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SYNOPSIS

AdS/CFT correspondence has been a very successful idea in string theory. It is a corre-

spondence relating gravity and quantum field theory. In other words, it relates classical

gravity to quantum physics of strongly correlated manybody systems in one lower dimen-

sion. It is also known as gauge/gravity duality. It was originally formulated [1–4] as a cor-

respondence between a 4 dimensional conformal field theory(CFT) living on the conformal

boundary of a 5 dimensional Anti De Sitter(AdS) spacetime with supergravity theory in the

bulk.

One of the fundamental distinction between classical physics and quantum physics is

the presence of entanglement. This prototypical aspects of quantum physics have led to

a deep theoretical interest in this field. The subject of quantum information [5] and con-

densed matter physics has led to rapid development of this concept over the past decades.

In the past decade, the AdS/CFT correspondence has intertwined quantum entanglement

with gravitational dynamics with the natural line of thought being the emergence of ge-

ometry from QFT dynamics. The inception of this idea is sourced from the observation by

Ryu-Takayanagi [6,7], who proposed that the Holographic entanglement entropy(HEE) as-

sociated with a spatial region in a holographic CFT is given by the area of a particular static,

v



homologous, codimension-2 minimal surface in the dual bulk geometry. Later on, this

was generalized to time-dependent states by Hubeny-Rangamani-Takayanagi(HRT) [8].

It is important to note that HEE satisfies the area law, strong subadditivity, and several

other features. There are several checks and proof of this conjecture and its close relation

with the Bekenstein Hawking entropy which is proportional to the area of black hole hori-

zon [9–13]. This proposal has been monumental in calculating entanglement entropy for

various subsystems in different asymptotically AdS spacetimes and particulary the depen-

dence of the shape of the minimal surface on the entropy [14–18]. Direct calculation of

entanglement entropy in QFT is not straightforward, exact results can only be obtained for

2d field theories using the replica method [19, 20]

Relative entropy is another interesting object in the CFT side. Given two states ρ and

σ the relative entropy S(ρ || σ) [21,22], provides a measures of distinguishability between

them. It satisfies two conditions viz monotonicity and positivity. The first property implies

that it decreases under inclusion i.e, tracing out the same degree of freedom from two state

ρ and σ to obtain the reduced density matrices ρA and σA decreases the relative entropy

S(ρA || σA) ≤ S(ρ || σ) [5]. The second property implies that it is positive for any

two density matrices and is zero only when they are equal. Using this one can express

the relative entropy as the difference between the change in modular hamiltonian (∆〈Hσ〉)

and the change in entanglement entropy (∆〈S〉) w.r.t a reference state. Thus the positivity

of relative entropy implies (∆〈S〉 ≤ ∆〈Hσ〉). As mentioned earlier relative entropy acts

as a distance measure for neighboring states. For a one parameter family of states ρ =

ρ0 + ερ1 + ε2ρ2 · · · where ρ0 = σ one can evaluate the relative entropy (S(ρ || σ)) as a

power series in ε. Since the relative entropy takes its extremum at (ρ = σ), its first variation

vanishes i.e, (δS = δ〈Hρ0〉). This statement is similar to the first law of thermodynamics

(dE = TdS) hence it is called the first law of entanglement.
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We know that pure AdSd+1 spacetime is dual to the ground state of a holographic

CFTd and asymptotically locally AdS geometries are dual to the excited states. Following

[23] one can verify the first law statement from the bulk side by using the RT proposal.

The change in entropy is calculated order by order by obtaining the area of a boundary

anchored minimal surface in asymptotically AdS spacetime and then expanding it in a

small subsystems size approximation, the AdS contribution is then subtracted from it. It

is important to note that under this approximation the minimal surface is free from the IR

details and only depends on the energy density of the excitations. The change in energy

is calculated using the holographic stress tensor [24, 25]. There have been several check

of this entanglement first for different backgrounds [26–30]. In the paper [31], we used

the RT proposal and verified the first law of entanglement for boosted black brane like

perturbations over pure AdS and explored proper modification of the first law to include

contributions from finite chemical potential and charge. For the same background, we

have also compared the effect of anisotropy due to boost on the change in entanglement

entropy [32]. The asymmetry in the change in entanglement entropy was quantified by

introducing a dimensionless ratio and a bound was proposed on it.

Using the RT proposal one can calculate the entropy for excitations over AdS and then

compute the change by subtracting the AdS contribution from it. Following [33, 34] one

can calculate the change in entanglement entropy directly from area variation. At first

order, changes in the embedding functions of the minimal surface don’t contribute, the

only contribution comes from metric perturbations. However, the embedding change will

contribute to the next order. In [35] we developed a method to incorporate these changes at

second order in 2 + 1 case. The deviation of the embeddings were obtained by solving an

inhomogeneous Jacobi equation. We also extended this setup to higher dimensions in [36].
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CHAPTER 1

INTRODUCTION

String theory is one of the foremost contender for a consistent theory of quantum grav-

ity.The interaction between both gauge and gravitational forces are incorporated in this

theory. With the discovery of D-branes [37] in 1995 eventually led to the AdS/CFT corre-

spondence [1–3]. The AdS/CFT correspondence has been a very successful idea in string

theory. It relates conformal field theories living on the d-dimensional conformal boundary

of d + 1-dimensional anti De Sitter (AdS) spacetime with the supergravity theory in the

bulk. More precisely certain correlation functions in the boundary CFT can be obtained

by calculating certain geometrical quantities in the bulk. Entanglement entropy has been

very useful in studying the correlation between nonlocal observables in quantum many

body systems. The idea of entanglement entropy has also been a focus of recent studies

in string theory [6, 7]. The holography has led to some understanding of entanglement

entropy in strongly coupled quantum mechanical systems, particularly for quantum theo-

ries which exhibit scaling property near the critical points [38]. A significant observation

has been that the smaller excitations of the subsystems in the boundary theories follow
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entanglement thermodynamic laws similar to the black hole thermodynamics at finite tem-

perature [23,26,30]. In this chapter we will briefly go through each of these developments.

1.1 AdS/CFT

We know that generating functional are very essential in order to study any quantum field

theory. The AdS/CFT correspondence [1–4] is a statement about the generating functional

of a quantum field theory and its dual theory of quantum gravity. One can write this as

[39–43]

ZGravity = ZQFT, (1.1)

One of the most authoritative and well studied examples of this duality is the Type IIB string

theory on AdS5×S5 with N units of five form flux passing through the S5 and maximally

super conformal N = 4 super Yang- Mills (SYM) in 4 dimensions with gauge group

U(N). The central idea behind this is the dual role played by the D-branes. In the context

of perturbative open string theory, a D-brane can be pictured as a hyperplane on which open

strings end. Now from the massless excitations of the open strings ending on the brane one

can describe a gauge theory on the world volume. Another way of seeing the D-brane is

to see them as nonperturbative states of the closed string spectrum. At low energy, they

are described by the solitonic solution of the corresponding supergravity as their tension

scales as the inverse of the string coupling constant gs. Taking the limit α′ → 0 (where
√
α′ is the characteristic string length) in Type IIB string theory (in R1,9) in presence of

stack of N parallel D3 branes, while keeping the string coupling gs and N fixed but large.

From the open string description of D3 branes one gets two decoupled systems viz a) The

2



N = 4, U(N) super Yang-Mills in R1,3 and b) Weakly Coupled Type IIB supergravity in

R1,9. Similarly in the same limit one also gets two decoupled systems from the closed

string description viz a) Full Type IIB superstring theory on AdS5 × S5 and b) Weakly

Coupled Type IIB supergravity in R1,9. Since Type IIB supergravity is common to both

it is consistent to identify N = 4, U(N) super Yang-Mills in 3 + 1 dimensions with Type

IIB superstring theory on AdS5 × S5. This limit is commonly called the decoupling limit.

It is important to note that the isometry groups on the both sides of the duality matches

with each other. The SO(2, 4) conformal symmetry of the CFT is realized as isometry

group of AdS5 whereas the global SU(4) ∼ SO(6) R-symmetry is realized as the group

of isometries of S5. In the gauge theory side we have two dimensionless parameters the

Yang-Mills coupling gYM and the rank of the gauge group U(N). On the gravity side we

have the dimensionless string coupling and two dimension full parameters viz the string

scale α′ and the length scale L(L4 = 4πgsNα
′2) The AdS/CFT dictionary is governed by

two important relations

g2
YM = 4πgs, T =

√
λ

2π
For large N , gs � 1 (1.2)

where T = L2

2πα′
and λ = g2

YMN is the ’t Hooft coupling. Thus using this duality one

can study strongly coupled QFT (at large ’t Hooft coupling) using dual classical gravity

description. It is interesting to note that similar examples can be obtained in the context

of M-theory [44, 45]. In the next section we will study the anti De Sitter spacetime and its

symmetries.
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1.2 Anti De Sitter Spacetime

In this section we will start with describing the AdS spacetime [43, 46–49] and its confor-

mal structure. Let us consider a flat spacetime (M2,d) having signature (2, d) i.e, two time

directions and d spatial directions. The line element for this space can be written in natural

coordinates T0, T1, X1, ···, Xd as

ds2 = −(dT0)2 − (dT1)2 + (dX1)2 + · · ·+ (dXd)
2 (1.3)

Now we consider the (d+ 1) dimensional hyperboloidH of events in M2,d satisfying

(T0)2 + (T1)2 −
d∑
i=1

(Xi)
2 = R2 (1.4)

Where R is the proper distance of the hyperboloid from the origin. The isometries of H is

given by those isometries of M2,d which preserves (1.4). There are (d+1)(d+2)
2

independent

isometries, these isometries forms the group SO(d, 2) henceH is maximally symmetric.

Now we choose to parametrize the hyperboloid by introducing T0 =
√
r2 +R2 cos τ

R
, T1 =

√
r2 +R2 sin τ

R
where r2 =

∑d
i=1(Xi)

2. With this parametrization we can write the in-

duced line element onH as

ds2 = −
(
r2

R2
+ 1

)
dτ 2 +

dr2(
r2

R2 + 1
) + r2dΩ2

d−1 (1.5)

Where Ωd−1 is the volume of the (d − 1)- dimensional unit sphere. As the coordinate

τ is periodic with a period of 2π. In order to avoid closed timelike curves on H one

can unwrap this direction by passing to the universal covering space of H. In literature

both the universal covering space and the hyperboloid are referred to as Anti De Sitter

4



spacetime. It is important to note that any Killing field ofH lifts to the covering space and

hence, it remains maximally symmetric w.r.t a isometry group given by a covering group

of SO(d, 2).

The coordinate used in (1.5) covers the whole of AdS space. They are called global

coordinates. We will use another set of coordinates given by z = R2

(T0+Xd)
, t = RT1

(T0+Xd)
and

xi = RXi
(T0+Xd)

for i = 1, ···, d− 1. The metric then becomes

ds2 = ḡµνdx
µdxν =

R2

z2

(
−dt2 +

d−1∑
i=1

(dxi)
2 + dz2

)
(1.6)

These coordinates are called Poincaré coordinates as they manifest a lower dimensional

Poincaré symmetry (with d coordinated t, xi). These coordinates only cover a region of

AdS given by T0 + Xd > 0. This region is called the Poincaré patch. We will only use

the coordinates given by (1.6) in this thesis. As AdS is maximally symmetric its Riemann

tensor can be written as

Rµνσλ =
−1

R2
(gµσgνλ − gµλgνσ) (1.7)

Its scalar curvature is equal to−d(d+1)
R2 . TheAdS space is a solution of the vacuum Einstein

equation with negative cosmological constant Λ = −d(d−1)
2R2

5



1.2.1 Conformal Structure of AdS Spacetime

Introducing the new radial coordinate [46] r∗ = arctan( r
R

) so that the line element (1.5)

becomes

ds2 = gµνdx
µdxν =

R2

cos2(r∗)

[
−dτ

2

R2
+ dr∗

2 + sin2(r∗) dΩ2
d−1

]
(1.8)

It is evident from the line element that r∗ = π
2

is the conformal boundary. One can rescale

metric (1.8) to define a new metric

˜gµν =
cos2 r∗
R2

gµν (1.9)

This defines a metric on a smooth manifold (M) with boundary (∂M). The induced metric

at r∗ = π
2

gives the Einstein static universe. Again from (1.6) we see that z = 0 is the

conformal boundary. The rescaled metric

g̃µν =
z2

R2
ḡµν (1.10)

The induced metric at the conformal boundary (z = 0) is just the d dimensional Minkowski

space. Now we know that the Minkowski space M1,d−1 is conformally equivalent to a patch

of Einstein static universe R × Sd−1. Hence z = 0 of the Poincaré patch is a diamond

shape piece of the conformal boundary. It is important to note that instead of considering

the rescaled metric (1.9), we could also have considered the metric given below.

g̃µν =
cos2 r∗
R2

e2σgµν (1.11)

6



Where σ is a smooth arbitrary function on M . One can check that this metric is also

nonsingular at r∗ = π
2
, but the induced metric is now only conformal to R × Sd−1. The

choice of a particular rescaling factor determines a representative of the corresponding

conformal class of boundary metrics. This choice of rescaling factor is known as the choice

of conformal frame and the particular representative is called the boundary metric. Below

we state the general notion of Penrose’s conformal compactification. As discussed above

we consider a manifold(M ), with boundary ∂M . Now we consider metrics (g) on M

which are singular on ∂M , such that there exists a smooth function Ω satisfying Ω |∂M =

0, (dΩ) |∂M 6= 0 and Ω > 0 on all of M , such that

g̃µν = Ω2gµν (1.12)

can be extended to all of M as a sufficiently smooth non degenerate metric for which the

induced metric on ∂M has a Lorentz signature. Where g̃µν is not unique. One can always

choose a new Ω′ such that

Ω′ = eσΩ (1.13)

for arbitrary smooth σ on M . Thus the choice of a conformal frame corresponds to a

particular boundary metric. The group of transformation which preserves (1.12) are called

conformal isometries. They form a group among themselves. The Poincaré group forms

a subgroup of the conformal group. The conformal transformation [50] consists of four

7



kinds of transformation viz,

Translation: xµ → xµ + aµ.

Lorentz Transformations: xµ → Λµ
νx

ν

Dilatation: xµ → αxµ

Special Conformal Transformation(SCT): xµ → xµ − bµx2

1− 2b.x+ b2x2
(1.14)

SCT is nothing but a translation, preceded and followed by an inversion. The generators

corresponding to the infinitesimal transformations are listed below.

Translation: P µ = −i∂µ

Rotations: Jµν = i(xµ∂ν − xν∂µ) + Sµν

Dilatation: D = −i(d+ (x.∂))

SCT: Kµ = −i
(
(2xµxν − 2gµνx2)∂ν + 2dxµ

)
+ 2xνS

µν (1.15)

Where Sµν is an antisymmetric spin matrix for a given field. It satisfies the Lorentz algebra.

If the underlying field is a Fermion then d = 3
2

and d = 1 for Bosons. One can check that

these generators satisfies the following commutation relation

[D,D] = 0, [P a, P b] = 0, [D,P a] = iP a, [Jab, P c] = −i(gacP b − gbcP a)

[Jab, J cd] = −i(gadJ bc + gbcJad − gacJ bd − gbdJac), [Jab, D] = 0,

[D,Ka] = −iKa, [iKa, Kb] = 0, [Ka, P b] = 2i(gabD − Jab) (1.16)
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Now we will move on to study the isometry group of AdS4. For this we consider the

Euclidean AdS4 metric

ds2 = R2dt
2 + dx2 + dy2 + dz2

z2
(1.17)

For this we write down the all the ten generators

J1 = ∂t, J2 = ∂x, J3 = ∂y, J4 = x∂t − t∂x, J5 = y∂x − x∂y, J6 = t∂y − y∂t,

J7 = r∂r − t∂t − x∂x − y∂y, J8 = rt∂r −
1

2
t2∂t − tx∂x − ty∂y,

J9 = rx∂r − tx∂t −
1

2
x2∂x − xy∂y, J10 = ry∂r − ty∂t − xy∂x −

1

2
y2∂y (1.18)

After making the suitable identification t→ it, one can check that the generator satisfy the

usual SO(3, 2) algebra [Jab, Jcd] = i(gadJbc+gbcJad−gacJbd−gbdJac) where a, b, c, d runs

from 0 to 4. One can easily check for 2 + 1 dimensional flat case the generators area

Ja = iPa, J4 = −iJ12, J5 = −iJ13, J6 = −iJ23, J7 = −iD, J8 = iK1,

J9 = iK2, J10 = iK3 (1.19)

Where a, b runs from 1 to 3 and the generators are listed in (1.15). It is easy to check that

these generator satisfy the same SO(3, 2) algebra. So we see that in general the isometry

group ofAdSd+1 is isomorphic to the conformal group of the flat Minkowski space M1,d−1.

This statement can be considered as a motivation for the AdS/CFT duality.
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1.3 Holographic entanglement entropy

Although AdS/CFT has been successful in relating QFT with bulk dual gravity solution.

However it is still not well understood how gravity emerges from field theory. Entangle-

ment entropy has served as an important tool to study this aspect of the correspondence.

Similar ideas can be found in the Bekenstein-Hawking(BH) formula

SBH =
Area(Σ)

4GN

(1.20)

Where SBH is the black hole entropy, Σ is the event horizon, and GN is the Newton

Constant. Similarity between black hole entropy and entanglement entropy SA, has been

pointed out before [51,52]. Where A is the space-like submanifold on a constant time slice

Σ. This area law behaviour is observed in field theories. For example in d dimensional free

field theories, one can show that the leading divergent term of SA in the UV limit ε → 0

obey the area law.

SA = c
Area(∂A)

εd−2
(1.21)

where c is the coefficient that is independent of A and ∂A is the boundary of A in the

constant time slice Σ. In QFT’s the entanglement entropy is always divergent, hence one

includes the UV cutoff ε. Thus unlike the thermal entropy, the entanglement entropy is not

an extensive quantity.

In the context of AdS/CFT Ryu and Takayanagi [6, 7] generalised these ideas for cal-

culating the entanglement entropy for subsystems in a strongly coupled quantum system

living on the boundary of asymptotically AdS spacetimes. In this proposal the holographic
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entanglement entropy (HEE) SA of a subsystem A in the boundary CFT is given by the

area of a codimension 2 minimal surface γA in bulk viz.

SA =
Area(γA)

4GN

. (1.22)

Where GN is the Newton’s constant. This prescription has been verified by several non

trivial checks [9, 53–55] and a direct derivation in [10]. One can find excellent discussion

on this topic in [56]. Applications of this proposal to higher derivative theories can be

found in [57–61]

Now we will try to describe the construction of the Ryu Takayanagi surface in details.

We will follow here the discussion given in [8]. We begin with a d+ 1 dimensional asymp-

totically AdS spacetimeM with conformal boundary ∂M . We Know that static spacetimes

admits a timelike Killing field ( ∂
∂t

)µ. Hence the timelike Killing field is orthogonal to con-

stant t hypersurfaces. Thus one can naturally foliate the boundary ∂M by these surfaces,

such that we can write ∂M =
∏

t ∂St × Rt. Now we choose a subregion A on a partic-

ular leaf ∂S of this foliation, such that ∂S = A ∪ Ac. Let ∂A be the boundary of this

region assuming ∂S to be compact. It is important to note that A is d − 1 dimensional

and ∂A is d − 2 dimensional. Now by virtue of time translation invariance in these static

backgrounds, the boundary spacelike foliation naturally extends into the bulk to provide a

canonical spacelike foliation
∏

t St of M . Now on a given spacelike slice M one can find

a d− 1 dimensional minimal area surface which ends on ∂A ⊂ ∂S . As the bulk spacelike

slice is of Euclidean signature the minimal surface Y is bound to exist. Thus given the

minimal surface Y , the entanglement entropy associated with the region A is given by the

area of the minimal surface Y in bulk Planck unit.

Now the natural question arises that what happens when the spacetime is no longer
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static?. In order to answer this question we need to understand the concept of a light sheet

and covariant entropy bound first. Let us consider a codimension two spacelike surface B

in a manifold M . Now one can construct four congruences of past and future directed null

geodesics from the surface in ingoing and outgoing directions. The null geodesic congru-

ence for which the expansion of the null geodesic is non positive definite is called a Light

Sheet LB. Due to this requirement the null geodesics along the light sheet are converging

and will develop caustics, at this point the light sheet gets cut off. The covariant entropy

bound or the Bousso bound [62–66] states that the entropy or amount of information SLB

that can pass through a light sheet is bounded by the area of the spacelike surface B.

SLB ≤
Area(B)

4GN

(1.23)

Following [8] one gets the important result that in case of the AdS/CFT correspondence ,

the entanglement entropy saturates the Bousso bound. With this in mind one can describe

the setup of covariant entanglement entropy proposal in the following way. As before

we consider a d + 1 dimensional asymptotically AdS spacetime M with d dimensional

conformal boundary ∂M . At any given time one can choose a subregion At in the d −

1 dimensional spacelike subspace of the boundary ∂M . Now the boundary ∂At of this

subregion is a d − 2 dimensional surface in M and a codimension two spacelike surface

in ∂M . Hence one can construct upper and lower light sheets ∂L+
At

and ∂L−At for the

surface ∂At. Now one can consider the extensions L±At of the two light sheets ∂L±At into

the bulk such that they are also the light sheets of the same codimension two (d−1) surface

Yt = L+
At
∩ L−At in M . Now one can vary the form of the light sheets L±At keeping ∂L±At

fixed. This give rise to a class of surfaces {Yt}. Now the covariant entanglement entropy is
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given by the area of the surface Y min having the least area in the class {Yt}.

SAt(t) =
Area(Y min)

4GN

. (1.24)

However we need to check whether this definition is consistent with the surface obtained

by a saddle point of the area action. In order to check this we consider a codimension two

surface S in a spacetime manifold M given by the following embedding functions

f1(xν) = 0, f2(xν) = 0 (1.25)

Now non degeneracy requirement ensures the existence of two linearly independent normal

null vectors viz

V µ
± = gµν(∇νf1 + µ±∇νf2) (1.26)

One can fix the normalization as

V µ
+V

ν
−gµν = −1 (1.27)

Now one can write the null extrinsic curvature of the surface S as

(K±)µν = hρµh
λ
ν∇ρ(V±)λ (1.28)

Now the expansion of an orthogonal null geodesic congruence to the surface is given by
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the trace of the null extrinsic curvature

θ± = (K±)µµ (1.29)

By definition this quantity is the mean curvature of the surface and we will see in the next

section (1.3.1) that the extremal surfaces are surfaces having zero mean curvature. Thus

the surfaces S with vanishing null expansions θ± are extremal surfaces. Thus out of the

class of surfaces {Yt}, the minimal area surface Y min is the surface having vanishing null

expansions θ±.

Finally we need to ask when this proposal goes back to Ryu Takayanagi Proposal or

in other words can we construct the covariant extremal surface in the same way as we did

for the Ryu Takayanagi Case?. Now from the field theory perspective one can consider

the boundary theory to be in a time varying state on a fixed background ∂M . But the bulk

geometry will have an explicit time-dependence and hence no timelike Killing field. As the

boundary metric is non dynamical one can chose the same equal time foliation as before

by choosing a time coordinate consistent with Hamiltonian evolution of the field theory.

Thus ∂M =
∏

t ∂St × Rt still holds and one can choose a region At ∈ ∂St on a given

time slice and compute the entanglement entropy using path integral approach. However

the equal time foliation of the boundary ∂M doesn’t lead to a canonical foliation of the

bulk M . Still If one can find a natural foliation and pick up a spacelike slice St of M

given by extending the slice from ∂M and then one can find an extremal surface with the

same boundary subregion. From this observation one can conclude that the maximal area

slicing could be the candidates for St as they go to the t = constant slicing for static bulk.

However from [8] one can see that in order to match this construction with the covariant

one the maximal slicing should also be totally geodesic. But a spacetime admitting a
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totally geodesic foliation must be static. Thus this method of constructing the covariant

extremal surface agrees with the light sheet construction only in the trivial case of static

bulk geometry.

1.3.1 Minimal Surface in AdS spacetime

The very first idea of minimal surface [67–71] comes from area minimization. We would

like to obtain a condition for a surface to have minimal area. The construction is as follows,

Let (M, g) be a Riemann manifold and S be a submanifold with boundary ofM . Let hab be

the induced metric on S. Let∇, D be the Levi Civita connections w.r.t g and h respectively.

Next we consider a variation of S in M , with fixed boundary

f : S × I →M, f0 = idM , f|∂M = id∂M (1.30)

We assume that ft : S → M are embeddings and let St = ft(S). Then the variational

vector field is given by N = ∂tf ∈ TS|St and N|∂S ≡ 0. The area of S is given by

δA =

∫
δ
√
h dnx. (1.31)

Now let us consider the first variation of area of S under this flow

1√
h

d

dt

√
h|t=0 =

1

2
hab

d

dt
hab|t=0 = hab (g(∇NTa, Tb)) (1.32)
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Where Ta = ∂
∂τa

and recall that given vector fields X, Y on S we have

∇XY = (∇XY )TS + (∇XY )NS = DXY +K(X, Y ) (1.33)

Where K(X, Y ) is the Extrinsic curvature with values in normal bundle NS of S in M .

d

dt

√
h|t=0 =

√
hhabg(∇TaN

T , Tb) +
√
hhabg(∇TaN

⊥, Tb) (1.34)

=
√
hhabh(DTaN

T , Tb)−
√
hhabg(N⊥,∇TaTb)

=
√
hhabh(DTaN

T , Tb)−
√
hhabg(N, (∇TaTb)

⊥)

= DivSN
T −
√
hg(N,H).

Thus the first variation of area of S is

d

dt
A|t=0 =

∫
∂S

〈η,N〉 −
∫
S

g(N,H)
√
hdnx (1.35)

Where η is the outward pointing conormal along ∂S in S and H = habKab is the trace of

extrinsic curvature and is called the Mean curvature . Now according to our assumption

N|∂S ≡ 0 so the first term drops out and if we set H = 0 then we get d
dt
A|t=0 = 0. Thus we

see that setting mean curvature to zero gives us the minimality condition.

Now we will explore this setup for AdS4. As AdS4 is a static spacetime a codimension

two spacelike surface in it be given by t = const, z = z(x, y). We wish to solve for

z(x, y) using the minimality condition described above. Using standard orthonormalization
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technique, one can construct an orthonormal basis. These are listed below

M = z∂t

N =
z(z,x∂x + z,y∂y − ∂z)√

1 + C

T =
z (z,y∂x − z,x∂y)√

C

S =
z (z,x∂x + z,y∂y + C∂z)√

C
√

1 + C
(1.36)

Where C = (z2
,x + z2

,y). (M,N) are the two normals to the surface and (T, S) are

tangent. Using this we can calculate

∇TN =
z2

√
C
√

1 + C

[(
(z,yz,xx − z,xz,xy)−

z,x (mz,y − nz,x)
(1 + C)

+
z,y
z

)
∂x

+

(
(z,yz,xy − z,xz,yy)−

z,y (mz,y − nz,x)
(1 + C)

− z,x
z

)
∂y +

(mz,y − nz,x)
(1 + C)

∂z

]
(1.37)

and

∇SN =
z2

√
C
√

1 + C

[(
m− z,x (mz,x + nz,y)

(1 + C)
+
z,x
z

)
∂x +

(
n

−
z,y

(
mz,x + nz,y

)
(1 + C)

+
z,y
z

)
∂y +

1

z

(
C +

z (mz,x + nz,y)

(1 + C)

)
∂z

 (1.38)

Now as the mean curvature is just the trace of extrinsic curvature, we only need to obtain

the diagonal elements of the extrinsic curvature viz From here we can calculate the extrinsic
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curvature

−g(K(T, T ), N) = g(∇TN, T ) =
z

C
√

1 + C

[
z2
,yz,xx + z2

,xz,yy − 2z,yz,xz,xy
]

+
1√

1 + C

−g(K(S, S), N) = g(∇SN,S) =

[
z
(
z2
,xz,xx + z2

,yz,yy + 2z,yz,xz,xy
)

C(1 + C)
3
2

]
+

1√
1 + C

(1.39)

Thus the mean curvatureH is given by

−H = −g(H,N) = −g(K(T, T ) +K(S, S), N)

=
z

(1 + C)
3
2

(
(1 + z2

,y)z,xx + (1 + z2
,x)z,yy − 2z,yz,xz,xy +

2

z
(1 + z2

,x + z2
,y)

)

The minimal surface equation is given by demandingH = 0. From the above equation this

equates to the following equation.

(1 + z2
,y)z,xx + (1 + z2

,x)z,yy − 2z,yz,xz,xy +
2

z
(1 + z2

,x + z2
,y) = 0 (1.40)

One can obtain the same equation from area variation directly. Let us show it here for the

embedding t = constant, z = z(x, y) the area functional can be written as

A =

∫
dxdy

√
h =

∫
dxdy

√
1 + z2

,x + z2
,y

z2
=

∫
dxdyS (1.41)

On minimizing this action we should get one equation

d

dx

(
∂S

∂z,x

)
+

d

dy

(
∂S

∂z,y

)
− ∂S

∂z
= 0 (1.42)

18



Where

S =

√
1 + z2

,x + z2
,y

z2
(1.43)

Now substituting we get

d

dx

(
∂S

∂z,x

)
+

d

dy

(
∂S

∂z,y

)
− ∂S

∂z

=
(z,xx(1 + z2

,y) + z,yy(1 + z2
,x)− 2z,xz,yz,xy)

z2(1 + z2
,x + z2

,y)
3
2

−
2(z2

,x + z2
,y)

z3
√

1 + z2
,x + z2

,y

+
2
√

1 + z2
,x + z2

,y

z3

=
1

z2(1 + z2
,x + z2

,y)
3
2

[
(1 + z2

,y)z,xx + (1 + z2
,x)z,yy − 2z,yz,xz,xy +

2

z
(1 + z2

,x + z2
,y)

]
= 0

= (1 + z2
,y)z,xx + (1 + z2

,x)z,yy − 2z,yz,xz,xy +
2

z
(1 + z2

,x + z2
,y) = 0 (1.44)

Which is same as (1.40).

