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SYNOPSIS

Spectacular developments in neutrino physics since the last couple of decades

has been unravelling the properties of elusive neutrinos. Not only has it been

firmly established that neutrinos have tiny masses through the evidences of flavor

oscillations, experiments with solar, atmospheric and reactor neutrinos have measured

the mixing angles and mass-squared differences to a reasonably decent accuracy.

In particular, confirmation of a nonzero value of the reactor mixing angle θ13 has

opened up the possibility of CP violation through the Dirac CP phase δ. Although

the absolute scale of light neutrino masses are still unknown a tight upper bound

exists on the sum of neutrino masses
∑

imi from cosmological observations. From a

theoretical perspective, while an extension of the Standard Model (SM) is required

to take neutrino masses and lepton flavor mixing into account, the latter is part of an

elaborate and challenging theoretical problem which addresses the so-called “flavor

puzzle”- widely different mixing angles for quarks and leptons even though in Grand

Unified Theories (GUT) they belong to the same multiplet. Besides, there are yet

unsettled questions regarding the baffling nature of neutrinos-Dirac or Majorana, the

issue of CP violation in the leptonic sector, the neutrino mass ordering, absolute scale

of neutrino mass, possibility of lepton flavor violating decays such as µ→ eγ and so

on.

Four of my papers are based on the paradigm of residual (remmnant) symmetry

as an economical approach to uncover the pattern of flavor mixing, leptonic CP

properties in addition to genenal neutrino phenomenology such as the prediction of

sum of the light neutrino masses Σimi, neutrinoless double (ββ0ν) decay parameter

|M ee
ν | and behaviour of Ultra High Energy (UHE) flavor flux at neutrino telescopes.

It has been shown in the literature that irrespective of the actual high energy flavor

group, existence of nondegenerate light Majorana neutrinos lead to a Z2 × Z2 [1, 2]

invariance of the light Majorana neutrino mass term in the low-energy Lagrangian



which in turn dictates the flavor mixing. The vanishing of the reactor mixing

angle θ13 in such scenarios can be avoided in two different ways. Either one of

the residual symmetries have to be broken or supplemanted with a nonstandard CP

transformation, namely, a CP-transformation combined with flavor symmetry which

not only allows a nonvanishing θ13 but predicts (non)maximal Dirac CP violation.

While one of the Majorana phases α is always restricted to lie at its CP conserving

values, the other phase β can lead to Majorana CP violation if δ is nonmaximal.

In one of these papers [3], the prediction of Dirac CP violation arising as a

consequence of the existence of two Z2 type residual symmetries Ggµτ1,2 accompanying

a ‘µτ mixing symmetry’ Ggµτ3 − a generalization of the canonical µτ interchange

symmetry − has been worked out assuming the latter to be broken to avoid a

vanishing θ13. We refer them as ‘associated µτ mixing’ symmetries. It is well-

known [4] that both the Z2 type ‘associated µτ interchange’ (Gµτ1,2) symmetries lead

to a precise correlation between the Dirac CP violating phase δ and the atmospheric

mixing angle θ23 in a model-independent manner and the correlation is such that

a maximal value of θ23 inevitably leads to a maximal value of δ. However, such a

simultaneous maximality appears to be in tension with the present global status of

the neutrino oscillation parameters; a large deviation in δ from its maximal value

is still allowed for the near maximality of θ23. Our analysis of the associated µτ

mixing using the non-uniqueness of PMNS matrix indeed reveals that such a stringent

condition of simultaneous maximality δ and θ23 can be relaxed i.e. either of the

quantities δ or θ23 can be nonmaximal while the other being maximal. However, the

parameter that generalizes µτ interchange to µτ mixing, cannot be arbitrarily large.

Even a tiny departure from the µτ interchange have been shown to lead to a drastic

deviation in δ. We have made a comparison of the µτ interchange symmetry with

the proposed µτ mixing symmetry. We obtain a distribution of cos δ by randomly

generating all the mixing angles assuming a normal distribution with a standard



deviation of 1σ. For associated µτ interchange Gµτ1 , cos δ peaks around 0.18, i.e.,

corresponding δ ≈ ±79.630 (δ ≈ ±1170). On the other hand, cos δ peaks around

0.43, i.e., corresponding δ ≈ ±64.530 for Ggµτ1 for an hypothetical value π/60 of the

µτ mixing parameter θg − π/4 with 10% uncertainty. The rapid progress of the

experiments such as T2K and NOνA is expected to lead to confirmation regarding a

definitive statement about the (non)maximality in the atmospheric mixing angle if δ.

If the latter deviate largely from its maximal value, the proposal of µτ mixing shall

become a potentially viable scenario.

The next paper [5] too, is based on the residual Z2 × Z2 approach. To avoid

a vanishing θ13, we have generalized the well-known Strong Scaling Ansatz (SSA)

[6,7] on the light neutrino Majorana mass matrix Mν by complementing the residual

symmetry with a nonstandard CP-transformation on the neutrino fields as νLα →

iGαβγ
0νCLβ with Gαβ being the generators of any one of the two independent Z2

symmetries and νCLβ being the CP conjugated left-handed flavor neutrino field. As a

result, the real invariance of Mν i.e. GTMSSA
ν G = MSSA

ν is replaced by its complex

counterpart: GTMMS
ν G = (MMS

ν )∗ referred to as ‘Modified Scaling’. Since only two of

the threeG(k)
a ’s (a = 1; 2; 3) are independent, there are three ways in which generalized

CP symmetry can be implemented: G1,2, G2,3 and G1,3. The complex invariance

relations of Mν related to G(k)
2,3 i.e. G(k)T

2,3 MMS
ν G

(k)
2,3 = (MMS

ν )∗ (Case-I) is equivalent

the real invariance G(k)T
1 MMS

ν G
(k)
1 = (MMS

ν ). Similarly, complex (real) invariance

relations holds under G(k)
1,3 (G(k)

2 ) (Case-II) while the complex (real) invariance under

G
(k)
1,2 (G(k)

3 ) have to be abandoned because of vanishing θ13. For each of the viable

cases, the existence of complex invariance under G(k)
3 ensures cos δ = 0 and sinα =

sin β = 0. We assume hierarchical mass eigenvalues for the RH Majorana neutrino

mass matrixMR. With the assumption that the required CP violation for leptogenesis

is created by the decay of lightest (N1) of the heavy Majorana neutrinos while the

asymmetry originating from the decays of N2,3, being washed out, we numerically



worked out the possibility of flavored vs. unflavored leptogenesis in the three mass

regimes (1) M1 < 109 GeV, (2) 109 GeV < M1 < 1012 GeV and (3) M1 > 1012 GeV

for both a normal and an inverted mass ordering separately for Case-I and II. It

turns out partially flavored or unflavored leptogenesis does not occur and τ -flavored

leptogenesis remains the only possibility. For a normal (inverted) ordering of light

neutrino masses, θ23 is found be less (greater) than its maximal value, for the final

baryon asymmetry YB to be in the observed range. Besides, an upper and a lower

bound on the mass of N1 have also been estimated. Effect of the heavier neutrinos

N2,3 on final YB has been worked out subsequently.

In the work [8], we propose a complex extension of µτ mixing antisymmetry

in the neutrino Majorana mass matrix Mν by a nonstandard CP transformation

ναL → iGµτθαβ γ
0νCβL where G is a Z4 generator related to the Z2 generator G through

the relation G = iG. This lead to interesting implications for leptonic CP violation.

The µτ mixing parameter θ gets related with δ and θ23 as sin δ = ± sin θ/ sin 2θ23.

For arbitrary θ, both θ23 and δ are nonmaximal. For a nonmaximal δ, one of the two

Majorana phases is different from 0 or π, leading to substantial Majorana CP violation

with observable consequences for ββ0ν decay process. For all possible combination

of α, β and δ the entire parameter space corresponding to the inverted mass ordering

shall be ruled out if nEXO, covering its entire reach, does not observe any ββ0ν signal.

We have made a quantitative study of the effect of the CP asymmetry parameter

Aµe in long baseline neutrino oscillation experiments. We also make quantitative

predictions of our scheme on Ultra High Energy (UHE) neutrino flavor flux ratios

at neutrino telescopes. While exact CP transformed µτ interchange antisymmetry

(θ = π/2) leads to an exact equality among those ratios, taking a value 0.5, a tiny

deviation can cause a drastic change in them. Measurement of UHE flavor flux with

improved statistics will further constrain the parameter θ.

In the remaining work [9] on residual symmetry, we propose a neutrino mass



model with µτ -flavored CP symmetry whcih leads to a highly predictive scenario

when the effective light neutrino Lagrangian enjoys an additional invariance under

a Friedberg-Lee (FL) transformation on the left-chiral flavor neutrino fields. While

both types of mass ordering, i.e., Normal Ordering (NO) and Inverted Ordering (IO)

are allowed, the absolute scale of the light neutrino masses is fixed by the vanishing

determinant of light Majorana neutrino mass matrixMν . For both NO and IO, while

θ23 is in general nonmaximal (θ23 6= π/4), the Dirac CP phase δ is exactly maximal

(δ = π/2, 3π/2) for IO and nearly maximal for NO due to cos δ ∝ sin θ13. For the

NO, very tiny nonvanishing Majorana CP violation might appear through one of the

Majorana phases β, otherwise the model predicts vanishing Majorana CP violation.

From the future precision measurement of θ23, it is difficult to rule out the model.

However, any large deviation of δ from its maximality, will exclude the model. Beside

fitting the neutrino oscillation global fit data, we also explore νµ → νe oscillation

which is expected to reveal CP violation in different long baseline experiments.

Finally, assuming pp and pγ collisions as the source of the Ultra High Energy (UHE)

neutrinos, statements have been made about the octant of θ23. Conversely, a precision

measurement of θ23 can be used to predict the allowed ranges of flavor flux ratios.

The last paper [10] is based on a pedagogical analysis of maximal texture zeros

i.e., vanishing of certain elements in the light neutrino Majorana mass matrix in low

energy seesaw scenarios. In the simplest Type-I seesaw extension of the SM, the light

neutrino Majorana masses are generated by incorporating of three right-handed (RH)

singlet neutrino fields νRi and a corresponding lepton number violating Majorana

mass term MR with a new mass scale close to the GUT (1012 GeV). Probing the

new physics at such a high scale is beyond the reach of ongoing collider experiments

while, a seesaw scale in the TeV range can be realized in some other variants, such

as Inverse seesaw and Linear seesaw in which the effective light Majorana neutrino



mass matrices read

mν ≈ mD(m−1)TµSm
−1mT

D, (1)

and

mν = −M(m−1mT
D)− [M(m−1mT

D)]T (2)

respectively. These mechanisms have been investigated with maximal zero textures of

the constituent matrices subjected to the assumption of non-vanishing determinant

of the neutrino mass matrix Mν and charged lepton mass matrix M`. We restrict to

the minimally parametrized non-singularM` it gives rise to only 6 possible textures of

M`. Nonvanishing determinant of m dictates six possible textures of the constituent

matrices. It turns out that Inverse seesaw leads to phenomenologically allowed

maximal zero textures while the Linear seesaw leads to only one. In Inverse seesaw,

we show that 2 is the maximum number of independent zeros that can be inserted into

µ’s to obtain all seven viable two-zero textures of Mν . On the other hand, in Linear

seesaw mechanism, the minimal scheme allows maximum 5 zeros to be accommodated

in ‘m’ so as to obtain viable effective neutrino mass matrices (Mν). Interestingly, we

find that our minimalistic approach in Inverse seesaw leads to a realization of all the

phenomenologically allowed two-zero textures whereas in Linear seesaw only one such

texture is viable.

In conclusion, the important issues leptonic CP violation which might have

implications in the matter-antimatter asymmetry of the Universe, detrmination of

absolute neutrino mass scale and mass ordering has been addressed from the approach

of residual symmetry. The predictions of all these models will be tested in the

experiments such as nEXO [11], LEGEND, GERDA-II, T2K, NOνA, DUNE etc.
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Chapter 1

Introduction

Although the speculations about the fundamental indivisible constituents of matter

dates back to the era of Democritus the scientific enterprise really started to gather

momentum with Becquerel’s discovery of radioactivity in 1896 and that of electron

by Thomson in the subsequent year. In the twentieth century, after the continuous

β−spectrum was conclusively established, Pauli suggested the existence of an elusive

particle, called neutrino which was incorporated by Fermi in his effective theory of

nuclear β−decay. Since then it has been an exhilarating journey which ultimately led

to the Standard Model (SM) of particle physics. The predictions of the SM has been

verified with incredible precision. The discovery of the Higgs boson, the last missing

piece of the puzzle, has bolstered physicists faith in the SM as an effective theory.

However, it is still an incomplete theory. Among others, the discovery of neutrino

oscillations by Super-Kamiokande and SNO necceciate the existence of tiny neutrino

masses and therefore, extension of the SM with new degrees of freedom.

In this thesis we focus on some aspects related to massive neutrinos. Since it

was first proposed by Pauli, the intriguing nature of neutrinos has been baffling the
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physicists. For a long time, neutrinos were assumed to be massless fermions, and was

thought to be described by Weyl spinors. In 1937, Majorana suggested that neutrinos

can be their own antiparticles and Giulio Racha proposed that such a conjecture

would lead to neutrinosless double beta (0νββ) decay. Though compelling evidences

of flavor oscillation has firmly established that neutrinos have tiny masses, the nature

of neutrinos, whether Dirac or Majorana, still remains buried in mystery. Many

issues such as the theoretical origin of the observed pattern of flavor mixing, leptonic

CP violation and lepton flavor violating decays remain to be answered; experimental

questions such as determination of the sign of the atmospheric mass-squared difference

∆m2
31 (or ∆m2

32), i.e., the “neutrino mass ordering”, mass spectrum (hierarchical

or quasidegenerate), the octant of the atmospheric mixing angle θ23 are yet to be

settled. Moreover, due to other important roles played by the neutrinos, the subject

of neutrino physics is now a rapidly evolving field of research. For example, neutrinos

have profound impact on BigBang Nucleosynthesis (BBN) and the formation of Large-

Scale Structures (LSS) of the Universe. Besides, neutrinos can be a window to probe

the physics beyond the SM, in particular, generation of baryon asymmetry through

the decays of heavy Majorana neutrinos. In the following, we discuss a brief history

of the neutrinos and some theoretical aspects related to them.

1.1 A brief tour of history

Neutrinos were actually discovered in 1956 in Reines and Cowan’s experiment

[15] which detected an electron anti-neutrino (ν̄e) from a radioactive source. The idea

of neutrino-antineutrino oscillation was first proposed by Pontecorvo in 1957-58 as

an elegant solution to the solar neutrino problem. On the other hand, the possibility

of electron-neutrino (νe) oscillating into muon-neutrino (νµ) was proposed by Maki,
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Nakagwa and Sakata in 1962 in - same year (νµ) was detected by its rescattering to

produce muon (µ−) in 1962 by Lederman, Schwartz, Steinberger [16] in Brookhaven

National Laboratory. It was followed by Pontecorvo’s theory of νµ → νe oscillation.

Though there were various indirect evidences regarding the existence of the third

generation of neutrino, i.e., the tau-neutrino (ντ ), for its direct detection, physicists

had to wait till 2000 when it was observed at Fermilab [17]. Experiments were carried

out in search of fourth generation of neutrino and the measurment of the decay

width of Z boson confirmed the non-existence of such a fourth type of neutrino with

mass less than 40 GeV. The earliest experiment designed to detect solar neutrinos

was led by Raymond Davis at the Homestake mines in South Dakota, USA. They

detected neutrinos through the inverse beta decay process νe +37 Cl → e− +37 Ar,

and found that the measured flux was about one third of the flux predicted from the

standard solar model. Assuming that the model of the Sun is reliable, where did

the missing neutrinos go? This anomaly was known as the Solar Neutrino Problem

(SNP). Atmospheric neutrinos are produced when the nuclei in the earth’s atmosphere

are bombarded by the cosmic rays (predominatly protons) producing pions via the

process:

p+X → π± + Y. (1.1)

Next, the charged pions decay through

π± → µ± + νµ(ν̄µ),

µ± → e± + νe(ν̄e) + ν̄µ(νµ). (1.2)

Clearly, twice as many νµ were expected to be produced compared to the number of

νe. However, water Cherenkov detectors such as Kamiokande [18], iron calorimeter

detector Soudan II [19] detected flux which were less than expected which further

consolidated the flavor oscillation conjecture. While atmospheric neutrino oscillation
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was definitely established when the SK-detector demonstrated a strong dependence

on the zenith angle for the upward going neutrinos a definitive confirmation of solar

neutrino oscillation had to wait till 2002. Experiments such as GALLEX [20] and

SAGE [21] confirmed the deficit observed in Homestake experiment and the Super

Kamiomande collaboration reported the deficit with enhanced statistics. The SNP

was finally resolved in 2002 by Sudbury Neutrino Observatory (SNO) which was

capable of detecting all three flavors of neutrinos and confirmed flavor oscillation in

solar neutrinos.

In Sec.1.2, we lay out the basic theory of neutrino oscillation in vacuum and in

presence of matter. In Sec.1.3 we give a short summary of some of the mechanisms of

neutrino mass generation. Sec.1.4 deals with a brief discussion of Ultra High Energy

neutrinos as relevant to this thesis. Sec.1.5 contains a review of the framework of

baryogenesis via leptogenesis.

1.2 Theory of neutrino oscillations

Oscillations in vacuum

Neutrinos are produced in weak interaction eigenstates or flavor states. Each

flavor state |νl〉 (l = e, µ, τ) can be written as a coherent superposition of mass

eigestates |νi〉 ( i = 1, 2, 3) i.e., at t = 0

|νl(0)〉 =
3∑
i=1

U∗li|νi〉 (1.3)

where U is a 3 × 31 unitary matrix, known in the literature as the PMNS matrix.

1Despite the hints of light sterile neutrino in LSND and Mini-Boone, we adhere to the three-flavor
scenario.
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The mass eigenstates evolve according to the Schrodinger equation

i∂t|νi〉 = H|νi〉 = Ei|νi〉 (1.4)

with Ei =
√
p2
i +m2

i ≈ pi + m2
i /2E assuming extremely relativistic neutrinos.

Therefore, at a later time t > 0, |νl〉 evolves to

|νl(t)〉 =
3∑
i=1

U∗lie
−iEit|νi〉 = e−ipt

3∑
i=1

U∗lie
−im2

i t/2E|νi〉 (1.5)

assming each mass eigenstates are produced with same momenta p. The amplitude

of finding the flavor state |νm〉 in |νl(t)〉 is given by

Alm ≡ A(νl → νm) = 〈νm|νl(t)〉 = e−ipt
∑
i

UliU
∗
mie
−im2

i t/2E. (1.6)

Therefore, assuming L ∼ t for extremely relativistic neutrinos, the transition

probability is given by

Plm ≡ P (νl → νm) = |A(νl → νm)|2 =
∣∣∣∑

i

U∗liUmie
−im2

iL/2E
∣∣∣2

=
∑
i,j

U∗liUmiUljU
∗
mje

−i∆m2
ijL/2E (1.7)

where ∆m2
ij = m2

i −m2
j . For convenience, (1.7) can be written in a different form

Plm = δlm−4
∑
i>j

Re(U∗liUmiUljU
∗
mj) sin2 ∆ij+2

∑
i>j

Im(U∗liUmiUljU
∗
mj) sin(2∆ij), (1.8)

where ∆ij = ∆m2
ijL/4E. If l = m, the quantitity in the bracket is real, and therefore,

the imgainary part dropts out to give the survival probability (the corresponding
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experiment is called a disappearence experiment):

Pll = 1− 4
∑
i<j

|Uli|2|Ulj|2 sin2 ∆ij = 1− 4
∑
j<i

P̃liP̃lj sin2 ∆ij (1.9)

where the sum is over all i and j, subject to the condition j < i. Here, the quantity

P̃li = |Uli|2 is the probability to find the l−flavor state in the ith mass eigenstate. If

l 6= m, Plm is called conversion probability (the corresponding experiment is called

an appearance experiment).

The matrix U in (1.3) is a 3 × 3 unitary matrix with nine independent real

parameters. A convenient parametrization of U in terms of three a priori independent

mixing angles and six phases is given by

U = PφUPMNS = Pφ


c12c13 e

iα
2 s12c13 s13e

−i(δ−β/2

−s12c23 − c12s23s13e
iδ e

iα
2 (c12c23 − s12s23s13e

iδ) e
iβ
2 s23c13

s12s23 − c12c23s13e
iδ e

iα
2 (−c12s23 − s12c23s13e

iδ) e
iβ
2 c23c13


(1.10)

where cij = cos θij, sij = sin θij with θij = [0, π/2] being the mixing angles. The

diagonal phase matrix Pφ = diag(eiφ1 , eiφ2 , eiφ3) consists of three unphysical phases

φ1,2,3 which can always be absorbed through a redefinition of Dirac-type charged

lepton fields. The phases δ ∈ [0, 2π] and α, β ∈ [0, 2π] are respectively known as the

Dirac CP-violating phase and the Majorana phases. If the neutrinos are Majorana

in nature, the latter phases cannot be removed. However, if neutrinos are Dirac type

in nature, the only irremovable phase is δ in which case UPMNS in (1.10), known as

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, coincides with the standard

parameterization of the CKMmatrix UCKM in the quark sector. Though the Majorana

CP phases do not affect the oscillation probabilities they can affect experiments like

neutrinoless double beta decay. Solar and atmospheric neutrino oscillation data

suggests that ∆m2
21 � ∆m2

31 and ∆m2
23 ≈ ∆m2

13 ≡ ∆m2
atm. For small baseline
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experiments with small L/E ratio, a vanishing value can be assumed for ∆m2
21L/2E

so that the oscillation is effectively controlled by ∆m2
31. Therefore, (1.8) and (1.9)

reduce to a simplified expressions

Pee = 1− sin2 2θ13 sin2
(∆m2

atmL

4E

)
,

Pµµ = 1− 4s2
23c

2
13(1− s2

23c
2
13) sin2

(∆m2
atmL

4E

)
,

Pττ = 1− 4c2
23c

2
13(1− c2

23c
2
13) sin2

(∆m2
atmL

4E

)
,

Peµ = Pµe = s2
23 sin2 2θ13 sin2

(∆m2
atmL

4E

)
,

Peτ = Pτe = c2
23 sin2 2θ13 sin2

(∆m2
atmL

4E

)
,

Pµτ = Pτµ = c4
13 sin2 2θ23 sin2

(∆m2
atmL

4E

)
. (1.11)

For long baseline experiments with large L/E, and using ∆m2
13L/2E ' ∆m2

23L/4E,

one obtains

P (νe → νµ+τ ) = c2
13 sin2 2θ12 sin2

(∆m2
12L

4E

)
+

1

2
sin2 2θ13. (1.12)

It is to be noted that in the limit θ13 → 0, Eqs.(1.11),

Pee = 1, Peµ = Peτ = 0,

Pµµ = Pττ = 1− sin2 2θ23 sin2
(∆m2

atmL

4E

)
,

Pµτ = Pτµ = sin2 2θ23 sin2
(∆m2

atmL

4E

)
(1.13)

while (1.12) reduces to

P (νe → νµ+τ ) = sin2 2θ12 sin2
(∆m2

12L

4E

)
. (1.14)

These formulae describe the two-flavor oscillation scenarios where (1.14) is attributed
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to solar neutrino oscillation and (1.13) to atmospheric oscillation.

The antineutrino oscillation probability Plm ≡ P (ν̄l → ν̄m; t) can be obtained

from Plm as:

Plm = Plm(Uli → U∗li). (1.15)

The CP and CPT-transformaton property of Plm are given by

Plm
CP−→ Plm and Plm

CPT−−→ Pml (1.16)

from which it follows that the CPT invariance is atomatically satisfied i.e., Plm = Pml.

In particular, it implies that the neutrino and antineutrio survival probabilities are

identical i.e. Pll = Pll i.e., a disappearance experiment is not sensitive to CP-violation.

The CP-asymmetry is written as

A
(lm)
CP = Plm − Pl̄m̄ = 4

∑
i>j

Im
(
U∗liUmiUljU

∗
mj

)
sin
(

∆m2
ijL

2E

)
= −A(ml)

CP (1.17)

where the quantity Im
(
U∗liUmiUljU

∗
mj

)
≡ JCP is called the Jarlskog invariant. Using

the parameterization (1.10) and unitarity property of U it can be easily shown that

Aeµ = Aµτ = Aτe = sin 2θ12 sin 2θ23 sin 2θ13c12 sin δ

×
[

sin
(∆m2

12

2E
t
)

+ sin
(∆m2

23

2E
t
)

+ sin
(∆m2

31

2E
t
)]
. (1.18)

Clearly, all CP asymmetries will vanish if (i) δ = 0, π, and (ii) any of the mixing

angles θ12, θ23, θ13 is 0 or π even when δ 6= 0, π. In other words, CP violation will

show up in the appearance experiments if JCP 6= 0.

Oscillations in matter

So far our discussion was confined to neutrino oscillations in vacuum. However,
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1.2. Theory of neutrino oscillations

since matter effects [22] can dramatically affect the oscillation probabilities Plm,

propagation of neutrinos through matter must be taken into account for a realistic

description. In particular, it might lead to the resonance enhancement of Plm i.e.,

it may exceed sin2 2θ (where θ is the two-flavor mixing angle in vacuum), and may

be close to unity even if θ is very small. This is known as the Mikheyev-Smirnov-

Wolfenstein (MSW) effect. As the neutrinos pass through normal matter, all three

flavors (νe, νµ, ντ ) interact with the constituent electrons, protons and neutrons via

neutral current (NC) interaction while only νes experience the charged current (CC)

interaction with the electrons. At low energies, the latter is governed by the effective

Hamiltonian

HCC =
GF√

2
[eγµ(1− γ5)e)][νeγµ(1− γ5)νe)]. (1.19)

where a Fierz transformation has been used. The matter-induced potential that

contributes to the coherent forward scattering νe can be obtained by integrating

over the variables corresponding to the electron so as to obtain following expression

quadratic in νe:

Heff(νe) = 〈HCC〉electron ≡ ν̄eVeνe. (1.20)

The average of the term in the first parenthesis of (1.19) i.e., 〈ēγµ(1 − γ5)e〉

contributes to the background for the neutrino propagation. We have,

〈ēγ0e〉 = 〈e†e〉 = Ne, 〈ēγe〉 = 〈ve〉, 〈ēγ0γ5e〉 =
〈σepe
Ee

〉
, 〈ēγγ5e〉 = 〈σe〉 (1.21)

where Ne is the number density of electrons. If the medium is unpolarized and has a

vanishing total momentum, only the first term survives to give

(Ve)CC ≡ VCC =
√

2GFNe. (1.22)
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Since NC interactions do not distinguish between the flavors, the corresponding

contributions to the matter-induced potentials, VNC, has the same value for all

flavors. In an electrically neutral medium, the contributions to VNC from electrons

and protons mutually cancel but the scattering of neutrinos off neutrons gives

(Va)NC = −GFNn/
√

2 with Nn being the number density of neutrons. Together

with (1.22) this gives

Ve =
√

2GF (Ne −
Nn

2
), Vµ = Vτ = −

√
2GF (

Nn

2
). (1.23)

Restricting to the two-flavor case, the effective hamiltonian in flavor basis can now

be written as

Heff = U

E1 0

0 E2

U † + aI +

√2GFNe 0

0 0

 , (1.24)

where I is the 2 × 2 identity matrix, H is the Hamiltonian in absence of all matter

effects and a = −GF
Nn√

2
and

U =

 cos θ sin θ

− sin θ cos θ

 . (1.25)

For relativistic neutrinos, Ei ≈ p+
m2
i

2E
so that Heff in (1.25) can be approximated as

Heff = bI +

−∆m2

4E
cos 2θ +

√
2GFNe

∆m2

4E
sin 2θ

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ

 (1.26)

where b = a + p +
m2

1+m2
2

4E
. This matrix in (1.26) can be diagonalized to obtain the

10



1.3. Neutrino masses: Dirac versus Majorana

splitting between the energy eigenvalues in matter as

E ′1 − E ′2 =

√(∆m2

2E
cos 2θ −

√
2GFNe

)2

+
(∆m2

2E

)2

sin2 2θ (1.27)

The effective mixing angle θm is given by

sin2 2θm =
(∆m2

4E
)2 sin2 2θ(

∆m2

2E
cos 2θ −

√
2GFNe

)
+
(

∆m2

2E

)2

sin2 2θ
(1.28)

which attains the maximum value of unity when the MSW resonance condition is

satisfied i.e.
√

2GFNe =
∆m2

2E
cos 2θ (1.29)

This gives θm = π/4. Since the LHS of (1.29) is positive, ∆m2 is also positive with the

convention cos 2θ > 0. This is the two-flavor oscillation scenario in matter. The three-

flavor case can also be similarly obtained at the cost of a tedious algebra [23,24]. The

matter effect plays a crucial role for a realistic computation of oscillation probabilities.

1.3 Neutrino masses: Dirac versus Majorana

If a fermionic field ψ can be decomposed into two independent chiral projections

ψL and ψR as

ψ = ψL + ψR (1.30)

where ψL and ψR are defined as ψL = PLψ and ψR = PRψ with PR,L = 1
2
(1 ± γ5).

Such a fermion is called a Dirac fermion. The Lagrangian for mass term couples the

independent chiral fields ψL and ψR as

Lmass = −mDψ̄ψ = −mD(ψ̄LψR + ψ̄RψL). (1.31)

11



Chapter. Introduction

This is known as a Dirac mass term. Under particle-anti[article conjugation Ĉ, the

chiral fields transform as

Ĉ : ψL → (ψL)C , ψR → (ψR)C . (1.32)

Clearly, ψL, (ψL)C , ψR, (ψR)C represents four independent degrees of freedom of the

Dirac field. For n species of Dirac fermions, (1.31) generalizes to

−Lmass = −(ψ̄Lm
T
DψR + ψ̄RmDψL) (1.33)

where mD is a n × n matrix and ψ =
(
ψ1 ψ2 . . . ψn

)T . Such a term in the SM

manifestly breaks SU(2)L × U(1)Y gauge invariance but respects U(1)Q.

If a fermion field admits a decomposition of the form

ψ = ψL + eiθ1(ψC)R, or ψ = ψR + eiθ2(ψC)L (1.34)

with eiθ1,2 being arbitrary phases, it can be easily seen that

ψC = e−iθ1,2ψ (1.35)

which implies that the particles created by ψ are their own antiparticles. These

particles are called Majorana fermions. Clearly, for the fields ψ in (1.34) the left-

chiral and right-chiral components are not independent, and in particular, one is the

Ĉ-conjugate of the other:

C : ψL → (ψL)C = (ψC)R, ψR → (ψR)C = (ψC)L. (1.36)

12



1.3. Neutrino masses: Dirac versus Majorana

The mass term for a Majorana spinor

−Lmass =
1

2
mM [(ψL)CψL + ψL(ψL)C ] (1.37)

Again for n species of Majorana fermions (1.37) generalizes to

Lmass = −1

2
[(ψL)CmMψL + ψLm

T
M(ψL)C ] = −1

2
[ψTLCmMψL + h.c.] (1.38)

where mM is a n × n matrix and ψL =

(
ψ1 ψ2 . . . ψn

)T
. Such a term is

Lorentz invariant but violates any U(1) quantum number two units. Hence, such a

mass is not allowed for any charged fermion of the SM but neutrinos. In chiral basis,

a Dirac field ψ can be written in terms of two two-component Weyl spinors, χ and φ

as [25]

ψ =

χ
φ

 (1.39)

so that the mass term in (1.37) becomes −Lmass = mψ̄ψ = m(χ†φ + φ†χ). For

Majorana particles, φ is constructed out of χ as φ = iσ2χ
∗ so that the Majorana mass

in (1.37) becomes

−Lmass =
1

2
(χ†iσ2χ

∗ − χT iσ2χ.) (1.40)

The SM can be considered to be an effective field theory with a cut-off Λ i.e., an

approximation to a high energy renormalizable theory valid for energies E � Λ. In

such a scenario, nonrenormalizable operators of dimension d > 4, suppressed by a

factor Λ4−d, must be taken into account. The greatest contribution comes from the

d = 5 term. With the SM Higgs φ and left-chiral lepton doublets lLi, the unique

d = 5 operator is given by

O5 =
fij
Λ

(lTLiCiτ2τalLj)(φ
TCiτ2τaφ) (1.41)

13



Chapter. Introduction

which clearly leads to a Majorana neutrino mass

(MνL)ij =
fij
Λ

v2

2
(νLi)CνLj (1.42)

after the spontaneous breakdown of electroweak symmetry when the neutral compo-

nent of φ acquires a vacum expectation value (VEV) of v/
√

2. However, the term

violates B−L by two units. Since the SM conserves B−L both at perturbative and

nonperturbative levels such a term is not allowed. Weinberg’s non-renormalizable

operator might come from the renormalizable vertex (i)lLφNR as in type-I seesaw

extension, or (ii) φφ∆ and lLlL∆ in type-II seesaw extensions of th SM upon

integrating out NR or ∆as explained below.

Type-I Sesaw

This is the most basic framework of generating small Majorana neutrino masses

where the SM is extended to include right-chiral electroweak singlets NRi. Since they

are singlets of the SM gauge group, they cannot have interaction with gauge bosons

and hence, referred to as “sterile”. Though their number need not coincide with the

number of fermion generations, we shall consider in the following only three active

and three sterile species. With this the most general gauge invariant Lagrangian is

given by

−L = f
(ν)
ij lLiφ̃NRj +

1

2
(NRi)C(MR)ijNRj + h.c. (1.43)

where φ̃ = iτ2φ
∗, f (ν)

ij are new Yukawa couplings, lLi is the lepton doublet. The second

term in (1.43) represents the bare (B−L) violating Majorana mass term. Clearly, in

this high-energy theory (1.43), the Higgs is coupled to the leptons via the exchange of

the heavy fermion singlets NRi. When the neutral compoent of φ acquires a vacuum

expectation value (VEV) i.e., 〈φ0〉 = v/
√

2, the neutrinos acquire a Dirac mass of the

form νLmDNR + h.c. where mD = vf ν/
√

2 represents a 3 × 3 matrix. Suppressing

14



1.3. Neutrino masses: Dirac versus Majorana

the generational indices, the Lagrangian of (1.43) can be written as

−L = νLmDNR +
1

2
(NR)CMRNR + h.c. (1.44)

Replacing the first term by its h.c., we rewrite (1.45) as

−L = NRm
T
DνL +

1

2
(NR)CMRNR + h.c. (1.45)

Next, using the identity ψ1ψ2 = (ψ2)CψC1 , (1.45) can be written as

−L =
1

2
NRm

T
DνL +

1

2
(νL)CmD(NR)C +

1

2
(NR)CMRNR + h.c. (1.46)

In the basis ηL = (νL (NR)C) basis and with 6× 6 matrixM, (1.46) becomes

−L =
1

2

(
(νL)C NR

) 0 mD

mT
D MR


 νL

(NR)C

 =
1

2
(ηL)CMηL + h.c.. (1.47)

The matrix M in (1.47) can now be block diagonalized the matrix using a 6 × 6

unitary matrix with 3× 3 blocks given by

U =

 1 ρ

−ρ† 1

 (1.48)

where U †U = 1 + O(ρ†ρ). Assuming ρ to be real, and using the diagonalization

condition, UTMU = diag(M1,M2), one obtains

UTMU =

−ρmT
D −mDρ

T mD − ρMR

mT
D −MRρ

T mT
Dρ+ ρTmD +MR

 (1.49)

With the assumption MR � mD, M is diagonalized with ρ ' mDM
−1
R . The 3 × 3
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Chapter. Introduction

mass matrices M1 and M2 is evaluated to be

M1 ≈ −mDM
−1
R mT

D; M2 ≈MR (1.50)

Therefore, in the diagonal basis, (1.47) can be written as

−L =
1

2
(ηL)CMηL + h.c. =

1

2
(χL)CMdχL + h.c. (1.51)

where

χL =

χ1L

χ2L

 = U †

 νL

(NR)C

 =

 1 −mDM
−1
R

mDM
−1
R 1


 νL

(NR)C

 (1.52)

so that

χ1L = νL −mDM
−1
R (NR)C , χ2L = mDM

−1
R νL + (NR)C . (1.53)

If we now define χi = χiL + (χiL)C (i = 1, 2), (1.51) can be written as

Lmass = M1χC1 χ1 +M2χC2 χ2 (1.54)

where the mass eigenstates χ1 and χ2 are given by,

χ1 = (νL + (νL)C)− mD

MR

((NR)C +NR) = χC1 , (1.55)

χ2 = ((NR)C +NR) +
mD

MR

(νL + (νL)C) = χC2 (1.56)

which clearly are Majorana in nature. Since mD ∼ 102 GeV (EW scale), if one

considers MR ∼ 1015GeV (GUT scale), the elements of M1 ∼ O(0.1). Therefore,

M1 ' −mDM
−1
R mT

D is called the effective light Majorana neutrino mass matrix while

M2 ' MR is called the effective heavy Majorana neutrino mass matrix. M1 can be

diagonalized to find the light neutrino mass eigenvalues and eigenstates. Thus, NR
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1.3. Neutrino masses: Dirac versus Majorana

setting the scale of new physics at the GUT scale makes the χ1 states (predominantly

composed of νL) to be light and χ2 (predominantly composed of νL) to be heavy. This

is the Type-I Seesaw mechanism. Since the scale of grand unified theories (GUT) (1015

GeV) is beyond the reach of current colliders, we will discuss a few possibilities of

lowering this scale as relevant to this thesis.

