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Synopsis

The primary concern of this thesis is to unravel the physics of charged particle

beam driven plasma wake field excitation and to determine the breaking amplitude

of such plasma waves. A detailed theoretical investigation has been performed to

study the wake field structures of electron or proton driven plasma wake field ac-

celerator incorporating both effects of external magnetic field and non-relativistic

dynamics of ion fluid. Since the maximum amplitude of the electric field (wave

breaking amplitude) that can be supported by plasma is an important entity in

this acceleration process, a proper understanding of the wave breaking phenom-

ena of different plasma modes is an important issue in this context. We have

performed a thorough investigations on breaking phenomena of different plasma

modes (relativistic electron plasma wave, upper hybrid wave etc.) in two or three

component plasma systems in different physical situations. Admittedly, this stud-

ies have certain relevant implications in advancing the field of nonlinear relativistic

wave dynamics as well as plasma based particle acceleration process.

There exist different kinds of mechanisms of plasma wake field excitation by

laser or charged particle beams, such as, the plasma wake field accelerator (PWFA),

the plasma beat-wave accelerator (PBWA), the laser wake field accelerator (LWFA)

etc.[1] However, our main focus in this thesis has been centered around PWFA

technology. The concept of PWFA was first proposed by Chen, Huff and Dawson

in 1984.[2] In this acceleration scheme a charged particle is accelerated by the

strong plasma wave excited behind a relativistically propagating electron beam

through plasma. The driving beam electrons in the course of its propagation repel

the plasma electrons to create an electron free positive space charge at the wake of

the beam. The expelled electrons then snap back to the original positions and then

overshoot to create a longitudinal electrostatic strong plasma wave. A late coming

trailing beam of electrons launched at proper phase will then be accelerated to

very high energy.

In an earlier theoretical investigation on PWFA, Rosenzweig discusses the gen-

eration of nonlinear wake waves behind a rectangular electron pulse.[3] He has

obtained an analytical expression of transformer ratio (R), i.e., the ratio of the

maximum accelerating electric field amplitude outside the beam to the maximum

decelerating field inside the beam for the unmagnetized beam driven plasma. Mo-

tivated by this work, we have extended his analysis to magnetized plasma systems.

By constructing a travelling wave solution, we get some significant results which
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can influence in improving the efficiency of the particle acceleration. We have re-

ported here the excitation mechanism of wake field behind a relativistic, specially

shaped electron beam (rectangular or Gaussian) passing through the plasma.[4]

Also, the effects of magnetic field and variation of peak beam density on the trans-

former ratio (R) are discussed elaborately. The results corresponding to the limit

of zero magnetic field have been readily reproduced from our solution. Earlier, it

has been speculated by Rosenzweig that inclusion of ion motion could have some

effects on the particle acceleration process.[3] In order to show its effect, a numeri-

cal investigation has been performed and it has been established that consideration

of non-relativistic ion motion does not affect much on the stationary structures of

wake-wave electric field. However, we conjecture that the inclusion of relativistic

motion of ion may have some effects in the wake field profiles which we hope to

report in the near future.

In single stage acceleration process, in the laser pulse or electron bunch driver

schemes, it is not possible to reach TeV order of energy. Moreover, the energy

gain in this case is limited by the energy carried by the electron driver which

is very small (∼ 100 J). To overcome these shortcomings one may use a proton

beam to excite the strong plasma wake wave. A proton bunch carrying energy

of the order of kJ is capable of producing such energy in a single plasma stage.

Because of their higher energy and mass, proton can drive wake fields over a very

longer plasma lengths. Since protons are positively charged and much heavier

than electrons, the physics of proton driven wake field accelerator is different from

electron beam driven plasma. In case of negatively charged driver, background

plasma electrons are repelled to cerate a blow out regime where the wake field

is produced. Proton beam, on the other hand, sucks in the plasma electrons

towards the propagation axis and creates the wake wave electric field. A trailing

witness bunch of electrons then extracts energy from the drive beam and thereby

get accelerated to relativistic energies. Although a large number of experimental

as well as numerical simulations have been reported in the recent past to explore

PDPWFA scheme,[6, 7] there exists a limited number of theoretical investigations

carried out to unfold the physics of proton driven plasma wake field acceleration

mechanism. Such an attempt has been made in one of our works where similar

to the electron beam driven plasma a travelling wave solution for the PDPWFA

has been obtained. We consequently consider the effect of an external focusing

magnetic field on the wake field structures.



xii

As stated earlier, one of the significant entities which determine the maximum

energy gain in this acceleration process is the breaking amplitude of the excited

plasma wave. For a plasma wave there is always a maximum limiting amplitude of

the electric field beyond which the wave loses its coherent nature. At this critical

amplitude limit, the plasma fluids’ velocity at the crest of wave exceeds the phase

velocity of the wave and, consequently, a wave breaks. In such a situation, gradient

of wave electric field becomes infinite and ordering of oscillators constituting the

wave gets destroyed leading to multi-stream flow. Breaking of plasma wave can also

be possible even long before attaining this limiting amplitude by a process called

‘phase mixing’. Phase mixing is physically attributed to the space dependency in

the characteristic frequency of the plasma wave which happens due to different

types of nonlinearities coming from inhomogeneity in the background density or

in the magnetic field, relativistic electron mass variation effect, ion motion etc.

The studies on wave breaking began with the theoretical investigation of rel-

ativistic electron plasma wave by Akheizher and Polovin in 1956 who have ob-

tained an expression of maximum electric field amplitude sustained by such plasma

wave.[8] Thereafter, a large number of theoretical and experimental works are per-

formed to demonstrate the physics of wave breaking. Evidently, the wave which

is excited behind a relativistic electron beam or an intense laser pulse is noth-

ing but the high frequency relativistic electron plasma wave (Akheizher-Polovin

waves) or upper hybrid plasma wave (magnetized plasma). So it is fundamentally

a pertinent issue to investigate elaborately the breaking phenomena of such plasma

waves/oscillations in various physical situations.

Our next work is dedicated to study the breaking phenomena of one-dimensional

relativistically strong electrostatic electron plasma wave in cold unmagnetized

electron-positron-ion (EPI) plasmas which is still an unexplored area in this field

till date. EPI plasmas are encountered in various astrophysical situations, includ-

ing early universe[9], pulsar magnetosphere[10], also in laser matter interaction

in Laboratory experiment.[11] We have adopted the well known Pseudo Potential

technique[5] and transformed the problem of nonlinear plasma wave phenomena

into a simplified classical mechanical problem of a fictitious single particle motion

in a potential well. It is indeed a generalized model in which the dynamics of all the

three species are taken to be relativistic. Consideration of ion motion can be jus-

tified due to the fact that the use of highly intense laser beam or ultra-relativistic

charged particle beam can induce even the ion to follow relativistic dynamics along



xiii

with the other two lighter species. The maximum permissible electric field ampli-

tude before wave-breaking (wave-breaking amplitude) has been derived. We found

that increasing the ratio of ion to electron density (α) has an effect to reduce

the maximum supported amplitude of the plasma wave in the three component

plasma system. It has been established that the breaking amplitude is maximum

for the electron-positron plasma and minimum for the electron-ion plasma while

for electron-positron-ion plasma the limiting amplitude is intermediate between

these two. We have also reported in this work the effect of α on the wavelength of

the plasma wave.

Next, we have extended our analysis of wave breaking incorporating the effect

of magnetic field on the nonlinear plasma wave phenomena in electron-ion plasma

system. There are different kinds of modes which are developed in presence of an

external magnetic field in plasma. The high frequency relativistic upper hybrid

oscillation (RUHO) is one of such modes, the space time evolution of which has

been discussed in one of the recent works of Maity et al. [12] However, this anal-

ysis does not provide us any explicit information about the breaking electric field

amplitude for such high frequency electrostatic wave. In order to give an analytical

expression of maximum field amplitude sustainable by RUHO, we have obtained a

travelling wave solution for such high frequency mode. It is found that the wave-

breaking amplitude of RUHOs for a fixed phase velocity, decrease with the increase

of the strength of the ambient magnetic field. We have also constructed this trav-

elling wave solution from the exact space-time dependent solution of RUHOs by

appropriately choosing initial conditions. It is established that these stationary

waves are very sensitive to a small deviation of the initial conditions. A slight

longitudinal perturbation causes such waves to break at arbitrary amplitudes via

the phase-mixing process.

Most of the earlier investigation on wave breaking have been performed with

the consideration of homogeneous ion background. However, presence of inho-

mogeneity in the ion density can cause the wave to break at arbitrarily small

ampltudes. In our next work we have discussed the wave breaking phenomena

in such an inhomogeneous plasma system. A non-relativistic analysis of electron

plasma oscillations in presence of a time stationary but space periodic ion density

profile has been performed. Here, the main difference from most of the earlier anal-

yses is that, in presence of ion inhomogeneity, instead of treating a uniform initial

electron density we have considered a finite amplitude electron perturbation. In
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order to investigate the mode-coupling effect of electron plasma wave, Kaw et al.

have chosen this type of initial condition.[13] The presence of inhomogeneity in the

ion density can make the characteristic frequency of the plasma wave to acquire

space dependency. Thereby, different parts of the fluid elements start to oscillate

with difference frequencies destroying the phase coherency which ultimately leads

to the breaking of the wave. We have adopted Lagrangian fluid technique to ob-

tain an exact non-stationary parametric solution to describe wave breaking via

phase mixing. Also we have performed a homotopy perturbation analysis which

explicitly gives us the dependence of phase-mixing time on the initial conditions.

The phase-mixing time is found to depend on the amplitudes of both ion density

fluctuation and electron density perturbation as well as on the scale length ratio

of their variations in space.

Our investigation of phase mixing process is further extended to include the

relativistic mass variation effect of electron. The initial condition has been chosen

similar to the non-relativistic case described above. Inhomogeneous ion along with

the relativistic variation of electron mass make the characteristic frequency of the

wave to acquire a space dependency and thereby it breaks at arbitrarily small

amplitude due to phase mixing. A fully exact analytical solution for the nonlinear

relativistic electron plasma wave in inhomogeneous plasma system encounters with

significant mathematical complexities. So we have obtained an approximate space

time dependent solution in the weakly relativistic limit by Bogoliuboff and Kryloff

method[14] of averaging by making an acceptable simplifying assumption. We find

that the change in the ion density perturbation and also the relativistic electron

mass variation have significant effect in modifying the time at which phase mixing

occurs.

The theoretical studies made in this thesis on plasma wave excitation by rel-

ativistic charged particle beam and its breaking phenomena have wide range of

applicability. For example, the plasma wake field excitation by the injection of

driving electron in solar coronal and chromospheric plasmas is the basic process

by which solar flare electrons are accelerated to extreme high energies.[15] Also, in

the experimental context, our theoretical investigation has relevant importance in

the ongoing Advanced Proton Driven Plasma Wakefield Acceleration Experiment

(AWAKE) project at CERN.[16] On the other hand, in plasma heating process, in

the generation of fast electron and also in self ignition process, breaking of plasma

wave plays a very significant role.
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Chapter 1

Introduction

This thesis is primarily aimed to provide a theoretical description of strong plasma

wave excitation process and plasma wave breaking phenomena. The generation

mechanism of such wave at the wake of relativistically propagating electron or pro-

ton beam along with the investigation of the effect of external magnetic field on wake

field structures have been studied extensively. Also, since the breaking amplitude

of plasma wave plays an important role in the plasma based wake field accelera-

tion process, breaking phenomena have been thoroughly analyzed for two different

high frequency nonlinear plasma modes (Langmuir wave and upper hybrid wave).

Breaking amplitudes have been analytically derived for the electron plasma wave in

three component electron-position-ion plasma as well as for the upper hybrid wave

in two component electron ion plasma. Moreover, the phase mixing which acts

as the potential mechanism responsible for high frequency plasma wave breaking

has been discussed incorporating the effect of both relativistic mass variation and

inhomogeneity in the background ion density.

1
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1.1 General Overview

Plasma, an ensemble of ionized particles interacting collectively via electric and

magnetic field, holds a rich varieties of characteristics and supports various fun-

damental modes.[1–3] The excitation mechanism and the dynamical evolution of

such modes have long been studied both from the theoretical and experimental

perspective because of its wide range of practical applicabilities.

One of the key applications of relativistically strong plasma wave is to produce

ultra high energy charged particles for the purpose of high energy physics research.

The superiority of using plasma as accelerating medium instead of vacuum emerges

due to its capability to produce high electric field over a very short distance (several

hundreds of Giga-Volts/meter ). This large electric field is excited due to the

collective response of plasma particles to the strong electric field of laser pulse or

charged particle beam. The use of laser pulse to excite plasma wake field was

first proposed by Tajima and Dawson in 1979.[4] The process of plasma beat wave

(PBW) excitation, proposed earlier by Rosenbluth and Liu,[5] is relevant to the

idea of Tajima and Dawson and is a mechanism worth to be mentioned here. PBW

excitation requires two laser pulses and a careful tuning of the laser frequencies such

that the difference in frequencies equals the plasma frequency. The plasma wake

field is resonantly excited by the beat wave produced by the two laser pulses. An

obvious advantage in advancing from PBW to laser wake field (LWF) accelerator is

that, in LWF excitation instead of two, the ponderomotive force of a single, short,

ultra-intense laser pulse is used to drive a plasma wave.[6–8] This considerably

simplifies the experimental requirements. Alternatively, instead of using a highly

intense laser pulse, excitation of a relativistically strong plasma wake fields can
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also be done by driving an ultra-relativistic bunch of charged particles (plasma

wake field accelerator [PWFA]) through plasma.[9–15] Exploration of the physics

of such PWFA mechanism is one of the key issues in this thesis.

The highest energy that can be gained in this wake field acceleration process

is determined by the maximum permissible electric field amplitude that can be

supported by the plasma system. This limiting amplitude is dictated by a process

called plasma wave breaking which occurs due to presence of different types of non-

linearities associated with relativistic electron mass variation,[16–20] background

density inhomogeneity,[21–23] ion motion[24] etc. Usually, due to such nonlinear

effects a plasma wave starts to lose its periodic sinusoidal nature and transforms

into triangular wave shape followed by occurrence of an infinite gradient in the

electric field profile and eventually the breaking happens. In the hydrodynamic

definition, it is an indication of attaining a critical amplitude of a plasma wave

beyond which wave coherence is destroyed and the particles become completely

random. Physically speaking, at the onset of breaking, the plasma fluids’ velocity

at the crest of the wave exceeds its phase velocity. In such a situation, ordering

of oscillators constituting the wave gets destroyed and the multi-stream flow is

generated.

In this thesis, our theoretical studies are aimed to investigate nonlinear plasma

wave excitation and breaking phenomena of such waves in varied physical contexts

with the purpose to get a more clear vision of the physics involved in such processes.

Before presenting the detailed illustration of our investigation, here we will provide

the general background and the primary motivation of performing such analysis.
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1.2 Plasma Wake Field Acceleration

There are basically two different charged particle beam driven wake field excitation

schemes. One is to use relativistically propagating electron beam to excite the

wake wave and the other is proton beam driven plasma wake field accelerator

(PDPWFA). Because of the differences in their masses and charges of electron

and proton, the physical processes involved in the wake field excitation and the

characteristic features of the wake field structures differ appreciably in these two

different charged particle acceleration methods.

1.2.1 Electron Beam Driver Scheme

In this acceleration scheme, the energy of a relativistically strong electron beam

(driving beam) is first transferred to excite plasma wave and then extracting this

energy a trailing beam of electrons (driven witness beam) is accelerated. As dis-

cussed, unlike the laser driven wake field accelerator, where a ponderomotive force

is generated, here a space charge is developed behind the electron beam to ex-

cite the wake wave.[8, 25] The Coulomb force of the driving beam’s space charge

repels the plasma electrons while the beam passes through the plasma medium.