Solutions:- It can be checked [14] that z(x) =
√
l2 − x2 − y2 with 0 ≤ |x| ≤ l, 0 ≤

|y| ≤ l is a solution. If we take z = z(y) then substituting z,x = 0 in (1.40) to get

z,yy +
2

z
(1 + z2

,y) = 0 (1.45)

This can be solved by the boundary condition y = 0, z(0) = z∗, z,y(0) = 0. Notice that z∗

is the maximal height attained by the curve along the z direction. It can be checked that

y(z) =

√
πΓ(3

4
)

Γ(1
4
)
z∗ −

z3

3z2
∗
F2

1(
1

2
,
3

4
;
7

4
;
z4

z∗4
), z∗ =

Γ(1
4
)

√
πΓ(3

4
)
l (1.46)

where Γ is the Euler gamma and F 1
2 is the hypergeometric function. For simplicity we have

demonstrated this for AdS4. But these solutions also exist in higher dimension. In this

thesis we will only study these two minimal surfaces for other surface one can check [14].
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Extremal surfaces in De Sitter and application to holographic entanglement entropy can be

found in [72–75]

1.3.2 Minimal surfaces in asymptotically AdS spacetime

It is important to note that there are hardly any exact analytical solution of the minimal

surface equation in asymptotically Anti De Sitter spacetime. Hence one has to adopt a

asymptotic perturbation theory [76, 77] approach to solve the minimal surface equation.

For the sake of clarity we will discuss this for the AdSd+1 blackbrane background. The

metric of the AdSd+1 blackbrane is given as

ds2 =
1

z2

(
−f(z)dt2 + dx2

1 + · · ·+ dx2
d−1 +

dz2

f(z)

)
(1.47)

with

f(z) = 1− zd

zd0

z0 is the horizon Now as this is a static geometry we can still take the subsystem on a

constant t slice. Let us first consider the subregion to be a sphere. For the sphere we take

the embedding as

dx2
1 + · · ·+ dx2

d−1 = dr(z)2 + r(z)2dΩ2
d−2 = r′(z)2dz2 + r(z)2dΩ2

d−2

Where r′(z) = dr
dz

. Thus the area of the spherical subsystem is given by

A = 2Ωd−2

∫ l

0

dz r(z)d−2

zd−1

√
1

f(z)
+ r′(z)2 (1.48)
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Where l is the radius of the disk at the boundary. The equation of motion for this action

functional is

zr(z)r′′(z)− (d− 1)f(z)r(z)r′(z)3 − r(z)

2

(
(d− 2) +

d

f(z)

)
r′(z)

−(d− 2)z

(
r′(z)2 +

1

f(z)

)
= 0 (1.49)

Since there is no analytic closed form solution of this differential equation, we have to

adopt the regularized perturbation method [76, 77] to solve this as an asymptotic series.

Our first task is to identify the parameter in eqn(1.49) whose limit reduces the differential

equation to a solvable one. One can check that the parameter is 1
zd0

and taking the limit

z0 →∞ (f(z) = 1) reduces the above equation to

zr(z)r′′(z)−
(
r′(z)2 + 1

)
((d− 1)r(z)r′(z) + (d− 2)z) = 0 (1.50)

This is the minimal surface equation for the same subsystem but embedded in pureAdSd+1.

The solution of this equation is r(z) =
√
z∗(0)2 − z2. Where z∗(0) is the turning point. Thus

we assume a series solution of eqn(1.49) in powers of 1
zd0

, at first order we have

r(z) = h(z) +
b(z)

zd0

21



Plugging this back in eqn(1.49) retaining up to first order in 1
zd0

gives

z

(
h(z) +

b(z)

zd0

)(
h′′(z) +

b′′(z)

zd0

)
− (d− 1)

(
1− zd

zd0

)(
h(z) +

b(z)

zd0

)(
h′(z) +

b′(z)

zd0

)3

−1

2

(
h(z) +

b(z)

zd0

)[
(d− 2) + d

(
1 +

zd

zd0
+
z2d

z2d
0

+ · · ·
)](

h′(z) +
b′(z)

zd0

)
−(d− 2)z

[
1 +

zd

zd0
+
z2d

z2d
0

+ · · ·+
(
h′(z) +

b′(z)

zd0

)2
]

= 0

Now retaining terms up to first order in 1
zd0

gives

[
zh(z)h′′(z)−

(
h′(z)2 + 1

)
((d− 1)h(z)h′(z) + (d− 2)z)

]
+

1

zd0

[
−(d− 2)z

(
2b′(z)h′(z) + zd

)
+

1

2
h(z)

(
2zb′′(z)− 2(d− 1)b′(z)

(
3h′(z)2 + 1

)
+ zdh′(z)

(
2(d− 1)h′(z)2 − d

))
+ b(z)

(
zh′′(z)− (d− 1)

(
h′(z)3 + h′(z)

))]
+ · · · = 0

If the series solution is true then the coefficient of all powers of 1
zd0

must go to zero. Thus

equating the coefficient of the zeroth order term to zero gives

zh(z)h′′(z)−
(
h′(z)2 + 1

)
((d− 1)h(z)h′(z) + (d− 2)z) = 0

This is the familiar equation (1.50) and the solution is

h(z) =
√
z2
∗ − z2
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Where regularity is assumed at z = z∗. Now plugging the value of h(z) back in the

coefficient of the first order and equating it to zero term gives

2z
(
z2
∗ − z2

)2
b′′(z)− zd+1

√
z2
∗ − z2

[
(d− 4)z2

∗ + (d+ 2)z2
]

−2(z2
∗ − z2)b′(z)

[
(d− 1)z2

∗ + 2z2
]

+ 2(d− 2)z2
∗zb(z) = 0

The general solution of this equation is

b (z) =
C1√

(z2
∗ − z2)

+ zd
((
z2
∗ − z2

))−d/2+1
2F1(1, 3/2; d/2 + 1;

z2

z∗2
)C2

− (z∗
2 + z2) zd√

z∗2 − z2 (2 d+ 2)

Where C1 and C2 are integration constant. Now setting the boundary condition b(0) =

finite, b(z∗) = 0 gives

b(z) =
2zd+2
∗ − zd (z2

∗ + z2)

2(d+ 1)
√

(z2
∗ − z2)

Thus the full solution up to first order( [78–80]) is

r(z) =
√
z2
∗ − z2 +

2zd+2
∗ − zd (z2

∗ + z2)

2zd0(d+ 1)
√

(z2
∗ − z2)

(1.51)

Where the constant (z∗) is related to the radius of the sphere l by

r(0) = l = z∗ +
zd+1
∗

zd0(d+ 1)
(1.52)

This solution is also given in [23,81,82]. In the next section we will use the Ryu Takayanagi

proposal to calculate the entanglement entropy for a strip and circular disk.
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1.3.3 Entanglement entropy for a strip and circular disk

using RT proposal

As our first example we will calculate the entanglement entropy for a strip of width l.

The strip at the boundary is homologous to a (d − 1) dimensional bulk minimal surface

embedded in AdSd+1. The AdSd+1 metric in Poincaré coordinate is given by

ds2 =
−dt2 + dx1

2 + · · ·+ dxd−1
2 + dz2

z2
(1.53)

We embed a strip like surface in this background given by t = constant, x1 = x1(z), xi =

xi. The boundaries of the extremal bulk surface coincide with the two ends of the interval

(− l
2
≤ x1 ≤ l

2
). The regulated size of the rest of the coordinates is taken large 0 ≤ xi ≤ Li.

The area of the strip like surface is given by

A = 2Vd−2

∫ z∗

ε

dz

zd−1

√
1 + x′(z)2 (1.54)

Where z∗ is the turning point of the surface and ε is the UV cutoff. The minimal surface is

obtained by minimizing the area functional. On minimizing we get

x′(z) =
1√

( z∗
z

)2(d−1) − 1
(1.55)

The identification of the boundary x1(0) = l/2 leads to the integral relation

l

2
=

∫ z∗

0

dz√
( z∗
z

)2(d−1) − 1
= z∗

∫ 1

0

td−1 dt√
1− t2(d−1)

= z∗b0 (1.56)
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where t = z
z∗

and b0 is a precise integral Beta functions provided in the appendix(B). Using

(1.55) in (1.54) we get

A =
2Vd−2

z∗d−2

∫ 1

ε
z∗

dt

td−1

1√
1− t2(d−1)

=

(
2Vd−2

(d− 2)εd−2
− 2Vd−2

z∗d−2
a0

)
(1.57)

Thus using (1.22) the entanglement entropy for a strip embedded in pure AdSd+1 is given

by [6, 7].

S =
1

4Gd+1
N

 2

(d− 2)

Vd−2

εd−2
− 2d−1π

(d−1)
2

(d− 2)

(
Γ( d

2(d−2)
)

Γ( 1
2(d−2)

)

)(d−1)
Vd−2

ld−2

 (1.58)

It is important to note that the first divergent term is proportional to the area δA = Vd−2

and is in confirmation with the area law from field theory computations. The second term

does not depend on the cutoff and hence is universal. This term can be directly compared

with the field theory counterparts. Similarly one can consider a circular disk instead of the

strip. The minimal surface in that case is half of a d − 1 dimensional sphere centered at

z = 0. Holographic entanglement entropy for a circular disk like subsystem of radius l is

given by [6, 7]

SD =
2π

(d−1)
2

4Gd+1
N Γ(d−1

2
)

∫ 1

ε
l

dt
(1− t2)

(d−3)
2

td−1

= c2(
l

ε
)d−2 + c4(

l

ε
)d−4 + · · ·

· · ·+


cd−2( l

ε
) + cd−1 +O( l

ε
), d = even,

cd−3( l
ε
)2 + q log( l

ε
) +O(1), d = odd,

(1.59)
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Where the coefficients of the terms are given as

c2

α
=

1

(d− 2)
,
c4

α
= − (d− 3)

2(d− 4)

cd−1

α
= (

2√
π

)−1Γ(
d− 1

2
)Γ(

2− d
2

) : d = even

q

c
= (−1)

d−2
2

(d− 3)!!

(d− 2)!!
: d = odd

Where α =
π
d−1
2

4Gd+1
N Γ(d−1

2
)

(1.60)

In accordance with area law one can check that the leading UV divergent term∼ ε−d+2 and

its coefficient is proportional to the area of the boundary ∂A. The subleading terms indicate

the form of the boundary. When d is even the universal term i.e; the term independent

of the cutoff is given by a constant pd−1. When d is odd the universal term is given by

the coefficient of the logarithmic term ∼ log l
ε
. It is important to note that in Lorentzian

spacetime due to the presence of the time direction one can wiggle the surface in the time

direction and make its area arbitrary small. Hence the notion of minimal surface is well

defined in the static case where one can consider a constant time slice or one can Wick

rotate and work in Euclidean setup.

1.4 Entanglement First Law

In this section we will try to formulate the entanglement first law from both CFT and

bulk arguments. We know that relative entropy S(ρ | σ) of two density matrices ρ and σ

provides a measure of distinguishability between them. It is defined as [22, 27, 56]

S(ρ | σ) = Tr(ρ log ρ)− Tr(ρ log σ) (1.61)
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It satisfies two basic properties viz

1. Positivity: Relative entropy is non negative for any two density matrices and vanishes

only when the two are equal, i.e.,

S(ρ | σ) ≥ 0, S(ρ | σ) = 0→ ρ = σ

2. Monotonicity: Relative entropy decreases under inclusion. Relative entropy de-

creases on tracing out the same degrees of freedom.

S(ρA | σA) ≤ S(ρ | σ), ρA = TrAc(ρ), σA = TrAc(σ) (1.62)

Where we trace out over a regionA and its complimentAc Now as in thermodynamic sense

on can define the modular free energy as

F (ρ) = Tr(ρHσ)− S(ρ)

Where S(ρ) is the von Neumann entropy of the density matrix ρ and Hσ = − log σ is the

modular Hamiltonian for the density matrix σ. Now using this one can express the relative

entropy as

S(ρ | σ) = Tr(ρ log ρ)− Tr(σ log σ) + Tr(σ log σ)− Tr(ρ log σ)

= −S(ρ) + S(σ)− 〈− log σ〉σ + 〈− log σ〉ρ

= F (ρ)− F (σ)

= ∆〈Hσ〉 −∆〈S〉 ≥ 0 (1.63)
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Where the last inequality is guaranteed by positivity of relative entropy. For two states

close to each other one can use the relative entropy as a distance measure. Let us consider

a one parameter family of states ρ = ρ0 + ερ1 + ε2ρ2 + · · · in the neighbourhood of a

reference state σ = ρ0. Now one can write the relative entropy as a power series in ε.

From the above argument this is clear that relative entropy is at least quadratic in ε. The

contribution to relative entropy at O(ε) is zero for any choice of ρ0. This observation leads

us to

δS = δ〈Hρ0〉 (1.64)

Thus at linear order the inequality is saturated. This statement is known as the first law of

entanglement due to its close resemblance with first law of thermodyanmics [27].

We Know that the pure AdSd+1 spacetime is dual to a holographic CFTd and asymp-

totically locally AdS spacetime would correspond to excitations over the CFT. Thus the

bulk asymptotic geometry will get modified by excitations, which are viewed as specific

states in the field theory Hilbert space. Now given in Poincaré coordinate one an use the

scale/radius duality to observe that high energy (UV) excitations will modify the geome-

try near the conformal boundary i.e, small z. Similarly low energy excitations (IR) will

modify the bulk geometry near the larger values of z i.e, at the center of the AdS or the

Poincaré horizon. Now as we know form the Ryu Takayanagi proposal that holographic en-

tanglement entropy of a subsystem at the boundary is given by the area of the bulk extremal

surface. As the extremal surface is sensitive to the deformations in the bulk geometry so the

entanglement entropy serves as a important tool to study this.Now as we saw the stationar-

ity of relative entropy for perturbation about reference state is responsible for entanglement

first law. Now from the observation of entanglement entropy one can conclude that the ref-
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erence state ρ0 is indistinguishable from the state ρ0 + ερ1 upto O(ε). Now our task is to

encompass this from the bulk side, any asymptotically AdS spacetime is a finite change

from pure AdS spacetime. So as long as we focus on macroscopic details of the excitations

they would be clearly distinguishable from the ground state. Thus we have to focus our

attention on reduced density matrix induced on relatively small subregions constrained to

be free from the details of the IR and depend only on the energy density of the excitations.

We will describe this below with an example as described in [23]. Thus one starts with an

excited state which preserves spatial and time translations with rotation. Thus after fixing

the radial coordinate to measure the proper size of the spatial sections one can write the

bulk metric in terms of two unknown functions viz

ds2 =
R2

z2

(
−f(z)dt2 + g(z)dz2 + dx2

d−1

)
(1.65)

Where dx2
d−1 is the Euclidean line element over the (d − 1) flat directions. Now after

setting all the matter contribution to zero and and fixing the boundary metric to ηµν . One

can express the near-boundary geometry of an excited state to be given by

g(z) ' 1

f(z)
' 1 +mzd +O(zd+1), (1.66)

Where the energy density of the excitation is set by m. For this background one can

compute the holographic stress energy tensor by expressing the metric in the Feffermen

Graham coordinate and is given by

Tµνdx
µdxν =

Rd−1m

16πG
(d+1)
N

(
(d− 1)dt2 + dx2

d−1

)
(1.67)

As (1.66) is a near boundary geometry, the metric (1.65) can have either a blackhole or
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a star like configuration in the interior. As stated earlier that we will only focus on small

subregion on the boundary hence interior detail of the geometry is not required. Now we

know that in pure AdSd+1, for a subregion(A) of size l on the boundary the bulk minimal

surface probes the region within 0 < z < l. Thus in order to make the bulk minimal surface

free from the details of the IR region and make it depend on the parameter m we prescribe

the following bound on the minimal surface

mld � 1⇒ 〈Tµν〉 (1.68)

This bound can also be rephrased as ld+1 � Rd−1m

16πG
(d+1)
N

i.e, we require that the energy density

be much smaller than the characteristic energy scale of the subsystem A. Now given this

approximation the reduced density matrix for the excited state is almost indistinguishable

from that of the vacuum. Thus one will always observe

ρA(| E〉) ∼ ρA(| 0〉) +O(Eld) (1.69)

Where E is the typical energy scale of the excited state. From here one can conclude

S(ρA(| E〉) | ρA(| 0〉)) = O(E2 l2d)

∆SA = 〈HA〉, at O(E ld) (1.70)

Now let us check whether this observation agrees with bulk calculations. To check

this we calculate the change in entanglement entropy when the subregion is a spherical

ball with radius l. We follow our calculation in subsection(1.3.2) and (1.48) to obtain the
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entanglement entropy as

S =
Rd−1

16πG
(d+1)
N

4πΩd−2

∫
dz

zd−1
r(z)d−2

√
g(z) + r′(z)2 (1.71)

We can carry over the solution from our analysis done in subsection (1.3.2) and (1.51)

r(z) =
√
z2
∗ − z2 +m

2zd+2
∗ − zd (z2

∗ + z2)

2(d+ 1)
√

(z2
∗ − z2)

(1.72)

Where the turning point (z∗) is related to the radius of the sphere l by

r(0) = l = z∗ +
zd+1
∗

zd0(d+ 1)
(1.73)

Now we can substitute this back in (1.71) to get

S = 4π
Rd−1

16πG
(d+1)
N

Ωd−2

∫ z∗

ε

dz
z∗
zd−1

(
z2
∗ − z2

) d−3
2 (1 +M(z))

M(z) =
2(d− 2)zd+2

∗ − 2zd∗z
2 + (d+ 3)z2

∗z
d − 3(d− 1)zd+2

2(d+ 1)(z2
∗ − z2)

(1.74)

Expanding this integral and calculating the change in holographic entanglement entropy

upto first order in m we get

∆S =
2π

d+ 1

Rd−1

16πG
(d+1)
N

Ωd−2ml
d (1.75)

Comparing this with the energy contained in the subregion A ∆E =
∫
A
dd−1x〈Ttt〉 we get

∆S

∆E
=

2π

d+ 1
l (1.76)
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A similar result is also obtained for the case of strip subregion. Thus when the subregion

satisfies the bound mentioned above the change in entanglement entropy ∆S is directly

proportional to the change in energy ∆E. The constant of proportionality only depends on

the size of the subregion. This statement can be regarded as the first law of entanglement

thermodynamics

∆S =
1

Tent
∆E (1.77)

Where Tent can be considered as a subsystem dependent entanglement temperature for the

sphere we have

Tent ∝
1

l
: For sphere⇒ Tent =

d+ 1

2πl
(1.78)

1.5 Plan of the Thesis

In the present chapter we have covered some universal feature of the AdS/CFT correspon-

dence and holographic entanglement entropy. We have covered very few selected topics in

this subject which will be relevant to rest of the thesis. We have discussed two approaches

to compute entanglement entropy holographicaly. The Ryu Takayanagi proposal works

well in static asymptotically AdS backgrounds, while the covariant proposal is needed for

stationary and time dependent backgrounds. However, both the approach requires solving

for the extremal surface. As it is very difficult to obtain an exact closed form solution of the

minimal surface equation, one needs to adopt a perturbative approach to obtain the solu-

tion. Another approach is to start from the area functional in pure AdS and study variations

which incorporates both changes in the embedding and the background metric. Using this
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approach one can check that at first order both the proposal gives the same result. This

is due to the fact that at first order the changes in the embedding don’t contribute to the

entropy. Thus, it is important to study the second order change in entanglement entropy for

different backgrounds (both static and non static). This will help us to study the behavior of

the minimal surface and hence the entropy, once one starts deviating from pure AdS result.

The rest of the thesis is devoted to comparing these two approaches at second order.

In chapter we will use the perturbative approach to calculate the holographic entangle-

ment entropy for the boosted black brane geometry and we also write down the entangle-

ment first law for this background. In chapter we use the entanglement first law to quantify

the asymmetry in the entanglement entropy due to the anisotropy in the boosted blackbrane

background. In chapter (4) we propose a variational approach as mentioned above in 2 + 1

dimensions to calculate holographic entanglement entropy upto second order. In chapter

(5) we generalize the variational approach to higher dimensions. Six appendices contain

necessary material to reproduce the main formulae and results presented in the main text.
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CHAPTER 2

ENTANGLEMENT THERMODYNAMICS

FOR ADS SPACETIME: PERTURBATIVE

APPROACH

2.1 Introduction

In this chapter we adopt the perturbative approach to study the effects of IR deformations

(excitations) on the change in holographic entanglement entropy for AdS spacetimes. We

will start with asymptotically AdS spacetimes which carry gauge charges. We also look for

modifications in the entanglement first law. In this regard we choose the boosted AdS black

brane as our bulk background where the boost direction is compactified on a circle. These

compactified backgrounds give rise to Kaluza Klein gauge charges. We are interested in

studying dependence of the entropy on the boost and to observe its effect on the first law

of entanglement. In the perturbative approach we find that first order change in entropy
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depend on the boost parameter. However at this order the overall form of the first law re-

mains unchanged. At higher orders we do find that the ‘boosted’ AdS black holes give rise

to a more general form of first law which includes the chemical potential and charge den-

sity. To obtain this result we have to resort to a second order perturbative calculation of the

entanglement entropy. In order to express the change of Entanglement entropy at second

order as a first law statement, we find that various first order thermodynamic quantities,

such as entropy, energy, temperature, etc have to be suitably redefined at the second order.

The effects of higher order corrections appears similar to the renormalization procedure

in quantum field theories. For example the strip width (subsystem size) and entanglement

temperature (TE) have to be redefined to include corrections so that a first law like relation

holds good. Since we resort to perturbative calculations, we work in the regime where the

ratio l
z0

, of the strip width (l) to the horizon radius (z0), is kept very small. This hierarchy

of scales can also be thought of in terms of respective temperatures as a limit

Tthermal � TE

We mention that the corrections to the entanglement entropy evaluated order by order in

(dimensionless) quantity Tthermal
TE

should not be confused with (stringy) quantum correc-

tions to the entanglement entropy [83].

2.2 Entanglement from boosted AdS black holes

The boosted AdSd+1 black holes backgrounds are given by

ds2 =
L2

z2

(
−fdt

2

K
+K(dy − ω)2 + dx2

1 + · · ·+ dx2
d−2 +

dz2

f

)
(2.1)
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with

f = 1− zd

zd0
, K = 1 + β2γ2 z

d

zd0
(2.2)

z0 is the horizon and 0 ≤ β ≤ 1 is boost parameter, while γ = 1√
1−β2

. The boost is taken

along y direction, which is compact. The Kaluza-Klein 1-form ω is given by

ω = β−1(1− 1

K
)dt (2.3)

and L is the radius of curvature of AdS spacetime, which is very large. For example, in the

AdS5×S5 near-horizon geometry of n coincident D3-branes, we shall have L4 ≡ 2πg2
YMn

and the ’t Hooft coupling constant g2
YMn� 1.

We study the entanglement entropy of a strip subsystem on the boundary of boosted

AdSd+1 backgrounds in (2.1). We embed a (d − 1)-dimensional strip-like spatial surface,

in the bulk asymptotic geometry. The boundaries of the extremal bulk surface coincide

with the two ends of the interval −l/2 ≤ x1 ≤ l/2. The regulated size of the rest of the

coordinates(0 ≤ xi ≤ li) is taken very large so that li � l. We shall always have coordinate

y being compact, so that 0 ≤ y ≤ 2πry. As per the Ryu-Takayanagi prescription [6, 7] the

entanglement entropy is given in terms of the geometrical area of the extremal surface

SE ≡ [A]Strip
4Gd+1

=
Vd−2L

d−1

2Gd+1

∫ z∗

ε

dz

zd−1

√
K

√
1

f
+ (∂zx1)2 (2.4)

where Gd+1 is (d + 1)-dimensional Newton’s constant and Vd−2 ≡ (2πry)l2l3 · · · ld−2 is

the spatial volume of the boundary. We will be mainly working for d > 2. In our notation

ε ∼ 0 denotes the cut-off scale near the boundary to regularize the UV divergences, and z∗

is the turning point of extremal surface inside the bulk geometry. In the above K(z), f(z)
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are known functions and we only need to solve for x1. From (2.4) it follows that a minimal

surface will have to satisfy

dx1

dz
≡ (

z

zc
)d−1 1
√
f
√
K − ( z

zc
)2d−2

(2.5)

The constant zc is given by the turning point relation

K∗ − (
z∗
zc

)2d−2 = 0 (2.6)

where K∗ = K(z)|z=z∗ . The identification of the boundary x1(0) = l/2 leads to the

integral relation
l

2
=

∫ z∗

0

dz(
z

z∗
)d−1 1
√
f
√

K
K∗
− ( z

z∗
)2d−2

(2.7)

which relates l with z∗, the turning point. The turning-point takes the mid-point value

x1(z∗) = 0 on the boundary. From (2.4) and (2.5) the expression of the entanglement

entropy for these boosted AdS black hole solutions becomes

SE =
Vd−2L

d−1

2Gd+1

∫ z∗

ε

dz

zd−1

K
√
f
√
K −K∗( z

z∗
)2d−2

(2.8)

The expression (2.8) mathematically provides the entanglement entropy for a strip-like

subsystem on the boundary. For pure AdS spacetime (z0 → ∞, f = 1 = K) these

integrals can be evaluated exactly [6, 7], but in the presence of black hole it is difficult to

find analytical answers from the integral (2.8), although numerical estimates can always

be made. In order to find analytical results we adopt the perturbative method in the next

subsection.
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2.2.1 Thin strip approximation

In the cases where the strip subsystem is a small part of a big system, so that the turning

point lies in the proximity of asymptotic boundary region only (z∗ � z0), one can evaluate

the entanglement entropy integral (2.8) by expanding it around its pure AdS value (treating

pure AdS as a ground state). We shall take boost to be finite but small βγ ∼ 1. Under these

approximations we can expand the following expression upto first order

K

K∗
=

(
1 + β2γ2 z

d

z0
d

)(
1 + β2γ2 z∗

d

z0
d

)−1

'
(

1 + β2γ2 z
d

z0
d

)(
1− β2γ2 z∗

d

z0
d

)
' 1 + β2γ2

(
zd

z∗d
− 1

)
z∗
d

z0
d

(2.9)

Using this the strip width equation (2.7) can be expanded perturbatively upto first order as

l = 2

∫ z∗

0

dz(
z

z∗
)d−1 1
√
f
√

K
K∗
− ( z

z∗
)2d−2

= 2

∫ z∗

0

dz(
z

z∗
)d−1 1

√
f

√
1− β2γ2

(
1− zd

z∗d

)
z∗d

z0d
− ( z

z∗
)2d−2

= 2

∫ z∗

0

dz(
z

z∗
)d−1 1

√
f
√
R

√
1− β2γ2

R

(
1− zd

z∗d

)
z∗d

z0d

Denoting R ≡ 1−
(
z

z∗

)2d−2

, we get

l = 2

∫ z∗

0

dz(
z

z∗
)d−1 1√

R

[
1−

(
z

z∗

)d(
z∗
z0

)d]− 1
2 [

1− β2γ2

R

(
1− zd

z∗d

)
z∗
d

z0
d

]− 1
2

(2.10)
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' 2

∫ z∗

0

dz(
z

z∗
)d−1 1√

R

[
1 +

1

2

(
z

z∗

)d(
z∗
z0

)d
+
β2γ2

2R

(
1− zd

z∗d

)
z∗
d

z0
d

]

Now we will expand the above expression and retain only first order term. Denoting ξ =
z

z∗

l = 2z∗

∫ 1

0

dξξd−1 1√
R

[
1 +

1

2

zd∗
zd0
ξd +

β2γ2zd∗
2zd0

1− ξd

R
+ · · ·

]
≡ 2z∗

(
b0 +

zd∗
2zd0

(b1 + β2γ2Il)

)
+ · · · (2.11)

where the dots indicate terms of higher order in ( z∗
z0

)d. The coefficients b0, b1, and Il are

precise integral Beta functions multiplying at various orders. These coefficients are pro-

vided in the appendix(B). Note b0 and b1 are positive definite quantities. Keeping only up

to first order in (zd∗/z
d
0) the equation (2.10) can be inverted to obtain

z∗ =
l/2

b0 + zd∗
2zd0

(b1 + β2γ2Il)
' z̄∗

1 + z̄d∗
2zd0

( b1
b0

+ β2γ2

b0
Il)

(2.12)

where z̄∗ ≡ l
2b0

being the turning point value in pure AdS case(no excitations) having the

same strip width l. The last equation summarizes geometrically the whole effect of IR

bulk deformations (excitations), like having ‘black hole in geometry’ and boosts on the

turning point value perturbatively. Having obtained the turning point expansion, a similar

expansion around pure AdS can be made for the area functional also. After regularizing

the area integral (2.8), in the UV limit (ε→ 0), we find the following expansion

A ≡ 2

∫ z∗

0

dz

zd−1

K
√
f
√
K −K∗( z

z∗
)2d−2

+ AUV

= 2

∫ z∗

0

dz

zd−1

√
K

√
f
√

1− K∗
K

( z
z∗

)2d−2
+ AUV

(2.13)
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Now

K∗
K

=

(
1 + β2γ2 z∗

d

z0
d

)(
1 + β2γ2 z

d

z∗d
z∗
d

z0
d

)−1

'
[
1 + β2γ2

(
1− zd

z∗d

)
z∗
d

z0
d

]

Substituting this back into the area integral (2.13) gives

A = 2

∫ z∗

0

dz

zd−1

√
K√
f

1√
1−

[
1 + β2γ2

(
1− zd

z∗d

)
z∗d

z0d

]
( z
z∗

)2d−2

+ AUV

= 2

∫ z∗

0

dz

zd−1

√
K

√
f
√
R

1√
1− β2γ2 (z∗d−zd)

z0d
(1−R)
R

+ AUV

' 2

∫ z∗

0

dz

zd−1

1√
R

(
1 +

zd

2z0
d

)(
1 +

β2γ2zd

2z0
d

)(
1 + β2γ2

(
z∗
d − zd

)
2z0

d

(
1

R
− 1

))
+ AUV

' 2

∫ z∗

0

dz

zd−1

1√
R

[
1 +

(β2γ2 + 1)zd

2z0
d

+ β2γ2

(
z∗
d − zd

)
2z0

d

(
1

R
− 1

)]
+ AUV

(2.14)

where we have denoted diverging UV part as AUV = 2
d−2

1
εd−2 . The respective finite inte-

grals can be evaluated at each order on the right hand side to give

A =
2

zd−2
∗

[a0 +
zd∗
2zd0

(γ2a1 + β2γ2Il) + · · · ] + AUV

=
2a0

zd−2
∗

[1 +
zd∗
2zd0

(γ2a1

a0

+
β2γ2

a0

Il) + · · · ] + AUV (2.15)

where new coefficients a0, a1, ... are specific Beta-function integrals given in the appendix(B).