Type-II Seesaw

Though the SM neutrinos of each generation contains νL and (νL)C degrees of

freedom, a bare Majorana mass of the form (νL)CνL cannot be included in a gauge

invariant Lagrangian. However, instead of NRi, if the SM is extended with a triplet

scalar

∆ =

∆+/
√

2 ∆++

∆0 −∆+/
√

2

 ∼ (3, 2) (1.57)

it leads to a gauge invariant Yukawa interaction

−LY = f∆
ij (lTiLCiτ2∆ljL) (1.58)

with f∆
ij = f∆

ji . Since the triplet T = lTLCiτ2lL carries a lepton number L = 2, if ∆ is

assigned a lepton number L = −2, the term in (1.58) is L-conserving. However, when

∆0 acquires a VEV the global lepton number symmetry is spontaneously broken

generating a L−violating neutrino Majorana mass. The resulting spectrum will

contain a massless pseudoscalar Goldstone boson (J) called a Majoron [26,27] and in

the present context [28], SSB gives rise to a ‘triplet Majoron’. The triplet Majoron is

now experimentally excluded [29]. The Majoron problem is eliminated by including
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an explicit L-violating, trilinear term Λ6√
2
φT iτ2∆†φ+ h.c in the potential given by

V (φ,∆) = −µ2φ†φ+
λ

2
(φ†φ)2 +M2

∆Tr(∆†∆) +
λ1

2
[Tr(∆†∆)]2

+
λ2

2

(
[Tr(∆†∆)]2 − Tr[(∆†∆)2]

)
+ λ4(φ†φ)Tr(∆†∆) + λ5φ

†[∆†,∆]φ

+

(
Λ6√

2
φT iτ2∆†φ+ h.c.

)
. (1.59)

By minimizing V (φ,∆) w.r.t φ and ∆, and with 〈φ0〉 = v/
√

2 and 〈∆0〉 = v∆/
√

2 the

scalar masses are evaluated to be

m2
φ =

1

2
λv2 − Λ6v∆ +

1

2
(λ4 − λ5)v2

∆, (1.60)

M2
∆ =

1

2

Λ6v
2

v∆

− 1

2
(λ4 − λ5)v2 − 1

2
λ1v

2
∆. (1.61)

Clealry, the triplet VEV v∆ contributes to the W and Z masses, and therefore, to

the ρ parameter of the SM. Since the latter is constrained by the electroweak (EW)

precision data it implies an upper limit v∆ <5 GeV. Thus in the limit v � v∆, and

M∆ � v2 (or λ4 = λ5), the neutrino mass matrix is given by

(Mν)ij =
√

2v∆(f∆)ij ≡
Λ6v

2

√
2M2

∆

(f∆)ij. (1.62)

Inverse and Linear Seesaw

In addition to NRi, if a different species of fermionic singlets (SLi) are

incorporated for each generation of the SM fermions, the relevant Lagrangian

consisting of bare masses and Yukawa sectors after SSB reads

−L = νLmDNR + ν̄LMSCL + SLmNR +
1

2
SLµSS

C
L +

1

2
NRMRN

C
R + h.c.. (1.63)
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1.3. Neutrino masses: Dirac versus Majorana

The effective mass matrixM in the basis (νCL NR SCL ) has the form

M =


0 mD M

mT
D MR mT

MT m µS

 (1.64)

whereM is a 9× 9 matrix. Symmetries of a model might lead to vanishing of some

entries ofM, and might be explored [30]. For example, zeros in the diagonal entries

ofM i.e., MR = µS = 0 is referred to as the standard linear seesaw mechanism while

MR = M = 0 is called the inverse seesaw. Setting only MR = 0, M can be written

as

M =


0 mD M

mT
D 0 mT

M m µS

 =

 03×3 (m̃D)3×6

(m̃D)T6×3 (M̃R)6×6


where

m̃D =

(
mD M

)
, M̃R =

 0 mT

m µS

 . (1.65)

Now M has a structure similar to that of Type-I seesaw, can be diagonalized by a

unitary matrix U of the form

U =

 13×3 %3×6

−%†6×3 16×6

 (1.66)

with U †U = 1 + O(%2). Assuming the type-I seesaw hierarchy, the effective light
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neutrino mass matrix Mν turns out to be

Mν ' mDm
−1µS(mDm

−1)T −M(m−1mT
D)− [M(m−1mT

D)]T . (1.67)

With µS = 0, the linear seesaw formula comes out to be

MLinear
ν ' −M(m−1mT

D)− [M(m−1mT
D)]T (1.68)

and with M = 0, the inverse seesaw formula becomes

M Inverse
ν ' mDm

−1µS(mDm
−1)T . (1.69)

Note that in the limit µ → 0, lepton number conservation which is an accidental

symmetry of the SM, is restored. Though mD is again fixed at the EW scale i.e.,

mD ∼ 102 GeV, there are two more scales to play with. Assuming the scale of new

physics MRS ∼ 10 TeV and the lepton number breaking mass µ ∼1 KeV one can

generate neutrino mass O(eV). Interesting point in this variant of seesaw is that only

O(TeV) heavy neutrinos are now required to realize the light neutrino masses. Since

the seesaw scale is lowered from the GUT scale to TeV scale, inverse seesaw bears

testability in collider experiments.

Radiative neutrino masses Naturally small neutrino masses can be generated

radiatively at some n-loop level with loop suppression factor 1
(16π2)n

. This allows the

scale of new physics to be much lower than the canonical seesaw scale which makes

them testable at collider experiments.

Zee model

The Zee model [31] is an extension of the SM with a singly charged singlet
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1.3. Neutrino masses: Dirac versus Majorana

Higgs h− and a scalar doublet φ′ in addition to the SM Higgs doublet φ. While both

φ and φ′, can in principle, couple to the lepton doublets liL, such a scenario leads to

the flavor changing neutral current (FCNC) processes mediated by Higgs. To avoid

FCNC, a variant of the Zee model was proposed by Wolfenstein [32] where only φ

couples to liL. The relevant part of the Lagrangian has the form

−L(1)
Y = yijliLφejR + µφT iτ2φ

′h− + fijliLiτ2l
C
jLh
− + h.c. (1.70)

The second and third term taken together violate the lepton number by 2 units, and

predicts lepton flavor violating (LFV) decays e.g., h→ eiνj, ei → ejγ, Z → eiej etc.

Although the neutrino mass is forbidden at the tree-level it can be induced radiatively

through one-loop (cf. Fig.1.1) and can potentially account for its smallness. Though

νL ℓR ℓL νCL

φ−
h−

φ′
0

Figure 1.1: Neutrino mass generation at one-loop in the Zee-Wolfenstein model. The
flavor indices have been suppressed for simplicity.

the current experimental data rules out the primitive version of this model at 3σ,

several variants have been proposed to accommodate the oscillation data.

Ma model

This model [33] incorporates three singlet right-chiral fields NRi and one inert

scalar doublet η =

(
η+ η0

)T
with vanishing VEV to generate tiny neutrino masses

at one loop (c.f. Fig.1.2). An additional Z2 symmetry is imposed in addition to the

SU(2)L × U(1)Y invariance of the SM under which the newly added fields transform
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νL NR NC
R νCL

η0 η0

φ0φ0

Figure 1.2: One-loop diagram for light neutrino mass generation in the Ma model.

as NRi → −NRi and η → −η while the SM fields are Z2-even. Therefore, the Yukawa

coupling of NRi with the SM Higgs φ and lLi is forbidden while a similar inteaction

with η, given by

hijlLiηNRj, (1.71)

is allowed. On integrating out the heavy NRi fields, a dimension-5 Weinberg operator

is induced at one loop which after elctroweak symmetry breaking, when φ0 acquires

a VEV v, gives rise to a neutrino Majorana massMν(νCL )νL with

(Mν)ij =
λ5v

2

8π2

∑
k

hikhjkMk

m2
0 −M2

k

[
1− M2

k

m2
0 −M2

k

ln
m2

0

M2
k

]
(1.72)

where m0 represents the mass of η0, and Mi is the Majorana mass for NRi. The

appropriate scalar potential invariant under these symmetries is given by

Vscalar(φ, η) = m2
1φ
†φ+m2

2η
†η +

1

2
λ1(φ†φ)2 +

1

2
λ2(η†η)2

+ λ3(φ†φ)(η†η) + λ4(φ†η)(η†φ) +
1

2
λ5

[
(φ†η)2 + h.c.

]
. (1.73)

where the Z2 symmetry together with the vanishing VEV of η ensures that there be

no term in (1.73) linear in η preventing its decay. However, depending on the mass,

the interaction (1.71) may contribute to the decay of the heavier particle between
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1.4. Ultra High Energy (UHE) cosmic neutrinos

NRi and η while the lighter one can be a potential candidate for the DM which is an

appealing feature of this model.

As an endnote, we emphasize that the entire thesis is based only on the

consideration of Type-I, the inverse and linear seesaw mechanisms. However, we have

also proposed low-energy symmetries of the neutrino Majorana mass matrix without

addressing their high-energy realizations, and in building explicit models mechanisms

such as the Type-II seesaw or radiative mass generation might play a crucial role.

Other scenarios of light neutrino mass generation include double seesaw [30], Type-

III seesaw [34], Left-Right symmetric model [35,36], GUT models such as SU(5) [37]

and SO(10) [38,39], supersymmetric models [40] etc, which however, are beyond the

scope of this thesis.

1.4 Ultra High Energy (UHE) cosmic neutrinos

The recent discovery [41–45] of Ultra High Energy (UHE) neutrino events at

IceCube has unfolded a brand new era in neutrino astronomy. Including track

plus shower, the IceCube collaboration reported 82 High-Energy Starting Events

(HESE) which constitute more than 7σ excess over the atmospheric background [46].

Moreover, no significant spatial clustering has been observed and the data appears to

be consistent with isotropic neutrino flux from uniformly distributed point sources [46]

and suggests extragalactic origin of the observed events. Though the aforementioned

HESE events are not consistent with the standard astrophysical one component

unbroken isotropic power-law spectrum Φ(Eν) ∝ E−2
ν and also suffer constraints

from multi-messenger gamma-ray observation [47], two component explanation of the

observed neutrino flux from pure astrophysical sources is still a plausible scenario [48].

Since in Chapters 3 and 5, we discuss the predictions of our models based on the flavor
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flux ratios, statements on which could be made from enhanced statistics at neutrino

telescopes (e.g., IceCube) and fits [48], we lay out a short summary of the subject as

a necessary prerequisite.

The dominant source of UHE cosmic neutrinos are pp (hadro-nuclear) collisions

in cosmic ray reservoirs such as galaxy clusters and pγ (photo-hadronic) collisions in

cosmic ray accelerators [49, 50] such as gamma-ray bursts, active galactic nuclei and

blazars. In pp collisions, protons of TeV−PeV range produce neutrinos via the decays

π+ → µ+νµ, π
− → µ−ν̄µ, µ

+ → e+νeν̄µ and µ− → e−ν̄eνµ. Therefore, the normalized

flux distributions over flavor are [51]

{φSνe , φSν̄e , φSνµ , φSν̄µ , φSντ , φSν̄τ} = φ0

{1

6
,
1

6
,
1

3
,
1

3
, 0, 0

}
, (1.74)

where the superscript S denotes ‘source’. On the other hand, the pγ collisions involve

relatively less energetic γ−rays (GeV- 102 GeV range). Therefore, the center-of-mass

energy of γp system is such that it can only produce γp→ ∆+ → π+n, which in turn

give rise to the decays π+ → µ+νµ and µ+ → e+νeν̄µ. The corresponding normalized

flux distributions over flavor

{φSνe , φSν̄e , φSνµ , φSν̄µ , φSντ , φSν̄τ} = φ0

{1

3
, 0,

1

3
,
1

3
, 0, 0

}
. (1.75)

In either case, if we take φSl = φSνl + φSν̄l with l = e, µ, τ ,

{φSe , φSµ , φSτ } = φ0

{1

3
,
2

3
, 0
}
. (1.76)

As neutrino oscillations will change flavor distributions from a source (S) to the
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1.5. Baryogenesis via Leptogenesis

telescope (T ) [52] the flux reaching the T will be given by

φTl = φTνl + φTν̄l =
∑
m

[
φSνmP (νm → νl) + φSν̄mP (ν̄m → ν̄l)

]
. (1.77)

Since the distance from S to T is much larger than the oscillation length, the

oscillation probability averaged over many oscillations is given by

P (νm → νl) = P (ν̄m → ν̄l) ≈
∑
i

|Uli|2|Umi|2. (1.78)

Thus the flux reaching the telescope is given by

φTl =
∑
i

∑
m

φSm|Uli|2|Umi|2 =
φ0

3

∑
i

|Uli|2(|Uei|2 + 2|Uµi|2) (1.79)

where φ0 is the overall flux normalization. The unitarity of the PMNS matrix implies

φTl =
φ0

3
[1 +

∑
i

|Uli|2(|Uµi|2 − |Uτi|2)] =
φ0

3
[1 +

∑
i

|Uli|2∆i]. (1.80)

where ∆i = |Uµi|2 − |Uτi|2. Therefore, the existence of exact µτ symmetry or

antisymmetry, dictates that ∆i = 0, and φTe = φTµ = φTτ . We work out the predictions

on these UHE neutrino flavor flux ratios in relation to deviations from µτ symmetry

in Chapter 3 and Chapter 5.

1.5 Baryogenesis via Leptogenesis

Cosmological observations reveal that the Universe has an overwhelming

dominance of matter over antimatter. There is no evidence of primordial antimatter

except those arising from the collision of cosmic ray particles with the interstellar

medium. The observed baryon asymmetry of the Universe can be expressed in two
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equivalent ways [53]

ηB =
nB − nB̄

nγ
|0 = (5.94± 6.17)× 10−10,

YB =
nB − nB̄

s
|0 = (8.43− 8.76)× 10−11 (1.81)

where (nB̄)nB, nγ are the number densities of the (anti)baryons and photons

respectively. The subscript ‘0’ indicates that the values quoted in (1.81) are for

the present epoch, and has been obtained from precise measurements of the angular

distribution of the temperature anisotropies of the cosmic microwave background

(CMB). Unless the Universe is unnaturally fine-tuned, the baryon symmetry must

have been generated dynamically, known as the phenomenon of baryogenesis [54–56].

In 1967, Sakharov pointed out that particle physics interactions can dynamically

generate a baryon asymmetry starting from a baryon-symmetric Universe if three

necessary conditions are satisfied [57]. These are (i) Baryon number (B) violation,

(ii) C and CP violation and (iii) Departure from equilibrium. Baryon number

conservation is an accidental global symmetry of the SM and (i) can be satisfied

once we go beyond the SM. One example would be the inclusion of Majorana mass

term that explicitly breaks the lepton number conservation. There are other ways

of including Baryon non-conserving interactions. If (ii) is not satisfied, any excess

amount of baryon generated in a B-number violating process will be compensated by

the genertion of an equal amount of antibaryons in the conjugated process occuring

at the same rate. Finally, in equilibrium, the thermal average of the baryon number

is given by

〈B〉 = Tr(Be−βH) = Tr(O−1Oe−βHB) = Tr(Be−βH) = Tr(O−1BOe−βHB) (1.82)

with O = CPT and [H,O] = 0 assuming a CPT invariant quantum field theory. Since
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1.5. Baryogenesis via Leptogenesis

the baryon number operator B is invariant (even) under parity and time reversal but

odd under charge conjugation, O−1BO = −B. This immediately gives 〈B〉 = 0

implying that unless (iii) is satisfied there can be no baryon asymmetry. Though,

in principle, the SM has all the necessary ingredients required for baryogenesis a

substantial body of works suggest that the amount of CP violation provided by the

CKM phase is not enough to generate YB in the observed range. Various mechanisms

for baryogenesis, namely, GUT baryogenesis [58–60], Electroweak Baryogenesis [61,

62], the Affleck-Dine mechanism [63, 64] etc are popular in the literature. However,

in this thesis, we exclusively focus on the mechanism of baryogenesis via leptogenesis

[65–69] due to its immediate connection to the neutrino physics, especially with the

Type-I seesaw scenario. The newly introduced heavy Majorana neutrinos decay out

of equilibrium via a lepton number and CP violating process. The produced lepton

number is then converted to baryon number by the nonperturbative sphalerons [70].

Before the construction of an explicit theoretical framework let’s first construct a

general setup that acts as a prerequisite.

1.5.1 Baryogenesis via leptogenesis in Type-I seesaw

In this mechanism, a dynamically generated lepton asymmetry is converted into

a baryon asymmetry via sphaleron transitions. In this thesis, we shall confine our

discussion to type-I seesaw leptogenesis. In this framework, the complex Yukawa

couplings of the RH neutrinos and the lepton doublets offer the required CP

asymmetry via the out-of-equilibrium decay of heavy Majorana neutrinos. In the first

step one has to compute the CP asymmetry parameter which depends upon the flavor

structure of the Dirac mass matrix and hence, upon the model under consideration.

Depending upon the temperature scale of leptogenesis, the CP asymmetries can be

flavor dependent or independent. Finally, the CP asymmetries can be used to work
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out the lepton asymmetry either by numerically solving the network of Boltzmann

equations or using the appropriate approximate solution.

Evaluation of CP asymmetry parameter

The pertinent Lagrangian for the generation of CP asymmetry in type-I seesaw

is

−LD = λiαN̄Riφ̃
†lLα +

1

2
N̄iR(MR)iδijNRj + h.c., (1.83)

where lLα = (νLα eLα)T is the left-chiral SM lepton doublet of flavor α and φ̃ = iτ2φ
∗

with φ = (φ+φ0)T being the Higgs doublet. It is clear from (1.83) that the possible

decays of Ni are Ni → e−αφ
+, Ni → ναφ

0, Ni → e+
αφ
− and Ni → νCα φ

0∗. We are

interested in the flavor-dependent CP asymmetry parameter defined as

εαi =
Γ(Ni → e−αφ

+, ναφ
0)− Γ(Ni → e+

αφ
−, νCα φ

0∗)

Γ(Ni → e−αφ
+, ναφ0) + Γ(Ni → e+

αφ
−, νCα φ

0∗)
(1.84)

where Γ denotes the decay width. The partial widths of Ni-decay in a process and

its conjugate are identical leading to a vanishing εαi . However, a nonzero value of εαi

arises from the interference between the tree level, one loop self-energy and one-loop

vertex diagrams for Ni-decay. For leptogenesis with hierarchical heavy RH neutrinos,

(1.84) can be evaluated to be

εαi =
1

4πv2hii

∑
j 6=i

[
g(xij)Im[hij(mD)iα(m∗D)jα] +

Im[hji(mD)iα(m∗D)jα]

(1− xij)
]

(1.85)

where mD = vλ/
√

2, v =
√

2〈φ0〉 h = mDm
†
D and xij = M2

j /M
2
i . Furthermore, the

loop function g(xij) has the expression

g(xij) =

√
xij

1− xij
+ f(xij) (1.86)
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where the first term on the RHS of (1.86) arises from the interference of one loop

self-energy term with the tree-level diagram while the second term f(xij) given by

f(xij) =
√
xij

[
1− (1 + xij) ln

(1 + xij
xij

)]
(1.87)

originates from the interference between one loop vertex diagram with the tree -

level [65]. The formalism for a quasi-degenerate RH neutrino mass is given in Ref. [71].

Depending upon the temperature regime in which leptogenesis takes place, the

lepton flavors may be fully distinguishable, partly distinguishable or indistinguishable.

In a hierarchical scenario, e.g., M3 � M2 � M1, it has been shown in Ref. [72]

that only the decays of N1 matter for the creation of lepton asymmetry while the

latter created from the heavier neutrinos get washed out. Obviously there are certain

circumstances when the decays of N2,3 are also significant [73]. With the reasonable

assumption that the leptogenesis takes place at a scale T ∼ M1, the rates of the

Yukawa interaction classify leptogenesis into three categories. (i) M1 > 1012 GeV,

when all interactions with all flavors are out of equilibrium: unflavored leptogenesis.

In this case all three flavors are indistinguishable and thus the total CP asymmetry is

a sum over all flavors, i.e., εi =
∑
α

εαi , (ii) 109 GeV < M1 < 1012 GeV, when only the τ

flavor is in equilibrium so that only τ flavor can be identified separately while e and µ

acts indistinguishably: τ -flavored leptogenesis. In this regime there are two relevant

CP asymmetry parameters ε(2)
i = εei + εµi and ετi , and (iii) M1 < 109 GeV, when all

the flavors (e, µ, τ) are in equilibrium and distinguishable: fully flavored leptogenesis.

One requires three CP asymmetry parameters εei , ε
µ
i , ε

τ
i for each generation of RH

neutrinos i. Let us mention that for the unflavored case the flavor-summed CP

asymmetry parameter admits a simpler expression. Summing over all flavors α,

∑
α

Imhji(mD)iα(m∗D)jα = Imhjih
∗
ji = Im|hji|2 = 0, (1.88)
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i.e., the second term in (1.85) vanishes to gives

εi =
∑
α

εαi =
1

4πv2hii

∑
j 6=i

[
f(xij +

√
xij

(1− xij)
)
]
Imh2

ij. (1.89)

Now we turn our attention to the Boltzmann equations that govern the evolution

of the number densities of the hierarchical heavy neutrinosNi and the left-chiral lepton

doublets lLα. They involve decays Ni → lLαφ and Ni → lCLαφ
† as well as the scattering

transitions quC ↔ NilLα, lLαq
C ↔ Niu

C , lLαu ↔ Niq, lLαφ ↔ NiVµ, φ
†Vµ ↔ NilLα

and lLαVµ ↔ Niφ
†. Here q denotes the left-chiral quark doublet gien by q = (uL dL)T

and Vµ stands for either Bµ or W a
µ (a = 1, 2, 3). Next, we introduce a new parameter

ηa defined as ηa(z) = na(z)/nγ(z) where z = M1/T , nγ is the number density of

photons given by

nγ(z) =
2T 3

π2
=

2M3
1

π2z3
(1.90)

and na is the number density of a particle of species a given by

na(T ) =
gam

2
a T eµa(T )/T

2π2
K2

(
ma

T

)
. (1.91)

Here, ma and ga respectively denote the particle’s mass and the number of internal

degrees of freedom. K2 is the modified Bessel function of the second kind of order 2.

In thermal equilibrium, the quantities ηa and na are denoted by ηeqa and neqa where

the latter is given by setting the chemical potential µa(T ) equal to zero, i.e.,

neq
a (T ) =

gam
2
a T

2π2
K2

(
ma

T

)
. (1.92)

Now one can use the Boltzmann equations given in Ref. [74] and generalized

with flavor [71]. Since the active flavor in the temperature regime under consideration

may not correspond to the actual lepton flavors (e, µ or τ) but some combination, a
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general flavor index λ has been used for the lepton asymmetry. This enables us to

write

dηNi
dz

=
z

H(z = 1)

[(
1 − ηNi

ηeq
Ni

) ∑
β=e,µ,τ

(
ΓβDi + ΓβSiYukawa + ΓβSiGauge

)
−1

4

∑
β=e,µ,τ

ηβLε
β
i

(
ΓβDi + Γ̃βSiYukawa + Γ̃βSiGauge

)]
,

dηλL
dz

= − z

H(z = 1)

[ 3∑
i=1

ελi

(
1 − ηNi

ηeq
Ni

) ∑
β=e,µ,τ

(
ΓβDi + ΓβSiYukawa + ΓβSiGauge

)

+
1

4
ηλL

{ 3∑
i=1

(
ΓλDi + ΓλWi

Yukawa + ΓλWi
Gauge

)
+ Γλ∆L=2

Yukawa

}]
. (1.93)

The expressions for the various transition widths Γ in (1.93) are given in Ref. [74].

Consider the first equation in (1.93) to start with. Its second RHS term has

been neglected for an assumed hierarchical leptogenesis since both ηβL and εβi are each

quite small and their product much smaller2. Using some shorthand notation, as

explained in Eqs. (1.95) - (1.97) below, we can now write

dYNi(z)
dz

= {Di(z) +DSY
i (z) +DSG

i (z)}{(Y eq
Ni

(z)− YNi(z)}, (1.94)

where

Di(z) =
∑

β=e,µ,τ

Dβ
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβDi

ηeq
Ni

(z)
, (1.95)

DSY
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβSiYukawa

ηeq
Ni

(z)
, (1.96)

DSG
i (z) =

∑
β=e,µ,τ

z

H(z = 1)

ΓβSiGauge

ηeq
Ni

(z)
. (1.97)

Turning to the second equation in (1.93) and neglecting the ∆L = 2 scattering terms,

2In order of magnitude this product is 10−6 × 10−5 ∼ 10−11, as compared with the first term
which is O(1).
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we rewrite it as

dηλL(z)

dz
= −

3∑
i=1

ελi {Di(z) +DSY
i (z) +DSG

i (z))(ηeq
Ni

(z)− ηNi(z)}

− 1

4
ηλL

3∑
i=1

{1

2
Dλ
i (z)z2K2(z) +DλYW

i (z) +DλGW
i (z))} (1.98)

with

DYW
i (z) =

∑
β=e,µ,τ

z

H(z = 1)
ΓβWi

Yukawa, (1.99)

DGW
i (z) =

∑
β=e,µ,τ

z

H(z = 1)
ΓβWi

Gauge. (1.100)

Lepton asymmetry to Baryon asymmetry

Having discussed the ways of generating a lepton asymmetry and its evolution,

we turn our attention to the mechanism of converting that lepton asymmetry into a

baryon asymmetry. In the SM, B and L are conserved at the classical level due

to two accidental global symmetries, namely, U(1)B and U(1)L. However, both

symmetries are violated at the quantum level due to ABJ or chiral anomaly [75]

i.e., the divergences of the associated Noether currents do not vanish. In particular,

∂µJ
µ
B = ∂µJ

µ
L =

nf
32π2

(g2W a
µνW̃

aµν − g′2BµνB
µν), (1.101)

where JµB = 1
3

∑
(qLγ

µqL + uRγ
µuR + dRγ

µdR), JµL = 1
3

∑
(lLγ

µlL + eRγ
µeR) with the

summation over all families and colors (for quarks). Here, W a
µν and Bµν respectively

denote the SU(2) and U(1) gauge field strengths of SM. g, g′ are the gauge coupling

constants and nf represents the number of fermion generations. Since B =
∫
J0
Bd

3x

and L =
∫
J0
Ld

3x, Eq.(1.101) clearly shows that (B − L) is conserved while (B + L)

is violated nonperturbatively due to instanton effects [76]. The violation arises due

32
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to the nontrivial vacuum structre of the non-abelian gauge theories and given by

∆(B + L) = 2nfNCS (1.102)

where NCS = g2

32π2W
a
µνW̃

aµν is called the winding number or Chern-Simons number.

There are infinitely many degenerate vacua characterized by the winding number n =

±1,±2, ... etc and two such consecutive vacua are separated by energy barriers. These

vacua are connected by nonperturbative gauge field configurations, called instantons

and mediate tunneliing between the vacua. This gives rise to an effective operator at

the leading order

OB+L =
∏
i

(qLiqLiqLilLi). (1.103)

At zero temperature the tunneling rate [77,78]

Γ(T = 0) ≈ e−2SE = e−8π/g2 = 10−170 (1.104)

and hence, too heavily suppressed to consider. However, in a thermal bath, the

transition between different vacua is dominantly controlled by hopping over the energy

barrier [79] induced by sphalerons [80]. For temperatures below that of the EW phase

transition the transition rate [81] is given by

ΓB+L

V
∼ e−

MW
αkT , (1.105)

which, once again, is very small. However, for temperatures above that of the EW

phase transition, the rate [77, 78] becomes

ΓB+L

V
∼ α5lnα−1T 4. (1.106)

Thus, the baryon number violating processes are not suppressed in the T > TEW
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phase and give rise to the required baryon asymmetry of the universe.

Chemical equilibrium relations

At temperatures much higher than the weak scale, the scale of leptogenesis,

the leptons, quarks and Higgs interact and scatter via SM Yukawa interactions

and sphaleron transitions. If all such processes were assumed to be in chemical

equilibrium it gives rise to various relations between the chemical potentials. Under

the assumption that βµψ � 1, the difference between the number density of a particle

ψ (q, l, φ etc) and its antiparticle ψ̄ in an assembly of noninteracting massless particles

is [67]

nψ − nψ̄ =
gψT

3

6
βµψ for fermions,

nψ − nψ̄ =
gψT

3

3
βµψ for bosons. (1.107)

As explained earlier, the SU(2) electroweak sphaleron transitions give rise to an

effective operator
∏
i

qLiqLiqLilLi where qLi(lLi) represents the left-chiral quark (lepton)

doublet. This gives rise to a constraint [67]

∑
i

(3µqi + µli) = 0 (1.108)

where the sum is over all generations. Similarly, QCD instantons will induce an

effective operator
∏
i

qLiqLiu
C
Rid

C
Ri where uCRi(dCRi) represents the right-chiral up-type

(down-type) quark singlet. The corresponding constraint on the chemical potential

is ∑
i

(2µqi − µui − µdi) = 0. (1.109)

Irrespective of the temperature regime, there exists a robust constarint due to
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hypercharge neutrality of the plasma

∑
i

N(µqi + 2µui − µdi − µli − µei) + 2Nφµφ) = 0. (1.110)

The Yukawa interactions give rise to the following conditions:

µqi − µφ − µdi = 0, µqi + µφ − µui = 0, µli − µφ − µei = 0. (1.111)

Finally, the ∆L = 2 interactions give rise to

µli + µφ = 0. (1.112)

Using (1.107), the baryon and lepton number densities can be expressed as

nL − nL̄ = µLT
2/6, where µL =

∑
i

(2µli + µei),

nB − nB̄ = µBT
2/6, where µB =

∑
i

(2µqi + µui + µdi). (1.113)

Solving the chemical potential relations one obtains [82,83]

YB =
nB − nB̄

s
=

8N + 4m

22N + 13Nφ

Y∆ = CY∆,

YL =
nL − nL̄

s
= − 14N + 9m

22N + 13Nφ

Y∆ = (C − 1)Y∆. (1.114)

whereNφ is the number of Higgs doublets andN is the number of fermion generations,

and Y∆ = YB−L = YB − YL. With Nφ = 1, and N = 3, one obtains C = 28/79. One

important thing to mention is that if the temperature scale of leptogenesis is below

109 GeV, all the lepton flavors are separately identifiable. In that case, the conserved

quantity in sphaleronic transition is ∆λ = B/3 − Lλ a linear relation holds between
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them. For convenience, we define a new variable

Yλ =
nλL − nλL̄

s
=
ηγ
s
ηλL, (1.115)

where nλL(nλ
L̄
) is the number density of (anti)leptons of the active flavor λ normalized

to the entropy density. The factor s/ηγ is known to equal 1.8g∗s with g∗s being the

number of effective relativistic degrees of freedom. For T > 102 GeV, g∗s remains

nearly constant with temperature at a value of about 112 [84] with three right chiral

neutrinos. Sphaleron transitions convert the lepton asymmetry created by the decay

of the right chiral heavy neutrinos into a baryon asymmetry by keeping ∆λ = 1
3
B−Lλ

conserved. Y∆λ
, defined as s−1{1/3(nB−nB̄)−(nL−nL̄)}, and Yλ are linearly related,

as under

Yλ =
∑
ρ

AλρY∆ρ , (1.116)

where Aλρ is a set of numbers which are obtained by the chemical equilibrium

conditions as explained in the previous section and depends on which of the three

mass regimes M1 lies in. The final baryon asymmetry YB which varies linearly with

Y∆λ
[67] can be obtained depending upon the mass regime in which M1 is located.

We discuss this in detail in the next chapters.

1.6 An overview of the present work

In this thesis, we shall consider the light neutrinos to be Majorana in nature.

The effective light neutrino mass matrix Mν may have its origin in one of the

mechanisms discussed in Sec.1.3. In general,Mν is complex symmetric, and therefore,

contains twelve real independent parameters which determine the low-energy neutrino
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observables. However, the current experimental data cannot uniquely determine all

the low-energy observables. Till date, there exists only five experimentally measured

quantities, namely, the three mixing angles, the solar and the atmospheric mass-

squared differences. The absolute scale of the light neutrino masses, the neutrino

mass ordering and the leptonic CP phases δ, α, β are yet to determined. Thus

the rationale is to invoke some symmetry/ansatz at low energy which reduces the

number of parameters of Mν . In this regard, there exists a substantial body of

research [85–90] in the Beyond Standard Model (BSM) framework. The use of discrete

symmetries [91–94] turns out to be the most economical approach to unveil the flavor

structure ofMν which governs the pattern of mixing. Assuming θ13 = 0 and θ23 = π/4,

the mixing matrix U at the leading order can be parameterized as

U =


c12 s12 0

− s12√
2

c12√
2

1√
2

s12√
2
− c12√

2
1√
2

 (1.117)

where s12 = sin θ12. The TBM mixing [92] coresponds to the special case with θ12 =

sin−1(1/
√

3). The mixing pattern given in (1.117) had its origin in a low-energy flavor

symmetry, known as the µτ interchange symmetry. It proposes an invariance of the

neutrino Majorana mass term

−L =
1

2
νCLlMν lmνLm + h.c. (1.118)

under the linear transformation νLl → Gµτ
lmνLm where G is an unitary matrix in flavor

space with Gµτ
ee = Gµτ

µτ = Gµτ
τµ = 1 and all other enties are zero. This implies an

invariance (Gµτ )TMνG
µτ = Mµτ

ν which immeadiately dictates the structure of Mν to
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be:

Mµτ
ν =


A B B

B C D

B D C

 , (1.119)

where A,B,C and D are in general complex parameters. In general, if under any

linear transformation of the neutrino fields νLα → GαβνLβ the effective neutrino

Majorana mass term (1.118) enjoys an invariance, then Mν must satisfy the equation

GTMνG = Mν . (1.120)

It has been shown in Ref. [1] that if an unitary matrix U diagonalizesMν , so does the

matrix U ′ = GU . Eq.(1.120), coupled with the diagonalization condition UTMνU =

diag(m1,m2,m3) for nondegenerate mi implies

U †GU = d, with dij = ±δij. (1.121)

Among the eight possible choices for d, two are trivial, d = ±I, and the corresponding

G matrices are also trivial, namely, G = ±I. Out of the remaining six d matrices,

three are negatives of the other three, and the corresponding G matrices are negatives

of each other. Hence, without any loss of generality we can confine to detG = +1

which corresponds to

d1 = diag(1,−1,−1)→ G1,

d2 = diag(−1, 1,−1)→ G2,

d3 = diag(−1,−1, 1)→ G3. (1.122)

Out of three G matrices G1, G2 and G3, only two are independent, on account of a
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relation GaGb = GbGa = Gc with a 6= b 6= c. These two independent G matrices

define a Z2 × Z2 symmetry since d2 = G2 = I as dictated by Eq.(1.121). It has been

demonstrated in Ref [1,95] that irrespective of the structure ofMν , it enjoys a Z2×Z2

residual symmetry.

Apart from µτ interchange, there exists other interesting residual symmetries

such as scaling ansatz in neutrino mass matrix. It predicts vanishing values for θ13

and m3 together with a nonmaximal θ23 in general. All these effective symmetries

are well motivated from the larger symmetry group such as A4, S3, D4 etc. However,

since current data has firmly established a nonvanishing θ13 and opened up the door

for CP violation, these residual symmetries should be suitably modified. The current

thesis deals with two such approaches.

