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SYNOPSIS

AdS/CFT correspondence has been a very successful idea in string theory. It is a corre-
spondence relating gravity and quantum field theory. In other words, it relates classical
gravity to quantum physics of strongly correlated manybody systems in one lower dimen-
sion. It is also known as gauge/gravity duality. It was originally formulated [1-4] as a cor-
respondence between a 4 dimensional conformal field theory(CFT) living on the conformal
boundary of a 5 dimensional Anti De Sitter(AdS) spacetime with supergravity theory in the

bulk.

One of the fundamental distinction between classical physics and quantum physics is
the presence of entanglement. This prototypical aspects of quantum physics have led to
a deep theoretical interest in this field. The subject of quantum information [5] and con-
densed matter physics has led to rapid development of this concept over the past decades.
In the past decade, the AdS/CFT correspondence has intertwined quantum entanglement
with gravitational dynamics with the natural line of thought being the emergence of ge-
ometry from QFT dynamics. The inception of this idea is sourced from the observation by
Ryu-Takayanagi [6,7], who proposed that the Holographic entanglement entropy(HEE) as-

sociated with a spatial region in a holographic CFT is given by the area of a particular static,



homologous, codimension-2 minimal surface in the dual bulk geometry. Later on, this
was generalized to time-dependent states by Hubeny-Rangamani-Takayanagi(HRT) [8].
It is important to note that HEE satisfies the area law, strong subadditivity, and several
other features. There are several checks and proof of this conjecture and its close relation
with the Bekenstein Hawking entropy which is proportional to the area of black hole hori-
zon [9—13]. This proposal has been monumental in calculating entanglement entropy for
various subsystems in different asymptotically AdS spacetimes and particulary the depen-
dence of the shape of the minimal surface on the entropy [14—18]. Direct calculation of
entanglement entropy in QFT is not straightforward, exact results can only be obtained for

2d field theories using the replica method [19,20]

Relative entropy is another interesting object in the CFT side. Given two states p and
o the relative entropy S(p || o) [21,22], provides a measures of distinguishability between
them. It satisfies two conditions viz monotonicity and positivity. The first property implies
that it decreases under inclusion i.e, tracing out the same degree of freedom from two state
p and o to obtain the reduced density matrices p4 and o4 decreases the relative entropy
S(pa || 0a) < S(p || ) [5]. The second property implies that it is positive for any
two density matrices and is zero only when they are equal. Using this one can express
the relative entropy as the difference between the change in modular hamiltonian (A(H,))
and the change in entanglement entropy (A(S)) w.r.t a reference state. Thus the positivity
of relative entropy implies (A(S) < A(H,)). As mentioned earlier relative entropy acts
as a distance measure for neighboring states. For a one parameter family of states p =
po + €p1 + €2py - -+ where pg = o one can evaluate the relative entropy (S(p || o)) as a
power series in €. Since the relative entropy takes its extremum at (p = o), its first variation
vanishes i.e, (65 = 0(H,,)). This statement is similar to the first law of thermodynamics

(dE = TdS) hence it is called the first law of entanglement.

vi



We know that pure AdS;,; spacetime is dual to the ground state of a holographic
CF'T; and asymptotically locally AdS geometries are dual to the excited states. Following
[23] one can verify the first law statement from the bulk side by using the RT proposal.
The change in entropy is calculated order by order by obtaining the area of a boundary
anchored minimal surface in asymptotically AdS spacetime and then expanding it in a
small subsystems size approximation, the AdS contribution is then subtracted from it. It
is important to note that under this approximation the minimal surface is free from the IR
details and only depends on the energy density of the excitations. The change in energy
is calculated using the holographic stress tensor [24,25]. There have been several check
of this entanglement first for different backgrounds [26—-30]. In the paper [31], we used
the RT proposal and verified the first law of entanglement for boosted black brane like
perturbations over pure AdS and explored proper modification of the first law to include
contributions from finite chemical potential and charge. For the same background, we
have also compared the effect of anisotropy due to boost on the change in entanglement
entropy [32]. The asymmetry in the change in entanglement entropy was quantified by
introducing a dimensionless ratio and a bound was proposed on it.

Using the RT proposal one can calculate the entropy for excitations over AdS and then
compute the change by subtracting the AdS contribution from it. Following [33, 34] one
can calculate the change in entanglement entropy directly from area variation. At first
order, changes in the embedding functions of the minimal surface don’t contribute, the
only contribution comes from metric perturbations. However, the embedding change will
contribute to the next order. In [35] we developed a method to incorporate these changes at
second order in 2 4 1 case. The deviation of the embeddings were obtained by solving an

inhomogeneous Jacobi equation. We also extended this setup to higher dimensions in [36].

vii
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INTRODUCTION

String theory is one of the foremost contender for a consistent theory of quantum grav-
ity.The interaction between both gauge and gravitational forces are incorporated in this
theory. With the discovery of D-branes [37] in 1995 eventually led to the AdS/CFT corre-
spondence [1-3]. The AdS/CFT correspondence has been a very successful idea in string
theory. It relates conformal field theories living on the d-dimensional conformal boundary
of d + 1-dimensional anti De Sitter (AdS) spacetime with the supergravity theory in the
bulk. More precisely certain correlation functions in the boundary CFT can be obtained
by calculating certain geometrical quantities in the bulk. Entanglement entropy has been
very useful in studying the correlation between nonlocal observables in quantum many
body systems. The idea of entanglement entropy has also been a focus of recent studies
in string theory [6, 7]. The holography has led to some understanding of entanglement
entropy in strongly coupled quantum mechanical systems, particularly for quantum theo-
ries which exhibit scaling property near the critical points [38]. A significant observation

has been that the smaller excitations of the subsystems in the boundary theories follow



entanglement thermodynamic laws similar to the black hole thermodynamics at finite tem-

perature [23,26,30]. In this chapter we will briefly go through each of these developments.

1.1 AdS/CFT

We know that generating functional are very essential in order to study any quantum field
theory. The AdS/CFT correspondence [1—4] is a statement about the generating functional
of a quantum field theory and its dual theory of quantum gravity. One can write this as

[39-43]

Z6ravity = ZQFT, (1.1)

One of the most authoritative and well studied examples of this duality is the Type IIB string
theory on AdSs x S° with N units of five form flux passing through the S® and maximally
super conformal N’ = 4 super Yang- Mills (SYM) in 4 dimensions with gauge group
U(N). The central idea behind this is the dual role played by the D-branes. In the context
of perturbative open string theory, a D-brane can be pictured as a hyperplane on which open
strings end. Now from the massless excitations of the open strings ending on the brane one
can describe a gauge theory on the world volume. Another way of seeing the D-brane is
to see them as nonperturbative states of the closed string spectrum. At low energy, they
are described by the solitonic solution of the corresponding supergravity as their tension
scales as the inverse of the string coupling constant g;. Taking the limit o/ — 0 (where
Va/ is the characteristic string length) in Type IIB string theory (in R'?) in presence of
stack of V parallel D3 branes, while keeping the string coupling g, and NV fixed but large.

From the open string description of D3 branes one gets two decoupled systems viz a) The



N = 4, U(N) super Yang-Mills in R and b) Weakly Coupled Type IIB supergravity in
R'Y. Similarly in the same limit one also gets two decoupled systems from the closed
string description viz a) Full Type IIB superstring theory on AdSs x S° and b) Weakly
Coupled Type IIB supergravity in R, Since Type IIB supergravity is common to both
it is consistent to identify N = 4, U(N) super Yang-Mills in 3 + 1 dimensions with Type
IIB superstring theory on AdSs x S°. This limit is commonly called the decoupling limit.
It is important to note that the isometry groups on the both sides of the duality matches
with each other. The SO(2,4) conformal symmetry of the CFT is realized as isometry
group of AdS; whereas the global SU(4) ~ SO(6) R-symmetry is realized as the group
of isometries of S°. In the gauge theory side we have two dimensionless parameters the
Yang-Mills coupling gy s and the rank of the gauge group U(/N). On the gravity side we
have the dimensionless string coupling and two dimension full parameters viz the string
scale o’ and the length scale L(L* = 4rg,No’ 2) The AdS/CFT dictionary is governed by

two important relations

A
g3y = 4mgs, T = 2£ For large N, g, < 1 (1.2)
T
where 7' = #Z, and A\ = ¢g&,,N is the 't Hooft coupling. Thus using this duality one

can study strongly coupled QFT (at large 't Hooft coupling) using dual classical gravity
description. It is interesting to note that similar examples can be obtained in the context
of M-theory [44,45]. In the next section we will study the anti De Sitter spacetime and its

symmetries.



1.2 Anti De Sitter Spacetime

In this section we will start with describing the AdS spacetime [43,46—49] and its confor-
mal structure. Let us consider a flat spacetime (M) having signature (2, d) i.e, two time
directions and d spatial directions. The line element for this space can be written in natural

coordinates 7, 11, X1, ..., X4 as
ds* = —(dTp)* — (dTy)* + (dX1)* + -+ + (dXg)? (1.3)

Now we consider the (d + 1) dimensional hyperboloid H of events in M satisfying

(To)* + (Th)* = > _(X))* = R? (1.4)

=1

Where R is the proper distance of the hyperboloid from the origin. The isometries of H is

(d+1)(d+2)

given by those isometries of M?>? which preserves (1.4). There are 5

independent
isometries, these isometries forms the group SO(d, 2) hence #H is maximally symmetric.
Now we choose to parametrize the hyperboloid by introducing Ty = /72 + R2 cos 1=

V72 + R%sin Z where 1% = Zle(Xi)Q. With this parametrization we can write the in-
duced line element on H as

ds* = — (;;2 - 1) dr* + % + r?dQ5_, (1.5)

2

Where €, ; is the volume of the (d — 1)- dimensional unit sphere. As the coordinate
7 is periodic with a period of 27. In order to avoid closed timelike curves on H one
can unwrap this direction by passing to the universal covering space of H. In literature

both the universal covering space and the hyperboloid are referred to as Anti De Sitter



spacetime. It is important to note that any Killing field of H lifts to the covering space and

hence, it remains maximally symmetric w.r.t a isometry group given by a covering group

of SO(d,2).

The coordinate used in (1.5) covers the whole of AdS space. They are called global

R2 _ __RTy

coordinates. We will use another set of coordinates given by z = Toixy U= @oixy and
T = (Tff)zd) fori =1, ..,d — 1. The metric then becomes
R d-1
ds® = g, datdx” = — (—dt2 + Z(dwi)Q + sz) (1.6)
i=1

These coordinates are called Poincaré coordinates as they manifest a lower dimensional
Poincaré symmetry (with d coordinated ¢, z;). These coordinates only cover a region of
AdS given by Ty + X4z > 0. This region is called the Poincaré patch. We will only use
the coordinates given by (1.6) in this thesis. As AdS is maximally symmetric its Riemann

tensor can be written as

-1
R,uz/o)\ = ﬁ(g,ucrgu)\ - g,LL)\gvcr) (1 7)
Its scalar curvature is equal to — d(j{;l) . The AdS space is a solution of the vacuum Einstein
equation with negative cosmological constant A = — dgd];;)




1.2.1 Conformal Structure of AdS Spacetime

Introducing the new radial coordinate [46] r, = arctan() so that the line element (1.5)
becomes
R? dr?

— +dr,? +sin*(r,) dQ2_, (1.8)

ds? = g datda” = — |-
o GG cos?(ry) | R?

It is evident from the line element that r, = % is the conformal boundary. One can rescale

metric (1.8) to define a new metric

cos?r,

g:w = ?guu (19)

This defines a metric on a smooth manifold (A/) with boundary (0M ). The induced metric
at r, = 7 gives the Einstein static universe. Again from (1.6) we see that 2 = 0 is the

conformal boundary. The rescaled metric

22

guu - ﬁguu (110)

The induced metric at the conformal boundary (z = 0) is just the d dimensional Minkowski
space. Now we know that the Minkowski space M¢~! is conformally equivalent to a patch
of Einstein static universe R x S%~!. Hence z = 0 of the Poincaré patch is a diamond
shape piece of the conformal boundary. It is important to note that instead of considering

the rescaled metric (1.9), we could also have considered the metric given below.

COS? Ty o,

g,uu: R2 € Guv (111)




Where o is a smooth arbitrary function on M. One can check that this metric is also
nonsingular at 7, = g but the induced metric is now only conformal to R x S91. The
choice of a particular rescaling factor determines a representative of the corresponding
conformal class of boundary metrics. This choice of rescaling factor is known as the choice
of conformal frame and the particular representative is called the boundary metric. Below
we state the general notion of Penrose’s conformal compactification. As discussed above
we consider a manifold(}/), with boundary OM. Now we consider metrics (g) on M
which are singular on M, such that there exists a smooth function (2 satisfying ) |,,, =

0, (dQ) |55 7 0and © > 0 on all of M, such that

guu = QquV (112)

can be extended to all of M as a sufficiently smooth non degenerate metric for which the
induced metric on M has a Lorentz signature. Where g, is not unique. One can always

choose a new €)' such that

Q' =e"Q (1.13)

for arbitrary smooth 0 on M. Thus the choice of a conformal frame corresponds to a
particular boundary metric. The group of transformation which preserves (1.12) are called
conformal isometries. They form a group among themselves. The Poincaré group forms

a subgroup of the conformal group. The conformal transformation [50] consists of four



kinds of transformation viz,

Translation: z* — z" + a*.
Lorentz Transformations: z/ — Afx”

Dilatation: z* — ax”
xh — b
%
1 —2b.x + b2x2

Special Conformal Transformation(SCT): x* (1.14)

SCT is nothing but a translation, preceded and followed by an inversion. The generators

corresponding to the infinitesimal transformations are listed below.

Translation: P* = —io"
Rotations: J* = i(z'd” — zVO") + S*
Dilatation: D = —i(d + (2.0))

SCT: K" = —i ((2a"2" — 2¢"2*)0, + 2da") + 2x,5" (1.15)

Where S* is an antisymmetric spin matrix for a given field. It satisfies the Lorentz algebra.
If the underlying field is a Fermion then d = % and d = 1 for Bosons. One can check that

these generators satisfies the following commutation relation

[D,D] =0, [P*,P")=0, [D,P"=iP" [J® P=—i(g*P®— g*P
[Jab7 ch] — _i(gad(]bc + gbCJad . gaCde . gdeac)7 [Jab,D] — 07

[D, K% = —iK*, [iK* K =0, [K* P’ =2i(¢"°D — J®) (1.16)



Now we will move on to study the isometry group of AdS,. For this we consider the

Euclidean AdS, metric

dt? + dz? + dy? + d2?
22

ds® = R?

(1.17)
For this we write down the all the ten generators

Ji = at; Jy = 8a37 J3 = aya Jy = xat - taa:) Js5 = ya:v - xaya Jo = tay - y8t7
1
Jr =10, —t0 — x0; — y0,, Js =rt0, — §t28t — txd, — tyo,,

1 1
Jg = ra0, — txd; — 5:1;2833 — xy0y, Jig = 1Yo, — tydy — xyd, — §y28y (1.18)

After making the suitable identification ¢ — ¢, one can check that the generator satisfy the
usual SO(3,2) algebra [Jop, Jea| = 1(GadSoc + Goead — JacIbd — GvaJac) Where a, b, ¢, d runs

from O to 4. One can easily check for 2 + 1 dimensional flat case the generators area

Jo = 1Py, Jy = —iJia, J5 = —iJi3, Jg = —iJoz, Jr=—iD, Jg=1iKq,

Jo = 1Ky, Jig=1K3 (1.19)

Where a, b runs from 1 to 3 and the generators are listed in (1.15). It is easy to check that
these generator satisfy the same SO(3,2) algebra. So we see that in general the isometry
group of AdSy,, is isomorphic to the conformal group of the flat Minkowski space M%4~1,

This statement can be considered as a motivation for the AdS/CF'T duality.



1.3 Holographic entanglement entropy

Although AdS/CFT has been successful in relating QFT with bulk dual gravity solution.
However it is still not well understood how gravity emerges from field theory. Entangle-
ment entropy has served as an important tool to study this aspect of the correspondence.

Similar ideas can be found in the Bekenstein-Hawking(BH) formula

Area(X)

fp——
BH e

(1.20)

Where Sppy is the black hole entropy, > is the event horizon, and Gy is the Newton
Constant. Similarity between black hole entropy and entanglement entropy S, has been
pointed out before [51,52]. Where A is the space-like submanifold on a constant time slice
.. This area law behaviour is observed in field theories. For example in d dimensional free
field theories, one can show that the leading divergent term of S4 in the UV limit e — 0
obey the area law.

Area(0A)

ed—2

Sa=c (1.21)

where c is the coefficient that is independent of A and OA is the boundary of A in the
constant time slice 2. In QFT’s the entanglement entropy is always divergent, hence one
includes the UV cutoff €. Thus unlike the thermal entropy, the entanglement entropy is not

an extensive quantity.

In the context of AdAS/CFT Ryu and Takayanagi [6, 7] generalised these ideas for cal-
culating the entanglement entropy for subsystems in a strongly coupled quantum system

living on the boundary of asymptotically AdS spacetimes. In this proposal the holographic

10



entanglement entropy (HEE) S of a subsystem A in the boundary C'F'T" is given by the

area of a codimension 2 minimal surface ~y,4 in bulk viz.

B Area(vya)

Sa 4G N

) (1.22)

Where G is the Newton’s constant. This prescription has been verified by several non
trivial checks [9,53-55] and a direct derivation in [10]. One can find excellent discussion
on this topic in [56]. Applications of this proposal to higher derivative theories can be

found in [57-61]

Now we will try to describe the construction of the Ryu Takayanagi surface in details.
We will follow here the discussion given in [8]. We begin with a d + 1 dimensional asymp-
totically AdS spacetime M with conformal boundary 9V . We Know that static spacetimes
admits a timelike Killing field (%)F‘. Hence the timelike Killing field is orthogonal to con-
stant ¢ hypersurfaces. Thus one can naturally foliate the boundary OM by these surfaces,
such that we can write dM = [[, S, x R,. Now we choose a subregion A on a partic-
ular leaf OS of this foliation, such that 0§ = A U A°. Let 0A be the boundary of this
region assuming JS to be compact. It is important to note that A is d — 1 dimensional
and 0A is d — 2 dimensional. Now by virtue of time translation invariance in these static
backgrounds, the boundary spacelike foliation naturally extends into the bulk to provide a
canonical spacelike foliation [ [, S; of M. Now on a given spacelike slice M one can find
a d — 1 dimensional minimal area surface which ends on 9A C 0S. As the bulk spacelike
slice is of Euclidean signature the minimal surface ) is bound to exist. Thus given the
minimal surface Y, the entanglement entropy associated with the region A is given by the

area of the minimal surface Y in bulk Planck unit.