We should note that a1 > 0, but using Beta function identities we shall have a0 = − b0
d−2

,

so a0 will be negative for all d > 2. Now substituting for z∗ from (2.12) and only keeping
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terms up to first order we find that

A = AUV +
2a0

z̄d−2
∗

(
1 +

z̄d∗
zd0

d− 2

2
(
b1

b0

+ β2γ2 Il
b0

) +
z̄d∗
2zd0

(γ2a1

a0

+ β2γ2 Il
a0

)

)
= AUV + A0

(
1 +

z̄d∗
zd0

d− 2

2

b1

b0

+
z̄d∗
2zd0

γ2a1

a0

)
≡ AUV + A0 + A1 (2.16)

where in the second last line the terms involving Il have got exactly cancelled! We have

also defined

A0 =
2a0

z̄d−2
∗

= − (2b0)d−1

(d− 2)ld−2
(2.17)

as the area contribution for pure AdSd+1 with turning point z̄∗ and strip width l. Thus the

term A1 contains all the first order contributions to the area. As a check, for pure AdS (

A1 = 0) we get the standard result [6, 7]

AAdS =
1

d− 2

(
2

εd−2
− 2d−1bd−1

0

ld−2

)
. (2.18)

which is a positive definite quantity. From equation (2.16) we can now find the net change

in the area of extremal surface due to IR deformations (black hole with boost). It is given

by

4A ≡ A− AAdS =
a0z̄

2
∗

zd0

(
(d− 2)

b1

b0

+ γ2a1

a0

)
=
a1l

2

4b2
0

(
d− 1

d+ 1
+ β2γ2

)
1

zd0
(2.19)

where in the second line we have used the relation between two ratios b1
b0

= − 2
(d+1)(d−2)

a1
a0

.
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Below we enumerate our final observations

• It is remarkable to note that the remainder of the expression on the right hand side of

eq.(2.19) is positive definite.

• This suggests that the net area of the extremal strip has effectively increased as com-

pared to the pure AdS.

• The presence of β dependent terms precisely contain the effect of boost on the area

of the extremal surface.

• In the absence of boost these terms will be absent and we shall get the result first

obtained by [23].

• This suggests that the boosting of the bulk metric (which forms a type of charged

excitations in the CFTd) increases the strip area and hence increases the entanglement

entropy for the CFT subsystem.

Following from (2.19) the change in entanglement entropy above the pure AdS ground

state, up to first order is given by

4S =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

(
d− 1

d+ 1
+ β2γ2

)
1

zd0
. (2.20)

The equation (2.20) is an important expression for the remaining part of the analysis in this

section.
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2.2.2 Entanglement First Law

It is left now to carefully partition the right hand side of (2.20) in terms of physical thermo-

dynamic observables of the CFT. The physical quantities such as energy, charge and pres-

sure can be obtained by expanding the bulk geometry (2.1) in suitable Fefferman-Graham

(asymptotic) coordinates near the AdS boundary [24], given in the appendix(A). These for

the subsystem of CFTd (on a circle) are summarized here. The energy and charge for the

strip subsystem are

4E =
dLd−1Vd−2l

16πGd+1

< t00 >=
ryL

d−1Vd−3l

8Gd+1

(
d− 1

d
+ β2γ2)

d

zd0

4N ≡ ryPy =
ryL

d−1Vd−2l

16πGd+1

βγ2d

zd0
(2.21)

respectively. The pressure component along the x1 direction of the compactified CFT is

4P =
2πryL

d−1d

16πGd+1

< t11 >=
Ld−1ry
8Gd+1

1

zd0
(2.22)

while Vd−3 ≡ l2l3 · · · ld−2, and d-dimensional Newton’s constant 1
Gd

= 2πryL

Gd+1
. The N

represents integral value of (momentum) charge. In the absence of boost it would be van-

ishing. We note down nontrivial chemical potential in our solutions. It is given by the value

of gauge potential ω at the turning point,

µ =
1

ryβ
(1− 1

K(z∗)
) ' βγ2

ry

z̄d∗
zd0

(2.23)

Hence the contribution of ‘entanglement chemical potential’ would remain negligible in

first order of approximation we are working in this section. (Note, the corresponding ther-
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mal value of chemical potential is however large µ
thermal

= β
ry

.)

Our aim is to express the right hand side of (2.20) in terms of above physical observ-

ables. From (2.21), a little guess tells us that

(
d− 1

d+ 1
+ β2γ2

)
1

zd0
≡
[
(
d− 1

d
+ β2γ2)− d− 1

d+ 1

1

d

]
1

zd0
(2.24)

Using (2.21) and (2.22) we can now express eq.(2.20) as

4SE =
1

TE

(
4E − d− 1

d+ 1
V 4 P

)
(2.25)

where V ≡ l2l3 · · · ld−2 is the net volume of the strip subsystem. The equation (2.25)

simply describes the first law of entanglement thermodynamics, which is identical to the

result in [26]. An alternative first law form was first proposed by [23] for the isotropic

AdS case. It leads to a difference in entanglement temperatures. If we set β = 0 in (2.25),

it reduces to the known first law form obtained in [26]. Hence we can conclude that the

form of the first law remains true for ‘boosted’ AdS black-hole case as well, even though

the excitations in CFT are much different in the boosted case. For example, there are

quantized charges present in these backgrounds. The entanglement temperature is given as

TE =
b2

0

a1

d

πl
=

(B( d
2d−2

, 1
2
))2

2(d− 1)B( 1
d−1

, 1
2
)

d

πl
. (2.26)

The temperature is inversely proportional to the width of strip. But this temperature is

lower by a factor d
d+1

as compared to the isotropic unboosted case in [23]. It is evident that

there is no explicit charge dependence in the first law equation (2.25). The reason for this is

that the entanglement chemical potential given in (2.23) remains negligible (∼ O(zd∗/z
d
0))

at the first order. The contribution of chemical potential will however become important in
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next higher order calculation which we perform in the following section. This contribution

is expected to change the ‘first order’ form of the first law (2.25).

2.3 Entanglement entropy at second order

Taking similar steps as in the previous section, we now calculate the second order terms in

the expansion of the area integral schematically denoted as

A ≡ AUV + A0 + A1 + A2 (2.27)

where A0 and all first order terms contributing to A1 have been obtained in the previous

section. Our aim is to find A2. Now first we need to recalculate the relation between the

turning point and strip width as in (2.10)and (2.12), up to second order. To begin with, we

expand the ratio K
K∗

upto second order in ( z∗
z0

)d.

K

K∗
=

(
1 + β2γ2 z

d

z0
d

)(
1 + β2γ2 z∗

d

z0
d

)−1

'
(

1 + β2γ2 z
d

z0
d

)(
1− β2γ2 z∗

d

z0
d

+ β4γ4 z∗
2d

z0
2d

)
' 1− β2γ2

(
1− zd

z∗d

)
z∗
d

z0
d

+ β4γ4

(
1− zd

z∗d

)
z∗

2d

z0
2d

Using this the strip width equation (2.7) can be expanded perturbatively upto second order

as

l = 2

∫ z∗

0

dz(
z

z∗
)d−1 1
√
f
√

K
K∗
− ( z

z∗
)2d−2

(2.28)
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= 2

∫ z∗

0

dz(
z

z∗
)d−1 1

√
f

√
1− β2γ2

(
1− zd

z∗d

)
z∗d

z0d
+ β4γ4

(
1− zd

z∗d

)
z∗2d

z02d
− ( z

z∗
)2d−2

= 2z∗

∫ 1

0

dξ ξd−1 1

√
f
√
R

√
1−

(
β2γ2(1−ξd) z∗

d

z0
d−β4γ4(1−ξd) z∗

2d

z0
2d

)
R

Expanding and retaining upto second order terms and denoting ξ =
z

z∗
and R ≡ 1− t2d−2

' 2z∗

∫ 1

0

dξ√
R
ξd−1 1√

f

[
1 +

1

2
β2γ2

(
1− ξd

)
R

z∗
d

z0
d

+ β4γ4

(
3

8

(
1− ξd

)2

R2
−
(
1− ξd

)
R

)
z∗

2d

z0
2d

]

' 2z∗

∫ 1

0

dξ√
R
ξd−1

(
1 +

ξd

2

z∗
d

z0
d

+
3ξ2d

8

z∗
2d

z0
2d

)[
1 +

1

2
β2γ2

(
1− ξd

)
R

z∗
d

z0
d

+ β4γ4

(
3

8

(
1− ξd

)2

R2

−
(
1− ξd

)
R

)
z∗

2d

z0
2d

]

' 2z∗

[∫ 1

0

dξ√
R
ξd−1 +

1

2

z∗
d

z0
d

∫ 1

0

dξ√
R
ξd−1

(
β2γ2

(
1− ξd

)
R

+ ξd

)
+
z∗

2d

z0
2d

∫ 1

0

dξ√
R
ξd−1

(
3

8
ξ2d +

β2γ2

4

ξd
(
1− ξd

)
R

+ β4γ4

(
3

8

(
1− ξd

)2

R2
− 1

2

(
1− ξd

)
R

))
+ · · ·

]

= 2z∗b0

(
1 +

z∗
d

z0
d

(b1 + β2γ2Il)

2b0

+
z∗

2d

z0
2d

( 3
8
b2 + Jl

b0

))
(2.29)

Where the coefficients b2, Il, Jl are given in the appendix(B). Now solving recursively for

z∗ up to second order, we get

z∗ =
l

2b0(
1 + z∗d

z0d
(b1+β2γ2Il)

2b0
+ z∗2d

z02d

(
b̄2+Jl
b0

))
' z̄∗(

1 + z̄∗d

z0d
(b1+β2γ2Il)

2b0

(
1 + z̄∗d

z0d
(b1+β2γ2Il)

2b0
+ z̄∗2d

z02d

(
b̄2+Jl
b0

))−d
+ z̄∗2d

z02d

(
b̄2+Jl
b0

))
' z̄∗(

1 + z̄∗d

z0d
(b1+β2γ2Il)

2b0

(
1− d z̄∗d

z0d
(b1+β2γ2Il)

2b0

)
+ z̄∗2d

z02d

(
b̄2+Jl
b0

))
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= z̄∗

(
1 +

z̄d∗
zd0

(
b1 + β2γ2Il

2b0

) +
z̄2d
∗
z2d

0

(
b̄2 + Jl
b0

− d(
b1 + β2γ2Il

2b0

)2

))−1

(2.30)

There is no need to simplify this expression any further at this step. Now our final task is to

obtain the area expansion up to second order. As before, after regularizing the area integral

(2.8), in the UV limit (ε→ 0), we find the following expansion

A = 2

∫ z∗

0

dz

zd−1

√
K

√
f
√

1− K∗
K

( z
z∗

)2d−2
+ AUV

Now
K∗
K

=

(
1 + β2γ2 z∗

d

z0
d

)(
1 + β2γ2 z

d

z∗d
z∗
d

z0
d

)−1

'
(

1 + β2γ2 z∗
d

z0
d

)(
1− β2γ2 z

d

z∗d
z∗
d

z0
d

+ β4γ4 z
2d

z∗2d
z∗

2d

z0
2d

)
'
[
1 + β2γ2

(
1− zd

z∗d

)
z∗
d

z0
d
− β4γ4 z

d

z∗d

(
1− zd

z∗d

)
z∗

2d

z0
2d

]
(2.31)

Substituting this back into the area integral gives

A = 2

∫ z∗

0

dz

zd−1

√
K√
f

1√
1−

[
1 + β2γ2

(
1− zd

z∗d

)
z∗d

z0d
− β4γ4 zd

z∗d

(
1− zd

z∗d

)
z∗2d

z02d

]
( z
z∗

)2d−2

+AUV

Denoting ξ = z
z∗

and R ≡ 1− ξ2d−2

∆A =
2

z∗d−2

∫ 1

0

dξ

ξd−1

√
K

√
f
√
R

1√
1−

(
β2γ2(1−ξd) z∗

d

z0
d−β4γ4ξd(1−ξd) z∗

2d

z0
2d

)
ξ2(d−1)

R
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' 2

z∗d−2

∫ 1

0

dξ

ξd−1

√
K

√
f
√
R

(
1 +

(
β2γ2

(
1− ξd

)
z∗d

z0d
− β4γ4ξd

(
1− ξd

)
z∗2d

z02d

)
ξ2(d−1)

2R

+
3

8
β4γ4 (1− ξd)2ξ4(d−1)

R2

z∗
2d

z0
2d

)

=
2

z∗d−2

∫ 1

0

dξ

ξd−1

√
K

√
f
√
R

[
1 +

z∗
d

z0
d
β2γ2

(
1− ξd

)
ξ2(d−1)

2R
+ β4γ4 z∗

2d

z0
2d

(3

8

(1− ξd)2ξ4(d−1)

R2

−
(
ξd
(
1− ξd

))
ξ2(d−1)

2R

)]

' 2

z∗d−2

∫ 1

0

dξ

ξd−1

√
K

√
f
√
R

[
1 +

β2γ2z∗
d

z0
d

(
1− ξd

)
ξ2(d−1)

2R
+
β4γ4z∗

2d

z0
2d(

3

8

(1− ξd)ξ2(d−1)

R2
− ξd

2

) (
1− ξd

)
ξ2(d−1)

R

]
' 2

z∗d−2

∫ 1

0

dξ

ξd−1

1
√
f
√
R

[
1 +

β2γ2z∗
d

z0
d

(
ξd

2
+

(
1− ξd

)
ξ2(d−1)

2R

)
+
β4γ4z∗

2d

z0
2d

(3

8

(1− ξd)2t4(d−1)

R2
−
ξd
(
1− ξd

)
ξ2(d−1)

4R
− ξ2d

8

)]
' 2

z∗d−2

[∫ 1

0

dξ

ξd−1

1√
R

+
z∗
d

2z0
d

(
(1 + β2γ2)

∫ 1

0

dξ

ξd−1

1√
R
ξd + β2γ2

∫ 1

0

dξ

(
1− ξd

)
ξ(d−1)

R
3
2

)

+
z∗

2d

z0
2d

(
(3 + 2β2γ2 − β4γ4)

8

∫ 1

0

dξ

ξd−1

1√
R
ξ2d +

∫ 1

0

dξ
ξd−1

√
R

(
β2γ2ξd

(1− ξd)
4R

+β4γ4
(3

8
(1− ξd)2 1

R2
− 3

8
(1− ξd)2 1

R
−
ξd
(
1− ξd

)
4R

)))]
' 2

z∗d−2

[∫ 1

0

dξ

ξd−1

1√
R

+
z∗
d

2z0
d

(
(1 + β2γ2)

∫ 1

0

dξ

ξd−1

1√
R
ξd + β2γ2

∫ 1

0

dξ

(
1− ξd

)
ξ(d−1)

R
3
2

)

+
z∗

2d

z0
2d

[(3 + 2β2γ2 − β4γ4)

8

∫ 1

0

dξ

ξd−1

1√
R
ξ2d +

∫ 1

0

dξ
ξd−1

√
R

(
β2γ2ξd

(1− ξd)
4R

+
3

8
β4γ4(1− ξd)2 1

R2
− β4γ4

(
1− ξd

)
2R

)
+ β4γ4

∫ 1

0

dξ
ξd−1(1− ξ2d)

8R
3
2

]]
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' 2a0

z∗d−2

[
1 +

z∗
d

2z0
d

(
a1

a0

(1 + β2γ2) + β2γ2 Il
a0

)
+
z∗

2d

z0
2d

(
(3 + 2β2γ2 − β4γ4)

8

a2

a0

+
Jl
a0

+
β4γ4

8

Ia
a0

)]
(2.32)

Where the coefficients a0, a1, a2 and Ia are precise integral Beta functions multiplying at

various orders. These coefficients are provided in the appendix(B). Now our next task is to

express the turning point in terms of the AdS turning point z̄∗ and keep terms upto second

order only. Now from equation (2.30) we see that

z∗
2−d = z̄∗

2−d
(

1 +
z̄d∗
zd0

(
b1 + β2γ2Il

2b0

) +
z̄2d
∗
z2d

0

(
b̄2 + Jl
b0

− d(
b1 + β2γ2Il

2b0

)2

))d−2

' z̄∗
2−d
[
1 + (d− 2)

z̄d∗
zd0

(
b1 + β2γ2Il

2b0

) + (d− 2)
z̄2d
∗
z2d

0

( b̄2 + Jl
b0

− (d+ 3)

2

(
b1 + β2γ2Il

2b0

)2
)]

(2.33)

Now substituting (2.30) and (2.33) into (2.32)

∆A =
2a0

z̄∗d−2

[
1 + (d− 2)

z̄d∗
zd0

(
b1 + β2γ2Il

2b0

) + (d− 2)
z̄2d
∗
z2d

0

(
b̄2 + Jl
b0

− (d+ 3)

2

(
b1 + β2γ2Il

2b0

)2

)][
1 +

z̄∗
d

z0
d

(
a1

2a0

γ2 + β2γ2 Il
2a0

)
+
z̄∗

2d

z0
2d

((3 + 2β2γ2 − β4γ4)

8

a2

a0

+
Jl
a0

+
β4γ4

8

Ia
a0

− d(b1 + β2γ2Il)(a1γ
2 + β2γ2Il)

4a0b0

)]

Now we will simplify the above expression and retain terms upto second order in z̄∗d

z0d
. We

will use the relation between the beta function coefficients given in Appendix(B). Thus we
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get

∆A ' 2a0

z̄∗d−2

[
1 +

z̄d∗
zd0

(
(d− 2)(

b1 + β2γ2Il
2b0

) + (
a1

2a0

γ2 + β2γ2 Il
2a0

)

)
+
z̄∗

2d

z0
2d[((3 + 2β2γ2 − β4γ4)

8

a2

a0

+
Jl
a0

+
β4γ4

8

Ia
a0

− d(b1 + β2γ2Il)(a1γ
2 + β2γ2Il)

4a0b0

)
+(d− 2)

( b̄2 + Jl
b0

− (d+ 3)

2
(
b1 + β2γ2Il

2b0

)2
)

+ (d− 2)
(b1 + β2γ2Il)(a1γ

2 + β2γ2Il)

4a0b0

]]

'

[
2a0

z̄∗d−2
+
a0z̄

2
∗

zd0

(
(d− 2)

b1

b0

+
a1

a0

γ2

)
+

2a0z̄∗
d+2

z0
2d

[((3 + 2β2γ2 − β4γ4)

8

a2

a0

+
Jl
a0

+
β4γ4

8

Ia
a0

− d(b1 + β2γ2Il)(a1γ
2 + β2γ2Il)

4a0b0

)
+ (d− 2)

( b̄2 + Jl
b0

− (d+ 3)

2
(
b1 + β2γ2Il

2b0

)2
)

+(d− 2)
(b1 + β2γ2Il)(a1γ

2 + β2γ2Il)

4a0b0

]]

'

[
2a0

z̄∗d−2
+
a0z̄

2
∗

zd0

(
(d− 2)

b1

b0

+
a1

a0

γ2

)
+

2a0z̄∗
d+2

z0
2d

[((3− β2γ2) γ2

8

a2

a0

+
β4γ4

8

Ia
a0

)
−
( b̄2

a0

− (d+ 3)

2
(
b1 + β2γ2Il

2b0

)2
)
− (b1 + β2γ2Il)(a1γ

2 + β2γ2Il)

2a0b0

]]
(2.34)

The first two terms in the above expression are same as in (2.16). The third term is the

second order contribution and can be expressed as

A2 =
2a0

z̄d−2
∗

[
(d+ 3)

(b1 + β2γ2Il)
2

8a0b0

− (b1 + β2γ2Il)(γ
2a1 + β2γ2Il)

2a0b0

− 8b̄2 − (3− β2γ2)γ2a2

8a0

+
1

2
β4γ4 Ia

4a0

]
z̄2d
∗
z2d

0

=
a1

z̄d−2
∗

[
(d+ 3)

(b1 + β2γ2Il)
2

4a1b0

− (b1 + β2γ2Il)(γ
2a1 + β2γ2Il)

a1b0

− 8b̄2 − (3− β2γ2)γ2a2

4a1

+
1

4
β4γ4(

Ia
a1

)

]
z̄2d
∗
z2d

0

(2.35)
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All parameters in the above expression are known Beta functions provided in the ap-

pendix(B). We need to further simplify the last equation. After some tedious simplifi-

cations equation (2.35) can be rearranged as

A2 = a1z̄
2
∗
(
h0 + h1β

2γ2 + h2β
4γ4
) z̄d∗
z2d

0

(2.36)

where coefficients are

h0 =
d− 1

d+ 1
(− b1

2b0

+
3

4

d+ 1

2d+ 1

a2

a1

),

h1 = (−b1

b0

+
1

2

a2

a1

)

h2 =
d+ 1

d− 1
(− b1

2b0

+
3

4

1

d+ 1

a2

a1

) . (2.37)

Note the area integral (A) is expanded around the AdS (ground state value) turning point.

The net change in the area of the extremal strip up to second order is given by

4A = A1 + A2 =
a1l

2

4b2
0

(
(
d− 1

d+ 1
+ β2γ2)

1

zd0
+ (h0 + h1β

2γ2 + h2β
4γ4)

z̄d∗
z2d

0

)
. (2.38)

At this point it is quite remarkable to notice that the equation (2.38) can also be written in

an unique factorized form

4A =
a1l

2

4b2
0

·Q ·
(

(
d− 1

d+ 1
+ β2γ2)

1

zd0
− qa2

2a1

β2γ4 z̄
d
∗
z2d

0

)
, (2.39)

where the factor Q (quotient) is given by

Q = 1−
(

(1 +
d+ 1

d− 1
β2γ2)

b1

2b0

− (p+ s
d+ 1

d− 1
β2γ2)

a2

2a1

)
z̄d∗
zd0

(2.40)
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with unique set of parameters p, q, s taking values as

p =
3

2

d+ 1

2d+ 1
, s =

2 + 8d− d2

4(2d+ 1)
, q =

4 + 6d− d2

4(2d+ 1)
. (2.41)

It is important to note that the above factorization is unique. It is unique in the sense

that after the factorization the remainder of the expression in (2.39) (within large bracket)

precisely contains nontrivial β2γ4 term, which contributes to µ. 4 N , along with usual

energy and pressure terms, as we would see next. The ‘Q’ factor is determined by simple

quotienting procedure. Crucially there is no choice of Q for which we can set q = 0 in

(2.39). Any arbitrary Q would take us back to the situation where we started from, leaving

us with little or no clue. The eq.(2.39) is the complete expression representing the net

change in area of the strip when calculated up to second order. From the result (2.39) we

determine

4S =
Ld−1Vd−2

16GN

a1l
2Q

b2
0

(
(
d− 1

d+ 1
+ β2γ2)

1

zd0
− qa2

2a1

β2γ4 z̄
d
∗
z2d

0

)
(2.42)

Which provides the complete expression representing the net change in entanglement en-

tropy up to second order in the expansion around pure AdS (ground state) value.

2.3.1 Redefinition and Entanglement First Law

It is apparent from the expression (2.42) that we would have to define new ‘redefined’

quantities in order to have a first law like relation. We first introduce the redefined width of

the strip as

lR ≡ Q
1
2 l (2.43)
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Since generally 0 < Q < 1, the entanglement length decreases after second order correc-

tions. This would be true so long as we work within the pertubative regime. Further we

assume the principle [23] and propose that the new entanglement temperature is inversely

proportional to the renormalized width

T ∗E =
db2

0

πa1lR
=

TE√
Q

(2.44)

The Q also introduces boost dependence in the entanglement temperature at the second

order. Even if there is no boost (β = 0), Q would still be nontrivial. With these defini-

tions we redefine the ‘entanglement energy’ and ‘entanglement charge’ for the subsystem

(following from (2.21) and (2.22))

4E∗ =
√
Q4 E , 4N ∗ =

√
Q4N (2.45)

and redefine the entanglement volume as

V∗ =
√
QV =

√
QlVd−3. (2.46)

All above would simply happen provided we realize that the actual physical size (width)

of the subsystem encountered by the excitations is lR, whereas the old l is just the ‘bare’

(coordinate) size of strip subsystem. Since all extensive thermodynamic quantities of the

subsystem will depend on strip width, hence all expressions are redefined by the single

quantity Q. Finally we shall prefer to define ‘entanglement pressure’ as

P∗ ≡ d− 1

d+ 1
P (2.47)
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and the ‘entanglement chemical potential’ is

µ∗ =
qβγ2

ry

a2

2a1

z̄d∗
zd0
≡ 4 + 6d− d2

8(2d+ 1)

a2

a1

µ (2.48)

Note µ is the turning point value given in (2.23). From (2.42) and using above expressions,

we find that the changes in entanglement entropy up to second order can be expressed as

4S∗E =
1

T ∗E
(4E∗ − µ∗4N ∗ − V∗4P∗) (2.49)

All thermodynamic quantities in the above result quantifying excitations in the CFT sub-

system are completely known.

2.3.2 The l dependent behaviour

Let us make a few comments here. The boundary CFT is a d-dimensional theory having

one of its direction being compact. As there are black holes in the bulk geometry it is

a finite temperature theory. The thermal temperature is given by TTh = d
4πz0γ

which is

fixed. Since the size of the subsystem is taken small, so that the entanglement effects can

be studied perturbatively, it leads to a hierarchy of scales

z̄∗
z0

� 1,
l

z0

� 2b0,
TTh
TE
� a1

2b0γ
(2.50)

while we keep βγ ∼ 1. The redefined entanglement temperature (2.44) at second order can

be written as

T ∗E '
1

πa1l

db2
0√

1− α0(2πγlTTh
db0

)d
(2.51)
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where α0 ≡
(

(1 + d+1
d−1

β2γ2) b1
2b0
− (p+ sd+1

d−1
β2γ2) a2

2a1

)
is always positive definite. This

expression remains valid so long as 2πγlTTh
b0d

< 1 is maintained. The eq. (2.51) implies

that the entanglement temperature has sizable corrections for large l from higher order at a

given thermal temperature TTh. It also tells us how the entanglement temperature will flow

towards TTh as l increases. From (2.51), while keeping the strip size l fixed, we can also

study the flow of entanglement temperature with respect to change in (black hole) thermal

temperature

T
(2)
E '

T
(1)
E√

1− α0(2πγl
db0

)d(T
(2)d
Th − T

(1)d
Th )

(2.52)

where T (2)
Th and T (1)

Th are two different black hole temperatures. The equation (2.52) implies

that the entanglement temperature will be higher for the bigger size black hole (T (2)
Th >

T
(1)
Th ). The ‘TE Vs l’ graphs have been plotted in the figure (2.1) for different TTh values.

0.1 0.2 0.3 0.4 0.5 0.6
l

0.5

1.0

1.5

2.0

2.5

TE

TE vs l

Figure 2.1: Plots of ‘TE Vs l’ for different black hole temperatures (starting from top
curve) TTh = .28, .25,&.10 with fixed α0 = .97 and (βγ)2 = .5 for AdS5. The graphs split
at large l showing the effect of corrections. These demonstrate that TE is higher for higher
black hole temperature.

55



The entanglement energy of subsystem gets corrected as

4E∗ =

√
1− α0(

2πγlTTh
db0

)d4 E

= l

√
1− α0(

2πγlTTh
db0

)d
Ld−1Vd−3ryd

8Gd+1

< t00 > (2.53)

From (2.48) the chemical potential up to the second order may be written

µ∗ =
qa2

2rya1

βγ2(
2πγlTTh
db0

)d + higher orders

' qa2

2ryβa1

(1− 1

1 + β2γ2(2πγlTTh
db0

)d
) (2.54)

where the second line merely reflects the fact that any subleading term is a higher order

term which can be ignored at the second order. This will lead to following l dependence in

the charge

4N ∗ = l

√
1− α0(

2πγlTTh
db0

)d
Ld−1Vd−3r

2
yd

8Gd+1

βγ2

zd0
(2.55)

The large l behaviour may be predicted from here up to some value l = lc, such that

lc <
db0

2πγTTh
. We cannot stretch these results beyond this bound as this would lead to to the

break down of perturbative regime. In large l limit we expect to see the behaviour

T ∗E → TTh, 4 E∗ →4ETh. (2.56)
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2.4 Conclusion

We adopted a perturbative method to calculate change in holographic entanglement en-

tropy. This we have done by expanding the area and length integral in terms of the dimen-

sionless parameter z∗
z0

d upto second order. We considered the boosted AdS black brane as

our excited geometry. We found nontrivial dependence of the change in the area of the bulk

minimal surface on the boost parameter (β) as well as the horizon z0. We found that the first

order change in the holographic entanglement entropy satisfies a first law like relation. We

have tried to extend this relation to the next order. In order to write a first law like relation

at the second order, we introduced ‘redefined length’ for the subsystem in order to retain

the form of first law of entanglement thermodynamics. If we did not do so we will have no

hope of having a first law like relation. Note that the bulk geometry is well defined and the

corresponding boundary energy-momentum tensor is also fixed. Therefore, only option left

for us is to look for correct subsystem size. (The length l ≡ 2b0z̄∗ is good for ‘pure’ AdS

with turning point value z̄∗). With the excitations in the CFT (z∗ being new turning point)

the relationship between l and z∗ is known at best perturbatively (order by order), through

eq. (2.30). But we can define new redefined length lR at higher orders. With the help of

given expressions, the relationship between lR and z∗ can also be fixed, perturbatively, but

is not needed in our results. Thus, if l is the size at the first order, at the next order the

correct size becomes lR. Not only the length, we have to correct the chemical potential as

well, remember the chemical potential is zero at the first order. Other (extensive) thermo-

dynamic quantities depend on the length, so these also get redefined once the size becomes

lR. But, are these corrections quantum in nature? In AdS/CFT we deal with boundary CFT

which is a strongly coupled quantum theory. Since we are expanding around pure AdS

(describing CFT ground state), the small excitations of the CFT above the ground state will
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necessarily be ”quantum” in nature. These excitations for small subsystem are controlled

by the smallness of the ratio Tth
TE

or by the turning point to horizon ratio z̄∗
z0

. For example,

in d = 4 case, the dimensionless ratio

z̄4
∗
z4

0

∝ g4
YM
l4ε0 '

l4λ2ε0
n2

(2.57)

where ε0 denotes energy density of the excitations. Thus the corrections to various entan-

glement quantities are quantum in nature and depend on perturbative Yang-Mills coupling

constant g
YM

(or the ’t Hooft coupling λ ∼ g2
YM
n).