To discuss the first approach, we note that for an arbitrary mixing matrix U ,

one can uniquely construct the G matrices. However, the converse is not true due

to the degeneracies in the eigenvalues of d matrices. In such a case, given a leading

order mixing matrix, e.g., U0, first the G matrices are uniquely constructed. Due

to the said degeneracy, the degrees of choice of the mixing matrix U is enhanced.

It possible to appropriately ‘rotate’ U0 in accordance with the phenomenological

requirement [4, 96–98].

In the second approach, the real invariance of Mν is extended to its complex

counterpart by means of a nonstandard CP transformation να → iGαβγ
0νCβ [99–101]

which leads to a complex invariance

GT
2,3MνG2,3 = M∗

ν (1.123)

since the R.H.S of (1.120) is now replaced with its complex conjugate in (1.123). Thus

one can implement a nonstandard ZCP2 transformation in the low energy effective

39



Chapter. Introduction

Lagrangian.

It remains a nontrivial challenge to consistently combine CP symmetry with a

flavor group [102–104]. However, it has been shown in Ref. [105] that this can be

achieved if certain consistency conditions are satisfied. In a top-down approach, a

CP combined flavor symmetry existing at high energy (Gflav×GCP ) is spontaneously

broken down to two distinct residual symmetries- Gl
flav ×Gl

CP in the charged lepton

sector and Gν
flav × Gν

CP neutrino sector [99]. The neutrino mixing arises as a result

of this mismatch between the residual symmetries of the two sectors. A bottom-up

approach has also been proposed [106] to construct a minimal flavor group with the

residual symmetries in the charged lepton and the neutrino sector. In this thesis,

without going into the explicit model building, we rather zero in on the low energy

predictions of the neutrino parameters such as CP phases, sum of the light neutrino

masses Σimi and neutrinoless double (ββ0ν) decay parameter |Mee|.

One of my research work is based on the first approach. We show how the well-

known relation between δ and θ23, arising as a consequence of two Z2 symmetries

accompanying the µτ interchange symmetry, is changed if the latter is generalized

to a symmetry that mixes the νµ and ντ flavors. In particular, we show that the

stringent condition of simultaneous maximality of δ and θ23 can be lifted even with a

very tiny departure from the exact µτ interchange. Furthermore, the current neutrino

data on δ and θ23 can be explained better in this framework. We also discuss how the

proposed mixing scenario could be realized with two simultaneous CP transformations

leading to more predictive correlations between δ and the mixing angles θij. Next, we

analyze the ‘three flavor regime’ of leptogenesis within the CP extended framework

and demonstrate that unlike the CP extended µτ interchange symmetry, a resonant

leptogenesis is possible in the µτ mixing case. The resulting baryon asymmetry

requires θ23 6= π/4 due to the fact that the baryon to photon ratio ηB vanishes in the
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exact limit of θ23 → π/4.

Three of my other works [107, 108] are based on the second approach,

i.e., we have supplemented the residual Z2 symmetries with a nonstandard CP

transformation; CP-transformations followed by a flavor symmetry operation [109].

Unlike the canonical CP transformation, which is a CP conserving theory, this

nonstandard CP transformation predicts maximally violating value π/2 or 3π/2 for

the Dirac CP phase δ and a CP conserving value for the Majorana phases α or β

by restricting them to either 0 or π. High energy symmetry group for models of this

kind may be constructed through the induced automorphism approach [102,106,110]

In one of the work, we envision a complex extension of µτ mixing antisymmetry

in Mν by a nonstandard CP transformation ναL → iGαβγ0νCβL where G is a Z4

generator related to the Z2 generator G through the relation G = iG. As a result

µτ mixing parameter θ gets related with δ and θ23 as sin δ = ± sin θ/ sin 2θ23. For

arbitrary θ, both θ23 and δ are nonmaximal. For a nonmaximal δ, one of the two

Majorana phases is different from 0 or π, leading to substantial Majorana CP violation

with observable consequences for ββ0ν decay process. For all possible combination

of α, β and δ the entire parameter space corresponding to the inverted mass ordering

shall be ruled out if nEXO, covering its entire reach, does not observe any ββ0ν signal.

We have made a quantitative study of the effect of the CP asymmetry parameter

Aµe in long baseline neutrino oscillation experiments. We also make quantitative

predictions of our scheme on Ultra High Energy (UHE) neutrino flavor flux ratios

at neutrino telescopes. While exact CP transformed µτ interchange antisymmetry

(θ = π/2) leads to an exact equality among those ratios, taking a value 0.5, a tiny

deviation can cause a drastic change in them. Measurement of UHE flavor flux with

improved statistics will further constrain the parameter θ.

In a different work [5], we discuss the implications of the CP extension of the
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residual symmetries associated with scaling ansatz invariant neutrino Majorana mass

matrix Mν . It changes the real invariances of Mν to their complex counterparts

which are referred to as ‘Modified Scaling’. We determine correlations between the

mixing angles θ12 and θ13 and show that it leads to maximal Dirac CP violation

and vanishing Majorana phases. Besides the testable predictions on 0νββ decay, we

discuss interesting consequences for leptogenesis. Within the hierarchical scenario,

we show that only τ -flavored leptogenesis is possible in this framework. For a NO

(IO), θ23 is found be less (greater) than π/4, for the final baryon asymmetry YB to

lie in the observed range. An upper and a lower bound on the mass of N1 and the

effect of the heavier neutrinos N2,3 on final YB has been subsequently estimated.

In the work [9], we discuss a neutrino mass model with a CP extended

µτ flavored symmetry of the effective light neutrino mass term together with an

additional invariance under a Friedberg-Lee (FL) transformation of the neutrino

fields. The absolute scale of the light neutrino masses is dictated by the vanishing

determinant of Mν . For both NO and IO, while θ23 is in general nonmaximal, δ is

exactly maximal for IO and nearly maximal for NO due to cos δ ∝ sin θ13. For the

NO, very tiny nonvanishing Majorana CP violation might appear through one of the

Majorana phases β, otherwise the model predicts vanishing Majorana CP violation.

From the future precision measurement of θ23, it is difficult to rule out the model.

However, any large deviation of δ from its maximality, will exclude the model. Beside

fitting the neutrino oscillation global fit data, we also explore νµ → νe oscillation

which is expected to reveal CP violation in different long baseline experiments.

Finally, assuming pp and pγ collisions as the source of the Ultra High Energy (UHE)

neutrinos, statements have been made about the octant of θ23. Conversely, a precision

measurement of θ23 can be used to predict the allowed ranges of flavor flux ratios.

Finally, I also worked on a detailed analysis of the minimal textures of the
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constituent matrices that comprises the light neutrino Majorana mass matrix Mν in

low energy seesaw schemes [10]. In particular, we throughly explore the Inverse

and Linear seesaw mechanisms with maximal vanishing elements for the various

matrices comprising Mν with the assumption that its eigenvalues are nonvanishing.

We show that the minimal structure of the charged lepton mass matrix allows only

six possibilities. For the nonvanishing determinant of mν an extensive analysis is

performed to derive the minimal textures of the matrices comprising mν in both

linear and inverse seesaw. We find that the minimality allows the realization of all

the phenomenologically allowed two-zero textures in Inverse seesaw but only one such

texture is found to be allowed in linear seesaw.
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Chapter 2

Importance of µτ mixing symmetry

and its CP extension on leptogenesis

2.1 Introduction

Till date, the important issues such as the theoretical origin of the mass, pattern

of flavor mixing and CP properties [85] of the three light neutrinos remain unresolved.

Experimentally, all the three mixing angles and the two independent mass-squared

differences have already been known to a good accuracy. In particular, the current

best-fit value of the solar mixing angle is known to be (θ12)bf = 33.62◦ while that of

the reactor mixing angle (θ13)bf = 8.5◦. In the present era of precision measurement

of the oscillation parameters, the determination of the neutrino mass ordering, the

octant of the atmospheric mixing angle θ23 and the value of the Dirac CP phase δ

have also attracted a lot of attention.

Despite a decent understanding of the leading order lepton flavor mixing [92]

and other measurable neutrino observables such as δ [111], the origin of exact pattern
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Chapter. Importance of µτ mixing symmetry and its CP extension on leptogenesis

of leptonic mixing is yet unknown. As mentioned in Sec.1.6, the paradigm of residual

symmetry [1, 4, 98] turns out to be both a promising and an economical approach in

uncovering the mixing pattern. This is because it does not require the values of the

elements of Mν in order to predict the mixing parameters. As laid out in Sec.1.6, for

a given Mν and a representation of the residual symmetries in the flavor space Ga,

a horizontal invariance (Ga)
TMνGa = Mν (a = 1, 2, 3) together with the condition

UTMνU = diag(m1,m2,m3) imply

Ga = UdaU
† with (da)ij = ±δij. (2.1)

Clearly, the columns of U are the eigenvectors of Ga with eigenvalues ±1. Since

there exists two independent Ga matrices and each Ga generates a Z2 symmetry, the

neutrino mixing properties could be regarded as a consequence of a residual Z2 × Z2

invariance. Given a mixing matrix U and d1,2, the corresponding Z2 generators G1,2

can be easily constructed using (2.1). For example, within the PDG convention [112],

a leading order mixing matrix Uµτ
0 could be used with d3 to construct the well-known

µτ interchange symmetry generator Gµτ
3 [113,114] matrix:

Uµτ
0 =


p x 0

− x√
2

p√
2

1√
2

x√
2
− p√

2
1√
2

 d3==⇒
(2.1)

Gµτ
3 =


−1 0 0

0 0 1

0 1 0

 , (2.2)

where, p ≡ cos θ◦12 and x ≡ sin θ◦12 with θ◦12 being the solar mixing angle. Using (2.1)

and d1,2, the other two matrices, i.e., Gµτ
1,2 can also be trivially constructed. In this

chapter, we refer these as the associate µτ symmetries. Since a nonzero θ13 has been

confirmed at more than 5.2σ [115], Gµτ
3 invariance must be broken. Even though,

Gµτ
3 does not uniquely determine U , the freedom of rotating Uµτ

0 in the 1-2 plane

still leaves one with a vanishing θ13. However, the symmetry Gµτ
1 (Gµτ

2 ) need not
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be broken because they do not uniquely predict the mixing matrix. In particular,

one can ‘rotate’ Uµτ
0 in 2-3 (1-3) plane to obtain a nonzero θ13 and hence the phase

δ. These rotations are very natural possibilities due to the degenerate eigenvalues of

Gµτ
1,2 matrices. For any light neutrino mass matrix that enjoys such an invariance, the

authors of Ref. [4] showed that the phase δ could be computed as

cos δ =
(s2

23 − c2
23)(s2

12 − c2
12s

2
13)

4c12s12c23s23s13

for Gµτ
1 , (2.3)

cos δ =
(c2

23 − s2
23)(c2

12 − s2
12s

2
13)

4c12s12c23s23s13

for Gµτ
2 , (2.4)

where θ23, θ12, θ13 are respectively the atmospheric, solar and reactor mixing angles.

For a given 3σ range of θ12 and θ13, the relations in (2.3) and (2.4) predict a

simultaneous maximality (δ = π/2 or 3π/2 and θ23 = π/4). Keeping in mind that

there are still no definite statements regarding the values of δ and θ23, we propose a

generalization of the associate µτ interchange symmetries. We refer to them as the

associate µτ mixing symmetries. The mixing symmetry could lift the simultaneous

maximality of δ and θ23, i.e., in contrast to the prediction of exact µτ interchange(cf.

Eq.(2.3), this scenario allows a nonmaximal value of δ for a maximal value of θ23 and

vice-versa. General µτ symmetry is basically a ‘mixing’ between µ and τ neutrino

flavors unlike the conventional µτ ‘interchange’. Similar to the Gµτ
3 generator (cf.

Eq.2.2), we can derive the same (we designate it as Ggµτ
3 ) for the µτ mixing, starting

from the zeroth order mixing matrix U gµτ
0 as

U gµτ
0 =


p x 0

−xq pq y

xy −py q

 , (2.5)

where y = sin θg and q = cos θg with θg being the µτ mixing parameter and using
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Chapter. Importance of µτ mixing symmetry and its CP extension on leptogenesis

(2.1). Thus Ggµτ
3 could be constructed as

Ggµτ
3 =


−1 0 0

0 − cos 2θg sin 2θg

0 sin 2θg cos 2θg

 . (2.6)

It is to be noted that for θg = π/4, the usual µτ interchange symmetry Gµτ
3 (cf.

Eq.2.2) is recovered. An elaborate account of the high energy flavor models that

spontaneously break down to low energy residual symmetries like Ggµτ
3 can be found

in Refs. [116, 117]. Similar to [4], in our proposal also, due to the vanishing θ13, we

opt for the predictions of the associate µτ mixing symmetries Ggµτ
1,2 assuming the

Ggµτ
3 is broken. It is now obvious to anticipate, that the deviation of the parameter

θg from π/4 is solely responsible for simultaneously maximality of θ23 and δ. Having

furnished all the necessary prerequisites, in this chapter, we present our work in three

steps. In the first step, we obtain δ as δ ≡ f(θ23, θ12, θ13, θg) (Eq.2.13 & 2.17) for both

the associate µτ mixing symmetries in a model independent way. Then we present a

very general numerical analysis. For example, for the given maximality of θ23 (δ) we

try to show how far θg could deviate from π/4 for the allowed nonmaximal value of δ

(θ23). We find that the deviation (measured by a parameter θd = θg−π/4) cannot be

very large, in particular for Ggµτ
2 invariance, the deviation is significantly small. To

make a comparison of the results the current framework with µτ interchange, we then

present a distribution of cos δ for a small value of θd taking into account a Gaussian

distribution and 1σ error for the mixing angles. In the second step, we discuss how

the parameter θg could be related to a realistic model parameter in neutrino mass

models such as softly broken D4 [117], Scaling Ansatz [5,7,107,118–121], four texture

zeros in neutrino Dirac mass matrix within Type-I seesaw [122] etc. In the third

step, we show how the associate mixing symmetries Ggµτ
1,2 could arise a result of two

simultaneous CP transformations [100, 123, 124] in the neutrino mass terms. Next,
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we derive correlations between δ and the mixing angles θij in this class of models.

Finally, from the perspective of leptogenesis, we show this CP extended µτ mixing

scheme is more interesting than the CP extended µτ interchange which has been a

subject of recent interest in neutrino mass models [99, 102–105, 108, 110, 125–130].

We focus, in particular, on the ‘three flavor regime’ of leptogenesis [68,131,132]. We

also show that unlike the CP extension µτ interchange, a resonant leptogenesis [74]

is possible in our proposal. In this framework, a nonzero baryon asymmetry always

requires nonmaximality in θ23. We also demonstrate that the CP extended µτ mixing

symmetry is a novel example that brings out the importance of the off-diagonal

terms of the flavor coupling matrix [133–136] which have usually been neglected

in the computation of leptogenesis, particularly, in the models with flavor symmetries.

The rest of the chapter is organized as follows. Sec.5.33 and its various

subsections deal with the theoretical formalism to derive the model independent

constraints and some pictorial representations of the sensitivity of the observables δ

and θ23 with the newly introduced model parameter θg that generalizes µτ interchange

to µτ mixing. We then compare our results with the exact µτ interchange symmetry

and discuss the significance of the parameter θd in neutrino mass models such as

Scaling Ansatz. In Sec.2.3, we demonstrate the CP extended µτ mixing and its

consequences. In Sec.2.4 we present a qualitative as well as a quantitative description

of leptogenesis within the framework of CP extended µτ mixing. Finally, we conclude

our work in Sec.2.5.
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2.2 Model independent correlations in µτ mixing

This section contains derivations of the analytical correlations among the Dirac

CP phase, three mixing angles and the mixing parameter θg for both the associate

mixing symmetries Ggµτ
1 and Ggµτ

2 . We also discuss the compatibility of the scenario

with current neutrino oscillation data. A systematic analysis is given in the following

subsections.

2.2.1 Consequences of Ggµτ
1 invariance

As already introduced in Sec.2.1, the diagonal matrix d1 = diag(1,−1,−1) has

two repeated entries. Therefore, given the symmetry Ggµτ
1 and the diagonalization

condition (2.1), the second and third columns of the mixing matrix U gµτ
0 are not

unique. It can be subjected to a rotation in the 2-3 plane due to this two-

fold degeneracy. This is particularly interesting because the phenomenological

requirement of a nonvanishing θ13 finds a natural justification. With the choice of a

most general unitary rotation matrix U23
θ [4] in the 2-3 plane

U23
θ =


1 0 0

0 cθ sθe
iγ

0 −sθe−iγ cθ

Pφ, (2.7)

where Pφ = diag(eiφ1 , eiφ2 , eiφ3), a phenomenologically consistent PMNS matrix U =

U gµτ
0 U23

θ is obtained as

U =


p xcθ xsθe

iγ

−xq (pqcθ − ysθe−iγ) (ycθ + pqsθe
iγ)

xy −(pycθ + qsθe
−iγ) (qcθ − pysθeiγ)

Pφ. (2.8)
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2.2. Model independent correlations in µτ mixing

Now we compare (2.8) with the PMNS matrix parametrized according to the PDG

convention [112] as

UPMNS = Pχ


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c13c23

PM , (2.9)

where Pχ = diag (eiχ1 , eiχ2 , eiχ3) is an unphysical phase matrix and PM =

diag (1, ei
α
2 , ei

β
2 ) represents the Majorana phase matrix.

Comparing the (11), (12) and (13) element of (2.8) and (2.9), we find

c12c13 = p, χ1 = φ1, (2.10)

s12c13 = xcθ,
α

2
+ χ1 = φ2, (2.11)

s13 = xsθ, χ1 − δ +
β

2
− γ = φ3. (2.12)

Equating the quantity (|U21|2 − |U31|2) of (2.8) with the same of (2.9) and using

(6.8-2.12), we obtain

cos δ =
(s2

23 − c2
23)(s2

12 − c2
12s

2
13) + cos 2θg(s

2
13 + c2

13s
2
12)

4c12s12c23s23s13

, . (2.13)

In (2.13), we have re-expressed q, y in terms of θg. As expected, for θg = π/4, (2.13)

reduces to (2.3) which is the prediction of Gµτ
1 . For the convenience of numerical

analysis, we choose θd = θg−π/4, which is a measure of the deviation from the usual

µτ interchange symmetry, as the parameter instead of θg. This re-parameterization

also makes it easy to understand the variation of the observables w.r.t the deviation

from µτ interchange. Introduction of the mixing parameter θg now enables us to

explore various interesting aspects of (2.13). For example, if we set θ23 to be maximal,
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the deviation of cos δ from its maximal value can be tracked with θd from

cos δ =
cos 2(π/4− θd)(s2

13 + c2
13s

2
12)

2c12s12s13

. (2.14)

For the best-fit values of θ12 and θ13, we present a variation of δ with θd (left) for µτ

mixing and δ with θ23 for µτ interchange1 (right) in Fig.2.1.

Figure 2.1: For Ggµτ
1 (left): Variation of δ with θd (a measure of the deviation from µτ

interchange symmetry). Here, 2π − δ is also an allowed solution for the same values

of θd. For Gµτ
1 (right): Variation of δ with θ23. These plots are generated using the

best-fit values for θ13 and θ12 for NO.

It is evident from Fig.2.1 (left panel), that the robust prediction of simultaneous

maximality arising from µτ interchange (cf. Eq.2.3) has been relaxed (represented

by the blue line for θ23 = 450) since θd can be different from zero. In fact, the

deviation of δ from its maximal value is extremely sensitive to the changes in θd,

e.g., a deviation of the former from 3π/2 to 5π/4 only requires a value ≈ π/20 for

the latter. The red line represents the variation of δ for the current best-fit value

θ23 = 49.60 for NO. Clearly one can see that in the µτ interchange limit (θd = 0),

1From now on when we address predictions of µτ mixing or µτ interchange, it could be assumed
that we are implying the predictions for the associate symmetries.
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the best-fit of θ23 is not consistent with the current best-fit of δ = 2150 (denoted by

the horizontal black dotted line). However, in our µτ mixing scheme, one can fit the

best-fits simultaneously just by tuning a single parameter θd (∼ π/12) as shown by

the red line. The figure in the right hand side shows a variation of δ with θ23 for the

exact µτ interchange symmetry. It is interesting to notice, that even within the 3σ

range of θ23, one cannot reconcile the best-fit value of δ. Thus from the view point of

current experimental results, the proposed Ggµτ
1 is a more admissible symmetry than

the Gµτ
1 . This can also be realized more clearly from the Fig.2.2 where we present a

statistical comparison between the predictions of µτ interchange (Gµτ
1 ) and µτ mixing

(Ggµτ
1 ). The probability density plot in the left hand side in Fig.2.2 shows, for the

Gµτ
1 , most probable values of δ lie within a region centered approximately around

δ ∼ 2900 which is far away (tension is ∼ 2σ) from the best-fit 2150 for NO.

Figure 2.2: For Gµτ
1 (left): Probability distribution of δ with θ23. For Ggµτ

1 (left): The

same plot but for θd = π/12. Here we have used Gaussian distribution for each of the

mixing angles with 1σ errors.

On the other hand, as also explained earlier, for the best-fit of θ23, the most

probable values of δ could be reconciled with the best-fit 2150 for θd = π/120. As
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shown in the figure in the right hand side of Fig.2.2, the entire pattern (shown in the

left side) has shifted near the best-fit shown by the green ‘∗’. Before we embark on

our discussion of Ggµτ
2 , let us briefly articulate some essential points. Firstly, when

we say the µτ interchange (Gµτ
1 ) is disfavored, we always mean a NO. As one can see

from Fig.2.2 (left hand side), best-fit of δ (= 2840) for an IO could be well reconciled

within 1σ of θ23. However, as mentioned in the introduction, that the IO seems to

be disfavored now by the current experimental data. One might also wonder how the

mixing parameter θg = π/4 + θd could be realized in a realistic neutrino mass model.

Because so far it appears to be a model independent tunning parameter, except the

mention to Ref. [116, 117] in the introduction. In Sec.2.2.3, we shall briefly discuss

some models regarding the relation of θg with the model parameters and show indeed

there is a large class of models that exhibit µτ mixing at low energy.

2.2.2 Consequences of Ggµτ
2 invariance

In this case, a rotation in 1-3 plane is possible due to the degeneracy in d2 =

(−1, 1,−1) matrix. By choosing a most general unitary rotation matrix U13
θ [4] as

U13
θ =


cθ 0 sθe

iγ

0 1 0

−sθe−iγ 0 cθ

Pφ (2.15)

we construct the phenomenologically viable PMNS matrix U = U gµτ
0 U13

θ which is

given by

U =


pcθ x psθe

iγ

−(xqcθ + ysθe
−iγ) pq (ycθ − xqsθeiγ)

(xycθ − qsθe−iγ) −py (qcθ + xysθe
iγ)

Pφ. (2.16)
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Figure 2.3: For Ggµτ
2 (left): Variation of δ with θd (a measure of the deviation from µτ

interchange symmetry). Here, 2π − δ is also an allowed solution for the same values

of θd. For Gµτ
2 (right): Variation of δ with θ23. These plots are generated using the

best-fit values for θ13 and θ12 for NO.

Following a similar procedure demonstrated previously for Ggµτ
1 , we compare

(2.16) with the PMNS matrix of (2.9) and equate the quantity |U22|2− |U32|2 of both

the matrices. This results in

cos δ =
(c2

23 − s2
23)(c2

12 − s2
12s

2
13)− cos 2θg(s

2
13 + c2

13c
2
12)

4c12s12c23s23s13

. (2.17)

We note that for θg = π/4, we recover (2.4). Similar to the previous case

parameterizing θg = π/4+θd and setting θ23 = π/4, one can track the nonmaximality

of δ due to the maximal value of θ23 (cf. plot in the left hand side in Fig.2.3) with

the correlation

cos δ =
− cos 2(π/4− θd)(s2

13 + c2
13c

2
12)

2c12s12s13

. (2.18)

In Fig.2.3 (left figure), the red line represents the variation of δ with θd for the best-fit

of θ23 = 49.60. We find a remarkable ‘coincidence’ of (2.4) with the present data on

θ23 and δ. It is evident from the figure in the left hand side in Fig.2.3 (also in Fig.2.4),
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one requires a really tiny departure (numerically, θd less than −0.50) from exact µτ

interchange to fit the most probable values of δ simultaneously with the best-fit of δ

and θ23. When we opt for a larger departure from µτ interchange, even with θd = −10,

the most probable values of δ start to move towards CP conserving values as shown

in the figure in the right hand side of Fig.2.4. Thus as far as the current data on δ

and θ23 is concerned, undoubtedly, µτ interchange (here Gµτ
2 ) is a better symmetry

to explain the data than the proposed µτ mixing (here Ggµτ
2 ). However, compared

to the previously released data [12], the new data shows a tendency to move towards

the CP conserving values mainly driven by NOνA anti-neutrino appearance channel.

If this trend continues, one has to think beyond µτ interchange symmetry. In that

case, the µτ mixing (as shown in the figure in the right hand side in Fig.2.4) could

be a good option to explain the data.

Figure 2.4: For Gµτ
2 (left): Probability distribution of δ with θ23. For Ggµτ

2 (left): The

same plot but for θd = π/12. Here we have used Gaussian distribution for each of the

mixing angles with 1σ errors.

So we conclude this section with the remark that, to explain the present data,

the proposed Ggµτ
1 (mixing) symmetry has an edge over the Gµτ

1 (interchange),
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whereas the symmetries which are in the class of G2, to explain the present data,

the interchange scenario is better than the proposed mixing scenario.

2.2.3 µτ mixing in some neutrino mass models

In this section, we discuss some examples of the low energy residual µτ symmetry

so that the parameter θg could be connected to the model parameter(s). Indeed there

is a large class of models that belong to the mixing category. For example the authors

of Ref. [116, 117] derive the mixing from explicit symmetry group D4 where the µτ

mixing parameter θg could be related to the model parameter as

cos 2θg ∼ −
µsoft

M
, (2.19)

where µsoft is a soft breaking term in the D4 model andM is the mass scale of the RH

neutrinos needed to obtain Type-I seesaw light neutrino masses. The model predicts

the same leading order mixing matrix as shown in (2.5). Now to generate a nonzero θ13

we can further add soft breaking terms to the model. However, notice that, here the

introduction of new breaking terms corresponds to the rotation of the leading order

mixing matrix (cf. Eq.2.7) and the final prediction (cf. Eq.2.13) is independent of

the rotation angle. Since in general, generation of nonzero θ13 requires small breaking

terms, Eq.2.19 still holds at the leading order. But unlike the D4 model, cos 2θg

is not directly related only to θ23 but it connects θ23 and δ with the correlations

shown in (2.13) or (2.17). The authors of Ref. [116, 117] conclude, that to test a

sizable deviation of physical parameters such as θ23 one requires the scale of µsoft of

same order as the mass scale of the RH neutrinos requiring a large deviation from µτ

interchange (cos 2θg ' 1). However, as we have shown in the previous section, even

with a small departure from the interchange symmetry, one can test the parameters
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δ and θ23 with the correlations derived this work. Thus the scale of µsoft and M need

not be the same. In fact, one requires much smaller scale for µsoft than the scale

M . Models with Scaling Ansatz or Simple Real Scaling (SRS) originally proposed in

Ref. [7] and then analyzed at length in Ref. [5, 107, 118–121, 137], also belong to the

µτ mixing category. As derived in Ref. [119], the residual symmetry for SRS is given

by

Gk
3 =


−1 0 0

0 (1− k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1− k2)(1 + k2)−1

 , (2.20)

where ‘k’ is the scale parameter of the model that scales, for example, one row of Mν

with the other row or one column with another column [7]. Thus the scale parameter

of the model could be constrained simply by the relation

k =
1± cos 2θg

sin 2θg
(2.21)

along with (2.13) or (2.17). One can also constrain the parameters of models like

four zero textures (in charge lepton flavor basis) within Type-I seesaw [122], so called

discrete Dark Matter (DM) models [138,139] as well as the models with global U(1)

symmetries [129,140–142] which at the leading order, show up a µτ mixing scheme at

low energy. However, we would like to stress that at this stage, where the precise

values of δ and θ23 are yet to be measured, if the µτ mixing parameter can be

constrained a priori by some other constraints, (e.g., the mass-squared differences, the

mixing angles other than θ23 or some cosmological phenomenon such as leptogenesis

etc.) then (2.13) or (2.17) could be used to predict δ or θ23. So the models with

µτ mixing symmetry and lesser number of parameters (such as Scaling Ansatz plus

texture zeros [107]) are most welcome.

58



2.3. CP extension of the µτ mixing symmetry

2.3 CP extension of the µτ mixing symmetry

2.3.1 CP symmetry in a general light neutrino mass term

So far the discussion was quite general. In this section we want to explore some

special class of µτ mixing. Since in general, only flavor symmetries are not sufficient

to predict the CP violating phases, a lot of effort has been devoted in past few years to

ameliorate flavor symmetries with CP symmetries [99] by demanding the invariance

of the neutrino mass term with the field transformation

νL` → i(Ga)`mγ
0νCLm (a = 1, 2, 3). (2.22)

Though one has always to be consistent with the ‘consistency condition’ to have a

combined theory of flavor and CP [102,103]. The consistency condition can be written

as

Xrρ
∗
r(g)X−1

r = ρr(g), (2.23)

where Xr is a unitary matrix representing CP symmetry which acts on a generic

multiplet ϕ as

Xrϕ(x)
CP−→ Xrϕ(x′) (2.24)

with x′ = (t,−x) and ρr(g) is the representation for the element g of the flavor group

in an irreducible representation r. Eq.2.22 leads to the complex invariance

GT
aMνGa = M∗

ν . (2.25)
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Now at low energy, among the three residual Z2 generators, if two of them, say, G2

and G3 correspond to the complex invariances

GT
2MνG2 = M∗

ν , G
T
3MνG3 = M∗

ν , (2.26)

the remaining one, i.e., G1 automatically satisfies a real invariance [124]

GT
1MνG1 = Mν . (2.27)

Now it is trivial to show, that (4.24) is satisfied, since in this case, (4.24) would imply

G2G1G
−1
2 = G1, (2.28)

G3G1G
−1
3 = G1 (2.29)

and since by construction GaGb = Gc for a 6= b 6= c, the left and right hand sides

of the above equations are consistent. Similarly, one obtains a real invariance for

G2, for the simultaneous complex invariances for G1 and G3. However, note that, if

we demand the complex invariances for G1 and G2, we obtain a real invariance for

G3 which is not acceptable, since, that will correspond to a vanishing θ13. Let us

now turn into the computation of the Dirac CP phases for both the acceptable real

invariances, i.e., (Ggµτ
1 )TMνG

gµτ
1 = Mν and (Ggµτ

2 )TMνG
gµτ
2 = Mν . For the both the

cases, the second of (2.26) leads to [8, 143]

sin δ = ± sin 2θg
sin 2θ23

. (2.30)
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Eliminating θg from (2.13) and (2.30) for Ggµτ
1 whereas doing the same from (2.17)

and (2.30) for Ggµτ
2 we obtain a generic expression for cos δ as

cos δ =
AiB ±

√
A2
iB

2 − (B2 + C2
i sin2 2θ23)(A2

i − C2
i cos2 2θ23)

(B2 + C2
i sin2 2θ23)

, (2.31)

where i = 1, 2 corresponds Ggµτ
i symmetries. The parameters Ai, B and Ci are the

functions of the mixing angles θij with the explicit expressions

A1 = (s2
23 − c2

23)(s2
12 − c2

12s
2
13), A2 = (c2

23 − s2
23)(c2

12 − s2
12s

2
13), (2.32)

C1 = (s2
13 + c2

13s
2
12), C2 = (s2

13 + c2
13c

2
12), (2.33)

B = 4c12s12c23s23s13. (2.34)

The novel correlations obtained in (2.31) are exact and can be further simplified

if terms O(s4
13) is dropped. Interestingly, both the relations are independent of θg

and coincide with the prediction cos δ = 0 for CP extended µτ (CPµτ ) [109, 144] in

the limit θ23 → π/4.

In Fig.2.5, we have shown the predictions of CP extended µτ mixing. The

figures in the top panel are for the real invariance for Ggµτ
1 (for each case there are

two solutions due the ‘±’ sign in (2.31)) and those which are in the bottom panel

are for the real invariance for Ggµτ
2 . Notice that unlike the CPµτ (CP extended µτ

interchange [106]) which predicts co-bimaximal mixing (δ = ±3π/2 and θ23 = π/4),

the current scenario allows nonmaximal atmospheric mixing. However, the most

probable values of δ are clustered around their near maximal values. Thus significant

deviation from maximality of δ would rule out the scenario (present data on δ for NO

is at ∼ 1.37σ tension with the predictions obtained in the CP extended µτ mixing).

Before we proceed further into the discussion of the CP extended µτ mixing in Type-
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I seesaw framework with the motivation to explore the implications on baryogenesis

via leptogenesis, let’s point out an interesting aspect regarding the class of the CP

extended µτ mixing. We have seen in Sec.5.33, introduction of µτ mixing instead of

the µτ interchange symmetry, adds up two more degrees of freedom. To be precise,

for both the cases, whilst simultaneous nonmaximal values for δ and θ23 are allowed,

only for the µτ mixing scenario, we can test nonmaximality in one parameter for a

maximal value of the other.

Figure 2.5: For the real invariance (Ggµτ
1 )TMνG

gµτ
1 = Mν (top): Probability

distribution of δ with θ23. For the real invariance (Ggµτ
2 )TMνG

gµτ
2 = Mν (bottom):

Probability distribution of δ with θ23. Here we have used Gaussian distribution for

each of the mixing angles with 1σ errors.
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Therefore there are two options i) δ could be maximal but θ23 is not ii) θ23 could be

maximal but δ is not.

From Fig.2.5, it is evident that the CP extended µτ mixing belongs (approxi-

mately) to the case ‘i’. Explicit flavor models for the case ‘ii’ could also be interesting

in future since we don’t have any precise statements on the value of δ and θ23 at this

moment.

2.3.2 CP symmetry in Type-I seesaw

We may now proceed to the discussion of this extended CP in Type-I seesaw

mechanism. It is well known that to obtain light neutrino masses one has to introduce

singlet right handed (RH) fields as a minimal extension to the Standard Model (SM).

Thus with the introduction of the singlet fields NRi, in the diagonal basis of the RH

neutrinos, the Lagrangian for the Type-I seesaw reads

−Lνmass = N̄iR(mD)iαlLα +
1

2
N̄iR(MR)iδijN

C
jR + h.c. (2.35)

with α = e, µ, τ and i = 1, 2, 3. The first term in (4.28) is a Dirac type and the second

term is a Majorana type mass term which together lead to the effective 3 × 3 light

neutrino Majorana mass matrix Mν as

Mν = −mT
DM

−1
R mD. (2.36)

In the diagonal basis of the charged lepton as well as the heavy RH neutrinos, a CP

invariant light neutrino mass matrix

GTMνG = M∗
ν (2.37)
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could be obtained with the following transformation on mD.

mDG = −m∗D (2.38)

We refer to Refs. [5, 106, 145], to realize how in the diagonal basis of charged

lepton and heavy neutrinos, CP is applied to the Type-I seesaw Lagrangian. Now in

our case, to have a real invariance for Ggµτ
1 as well as Ggµτ

2 one needs the following

transformations.

mDG
gµτ
i = −m∗D,mDG

gµτ
3 = −m∗D. (i = 1, 2) (2.39)

For both the cases, the most general form of mD that satisfies the second constraint

of (2.39) can be parametrized as

mD =


a b1 + ib2 −b1 tan θg + ib2 cot θg

e c1 + ic2 −c1 tan θg + ic2 cot θg

f d1 + id2 −d1 tan θg + id2 cot θg

 , (2.40)

where all the parameters are real and a priori unknown. There will be other

constraints (the parameters b1, c1, d1 could be expressed in terms a, e, f and θg) on

the mass matrix mD of (2.40) due to the first transformation in (2.39). However,

those transformations are not important in this work, since we present the discussion

of leptogenesis with few benchmark values (particularly for the decay parameters Kiα

and the CP asymmetry parameters εiα as given in the next section) which are always

compatible with those transformations2. In any case, those constraint equations could

easily be derived as shown in Ref. [5]. But what matters here, the overall structure of

mD shown in (2.40). Having set up all the necessary prerequisites, we are now ready

2Even after considering the constraints from Ggµτ1,2 , the number of effective parameters in mD are
more than the number of experimental constraints.
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to explore the baryogenesis via leptogenesis in the CP extended µτ mixing framework.