Now the natural question arises that what happens when the spacetime is no longer

11



static?. In order to answer this question we need to understand the concept of a light sheet
and covariant entropy bound first. Let us consider a codimension two spacelike surface B
in a manifold M. Now one can construct four congruences of past and future directed null
geodesics from the surface in ingoing and outgoing directions. The null geodesic congru-
ence for which the expansion of the null geodesic is non positive definite is called a Light
Sheet Lg. Due to this requirement the null geodesics along the light sheet are converging
and will develop caustics, at this point the light sheet gets cut off. The covariant entropy
bound or the Bousso bound [62—66] states that the entropy or amount of information Sy,
that can pass through a light sheet is bounded by the area of the spacelike surface 5.

Area(B)

S, <
s =" 4Gy

(1.23)

Following [8] one gets the important result that in case of the AdS/CFT correspondence ,
the entanglement entropy saturates the Bousso bound. With this in mind one can describe
the setup of covariant entanglement entropy proposal in the following way. As before
we consider a d + 1 dimensional asymptotically AdS spacetime M with d dimensional
conformal boundary M. At any given time one can choose a subregion A; in the d —
1 dimensional spacelike subspace of the boundary dM. Now the boundary 0A; of this
subregion is a d — 2 dimensional surface in M and a codimension two spacelike surface
in M. Hence one can construct upper and lower light sheets 8ngt and 0L, for the
surface 0A;. Now one can consider the extensions th of the two light sheets 8Lijt into
the bulk such that they are also the light sheets of the same codimension two (d— 1) surface
Y, = ngt N L, in M. Now one can vary the form of the light sheets th keeping 8th

fixed. This give rise to a class of surfaces {Y;}. Now the covariant entanglement entropy is

12



given by the area of the surface Y™ having the least area in the class {Y;}.

_ Area(Y™n)

Sa,(t) = TN (1.24)

However we need to check whether this definition is consistent with the surface obtained
by a saddle point of the area action. In order to check this we consider a codimension two

surface .S in a spacetime manifold M given by the following embedding functions

fi(z”) =0, fofz") =0 (1.25)

Now non degeneracy requirement ensures the existence of two linearly independent normal

null vectors viz

VE=g"(Vufi + usVofa) (1.26)
One can fix the normalization as
VIV g = —1 (1.27)
Now one can write the null extrinsic curvature of the surface .S as
(K1) = RV o(Va)a (1.28)

Now the expansion of an orthogonal null geodesic congruence to the surface is given by
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the trace of the null extrinsic curvature

Or = (Ks)t (1.29)

By definition this quantity is the mean curvature of the surface and we will see in the next
section (1.3.1) that the extremal surfaces are surfaces having zero mean curvature. Thus
the surfaces S with vanishing null expansions 6. are extremal surfaces. Thus out of the
class of surfaces {Y;}, the minimal area surface Y™ is the surface having vanishing null

expansions 6.

Finally we need to ask when this proposal goes back to Ryu Takayanagi Proposal or
in other words can we construct the covariant extremal surface in the same way as we did
for the Ryu Takayanagi Case?. Now from the field theory perspective one can consider
the boundary theory to be in a time varying state on a fixed background 0M . But the bulk
geometry will have an explicit time-dependence and hence no timelike Killing field. As the
boundary metric is non dynamical one can chose the same equal time foliation as before
by choosing a time coordinate consistent with Hamiltonian evolution of the field theory.
Thus OM = [], S, x R, still holds and one can choose a region A, € JS, on a given
time slice and compute the entanglement entropy using path integral approach. However
the equal time foliation of the boundary 0M doesn’t lead to a canonical foliation of the
bulk M. Still If one can find a natural foliation and pick up a spacelike slice S; of M
given by extending the slice from M and then one can find an extremal surface with the
same boundary subregion. From this observation one can conclude that the maximal area
slicing could be the candidates for S; as they go to the ¢ = constant slicing for static bulk.
However from [8] one can see that in order to match this construction with the covariant

one the maximal slicing should also be totally geodesic. But a spacetime admitting a
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totally geodesic foliation must be static. Thus this method of constructing the covariant
extremal surface agrees with the light sheet construction only in the trivial case of static

bulk geometry.

1.3.1 Minimal Surface in AdS spacetime

The very first idea of minimal surface [67-71] comes from area minimization. We would
like to obtain a condition for a surface to have minimal area. The construction is as follows,
Let (M, g) be a Riemann manifold and .S be a submanifold with boundary of M. Let h,;, be
the induced metric on S. Let V, D be the Levi Civita connections w.r.t g and h respectively.

Next we consider a variation of S in M, with fixed boundary
f S x I — M, fo =idyy, f|<9M = idgp (1.30)

We assume that f; : S — M are embeddings and let S; = f;(S). Then the variational

vector field is given by N = 0,f € T'S|s, and N|pg = 0. The area of S is given by
SA = /Nﬁ d"z. (1.31)

Now let us consider the first variation of area of .S under this flow

1 d

1 d
i Vhio = Sh* vy = h* (9(V T, Th) (1.32)

dt
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Where T, = % and recall that given vector fields X, Y on S we have
VxY = (VxV)75 + (VY)Y = DyY + K(X,Y) (1.33)
Where K (X,Y) is the Extrinsic curvature with values in normal bundle NS of S in M.

d

E\/E\t:o = Vhh®g(V, NT T,) + Vhh®g(Vr, N*, T)) (1.34)
= Vhh®h(Dr, N*, T,) = Vhh'g(N*, V1, T;)
— Vhh®h(Dy, NT, T,) — Vhh®g(N, (V1,Tp)*)

— DivgNT —Vhg(N, H).

Thus the first variation of area of S is

iA“:o:/ (n, N)-/g(N,H)\/Ed”x (1.35)
dt o5 s

Where 7 is the outward pointing conormal along 35S in S and H = h** K, is the trace of
extrinsic curvature and is called the Mean curvature . Now according to our assumption
Nps = 0 so the first term drops out and if we set = 0 then we get %A“:O = 0. Thus we

see that setting mean curvature to zero gives us the minimality condition.

Now we will explore this setup for AdS,. As AdS} is a static spacetime a codimension
two spacelike surface in it be given by t = const,z = z(z,y). We wish to solve for

z(x, y) using the minimality condition described above. Using standard orthonormalization
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technique, one can construct an orthonormal basis. These are listed below

M = Zat
2(2 450y + 2,40, — 0s)

N pr—
V1i+C
T ? (2402 — 2.20y)
VC
o _ 2 (2200 + 240, + CO.) (1.36)

VCVI+C

Where C' = (2% + 23). (M, N) are the two normals to the surface and (7', S) are

tangent. Using this we can calculate

22 Zo(mzy —nz.) 2
VeN=——— 2 uZgw — ZaZay) — —— Y 2 —1—;‘1’) Oy
g VCOVI+C << A o) (14+0) 2
zy(mzy, —nz.) 2, mz, —nz,
+ ((z,yz,xy — Za2yy) — 2 ( f i ) o) — —> Oy + %@] (1.37)
and
22 2o (Mmzgy +nzy) 2 )
VsN=—"——|(m—- = = Y4 220, + (n
SN/ N e K 1+0) 2 (
2y <mz,z + n,zgy) Zy 1 z(mz g, +nzy)
- - - 2 ’ 1.
(1+C) +z)ay+z(c+ (1+0C) )8Z (1.38)

Now as the mean curvature is just the trace of extrinsic curvature, we only need to obtain

the diagonal elements of the extrinsic curvature viz From here we can calculate the extrinsic
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curvature

= 1
~9(K(T.T).N) = g(VeN.T) = - —repr (22 200 + 2224y — 222,020y + —
Z(Z2$Z.Z’l‘+z2zyy+22yzzz$y> 1
_gKS,S,N :ng7S: ) ’ Y . ) ) ) +
KR C(1+0): VI+C
(1.39)

Thus the mean curvature H is given by

“H = —g(H,N) = —g(K(T,T) + K(S,S),N)

SR 2 2 2 2 2
— 150 ((1 +2) 200 T (1 4+ 23) 24y — 2242220y + ;(1 + 25 + Zy))

Nl

The minimal surface equation is given by demanding H = 0. From the above equation this

equates to the following equation.

2
(1422200 + (L4 2%) 24y — 222070y + ;(1 +22+22)=0 (1.40)

One can obtain the same equation from area variation directly. Let us show it here for the

embedding ¢ = constant, z = z(x, y) the area functional can be written as

JITZTZ
A= / drdyv/h = / dxdy 2T Py / drdyS (1.41)
z

On minimizing this action we should get one equation
d [0S d (08 aS
el — =) 2= = 1.42
dx (8235) i dy (8z,y) 0z 0 (142)
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Where

VIt 2422
S fa T Ry (143)

Now substituting we get

4 (0S\, d (05Y 0
dx \ 0z, dy \ 0z, 0z
(z2(1+ zzy) + 24, (1 + 2235) — 2232 4% oy) B 2(2230 + zQy) N 2./1+ 2296 + z?y

z2<1+z?z+zi/)g 23\/1+Z,290+Z3; z3

L 2
B 1 ; T 1 : -2 T —(1 2 2 =0
22(1 _|_ 2123: + ZQy)% |:< + Z7y)z, _|_ ( + Z7I)Z7yy 2’792, Z, y —|— Z( + Z,SE + Z7y)
2
= (L4 23) 200 + (14 20) 20y — 223202y + —(14+ 25+ 23) =0 (1.44)

Which is same as (1.40).

Solutions:- It can be checked [14] that z(x) = /1> — 2% — y?2 with 0 < |z| < [,0 <

ly| < lis asolution. If we take z = z(y) then substituting z, = 0 in (1.40) to get
2 2
2w+ Z(L+23) =0 (1.45)

This can be solved by the boundary condition y = 0, 2(0) = z,, z,(0) = 0. Notice that z,
is the maximal height attained by the curve along the z direction. It can be checked that

INE 3 4 e
= \/El(4)z*_Z_F21(17§;z; - )7 Py = (4)3
I'(3) 322 2474 2,4 Vl(2)

*

y(2)

[ (1.46)

where I is the Euler gamma and F}} is the hypergeometric function. For simplicity we have
demonstrated this for AdSy. But these solutions also exist in higher dimension. In this

thesis we will only study these two minimal surfaces for other surface one can check [14].
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Extremal surfaces in De Sitter and application to holographic entanglement entropy can be

found in [72-75]

1.3.2 Minimal surfaces in asymptotically AdS spacetime

It 1s important to note that there are hardly any exact analytical solution of the minimal
surface equation in asymptotically Anti De Sitter spacetime. Hence one has to adopt a
asymptotic perturbation theory [76, 77] approach to solve the minimal surface equation.
For the sake of clarity we will discuss this for the AdS;,, blackbrane background. The

metric of the AdS,,, blackbrane is given as

1 dz?
ds> = = [ = f(2)dt®> + dz® + - - - + da? - 1.47
s 22( f(z)dt* +dzi + -+ + xd_ﬁ—f(z) (1.47)
with

d
z
fz)=1-5
s

2y 1s the horizon Now as this is a static geometry we can still take the subsystem on a
constant ¢ slice. Let us first consider the subregion to be a sphere. For the sphere we take

the embedding as

dat + -+ day = dr(2)” +7(2)2dQ5_, = r'(2)%d2* + r(2)%dQ%_,

Where 7/(z) = 4. Thus the area of the spherical subsystem is given by
dz

B Pdzr(2)®? | 1 )
A= Qng/O g 5 + 17(2)? (1.48)
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Where [ is the radius of the disk at the boundary. The equation of motion for this action

functional is

2r(2)r"(2) — (d — 1) f(2)r(2)r'(2)® — 5 <(d —-2)+ fglz)) ' (z)
1

) =0 (1.49)

Since there is no analytic closed form solution of this differential equation, we have to

adopt the regularized perturbation method [76, 77] to solve this as an asymptotic series.

Our first task is to identify the parameter in eqn(1.49) whose limit reduces the differential
1

equation to a solvable one. One can check that the parameter is —; and taking the limit
0

2o — 00 (f(z) = 1) reduces the above equation to
2r(2)r"(z) = (r'(2)2 4+ 1) ((d = Dr(2)r'(z) + (d — 2)2) = 0 (1.50)

This is the minimal surface equation for the same subsystem but embedded in pure AdSy, 1.
The solution of this equationis (z) = v/ 2,07 — 22. Where 2, is the turning point. Thus

we assume a series solution of eqn(1.49) in powers of zid at first order we have
0
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Plugging this back in eqn(1.49) retaining up to first order in 2; gives
20

. (h(z) + @) <h”(z) + if)) d-1) (1 _ 3;) <h(z) + %’?) <h’(z) blz(g))s

20 20

0+ ) fumzrra(1e L )] (o 1)

0 0 0

+

d 2d b/ 2
1+Z—d+z—2d+---+(h’(z)+ (j)) =0
20 A0 0

—(d—2)z

Now retaining terms up to first order in zid gives
0

—(d—2)z

[h(2)"(2) — (W(2)? + 1) ((d — D)W (2) + (d — 2)2)] + zig

(20 (2)W (z) + 2%) + %h(z) (220" () — 2(d — 1)V (2) (3K (2)> + 1) + 2°H(z)

+...=0

(2(d — 1)1 (2)? = d)) + b(z) (zh"(2) — (d = 1) (W ()’ + W' (2)))

If the series solution is true then the coefficient of all powers of Zid must go to zero. Thus
0

equating the coefficient of the zeroth order term to zero gives
zh(2)h"(2) — (W (2)* + 1) ((d — Dh(2)l' () + (d — 2)2) = 0

This is the familiar equation (1.50) and the solution is

h(z) =+/22 — 22
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Where regularity is assumed at z = z,. Now plugging the value of h(z) back in the

coefficient of the first order and equating it to zero term gives

2z (27 — 22)2 V' (2) — 29\/22 = 22 [(d — 4)22 + (d + 2)27]

.=

—2(z7 = 22 (2) [(d — 1)22 4+ 22°] +2(d — 2)222b(2) = 0

The general solution of this equation is

1 _ 2
b(z) = —C + 2 ((zf — z2)) 4/2+1 oF1(1,3/2; d/2 4+ 1; Z—)C’Q
(22 — 22) 242

V22— 22 (2d+2)

Where C and C are integration constant. Now setting the boundary condition b(0) =

finite, b(z.) = 0 gives

22012 A (22 4 27

2d+1)/(2 -2

b(2)

Thus the full solution up to first order( [78—80]) is

2232 — 20 (22 4 27)

r(z) = /22— 22 (1.51)
=) 223(d + 1)/ (22 — 22)
Where the constant (z,) is related to the radius of the sphere [ by
Ld+1
0)=l=z2,+——— 1.52
r(0) = 23(d+1) (1.52)

This solution is also given in [23,81,82]. In the next section we will use the Ryu Takayanagi

proposal to calculate the entanglement entropy for a strip and circular disk.
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1.3.3 Entanglement entropy for a strip and circular disk

using RT proposal

As our first example we will calculate the entanglement entropy for a strip of width /.
The strip at the boundary is homologous to a (d — 1) dimensional bulk minimal surface

embedded in AdSy. 1. The AdSy,, metric in Poincaré coordinate is given by
—dt* + dx > + -+ drgq® + d2?
F e e S e S (1.53)

22

We embed a strip like surface in this background given by ¢ = constant, 71 = z1(z), x; =
x;. The boundaries of the extremal bulk surface coincide with the two ends of the interval
(—% < < %) The regulated size of the rest of the coordinates is taken large 0 < z; < L;.

The area of the strip like surface is given by

Zx d
A= 2Vd2/ Zd—im +a/(2)’ (1.54)

Where z, is the turning point of the surface and ¢ is the UV cutoff. The minimal surface is

obtained by minimizing the area functional. On minimizing we get

r'(z) = ! (1.55)
(2)2-1) — 1

The identification of the boundary z'(0) = /2 leads to the integral relation

= z:by (1.56)

I / dz /1 st dt
_— — Z* _—
2 0 /(2)2-1) — 1 0 V1 — t2(d-1)
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where ¢ = Z and by is a precise integral Beta functions provided in the appendix(B). Using

(1.55) in (1.54) we get

A Wi boat 1
2,472 [ pd-l T 20
B 2Vi_s A
— <(d oy T L ao) (1.57)

Thus using (1.22) the entanglement entropy for a strip embedded in pure Ad.S;.; is given

by [6,7].

S

(1.58)

-1 (d—l
_ 1 2 Vao 2d-17 5" F(2(dd—2)) ) Via
G\ @y a2 @2 =

It is important to note that the first divergent term is proportional to the area 6 A = V; o
and is in confirmation with the area law from field theory computations. The second term
does not depend on the cutoff and hence is universal. This term can be directly compared
with the field theory counterparts. Similarly one can consider a circular disk instead of the
strip. The minimal surface in that case is half of a d — 1 dimensional sphere centered at
2z = 0. Holographic entanglement entropy for a circular disk like subsystem of radius [ is

given by [6,7]

(d—1)

o 2 L o(1-1?) =
Sp = —_/ dt—,
4G?lv+1r(d21) . td—1

l l
= C2(g)d72 + 04(2)#4 e

(d—3)

ca—a(L) + cam1 + O(L), d = even,
o (1.59)

ca—3(1)? + qlog(L) + O(1), d = odd,
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Where the coefficients of the terms are given as

1 . (d=3)

a (d—2) a  2(d-4)
cir 2 gd-12-d o
e —(\/7_T) I( 5 )I( 5 ) : d = even
¢ iz (d— 3)!
—_ = —1 2 : —
A A ] d=odd

Wh i (1.60)
ere = -—— :
G

In accordance with area law one can check that the leading UV divergent term ~ ¢~9*2 and
its coefficient is proportional to the area of the boundary 0 A. The subleading terms indicate
the form of the boundary. When d is even the universal term i.e; the term independent
of the cutoff is given by a constant p;_;. When d is odd the universal term is given by
the coefficient of the logarithmic term ~ log é It is important to note that in Lorentzian
spacetime due to the presence of the time direction one can wiggle the surface in the time
direction and make its area arbitrary small. Hence the notion of minimal surface is well
defined in the static case where one can consider a constant time slice or one can Wick

rotate and work in Euclidean setup.

1.4 Entanglement First Law

In this section we will try to formulate the entanglement first law from both CFT and
bulk arguments. We know that relative entropy S(p | o) of two density matrices p and o

provides a measure of distinguishability between them. It is defined as [22,27,56]
S(p| o) =Tr(plogp) — Tr(plog o) (1.61)
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It satisfies two basic properties viz

1. Positivity: Relative entropy is non negative for any two density matrices and vanishes

only when the two are equal, i.e.,

S(plo)=20,S(plo)=0—p=0

2. Monotonicity: Relative entropy decreases under inclusion. Relative entropy de-

creases on tracing out the same degrees of freedom.