Remarks for AdS4, AdS5 and AdS7:

We note that the parameter p, q, s in (2.41) are positive definite but smaller than one in

string/M-theory cases with d = 3, 4 and d = 6. Also the two Beta-function ratios, b1
2b0

and

a2
2a1

, are both positive definite and generally smaller than one. The eq.(2.48) implies that

entanglement chemical potential is positive definite for these conformal cases. Although

the result in (2.48) is applicable for any d dimensions, but for d > 6, the parameter q

changes sign, hence the chemical potential µ∗ will also change sign for d > 6. This is a

surprising result, but it simply may be an indication of the fact that we are going beyond

the realm of applicability of string/M-theory.
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CHAPTER 3

ENTANGLEMENT ASYMMETRY FOR

BOOSTED BLACK BRANES AND THE

BOUND

3.1 Introduction

In this chapter we extend our perturbative approach to study the asymmetry in the change

in entanglement entropy along various directions of the CFT. We find that the boosted black

branes give rise to an asymmetry in the entanglement first law. We study two types of strip

subsystems one parallel to the boost and the other perpendicular to the boost direction.

There is difference in the ‘entanglement pressure’ in two cases such that 4P⊥ ≤ 4P‖.

We find that primarily the entanglement pressure is responsible for the differences in the

entanglement entropies,4S⊥ ≥ 4S‖, in the two cases. The entanglement asymmetry may
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be quantified as a dimensionless ratio

A ≡
4S⊥ −4S‖
4S⊥ +4S‖

=
β2γ2

(2 + d+3
d−1

β2γ2)
≤ d− 1

d+ 3

We find that the asymmetry depends only on boost and it is bounded from above. The

bound is saturated only for the AdS-wave background, which is the case involving infinite

boosts. To obtain these results we resort to a perturbative calculation of the entanglement

entropy up to first order, where the ratio l
z0

, of the strip width (l) to the horizon size (z0), is

kept very small.

3.2 Entanglement from boosted black-branes

The boosted AdSd+1 backgrounds we are interested are given by

ds2 =
L2

z2

(
−fdt

2

K
+K(dy − ω)2 + dx2

1 + · · ·+ dx2
d−2 +

dz2

f

)
(3.1)

with functions

f = 1− zd

zd0
, K = 1 + β2γ2 z

d

zd0
(3.2)

z = z0 is the horizon and 0 ≤ β ≤ 1 is boost parameter, while γ = 1√
1−β2

. The boost is

taken along y direction. The one-form

ω = β−1(1− 1

K
)dt (3.3)
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and L is the radius of curvature of AdS spacetime, which is taken very large in string length

units. 1

3.2.1 A thin (perpendicular) strip

We first study the entanglement entropy law for a subsystem on the boundary of theAdSd+1

backgrounds (3.1) where strip is perpendicular to the boost direction: the strip width is

−l/2 ≤ x1 ≤ l/2, while the boost is along y direction. Thus the steps in this section are

same as in our precious work [31]. We embed the (d− 1)-dimensional strip-like (constant

t surface) inside the bulk geometry. The two boundaries of the extremal surface coincide

with the two ends of the interval 4x1. The size of the rest of the coordinates, 0 ≤ y ≤

ly, 0 ≤ xi ≤ li, is taken very large, such that ly, li � l. As per the Ryu-Takayanagi

prescription [6, 7] the entanglement entropy of the strip subsystem is given in terms of the

geometrical area of the extremal surface (constant time)

S⊥ ≡
[A]Strip
4Gd+1

=
Vd−2L

d−1

2Gd+1

∫ z∗

ε

dz

zd−1

√
K

√
1

f
+ (∂zx1)2 (3.4)

whereGd+1 is (d+1)-dimensional Newton’s constant (of bulk gravity) and Vd−2 ≡ lyl2l3 · · · ld−2

is the net spatial volume of the strip on the boundary. We will be mainly working for d > 2

here. In our notation z = ε ∼ 0 is the cut-off scale and z = z∗ is the turning point of

extremal surface. In the above area functional K(z), and f(z) are known functions, so

we only need to extremize for x1(z). After extremization the entanglement entropy for

1 For example, in the AdS5 × S5 near-horizon geometry of n coincident D3-branes, we shall have
L4 ≡ 2πg2YMn and the ’t Hooft coupling constant g2YMn� 1.
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perpendicular strip subsystem can be written as

S⊥ =
Vd−2L

d−1

2Gd+1

∫ z∗

ε

dz

zd−1

K
√
f
√
K −K∗( z

z∗
)2d−2

(3.5)

where K∗ ≡ K(z)|z=z∗ . The boundary value x1(0) = l/2 has the integral relation

l

2
=

∫ z∗

0

dz(
z

z∗
)d−1 1
√
f
√

K
K∗
− ( z

z∗
)2d−2

(3.6)

which relates l with the turning point z∗. The turning-point takes the mid-point value

x1(z∗) = 0 on the boundary.

When strip subsystem is a small the turning point will lie in the proximity of asymptotic

boundary region only (z∗ � z0). We can evaluate the entanglement entropy (3.5) by

expanding it around the AdS (i.e. treating pure AdS as a ground state). We take boost to

be finite such that
zd∗
zd0
� 1,

(βγ)2zd∗
zd0

� 1 (3.7)

is always maintained. In this limit we can estimate the entropy perturbatively. Under these

approximations, entanglement entropy contribution (above pure AdS) at first order is given

by (2)

4S⊥ = S⊥ − SAdS =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

(
d− 1

d+ 1
+ β2γ2

)
1

zd0
. (3.8)

The CFT energy and pressure can be obtained by expanding the bulk geometry (3.1) in

Fefferman-Graham coordinates valid near the boundary [24, 84, 85]. The energy of the
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excitations is given by

4E =
Ld−1Vd−2l

16πGd+1

(
d− 1

d
+ β2γ2)

d

zd0
(3.9)

The volume is Vd−2 ≡ lyl2 · · · ld−2. The pressure along y direction (parallel to the boost

direction) is

4P‖ = 4Py =
Ld−1d

16πGd+1

(
1

d
+ β2γ2)

1

zd0
(3.10)

while the pressure along all other xi’s (perpendicular to the boost direction) is identical and

is given by

4P⊥ =
Ld−1

16πGd+1

1

zd0
= 4P1 = 4P2 = · · · (3.11)

This pressure asymmetry is solely due to the boost. For example the pressure is more

along the y (boost) direction as compared to xi’s coordinates. Using (3.9) and (3.11) we

can express eq.(3.8) as

4S⊥ =
1

TE
(4E − d− 1

d+ 1
V⊥4P⊥) (3.12)

where V⊥ ≡ l[lyl2 · · · ld−2] is the net volume of the strip subsystem. The entanglement

temperature is given by

T⊥E =
(B( d

2d−2
, 1

2
))2

2(d− 1)B( 1
d−1

, 1
2
)

d

πl
. (3.13)

The temperature is inversely proportional to the width of strip. The equation (3.12) simply

describes the first law of entanglement thermodynamics [23,26]. Subtle changes will occur

in this expression when strip is taken along the boost.
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3.2.2 Strip along the boost

We now study the entanglement entropy of a strip subsystem such that its width is parallel

to the boost (flow) direction. That is, we take the boundaries of the extremal surface to

coincide with the two ends of 4y interval: −l/2 ≤ y ≤ l/2. The regulated size of rest of

the coordinates will be taken much larger 0 ≤ xi ≤ li, such that li � l (i = 1, 2, · · · , d−2).

It is important to note that we wish to embed the 4y interval, but since the boost is also

along y, both ‘time’ t(z) and y(z) would have to be embedded in the bulk in a covariant

manner [8]. So one has to be a bit cautious while working with stationary metric cases

[33] [27]. However, it can be explicitly shown that, in the perturbative expansion (for

small strips) to know the entropy only upto first order (next to the pure AdS), just taking

a constant t slice would suffice. The deviations in extremal surface geometry away from

the constant time slice will contribute only to the second order terms in the expansion. Our

aim in this work is to know only the first order terms in the expansions of z∗ and strip area.

Taking the constant time slice the entanglement entropy of the parallel strip becomes

S‖ =
Vd−2L

d−1

2Gd+1

∫ z∗

ε

dz

zd−1

√
1

f
+K(∂zy)2 (3.14)

where now Vd−2 ≡ l1l2 · · · ld−2 is the spatial volume. The identification of the extremal

strip boundary, y(0) = l/2, leads to the integral relation

l

2
=

∫ z∗

0

dz(
z

z∗
)d−1 1
√
fK
√

K
K∗
− ( z

z∗
)2d−2

(3.15)

which relates l with the turning point z∗ of the strip. The turning-point takes the mid-value

y(z∗) = 0. The final expression of the entanglement entropy for the strip subsystem parallel
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to the boost direction now becomes

S‖ =
Vd−2L

d−1

2Gd+1

∫ z∗

ε

dz

zd−1

√
K

√
f
√
K −K∗( z

z∗
)2d−2

(3.16)

Since the parallel system has not been covered in (2) let us provide some essential details

perturbative calculation here. In small strip cases, the equation (3.15) can be expanded

perturbatively upto first order as

l = 2z∗

(
b0 +

zd∗
2zd0

((1 +
2β2γ2

d− 1
)b1 −

β2γ2

d− 1
b0)

)
+ · · · (3.17)

where dots indicate terms of higher powers in ( z∗
z0

)d, and various coefficients are defined

earlier. From here keeping only up to first order the above equation implies

z∗ =
z̄∗

1 + z̄d∗
2zd0

((1 + 2β2γ2

d−1
) b1
b0
− β2γ2

d−1
)

(3.18)

where z̄∗ ≡ l
2b0

being the turning point of pure AdS having the same strip width as l.

Having obtained the turning point expansion, a similar expansion around pure AdS can

be made for the area functional also. Suppressing the details, after regularizing the area

integral (3.16), the net change in the area of parallel strip (above pure AdS value) comes

out to be

4A‖ =
a0z̄

2
∗

zd0
(
a1

a0

− (1− β2γ2)
b1

a0

) (3.19)

and thus corresponding change in the entropy for parallel strip becomes

4S‖ =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

(
d− 1

d+ 1
+

2

d+ 1
β2γ2

)
1

zd0
. (3.20)
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The equation (3.20) is complete expression up to the first order. The entanglement first law

for a strip along the flow becomes

4S‖ =
1

T
‖
E

(4E‖ −
d− 1

d+ 1
V‖4 P‖) (3.21)

where V‖ = lVd−2 = l[l1l2 · · · ld−2], and 4P‖ = 4Py is defined earlier. The temperature

is

T
‖
E =

b2
0

a1

d

πl
= T⊥E . (3.22)

We note that the two temperatures remain the same but the entanglement entropies differ

significantly. We now go on to find this asymmetry.

3.3 Entanglement asymmetry and the bound

Following from previous section, with out any loss of generality we can always take the

volume of the strip subsystems to be equal

V‖ = V⊥ = l.Vd−2. (3.23)

This only means that regulated size of the boxes is kept the same in both the cases, along

with the strip width l. It implies that

T
‖
E = T⊥E , 4 E‖ = 4E⊥. (3.24)
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Comparing the two types of entropy results, the difference is given by

4S⊥ −4S‖ =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

(
d− 1

d+ 1
β2γ2

)
1

zd0

=
d− 1

d+ 1
V(4P‖ −4P⊥) . (3.25)

The right hand side is a positive definite expression. Hence we can deduce that entan-

glement entropy is more for a perpendicular strip subsystem as compared to the parallel

set-up, even though the energy of excitations and entanglement temperatures remain the

same for both. The key to this entropy enhancement effect,

4 S⊥ ≥ 4S‖ (3.26)

can directly be alluded to unequal entanglement pressure;

4P⊥ ≤ 4P‖. (3.27)

Thus more energy is consumed by the excitations in the parallel strip (due to an increased

pressure) as compared to the perpendicular strip (having a low pressure along the strip).

This suggests that in the boundary CFT ‘pressure’ plays a vital role in determining the

entanglement entropy of the subsytems. The equation (3.25) also implies that, up to first

order, the net difference of the entanglement entropies is

S⊥ − S‖ =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

(
d− 1

d+ 1
β2γ2

)
1

zd0
(3.28)

Thus the entropy asymmetry coexists with pressure asymmetry in the CFT.

67



We can now define the entanglement asymmetry as a ratio

A ≡
4S⊥ −4S‖
4S⊥ +4S‖

=
β2γ2

(2 + d+3
d−1

β2γ2)
(3.29)

Thus nonzero boost (β ≤ 1) will always induce entanglement asymmetry in the boundary

CFT. The asymmetry will however vanishes for β = 0. Note that these results have been

derived in the perturbative regime described in (3.7) only up to first order. We also learn

that the asymmetry will always be bounded. In the above the bound is saturated only in the

large boost limit, which we shall discuss in the next section.

We could however define an entanglement entropy ratio as

R ≡
4S‖
4S⊥

=
1 + 2

d−1
β2γ2

1 + d+1
d−1

β2γ2
≥ 2

d+ 1
(3.30)

a quantity which depends on the boost only and is devoid of external factors like shape and

size. Then

A ≡ 1−R
1 +R

≤ d− 1

d+ 3
. (3.31)

We shall show that the bound is saturated in the case of AdS-wave in the next section. The

maximum valueR can take is one for which entanglement asymmetry vanishes.

3.3.1 β → 1, z0 →∞ limit (pressureless system)

In present examples the pressure in the CFTd can be controlled by regulating the boost. We

now show that there exists a simultaneous double limit in which the pressure asymmetry

of the CFT excitations becomes optimal. We take a double limit β → 1, z0 →∞, keeping
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the ratio
β2γ2

zd0
=

1

zdI
= Fixed . (3.32)

These double limits has previously been explored in [86, 87] in connection with Lifshitz

type backgrounds from black Dp branes (in lightcone coordinates). Under these limits the

bulk geometry (3.1) reduces to the following AdS-wave background

ds2 =
L2

z2

(
−K−1dt2 +K(dy − (1−K−1)dt)2 + dx2

1 + · · ·+ dx2
d−2 + dz2

)
(3.33)

with the new function K = 1 + zd

zdI
, where z = zI is an scale which determines momentum

of the wave traveling in the y direction. (The entanglement of strip systems for AdS-

waves has previously been explored by [88] also.) For this background the energy of the

excitations in the CFT becomes (following from (3.9))

4E =
Ld−1Vd−2l

16πGd+1

d

zdI
(3.34)

The pressure along the wave (y) direction becomes using (3.11)

4P‖ = 4Py =
Ld−1d

16πGd+1

1

zdI
(3.35)

while the pressure along all xi’s (perpendicular to the wave direction) identically vanishes

4P⊥ = 0 (3.36)

69



in the boundary CFTd, which is a conformal theory with traceless energy-momentum ten-

sor.

The double limits (3.32) can also be directly employed on the entropy results obtained

in the previous section, provided we maintain zd∗
zdI
� 1. Employing the limits on the entropy

expressions in eqs. (3.8) and (3.20), it gives us

4S⊥ =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

1

zdI
=

1

TE
(4E) (3.37)

while

4S‖ =
Ld−1Vd−2

16Gd+1

a1l
2

b2
0

(
2

d+ 1

)
1

zdI
=

1

TE
(4E − d− 1

d+ 1
V 4 P‖) (3.38)

The width l is kept the same in both cases as well as the transverse volumes. Hence entan-

glement temperatures, TE =
b20
a1

d
πl

, and4E , remain the same for both the cases. Particularly

in the former case there is no entanglement pressure along the strip (x1 direction). As no

‘entanglement work’ seems to have been done by the excitations due to vanishing pressure

(∆P⊥ = 0), the entropy remains maximal in the perpendicular direction. While in the latter

case there is finite pressure (∆P‖ 6= 0) along the strip width, so finite energy is consumed

by the excitations to work against the pressure as they take part in the entanglement. Thus

the work done against entanglement pressure costs finite energy which essentially leads to

a reduction in the net entanglement entropy in direction parallel to propagation of the wave.

From equations (3.37) and (3.38) for the AdS-wave case the ratio becomes

Rwave =
4S‖
4S⊥

=
2

d+ 1
. (3.39)

This is a remarkable relation and is identical to one in (3.30). It remains true at the linear
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order in perturbation (over and above the AdS background). At the higher orders in zd∗
zdI

expansion this result might change. The entanglement asymmetry becomes

Awave ≡
4S⊥ −4S‖
4S⊥ +4S‖

=
d− 1

d+ 3
. (3.40)

The asymmetry has optimal value and is universal in nature. The relations (3.39) and (3.40)

are applicable only when d > 2, because for d = 2 (i.e. AdS3-wave) the analogue of4S⊥

does not exist, but the form of entanglement first law as in (3.38) for parallel strip does

hold good.

3.4 Non-conformal boosted black D-branes

The conformal cases of AdS geometries which are near horizon geometries of D3 and

M2/M5 branes are covered in the previous section. In this section we wish to extend

entanglement asymmetry analysis to the nonconformal Dp brane backgrounds [89]. We

are interested in the boosted Dp-brane geometry so that suitable asymmetry is generated.

These nonconformal backgrounds can be written as

ds2 = geff

[
− f

z2K
dt2 +

K

z2
(dy − ω)2 +

dx2
2 + · · ·+ dx2

p

z2
+

4

(5− p)2

dz2

z2f
+ dΩ2

8−p

]
eφ =

(2π)2−p

dpN
g

7−p
2

eff (3.41)

along with appropriate F(p+2) form Ramond-Ramond flux. The strength of the string cou-

pling depends on effective YM coupling geff = (λpz
3−p)

1
5−p and the functions are defined
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as

f = 1− zp̃

zp̃0
, K = 1 + β2γ2 z

p̃

zp̃0

ω = β−1(1− 1

K
)dt (3.42)

with z = z0 being the location of horizon and 0 ≤ β ≤ 1 is the boost. The boost is

taken along the y direction and geometry along brane directions has asymmetry. The new

parameters are defined as

λp ≡ dpg
2
YMN, p̃ =

14− 2p

5− p
(3.43)

where dp is a fixed normalization factor for a given p brane (The exact expression will not

be needed here but it can be found out in [89]). The parameter λp is essentially the ’t Hooft

coupling constant and it controls the curvature of spacetime which is to be taken small in

string length units (ls = 1) and for which N is taken to be large enough. The boosted

geometry (3.41) is conformally AdSp+2 × S8−p, a near-horizon geometry of N coincident

Dp-branes. Only for p = 3 case the geometry becomes conformal and is discussed earlier.

We are discussing the asymmetry cases for that we need p = 2 or p = 4, for them at least

two asymmetric brane directions are available.

3.4.1 Entropy of thin strips

We first consider a thin strip in a perpendicular direction to the boost, say x2. The Ryu-

Takayanagi entropy functional for a strip embedded in the bulk geometry (3.41) is given

by
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S⊥ =
Vp−1Θ8−pQp

2GN

∫ z∗

ε

dz

zp̃−1

√
K

√
4

(5− p)2

1

f
+ (∂zx2)2

=
Vp−1Θ8−p

2GN

2Qp

5− p

∫ z∗

ε

dz

zp̃−1

√
K

√
1

f
+ (∂zx̄2)2 (3.44)

where Qp ≡
(2π)2p−4

√
λp̃p

g4
YM

while Θ8−p is the volume of unit radius S8−p and GN is the 10-

dimensional Newton’s. We shall consider a small legth interval − l
2
≤ x̄2 ≤ l

2
, but due to

the scaling x2 = 2
5−p x̄2 in eq.(3.44) the actual width of the strip is 2l

5−p . One can see that

the integrand in the second line in (3.44) is strikingly same as that for the conformal case

discussed earlier, except that parameter p̃ can take fractional values. (For example, for D2-

branes p̃ = 10
3

, but for D4-branes p̃ = 6.) So the rest of the calculations is straight forward:

Extremizing the area and making a perturbative expansion keeping the ratio l
z0
< 1, as in

previous sections. Avoiding the unnecessary details we quote the result from eq.(3.8). The

entanglement entropy of the excitations above the extremality is

4S⊥ =
Vp−1Θ8−p

16GN

2Qp

5− p
ã1l

2

b̃2
0

(
p̃− 1

p̃+ 1
+ β2γ2

)
1

zd0
(3.45)

where new beta functions are given as b̃0 ≡ 1
2(p̃−1)

B( p̃
2p̃−2

, 1
2
)) and ã1 ≡ 1

2(p̃−1)
B( 1

p̃−1
, 1

2
).

We come to conclusion that the entropy of excitations in a nonconformal (p+1)-dimensional

theory at the first order can be written as

4S⊥ =
1

T⊥E
(4E − p̃− 1

p̃+ 1
V⊥4P⊥) (3.46)
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where V⊥ = 2
5−p lVp−1 is the net volume of the strip subsystem, while the energy and

pressure expressions are in appendix. The entanglement temperature is defined by

T⊥E =
(B( p̃

2p̃−2
, 1

2
))2

2(p̃− 1)B( 1
p̃−1

, 1
2
)

(7− p)
πl

. (3.47)

The temperature is inversely proportional to the width of strip. But compared to the law in

(3.12) subtle changes have occured in the pressure term in (3.46). Namely the coefficient

p̃−1
p̃+1

in (3.46) is different from the ratio d−1
d+1

which appears in (3.12). (Note d takes only

integer values and is directly correlated with the dimensionality of AdSd+1. This cannot

be said about p̃.) Let us comment here that for unboosted nonconformal D-brane case

the result (3.46) was first obtained in [30]. So it is interesting to observe that the form of

first law with boost excitations remains the same as in unboosted case [30], although all

physical quantities have themselves got changed.

In the next we consider an strip interval in the direction parallel to the boost, i.e. along

y direction. The entropy functional is given by

S‖ =
Vp−1Θ8−p

2GNg4
YM

2Qp

5− p

∫ z∗

ε

dz

zp̃−1

√
1

f
+K(∂zȳ)2 (3.48)

where now Vp−1 is regulated volume of all the xi coordinates. We have scaled y = 2
5−p ȳ and

taken the width to be −l/2 ≤ ȳ ≤ l/2. As usual extremizing the strip area and expanding

up to first order in the ratio l/z0 � 1, we come to conclusion that the entropy of excitations

above extremality for a parallel strip follows the law

4S‖ =
1

T
‖
E

(4E − p̃− 1

p̃+ 1
V‖4P‖) (3.49)

where V‖ = 2l
5−pVp−1 is the net volume of the parallel strip subsystem. Since we have kept
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the same strip width 2l
5−p in both the situations, the entanglement temperature are identical

T
‖
E = T⊥E (3.50)

Now if we set V‖ = V⊥, the excitation energies can also be made same,4E‖ = 4E⊥, how-

ever the entanglement pressures do always differ. We calculate the entanglement asymme-

try, in the same way as (3.29),

Anonconf ≡
4S⊥ −4S‖
4S⊥ +4S‖

=
β2γ2

(2 + p̃+3
p̃−1

β2γ2)
≤ p̃− 1

p̃+ 3
. (3.51)

As discussed in the conformal case, the bound gets saturated only in the case of Dp-branes

having wave like excitations at zero temperature. For this we need to employ the same

double limits β → 1, z0 →∞, given in (3.32), on the geometry (3.41). Thus for noncon-

formal D-branes with a wave we obtain the asymmetry ratio as

Awave ≡
p̃− 1

p̃+ 3
. (3.52)

In conclusion, our results assign maximum entanglement entropy asymmetry to the

wave like excitations in a zero temperature CFT. The results can be understood as we now

elaborate. The wave like excitations in the CFT at zero temperature generate finite entan-

glement pressure along the direction of propagation of the wave, while the pressure re-

mains vanishing in all other (transverse) directions. When we switch on finite temperature

in the CFT (holographically including black hole in the bulk geometry) some entangle-

ment pressure gets distributed along the transverse directions also. This finite temperature

phenomenon reduces the net entanglement entropy asymmetry for the excitations. In the

absence of a wave altogether the pressure becomes identical in all directions of the branes
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and hence entanglement asymmetry would also vanish. Hence the asymmetry in entangle-

ment entropy will necessarily exist if there are uniform wave like excitations or a uniform

flow in the CFT. The asymmetry only gets amplified as temperature goes to vanishing val-

ues.

3.5 Conclusion

It has been shown that the entanglement pressure plays a significant role in determining

the entanglement entropy for the strip subsystems in the CFT living on the boundary of

AdSd+1 spacetime. There is an entropy asymmetry along various directions of the CFT if

their exists a pressure asymmetry. Besides the entropy asymmetry is directly proportional

to the pressure asymmetry. To quantify this we have determined entanglement asymmetry

ratio

A ≡
4S⊥ −4S‖
4S⊥ +4S‖

=
β2γ2

(2 + d+3
d−1

β2γ2)
≤ d− 1

d+ 3
(3.53)

which depends only on the boost parameter β and it is bounded. Interestingly the bound

is saturated in the large boost limit (β → 1, z0 → ∞) only (3.32). Thus a nonzero boost

is simply a measure of the entanglement asymmetry. We have discussed a large boost

case which is the AdS-wave case. Especially for the AdS waves there exist an optimum

entanglement asymmetry

Awave =
d− 1

d+ 3
(3.54)

which is a universal result at the first order in perturbation analysis. It is independent of

any scale such as energy of wave like excitations ∝ 1
zdI

. We expect these results will get

corrected by higher orders of perturbation.
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In the nonconformal D-branes cases the result gets slightly modified

Anonconf =
β2γ2

(2 + p̃+3
p̃−1

β2γ2)
≤ p̃− 1

p̃+ 3
. (3.55)
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CHAPTER 4

GENERALIZED GEODESIC DEVIATION

EQUATIONS AND ENTANGLEMENT FIRST

LAW FOR ROTATING BTZ BLACK HOLES

4.1 Introduction

In the previous two chapters we adopted a perturbative approach to calculate holographic

entanglement entropy. Using this approach we calculated the entanglement entropy for

a strip like subsystem embedded in boosted AdS black brane background up to second

order. In this chapter we adopt a variational approach to calculate change in entanglement

entropy. For AdSd+1 the minimal surface γA are (d− 1) dimensional. The surface γA is an

extremum of the area functional

Area =

∫
dd−1σ

√
h, (4.1)
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where σ are the coordinates and hab is the induced metric on γA. Variation of the area

functional depends both on metric perturbations and variation of the minimal surface itself.

Change in HEE at each order can be obtained by subtracting the pure AdS contribution

from the variation of the area functional. At first order, contributions from changes in the

shape of the extremal surface does not appear as γA satisfies extremal condition on the

background AdS geometry [33, 34, 90].

In this chapter we propose a way to calculate second order variations of the area func-

tional by taking into account changes in both metric perturbation and shape of the extremal

surface in 2 + 1 dimension. This is achieved by studying geodesic deviations between

geodesics in rotating BTZ black hole ( seen as perturbation over pure AdS) and AdS3.

As will be clear from the construction these deviations can be obtained as solutions of a

“generalized geodesic deviation equation” ( [91] and references therein). Second order ex-

pressions for HEE obtained from variation of the area functional matches exactly with the

second order expansion of HEE obtained by HRT proposal. We also present an alternative

form of first law of entanglement thermodynamics which involves the differential change

in ∆S (d∆S for example) rather than ∆S itself. The modified first law includes contri-

butions from angular momentum of the BTZ background and approaches the first law of

black hole thermodynamics in large l (the subsystem size) limit.

It turns out that 2+1 dimensional gravity has no propagating degrees of freedom and

therefore exact analytical expressions for certain quantities can be found. This is precisely

the reason why 2+1 dimensional gravity can be written as Chern Simons theory. Chern

Simons is topological and therefore the solutions depend only on the topology of the un-

derlying manifold. From a geometric stand point the Weyl tensor identically vanishes in

3 dimensions and therefore the Riemann tensor is completely specified by the Ricci. As a

consequence the solutions of pure gravity with negative cosmological constant are neces-
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sarily locally isometric to pure AdS3. Despite this, there is still a rich set of solutions that

differ from AdS globally. One such solution is the rotating BTZ black hole [92]. Since

in the 2 + 1 dimensional case exact expressions for the change in entanglement entropy

and the minimal surface in BTZ is known, one might question the need of a perturabative

analysis. But it turns out that the 2 + 1 dimensional case is a perfect ground for checking

such proposals. It is to be noted that for higher dimensional case the change in entangle-

ment entropy might have to be calculated pertubatively and hence a precise prescription is

required. We should point out that the notion of “deviations” of codimension two surfaces

is well known for higher dimensions. Though algebraically difficult it is absolutely possi-

ble to find “generalized deviation equations” for codimension two surfaces for dimensions

4 or higher.