2.4 Leptogenesis in extended CP framework

Baryogenesis via leptogenesis is a process where CP violating and out of

equilibrium decays of the heavy RH neutrinos produce lepton asymmetry which is

subsequently converted into baryon asymmetry by non-perturbative sphalerons. For

a simplified discussion, we consider a scenario with two RH neutrinos N1 and N2-

the decays and interactions of which would give rise to the process of leptogenesis.

However, the qualitative results drawn in such a scheme would also be relevant for a

three RH neutrino case. When the masses of N1 and N2 are in the regime Mi > 1012

GeV where all the charged lepton flavors are out of equilibrium [68, 131, 132], the

quantum states |`i〉 produced by the decay of N1 and N2 can be written as a coherent

superposition of the flavor states |`α〉 as

|`i〉 = Aiα |`α〉 , |¯̀i〉 = Āiα |¯̀α〉 . (i = 1, 2, α = e, µ, τ) (2.41)

The amplitudes at the tree level are given by

A0
iα =

mDiα√
(mDm

†
D)ii

and Ā0
iα =

m∗Diα√
(mDm

†
D)ii

. (2.42)

Since there is no interaction to break the coherence of the quantum states before

it inversely decays to Ni, the asymmetry will be produced along the direction of |`i〉(or

|¯̀i〉) in the lepton flavor space. In that case, the set of classical kinetic equations
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relevant for leptogenesis could be written as [146]

dNNi

dz
= −Di(NNi −N eq

Ni
), with i = 1, 2 (2.43)

dNB−L

dz
= −

2∑
i=1

εiDi(NNi −N eq
Ni

)−
2∑
i=1

WiNB−L, (2.44)

with z = M1/T . Eq.2.43 tracks the dynamics of the RH neutrinos (produc-

tion+decay) while (2.44) tracks the lepton asymmetry which survives in the interplay

of the production (first term) and washout (second term), as a function of z. NNi ’s and

NB−L are the abundances computed per number of Ni’s in ultra-relativistic thermal

equilibrium. Defining xij = M2
j /M

2
i and zi = z

√
x1i, , the decay terms can be written

as

Di =
ΓD,i
Hz

= Kix1iz〈1/γi〉, (2.45)

where total decay rates ΓD,i are given by ΓD,i = Γ̄i + Γi = ΓD,i(T = 0)〈1/γi〉 with

〈1/γi〉 as the thermally averaged dilation factor and can be expresses as the ratio of

two modified Bessel functions as

〈1/γi〉 =
K1(zi)

K2(zi)
. (2.46)

The decay parameter Ki is given by

Ki ≡ ΓD,i(T = 0)/H(T = Mi). (2.47)

The equilibrium abundance of Ni is given by N eq
Ni

= 1
2
z2
iK2(zi) and the CP asymmetry

εi =
∑

α εiα is given by

εi =
∑
α

Γiα − Γ̄iα
Γi + Γ̄i

(2.48)
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with the flavored CP asymmetry εiα as [71]

εiα =
1

4πv2hii

∑
j 6=i

Im{hij(mD)iα(m∗D)jα}
[
f(xij) +

√
xij(1− xij)

(1− xij)2 + h2
jj(16π2v4)−1

]

+
1

4πv2hii

∑
j 6=i

(1− xij)Im{hji(mD)iα(m∗D)jα}
(1− xij)2 + h2

jj(16π2v4)−1 , (2.49)

where hij ≡ (mDm
†
D)ij. The final B − L asymmetry could be written as

N f
B−L = N in

B−Le
−

∑
i

∫
dz′Wi(z

′) +N lepto
B−L, (2.50)

where N in
B−L could be a possible pre-existing asymmetry at an initial temperature Tin

and N lepto
B−L is the contribution from pure leptogenesis. In this work we assume any

pre-existing asymmetry (so called strong thermal condition [147]) is strongly washed

out by the heavy RH neutrinos. Therefore, we are in a strong washout scenario.

Thus in the washout term in (2.44), the ∆L = 1 scattering term W∆L=1
i can be

safely neglected [131]. However, a particular washout regime is a matter of choice

in our discussion. One can neglect the pre-existing asymmetry assuming there is no

source of asymmetry production prior to the the leptogenesis phase and explore a

weak washout regime as well. In that case inclusion of scattering would only affect

the asymmetry production efficiency [131] but the qualitative conclusion drawn in a

strong washout regime would remain the same. For our purpose, we shall also neglect

the non-resonant part of the ∆L = 2 term W∆L=2
i which is relevant only at higher

temperature. Now the relevant washout term Wi ' W ID
i can be written as (after

properly subtracting the real intermediate state contribution of ∆L = 2 process)

W ID
i =

1

4
Ki

√
x1iK1(zi)z

3
i . (2.51)
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The final baryon to photon ratio is given by

ηB = asph
N lepto
B−L

N rec
γ

' 0.96× 10−2N lepto
B−L, (2.52)

where Nγ is the photon density at the recombination and the sphaleron conversion

coefficient asph ∼ 1/3. In a given model, this ηB has to be compared with measured

value [148]

ηCMB
B /10−10 = 6.3± 0.3. (2.53)

In the mass regime 109 GeV < Mi < 1012 GeV, interactions due to τ− lepton flavor

are fast enough to break the coherent evolution of the quantum states |`i〉 before it

inversely decays to Ni. The |`i〉 is then projected into a two flavor basis characterized

by the eigenstates along the directions of τ and τ⊥i = e+µ. In the three flavor regime,

i.e. Mi < 109 GeV, the µ− lepton flavor comes in to equilibrium thus breaking the

coherent evolution of the states which is along τ⊥i . One resolves all the flavors (e, µ, τ)

individually (for both the flavor regimes, we are assuming strong decoherence so that

the density matrix3 is flavor diagonal [68,150]). Thus for each flavor regime, one has

to track the lepton asymmetry in the relevant flavors. For example, if we are in the

two flavor regime, the lepton asymmetry has to be tracked in τ and τ⊥i flavors. The

Boltzmann equations for a generic flavor ‘α’ could be written as

dNNi

dz
= −Di(NNi −N eq

Ni
), with i = 1, 2 (2.54)

dN∆α

dz
= −

2∑
i=1

εiαDi(NNi −N eq
Ni

)−
2∑
i=1

P 0
iαW

ID
i N∆α . (2.55)

Here N∆α is the asymmetry in the flavor α analytic solution for which can be obtained

3An elaborate computation of leptogenesis in density matrix formalism is given in Ref. [149]
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as

N∆α = −
2∑
i

εiακiα (2.56)

with the efficiency factor

κiα(z) = −
∫ ∞
zin

dNNi

dz′
e−

∑
i

∫ z
z′ P

0
iαW

ID
i (z′′)dz′′dz′. (2.57)

For the purpose of numerical integration, one can set very small value of ‘zin(∼ 0)’

and a very large value for ‘z(∼ 103)’. The final baryon to photon ratio is then given

by

ηB = 0.96× 10−2
∑
α

N∆α . (2.58)

The quantity P 0
iα is the tree level probability of a quantum state produced by the ith

heavy neutrino being in the flavor α and has an expression

P 0
iα ≡ Kiα/Ki, (2.59)

where Kiα is the flavored decay parameter defined as

Kiα =
Γiα + Γ̄iα
H(T = Mi)

≡ |mDiα |2
Mim∗

(2.60)

with m∗ ' 10−3 being the equilibrium neutrino mass. Let us trace out another

important parameter ∆Piα = Piα − P̄iα strongly relevant to our discussion. The

tree+loop level projectors are given by Piα = |Aiα|2 = P 0
iα + ∆Piα

2
, P̄iα = |Āiα|2 =

P 0
iα− ∆Piα

2
. The quantity ∆Piα, the difference between the tree+loop level projectors,

is nonzero since, in general |Aiα| 6= |Āiα| [67]. Now the flavored CP asymmetry
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parameter εiα of (2.48) can be simplified as

εiα = P 0
iαεi + ∆Piα/2. (2.61)

Though the quantity ∆Piα is not so significant in the washout terms, for the CP

asymmetry parameter it is remarkably relevant. In fact, we show that the entire

source of CP violation, in a particular flavor ‘α’ arises due to ∆Piα.

As mentioned in the introduction, here we discuss only the three flavor regime

(Mi < 109 GeV) of the leptogenesis to show the dramatic difference between the

conclusion drawn in case of a CP extended µτ interchange [106, 145, 151] and the

proposed CP extended µτ mixing. Let’s clarify explicitly why we do that.

One flavor regime: First of all, for the one flavor regime (Mi > 1012

GeV), the second term in (2.49) is vanishing when summed over ‘α’, i.e,

Im{hji(mD)iα(m∗D)jα} = Im[|hji|2] = 0. The first term is proportional to

Im{h2
ij}. Using (2.40), the ‘h = mDm

†
D’ can shown to be a real matrix. Thus the

flavor summed CP asymmetry εi =
∑

α εiα vanishes for any ‘i’. Therefore successful

baryogenesis is not possible in the unflavored regime. This result has also been

obtained in CP extended µτ interchange symmetry [106, 145, 151]. One can also

show εie = 0, since the first column of the mD matrix in (2.40) is real. Thus similar

to CP extended µτ interchange, εiµ ≡ ∆Piµ/2 = −εiτ . Therefore, in the one flavor

regime, the results obtained for leptogenesis in CP extended µτ mixing, are similar

to CP extended µτ interchange.

Two flavor regime: As already mentioned, we are probing a strong washout
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scenario: any pre-existing asymmetry that was present prior to the phase of

leptogenesis has been strongly washed out. This is possible only in the three flavor

regime. For the two flavor regime (109 GeV < Mi < 1012 GeV), this is not possible

because though in the direction of τ flavor the asymmetry could be washed out

assuming Kiτ � 1, a component of the asymmetry would always survive in the

direction orthogonal to the τ⊥ [73,150], irrespective of the value of Kτ⊥ . Thus a pure

leptogenesis scenario breaks down. In any case, as mentioned earlier, along with

the strong washout scenario, one can also probe the weak washout regime relaxing

the strong-thermal condition (pre-existing asymmetry), which has been done so far

in the literature in the context of CPµτ ). However, for the latter case, apart form

showing a successful baryogenesis, we hardly expect any prediction on low energy

neutrino parameters, since the number of parameters in mD is still larger than the

number of experimental constraints. Thus in the two flavor regime, from leptogenesis

perspective, there will be no significant difference between a CP extended µτ

interchange and a CP extended µτ mixing. But certainly differences will be there

if one assumes texture zeros on top of the CP extended µτ mixing [110, 122, 152] or

imposes the symmetry in a minimal seesaw famework [151, 152]. Since in that case

there would be less number of parameters and one might expect predictions from the

baryogenesis constraint on the physical parameters such as θ23 which is nonmaximal

in general in the µτ mixing scheme.

Three flavor regime: Now coming back to the discussion of leptogenesis in the

three flavor regime, first of all one has to go beyond the hierarchical scenario, since

in the hierarchical limit the CP asymmetry parameter, say, ε1α is proportional to M1

and if M1 < 109 GeV, one can not generate the observed baryon asymmetry [153].

However if the mass differences of the RH neutrinos are close enough, one expects

a significant enhancement in the loop functions, particularly self energy contribution
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to the CP asymmetry parameter increases and therefore even if Mi < 109 GeV,

required baryon asymmetry could be generated due to this enhancement in the

CP asymmetry parameter [74]. However, in that scenario one has to consider the

asymmetry generated by all the heavy neutrinos, since in the standard hierarchical

scenario, contribution from the heavier RH neutrinos are washed out by the lighter

RH neutrinos. In the limit of quasi-degeneracy (QD) in the RH neutrino spectrum,

the contribution from the heavier neutrinos can not be washed out. For an explicit

analytical explanation of leptogenesis due to QD mass spectrum, we refer to [154]. For

the CP extended µτ interchange symmetry as well as mixing, the NB−L asymmetry

could be written as

N f
B−L =

∑
α

N∆α = −
2∑
i

(εiτκiτ + εiµκiµ) = −
2∑
i

εiτ (κiτ − κiµ) = −
2∑
i

εiτκ
eff
i ,(2.62)

where we use the fact that εie = 0 and εiµ = −εiτ and at z →∞, the efficiency factor

κiα has the expression

κiα = −
∫ ∞

0

dNNi

dz′
e−

∑
i

∫∞
z′ (Kiα/Ki)W

ID
i (z′′)dz′′dz′ α = (τ, µ). (2.63)

Now notice that, for CP extended µτ interchange (θg → π/4), using (2.40) and (2.60)

the decay parameters can be obtained as

KI
1µ =

b2
1 + b2

2

M1m∗
= KI

1τ , KI
2µ =

c2
1 + c2

2

M2m∗
= KI

2τ , (2.64)

where ‘I’ stands for ‘Interchange’. Thus from (2.63) one concludes κiµ = κiτ and

hence, from (2.62), N f
B−L = 0. Therefore, even if we are in the resonance regime of

leptogenesis, baryon asymmetry vanishes due to the exact cancellation of the efficiency

factors. But for the CP extended µτ mixing this is not the case. This is since, though

the decay parameters Kiµ have the same expression as shown in (2.64), since θg 6= 0
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in general, KM
iτ can be obtained as

KM
iτ =

[Re(mD)iµ]2 tan2 θg + [Im(mD)iµ]2 cot2 θg
Mim∗

(2.65)

which reduces to KI
iτ of (2.64) in the limit θg → π/4. Here ‘M ’ stands for ‘Mixing’. In

fact, given the distribution of δ in Fig.2.5, we can approximate sin δ ∼ 1 and therefore

using (2.30), we can recast KM
iτ as

KM
iτ =

[Re(mD)iµ]2 tan2 θ23 + [Im(mD)iµ]2 cot2 θ23

Mim∗
. (2.66)

Thus since KM
iτ 6= KM

iµ , from (2.62) NB−L is nonvanishing. It is now clear that to

obtain a nonzero baryon asymmetry, in this CP extended µτ mixing framework, one

always needs deviation of θ23 from maximality. Now parameterizing θ23 as θ23 =

(π/4 + δx), where the parameter δx accounts for the nonmaximality of θ23, (2.66)

could further be simplified as

KM
iτ = KI

iτ (1 + 4δx cos 2ξi), ξi = tan−1 Im[(mD)iµ]

Re[(mD)iµ]
. (2.67)

Thus except for a very special solution cos 2ξi = 0, a nonvanishing baryon asymmetry

is guaranteed by a nonmaximal value of θ23. Now, the κeff
i of 2.62 can be obtained as

κeff
i = 4δxK

I
iτ cos 2ξ

∫ ∞
0

dNNi

dz′
e−

∑
i

∫∞
z′ K

I
iτK

−1
i W ID

i (z′′)dz′′
∑
i

∫ ∞
z′

K−1
i W ID

i (z′′)dz′′dz′.(2.68)

For convenience, we may choose cos 2ξi ≡ cos 2ξ = 1 4. Then we may further

4This is always not the case. The parameter ξ is model dependent. However, as we have already
pointed out earlier, the models with CP symmetries, one can not constrain the mass matrix element
only by oscillation data, unless some special conditions are assumed [110]. Thus cos 2ξ would be a
probable solution.
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parametrize the κeff
i as

κeff
i ≤ mmax

4δx
m∗

∫ ∞
0

dNNi

dz′
e−

∑
i

∫∞
z′ K

I
iτK

−1
i W ID

i (z′′)dz′′
∑
i

∫ ∞
z′

K−1
i W ID

i (z′′)dz′′dz′,(2.69)

where m denotes the overall mass scale of the light neutrinos. The effective efficiency

factor in (2.69) has few interesting features. First, from the perspective of κeff
1 i.e.,

effective production efficiency due of N1, it suffers a two step suppression. The first

one comes from the N2-washout, since in contrast to the hierarchical scenario, in the

QD limit N2 washout significantly reduces the asymmetry produced by N1 [154]. The

second one is due the parameter δx which appears as a pre-factor in (2.69). In case of

κeff
2 , firstly it increases since the N1 interactions cannot fully washout the asymmetry

produced by N2 (the production from N2 is still on), however again similar to κeff
1 , it

faces a suppression by δx. However, due to the small mass splitting between the masses

of the RH neutrinos, one obtains comparable production efficiencies (κeff
1 ' κeff

2 ). Let

us now have a numerical estimate of the final baryon asymmetry. From (2.53), it is

evident that NB−L =
∑

αN∆α ' 6.3 × 10−8. Now if we choose a very small value

of the pre-factor in (2.68), say, 4δxK
I
iτ cos 2ξ ' 0.1 (this can be done, e.g., either by

choosing a very small value of cos 2ξ or very small value of δx), a numerical integration

of (2.68) gives κeff
i ' 2 × 10−5, where we have assumed Kiµ = Kiτ = 25. Therefore,

to be consistent with the observed value of NB−L, we require |εiτ | ' 1.5× 10−3. This

has also been reproduced in Fig.2.6 by solving the Boltzmann equations, assuming

both the RH neutrinos contribute equally (this is justified when one chooses very

small mass splitting between RH neutrinos, which is needed in this scheme to obtain

resonance in the three flavor regime). One can also comment on the mass scale of the

RH neutrinos. For example, let say the resonant enhancement of the CP asymmetry

happens when the mass difference ∆ =
√
x12−1 ' 10−8. Then assuming the elements

of mD in (2.49) as mD ∼
√
Mm one obtains the mass scale of the RH neutrinos
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2.4. Leptogenesis in extended CP framework

M ∼ 107 GeV. One can explore another interesting situation, assuming cos 2ξ = 1,

mmax '
√
|∆m2

23| and the current best-fit of θ23 ' 49.60 (δx ∼ 4.60). This would

correspond to the value of the pre-factor in (2.69) as mmax
4δx
m∗
' 8. In that case the

correct value of ηB could be generated with |εiτ | ' 2.6 × 10−5 and consequently the

mass scale of the RH neutrinos could be lowered to ∼100 TeV.

Figure 2.6: Variation of NB−L with z assuming 4δxK
I
iτ cos 2ξ = 0.1 and |εiτ | '

1.5×10−3. The blue line is the contribution from a single RH neutrino. The red line,

matching the observed range, denotes contributions from both the RH neutrinos.

Having established the possibility of resonant leptogenesis in the CP extended

µτ mixing scheme, the main purpose of the leptogenesis study in this work is served.

However, still one would like to consider some other interesting possibilities such as

flavor coupling [133–135]. So far we have discussed the leptogenesis scenario without

flavor coupling matrix [132] in the Boltzmann equations. With flavor couplings the

Boltzmann equation of (2.54) and (2.55) will be modified as

dNNi

dz
= −Di(NNi −N eq

Ni
), with i = 1, 2 (2.70)

dN∆α

dz
= −

2∑
i=1

εiαDi(NNi −N eq
Ni
)−

2∑
i=1

P 0
iαW

ID
i

∑
β=e,µ,τ

CαβN∆β
, (2.71)
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Chapter. Importance of µτ mixing symmetry and its CP extension on leptogenesis

where the flavor coupling matrix Cαβ is given by

Cαβ =


188/179 32/179 32/179

49/358 500/537 142/537

49/358 142/537 500/537

 (2.72)

which accounts for the asymmetry in lepton doublets as well as Higgs asymmetry.

One might wonder whether the flavor coupling effect can save the situation for the CP

extended µτ interchange symmetry, i.e., whether the entries of the flavor coupling can

create a mismatch between the decay parameters so that one obtains a nonzero κeff
i .

Starting from the simplest case, i.e., assuming a diagonal C matrix (which is usual in

the study of leptogenesis in the neutrino mass models), if one writes the Boltzmann

equations, the scenario remains unchanged. This is because the elements Cµµ and Cττ

are the same and therefore, are unable to produce any mismatch between the decay

parameters. Thus similar to the previous case (C = I), no net lepton asymmetry will

generate. Interestingly, even if one assumes the nondiagonal C matrix, one cannot

generate a nonzero lepton asymmetry. Since, P 0
iµ = P 0

iτ , the µ and τ flavor will

couple each other with equal strength (P 0
iµ = 142/537). Therefore, there will be no

net asymmetry mismatch because the production is equal an opposite (εiµ = −εiτ ).

Mathematically, this can be understood in the following way. We can go to a basis

where the Boltzmann equation in (2.71) is diagonal in a generic flavor, say α′. This

can be done by the means of a unitary transformation as

dN∆α′

dz
= −

2∑
i=1

εiα′Di(NNi −N eq
Ni

)−
2∑
i=1

W ID
i V −1P 0

iαCαβV N∆β′
, (2.73)

where

N∆β′
= V −1N∆β

, εiα′ = V −1εiα, V −1P 0
iαCαβV = P 0

iβ′δα′β′ . (2.74)

76



2.4. Leptogenesis in extended CP framework

Now similar to (2.56), the NB−L in the prime basis can be written as

NB−L =
∑
α′

N∆α′
= −

∑
α′

2∑
i

εiα′κiα′ . (2.75)

For numerical computation, we assume that the total decay parameterKi = 60, Kiµ =

Kiτ = 25. Thus, the matrix V which diagonalizes P 0
iαCαβ is given by

V =


0.125 0.000 −0.971

0.701 −0.707 0.166

0.701 0.707 0.166.

 . (2.76)

This implies


εie′

εiµ′

εiτ ′

 =


0.125 0.000 −0.971

0.701 −0.707 0.166

0.701 0.707 0.166.


−1

εie

εiµ

εiτ

 =


0

1.414εiτ

0

 . (2.77)

Therefore the asymmetry vector in the prime basis is given by


N∆e′

N∆µ′

N∆τ ′

 =


0

−1.414
∑

i εiτκiµ′

0

 (2.78)

which should then be transformed in the unprimed basis (original basis of leptogen-

esis) as


N∆e

N∆µ

N∆τ

 =


0.125 0.000 −0.971

0.701 −0.707 0.166

0.701 0.707 0.166.




0

−1.414
∑

i εiτκiµ

0

 =


0

0.996
∑

i εiτκiµ′

−0.996
∑

i εiτκiµ′

(2.79)
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Chapter. Importance of µτ mixing symmetry and its CP extension on leptogenesis

Thus
∑

αN∆α = 0 and we have vanishing NB−L. However, for the proposed µτ

mixing, where in general, P 0
iµ 6= P 0

iτ , the asymmetry in the µ and τ flavor will couple

to each other with different coupling strength. Thus, even if we consider diagonal

C matrix, we obtain a nonzero lepton asymmetry. But most interestingly, when we

consider the general nondiagonal C matrix, a part of the net asymmetry, generated

due to the interplay between the µ and τ flavor, will also be injected in the e flavor.

Figure 2.7: Variation of NB−L with z assuming mmax
4δx
m∗

= 8 and |εiτ | ' 2.67× 10−5.

The blue line is the asymmetry injected in the electron flavor through flavor couplings.

The green line is net contribution from the muon and tau flavor asymmetries.The

red line which matches the observed range after taking into account the injected

asymmetry in the electron flavor.

Thus even if we start form a scenario with vanishing production term in the

electron flavor (εie = 0) due to the off-diagonal terms mainly due to the Ceµ and

Ceτ term we can generate a nonvanishing lepton asymmetry in the electron flavor.

Though, for a fixed value of εiα, magnitude of the injected asymmetry will depend

on how strong the mismatch of the asymmetry in muon and tau flavor. In Fig.2.7,

along with number densities of the RH neutrinos and flavored inverse decay rates
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2.4. Leptogenesis in extended CP framework

(dashed lines), we present the variation of |NB−L| (solid lines). The blue line (solid)

represents the injected asymmetry in the electron flavor. The green (solid) represents

the net asymmetry generated by muon and tau flavor. The red (solid) line is the final

NB−L when we combine all the flavors. This is clear that after taking into account

the asymmetry in electron flavor, we obtain correct value of NB−L. This shows the

importance of the off-diagonal terms in the flavor coupling matrix which are neglected

in general in the computation in leptogenesis. The discussed CP extended µτ mixing

is thus a novel low energy model which facilitates the understanding of flavor couplings

in Boltzmann equations for leptogenesis in a very clear way.

Before concluding, we would like to highlight the main results discussed in this

chapter and make few remarks regarding future prospect of this work.

• We derive model independent correlations between the Dirac CP phase and

the light neutrino mixing angles for generalized associate µτ symmetries which we

name as the associate µτ mixing symmetries.

• We have shown that the current data on δ and θ23 could be better explained

by the proposed mixing symmetry.

• After a general discussion on µτ mixing which can be realized in many of

the neutrino mass models, we discuss the CP extension of it and find novel testable

correlations between δ and the light neutrino mixing angles.

• We then discuss the baryogenesis via leptogenesis mechanism in the three

flavor regime and show unlike the CP extended µτ interchange, a resonant leptogenesis

is possible in the CP extended µτ mixing and a nonzero baryon to photon ratio always

requires nonmaximal θ23 which is now preferred by the current data.

• We have shown quantitatively, even after inclusion of flavor coupling effect in
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Chapter. Importance of µτ mixing symmetry and its CP extension on leptogenesis

leptogenesis computation, the usually drawn conclusion of a vanishing asymmetry in

the fully flavored regime is still valid for the CP extended µτ interchange symmetry.

• The proposed CP extended µτ mixing is a novel example of a neutrino mass

model where the role of flavor couplings in leptogenesis mechanism is very explicit.

This chapter is written entirely from the perspective of neutrino mixing. While

both the µτ mixing and its CP extensions are very appealing for predictions of the

light neutrino mixing, they do not entertain predictions in the mass sector. Therefore,

explicit mass models with less number of parameters and with µτ mixing or its CP

extension would be of special interest to look for. Since in that case, in addition to all

the model independent correlations derived in this chapter, one would have definite

statements on the neutrino masses. These models would also carry interesting features

for leptogenesis. For instance, as we have demonstrated that in the CP extension of µτ

mixing, since we do not have predictions on the masses, we have assumed conditions

such as cos 2ξ = 1, Kiτ = 25 etc. But in the models with lesser number of parameters,

one would have exact statements on the assumed parameters. In such a case, we can

also have precise statement on the nonmaximality of θ23 required to generate the

observed baryon asymmetry via resonant leptogenesis even when the RH mass scale

is of O(TeV) [74,155]. To constrain the parameter space of such predictive models, it

would be interesting to consider the heavy neutrino flavor oscillation effects [156–158]

to increase the robustness of the low energy predictions.

2.5 Conclusions

In this Chapter, we promote the idea of µτ mixing symmetry-a generalization

of the µτ interchange symmetry. First we present a systematic derivation of the

80



2.5. Conclusions

model independent correlations between δ and the mixing angles θij in this scenario.

It shows that the simultaneous maximality of δ and θ23 (currently disfavored by the

neutrino oscillation data) which follows as a robust outcome of the µτ interchange

symmetry can be relaxed. We show that the present data as well as the current trend

on δ and θ23 demands a deviation from the µτ interchange scenario. Parameterizing

the deviation from µτ interchange through a single real parameter θg, we comment

on the range of deviation as allowed by the current data. We also demonstrate that

the parameter θg can be related to the parameters of those mass models that exhibit

µτ mixing at low energies. In particular, we discuss the CP extended version of the

µτ mixing symmetry and derive novel correlations among δ and the neutrino mixing

angles. Particularly, we show that in this class of models, the most probable values of

δ prefers maximal Dirac CP violation while θ23 is not necessarily maximal. Unlike the

CP extended version of the µτ interchange, we show that the mixing scenario is able to

explain the observed baryon asymmetry in the three flavor regime via the mechanism

of resonant leptogenesis. Particularly we show that except a very special choice in

the parameter space, the observed baryon asymmetry is proportional to the deviation

of θ23 from its maximality. Thus to explain baryon asymmetry simultaneously with

neutrino mixing, the CP extended µτ mixing symmetry favors nonmaximal values of

θ23. After a qualitative as well as quantitative comparison of the leptogenesis scenario

in the three flavor regime between the CP extended interchange and mixing symmetry,

we show, while for the interchange scenario, even if we include off-diagonal flavor

coupling matrix (C) in the Boltzmann equation for the leptonic number densities,

the usual conclusion of obtaining a vanishing asymmetry in the three flavor regime

is unchanged, however, in the mixing scheme, the off-diagonal terms of the C matrix

play a crucial role. In particular, the advocated CP extension of µτ mixing turns

out to be a novel example of a low energy model of neutrino mass, in which even in

absence of any source term for the lepton asymmetry in a flavor, a sizable asymmetry
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Chapter. Importance of µτ mixing symmetry and its CP extension on leptogenesis

can get injected to that flavor through the off-diagonal elements of the flavor coupling

matrix. This emphasizes the importance of using the general structure of the flavor

coupling matrix (usually assumed to be diagonal in most of the leptogenesis studies)

in the network of Boltzmann equations.
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Chapter 3

Mixed µτ antisymmetry for neutrinos

with nonstandard CP extension

3.1 Introduction

Various discrete flavor symmetries have been proposed in the µτ sector of

neutrinos to understand the observed pattern of neutrino mixing. One class of such

symmetries assume µτ mixing as discussed in Chapter 2. It is an invariance under

the transformation

νLl → Gθ
lmνLm (3.1)

where Gθ denotes the generator of a residual Z2 symmetry while the subscript L

stands for the left-chiral flavor neutrino fields. The indices l,m denote the lepton

flavors e, µ, τ . In flavor space, Gθ has the generic form

Gθ =


−1 0 0

0 − cos θ sin θ

0 sin θ cos θ

 , (3.2)

83



Chapter. Mixed µτ antisymmetry for neutrinos with nonstandard CP extension

where θ is a mixing parameter. The signs in (3.2) are in accordance with our choice

detGθ to be +1 without any loss of generality. The special case of (3.1) for θ = π/2

is known in the literature as µτ interchange symmetry which can arise from some

high energy flavor symmetry such as S4 [94]. Further, there exists a substantial body

of work [98, 113, 114, 159–164] investigating the phenomenological consequences of

(3.1). It has been found that the reactor mixing angle θ13 vanishes if one imposes

the symmetry (3.1) with (3.2). Since this possibility has now been excluded at more

than 10σ [115], this symmetry has to be abandoned.

An interesting variant of (3.1) is the symmetry of CP transformed [99–105,110,

123–130, 165–175] µτ mixing, as proposed in Ref. [143]. This is an invariance of the

neutrino Majorana mass term under the transformation

νLl → iGθ
lmγ

0νCLm (3.3)

with Gθ as in (3.2) and νCLl = C(νLl)
T
. The corresponding phenomenological

consequences have been studied [143]. A different approach using the idea of littlest

µτ seesaw [176, 177] has also been recently proposed allowing slight deviations from

maximal θ23 and maximal Dirac CP violation. It should be noted that the θ → π/2

limit of (3.3), referred to as a CP transformed µτ interchange symmetry (CPµτ ), had

earlier been extensively studied [109] and avoids the problem of a vanishing reactor

angle. However, it predicts maximal values for the atmospheric mixing angle θ23

and the Dirac CP phase δ, namely θ23 = π/4 and cos δ = 0. Such a possibility,

though still allowed by current experimental limits, is being challenged by ongoing

and forthcoming precision measurements of these quantities. In case the maximality

of either quantity is ruled out in future, CP transformed µτ interchange symmetry

will be excluded.
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In this work, we propose a complex antisymmetric extension of (3.3) using a Z4

generator Gθ = iGθ

νLl → iGθlmγ0νCLm. (3.4)

A special case of such an invariance with θ = π/2 was proposed by some of us in

Ref. [151]. The latter avoids the problem of a vanishing θ13 but leads to maximal

values of the atmospheric mixing angle θ23 and the Dirac CP phase δ. As explained

above, these results may not survive for much longer. In this situation our proposal

of an invariance under (3.4) with θ 6= π/2 assumes a special significance since it

allows any arbitrary nonzero value of θ13 and nonmaximal θ23 depending on the

parameter θ. Since in this work we concentrate on the low-energy phenomenological

consequences, we start from the effective field transformation (3.4) without providing

a larger symmetry that embeds it. In case of CP combined with a flavor symmetry, a

nontrivial challenge would be to satisfy the consistency conditions [99, 100, 102–105,

110,123–130,165–175]. Now real µτ interchange antisymmetry [178] has been shown

to arise in a class of explicit models with larger discrete symmetries including Z4

while Ref. [179, 180] discusses that the neutrino (Majorana) mass matrix can enjoy

pure flavor antisymmetry under some discrete subgroups contained in A5. Again, a

real mixed µτ symmetry [181] arises in a model where the charged lepton and neutrino

mass matrices are invariant under specific residual symmetries contained in the finite

discrete subgroups of O(3). The latter work provides an explicit model based on A5

maintaining the mixed µτ symmetry. However, such a demonstration is lacking in

the literature for the corresponding CP-transformed (complex extended) cases.

The rest of the work is organized as follows. Sec.5.2 deals with the symmetries

of the neutrino Majorana mass matrix Mν and the most general parametrization of

Mν that is invariant under (3.4). Sec.5.3 contains the evaluation of Majorana phases

and a definite relation between the leptonic Dirac CP phase and the atmospheric
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mixing angle θ23 that involves the µτ mixing parameter θ. In Sec.5.4 a numerical

analysis of our proposal is presented utilizing neutrino oscillation data; this entails

the extraction of the allowed parameter space and the prediction of light neutrino

masses. It consists of three subsections. The first considers neutrinoless double beta

decay; the second includes the range of variation of the CP asymmetry parameter

Aµe in experiments such as T2K, NoνA and DUNE for both types of mass ordering;

the variation of flavor flux ratios at neutrino telescopes is considered in the third. In

Sec.3.5 we summarize the results of our analysis.

3.2 Complex mixed µτ antisymmetry of the neutrino

Majorana mass matrix

The effective neutrino Majorana mass term in the Lagrangian density reads

−Lνmass =
1

2
νCLl(Mν)lmνLm + h.c. (3.5)

with νCLl = C(νLl)
T
and the subscripts l,m spanning the lepton flavor indices e, µ,

τ while the subscript L denotes left-chiral neutrino fields. Here, Mν is a complex

symmetric matrix (M∗
ν 6= Mν = MT

ν ) in lepton flavor space. It can be diagonalized

by a similarity transformation with a unitary matrix U :

UTMνU = Md
ν ≡ diag (m1,m2,m3). (3.6)

Here mi (i = 1, 2, 3) are real and we assume that mi ≥ 0. Without any loss of

generality, we work in the diagonal basis of the charged leptons so that U can be
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related to the PMNS matrix UPMNS:

U = PφUPMNS ≡ Pφ


c12c13 ei

α
2 s12c13 s13e

−i(δ−β
2

)

−s12c23 − c12s23s13e
iδ ei

α
2 (c12c23 − s12s13s23e

iδ) c13s23e
iβ
2

s12s23 − c12s13c23e
iδ ei

α
2 (−c12s23 − s12s13c23e

iδ) c13c23e
iβ
2

 , (3.7)

where Pφ = diag (eiφ1 , eiφ2 eiφ3) is an unphysical diagonal phase matrix and

cij ≡ cos θij, sij ≡ sin θij with the mixing angles θij ∈ [0, π/2]. We follow the

PDG convention [112] but denote our Majorana phases by α and β instead of α21

and α31. CP-violation enters through nontrivial values of the Dirac phase δ and of

the Majorana phases α, β with δ, α, β ∈ [0, 2π].

The effect of our proposed invariance under (3.4) on the neutrino Majorana

mass matrix would be

GθTMνGθ = −M∗
ν . (3.8)

Gθ in (3.8) is given by iGθ where Gθ was defined in (3.2). In flavor space, the most

generally parameterized 3× 3 complex symmetric mass matrix obeying (3.8) is given

by

MCPθA
ν =


ix a1 + ia2 a1t

−1
θ
2

− ia2t θ
2

a1 + ia2 y1 + iy2 y1cθs
−1
θ + ic

a1t
−1
θ
2

− ia2t θ
2

y1cθs
−1
θ + ic −y1 + i(y2 + 2ccθs

−1
θ )

 , (3.9)

where cθ ≡ cos θ, sθ ≡ sin θ and t θ
2
≡ tan θ

2
. In (3.9), there are seven real free

parameters x, a1,2, c, y1, y2 and θ. As expected, the limit θ → π/2 gives back the mass

matrix MCPµτA
ν invariant under CP transformed µτ interchange antisymmetry [151],

namely

MCPµτA
ν =


ix a1 + ia2 a1 − ia2

a1 + ia2 y1 + iy2 ic

a1 − ia2 ic −y1 + iy2

 . (3.10)
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It should be emphasized that complex mixed µτ antisymmetry, which can be

abbreviated as CP θµτA and gets generated by Gθ, must now be broken in the charged

lepton sector. This is because a nonzero Dirac CP violation is equivalent to the

criterion

Tr [Hν , H`]
3 6= 0, (3.11)

where Hν and H` are two hermitian matrices defined as H` = M †
`M`, M` being the

charged lepton mass matrix and Hν = M †
νMν . [182, 183]. A common CP symmetry

GCP would imply

GTCPHT
ν G∗CP = Hν , GTCPHT

` G∗CP = H`. (3.12)

From (3.12) it follows that Tr[Hν , H`]
3 = 0 which, in turn, leads to sin δ = 0 i.e.

a vanishing Dirac CP violation. As mentioned earlier, this is disfavored by current

experiments.