These expelled electrons snap back to their original positions to regain the charge

neutrality and consequently they overshoot again to set up a longitudinal plasma

oscillation that trails behind the driving beam. Finally, a late-coming beam of

electrons launched at a proper phase can be accelerated to very high energy by the

excited wake wave.

The successful implementation of the idea of plasma wave excitation by launch-

ing relativistic charged particle beam through plasma medium was first made by
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Chen, Huff and Dawson in 1985.[26] They have employed a series of short electron

bunches as the driving beam in order to excite the wake wave. It was found that in

this acceleration process energy gain is only limited to 2γbmc
2, where γbmc

2 is the

drive beam energy with γb = [1 − (vb/c)
2)]−1/2 being the relativistic Lorentz fac-

tor associated with beam velocity vb. This limitation arises due to various effects

associated with non ideal bunch shapes, transverse plasma dynamics, dephasing

of accelerated particles etc.[14, 25, 27] Bane et al. have proposed that this limit

can be overcome by using properly shaped driving bunch of finite longitudinal

extent.[14] It was confirmed later by the theoretical investigation of T. Katsouleas

who has examined the physical processes involved in PWFA with realistic and ex-

perimentally realizable choice of beam shapes.[25] Thereafter, a large number of

experiments have been performed during the last few decades, to reach the energy

range of several GeV by this PWFA scheme.[8, 10, 12, 25, 28] In a very recent ex-

periment, Blumenfeld et al. successfully accelerated electrons from the tail of the

driving beam of energy 42 GeV to maximum energy of 85 GeV at SLAC (Stanford

Linear Accelerator Center).[29]

In our research work we have performed a theoretical investigation of such

electron beam driven wake field acceleration process in presence of an external

magnetic field and also discussed the effect of drive beam amplitude and shape on

the wake field structures.

1.2.2 Proton Beam Driver Scheme

Over the last few decades, researches on the plasma based acceleration process

were mainly focused in creating the wake field by launching a highly relativistic
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electron beam or an intense laser pulse into the plasma.[4, 5, 11, 30–32] In electron

beam driven PWFA scheme, an energy range of the order of several GeV was

reported.[29] However, it is not obvious how to reach the present day energy frontier

of the particle physics i.e. teraelectronvolt regime by these schemes. First of all, it

requires multiple stage acceleration which encounters a great deal of technological

difficulties.[33, 34] On the other hand, the energy gain is limited by the energy

carried by the electron driver which is very small (∼ 100 J). So, in such cases an

alternative approach is to use proton beam as the driving beam instead of electron.

The availability of proton beam with the energy of several TeV makes it possible

to excite plasma wake wave which can accelerate electrons in this high energy

range. Moreover, a proton bunch carrying energy of the order of kJ is capable

of producing such energy in a single plasma stage.[35, 36] Because of their higher

energy and mass, proton can drive wake fields over a very longer plasma lengths.

This proton-driver scheme is therefore much more superior compared to the other

accelerators.

Since protons are positively charged and much heavier than electrons, the

physics of proton driven wake field accelerator is different from electron beam

driven plasma. In case of a negatively charged driver, background plasma elec-

trons are repelled to create a blow out regime where the wake field is produced.

Proton beams, on the other hand, suck in the plasma electrons towards the prop-

agation axis and create the wake wave electric field. The linear analysis of proton

beam driven scheme reveals that except for a difference in phase factor the excited

wake electric field distribution is same as that of electron beam driven case.[37]

However, significant differences are observed in the nonlinear structures for these
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two different acceleration schemes. During the recent past a great deal of atten-

tion has been given to investigate the proton driven charged particle acceleration

method both experimentally and also in computer simulation.[36, 38–43] In 2009,

Caldwell et al. have first proposed the scheme of proton-bunch driven plasma wake

field acceleration (PDPWFA) and discussed its potentiality of producing TeV range

energy in single plasma stage.[35, 36, 38] Later, a detailed numerical investigation

has been performed by K. V. Lotov to identify the main effects limiting the energy

efficiency in this scheme. In 2011, A. Caldwell and K. V. Lotov discussed the wake

field excitation process by the modulated proton bunches.[39] A recent experiment

at CERN-the AWAKE has been performed to understand the detailed physical

processes involved in PDPWFA.[35] However, a well defined theoretical model to

describe such phenomena has not still been witnessed till date. We have attempted

to provide an analytical investigations of nonlinear wave dynamics and developed

systematic studies on the dynamical evolution of such proton beam driven wake

wave with the inclusion of the effect of plasma ion dynamics and magnetic field on

the wake field structures.

In the next few sections we will discuss some of the notable characteristic fea-

tures of the charged particle beam as well as several nonlinear effects encountered

in these wake field acceleration processes.

1.2.3 Some Attributes of Wake Field Accelerator

Phase Slippage

The efficient excitation of the wake field and successful electron acceleration

to high energy depend on some key effects. One such effect is the occurrence of
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‘phase slippage’.[26, 39] In the wake field acceleration process, once the accelerating

electrons catch up with the plasma wave and start to accelerate, they can outrun

it after traversing a certain distance, called the dephasing length.[34] In the proton

driver scheme, this phase slippage can occur between the proton driving bunch

and the electron witness bunch. Proton bunch traveling through the plasma may

slow down and the phase relationship with the light electron bunch will begin to

change.[39, 40] Unless special care is taken to minimize this phase slippage, there

may be a possibility of the degradation in energy gain.

Beam Characteristics

In unmagnetized plasma it was experimentally observed that the final amount

of accelerated charge is appreciably lower than the injected charge.[44] This is

due to the fact that it is not possible for all of the charged particles in the beam

to couple with the plasma wake field. Also, it may happen that due to some

instability caused during the propagation of the beam, the beam head get expanded

laterally which can cause the large spread in final accelerated particle energy.[38,

45] The transverse electric field at the wake of the beam as well as the presence

of an external magnetic field can minimize this lateral expansion by focusing the

propagating beam. Recently, Litos et al. performed an experiment and have shown

that this spread in the beam energy distribution can be minimized with certain

extent with a suitable arrangement.[10]

One of the significant disadvantages in the proton beam driven acceleration

scheme is that the proton bunches available today are much more longer in size

compared to the plasma wavelength. So they are not resonant and excitation of

strong wake field is not so efficient. However, a process called self modulational



9

instability can cause such long proton bunch to split over a large number of micro-

bunches which then efficiently excite the plasma wake wave.[39–43] In the recent

past, a numerical analysis has been performed to analyze the excitation mechanism

of wake field by such trains of equidistant particle bunches.[40] Caldwell and Lotov

have discussed the splitting mechanism of long proton bunches by the modulational

instability.[39] In our theoretical investigation we have also discussed the excitation

of wake wave by using such proton microbunches.

Transformer Ratio

In the wake field acceleration process a parameter called ‘transformer ratio’

(R) has been introduced to quantify the energy efficiency.[25, 27, 30] It is defined

as the ratio of the maximum energy gained by the accelerated beam to the initial

drive beam energy. Alternatively, it can be defined as the ratio of the maximum

accelerating electric field (E+) behind the driving bunch, to the maximum retarding

electric field (E−) within the bunch. In the wake field acceleration process, the

drive beam loses all its energy by this maximum decelerating electric field and the

driven witness beam gains the energy by the maximum accelerating field. So, the

energy is actually transferred from the drive to driven accelerated beam with the

transformer ratio R = (E+/E−). T. Katsouleas has presented a physical derivation

of this transformer ratio in the context of wake field acceleration.[25] Rosenzweig

has provided an analytical expression of the transformer ratio (R) in investigating

the generation of wake wave behind a rectangular electron pulse.[30]
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1.2.4 Magnetic Field Effect on the particle acceleration

One way to control the phase slippage between the particles and the accelerating

electric field is to apply a perpendicular magnetic field which can make the particles

to deflect across the wave front; prevents them to outrun the wave. The effect of

such an external magnetic field has rarely been reported in the context of particle

acceleration by plasma wake wave. In presence of an external magnetic field, an

electrostatic relativistic upper hybrid wave is excited in the wake of a relativistic

electron beam passing through plasma.[46–48] In contrast to the unmagnetized

case, this fast electrostatic wave can accelerate the electrons to arbitrarily high

energy.

The usefulness of an external magnetic field has been discussed by Katsouleas

and Dawson in the context of charged particle acceleration.[13] It was shown that

unlimited electron acceleration is possible, at least from the theoretical point of

view, by the relativistic upper-hybrid (UH) wave electric fields due to the surfatron

process. Presence of an external magnetic field also helps to confine the trailing

beam charge at the wavefront of the wake wave and thereby to enhance its coupling

with the wake field over a very long distance. Furthermore, magnetic field also

controls over the focusing characteristics of the witness beam which accounts for

the very low energy spread of the final accelerated beam.

Keeping in mind the importance of an external magnetic field, a complete

understanding of the effect of such magnetic field on the wake field structures is

therefore pre-requisite.
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1.3 Breaking of Nonlinear Plasma Wave

1.3.1 Historical Development

Small amplitude electron plasma oscillation is a well-understood process and has

been studied quite extensively. However, if the amplitude is high, some of the non-

linear effects come into play, which have a very significant role in the generation

and breaking of electrostatic electron plasma wave. Nonlinear plasma wave theory

began with the investigation to discuss the effect of the nonlinearity associated

with the relativistic electron mass variation by Akheizher and Polovin in 1956.[49]

They have provided a general theoretical study for longitudinal relativistic elec-

tron plasma waves and determined that the breaking amplitude of such waves was

√

2(γ − 1), where, γ = [1−(vph/c)
2)]−1/2 and vph is the phase velocity of the wave.

Later, Dawson has introduced the notion of non-relativistic wave breaking limit

and demonstrated that the non-relativistic limit of Akheizher Polovin description

directly follows from the space time dependent Lagrangian solution.[21] Couple of

years later, he has described the phenomena of wave breaking in terms of sheet

model.[50] In this novel theoretical model, the dynamics are described by following

electron trajectories instead of the fluid elements. The point at which two different

electron trajectories start to cross each other, wave breaking occurs. Davidson and

Schram have then obtained an exact space time dependent Lagrangian solution of

the nonlinear non-relativistic Langmuir wave.[51] They have found that there is a

restriction in the choice of initial electron density perturbation amplitude for which

the coherent plasma oscillation is maintained indefinitely over the region of initial

excitation. Particularly, if the perturbation amplitude exceeds half of the equilib-

rium density, then multi-stream flow is developed in the system which leads to the
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destruction of the wave. However, this limitation emerges solely from the math-

ematical limitation on the uniqueness of the transformation from the Eulerian to

Lagrangian co-ordinates but do not represent any physical limitation. Thereafter,

thermal corrections are incorpoarted in the expression for non-relativistic wave

breaking amplitude by Coffey.[52] The corresponding analysis is then extended in

the relativistic situation by Katsoleas and Mori.[53] Both these investigations re-

veal that the thermal effects reduce the maximum electric field amplitude of the

electrostatic waves.

1.3.2 Homogeneous Plasma: Consideration of Ion Motion

The nonlinearity in the homogeneous plasma system either comes from the ion

motion or from the consideration of relativistic electron mass variation effect.[19,

24, 49] In majority of the previous studies the ions were considered as stationary

background of positive charge.[2, 21, 49, 52, 54–56] However, for large amplitude

electric field encountered in relativistic plasma wave excited behind high intense

laser pulse or ultra-relativistic electron/proton, even the heavy mass plasma ion

follow relativistic dynamics. So, in such situations the assumption of immobile

ion background may be violated.[8, 12, 25, 28] In order to understand the effect of

ion motion on the breaking amplitude of electron plasma wave in two component

plasma with arbitrary mass ratio, Khachatrayan has considered the relativistic ion

dynamics.[57] It has been shown that even though the ion motion affects weakly

on the wave breaking field amplitude, it drastically changes the wavelength of the

nonlinear plasma wave. Later, Gorbunov et al. have performed similar analysis
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with the consideration of the non-relativistic ion motion and investigated the gen-

eral properties of nonlinear plasma wave in electron ion plasma.[58] In 2005, G.

N. Kichigin has discussed the steady state nonlinear properties of electron plasma

wave with the allowance of the ion motion.[59]

1.3.3 Breaking in Presence of an External Magnetic Field

The incorporation of an external magnetic field is an important issue in the studies

of nonlinear plasma wave phenomena. Strong magnetic field can be generated in

the plasma medium due to various reasons. In the laser matter interaction process

magnetic field is produced by the hot electron current.[60] Also, circularly polarized

laser radiation can induce axial magnetic field in the plasma. Magnetized plasma

is encountered in various astrophysical situations, in laboratory experiments and

also in the laser produced plasma systems.[61–65] Simple linear analysis shows that

in presence of an external magnetic field, various modes like Alfven waves, lower

and upper hybrid wave, magnetosonic wave can be excited in the plasma medium.

The presence of such external magnetic field drastically modifies the nature of

the nonlinear plasma wave. In the recent past, Maity et al. have studied the wave

breaking and phase mixing process specifically for the above mentioned two hybrid

modes.[46, 66, 67] Extending the analysis of wave breaking of upper hybrid mode,

we have provided an analytical estimation of the breaking field amplitude of such

high frequency mode in our investigation.
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1.3.4 Wave Breaking via Phase Mixing

The solution obtained by Akheizher and Polovin represents the traveling wave for

relativistically propagating electron plasma wave.[49] The wave which is excited

behind a strong laser pulse or ultra-relativistic particle beam can be well-described

by this type of stationary wave solution. The maximum supported electric field

amplitude of such wave is limited by the wave breaking field amplitude given by

EWB =
√

2(γ − 1) [AP limit], where γ = [1− (vph/c)
2]−1/2. It is important to note

from the expression of AP limit that as vph → c, this implies EWB → ∞.

Almost four decades later, Infeld and Rowland have provided an exact ana-

lytical solution for relativistic longitudinal electron plasma wave in terms of La-

grangian co-ordinates.[18] They have provided an expression for the frequency of

the nonlinear plasma wave which not only depends on the amplitude but also ac-

quires a space dependency. The observed relativistic bursts is a result of such

position dependent frequency. It is found that except for a choice of particular

initial condition to excite the wave, the relativistic electron plasma waves always

break at arbitrarily small amplitude long before it reaches to the limit imposed by

Akheizher and Polovin. This has been confirmed later by the analysis of Verma et

al. who have constructed traveling wave type Akeizher Polovin solution by freezing

the Infeld-Rowland’s exact space time dependent solution.[68] Corresponding non-

relativistic situations has also been discussed earlier by Albriton and Rowland.[69]

They have commented that in the non-relativistic situation, it is possible to con-

struct traveling wave solution from the space time dependent solution for the non-

linear cold plasma wave by choice of an appropriate initial condition. Hence, a

general conclusion that comes out from these studies is that, only with the choice
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of such unique initial condition one obtains a stationary wave solution. A slight

deviation originating from the noise present in the system can make the wave to

break at an arbitrarily small amplitude. This small amplitude breaking or nonlin-

ear damping is nothing but a result of phase mixing.

Phase mixing is physically associated with the space dependent frequency which

occurs due to presence of different types of nonlinearities originating from the in-

homogeneity in the background ion density, relativistic electron mass variation,

ion motion etc. When the frequency becomes position dependent, different fluid

elements oscillate with different frequencies and the crossing of electron trajecto-

ries occurs leading to phase mixing. In the non-relativistic situation phase mixing

of nonlinear electron plasma wave has been studied in presence of ion density

cavities.[22, 70] Such cavities are frequently encountered in the auroral region ex-

cited due to ion cyclotron wave motion. Nappi et al. has also obtained an ap-

proximate analytical solution of the nonlinear electron plasma wave in presence of

sinusoidal time stationary inhomogeneous ion density background.[71] They have

estimated the phase mixing time and discussed its dependency on the amplitude of

the ion density inhomogeneity. Later, Sengupta et al. have investigated the phase

mixing of relativistically strong plasma wave in homogeneous plasma system. [19]

Incorporation of the relativistic electron mass variation in the process of this

phase mixing in inhomogeneous plasma system is an important issue. A general

theoretical model which allows us to investigate the effect of the nonlinearity as-

sociated with the inhomogeneity and relativity in the phase mixing process will

definitely contribute to the knowledge of plasma wave breaking phenomena.
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1.4 StationaryWave Ansatz and Lagrangian Fluid

Technique

The basic studies on nonlinear plasma dynamics deal with solving some nonlinear

partial differential equations. There exists no precise general technique of solving

these differential equations. One way to handle with such equations is to adopt

plane wave ansatz which is used to describe stationary properties of the nonlinear

plasma system. On the other hand, one can use Lagrangian fluid technique to

obtain exact space time dependent solution of the problem. Our investigation

of wave breaking and wave excitation have been performed by using these useful

fluid techniques. Here we provide a brief introduction of these two mathematical

formulations.