4.2 The generalized geodesic deviation equations

The generalized deviation equations have been known for quite some time, applications

of which in the case of perturbed cosmological spacetimes can be found in [91] (and

references therein) where perturbed null geodesics are studied for perturbations around

Einstein-De Sitter universe. In the holographic context generalized deviations of null

geodesics in AdS3 has been used, only recently, in [93] however in a very different con-

text from ours. In the holographic entanglement entropy context codimension two min-

imal surfaces in 2 + 1 dimensions are spacelike geodesics. It is clear that the space-

like geodesics in AdS3 anchored to the boundary subsystem are perturbed as one con-

siders excitations over AdS3. If we consider the variation of the area functional (HEE)

A(G,Xµ) =
∫ √

deth dnσ, where hab = gµν
∂Xµ

∂σa
∂Xν

∂σb
, the variation of the quantity is
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therefore,

A(G+ δG,Xµ + δXµ)− A(G,Xµ), (4.2)

where δXµ is the change of the embedding functions. To first order δXµ does not con-

tribute. The δXµ starts contributing only at second order. Therefore while considering sec-

ond order variations, perturbations of spacelike geodesics also contribute. These changes in

the embedding of the spacelike geodesics can be obtained by studying geodesic deviation

between AdS3 and the perturbed spacetime. To do this we use the following formulation.

4.2.1 First order generalized deviations

Consider an affinely parametrized geodesic parametrized by τ in a spacetime (M,
0
g) with

end points p, q εM.

d2xµ

dτ 2
+ Γµνρ(x)

dxν

dτ

dxρ

dτ
= 0, (4.3)

where
0

Γµνρ are the Christoffel symbols onM compatible with 0
g. Consider another space-

time (M′, g′). (M′, g′) is said to be a perturbation over (M,
0
g) if there exists a diffeomor-

phism ϕ : M→M′ such that ϕ∗g′ −
0
g =

(1)

h is a small perturbation over the unperturbed

metric 0
g. Let γ′ be a geodesic in M′ with parameter τ and end points ϕ(p), ϕ(q) εM′.

However it may not be affinely parametrized by τ . Let γ̃ be a curve in M such that

ϕ ◦ γ̃ = γ′. Therefore the tangent vector to γ′ inM′ is essentially the push forward of the

tangent vector of γ̃ inM (fig. 4.1). OnM, therefore γ̃ must satisfy,

d2x̃µ

dτ 2
+ Γ̃µνρ(x̃)

dx̃ν

dτ

dx̃ρ

dτ
= f(x̃)

dx̃µ

dτ
, (4.4)

81



Figure 4.1: The mapping of the geodesics

where Γ̃ are the Christoffels symbols on M compatible with ϕ∗g
′. Note that γ̃ is not

geodesic in M with respect to the initial Christoffels Γ. Let us assume that γ̃ is a small

deviation about the curve γ. Therefore to first order we can write x̃µ(τ) = xµ(τ) +
(1)

ηµ(τ).

We also note that to first order in metric perturbations,

Γ̃µνρ(x) =
0

Γµνρ(x) +
1

2
0
gµσ
(
∂ν

(1)

hρσ + ∂ρ
(1)

hνσ − ∂σ
(1)

hνρ

)
− 1

2

(1)

hµσ
(
∂ν

0
gρσ + ∂ρ

0
gνσ − ∂σ

0
gνρ
)

=
0

Γµνρ(x) +
(1)

Cµ
νρ(x) (4.5)
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Therefore to first order,

Γ̃µνρ(x̃) =
0

Γµνρ(x) +
(1)

Cµ
νρ(x) + ∂σ

0

Γµνρ(x)
(1)

ησ (4.6)

Subtracting the two geodesic equations give,

d2(1)ηµ

dτ 2
+ ∂σ

0

Γµνρ
(1)

ησ
dxν

dτ

dxρ

dτ
+

0

Γµνρ
dxρ

dτ

d
(1)

ην

dτ
+

0

Γµνρ
dxν

dτ

d
(1)

ηρ

dτ
= −

(1)

Cµ
νρ(x)

dxν

dτ

dxρ

dτ
+ ∂σf(x)

(1)

ησ
dxµ

dτ
(4.7)

and f
∣∣∣∣
γ

= 0, which essentially means that the initial curve is affinely parametrized. The left

hand side can now be identified as just the left hand side of the Jacobi equation. Therefore,

D2(1)ηµ

dτ 2
+Rµ

νρσ
dxν

dτ

dxσ

dτ

(1)

ηρ = −
(1)

Cµ
νρ(x)

dxν

dτ

dxρ

dτ
+ ∂σf(x)

(1)

ησ
dxµ

dτ
= F µ + ∂σf(x)

(1)

ησ
dxµ

dτ

Where D
dτ

is the covariant derivative along γ and Rµ
νρσ is the Riemann tensor w.r.t 0

g.

Therefore the resulting equation is an inhomogeneous deviation equation. Note that if
(1)

C is set the zero the resulting equation is just the deviation equation for a non-affinely

parametrized congruence of geodesics in a given space-time (no metric perturbations). To

solve this equation the best procedure is to consider a local basis eµ1 which is parallely prop-

agated along the initial geodesic and writing the deviation vector and the inhomogeneous

terms, in terms of the local basis i.e η(1)µ =
(1)

ηAeµA and F µ = FAeµA. For AdS3 background

which is maximally symmetric Rµνρλ = −(gµρgνλ − gνρgµλ) and therefore for space-like

geodesics, the equation reduces to,

d2(1)ηA

dτ 2
− (1)

ηA = FA for A=0,2 (4.8)

d2(1)ηA

dτ 2
− ∂Bf(x)

(1)

ηB = FA for A=1, B= 0 to 2, (4.9)
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where eµ1 = T µ is the tangent vector to the geodesic and ∂A = eµA∂µ. We have set the

radius of the AdS space to “one” here and in all subsequent calculations. Note that the

non affinity term enters only the equation for the component of the deviation vector in the

direction of the tangent vector. The equations for A = 0, 2 can obviously be solved and

the resulting solutions can be put in the equation for A = 1 to get a ordinary differential

equation for η1. However the equation for η1 cannot be solved due to presence of the

unknown function f(x). But we will see that we actually won’t be requiring a solution for

η1 for calculation of the variation of geodesic length. Note that unlike the original deviation

equation where the component of the deviation vector in the direction of the geodesic can

be set equal to zero, one may not be able to do the same here due to the inhomogeneous

term. More precisely, the deviation along a geodesic is pure gauge and can be removed by a

reparametrization of the geodesic. That is to say that the deviations along the geodesic does

not affect the length of the perturbed geodesic only if the perturbed curve is a geodesic of

the same space-time (M, g). However since in our case the perturbed curve is a geodesic

in some perturbed space-time (M, g′) these might actually become physical. But this does

not happen i.e the terms containing η1 still arise only as boundary terms evaluated at the

end-points of the geodesic (section 4.3). So the only requirement is that η1 vanishes at

the endpoint of the geodesic. This provokes us to think that possibly by a different choice

of gauge for the metric perturbations itself the in homogeneity F 1 can be removed. If

considers the foliation induced by these geodesics, then F 1 is just the trace of the extrinsic

curvature of these hypersurfaces. Therefore by choosing a maximal slicing condition (an

appropriate gauge) one can actually remove this term. In this case however we are bound

to work in Fefferman-Graham gauge which characterizes asymptotically AdS spacetimes,

otherwise one might end up choosing a gauge that is not compatible with asymptotically

AdS spacetimes. More precisely we might end up doing a gauge transformation of the
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metric which changes the boundary data (boundary metric or extrinsic curvature).

4.3 Variation of geodesic length

The calculation of the variation of the geodesic is prototypical of the case where there are

no metric perturbations. However to our knowledge the extra terms arising due to metric

perturbations have not been considered before. The action for a geodesic and the first

variations is given by

S =

∫ √
gµν

dxµ

dτ

dxν

dτ︸ ︷︷ ︸
G

dτ

δS =

∫
1

2
√
G

[
2gµν

dxµ

dτ

dδxν

dτ
+ δgµν

dxµ

dτ

dxν

dτ

]
dτ (4.10)

Note that G should not be confused with the gravitational constant. The geodesic equation

then follows,

δS =

∫
1

2
√
G

[
d

dτ

(
2gµν

dxµ

dτ
δxν
)
− 2

∂gµν
∂xρ

dxµ

dτ

dxρ

dτ
δxν

−2gµν
d2xµ

dτ 2
δxν +

∂gµν
∂xρ

dxµ

dτ

dxν

dτ
δxρ + δ̃gµν

dxµ

dτ

dxν

dτ

]
dτ (4.11)

On the back ground curve G can be set to one and therefore the geodesic equation follows

if metric perturbation is zero i.e,

−2
∂gµν
∂xρ

dxµ

dτ

dxρ

dτ
− 2gµν

d2xµ

dτ 2
+
∂gµρ
∂xν

dxµ

dτ

dxρ

dτ
= Gν = 0 (4.12)
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The second variation gives,

δ2S =

∫
1

2
√
G

2δgµν
dxµ

dτ

dδxν

dτ︸ ︷︷ ︸
I

+ 2gµν
dδxµ

dτ

dδxν

dτ︸ ︷︷ ︸
II

+ 2gµν
dxµ

dτ

dδ2xν

dτ︸ ︷︷ ︸
III

+ δ2gµν
dxµ

dτ

dxν

dτ︸ ︷︷ ︸
IV

+ 2δgµν
dxµ

dτ

dδxν

dτ︸ ︷︷ ︸
V

 dτ
−
∫

1

4G3/2

[
2gµν

dxµ

dτ

dδxν

dτ
+ δgµν

dxµ

dτ

dxν

dτ

]2

︸ ︷︷ ︸
V I

dτ (4.13)

To evaluate term IV we note the following,

δ2gµν = δ

(
∂gµν
∂xρ

δxρ + δ̃gµν

)
=

∂2gµν
∂xρ∂xσ

δxρδxσ︸ ︷︷ ︸
A

+2
∂δ̃gµν
∂xρ

δxρ︸ ︷︷ ︸
B

+
∂gµν
∂xρ

δ2xρ︸ ︷︷ ︸
C

+ δ̃2gµν︸ ︷︷ ︸
D

Note that IV C and term III together can be written as

∫
1

2
√
G

[
d

dτ

(
2gµν

dxµ

dτ
δ2xν

)
− 2

∂gµν
∂xρ

dxµ

dτ

dxρ

dτ
δ2xν

−2gµν
d2xµ

dτ 2
δ2xν +

∂gµν
∂xρ

dxµ

dτ

dxν

dτ
δ2xρ

]
dτ

which is nothing but,

∫
1

2
√
G

[
d

dτ

(
2gµν

dxµ

dτ
δ2xν

)
+Gνδ

2xν
]
dτ
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Term V I is just the square of the first variation and therefore can be written as

∫
1

2
√
G

[
d

dτ

(
2gµν

dxµ

dτ
δxν
)

+Gνδx
ν + δ̃gµν

dxµ

dτ

dxν

dτ

]2

dτ

Terms I and V together give

∫
4

2
√
G

[
d

dτ

(
δgµν

dxµ

dτ
δxν
)
− dδgµν

dτ

dxµ

dτ
δxν − δgµν

d2xµ

dτ 2
δxν
]
dτ

=

∫
4

2
√
G

[
d

dτ

(
δgµν

dxµ

dτ
δxν
)
− d

dτ

(
∂gµν
∂xρ

δxρ + δ̃gµν

)
dxµ

dτ
δxν − δgµν

d2xµ

dτ 2
δxν
]
dτ

=

∫
4

2
√
G

[
d

dτ

(
δgµν

dxµ

dτ
δxν
)
−
(
∂2gµν
∂xρ∂xσ

dxσ

dτ

dxµ

dτ
δxρδxν +

∂gµν
∂xρ

dδxρ

dτ

dxµ

dτ
δxν

+
∂δ̃gµν
∂xρ

dxρ

dτ

dxµ

dτ
δxν

)
−
(
∂gµν
∂xρ

δxρ + δ̃gµν

)
d2xµ

dτ 2
δxν

]
dτ

=

∫
4

2
√
G

 d

dτ

(
δgµν

dxµ

dτ
δxν
)
− ∂gµν

∂xρ
dδxρ

dτ

dxµ

dτ
δxν︸ ︷︷ ︸

F

− ∂2gµν
∂xρ∂xσ

dxσ

dτ

dxµ

dτ
δxρδxν︸ ︷︷ ︸

G

− ∂δ̃gµν
∂xρ

dxρ

dτ

dxµ

dτ
δxν︸ ︷︷ ︸

H

− ∂gµν
∂xρ

d2xµ

dτ 2
δxρδxν︸ ︷︷ ︸

J

−δ̃gµν
d2xµ

dτ 2
δxν

 dτ
(4.14)

Consider term II

∫
1

2
√
G

2gµν
dδxµ

dτ

dδxν

dτ
dτ

=

∫
1

2
√
G

 d

dτ

(
2gµν

dδxν

dτ
δxµ
)
− 2

∂gµν
∂xρ

dxρ

dτ

dδxν

dτ
δxµ︸ ︷︷ ︸

K

− 2gµν
d2δxν

dτ 2
δxµ︸ ︷︷ ︸

L
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Leaving the total derivative terms the other terms A,F,G, J,K, L give,

1

2
√
G

[
∂2gµν
∂xρ∂xσ

dxµ

dτ

dxν

dτ
δxρδxσ

]
︸ ︷︷ ︸

A

− 4

2
√
G

∂gµν
∂xρ

dδxρ

dτ

dxµ

dτ
δxν︸ ︷︷ ︸

F

+
∂2gµν
∂xρ∂xσ

dxσ

dτ

dxµ

dτ
δxρδxν︸ ︷︷ ︸

G

+
∂gµν
∂xρ

d2xµ

dτ 2
δxρδxν︸ ︷︷ ︸

J

− 1

2
√
G

2
∂gµν
∂xρ

dxρ

dτ

dδxν

dτ
δxµ︸ ︷︷ ︸

K

+ 2gµν
d2δxν

dτ 2
δxµ︸ ︷︷ ︸

L


(4.15)

which can be written as,

1

2
√
G

[
∂2gµν
∂xρ∂xσ

dxµ

dτ

dxν

dτ
δxρδxσ

]
︸ ︷︷ ︸

A

− 1

2
√
G

2
∂gµν
∂xρ

dxρ

dτ

dδxν

dτ
δxµ︸ ︷︷ ︸

K

+ 2gµν
d2δxν

dτ 2
δxµ︸ ︷︷ ︸

L



− 2

2
√
G

∂gµν
∂xρ

dδxρ

dτ

dxµ

dτ
δxν︸ ︷︷ ︸

F

+
∂2gµν
∂xρ∂xσ

dxσ

dτ

dxµ

dτ
δxρδxν︸ ︷︷ ︸

G

+
∂gµν
∂xρ

d2xµ

dτ 2
δxρδxν︸ ︷︷ ︸

J


− 2

2
√
G

[
d

dτ

(
∂gµν
∂xρ

dxµ

dτ
δxρ
)]
− 2

2
√
G

− ∂gµν
∂xρ

dδxν

dτ

dxµ

dτ
δxρ︸ ︷︷ ︸

F ′


Leaving the total derivative one can write this term as,

1

2
√
G

 ∂2gµν
∂xρ∂xσ

dxµ

dτ

dxν

dτ
δxρδxσ︸ ︷︷ ︸

A

−2
∂2gµν
∂xρ∂xσ

dxσ

dτ

dxµ

dτ
δxρδxν︸ ︷︷ ︸

G

−2
∂gµν
∂xρ

d2xµ

dτ 2
δxρδxν︸ ︷︷ ︸

J


− 1

2
√
G

2
∂gµν
∂xρ

dxρ

dτ

dδxν

dτ
δxµ︸ ︷︷ ︸

K

+2
∂gµν
∂xρ

dδxρ

dτ

dxµ

dτ
δxν︸ ︷︷ ︸

F

−2
∂gµν
∂xρ

dδxν

dτ

dxρ

dτ
δxν︸ ︷︷ ︸

F ′

+ 2gµν
d2δxν

dτ 2
δxµ︸ ︷︷ ︸

L



88



=
1

2
√
G

 ∂2gµν
∂xρ∂xσ

dxµ

dτ

dxν

dτ
δxρδxσ︸ ︷︷ ︸

A

− ∂2gµσ
∂xρ∂xν

dxν

dτ

dxµ

dτ
δxρδxσ︸ ︷︷ ︸

G

− ∂2gνσ
∂xρ∂xµ

dxµ

dτ

dxν

dτ
δxρδxσ︸ ︷︷ ︸

G

+2
∂gασ
∂xρ

Γαµν
dxµ

dτ

dxν

dτ
δxρδxσ︸ ︷︷ ︸

J


− 1

2
√
G

2
∂gµν
∂xρ

dxρ

dτ

dδxν

dτ
δxµ︸ ︷︷ ︸

K

+2
∂gµν
∂xρ

dδxρ

dτ

dxµ

dτ
δxν︸ ︷︷ ︸

F

−2
∂gµν
∂xρ

dδxν

dτ

dxρ

dτ
δxν︸ ︷︷ ︸

F ′

+ 2gµν
d2δxν

dτ 2
δxµ︸ ︷︷ ︸

L


=

1

2
√
G

[
−2gασ

∂Γαµν
∂xρ

dxµ

dτ

dxν

dτ
δxρδxσ − 2gασ

d2δxα

dτ 2
δxσ − 2gασΓαµν

dxµ

dτ

dδxν

dτ
δxσ

−2gασΓαµν
dδxµ

dτ

dxν

dτ
δxσ
]

=
1√
G
Cα
µν

dxµ

dτ

dxν

dτ
gασδx

σ

The δ̃gµν terms up to total derivatives give,

1√
G

[
∂δ̃gµν
∂xρ

δxρ
dxµ

dτ

dxν

dτ
− 2

∂δ̃gµν
∂xρ

dxρ

dτ

dxµ

dτ
δxν − 2δ̃gµν

d2xµ

dτ 2
δxν +

1

2
δ̃2gµν

dxµ

dτ

dxν

dτ

]

=
1√
G

[
−2Cα

µν

dxµ

dτ

dxν

dτ
+

1

2
δ̃2gµν

dxµ

dτ

dxν

dτ

]

The total variation is then given by,

δS =

∫
1

2

[
d

dτ

(
2gµν

dxµ

dτ
δxν
)

+ δ̃gµν
dxµ

dτ

dxν

dτ

]
dτ (4.16)

δ2S =

∫
1

2

[
d

dτ

(
2gµν

dδxν

dτ
δxµ
)]
−
∫ [

d

dτ

(
∂gµν
∂xρ

dxµ

dτ
δxρ
)]

+

∫
2

[
d

dτ

(
δgµν

dxµ

dτ
δxν
)]

+

∫
1

2

[
d

dτ

(
2gµν

dxµ

dτ
δ2xν

)]
dτ −

∫
1

4

[
d

dτ

(
2gµν

dxµ

dτ
δxν
)

+ δ̃gµν
dxµ

dτ

dxν

dτ

]2

dτ

+

∫ [
−Cα

µν

dxµ

dτ

dxν

dτ
gασδx

σ +
1

2
δ̃2gµν

dxµ

dτ

dxν

dτ

]
dτ (4.17)
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The final expression obtained is given by,

δS =

∫
1

2

[
(1)

hµν
dxµ

dτ

dxν

dτ

]
dτ (4.18)

δ2S = −
∫

1

4

[
d

dτ

(
2gµν

dxµ

dτ

(1)

ηµ

)
+

(1)

hµν
dxµ

dτ

dxν

dτ

]2

dτ

+

∫ − (1)

Cα
µν

dxµ

dτ

dxν

dτ

(1)

ηα︸ ︷︷ ︸
A

−∂σf(x)
(1)

η ση1 +
1

2

(2)

hµν
dxµ

dτ

dxν

dτ

 dτ (4.19)

As a final step we see that the second order variation is independent of η1. Note that the

square term in the above expression can be expanded to get two
(1)

η 1 dependent terms viz.,

−
∫ (d(1)η 1

dτ

)2

+
d
(1)

η 1

dτ

(1)

hµν
dxµ

dτ

dxν

dτ

 (4.20)

The above expression can be integrated by parts. Leaving a total derivative it gives−F1
(1)

η 1+

∂σf(x)
(1)

η σ(1)η 1 which essentially cancels the F1
(1)

η 1 coming from term A and −∂σf(x)
(1)

η σ(1)η 1

term in (4.19). The final expression for δ2S is given by,

δ2S = −
∫

1

4

[
(1)

hµν
dxµ

dτ

dxν

dτ

]2

dτ +

∫ [
FA (1)

ηA +
1

2

(2)

hµν
dxµ

dτ

dxν

dτ

]
dτ, (4.21)

where A is summed over 0 and 2.
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4.4 Solutions of “generalized deviation equation” for ro-

tating BTZ like perturbations about AdS3

Consider the AdS3 metric

ds2 =
dz2 − dt2 + dx2

z2
(4.22)

The equation for a spacelike geodesic of maximal length, parametrized by τ is then given

by

dx

dτ
=

z2

z
(0)
∗

(4.23)

dz

dτ
= ±z

√
1−

(
z

z
(0)
∗

)2

, (4.24)

where z(0)
∗ is the AdS turning point. Besides the plus sign denotes the half going into the

bulk and the minus sign denotes the half of the geodesic approaching the boundary. From

(4.24) we can obtain the size of the subsystem in terms of the AdS turning point

l = 2z(0)
∗

∫ 1

0

dk
k√

1− k2
= 2z(0)

∗ (4.25)

In order to calculate the integrals in the previous section we need both halves of the

geodesic. Though both halves of the geodesic are identical, except for a change in sign

of the velocity, the deviations may undergo non-trivial changes. To account for this we

continue the solution of the ingoing half of (4.24) to negative values of the affine parameter
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setting it equal to zero at the turning point. Hence the parameter τ ε (−∞,∞) now covers

the full geodesic. Therefore the full curve is now a map γ : (−∞,∞)→M. The solution

given by:

z(τ) = z(0)
∗ sech(τ), (4.26)

where we have fixed the constant of integration in such a way that τ = 0 at the turning

point. This solution can be substituted in (4.23) to get a solution x(τ).

The components of Cµ
νρ can be obtained with the expressions for h(1)

µν given in Ap-

pendix D. Note that,

(1)

hµν =


(r2++r2−)

2
0 −r+r−

0 0 0

−r+r− 0
(r2++r2−)

2


Denoting a =

(r2++r2−)

2
and b = −r+r−.

(1)

Ct
z t = −z a,

(1)

Cx
z t = z b,

(1)

Ct
t z = −z a,

(1)

Cx
t z = z b

(1)

Ct
x z = −z b,

(1)

Cx
x z = z a, Ct

z x = −z b,
(1)

Cx
z x = z a (4.27)

The tetrads that are parallely propagated along the geodesic are given by,

eµ0 = (z, 0, 0), eµ1 =

0,±z

√
1−

(
z

z
(0)
∗

)2

,
z2

z
(0)
∗

 , eµ2 =

0,
z2

z
(0)
∗
,∓z

√
1−

(
z

z
(0)
∗

)2

(4.28)

We therefore only need to solve the first two of the generalized geodesic equation. The first
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equation can be recast as ,

(η0)′′ − η0 − 2

z
(0)
∗

b z2 z′ = 0 (4.29)

We have removed the (1) superscript in
(1)

η in this section. All η’s in this section correspond

to first order deviation vector. A general solution of this equation is given by:

η0 = C1e
τ + C2e

−τ +
2z

(0)
∗

2
be−τ (−1− 2e2τ + 2e4τ + e6τ )

3(1 + e2τ )2
(4.30)

To deal with the pathological nature of the coordinates at z = 0, we will put the boundary

conditions η0(p) = η0(−p) = 0 for some cutoff p and take p → ∞ in the integrals. With

C1, C2 fixed in terms of p the final solution becomes,

η0 =
b

3
[− sech(p)2 sinh(τ) + sech(τ) tanh(τ)]z(0)

∗
2

(4.31)

The equation for η2 is,

(η2)′′ − η2 − 2

z
(0)
∗

a z z′2 = 0. (4.32)

Similarly as stated above the complete solution with proper boundary conditions is,

η2 =
8z

(0)
∗

2
a e4p+3τ [−(3 + cosh 4p) cosh 2τ + cosh 2p (3 + cosh 4τ)]

3(1 + e2p)4(1 + e2τ )3
(4.33)

To calculate the integrals in (4.18) and (4.21) we need an expression for
(2)

hµν which is ob-

tained from F −G expansion in (D).
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(2)

hµν
2

= z2


−(r2−−r2+)2

16
0 0

0 0 0

0 0
(r2−−r2+)2

16


and then taking the p→∞ gives,

δS =
2z

(0)
∗

2
a

3
=
l2(r2

+ + r2
−)

48G
(4.34)

δ2S = z(0)
∗

4
(
−1

4

(
32a2

35

)
+

(
8b2

45
− 8a2

63
− 4(b2 − a2)

15

))
= −4z

(0)
∗

4
(b2 + a2)

45

= − l4

720G

(
(r2

+ + r2
−)2 + 4r2

+r
2
−

4

)
(4.35)

Therefore the total change in entanglement entropy upto second order is,

∆SE =
1

4G

[
δS +

1

2
δ2S

]
=
l2(r2

+ + r2
−)

48G
− l4

1440G

(
(r2

+ + r2
−)2 + 4r2

+r
2
−

4

)
. (4.36)

In the next section we will verify this expression by deriving it from the expression of HEE

for rotating BTZ obtained by HRT proposal.

Note: It is important to note that when the perturbed metric is static there will be

no off diagonal htx like terms in the perturbation, and therefore the time component of the

deviation vector will be trivial. For example in the non rotating BTZ case r− → 0, r+ →M

i.e b = 0. Hence for non ‘rotating BTZ’ like perturbations the time component of the

deviation vector is zero. Hence the perturbed curve is still on a t = constant slice. Thus

the information regarding different proposals (viz RT and HRT) is already incorporated
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in the deviation vector and the perturbed metric. Hence both can be addressed using this

construction.

4.5 Entanglement First Law

It has been shown in [28] that the change in entanglement entropy (δSA) of a subregion

A, under a small perturbations of the density matrix ρ = ρ0 + δρ of a pure state in QFT,

satisfies a local first law of entanglement thermodynamics viz

δSA(x) = β0δEA. (4.37)

Where δEA = δ < T̂00 > V ol(A) is the excitation energy and β0 =
∫
A β(x)

V ol(A)
is the average

inverse entanglement temperature inside A. The density matrix for a mixed state at finite

temperature T and conserved charge Qa and chemical potential µa has the following form

ρ =
exp

(
− (H−µaQa)

T

)
Z

The first law gets modified to

δSA(x) = β0 (δEA − µaδQaA) . (4.38)

Where δQaA = δ < Qa > V ol(A). For rotating BTZ background corresponding density

matrix is given by

ρ =
exp− β (H − ΩJ)

Z
. (4.39)
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Where H and J are the Hamiltonian and angular momentum of the CFT and Ω is the

angular velocity (which is essentially a chemical potential for the conserved angular mo-

mentum). According to the above treatment a similar first law expression should also hold

with µa replaced with ΩA and QA replaced with JA.

Now we derive the entanglement first law for rotating BTZ geometry using the ex-

pression for HEE. Holographic entanglement entropy for rotating BTZ geometry is given

by [8]. A separate calculation for HEE in terms of geodesic length can be found in Ap-

pendix D.1

SE =
c

6
ln

(
β+β−
π2ε2

sinh

(
πl

β+

)
sinh

(
πl

β−

))
(4.40)

where β± = 2π
r+±r− are the inverse temperature for left and right moving modes and l is the

size of the subsystem in the dual CFT2. ε is the UV cutoff and c = 3
2G

is the central charge

of the dual CFT2 and G is the 3 dimensional Newton’s constant. The increase in HEE of

a subsystem of size l is obtained by subtracting it from pure AdS3 contribution given by

SAdS3 =
c

3
ln

(
l

ε

)
. (4.41)

For rotating BTZ geometry the increase in HEE of a subsystem of size l is given by

∆SE = SE − SAdS3 (4.42)

=
c

6
ln

(
β+β−
π2l2

sinh

(
πl

β+

)
sinh

(
πl

β−

))
.

The physical thermodynamic observables of the dual CFT2 can be obtained by ex-

panding the rotating BTZ geometry in suitable Fefferman-Graham (asymptotic) coordi-
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nates near the AdS boundary [24], given in the appendix D. These are summarized here.

The energy and angular momentum for the strip subsystem are

∆E =
1

8πG
l
(r2

+ + r2
−)

2
=

πl

8G

(
1

β2
+

+
1

β2
−

)
∆J =

1

8πG
l(r+r−) =

πl

8G

(
1

β2
−
− 1

β2
+

)
. (4.43)

The entanglement temperature has been defined in [23]. By the same argument one should

be able to define an entanglement angular velocity.

1

TE
=
∂(∆SE)

∂(∆E)

∣∣∣∣
l=fixed

,
ΩE

TE
=
∂(∆SE)

∂(∆J)

∣∣∣∣
l=fixed

(4.44)

Using eq. 4.42, 4.43 we get

1

TE
= −

(β2
+ + β2

−)− lπ(β+ coth πl
β+

+ β− coth πl
β−

)

2lπ
(4.45)

ΩE

TE
=
β2

+ − β2
− − lπ(β+ coth πl

β+
− lπβ− coth πl

β−
)

2lπ
(4.46)

Using these definition it is quite logical to write an alternative form of the first involving

differential changes in ∆S. This first law is valid upto all orders in subsystem size.

d(∆SE) =
1

TE
d(∆E)− ΩE

TE
d(∆J) (4.47)

In the above form ∆S must be interpreted as subtracting a ground state entropy (pure

AdS)from the entropy of the excited state. The differential changes d∆S are changes due

to changes of the excited state itself. Hence the first law relates the change in ∆S due to
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changes in the BTZ parameters.