3.3 Neutrino mixing angles and phases

Eqs.(5.10) and (3.8) together imply [109] that

GθU∗ = Ud̃ (3.13)

where d̃ij = ±δij. Next, we take d̃ = diag(d̃1, d̃2, d̃3) where each d̃i (i = 1, 2, 3) is

either +1 or −1. (5.12) can explicitly be written as


−i 0 0

0 −icθ isθ

0 isθ icθ



U∗e1 U∗e2 U∗e3

U∗µ1 U∗µ2 U∗µ3

U∗τ1 U∗τ2 U∗τ3

 =


d̃1Ue1 d̃2Ue2 d̃3Ue3

d̃1Uµ1 d̃2Uµ2 d̃3Uµ3

d̃1Uτ1 d̃1Uτ2 d̃1Uτ3

 . (3.14)
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Eq. (5.13) leads to nine independent relations corresponding to the three rows:

−iU∗e1 = d̃1Ue1, − iU∗e2 = d̃2Ue2, − iU∗e2 = d̃3Ue3,

−iU∗µ1cθ + iU∗τ1sθ = d̃1Uµ1, − iU∗µ2cθ + iU∗τ2sθ = d̃2Uµ2, − iU∗µ3cθ + iU∗τ3sθ = d̃3Uµ3,

iU∗µ1sθ + iU∗τ1cθ = d̃1Uτ1, iU
∗
µ2sθ + iU∗τ2cθ = d̃2Uτ2, iU

∗
µ3sθ + iU∗τ3cθ = d̃3Uτ3.(3.15)

In order to calculate the Majorana phases in a way that avoids unphysical phases,

it is useful to construct two rephasing invariants [184]

I1 = Ue1U
∗
e2, I2 = Ue1U

∗
e3. (3.16)

Using the relations in the first row of (5.14), we obtain

I1 = d̃1d̃2U
∗
e1Ue2, I2 = d̃1d̃2U

∗
e1Ue3. (3.17)

On inserting the two different expressions for I1,2, in (5.15) and (5.16), we find that

c12s12c
2
13e
−iα/2 = d̃1d̃2c12s12c

2
13e

iα/2 (3.18)

and

c12s13c13e
i(δ−β/2) = d̃1d̃3c12s13c13e

−i(δ−β/2). (3.19)

From (5.17) and (5.18), it follows that

eiα = d̃1d̃2, e
2i(δ−β/2) = d̃1d̃3, (3.20)

i.e., either α = 0 or α = π, and either β = 2δ or β = 2δ − π. In other words, the

Majorana phases can have four possible pairs of values for a given value of δ. From
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the absolute square of the third relation in the third row of (5.14), we obtain

|Uτ3|2 = (U∗µ3sθ + U∗τ3cθ)(Uµ3sθ + Uτ3cθ) (3.21)

which implies that

cot 2θ23 = cot θ cos(φ2 − φ3) (3.22)

reducing to θ23 → π/4 in the µτ interchange limit θ → π/2, as expected. Taking the

absolute square of the second relation in the third row of (5.14), and eliminating the

unphysical phase difference φ2 − φ3, we obtain

sin δ = ± sin θ/ sin 2θ23. (3.23)

This result was originally derived in Ref. [143] which proposed a CP transformed

mixed µτ symmetry for neutrinos. Eq.(3.23), as expected, reproduces the result

sin δ = ±1 (equivalently, cos δ = 0) in the µτ interchange limit θ = π/2 and θ23 = π/4.

Note also that, if the unphysical phase combination φ2−φ3 is put equal to zero, cot 2θ23

becomes equal to cot θ and cos δ vanishes i.e., leptonic Dirac CP violation becomes

maximal. However, such is not the case in general. We should also mention that

another relation between δ and θ13 was obtained recently in Ref. [185].

3.4 Numerical analysis

In order to demonstrate the phenomenological viability of our theoretical

proposal we present a numerical analysis of its consequences in substantial detail.

It is organized as follows. In Table 5.1, we display the 3σ ranges of neutrino mixing

angles and mass squared differences obtained from globally fitted neutrino oscillation

data [12]. The allowed ranges of parameters of Mν , CP phases and the consequent
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predictions on the light neutrino masses are tabulated in Table 5.2, 3.3 and Table 4.3

respectively. These have been obtained by using the exact analytical formulae for the

mixing angles and light neutrino masses [186], the entries in Table 5.1 and the upper

bound [187] of 0.17 eV on the sum of the light neutrino masses from PLANCK and

other cosmological observations. In Fig.4.6 each mass eigenvalue m1,m2 and m3 is

plotted against the smallest mass eigenvalue mmin for both types of mass ordering.

The neutrino mass spectrum is clearly hierarchical (m2,1 � m3 for NO andm2,1 � m3

for IO).

Table 3.1: Input values used in the analysis [12]

Parameter θ12 θ23 θ13 ∆m2
21 |∆m2

31|

degrees degrees degrees 10−5(eV)2 10−3(eV2)

3σ ranges (NO) 31.42− 36.05 40.3− 51.5 8.09− 8.98 6.80− 8.02 2.399− 2.593

3σ ranges (IO) 31.43− 36.06 41.3− 51.7 8.14− 9.01 6.80− 8.02 2.369− 2.562

Best fit values (NO) 33.62 47.2 8.54 7.40 2.494

Best fit values (IO) 33.62 48.1 8.58 7.40 2.465

Table 3.2: Output values of the parameters of Mν

Parameters x/10−2 a1/10−2 a2/10−2 y1/10−2 y2/10−2 c/10−2 θ(◦)

NO -2.2 − 2.2 -4.5 − 4.5 -3.2 − 3.2 -3.5 − 3.5 -4.5 − 4.5 -3.5 − 3.5 12-174

IO -2.5 − 2.5 -4.5 − 4.5 -0.4 − 0.4 -2.5 − 2.5 -3.5 − 3.5 -2.5 − 2.5 2-156
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Table 3.3: Output values CP phases in the range β ∈ [0, 2π])

Ordering δ β = 2δ β = 2δ − π

NO(sin δ > 0) [6◦, 174◦] [12◦, 348◦] [0◦, 168◦], [192◦, 360◦]

NO(sin δ < 0) [186◦, 354◦] [12◦, 348◦] [0◦, 168◦], [192◦, 360◦]

IO(sin δ > 0) [4◦, 176◦] [8◦, 352◦] [0◦, 172◦], [188◦, 360◦]

IO(sin δ < 0) [184◦, 356◦] [8◦, 352◦] [0◦, 172◦], [188◦, 360◦]

Table 3.4: Predictions on the light neutrino masses.

Normal Ordering (m3 > m2) Inverted Ordering (m3 < m1)

m1/10−3 m2/10−3 m3/10−3 m1/10−3 m2/10−3 m3/10−3

(eV) (eV) (eV) (eV) (eV) (eV)

8.4× 10−2 − 49 9− 51 50− 71 48− 64 49− 66 4.4× 10−2 − 42

Figure 3.1: Plots of m1,2,3 for normal (left) and inverted (right) mass ordering with

the lightest mass eigenvalue is plotted in the ordinate. The red, green and blue bands

refer to m1,m2 and m3 respectively.

Next, we discuss the numerical results of CP-transformed mixed µτ antisym-
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metry. In particular, we discuss the implications of the symmetry for the neutrinoless

double beta decay, effect of CP asymmetry in neutrino oscillations and flavor flux

ratios at neutrino telescopes in three separate subsections.

3.4.1 Neutrinoless double beta decay

For certain nuclei such as Ge-76, it is energetically favourable to undergo a

double beta decay (2νββ) instead of a singular β−decay emitting two electrons and

two neutrinos. Moreover, if the neutrino is a Majorana particle those two neutrinos

can annihilate each other to give rise to a neutrinoless double beta decay (0νββ):

(A,Z) −→ (A,Z + 2) + 2e− (3.24)

which clearly violates the lepton number by 2 units. Observation of such decay

will firmly establish the Majorana nature of the neutrinos. The half-life [188]

corresponding to the above decay is given by

1

T 0ν
1/2

= G0ν |M|2|Mee|2m−2
e , (3.25)

where G0ν denote the two-body phase space factor,M is the nuclear matrix element

(NME), me is the mass of the electron and Mee is the (1,1) element of the effective

light neutrino mass matrix Mν .

In the PDG parametrization convention for UPMNS, M ee
ν is given most generally

by

M ee
ν = c2

12c
2
13m1 + s2

12c
2
13m2e

iα + s2
13m3e

i(β−2δ). (3.26)
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Figure 3.2: Plots of |M ee
ν | vs. mmin for both types of mass ordering with four possible

choices of the Majorana phases α and β. NO and IO refer to Normal and Inverted

ordering respectively.

In our case, (5.37) simplifies to the following four expressions for our four

different possibilities:

(i) |M ee
ν | = c2

12c
2
13m1 + s2

12c
2
13m2 + s2

13m3 for α = 0, β = 2δ,

(ii)|M ee
ν | = c2

12c
2
13m1 + s2

12c
2
13m2 − s2

13m3 for α = 0, β = 2δ − π,

(iii) |M ee
ν | = c2

12c
2
13m1 − s2

12c
2
13m2 + s2

13m3 for α = π, β = 2δ

and
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(iv) |M ee
ν | = c2

12c
2
13m1 − s2

12c
2
13m2 − s2

13m3 for α = π, β = 2δ − π.

In 0νββ decay, M ee
ν depends on α and β − 2δ (cf. Eq.(4.3)). In a generic

case, α and β − 2δ varies in the range [0, 2π] (or [−π, π], since angles are defined

modulo 2π) to cover the largest possible parameter space. However, a notable feature

of our scenario is that it uniquely fixes (i) α to be 0 or π and (ii) the combination

β − 2δ to 0 or −π rather than the entire range of variation [0, 2π] (or [−π, π]) as in a

generic situation. This constraint tightly controls the range of variation ofM ee
ν and is

implicitly reflected in the parameter space of 0νββ decay. The resulting plots of |M ee
ν |

versus the smallest mass eigenvalue mmin (m1 for NO and m3 for IO) are presented

in Fig.5.2 with significant upper limits on |M ee
ν | for ongoing and future experiments.

At the moment the most stringent exclusion zone on Mee has been reported by the

GERDA Phase II [189] experiment to be 0.12 − 0.26eV depending on the value of

the nuclear matrix element used. It is evident from Fig.5.2 that |Mee| in each plot

leads to an upper limit which is below the reach of the GERDA phase-II experimental

data. The sensitivity reach of several other experiments such as LEGEND-200 (40

meV), LEGEND-1K (17 meV) and nEXO (9 meV) [11], shown in Fig.5.2, can probe

our model. In particular, if LEGEND-1K fails to observe a signal, the inverted mass

ordering in our model corresponding to α = 0 shall be excluded. Note that, for each

case, the entire parameter space corresponding to the inverted mass ordering is likely

to be ruled out for both α = 0 and π if nEXO, covering its entire reach, does not

observe any ββ0ν signal. However, the latter exclusion is likely to be a generic feature

of many models.
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3.4.2 CP asymmetry in neutrino oscillations

In this subsection, we discuss the effect of the presence of leptonic Dirac CP

violation in long baseline neutrino oscillation experiments. CP violating phase δ

makes its appearance in the CP asymmetry parameter Alm, defined as

Alm =
P (νl → νm)− P (ν̄l → ν̄m)

P (νl → νm) + P (ν̄l → ν̄m)
, (3.27)

where l,m = (e, µ, τ) are flavor indices and the P ’s are transition probabilities. The

νµ → νe transition probability is given by

Pµe ≡ P (νµ → νe) = Patm + Psol + 2
√
Patm

√
Psol cos(∆32 + δ). (3.28)

where ∆ij = ∆m2
ijL/4E is the kinematic phase factor in which L denotes the baseline

length and E represents the beam energy. The quantities Patm, Psol are respectively

defined as

√
Patm = sin θ23 sin 2θ13

sin(∆31 − aL)

(∆31 − aL)
∆31, (3.29)√

Psol = cos θ23 sin 2θ12
sin aL

aL
∆21, (3.30)

where a = GFNe/
√

2 with GF being the Fermi constant and Ne being the electron

number density in the medium of propagation which takes into account the matter

effects in neutrino propagation through the earth. An approximate value of a for the

earth is 3500km−1. In the limit a → 0, (3.28) leads to the oscillation probability in

vacuum. With this, the CP asymmetry parameter is given by

Aµe =
P (νµ → νe)− P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
=

2
√
Patm
√
Psol sin ∆32 sin δ

Patm + 2
√
Patm
√
Psol cos ∆32 cos δ + Psol

(3.31)
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where sin δ, given by (3.23), has two possible values and same goes for cos δ. Hence

there are two pairs of choices which give rise to two pairs of possibilities for Aµe as

given in Table 3.5.

Table 3.5: Four possibilities for Aµe

Possibilities sin δ cos δ

Case A + sin θ(sin 2θ23)−1 +(sin 2θ23)−1
√

cos2 θ sin2 2θ23 − sin2 θ cos2 2θ23

Case B − sin θ(sin 2θ23)−1 +(sin 2θ23)−1
√

cos2 θ sin2 2θ23 − sin2 θ cos2 2θ23

Case C + sin θ(sin 2θ23)−1 −(sin 2θ23)−1
√

cos2 θ sin2 2θ23 − sin2 θ cos2 2θ23

Case D − sin θ(sin 2θ23)−1 −(sin 2θ23)−1
√

cos2 θ sin2 2θ23 − sin2 θ cos2 2θ23

Figure 3.3: Aµe (for E = 1 GeV), plotted against the baseline length L, for the four

cases in Table 3.5. Each plot stands for both NO and IO since numerically, within the

3σ range of θ23, the two types of ordering are practically indistinguishable. The bands

are caused by θ23 and θ varying in their 3σ range and phenomenologically allowed

range respectively with the other parameters kept at their best fit values.

In Fig.3.3 the CP asymmetry parameter Aµe, for both types of mass ordering,

is plotted against the baseline length L for four possibilities (Table 3.5) and for a
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fixed beam energy (E = 1 GeV). The baseline lengths corresponding to experiments

such as T2K, NoνA and DUNE have been shown by vertical lines in the figure. For

concreteness, Table 3.6 provides the range of variation of Aµe for a fixed energy of

E = 1GeV in T2K, NOνA and DUNE.

In Fig.3.4, the CP asymmetry parameter Aµe is plotted against the beam energy

E for four possible cases (Table 3.5) separately for T2K, NoνA and DUNE for both

types of mass ordering. In generating these plots, the atmospheric mixing angle

θ23 has been taken to be within its currently allowed 3σ range while the remaining

neutrino oscillation parameters have been kept fixed at their best fit values.
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Figure 3.4: Variation of the CP asymmetry parameter with beam energy E for

different baselines lengths of L = 295 km, 810 km and 1300 km corresponding to

T2K, NOνA and DUNE respectively for both NO and IO; the numerical distinction

between the two types of ordering is insignificant for the 3σ range of θ23.
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Table 3.6: Prediction of the ranges of |Aµe| with E = 1GeV

Experiment T2K NOνA DUNE

Case A,B 0.04− 0.18 0.14− 0.44 0.14− 0.64

Case C,D 0.05− 0.19 0.09− 0.39 0.45− 0.90

Table 3.7: Prediction of the ranges of |Aµe| in T2K, NoνA, DUNE

T2K

Energy E = 0.5 GeV E = 1.0 GeV E = 2.0 GeV

Case A,B 0.14-0.37 0.07-0.21 0.05-0.10

Case C,D 0.14-0.37 0.06-0.19 0.05-0.10

NOνA

Energy E = 0.5 GeV E = 1.0 GeV E = 2.0 GeV

Case A,B 0.31-0.80 0.21-0.43 0.08-0.24

Case C,D 0.29-0.79 0.10-0.38 0.13-0.29

DUNE

Energy E = 0.5 GeV E = 1.0 GeV E = 2.0 GeV

Case A,B 0.39-0.98 0.21-0.64 0.15-0.30

Case C,D 0.41-0.97 0.61-0.87 0.13-0.32
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3.4.3 Flavor flux ratios at neutrino telescopes

Given the necessary background in Sec.1.4, one can define certain flavor flux

ratios Rl (l = e, µ, τ) at the neutrino telescope as

Rl ≡
φTl∑

m

φTm − φTl
=

1 +
∑
i

|Uli|2∆i

2−∑
i

|Uli|2∆i

, (3.32)

where m = e, µ, τ and U is as in (5.11). Since s2
13 ≈ 0.01, O(s2

13) terms can be

neglected. Then the approximate expressions for the flux ratios become

Re ≡
φTe

φTµ + φTτ
≈ 1 + 1

2
sin2 2θ12 cos 2θ23 + 1

2
sin 4θ12 sin 2θ23s13 cos δ

2− 1
2

sin2 2θ12 cos 2θ23 − 1
2

sin 4θ12 sin 2θ23s13 cos δ
,

Rµ ≡
φTµ

φTe + φTτ
≈ 1 + {c2

23(1− 1
2

sin2 2θ12)− s2
23} cos 2θ23 − 1

4
sin 4θ12 sin 2θ23s13 cos δ(4c2

23 − 1)

2− cos2 2θ23 + 1
2

sin2 2θ12 cos 2θ23c2
23 + 1

4
(3− 4s2

23) sin 4θ12 sin 2θ23s13 cos δ
,

Rτ ≡
φTτ

φTe + φTµ
≈ 1 + {s2

23(1− 1
2

sin2 2θ12)− c2
23} cos 2θ23 − 1

4
sin 4θ12 sin 2θ23s13 cos δ(4s2

23 − 1)

2 + cos2 2θ23 + 1
2

sin2 2θ12 cos 2θ23c2
23 + 1

4
(3− 4c2

23) sin 4θ12 sin 2θ23s13 cos δ
.

(3.33)

Note that each Rl depends on cos δ which from (3.23) is given by

cos δ = ±(
√

cos2 θ sin2 2θ23 − sin2 θ cos2 2θ23)/ sin 2θ23. (3.34)

With θ = π/2 + ε for any arbitrary ε, positive or negative, we can write

cos δ = ±(
√

sin2 ε sin2 2θ23 − cos2 ε cos2 2θ23)/ sin 2θ23 (3.35)

which is the same whether ε is positive or negative. For either sign, this explains why

each Rl in Fig.3.5 and 3.6 is symmetric about θ = π/2 though the allowed range of

θ is not (Table 5.2). The ‘±’ sign in (3.35) tells us that for a fixed θ (equivalently,

for a fixed ε), and fixed θ23, each Rl is double-valued except for θ = π/2 (i.e., ε = 0)
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where cos δ = 0 from (3.35) and (3.23). However, instead of two discrete values of Rl,

a continuous band is obtained for a fixed θ since θ23 has been allowed to vary in its

current 3σ range while the other mixing angles are held fixed a their best fit values.

In the figure below, we plot the variation of the flavor flux ratios Rl with the µτ

mixing parameter θ in its allowed range for both normal and inverted types of mass

ordering. Unlike the CP asymmetry parameter in neutrino oscillation experiments,

these flavor flux ratios are different for NO and IO−specifically in the allowed ranges

of θ. An exact CP transformed µτ interchange (CPµτ ) antisymmetry leads to Re =

Rµ = Rτ = 1/2 irrespective of the mass ordering. This can be clearly seen from the

approximate expressions of flux ratios in (3.33), in the limit θ = π/2 or equivalently,

θ23 = π/4 and cos δ = 0. But a small deviation from CPµτ (anti)symmetry may lead

to a drastic change of the flux ratios as is clear from the sharp edges of the allowed

parameter spaces on either side of θ = π/2.

In order to obtain precise predictions for flavor flux ratios, a precise value of

θ must be specified. In particular, precise measurements of δ and θ23 can be used

to pinpoint a value of θ from Eq.(3.23). As an illustration, the best fit value of

δ = 2340 (278◦) and θ23 = 47.2◦ (48.1◦) for NO (IO), the value of θ turns out to be

34.75◦(75.9◦). The contours corresponding to the best fit values of the mixing angles

has now been indicated in Fig.3.5 and Fig.3.6. Now, it can be clearly seen that,

as θ deviates from π/2, the flavor flux ratios deviate drastically from 0.5 and the

corresponding values have been tabulated in Table 8. The quantitative predictions

of flux ratio θ deviating from π/2 has now been summarized in Table 3.8 the current

best fit values 215◦(284◦) of δ and 49.6◦ (49.8◦) of θ23 to obtain θ to be 34.75◦(75.9◦)

for NO(IO) case. The corresponding values of Re, Rµ and Rτ have been found to be

0.456 (0.465), 0.529 (0.525) and 0.516 (0.512) respectively. It is interesting to note

that while the predicted value of Re is less than 0.5 those of Rµ and Rτ are greater
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than 0.5. If this best fit values change in future, the corresponding predictions for

Rl can be easily obtained using the formulae (3.32) and (3.34) to test or falsify our

proposal.

Table 3.8: Prediction for the values of flux ratios (Rl) for θ 6= π/2 [12]

Ordering ↓ bf value of δ bf value of θ23 θ Re Rµ Rτ

NO 234◦ 47.2◦ 53.70◦ 0.456 0.529 0.516

IO 278◦ 48.1◦ 79.74◦ 0.465 0.525 0.512

Figure 3.5: Flux ratios Re, Rµ, Rτ vs. the µτ -mixing parameter θ for normal ordering.

where the three mixing angles have been allowed to vary over their 3σ ranges. The

green(red) line in each plot of the upper(lower) panel corresponds to the best fit

value of the mixing angles. The plots in the upper (lower) panel correspond to

cos δ ≥ 0(≤ 0).
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Figure 3.6: Flux ratios Re, Rµ, Rτ vs. the µτ -mixing parameter θ for inverted ordering

where the three mixing angles have been allowed to vary over their 3σ ranges. The

green(red) line in each plot of the upper(lower) panel corresponds to the best fit

value of the mixing angles. The plots in the upper (lower) panel correspond to

cos δ ≥ 0(≤ 0).

3.5 Summary and conclusions

We have proposed a CP transformed mixed µτ antisymmetry in the light

neutrino Majorana mass matrix Mν implemented in the Lagrangian by a generalized

CP transformation on left-chiral flavor neutrino fields. We explore its consequences

in leptonic CP violation. The Dirac CP phase δ, which is in general nonmaximal,

is found to be correlated with both the µτ mixing parameter θ and the atmospheric

mixing angle θ23. For a nonmaximal δ, one of the Majorana phases is neither zero nor

π, thereby leading to a nonvanishing Majorana CP violation. Moreover, we discuss
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the consequences of our proposal on the ββ0ν decay process in relation to ongoing and

upcoming experiments. We have also investigated the quantitative variation of the CP

asymmetry parameter Aµe as a function of beam energy for different baseline lengths

as appropriate for different experiments. We have further obtained the implications of

µτ mixing on flavor flux ratios Re,µ,τ at neutrino telescopes such as IceCube. While

an exact µτ interchange antisymmetry leads to Re = Rµ = Rτ = 0.5, any tiny

departure will cause a significant deviation in the flux ratios, as has been explained

quantitatively. Further, a careful measurement of these flux ratios in future can put

additional constraints on the parameter θ.

105



Chapter. Mixed µτ antisymmetry for neutrinos with nonstandard CP extension

106



Chapter 4

Complex extension of the residual

Z2 × Z2 symmetry in scaling neutrino

Majorana mass matrix

4.1 Introduction

In this chapter, we present a study of the consequences of the complex extension

of the residual Z2 × Z2 [124] symmetry that corresponds to the scaling ansatz

[6, 7, 118–121, 190] in conjunction with a nonstandard CP transformation on light

neutrino Majorana mass matrix. We first consider a general light neutrino Majorana

mass matrix M0
ν that enjoys an invariance under a scaling ansatz as an effective low

energy symmetry. Next, we interpret the latter as a residual Z2 × Z2 symmetry.

Due to the prediction of a vanishing reactor mixing angle θ13 (now excluded at

more than 5.2σ [115]) such a symmetry have to suitably modified. We use these

Z2 generators to implement generalized CP transformations, and instead of an
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ordinary Z2 × Z2 symmetry, we now demand a generalized or CP extended Z2 × Z2

as an effective residual symmetry that extends the scaling ansatz to its complex

counterpart. In this case, the resulting mass matrices have a more complicated scaling

relationship between its elements, and are further reconstructed through the type-I

seesaw mechanism (cf. Sec.1.3).

As explained in Sec.1.6, though is nontrivial to combine a flavor and a CP

symmetry, a consistent definition for both of them is possible when they satisfy certain

consistency conditions are met. At low energy this combined symmetry must be

broken to different residula symmetries in the neutrino and the charged lepton sector,

since it is known that at least a common residual CP symmetry in both the sector

would imply a vanishing CP violation [99, 102, 103]. Although here we do not focus

on the explicit construction of the high energy flavor group, throughout the analysis

we assume a diagonal charged lepton mass matrix which is protected by a residual

symmetry G` after the spontaneous breaking of the combination of CP and flavor

symmetry at high energy. Depending upon the breaking pattern, there may also be

a trivial or a nontrivial CP symmetry in the charged lepton sector [167]. However, as

pointed out, the final residual CP symmetries in both the sectors should be different.

Finally, using the oscillation constraints, tantalizing predictions on the low

energy parameters such as neutrino masses, neutrinoless double beta decay, CP

violating phases are obtained. Due to the presence of three massive right handed

(RH) neutrinos, baryogenesis via leptogenesis scenario is also explored. Interesting

conclusions such as octant sensitivity of the atmospheric mixing angle θ23, precondi-

tioned by the observed range of the final baryon asymmetry YB and nonoccurrence

of unflavored leptogenesis are also drawn.

This chapter is organized as follows. Section 4.2 contains a brief discussion

on residual symmetry and scaling ansatz with a possible modification to the ansatz
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by extending the former with a nonstandard CP transformation. In section 4.3 we

discuss a type-I seesaw extension of the analysis made in the previous section. Section

4.4 contains a discussion about baryogenesis via leptogenesis scenario related to the

present model. In section 4.5 we present detail results of the numerical analysis. A

discussion on the sensitivity of the heavier neutrinos to the obtained results for the

final YB is presented in section 4.6. Section 4.7 concludes the entire discussion with

some promising remarks.

4.2 Modification to scaling neutrino mass matrix

with generalized Z2 × Z2

Before going to an explicit details of our work, let us first discuss the residual

Z2 × Z2 symmetry proposed in Ref. [1]. A Majorana neutrino mass matrix Mν

enjoys a Z2 × Z2 flavor symmetry which can be envisaged as a remnant symmetry

of some horizontal flavor group. These horizontal symmetry groups are preferably

finite groups since in that case the theory has a more predictive power due to the

discrete number of choices for the residual symmetries Gi [1]. A bottom up as well as

a top down approach for a viable horizontal group has been studied in the first one

of Ref. [1].

We interpret the Strong Scaling Ansatz (SSA) proposed in Ref. [6, 7], as a

residual Z2×Z2 symmetry. Since SSA leads to a vanishing θ13, a possible modification

to this has been made by generalizing the two independent ordinary Z2 invariance to

their complex counterpart, i.e., two independent ZCP
2 invariance. Thus the SSA has

been extended to its complex version by means of a generalized Z2 × Z2 symmetry

(see Ref. [124] for another such extension in case of TBM mixing). Let us discuss the

109



Chapter. Complex extension of the residual Z2 × Z2 symmetry in scaling neutrino
Majorana mass matrix

methodology of the present analysis:

We consider a column wise scaling relations in the elements of M0
ν in flavor

space as
(M0

ν )eµ
(−M0

ν )eτ
=

(M0
ν )µµ

(−M0
ν )µτ

=
(M0

ν )τµ
(−M0

ν )ττ
= k, (4.1)

where k is a real and positive dimensionless scaling factor. The superscript ‘0’ on Mν

symbolizes SSA as a leading order matrix in this analysis. Now the structure for M0
ν

dictated by the ansatz of (4.1) comes out as

M0
ν =


P −Qk Q

−Qk Rk2 −Rk

Q −Rk R

 . (4.2)

Here P,Q,R are a priori unknown, complex mass dimensional quantities. The minus

sign in (4.1) has been considered to be in conformity with the PDG convention [112].

The matrix in (4.2) is diagonalized by a unitary matrix U0 having a form

U0 =


c0

12 s0
12e

iα 0

− ks012√
1+k2

kc012√
1+k2

eiα/2 1√
1+k2

eiβ/2

s012√
1+k2

− c012√
1+k2

eiα/2 k√
1+k2

eiβ/2

 , (4.3)

where α, β represents the Majorana phases, c0
12 = cos θ0

12 and s0
12 = sin θ0

12 which are

computed in terms of the parameters of M0
ν . SSA predicts a vanishing θ13 (hence no

measurable leptonic Dirac CP-violation) as one can see from (4.3) and an Inverted

Ordering (IO) (i.e., m2,1 > m3), with m3 = 0. Therefore, we modify the ansatz to

generate a non-zero θ13 using the paradigm of residual symmetry. In the first step,

we obtain the Ga matrices using the relation

G(k)
a = U0daU

0† (4.4)

110



4.2. Modification to scaling neutrino mass matrix with generalized Z2 × Z2

with G(k)
a as the Z2 generators for a scaling ansatz invariant Mν . Therefore, M0

ν will

then satisfy the invariance equation

(
G(k)
a

)T
M0

νG
(k)
a = M0

ν . (4.5)

Now using (4.4) we calculate the corresponding G(k)
a (a = 1, 2, 3) matrices and present

them as

G
(k)
1 =


cos 2θ0

12 −k(1 + k2)−1/2 sin 2θ0
12 −(1 + k2)−1/2 sin 2θ0

12

−k(1 + k2)−1/2 sin 2θ0
12 −(1 + k2)−1(k2 cos 2θ0

12 + 1) −k(1 + k2)−1(1− cos 2θ0
12)

−(1 + k2)−1/2 sin 2θ0
12 −k(1 + k2)−1(1− cos 2θ0

12) −(1 + k2)−1(k2 + cos 2θ0
12)

 ,

(4.6)

G
(k)
2 =


− cos 2θ0

12 k(1 + k2)−1/2 sin 2θ0
12 −(1 + k2)−1/2 sin 2θ0

12

k(1 + k2)−1/2 sin 2θ0
12 (1 + k2)−1(k2 cos 2θ0

12 − 1) −k(1 + k2)−1(1 + cos 2θ0
12)

−(1 + k2)−1/2 sin 2θ0
12 −k(1 + k2)−1(1 + cos 2θ0

12) −(1 + k2)−1(k2 − cos 2θ0
12)

 ,

(4.7)

G
(k)
3 =


−1 0 0

0 (1− k2)(1 + k2)−1 2k(1 + k2)−1

0 2k(1 + k2)−1 −(1− k2)(1 + k2)−1

 . (4.8)

Note that all the G(k)
a matrices are symmetric by construction. Now to modify SSA,

we generalize this Z2 × Z2 by implementing CP transformations on the neutrino

fields [100,126,171,191] with the Z2 generators (G(k)
a = G

(k)
a

T
) as1

νLα → i(G(k)
a )αβγ

0νCLβ. (4.9)

1The matrices that represent the CP symmetry should be symmetric [102].
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This extends the real horizontal invariance of M0
ν in (4.5) to its complex counterpart,

i.e.

(
G(k)
a

)T
MνG

(k)
a = M∗

ν . (4.10)

Therefore the SSA, which could be thought of as a Z2 × Z2 residual symmetry, has

now been modified to a complex Z2 × Z2 symmetry. This is often also referred to as

a generalized Z2 × Z2 symmetry of Mν [124]. We show in the following subsections

that there exists only two independent ways in which such a complex extension can

be implemented.

4.2.1 Case I: Complex extension of G(k)
2,3 Invariance

The complex invariance relations of Mν related to G(k)
2,3 is now written as

(
G

(k)
2,3

)T
MνG

(k)
2,3 = M∗

ν , (4.11)

which in turn implies (
G

(k)
1

)T
MνG

(k)
1 = Mν (4.12)

owing to the closure property of the G(k)
a (a = 1, 2, 3) matrices.

Eq.(4.11) leads to a most general Majorana neutrino mass matrix of the form

MMS1
ν =


p −q1k + i q2

k
q1 + iq2

−q1k + i q2
k

r − s(k2−1)
k

+ i 2q2κ+√
1+k2

s+ i q2κ+(k2−1)

k
√

1+k2

q1 + iq2 s+ i q2κ+(k2−1)

k
√

1+k2
r − i 2q2κ+√

1+k2

 (4.13)
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with

r = (sk + p)− q1

√
1 + k2(κ+ −

1

κ+

), (4.14)

κ+ = (cot 2θ0
12 + cosec2θ0

12). (4.15)

Here p, q1,2, r and s are real, mass dimentional quantities and the superscript

‘MS’ stands for ‘Modified Scaling’. It has already been shown in Ref. [119] that

(G
(k)
3 )TMνG

(k)
3 = M∗

ν leads to the results

tan θ23 = k−1, (4.16)

sinα = sin β = cos δ = 0. (4.17)

Now in the present case, the overall real G(k)
1 (cf. Eq.(4.12)) invariance of Mν fixes

the first column of UPMNS to the first column of U0. Therefore, one gets the relation

between the solar and the reactor mixing angle as

| cos θ12 cos θ13| = cos θ0
12 ⇒ sin2 θ12 = 1− cos2 θ0

12(1 + tan2 θ13). (4.18)

4.2.2 Case II: Complex extension of G(k)
1,3 Invariance

In this case, the complex invariance relations of Mν due to G(k)
1,3 can be written

as (
G

(k)
1,3

)T
MνG

(k)
1,3 = M∗

ν , (4.19)

which leads to (
G

(k)
2

)T
MνG

(k)
2 = Mν . (4.20)
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Eq.(4.19) leads to the mass matrix MMS2
ν having a form same as MMS1

ν as given

in (4.13) where κ+ is replaced with κ− = −1/κ+. Similar to the previous case, a

complex invariance due to G(k)
3 leads to the predictions

tan θ23 = k−1, (4.21)

sinα = sin β = cos δ = 0. (4.22)

Now the overall real G(k)
2 (cf. Eq.(4.20)) invariance of Mν fixes the second column of

UPMNS to the second column of U0 which gives rise to a relation between the solar

and the reactor mixing angle as

| sin θ12 cos θ13| = sin θ0
12 ⇒ sin2 θ12 = sin2 θ0

12(1 + tan2 θ13). (4.23)

Similar to the previous two cases, complex invariance due to G(k)
1,2 lead to an overall

real invariance due to G(k)
3 which in turn leads to a vanishing θ13. This case must

threfore be discarded.

For both the viable cases, three CP phases have been obtained, namely, cos δ =

0, α, β = 0 or π. Thus, there remains 6 real free parameters p, q1,2, s, k and κ+ (or

θ0
12) (cf. Eq.(4.13)) in both MMS1

ν and MMS2
ν . However, one can trivially track the

parameters k and θ0
12 on account of the relations in (4.16) or (4.21) and (4.18) or

(4.23). Thus, the remaining four parameters account for one mixing angle and three

neutrino masses. However, to fix the absolute neutrino mass scale, we use additional

constraints from baryogenesis and has been discussed in the numerical section.

We note that the prediction of the CP phases in the extended SSA scheme are

identical to the case of CPµτ [109, 192, 193]. Therefore the question arises how one

114



4.2. Modification to scaling neutrino mass matrix with generalized Z2 × Z2

might distinguish the CPµτ and the extended SSA experimentally? First of all, both

the Strong Scaling Ansatz (SSA) and the µτ symmetry lead to θ13 = 0 at the leading

order and therefore, has to be abandoned. However, one can in principle differentiate

SSA from the µτ reflection symmetry via their predictions of atmospheric mixing

angle θ23. The former in general predicts a nonmaximal θ23 (for k 6= 1) given by

θ23 = tan−1(k−1) while a maximal value (θ23 = π/4) is predicted by the latter.