Stationary wave: The nonlinear stationary wave solution can be obtained by

assuming every dynamical dependent variables of the problem to depend on ξ =

x−vt; a special combination of space and time. Here v is the constant velocity of a

moving frame. Even though this kind of analysis does not provide any information

about the exact space time evolution of the system, this method is used most often

and give various insightful results for systems which are stable for long time. One

of the significant advantage in this moving frame analysis is that with this co-

ordinate transformation one can reduce the partial differential equations into a set

of ordinary differential equations which are comparatively easier to handle with.

‘Pseudo potential’ approach is one of such methods where solution for the basic

equations describing nonlinear plasma wave phenomena can be easily obtained. In

this novel technique all dynamical variables viz. electron density, fluid velocity are

expressed in terms of electrostatic potential and then the whole nonlinear wave
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dynamics is being converted to a classical mechanical problem of a fictitious single

particle motion in a pseudo potential. By the comparison of the bounded and

unbounded motion of that particle in the potential well, the periodic wave motion

and the breaking phenomena of plasma wave can be described. In investigating

wave breaking of electrostatic electron plasma wave in three component electron-

positron-ion plasma we have adopted this ‘Pseudo potential’ method. Also, in the

study of wave breaking in magnetized plasma system as well as in the charged

particle beam driven wake field excitation process, this kind of stationarity is

assumed.

Lagrangian method: A generic structure of studying the dynamics of any

physical system is to specify its initial state and observing how the state evolves

with time. In this context the Lagrangian fluid technique is a very useful method.

This powerful mathematical tool has previously been extensively employed in the

description of nonlinear electron plasma waves.[3, 51, 72, 73] In contrast to the Eu-

lerian method, here the dynamics of nonlinear plasma wave is studied by tracking

the individual fluid elements.

The Lagrangian variables {ξ, τ} is related to the Eulerian variables {x, t} by

the following transformation equations:

ξ = x−
∫ τ

0

v(ξ, τ ′)dτ ′ , τ = t. (1.1)

With this transformation one can reduce the convective derivative term D ≡
∂
∂t

+ v ∂
∂x

into local time derivative ∂
∂τ

. This considerably simplifies the prob-

lem and makes it analytically tractable. This transformation will allow us to have

a glimpse over the exact space time evolution of the nonlinear plasma dynamical

situation encountered in various problems of plasma physics. Specifically, to study
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wave breaking by phase mixing this transformation is very useful. In this physical

process the information about the initial condition from which the system evolves

is an important issue. This formulation not only allows us to investigate the spatio-

temporal evolution of the nonlinear plasma wave dynamics but also provides the

knowledge of its initial state. A more detailed discussion on Lagrangian method

can be found in the textbook of Davidson.[3]

1.5 Motivation

In the electron or proton beam driven wake field excitation process, the necessity of

an external magnetic field is manifold. The magnetic field not only helps to reduce

the beam charge loss but also helps the beam charge to couple efficiently with the

excited plasma wave. Also, in the production of quasi mono-energetic high energy

charged particle, it plays a significant role. It is quite obvious that in presence

of such magnetic field, the electric field structure of the wake wave will modify

from its unmagnetized profile. This will greatly influence on the overall energy

efficiency in the acceleration process. The effect of such magnetic field has still

not been discussed elaborately in the context of particle acceleration by the strong

plasma wave. Therefore, a detailed study of wake wave excitation in presence of

an external magnetic field will definitely make a significant contribution in the

development of the production of high energy charged particle by plasma wave.

Furthermore, wave breaking of different nonlinear plasma modes has been stud-

ied quite extensively over the decades mostly in two component electron-ion plasma

systems. However, it is not very easy and straightforward to extend the analysis

of wave breaking in three component plasma systems like electron-positron-ion
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plasmas. During the last few years, there has been considerable interest on the

studies of nonlinear wave phenomena in EPI plasmas [74–79]. EPI plasmas are

found in various astrophysical environments, including early Universe [80], pulsar

magnetosphere [81] etc. Such plasmas have also been produced in high intensity

laser-matter interaction in laboratory [2]. So it is of particular interest to inves-

tigate wave breaking in such plasma systems. But consideration of the complex

collective dynamics of three species in the wave propagation makes the problem

difficult to investigate analytically. Also, as obvious from the previous discussion,

it is needed to incorporate the relativistic dynamics of all the three species. Nev-

ertheless, one way to study wave breaking in such plasma systems is to adopt

stationary wave ansatz. Even if this method do not provide any information of the

exact space time evolution, it enables us to estimate the breaking field amplitude

of electron plasma waves in such plasma systems.

As mentioned earlier phase mixing is one of the strong potential mechanism

by which the plasma wave breaks. This phase mixing occurs mainly due to non-

linearities associated with the relativistic mass variation of electron or because of

the existing inhomogeneity in the background ion density. In most of the earlier

investigations, the studies on wave breaking in inhomogeneous plasma system have

been performed in the non-relativistic situations only. It is interesting to see how

the physics of phase mixing modifies when these two nonlinear effects act together

on the wave dynamics.

1.6 Outline of the thesis

A brief outline of the thesis is described below:
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In chapter-II, a theoretical investigation has been performed to discuss the

effect of an external magnetic field on the stationary wake field structures of non-

linear relativistic electron beam driven plasma system. Experimentally realizable

different shapes of the driving electron beam (Rectangular and Gaussian) have

been considered for the excitation of plasma wake wave. The significance of this

studies are discussed in the laboratory context of particle acceleration or in the

study of generation of ultrahigh accelerating charged particle by strong plasma

wave in astrophysical situations.

We have also extended our analysis to describe the physics of proton driven

plasma wake field accelerator (PDPWFA) by constructing a travelling wave so-

lution of the problem. The wake field excitation by single long proton beam as

well as a train of equidistant proton micro-bunches produced due to self modula-

tional instability has been discussed. Also, considering the necessity of the external

magnetic field to control over the focusing characteristics of the beam and also to

reduce the diffraction of beam head, studies on the effect of magnetic field on the

wake field structures have been performed.

In chapter-III, the maximum permissible amplitude of the electric field has

been derived for the relativistic electrostatic electron plasma wave in three compo-

nent electron-positron-ion (EPI) plasmas incorporating the relativistic dynamics of

all the three plasma species. We have adopted Pseudo potential technique to dis-

cuss the breaking phenomena in such plasma system. The dependence of the wave

breaking amplitude on the relativistic Lorentz factor associated with the phase

velocity of the plasma wave, on the electron/positron to ion mass ratio, and on the

ratio of equilibrium ion density to equilibrium electron/positron density has been
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discussed elaborately.

In chapter-IV, we have provided a theoretical investigation on the stationary

wave solution for the nonlinear relativistic upper hybrid wave. The wave breaking

field amplitude of such waves has been derived. Furthermore, we seek the initial

condition that should be chosen properly to freeze the exact space time dependent

solution into stable stationary type solution.

In chapter-V, the wave breaking via phase mixing has been studied for the

non-relativistic electron plasma wave in presence of ion density inhomogeneity. An

exact spatio-temporal solution in terms of Lagrangian variables has been derived.

Also, an approximate homotopy perturbative solution has been obtained in order

to give an analytical expression for the phase mixing time.

We have extended our analysis on phase mixing in chapter-VI to incorporate

the relativistic electron mass variation effect along with the background ion density

inhomogeneity. These two types of nonlinearities acting together speed up the

process of phase mixing which is reflected in the expression of phase mixing time

as obtained in our theoretical study.

The theoretical investigation made in the thesis is not meant to understand

very complicated studies of wave breaking research. Rather, it deals with very

simple problems to explore the essential features of wave breaking and phase mixing

process in magnetized and unmagnetized plasma systems. For the researchers

embarking in the field of plasma wave breaking, phase mixing and also in the

branch of plasma based particle accelerator physics, this thesis can be a starting

point.



Chapter 2

Charged Particle Beam driven
Plasma Wakefield Excitation

A theoretical study has been performed to find the stationary wave solution for the

relativistically propagating electron as well as proton beam driven cold magnetized

plasma system. The effect of the magnetic field on the transformer ratio (the ratio

of energy gain to the drive beam energy) has been discussed independently for both

these schemes. Also the effect of ion motion and different beam shapes on the wake

field structures are analyzed in the electron beam driver case. Consideration of both

single long proton beam and micron sized train of small particle bunches to excite

the plasma wake wave have been incorporated in our investigation.

22
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2.1 Introduction

As discussed in the introductory section there are basically two different charged

particle beam driven wake field excitation schemes. One is to use relativistically

propagating electron beam and the other is proton beam driven plasma wake field

accelerator (PDPWFA). Here we report the excitation mechanism of wake field

behind a relativistic, specially shaped electron beam (rectangular or Gaussian)

[25] passing through a magnetized plasma system. Also, the effects of magnetic

field and variation of peak beam density on the transformer ratio are discussed

elaborately. Analytical work of Rosenzweig discusses the generation of wake wave

behind a rectangular electron pulse.[30] He obtained an analytical expression of

transformer ratio (R) i.e. the ratio of the maximum energy gain of accelerated par-

ticles to the initial energy of driving particles for the unmagnetized beam driven

plasma. Extending his analysis to magnetized plasma system, we get some sig-

nificant results which can influence on improving the efficiency of the particle

acceleration.

Electron beam driven wake field accelerator is not very suitable for accelerating

charged particle in the TeV energy range. A newly introduced scheme which uses

proton beam to excite plasma wake field enables us to reach this energy range

in a single plasma stage with high efficiency. There exists a lot of numerical

and experimental works performed recently to understand the basic physics of

PDPWFA.[38–40, 43, 45] However, a well defined theoretical model to describe

such phenomena has still not been witnessed till date. In this chapter, such an

attempt has been made where incorporating the proton beam density in the Poisson

equation, the basic fluid Maxwell’s equation have been solved and the results are
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discussed.

2.2 Nonlinear solution for charged particle beam

driven wake in magnetized plasma

The basic equations describing the wake wave generation in the electron/proton

beam driven cold magnetized plasma are the following fluid Maxwell equations:

∂p

∂t
+ v.∇p = −eE − eβe ×B. (2.1)

∇.E = 4πe(n0 − n + qnb). (2.2)

∇× E = −1

c

∂B

∂t
. (2.3)

∇.B = 0. (2.4)

∇×B = 4πe(−nβe + qnbβb) +
1

c

∂E

∂t
, (2.5)

where, βe and βb are respectively the electron fluid velocity (ve) and beam velocity

(vb), both normalized by free space light speed c. The symbol ‘q’ takes negative

sign for electron beam and positive sign for proton beam; e being the value of

electronic charge. The electric field is E = Eêx, where êx is the unit vector along

the x axis. The external magnetic field is B = B0êz, where êz is the unit vector

along the z axis. Other variables have their usual meanings. Here, for the purpose

of simplicity in analysis, the heavier mass ions are assumed to be static in the time

scale of the electron dynamics.
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Figure 2.1: Variation of normalized electric field with and without magnetic field
in electron beam driven plasma[βph = 1, βb = 1], with beam density [α = 0.5 for
0 6 ζ 6 5.6π and zero otherwise], 1 → Ω = 0, 2 → Ω = 0.2, 3 → Ω = 0.5,
4 → Ω = 0.7.

In search for a travelling wave solution of Eqs. (2.1)-(2.5), it is convenient to

introduce a variable transformation ζ = ωpe

vph
(x − vpht), where ωpe =

√

4πn0e2/m

with n0 being the equilibrium electron density and vph is the phase velocity of the

plane wave. In the newly introduced coordinate system two momentum equations

take the form:

dpx
dζ

= βph
E
√

1 + p2 + Ωpy

βph
√

1 + p2 − px
, (2.6)

dpy
dζ

= −Ωβph
px

βph
√

1 + p2 − px
. (2.7)

Combination of Eq.(2.2) and Eq.(2.5), gives us the electric field evolution equa-

tion:

dE

dζ
= −βph

(1− qα)px − qαβb
√

1 + p2

βph
√

1 + p2 − px
. (2.8)



26

0 10 20 30 40
−10

0

10

20

30

40

50

60

70

80

ζ

n 1
,α

1

Beam 4
3

2

Figure 2.2: Variation of normalized perturbed electron density with and without
magnetic field in electron beam driven plasma [βph = 1, βb = 1], with beam
density [α = 0.5 for 0 6 ζ 6 5.6π and zero otherwise], 1 → Ω = 0, 2 → Ω = 0.2,
3 → Ω = 0.5, 4 → Ω = 0.7.

Here, α = nb/n0 is the normalized electron/proton beam density and Ω = ωc/ωpe

with ωc = eB0/mc being the electron cyclotron frequency. The normalized vari-

ables we have used are E → eE/(mωpec), px → px/mc, py → py/mc, n → n/n0

and βph = vph/c. Also, we defined p2x + p2y = p2. From the electron continuity

equation it is easy to show that

n = βph

√

1 + p2

βph
√

1 + p2 − px
. (2.9)

It is not an easy task to find an exact solution for the above coupled nonlinear

Eqs.(2.6)-(2.8) analytically. Therefore, we have solved these differential equations

by 4th order Runge-Kutta method and obtained the solutions for the wake wave

electric field, electron density etc. separately for the electron driver and proton

driver scheme. Since these waves are encountered in the high energy physics accel-

erator, we have assumed the electron beam velocity as well as the phase velocity

of the wake wave to take free space light velocity.

Electron beam driver scheme: In the electron beam driver case, first we
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Figure 2.3: Variation of normalized electric field with and without magnetic field
in a Gaussian shaped electron beam driven plasma [A0 = 0.5, ζc = 6, σx = 1.0] and
βph = 1, βb = 1; 1 → Ω = 0, 2 → Ω = 0.4, 3 → Ω = 0.7.

have considered rectangular profile of the drive beam with the following longitu-

dinal variation of its density:

α = α0 for 0 6 ζ 6 lb,

= 0, otherwise; (2.10)

i.e. the bunch is flat over the full beam length lb with α0 being a constant quantity.

Fig.(2.1) and Fig.(2.2) show the stationary electric field and perturbed density

profiles for different strengths of the applied magnetic fields as obtained from our

numerical investigation. In obtaining these results the electron beam density are

taken to be half of the equilibrium plasma density (α0 = 0.5). The sawtooth like

structures of electric field and electron density spikes are observed in case of zero

magnetic field limit. These results have indeed a clear resemblance to the analyti-

cal solution for the wake wave profiles excited by rectangular electron pulse in the

absence of any external magnetic field.[30] In this paper, Rosenzweig has provided

an exact analytical expression in 1D for the wake wave electric field excited by an
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Figure 2.4: Variation of normalized perturbed electron density with and without
magnetic field in a Gaussian shaped electron beam driven plasma [A0 = 0.5, ζc =
6, σx = 1.0] and βph = 1, βb = 1; 1 → Ω = 0, 2 → Ω = 0.4, 3 → Ω = 0.7.

ultra-relativistic rectangular shaped electron beam in the unmagnetized plasma

systems. Later, similar kind of analysis has been performed by Bera et al. who

have obtained space time dependent solution of relativistic electron beam driven

wake field in a cold, homogeneous plasma using 1D-fluid simulation techniques.[12]

Presence of an external magnetic field has an effect to change the nature of these

stationary structures. It is evident from these figures that in presence of the mag-

netic field the electric field behind the pulse gradually loses its sawtooth like shape

and becomes sinusoidal with the increasing strength of magnetic field. Conse-

quently, the peak amplitude of the perturbed density is also observed to decrease.