In the case of black hole thermodynamics the change in the entropy of a black hole is

related to changes in the black hole parameters as one moves from one black hole solution

to another in the phase space of solutions. Hence the above first law is closer in spirit to

the first law for black hole thermodynamics. In fact we further show that it is this first law

that asymptotes to the first law for the BTZ black hole in the large system size limit. As

the derivatives don’t act on l, (4.47) can be written in terms of mass (M =
(r2++r2−)

8G
) and

angular momentum (J = r+r−
4G

) of rotating BTZ black hole as follows

d(
2Gπ∆SE

l
) =

1

TE
d(M)− ΩE

TE
d(J) (4.48)

Taking the large subsystem size l limit these quantities approaches their respective thermal

values

lim
l−→∞

2π∆SE
l

=
π2

2G

(
1

β+

+
1

β−

)
=
πr+

2G
(4.49)

lim
l−→∞

TE =
2

(β+ + β−)
=
r2

+ − r2
−

2πr+

(4.50)

lim
l−→∞

ΩE =
(β+ − β−)

(β+ + β−)
=
r−
r+

(4.51)

. Thus (4.48) approaches the first law of black hole thermodynamics in the large subsystem

size (l) limit. It is important to note that we have taken a planar limit of the BTZ black hole

geometry. Hence, we are calculating entropy density above as entropy is divergent in the

planar case.

In the small subsystem size limit πl
β±
� 1, we can expand entanglement temperature

98



and angular velocity up to second order in πl
β±

using (4.45)

1

TE
=
πl

3
− πl3

90

(
1

β2
+

+
1

β2
−

)
+ · · · (4.52)

ΩE =
π2l2

15

(
1

β2
−
− 1

β2
+

)
+ · · · . (4.53)

Thus at leading order the entanglement temperature is inversely proportional to the subsys-

tem size. The entanglement angular velocity at leading order is proportional to ( πl
β±

)2 these

contributions to the change in HEE appears only at second order and are due to second

order gravitational perturbation and first order perturbations of the extremal surface. De-

pendence of entanglement temperature and angular velocity on subsystem size is given in

fig(2) and fig(3). Note that perturbation of the entanglement temperature in CFT has been

discussed in [94] for example.

l

TE
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Figure 4.2: Plot of TE v.s ′l′ for dif-
ferent black hole temperatures. As
′l′ increases the temperature asymp-
totes to thermal value
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Figure 4.3: Plot of ΩE v.s ′l′ for
different blackhole angular velocity.
As ′l′ increases the angular velocity
asymptotes to thermal value

Similarly we can expand (4.42) in the small subsystem size limit πl
β±
� 1

∆SE = ∆S1 + ∆S2 =
l2(r2

+ + r2
−)

48G
− l4

1440G

(
(r2

+ + r2
−)2 + 4r2

+r
2
−

4

)
(4.54)
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It is important to note that this expression exactly matches with equation (4.36) reproduced

earlier by studying geodesic deviations.It is important to note that although full expression

for ∆S is known for rotating BTZ geometry, this is not the case for other backgrounds in

higher dimensions. In those cases expression for ∆S is obtained perturbatively. In (4.4)

we gave a prescription in 2 + 1 to calculate ∆S by accounting for first order changes in the

minimal surface and second order gravitational perturbations. Here we verify our result for

rotating BTZ case. Further in the large l limit the ratio 2π∆S
l

approaches the Bekenstein

Hawking entropy as shown in fig(4).

2 4 6 8 10

1

2

3

4

2Gπ∆SE

l

Sth = π2

Sth = 2π2

Sth = 3π2

l
Figure 4.4: Plot of 2Gπ∆SE

l
vs l for different Bekenstein Hawking entropy. As ′l′ increases

2Gπ∆SE
l

asymptotes to thermal value

Now at first order from (4.52) and (4.54) we can write the first law as

d(∆S1) =
1

T
(1)
E

d(∆E). (4.55)

Where T (1)
E = 3

πl
is the entanglement temperature at first order. Thus at first order (4.55)

can be integrated to give

∆S1 =
1

T
(1)
E

∆E. (4.56)
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Which is the entanglement first law obtained in [23, 95]. However at second order (4.47)

can not be integrated as TE also depends on details of excitation. Hence at second order

one can at most write an inequality

∆SE <
1

TE
∆E − ΩE

TE
∆J. (4.57)

It will be interesting to check whether if expression (4.57) resembles in spirit to the Beken-

stein bound for rotating bodies [96–98], or the Penrose inequality for axis symmetric space-

times [99, 100]. The QFT analogue of the Bekenstein bound for non rotating bodies was

holographically verified in [27].

4.6 Discussions

It has been shown that one can calculate the covariant change in HEE in 2 + 1 dimensions

by calculating the metric perturbation up to second order and solving for surface deviations

up to first order. Having obtained a covariant expression for the change in entanglement

entropy up to second order in the perturbation series, it will be interesting to check what

constraints Einstein’s equation (second order linearized Einstein’s equation to be precise)

puts on the dynamics of ∆S as done in [33, 34, 101]. Moreover one may attempt to follow

the procedure outlined in this chapter for time dependent perturbations overAdS3, the CFT

calculation of which has been per- formed in [102].

In the next chapter we will generalize this to higher dimensions. This would provide

one with a definite prescription for calculation of change in entanglement entropy in higher

dimension using a variational approach.
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CHAPTER 5

AN INHOMOGENEOUS JACOBI EQUATION

FOR MINIMAL SURFACES AND

PERTURBATIVE CHANGE IN

HOLOGRAPHIC ENTANGLEMENT

ENTROPY

5.1 Introduction

In this chapter we intend to generalize to higher dimensions, the covariant approach to

calculate change in holographic entanglement entropy presented in the previous chapter.

For static geometries the timelike Killing vector (∂t say) is hypersurface orthogonal in the

bulk geometry. It can then be shown that the extremal surface must lie on t = constant
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slice and can be shown to be minimal. Hence the proposal reduces to finding a minimal

surface on a constant time slice. The proposal, initially put forward by RT was precisely

this. However for non static cases, where the timelike killing vector is not hypersurface

orthogonal, or for dynamical geometries, where there is no time like Killing vector, γA

is no more minimal, and therefore RT proposal fails and one has to resort to the more

general HRT proposal. (In terms of nomenclature, in the mathematics literature, a minimal

surface refers to just the critical point of the area functional and may not correspond to

the minimum of the functional [103]. This is particularly the case in manifolds endowed

with a Semi-Riemannian metric. We will stick to the latter nomenclature and use extremal

and minimal interchangeably. Hence when we say minimal surfaces we actually mean

extremal surfaces of HRT) The equation obtained by extremizing the functional turns out to

be nothing but the condition that the trace of the extrinsic curvature of the surface vanishes.

The condition however yields non linear equations of motion for the embedding functions.

It therefore becomes difficult to solve these equations unless the back ground geometry is

highly symmetric. Consequently, though these equations for the embedding function can

be obtained exactly forAdS it becomes difficult to solve them exactly even for backgrounds

like the boosted black brane or the Kerr-AdS. One therefore considers doing a perturbation

by treating these backgrounds as perturbations over AdS, near the asymptotic boundary.

This imminently yields linear equations as the procedure involves a linearization of the

minimal surface equation.

The change in HEE between AdS and excitations over it can then be calculated by con-

sidering variation of the area functional which incorporates the changes due to the change

in the extremal surface γA and the perturbation of the bulk metric. At first order contri-

butions only come from metric perturbations alone, while the change of the embedding of

the extremal surface does not [33,34,90]. However at second order both first order change
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in the embeddings and second order metric perturbations contribute [29, 104–107]. In the

chapter (4) we proposed a way to calculate the contributions to second order variations

coming from the changes in the embedding, in 2 + 1 dimensions. This was achieved by

studying geodesic deviations between geodesics in rotating BTZ black hole (seen as per-

turbation over pure AdS) and pure AdS3. These deviations were obtained as solutions of

a “generalized geodesic deviation equation”. In this chapter we shall generalize this to ar-

bitrary dimensions. In order to do so one has to reproduce the above notion, but now for

minimal surfaces. Simplified cases for this deformation problem can be found in [108,109].

Study of minimal surfaces in Riemannian geometries has been extensively carried out

in the mathematics literature [103, 110]. In the entanglement entropy literature the plateau

problem for minimal surfaces has been studied in [13]. It is known that for surfaces embed-

ded in a a given Riemannian space the area functional of the embedded surface is stationary,

that is it’s first variation vanishes, when the embedded surface is minimal. Likewise when

the second variation is equated to zero it gives rise to the Jacobi equation for minimal sur-

faces [111]. The interpretation of the solutions of the Jacobi equation is the following. The

solutions of this equation gives the deviation between a minimal surface and a neighboring

minimal surface. In the physics literature the Jacobi equation has been studied in the con-

text of relativistic membranes [112] and spiky strings on a flat background [113]. However

this equation is relevant only when the metric of the ambient space is fixed.

In the context of the present work one needs to modify this notion. Note that in our case

one needs to study deviations between two surfaces which are minimal in two different

spacetimes. The spacetimes are however related by a perturbation and not completely

arbitrary. To begin with one has to ensure that all of the results obtained are manifestly

gauge invariant and therefore has to be careful and precise in defining perturbations in the

spirit of a covariant perturbation theory. We therefore adopt the notion introduced in [114]
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in the context of gravity. A priori, taking cue from the results obtained for geodesics one

then expects the Jacobi equation to be modified by appearance of an inhomogeneous term.

This indeed turns out to be case, as will be shown later. We also obtain an expression for

the change in the area functional, in arbitrary dimensions, upto second order.

Having obtained an equation that properly mimics the situation at hand, one needs

to demonstrate that the equations can indeed be solved, for the prescription to be of any

relevance. We therefore solve this equation in the 3 + 1 dimensional case for two choices

of the boundary subsystem 1) Spherical subsystem and 2) Thin strip subsystem. We do

this for Boosted black brane like perturbations over AdS4. Using the solutions of the

inhomogeneous Jacobi equation we obtain the change in HEE between AdS4 and boosted

black brane like perturbations over it.

5.2 Notations and conventions

Consider a d+ 1 dimensional space time (M, g) and another d+ 1 dimensional space time

(M′, g′) which is diffeomorphic toM. That is there is a differentiable map Φ :M→M′

which is however not isometric. We will call (M′, g′) to be a perturbation over (M, g) if
(1)

P = Φ∗g
′− g is a small perturbation over g. Consider a surface S isometrically embedded

inM and given by the function f : S → M. It is implied that the restriction of f to the

image of S is continuous and differentiable. In a local coordinate chart xµ onM and τa

on S the embedding can be represented by the embedding functions xµ ◦ f ◦ (τa)−1. This

can be simply written as xµ(τa). The induced metric on S is the pull back of the metric g

under the map f , given by h = f∗ g. Again, in the local coordinates this can be written as

hab = g(∂a, ∂b) = ∂xµ

∂τa
∂xν

∂τb
g(∂µ, ∂ν). The quantity ∂xµ

∂τa
∂µ is the push forward of the purely

tangential vector field ∂a to M. ‘hab’ is the first fundamental form on S. To define the
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second fundamental form one needs a connection or the covariant derivative onM. The

covariant derivative is a map∇ : TM⊗TM→ TM. For two vector fieldsW,Z ∈ TM

it is denoted as∇WZ and is an element of TM. Now suppose x ∈ S. One can decompose

the tangent space at the point x into the tangent space of S and the space of normal vectors

as TxM = TxS ⊕ T⊥x S . Then one defines the tangent bundle and normal bundle on S as⋃
x TxS and

⋃
x T
⊥
x S respectively. One can similarly define a covariant derivative on S.

Let it be denoted byD : TS⊗TS → TS. LetX, Y ∈ TS. Then the Gauss decomposition

allows us to write,

∇XY = DXY +K(X, Y ), (5.1)

where DXY is purely tangential and K(X, Y ) is a vector in the normal bundle and is the

extrinsic curvature or the second fundamental form. The metric compatibility of ∇ in this

notation is written as ∇Wg(V, U) = g(∇WU, V ) + g(U,∇WV ). The metric compatibility

of ∇ with g will imply metric compatibility of D with h, by virtue of the above equation.

One defines a connection∇⊥XN⊥ in the normal bundle as∇⊥ : TS ⊗T⊥S → T⊥S, where

X ∈ TS and N⊥ ∈ T⊥S. Then the shape operator WN⊥(X) is defined as,

∇XN
⊥ = ∇⊥XN⊥ −WN⊥(X). (5.2)

The shape operator and the extrinsic curvatures are related by the Weingarten equation,

g(WN⊥(X), Y ) = g(N⊥, K(X, Y )), (5.3)
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where X, Y ∈ TS and N⊥ ∈ T⊥S. The Riemann tensor is a map R : TM⊗ TM⊗

TM→ TM and is defined as,

R(W,U)V ≡ [∇W ,∇U ]V −∇[W,U ]V (5.4)

Similarly one can define an intrinsic Riemann tensor by,

R(X, Y )Z ≡ [DX , DY ]Z −D[X,Y ]Z (5.5)

We write down the equations of Gauss and Codazzi, in this notation. Let X, Y, Z,W ∈ TS

and N⊥ ∈ T⊥S. Then the Gauss equation is given as,

g(R(X, Y )Z,W ) = g(R(X, Y )Z,W )− g(K(X,Z), K(Y,W )) + g(K(X,W ), K(Y, Z)),

(5.6)

and the Codazzi equation as,

g(R(X, Y )N⊥, Z) = g((∇YK)(X,Z), N⊥)− g((∇XK)(Y, Z), N⊥) (5.7)

Now, we go over to notations involving perturbations. In the presence of perturbations a

variation will be assumed to have have two contributions, one which is a flow along a vector

N ∈ TM, obtained by taking a covariant derivative ∇N along N and another variation δg

which is purely due to metric perturbations. Since we will be doing all the calculations in

a coordinate chart in the unperturbed space time, let try to define certain quantities onM

arising due to the perturbations, i.e due to the difference in the two metrics g and Φ∗ g
′.
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The metric perturbation will be given by,

(δg g)(∂µ, ∂ν) ≡
[
Φ∗ g

′ − g
]
(∂µ, ∂ν) =

(1)

P (∂µ, ∂ν), (5.8)

where
(1)

P is a symmetric bilinear form on M. Note that δg only acts on the metric and

does not change the vector fields ∂µ. Now suppose there is a covariant derivative∇′ inM′

compatible with g′, then for X, Y ∈ TM,

C(X, Y ) ≡ δg

(
∇XY

)
= ∇̃XY −∇XY, (5.9)

where ∇̃ = φ∗∇′ is the pullback connection on M . Note that C(X, Y ) is a vector field in

M. When written in coordinates it has exactly the same form as
(1)

Cµ
νρ used in [35]. Since

we will not be dealing with perturbations of further higher order, we have dropped the

superscript(1).

We are now in a position to derive the inhomogeneous Jacobi equation for minimal

surfaces. For the display of some semblance with chapter (4), a rederivation of the inho-

mogeneous Jacobi equation for geodesics, in this notation, is given in Appendix E.

5.3 Derivation of the Inhomogeneous Jacobi equation for

surfaces

In the previous section we considered (M′, g′) to be a perturbation over (M, g). Let us

consider a one parameter family of such perturbed spacetimes (Mλ, gλ) and a one param-

eter family of diffeomorphism, which are not necessarily isometric, Φλ :M→Mλ such

thatM0 corresponds to the unperturbed spacetime and Φ0 is the identity map. Let Sλ be
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a family of co-dimension two minimal surfaces in (Mλ, gλ) i.e the trace of their extrinsic

curvatures vanishes. The surfaces can be parametrized by the embedding functions fµλ (τa),

which allows one to write the tracelessness condition as habλ K(λ)(∂a, ∂b) = 0. Note that one

would think that the coordinates τa may be different for different Sλ. But one can always

adjust the functions fµλ such that the surfaces can be coordinatised by the same intrinsic

coordinates. Let us construct a family of immersed submanifolds S̃λ inM0, given by the

embedding functions F µ
λ such that Φλ◦F µ

λ = fµλ . Let’s denote the deviation vector between

F µ
0 and the neighboring surface be denoted by N . Note that N can always be taken to be

normal to S̃0, as any tangent deviation will only result in a reparametrization of the intrinsic

coordinates τa and won’t change the area of the surface. This statement is however not ob-

vious in our case where we have metric perturbations. In this regard we take cue from the

calculation done in the case of geodesic ((4)). Since we have already removed the freedom

of intrinsic coordinate reparametrization, by adjusting the fλ’s, it is quite legitimate to take

normal variations only. Moreover since we will ultimately be interested in area change it is

sufficient for us to take normal variations only. Further N can always be chosen such that

it commutes with the vectors ∂a tangent to the submanifold i.e [N, ∂a] = 0 ∀ a.

The condition that Sλ’s are minimal in (Mλ, gλ) then reduces to a condition on N in

M0. At each order of the variation, the conditions are essentially inhomogeneous linear

differential equations that N must satisfy. The equation that one obtains at linear order is

the one we will be interested in, since the solutions of this will provide us with the linear

deformation of the minimal surface that we are seeking. As is evident, the equation can be

derived by equating the more general variation δN = ∇N + δg, discussed in section 5.2, of

the trace of the extrinsic curvature to zero i.e

δNHλ = habλ (δN(∇(λ)∂a∂b)
⊥) + (δNh

ab
λ )Kλ(∂a, ∂b) = 0. (5.10)

109



We will drop the λ subscript from here on, as the above variations will be calculated around

the unperturbed surface i.e at λ = 0. While dropping the λ’s surely will make the expres-

sions look cleaner, one has to make sure that the minimal surface equation be used only

after the derivatives have been computed. Let us first compute the first term of the above

expression which involves the normal component of the covariant derivative.

habδN(∇∂a∂b)
⊥ = hab

(
∇N(∇∂a∂b) + δg(∇∂a∂b)−∇N(∇∂a∂b)

T − δg(∇∂a∂b)
T

)

= hab

(
∇∂a∇∂bN +R(N, ∂a)∂b + C(∂a, ∂b)−∇N(∇∂a∂b)

T − δg(∇∂a∂b)
T

)
(5.11)

The action of the variation δN on any quantity Q on M0 is taken to be of the form

δN(Q) = ∇N(Q)+ δg(Q). This notation for variation has been adopted for convenience of

calculation. That this reproduces the correct result, can be seen from the derivation of the

inhomogeneous Jacobi equation, obtained by adopting this notation (appendix E.1). The

action of δg is precisely on the space of sections on a tensor bundle inMλ. If we represent

a flow onM0 and δg by two parameters then a priori these two parameters are completely

independent of each other, but for the perturbations to work one needs them to be equal.

How the parameter of the flow ∇N can be related to the parameter of the variation δg is a

mathematical issue the resolution of which we will leave for some future work. Adopting

the above, one obtains,

(δNh
ab)K(∂a, ∂b) = 2habK(∂a,WN(∂b))− hachbdK(∂a, ∂b)

(1)

P (∂c, ∂d) (5.12)
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Substituting (5.11),(5.12) in (5.10) we get

δNH = hab

(
∇∂a∇∂bN +R(N, ∂a)∂b + C(∂a, ∂b)−∇N(∇∂a∂b)

T − δP (∇∂a∂b)
T

)
(5.13)

+2habK(∂a,WN(∂b))− hachbdK(∂a, ∂b)
(1)

P (∂c, ∂d).

A similar exercise with the term habδN(∇∂a∂b)
T yield the following expression,

hab

[
(∇(∇∂a∂b)TN)⊥ + (∇∂a∇∂bN +R(N, ∂a)∂b + C(∂a, ∂b))

T + hcd
(1)

P (K(∂a, ∂b), ∂c)∂d

]
.

(5.14)

Substituting (5.14) in (5.13), we get a complete expression for δNH ,

δNH = hab

(
(∇∂a∇∂bN +R(N, ∂a)∂b + C(∂a, ∂b))

⊥ − (∇(∇∂a∂b)TN)⊥

)
− hcd

(1)

P (H, ∂c)∂d

(5.15)

+2habK(∂a,WN(∂b))− hachbdK(∂a, ∂b)
(1)

P (∂c, ∂d)

Noting that (∇∂a∇∂bN)⊥ = −K(∂a,WN(∂b))+∇⊥∂a∇
⊥
∂b
N , the above equation, along with

the minimality condition H = 0, can be recast in the following form, which is closer in

form to the expressions known in the literature of minimal surfaces.

δNH = ∆⊥N +Ric(N) + A(N) + C⊥ − H̃, (5.16)

where we have defined ∆⊥N to be the Laplacian on the normal bundle, given by hab
(
∇⊥∂a∇

⊥
∂b
N−

∇⊥(∇∂a∂b)TN
)

, g(R(N, ∂a)∂b, N) has been denoted byRic(N). A(N) = habK(∂a,WN(∂b))
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is the Simon’s operator whereasC⊥ is defined asC⊥ = habC(∂a, ∂b)
⊥ and H̃ =

(1)

P abK(∂a, ∂b).

Thus identifying the Jacobi/stability operator (L) for minimal surfaces as

LN = ∆⊥N +Ric(N) + A(N), (5.17)

we can rewrite (5.16) as

LN = −C⊥ + H̃. (5.18)

This is the inhomogeneous Jacobi equation. The solutions of this equation will provide us

with the deformation of a minimal surface under a perturbation of the ambient spacetime.

The inhomogeneous terms in the above equation, involves perturbation of the metric and

is the only term in the above equation that involves the perturbation. If there were no

perturbations the equation would have corresponded to the one describing a deviation of a

minimal surface to another minimal surface in the same spacetime (M0, g0). We will solve

for solutions of this equation for specific cases and substitute the result in an area variation

formula which we derive in the next section.

5.4 Variation of the Area functional

According to Hubeny, Rangamani, Takayanagi (HRT) proposal the area of a codimension

two spacelike extremal surface(γA) in AdSd+1 whose boundary coincides with the bound-

ary of subsystem A gives the entanglement entropy for this subsystem. Our goal therefore

would be to obtain the change in area of a minimal surface up to second order with the extra

constraint that the boundary of the surface remain unaltered i.e the deviations vanish at the
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boundary. At second order we will encounter terms which involve the deviation of the em-

bedding functions itself. It is here that we have to use the solutions of the inhomogeneous

Jacobi equation. The first variation of area of the minimal surface is given by,

δNA =

∫
dnτ

√
h

2
habδNhab = −

∫
dnτ
√
hg(N,H) +

1

2

∫
dnτ
√
hhab

(1)

P (∂a, ∂b)

+Surface terms. (5.19)

If the perturbations are set to zero then we get back the known expression for first variation

of area. In the presence of perturbations the on-shell expression can be obtained by setting

(H = 0).

δNA =
1

2

∫
dnτ
√
hhab

(1)

P (∂a, ∂b) (5.20)

The second variation of area is given by

δ
(2)
N A = −

∫
dnτ δN(

√
hg(N,H)) +

1

2

∫
dnτ δN(

√
hhab

(1)

P (∂a, ∂b)) + Surface terms

(5.21)

Note that since [N, ∂a] = 0 for all a, the variation of the surface term is again a surface

term. From the results of the previous section 5.3, the first term in the above expression

can be written in terms of the stability operator. Simplifying the second term requires a bit
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of algebra. Note that δN(
√
hhab

(1)

P (∂a, ∂b)) has the following expression,

√
hhab

(1)

P (∂a, ∂b)

(
−g(N,H) +

1

2
hcd

(1)

P (∂c, ∂d)

)
+ 2
√
hhachbdg(N,K(∂c, ∂d))

(1)

P (∂a, ∂b)

−
√
hhachbd

(1)

P (∂c, ∂d)
(1)

P (∂a, ∂b) +
√
hhab

[
2

(1)

P (∇∂aN, ∂b) + 2g(C(∂a, N), ∂b) +
(2)

P (∂a, ∂b)

]
(5.22)

Substituting the expression in (5.22) in (5.21) and using the conditions H = 0, δNH =

0, one arrives after a lengthy calculation at the following final expression for the second

variation of the area functional 1,

δ
(2)
N A =

1

4

∫
dnτ
√
hhab

(1)

P (∂a, ∂b)h
cd

(1)

P (∂c, ∂d) +

∫
dnτ
√
hhachbdg(N,K(∂c, ∂d))

(1)

P (∂a, ∂b)−
1

2

∫
dnτ
√
hhachbd

(1)

P (∂c, ∂d)
(1)

P (∂a, ∂b) +

∫
dnτ
√
hhab

1

2

(2)

P (∂a, ∂b)

−
∫
dnτ
√
hhabg(C(∂a, ∂b), N) + Surface terms, (5.23)

The appearance of surface terms in the above expression is not very crucial, at least

in the context of our current work. Since the boundary subsystem is kept fixed, while

the bulk metric is being perturbed, the boundary conditions on the deviation vector would

imply that it vanishes at the boundary. Thus change in area will have no contribution

from the boundary terms. If we started with a more general deviation vector which also

had components tangent to the immersed surface, then the only modification of the above

1where we have used the following two expressions,

(∇∂a
P )(N, ∂b) = g(C(∂a, ∂b), N) + g(C(∂a, N), ∂b)

∇∂a [
√
hhabP (N, ∂a)] =

√
hhab∇∂a

[P (N, ∂b)]−
√
hhabP (N, (∇∂a

∂b)
T )

.
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expression would have been through the appearance of more boundary terms. The bulk

contribution still would have arised from normal variations only.

5.5 Brief outline of steps involved in obtaining Area vari-

ation upto second order

Our goal is to provide a formalism to calculate a change in the area of an extremal surface

under changes of embedding and perturbation of metric. For the sake of brevity, all our

calculations will be done in 3 + 1 dimensions. But this can be easily generalized to higher

dimensions. In this section, we provide a brief outline of this formalism

1) Our first task is to take an asymptoticallyAdS metric (to be considered as a perturba-

tion overAdS) and identify the first and second order metric perturbations. In our case, this

is achieved by writing the boosted AdS black brane metric in the Fefferman Graham coor-

dinates, keeping up to second order (appendix F). From the first order metric perturbations
(1)

Pµν one can calculate the (1, 2) tensor.

Cµ
νρ =

1

2
gµσ
(
∂ν

(1)

Pρσ + ∂ρ
(1)

Pνσ − ∂σ
(1)

Pνρ

)
− 1

2

(1)

P µσ (∂νgρσ + ∂ρgνσ − ∂σgνρ) , (5.24)

where gµν is the unperturbed AdS4 metric. The tensor defined is nothing but C(X, Y )

written in a coordinate system, i.e C(∂ν , ∂ρ) = Cµ
νρ∂µ.

2) Next we choose a free boundary extremal surface inAdS4 [14]. We will consider two

cases A) half sphere inAdS4 which is the corresponding minimal surface for a circular disc

like subsystem and B) minimal surface corresponding to a thin strip boundary subsystem.

With these choices and the choice of the perturbed metric
(1)

P µν , we can now solve the

inhomogeneous Jacobi equation (5.18) and obtain the deviation vector (N ).
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3) First and second order change in the area can be obtained by substituting the values

of the deviation vector (N ), first order metric perturbation (
(1)

Pµν) and the second order

metric perturbation (
(2)

Pµν , C
µ
νρ) in the expression (5.23),(5.4) and integrating. From here the

total change in area upto second order can be obtained as,

∆A = ∆(1)A+
1

2
∆(2)A (5.25)

In the topic of the present chapter we have selected asymptotically AdS spacetime. But

this formalism can be easily applied to asymptotically flat case also. Here we have con-

sidered first order deviations of the extremal surface and second order metric perturbation

to calculate the change in area up to second order. To calculate the change in area up to

third order one need to consider second order deviation of the extremal surface and third

order metric perturbations. Second order deviation can be obtained by extending the inho-

mogeneous Jacobi equation up to second order. The form of second order inhomogeneous

Jacobi equation for geodesics can be found in [35]. Third order metric perturbation can be

obtained by keeping third order terms in the asymptotic(Fefferman Graham) metric.

5.6 Solutions of the inhomogeneous Jacobi equations and

change in area

Our choice of the asymptotic metric to be considered as a perturbation over AdS4 is the

Boosted AdS black brane metric written in the Fefferman Graham coordinates upto second

order. The CFT state dual to this bulk geometry is a thermal plasma which is uniformly

boosted along a certain direction and is characterized by a temperature T and boost β.

This choice of a stationary spacetime is made to elucidate that our formalism can be easily
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applied to both static and non static spacetimes and yields expected results for the non-static

case. The metric for AdS4 in Poincaré coordinates reads as

ds2 =
−dt2 + dx2 + dy2 + dz2

z2
(5.26)

for simplicity we have set the radius of AdS to one. Now we will solve the inhomogeneous

Jacobi equation and obtain an expression for the change in area for the case of two boundary

subsystems namely

5.6.1 Circular disk subsystem

In the case where the boundary subsystem is a circular disk of radius R, it is known that

the minimal surface in the AdSd+1 is a d− 1 dimensional hypersphere. The embedding of

such a surface in AdS4 is given by the following embedding functions [14, 34],

x = R sin θ cosφ+X, y = R sin θ sinφ+ Y, z = R cos θ, t = constant. (5.27)

The coordinates θ, φ are the coordinates intrinsic to the surface and have ranges, 0 ≤ θ ≤ π
2

and 0 ≤ φ < 2π. As is evident from the above expressions in eq.(5.27), the surface of

intersection of the half sphere with the AdS4 boundary is at θ = π
2
. The intrinsic metric

can be calculated via a pullback of the metric on the full space time and is given as,

ds2
induced = hab dx

adxb =
dθ2 + sin2 θdφ2

cos2 θ
(5.28)

To facilitate our calculation we will construct a local basis adapted to this surface. To start

with we first construct a local tangent basis. As is apparent from the expression for the
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induced metric, the tangent bases are,

e2 = cos θ∂θ, e3 = cot θ∂φ. (5.29)

Since the surface is purely spacelike, this set provides the space like bases for the full

spacetime. The set of basis vectors spanning the normal bundle will provide us with the

other two basis vectors. To obtain them we first lift the tangent vectors to the space time,

by using the embedding functions and then use the orthogonality relations. As a matter of

convention we mark the time like normal as e0 and the space like normal as e1.

e0 = z∂t, e1 =
z(x−X)

l
∂x +

z(y − Y )

l
∂y +

z2

l
∂z (5.30)

To completely specify the embedding one also needs to find the extrinsic curvatures and

the intrinsic connection. To do so we need to find the covariant derivatives between the

tangent vectors. They turn out to be,

∇e2e2 = 0, ∇e3e3 = −cosec θ e2, ∇e3e2 = cosec θ e3 (5.31)

which gives the following for the intrinsic connection and the extrinsic curvature.