S(paloa) <S(p|o), pa=Trac(p), o4 = Trac(o) (1.62)

Where we trace out over a region A and its compliment A¢ Now as in thermodynamic sense

on can define the modular free energy as

F(p) = Tr(pH,) — S(p)

Where S(p) is the von Neumann entropy of the density matrix p and H, = —log o is the
modular Hamiltonian for the density matrix o. Now using this one can express the relative

entropy as

S(plo) =Tr(plogp) — Tr(clogo) + Tr(ologo) — Tr(plog o)

=—S5(p) + S(0) — (—logo), + (—logo),

= A(H,) — A(S) >0 (1.63)



Where the last inequality is guaranteed by positivity of relative entropy. For two states
close to each other one can use the relative entropy as a distance measure. Let us consider
a one parameter family of states p = py + €p; + €2py + - - - in the neighbourhood of a
reference state 0 = py. Now one can write the relative entropy as a power series in €.
From the above argument this is clear that relative entropy is at least quadratic in €. The
contribution to relative entropy at O(¢) is zero for any choice of p,. This observation leads

us to

58 = 6(H,,) (1.64)

Thus at linear order the inequality is saturated. This statement is known as the first law of

entanglement due to its close resemblance with first law of thermodyanmics [27].

We Know that the pure AdS;,; spacetime is dual to a holographic C'F'T; and asymp-
totically locally AdS spacetime would correspond to excitations over the CFT. Thus the
bulk asymptotic geometry will get modified by excitations, which are viewed as specific
states in the field theory Hilbert space. Now given in Poincaré coordinate one an use the
scale/radius duality to observe that high energy (UV) excitations will modify the geome-
try near the conformal boundary i.e, small z. Similarly low energy excitations (IR) will
modify the bulk geometry near the larger values of z i.e, at the center of the AdS or the
Poincaré horizon. Now as we know form the Ryu Takayanagi proposal that holographic en-
tanglement entropy of a subsystem at the boundary is given by the area of the bulk extremal
surface. As the extremal surface is sensitive to the deformations in the bulk geometry so the
entanglement entropy serves as a important tool to study this.Now as we saw the stationar-
ity of relative entropy for perturbation about reference state is responsible for entanglement

first law. Now from the observation of entanglement entropy one can conclude that the ref-
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erence state pg is indistinguishable from the state py + €p; upto O(e). Now our task is to
encompass this from the bulk side, any asymptotically AdS spacetime is a finite change
from pure AdS spacetime. So as long as we focus on macroscopic details of the excitations
they would be clearly distinguishable from the ground state. Thus we have to focus our
attention on reduced density matrix induced on relatively small subregions constrained to
be free from the details of the IR and depend only on the energy density of the excitations.
We will describe this below with an example as described in [23]. Thus one starts with an
excited state which preserves spatial and time translations with rotation. Thus after fixing
the radial coordinate to measure the proper size of the spatial sections one can write the
bulk metric in terms of two unknown functions viz

RQ

dSQ——2
z

(—f(2)dt* + g(2)dz" + dx_,) (1.65)

Where dz?_, is the Euclidean line element over the (d — 1) flat directions. Now after
setting all the matter contribution to zero and and fixing the boundary metric to 7),,,. One

can express the near-boundary geometry of an excited state to be given by

9(z) ~ ﬁ ~ 1 +mz?+ 0>z, (1.66)

Where the energy density of the excitation is set by m. For this background one can
compute the holographic stress energy tensor by expressing the metric in the Feffermen

Graham coordinate and is given by

R“m

T, dxtdr” = ————
g 167TG§3+1)

((d—1)dt* + dx_,) (1.67)

As (1.66) is a near boundary geometry, the metric (1.65) can have either a blackhole or
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a star like configuration in the interior. As stated earlier that we will only focus on small
subregion on the boundary hence interior detail of the geometry is not required. Now we
know that in pure AdS,,1, for a subregion(A) of size [ on the boundary the bulk minimal
surface probes the region within 0 < z < [. Thus in order to make the bulk minimal surface
free from the details of the IR region and make it depend on the parameter m we prescribe

the following bound on the minimal surface
ml® < 1= (T,,) (1.68)

This bound can also be rephrased as /47! < %ﬁdﬁ) i.e, we require that the energy density
be much smaller than the characteristic energy scale of the subsystem A. Now given this
approximation the reduced density matrix for the excited state is almost indistinguishable

from that of the vacuum. Thus one will always observe
pa(l E)) ~ pa(| 0)) + O(EL?) (1.69)

Where E is the typical energy scale of the excited state. From here one can conclude

S(pa(l E)) | pa(] 0))) = O(E* 1)

ASy = (Hy), at O(EI1% (1.70)

Now let us check whether this observation agrees with bulk calculations. To check
this we calculate the change in entanglement entropy when the subregion is a spherical

ball with radius /. We follow our calculation in subsection(1.3.2) and (1.48) to obtain the
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entanglement entropy as

R dz P
W4ﬂgd_2/z—r(2) g(Z) +T/(Z)2 (171)

We can carry over the solution from our analysis done in subsection (1.3.2) and (1.51)

22012 — 24 (22 4 2?)
r(z) =22 =22+ m— - 1.72
(=) 2(d+ 1)/ (22 — 22) (1.72)

Where the turning point (z,) is related to the radius of the sphere / by

Zd+1
O)=l=z,+——"—— 1.73
rO)=l==2+ 2 (1.73)
Now we can substitute this back in (1.71) to get
Rd—l Zx Z* 9 9 %

S:4WWQC[2/E dZﬁ (Z* —Z ) (1—|—M(2))

2d — 2 d+2_2d2 d 2.d d—1 d+2
M(Z) _ ( )Z* Zy R +< —|—3>Z*Z 3( )Z (1.74)

2(d + 1)(22 — 2%)

Expanding this integral and calculating the change in holographic entanglement entropy

upto first order in m we get

27 R-1

= Og_omi? 1.75
° d+116rG0 (7

Comparing this with the energy contained in the subregion A AE = f A di12(T},) we get

AS 2
AE dill (1.76)
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A similar result is also obtained for the case of strip subregion. Thus when the subregion
satisfies the bound mentioned above the change in entanglement entropy AS is directly
proportional to the change in energy AE. The constant of proportionality only depends on
the size of the subregion. This statement can be regarded as the first law of entanglement

thermodynamics

1
Tent

AS = AFE (1.77)

Where T.,; can be considered as a subsystem dependent entanglement temperature for the

sphere we have

d+1
27l

1
Topt 7 : For sphere = T,,; = (1.78)

1.5 Plan of the Thesis

In the present chapter we have covered some universal feature of the AdS/CFT correspon-
dence and holographic entanglement entropy. We have covered very few selected topics in
this subject which will be relevant to rest of the thesis. We have discussed two approaches
to compute entanglement entropy holographicaly. The Ryu Takayanagi proposal works
well in static asymptotically AdS backgrounds, while the covariant proposal is needed for
stationary and time dependent backgrounds. However, both the approach requires solving
for the extremal surface. As itis very difficult to obtain an exact closed form solution of the
minimal surface equation, one needs to adopt a perturbative approach to obtain the solu-
tion. Another approach is to start from the area functional in pure AdS and study variations

which incorporates both changes in the embedding and the background metric. Using this
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approach one can check that at first order both the proposal gives the same result. This
is due to the fact that at first order the changes in the embedding don’t contribute to the
entropy. Thus, it is important to study the second order change in entanglement entropy for
different backgrounds (both static and non static). This will help us to study the behavior of
the minimal surface and hence the entropy, once one starts deviating from pure AdS result.
The rest of the thesis is devoted to comparing these two approaches at second order.

In chapter we will use the perturbative approach to calculate the holographic entangle-
ment entropy for the boosted black brane geometry and we also write down the entangle-
ment first law for this background. In chapter we use the entanglement first law to quantify
the asymmetry in the entanglement entropy due to the anisotropy in the boosted blackbrane
background. In chapter (4) we propose a variational approach as mentioned above in 2 4 1
dimensions to calculate holographic entanglement entropy upto second order. In chapter
(5) we generalize the variational approach to higher dimensions. Six appendices contain

necessary material to reproduce the main formulae and results presented in the main text.
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meeesssssssmmmmmn $ CHAPTER 2 S

ENTANGLEMENT THERMODYNAMICS
FOR ADS SPACETIME: PERTURBATIVE

APPROACH

2.1 Introduction

In this chapter we adopt the perturbative approach to study the effects of IR deformations
(excitations) on the change in holographic entanglement entropy for AdS spacetimes. We
will start with asymptotically AdS spacetimes which carry gauge charges. We also look for
modifications in the entanglement first law. In this regard we choose the boosted AdS black
brane as our bulk background where the boost direction is compactified on a circle. These
compactified backgrounds give rise to Kaluza Klein gauge charges. We are interested in
studying dependence of the entropy on the boost and to observe its effect on the first law

of entanglement. In the perturbative approach we find that first order change in entropy
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depend on the boost parameter. However at this order the overall form of the first law re-
mains unchanged. At higher orders we do find that the ‘boosted’” AdS black holes give rise
to a more general form of first law which includes the chemical potential and charge den-
sity. To obtain this result we have to resort to a second order perturbative calculation of the
entanglement entropy. In order to express the change of Entanglement entropy at second
order as a first law statement, we find that various first order thermodynamic quantities,
such as entropy, energy, temperature, etc have to be suitably redefined at the second order.
The effects of higher order corrections appears similar to the renormalization procedure
in quantum field theories. For example the strip width (subsystem size) and entanglement
temperature (1) have to be redefined to include corrections so that a first law like relation
holds good. Since we resort to perturbative calculations, we work in the regime where the
ratio %, of the strip width (/) to the horizon radius (zy), is kept very small. This hierarchy

of scales can also be thought of in terms of respective temperatures as a limit

7jthermatl < TE

We mention that the corrections to the entanglement entropy evaluated order by order in
(dimensionless) quantity Tth;—;j"“l should not be confused with (stringy) quantum correc-

tions to the entanglement entropy [83].

2.2 Entanglement from boosted AdS black holes

The boosted AdS;.1 black holes backgrounds are given by

L2 [ fd? dz?
d52:;(_ 7 +K(dy—w)2+dx§+---+d:c§_2+7) (2.1)
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with

od 222d
le——d, K:1+B7—d (2.2)
20 20

2o 1s the horizon and 0 < 8 < 1 is boost parameter, while v = \/11? The boost is taken

along y direction, which is compact. The Kaluza-Klein 1-form w is given by
w=p11-=)dt (2.3)

and L is the radius of curvature of AdS spacetime, which is very large. For example, in the
AdS5 x S® near-horizon geometry of n coincident D3-branes, we shall have L* = 27¢%,,n
and the ’t Hooft coupling constant g2-,,n > 1.

We study the entanglement entropy of a strip subsystem on the boundary of boosted
AdSg41 backgrounds in (2.1). We embed a (d — 1)-dimensional strip-like spatial surface,
in the bulk asymptotic geometry. The boundaries of the extremal bulk surface coincide
with the two ends of the interval —/2 < z! < [/2. The regulated size of the rest of the
coordinates(0 < z* < [;) is taken very large so that [; > [. We shall always have coordinate
y being compact, so that 0 < y < 27r,. As per the Ryu-Takayanagi prescription [6, 7] the

entanglement entropy is given in terms of the geometrical area of the extremal surface

[A]Strip
4G 441
Vd 2Ld 1 Zx dZ

v “VE <+ (0.a1)? (2.4)

SEE

where G441 is (d + 1)-dimensional Newton’s constant and Vy_o = (271y)lols - - - lg_o is
the spatial volume of the boundary. We will be mainly working for d > 2. In our notation
€ ~ ( denotes the cut-off scale near the boundary to regularize the UV divergences, and z,

is the turning point of extremal surface inside the bulk geometry. In the above K (z), f(z)

36



are known functions and we only need to solve for x!. From (2.4) it follows that a minimal

surface will have to satisfy

da? 2\ 4-1 1

&=~ T 2.5)

The constant z. is given by the turning point relation

Zx

K, — (=) 2 =0 (2.6)

Zc

where K, = K(2)|.—... The identification of the boundary x'(0) = [/2 leads to the

integral relation

0 * \/7 ot (i)Qd—Q

which relates [ with z,, the turning point. The turning-point takes the mid-point value

r'(2,) = 0 on the boundary. From (2.4) and (2.5) the expression of the entanglement

entropy for these boosted AdS black hole solutions becomes

Sg =

(2.8)

Vy_oL4™1 /Z* dz K
QGd_H z0-1 \/T\/K _ K*(i)2d72

The expression (2.8) mathematically provides the entanglement entropy for a strip-like
subsystem on the boundary. For pure AdS spacetime (zy — oo, f = 1 = K) these
integrals can be evaluated exactly [6, 7], but in the presence of black hole it is difficult to
find analytical answers from the integral (2.8), although numerical estimates can always
be made. In order to find analytical results we adopt the perturbative method in the next

subsection.
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2.2.1 Thin strip approximation

In the cases where the strip subsystem is a small part of a big system, so that the turning
point lies in the proximity of asymptotic boundary region only (2, < zy), one can evaluate
the entanglement entropy integral (2.8) by expanding it around its pure AdS value (treating
pure AdS as a ground state). We shall take boost to be finite but small 5+ ~ 1. Under these

approximations we can expand the following expression upto first order

K 24 2\ 7!
i 1 2.27° 1 2, 27

Zd Z*d
(err2) ()
20 20

d d
:1+5272(2d—1>% (2.9)
zZ.

* <0

Using this the strip width equation (2.7) can be expanded perturbatively upto first order as
Zx 1
=2 / dz (=)t
o B VT JE -z
Zx 1
=2 / dz(i)d_1
' ﬁ\/ 1=y (1= 27) 20— (20

Zx 1
= / dz(=)*!
0 B zd)ﬁ

L\ 20-2
Denoting R =1 — (—) , we get

Zx 1
[ = 2/ deo( Yt
0 Zx R
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1 id ﬁd+5272 1_2d Z*d
2\ 2. 20 2R 24 ) 28

Now we will expand the above expression and retain only first order term. Denoting § = —

#x z 1
~ 9 dz(Z)1— |1+
[ |

*

1 B 1 62’)/22(11 gd
_ d-1_— =% d
o [y o e S
d
= 2., (b0+ (b + By 21)) : 2.11)
0

where the dots indicate terms of higher order in (i—;)d. The coefficients by, by, and I; are

precise integral Beta functions multiplying at various orders. These coefficients are pro-

vided in the appendix(B). Note by and b; are positive definite quantities. Keeping only up

to first order in (z2/2%) the equation (2.10) can be inverted to obtain

where Zz,

% = Y2 > — (2.12)
(b + 52 L) (k4 520)

= 2b being the turning point value in pure AdS case(no excitations) having the

same strip width /. The last equation summarizes geometrically the whole effect of IR

bulk deformations (excitations), like having ‘black hole in geometry’ and boosts on the

turning point value perturbatively. Having obtained the turning point expansion, a similar

expansion around pure AdS can be made for the area functional also. After regularizing

the area integral (2.8), in the UV limit (¢ — 0), we find the following expansion

z
A 52/ Zdzl +AUV

\/K K, (£)2d-2
B 2/2* dz
= i \/_\/1 1;( )2d-2

(2.13)
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Now

K, d zdzd -
__1 2.2 1 2.2~ mx
7= (1) (1S

Zd Z*d
~ [1 + %42 (1 - d) zod]

Substituting this back into the area integral (2.13) gives

+ Avv

= dz VK 1
ro [ I
0 \/1 _ [1+5272 (1 _ zz%) zo_;l] ()22
_2/2* dz VK 1
B 0 zd-1 ﬁ\/ﬁ 2y d—2zd _
1_5272(2_01)(1_]@

= dz 1 2 B2 o o(mt=2%) (1
~ 2 1 1 1 -~ [ ==1 A
/0 z4 1\/_< i d> ( T g ) o 2z (R ) A

ze 1 2.2 1 d *d _.d 1
22/ di 1+(57 +d )% +5272(Z dz) 2
o 'R 220 220 R

+ AUV

+ Apy

(2.14)

where we have denoted diverging UV part as Ay = The respective finite inte-

d2<zd2

grals can be evaluated at each order on the right hand side to give

d
Z*
A= Zd72[a0+22 (Va1 + By L) + -] + Apv
¥ 0
2a0 28 B2~
= 1 * 1 A 2.15
25_2[ +22(()i( a0+ ao l>+ ]+ uv ( )

where new coefficients ag, a1, ... are specific Beta-function integrals given in the appendix(B).

We should note that a; > 0, but using Beta function identities we shall have ag = —deOQ,

so ap will be negative for all d > 2. Now substituting for z, from (2.12) and only keeping
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terms up to first order we find that

2&0 dd 2 bl Zd aj [l
A — A 1 2 2 * 21 2,270
o+ 2 (14 BE22 G4 el 4 2 g el
d—2b, =
= Avv + 4 <1+z—d——1 > 2ﬂ)

20 2 bo QZg Qo

= Apy + Ao + Ay (2.16)

where in the second last line the terms involving [; have got exactly cancelled! We have

also defined

d—1
200 _ __(2ho)" " 2.17)

A =
07 iz (d — 2)14-2

as the area contribution for pure AdS,;,; with turning point Z, and strip width /. Thus the
term A; contains all the first order contributions to the area. As a check, for pure AdS (

A; = 0) we get the standard result [6, 7]

1 2 24 1pdt
Apgs = 1_9 (Ed_2 T a2 ) . (2.18)

which is a positive definite quantity. From equation (2.16) we can now find the net change
in the area of extremal surface due to IR deformations (black hole with boost). It is given

by

=2
AA=A— Auys = azz* ((d o)l +722)

3 bo Qo
= — — 2.19
4b2 (d+1 el 23 (2.19)

b _ ai

where in the second line we have used the relation between two ratios & = — —2—_ 4
bo (d+1)(d 2) ao
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Below we enumerate our final observations

* It is remarkable to note that the remainder of the expression on the right hand side of

eq.(2.19) is positive definite.

* This suggests that the net area of the extremal strip has effectively increased as com-

pared to the pure AdS.

* The presence of [ dependent terms precisely contain the effect of boost on the area

of the extremal surface.

* In the absence of boost these terms will be absent and we shall get the result first

obtained by [23].

* This suggests that the boosting of the bulk metric (which forms a type of charged
excitations in the CFT,) increases the strip area and hence increases the entanglement

entropy for the CFT subsystem.