It is to be noted here that the external magnetic field also affects the transformer

ratio (R) which is defined to be the ratio of maximum accelerating electric field

behind the beam and the maximum decelerating field inside the beam. With the

increasing strength of magnetic field the transformer ratio gradually decreases. So,

despite the fact that externally applied magnetic field can help to avoid phase slip-

page between the driven electrons and the plasma wave, it reduces the transformer
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ratio of charged particle acceleration.

Our numerical simulation process is then extended to show the stationary struc-

tures of the relativistic magnetized wake wave with a Gaussian electron beam

density profile described by,

α = A0 exp{−(ζ − ζc)
2/σ2

x}. (2.11)

where A0, ζc and σ2
x are the amplitude, expectation value and variance of the

distribution function respectively.

It is observed in Fig.(2.3) and Fig.(2.4) that with this Gaussian beam profile the

electric field behind the beam are sinusoidal and perturbed density spikes are not

very high for the slightly nonlinear case (A0 = 0.5). In contrast to these results, the

steepening of the electric field and occurrence of high density spikes can be seen in

Fig.(2.5) and Fig.(2.6) for the highly nonlinear situation (A0 = 2.0). However, for

both the rectangular and Gaussian beam density profile the maximum amplitude

of the electric field behind the pulse get reduced with the increase of the strength

of the external magnetic field.

Proton beam driver scheme: We have also discussed the effect of an external

magnetic field on the wake field structures of proton beam driven acceleration

process. The drive beam profile has similar rectangular profile as considered in the

electron driver case [Eq. (2.10)]. The stationary electric field and perturbed density

profiles for different strengths of the applied magnetic fields are shown respectively

in Fig.(2.7) and Fig.(2.8). In contrast to the electron beam driver case, here we see

that with the increase in the magnetic field strength the maximum electric field

behind the pulse gradually increases.
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Figure 2.5: Variation of normalized electric field with and without magnetic field
in a Gaussian shaped electron beam driven plasma [A0 = 2.0, ζc = 6, σz = 1.0] and
βph = 1, βb = 1; 1 → Ω = 0, 2 → Ω = 0.5, 3 → Ω = 0.9.

2.3 Effect of ion motion on electron/proton beam

driven wake-field acceleration

Investigations of ultra-relativistic charged particle beam driven wake wave excita-

tion process are normally performed with the assumption of stationary ion back-

ground. This assumption might be violated. In the generation process of plasma

waves, due to their heavier mass the ions carry the main part of the momentum

of the source (electron/proton beam). In the strong field excited behind electron

or proton beam, the plasma ions can reach a velocity which is sufficient to make a

contribution in the process of charge separation and thereby this can significantly

influence the wake field structures.[57, 58] Thus, in our investigations we have

included the plasma ion motion as well.

It has been speculated earlier that inclusion of ion motion could have some

effects on the particle acceleration process in unmagnetized plasma.[11] In order

to show its effect, it is convenient to adopt pseudo-potential approach to solve
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Figure 2.6: Variation of normalized perturbed electron density with and without
magnetic field in a Gaussian shaped electron beam driven plasma [A0 = 2.0, ζc =
6, σz = 1.0] and βph = 1, βb = 1; 1 → Ω = 0, 2 → Ω = 0.5, 3 → Ω = 0.9.

the problem.[82] In this method we express each of the dynamical variables of the

system viz. species velocities, densities as function of electrostatic potential (ϕ)

and then obtain a second order differential equation for ϕ.

When we include ion motion with an electron/proton beam passing through

the unmagnetized plasma, the basic equations describing the system are:

The relativistic electron or ion momentum equations,

(

∂

∂t
+ vj

∂

∂x

)

(γjvj) =
qjE

mj
, (2.12)

the continuity equations for electron, and ion fluids

∂nj
∂t

+
∂

∂x
(vjnj) = 0, (2.13)

and the Poissons equation

∂E

∂x
= 4π

[

∑

j

qjnj − qenb

]

, (2.14)
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Figure 2.7: Variation of normalized electric field with and without magnetic field in
proton beam driven plasma [βph = 0.995, βb = 0.995], with beam density [α = 0.5
for 0 ≤ ζ ≤ 5.6π and zero otherwise], 1 → Ω = 0, 2 → Ω = 0.5, 3 → Ω = 0.9.
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Figure 2.8: Variation of normalized perturbed electron density with and without
magnetic field in proton beam driven plasma [βph = 0.995, βb = 0.995], with beam
density [α = 0.5 for 0 ≤ ζ ≤ 5.6π and zero otherwise], 1 → Ω = 0, 2 → Ω = 0.5,
3 → Ω = 0.9.

where nj, vj , qj, and mj are the densities, velocities, charges, and masses of

either electrons or ions, respectively, with qj = −e for electrons, qj = e for ions.

Indeed, ‘j’ indicates the species index, with the signs −, and i refer to electrons,

and ions, respectively. Here γj = [1 − (vj/c)
2)]−1/2 are the relativistic Lorentz

factors associated with different species motions. For the purpose of simplicity in

analysis, we have considered the motion of the plasma ion to follow non-relativistic

dynamics so that γi is taken to be unity. Here nb is the electron beam density.
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Figure 2.9: Stationary solution for electric field and potential in electron beam
driven plasma with non-relativistic ion motion (dashed lines) and for static
ions(continuous lines).

The wave electric field is along the x direction, i.e., E = Eêx; êx is the unit vector

along the x axis.
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Figure 2.10: Variation of normalized electric field in a proton beam driven plasma
[βph = 0.995, βb = 0.995], with beam density [α = 0.5 for 0 ≤ ζ ≤ 5.6π and zero
otherwise].

A travelling wave solution of Eqs.(2.12)-(2.14) can be obtained by introducing a

variable defined as ζ = kp(x− vpht), where kp = ωp/vph with ωp =
√

4πn0−e2/m−;

n0− is the equilibrium density of electrons and vph is the phase velocity of the plane

wave. We have also defined β− = v−/c and βi = vi/c as dimensionless velocities.
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Figure 2.11: Variation of normalized perturbed electron density in a proton beam
driven plasma [βph = 0.995, βb = 0.995], with beam density [α = 0.5 for 0 ≤ ζ ≤
5.6π and zero otherwise].

Therefore, γ− = (1 − β2
−
)−1/2 and γi = (1 − β2

i )
−1/2. And, m−/mi = µ is the

electron to ion mass ratio.

Following the methods as described by Karmakar et al.[82], the electron and

ion densities normalized by their respective equilibrium values, can be expressed

as,

Ne = βphγ
2

[

ϕe
(ϕ2

e − γ−2)1/2
− βph

]

, (2.15)

Ni =
βph

√

β2
ph + 2ϕi

, (2.16)

where ϕi = −µϕ and ϕe = 1 + ϕ and γ = [1 − (vph/c)
2)]−1/2 is the relativistic

Lorentz factor associated with phase velocity of the plasma wave. Using these

expression for species densities, from the Poisson’s equation, we obtain a second

order differential equation for ϕ as,

d2ϕ

dζ2
= −

β3
ph

√

β2
ph + 2ϕi

+
β3
phγ

2ϕe
√

ϕ2
e − γ−2

− β4

phγ
2 + qαβ2

ph,
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where, α = nb/n0 is the normalized electron/proton beam density. We solve this

second order differential equation numerically assuming a rectangular beam profile

whose longitudinal extension is same as in the earlier simulation process for the

magnetized case [Eq. (2.10)].

In case of electron driver, the solution for the electrostatic potential as well as

the electric field is shown in the Fig.(2.9). There is no significant change that can

be observed from this figure with the inclusion of the non-relativistic ion motion.

So the assumption of static ion background in obtaining the relevant results for

both the magnetized and unmagnetized beam plasma cases is quite justified.

Next, we have discussed the wake field excitation by using proton beam in-

corporating plasma ion dynamics. The solution for the wake field excited inside

and behind the single proton bunch as well as corresponding perturbed electron

density have been shown in the Fig. (2.10) and Fig. (2.11). The transformer ratio

(R) which determines the overall energy efficiency of the accelerated particles can

be calculated from this field profile.

2.4 Wake field excitation by trains of proton bunches

Due to self modulational instability, the long proton bunch can be split into long

chain of equi-spaced micro-bunches. It is of fundamental interest to see how strong

wake field can be excited behind this multi-beams.

The electric field structure and corresponding perturbed electron density profile

for the excited wake field by the train of equidistant rectangular particle bunches

with peak beam density 0.5n0 have been shown in Fig. (2.12) and Fig. (2.13)
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Figure 2.12: Variation of normalized electric field in absence of magnetic field
driven by a train of equidistant proton micro-bunches [βph = 0.995, βb = 0.995],
with peak beam density α0 = 0.5.
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Figure 2.13: Variation of normalized perturbed electron density in absence of mag-
netic field driven by a train of equidistant proton micro-bunches [βph = 0.995,
βb = 0.995], with peak beam density α = 0.5.

respectively as obtained by solving Eqs.(2.12)-(2.14). From the Fig. (2.12), it is

observed that electric field amplitude can not grow indefinitely with the increase of

the number of beams. Rather, the field saturates due to the amplitude dependent

frequency as given in the one dimensional analytical solution reported by Akheizher

and Polovin viz.[49]

τ ≃ τ0

[

1 +
3

16
(Em/E0)

2

]

, (2.17)
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where, Em and E0 are respectively the maximum field amplitude and non-relativistic

wave breaking limit. τ0 is the wave period in absence of nonlinearity. The wave

period (τ) is seen to increase with the maximum field amplitude. This change in

wavelength can cause the bunches to fall under the decelerating field and thereby

the field stops growing further.

2.5 Summary

We have shown that an external magnetic field plays a significant role in acceler-

ating charged particle by plasma wake wave excited by electron as well as proton

beam. The numerical simulation for the upper hybrid plasma wake wave has been

performed to show the stationary electric field profiles which enables us to find

the transformer ratio in presence of an external magnetic field. It has been es-

tablished that, even though the magnetic field plays a crucial role in controlling

the dephasing length, the transformer ratio which determines the overall energy

gain of the accelerated particle is being reduced with the increase of the strength

of magnetic field in the electron driver scheme. The external magnetic field con-

fines trailing witness beam charge to the wavefront of the wake wave and controls

its focusing nature. Thereby it helps to produce a highly collimated and quasi

mono-energetic final accelerated beam. Effects of electron beam shape and density

on the stationary structures of plasma variables are also shown to be of particular

relevance in the particle acceleration process. It has been shown that consideration

of non-relativistic ion motion does not affect much on the stationary structures of

wake-wave electric field.

Consideration of both single long proton beam or micron sized train of small
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particle bunches to excite the plasma wake wave have been incorporated in our

studies. Recently, K. V. Lotov has performed a numerical investigation on the two

dimensional plasma wake field excitation process by trains of equidistant particle

bunches which has been the motivation behind the use of such beam train in our

theoretical analysis.[40] This analytical solution can facilitate the understanding

of the underlying physical mechanisms in the production of high energy charged

particles in laboratory experiment on PDPWFA. Particularly, it will certainly con-

tribute to the theoretical knowledge of the ongoing “AWAKE [Advanced Proton

Driven Plasma Wakefield Acceleration Experiment] project.[38, 83]

Admittedly, we have not considered the evolution of the beam (rigid beam

case) throughout our calculations. Our whole analysis of wake field excitation has

been carried out in the limit of βb → 1. In this limit, the beam behaves like a

rigid charged rod, as has been shown by Bera et al.[12] by studying the space time

evolution of a beam plasma system (relevant to PWFA) using fluid simulation

techniques. Specifically, they have shown that as long as βb > 0.99, the beam does

not evolve within the time frame of interest. Our analysis of plasma wake field

excitation in the limit of βb → 1 is further justified by the fact that the present

day PWFA experiments use beam energies in the range of 20 ∼ 40 Gev,[29, 44]

which amounts to a value βb → 1. Thus our results are relevant to present day

PWFA experiments.

————————————————————————————



Chapter 3

Relativistic wave-breaking limit of
electrostatic waves in cold
electron-positron-ion plasmas

A one-dimensional nonlinear propagation of relativistically strong electrostatic waves

in cold electron-positron-ion (EPI) plasmas has been analyzed. The motion of all

the three species, namely, electron, positron, and ion has been treated to be relativis-

tic. The maximum permissible electric field amplitude - so called “wave-breaking

limit” of such an electrostatic wave before wave-breaking has been derived, showing

its dependence on the relativistic Lorentz factor associated with the phase velocity

of the plasma wave, on the electron/positron to ion mass ratio, and on the ratio of

equilibrium ion density to equilibrium electron/positron density.

39
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3.1 Introduction

Studies on “wave-breaking”[3, 21, 51] of nonlinear oscillations and/or waves in

plasmas have been an active area of research in nonlinear plasma theory over the

past years owing to its number of potential applications like plasma heating[84],

particle acceleration by wake-fields[85, 86], etc.

As mentioned earlier, it is not possible to have a coherent wave motion in

plasmas with an amplitude greater than its critical amplitude. The value of

the critical amplitude may be physically different in the cold-nonrelativistic[21]

or cold-relativistic[49] or warm-nonrelativistic[52] or warm-relativistic [53] plasma

situations. Relativistic effects have been found to increase the critical amplitudes,

whereas, thermal effects decrease the critical amplitudes. The critical amplitude

beyond which a plasma wave breaks is well-known as the “wave-breaking am-

plitude”. Over the past decades, much theoretical progress has been made on

the understandings of the wave-breaking amplitudes for electron plasma waves in

electron-ion plasmas.[2, 21, 49, 52–56, 87] Understanding the wave-breaking am-

plitude and corresponding electric field threshold (the maximum coherent electric

field which a plasma can consistently sustain) is important for the plasma-based

particle acceleration schemes.[4, 11] Because the wave-breaking amplitude is as

one of the critical parameters that determines the maximum energy gain of the

accelerated particles.[88]

In the recent years, there has been much discussion of wave-breaking of rel-

ativistically strong electron plasma waves regarding particle acceleration to high

energies.[8, 9, 89, 90] A wave of sufficiently large amplitude is generally said to

be relativistically strong if it can induce, at least, relativistic motions of lighter
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plasma species. In this regard, the ratio of quiver velocity of electrons (say) to the

velocity of light in vacuum can become comparable to unity, i.e., v ∼ c. Thus the

longitudinal electric fields associated with such waves can be extremely large, i.e.,

eE/(meωc) ∼ 1, where e is the charge of an electron, E is the electric field of the

wave, me is the mass of an electron, and ω is the frequency of wave. The energy

gain by an electron over a wave period could be made comparable to its rest mass

energy while it is trapped within and in phase with such a plasma wave.

The investigation on maximum electric field of a relativistically strong elec-

tron plasma wave in cold electron-ion (EI) plasmas was first done by Akhiezer and

Polovin (AP), where massive ions were assumed to form a fixed charge neutralizing

background.[49] Surprisingly, in their classic paper, AP derived the corresponding

wave-breaking limit as eEmax/meωpvph =
√

2(γ − 1)/β, even without mentioning

“wave-breaking”, where ωp is the electron plasma frequency, vph is the phase ve-

locity of the plasma wave, and γ is the relativistic Lorentz factor associated with

the phase velocity of the plasma wave, i.e., γ = (1 − β2)−1/2 with β = vph/c. A

few researchers then extended the analysis of AP by taking into account the ion

motion, and thus they reported the wave-breaking amplitudes of relativistic oscil-

lations in arbitrary mass ratio two component cold plasmas.[57, 58] In the context

of plasma wave generation in the wakes of laser pulses or an electron beam, it

was subsequently shown that ion being the more massive candidate compared to

the other species they can carry the main part of the momentum transferred by

the laser pulse.[58] Besides, we find from their work that the wave-breaking limit

increases with the increase of the electron to ion mass ratio, and thus an equal

mass electron-positron (EP) plasma can support higher amplitude relativistically
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strong coherent electrostatic waves compared to an electron-ion plasma.

