of these materials.
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Appendix

8.1 Appendix A

8.1.1 Magnetization measurements of standard diamagnetic

and paramagnetic compounds

We have done magnetization measurements on standard bismuth and palladium
samples in SQUID-VSM [MPMS 3, Quantum Design| prior to ZrTes single crystal.
Figure A8.1(a) shows that linear diamagnetic moment of bismuth at 2, 10 and 100
K passes through the origin. This is more clear from Figure A8.1(b), which shows
magnetic field dependence of differential susceptibility (X:%)- With quantum
oscillation at high fields, absence of any paramagnetic peak around zero field im-
plies that the singular paramagnetic susceptibility in ZrTes single crystal is not
due to any spurious response in our system.

Figure A8.2(a) shows the expected magnetic behaviour of paramagnetic palladium

sample, provided by the Quantum Design. Figure A8.2(b) shows the low-field sus-
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Figure A 8.1: (a) Magnetization measured in SQUID-VSM (Quantum Design) at

several representative temperatures for standard diamagnetic bismuth sample. (b)

Differential susceptibility (X:%) obtained after taking numerical derivative of the

magnetization with respect to external magnetic field.

ceptibility of palladium at 2 K and room temperature. The nonlinear behaviour
of x at low field and a broad zero field peak at 2 K are completely suppressed at
room temperature. This is entirely different from the singular, robust and linear
low-field paramagnetic response from the topological surface state in ZrTes. For
the sake of fundamental interest, we have also measured the magnetization of a
single crystal of 3D Dirac semimetal CdsAsy, as shown in Figure A8.2(c). This

shows perfect diamagnetic behaviour with no paramagnetic sign at low field.
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Figure A 8.2: (a) Magnetization of standard paramagnetic palladium sample at 2

and 300 K, (b) 4. and (c) Magnetization of single crystal of 3D Dirac semimetal

Cd3Ass. Solid line implies linear fit to the experimental data.

8.1.2 Magnetization measurements of a representative 3D

topological insulator

Magnetization measurements have been performed on single crystal of well estab-
lished three-dimensional topological insulator Bi; 5SbgsTe; 7Se; 3 using the same
experimental setup. We have observed singular robust paramagnetic susceptibil-
ity peak like to that observed in ZrTes; and shown in Figure A8.3(a) and Figure

A8.3(b) at representative temperatures 5 K and 280 K.
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Figure A 8.3: (a) Magnetization (M) vs B of freshly cleaved single crystal of

Bi; 5Sbg5Te; 7Se1 3 at temperatures 5 K and 280 K, (b) Susceptibility (y = %).
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