Following from (2.19) the change in entanglement entropy above the pure AdS ground

state, up to first order is given by

Ldilvvd_g a1l2 d—1 1
AS = 22 = . 2.20
16Gar, 02 (d+1+57)2g (220)

The equation (2.20) is an important expression for the remaining part of the analysis in this

section.
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2.2.2 Entanglement First Law

It is left now to carefully partition the right hand side of (2.20) in terms of physical thermo-
dynamic observables of the CFT. The physical quantities such as energy, charge and pres-
sure can be obtained by expanding the bulk geometry (2.1) in suitable Fefferman-Graham
(asymptotic) coordinates near the AdS boundary [24], given in the appendix(A). These for
the subsystem of CFT, (on a circle) are summarized here. The energy and charge for the

strip subsystem are

defl\/d_gl T Ldilvd_gl d—1
NE = ——"2 <ty >= -2
167Gy " e (=2
r, LWy ol By2d

167G g4 zg

d
+ 8% —
)

AN = ryP, =

(2.21)

respectively. The pressure component along the x; direction of the compactified CFT is

27r, L1d L1y, 1
AP="02 C oy s TV 2.22
167Gasy 8Gai1 20 2:22)
while V;_5 = l3l5---1;_5, and d-dimensional Newton’s constant Gid = % The N

represents integral value of (momentum) charge. In the absence of boost it would be van-
ishing. We note down nontrivial chemical potential in our solutions. It is given by the value

of gauge potential w at the turning point,

1 1 By 28
-~ (1- ~ 2L 2 2.23
- 5 ) (2.23)

s K(z) = 1y o

Hence the contribution of ‘entanglement chemical potential” would remain negligible in

first order of approximation we are working in this section. (Note, the corresponding ther-
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mal value of chemical potential is however large p,, == %.)

Our aim is to express the right hand side of (2.20) in terms of above physical observ-

ables. From (2.21), a little guess tells us that
d—1 1 d—1 d—1111
(— + ﬁzvz) = [(— +5%9%) - ——} = (2.24)
0

Using (2.21) and (2.22) we can now express eq.(2.20) as

1 d—1
ASg = T, <A5 “ir1 VAP) (2.25)

where V = [yl3---1l;_o is the net volume of the strip subsystem. The equation (2.25)
simply describes the first law of entanglement thermodynamics, which is identical to the
result in [26]. An alternative first law form was first proposed by [23] for the isotropic
AdS case. It leads to a difference in entanglement temperatures. If we set 5 = 0 in (2.25),
it reduces to the known first law form obtained in [26]. Hence we can conclude that the
form of the first law remains true for ‘boosted’ AdS black-hole case as well, even though
the excitations in CFT are much different in the boosted case. For example, there are
quantized charges present in these backgrounds. The entanglement temperature is given as

Cd  (Blasy)® d

T = = 2d -, 2.26
P aiwl T 2(d—1) (226)

The temperature is inversely proportional to the width of strip. But this temperature is

_d_

lower by a factor ;%

as compared to the isotropic unboosted case in [23]. It is evident that
there is no explicit charge dependence in the first law equation (2.25). The reason for this is
that the entanglement chemical potential given in (2.23) remains negligible (~ O(z2/24))

at the first order. The contribution of chemical potential will however become important in
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next higher order calculation which we perform in the following section. This contribution

is expected to change the ‘first order’ form of the first law (2.25).

2.3 Entanglement entropy at second order

Taking similar steps as in the previous section, we now calculate the second order terms in

the expansion of the area integral schematically denoted as
A = AUV -+ AO —+ Al —+ AQ (227)

where A, and all first order terms contributing to A; have been obtained in the previous
section. Our aim is to find As. Now first we need to recalculate the relation between the
turning point and strip width as in (2.10)and (2.12), up to second order. To begin with, we

expand the ratio - upto second order in (j—;)d.

K 2% 2,0\ 1
_ (1 2.27% 1 2, 2%

i <+B7Z0d)( +6720d

2d

d d
~ (1 2 2~ 1 _ 3222 447
( + 8% zod)( 57Z0d+ﬁv T

d d d 2d
~ 2,2 2\ A 4.4 S W
—1_57<1_ﬁ>ﬁ+57(1_ﬂ) 2

* <0

Using this the strip width equation (2.7) can be expanded perturbatively upto second order

as

(2.28)
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- 2/ EAE !
2
’ \/7\/1 — % ( - %) 20 + Byt ( - %) e — (£)22

20
1
1
=2z, / de ¢4t
0 (1- gd) —pyt(1-¢¢)2 2d>

VY A GIEEE

Expanding and retaining upto second order terms and denoting = Z and R=1-
z

Lde 4 1 1, 0=zt (30-¢)" (1-¢)) =™
\/Eé ! 1+§52’72—g+ﬁ7 3 - 2%

t2d—2

~ 2z,

VF R R? R
a ;{5”0) ;Z]

e S e (50 ) 2 e
(§§2d+ﬁ172§d(1]%—5d) 544( (e _%u;fd))%..

2,3 (by + B2H2) 2, 3hy + J,
=22.bp (1 * - 8 2.2
= ( M R TR ( by )) 229

~ 2z,

Where the coefficients by, [;, J; are given in the appendix(B). Now solving recursively for

2z, up to second order, we get

l

Py — %
- (1+z*d(b1+§:7 n) +z* <b_2;rJl)>
0 0
Zs
~ - — -
z.94 (b1+5%921)) 2,4 (014+82720) | 224 [ bo+J, z.2d [ ba+J,
(e (v e+ () 58 )

Zx
zZ:.4 (0 +82921) z* (1 +829211) Z29 Doty
(1 + d 2bg d 2bg + 202d bo

ZO 20

12
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N N AR B o (AN

=Z |1+ =S(—— § —d(———)? 2.30
: <'+zg( 200 »+z%i< b o, )>) (230
There is no need to simplify this expression any further at this step. Now our final task is to

obtain the area expansion up to second order. As before, after regularizing the area integral

(2.8), in the UV limit (e — 0), we find the following expansion

d d . d 2 ., 2d
z 2% 2 224 2
~ 1+ 2,2 1 — 2 Z_L‘i_ 4.4~  ~x
< By 2d By 2 2l By 2,2 72

d d d d 2d
2 92 24\ 2« 4 472 20\ 24
et (1-53) o (- 52) S

12

(2.31)

Substituting this back into the area integral gives

A:2/ dz VK 1
0 Zd_l \/7 d d d d 2d
1= [y (1= 27) 2 - g 2n (1- 27) 23] (2)2

20

+Ayy

Denoting § = Zand R =1 — &2

2 L de VK 1

AA =
2,472 0 fdil \/Tx/R\/ (/3272(1_@)2*3_5474&1(1_5(1)2*53)52(4171)
1 _ 20 = 20

47



2.2 d 44¢d dﬁ 2(d—1)
) o m<1+(m( - gf) 21— Byt (1- ¢h) 237 €

2 Jo EIVR 2R
3 1 — gd 254(d—1) >|<2d
+§B4’y4 ( %2 z02d>
2 e VK _ gl g2d-D) 24 /3 (1 — ed)2ghd-D)
- o € IVE| ﬁu( 23’% +ﬁ47422d<§( 1~)22
_(fd( _gd))g?d 1)
2R
9 1 dé \/F . 62,722*d (1 _ é‘d) 52((1 1) 54 4 2d
—2 /0 gd—l \/7\/}_%[ + Zod 2R z02d
3(1—gne@h ghy (1-¢) ey
(é R? a 5) R ]
N 9 1 df 1 . ﬂZ’YQZ*d gd (1 _ gd) 52(d71) 54 4 2d
T Aty g ﬁﬁz[ T \27 R 2

3 (1 _ gd)2t4(d—1) fd (1 _ gd) 52(d—1) £2d
3 R - AR - ?)}

2 Lde 1 d Uoge 1 (d-1)
[ gdgl\/_ B (( 52 2> £d§1 \/_éd ﬁz 2/ ( ); )

“x (3+28%9* — 8" bde 1 d £ d( fd)
+Zo2d< et [ as (e

8 o E&'VR VR
e B )]

2 Lde 1 d Lde 1 £ld-1)
= Z*d_2[ §d§1\/— - <<1+52 %) £d§1 \/—f + By 2/ ( )3 )

22 (34287 — BlyY) [T dE 1 ¢! a(1— &9
+202d[ 3 = 1\/—52 +/0 dﬁ\/— 5272§T

3 1 ( _é&d) fd 1( §2d)
2B (- € - 5474T> + 8y / A
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2a 2% (a I 2,20 (3428242 — B*Y) a
~ 0[1+ Zd(a_l(1+ﬁ272)+/8272_l)+ (( il 5’7)_2

Z*d72 2 0 0 ao 202d 8 Qo
J 4.4 Ia
S B _)]
ao 8 Qo

(2.32)

Where the coefficients ag, a1, as and I, are precise integral Beta functions multiplying at
various orders. These coefficients are provided in the appendix(B). Now our next task is to
express the turning point in terms of the AdS turning point Z, and keep terms upto second

order only. Now from equation (2.30) we see that

_ od /7 d—2
L2z 2-d (1 n z_§<b1 +25bz’7211) . %zj (b2 I;: S d(bl +2ﬁb27211)2>)
~ Z*Q—d[l +(d— Q)j_g(bl +2ﬁb(2)72[l) +(d— 2)2;2 (52;—] S (d—;—3)
(%)2” (2.33)
Now substituting (2.30) and (2.33) into (2.32)
AA= % {1 (- z)i—g(—bl zﬁbzﬂ) +(d- z)ikz; (b2 - i )
(bl +2ﬁbz’72[l)2)] 14 i;j (2‘1_&1072 i 52'722%;0) . i;zj <(3 + 252’2: — 5474)2_(2)
. ia Lyl +6%2126<ZZ;Z2 +ﬁ272h)>]

Now we will simplify the above expression and retain terms upto second order in iOZ We

will use the relation between the beta function coefficients given in Appendix(B). Thus we
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get

2ag z2 ( b1 + 52721l aq 2 9 ) Z*Zd
AAd~ 204 2 (g — o)Ly 4 +
z,472 [ 25 ( )( 2bo ) (2% T o) 2924
(<3 + 26242 — Bi94) gy LB L (bt B2 (@ + 5%
+ —d >
8 ag ao 8 4apbg
by+J;  (d+3) by + 5291, (b1 + B2421) (a1y? + B2421)
d—2 — d—2
+(d—2)( b 7 o) ) +(d—2) Tagh,
209  apz? by ap , 200z, %2 | (3 +26%9% — B*) ay
o lz*d_Q + Z(C)l ((d B 2) bo + PY + Zo2d ( 8 ap
J B L (b1 + 52’7211)(%72 + 5°721)) by+ i (d+3) b+ By°L,
L Py )+ (d—2)( - ( )
Qo 8 Qo 4&0[)0 bo 2 2()0
d—2) (b1 + B2y 1) (ar* + B°* 1)
4@0()0
2ag CL()Z b ay o 2a02*d+2 (3 B 5272) ’72 a2
~ d—2 —
[Z*dQ * ZO <( )bo CLQV + ZOQd ( 8 ag
54 4, ) (b_2 _(d+3) (b1 + /6’272&)2) (4 By + B2 (2.34)
8 agp agp 2 2b0 2@0[)0 .

The first two terms in the above expression are same as in (2.16). The third term is the

second order contribution and can be expressed as

Agz%{(dJﬁ)(

*

b + B°9°1})? (bt B2 0) (Y’ar + B> 1)
8a0b0 2(10()0

8by — (3 — B2y*)y%ay 1 I,z
_ %% (3= 8°)y 2+—54’Y4 -
8&0 2 4(10 )
_m (d+3) (by + B%~%1))? _ (b1 + B2v21) (v2ar + B*421)
5572 4abg a1bg
8By — (3 — 3242)~2a sz
_ 2 ( 5 7 )7 2 64 4( ) 2d (235)
4&1 )
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All parameters in the above expression are known Beta functions provided in the ap-
pendix(B). We need to further simplify the last equation. After some tedious simplifi-
cations equation (2.35) can be rearranged as

>d
Py

A2 = alzf (ho + h162’}/2 + h254”)/4) ﬁ (236)
0

where coefficients are

d—1 b1 3d+1 a9
L &
=T T 1214,

bl 1 (05}
h
L ( bo * 2&1)
d+1, b 1
hy = 4F L3 1 oy (2.37)

d—1<_2_bo+4d+1a1

Note the area integral (A) is expanded around the AdS (ground state value) turning point.

The net change in the area of the extremal strip up to second order is given by

al* (,d 2 2 44 z!
NA=A+ Ay = — — 2.
1+ Az 107 ((d+1 By )(C)l (ho + ha8°y* + haB*y )Zo . (2.38)

At this point it is quite remarkable to notice that the equation (2.38) can also be written in

an unique factorized form

a2 d—1 551 qag , 47
NA = —- _— - — — 2.39
b (G g -t 2 2.39)
where the factor () (quotient) is given by
d+122 ! d+1 5 5 a2\ 22
=1- _— — | = 2.40
Q=1 ((+ TG~ st ) S o)
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with unique set of parameters p, ¢, s taking values as

3d+1 248 —d&  4+6d—d

AR L L 2.41
22d+1° ° 4@d+1) 0 1T a@dty) @4

p

It is important to note that the above factorization is unique. It is unique in the sense
that after the factorization the remainder of the expression in (2.39) (within large bracket)
precisely contains nontrivial 32+* term, which contributes to x. A N, along with usual
energy and pressure terms, as we would see next. The ‘Q)’ factor is determined by simple
quotienting procedure. Crucially there is no choice of () for which we can set ¢ = 0 in
(2.39). Any arbitrary () would take us back to the situation where we started from, leaving
us with little or no clue. The eq.(2.39) is the complete expression representing the net
change in area of the strip when calculated up to second order. From the result (2.39) we

determine

_ LWV al?Q ((d -

1 1 qas z¢
AS = 2y = — 22 I 2.42

d+1 2y 2m 25
Which provides the complete expression representing the net change in entanglement en-

tropy up to second order in the expansion around pure AdS (ground state) value.

2.3.1 Redefinition and Entanglement First Law

It is apparent from the expression (2.42) that we would have to define new ‘redefined’
quantities in order to have a first law like relation. We first introduce the redefined width of
the strip as

Ir= Q21 (2.43)



Since generally 0 < () < 1, the entanglement length decreases after second order correc-
tions. This would be true so long as we work within the pertubative regime. Further we
assume the principle [23] and propose that the new entanglement temperature is inversely

proportional to the renormalized width

Ty

TE - 7T(leR N \/@

(2.44)

The () also introduces boost dependence in the entanglement temperature at the second
order. Even if there is no boost (5 = 0), () would still be nontrivial. With these defini-
tions we redefine the ‘entanglement energy’ and ‘entanglement charge’ for the subsystem

(following from (2.21) and (2.22))

AE =\/QAE, AN =\ QAN (2.45)

and redefine the entanglement volume as

Vi =1/QV =/QlV,_s. (2.46)

All above would simply happen provided we realize that the actual physical size (width)
of the subsystem encountered by the excitations is [, whereas the old [ is just the ‘bare’
(coordinate) size of strip subsystem. Since all extensive thermodynamic quantities of the
subsystem will depend on strip width, hence all expressions are redefined by the single

quantity (). Finally we shall prefer to define ‘entanglement pressure’ as

Pr=——_P (2.47)
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and the ‘entanglement chemical potential” is
qﬁ’y ay zd 4+6d—d2a2
b 24 20~ 82d+1)

(2.48)

Note 1 is the turning point value given in (2.23). From (2.42) and using above expressions

we find that the changes in entanglement entropy up to second order can be expressed as
(2.49)

(AE* — e AN* =V, APY)

ASp = —
Sk T*

All thermodynamic quantities in the above result quantifying excitations in the CFT sub-

system are completely known

2.3.2 The [ dependent behaviour

Let us make a few comments here. The boundary CFT is a d-dimensional theory having

one of its direction being compact. As there are black holes in the bulk geometry it is
d . .
T 4mzoy

a finite temperature theory. The thermal temperature is given by 717, =
fixed. Since the size of the subsystem is taken small, so that the entanglement effects can

be studied perturbatively, it leads to a hierarchy of scales
(2.50)

z l
— < 2b
20 < 0 TE 2b0’7

while we keep v ~ 1. The redefined entanglement temperature (2.44) at second order can

be written as
alb2
(2.51)

27wlTTh )d

Ty ~
E 7Ta1l \/1
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where ay = ((1 + %6272)2%10 —(p+ 3%5%%%) is always positive definite. This

expression remains valid so long as % < 1 is maintained. The eq. (2.51) implies
that the entanglement temperature has sizable corrections for large [ from higher order at a
given thermal temperature 77,. It also tells us how the entanglement temperature will flow
towards 77, as [ increases. From (2.51), while keeping the strip size [ fixed, we can also
study the flow of entanglement temperature with respect to change in (black hole) thermal

temperature

7y

T 2)d 1)d
V1 - 0BTl — T

T ~ (2.52)

where Tﬁ) and Tﬁ) are two different black hole temperatures. The equation (2.52) implies
that the entanglement temperature will be higher for the bigger size black hole (Tfh) >

T}Z)). The ‘T’z Vs [’ graphs have been plotted in the figure (2.1) for different 7', values.