In this chapter, we investigate the wave-breaking amplitude of one-dimensional

relativistically strong electrostatic waves in cold unmagnetized electron-positron-

ion (EPI) plasmas. In addition to oppositely charged and same mass species elec-

trons and positrons, EPI plasmas contain a fraction of massive ions with an overall

charge neutrality in equilibrium states. The present work is a generalized model

where the system is a three component electron-positron-ion (EPI) plasma in which

the dynamics of all the three species are taken to be relativistic.

3.2 Determination of the wave-breaking ampli-

tude

We consider a cold unmagnetized electron-positron-ion (EPI) plasma having an

overall charge neutrality in its equilibrium state, i.e., n0− = n0+ + n0i, where

n0−, n0+, and n0i are the equilibrium densities of electrons, positrons, and ions,

respectively. Massive ions will be allowed to take part in the relativistically strong

high frequency wave dynamics in such a multi-species plasma. And, the motion of

all the three species, namely, electron, positron, and ion will also be taken to be

relativistic. In one space-dimension, the basic equations that describe the nonlinear

propagation of relativistically strong electrostatic waves in cold EPI plasmas are

the continuity equations for electron, positron, and ion fluids

∂nj
∂t

+
∂

∂x
(vjnj) = 0, (3.1)

the momentum equations for electron, positron, and ion fluids

(

∂

∂t
+ vj

∂

∂x

)

(γjvj) =
qjE

mj

, (3.2)
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and the Poissons equation

∂E

∂x
= 4π

∑

j

qjnj , (3.3)

where nj , vj , γj, qj , and mj are the densities, velocities, relativistic Lorentz factors,

charges, and masses of either electrons or positrons or ions, respectively, with

qj = −e for electrons, qj = e for both positrons and ions. Indeed, ‘j’ indicates the

species index, with the signs −, +, and i refer to electrons, positrons, and ions,

respectively. The wave electric field is along the x direction, i.e., E = Eêx; êx is

the unit vector along the x axis.

Looking for a travelling wave solution of Eqs. (3.1)-(3.3), it is convenient to

introduce a variable transformation ξ = kp(x − vpht), where kp = ωp/vph with

ωp =
√

4πn0−e2/m−; n0− is the equilibrium density of electrons and vph is the

phase velocity of the plane wave. We also define β± = v±/c and βi = vi/c as

dimensionless velocities. Therefore, γ± = (1 − β2
±
)−1/2, γi = (1 − β2

i )
−1/2 and,

m−/mi = µ is the electron to ion mass ratio.

In the transformed co-ordinate system the continuity and momentum equations,

respectively, take the form as

d

dξ
[nj(β − βj)] = 0, (3.4)

and

(β − βj)
d

dξ
(βjγj) = εjβ

2E, (3.5)

where β = vph/c, and εj is a constant; ε− = 1 for electron, ε+ = −1 for positron,

and εi = −µ for ion. Here γj = [1−(vj/c)
2)]−1/2 are the relativistic Lorentz factors

associated with different species motions.
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Now using the quasi-neutrality condition at the equilibrium, viz., n0− = n0+ +

n0i and normalizing the species densities by their respective equilibrium values,

i.e., Nj → nj/n0j, the Poisson’s equation in the new variable ξ becomes

dE

dξ
= αNi −N− + (1− α)N+, (3.6)

where α = n0i/n0−, and the electric field is normalized on the non-relativistic

wave-breaking field m−ωpvph/e and obeys E(ξ) = −(1/β2)(dϕ/dξ), where the re-

scaled potential, ϕ = ϕ0 + (eΦ/m−c
2) with Φ denoting the unnormalized electric

potential. Here ϕ0 is a constant potential in the unperturbed plasma state where

the whole plasma is neutral and all the three species are at rest. Physically,

electrons, positrons, and ions stop at the same point where the potential of the

plasma wave is equal to this constant potential ϕ0. Without much loss of generality,

one may set ϕ0 = 1, and henceforth, ϕ = 1 + (eΦ/m−c
2). It should further be

mentioned here that the unnormalized electric potential Φ has been assumed to

be equal to zero when the plasma density is equal to the equilibrium density.

Now carrying out some simple algebra, we obtain from Eqs. (3.4)-(3.6) the

normalized velocities and densities of the three species as

βj =
β − ϕj(ϕ

2
j − γ−2)1/2

β2 + ϕ2
j

, (3.7)

and

Nj = βγ2
[

ϕj
(ϕ2

j − γ−2)1/2
− β

]

, (3.8)

respectively, where ϕ− ≡ ϕ, ϕ+ = 2 − ϕ, and ϕi = 1 + µ(1 − ϕ). Here γ =

[1−(vph/c)
2)]−1/2 is the relativistic Lorentz factor associated with the phase velocity

of the plasma wave. It is to be noted here that ϕ is the potential of the plasma



45

waves in the perturbed state, and ϕ+ and ϕi are the new variables introduced

which are related to ϕ. Furthermore, we note that, at the equilibrium state, each

of ϕj takes the same value ϕ0.

Substituting the values ofNj in Eq. (3.6) followed by using E(ξ) = −(1/β2)(dϕ/dξ),

we obtain the following second order differential equation for ϕ as

d2ϕ

dξ2
+ αβ3γ2

[

ϕi
(ϕ2

i − γ−2)1/2
− ϕ+

(ϕ2
+ − γ−2)1/2

]

+β3γ2
[

ϕ+

(ϕ2
+ − γ−2)1/2

− ϕ

(ϕ2 − γ−2)1/2

]

= 0. (3.9)

In the general regime ϕ2
j > γ−2, Eq. (3.9) is solved numerically, and a typical

wave form solution is depicted in Fig. (3.1) for different values of α with µ =

1/1836 and γ = 10. From the figure it is evident that the wavelength of the

plasma wave increases with the the ratio of equilibrium ion density to equilibrium

electron/positron density α.

0 2 4 6 8 10
0.9

0.95

1

1.05

1.1

1.15
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α=0

α=0.5

α=0.9

Figure 3.1: Normalized electrostatic potential of the plasma wave ϕ vs. ξ obtained
by numerical solving of the potential equation for different values of α with µ =
1/1836 and γ = 10.

Now we re-write Eq. (3.9) in the following form:

d2ϕ

dξ2
+
dU

dϕ
= 0, (3.10)
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where

U = β3γ2
[

−α
µ
(ϕ2

i − γ−2)1/2 + (α− 1)(ϕ2

+ − γ−2)1/2
]

+β3γ2
[(

α

µ
− α + 2

)

(1− γ−2)1/2 − (ϕ2 − γ−2)1/2
]

.

(3.11)

Here U(ϕ) is chosen to be equal to zero at a point ϕ = 1 where it reaches a

minimum. The Eq. (3.10) describes the one dimensional motion of a particle in

a field with potential U(ϕ); the values ϕ and E correspond to the coordinate and

velocity of this fictitious particle of unit mass, respectively.

Next, from Eq. (3.10) we obtain the first integral of motion as

1

2

(

dϕ

dξ

)2

+ U(ϕ) = I, (3.12)

which can be re-written as

dϕ

dξ
= ±

√

2(I − U), (3.13)

where I is an integration constant and can be identified as the total energy of the

fictitious particle having unit mass. The first term on the left hand side of Eq.

(3.12) signifies the kinetic energy and the second term is the potential energy.

In order to have a periodic solution of the nonlinear plasma waves, the potential

U(ϕ) should have to be real restricting the allowed value of ϕ. In case of EPI and/or

EP plasmas, the nonlinear periodic solution exists in a very small range (1/γ) ≤

ϕ ≤ 2 − (1/γ). It is clearly seen in Fig. (3.2) that the potential U(ϕ) gradually

loses its symmetry with the increase of the value of α. One may reasonably expect

that such dependence of potential on α have direct effects on the wave-breaking

amplitudes of relativistically strong waves in two or three species plasmas.
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Figure 3.2: Variation of normalized potential for different values of α in EPI (0 <
α < 1) and EP (α = 0) plasmas with µ = 1/1836 and γ = 10. The potential U(ϕ)
is real in the range 1/γ ≤ ϕ ≤ 2− (1/γ). All the three species are relativistic.

The restriction on the allowed values of U(ϕ) inhibits to achieve arbitrarily

large amplitude of the electric field. In order to obtain the maximum achievable

electric field supported by the plasma viz. wave-breaking field, we need to find

out the maximum “permissible” value of U(ϕ) (Umax). We find from Ref. [57]

that, in case of EP plasma (α = 0), Umax is calculated at ϕ = 1/γ. Due to the

symmetry of U(ϕ) about ϕ = 1 for α = 0, Umax could have been calculated at

ϕ = 2 − (1/γ). In case of EPI plasma (0 < α < 1), U(ϕ) loses its symmetry and

thereby Umax should be calculated at ϕ = 2− (1/γ). As we can see from Fig. (3.2)

that, Umax gradually decreases with the increase of α. The fictitious particle of

our problem can oscillate within the potential well with the maximum amplitude

determined by the maximum permissible value of U(ϕ) at ϕ = 2− (1/γ). For any

other values of U(ϕ) (calculated at points beyond the restricted range of ϕ) greater

than Umax calculated at ϕ = 2− (1/γ), the motion of the fictitious particle would

be unbounded.

In the restricted range of ϕ, when U(ϕ) reaches its minimum value at ϕ = 1,

i.e., U(ϕ) |ϕ=1= 0, then the kinetic energy takes its maximum value. Therefore,
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at ϕ = 1, the normalized electric field E of the plasma wave which equals to

−(1/β2)(dϕ/dξ) also reaches its maximum value Emax. Therefore, from Eq. (3.12)

we obtain

Emax =
1

β2

√
2I. (3.14)

But I can not be arbitrarily large. A nonlinear periodic plasma wave exists if the

right hand side of Eq. (3.13) is real, i.e., I ≥ U(ϕ). In case of EPI and/or EP

plasmas, I, at most, can be equal to U(ϕ = 2− (1/γ)) ≡ Umax. With this value of

I, we get the wave-breaking amplitude as

Ewb =
1

β2

√

2Umax. (3.15)

Now the maximum permissible value of U(ϕ), reaching the point ϕ = 2−(1/γ),

is obtained from Eq. (3.11) as

Umax = β4γ2
[(

α

µ
− α + 2

)

− α√
γ + 1

√

ζ1ζ2

−2

√

γ

γ + 1

]

, (3.16)

where ζ1 = (1 − µ2)/µ2 and ζ2 = 1 + γ(1 − µ)/(1 + µ). Therefore, by using the

above expression for Umax, we finally obtain the wave-breaking electric field for

relativistically strong electrostatic waves in EPI plasma from Eq. (3.15) as

Ewb =
√
2γ

[(

α

µ
− α + 2

)

− α√
γ + 1

√

ζ1ζ2

−2

√

γ

γ + 1

]1/2

. (3.17)

The variation of wave-breaking field with α for different values of γ is shown in

Fig. (3.3). It is seen that the wave-breaking field amplitudes are gradually being

decreased with the increase of the value of α.
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Figure 3.3: Variation of normalized wave-breaking electric field amplitude with α
for µ = 1/1836 for different γ. All the three species are relativistic.

The wave-breaking limit for the relativistic plasma waves in cold EP plasmas

can be obtained by putting α = 0 in Eq. (3.17) as

Ewb = 2γ

(

1−
√
γ√

γ + 1

)1/2

. (3.18)

Nevertheless, the wave-breaking limit for the relativistic plasma waves in cold

electron-ion (EI) plasmas can not be recovered from Eq. (3.17) by merely putting

α = 1. Because in case of electron-ion plasmas the range of ϕ for which U(ϕ)

takes its real value is widened compared to the range in EPI and/or EP plasmas,

i.e., 1/γ ≤ ϕ ≤ 1+ 1

µ
{1− (1/γ)}. In this case, U(ϕ) reaches its maximum allowed

value at ϕ = 1/γ. Thus, by putting α = 1 and ϕ = 1/γ in Eq. (3.11), we obtain

the maximum permissible value of U(ϕ) in case of EI plasmas as

Umax = β4γ2
[

1 +
1−√

η1η2

µ

]

, (3.19)

where η1 = 1 + µ and η2 = 1 + µ(γ − 1)/(γ + 1). And, consequently, the wave-

breaking amplitude for an EI plasma where both the electron and ion follow the

relativistic dynamics simply reads as [57]

Ewb =
√
2γ

(

1 +
1−√

η1η2

µ

)1/2

. (3.20)
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Interestingly, in the equal mass limit (µ = 1), from Eq. (3.20) one can recover the

expression for Ewb given in Eq. (3.18). Moreover, the relativistic wave-breaking

amplitude in an EI plasma with stationary ion background can be recovered from

Eq. (3.20) by taking the appropriate limit µ→ 0 as

Ewb =

√

2(γ − 1)

β
, (3.21)

which is the well-known AP limit.[49]
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Figure 3.4: Phase portrait in case of EPI and/or EP plasmas: 1 → α = 0, 2 →
α = 0.2, 3 → α = 0.4, 4 → α = 0.6, 5 → α = 0.8, 6 → α = 0.99 with µ = 1/1836
and γ = 10.
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Figure 3.5: Variation of normalized plasma wavelength with the equilibrium ion
to electron concentration ratio α: (1 → γ = 1.01, 2 → γ = 5, 3 → γ = 10). The
electron to ion mass ratio µ = 1/1836 in all cases.
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Figure 3.6: Phase portrait in case of electron-ion plasmas for (1 → γ = 1.2,
2 → γ = 5, 3 → γ = 10). The electron to ion mass ratio µ = 1/1836 in all cases.

Now we proceed to find the wavelength λ of relativistic plasma waves. The

wavelength can be defined as twice the distance between minimum and maximum

points of the electrostatic potential ϕ. Thus, in units of k−1
p , wavelength is given

by

λ = 2

∫ ϕ+

ϕ
−

dϕ

dϕ/dξ
, (3.22)

where ϕ± are the roots of the right hand side of Eq. (3.13). The roots can be found

out from the phase portrait of Eq. (3.13). The phase portrait is shown in Fig.

(3.4) with different values of equilibrium ion to electron concentration ratio α, and

it bounds the possible real solution of Eq. (3.13). Indeed, dϕ/dξ = 0 determines

the roots ϕ±. Then by using the formula given in Eq. (3.22), we have calculated

the wavelengths of relativistic plasma waves. The variation of wavelength with α

in EPI and/or EP plasmas is shown in Fig. (3.5). We find that the wavelength

gradually increases with the increase of ion concentration in EPI plasmas.

In case of EI plasmas (α = 1), the phase portrait is drawn separately for three

different values of γ in Fig. (3.6). Then by using (3.22) we have calculated the

wavelengths, which are 1.6051, 12.6074 and, 17.5930 in units of k−1
p for γ = 1.2,
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γ = 5, and γ = 10, respectively.

3.3 summary

In summary, we have analyzed a one-dimensional nonlinear propagation of rel-

ativistically strong plasma waves in cold three component electron-positron-ion

(EPI) plasmas. We have allowed the relativistic motion of massive ions along with

the other two species of the system. Consideration of ion motion is quite reasonable

in the context of wake-field generation by intense laser pulses or an electron beam,

etc., where the ion fluid also follows relativistic dynamics. The maximum permissi-

ble electric field amplitude before wave-breaking (“wave-breaking amplitude”) has

been derived. It has been shown that the wave-breaking electric field amplitude in

EPI plasmas depends on the ratio of equilibrium ion density to equilibrium elec-

tron/positron density along with on the relativistic Lorentz factor associated with

the phase velocity of the plasma wave and on the ratio of the electron/positron

mass to ion mass. Subsequently, it is found that the wave-breaking amplitude

decreases with the increase of the ratio of equilibrium ion density to equilibrium

electron density, and thus, the value of maximum amplitude possible before wave-

breaking gets lowered due to the presence of a fraction of massive ions in a pure

electron-positron plasma.