Furthermore, in the extended scheme, besides the similar predictions for the CP

phases an arbitrary nonvanishing value of the reactor mixing angle θ13 is predicted

in both the cases (extended SSA and CPµτ ). However, the prediction on the θ23 is

different for each case. Interestingly, even after the extension, the value of θ23 survives

for both the cases i.e., θ23 = tan−1(k−1) for the SSA as well as extended SSA and

θ23 = π/4 for µτ symmetry and its extended version (CPµτ ). If experiments find a

nonmaximal θ23 at a significant confidence level (recently there is a hint from NOνA

regarding the nonmaximality of θ23 at 2.6 σ CL [194]) then the CPµτ symmetry will

be excluded while our proposal of an extended SSA (that predicts a nonmaximal θ23

in general) will continue to survive.

Before proceeding further we should comment on the fulfillment of the

consistency conditions [99, 103, 104] as mentioned in the introduction. Here we have

discussed two cases. In the first one G(k)
2,3 are the CP symmetries which further result

in a G(k)
1 invariance of the mass term while in the second case, the CP generators

G
(k)
1,3 lead to an invariance of the mass term due to the G(k)

2 . Now the consistency

condition in case of a Z2 group implies [99]

Xrρ
∗
r(g)X−1

r = ρr(g), (4.24)

where Xr is a unitary matrix representing CP symmetry which acts on a generic
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multiplet ϕ as

Xrϕ(x)
CP−→ Xrϕ(x′) (4.25)

with x′ = (t,−x) and ρr(g) is a representation for the element g of the flavor group

in an irreducible representation r. In our analysis, G(k)
i ’s are real, and hence, the

condition in (4.24) turns out to be

G
(k)
2,3G

(k)
1 (G

(k)
2,3)−1 = G

(k)
1 for Case I;

G
(k)
1,3G

(k)
2 (G

(k)
1,3)−1 = G

(k)
2 for Case II. (4.26)

Since
(
G

(k)
i

)2

= 1,
(
G

(k)
i

)−1

= G
(k)
i and each G

(k)
i commutes with each other, the

consistency condition is trivially satisfied for both the cases. However the main

challenge is to ensure that such conditions are fulfilled for the larger (embedding)

symmetries [102–104] which we do not explore here in this work.

Resolving the shortcomings of SSA, both the viable modified SSA matrices,

referred as MMS1
ν and MMS2

ν , possess intriguing phenomenology. This has been

discussed in section 4.5 on numerical analysis. For the time being let’s focus on

the implementation of the symmetry in a more specific way. So far we have discussed

a possible complex extension for a generalMν , not so about the origin of the neutrino

masses. This would be interesting to see the effects of generalized Z2 × Z2 on a

particular mechanism that generates the light neutrino masses. Obviously, the choice

depends upon the phenomenological interest. Here we choose the type-I seesaw

mechanism and investigate possible consequences of the generalized Z2×Z2 to explore

the phenomena of baryogenesis via leptogenesis. A detailed discussion about these

has been presented in the next two sections. First, we show the reconstruction of

the effective modified SSA matrices through type-I seesaw mechanism with proper
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implementation of the symmetry on the constituent matrices (mD and MR). Then

we discuss some aspects of baryogenesis via leptogenesis related to this scheme.

4.3 Reconstruction of modified scaling matrices with

type-I seesaw

For the realization of generalized Z2 × Z2 in the context of type-I seesaw

mechanism, we define two separate ‘G’ matrices GL and GR for νL and NR fields

respectively. Now the CP transformations are defined on these fields as [145]

νLα → i(GL)αβγ
0νCLβ, NRα → i(GR)αβγ

0NC
Rβ. (4.27)

With mD as a Dirac type and MR as a diagonal nondegenerate Majorana type mass

matrix, the Lagrangian for type-I seesaw

−L = N̄iR(mD)iαlLα +
1

2
N̄iR(MR)iδijN

C
jR + h.c. (4.28)

leads to the effective 3× 3 light neutrino Majorana mass matrix Mν as

Mν = −mT
DM

−1
R mD. (4.29)

Now the invariance of the mass terms of (4.28) under the CP transformations defined

in (4.27) leads to the relations

G†RmDGL = m∗D, G†RMRG
∗
R = M∗

R. (4.30)
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Eqs.(4.29) and (4.30) together imply GT
LMνGL = M∗

ν . Now, specifying GL by G(k)
i ,

we obtain the key equation

(
G

(k)
i

)T
MνG

(k)
i = M∗

ν . (4.31)

Since MR is taken to be diagonal i.e., MR = diag (M1,M2,M3), the corresponding

symmetry generator matrix GR is diagonal [145] with entries ±1, i.e.,

(GR)lm = ±δlm. (4.32)

which implies for each GL, there are eight different structures for GR that correspond

to eight different choices of mD. However, a straightforward computation shows

that for the case-I, the GR matrix compatible with G
(k)
2 and G

(k)
3 should be taken

as (GR)2 = diag (1, 1, 1) and (GR)3 = diag (−1,−1,−1) respectively. Similarly for

Case-II also, those are taken as (GR)1 = diag (1, 1, 1) and (GR)3 = diag (−1,−1,−1)

for G(k)
1 and G(k)

3 . It can be shown that all the other choices of GR are incompatible

with scaling symmetry. Therefore, the first of (4.30) leads to

mDG3 = −m∗D,mDG2 = m∗D for Case-I

mDG3 = −m∗D,mDG1 = m∗D for Case-II. (4.33)

For both the cases as discussed above, the most general form of mD that satisfies the

constraints of (4.33) can be parameterized as

mMS
D =


a b1 + ib2 −b1/k + ib2k

e c1 + ic2 −c1/k + ic2k

f d1 + id2 −d1/k + id2k

 (4.34)
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with

b1 = ±ak(1 + k2)−1/2κ±, c1 = ±ek(1 + k2)−1/2κ±, d1 = ±fk(1 + k2)−1/2κ±. (4.35)

Here the ‘±’ sign in the expressions of b1, c1 and d1 are for Case-I and Case-

II respectively. In (4.34) a, e, f, b2, c2 and d2 are six a priori unknown real mass

dimensional quantities and k is a real, positive, dimensionless parameter. Now using

the seesaw relation in (4.29), it is easy to reconstruct the effective mass matrices

MMS1
ν and MMS2

ν for Case-I and Case-II respectively. In Table 4.1, we present the

parameters of the effective light neutrino mass matrix in terms of the Dirac and

Majorana components.

Table 4.1: Parameters of Mν .

p = −( a
2

M1
+ e2

M2
+ f2

M3
)

q1 = − κ±p√
1+k2

q2 = −k(ab2
M1

+ ec2
M2

+ fd2
M3

)

s = −κ2±pk

1+k2
+ k(

b22
M1

+
c22
M2

+
d22
M3

)

r = (sk + p)− q1

√
1 + k2(κ± − 1

κ±
)

Once again ‘±’ sign in κ are for Case-I and Case-II respectively.

Before we conclude this section, we would like to address the following: it is

clear from (4.8) and (4.32)) that the matrices GL and GR are of different form. This is

since we choose to work in a basis where MR is diagonal but mD is not (“leptogenesis

basis" [145]). However that does not mean that the left handed and right handed field

must transform differently. The form of GR, i.e., GR = diag (±1,±1,±1) is obtained

purely for the diagonal MR matrix. In principle one may assume same residual

symmetry (say G) in the matrices mD and MR when both of them are nondiagonal.
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However, in a basis where MR is diagonal the symmetry in the nondiagonal MR

ultimately changes to GR = diag (±1,±1,±1) while the symmetry in the left handed

field remains the same.

To see this explicitly, we consider the Lagrangian of (4.28) with a nondiagonal

MR. Now MR could be diagonalized by a unitary matrix UN as

U †NMRUN = Md
R = diag (M1,M2,M3), (4.36)

where Md
R is a real diagonal matrix with nondegenerate eigenvalues. Eq.(4.30) can

now be rewritten as

G†mDG = m∗D, G†MRG
∗ = M∗

R, (4.37)

where we have assumed same symmetry for both the fields. Now the second equation

of (4.37) and (4.36) together imply

UT
NG

†UN = d†, (4.38)

where d is a diagonal matrix with djj = ±1. In the basis where the RH neutrino mass

matrix is diagonal one can have a modified Dirac matrix as

mD → m′D = U †NmD. (4.39)

Thus the first equation of (4.37) and (4.38) give

U∗Nd
†U †NmDG = m∗D or d†m′DG = m′∗D, (4.40)

where m′D is defined in (4.39). Thus starting from a basis where MR is nondiagonal,
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we obtain the identical complex symmetry condition on the Dirac mass matrix as

given in (4.30) in the basis where MR is diagonal. This is worth mentioning that the

matrix d is basically the matrix GR of (4.32) since they both are diagonal with entries

±1.

4.4 Baryogenesis via leptogenesis

An introduction to the framework of baryogeneis via leptogenesis were already

given in Sec. 1.5.1. Here, we first note that the flavor sum of the second term in

(1.87) is ∑
α

Im[hji(mD)iα(m∗D)jα] = Im[hjihij] = Im|hji|2 = 0, (4.41)

while the first term is proportional to Im(h2
ij). Now for both the cases in our model,

h has a generic form

h =


a2(1 + κ2

±) + b22(1 + k2) ae(1 + κ2
±) + (1 + k2)b2c2 af(1 + κ2

±) + (1 + k2)b2d2

ae(1 + κ2
±) + (1 + k2)b2c2 e2(1 + κ2

±) + c2
2(1 + k2) ef(1 + κ2

±) + (1 + k2)c2d2

af(1 + κ2
±) + (1 + k2)b2d2 ef(1 + κ2

±) + (1 + k2)c2d2 f2(1 + κ2
±) + d2

2(1 + k2)


(4.42)

with the subscripts ‘±’ refer to Case-I and Case-II respectively. We note that h

in (4.42) is a real matrix so that the flavor-summed CP asymmetry εi vanishes.

Therefore, unflavored leptogenesis (relevant for the high temperature regime) does not

take place for any Ni in this model. In general, any pre-existing asymmetry produced

by the heavier RH neutrinos (N2,3) get washed out by L-violating N1 interactions [72]

unless certain fine-tuned conditions (discussed in the Sec.4.6) are satisfied. In the

present context, we assume that only the decay of N1 matters in generating the CP

asymmetry, and hence, ε1 is the only relevant quantity for unflavored leptogenesis,
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which vanishes in our model.

Next, we concentrate on computing the α-flavored CP asymmetry in terms of

x12, x13 and the elements of mD. These are necessary ingredients for the fully flavored

and the τ -flavored regimes. We find a vanishing value2 of εe1 while εµ,τ1 are calculated

as

εµ1 = ζ[b2k
2(χ1 + χ2) + b1(χ3 + χ4)− b2χ5] = −ετ1. (4.43)

In (4.43) the real parameters ζ and χi (i = 1− 5) are defined as

ζ = [4πv2(b2
1 + (a2 + b2

1 + b2
2)k2 + b2k

4)]−1, (4.44)

χ1 = b2(1 + k2)[c1c2A12 + d1d2A13], (4.45)

χ2 = c[c1eA12 + d1fA13], (4.46)

χ3 = b2(1 + k2)[c2
1A12 − k2(c2

2A12 − d2
2A13) + d2

1A13], (4.47)

χ4 = −ak2[c2eA12 + d2fA13], (4.48)

χ5 = (1 + k2)[c1c2A12 + d1d2A13] (4.49)

where Aij = g(xij) + (1− xij)−1.

Now for T ∼M1 < 109 GeV regime, YB is well approximated with [68]

YB ' −
12

37g∗

[
εeiη
(151

179
m̃e

)
+ εµi η

(344

537
m̃µ

)
+ ετi η

(344

537
m̃τ

)]
(4.50)

where m̃α are the wash-out masses, defined as

m̃α =
|(mD)1α|2

M1

(α = e, µ, τ), (4.51)

2This is also true for CPµτ [195,196] since (mD)1e, (mD)2e and h are all real as in our case.
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η(m̃α) is the efficiency factor that accounts for the inverse decay and the L-violating

scattering processes and g∗ is the number of relativistic degrees of freedom in the

thermal bath having a value g∗ ≈ 106.75 in the SM. And for 109 GeV < T ∼ M1 <

1012 GeV, YB is approximated with [68]

YB ' −
12

37g∗

[
ε

(2)
i η
(417

589
m̃2

)
+ ετi η

(390

589
m̃τ

)]
, (4.52)

where m̃2 =
∑
α=e,µ

m̃α = m̃e + m̃µ and ε(2)
i =

∑
α=e,µ

εαi = εei + εµi .

At the end we would like to mention the following: Existing literature such

as [145, 195, 196] also discussed the phenomena of leptogenesis under the framework

of residual CP symmetry. They also pointed out the nonoccurrence of unflavored

leptogenesis and only the viability of τ−flavored scenario in case of a preserved

residual CP symmetry (in particular CPµτ ) in the neutrino sector. Interestingly,

Ref. [145, 195] pointed out M1 to be O(1011 GeV) to produce YB in the observed

range which is also true for our analysis (see numerical section). However the final

analysis in Ref. [145, 195] is to some extent different from our analysis. In [145, 195],

the authors present the variation of YB with a single model parameter for a fixed value

of M1(5× 1011 GeV) and for the best fit values of the oscillation parameters. In our

analysis, we stick to the near best fit values of the Yukawa parameters for which YB

is positive. However, as we shall see in the numerical section, we can only constrain

the Yukawa parameters scaled by the RH neutrino masses. Thus for a particular set

of scaled parameters we can vary the value of M1 freely and obtain an upper and

a lower bound on M1 corresponding to the observed upper and lower bound of YB.

Another point is that in our analysis the sign of the final YB depends upon the primed

Yukawa parameters and not on the CP phases. However, Ref. [196] discusses how in

a residual CP scheme the sign of YB depends upon the low energy CP phases through

a correction to the mD matrix.
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4.5 Numerical analysis: methodology and discussion

In order to assess the viability of our theoretical conjecture and consequent

outcomes, we present a numerical analysis in substantial detail for both the viable

cases. Our method of analysis and organization are as follows. First, we utilize the

(3σ) values of globally fitted neutrino oscillation data (Table 4.2), together with an

upper bound of 0.23 eV [53] on the sum of the light neutrino masses arising from

PLANCK. To fix the absolute neutrino mass scale we assume mmax ≈
√
|∆m23|2

which is in general used in the type-I seesaw like models to be consistent with

Davidson-Ibarra bound [153]. We can also dispense with the possibility of weak

washout Kα = m̃α/10−3 < 1 which strongly depends upon the initial conditions and

likely to be disfavored by the current oscillation data [146]. We first constrain the

parameter space in terms of the rescaled (primed) parameters defined below.

a −→ a′ =
a√
M1

, e −→ e′ =
e√
M2

,

f −→ f ′ =
f√
M2

, b1,2 −→ b′1,2 =
b1,2√
M1

,

c1,2 −→ c′1,2 =
c1,2√
M2

, d1,2 −→ d′1,2 =
d1,2√
M3

. (4.53)

Then we explore the predictions of the present model in the context of the ββ0ν

experiments for each of the cases. Finally, in order to estimate the value of YB

we make use of these constrained parameters with a subtlety. Since we have only

constrained the primed parameters, there remains a freedom of various set of

independent choices for the parameters of mD (unprimed) along with Mi, for a given

set of primed parameters. Note that for the computation of YB we need to feed the

unprimed parameters and Mi separately. However, for the entire parameter space

of primed parameters, it is impractical to generate the unprimed ones for different

values of Mi as one ends up with infinite number of choices. For this, from the
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entire parameter space of the primed parameters, we have considered only that set of

primed parameters which corresponds to a positive value of YB (sign of YB depends

upon the primed parameters) and observables that lie near their best-fit values as

dictated by the oscillation data. Then varying M1, we generate the corresponding

unprimed set (parameters of mD). Note that here we take only M1 as the free

parameter assuming Mi+1/Mi = 103 for i = 1, 2. Thus for each value of M1 and

corresponding unprimed parameters we obtain the final baryon asymmetry YB. Since

YB has an observed upper and lower bound, we get an upper and a lower bound

forM1 also. Let’s now present the numerical results of our analysis in systematic way.

Constraints from oscillation data

For each of the viable cases, both the normal ordering (NO) and inverted

ordering (IO) of light neutrino masses are found to be permitted over a respectable

size of parameter space consistent with the aforementioned experimental constraints.

This is interesting since the ordinary SSA predicts m3 = 0, and thus, inverted light

neutrino mass ordering (see Sec.4.2). However in the extended case both the mass

orderings are allowed due to the fact that the matrices MMS1
ν and MMS2

ν have

nonzero determinant. The ranges of the primed parameters for both the cases I and

II are graphically shown in Fig.4.1-4.4. These plots are basically two dimensional

projection of a coupled six dimensional parameter space. In order to constrain the

parameter space, the explicit analytic relations that have been implemented in the

computer program can be found in Ref. [186] which discusses explicit expressions for

the masses and mixing angles for a general 3× 3 Majorana mass matrix.

In both the cases, reduction in the number of parameters upon rescaling led
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to a constrained range for each of the light neutrino masses as depicted in Table

4.3. It has been found that all the light neutrino mass spectrum are hierarchical.

Interestingly, though the upper bound on Σimi is fed in as an input constraint, the

bound has not been reached up in our model irrespective of the mass ordering. The

predictions on Σimi are tabulated in Table 4.3 for each of the cases.

Table 4.2: Input values fed into the analysis [13].

Parameters θ12 θ23 θ13 ∆m2
21 |∆m2

31|

(degrees) (degrees) (degrees) 10−5(eV2) 10−3(eV2)

3σ ranges/ others 31.29− 35.91 38.3− 53.3 7.87− 9.11 7.02− 8.09 2.32− 2.59

Best fit values (NO) 33.48 42.3 8.50 7.50 2.46

Best fit values (IO) 33.48 49.5 8.51 7.50 2.45

Figure 4.1: Case-I: Plots of the primed parameters for a normal mass ordering.
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Figure 4.2: Case-I: Plots of the primed parameters for a inverted mass hierarchy.

Figure 4.3: Case-II: Plots of the primed parameters for a normal mass ordering.
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Figure 4.4: Case-II: Plots of the primed parameters for a normal mass ordering.

Table 4.3: Predictions on the light neutrino masses and
∑

imi.

Case-II

Normal Ordering Inverted Ordering

m1/10−3 m2/10−3 m3/10−3 m1/10−3 m2/10−3 m3/10−3

(eV) (eV) (eV) (eV) (eV) (eV)

4.0− 8.5 9.28− 12.0 49− 52 47− 61 49− 62 9− 36∑
imi < 0.08 eV

∑
imi < 0.16 eV

Normal Ordering Inverted Ordering

m1/10−3 m2/10−3 m3/10−3 m1/10−3 m2/10−3 m3/10−3

(eV) (eV) (eV) (eV) (eV) (eV)

4.1− 8.8 9.23− 13.1 48− 52 47− 60 49− 61 10− 38∑
imi < 0.08 eV

∑
imi < 0.16 eV
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Neutrinoless double beta decay (ββ0ν)

In subsection 3.4.1, we introduced the 0νββ decay process. Using the PDG

parametrization convention for UPMNS [112], the Mee can be written as

Mee = c2
12c

2
13m1 + s2

12c
2
13m2e

iα + s2
13m3e

i(β−2δ). (4.54)

Significant upper limits on |Mee| are available from various ongoing experiments. For

instance, KamLAND-Zen [197] have constrained |Mee| < 0.35 eV. However, till date

the most impressive upper bound of 0.22 eV on |Mee| is provided by GERDA phase-I

data [198] which is likely to be lowered even further by GERDA phase -II data [189]

to around 0.098 eV. As shown in Ref. [119], existence of G(k)
3 in Mν leads to four

pairs of values of the CP-violating Majorana phases α and β for each neutrino mass

ordering. Since |Mee| is sensitive to these phases, we get four different plots for each

mass ordering. In Fig.5.2 we present the plots of |Mee| vs. the lightest neutrino mass

(m1,3) for both the mass orderings in Case-I only. Apart from slight changes in the

upper and lower limits on m1,3, Case-II also leads to similar plots since it also predicts

same results on CP violating phases (i.e. cos δ = 0, α, β = 0 or π).
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Figure 4.5: Plot of |Mee| vs. the lightest neutrino mass: the top two figures represent

Case A: α = π, β = 0 (left) and Case B: α = π, β = π (right) while the figures in the

lower panel represent Case C: α = 0, β = 0 (left) and Case D: α = 0, β = π (right).

This is evident from Fig.5.2 that |Mee| in each plot leads to an upper limit which

is below the reach of the GERDA phase-II data. However, predictions of our model

could be probed by GERDA + MAJORANA experiments [199]. Sensitivity reach

of other promising experiments such as LEGEND-200 (40 meV), LEGEND-1K (17

meV) and nEXO (9 meV) [11] are also shown in Fig.5.2. Note that for each case, the

entire parameter space corresponding to the inverted mass ordering could be excluded

by the nEXO reach. One can also explain the nature of the plots analytically. Let

us first consider the inverted mass ordering. In this case, with the approximations
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m3 ' 0 and m1 ' m2, |Mee| simplifies to

|Mee| =
√
|∆m32|2c2

13[{1− s2
12(1− cosα)}2 + s4

12 sin2 α]1/2. (4.55)

Clearly, |Mee| is not sensitive to the phases β and δ. On the other hand, for α = π

and 0 (4.55) further simplifies to

|Mee| =
√
|∆m32|2c2

13[{1− 2s2
12}2], and |Mee| =

√
|∆m32|2c2

13 (4.56)

respectively. Therefore, for α = π (cases A, B), |Mee| is suppressed as compared to

the case α = 0 (cases C, D). Now for a NO, in addition to the s13 suppression, there

is a significant interference between the first two terms. If α = 0, the first two terms

interfere constructively and we obtain a lower bound (∼ 10−3 eV for Case C and

∼ 5× 10−3 eV for Case D) despite it being a case of NO of the light neutrinos. This

is one of the crucial results of the present analysis. On the other hand, for α = π,

the first two terms interfere destructively and thus a sizable cancellation between

them brings down the value of |Mee| and results in the kinks that is depicted in the

lower curves in the top two figures.

Baryogenesis via flavored leptogenesis

As mentioned in the beginning of the numerical section, to get a positive YB,

we were obliged to use those value of the primed parameters for which the low energy

neutrino parameters predicted from our model lie close to their best fit values dictated

by the oscillation experiment. To facilitate this purpose, we define a variable χ2 in

(4.57) that measures the deviation of the parameters from their best fit values.

χ2 =
5∑
i=1

[Oi(th)−Oi(bf)

∆Oi

]2

. (4.57)
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In (4.57)) Oi denotes the ith neutrino oscillation observable among

∆m2
21,∆m

2
32, θ12, θ23 and θ13 and the summation runs over all of them. The

parenthetical th stands for the numerical value of the observable given by our model,

whereas bf denotes the best fit value (cf. Table 4.2). ∆Oi in the denominator

stands for the measured 1σ range of Oi. For numerical computation, we choose

Mi+1/Mi = 103 (i = 1, 2)3. First we calculate χ2 as a function of the primed

parameters in their constrained range. For a fixed value of M1, we then start with

the minimum value of χ2 and we keep on increasing it until YB attains a positive

value. For that particular χ2 i.e., for a particular set of primed parameters, we are

then able to generate a large set of unprimed parameters by varying M1 over a wide

range and can calculate YB for each value of M1. Let’s discuss our results case by

case for each mass ordering.

Case-I: YB for normal mass ordering of light neutrinos:

M1 < 109 GeV: In this regime, all three lepton flavors (e, µ, τ) are distinguishable.

Since εe1 = 0, we need to individually evaluate εµ,τ1 only. Numerically, the maximum

value of |εµ,τ1 | is found to be ∼ 10−8. YB in the observed range cannot be generated

with such a small CP asymmetry parameter. Theoretically, this can be understood

as an interplay between various quantities. A unique feature in the present model is

that the nonzero value of θ13 and εi originated from the imaginary part of the mD

matrix.

109 GeV < M1 < 1012 GeV: Before calculating final YB, we have to look first at

the wash-out parameters Kα = m̃α/10−3 relevant to this mass regime. Since in this

regime only τ flavor is distinguishable, there are two wash-out parameters, Kτ and

K2 = Ke + Kµ. As shown in the first plot of Fig.4.6, the entire range of these

3In the next section a detailed discussion is given regarding the sensitivity of YB to the chosen
hierarchy of Mi.
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parameters is not much greater than 1 for the observed range of YB. Thus the

efficiency factor in (4.52) can be written for this mild wash-out scenario [68] as

η(m̃α) =
[( m̃α

8.25× 10−3

)−1

+
(0.2× 10−3

m̃α

)−1.16]−1

. (4.58)

We then perform a χ2 scanning of the primed parameters. It has been found

that for χ2
min = 0.083 one can have YB positive. Basically, In our scheme, (4.52) of

the present manuscript can be written as

YB '
12

37g∗
εµ1

[
η
(390

589
m̃τ

)
− η
(417

589
m̃2

)]
. (4.59)

Thus the sign of YB depends upon the sign of εµ1 and the quantity in brackets. Next, we

take a particular set from the primed parameter space, calculate the corresponding

χ2 and then YB. This has been seen that data sets corresponding to χ2 < 0.083

cannot produce positive YB, since for those, we get positive values of εµ1 but negative

values for the bracketed quantity. A complete data set of the primed parameters and

corresponding values of the observables are tabulated in Table 4.4 for χ2
min = 0.083.

The other parameters i.e., b1, c1, d1 can be calculated using (4.35).

Table 4.4: Parameters and observables corresponding χ2 = 0.083 for normal mass

ordering.

a′ e′ f ′ b′2 c′2 d′2 χ2

−0.036 −0.050 0.003 −0.052 −0.059 −0.122 0.083

observables θ13 θ12 θ23 ∆m2
21 × 105 |∆m31|2 × 103

χ2 = 0.083 8.420 33.040 42.540 7.57 (eV)2 2.55 (eV)2
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Finally, given the primed data set for that χ2
min, M1 is varied widely to have

YB in the observed range. For each value of M1, a set of values of the unprimed

parameters {a, e, f, b1, c1, d1, b2, c2, d2} is generated. Final YB is then calculated for

each values of M1 and the corresponding unprimed set.

A careful surveillance of Fig.4.7 reveals that we can obtain an upper and a

lower bound on M1 from the observed range of YB. To show this clearly, two straight

lines have been drawn parallel to the abscissa in the mentioned plot: one at YB =

8.55×10−11 and the other at YB = 8.77×10−11. The values ofM1, where the straight

lines meet the YB vs M1 curve, yield the allowed lower and upper bounds on M1,

namely (M1)lower = 2.17×1011 GeV and (M1)upper = 2.23×1011 GeV. To explain this

linear correlation betweenM1 and YB one could see the expression for εµ1 in (4.62). As

one can see from (4.62), εα1 is composed of two terms. The first term is proportional

to M1/Mj while the second term is proportional (M1/Mj)
2. Now for the assumed

hierarchical scenario (M3 � M2 � M1), the first term dominates (cf. Eq.4.63) and

effectively εα1 becomes proportional to M1 (theoretically which is not the case due

to the presence of the second term). Now in (4.52), in the expression of YB, the

wash-out parameters only depend upon the primed parameters. Thus effectively the

final baryon asymmetry YB is also proportional to M1. One might also ask about the

narrow range for M1 as we see in the Fig.4.7. Basically we have presented our result

for a particular set of primed parameters (for χ2
min = 0.083).
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Figure 4.6: The plot on the left panel shows the range of the wash-out parameters.

The red dot corresponds to the minimum value of χ2 for which a set of primed

parameters has been taken to compute YB. The plot on the right panel shows a

variation of YB vs k. The red band in the same plot indicates the observed range of

YB.

Figure 4.7: A plot of the final YB for different values ofM1 for a normal light neutrino

mass ordering.

From Table 4.4, we infer that θ23 = 42.540 corresponding to χ2
min = 0.083. Since

theoretically θ23 is related only with a single model parameter k (cf. Eq.(4.16)) and
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unlike the other parameters of mD (discussed earlier in this section) value of k does

not depend upon the variation of M1, θ23 remain fixed for the entire range of M1

that corresponds to the observed range of YB. Thus an experimentally appealing

conclusion of this scheme is that, given the observed range of YB, the octant of θ23

is determined (< π/4). One can also check the sensitivity of the produced YB to the

entire range of θ23 in a slightly different way. It is trivial to find out the analytic form

of YB that explicitly depend upon θ23, by replacing k = (tan θ23)−1 in the expression

of εµ1 and mα in (4.59). Thus for a fixed value of M1 one can use the entire parameter

space of the primed parameters and k to compute the final YB. From the plot on the

right panel of Fig.4.6, we see that the value of k is always greater that 1 for YB to be in

the observed range (represented by the red narrow strip in Fig.4.6). This is certainly

for a particular value of M1(6.79× 1011GeV). As previously mentioned, YB is almost

proportional to M1, thus lowering the value of the latter below 6.79×1011GeV would

cause a downward movement of the overall pattern of the YB vs. k plot in Fig.4.6.

Thus for the observed range of YB, along with the values k > 1, there would be other

values of k which are less than one. It is seen that for the normal mass ordering in

Case-II a similar lower limit on M1 exist that dictates the octant of θ23 for the the

observed range of YB.

It should be emphasized that the lower bound obtained in the second method is

different from that obtained in the first. This is simply because the ways of obtaining

these bounds are different. In the first method, keeping k and the primed parameters

fixed at their best-fit valuesM1 is freely varied so as to obtain the observed range of YB

which in turn enables us to determine an upper and lower bound onM1. In the second

method, for a fixed value ofM1, we compute YB using the entire parameter space for k

and the primed parameters. The plot of YB vs. k in Fig.4.6 for M1 = 6.79× 1011GeV

represents the lower bound on M1 above which we always get k > 1 for the observed

range of YB. If we further lower the value of M1 from 6.79× 1011GeV, in the second
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approach, it would lead to a downward movement of YB vs k curve in Fig.4.6 or in

Fig.4.9. In that case both k > 1 and k < 1 values are possible for the observed range

of YB. Obviously this has an impact on the results obtained in the first method. From

the first method we know that if we choose the best fit value of k, the allowed range

ofM1 should be read from Fig.4.7. This does not necessarily mean that for this range

of M1, other values of k are not possible (obviously those values of k should not be

the best fit values then) since the range shown in Fig.4.7 is below M1 = 6.79 × 1011

GeV.

M1 > 1012 GeV: It has been shown that YB = 0 here for our model.

Case-I: YB for inverted mass ordering of light neutrinos:

Following the same procedure as for the normal mass ordering, a final discussion for

each regime is summarized as follows.

M1 < 109 GeV: Similar to the normal ordering, the |εµ,τ1 | can have values at

most the order of 10−8 which is not sufficient to let YB come within its observed range.

109 GeV < M1 < 1012 GeV: Unlike the previous case the ranges of the the

wash-out parameters (cf. Fig.4.8) favors a strong wash-out scenario.
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Figure 4.8: The plot on the left panel shows the range of the wash-out parameters.

The red dot corresponds to the minimum value of χ2 for which a set of primed

parameter has been taken to compute YB. The plot on the right panel shows final YB

for different values of M1 for the inverted light neutrino mass ordering.

Thus the efficiency factor in (4.52) can be written for this strong wash-out

scenario [68]as

η(m̃α) =
[(0.55× 10−3

m̃α

)1.16]
. (4.60)

For χ2
min = 0.261, a set of primed parameters is obtained (cf. Table 4.5). Then

similar to the previous case, varying M1 in a wide range, a lower and upper bound on

M1, namely (M1)lower = 5.52×1011 GeV and (M1)upper = 5.66×1011 GeV is obtained

for the observed range of YB. A plot of YB vsM1 is shown in the right panel of Fig.4.8.

M1 > 1012 GeV: Once again, YB = 0 in this regime, for the present model.
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Table 4.5: Parameters and observables corresponding χ2 = 0.261 for inverted
hierarchy.

a′ e′ f ′ b′2 c′2 d′2 χ2

−0.043 −0.065 0.116 0.130 −0.019 0.039 0.261
observables θ13 θ12 θ23 ∆m2

21 × 105 |∆m31|2 × 103

χ2 = 0.261 8.540 34.070 49.370 7.53 (eV)2 2.40 (eV)2

Case-II: YB for normal mass ordering of light neutrinos: The analysis

has been done exactly in the same way as was in the previous case. A systematic

presentation of the obtained results is the following.

M1 < 109 GeV: Again, YB in the observed range cannot be generated due to the

small value of |εµ,τ1 |.

Figure 4.9: The plot on the left panel shows the range of the wash-out parameters.

The red dot corresponds to the minimum value of χ2 for which a set of primed

parameter has been taken to compute YB. The plot on the right panel shows a

variation of YB vs k. The red band in the same plot indicates the observed range of

YB.

109 GeV < M1 < 1012 GeV: Similar to the previous normal hierarchical case, the
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wash-out parameters here also suggest a mild wash-out scenario (cf. Fig.4.9). For

χ2
min = 0.256, a set of rescale parameter has been found and then varying M1 in a

wide range, a lower and a upper bound on M1 are obtained as shown in the Fig.4.10.

Note that in this case also θ23 < π/4 (Table 4.6) for the minimum χ2 that produce

YB positive and in the observed range. Similar to the case of normal mass ordering

in Case-I, here we also show a YB vs k plot (cf. Fig.4.9) and infer that there exists a

lower limit 8.2× 1011GeV on M1 for which k > 1, i.e., θ23 < π/4 for YB to be in the

observed range.

Table 4.6: Parameters and observables corresponding χ2 = 0.256 for normal mass

ordering.

a′ e′ f ′ b′2 c′2 d′2 χ2

−0.042 −0.046 −0.005 −0.065 −0.056 −0.128 0.256

observables θ13 θ12 θ23 ∆m2
21 × 105 |∆m31|2 × 103

χ2 = 0.256 8.370 33.080 43.490 7.55 (eV)2 2.55 (eV)2

M1 > 1012 GeV: It has been shown that YB = 0 here for our model.

Figure 4.10: A plot of the final YB for different values of M1 for the normal light

neutrino mass ordering.
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Case-II: YB for inverted mass ordering of light neutrinos:

Proceeding exactly in the same manner as for the normal mass ordering, a brief

discussion for each regime goes as follows.

M1 < 109 GeV: Similar to the normal ordering, the |εµ,τ1 | can have values at

most the order of 10−8 which is not sufficient to let YB come within its observed range.

109 GeV < M1 < 1012 GeV: Unlike the previous case the ranges of the wash-

out parameters (cf. Fig.4.11) favors a strong wash-out scenario. For χ2
min = 0.041

a set of primed parameters is obtained (cf Table 4.7). Then similar to the previous

case varyingM1 in a wide range a lower and upper bound onM1, namely (M1)lower =

5.27× 1011 GeV and (M1)upper = 5.40× 1011 GeV is obtained for the observed range

of YB. A plot of YB vs M1 is shown in the right panel of Fig.4.11.

Figure 4.11: The plot on the left panel shows the range of the wash-out parameters.

The red dot corresponds to the minimum value of χ2 for which a set of primed

parameter has been taken to compute YB. The plot on the right panel shows final YB

for different values of M1 for the inverted light neutrino mass ordering.
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Table 4.7: Parameters and observables corresponding χ2 = 0.041 for inverted
hierarchy.

a′ e′ f ′ b′2 c′2 d′2 χ2

−0.123 −0.084 0.123 0.104 −0.052 −0.096 0.041
observables θ13 θ12 θ23 ∆m2

21 × 105 |∆m31|2 × 103

χ2 = 0.041 8.710 33.430 49.230 7.58 (eV)2 2.44 (eV)2

M1 > 1012 GeV: Once again, YB = 0 here for the present model.

A compact presentation of the final conclusions regarding YB from the numerical

analysis is given in Table 4.8.

Table 4.8: Final statements on YB for different mass regimes.

Type M1 < 109 GeV 109 GeV < M1 < 1012 GeV M1 > 1012 GeV

Normal

Ordering

Excluded since YB

is below the observed range

for any χ2.

YB within the observed range

for χ2
min = 0.083.

Excluded

since YB = 0.

Inverted

Ordering

Excluded since YB

is below the observed range

for any χ2.

YB within the observed range

for χ2
min = 0.261.