TE vs 1

TE
25

20 -

10 -~

05 - o

S S R R N
0.1 0.2 0.3 0.4 0.5 0.6

Figure 2.1: Plots of “I'r Vs I’ for different black hole temperatures (starting from top
curve) Try, = .28, .25, &.10 with fixed oy = .97 and (B~)?* = .5 for AdSs. The graphs split
at large | showing the effect of corrections. These demonstrate that Ty is higher for higher
black hole temperature.
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The entanglement energy of subsystem gets corrected as

AEF — \/1 _ aO(QWY—ZTTh)d AE

dby
20Ty, LWy _gr,d
=[/1— d Y t 2.53
\/ (5, SGap 07 (23

From (2.48) the chemical potential up to the second order may be written

2yl Ty,

e )+ higher orders

qasz 2
* — ﬁ
e = 5 (

qa (1— 1
2By 14 g2 (2

) (2.54)

where the second line merely reflects the fact that any subleading term is a higher order
term which can be ignored at the second order. This will lead to following [ dependence in

the charge

27T’leTh Ldil‘/d—3r2d ﬁ”}ﬂ
AN =141 — d Y 2.55
N \/ aO( dbg ) 8Gd+1 Zél ( )

The large [ behaviour may be predicted from here up to some value [ = [, such that

dbg

le < 2nyTrp

. We cannot stretch these results beyond this bound as this would lead to to the

break down of perturbative regime. In large [ limit we expect to see the behaviour

TE — TTh7 ANE" — AST}L. (256)
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2.4 Conclusion

We adopted a perturbative method to calculate change in holographic entanglement en-
tropy. This we have done by expanding the area and length integral in terms of the dimen-
sionless parameter z—;d upto second order. We considered the boosted AdS black brane as
our excited geometry. We found nontrivial dependence of the change in the area of the bulk
minimal surface on the boost parameter () as well as the horizon zy. We found that the first
order change in the holographic entanglement entropy satisfies a first law like relation. We
have tried to extend this relation to the next order. In order to write a first law like relation
at the second order, we introduced ‘redefined length’ for the subsystem in order to retain
the form of first law of entanglement thermodynamics. If we did not do so we will have no
hope of having a first law like relation. Note that the bulk geometry is well defined and the
corresponding boundary energy-momentum tensor is also fixed. Therefore, only option left
for us is to look for correct subsystem size. (The length [ = 2b,z, is good for ‘pure’ AdS
with turning point value z,). With the excitations in the CFT (z, being new turning point)
the relationship between [ and z, is known at best perturbatively (order by order), through
eq. (2.30). But we can define new redefined length [ at higher orders. With the help of
given expressions, the relationship between [ and z, can also be fixed, perturbatively, but
is not needed in our results. Thus, if [ is the size at the first order, at the next order the
correct size becomes [z. Not only the length, we have to correct the chemical potential as
well, remember the chemical potential is zero at the first order. Other (extensive) thermo-
dynamic quantities depend on the length, so these also get redefined once the size becomes
[r. But, are these corrections quantum in nature? In AdS/CFT we deal with boundary CFT
which is a strongly coupled quantum theory. Since we are expanding around pure AdS

(describing CFT ground state), the small excitations of the CFT above the ground state will
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necessarily be “quantum” in nature. These excitations for small subsystem are controlled

by the smallness of the ratio % or by the turning point to horizon ratio 2¢. For example,
E 20

in d = 4 case, the dimensionless ratio

(2.57)

where ¢, denotes energy density of the excitations. Thus the corrections to various entan-
glement quantities are quantum in nature and depend on perturbative Yang-Mills coupling
constant g, ,, (or the 't Hooft coupling A ~ gf, -

Remarks for AdS,, AdSs and AdS7:

We note that the parameter p, g, s in (2.41) are positive definite but smaller than one in
string/M-theory cases with d = 3,4 and d = 6. Also the two Beta-function ratios, 2’)710 and
2“721, are both positive definite and generally smaller than one. The eq.(2.48) implies that
entanglement chemical potential is positive definite for these conformal cases. Although
the result in (2.48) is applicable for any d dimensions, but for d > 6, the parameter ¢
changes sign, hence the chemical potential y, will also change sign for d > 6. This is a

surprising result, but it simply may be an indication of the fact that we are going beyond

the realm of applicability of string/M-theory.
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eeessessssmmmmmn $ CHAPTER 3 S

ENTANGLEMENT ASYMMETRY FOR
BOOSTED BLACK BRANES AND THE

BOUND

3.1 Introduction

In this chapter we extend our perturbative approach to study the asymmetry in the change
in entanglement entropy along various directions of the CFT. We find that the boosted black
branes give rise to an asymmetry in the entanglement first law. We study two types of strip
subsystems one parallel to the boost and the other perpendicular to the boost direction.
There is difference in the ‘entanglement pressure’ in two cases such that AP, < AP.
We find that primarily the entanglement pressure is responsible for the differences in the

entanglement entropies, AS| > AS|, in the two cases. The entanglement asymmetry may
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be quantified as a dimensionless ratio

A5 —AS,
AS| + AS”

gyt _d-1
(24 H35242) ~ d +3

A

We find that the asymmetry depends only on boost and it is bounded from above. The
bound is saturated only for the AdS-wave background, which is the case involving infinite
boosts. To obtain these results we resort to a perturbative calculation of the entanglement
entropy up to first order, where the ratio %, of the strip width (1) to the horizon size (zy), is

kept very small.

3.2 Entanglement from boosted black-branes

The boosted AdSy1 backgrounds we are interested are given by

L? fdt? dz?
ds* = = | -+ K(dy —w)* +da? + - - + da? — 3.1
$ ZQ(K‘I—(y w)® + dxy + +xd_2+f (3.1
with functions
»d ) 2Zd
f:l—?, K:1+ﬁ7; (3.2)
0 0
Z = zp 18 the horizon an < < 1 1s boost parameter, while v = ———. € boost 18
is the hori do<pg<1lisb p hil \/ﬁThb i
taken along y direction. The one-form
. 1
w=B"11- E)dt (3.3)
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and L is the radius of curvature of AdS spacetime, which is taken very large in string length

units. !

3.2.1 A thin (perpendicular) strip

We first study the entanglement entropy law for a subsystem on the boundary of the Ad.S;,
backgrounds (3.1) where strip is perpendicular to the boost direction: the strip width is
—1/2 < x' < 1/2, while the boost is along y direction. Thus the steps in this section are
same as in our precious work [31]. We embed the (d — 1)-dimensional strip-like (constant
t surface) inside the bulk geometry. The two boundaries of the extremal surface coincide
with the two ends of the interval Az!. The size of the rest of the coordinates, 0 < y <
ly, 0 < x' < [, is taken very large, such that ly,l; > 1. As per the Ryu-Takayanagi
prescription [6, 7] the entanglement entropy of the strip subsystem is given in terms of the

geometrical area of the extremal surface (constant time)

[A] Strip Vd72Ld—1 /Z* dz 1
S, = _ B TR 4 (0.1)? 3.4
* 4G g1 2Ga1 Je Zd*l\/_ f 0.7 G4

where G4 is (d+1)-dimensional Newton’s constant (of bulk gravity) and Vy_o = [,l5l3 - - - l4_2
is the net spatial volume of the strip on the boundary. We will be mainly working for d > 2
here. In our notation z = € ~ 0 is the cut-off scale and z = z, is the turning point of
extremal surface. In the above area functional K (z), and f(z) are known functions, so

we only need to extremize for z'(z). After extremization the entanglement entropy for

! For example, in the AdSs x S° near-horizon geometry of n coincident D3-branes, we shall have
L* = 27g% ,,n and the *t Hooft coupling constant g2 ,,n > 1.
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perpendicular strip subsystem can be written as

Voo L4t = d K
g, = Yoz / i (3.5)
2G4 ). 2% \/7\/_;( — K, (Z)2-2
where K, = K(2)|.—.,. The boundary value z'(0) = [/2 has the integral relation
l o 1
= / dz( = )41 (3.6)
2 Jo

Zx \/7 Kﬁ* _ (i)2d—2

which relates [ with the turning point z,. The turning-point takes the mid-point value

x'(2,) = 0 on the boundary.

When strip subsystem is a small the turning point will lie in the proximity of asymptotic
boundary region only (2, < zp). We can evaluate the entanglement entropy (3.5) by
expanding it around the AdS (i.e. treating pure AdS as a ground state). We take boost to

be finite such that

Zd 22d
> <, (M)d t <1 (3.7)
20 <0

is always maintained. In this limit we can estimate the entropy perturbatively. Under these
approximations, entanglement entropy contribution (above pure AdS) at first order is given

by (2)

NS =81 — Sais =

Ld_l‘/;l,Q a1l2 d—1 9 9 1
—. 3.8
16Ga1 b2 (d+1+57)zg 38)

The CFT energy and pressure can be obtained by expanding the bulk geometry (3.1) in

Fefferman-Graham coordinates valid near the boundary [24, 84, 85]. The energy of the
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excitations is given by

LWl d -1

d
A _ 2.2
= TorG, Ca )

d
20

(3.9)

The volume is Vo = [,ly---l4_2. The pressure along y direction (parallel to the boost

direction) is

L'a 1, 501
AP = AP, = 167G (5 + 6% )z_g (3.10)

while the pressure along all other x;’s (perpendicular to the boost direction) is identical and
is given by

L=t 1

AP =
+ 167G gy 1 28

= APy = APy = 3.11)

This pressure asymmetry is solely due to the boost. For example the pressure is more
along the y (boost) direction as compared to x%’s coordinates. Using (3.9) and (3.11) we

can express eq.(3.8) as

1 d—1
D81 =7 (A8 = g Vi AP (3.12)

where V| = [[l,l- - -l4-2] is the net volume of the strip subsystem. The entanglement

temperature is given by

—. (3.13)

The temperature is inversely proportional to the width of strip. The equation (3.12) simply
describes the first law of entanglement thermodynamics [23,26]. Subtle changes will occur

in this expression when strip is taken along the boost.



3.2.2 Strip along the boost

We now study the entanglement entropy of a strip subsystem such that its width is parallel
to the boost (flow) direction. That is, we take the boundaries of the extremal surface to
coincide with the two ends of Ay interval: —[/2 < y < [/2. The regulated size of rest of
the coordinates will be taken much larger 0 < z* < [;, suchthatl; > [ (i =1,2,--- ,d—2).
It is important to note that we wish to embed the Ay interval, but since the boost is also
along y, both ‘time’ ¢(z) and y(z) would have to be embedded in the bulk in a covariant
manner [8]. So one has to be a bit cautious while working with stationary metric cases
[33] [27]. However, it can be explicitly shown that, in the perturbative expansion (for
small strips) to know the entropy only upto first order (next to the pure AdS), just taking
a constant ¢ slice would suffice. The deviations in extremal surface geometry away from
the constant time slice will contribute only to the second order terms in the expansion. Our
aim in this work is to know only the first order terms in the expansions of z, and strip area.

Taking the constant time slice the entanglement entropy of the parallel strip becomes

_ Vao LT (7 dz \/1—2
S TeR / i\ 7 T EO) (3.14)

where now V; o = [yls-- -1l 5 is the spatial volume. The identification of the extremal

strip boundary, y(0) = /2, leads to the integral relation

L [T g2y 1 (3.15)
2 z K
N N T

which relates [ with the turning point z, of the strip. The turning-point takes the mid-value

y(z.) = 0. The final expression of the entanglement entropy for the strip subsystem parallel
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to the boost direction now becomes

(3.16)

g _ Vool / dz VK
= 2Gai1 ). 201 ﬁ\/K—K*(i)Qd_Q

Since the parallel system has not been covered in (2) let us provide some essential details
perturbative calculation here. In small strip cases, the equation (3.15) can be expanded

perturbatively upto first order as

2 267 By’

where dots indicate terms of higher powers in (j—;)d, and various coefficients are defined

earlier. From here keeping only up to first order the above equation implies

P Z* (3.18)

>d 2~2 242
L+ 5 (4 250) 3 = 2p)

where z, = ﬁ being the turning point of pure AdS having the same strip width as [.
Having obtained the turning point expansion, a similar expansion around pure AdS can
be made for the area functional also. Suppressing the details, after regularizing the area
integral (3.16), the net change in the area of parallel strip (above pure AdS value) comes

out to be

AVTIE (— - (1-8%H)—) (3.19)

apz? a, b
2y Qo Qo

and thus corresponding change in the entropy for parallel strip becomes

LYWy sal? (d—1 2 1
AS — 242 =, 3.20
I 166G, 02 (d+1+d+157>z3 (3:20)
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The equation (3.20) is complete expression up to the first order. The entanglement first law

for a strip along the flow becomes

1 d—1
AS = —(AE — SV AP 321
H Tg( arrid 1) (3.21)

where V| = [V = l[l1ly- - - lq—2], and APy = AP, is defined earlier. The temperature

is
ol _bd

= T3, (3.22)

aq ml N
We note that the two temperatures remain the same but the entanglement entropies differ

significantly. We now go on to find this asymmetry.

3.3 Entanglement asymmetry and the bound

Following from previous section, with out any loss of generality we can always take the

volume of the strip subsystems to be equal
V=V =1V, (3.23)

This only means that regulated size of the boxes is kept the same in both the cases, along

with the strip width /. It implies that
Th=Tg, A& =AEL. (3.24)
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Comparing the two types of entropy results, the difference is given by

Ld_IVd,g CL1l2 d—1 1
AS| — AS; = 202 =
+ ” 16Ga1 b2 (d+167)zg
d—1
— V(AP — AP)). 2
Tl V(AP P1) (3.25)

The right hand side is a positive definite expression. Hence we can deduce that entan-
glement entropy is more for a perpendicular strip subsystem as compared to the parallel
set-up, even though the energy of excitations and entanglement temperatures remain the

same for both. The key to this entropy enhancement effect,

NS > AS” (3.26)

can directly be alluded to unequal entanglement pressure;

AP, < APy (3.27)

Thus more energy is consumed by the excitations in the parallel strip (due to an increased
pressure) as compared to the perpendicular strip (having a low pressure along the strip).
This suggests that in the boundary CFT ‘pressure’ plays a vital role in determining the
entanglement entropy of the subsytems. The equation (3.25) also implies that, up to first

order, the net difference of the entanglement entropies is

Ld_IVd,g a112 d—1 1
S, -8 = 242 ) = 3.28
e 16Gapy b2 (d+ 7 > 4 (3:28)

Thus the entropy asymmetry coexists with pressure asymmetry in the CFT.
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We can now define the entanglement asymmetry as a ratio

ASJ_ — ASH . 62’)/2

A= = -
AS| + AS” (2 + %52’)/2)

(3.29)

Thus nonzero boost (5 < 1) will always induce entanglement asymmetry in the boundary
CFT. The asymmetry will however vanishes for 5 = (. Note that these results have been
derived in the perturbative regime described in (3.7) only up to first order. We also learn
that the asymmetry will always be bounded. In the above the bound is saturated only in the

large boost limit, which we shall discuss in the next section.
We could however define an entanglement entropy ratio as

AS) _ 1+g8 2

R =
AS, 1+ 9H322 = dy1

(3.30)

a quantity which depends on the boost only and is devoid of external factors like shape and

size. Then
1-R d-1
<

A 14R ~d+3

(3.31)

We shall show that the bound is saturated in the case of AdS-wave in the next section. The

maximum value R can take is one for which entanglement asymmetry vanishes.

331 (3 — 1, zp — oc limit (pressureless system)

In present examples the pressure in the CFT, can be controlled by regulating the boost. We
now show that there exists a simultaneous double limit in which the pressure asymmetry

of the CFT excitations becomes optimal. We take a double limit 5 — 1, z; — oo, keeping
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the ratio
3242

d
20

= Fixed . (3.32)

N
Ng,l =

These double limits has previously been explored in [86, 87] in connection with Lifshitz
type backgrounds from black Dp branes (in lightcone coordinates). Under these limits the
bulk geometry (3.1) reduces to the following AdS-wave background

2_L2

ds* = = (-K'dt* + K(dy — (1 — K~ ")dt)* + daf + - - - + daj_, + d2°)

22

(3.33)

with the new function K =1 + %, where 2z = z; is an scale which determines momentum
A1

of the wave traveling in the y direction. (The entanglement of strip systems for AdS-

waves has previously been explored by [88] also.) For this background the energy of the

excitations in the CFT becomes (following from (3.9))

LW, ol d
N = ———— 3.34
167Ggy1 24 ( )
The pressure along the wave (y) direction becomes using (3.11)
Ld 1
AP = AP, = - (3.35)

167G 441 24

while the pressure along all x;’s (perpendicular to the wave direction) identically vanishes

AP =0 (3.36)
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in the boundary CFT,, which is a conformal theory with traceless energy-momentum ten-

SOT.
The double limits (3.32) can also be directly employed on the entropy results obtained

in the previous section, provided we maintain % < 1. Employing the limits on the entropy
I

expressions in egs. (3.8) and (3.20), it gives us

Ldilx/d_g a1l2 1 1
AS, == 2T — = (AE 3.37
T 16Ge, B T OF) (3-37)

while

Ld_l‘/d_g a1l2
166G b2

ASH = ( 2 ) l L(Ag — EV AN PH) (3.38)

d+1) 24 Tg d+1

The width [ is kept the same in both cases as well as the transverse volumes. Hence entan-
glement temperatures, Tp = %211 %, and A&, remain the same for both the cases. Particularly
in the former case there is no entanglement pressure along the strip (z* direction). As no
‘entanglement work’ seems to have been done by the excitations due to vanishing pressure
(AP, = 0), the entropy remains maximal in the perpendicular direction. While in the latter
case there is finite pressure (AP # 0) along the strip width, so finite energy is consumed
by the excitations to work against the pressure as they take part in the entanglement. Thus

the work done against entanglement pressure costs finite energy which essentially leads to

areduction in the net entanglement entropy in direction parallel to propagation of the wave.

From equations (3.37) and (3.38) for the AdS-wave case the ratio becomes

AS
l__2 (3.39)

Ruvave = AS,  d+1

This is a remarkable relation and is identical to one in (3.30). It remains true at the linear
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order in perturbation (over and above the AdS background). At the higher orders in %
21

expansion this result might change. The entanglement asymmetry becomes

ASJ_—ASH _d—l
ASL-FAS” Cd+3

Awave = (3.40)

The asymmetry has optimal value and is universal in nature. The relations (3.39) and (3.40)
are applicable only when d > 2, because for d = 2 (i.e. AdS3;-wave) the analogue of AS|
does not exist, but the form of entanglement first law as in (3.38) for parallel strip does

hold good.

3.4 Non-conformal boosted black D-branes

The conformal cases of AdS geometries which are near horizon geometries of D3 and
M?2/MS5 branes are covered in the previous section. In this section we wish to extend
entanglement asymmetry analysis to the nonconformal Dp brane backgrounds [89]. We
are interested in the boosted Dp-brane geometry so that suitable asymmetry is generated.

These nonconformal backgrounds can be written as

f o, K ,  dx3+ -+ da 4 d2?
ds® = Gepp| — ——=dt* + —(dy — L — 4+ dQ2
e T +22(y wf 22 +(5—p)222f+ 8—p
27m)% P 1
e? = —( 9.7 (3.41)
d,N If

along with appropriate ;) form Ramond-Ramond flux. The strength of the string cou-

pling depends on effective YM coupling g.ry = (A,2>77) 5 and the functions are defined
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as

2P 2P
f=1-%, K=1+p%"=
20 20
1
w=p"11- ?)dt (3.42)

with z = 2z, being the location of horizon and 0 < g < 1 is the boost. The boost is
taken along the y direction and geometry along brane directions has asymmetry. The new

parameters are defined as

14 —2p
5—p

Ap = dpgy N, P = (3.43)

where d,, is a fixed normalization factor for a given p brane (The exact expression will not
be needed here but it can be found out in [89]). The parameter )\, is essentially the "t Hooft
coupling constant and it controls the curvature of spacetime which is to be taken small in
string length units ([; = 1) and for which N is taken to be large enough. The boosted
geometry (3.41) is conformally AdS,,» x S®°P, a near-horizon geometry of N coincident
Dp-branes. Only for p = 3 case the geometry becomes conformal and is discussed earlier.
We are discussing the asymmetry cases for that we need p = 2 or p = 4, for them at least

two asymmetric brane directions are available.