Chapter 4

Wave-breaking amplitudes of
relativistic upper-hybrid
oscillations

A travelling wave solution is presented for relativistic upper-hybrid oscillations

(RUHOs) in a cold magnetized plasma. An expression for the wave-breaking am-

plitudes of RUHOs is derived. The wave-breaking amplitudes of RUHOs are found

to decrease with the increase of the strength of an ambient magnetic field. These

results will be of relevance to the laboratory context of particle acceleration by wake-

fields in which magnetic field plays a central role.

53
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4.1 Introduction

There has been an extensive theoretical progress on the understandings of the

‘wave-breaking amplitudes’ for electron plasma waves in the last few decades.[2,

21, 49, 51, 52, 54–56, 82, 87, 89] Much analytical information on the electrostatic

wave-breaking has significantly improved our understanding of plasma-based par-

ticle acceleration schemes.[4, 8, 28, 30, 85, 86, 89, 90] Nevertheless, there has

not been much investigation regarding wave-breaking of relativistic electrostatic

plasma oscillations in an ambient magnetic field. About a few decades ago, Kat-

souleas and Dawson discussed the ‘surfatron’ mechanism for the energization of

electrons to arbitrarily high energies by the relativistic upper-hybrid (UH) wave

electric fields.[13] In a recent past, a comprehensive study of relativistic UH waves

has been made showing an exact space-time dependent solution in Lagrangian

co-ordinates.[46] Furthermore, the importance of RUHOs has also been discussed

in the context of electron surfing acceleration in a self-consistent simulation for

astrophysical applications.[91]

In this chapter, we obtain an expression for the wave-breaking amplitudes of

relativistic upper-hybrid oscillations (RUHOs) in a cold magnetized plasma. A

travelling wave solution for the wave electric field, electron density, and relativistic

momenta of electrons associated with RUHOs is also presented. Moreover, we

construct travelling wave solution from the exact space-time dependent solution

of RUHOs by appropriately choosing initial conditions. It is well known that,

in plasma-based particle acceleration schemes, wave-breaking amplitude serves as

one of the critical parameters that determines the maximum energy gain of the

accelerated particles.[4, 8] In such experiments, the waves which get excited in the
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wake of powerful sources are nothing but electrostatic travelling waves.[92] These

waves are very sensitive to a small deviation of the initial conditions; a slight

longitudinal perturbation causes such waves to break at arbitrary amplitudes via

the phase-mixing process.[93, 94]

4.2 Travelling wave solution for upper hybrid wave

The basic 1-D equations that govern the relativistic electrostatic plasma oscillations

in an ambient magnetic field are the electron continuity equation, the x and y

components of relativistic electron momentum equations, and the electric field

evolution equation, respectively,

(

∂

∂t
+ vx

∂

∂x

)

n = −n∂vx
∂x

, (4.1)

(

∂

∂t
+ vx

∂

∂x

)

px = −eE − eB0

c
vy, (4.2)

(

∂

∂t
+ vx

∂

∂x

)

py =
eB0

c
vx, (4.3)

and

(

∂

∂t
+ vx

∂

∂x

)

E = 4πen0vx, (4.4)

where n is the electron density, px = γmvx and py = γmvy denote components

of relativistic electron momentum along the x and y directions, respectively, and

γ = {1 − (v2x + v2y)/c
2}−1/2 represents the relativistic Lorentz factor. The electric

field is E = Eêx, where êx is the unit vector along the x axis. The ambient

magnetic field is B = B0êz, where êz is the unit vector along the z axis. The
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Figure 4.1: Variation of normalized electric field of RUHOs, with β = 0.5, γph = 10,
and α = 1.5.

rest of the symbols have their usual meanings. The massive ions are assumed to

be static and they constitute a charge neutralizing background with a constant

density n0.

In search for a travelling wave solution of Eqs. (4.1)-(4.4), it is convenient to

introduce a variable transformation ζ = kp(x − vpht), where kp = ωuh/vph with

ωuh =
√

ω2
pe + Ω2

e, ωpe =
√

4πn0e2/m and Ωe = eB0/mc; vph is the phase velocity

of the plane wave. In this coordinate system the transformed equations become

(

1− βx
v̄ph

)

dpx
dζ

= E + ββy, (4.5)

(

1− βx
v̄ph

)

dpy
dζ

= −ββx, (4.6)

(v̄ph − βx)
dn

dζ
= n

dβx
dζ

, (4.7)

and

(v̄ph − βx)
dE

dζ
= −v̄phω̄2

pβx, (4.8)
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Figure 4.2: Variation of normalized electron density associated with RUHOs, with
β = 0.5, γph = 10, and α = 1.5.

respectively, where βx = vx/c, βy = vy/c, v̄ph = vph/c, β = Ωe/ωuh, ω̄p =

ωpe/ωuh with ω̄2
p + β2 = 1. And, the normalized variables we have used are

E → eE/(mωuhc), px → px/mc, py → py/mc, and n → n/n0. Now the solu-

tions for the x and y components of the normalized momenta are obtained as

px = ±
[

(

α− E2

2ω̄2
p

)2

− 1− β2

ω̄4
p

E2

]1/2

, (4.9)

and

py =
β

ω̄2
p

E, (4.10)

respectively. Here α =
√

1 + p2+E2/(2ω̄2
p) signifies the total energy of the system,

where p2 = p2x + p2y. Now combining Eqs. (4.8) and (4.9) we obtain

dE

dζ
= −ω̄2

p

√

(E2 − a)2 − b2

(2αω̄p2 − E2)
, (4.11)

where a = 2(αω̄p
2 + β2) and b = 2

√

1− 2ω̄p2β2(1− α).

Next, we introduce two new variables θ and r through the following definitions:

E2 = (a− b) sin2 θ and r2 = (a− b)/(a+ b). After some simple algebra, we obtain
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Figure 4.3: Variation of normalized x-component of relativistic electron momen-
tum, with β = 0.5, γph = 10, and α = 1.5.

the following relation for the travelling wave solution:

−ω̄2

pζ = A(r)F (r, θ) +B(r)G(r, θ) + C(r) sin θ, (4.12)

where

A(r) =

√

2

b(1− r2)

{√

ω̄4
p(1− r2)2 + r2b2 − b

}

,

B(r) =

√

2b

1− r2
, C(r) = −

(

r

v̄ph

)

√

2b

1− r2
, (4.13)

and F (r, θ) and G(r, θ) are the incomplete elliptical integrals of the first and second

kind, respectively.

For typical parameter values β = 0.5, γph = 10 [γph = (1 − v̄2ph)
−1/2 signifying

the Lorentz factor associated with the phase velocity of RUHOs], and α = 1.5, the

variations of E, n, px, and py as a function of ζ are shown in Fig. (4.1), Fig. (4.2),

Fig. (4.3), and Fig. (4.4), respectively.
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Figure 4.4: Variation of normalized y-component of relativistic electron momen-
tum, with β = 0.5, γph = 10, and α = 1.5.

4.3 Determination of breaking field amplitude

We now proceed to find the wave-breaking amplitudes of RUHOs. It is well known

that, at the wave-breaking, both the electron density and gradient of electric field

become infinite.[18, 21] Thus the maximum allowable electric field amplitude - so

called - the ‘wave-breaking amplitude’ of RUHOs can be found out if one sets the

denominator of the electron density expression to zero. Now the expression of

electron density in terms of the x-component of electron velocity can be obtained

from Eq. (4.7) as

n =
v̄ph

v̄ph − βx
, (4.14)

from which we obtain the wave-breaking amplitudes of RUHOs, Ewb, as

eEwb
mωpec

=
1

√

1− β2

[

2{α(1− β2) + β2γ2ph} ± 2
{

β4γ4ph+

2αβ2γ2ph(1− β2) + γ2ph(1− β2)2
}1/2

]1/2

. (4.15)

Now we observe that in absence of magnetic field (β = 0) the above expression of
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Ewb becomes

eEwb
mωpec

=
√

2(α± γph), (4.16)

signifying the wave-breaking limit of relativistic electron plasma oscillations (RE-

POs) - so called - the ‘Akhiezer-Polovin (AP) limit’. The well-known ‘AP limit’[49]

(eEapp
wb /mωpec) =

√

2(γph − 1) can be recovered by taking the negative sign as well

as by setting α = 2γph − 1 in the expression of Eq. (4.16). If we would’ve taken

positive sign then α would take unphysical value(α = −1 is absurd). Taking neg-

ative sign in the expression of wave breaking field [Eq. (4.15)] and α = 2γph − 1

the variation of the wave-breaking electric field with the ambient magnetic field

is shown in Fig. (4.5). It is evident that, for a fixed value of γph, the wave-

breaking electric field gradually decreases with the increase of the strength of an

ambient magnetic field. This fact could’ve been anticipated if we would’ve looked

at the expression of α, where applying an external magnetic field in the plasma

system introduces an extra degree of freedom. At the point of wave breaking the

x-component of the fluid velocity matches with the fixed phase velocity of the
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plasma wave in case of magnetized as well as for the unmagnetized plasma system.

But due to the extra degree of freedom in the magnetized case (y-component of

fluid velocity) the wave breaking field amplitude decreases from its unmagnetized

value in order to conserve the total energy of the system. That’s the reason why

the wave-breaking amplitudes of REPOs always remain higher in comparison with

those of RUHOs.[46]

4.4 Relation between Lagrangian and travelling

wave solution

We now construct travelling wave solution from the exact non-stationary solution

of RUHOs presented in Ref. [21]. The dynamics (an explicit time dependence) of

RUHOs can be readily obtained as[46]

ω̄2

pωuhτ = {A(r)F (r, θ) +B(r)G(r, θ)}+ Φ(ξ), (4.17)

where Φ(ξ) is an integration constant, and (ξ, τ) are Lagrangian variables:[18, 21,

51, 72, 95] ξ = x −
∫ τ

0
vx(ξ, τ

′)dτ ′, τ = t. Now we subtract (ω̄2
pωuh/v̄phc)x from

both sides of Eq. (4.17) and replace τ by t to get

−ω̄2

p

{

−ωuht+
(

ωuh
v̄phc

)

x

}

= {A(r)F (r, θ) +B(r)G(r, θ)}+ Φ(ξ)−
(

ω̄2
pωuh

v̄phc

)

x.

(4.18)

Noting that ζ = −ωuht+ (ωuh/v̄phc)x and using the following coordinate transfor-

mation relation[46]

x = ξ +
cr

ωuhω̄2
p

√

2b

1− r2
sin θ, (4.19)
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we can re-write Eq. (4.18) as

−ω̄2
pζ = A(r)F (r, θ) +B(r)G(r, θ) + C(r) sin θ

+

{

Φ(ξ)−
(

ω̄2
pωuh

v̄phc

)

ξ

}

. (4.20)

Comparing Eq. (4.20) with the travelling wave solution of RUHOs [Eq. (4.12)],

we find the following condition to freeze the exact space-time dependent solution

into the travelling wave solution:

Φ(ξ) =

(

ω̄2
pωuh

v̄phc

)

ξ. (4.21)

We notice that in absence of magnetic field (β = 0 and thus ω̄p = 1) the above

initial condition (4.21) becomes

Φ(ξ) =
ωpeξ

v̄phc
, (4.22)

This is the same initial condition that has been obtained by Verma et al. in the

analytical investigation of relativistic electron plasma oscillations.[68] The knowl-

edge of such initial condition is very important to study the phase mixing process

discussed in the up-coming chapters. P.S. Verma et al. have clearly demonstrated

this using a one-dimensional simulation based on the Dawson sheet model.[93] It

has been shown that a slight deviation from this initial condition can cause AP

longitudinal waves to break through the process of phase mixing at an amplitude

well below the breaking amplitude for AP waves. We conjecture that similar kind

of numerical solution can be easily performed for the magnetized case also.

4.5 Summary

In summary, a travelling wave solution is presented for the relativistic cold plasma

waves in an ambient magnetic field. The stationary solutions for the different
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fluid-field quantities associated with relativistic upper-hybrid oscillations (RUHOs)

viz., the electron density, relativistic electron momenta, and wave electric field

are obtained. The travelling wave analysis provides an expression for the wave-

breaking amplitude of RUHOs which, for a fixed phase velocity, is found to decrease

with the increase of the strength of an ambient magnetic field. Consequently,

one may conclude that, for a fixed phase velocity, wave-breaking amplitudes of

RUHOs always remain smaller in comparison with those of relativistic electron

plasma oscillations (REPOs). Another interesting aspect is that, from the exact

space-time dependent solution of RUHOs, we have constructed the travelling wave

solution by making a special choice of initial conditions. These results are of

particular interest in order to study phase-mixing effects of RHUOs by perturbing

the system on its initial stationary structures. Furthermore, the results of our

investigation could contribute to the understanding of the plasma-based particle

energization schemes in which magnetic fields play a central role.



Chapter 5

Phase-mixing of large amplitude
electron plasma oscillations in
presence of ion inhomogeneity

Phase-mixing of large amplitude non-relativistic electron oscillations around an

inhomogeneous background of massive ions has been studied in a cold plasma. For

our purposes, a space periodic but time independent ion density profile along with a

perturbation in the electron density are considered. An exact space-time dependent

solution is presented in parametric form by using Lagrangian coordinates. An

inhomogeneity in the ion density causes the characteristic plasma frequency to

acquire spatial dependency, leading to phase-mixing and thus breaking of excited

oscillations at arbitrary amplitudes. The effects of finite amplitude electron density

perturbation on the process of phase-mixing have also been discussed.

64
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5.1 Introduction

During the last few decades, large number of theoretical and experimental inves-

tigation have been performed to explore the physics of wave breaking in various

physical situations.[3, 4, 8, 16, 18, 21, 30, 46, 48, 49, 51–53, 55, 67, 82, 85, 86, 90,

93, 96, 97] But those analysis were mostly done with the assumption of homoge-

neous stationary ion background. However, if inhomogeneity in the ion density is

considered, the characteristic frequency of the plasma wave becomes space depen-

dent. And when it happens, the phase mixing occurs due to the self-intersection

of electron trajectories, leading to breaking of the wave.

The phase-mixing/wave-breaking phenomena of nonlinear electron oscillations

around a time stationary but inhomogeneous background of massive ions have

been studied by several authors.[22, 70, 71] In 1989, Infeld et al. have investigated

the phase-mixing process in presence of sinusoidal time stationary ion density

inhomogeneity in the nonrelativistic plasma system.[22] Later, similar analysis

has been done for the nonlinear Langmuir oscillation against single-ion pulse or

cavity background.[70] In the present paper, a non-relativistic analysis of electron

plasma oscillations in presence of a time stationary but space periodic ion density

profile has been performed. Here, the main difference from most of the earlier

analyses is that, in presence of ion inhomogeneity, instead of treating a uniform

initial electron density we have considered a finite amplitude electron perturbation.

Such type of initial condition has been adopted by Kaw et al. to investigate the

mode-coupling effect of electron plasma waves.[98] Also, such initial conditions

that we are considering here may occur in experiments involving beam or laser

induced plasma oscillations in presence of pre-existing ion waves in the plasma



66

background. In recent years, studies on phase-mixing and nonlinear dynamics of

plasma oscillations/waves are being extensively reported by several authors.[94,

97, 99–105]

By transforming into Lagrangian coordinates, we have obtained an exact non-

stationary solution of the problem. Nevertheless, an exact calculation of spatio-

temporal evolution of the nonrelativistic electron plasma waves in the inhomo-

geneous plasma background does not result in the physical understanding of the

novel phase-mixing phenomenon. In order to expose the underlying physics, one

may need to do a perturbative calculation or to adopt a reasonable approximation,

which gives an explicit expression for the time scale in which the wave phase-mixes

and eventually breaks (phase-mixing time). Keeping this in mind, we have per-

formed a homotopy perturbation analysis which explicitly gives us the dependence

of phase-mixing time on the initial conditions; a result which is simply difficult to

obtain from the exact result.