Excluded

since YB = 0.

Type M1 < 109 GeV 109 GeV < M1 < 1012 GeV M1 > 1012 GeV

Normal

Ordering

Excluded since YB

is below the observed range

for any χ2.

YB within the observed range

for χ2
min = 0.256.

Excluded

since YB = 0.

Inverted

Ordering

Excluded since YB

is below the observed range

for any χ2.

YB within the observed range

for χ2
min = 0.041.

Excluded

since YB = 0.

Before concluding this section, we emphasize that in this model, the imaginary

part of mMS
D (cf. Eq.(4.34)) plays a very crucial role. Absence of the latter leads to a
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vanishing θ13, and thus undetermined value of δ and most importantly a vanishing εαi .

Therefore, the model addresses a common origin of θ13, CP violation and leptogenesis.

However, although the parameters in the imaginary part of mMS
D are correlated with

YB, from (4.43) we see the parameter b1 is also very much sensitive to εα1 . For example,

when b2 = 0 and c2, d2 6= 0, (4.43) simplifies to

εµ1 = 4πv2[b2
1 + (a2 + b2

1)k2]−1b1χ4 = −ετ1, (4.61)

where χ4 = f(c2, d2) as defined in (4.48). Now if b1 vanishes εµ1 , hence, YB vanishes

but due to nonvanshing value of c2, d2 one obtains θ13 6= 0. However, to obtain a

nonzero YB, along with a nonvanishing b1, one always needs χ4 6= 0 which in turn

implies a nonzero θ13. Thus in this model a nonzero θ13 does not always imply a

nonzero YB but the reverse is not true.

4.6 Effect of N2,3 on final YB

In the present analysis, the effect of the two heavier neutrinos (N2, N3) on the

final baryon asymmetry has been neglected with the assumption that the asymmetries

produced by the decays of both N2 and N3 get washed out [72]. In this section, we

present a brief discussion on the sensitivity of the heavier neutrinos to final YB. There

are two ways that such a sensitivity might arise as elaborated below.

Indirect effect of N2,3:

Although the neutrino oscillation data have been fitted with the primed

parameters, (cf. (4.53)), one needs to evaluate the unprimed parameters (i.e. the

matrix elements of mD) for computing quantities relevant to leptogenesis e.g., εα1 . It
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is interesting to inquire whether the final YB is affected by the chosen hierarchies of

the RH neutrinos. It turns out that the final YB is not much sensitive to M2,3. To

better appreciate this, we note that the CP asymmetry parameters of (1.87) simplifies

to

εα1 = − 1

4πv2h11

(3
2

∑
j=2,3

M1

Mj
Im[ h1j(mD)1α(m

∗
D)jα] +

∑
j=2,3

M2
1

M2
j

Im[ hj1(mD)1α(mD
∗)jα]

)
,(4.62)

after approximating g(x1j) to g(x1j) = − 3
2
√
x1j

for x1j � 1. The last term of (4.62)

is of O(x−2
1j ), and hence, heavily suppressed. The first term has two parts for j = 2, 3.

The j = 3 term has negligible effect on εα1 since M3 �M1 and the values of f, d1 and

d2 are of O(mD). With this, for j = 2 term, εα1 simplifies to

εµ1 = − 3M1

8πv2h11

[(ae′ + b1c
′
1 + b2c

′
2)(b2c

′
1 + b1c

′
2)] = −ετ1 (4.63)

with εe1 = 0 as already shown in Sec.4.4. Since the primed parameters are already fixed

by the oscillation data, εµ,τ1 are practically insensitive to the value ofM2. However, for

the numerical computation of the final baryon asymmetry, we take into account each

term in (4.62) with two different mass hierarchical schemes for the heavy neutrinos,

e.g,Mi+1/Mi = 102 andMi+1/Mi = 104 where i can take the values 1, 2. Note that in

the previous section we have already computed YB for Mi+1/Mi = 103. The outcome

of the numerical analysis is that though the chosen mass ratios of the RH neutrinos

are altered, changes in the lower and upper bounds on M1 are not significant for

the observed range of YB. For convenience, for each case and light neutrino mass

ordering, the variation of YB with M1 for different mass ratios has been presented in

Table 4.9.

It can be seen from Table 4.9 that the upper and lower bounds onM1 are slightly

different for each hierarchical cases. As explained earlier, while the first term of (4.62)

is not sensitive to the chosen hierarchies the second term does contribute to the εµ1 and
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therefore, to the final YB value. Thus, for the same value ofM1, the contribution from

the second term in (4.62) is larger for Mi+1/Mi = 102 and smaller for Mi+1/Mi = 104

w.r.t the case Mi+1/Mi = 103. Hence, for the case where Mi+1/Mi = 102, the slope of

the YB vs. M1 curve is greater than the case whereMi+1/Mi = 103. As a consequence,

both the upper and the lower bounds are slightly lowered for the given range of YB.

Similarly, we find the the bounds are slightly increased for the case Mi+1/Mi = 104.

Table 4.9: Bounds on M1 for different mass ratios of the RH neutrinos (i = 1, 2).

Case-I: Normal ordering (NO) of light neutrinos

Hierarchies → Mi+1/Mi = 102 Mi+1/Mi = 103 Mi+1/Mi = 104

Upper bound (GeV) 2.21× 1011 2.23× 1011 2.25× 1011

Lower bound (GeV) 2.16× 1011 2.17× 1011 2.18× 1011

Case-I: Inverted ordering (IO) of light neutrinos

Hierarchies → Mi+1/Mi = 102 Mi+1/Mi = 103 Mi+1/Mi = 104

Upper bound (GeV) 5.64× 1011 5.66× 1011 5.67× 1011

Lower bound (GeV) 5.51× 1011 5.52× 1011 5.54× 1011

Case-II: Normal ordering (NO) of light neutrinos

Hierarchies → Mi+1/Mi = 102 Mi+1/Mi = 103 Mi+1/Mi = 104

Upper bound (GeV) 2.57× 1011 2.58× 1011 2.59× 1011

Lower bound (GeV) 2.50× 1011 2.52× 1011 2.54× 1011

Case-II: Inverted ordering (IO) of light neutrinos

Hierarchies → Mi+1/Mi = 102 Mi+1/Mi = 103 Mi+1/Mi = 104

Upper bound (GeV) 5.38× 1011 5.40× 1011 5.42× 1011

Lower bound (GeV) 5.25× 1011 5.27× 1011 5.28× 1011

Direct effect of N2:

For the sake of simplicity, we consider here the effect of N2 only. It has been shown
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in Ref. [73] that, due to a decoherence effect, a finite lepton asymmetry generated

from the decays of N2 become protected against N1-washout and survives down to

the electroweak scale and contributes to the final baryon asymmetry. However, for

this to take place, two wash-out factors ∆1 = h11
M1m∗

and ∆2 = h22
M2m∗

must respectively

meet the conditions ∆1 � 1 and ∆2 6� 1 with m∗ = 1.66
√
g∗πv2/MPl ≈ 10−3 eV.

Figure 4.12: Plots of the wash-out parameters ∆1 and ∆2 for inverted light neutrino

mass ordering for both the cases. The red dot corresponds to the corresponding χ2
min

for which we calculate the final baryon asymmetry.

Here, the criterion ∆1 � 1 indicates that faster N1 interactions destroy the

coherence among the states produced by N2. Thus a component of the lepton

asymmetry produced by N2 survives orthogonal to N1-states and gets protected

against N1-washout. A mild wash-out of the lepton asymmetry produced by N2

due to N2-interactions is expressed by the condition ∆2 6� 1. For this scenario, a

considerable amount of N2-generated lepton asymmetry survives during the phase of

N1-leptogenesis. It has been found that for each of the cases discussed in this chapter,

for a NO, both the wash-out parameters ∆1,2 < 10. Thus faster N1 interaction do

not take place and criterion for successful N2 leptogenesis is not satisfied. On the

other hand, for IO, the allowed parameter space favors large values of ∆2 in excess
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of 10 except at the bottom (the green band). Thus the ∆2 6� 1 condition is violated

in most of the region. Moreover the χ2
min values, for which we compute final YB

strongly violates the condition ∆2 6� 1. Few allowed points with ∆2 < 10 correspond

to values of χ2 above 0.8 which is much higher than χ2
min for which we obtain YB

in the observed range. Therefore, for our calculation, any direct effect of N2 is not

significant.

4.7 Summary and conclusion

We interpret the Strong Scaling Ansatz (SSA) in a Majorana neutrino mass

matrix as the consequence of a residual Z2 × Z2 symmetry. Since SSA predicts a

vanishing value of θ13, and hence, no measurable Dirac CP violation, it is modified by

invoking a nonstandard CP transformation. We address the resulting symmetry as a

generalized Z2 × Z2 symmetry. Depending upon the manner in which the symmetry

is implemented, there are several cases all of which have been explored in substantial

detail. For each case, besides the predictions of maximal Dirac CP violation (δ =

±π/2) and Majorana CP conservation (α, β = 0, π), numerically permissible ranges

for the light neutrino masses as well as the ββ0ν decay parameter |Mee| has been

obtained. Next, we show how such a generalized Z2 × Z2 invariance can arise in the

type-I seesaw framework and explore the possibility of baryogenesis via leptogenesis.

Typical structure of the Dirac mass matrix mD leads to a common origin of θ13,

leptonic CP violation and nonzero CP asymmetry parameter εαi . Though we primarily

focus the N1-leptogenesis, we discuss the effect of the heavier neutrinos N2,3 on the

final baryon asymmetry YB. We show that the heavier neutrinos might affect the

final YB in two different ways: either via the chosen hierarchy of the RH neutrinos

or through the asymmetry generated by the heavy neutrino itself (for simplicity we

147



Chapter. Complex extension of the residual Z2 × Z2 symmetry in scaling neutrino
Majorana mass matrix

have assumed only the effect of N2, i.e., N2 leptogenesis). We found that the final

YB is not sensitive to the chosen hierarchy of the RH neutrinos since the leading

order term in εα1 is independent of the chosen hierarchy. In the numerical analysis we

restrict ourselves to the near best-fit values of the oscillation parameters for which a

positive value of YB is obtained. We found that the conditions for N2 leptogenesis

are not satisfied for those best-fit points. Thus N2-leptogenesis is also not so sensitive

to the final YB. For each of the cases and irrespective of the light neutrino mass

ordering, only τ -flavored leptogenesis scenario (109 GeV < T ∼ M1 < 1012 GeV) is

found to be feasible one to generate YB in the observed range with the other regimes

T ∼ M1 > 1012 and T ∼ M1 < 109 GeV being ruled out analytically as well as

numerically. The best-fit parameters for which we calculate the final YB, lead to the

value of θ23 < π/4 for NO and θ23 > π/4 for IO for both Case-I and Case-II. We also

found an upper and a lower bound on the lightest (M1) of the heavy neutrino masses

for each case. Finally, for a fixed value of M1, we also investigate the sensitivity of

θ23 on the final YB. Though both neutrino mass ordering are allowed, the NO comes

with an interesting prediction. It has been shown and explained in Sec.4.5 that in

both the NO scenarios, there exist lower limits on M1, above which any value of M1

corresponds to θ23 < π/4 for YB to lie in the observed range.
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Chapter 5

Implications of the Friedberg-Lee

invariance in a neutrino mass model

with µτ -flavored CP symmetry

5.1 Introduction

Various neutrino mass models with definitive statements about the mass

ordering and the absolute scale of three light neutrino masses are yet to be tested.

Also, since the octant of the atmospheric mixing angle θ23 remains uncertain, a precise

prediction of θ23 can be used to exclude and discriminate models in the light of future

precision measurements. For the Dirac CP phase δ, the current best-fit values are close

to 234◦ for NO and 278◦ for IO. While the possibility of CP conservation (sin δ = 0)

is allowed at slightly above 1σ, one of the CP violating value δ = π/2 is disfavored

at 99% CL. Thus, the remaining CP violating value δ = 3π/2 and deviations around

it still remain potentially viable possibilities. Also the rapid development of the long
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baseline experiments such as T2K [200], NOνA [194] and also 0νββ experiments such

as KamLandZen [197], GERDA [189, 198] is expected to shortly resolve the above

issues. Thus, from the perspective of neutrino mass model building, this is a moment

of paramount importance, since many existing models that predict θ23, δ and the mass

ordering will be challenged through precise future measurements of these quantities.

As mentioned earlier, discrete flavor symmetries [92, 94, 99, 201] have always

been quite popular paradigm in building higly predictive models of neutrino mass

and mixing. These include the celebrated µτ interchange symmetry [113, 159–161]

which, in its pristine form, was excluded after the discovery of a nonvanishing reactor

mixing angle θ13 (now confirmed at more than 5.2σ [115]). However, it has now been

revived with a simple change of usage-by using the µτ -interchange symmetry as the

generator of a nonstandard CP symmetry (CPµτ ) [100,109]:

νLl → iGlmγ
0νCLm, (5.1)

instead of an exact µτ -interchange flavor symmetry: νLl → GlmνLm, in the effective

neutrino Majorana mass term in the low-energy Lagrangian (density)

−Lνmass =
1

2
νCLl(Mν)lmνLm + h.c.. (5.2)

Here, νCLl = CνLl
T . While the indices l,m span the lepton flavor indices e, µ, τ , the

subscript L denotes left-handed flavor neutrino fields. Mν is a complex symmetric

matrix (M∗
ν 6= Mν = MT

ν ) in lepton flavor space. Though CPµτ was proposed few

years back [109,144], recently it has gathered a lot of attention [102–105,110,123–125,

129, 130, 202–204] due to its exact prediction: θ23 = π/4 and δ = π/2 or 3π/2 (Co-

bimaximal mixing [205]), which is also a recent hint from from T2K. To make CPµτ

more predictive, a sizable body of research has been done combining CP symmetry

150



5.1. Introduction

with other flavor symmetries [99], despite the fact that at very high energy, it is

nontrivial to have a consistent theory of CP combined with flavor symmetry [102,103].

One particular generalization [3, 8] of (5.1) is CPµτθ which is implemented in

the neutrino Majorana mass by means of the field transformation

νLl → iGθ
lmγ

0νCLm (5.3)

where Gµτθ has the generic form

Gµτθ =


−1 0 0

0 − cos θ sin θ

0 sin θ cos θ

 , (5.4)

in the flavor space. Here,‘θ’ being an arbitrary mixing parameter that mixes the νLµ

and νLτ flavors. It is worth noticing that θ = π/2 reduces the mixing symmetry Gµτθ
lm

to the interchange symmetry Gµτ
lm and any nonzero value of θ− π/2 has the potential

to account for the deviation from CPµτ . Though, in general, CP symmetries are

highly predictive in terms of mixing angles and CP-violating phases, for most of the

cases, it lacks information regarding light neutrino masses and mass ordering unless

one invokes additional flavor symmetries to reduce the number of parameters [99],

e.g, by the means of ‘texture zeros’ in the light neutrino mass matrix [110,204].

In order to obtain testable predictions about neutrino masses and mixing, we

consider a Friedberg-Lee (FL) transformation [206–211]

νLl → iGµτθ
lm γ0νCLm + ηlξ. (5.5)
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in combination with (5.3). This leads to

Mνη = 0, and (Gµτθ)TMνG
µτθ = M∗

ν , (5.6)

where ηl (l = e, µ, τ) are three arbitrary complex numbers, η = (ηe ηµ ητ )
T and ξ is a

fermionic Grassmann field [206]. Note that, (5.5) is a simple CP generalization of the

ordinary (general) FL transformation (also known as twisted FL symmetry [212,213])

νLl → Gµτθ
lm νLm + ηlξ (5.7)

leading to

Mνη = 0, and (Gµτθ)TMνG
µτθ = Mν . (5.8)

Amongst many of the interesting results (which we shall discuss in the next

section) that emerge as a consequence of the transformation in (5.5), it is worthwhile

to stress two important departures from CPµτ .

• First of all, as mentioned earlier, Gµτθ
lm in (5.4) is a µτ mixing symmetry.

It reduces to ‘µτ -interchange’ in the limit θ → π/2 which we address in rest of

this chapter as ‘µτ -interchange limit (MTIL)’. It is now trivial to anticipate that

the mixing parameter θ( 6= π/2) conspires for the departure from maximal δ and

θ23. However, we show in this chapter that despite the generalization from CPµτ to

CPµτθ, the additionally imposed FL symmetry only allows a tiny deviation from the

maximality of δ.

• The first condition in (5.6) is satisfied for a nontrivial eigenvector η if

detMν = 0 which means at least one of the light neutrino masses is zero. Thus,

by construction, this model predicts the absolute light neutrino mass scale.

For a consistent phenomenological analysis, apart from fitting the neutrino
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oscillation global-fit data, we study here the impact of CPµτθ symmetry on νµ → νe

oscillation in the long baseline experiments such as NOνA, T2K and DUNE. In

addition, in the context of recent discovery of high energy neutrino events at IceCube

[41–45], assuming high energy neutrinos originate purely from distant astrophysical

sources1, we also calculate the flux-ratios which will be measured with enhanced

statistics at advanced neutrino telescopes (e.g. IceCube and ANTARES) in near

future. These calculations show that any potential deviation from the democratic

1:1:1 distribution of flux ratios [51, 214–216] can lead to predictions on the octant of

θ23 in our model.

The rest of the chapter is organized as follows. Sec.5.2 contains the most general

parametrization of Mν that is invariant under (5.5), thereby satisfying the conditions

of (5.6). Sec.5.3 deals with the evaluation of Majorana phases α, β and the leptonic

Dirac CP phase δ for both types of mass ordering analysed in two different subsections.

The numerical analysis in Sec.5.4 comprises of four subsections. Subsec.5.4.1 entails

the extraction of the allowed parameter space and the prediction of light neutrino

masses, whereas Subsec.5.4.2 deals with the prediction on neutrinoless double beta

decay process. Subsec.5.4.3 discusses of the range of variation of the oscillation

probability Pµe and the CP asymmetry parameter Aµe in experiments such as T2K,

NOνA and DUNE for both NO and IO. Subsec.5.4.4 comments on the possibility of

determining the octant of θ23 from futuristic measurements of flavor flux ratios in

neutrino telescopes such as IceCube.

1We consider high energy neutrinos originating from pp and pγ collisions.
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5.2 FL transformed CPµτθ invariance of Mν

Using (5.6), a 3×3 symmetric mass matrix can most generally be parametrized

as2:

Mν =


− 2a1

(1+cθ)
η2
η1

a1 + ia2 −a1t θ
2
+ ia2t

−1
θ
2

a1 + ia2 c1t θ
2
− a1

η1
η2
− ia2(1 + cθ)

η1
η2

c1 − ia2t
−1
θ
2

cθ
η1
η2

−a1t θ
2
+ ia2t

−1
θ
2

c1 − ia2t
−1
θ
2

cθ
η1
η2

c1t
−1
θ
2

− a1
η1
η2

+ ia2(1 + cθ)
η1
η2

 ,

(5.9)

where cθ ≡ cos θ, sθ ≡ sin θ and tθ/2 = tan θ
2
. For simplicity, we restrict to a

reasonable choice that ηl are a priori arbitrary complex numbers with same phases,

so that the ratios η1
η1
, η2
η3

and η3
η1

are all real and positive. In (5.9), there are five real free

parameters: a1, a2, c1, η1
η2

and θ which can be well constrained by existing neutrino

oscillation global-fit data. It is to be noted that (5.9) does not contain the parameter

η3 owing to a consistency relation of the form η2
η3

= − (1+cθ)
sθ

. The mass matrix Mν in

(5.9) can be diagonalized by a similarity transformation with a unitary matrix U :

UTMνU = Md
ν ≡ diag (m1,m2,m3), (5.10)

where mi (i = 1, 2, 3) are real and we assume that mi ≥ 0. Without any loss of

generality, we work in the diagonal basis of the charged lepton so that U can be

related to the PMNS mixing matrix UPMNS as

U = PφUPMNS ≡ Pφ


c12c13 ei

α
2 s12c13 s13e

−i(δ−β
2

)

−s12c23 − c12s23s13e
iδ ei

α
2 (c12c23 − s12s13s23e

iδ) c13s23e
iβ
2

s12s23 − c12s13c23e
iδ ei

α
2 (−c12s23 − s12s13c23e

iδ) c13c23e
iβ
2

 ,

(5.11)

2In rest of the chapter, ηe, ηµ and ητ are referred to as η1, η2 and η3 respectively.
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where Pφ = diag (eiφ1 , eiφ2 , eiφ3) is an unphysical diagonal phase matrix and cij ≡

cos θij, sij ≡ sin θij with the mixing angles θij ∈ [0, π/2]. We work within the PDG

convention [112] but denote our Majorana phases by α and β. CP-violation enters

through nontrivial values of the Dirac phase δ and of the Majorana phases α, β where

δ, α, β ∈ [0, 2π].

5.3 Impact of mass ordering on mixing angles and

CP properties

Eqs.(5.6) and (5.10) jointly imply [109]

GθU∗ = Ud̃. (5.12)

where d̃ = diag(d̃1, d̃2, d̃3), where each d̃i (i = 1, 2, 3) is either +1 or −1, and therefore

(5.12) can be written in the following explicit form:


−1 0 0

0 −cθ sθ

0 sθ cθ



U∗e1 U∗e2 U∗e3

U∗µ1 U∗µ2 U∗µ3

U∗τ1 U∗τ2 U∗τ3

 =


d̃1Ue1 d̃2Ue2 d̃3Ue3

d̃1Uµ1 d̃2Uµ2 d̃3Uµ3

d̃1Uτ1 d̃2Uτ2 d̃3Uτ3

 . (5.13)

Eq.(5.13) is equivalent to nine equations for the three rows:

−U∗e1 = d̃1Ue1, − U∗e2 = d̃2Ue2, − U∗e2 = d̃3Ue3,

−U∗µ1cθ + U∗τ1sθ = d̃1Uµ1,− U∗µ2cθ + U∗τ2sθ = d̃2Uµ2, − U∗µ3cθ + U∗τ3sθ = d̃3Uµ3

U∗µ1sθ + U∗τ1cθ = d̃1Uτ1, U
∗
µ2sθ + U∗τ2cθ = d̃2Uτ2, U

∗
µ3sθ + U∗τ3cθ = d̃3Uτ3

(5.14)
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It is useful to construct the following two rephasing invariant quantities, that are

independent of the unphysical phases, for calculating the Majorana phases:

I1 = Ue1U
∗
e2, I2 = Ue1U

∗
e3. (5.15)

From the first row of (5.14), we get,

I1 = d̃1d̃2U
∗
e1Ue2, I2 = d̃1d̃2U

∗
e1Ue3 (5.16)

Using the above expressions for I1,2, in (5.15) and (5.16), we obtain the relations,

c12s12c
2
13e
−iα/2 = d̃1d̃2c12s12c

2
13e

iα/2 (5.17)

and

c12s13c13e
i(δ−β/2) = d̃1d̃3c12s13c13e

−i(δ−β/2). (5.18)

From (5.17) and (5.18), we find,

e−iα = d̃1d̃2, e
2i(δ−β/2) = d̃1d̃3, (5.19)

i.e., either α = 0 or α = π, and either β = 2δ or β = 2δ− π . Therefore, four distinct

pairs of values are possible for the Majorana phases. From the third row of (5.14),

taking the absolute square, we obtain,

|Uτ3|2 = (U∗µ3sθ + U∗τ3cθ)(Uµ3sθ + Uτ3cθ) (5.20)

⇒ cot 2θ23 = cot θ cos(φ2 − φ3). (5.21)
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Similarly, the absolute square of the second relation in the third row in (5.14) is

devoid of the unphysical phase difference (φ2 − φ3), and we get,

cos2 δ = cos2 θ sin2(φ2 − φ3) =
cos2 θ sin2 2θ23 − sin2 θ cos2 θ23

sin2 2θ23

. (5.22)

Note that, both the relations, i.e., (5.21) and (5.22) reduce to the co-bimaximal

prediction of CPµτ in the MTIL, as expected. We also stress that the relations (5.19),

(5.21) and (5.22) hold irrespective of the neutrino mass ordering.

Now, due to FL invariance, Mν has a vanishing eigenvalue with corresponding

normalized eigenvector given by

v = N−1


−η1
η2

cot θ
2

− cot θ
2

1

 eiγ, with N =

[(
1 +

η2
1

η2
2

)
cot2 θ

2
+ 1

]1/2

, (5.23)

where γ is an arbitrary phase signifying that the normalized eigenvector is unique up

to an overall phase. If the zero eigenvalue is associated with m1 = 0 (m3 = 0), we

discover additional consequences for the normal (inverted) ordering.

5.3.1 Normal ordering

Here, v is associated with the first column of PMNS. Equating v with the first

column of U in (5.11), we get,

c12c13 = N−1η1

η2

cot
θ

2
, φ1 = γ + π, (5.24)

s12c23 + c12s23s13e
iδ = N−1 cot

θ

2
ei(γ−φ2), (5.25)
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s12s23 − c12c23s13e
iδ = N−1ei(γ−φ3). (5.26)

Note that, (5.25) and (5.26) together imply

s2
12 = N−2[cot2 θ

2
+ s2

23 + 2s23c23 cot
θ

2
cos(φ2 − φ3))]. (5.27)

Taking the product of (5.25) with the complex conjugate of (5.26), and taking its

imaginary part, we obtain,

sin2 δ =
cot2 θ

2
sin2(φ2 − φ3)[

1 + (1 +
η21
η22

) cot2 θ
2

]2

c2
12s

2
12s

2
13

. (5.28)

Eliminating sin2(φ2 − φ3) and using (5.22), we finally get

cos2 δ =
sin2 2θ12s

2
13 cos2 θ

sin2 2θ12s2
13 cos2 θ + 4

[
1 + (1 +

η21
η22

) cot2 θ
2

]2

cot2 θ
2

. (5.29)

Using (5.27) and eliminating cos(φ2 − φ3) from (5.21), we obtain,

cos2 θ23 =

[{
1 + (1 +

η21
η22

) cot2 θ
2

}
s2

12 − 1
]

cot θ + cot θ
2

(cot2 θ
2
− 1) cot θ + 2 cot θ

2

. (5.30)

As we shall see in the numerical analysis in the next section, though in general

cos δ 6= 0 for NO, the numerically allowed range of δ is very close to 3π/2, lying in

the narrow interval 269.6◦ − 270.4◦. Since the possibility of δ = π/2 is excluded at

more than 99% CL, by maximal CP violation, we refer only to δ = 3π/2.
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Figure 5.1: Probability distribution of the Dirac CP phase δ for normal mass ordering.

It is evident that the values which are very close to 270◦ are most probable. To be

numerically precise,
∫ 270±0.2

270
PDF (δ) dδ = 0.795. Thus upon a large number of

random trial (we choose that number to be 106), there is 80 % probability that δ will

be in the range 270± 0.2.

5.3.2 Inverted ordering

In this case, v is associated with the third column of PMNS. Equating v with

the third column of U in (5.11), we get,

s13 = N−1η1

η2

cot
θ

2
, φ1 − δ + β/2 = γ + π, (5.31)

c13s23 = N−1 cot
θ

2
, φ2 +

β

2
= γ + π, (5.32)

c13c23 = N−1, φ3 +
β

2
= γ. (5.33)
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Note that, (5.32) and (5.33) together imply

tan θ23 = cot
θ

2
, (φ2 − φ3) = π, (5.34)

which is consistent with the relation (5.21). Note that, since the unphysical phase

difference (φ2−φ3) = π, it follows from (5.22) that the Dirac CP violation is maximal

irrespective of the value of θ23 i.e.,

cos δ = 0. (5.35)

Clearly, since the Dirac CP phase deviates slightly from its maximal value

only for the NO, and both types of mass ordering in this model predict arbitrary

nonmaximality in θ23, it is difficult to make comments on the mass ordering, only

from the measurement of these two parameters. Though any large nonmaximality in

δ will rule out CPµτ as well as this model (CPµτθ + FL), however, if the experiments

favour nonmaximal θ23 along with a maximal value of δ the latter model will survive

while the former will be in tension.

5.4 Numerical analysis

5.4.1 Parameter Estimation

In this section, we present a comprehensive numerical analysis to demonstrate

the phenomenological viability of our scheme, and explore its implications on neutrino

phenomenology in general. It is organized as follows. We utilize the (3σ) ranges of

the globally fitted neutrino oscillation data [12] together with the upper bound of

0.17 eV [187] on the sum of the light neutrino masses from PLANCK and other
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cosmological observations in Table 5.1. The allowed ranges of the parameters of Mν

are tabulated in Table 5.2. Subsequently, we discuss neutrinoless double beta decay,

CP asymmetry in neutrino oscillations and flavor flux ratios at neutrino telescopes

and provide corresponding predictions in our model in three separate subsections.

Table 5.1: Input values used in the analysis [12]

Parameter θ12 θ23 θ13 ∆m2
21 |∆m2

31|

degrees degrees degrees 10−5(eV)2 10−3(eV2)

3σ ranges (NO) 31.42− 36.05 40.3− 51.5 8.09− 8.98 6.80− 8.02 2.399− 2.593

3σ ranges (IO) 31.43− 36.06 41.3− 51.7 8.14− 9.01 6.80− 8.02 2.369− 2.562

Best fit values (NO) 33.62 47.2 8.54 7.40 2.494

Best fit values (IO) 33.62 48.1 8.58 7.40 2.465

Table 5.2: Output values of the parameters of Mν

Parameters a1/10−3 a2/10−3 c/10−3 |η1
η2
| θ◦

NO −4.0− 4.0 −6.5− 6.5 −28−+28 +1.79−+2.11 79.6− 101.6

IO −2.7−+2.7 −36.0−+36.0 −11.6−+11.6 +0.18−+0.23 77.0− 94.4

5.4.2 Neutrinoless double beta (0νββ) decay process

An introduction to the 0νββ decay process was already given in Sec.3.4.1 of

Chapter 3. We recall that the half-life was given by

1

T 0ν
1/2

= G0ν |M|2|Mee|2m−2
e , (5.36)
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where G0ν denote the two-body phase space factor,M is the nuclear matrix element

(NME),me is the mass of the electron andMee is the (1,1) element of the effective light

neutrino mass matrix Mν . Using the PDG parametrization convention for UPMNS,

the Mee can be written as

Mee = c2
12c

2
13m1 + s2

12c
2
13m2e

iα + s2
13m3e

i(β−2δ). (5.37)

For the normal ordering, since δ deviates from π/2 or 3π/2, and m1 = 0 as a direct

consequence of the FL symmetry, (5.37) simplifies to the following four different

possibilities for the four sets of α, β values as obtained in (5.19) of Sec 5.3:

(i) α = 0, β = 2δ ⇒Mee = s2
12c

2
13m2 + s2

13m3,

(ii) α = 0, β = 2δ − π ⇒Mee = s2
12c

2
13m2 − s2

13m3,

(iii) α = π, β = 2δ ⇒Mee = −s2
12c

2
13m2 + s2

13m3 and,

(iv) α = π, β = 2δ − π ⇒ Mee = −s2
12c

2
13m2 − s2

13m3. Since the observations

give upper bounds on |Mee|, cases (i) and (iv) give identical predictions, as can be

clearly seen from the upper left and lower right panels of Fig.5.2. Similar situations

occur for cases (ii) (upper right panel) and (iii) (lower left panel) in Fig.5.2.

For the inverted ordering, δ = π/2 or 3π/2, and m3 = 0. Here, due to the

latter condition, the expression (5.37) becomes independent of β and reduces to two

different possibilities:

(a) α = 0, β = 0, π ⇒Mee = c2
12c

2
13m1 + s2

12c
2
13m2,

(b) α = π, β = 0, π ⇒Mee = c2
12c

2
13m1 − s2

12c
2
13m2.
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Figure 5.2: Plots of |M ee| vs. mmin for both types of mass ordering with four possible

choices of the Majorana phases α and β.

The plots of |Mee| versus the sum of the light neutrino masses
∑
i

mi for both NO

and IO are displayed in Fig.5.2. Several upper limits on |Mee| from various ongoing

and upcoming experiments have been shown. It is evident from Fig.5.2 that |Mee| in

each plot leads to an upper limit which is below the sensitivity reach of the GERDA

phase-II experimental data. The upper bounds on |M ee| from experiments such as

LEGEND-200 (40 meV), LEGEND-1K (17 meV) and nEXO (9 meV) [11], shown in

Fig.5.2, can probe our model better. Note that, for each case, the entire parameter

space corresponding to the inverted mass ordering is likely to be ruled out in case

nEXO does not observe any 0νββ signal covering its entire reach.
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5.4.3 Effect of CP asymmetry in neutrino oscillations

Following the discuusion in Sec.3.4.2, we recall that the CP asymmetry

parameter is given by

Aµe =
P (νµ → νe)− P (ν̄µ → ν̄e)

P (νµ → νe) + P (ν̄µ → ν̄e)
=

2
√
Patm
√
Psol sin ∆32 sin δ

Patm + 2
√
Patm
√
Psol cos ∆32 cos δ + Psol

.

(5.38)

In the present case, δ is given by (5.29) and (5.35) for NO and IO respectively. Fig.5.3

represents the variation of Pµe and Aµe against the baseline length L for an IO, i.e.,

for δ = 3π/2, while Fig.5.5 gives same plots for δ given by (5.29) i.e., for NO. The

baseline lengths T2K, NOνA and DUNE are indicated in these figures by vertical

lines. In Fig.5.4 and 5.6 the CP asymmetry Aµe is plotted against the beam energy

E for the same three experiments for IO and NO respectively.
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Figure 5.3: Variation of Pµe and Aµe against the baseline length L for IO (E = 1 GeV).

The plots are for δ = 3π/2 and the bands correspond to 3σ ranges in θ12 and θ13. The

three vertical dashed lines indicate observations at three different baseline lengths:

L = 295Km (T2K), L = 810Km (NoνA) and L = 1300Km (DUNE).
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Figure 5.4: Plots of Aµe with energy E for fixed baseline lengths corresponding to

different experiments in case of IO. Fig.(a) is for T2K with L = 295Km; fig.(b) is for

NOνA with L = 810Km and fig.(c) is for DUNE with L = 1300Km. The plot is for

δ = 3π/2, while the bands and the horizontal dashed lines have the same specifications

as in fig. 5.3.
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Figure 5.5: Plots of Pµe and Aµe with different baseline lengths L for NO (E = 1GeV).

The bands of the plots correspond to 3σ ranges of the mixing angles and also the

ranges for the parameters 79.6◦ < θ < 101.6◦ and 1.79 < |η1/η2| < 2.11. In this case,

δ is not fixed, but varies over a range predicted from (5.29) with the same ranges

of the mixing angles, and model parameters θ and η1/η2. The three vertical dashed

lines and the horizontal dotted line specify the same as in Fig.5.3.
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Figure 5.6: Plots of Aµe with energy E for fixed baseline lengths corresponding to

different experiments in case of NO. Fig.(a) is for T2K with L = 295Km; fig.(b) is

for NOνA with L = 810Km and fig.(c) is for DUNE with L = 1300Km. The plots

and their widths have same specifications as in fig. 5.5. The horizontal dotted lines

Aµe = 0 specify CP conservation.

5.4.4 Octant of θ23 from flavor flux measurement at neutrino

telescope

With the background laid out in Sec.1.4, one can define certain flavor flux ratios

Rl (l = e, µ, τ) at the neutrino telescope as

Rl ≡
φTl∑

m

φTm − φTl
=

1 +
∑
i

|Uli|2∆i

2−∑
i

|Uli|2∆i

, (5.39)

where l,m = e, µ, τ and U is given in (5.11). Each Rl depends on all the three mixing

angles and cos δ. For NO, θ23 and cos δ are given by (5.30) and (5.29) while for IO the

corresponding quantities are given by (5.34) and (5.35) respectively. For both types

of ordering, we show in Fig.5.7 the variation of Re,µ,τ w.r.t θ in its phenomenologically

allowed range (Table 5.2) using the exact expressions in (5.39).

For NO, θ23 can be eliminated in favor of θ and η1/η2. Keeping the latter fixed

at a value 1.5, we show in Fig.5.7 (left panel) the contour corresponding to the best-fit
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values of θ12 and θ13, while the bands arise when θ12 and θ13 are allowed to vary in

their current 3σ ranges. It should be emphasized that the contours corresponding to

cos δ > 0 and cos δ < 0 are practically indistinguishable, and therefore, we show the

contours and bands only for the case cos δ > 0.