De2e2 = 0, De3e3 = −cosec θ e2, De2e3 = 0, De2e2 = cosec θ e3, De2e2 = cosec θe3

K(e2, e2) = 0, K(e3, e3) = 0, K(e2, e3) = 0, K(e3, e2) = 0 (5.32)

The vanishing of the extrinsic curvature implies that the surface is totally geodesic i.e any

curve that is a geodesic on the surface is also a geodesic of the full spacetime. Recall that

the Jacobi equation involves the connection in the Normal bundle∇⊥, which can be found
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by calculating the covariant derivative of a normal vector along a tangent vector.

∇e2e0 = 0, ∇e3e0 = 0, ∇e2e1 = 0, ∇e3e1 = 0 (5.33)

From this one can read off the normal connection ∇⊥, using the Weingarten map. The

procedure involves expanding the normal connection as∇⊥eaeA = βBA (ea)eB (A, B denotes

an index for basis vectors in the normal bundle) and yields,

∇⊥e2e0 = β0
0(e2)e0 + β1

0(e2)e1 = 0, ∇⊥e3e0 = β0
0(e3)e0 + β1

0(e3)e1 = 0

∇⊥e2e1 = β0
1(e2)e0 + β1

1(e2)e1 = 0, ∇⊥e3e1 = β0
1(e3)e0 + β1

1(e3)e1 = 0. (5.34)

The vanishing of the β′s is equivalent to saying that the normal bundle is flat. Using

the above results, calculating the left hand side of the Jacobi equation is just a matter of

algebra. We expand the deviation vector in the normal basis as αA eA and find the following

equations for the αA.

cos2 θ∂2
θα

A + cos2 θ cot θ∂θα
A + cot2 θ∂2

φα
A − 2αA = FA, (5.35)

Where FA has been defined for compactness of the above expression and is given as in

FA = eAµ
(
C⊥µ + H̃µ

)
. Note that in this case the both the normal projections yield the

one and the same equation. The source of this symmetry can be traced back as due to

the symmetry of the embedding surface itself. Before proceeding to find solutions of the

above equation, we need to analyze the homogeneous equations. In other words we will

impose the boundary condition that the deviation vector is zero at the boundary and check

if this implies that the only solution of the ‘homogeneous’ piece of the above equation is

the trivial solution. As we will see, this knowledge would be helpful in our effort to obtain
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solutions of the ‘inhomogeneous’ equations. The homogeneous equation can be solved

by the method of separation of variables αA(θ, φ) = ΘA(θ) ΦA(φ). The equations then

become ordinary differential equations.

d2ΘA

dθ2
+ cot θ

dΘA

dθ
− (2 sec2 θ +m2cosec 2 θ)ΘA = 0 (5.36)

and the φ equation is,

d2ΦA

dφ2
+m2ΦA = 0 (5.37)

For the φ equation the boundary condition is of course the periodic one ΦA(φ + 2π) =

ΦA(φ), which restricts the values of m to integers only. The most general solution of this

equation is given by,

Θ = C1 cos2 θ(sin θ)m 2F1

(
1 +

m

2
,
3

2
+
m

2
;m+ 1; sin2 θ

)
+ C2 cos2 θ(sin θ)−m 2F1

(
1− m

2
,
3

2
− m

2
;−m+ 1; sin2 θ

)
(5.38)

Assuming the boundary condition Θ = 0 at θ = π
2

and demanding that the solution be

regular at θ = 0, one concludes that C1 = C2 = 0. To check this assume m to be positive

(Similar arguments would hold for m negative). Note that at θ = 0 the second solution

diverges since 2F1

(
1− m

2
, 3

2
− m

2
;−m+ 1; 0

)
= 1, while the sin−m(θ) term diverges. This

implies C2 must be set to zero. At θ = π
2

the first solution diverges. This can be argued

in the following way. Note that limz→1−
2F1

(
a,b;c;z

)
(1−z)c−a−b = Γ(c)Γ(a+b−c)

Γ(a)Γ(b)
for <(c − a − b) < 0.
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Writing the first solution as,

z
m
2

(1− z)
1
2

2F1

(
1 + m

2
, 3

2
+ m

2
;m+ 1; z

)
(1− z)−

3
2

, (5.39)

one can realize that solution is divergent at θ = π
2
. Hence C1 has to be set to zero. As

expected for homogeneous spaces the only solution is the trivial one.

Now we will solve the inhomogeneous equation. By substituting C ≡
(

1
3

+ β2γ2
)

1
z30

,

D ≡
(

1
3

)
1
z30

, B ≡ βγ2 1
z30

, and writing R3 ≡ R3

z30
, the inhomogeneous equation for e1 turns

out to be,

cos2 θ∂2
θα

1 + cos2 θ cot θ∂θα
1 + cot2 θ∂2

φα
1 − 2α1 = R3 cos4 θ

(
2

3
+ β2γ2

)
+

5R3 sin2 θ cos4 θ

6
+

5R3β2γ2 sin2 θ cos4 θ

4
+

5R3β2γ2 sin2 θ cos4 θ cos 2φ

4
,

(5.40)

and that for e0 reads,

cos2 θ∂2
θα

0 + cos2 θ cot θ∂θα
0 + cot2 θ∂2

φα
0 − 2α0 = 3βγ2R3 cos4 θ sin θ cosφ (5.41)

Let us consider the e1 equations first. Note that since the equation is linear one can find

the solutions for individual terms in the inhomogeneous piece separately. Let us therefore

consider the terms containing no function of φ.

∂2
θα

1 + cot θ∂θα
1 + cosec 2θ∂2

φα
1 − 2 sec2 θ α1 = R3 cos4 θ

(
2

3
+ β2γ2

)
+

5R3 sin2 θ cos4 θ

6
+

5R3 sin2 θ cos4 θβ2γ2

4
(5.42)
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Owing to the fact that the right hand side of this equation contains no function of φ the

only non trivial solution to this equation will come from m = 0. This can be understood

by taking a trial solution of the form
∑

m

(
gm(θ)eimφ + g−m(θ)e−imφ

)
. If one now lists the

equations for individual m′s, then only the m = 0 equation will have an inhomogeneous

term on the right hand side, while the other equations will be all homogeneous. But we

have already shown that the solutions of the homogeneous equations are trivial. Therefore

we only need to solve the m = 0 equation, which reads,

d2Θ1

dθ2
+ cot θ

dΘ1

dθ
− 2 sec2 θ Θ1 = R3 cos2 θ

(
2

3
+ β2γ2

)
+

5R3 sin2 θ cos2 θ

6
+

5R3 sin2 θ cos4 θβ2γ2

4
+

5R3 sin2 θ cos4 θβ2γ2 cos 2φ

4
,

(5.43)

The solution to this equation with the conditions that it is zero at θ = π
2

and regular at θ = 0

is given by,

Θ1 =
1

288
R3 cos2 θ

(
3β2γ2 + 2

)(
3 cos 2θ − 23

)

The other equation containing a cos 2φ is equivalent to solving the θ equation for m = 2.

∂2
θΘ

1 + cot θ∂θΘ
1 − 4 cosec 2θ Θ1 − 2 sec2 θ Θ1 =

5R3β2γ2 sin2 θ cos2 θ

4
, (5.44)

The solution to this equation with conditions as above yields,

Θ1 = − 1

64
R3β2γ2

(
sin 2θ

)2

(5.45)
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The full solution is then,

α1 =
1

288
R3 cos2 θ

(
3β2γ2 + 2

)(
3 cos 2θ − 23

)
− 1

64
R3β2γ2

(
sin 2θ

)2

cos 2φ

(5.46)

Now, we go over to the e0 equation. By similar arguments, one concludes that the only

contribution to the solution will come from m = 1 term. Therefore, the equation becomes,

∂2
θα

0 + cot θ∂θα
0 − cosec 2θ α0 − 2 sec2 θ α0 = 3βγ2R3 cos2 θ sin θ (5.47)

Along with the usual boundary conditions, the solution to this equation is,

α0 = −1

4
βγ2R3 sin θ cos2 θ cosφ (5.48)

The very fact that the solution of the above e0 equation is non trivial proves the fact that

the perturbed minimal surface ceases to be on a constant t slice as was initially the case

with the unperturbed minimal surface inAdS4 background. One can also check that setting

β = 0, which gives the static case of an AdS Black Brane, makes α0 vanish.

We are now in a position to calculate the change in area. We first calculate the first

order change in the area. As is known, at this order there is no contribution from deviations

of the minimal surface itself, and therefore at this order the change must match with that

obtained in [27]. The first order change in HEE(S) for the spherical entangling surface can

be extracted from eq.(5.4) and is given by,

∆(1)S =
1

4GN

∆(1)A =
1

8GN

∫
dd−1τ

√
hhab

(1)

P (∂a, ∂b) =
1

32GN

πR3
(
3β2γ2 + 2

) 1

z3
0
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The second order variation has contributions from various terms. The full expression is

given by eqn.(5.23),

∆(2)A =

∫
dd−1τ

√
h
(
habhcd

(1)

P (∂b, ∂d)g(N⊥, K(∂a, ∂c))− habg(C(∂a, ∂b), N
⊥)
)

+

∫
dd−1τ

√
h
[hab

2

(2)

P (∂a, ∂b)−
1

2
hachbd

(1)

P (∂a, ∂b)
(1)

P (∂c, ∂d) +
1

4
habhcd

(1)

P (∂c, ∂d)
(1)

P (∂a, ∂b)
]

(5.49)

Let us analyze the above equation. The last three terms in the above equation eq.(49) are

the terms coming purely from the bulk metric perturbations. The first and the second term

arise from changes due change in the embedding function itself. The N⊥ in the above

equation therefore has to be substituted with the solutions of the Jacobi equation obtained

before and then the integrals calculated. We therefore enumerate the results one by one.

Consider the last three terms in the above expression which do not involve the deviation

vector.

∫
dd−1τ

√
h
hab

2

(2)

P (∂a, ∂b) = − 1

105
πR6

(
6β2γ2 − 1

)
(5.50)

The next term is a product of two metric perturbations gives,

∫
dd−1τ

√
h

1

2
hachbd

(1)

P (∂a, ∂b)
(1)

P (∂c, ∂d) =
2πR6 (216β4γ4 + 147β2γ2 + 49)

2835
(5.51)

Finally the other term containing a product of two perturbations evaluates to,

∫
dd−1τ

√
h

1

4
habhcd

(1)

P (∂c, ∂d)
(1)

P (∂a, ∂b) =
2πR6 (108β4γ4 + 141β2γ2 + 47)

2835
(5.52)

124



Note that the contribution from the first term is zero owing to the fact that the extrinsic

curvature K(∂a, ∂b) is zero in this case of a spherical boundary subsystem. As we will see

later this term does give non zero contributions for the case of a strip subsystem. While

calculating the second term, the N⊥ contained in the term has to be substituted with the

solutions of the inhomogeneous stability equation. After substitution one obtains,

∫
dd−1τ

√
hhabg(C(∂a, ∂b), N

⊥) =
πR6 (459β4γ4 + β2 (81γ4 + 597γ2) + 199)

1890
(5.53)

The total second order Change in HEE is then given by,

∆(2)S =
1

4GN

∆(2)A = −πR6

4GN

(1809β4γ4 + 3β2 (81γ2 + 713) γ2 + 551)

5670

1

z6
0

(5.54)

This expression gives the second order change of HEE. Positivity of relative entropy be-

tween two states in the CFT demands that

∆H ≥ ∆S

Where H is the modular Hamiltonian for the spherical entangling surface, given in terms

of the boundary stress tensor. One can now check that the equality is satisfied at the first

order [27]. As the modular Hamiltonian remains unchanged at second order, positivity of

relative entropy demands that ∆(2)S ≤ 0 at second order. Our result eq (5.54) is therefore
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in agreement with this observation. The full expression for change of HEE is then given by

∆S = ∆(1)S +
1

2
∆(2)S

=
1

32GN

πR3
(
3β2γ2 + 2

) 1

z3
0

− πR6

8GN

(1809β4γ4 + 3β2 (81γ2 + 713) γ2 + 551)

5670

1

z6
0

(5.55)

the above expression gives the net change in HEE for spherical entangling surface upto

second order over pure AdS(ground state) value.

5.6.2 Thin Strip subsystem

We now consider a two dimensional strip like subsystem on the AdS4 boundary. The

subsystem is given by the region [−L,L]× [− l
2
, l

2
] of the x− y plane, where L � l. The

minimal surface corresponding to such a subsystem [14] is characterized by the following

embedding functions,

x = λ, y(θ) = −z∗E
(

(π − 2θ)

4
| 2
)
, z(θ) = z∗

√
sin θ, (5.56)

where z∗ is the turning point of the minimal surface in AdS4 and E(α, β) is the incomplete

elliptic integral of the second kind. Note that due to the condition L� l the effects of the

sides of the minimal surface can be neglected. The embedding function clearly reflects this

approximation. In intrinsic coordinates the metric takes the form

ds2
induced =

z∗
2dθ2 + 4 sin θdλ2

4z2
∗ sin θ2

, (5.57)
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the range of the coordinates being 0 ≤ θ ≤ π and −L ≤ λ ≤ L. Further the turning point

z∗ can be written in terms of the width l of the subsystem as z∗ =
Γ( 1

4
)l

2
√
πΓ( 3

4
)
. We also need

to calculate the extrinsic curvature and the connection in the normal bundle. We again use

a local tetrad adapted to the surface. The two spacelike bases are chosen such that they are

tangent to the embedded surface. In intrinsic coordinate, they have the form,

e2 = 2 sin θ∂θ, e3 = z∗
√

sin θ∂λ (5.58)

These are lifted to the full spacetime coordinates and then by using orthogonality relations

one can construct the bases which span the normal bundle.

e1 = z(sin θ∂z − cos θ∂y), e0 = z∂t (5.59)

The covariant derivatives of the normal vectors are given by,

∇e2e1 = sin θ e2, ∇e3e1 = − sin θ e3, ∇e2e0 = 0, ∇e3e0 = 0 (5.60)

From these one can read of the Weingarten maps and therefore the extrinsic curvatures,

We1(e2) = − sin θ e2, We1(e3) = sin θ e3, We0(e2) = 0, We0(e3) = 0 (5.61)

We are now in a position to calculate the left hand hand side of the Jacobi equation. We

expand the deviation vector as αA eA and then by using the above expressions we get,

4 sin2 θ ∂2
θα

1 + 2 sin θ cos θ ∂θα
1 + z∗

2 sin θ ∂2
λα

1 − 2 cos2 θ α1 = F 1

4 sin2 θ ∂2
θα

0 + 2 sin θ cos θ ∂θα
0 + z∗

2 sin θ ∂2
λα

0 − 2α0 = F 0 (5.62)
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As before, we first analyze the homogeneous equations by solving them using separation

of variables.

d2Θ1

dθ2
+

1

2
cot θ

dΘ1

dθ
−
(

1

2
cot2 θ +

k2

4 sin θ

)
Θ1 = 0

d2Θ0

dθ2
+

1

2
cot θ

dΘ0

dθ
−
(

1

2
cosec 2θ +

k2

4 sin θ

)
Θ0 = 0

d2Φ(0,1)

dλ2
+

(
k

z∗

)2

Φ(0,1) = 0 (5.63)

The solution to the θ part is given in terms of the generalized Heun’s function, and can be

shown to yield trivial solutions under the boundary conditions assumed. We will now solve

the inhomogeneous Jacobi equation for the strip subsystem for two separate cases ,

1. Strip along ′x′ boost along ′x′: In this case we consider the width of the strip to be

along the y direction and length along the x direction in bounday of AdS4. The inhomo-

geneous term for the Jacobi equation in this case is calculated for the asymptotic Boosted

AdS blackbrane geometry (appendix F) where the boost is along the x direction.

2. Strip along ′x′ boost along ′y′: In this case the direction of the strip remains un-

changed but the inhomogeneous term is now calculated for the same geometry but with the

boost being along y direction.

Changing the boost direction results in different deformations of the minimal surface.

In the first case the surface remains on the same constant time (t) slice while in the second

case there is a deviation of the surface along the time direction.

Strip along ‘x’ boost along ‘x’

In this case the e0 equation turns out to be trivial i,e the inhomogeneous term is zero in the

e0 equation. Hence the surface remains on the same time slice. The e1 equation is however
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non trivial. Note that since the right hand side is not a function of λ, only the k = 0 solution

will be non trivial, which can be recast into,

d2Θ1

dθ2
+

1

2
cot θ

dΘ1

dθ
−
(

1

2
cot2 θ

)
Θ1 =

1

4

(
3D +

3C

2

)
z3
∗ (sin θ)

1
2 − 7

8
Dz3
∗ (sin θ)

5
2 ,

(5.64)

where expressions for C,D can be found in appendix F. The homogeneous solutions for

this is,

Θ1(θ) =
C1 cos θ√

sin θ
+ C2 sin θ 2F1

(
1

4
, 1;

1

2
, cos2 θ

)
, (5.65)

and the Wronskian is W (θ) = e−
1
2

∫
cot(θ)dθ = 1√

sin θ
. The full solution is then Θ1

c + Θ1
p.

Θ1 =
C1 cos(θ)√

sin(θ)
+ C2 sin θ 2F1

(
1

4
, 1;

1

2
, cos2 θ

)
− cos(θ)√

sin(θ)

∫ θ [1

4

(
3D +

3C

2

)
z3
∗ (sin θ)

1
2 − 7

8
Dz3
∗ (sin θ)

5
2

]
(sin θ′)

3
2 2F1

(
1

4
, 1;

1

2
, cos2 θ′

)
dθ′

+ sin θ 2F1

(
1

4
, 1;

1

2
, cos2 θ

)∫ θ [1

4

(
3D +

3C

2

)
z3
∗ (sin θ)

1
2 − 7

8
Dz3
∗ (sin θ)

5
2

]
cos(θ′)dθ′

(5.66)

It is not possible to get an analytical form of the integral involving the hypergeometric

function. However since certain definite integrals are known for hypergeometric function,

we hope that the final integral involving the change in area can be obtained by doing an

integration by parts. To evaluate the integration constants we put the boundary condition

Θ = 0 at θ = 0 and θ = π. On demanding these the values of the constants turn out to be

C1 = πz3∗
16

(2C +D) and C2 = −Γ( 1
4)

2
z3∗(2C+D)

16
√

2π
.

We now go over to the calculation of the integrals for calculating the change of area.
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Before calculating the terms involving the deviation vector, we first evaluate the ones in-

volving the metric perturbations only. The first order change in HEE is,

∆(1)S =
1

4GN

∆(1)A =
1

8GN

∫
dd−1τ

√
hhab

(1)

P (∂a, ∂b) =
2L

32GN

πz2
∗(2C +D)

=
2L× l2

4GNz3
0

(1 + 2β2γ2)Γ
(

1
4

)2

32 Γ
(

3
4

)2 , (5.67)

which again matched with the results obtained in [31,32]. As before the last three terms in

the second variation formula are,

∫
dd−1τ

√
h
hab

2

(2)

P (∂a, ∂b) =
2L× π3/2c5(7C ′ + 5D′)

21
√

2Γ
(

3
4

)2 (5.68)

The next term which involves the product of perturbations is,

∫
dd−1τ

√
h

1

2
hachbd

(1)

P (∂a, ∂b)
(1)

P (∂c, ∂d) =
2L× z5

∗K
(

1
2

)
(77C2 + 45D2)

231
√

2
(5.69)

Finally we have the term

∫
dd−1τ

√
h

1

4
habhcd

(1)

P (∂c, ∂d)
(1)

P (∂a, ∂b) =
2L×

√
πz5
∗Γ
(

5
4

)
(77C2 + 110CD + 45D2)

462Γ
(

3
4

)
(5.70)

Now we go over to the other integrals. Consider the term,

∫
dd−1τ

√
h
(
habhcd

(1)

P (∂b, ∂d)g(N⊥, K(∂a, ∂c))− habg(C(∂a, ∂b), N
⊥)
)

=

∫ L

−L

∫ π

0

1

2z∗ sin
3
2 θ

[
z3
∗

(
3C

2
+ 3D

)
sin

5
2 θ − 7

2
z3
∗D sin

9
2 θ

]
Θ1 dθ dλ

(5.71)
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Note that Θ1 contains two terms. One that does not have an analytical form and the other

which does. Lets write these as Θ1 = − cos(θ)√
2 sin(θ)

∫ θ
0
f(θ′) dθ′ + G(θ) + Θ1

c(θ). Therefore

the above integral becomes,

∫ L

−L

∫ π

0

1

2z∗ sin
3
2 θ

[
z3
∗

(
3C

2
+ 3D

)
sin

5
2 θ − 7

2
z3
∗D sin

9
2 θ

]
(5.72)

×

(
− cos(θ)√

sin(θ)

∫ θ

0

f(θ′) dθ′ +G(θ) + Θ1
c

)
dθ dλ

Note that the G(θ) can be obtained easily and the value evaluates to,

2L×
√
πz5
∗Γ
(

9
4

)
(77C2 + 110CD + 29D2)

352Γ
(

11
4

) (5.73)

The complementary part of the solution gives,

−2L

64

√
π

2
z5
∗Γ

(
1

4

)2

(2C +D)2 (5.74)

The other integral is of the form
∫ π

0

(
g(θ)

∫ θ
0
f(θ′)dθ′

)
dθ and can be evaluated by parts,

∫ π

0

g(x)

∫ x

0

f(x′)dx′dx =

[(∫ x

0

f(x′)dx′
)(∫

g(x)dx

)]π
0

−
∫ π

0

f(x)

∫
g(x′)dx′dx

(5.75)

The first term in the above expression does not contribute, while the second term reproduces

the number obtained for G(θ). The total variation ∆(2)S is then given as,

∆(2)S =
1

4GN

∆(2)A =
2L× l5

z6
0

Γ
(

1
4

)5

Γ
(

3
4

)7

(−84(π − 1)β4γ4 + 28(4− 3π)β2γ2 + (48− 21π))

21504× 4GN

√
2π

(5.76)
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This expression gives the second order change of HEE. As in the case of circular disk,

the positivity of relative entropy demands that ∆(2)A ≤ 0. This can be checked through

a plot of ∆(2)A against β (See Fig-1). The whole expression is negative (at β = 0) and

monotonically decreasing as β. The change ∆S or the plot cannot however be trusted for

too large values of β, since one needs to add further higher order corrections to the change

for large β.

0.2 0.4 0.6 0.8 1.0

-10

-8

-6

-4

-2

∆(2)A

β →

Figure 5.1: Plot of ∆(2)A vs β for strip along x boost along y

The full expression for change of HEE is then given by

∆S = ∆(1)S +
1

2
∆(2)S

=
2L× l2

4GNz3
0

(1 + 2β2γ2)Γ
(

1
4

)2

32 Γ
(

3
4

)2 +
2L× l5

2× z6
0

Γ
(

1
4

)5

Γ
(

3
4

)7

(−84(π − 1)β4γ4 + 28(4− 3π)β2γ2 + (48− 21π))

4GN × 21504
√

2π

(5.77)

the above expression gives the net change in HEE for strip entangling surface upto second

order over pure AdS(ground state) value. This is the most important result of this chapter.

One can easily check that the above result exactly matches with the (2.38) for d = 3 case.
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It is also important to note that in this case the e0 component of the deviation vector is zero.

This shows that the perturbed minimal surface for this choice of subsystem still remains

on the t = constant slice. This is the reason why this result agrees with that in (2.38).

Although the boosted black brane background is not static, but our solution tells us that the

surface remains on the same slice as pure AdS at first order deviation.

Strip along ‘x’ boost along ‘y’

In this case all the integrals for e1 are same as that of the previous case with C, D replaced

by C̃, D̃ and C ′, D′ replaced by C̃ ′, D̃′ (see appendix F). However in this case the non

homogeneous part of the e0 equation is non trivial. Hence the extremal surface doesn’t

remain on the same time slice . The equation is,

4 sin2 θ ∂2
θα

0 + 2 sin θ cos θ ∂θα
0 + z∗

2 sin θ ∂2
λα

0 − 2α0 = −3z3
∗(sin θ)

5
2B cos θ, (5.78)

which following the previous arguments reduces to solving only the equation,

d2Θ0

dθ2
+

1

2
cot θ

dΘ0

dθ
− 1

2
cosec 2θΘ0 = −3

4
z3
∗(sin θ)

1
2B cos θ (5.79)

The solutions of this can be obtained in a straightforward manner and therefore we do not

have to resort to efforts made in the previous section. The full solutions turns out to be of

the form,

Θ0 =
−B̃z3

∗θ

4
√

sin θ
+
B̃z3
∗ sin 2θ

8
√

sin θ
−

2C1E

(
1
4
(π − 2θ)

∣∣ 2)√
sin(θ)

+
C2√
sin(θ)

(5.80)
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Imposing the conditions Θ = 0 at θ = 0 and θ = π, fixes C1 and C2 to, the solutions of

which are,

C1 =
πB̃z3

∗

8
√

2
(
2E
(

1
2

)
−K

(
1
2

)) , C2 =
1

8
πB̃z3

∗ , (5.81)

where K(α) and E(α) are the complete elliptic integral of the first and second kind re-

spectively. The contributions coming from the component α1 of the deviation vector turns

out to be same as that in the previous section with C, D replaced by C̃, D̃ and C ′, D′

replaced by C̃ ′, D̃′. The only other contribution different from the previous case comes

from −Tr(C) for the component α0 of the deviation vector and evaluates to,

2L π3/2(21π − 80)B2z5
∗

336
√

2Γ
(

3
4

)2 (5.82)

Total variation ∆(2)S without the previous term is then given by,

∆(2)S =
2L× l5

4GNz6
0

Γ
(

1
4

)5

Γ
(

3
4

)7

(
(20− 21π)β4γ4 + 2(40− 21π)β2γ2 + 2(21π − 80)βγ4 + (48− 21π)

21504
√

2π

)
(5.83)

As in the previous case ∆(2)A ≤ 0. This can be checked by plotting ∆(2)S against β(see

Fig-2). It is negative and monotonically decreasing as a function of β. It is important to

note that the boost independent term in the expression for ∆(2)S for both the cases is same.

Setting boost to zero makes both the cases identical to AdS black brane geometry.

The first order change in HEE is given by

∆(1)S =
1

4GN

∆(1)A =
2L× l2

4GNz3
0

(1 + β2γ2)Γ
(

1
4

)2

32 Γ
(

3
4

)2 (5.84)
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Figure 5.2: Plot of ∆(2)A vs β for strip along x boost along y

Thus the full expression for change in HEE is then given by

∆S = ∆(1)S +
1

2
∆(2)S

=
2L× l2

4GNz3
0

(1 + β2γ2)Γ
(

1
4

)2

32 Γ
(

3
4

)2

+
2L× l5

8GNz6
0

Γ
(

1
4

)5

Γ
(

3
4

)7

(
(20− 21π)β4γ4 + 2(40− 21π)β2γ2 + 2(21π − 80)βγ4 + (48− 21π)

21504
√

2π

)
(5.85)

the above expression gives the net change in HEE for strip entangling surface upto second

order over pure AdS(ground state) value.

5.7 Issues of Gauge dependence

The Φλ’s in section 5.3 are called the identification maps. It encodes the information about

how points in the perturbed and the unperturbed space times are to be identified. The

notion of gauge transformation can be shown to arise due to different choices of the Φλ’s.
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It is evident that the identification maps can be so chosen that the location of the perturbed

minimal surface in the unperturbed spacetime is same as that of the unperturbed minimal

surface. This is precisely the interpretation of the Hollands-Wald gauge [115] used in

[106, 116, 117]. But it seems that this in general can be done at any order of perturbation

and not just at the linear order. Further, it seems that by choice of such gauge one renders

the inhomogeneous term, in the Jacobi equation obtained, trivial and therefore irrelevant.

We must emphasize that this is not the case. In order to find the Hollands Wald gauge (at

linear order) one has to solve a linear second order differential equation which is precisely

the inhomogeneous Jacobi equation. This has also been pointed out in [118]. Therefore

choosing the Hollands-Wald gauge does not trivialize the problem of finding the change in

area. However, it is absolutely possible that the Holland- Wald gauge is a convenient choice

if one tries to find identities that the higher order perturbations of the area functional satisfy

or finding relations between two gauge independent quantities like the ‘Fisher information‘

and the canonical energy [106].

Having discussed this it is quite viable to state that the inhomogeneous equation is

gauge covariant. In other words any gauge transformation of the metric perturbation can

be absorbed in a shift of the deviation vector itself. This is a quite plausible conclusion that

follows from the following lemma due to [114]. The linear perturbationQ1 of a quantityQ0

on (M, g) is gauge invariant if and only if one of the following holds: (i) Q0 vanishes, (ii)

Q0 is a constant scalar, (iii) Q0 is a constant linear combination of products of Kronecker

deltas. In our case Q0 is the mean curvature (H) of the extremal surface in the background

spacetime and hence is identically zero. However there is a subtle issue in application of the

above lemma in our case. The quantitiesQ defined in the lemma are globally defined while

H is locally defined on a codimension two surface. The expression for the second variation

of the area functional is however invariant under different choices of Φλ : M →Mλ.
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5.8 Conclusion

A few comments about higher order perturbations are in order. As is usual with any per-

turbation theory, the homogeneous part of the second order perturbation equation would

be same as the Jacobi equation. However the inhomogeneous term will now depend both

on second order perturbations as well as first order deviations. Note the second order de-

viation vector M (say), can always be taken to commute with N owing to the fact that

they represent independent variations. Since the normal bundle is two dimensional one

can have at most two mutually commuting directions. Hence it seems that the perturba-

tion will terminate at second order and the complete change of entanglement entropy can

be obtained by exponentiating this change upto second order. However this is speculative

and requires further investigation. We have presented a systematic approach to obtain the

change in HEE up to second order. For simplicity we have calculated this in 4-dimensions

but the approach remains unchanged in higher dimensions. The inhomogeneous Jacobi

equation and second variation of the area functional presented here can be applied to non

AdS geometries also. In fact the Jacobi operator simplifies for the asymptotically flat case.