5.2 Basic Equations and Linear Analysis

The space-time evolution of large amplitude electron oscillations around an in-

homogeneous background of massive ions in a cold collisionless plasma can be

described fairly by the following 1-D electron fluid-Maxwell’s equations:

∂ne
∂t

+
∂neve
∂x

= 0, (5.1)

∂ve
∂t

+ ve
∂ve
∂x

= −eE/me, (5.2)

∂E

∂x
= 4πe(ni − ne), (5.3)



67

where all the symbols have their usual meanings. In writing the above equations,

we have treated the electron fluid non-relativistically. We further assume that, in

the equilibrium plasma state, a pre-existing ion wave induces an inhomogeneity in

the background ion density. For the sake of simplicity, we consider the ion density

profile to be time independent but spatially periodic

ni(x, t) = n0(1 + δi cos kix), (5.4)

where δi and ki, respectively, denote the amplitude and wavenumber of the ion

inhomogeneity. Moreover, we take the perturbation in the electron density as

ne(x, 0) = n0(1 + δe cos kex), (5.5)

where δe and ke, respectively, signify the strength and inverse of scale length of the

perturbation. Thus, an initial charge imbalance between electron and ion creates

an electric field which can be obtained from Eq. (5.3) as

E(x, 0) = 4πen0

(

δiki
−1 sin kix− δeke

−1 sin kex
)

. (5.6)

This initial electric field drives the plasma system in a nonlinear electron plasma

mode. Before performing a nonlinear analysis, we first linearize Eqs. (5.1)-(5.3)

in order to extract the essential features of our problem. Following a standard

procedure for the linearization, we find the perturbed electric field Ẽ to obey the

equation

∂2Ẽ

∂t2
+ ω2

p (1 + δi cos kix) Ẽ = 0, (5.7)

where ωp =
√

4πn0e2/me is the electron plasma frequency. With the initial con-

dition given in Eq. (5.6) and keeping in mind that ˙̃E(x, 0) = 0, a solution of the
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above equation is given by

Ẽ(x, t) = 4πen0

(

δiki
−1 sin kix− δeke

−1 sin kex
)

cosωt, (5.8)

where ω = ωp
√
1 + δi cos kix, signifying that the characteristic frequency of the

oscillation acquires a spatial dependency due to the ion density inhomogeneity.

This in turn indicates an onset of phase-mixing in the excited oscillations, which

leads to the breaking of the oscillations at arbitrary amplitudes. Moreover, the

mode-coupling effect can also be explicitly seen if we express the solution given in

Eq. (5.8) in terms of Bessel function of first kind Jl as

Ẽ(x, t) =
4πen0δi
2ki

∞
∑

−∞

Jl

(

δiωpt

2

)

[cosϕ{sin(l + 1)kix− sin(l − 1)kix}

− sinϕ{cos(l + 1)kix− cos(l − 1)kix} − µ cosϕ{sin(ke + lki)x+ sin(ke − lki)x}

+µ sinϕ{cos(ke + lki)x− cos(ke − lki)x}] ,

(5.9)

where ϕ = ωpt + (lπ/2) and µ = (δe/δi)(ki/ke). Thus we see that an ion

inhomogeneity essentially causes the mode-coupling where initial energy given to

primary “ke” flows irreversibly towards higher coupled modes “ke ± lki” as time

goes on.[98] And, the time when the amplitude of the primary mode drops appre-

ciably from its initial value is approximately given by ωpt ∼ 2/δi, which commonly

refers to the phase-mixing time. This suggests that an increase in the strength

of ion inhomogeneity results in a decrease in the phase-mixing time. Moreover,

in the limit δi → 0, the phase-mixing time becomes infinite. Physically, in such

a situation, wave coherency can be maintained indefinitely, provided the value of

electron perturbation amplitude is kept below its critical value.[3]
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5.3 Nonlinear analysis: exact space-time depen-

dent Lagrangian solution

Next, to find an exact space-time dependent solution of the problem, we intro-

duce Lagrangian coordinates (ξ, τ) through an auxiliary variable ψ:[51, 72, 73, 94–

96, 106, 107] ξ = x − ψ(ξ, τ), ψ =
∫ τ

0
ve(ξ, τ)dτ, τ = t. Therefore, the electron

continuity equation (5.1) simplifies to give ne(ξ, τ) = ne(ξ, 0) (1 + ∂ψ/∂ξ)−1 .More-

over, expressing Eqs. (5.2) and (5.3) in terms of Lagrangian variables followed by

combining them we find a single evolution equation for ψ as

∂3ψ

∂τ 3
+ ω2

p [1 + δi cos ki(ξ + ψ)] ∂τψ = 0. (5.10)

With the prescribed initial conditions, two successive integrations of Eq. (5.10)

yield

∂2φ

∂τ̄ 2
+
[

φ+ δiκ
−1 sin κ(x̄+ φ)− δe sin x̄

]

= 0, (5.11)

and

(

∂φ

∂τ̄

)2

= −φ2 + 2δiκ
−2[cosκ(x̄+ φ)− cos κx̄]

+2δeφ sin x̄, (5.12)

respectively. In the above two equations, we have introduced the variables: φ =

keψ, x̄ = keξ, τ̄ = ωpτ . And the parameter κ = ki/ke denotes the wave number

ratio of ion inhomogeneity to electron perturbation. Thus an exact analytical

solution in simple parametric form t = t(x̄, φ), x = x(x̄, φ), and ne = ne(x̄, φ) can
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immediately be given as

ωpt =

∫ φ

0

dφ
[

2δeφ sin x̄− φ2 + 2δi
κ2
{cosκ(x̄+ φ)− cosκx̄}

]1/2
,

kex = x̄− φ, and ne(x̄, φ) = n0(1 + δe cos x̄)

(

1 +
∂φ

∂x̄

)−1

,

(5.13)

where

∂φ
∂x̄

=
[

2δeφ sin x̄− φ2 + 2δi
κ2
{cosκ(x̄+ φ)− cosκx̄}

]1/2 ×
∫ φ

0
dφ
[

−δeφ cos x̄− δi
k
{sin κx̄− sin κ(x̄+ φ)}

]

[

2δe sin x̄− φ2 + 2δi
κ2
{cosκ(x̄+ φ)− cosκx̄}

]−3/2
.

5.4 Approximate nonlinear solution: Homotopy

Perturbation Method

Admittedly, it is difficult to analyse the exact results. In particular, we note that

an estimation of the phase-mixing time is turned out to be analytically difficult

from the exact parametric solutions. To make the nonlinear results more trans-

parent, we now adopt a reasonable approximation that the scale length of the

ion inhomogeneity is much larger than the electron perturbation scale length, i.e.,

κ ≡ ki/ke ≪ 1. For our purposes, we start analyzing the Eq. (5.11). In this situ-

ation, sin κ(x̄+ φ) ≈ sin κx̄ [1− (κ2φ2)/2] + κφ cosκx̄, and so the equation (5.11)

becomes

∂2φ

∂τ̄ 2
+ f1φ− f2φ

2 + f3 ≈ 0, (5.14)

where f1 = 1+ δi cosκx̄, f2 = (δiκ/2) sin κx̄, f3 = (δi/κ) sinκx̄− δe sin x̄. We now

proceed to solve Eq. (5.14) by employing the homotopy perturbation method.[66]
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Figure 5.1: Phase-space curves from exact solution for different values of x̄. Here
δe = 0.2, δi = 0.1, and κ = 0.1.
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Figure 5.2: Phase-space curves from homotopy perturbation solution for different
values of x̄. Here δe = 0.2, δi = 0.1, and κ = 0.1.

The homotopy of Eq. (5.14) can be constructed by introducing a small param-

eter p ∈ [0, 1] as

∂2φ

∂τ̄ 2
+ α2f1φ+ p[(1− α2)f1φ− f2φ

2 + f3] = 0. (5.15)

Notice that, when p = 0, it takes the linearized form, although the value of a

parameter α introduced here is to be found out. And if p = 1, it transformed into

the original equation (5.14). Looking for the periodic solution, we expand φ in

powers of small parameter p, i.e., φ =
∑

∞

i=0
piφi. Substituting φ into Eq. (5.15),
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we collect various powers of p:

p0 :
∂2φ0

∂τ̄ 2
+ α2f1φ0 = 0,

p1 :
∂2φ1

∂τ̄ 2
+ α2f1φ1 + (1− α2)f1φ0 − f2φ

2
0 + f3 = 0,

p2 :
∂2φ2

∂τ̄ 2
+ α2f1φ2 − 2f2φ0φ1 + (1− α2)f1φ1 = 0,

· · · (5.16)

With the initial conditions φ(x̄, 0) = φ̇(x̄, 0) = 0, we obtain the following solutions

for φ0 and φ1

φ0 = 0, and φ1 =
f3
f1α2

[

cos(α
√

f1 τ̄ )− 1
]

, (5.17)

respectively.

Inserting the solutions for φ0 and φ1 in the evolution equation of φ2 we obtain

∂2φ2

∂τ̄ 2
+ α2f1φ2 + (α−2 − 1)f3

[

cos(α
√

f1 τ̄)− 1
]

= 0.

(5.18)

To remove secular term in φ2, we require vanishing co-efficient of cos(α
√
f1 τ̄)

which makes α = 1. Thus the normalized characteristic frequency of oscillation, ω̄

(normalized by ωp), turns out to be

ω̄ ≡ α
√

f1 =
√

1 + δi cos κx̄, (5.19)

which clearly shows a space dependency of the frequency, indicating phase-mixing

of the oscillations. This is certainly caused due to an inhomogeneity in the back-

ground ion concentration. Physically, the position dependent frequency causes the

different electrons situated at different locations in space to oscillate at different

frequencies which leads to (complete) destruction of the wave coherency in a finite

time.
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Now the solution can be obtained up to the first order (sufficient in the present

context) as

φ(x̄, τ̄) = lim
p→1

[φ0 + p φ1] =
f3
ω̄2

(cos ω̄τ̄ − 1) . (5.20)

For small δi, we can safely set ω̄ ≈ 1 + (δi/2) cosκx̄. Then an expression for the

electron density becomes

ne(x̄, τ̄ ) = n0(1 + δe cos x̄)/D, (5.21)

where D = 1+f4(cos ω̄τ̄ −1)+ δiκf3τ sin κx̄ sin ω̄τ̄ . Here f4 = (δi cosκx̄−δe cos x̄).

And, the expression for the electric field becomes

Ē = f3(cos ω̄τ̄ − 1) +
δi
κ
sin κ[x̄+ f3(cos ω̄τ̄ − 1)], (5.22)

where Ē ≡ (keE)/(4πen0). Clearly, in the limit of δe = 0, these expressions for

density and electric field exactly match with the solution obtained by Nappi et

al.[71] Finally, the co-ordinate transformation relation can be expressed as

kex = x̄+ f3(cos ω̄τ̄ − 1). (5.23)
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We now show that the approximate solutions given in Eqs. (5.20)-(5.23) can

be used with confidence for small values of κ. We first construct an equation for

φ that would yield phase space curves from the approximate solution for φ given

in Eq. (5.20). The approximate equation for phase space curves is obtained as

(

∂φ

∂τ̄

)2

+ 2ω̄2
(

δiκ
−1 sin κx̄− δe sin x̄

)

φ+ ω̄2φ2 = 0. (5.24)

The phase space curves corresponding to Eq. (5.12) and Eq. (5.24) have been

drawn in Figs. (5.1) and (5.2) , respectively, by using the same parameter values

δe = 0.2, δi = 0.1, and κ = 0.1. From these figures, it is evident that Eq. (5.24) is a

quite good approximation to the exact Eq. (5.12). Physically, these phase portraits

exhibit the periodic motion of individual fluid elements. As different fluid elements

are characterized by different values of x̄, in the present context, the time periods

of their oscillations depend on x̄. This is in contrast to the case of homogeneous

plasma system where the period of oscillation is independent of x̄. Due to this

space dependency, as time goes on, neighboring fluid elements start to cross their

trajectories which indicates an onset of fine scale mixing of oscillations, leading to

the breaking of excited oscillations at a finite time. We further stress here that, in
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absence of ion inhomogeneity (δi = 0), the above approximate solutions presented

in Eqs. (5.20)-(5.23) exactly match with the results of nonlinear coherent electron

oscillations in a cold homogeneous plasma as outlined in the Davidson’s book.[3]

Next, using the approximate solution, the space-time evolution of the electron

density is shown in Fig. (5.3). This clearly shows an appearance of sharp peaks in

the electron density profile at a finite time, indicating breaking of the oscillations

via phase-mixing phenomena. Moreover, by setting typical parameter values, the

electric field profiles are shown in Fig. (5.4). The steepening of the electric field is

evident from this figure.
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Figure 5.5: Variation of approximate phase-mixing time ωptmix with δi for different
values of δe, with κ = 0.1.

Now the phase-mixing time can be estimated considering the point ∂φ/∂x̄ = −1

at which singularity in the electron density is observed. The expression for the

approximate phase-mixing time is obtained as

ωptmix ≃
2

δi(δi − κδe)
. (5.25)

Fig. (5.5) shows the variation of phase-mixing time ωptmix with the amplitude of ion

inhomogeneity δi for different values of perturbation amplitude δe. Since the back-

ground ion density fluctuation makes the frequency space dependent, so increasing

its amplitude accelerates the process of phase-mixing, and thereby phase-mixing
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time decreases with the increase of plasma inhomogeneity. Only for the particu-

lar situation when δi = 0, the phase-mixing time becomes infinity and the wave

coherency is preserved indefinitely as expected.

5.5 Conclusion

In conclusion, the results of our investigation show some interesting features which

immensely replenish the earlier studies on nonlinear electron plasma oscillations.

The perturbative solution of the problem has been obtained with the consideration

of a physically realistic condition ki ≪ ke. The assumption of large scale space

variation in the background ion density is quite justified due to the fact that ions

are less mobile than the electrons. Instead of treating an initial electron density

profile to be uniform, we have given a perturbation to the electron density in the

inhomogeneous ion background. Thus, we were able to see the modifications in

the electron density and electric field profiles arising due to variations of electron

perturbation amplitudes, ion inhomogeneity strengths, etc. Here, we have also

estimated the phase-mixing time which is found to depend on the amplitudes of

both ion density fluctuation and electron density perturbation as well as on the

scale length ratio of their variations in space.



Chapter 6

Phase-mixing of relativistic
electron plasma oscillations with
background ion inhomogeneity

Combined effects of relativistic electron mass variation and background ion inho-

mogeneity on the phase-mixing process of large amplitude electron oscillations in

cold plasmas have been analyzed by using Lagrangian coordinates. For the pur-

poses, an inhomogeneity in the ion density is assumed to be time-independent but

spatially periodic, and a periodic perturbation in the electron density is considered

as well. An approximate space-time dependent solution is obtained in the weakly-

relativistic limit by employing the Bogoliubov and Krylov method of averaging. It is

shown that phase-mixing process of relativistically corrected electron oscillations is

strongly influenced by the presence of pre-existing ion density ripple in the plasma

background.
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6.1 Introduction

As discussed in the previuos chapter, the wave breaking of electron plasma wave

in inhomogeneous plasma is generally caused due to phase mixing process. This

phase mixing is associated with the space dependence of the characteristic plasma

frequency which can arise because of the existing inhomogeneity in the background

ion density. Relativity also plays a significant role in the phase mixing process.