Next, for the IO, θ23 can be eliminated in favor of θ only. The resulting variation

of Re,µ,τ w.r.t θ are displayed in the right panel of Fig.5.7. In generating these plots,

the mixing angles θ12 and θ13 are again allowed to vary in their current experimental

3σ ranges. The contours within the bands represent the case when θ12 and θ13 are

kept fixed at their best-fit values. Unlike NO, the expressions for Rl in case of IO

are relatively simple and has been used in the following to explain the nature of the

plots. The expressions for Re,µ,τ for IO are:

Re ≈
2− sin2 2θ12cθ
4 + sin2 2θ12cθ

,

Rµ ≈
1 + 1

4
sin2 2θ12cθ + (1− 1

4
sin2 2θ12)c2

θ

2− 1
4

sin2 2θ12cθ − (1− 1
4

sin2 2θ12)c2
θ

,

Rτ ≈
1 + 1

4
sin2 2θ12cθ − (1− 1

4
sin2 2θ12)c2

θ

2− 1
4

sin2 2θ12cθ + (1− 1
4

sin2 2θ12)c2
θ

, (5.40)

where we have used (5.35), (5.34) and neglected terms of O(s2
13). It is evident from

the approximate expressions (5.40) that in the exact µτ interchange limit θ = π
2
,

all the flavor flux ratios converge to the value 1
2
. It is clear from the figure (as

well as from the approximate expression of Re) that for Re <
1
2
(Re >

1
2
), we have

θ < π
2
(θ > π

2
). Since (5.34) implies 2θ23 = π − θ, observed value of Re will give a

definite value of θ23. In particular, θ > π
2
implies θ23 <

π
4
and vice versa. Similar

conclusion can be made from the observed value of Rµ. Though the expression for

Rµ in (5.40) is quadratic in cos θ, only one of the roots of this equation belongs to the

numerically allowed range of θ (Table 5.2). However, a definite observational value

of Rτ cannot unambiguously predict the value of θ. This is because of the quadratic
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dependence of Rτ on cθ (clearly visible from Fig.5.7) specifically for θ < π/2. For

consistency, the unique value of θ determined from the future precision measurement

of Re (or Rµ) leads to a theoretical prediction of the ranges of Rµ (or Re) and Rτ

which should in turn match the observed values of Rµ (or Re) and Rτ . Alternatively,

if θ23 is measured with significant precision in a complementary experiment (e.g. long

baseline experiments), the range of each Rl can be uniquely predicted for all l, which

can in turn be compared against the future IceCube observations.
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Figure 5.7: Variation of the flavor the flux ratios Re (red), Rµ (blue) and Rτ (green)

with θ for NO (left panel) and for IO (right panel). The solid lines represent plots for

the best-fit values of the mixing angles and the bands are caused by the current 3σ

ranges of the mixing angles θ12 and θ13. The horizontal axes in both plots correspond

to the numerically obtained ranges of θ in Table 5.2, which is different in NO and IO.

For the NO case, η1/η2 is fixed at 1.0.

5.5 Summary and conclusion

In this chapter, we describe the work where we propose an invariance of the

light neutrino Majorana mass term under a mixed µτ -flavored CP symmetry (CP µτθ),
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compounded with a generalised Friedberg-Lee (FL) transformation on the left-chiral

flavor neutrino fields. In this model, while both types of mass ordering are viable

with a nondegenerate neutrino mass spectrum, a vanishing value for the smallest

light neutrino mass results as a direct consequence of FL invariance. While the

atmospheric mixing angle θ23 is in general nonmaximal (θ23 6= π/4), the Dirac CP

phase δ is exactly maximal (δ = π/2, 3π/2) for IO and nearly maximal for NO due

to cos δ ∝ sin θ13. However, the departure from maximality does not exceed 0.4◦

on either side of δ = 3π/2. One of the Majorana phases, α, is restricted to lie at

its CP conserving values while the other, β, is linearly related with δ leading to

a tiny Majorana CP violation. For the IO, θ23 is, in general, nonmaximal but δ

is maximal irrespective of the value of θ23. For the NO, the Majorana CP violation

sneaking through the Majorana phase β is numerically insignificant so that the model

essentially predicts vanishing Majorana CP violation. Evidently, any substantial

deviation of δ from 3π/2, will exclude our model. After fitting the neutrino oscillation

global fit data, we also consider a numerical analysis of νµ → νe oscillation which

is expected to show up Dirac CP violation in different long baseline experiments.

Finally, assuming purely astrophysical sources, we compute the Ultra High Energy

(UHE) neutrino flavor flux ratios at the neutrino telescopes. From this, we comment

on the predictability of the octant of θ23.
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Chapter 6

Maximal zero textures in the

framework of Linear and Inverse

Seesaw

6.1 Introduction

In type-I seesaw, the lightness of the neutrinos is attributed to scale identified

with the mass of the lightest of the heavy neutrinosNRi. Since the latter is constrained

to be (MR)lightest ≥ 108 GeV [153, 217] the scale of new physics is beyond the reach

of ongoing collider experiments. On the other hand, a seesaw scale in the TeV range

can be realized in some other variants such as Linear and Inverse seesaw mechanisms

by incorporating singlet neutral fermions SLi in addition to NRi. Both mechanisms

can potentially explain the smallness of neutrino mass through a small lepton-number

breaking mass matrix.

As explained in Sec.1.3, in Linear seesaw [30, 218–221], the low energy light
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neutrino mass matrix Mν reads

Mν ≈ −M(m−1mT
D)− [M(m−1mT

D)]T (6.1)

and that for the Inverse seesaw is given by

Mν ≈ mDm
−1µS(mDm

−1)T . (6.2)

Till date, since there exists only five experimentally measured quantities,

namely, the two mass-square differences and three mixing angles (cf. Sec.1.6),

the standard approach is to reduce the number of parameters by postulating some

symmetry in the Lagrangian or by assuming vanishing of certain elements of Mν or

at a more fundamental level, for the mass matrices comprising Mν (also dictated by

some underlying symmetry), called texture zeros. In this chapter, we discuss the work

which investigates both the Linear and Inverse seesaw mechanisms incorporating the

idea of maximal zero textures [108, 122, 137, 222–238] subjected to the assumption

of nonvanishing eigenvalues of Mν . For the phenomenologically viable maximal zero

textures ofMν , we explore maximal zero textures of the matrices comprisingMν using

the following strategies:

i) First, we obtain the maximal zero textures of charged lepton mass matrix

(M`) with theree nonzero, nondegenerate eigenvalues. This gives rise to five minimal

textures of M`.

ii) Next, we assume that Mν has nonvanishing eigenvalues i.e., det(Mν) 6= 0.

As a consequence, the formula 6.1 (6.2) immediately implies that each of the three

matrices mD, m and M (µS) must also be nonsingular and unambiguously dictates

all possible maximal zero textures for linear (inverse) seesaw.
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iii) Fixing a particular minimal structure of mD and M (m) in Linear (Inverse)

seesaw, we work out the maximal zero textures of m (µS) by analysing zeros in

different entries of m (µS) for Linear (Inverse) seesaw.

iv) To facililate the analysis, we utilize the Frampton, Glashow and Marfatia

condition [222] to discard the phenomenologically disallowed maximal zero textures

of Mν and those matrices m and µS for the Linear and Inverse seesaw respectively

which lead to such Mν .

v) Finally, we explore numerically the parameter space of the survived matrices

utilizing the neutrino oscillation global fit data and predict Σimi, |M11|, JCP , δ along

with the hierarchical structure of neutrino masses.

This chapter is organized as follows. Sec.6.2 contains the minimal textures of

the charged lepton mass matrixM`. Viable mass matrices with maximal texture zeros

in Linear and Inverse seesaw are discussed in Sec. 6.3 and 6.4 respectively. Finally, a

summary is presented in Sec. 6.5.

6.2 Maximal zero textures of charged lepton mass

matrix

A generic charged lepton mass matrix M` can be parametrized as

M` =


A′eia

′
B′eib

′
C ′eic

′

D′eid
′
E ′eie

′
F ′eif

′

G′eig
′
H ′eih

′
K ′eik

′

 . (6.3)
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We look for maximum zero textures (minimum number of parameters) of M` such

that det(M`M
†
` ) 6= 0 (or nonvanishing eigenvalues forM`). A careful inspection of the

quantity det(M`M
†
` ) reveals six possibile maximal zero textures and are presented in

Table 6.1. Interestingly, for all these matrices, M`M
†
` is diagonal and therefore, the

Table 6.1: Maximal zero textures of the charged lepton mass matrix M`A′eia′ 0 0
0 B′eib

′
0

0 0 C ′eic
′

  0 0 A′eia
′

0 B′eib
′

0
C ′eic

′
0 0

 A′eia′ 0 0
0 0 B′eib

′

0 C ′eic
′

0


 0 0 A′eia

′

B′eib
′

0 0
0 C ′eic

′
0

  0 A′eia
′

0
0 0 B′eib

′

C ′eic
′

0 0

  0 A′eia
′

0
B′eib

′
0 0

0 0 C ′eic
′



mixing arises only from the neutrino sector of the Lagrangian i.e., UPMNS = Uν .

6.3 Texture zeros in Linear seesaw

For an invertible n×n square matrix A, and two n×m rectangular matrices B

and C, one has

det(A+BCT ) = det(Im + CTA−1B) detA (6.4)

Since we assume det(Mν) 6= 0, 6.1 implies that det(Mm−1mT
D) 6= 0 which in

turn implies that M , m−1 and mT
D must be nonsingular. Since, for a matrix A,

det(A) = det(AT ), det(A−1) = 1/det(A), we obtain that M , m and mD must also be

nonsingular. The resulting textures are presented in Table 6.2, Table 6.3 and Table

6.4 respectively.
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Table 6.2: Six zero textures of mD with det(mD) 6= 0

Minimal (6-zero) textures of mD with det(mD) 6= 0

m1
D =

Aeia 0 0
0 Beib 0
0 0 Ceic

 m2
D =

 0 0 Aeia

0 Beib 0
Ceic 0 0

 m3
D =

Aeia 0 0
0 0 Beib

0 Ceic 0


m4
D =

 0 0 Aeia

Beib 0 0
0 Ceic 0

 m5
D =

 0 Aeia 0
0 0 Beib

Ceic 0 0

 m6
D =

 0 Aeia 0
Beib 0 0

0 0 Ceic



Table 6.3: Six zero textures of M with det(M) 6= 0

Six zero textures of M with det(M) 6= 0

M1 =

Xeix 0 0
0 Y eiy 0
0 0 Zeiz

 M2 =

 0 0 Xeix

0 Y eiy 0
Zeiz 0 0

 M3 =

Xeix 0 0
0 0 Y eiy

0 Zeiz 0


M4 =

 0 0 Xeix

Y eiy 0 0
0 Zeiz 0

 M5 =

 0 Xeix 0
0 0 Y eiy

Zeiz 0 0

 M6 =

 0 Xeix 0
Y eiy 0 0

0 0 Zeiz



Table 6.4: Minimal (6-zero) textures of m with det(m) 6= 0

Minimal (6-zero) textures of m with det(m) 6= 0

m1 =

Peip 0 0
0 Qeiq 0
0 0 Reir

 m2 =

 0 0 Peip

0 Qeiq 0
Reir 0 0

 m3 =

Peip 0 0
0 0 Qeiq

0 Reir 0


m4 =

 0 0 Peip

Qeiq 0 0
0 Reir 0

 m5 =

 0 Peip 0
0 0 Qeiq

Reir 0 0

 m6 =

 0 Peip 0
Qeiq 0 0

0 0 Reir



6.3.1 Effective Mν in Linear seesaw

We confine to the minimal structures ofMν as given in the Ref. [222] in which it

was shown that for a phenomenologically viableMν , the number of independent zeros

should be atmost two. With such a criterion in view, we begin with maximum zeros
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in the matrix m for a given mD and M . It turns out that for six zeros in m (Table

6.4), all the emerged Mν has either three or more independent zeros. Therefore,

discarding such textures we start with five zero textures of m. Though in general,

there exists 126 such textures of m, the criterion of nonvanishing eigenvalues of Mν

(which requires m to be nonsingular) drastically reduces the number of nonsingular

five zero textures of m from 126 to 36 and are presented in Table6.6.

Interestingly, only the combinations given in Table 6.5 gives rise to phenomeno-

logically viable Mν and all of them leads to a single generic structure as


× × ×

× 0 ×

× × 0

 . (6.5)

All the remaining combinations are discarded because they either lead to three

independent zeros or two independent zeros that are not consistent with the current

data. For a compact view, the allowed combinations of mD, M and m are presented

in Table 6.5.

Table 6.5: Compositions for Allowed Realizations of Mν

M →
mD ↓ M1 M2 M3 M4 M5 M6

m1
D m16,m23 m12,m17 m9,m36 m5,m22 m3,m18 m29,m34

m2
D m10,m25 m14,m21 m2,m15 m28,m31 m8,m33 m4,m19

m3
D m9,m36 m5,m22 m16,m23 m12,m27 m29,m34 m3,m18

m4
D m2,m15 m28,m31 m10,m25 m14,m21 m4,m19 m8,m33

m5
D m1,m24 m11,m32 m26,m35 m6,m13 m17,m20 m7,m30

m6
D m26,m35 m6,m13 m1,m24 m11,m31 m7,m30 m17,m20
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Table 6.6: Viable 5-zero textures of m

5 zero textures of m

m1 =

Peip Seis 0
0 Qeiq 0
0 0 Reir

 m2 =

Peip 0 Seis

0 Qeiq 0
0 0 Reir

 m3 =

Peip 0 0
Seis Qeiq 0

0 0 Reir


m4 =

Peip 0 0
0 Qeiq Seis

0 0 Reir

 m5 =

Peip 0 0
0 Qeiq 0
Seis 0 Reir

 m6 =

Peip 0 0
0 Qeiq 0
0 Seis Reir


m7 =

Seis Peip 0
Qeiq 0 0

0 0 Reir

 m8 =

 0 Peip Seis

Qeiq 0 0
0 0 Reir

 m9 =

 0 Peip 0
Qeiq Seis 0

0 0 Reir


m10 =

 0 Peip 0
Qeiq 0 Seis

0 0 Reir

 m11 =

 0 Peip 0
Qeiq 0 0
Seis 0 Reir

 m12 =

 0 Peip 0
Qeiq 0 0

0 Seis Reir


m13 =

Seis 0 Peip

Qeiq 0 0
0 Reir 0

 m14 =

 0 Seis Peip

Qeiq 0 0
0 Reir 0

 m15 =

 0 0 Peip

Qeiq Seis 0
0 Reir 0


m16 =

 0 0 Peip

Qeiq 0 Seis

0 Reir 0

 m17 =

 0 0 Peip

Qeiq 0 0
Seis Reir 0

 m18 =

 0 0 Peip

Qeiq 0 0
0 Reir Seis


m19 =

Seis Peip 0
0 0 Qeiq

Reir 0 0

 m20 =

 0 Peip Seis

0 0 Qeiq

Reir 0 0

 m21 =

 0 Peip 0
Seis 0 Qeiq

Reir 0 0


m22 =

 0 Peip 0
0 Seis Qeiq

Reir 0 0

 m23 =

 0 Peip 0
0 0 Qeiq

Reir Seis 0

 m24 =

 0 Peip 0
0 0 Qeiq

Reir 0 Seis


m25 =

Peip Seis 0
0 0 Qeiq

0 Reir 0

 m26 =

Peip 0 Seis

0 0 Qeiq

0 Reir 0

 m27 =

Peip 0 0
Seis 0 Qeiq

0 Reir 0


m28 =

Peip 0 0
0 Seis Qeiq

0 Reir 0

 m29 =

Peip 0 0
0 0 Qeiq

Seis Reir 0

 m30 =

Peip 0 0
0 0 Qeiq

0 Reir Seis


m31 =

Seis 0 Peip

0 Qeiq 0
Reir 0 0

 m32 =

 0 Seis Peip

0 Qeiq 0
Reir 0 0

 m33 =

 0 0 Peip

Seis Qeiq 0
Reir 0 0


m34 =

 0 0 Peip

0 Qeiq Seis

Reir 0 0

 m35 =

 0 0 Peip

0 Qeiq 0
Reir Seis 0

 m36 =

 0 0 Peip

0 Qeiq 0
Reir 0 Seis
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Parametrization and phase rotation

To be explicit, we parametrize one set of combination (m3
D and m9) and (m3

D

and m36) which gives rise to Mν given in Eq.(6.5). To extract the relevant phases out

of these allowed Mν , let us parametrize them in a generic way as

Mν =


K1e

ik1 K2e
ik2 K3e

ik3

K2e
ik2 0 K4e

ik4

K3e
ik3 K4e

ik4 0

 (6.6)

where for m3
D with m9 combination:

K1e
ik1 =

2Aeia−ip−iq+is+ixSX

PQ
, K2e

ik2 = −Ae
ia−ip+iyY

P
,

K3e
ik3 = −Ce

ic−iq+ixX

Q
, K4e

ik4 = −Be
ib−ir+izZ

R
. (6.7)

and for m3
D with m36 combination:

K1e
ik1 =

2Aeia−ip−ir+is+ixSX

PR
, K2e

ik2 = −Be
ib−ir+ixX

R
,

K3e
ik3 = −Ae

ia−ip+izZ

P
, K4e

ik4 = −Ce
ic−iq+iyY

Q
. (6.8)

6.4 Maximal zero textures in Inverse seesaw

As before we consider the minimal nonsingular textures of mD (presented in

Table 6.2) and m (Table 6.7) whereas the minimal texture of µS contains only two-

independent complex parameters due to its anti-symmetry and given by the 3 possible

textures presented in Table 6.8.

However, it turns out that if the number of zeros in µS is greater than three (as
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6.4. Maximal zero textures in Inverse seesaw

Table 6.7: Minimal (6-zero) textures of m

Minimal (6-zero) textures of m

m1 =

Xeix 0 0
0 Y eiy 0
0 0 Zeiz

 m2 =

 0 0 Xeix

0 Y eiy 0
Zeiz 0 0

 m3 =

Xeix 0 0
0 0 Y eiy

0 Zeiz 0


m4 =

 0 0 Xeix

Y eiy 0 0
0 Zeiz 0

 m5 =

 0 Xeix 0
0 0 Y eiy

Zeiz 0 0

 m6 =

 0 Xeix 0
Y eiy 0 0

0 0 Zeiz



Table 6.8: Minimal (4-independent zero) textures of µS

Minimal (4-independent zero) textures of µS

µ1
S =

 0 0 Reir

0 Seis 0
Reir 0 0

 µ2
S =

Peip 0 0
0 0 Teit

0 Teit 0

 µ3
S =

 0 Qeiq 0
Qeiq 0 0

0 0 V eiv



in Table 6.8), all the emerged Mν contain three or more independent zeros and hence

rejected. Therefore, to obtain viable structures of Mν we stick with the nonsingular

two zero textures of µS and are presented in Table 6.9. Interestingly, unlike Linear

seesaw, we note that Inverse seesaw leads to all the seven viable two zero textures

(M1
ν - M7

ν ) of Mν given in Ref. [222]. In a compact way, in Table 6.10 we present all

the combinations that generate these textures of Mν .
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Table 6.9: 2-independent zero textures for µS

2-independent-zero textures for µS

µ1
S =

 0 0 Reir

0 Seis Teit

Reir Teit V eiv

 µ2
S =

 0 Qeiq Reir

Qeiq Seis 0
Reir 0 V eiv

 µ3
S =

 0 Qeiq 0
Qeiq Seis Teit

0 Teit V eiv


µ4
S =

Peip 0 Reir

0 0 Teit

Reir Teit V eiv

 µ5
S =

Peip Qeiq Reir

Qeiq 0 0
Reir 0 V eiv

 µ6
S =

Peip Qeiq 0
Qeiq 0 Teit

0 Teit V eiv


µ7
S =

Peip 0 Reir

0 Seis Teit

Reir Teit 0

 µ8
S =

Peip Qeiq Reir

Qeiq Seis 0
Reir 0 0

 µ9
S =

Peip Qeiq 0
Qeiq Seis Teit

0 Teit 0


µ10
S =

Peip Qeiq Reir

Qeiq 0 Teit

Reir Teit 0

 µ11
S =

 0 Qeiq Reir

Qeiq Seis Teit

Reir Teit 0

 µ12
S =

 0 Qeiq Reir

Qeiq 0 Teit

Reir Teit V eiv



Table 6.10: Compositions for Realization of two-zero Mν textures with mD = m1
D

m →
µS
↓

m1 m2 m3 m4 m5 m6

µ1
S M1

ν × M2
ν M6

ν × M5
ν

µ2
S × M4

ν × M4
ν M3

ν M3
ν

µ3
S M2

ν M6
ν M1

ν × × ×
µ4
S M5

ν × M6
ν M2

ν M5
ν M1

ν

µ5
S × M5

ν × M1
ν × M2

ν

µ6
S M3

ν M3
ν M4

ν × M6
ν ×

µ7
S M4

ν × M3
ν M3

ν M4
ν M4

ν

µ8
S × M1

ν × M5
ν M2

ν M6
ν

µ9
S M6

ν M2
ν M5

ν × M1
ν ×

µ10
S M7

ν × M7
ν × × ×

µ11
S × × × M7

ν × M7
ν

µ12
S × M7

ν × × M7
ν ×

Similar to Table 6.10, five more tables can be obtained for m2
D−m6

D. However,

all those combinations also lead to all seven possible two-zero textures but with

different combinations of mD, m and µS. We are not listing all these tables.
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6.4. Maximal zero textures in Inverse seesaw

6.4.1 Effective Mν and its parametrization

Table 6.11: Effective allowed Mν from Inverse seesaw

Effective allowed Mν from Inverse seesaw
Mν Phase rotated Mν Parametrization 0 0 K1e

ik1

0 K2e
ik2 K3e

ik3

K1e
ik1 K3e

ik3 K4e
ik4

 m0

0 0 1
0 y1 y2

0 y2 y3e
iα

 m0 = K1, K2/K1 = y1,
K3/K1 = y2, K4/K1 = y3,
α = (k2 − 2k3 + k4) 0 K1e

ik1 0
K1e

ik1 K2e
ik2 K3e

ik3

0 K3e
ik3 K4e

ik4

 m0

0 1 0
1 y1 y2

0 y2 y3e
iα

 m0 = K1, K2/K1 = y1,
K3/K1 = y2, K4/K1 = y3,
α = (k2 − 2k3 + k4)K1e

ik1 K2e
ik2 0

K2e
ik2 0 K3e

ik3

0 K3e
ik3 K4e

ik4

 m0

 1 y1 0
y1 0 y2

0 y2 y3e
iα

 m0 = K1, K2/K1 = y1,
K3/K1 = y2, K4/K1 = y3,
α = (2k2 − 2k3 + k4 − k1)K1e

ik1 0 K2e
ik2

0 K4e
ik4 K3e

ik3

K2e
ik2 K3e

ik3 0

 m0

 1 0 y1

0 y3 y2e
iα

y1 y2e
iα 0

 m0 = K1, K2/K1 = y1,
K3/K1 = y2, K4/K1 = y3,
α = 1

2
(k1 − 2k2 + 2k3 − k4)K1e

ik1 0 K2e
ik2

0 0 K3e
ik3

K2e
ik2 K3e

ik3 K4e
ik4

 m0

 0 0 y1

0 0 y2

y1 y2 y3e
iα

 m0 = K1, K2/K1 = y1,
K3/K1 = y2, K4/K1 = y3,
α = (k1 − 2k2 + k4)K1e

ik1 K2e
ik2 0

K2e
ik2 K4e

ik4 K3e
ik3

0 K3e
ik3 0

 m0

 1 y1 0
y1 y3e

iα y2

0 y2 0

 m0 = K1, K2/K1 = y1,
K3/K1 = y2, K4/K1 = y3,
α = (k1 − 2k2 + k4)K1e

ik1 K2e
ik2 K3e

ik3

K2e
ik2 0 K4e

ik4

K3e
ik3 K4e

ik4 0

 m0

y1 1 y2

1 0 y3e
iα

y2 y3e
iα 0

 m0 = K2, K1/K2 = y1,
K3/K2 = y2, K4/K2 = y3,
α = (k1 − k2 − k3 + k4).

We parametrize all emerged viable Mν matrices in Table 6.11 in a generic way

where Ki and ki are functions of the elements of mD, m and µS. We are not listing

explicit expressions of eachKi and ki parameters as there are many different functions

for Ki and ki.

181



Chapter. Maximal zero textures in the framework of Linear and Inverse Seesaw

6.4.2 Numerical analysis

The matrixMν obtained in Linear seesaw case Eqn.(6.8) is similar to the matrix

M7
ν obtained in Inverse seesaw case. In order to perform the numerical analysis we

use the experimental constraints (Table 6.12) arising from the global fit oscillation

data. We note that the first two matrices (M1
ν and M2

ν ) of Table 6.11 do not trigger

Table 6.12: Input experimental values [14]

Quantity 3σ ranges
|∆m2

31| (N) 2.30< ∆m2
31(103eV −2) < 2.64

|∆m2
31| (I) 2.20< ∆m2

31(103eV −2) < 2.54
∆m2

21 7.11< ∆m2
21(105eV −2) < 8.18

θ12 31.8o < θ12 < 37.8o

θ23 39.4o < θ23 < 53.1o

θ13 8o < θ13 < 9.4o

ββ0ν decay, due to |M11| = 0 for these two matrices. Therefore, we categorize all the

matrices presented in Table 6.11 into two different classes.

Class I: Parameter ranges for allowed Mν with |M11| 6= 0

For the numerical analysis of the matrices M3
ν ,M

4
ν ,M

5
ν ,M

6
ν we use the

experimental constraints (Table 6.12) arising from the global fit oscillation data. It

is seen that all the parameters are constrained in a very narrow range and we present

them in Table 6.13. The matrices predict a constrained range of δ phase along with

an upper bound on the sum of three light neutrino masses (Σimi) well below the

upper limit dictated by the PLANCK and other astrophysical experiments [53]. For

all the four matrices we get normal hierarchical spectrum of neutrino masses. The

value of M11 are also far below the present experimental probing region [239] .
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6.4. Maximal zero textures in Inverse seesaw

Table 6.13: Parameter ranges of the matrices with |M11| 6= 0

Mν y1, y2, y3 |δ|(deg) JCP × 103
∑
mi(eV) |M11|×102(eV)

m3
ν

y1 : 0.06− 0.125,
y2 : 1.11− 1.23,
y3 : 0.24− 0.50

3.96−5.25 2.3− 3.6 0.146−0.215 4.2− 6.8

m4
ν

y1 : 0.06− 0.23,
y2 : 1.118− 1.386,
y3 : 0.259− 0.866

6.51−7.65 3.8− 4.8 0.116−0.210 3− 6.4

m5
ν

y1 : (7.98− 8)× 10−2,
y2 : 1.15− 1.18,
y3 : 0.39− 0.41

9.0− 9.4 5.25−5.27 0.14− 0.172 4.8− 5.1

m6
ν

y1 : 0.11− 0.14,
y2 : 1.17− 1.27,
y3 : 0.40− 0.66

5.72−7.53 1.29−2.59 0.128−0.173 3.5− 5.1

m7
ν

y1 : 1.30− 1.34,
y2 : 0.85− 0.89,
y3 : 0.79− 0.82

0 0 0.127−0.131 0.022− 0.023

Class II: Parameter ranges of the matrices with |M11| = 0

Unlike the previous case, this class of matrices (M1
ν and M2

ν ) allow a sizable

parameter space compatible with the experimental data. However, the matrices

also predict constraint ranges of δ phase and Σimi. We present plots of these

parameters in figure 6.1 and figure 6.2 respectively. From the first two plots of figure

6.1 the ranges of the parameters read as 1.69 < y1 < 2.93, 1.47 < y2 < 2.97 and

1.37 < y3 < 3.16.

The Dirac CP phase is constrained as −25o < δ < 25o and the sum of the light

neutrino masses (Σimi) is obtained within the range 0.094 eV < Σimi < 0.18 eV

which is well below the present experimental upper bound. In figure 6.2 we present

the parameter ranges for M2
ν . The matrix M2

ν also allow a sizable parameter space

and are depicted in first two plots of figure 6.2. The ranges of y1, y2 and y3 can be

read as 1.58 < y1 < 3.4, 1.5 < y2 < 3 and 1.5 < y3 < 2.96. Similar to the previous
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Chapter. Maximal zero textures in the framework of Linear and Inverse Seesaw

Figure 6.1: The first two figures of the top row represent the parameter space for M1
ν

matrix. Left plot of the bottom row is the variation of JCP with δ and the right figure
shows the hierarchy (normal) of the model.

case, for this matrix also the ranges for δ and Σimi are constrained in a very narrow

range as −8o < δ < 8o, 0.09 eV < Σimi < 0.16 eV. The hierarchy is normal and is

depicted in the extreme right plot of the bottom row of figure 6.2.
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6.5. Summary

Figure 6.2: The first two figures of the top row represent the parameter space for M2
ν

matrix. Left plot of the bottom row is the variation of JCP with δ and the right figure
shows the hierarchy (normal) of the model.

6.5 Summary

In this chapter, we present an elaborate analyis the Linear and Inverse seesaw

mechanisms with the assumption of a minimal nonsingular structure the light neutrino

Majorana mass matrix Mν . The nonsingular nature of M` together with the

asumption of det(Mν) 6= 0 dictates the possible minimal structures for the constituent

matrices. It has been found in this minimalistic approach that the maximum number

of zeros that can be accommodated in matrix ‘m’ is five and that for ‘µS’ is three

for Linear and Inverse seesaw respectively in order to obtain a phenomenologically

allowed Mν . Next, we use neutrino oscillation global fit data to obtain the allowed
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Chapter. Maximal zero textures in the framework of Linear and Inverse Seesaw

parameter spaces and obtain predictions on
∑

imi, |M11|, JCP , δ and the neutrino

mass spectrum. In particular, all the matrices predict nonvanishing and highly

constrained range of δ together with the normal hierarchical spectrum. Numerical

analysis shows that two zero textures cannot give rise to large CP violation, and

therefore if a maximal Dirac CP violation established in future, this simplistic textures

shall be ruled out. However, we can possibly continue to have the same scheme in

the neutrino sector but with other nontrivial charged lepton mass matrices such that

h` = M`M
†
` is not diagonal to obtain large CP-violating phase.
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Chapter 7

Summary and conclusions

Various experiments have conclusively established that neutrinos undergo flavor

oscillation and therefore must have tiny masses. Neutrino masses require us to

construct various extension of the SM which acts an window to probe new physics.

Though several low energy neutrino observables have now been measured with

significant precision, there exists a few such as the Dirac CP phase, the Majorana

phases etc which are yet to be measured. The octant of the atmospheric mixing

angle, the sign of the atmospheric mass-square difference (and hence, the neutrino

mass ordering) and the absolute scale of the neutrino mass still remains undetermined.

Due to null results of 0νββ decay experiments, the perplexing nature of neutrinos,

Dirac or Majorana, also has not been settled yet. In this thesis, we have discussed

some predictive low energy neutrino mass models with various residual symmetries

and implication of some of them in type-I seesaw leptogenesis.

In chapter 1, we have delineated the general theory of neutrino masses and

mixing, some of ways of incorporating neutrino masses by enlarging the particle

content of the SM, a brief summary of UHE neutrinos and the general theory and
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methodology of baryogenesis via leptogenesis in type-I seesaw relevant for the thesis.

In chapter 2, we discuss how the well-known correlations between δ and θ23,

arising as a result of two Z2 symmetries associated with µτ interchange is altered if

the latter is generalized to a symmetry that mixes the νµ and ντ flavors. In particular,

we show that the condition of simultaneous maximality of δ and θ23 can be lifted even

with a very tiny departure from the exact µτ interchange. Moreover, the current

neutrino data on δ and θ23 can be explained better in this framework. We also

discuss how the proposed mixing scenario could be realized with two simultaneous

CP transformations leading to more predictive correlations between δ and the mixing

angles θij. Next, we analyze the ‘three flavor regime’ of leptogenesis within the CP

extended framework and demonstrate that unlike the CP extended µτ interchange

symmetry, a resonant leptogenesis is possible in the µτ mixing case and the resulting

baryon asymmetry requires θ23 6= π/4 due to the fact that the baryon to photon ratio

ηB vanishes in the limit of θ23 → π/4. The CP extended µτ mixing also serves as an

example of a low energy effective model which provides an important insight into the

off-diagonal terms of the flavor coupling matrix which have usually been neglected in

literature to compute the final baryon asymmetry, in particular in the models with

flavor symmetries.

In chapter 3, we propose a complex extension of µτ mixing antisymmetry in

Mν by a nonstandard CP transformation ναL → iGαβγ0νCβL where G is a Z4 generator

related to the Z2 generator G through the relation G = iG. As a result µτ mixing

parameter θ gets related with δ and θ23 as sin δ = ± sin θ/ sin 2θ23. For arbitrary

θ, both θ23 and δ are nonmaximal. For a nonmaximal δ, one of the two Majorana

phases is different from 0 or π, leading to substantial Majorana CP violation with

observable consequences for ββ0ν decay process. For all possible combination of α, β

and δ the entire parameter space corresponding to the inverted mass ordering shall
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be ruled out if nEXO, covering its entire reach, does not observe any ββ0ν signal. We

have made a quantitative study of the effect of the CP asymmetry parameter Aµe in

long baseline neutrino oscillation experiments. We also make quantitative predictions

of our scheme on Ultra High Energy (UHE) neutrino flavor flux ratios at neutrino

telescopes. While exact CP transformed µτ interchange antisymmetry (θ = π/2)

leads to an exact equality among those ratios, taking a value 0.5, a tiny deviation

can cause a drastic change in them. Measurement of UHE flavor flux with improved

statistics will further constrain the parameter θ.

Chapter 4 is based on a CP extension of the residual symmetries associated

with scaling ansatz invariant neutrino Majorana mass matrix Mν . It changes the real

invariances of Mν to their complex counterparts which are referred to as ‘Modified

Scaling’. We determine correlations between the mixing angles θ12 and θ13 and

show that it leads to maximal Dirac CP violation and vanishing Majorana phases.

Besides the testable predictions on 0νββ decay, we discuss interesting consequences

for leptogenesis. Within the hierarchical scenario, we show that only τ -flavored

leptogenesis is possible in this framework. For a NO (IO), θ23 is found be less (greater)

than π/4, for the final baryon asymmetry YB to lie in the observed range. An upper

and a lower bound on the mass of N1 and the effect of the heavier neutrinos N2,3 on

final YB has been subsequently estimated.

In chapter 5, we discuss a neutrino mass model with a CP extended µτ flavored

symmetry of the effective light neutrino Lagrangian together with an additional

invariance under a Friedberg-Lee (FL) transformation of the neutrino fields. The

absolute scale of the light neutrino masses is fixed by the vanishing determinant of

light Majorana neutrino mass matrix Mν . For both NO and IO, while θ23 is in

general nonmaximal, δ is exactly maximal for IO and nearly maximal for NO due

to cos δ ∝ sin θ13. For the NO, very tiny nonvanishing Majorana CP violation might
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appear through one of the Majorana phases β, otherwise the model predicts vanishing

Majorana CP violation. From the future precision measurement of θ23, it is difficult

to rule out the model. However, any large deviation of δ from its maximality, will

exclude the model. Beside fitting the neutrino oscillation global fit data, we also

explore νµ → νe oscillation which is expected to reveal CP violation in different long

baseline experiments. Finally, assuming pp and pγ collisions as the source of the Ultra

High Energy (UHE) neutrinos, statements have been made about the octant of θ23.

Conversely, a precision measurement of θ23 can be used to predict the allowed ranges

of flavor flux ratios.

Chapter 6 is concerned with a detailed pedagogical analysis of the minimal

textures of the matrices comprising the light neutrino Majorana mass matrix Mν

in low energy seesaw mechanisms. In particular, the Inverse and Linear seesaw

mechanisms have been throughly investigated with maximal vanishing elements for

the various matrices comprising Mν with the assumption that its eigenvalues are

nonvanishing. We show that the minimal structure of the charged lepton mass matrix

allows only six possibilities. For the nonvanishing determinant of Mν an extensive

analysis is performed to derive the minimal textures of the matrices comprising Mν

in both linear and inverse seesaw. We find that the minimality allows the realization

of all the phenomenologically allowed two-zero textures in Inverse seesaw but only

one such texture is found to be allowed in linear seesaw.

Neutrinos play a crucial role to probe the physics beyond the Standard Model.

In this thesis, we propose and explore some neutrino mass models with the hope that

these can be tested in the ongoing and forthcoming experiments and throw some light

on the physics beyond Standard Model.
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