3.4.1 Entropy of thin strips

We first consider a thin strip in a perpendicular direction to the boost, say x5. The Ryu-
Takayanagi entropy functional for a strip embedded in the bulk geometry (3.41) is given

by
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_Vl@gpr Z 4 1 "
5, = 2L / JE\/( S+ (02

Vp—10© 2 = d 1
_ 18p @’ z¢_ — 4+ (8.79)? (3.44)
2G N f
where ), = (2”)2;;4\/7% while Og_,, is the volume of unit radius S®*7 and G is the 10-
Y M
dimensional Newton’s. We shall consider a small legth interval —é < Ty < % but due to
the scaling x5 = %j in eq.(3.44) the actual width of the strip is ==—. One can see that

the integrand in the second line in (3.44) is strikingly same as that for the conformal case
discussed earlier, except that parameter p can take fractional values. (For example, for D2-
branes p = %, but for D4-branes p = 6.) So the rest of the calculations is straight forward:
Extremizing the area and making a perturbative expansion keeping the ratio % < 1,asin
previous sections. Avoiding the unnecessary details we quote the result from eq.(3.8). The

entanglement entropy of the excitations above the extremality is

V. 1Os ., 20Q, @l (-1 1
NS =L P 2P 22 ) = 3.45
L= TT60y 5op i \prl 07 ) (5:49)
where new beta functions are given as by = ﬁB(%, 3)) and a; = ﬁB(ﬁ%p 3).

We come to conclusion that the entropy of excitations in a nonconformal (p+1)-dimensional

theory at the first order can be written as

AS| = Aé’——V AP 3.46
L= TE‘( sl ot 1) (3.46)
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where V|, = 5%pll/;,_1 is the net volume of the strip subsystem, while the energy and

pressure expressions are in appendix. The entanglement temperature is defined by

( (Qﬁﬁ %))2 (7—]9)'

BGL. D)

(3.47)

The temperature is inversely proportional to the width of strip. But compared to the law in
(3.12) subtle changes have occured in the pressure term in (3.46). Namely the coefficient

in (3.46) is different from the ratio d " L which appears in (3.12). (Note d takes only

p+1 1

integer values and is directly correlated with the dimensionality of AdSy,;. This cannot
be said about p.) Let us comment here that for unboosted nonconformal D-brane case
the result (3.46) was first obtained in [30]. So it is interesting to observe that the form of
first law with boost excitations remains the same as in unboosted case [30], although all

physical quantities have themselves got changed.

In the next we consider an strip interval in the direction parallel to the boost, i.e. along

y direction. The entropy functional is given by

‘/;,,1 @8710 2@1} /Z* dz 1 _
= ~ — + K(0.7y)? 4
Si 2Gngt, 5—pJ). N f - K(0:) (5.43)

where now V,,_; is regulated volume of all the x* coordinates. We have scaled y = %g and

taken the width to be —1/2 < y < [/2. As usual extremizing the strip area and expanding
up to first order in the ratio [ /2y < 1, we come to conclusion that the entropy of excitations

above extremality for a parallel strip follows the law

-1
AS| = (AE — —1 VA PH) (3.49)

il

where V| = SQTlpr_l is the net volume of the parallel strip subsystem. Since we have kept
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the same strip width 5% in both the situations, the entanglement temperature are identical
T =Tp (3.50)
E—1E .

Now if we set V| = V|, the excitation energies can also be made same, A& = A&, how-
ever the entanglement pressures do always differ. We calculate the entanglement asymme-

try, in the same way as (3.29),

A

AS, — AS 2,2 5
i I _ Py <P (3.51)
p

1
nonconf — - 5 =~ .
AS| + AS” (2 + ;%i’ﬁz)ﬂ) + 3

As discussed in the conformal case, the bound gets saturated only in the case of Dp-branes
having wave like excitations at zero temperature. For this we need to employ the same
double limits 8 — 1, 2y — oo, given in (3.32), on the geometry (3.41). Thus for noncon-

formal D-branes with a wave we obtain the asymmetry ratio as

e f
|
—_

Awave = . (3 52)

=0
+
w

In conclusion, our results assign maximum entanglement entropy asymmetry to the
wave like excitations in a zero temperature CFT. The results can be understood as we now
elaborate. The wave like excitations in the CFT at zero temperature generate finite entan-
glement pressure along the direction of propagation of the wave, while the pressure re-
mains vanishing in all other (transverse) directions. When we switch on finite temperature
in the CFT (holographically including black hole in the bulk geometry) some entangle-
ment pressure gets distributed along the transverse directions also. This finite temperature
phenomenon reduces the net entanglement entropy asymmetry for the excitations. In the

absence of a wave altogether the pressure becomes identical in all directions of the branes
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and hence entanglement asymmetry would also vanish. Hence the asymmetry in entangle-
ment entropy will necessarily exist if there are uniform wave like excitations or a uniform
flow in the CFT. The asymmetry only gets amplified as temperature goes to vanishing val-

ues.

3.5 Conclusion

It has been shown that the entanglement pressure plays a significant role in determining
the entanglement entropy for the strip subsystems in the CFT living on the boundary of
AdSg41 spacetime. There is an entropy asymmetry along various directions of the CFT if
their exists a pressure asymmetry. Besides the entropy asymmetry is directly proportional
to the pressure asymmetry. To quantify this we have determined entanglement asymmetry

ratio
AS| — AS) B B2~ d—1
ASL+ASH N (2+%5272) ~—d+3

A= (3.53)

which depends only on the boost parameter [ and it is bounded. Interestingly the bound
is saturated in the large boost limit (8 — 1, zy; — 00) only (3.32). Thus a nonzero boost
is simply a measure of the entanglement asymmetry. We have discussed a large boost
case which is the AdS-wave case. Especially for the AdS waves there exist an optimum

entanglement asymmetry
d—1

Awave = m

(3.54)

which is a universal result at the first order in perturbation analysis. It is independent of
any scale such as energy of wave like excitations o< zid We expect these results will get
I

corrected by higher orders of perturbation.
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In the nonconformal D-branes cases the result gets slightly modified

62,)/2
(2 + B36%9?)

p—1
p+3

Anonconf = < (355)

71



CHAPTER 4

GENERALIZED GEODESIC DEVIATION
EQUATIONS AND ENTANGLEMENT FIRST

LLAW FOR ROTATING BTZ BLACK HOLES

4.1 Introduction

In the previous two chapters we adopted a perturbative approach to calculate holographic
entanglement entropy. Using this approach we calculated the entanglement entropy for
a strip like subsystem embedded in boosted AdS black brane background up to second
order. In this chapter we adopt a variational approach to calculate change in entanglement
entropy. For AdSy.; the minimal surface 4 are (d — 1) dimensional. The surface 4 is an

extremum of the area functional

Area = /dd_la\/ﬁ, 4.1)
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where ¢ are the coordinates and h,;, is the induced metric on 4. Variation of the area
functional depends both on metric perturbations and variation of the minimal surface itself.
Change in HEE at each order can be obtained by subtracting the pure AdS contribution
from the variation of the area functional. At first order, contributions from changes in the
shape of the extremal surface does not appear as 7, satisfies extremal condition on the

background AdS geometry [33,34,90].

In this chapter we propose a way to calculate second order variations of the area func-
tional by taking into account changes in both metric perturbation and shape of the extremal
surface in 2 + 1 dimension. This is achieved by studying geodesic deviations between
geodesics in rotating BTZ black hole ( seen as perturbation over pure AdS) and AdSs.
As will be clear from the construction these deviations can be obtained as solutions of a
“generalized geodesic deviation equation” ( [91] and references therein). Second order ex-
pressions for HEE obtained from variation of the area functional matches exactly with the
second order expansion of HEE obtained by HRT proposal. We also present an alternative
form of first law of entanglement thermodynamics which involves the differential change
in AS (dAS for example) rather than AS itself. The modified first law includes contri-
butions from angular momentum of the B7'Z background and approaches the first law of

black hole thermodynamics in large [ (the subsystem size) limit.

It turns out that 2+1 dimensional gravity has no propagating degrees of freedom and
therefore exact analytical expressions for certain quantities can be found. This is precisely
the reason why 2+1 dimensional gravity can be written as Chern Simons theory. Chern
Simons is topological and therefore the solutions depend only on the topology of the un-
derlying manifold. From a geometric stand point the Weyl tensor identically vanishes in
3 dimensions and therefore the Riemann tensor is completely specified by the Ricci. As a

consequence the solutions of pure gravity with negative cosmological constant are neces-
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sarily locally isometric to pure AdSs. Despite this, there is still a rich set of solutions that
differ from AdS globally. One such solution is the rotating BTZ black hole [92]. Since
in the 2 4+ 1 dimensional case exact expressions for the change in entanglement entropy
and the minimal surface in BT'Z is known, one might question the need of a perturabative
analysis. But it turns out that the 2 + 1 dimensional case is a perfect ground for checking
such proposals. It is to be noted that for higher dimensional case the change in entangle-
ment entropy might have to be calculated pertubatively and hence a precise prescription is
required. We should point out that the notion of “deviations” of codimension two surfaces
is well known for higher dimensions. Though algebraically difficult it is absolutely possi-
ble to find “generalized deviation equations” for codimension two surfaces for dimensions

4 or higher.

4.2 The generalized geodesic deviation equations

The generalized deviation equations have been known for quite some time, applications
of which in the case of perturbed cosmological spacetimes can be found in [91] (and
references therein) where perturbed null geodesics are studied for perturbations around
Einstein-De Sitter universe. In the holographic context generalized deviations of null
geodesics in AdS5 has been used, only recently, in [93] however in a very different con-
text from ours. In the holographic entanglement entropy context codimension two min-
imal surfaces in 2 + 1 dimensions are spacelike geodesics. It is clear that the space-
like geodesics in AdS3 anchored to the boundary subsystem are perturbed as one con-
siders excitations over AdS3. If we consider the variation of the area functional (HEE)

A(G,X") = [Vdeth d"o, where hy, = gﬂy%%, the variation of the quantity is
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therefore,
A(G + 0G, XH +6XH) — A(G, X"), 4.2)

where 0 X* is the change of the embedding functions. To first order 6 X* does not con-
tribute. The  X* starts contributing only at second order. Therefore while considering sec-
ond order variations, perturbations of spacelike geodesics also contribute. These changes in
the embedding of the spacelike geodesics can be obtained by studying geodesic deviation

between AdS3 and the perturbed spacetime. To do this we use the following formulation.

4.2.1 First order generalized deviations

Consider an affinely parametrized geodesic parametrized by 7 in a spacetime (M, §) with

end points p, g € M.

d?xt dz? dx?
" &
d7_2 Fl/p (x) dT dT 07 (43)

where Igﬁp are the Christoffel symbols on M compatible with . Consider another space-
time (M, ¢'). (M’, ¢') is said to be a perturbation over (M, g) if there exists a diffeomor-
phism ¢ : M — M’ such that ¢,¢' — § = (flL) is a small perturbation over the unperturbed
metric §. Let 7 be a geodesic in M’ with parameter 7 and end points (p), ¢(q) € M'.
However it may not be affinely parametrized by 7. Let 7 be a curve in M such that
¢ o4 = «/'. Therefore the tangent vector to 7 in M’ is essentially the push forward of the
tangent vector of 7 in M (fig. 4.1). On M, therefore ¥ must satisfy,

>zt + WL (f)djl/@ — j)@
dr? v dr dr dr’

4.4)
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Figure 4.1: The mapping of the geodesics

(M. ") z

where I' are the Christoffels symbols on M compatible with ¢,¢’. Note that 7 is not

geodesic in M with respect to the initial Christoffels I'. Let us assume that 7 is a small

_ o ()
deviation about the curve ~. Therefore to first order we can write #(7) = z/(7) + (7).

We also note that to first order in metric perturbations,

(1)

oo [ @ &) 1w o o
gM 81/th + 8phua - aahup - §hﬂ (al/ng' + apgua - aaglzp)

- 0 1
£ () = B, ) 4 2

— P (@) + O (a) 4.5)
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Therefore to first order,

. 0 (1) 0 1
T8 (&) = T2 () + C (x) + 0,T% ()i (4.6)

vp

Subtracting the two geodesic equations give,

) s da A, derdi o, dev dip d* do? |

ay,d
&, — = —(4 7
T e e L :
and f| = 0, which essentially means that the initial curve is affinely parametrized. The left
Y

hand side can now be identified as just the left hand side of the Jacobi equation. Therefore,

D)k de” daty, g, ot dor o, ot

" ar- _ _ w (1},d27
d'TQ +R VpUd dT ( )d d +8f(x),’7 T F +af( )

dr

Where dQT is the covariant derivative along v and R* ,,, is the Riemann tensor w.r.t g.

Therefore the resulting equation is an inhomogeneous deviation equation. Note that if
(Cl') is set the zero the resulting equation is just the deviation equation for a non-affinely
parametrized congruence of geodesics in a given space-time (no metric perturbations). To
solve this equation the best procedure is to consider a local basis e which is parallely prop-
agated along the initial geodesic and writing the deviation vector and the inhomogeneous
terms, in terms of the local basis i.e n"* = T]Ae“ and F* = F4¢!,. For AdS; background

which is maximally symmetric R, = —(9up9vx — Gvpgur) and therefore for space-like

geodesics, the equation reduces to,

(1)
d277A

S 0 =F' forA=02 (4.8)

.

dZ(;])A )

3 — Opf(x)n® = FA for A=1, B=0 to 2, (4.9)
.
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where e} = T* is the tangent vector to the geodesic and 04 = ej@u. We have set the
radius of the AdS space to “one” here and in all subsequent calculations. Note that the
non affinity term enters only the equation for the component of the deviation vector in the
direction of the tangent vector. The equations for A = 0,2 can obviously be solved and
the resulting solutions can be put in the equation for A = 1 to get a ordinary differential
equation for n'. However the equation for n' cannot be solved due to presence of the
unknown function f(z). But we will see that we actually won’t be requiring a solution for
n* for calculation of the variation of geodesic length. Note that unlike the original deviation
equation where the component of the deviation vector in the direction of the geodesic can
be set equal to zero, one may not be able to do the same here due to the inhomogeneous
term. More precisely, the deviation along a geodesic is pure gauge and can be removed by a
reparametrization of the geodesic. That is to say that the deviations along the geodesic does
not affect the length of the perturbed geodesic only if the perturbed curve is a geodesic of
the same space-time (M, g). However since in our case the perturbed curve is a geodesic
in some perturbed space-time (M, ¢') these might actually become physical. But this does
not happen i.e the terms containing 1" still arise only as boundary terms evaluated at the
end-points of the geodesic (section 4.3). So the only requirement is that 7' vanishes at
the endpoint of the geodesic. This provokes us to think that possibly by a different choice
of gauge for the metric perturbations itself the in homogeneity F'! can be removed. If
considers the foliation induced by these geodesics, then F'! is just the trace of the extrinsic
curvature of these hypersurfaces. Therefore by choosing a maximal slicing condition (an
appropriate gauge) one can actually remove this term. In this case however we are bound
to work in Fefferman-Graham gauge which characterizes asymptotically Ad.S spacetimes,
otherwise one might end up choosing a gauge that is not compatible with asymptotically

AdS spacetimes. More precisely we might end up doing a gauge transformation of the
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metric which changes the boundary data (boundary metric or extrinsic curvature).

4.3 Variation of geodesic length

The calculation of the variation of the geodesic is prototypical of the case where there are
no metric perturbations. However to our knowledge the extra terms arising due to metric
perturbations have not been considered before. The action for a geodesic and the first
variations is given by

dxt dxv
S :/ g“”d el

RE d:v“ doxz” dzt dz¥

Note that GG should not be confused with the gravitational constant. The geodesic equation

then follows,

1 d dz* 89 dx* dx”
08 = y—0 22— = ¥
g /2\/ [ <g“ dr x) Bar dr dr "
d?xt _,  0g,, dxt da” < dxtdx”
_29ﬂyw(5$ + 0P E dr —oxz” 59#,/ dr d dr (411)

On the back ground curve G can be set to one and therefore the geodesic equation follows
if metric perturbation is zero i.e,
_28-9#” dz* dx? d?z* 9g,, dz" dxP

e Y G, =0 4.12
oxP dr dr In dr? + oz dr dr ( )
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The second variation gives,

1 dz* dox¥ doéx* doz” dz* do*x”
52S = — (209, —— + 20— — + 29, ——
5 /2\/G N I ar dr +\g” dr dr +\g“ dr dr
b b3 I
dz* dx” dz* dox¥
602G, ——— +28¢,,——— | d
+\ I dr dr +\ In dr dr 4
v v

[ s P dot do’]®
AG32 | Y ar Tar T s ar

To evaluate term /1 we note the following,

O -, |z
52g. = 5(%W+5gw)

359 » 09, ~

— Sl + B 5P BV 520P +6%g,,

prﬁx . xaxp S dr " +&
~— —~ p4

A B C

>4 - -

Note that /V (' and term /1] together can be written as

1 d dx* 09, dxt dx?
5 62 v ) /U’__52 v
/N—[ (g“ dr ) oxr dr dr’ "

2 1
d*zx 52xy+8gw, dzt dx” da” s p} i

2
I dr? OxP dr dr

which is nothing but,
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Term VI is just the square of the first variation and therefore can be written as

1 [d da - datdav]?
— | — | 2¢9,,—0x" G, ox" +6g,——| d
/2\/5 [dT(gu dr x)+ Tt 00y dr d7':| g

Terms [ and V' together give

4 [d dat dd g, dx* d*x
L B (F VA Ly W I /AL PV VAR W I
/gm[m(g“ dfx) dT ar F 9’%123’]7

4 d dz* dg ~ dx* d%at
= [ — | — (dgu——02" | — — | =262 + 09, | — 02" — 69, ——02" | d
3 b (o gr0e) = (i B ) e = e
4 d dz* 0%g,, dx° dz* 09, dox? dzt
09, —0ox" | — i daxPda” + 2 5a¥
/2\/ {dT < In dr q:) ((%cpé’xff dr dr TRt OxP dr dr v
BH) G dz? dx* _ 09, o |7 d?at 5
s EF&C) (Farone o) Gt |t
4 d dz* 0g,, doz? dzt 0g. dx® dx*
— - = 1/_(5 v __HV__é v nv 5 p(s v
/2\/G dr < In dr a:) Ozr dr dr o OzrOx? dr dr o a:l
F G
D0 g,, da? dzt DGy d?at d?at
— ——0z" — SxPox” —bg,,——02" | d
Dur dr dr . Qwe drz . 0 T OImTgm 0T 4T
" 7
(4.14)

Consider term [/

/ 1 N doéx* dox”
2V G nw dr dr

1 d doz” 0¢,, dz? déz” d*5z”
= [ — |—(2g9——-02" ) —2 Szt —2g,,———— 5t
/ 2/G | dr ( I =g OF ) Oxr dr dr I =42 xl

~
K L
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Leaving the total derivative terms the other terms A, F, G, J, K, L give,

1 %G dat dmyéxpéx” 4 | 0gp dox? dat o %G da” dmu5$”5:€”
2/G | 0xrdx® dr dr 20/G | Oz dr dr OxPOx® dr dr
~ 1 g F o
g, d*at 1 09, daP dox” d*ozv
——o0xPox” | — 22— drt +2g,,————ox*
Our dr? NG | " 0w dr dr 07 T g O
M K i
(4.15)
which can be written as,
1 0?g dat dz” 1 09, da? dox” d*6x”
- dxPox’ | — = ot +2g,, ot
2V G | 0zrOx® dr dr o 2V/G | Oxr dr dr 1’1+\gu dr? ZEJ
h X Y ke T
2 Oy dox? dat %9 da® dazt 0q,, d>at
— v dxPox” P fardx”
20/G | Ozr dr dr xJ OxP0x° dr dr + OxP dr? o x/
F el J
2 0g dat daf s o\ | 2 _ 09, doz” dat 5P
oV/G ldr \ 0xr dr 20/G | Oxr dr dr
I
Leaving the total derivative one can write this term as,
1 g dat daz¥ 0%qg,, dx® da* 0q,, d>a*
- dxPox” —2 2 dxPdz” —2 2 —— P o’
2/G | 0xr0x® dr dr v x/ OxP0x° dr dr ot OxP dr? v
A el J
1 0¢,, dz? doz” 09, dox? dzt 09, dox¥ dxP d*5z”
— y bl i gt 42— = v —2 2K +2¢,,———0d0xt
oG |” 0w dr a7 OF T we dr ar OC T 0w dr dr C I g O
K }r I3 L
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1 %9 dat dz” %90 dx” dxt 0%g,, dat dz”
= 0xl oz’ — dxPdx’ —
2VG | QxPOz° dr dr o OxPOzv dr dr OzPOxt dr dr

A G G

oxPox’

agaa dxt dx?