In this context, the relativistic bursts solution of Infeld and Rowlands[18] is worth

to be mentioned. They have provided an exact analytical solution for relativistic

longitudinal electron plasma wave in terms of Lagrangian co-ordinates. It has been

shown that because of the relativistic electron mass variation the frequency of the

nonlinear plasma oscillation becomes both amplitude and space dependent. As a

result, an explosive behavior in the excited plasma wave is generally observed and

the wave breaks at arbitrarily small amplitude long before it reaches to the limit

imposed by Akhiezher and Polovin.[49] In this chapter, we incorporates the effects

of nonlinearities associated with both the relativistic mass variation of electron

and an inhomogeneity in the background ion density. These two nonlinear effects

acting together greatly modifies the physics of phase mixing.

6.2 The basic equations and nonlinear analysis

We start with the following equations describing the dynamics of large amplitude

relativistic electron plasma oscillations:

∂ne
∂t

+
∂

∂x
(neve) = 0, (6.1)

∂pe
∂t

+ ve
∂pe
∂x

= −eE
me

, (6.2)
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∂E

∂x
= 4πe(ni − ne), (6.3)

where pe = γmeve denotes the relativistic electron momentum along the x direc-

tion, with γ = (1− v2e/c
2)

−1/2
representing the relativistic Lorentz factor associ-

ated with nonlinear plasma wave. Here, the spatial variations are assumed to be

one dimensional. The wave electric field is E = E êx, where êx is the unit vector

along the x axis. And, the rest of the symbols have their usual meanings.

Instead of considering a homogeneous positive ion background, in our inves-

tigation, we assume that the plasma system initially has a time independent but

space periodic ion density profile

ni(x, t) = n0(1 + δi cos kix); (6.4)

where δi and ki, respectively, denote the amplitude and inverse of scale length of the

ion inhomogeneity. Along with this we consider an initial sinusoidal perturbation

in the electron density profile

ne(x, 0) = n0(1 + δe cos kex), (6.5)

δe and ke, respectively, signify the strength and inverse of scale length of the

perturbation. This will give rise to an initial electric field profile obtained from

Eq.(6.3) as

E(x, 0) = 4πen0

(

δiki
−1 sin kix− δeke

−1 sin kex
)

. (6.6)

We now switch from Eulerian to Lagrangian description in order to elucidate

the dynamical evolution of the system starting from the physically realizable initial

state as mentioned above. The Eulerian variables (x, t) are related to Lagrangian

variables (ξ, τ) as:[3, 51, 72, 73, 95]
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ξ = x − ψ(ξ, τ), τ = t, where ψ =
∫ τ

0
ve(ξ, τ) dτ . Thus, in the newly introduced

co-ordinate system the transformed equations take the form as

∂

∂τ
[ne (1 + ∂ξψ)] = 0 =⇒ ne = ne(ξ, 0)(1 + ∂ξψ)

−1, (6.7)

∂pe
∂τ

= −eE
me

, (6.8)

and

∂E

∂τ
= 4πenive, (6.9)

respectively.

With the specified initial electric field profile, we can reduce the above set of

equations into a single nonlinear differential equation of the following form:

ψ̈
(

1− ψ̇2

c2

)3/2
+ ω2

p

[

ψ +
δi
ki

sin ki(ξ + ψ)− δe
ke

sin keξ

]

= 0, (6.10)

where ‘dot’ over ψ denotes partial differentiation w.r.t. τ and ωp =
√

4πn0e2/me

denotes the electron plasma frequency.

Since the massive ions are treated here as motionless, we assume ki ≪ ke. In

order to gain some insight into the relativistic effects on the excited longitudinal

plasma wave in an inhomogeneous ion background, it is sufficient to retain terms

up to first order in kiψ in the following expansion: sin ki(ξ + ψ) ≈ sin kiξ +

κ(keψ) cos kiξ as (ki/ke) ≡ κ≪ 1. This further simplifies Eq. (6.10) to obtain

ψ̈ + ω2

p

[

ψ +
δi
ki

{sin kiξ + κ(keψ) cos kiξ}

− δe
ke

sin keξ

]

(

1− 3

2

ψ̇2

c2

)

≈ 0. (6.11)

Next, introducing normalized variables keψ = φ, keξ = x̄, ωpτ = τ̄ , we get

d2φ

dτ̄ 2
+ f1φ− f2φφ̇

2 − f3φ̇
2 + f4 ≈ 0, (6.12)
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where f1 = 1 + δi cosκx̄, f2 = 3β2(1 + δi cosκx̄)/2, f3 = 3β2(δiκ
−1 sin κx̄ −

δe sin x̄)/2, f4 = δiκ
−1 sin κx̄− δe sin x̄, with β = ωp/(kec). In the next section, we

present an approximate solution of the Eq. (6.12) by employing the Bogoliubov-

Krylov method of averaging.[108]

6.3 Nonlinear solution in the weakly relativistic

limit: Bogoliubov-Krylov method

Before employing the perturbation method, we further simplify Eq. (6.12) by

introducing a new variable χ = φ+ (f4/f1) to obtain

d2χ

dτ̄ 2
+ f1χ− f2χ

(

∂χ

∂τ̄

)2

= 0. (6.13)

Now treating f2 as a small parameter, a solution of the above equation by employ-

ing the method of Bogoliubov and Krylov[108] is obtained as

χ(x̄, τ̄) = χ0(x̄) sin[ω̄τ̄ + θ(x̄)], (6.14)

where

ω̄ = (1 + δi cosκx̄)
1/2

[

1− 3β2

16

[(δi/κ) sin κx̄− δe sin x̄]
2

1 + δi cosκx̄

]

.

It is clearly seen from the above expression that the characteristic frequency of the

nonlinear plasma mode acquires spatial dependency due to the relativistic variation

of electron mass and the ion density inhomogeneity. As a result, different electrons

situated at different locations in space oscillate with their local frequencies and

they gradually go out of phase with each other in course of nonlinear oscillations.

At a finite time, their trajectories cross, leading to loss of coherency of the excited

oscillations (wave-breaking) at arbitrarily low amplitudes.
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The full solution of the problem depends upon the two unknown functions

χ0(x̄) and θ(x̄) which can be determined by our prescribed initial condition, viz.,

φ(x̄, 0) = χ̇(x̄, 0) = 0. This gives us θ(x̄) = π/2, and χ0(x̄) = f4/f1. Thus we

obtain the approximate solution of φ truncated to the second order in δi as

φ(x̄, τ̄) = f4(1− δi cos κx̄)[cos(ω̄τ̄)− 1]. (6.15)

From the solution we calculate ∂φ/∂x̄ and obtain an expression for electron density

as

ne(x̄, τ̄) =
n0[1 + δe cosκx̄]

1 + A(x̄)(cos ω̄τ̄ − 1)− B(x̄)τ̄ sin ω̄τ̄
,

where,

A(x̄) = (δi cos κx̄− δe cos x̄)(1− δi cosκx̄) + δiκf4 sin κx̄

and

B(x̄) = −δiκf4 sin κx̄
2

(1− δi cosκx̄) +
δ2i κf4
8

sin(2κx̄)

−3

8
β2f 2

4 (δi cos κx̄− δe cos x̄).

In Fig. (6.1) we have shown time evolution of electron density for different values of

relativistic parameter β, with δe = 0.3, δi = 0.2, κ = 0.1 and x̄ = π. An appearance

of sharp peaks is observed, indicating breaking of the oscillations through the

process of phase-mixing.

Next, from the solution of φ, we construct an equation that would yield the

phase-space trajectories of different fluid elements as

φ̇2 + ω̄2φ2 + 2ω̄2f4(1− δi cosκx̄)φ ≈ 0. (6.16)
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Figure 6.1: Electron density profiles. Here δe = 0.3, δi = 0.2, κ = 0.1 and x̄ = π.
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Figure 6.2: Phase-space curves for different values of κx̄. Here β = 0.4, δe = 0.3,
δi = 0.1 and κ = 0.1.

Moreover, we simplify ω̄ and it is expressed as

ω̄ ≈ 1 +
δi
2
cos(κx̄)− δ2i

8
cos2(κx̄)− 3

8
β2f 2

4 . (6.17)

It is evident from the phase portrait Fig. (6.2) that individual electrons execute

periodic motion, but the time period of oscillation depends on x̄. This results in

the crossing of their trajectories at a finite time.

The occurrence of secular term in the denominator of the electron density

expression due to the space dependency of the frequency causes the density to

blow up in a time scale roughly determined by the following expression of the
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phase mixing time

ωptmix ≃

(δi − κδe)
−1

[

3δ2i
8

− δi
2
− 3β2

16κ2
(δ2i − 2δiδe + κδ2e)

]−1

.

(6.18)

The variation of phase mixing time with δi is shown in Fig. (6.3) for different

values of β, with fixed δe = 0.3 and κ = 0.1. From this figure it is evident that

relativistically corrected electron oscillations phase mix away quickly in presence

of background ion density inhomogeneity.
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Figure 6.3: Phase-mixing time vs. δi for different values of β. Here δe = 0.3 and
κ = 0.1.

We now analyze our results in different limiting cases.

(i) Weakly-relativistic electron plasma oscillations in homogeneous plasmas with

finite amplitude electron perturbations (β 6= 0, δi = 0, δe 6= 0):

In this case, the expressions for nonlinear frequency shifting and the phase-mixing

time turn out to be

ω ≃
(

1− 3

16
β2δ2e sin

2 x̄

)

ωp,

and

ωptmix ≃ [(3/16)β2δ3e ]
−1,
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respectively. These are the same expressions as obtained by Infeld et. al.[18]

and Sengupta et. al.[19] Furthermore, in the non-relativistic limit, i.e., β → 0,

we obtain ωptmix → ∞, which physically represents that the phase coherence of

neighboring electrons can be maintained indefinitely.[3, 51]

(ii) Non-relativistic electron plasma oscillations in presence of inhomogeneous ion

background with finite amplitude electron perturbations (β = 0, δi 6= 0, δe 6= 0):

In such a situation, keeping terms up to the second order in δ2i in Eq. (6.18), we

get ωptmix ≃ 2/[δi(δi − κδe)].[109] In addition, when we set δe = 0, we recover the

expression of the phase-mixing time as obtained by Nappi et. al.[71] ωptmix ≃ 2/δ2i .

6.4 Conclusion

In conclusion, within a fluid description, an analysis of relativistic electron plasma

wave breaking has been carried out in presence of ion density inhomogeneity.

Admittedly, the development of the fully relativistic theory of nonlinear electron

plasma wave in presence of ion density inhomogeneity encounters with significant

mathematical difficulties. For the sake of simplicity, we have treated background

ion density profile to be spatially periodic but time-independent. In addition,

we have considered a finite amplitude electron perturbation. In order to follow

an explicit time evolution of the excited electron plasma modes, the Lagrangian

coordinates are introduced, and analytic solutions are presented in the weakly-

relativistic limit by employing the Bogoliubov and Krylov method of averaging.

An expression for the characteristic frequency of the excited oscillations is derived

in the weakly-relativistic limit. A rough estimate of the phase-mixing time is also
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provided. It is demonstrated that the nonlinear effects associated with relativis-

tic electron mass variation and ion inhomogeneity acting together substantially

modifies the process of phase mixing.



Chapter 7

Conclusion

In this chapter, we have summarized the results obtained in this thesis. Some future

prospects of our investigation have also been stated in addition.
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7.1 Summary

To summarize, throughout this thesis we have developed a detailed theoretical

investigation to describe the charged particle beam driven wake field excitation

process and wave breaking of electron plasma wave in magnetized as well as in

unmagnetized plasma systems.

• In chapter II, we have discussed the effect of magnetic field on relativistic elec-

tron beam as well as proton beam driven plasma wake wave dynamics. Our

theoretical solution reveals several interesting features which have significant

usefulness in the determination of the energy gain in the charged particle

beam driven acceleration process. The effect of magnetic field on the wake

field structures with the consideration of its importance in minimization of

phase slippage of accelerated electrons has been discussed. In addition, the

wake field excitation mechanism by trains of proton micro-bunches has been

demonstrated in our investigation.

• In chapter III, stationary wave solution is obtained to provide an analyti-

cal estimation of the wave-breaking amplitude of electrostatic waves in three

component electron-positron-ion plasma. Consideration of relativistic dy-

namics of all the three species of the plasma system has been made. The

effect of ion motion on the limiting electric field amplitude and also on the

wavelength of the plasma wave have been discussed elaborately.

• In chapter IV, a travelling wave solution has been obtained in order to esti-

mate the breaking field amplitude of relativistic upper hybrid wave (UHW).

The wave breaking amplitude for such mode is observed to decrease with



89

the increase in the strength of the external magnetic field. Also, we have

constructed travelling wave solution from the exact space time dependent

solution for UHW by choosing a particular initial condition.

• In Chapter V, the phase mixing process arising due to ion density inhomo-

geneity in the nonrelativistic cold plasma system has been studied. An exact

solution along with an approximate perturbative solution have been pre-

sented. In contrast to the earlier studies, instead of treating a uniform initial

electron density we have considered a finite amplitude electron perturbation

in presence of ion density inhomogeneity. Thereby, it has been possible to

see the modifications in the electron density and electric field profiles aris-

ing due to variations of electron perturbation amplitudes, ion inhomogeneity

strengths, etc. These results can be of certain relevance in the basic studies

of wave breaking phenomena and also in laboratory context.

• In chapter VI, within a fluid description, an investigation of relativistic elec-

tron plasma wave breaking has been carried out in presence of ion density

inhomogeneity. An expression for the phase mixing time has been derived in

the weakly-relativistic limit. It is observed that the nonlinear effects associ-

ated with relativistic electron mass variation and ion inhomogeneity acting

together substantially modifies the process of phase mixing.

7.2 Future scope of the work

We would like to provide here a brief sketch of the future prospects of our investi-

gation on wave breaking and plasma wake wave excitation process.

• In this thesis, the studies on wave breaking so far have been done in the cold
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plasma system. However, we can extend our analysis of wave breaking by

considering thermal effects also.

• In the recent past several works have been performed to obtain the stationary

wave solution for electron beam driven plasma wake field accelerator. How-

ever, there is no evidence of any theoretical works performed to investigate

the exact space time evolution of electron beam driven non-linear plasma

oscillations. In the near future we propose to give an exact spatio-temporal

solution for the electron beam driven plasma by introducing Lagrangian vari-

ables.

In the preliminary analysis, we observe that the exact parametric solution

of the problem can be expressed in terms of incomplete Elliptic integrals.

We will extend our analysis further to obtain the full nonlinear Lagrangian

solutions of the electron beam driven wake wave generation.

• We are also planning to provide the exact space time dependent Lagrangian

solution for the proton driven plasma wake field accelerator (PDPWFA). This

investigation will certainly contribute to the theoretical knowledge of the

ongoing experimental AWAKE [Advanced Proton Driven Plasma Wakefield

Acceleration Experiment] project at CERN dealing with the description of

the plasma properties of wake field accelerator.

• Lagrangian variables are very beneficial in order to obtain simple analyti-

cal solutions that lead to basic understanding of the wake wave dynamics

and help with designing large scale simulations of the problem. However, in

reality, a proper theoretical model of three dimensional systems encounters
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significant mathematical difficulties. Geometry also adds additional complex-

ities. In order to investigate three dimensional problems we propose to apply

plasma simulations based on the PIC (Particle in Cell) method.[110, 111]

Such simulations may also provide additional support for the analytical re-

sults in simpler geometry. In this approach, the charge density is deposited

in the mesh of a spatial grid. Then the self-consistent electric fields are

calculated on the grid points. This simulation will provide us the scope of

observing the time variation of the accelerating beam and the witness beam

as well as the modifications of the wave profiles.

• In solar coronal and chromospheric plasmas injection of driving electrons

produces wake fields. This is considered to be an important mechanism by

which solar flare electrons are accelerated to extreme high energies.[112, 113]

Thus our investigations can also be extended to such astrophysical situations.

Finally, we believe that our studies on plasma wave breaking and wake field

excitation process, have certain relevance in advancing the research field of nonlin-

ear relativistic wave dynamics and also hold promises to generate significant social

and scientific impact in the quest for viable schemes for the production of high

energy charged particle accelerators in the near future.
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