We have seen that second order change receives contributions from first order changes in

the embeddings and second order change of the bulk metric. In this approach the nature

of the flow of the extremal surface can be understood by looking at the components of

the deviation vector. Further, having obtained the second variation one can check if more

general entropy bounds [96–98,100] or has any relation with geometric inequalities [99] in

general.
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CHAPTER 6

SUMMARY

In chapter(2) We found that the first law of entanglement thermodynamics for ‘boosted’

AdSd+1 having black hole in the IR region is given by

4E∗ = T ∗E 4 S∗E + µ∗4N ∗ + V∗4P∗

Our result emphasizes the fact that the form of the first law changes under higher order

corrections to the entanglement entropy. It is apparent when the entanglement law (2.25)

at the first order is compared with the second order result in (6.1). We find that even in

the absence of boosts the renormalization of the thermodynamic quantities like entropy,

energy, subsystem size (all extensive quantities) and entanglement temperature (intensive

quantity) becomes essential at the second order. The chemical potential which is negligible

at the first order becomes relevant at next order. We expect no further changes in the form

of the first law for the AdS background (2.1), so the first law form (6.1) will remain un-

changed at higher orders provided we renormalize/redefine the thermodynamic quantities

appropriately. Also, we have determined that the entanglement temperature of the subsys-
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tem will be higher for a bigger size black hole. Finally, as we have studied (IR) excitations

in AdS spacetime, and since AdS background is an universal solution of (gauged) super-

gravities with negative cosmological constant, we expect these results will be holding true

quite generally.

The physical relevance of our results in chapter (3) is indicated by the fact that the

entanglement entropy of subsytems is affected in the presence of boost, or a flow. It is not

entirely an unexpected result as the boost indeed represents an asymmetric excitation of the

system. It means subsystems along the flow and perpedicular to it get differently entangled

as we have determined, 4S⊥ > 4S‖. Upto first order this asymmetry is proportional to

β2 (for small velocities). These result however will change at the second order perturbative

calculations. Our results however imply more generic situations. Even in the absence of

a flow, provided there exists pressure asymmetry in the CFT due to some other reason,

the entanglement asymmetry will always arise. The boosted black brane systems are used

here only as the known examples to study asymmetric systems. It would be worthwhile to

explore other systems like Bianchi models having more generic asymmetry.

In chapter (4) we found that second order changes in ∆SE for 2 + 1 dimensions corre-

spond to

1. Second order gravitational perturbations and

2. First order changes in the shape of extremal surface.

The second order gravitational perturbations can be obtained by solving the perturbed Ein-

stein’s equation. Alternatively when the bulk metric is known, this corresponds to the

O(z4) (in 2 + 1 dimensions) terms in the Fefferman Graham expansion. However a sys-

tematic approach for finding the change in shape of the extremal surface is not known. We

propose that these changes can be systematically calculated by solving the ”generalized
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deviation equation”. We further write an alternative form of the first law for entanglement

thermodynamics given by,

d(∆SE) =
1

TE
d(∆E)− ΩE

TE
d(∆J) (6.1)

This has been shown to asymptote exactly to the black hole first law for BTZ in the large

system size limit.

In Chapter (5) we generalized our variational approach to higher dimensions. We were

able to generalize the geodesic deviation equation to a surface deviation equation(Inhomogeneous

Jacobi equation). We have obtained the area variation upto second order metric perturba-

tions and first order surface deviation. This gave us a covariant and coordinate independent

expression. We have checked our results with those in chapter(2) and the results are identi-

cal. It is important to note that our approach is independent of background geometry. One

can use this approach in asymptotically flat spacetimes as well.

Thus in this thesis we have seen two approaches of calculating second order change in

holographic entanglement entropy. The perturbative or passive approach discussed in (2)

and (3) starts with solving the minimal surface equation perturbatively in some asymptot-

ically AdS background. This perturbative or asymptotic approach take into consideration

only the asymptotic region of the perturbed background. The details of IR does not con-

tribute to the change in entanglement entropy. This approach is passive in the sense it

starts from the perturbed geometry and slowly reaches AdS near the asymptotic region as

perturbation.

The variational approach is active in the sense it starts from the pure AdS background

and reaches the asymptotically AdS geometry perturbatively. In this approach we don’t

solve for the minimal surface equation, instead we solve for the inhomogeneous Jacobi
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equation and try to get the minimal surface order by order in deviation. In this respect both

the approaches are perturbative. We conclude by saying that both the approach merge at

solving the minimal surface asymptotically or obtaining it order by order in the deviation.
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APPENDIX A

CONVENTIONS FOR BOOSTED BLACK

BRANE

The physical observables such as energy, momentum and pressure can be obtained by ex-

panding the bulk AdS geometry (3.1) in suitable Feffermann-Graham asymptotic coordi-

nates [24, 84, 85]

ds2 =
L2

u2

(
du2 +G

4
d [
−fdt2

K
+K(dy − ω)2 + dx2

1 + · · ·+ dx2
d−2]

)
G = 1 +

ud

ud0
, f ' (1− 4ud

ud0
), K ' 1 + 4β2γ2u

d

ud0
(A.1)

In u coordinate the boundary is at u = 0, and ud0 = 4zd0 . The Kaluza-Klein gauge form is

ω = β−1(1− 1

K
)dt. (A.2)

In these asymptotic coordinates, the coefficients of ud terms in the metric expansion give

rise to the energy-momentum tensor of the boundary CFT. From (A.1) these coefficients of
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the metric are

< t00 >= (
d− 1

d
+ β2γ2)

4

ud0
, < t0y >= βγ2 4

ud0

< t11 >=
1

d

4

ud0
=< t22 >= · · · (A.3)

The boundary energy-momentum tensor, < Tab >= dLd−1

16πG
< tab >, is traceless as we have

conformal theory. The energy of excitations and the momentum for the boosted CFTd will

be

E =
dLd−1vd−1

16πGd+1

< t00 >=
dLd−1vd−2ry

8Gd+1

(
d− 1

d
+ β2γ2)z−d0

Py =
dLd−1vd−2ry

8Gd+1

βγ2z−d0 (A.4)

where volume vd−2 = l1l2 · · · ld−2, and we have compactified y on a circle of radius ry.

Note the momentum (charge) Py = N
ry

is quantized and N would have integral values. In

the absence of boost the charge would be vanishing. We note down the nontrivial chemical

potential which is defined by the value of gauge potential at the horizon

µTh =
β

ry
(A.5)

Corresponding thermal entropy and temperature can be obtained from (3.1). These are

given by

STh ≡
[Area]horizon

4Gd+1

=
πLd−1vd−2ry

2Gd+1

γ

zd−1
0

TTh =
d

4πz0γ
(A.6)
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These thermal quantities satisfy the following first law of black hole mechanics

δETh = TThδSTh + µ
Th
δN . (A.7)

But if we allow small volume changes, say δv = (δl1)l2l3 · · · ld−2, the black hole thermo-

dynamic law would be

δETh = TThδSTh + µ
Th
δN − P1δv . (A.8)

where pressure component is P1 = Ld−1ry
8Gd+1

z−d0 .
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APPENDIX B

SOME USEFUL BETA FUNCTION

Some useful Beta function integrals we have used are given here

b0 =

∫ 1

0

dξξd−1 1√
R

=
1

2(d− 1)
B(

d

2d− 2
,
1

2
)

b1 =

∫ 1

0

dξξ2d−1 1√
R

=
1

2(d− 1)
B(

d

d− 1
,
1

2
)

b2 =

∫ 1

0

dξξ3d−1 1√
R

=
1

2(d− 1)
B(

3d

2d− 2
,
1

2
)

Il =

∫ 1

0

dξξd−1(1− ξd) 1

R
3
2

=
d+ 1

d− 1
b1 −

1

d− 1
b0

Jl =

∫ 1

0

dt td−1

[
β2γ2

4
td − β4γ4

8

(
4− 3

(
1− td

)
R

)] (
1− td

)
R

3
2

(B.1)
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where B(m,n) = Γ(m)Γ(n)
Γ(m+n)

are the Beta-functions. Further integrals are

a0 =

∫ 1

0

dξξ−d+1 1√
R

=
1

2(d− 1)
B(

1− d/2
d− 1

,
1

2
)

a1 =

∫ 1

0

dξξ−d+1 ξd√
R

=
1

2(d− 1)
B(

1

d− 1
,
1

2
)

a2 =

∫ 1

0

dξξ−d+1 ξ
2d

√
R

=
1

2(d− 1)
B(

1 + d/2

d− 1
,
1

2
)

Ia =

∫ 1

0

dξξd−1(1− ξ2d)
1

R3/2
=

2d+ 1

d− 1
b2 −

1

d− 1
b0 (B.2)

Some identities we have used are

b0 = (2− d)a0, b1 =
2

d+ 1
a1, b2 =

2 + d

2d+ 1
a2 . (B.3)
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APPENDIX C

THE ASYMPTOTIC EXPANSION FOR

NONCONFORMAL BLACK D-BRANES

The asymptotic expansion in the Fefferman-Graham coordinates is required to find the

energy-momentum tensor of the boundary field theory. The relevant details on holographic

renormalization can be found in [24, 84, 85, 119]. Let us define a new holographic coordi-

nate u through

z2 = F−
4
p̃u2, F = 1 +

up̃

up̃0
, up̃0 ≡ 4zp̃0 (C.1)

In these u coordinates an expansion of (3.41) in the neighborhood of UV boundary (u = 0)

becomes

ds2 ' geff

[
1

u2

[
(−1 + 4(

p̃− 1

p̃
+ β2γ2)

up̃

up̃0
+ · · · )dt2 + (1 + 4(

1

p̃
+ β2γ2)

up̃

up̃0
+ · · · )dy2

− 8βγ2u4

up̃0
dtdy + (1 +

4

p̃

up̃

up̃0
+ · · · )(dx2

2 + · · ·+ dx2
p)
]

+
4

(5− p)2

du2

u2
+ dΩ2

8−p

]
≡ geff

[
1

u2
(ηαβ + tαβu

p̃ + · · · )dxαdxβ +
4

(5− p)2

du2

u2
+ dΩ2

8−p

]
(C.2)

147



The last line in the above equation indicates that the spacetime geometry is expanded in

asymptotic neighborhood of conformally AdSp+2 × S8−p spacetime. Besides in these

coordinates, u coincides with the energy scale of the AdSp+2 geometry. The ηαβ is flat

Minkowski metric with index α = 0, 1, 2, · · · , p. The effective coupling has the FG expan-

sion (RG flow) given by

geff =
(λpu

3−p)
1

5−p

F
3−p
7−p

' (λpu
3−p)

1
5−p (1− 3− p

7− p
up̃

up̃0
+ · · · )

(C.3)

In p = 3 (conformal) case the geff however remains fixed. The important point to notice

from the FG expansion is that the overall conformal factor of the string metric (C.2) and

the string coupling eφ (given in (3.41)) are both governed by the fluctuations of the single

quantity geff . The fluctuations of the dilaton field, δφ, can also be obtained from the

expression

eφ =
(2π)2−p

dpN
(λpu

3−p)
p̃
4 (1− 3− p

2

up̃

up̃0
+O(u2p̃))

≡ eφ0(1 + δφ(p̃)u
p̃ + · · · ) (C.4)

where φ0 represents the dilaton field in the absence of the excitations. The first order

fluctuation of dilaton are thus δφ(p̃) = −3−p
2

1

up̃0
. Obviously δφ(p̃) has opposite signs for

p > 3 and p < 3 branes. (For D3 brane δφ(p̃) vanishes as it should be for 4D conformal field

theory.) The nonvanishing components of stress-energy tensor of the boundary theory can

now be obtained from the expression within the angular brackets in asymptotic expansion
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(C.2)

t00 = (
p̃− 1

p̃
+ β2γ2)

4

up̃0
, tyy = (

1

p̃
+ β2γ2)

4

up̃0

t0y = βγ2 4

up̃0
, tii =

1

p̃

4

up̃0
, (i = 2, 3, ..., p) (C.5)

The tensor tαβ has a nonvanishing trace. It is worthwhile to observe that the trace, t αα , and

δφ have a relationship
1

4
t αα −

3− p
7− p

δφ(p̃) = 0 (C.6)

as they both depend on single deformation parameter u0. Actually this relation follows

from Ward identities in holographic renormalization of the boundary theory [120]. Also

∇αt
αβ = 0 trivially. We should not be checking them over here as these are automatic in

the FG expansion (C.2) of nonextremal geometry. The energy of the excitations above the

extremality for the boosted solutions is then given by

4E =
VpΘ8−pQp

16πGN

(
p̃− 1

p̃
+ β2γ2)

7− p
zp̃0

(C.7)

where Vp is the p-dimensional spatial volume of all xi’s and Qp is a combinatoric factor

defined earlier. Θ8−p is unit volume of the S8−p, and GN is the Newton’s constant in ten

dimensions. Similarly pressure components along the boost and in perpendicular directions

are

4P‖ = 4Py =
Θ8−pQp

16πGN

(
1

p̃
+ β2γ2)

7− p
zp̃0

4P⊥ = 4Px2 =
Θ8−pQp

16πGN

7− p
p̃zp̃0

= 4Px3 = · · · . (C.8)
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APPENDIX D

FEFFERMAN GRAHAM EXPANSION,

BOUNDARY STRESS TENSOR AND

PERTURBATIONS ABOUT AdS3

The rotating BTZ metric is given as,

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2

(
dφ− r+r−

r2
dt
)2

,

(D.1)

where r+, r− are the radii of the outer and inner horizon respectively. The physical observ-

ables like energy and angular momentum can be obtained by expanding the above metric

in suitable Fefferman Graham(Asymptotic) coordinates near the AdS3 boundary. This can

be realized by defining a new coordinate ρ through dρ
ρ

= dr

r
√
f(r)

. In terms of ρ this metric

becomes
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ds2 =
dρ2

ρ2
+ ρ2

[
(−dt2 + dφ2) +

1

ρ2

(
(r2

+ + r2
−)

2
dt2 − 2r+r−dtdφ+

(r2
+ + r2

−)

2
dφ2

)

+
1

ρ4

(
−(r2

− − r2
+)2

16
dt2 +

(r2
− − r2

+)2

16
dφ2

)]
(D.2)

In coordinates (ρ = 1
z
) the metric becomes

ds2 =
dz2 + (ηµν + z2γ

(2)
µν + z4γ

(4)
µν + ...)dxµdxν

z2
(D.3)

The above metric is now in Fefferman Graham form.

Where the boundary energy momentum tensor (〈Tµν〉 = d
16πG

γ
(d)
µν in d+ 1 dimensions)

[25, 121] is given by

8πG Tµν = γ(2)
µν =

 (r2++r2−)

2
−r+r−

−r+r−
(r2++r2−)

2


In 2+1 dimensions there are no conformal anomalies in the stress tensor [121] and γ(4)

µν

is given by

γ(4)
µν =

−(r2−−r2+)2

16
0

0
(r2−−r2+)2

16



D.1 Length of space-like geodesic for rotating BTZ

According to HRT proposal extremal surfaces in 2+1 dimensions are given by spacelike

geodesics. Here we obtain HEE for rotating BTZ black hole by calculating geodesic length

without using the fact that BTZ is locally isometric to AdS3. In the rotating BTZ metric
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(D.1), we will introduce the following notations [122],

M = r2
+ + r2

−, J = 2r+r−, β± =
2π

r+ ± r−
, (D.4)

These notations should be read independently of those introduced in the body of the chap-

ter. However the final expression is obtained in terms of quantities which have been intro-

duced earlier. For a general curve parametrized by λ (say) such that the tangent vector (va)

is given by va =
(
dt
dλ
, dr
dλ
, dφ
dλ

)
, one has,

−m2 = −
(r2 − r2

+)(r2 − r2
−)

r2
ṫ2 +

r2

(r2 − r2
+)(r2 − r2

−)
ṙ2 + r2

(
φ̇− r+r−

r2
ṫ
)2

, (D.5)

where dots imply derivative with respect to λ. If the curve is a geodesic and ∂t and ∂φ being

Killing vectors, one has the following constants of motion.

E = −gabvaξb =
(
−M + r2

)
ṫ+

J

2
φ̇, (D.6)

where ξa = ∂at , and

L = gabv
aΦb = r2φ̇− J

2
ṫ, (D.7)

where Φa = ∂aφ. We define the following dimensionless coordinates and parameters for

brevity.

r̂ =
r√
M

, φ̂ = φ
√

M , t̂ = t
√

M

Ê =
E√
M

, L̂ =
L√
M

, Ĵ =
J

M
(D.8)
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If the parameter λ is taken to be the length along the geodesic, then following equations of

motion follow for space-like geodesics (m2 = −1).

r2ṙ2 =

(
r4 − r2 +

J 2

4

)
+
(
E 2 −L 2

)
r2 + L 2 −J E L

φ̇ =
(r2 − 1)L− 1

2
J E

(r2 − r2
+)(r2 − r2

−)

ṫ =
E r2 − 1

2
J L

(r2 − r2
+)(r2 − r2

−)
(D.9)

where we have omitted the hat from the quantities.

It is easy to note that in the limit r →∞,

dt

dφ
≈ E

L
(D.10)

The geodesic will penetrate most into the bulk if this is zero. This precisely implies that

E = 0 [123]. Therefore with the substitution u = r2 the radial equation reduces to

1

4

(
du

dλ

)2

= u2 − (1 + L 2)u+

(
L 2 +

J 2

4

)
= (u− a)(u− b), (D.11)

where the following relations hold for a and b.

a+ b = (1 + L 2), ab = L 2 +
J 2

4
(D.12)

Without loss of generality, we can take a to be the greater of the two roots and therefore
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the turning point of the geodesic. Then the geodesic length can be obtained as,

Λ =

∫ u∞

a

du√
(u− a)(u− b)

= log

(
4r2
∞

a− b

)
(D.13)

To express the above in terms of the subsystem size one has to relate a − b to the

subsystem size. We note that,

dφ

du
=

1

2

(u− 1)L

(u− u+)(u− u−)
√

(u− a)(u− b)

=
1

2

[
A

u− u+

+
B

u− u−

]
1√

(u− a)(u− b)
, (D.14)

where A = − u−L
u+−u− , B = u+L

u+−u−
1.

Now each of the integrals are of the form,

∫
dx

(x− c)
√

(x− a)(x− b)
=

1√
(a− c)(b− c)

log

[ √
(a− c)(b− c)(c− x)

a(−2b+ c+ x)− 2
√

(a− c)(b− c)(x− a)(x− b)− 2cx+ b(c+ x)

]
(D.15)

Putting the limits,

∫ ∞
a

dx

(x− c)
√

(x− a)(x− b)
=

1√
(a− c)(b− c)

log

[√
(a− c) +

√
(b− c)√

(a− c)−
√

(b− c)

]
(D.16)

1Note that in these coordinates u+ + u− = 1 and u+u− =
J 2

4
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Therefore the φ̇ integral gives,

l =
A

u+ − u−
log

(√
(a− u+) +

√
(b− u+)√

(a− u+)−
√

(b− u+)

)
+

B

u+ − u−
log

(√
(a− u−) +

√
(b− u−)√

(a− u−)−
√

(b− u−)

)
,

(D.17)

where l is the subsystem size. We need to impose a further restriction. Note that,

dt

du
= −1

4

J L

(u− u+)(u− u−)
√

(u− a)(u− b)

=
1

4

[
C

u− u+

+
D

u− u−

]
1√

(u− a)(u− b)
, (D.18)

where C = 1
u+−u− and D = − 1

u+−u− . Therefore the interval of time elapsed is given by,

∆T =
J

2
√
u−(u+ − u−)

log

(√
(a− u+) +

√
(b− u+)√

(a− u+)−
√

(b− u+)

)

− J

2
√
u+(u+ − u−)

log

(√
(a− u−) +

√
(b− u−)√

(a− u−)−
√

(b− u−)

)
(D.19)

Since the subsystem is on a constant t slice on the boundary, the total elapsed time must be

zero [123]. Therefore,

(β+ + β−) tanh−1

√
b− u+

a− u+

= (β+ − β−) tanh−1

√
b− u−
a− u−

(D.20)

which can be re-ordered to give,

β+

[
tanh−1

√
b− u−
a− u−

− tanh−1

√
b− u+

a− u+

]
= β−

[
tanh−1

√
b− u−
a− u−

− tanh−1

√
b− u+

a− u+

]
(D.21)
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Therefore using (D.21) one has the following conditions on the solutions (D.17),

tanh
πl

β+

=

√
(b− u−)(a− u+)−

√
(b− u+)(a− u−)√

(a− u+)(a− u−)−
√

(b− u+)(b− u−)

tanh
πl

β−
=

√
(b− u−)(a− u+) +

√
(b− u+)(a− u−)√

(a− u+)(a− u−) +
√

(b− u+)(b− u−)
(D.22)

From these one can get the following expression for sinh πl
β+

and sinh πl
β−

.

sinh2 πl

β+

=

(√
(b− u−)(a− u+)−

√
(b− u+)(a− u−)

)2

(a− b)2

sinh2 πl

β−
=

(√
(b− u−)(a− u+) +

√
(b− u+)(a− u−)

)2

(a− b)2
(D.23)

Therefore,

sinh2 πl

β+

sinh2 πl

β−
=

(u+ − u−)2

(a− b)2
(D.24)

Taking the positive square root we get,

sinh
πl

β+

sinh
πl

β−
=

4π2

β+β−(a− b)
(D.25)

Therefore one can has the desired result for the geodesic length in terms of the subsystem

size,

Λ = log

(
β+β−
π2ε2

sinh

(
πl

β+

)
sinh

(
πl

β−

))
(D.26)

where we have put r∞ = 1
ε
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To find the turning point in terms of the subsystem size, note that

tanh
πl

β+

tanh
πl

β−
=

4π2

β+β−(a+ b− 1)
(D.27)

In the small subsystem size approximation,

a+ b ≈ 4

l2

a− b ≈ 4

l2

a ≈ 4

l2
(D.28)

So the turning point in the r coordinate upto leading order is given by

r∗ ≈
2

l
(D.29)
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APPENDIX E

REVISITING THE DERIVATION OF THE

INHOMOGENEOUS JACOBI EQUATION

FOR GEODESICS

To make sure that in the used notation the equation we have obtained is indeed the correct

equation we are looking for, we will derive the inhomogeneous Jacobi equation derived

in [35].

Note that the geodesic equation can be written as (∇TT )⊥ = 0 (where T is the tangent

vector to the geodesic and satisfies ∇TT = fT ). We will consider a variation of the

geodesic under δN . The variation accounts for both change of embeddings and metric

perturbations.

δN(∇TT )⊥ = δN(∇TT )− δN(∇TT )T (E.1)

= ∇2
TN +R(N, T )T + C(T, T )−∇N(fT )− δg(f)T
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Our convention implies that δP (∇XY ) = C(X, Y ). Noting that f = g(∇TT,T )
g(T,T )

, we can find

the variation δgf . After a few algebraic steps one gets the following expression,

δPf =
g(C(T, T ), T )

g(T, T )
(E.2)

Also note that,

∇Nf =
g(∇2

TN, T )

g(T, T )
− fg(∇TN, T )

g(T, T )
(E.3)

Substituting (E.2) and (E.3) in (E.1) we get

δN(∇TT )⊥ = ∇2
TN − (∇2

TN)T +R(N⊥, T )T − (f∇TN − f(∇TN)T ) + C(T, T )⊥.

(E.4)

Equating the above to zero gives the inhomogeneous equation,

∇2
TN

⊥ +R(N⊥, T )T − f∇TN
⊥ + C(T, T )⊥ = 0. (E.5)

In [35] the unperturbed geodesic was taken to be affinely parametrised. Therefore putting

f = 0 in the above equation reproduces the equation obtained.
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APPENDIX F

BOOSTED BLACK BRANE AS A

PERTURBATION OVER ADS

The boosted black brane metric in holographic coordinates is of the following form

ds2 =
R2

z2

[
−A(z)dt2 + B(z)dx2 + C(z)dtdx+ dx2 +

dz2

f(z)

]
, (F.1)

where,

A(z) = 1− γ2(
z

z0

)3, B(z) = 1 + β2γ2(
z

z0

)3,

C(z) = 2βγ2(
z

z0

)3, f(z) = 1− (
z

z0

)3

z0 is the location of the horizon and 0 ≤ β ≤ 1 is the boost parameter, while γ = 1√
1−β2

.

With the boost along x direction. The boosted black brane is a finite change from AdS

and hence cannot be observed as a perturbation over it. In order to see it as a perturbation

over AdS, we have to write it in suitable asymptotic (Fefferman Graham) coordinates. The
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Fefferman Graham coordinates are obtained by demanding [25, 121]

dz

z
√
f(z)

=
dρ

ρ
(F.2)

Integrating this and setting the integration constant to (ρ0
3 = 4z0

3) we get

1

z2
=

1

ρ2
(1 + (

ρ

ρ0

)3)
4
3 =

1

ρ2
g(ρ)

4
3 (F.3)

Now we expand the metric coefficient upto second order in ( ρ
ρ0

)3, Substituting this back in

the metric we get

ds2 =
R2

ρ2

[
dρ2 +

(
ηµν + ρ3γ(3)

µν + ρ6γ(6)
µν

)
dxµdxν

]
(F.4)

Where

γ(3)
µν =


−(1

3
− γ2)( 1

z0
)3 βγ2( 1

z0
)3 0

βγ2( 1
z0

)3
(

1
3

+ β2γ2
)

( 1
z0

)3 0

0 0 1
3
( 1
z0

)3

 (F.5)

One can check that Tr(γ(3)
µν ) = 0 and

γ(6)
µν =


−
(

2
9

+ 8
3
γ2
)

1
16z06

−1
6
βγ2( 1

z0
)6 0

−1
6
βγ2( 1

z0
)6

(
2
9
− 8

3
β2γ2

)
1

16z06
0

0 0 2
9

1
16z06

 (F.6)

The perturbation
(1)

Pµν and
(2)

Pµν can be read off as,
(1)

Pµν = γ
(3)
µν z and 1

2

(2)

Pµν = γ
(6)
µν z4 re-

spectively. To calculate the non homogeneous term in the Jacobi equation, we need the
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expression for C(∂µ, ∂ν), which in a given coordinate system can be written as,

Cµ
νρ(x) =

1

2
gµσ
(
∂ν

(1)

Pρσ + ∂ρ
(1)

Pνσ − ∂σ
(1)

Pνρ

)
− 1

2

(1)

P µσ (∂νgρσ + ∂ρgνσ − ∂σgνρ) (F.7)

Note that this quantity is a vector field in the tangent bundle and therefore it’s coordinate

expression has three indices. We will calculate this for boosts both in the x direction and

the y direction. Note that though the direction of the boost does not affect the results for a

spherical boundary subsystem, it does so for the strip subsystem. In the Fefferman graham

gauge the expression for C(∂µ, ∂ν).

For boost along the x axis, the expression for
(1)

P (∂µ, ∂ν) and
(2)

P (∂µ, ∂ν) is of the follow-

ing form.

(1)

Pµν =



A z B z 0 0

B z C z 0 0

0 0 D z 0

0 0 0 0


1

2

(2)

Pµν =



A′ z4 B′ z4 0 0

B′ z4 C ′ z4 0 0

0 0 D′ z4 0

0 0 0 0


The quantity Cµ

νρ can be calculated from eqn (F.7),

Cz
t t = −1

2
z2 A, Cz

x t = −1

2
z2 B, Ct

z t = −3

2
z2 A, Cx

z t =
3

2
z2 B

Cz
t x = −1

2
z2 B, Cz

x x = −1

2
z2 C, Ct

z x = −3

2
z2 B, Cx

z x =
3

2
z2 C

Cz
y y = −1

2
z2 D, Cy

z y =
3

2
z2 D, Ct

t z = −3

2
z2 A, Cx

t z =
3

2
z2 B

Ct
x z = −3

2
z2 B, Cx

x z =
3

2
z2 C, Cy

y z =
3

2
z2 D, (F.8)

where C,D can be read off from the previous expression for P ’s and γ’s eqn. (F.5) and
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is given as C =
(

1
3

+ β2γ2
)

1
z30
, D = 1

3
1
z30

. The components of 1
2

(2)

Pµν will be C ′, D′ and is

given as C ′ =
(

2
9
− 8

3
β2γ2

)
1

16z06
, D′ = 2

9
1

16z06
.

For boost along the y axis,
(1)

P (∂µ, ∂ν) and
(2)

P (∂µ, ∂ν) is of the form,

(1)

Pµν =



Ã z 0 B̃ z 0

0 C̃ z 0 0

B̃ z 0 D̃ z 0

0 0 0 0


1

2

(2)

Pµν =



Ã′ z4 0 B̃′ z4 0

0 C̃ ′ z4 0 0

B̃′ z4 0 D̃′ z4 0

0 0 0 0



The quantity Cµ
νρ is therefore,

Cz
t t = −1

2
z2 Ã, Cz

y t = −1

2
z2 B̃, Ct

z t = −3

2
z2 Ã, Cy

z t =
3

2
z2 B̃

Cz
x x = −1

2
z2 C̃, Cx

z x =
3

2
z2 C̃, Cz

t y = −1

2
z2 B̃, Cz

y y = −1

2
z2 D̃

Ct
z y = −3

2
z2 B̃, Cy

z y =
3

2
z2 D̃, Ct

t z = −3

2
z2 Ã, Cy

t z =
3

2
z2 B̃

Cx
x z =

3

2
z2 C̃, Ct

y z = −3

2
z2 B̃, Cy

y z =
3

2
z2 D̃ (F.9)

where C̃ = 1
3
( 1
z0

)3, D̃ =
(

1
3

+ β2γ2
)

( 1
z0

)3, C̃ ′ = 2
9

1
16z06

, D̃′ =
(

2
9
− 8

3
β2γ2

)
1

16z06
, B =

B̃ = βγ2( 1
z0

)3. This completes our first step in calculation of area, now we can proceed

with solving the inhomogeneous Jacobi equation.
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