«a P50
2 OxP z dr dr o 5x4
M
1 09, dx? dox” 09, doz? dzt 09, doz” dxP d*5z
_ o I 77 W ZIRY T T S 9 IR T T Sae 20,y ——— 0zt
oG |2 0w dr ar O Y e ar ar O P owe dar ar C T2 g 0
K F I3 b
1 ory, dzt da” A5z dz* dox”
= —— | —20a0 0xP01% — 2940 —— 027 — 2¢0o 0, —— ——02°
G | G dr e 00 = 2ar g 08 = 2ganl G =0
dozt dx¥ 1 dz" dx¥
T L "‘ 2007’
9 dr dr o \/EC‘”' dr dTg v

The 0 g terms up to total derivatives give,

1
VG

ol G o ,dzt dz” 964, dz? dxt < dPaH dz* dx”
oz’ ) ox” — 26q,,——90x" (52 y ———
oxP v dr dr OxP dr dr v In dr? + I dr dr
det dx” 1~  dztdx” }

TdT+ ngT dr

ol

The total variation is then given by,

1{d dzt <~ dz"dx”

1({d doxz” d (0g,, dc" d dz*
2 _ | = htal _ el ZIpy Il o v
#s = L ()| - [ (2] o [ ()]
1[d de* , 1[d dat - datdav)?
+/§ Lh (29‘“’55_5 )} dT_/4 [dT ( G g 0T ) 09w g dT} dr

o o
/{ Co—— da” da” —— oo 027 + 529Wd3: di] dr 4.17)

v dr dr dr dr
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The final expression obtained is given by,

1|® da* dx”
= [ = |h = 4.1
5S / 5 {h,ﬂ, = dT} dr (4.18)

1[d de* )\ O drt dzv]?
26 = — [ = | = (2g—— By ————| d
0°8 /4[(17(9“ dTnM)+MdT dT:| T

W drt dx 1®  dat dx”
+ / _oe WA g et L A 4 )

g dr 2 M dr dr

A

As a final step we see that the second order variation is independent of 7'. Note that the

. . (1) .
square term in the above expression can be expanded to get two 717 ! dependent terms viz.,

1)1 2 1>1(1) ) v
_/ (d(" ) +di77 h,, 4o (4.20)

dr dr " dr dr

. . . o (1)
The above expression can be integrated by parts. Leaving a total derivative it gives — F} 1ﬁ -

Os f (ac)(ﬁ> o371 which essentially cancels the F1% ! coming from term A and —0, f (x)%) o1

term in (4.19). The final expression for 425 is given by,

1 [ datdav]? 1@ dat da”
525 — — / ! [hd_d_] dr + / [F%W%%% dar. @2

where A is summed over 0 and 2.
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4.4 Solutions of “generalized deviation equation” for ro-

tating B71'Z like perturbations about AdS;

Consider the AdS3 metric

dz? — dt? + dx?

2 __
ds* = 5

(4.22)

z

The equation for a spacelike geodesic of maximal length, parametrized by 7 is then given

by
dx 22
dz 2 \?

where 2\” is the AdS turning point. Besides the plus sign denotes the half going into the

bulk and the minus sign denotes the half of the geodesic approaching the boundary. From

(4.24) we can obtain the size of the subsystem in terms of the Ad.S turning point

1
dkL
o V1—k?

| =220 =22 (4.25)

In order to calculate the integrals in the previous section we need both halves of the
geodesic. Though both halves of the geodesic are identical, except for a change in sign
of the velocity, the deviations may undergo non-trivial changes. To account for this we

continue the solution of the ingoing half of (4.24) to negative values of the affine parameter
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setting it equal to zero at the turning point. Hence the parameter 7 € (—o0, c0) now covers
the full geodesic. Therefore the full curve is now a map v : (—o0, 00) — M. The solution

given by:
2(1) = 29 sech(7), (4.26)

where we have fixed the constant of integration in such a way that 7 = 0 at the turning

point. This solution can be substituted in (4.23) to get a solution z(7).

The components of C* ,, can be obtained with the expressions for h,(},,) given in Ap-

pendix D. Note that,

(ri+r?)

5 0 —ryr_
&)
hul/ = 0 0 0
7,2 7'2
—ryr_ 0 %
7.2 7,2
Denoting a = ( +J2r =) and b = —ryr_.

), . ), .
C,,=—-z2a,Cl,=2b,C/,=—2za, Cf, =20

(1) (1) (1)
Cat;z:_Zb?ngzzaactzx:_Zb,szx:Z@ (427)

The tetrads that are parallely propagated along the geodesic are given by,

2 9 2 2
b B _ i Z_ H_ Z— — i
ep = (2,0,0), ey = [ 0,£24/1 (2(0)) o | 2= | 0 Tm T (Z(O))

* Zx Zx

(4.28)

We therefore only need to solve the first two of the generalized geodesic equation. The first
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equation can be recast as ,
2
") —n" — —==b2* 2 = (4.29)

We have removed the (1) superscript in %)in this section. All 7’s in this section correspond

to first order deviation vector. A general solution of this equation is given by:

2
229 b T(—1 — 2627 + 2e47 + €67)
3(1 4 e27)2

N’ = Cre” + Coe™™ + (4.30)

To deal with the pathological nature of the coordinates at z = 0, we will put the boundary
conditions 1°(p) = n°(—p) = 0 for some cutoff p and take p — oo in the integrals. With

C1, (4 fixed in terms of p the final solution becomes,
o_ 0 2 (0)2
n = 5[_ sech(p)®sinh(7) + sech(7) tanh(7)]z, (4.31)
The equation for n? is,

n?) —n* — —=az2?*=0. (4.32)

Similarly as stated above the complete solution with proper boundary conditions is,

, 82§<0)2 a e'P37[—(3 + cosh 4p) cosh 27 + cosh 2p (3 + cosh 47)] (4.33)
n = 3(1 + 62]7)4(1 + €2T)3 .

&)
To calculate the integrals in (4.18) and (4.21) we need an expression for h,, which is ob-

tained from F' — G expansion in (D).
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<;L> 16
= 2 0 0 0
(r2_ —r2 )2
0 0 5
and then taking the p — oo gives,
(0)2 2002 | .2
22, l z
5 — 2= o _Llidr) (4.34)
3 48G

)4

po _ ot (LL(B0) (8 s 4w e))) e e)
* 4 35 45 63 15 45

B 4 <(ri +7%)% + 4rir3)

720G 4
(4.35)
Therefore the total change in entanglement entropy upto second order is,
1 1
ASp =— 10 —§2
Sk e [ S+ 5 S}
:l2(ri +72) B 4 (7“3_ +7r2)? + 47“_2”“3 . 4.36)
48G 1440G 4

In the next section we will verify this expression by deriving it from the expression of HEE

for rotating BTZ obtained by HRT proposal.

Note: It is important to note that when the perturbed metric is static there will be
no off diagonal h, like terms in the perturbation, and therefore the time component of the
deviation vector will be trivial. For example in the non rotating BTZ case r— — 0,7 — M
i.e b = 0. Hence for non ‘rotating BTZ’ like perturbations the time component of the
deviation vector is zero. Hence the perturbed curve is still on a ¢ = constant slice. Thus

the information regarding different proposals (viz RT and HRT) is already incorporated
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in the deviation vector and the perturbed metric. Hence both can be addressed using this

construction.

4.5 Entanglement First Law

It has been shown in [28] that the change in entanglement entropy (654) of a subregion
A, under a small perturbations of the density matrix p = p° + dp of a pure state in QFT,

satisfies a local first law of entanglement thermodynamics viz

_ JaB)

Where 6E4 = § < Tho > Vol(A) is the excitation energy and 3y = Vol(d)

is the average
inverse entanglement temperature inside A. The density matrix for a mixed state at finite

temperature 7" and conserved charge (), and chemical potential z,, has the following form

exp <——(H_;GQG)>
p= 7
The first law gets modified to
05a(x) = Po (0B — padQan) - (4.38)

Where 0Q,4 = 6 < @, > Vol(A). For rotating BTZ background corresponding density

matrix is given by

p:ea:p—ﬁ(H—QJ). (4.39)
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Where H and J are the Hamiltonian and angular momentum of the CFT and 2 is the
angular velocity (which is essentially a chemical potential for the conserved angular mo-
mentum). According to the above treatment a similar first law expression should also hold

with p, replaced with €24 and () 4 replaced with J 4.

Now we derive the entanglement first law for rotating BTZ geometry using the ex-
pression for HEE. Holographic entanglement entropy for rotating BTZ geometry is given
by [8]. A separate calculation for HEE in terms of geodesic length can be found in Ap-

pendix D.1

Sy = gln<€:‘£ ~ sinh (;—D sinh (;—D) (4.40)

27 are the inverse temperature for left and right moving modes and [ is the

rydr_

where 54 =
size of the subsystem in the dual C'F'T5. € is the UV cutoff and c = % is the central charge
of the dual C'F'T5, and G is the 3 dimensional Newton’s constant. The increase in HEE of

a subsystem of size [ is obtained by subtracting it from pure AdS5 contribution given by
c [
SAng = §ln E . (441)
For rotating BTZ geometry the increase in HEE of a subsystem of size [ is given by
ASEp = Sg — Sads, (4.42)

G Bip_ . wl\ . ml
=5 In (W sinh (E) sinh (5—_)>

The physical thermodynamic observables of the dual C'F'T5 can be obtained by ex-

panding the rotating BTZ geometry in suitable Fefferman-Graham (asymptotic) coordi-
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nates near the AdS boundary [24], given in the appendix D. These are summarized here.

The energy and angular momentum for the strip subsystem are

R G A A T
AE=gel o “se\mtE
1 ml 1 1
A= —l(rr )= 2= (= —— . 4.4
T =5 =5 (ﬁ% Bi) @4

The entanglement temperature has been defined in [23]. By the same argument one should

be able to define an entanglement angular velocity.

1 9(ASk) Qp  9(ASk) wan
Tp  OAE) | _jiued To O(AT) | jied -
Using eq. 4.42, 4.43 we get
1 (82 + B2) — Im (B, coth 2L + B_ coth 21)
T ol (4.45)
Qp 07— B2 —In(B4 coth % — Imf_ coth g—f)
Ty ol (4.46)

Using these definition it is quite logical to write an alternative form of the first involving

differential changes in AS. This first law is valid upto all orders in subsystem size.

1 9)
d(ASg) = T—Ed(AE) - T—jd(AJ) (4.47)

In the above form AS must be interpreted as subtracting a ground state entropy (pure
AdS)from the entropy of the excited state. The differential changes dAS are changes due

to changes of the excited state itself. Hence the first law relates the change in AS due to

97



changes in the BTZ parameters.

In the case of black hole thermodynamics the change in the entropy of a black hole is
related to changes in the black hole parameters as one moves from one black hole solution
to another in the phase space of solutions. Hence the above first law is closer in spirit to
the first law for black hole thermodynamics. In fact we further show that it is this first law

that asymptotes to the first law for the BTZ black hole in the large system size limit. As

the derivatives don’t act on [, (4.47) can be written in terms of mass (M = (rigg’i)) and
angular momentum (J = =) of rotating BTZ black hole as follows
2GTAS 1 Q
d(%) = 7od(M) = T—zd(J) (4.48)

Taking the large subsystem size [ limit these quantities approaches their respective thermal

values

. 2mASp w1 LY\ 7y
e Y6 (E * 5__) TG (4.49)
2 r2 —r?

lim Ty = =+t —= 4.50
e BT By 4+ B) 2y (450)

. By —B) 71
lim Qp = =2 = = (4.51)

oo U (Bt Bl)

. Thus (4.48) approaches the first law of black hole thermodynamics in the large subsystem
size (1) limit. It is important to note that we have taken a planar limit of the BTZ black hole
geometry. Hence, we are calculating entropy density above as entropy is divergent in the
planar case.

L < 1, we can expand entanglement temperature

In the small subsystem size limit By
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and angular velocity up to second order in g—i using (4.45)

1 . w1 1
—_— = ——| =+ = 4.52
T 3 90(Bi+53>+ #>2)
22 /1 1
Op=—| = — = 4.53
=T () @5

Thus at leading order the entanglement temperature is inversely proportional to the subsys-

tem size. The entanglement angular velocity at leading order is proportional to (%)2 these
contributions to the change in HEE appears only at second order and are due to second
order gravitational perturbation and first order perturbations of the extremal surface. De-
pendence of entanglement temperature and angular velocity on subsystem size is given in
fig(2) and fig(3). Note that perturbation of the entanglement temperature in CFT has been

discussed in [94] for example.

TE QE
. Qu, = 2
Q=3
s 4 Oy = 1
,I;fh =3 i th 3
. Tin =2 b
Al Tin =1
T e I A : . : .
Figure 4.2: Plot of T v.s 'l for dif- Figure 4.3: Plot of Qg v.s 'l! for
ferent black hole temperatures. As different blackhole angular velocity.
'l' increases the temperature asymp- As 'l increases the angular velocity
totes to thermal value asymptotes to thermal value
Similarly we can expand (4.42) in the small subsystem size limit % <1
22 +12) I (12 +12)2 + dr2 2
ASp = AS; + ASy = —F = — — — 4.54
g 1 a 48G 1440G ( 4 (454)
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It is important to note that this expression exactly matches with equation (4.36) reproduced
earlier by studying geodesic deviations.It is important to note that although full expression
for AS' is known for rotating BTZ geometry, this is not the case for other backgrounds in
higher dimensions. In those cases expression for AS is obtained perturbatively. In (4.4)
we gave a prescription in 2 + 1 to calculate AS by accounting for first order changes in the

minimal surface and second order gravitational perturbations. Here we verify our result for

rotating BTZ case. Further in the large [ limit the ratio w approaches the Bekenstein
Hawking entropy as shown in fig(4).
: 2G7TZASE Sy = 372
i
3:, Sth == 271’2
2
L Sth = 77'2
T

Figure 4.4: Plot of % vs [ for different Bekenstein Hawking entropy. As'l’ increases

291858 qsymptotes to thermal value

Now at first order from (4.52) and (4.54) we can write the first law as

1

T

d(AS)) = —d(AE). (4.55)

Where T él) = % is the entanglement temperature at first order. Thus at first order (4.55)

can be integrated to give

TE
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Which is the entanglement first law obtained in [23,95]. However at second order (4.47)
can not be integrated as Ty also depends on details of excitation. Hence at second order

one can at most write an inequality

1 Qp
A —AFE — —AJ. 4.
Sg < s Ty J (4.57)

It will be interesting to check whether if expression (4.57) resembles in spirit to the Beken-
stein bound for rotating bodies [96-98], or the Penrose inequality for axis symmetric space-
times [99, 100]. The QFT analogue of the Bekenstein bound for non rotating bodies was

holographically verified in [27].

4.6 Discussions

It has been shown that one can calculate the covariant change in HEE in 2 + 1 dimensions
by calculating the metric perturbation up to second order and solving for surface deviations
up to first order. Having obtained a covariant expression for the change in entanglement
entropy up to second order in the perturbation series, it will be interesting to check what
constraints Einstein’s equation (second order linearized Einstein’s equation to be precise)
puts on the dynamics of AS as done in [33,34, 101]. Moreover one may attempt to follow
the procedure outlined in this chapter for time dependent perturbations over AdS3, the CFT
calculation of which has been per- formed in [102].

In the next chapter we will generalize this to higher dimensions. This would provide
one with a definite prescription for calculation of change in entanglement entropy in higher

dimension using a variational approach.
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CHAPTER 5 S

AN INHOMOGENEOUS JACOBI EQUATION
FOR MINIMAL SURFACES AND
PERTURBATIVE CHANGE IN
HOLOGRAPHIC ENTANGLEMENT

ENTROPY

5.1 Introduction

In this chapter we intend to generalize to higher dimensions, the covariant approach to
calculate change in holographic entanglement entropy presented in the previous chapter.
For static geometries the timelike Killing vector (0; say) is hypersurface orthogonal in the

bulk geometry. It can then be shown that the extremal surface must lie on t = constant
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slice and can be shown to be minimal. Hence the proposal reduces to finding a minimal
surface on a constant time slice. The proposal, initially put forward by RT was precisely
this. However for non static cases, where the timelike killing vector is not hypersurface
orthogonal, or for dynamical geometries, where there is no time like Killing vector, 74
is no more minimal, and therefore RT proposal fails and one has to resort to the more
general HRT proposal. (In terms of nomenclature, in the mathematics literature, a minimal
surface refers to just the critical point of the area functional and may not correspond to
the minimum of the functional [103]. This is particularly the case in manifolds endowed
with a Semi-Riemannian metric. We will stick to the latter nomenclature and use extremal
and minimal interchangeably. Hence when we say minimal surfaces we actually mean
extremal surfaces of HRT) The equation obtained by extremizing the functional turns out to
be nothing but the condition that the trace of the extrinsic curvature of the surface vanishes.
The condition however yields non linear equations of motion for the embedding functions.
It therefore becomes difficult to solve these equations unless the back ground geometry is
highly symmetric. Consequently, though these equations for the embedding function can
be obtained exactly for AdS it becomes difficult to solve them exactly even for backgrounds
like the boosted black brane or the Kerr-AdS. One therefore considers doing a perturbation
by treating these backgrounds as perturbations over AdS, near the asymptotic boundary.
This imminently yields linear equations as the procedure involves a linearization of the

minimal surface equation.

The change in HEE between AdS and excitations over it can then be calculated by con-
sidering variation of the area functional which incorporates the changes due to the change
in the extremal surface v, and the perturbation of the bulk metric. At first order contri-
butions only come from metric perturbations alone, while the change of the embedding of

the extremal surface does not [33,34,90]. However at second order both first order change
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in the embeddings and second order metric perturbations contribute [29, 104-107]. In the
chapter (4) we proposed a way to calculate the contributions to second order variations
coming from the changes in the embedding, in 2 4+ 1 dimensions. This was achieved by
studying geodesic deviations between geodesics in rotating BTZ black hole (seen as per-
turbation over pure AdS) and pure AdSs3. These deviations were obtained as solutions of
a “generalized geodesic deviation equation”. In this chapter we shall generalize this to ar-
bitrary dimensions. In order to do so one has to reproduce the above notion, but now for

minimal surfaces. Simplified cases for this deformation problem can be found in [108,109].

Study of minimal surfaces in Riemannian geometries has been extensively carried out
in the mathematics literature [103, 110]. In the entanglement entropy literature the plateau
problem for minimal surfaces has been studied in [13]. It is known that for surfaces embed-
ded in a a given Riemannian space the area functional of the embedded surface is stationary,
that is it’s first variation vanishes, when the embedded surface is minimal. Likewise when
the second variation is equated to zero it gives rise to the Jacobi equation for minimal sur-
faces [111]. The interpretation of the solutions of the Jacobi equation is the following. The
solutions of this equation gives the deviation between a minimal surface and a neighboring
minimal surface. In the physics literature the Jacobi equation has been studied in the con-
text of relativistic membranes [112] and spiky strings on a flat background [113]. However
this equation is relevant only when the metric of the ambient space is fixed.

In the context of the present work one needs to modify this notion. Note that in our case
one needs to study deviations between two surfaces which are minimal in two different
spacetimes. The spacetimes are however related by a perturbation and not completely
arbitrary. To begin with one has to ensure that all of the results obtained are manifestly
gauge invariant and therefore has to be careful and precise in defining perturbations in the

spirit of a covariant perturbation theory. We therefore adopt the notion introduced in [114]
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in the context of gravity. A priori, taking cue from the results obtained for geodesics one
then expects the Jacobi equation to be modified by appearance of an inhomogeneous term.
This indeed turns out to be case, as will be shown later. We also obtain an expression for
the change in the area functional, in arbitrary dimensions, upto second order.

Having obtained an equation that properly mimics the situation at hand, one needs
to demonstrate that the equations can indeed be solved, for the prescription to be of any
relevance. We therefore solve this equation in the 3 + 1 dimensional case for two choices
of the boundary subsystem 1) Spherical subsystem and 2) Thin strip subsystem. We do
this for Boosted black brane like perturbations over AdS,;. Using the solutions of the
inhomogeneous Jacobi equation we obtain the change in HEE between AdS, and boosted

black brane like perturbations over it.

5.2 Notations and conventions

Consider a d 4 1 dimensional space time (M, g) and another d + 1 dimensional space time
(M, ¢') which is diffeomorphic to M. That is there is a differentiable map ® : M — M’
which is however not isometric. We will call (M’, ¢) to be a perturbation over (M, g) if
5?13) = ®&,¢' — g is a small perturbation over g. Consider a surface S isometrically embedded
in M and given by the function f : S — M. It is implied that the restriction of f to the
image of S is continuous and differentiable. In a local coordinate chart x# on M and 7¢
on S the embedding can be represented by the embedding functions z* o f o (7%)~1. This

can be simply written as z#(7%). The induced metric on S is the pull back of the metric g

under the map f, given by h = f. g. Again, in the local coordinates this can be written as

hab = 9(0u, 0y) = %952 g(D,, 0,). The quantity 9229, is the push forward of the purely

tangential vector field 0, to M. ‘h,,’ is the first fundamental form on S. To define the
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second fundamental form one needs a connection or the covariant derivative on M. The
covariant derivativeisamap V : TM T M — T M. For two vector fields W, Z € T'M
it is denoted as Vy Z and is an element of 7M. Now suppose = € S. One can decompose
the tangent space at the point z into the tangent space of S and the space of normal vectors
as T, M =T, ® TjS . Then one defines the tangent bundle and normal bundle on S as
U, 7.:S and |J, T3-S respectively. One can similarly define a covariant derivative on S.
Letitbe denotedby D : TS®TS — T'S. Let X, Y € T'S. Then the Gauss decomposition

allows us to write,

VY = DyY + K(X,Y), (5.1)

where DxY is purely tangential and K (X,Y’) is a vector in the normal bundle and is the
extrinsic curvature or the second fundamental form. The metric compatibility of V in this
notation is written as Vi g(V,U) = g(VwU, V) + g(U, Vi V). The metric compatibility
of V with g will imply metric compatibility of D with A, by virtue of the above equation.
One defines a connection V3 N+ in the normal bundle as V+ : TS @ T+S — T+S, where

X € TS and Nt € T+S. Then the shape operator Wy 1 (X) is defined as,

VxN*t = Vi Nt — Wy (X). (5.2)

The shape operator and the extrinsic curvatures are related by the Weingarten equation,

g(WNJ-(X)ay) :g(NL,K(X,Y)), (5.3)
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where XY € TS and N* € T+S. The Riemann tensor is amap R : TM @ TM &
TM — TM and is defined as,

RW,U)V = [Vw,VulV = ViV (5.4)

Similarly one can define an intrinsic Riemann tensor by,

R(X,Y)Z = [Dx, Dy|Z — Dix\Z (5.5)

We write down the equations of Gauss and Codazzi, in this notation. Let X, Y, Z W € T'S

and N+ € T+S. Then the Gauss equation is given as,

g(R(X,Y)Z, W) = g(R(X,Y)Z, W) = g(K(X, Z), K(Y,W)) + g(K(X, W), K(Y, 2)),
(5.6)

and the Codazzi equation as,

g(R(Xv Y)NJ_7Z) - g((vYK)<X7 Z),NL) - g(<vXK)(}/7 Z)7NJ_) (57)

Now, we go over to notations involving perturbations. In the presence of perturbations a
variation will be assumed to have have two contributions, one which is a flow along a vector
N € T M, obtained by taking a covariant derivative V y along /N and another variation ¢,
which is purely due to metric perturbations. Since we will be doing all the calculations in
a coordinate chart in the unperturbed space time, let try to define certain quantities on M

arising due to the perturbations, i.e due to the difference in the two metrics ¢ and @, ¢'.
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The metric perturbation will be given by,

)
(,9)01:0) = [0,/ ~ | ©0) = P(0,.,) 5
e
where P is a symmetric bilinear form on M. Note that J, only acts on the metric and
does not change the vector fields 0,,. Now suppose there is a covariant derivative V' in M’

compatible with ¢/, then for X, Y € T M,
C(X,Y) =46, (VXY) = VyY — VyY, (5.9)

where V = ¢*V" is the pullback connection on M. Note that C'(X,Y’) is a vector field in
M. When written in coordinates it has exactly the same form as (Cl’){jp used in [35]. Since
we will not be dealing with perturbations of further higher order, we have dropped the
superscript()

We are now in a position to derive the inhomogeneous Jacobi equation for minimal
surfaces. For the display of some semblance with chapter (4), a rederivation of the inho-

mogeneous Jacobi equation for geodesics, in this notation, is given in Appendix E.

5.3 Derivation of the Inhomogeneous Jacobi equation for

surfaces

In the previous section we considered (M, ¢') to be a perturbation over (M, g). Let us
consider a one parameter family of such perturbed spacetimes (M, g») and a one param-
eter family of diffeomorphism, which are not necessarily isometric, ®, : M — M such

that M corresponds to the unperturbed spacetime and @ is the identity map. Let S be
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a family of co-dimension two minimal surfaces in (M, g,) i.e the trace of their extrinsic
curvatures vanishes. The surfaces can be parametrized by the embedding functions f}'(7%),
which allows one to write the tracelessness condition as hibK ) (0., 0p) = 0. Note that one
would think that the coordinates 7 may be different for different S). But one can always
adjust the functions f{' such that the surfaces can be coordinatised by the same intrinsic
coordinates. Let us construct a family of immersed submanifolds Sy in M, given by the
embedding functions F}' such that @0 F}' = f{'. Let’s denote the deviation vector between
F}' and the neighboring surface be denoted by N. Note that NV can always be taken to be
normal to S, as any tangent deviation will only result in a reparametrization of the intrinsic
coordinates 7* and won’t change the area of the surface. This statement is however not ob-
vious in our case where we have metric perturbations. In this regard we take cue from the
calculation done in the case of geodesic ((4)). Since we have already removed the freedom
of intrinsic coordinate reparametrization, by adjusting the f,’s, it is quite legitimate to take
normal variations only. Moreover since we will ultimately be interested in area change it is
sufficient for us to take normal variations only. Further /V can always be chosen such that

it commutes with the vectors 0, tangent to the submanifold i.e [N, d,] = 0V a.

The condition that S,’s are minimal in (M, g,) then reduces to a condition on N in
M. At each order of the variation, the conditions are essentially inhomogeneous linear
differential equations that N must satisfy. The equation that one obtains at linear order is
the one we will be interested in, since the solutions of this will provide us with the linear
deformation of the minimal surface that we are seeking. As is evident, the equation can be
derived by equating the more general variation 05 = V y + 9, discussed in section 5.2, of

the trace of the extrinsic curvature to zero i.e

SnHy = h (68 (V(00.05) ") + (OnhSY) K\ (04, ) = 0. (5.10)
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We will drop the A subscript from here on, as the above variations will be calculated around
the unperturbed surface i.e at A = 0. While dropping the \’s surely will make the expres-
sions look cleaner, one has to make sure that the minimal surface equation be used only
after the derivatives have been computed. Let us first compute the first term of the above

expression which involves the normal component of the covariant derivative.

hab5N(Vaaab)J' = p (VN(Vaaab) + §g(Vaaab) — VN(Vaaab)T — 69(Vaa8b)T>

= h® (vaavabzv + R(N,0,)0 + C(0a, 0) — VN (Va,0)" — @(vaaab)T) (5.11)

The action of the variation dy on any quantity ¢ on M, is taken to be of the form
In(Q) = Vn(Q)+94(Q). This notation for variation has been adopted for convenience of
calculation. That this reproduces the correct result, can be seen from the derivation of the
inhomogeneous Jacobi equation, obtained by adopting this notation (appendix E.1). The
action of ¢, is precisely on the space of sections on a tensor bundle in M. If we represent
a flow on M, and ¢, by two parameters then a priori these two parameters are completely
independent of each other, but for the perturbations to work one needs them to be equal.
How the parameter of the flow V can be related to the parameter of the variation d, is a
mathematical issue the resolution of which we will leave for some future work. Adopting

the above, one obtains,

1)

(
(Sxh™)K (04, 05) = 2h* K (0, Wx (0)) — h*h** K (0, 0y) P (0., Og) (5.12)
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Substituting (5.11),(5.12) in (5.10) we get

SnH = h? (vaavabN + R(N,0,)0y 4+ C(04,0) — VN(V,0)" — 5P(vaaab)T>

(5.13)

(1)
+2h YK (0, Wi (0p)) — h*hP K (0, 0y) P (0., Oq).

A similar exercise with the term h®dx(Vg,0,)" yield the following expression,

(1)
hab [(v(vaaab)T*]\Z)L + (VaavabN + R(N7 aa)ab + O(aav 817))T + thP(K(aw ab)? ac>ad] :

(5.14)

Substituting (5.14) in (5.13), we get a complete expression for d H,

(1)
onH = h ((vaavabzv + R(N, 0,)0 + C(0,,0))* — (V(vaaab)TN)L> — hP(H,0,.)0,

(5.15)

e))
420K (O, Wi (0y)) — h*h* K (8, ) P (0., Oq)
Noting that (V, Vg, N)* = —K (9., Wi (0s))+ V35, V3, N, the above equation, along with
the minimality condition H = 0, can be recast in the following form, which is closer in

form to the expressions known in the literature of minimal surfaces.
SnH = AN + Ric(N) + A(N) 4+ C+ — H, (5.16)

where we have defined AL N to be the Laplacian on the normal bundle, given by (Vga Vs, N—

vL

(Vaaab)TN>7g(R<N, 0,)0s, N) has been denoted by Ric(N). A(N) = h®*K(d,, Wx(0y))
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.
is the Simon’s operator whereas C* is defined as C+ = h**(C(9,, 0y)* and H = P®K (0,,0,).

Thus identifying the Jacobi/stability operator (£) for minimal surfaces as
LN = A*N + Ric(N) + A(N), (5.17)
we can rewrite (5.16) as
LN =-C*+H. (5.18)

This is the inhomogeneous Jacobi equation. The solutions of this equation will provide us
with the deformation of a minimal surface under a perturbation of the ambient spacetime.
The inhomogeneous terms in the above equation, involves perturbation of the metric and
is the only term in the above equation that involves the perturbation. If there were no
perturbations the equation would have corresponded to the one describing a deviation of a
minimal surface to another minimal surface in the same spacetime (M, go). We will solve
for solutions of this equation for specific cases and substitute the result in an area variation

formula which we derive in the next section.

5.4 Variation of the Area functional

According to Hubeny, Rangamani, Takayanagi (HRT) proposal the area of a codimension
two spacelike extremal surface(y4) in AdS;.; whose boundary coincides with the bound-
ary of subsystem A gives the entanglement entropy for this subsystem. Our goal therefore
would be to obtain the change in area of a minimal surface up to second order with the extra

constraint that the boundary of the surface remain unaltered i.e the deviations vanish at the
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boundary. At second order we will encounter terms which involve the deviation of the em-
bedding functions itself. It is here that we have to use the solutions of the inhomogeneous

Jacobi equation. The first variation of area of the minimal surface is given by,

h 1 ey
SnA= [ d'r gh“b&vhdb =— / d"r Vhg(N, H) + 3 / "7 Vhh®P(9,, d)

+Surface terms. (5.19)

If the perturbations are set to zero then we get back the known expression for first variation
of area. In the presence of perturbations the on-shell expression can be obtained by setting

(H =0).
1 ey
ovA =3 / d"1 Vhh®P(,, d) (5.20)
The second variation of area is given by

)
51(3)14 = — /d”T Sn(Vhg(N,H)) + % /d”T Sn(Vhh®P(8,,8,)) + Surface terms

(5.21)

Note that since [V, d,| = 0 for all a, the variation of the surface term is again a surface
term. From the results of the previous section 5.3, the first term in the above expression

can be written in terms of the stability operator. Simplifying the second term requires a bit
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)
of algebra. Note that 5 (v/hh® P(0,,d)) has the following expression,

(1) (1) (1)
VRN P(0,, 3y) (—guv, )+ ShP(@), ad>) T RRERY (N, K (D, 04)) P, D)

(1) 1) 1) (2)
—\/Eh‘“hde(@C, 8d)P(8a, 81;) + \/Ehab |:2P(V(9QN, ab) + 29(0(8,1, N), 8b) + P(@a, 8b)

(5.22)

Substituting the expression in (5.22) in (5.21) and using the conditions H = 0,6y H =
0, one arrives after a lengthy calculation at the following final expression for the second
variation of the area functional ',
1

(1) (1)
P4 = 1 / A" VRh® P (8,, 0,)h* P (0., 04) + / 4"t Vhh*h"g(N, K (9., 0,))
(1)

(1) (1) (2)
P(8,,0,) — % / A" Vhh“h* P(D,, 8,) P(0,, 0)) + / d"r \/Eh“b%P(aa,&,)

- / A" Vhh®g(C(8,, ), N) + Surface terms, (5.23)

The appearance of surface terms in the above expression is not very crucial, at least
in the context of our current work. Since the boundary subsystem is kept fixed, while
the bulk metric is being perturbed, the boundary conditions on the deviation vector would
imply that it vanishes at the boundary. Thus change in area will have no contribution
from the boundary terms. If we started with a more general deviation vector which also

had components tangent to the immersed surface, then the only modification of the above

'where we have used the following two expressions,

(VOQP)(N7 8b) = g(c(aayab)aN) + g(c(aaaN)aab)

Vo, [VRR®P(N,8,)] = Vhh®V s, [P(N, )] — VAR P(N, (Va,8,)T)
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expression would have been through the appearance of more boundary terms. The bulk

contribution still would have arised from normal variations only.

5.5 Brief outline of steps involved in obtaining Area vari-
ation upto second order

Our goal is to provide a formalism to calculate a change in the area of an extremal surface
under changes of embedding and perturbation of metric. For the sake of brevity, all our
calculations will be done in 3 + 1 dimensions. But this can be easily generalized to higher
dimensions. In this section, we provide a brief outline of this formalism

1) Our first task is to take an asymptotically Ad.S metric (to be considered as a perturba-
tion over AdS) and identify the first and second order metric perturbations. In our case, this
is achieved by writing the boosted AdS black brane metric in the Fefferman Graham coor-
dinates, keeping up to second order (appendix F). From the first order metric perturbations

&
P, one can calculate the (1, 2) tensor.

1 ) ) ) 1@
Y, = 59“0 0, Py +0,P0 — 05 P,, | — QPM (0v9ps + 0pGvo — OuGup),  (5.24)

where g, is the unperturbed AdS; metric. The tensor defined is nothing but C'(X,Y)
written in a coordinate system, i.e C'(d,,9,) = C.,0,.

2) Next we choose a free boundary extremal surface in AdS, [14]. We will consider two
cases A) half sphere in AdS, which is the corresponding minimal surface for a circular disc
like subsystem and B) minimal surface corresponding to a thin strip boundary subsystem.
With these choices and the choice of the perturbed metric }17)“", we can now solve the

inhomogeneous Jacobi equation (5.18) and obtain the deviation vector (V).
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3) First and second order change in the area can be obtained by substituting the values
e
of the deviation vector (IV), first order metric perturbation (P,,) and the second order
@)
metric perturbation (F,,, Cﬁp) in the expression (5.23),(5.4) and integrating. From here the

total change in area upto second order can be obtained as,
1
AA=AWA+ §A(2)A (5.25)

In the topic of the present chapter we have selected asymptotically AdS spacetime. But
this formalism can be easily applied to asymptotically flat case also. Here we have con-
sidered first order deviations of the extremal surface and second order metric perturbation
to calculate the change in area up to second order. To calculate the change in area up to
third order one need to consider second order deviation of the extremal surface and third
order metric perturbations. Second order deviation can be obtained by extending the inho-
mogeneous Jacobi equation up to second order. The form of second order inhomogeneous
Jacobi equation for geodesics can be found in [35]. Third order metric perturbation can be

obtained by keeping third order terms in the asymptotic(Fefferman Graham) metric.

5.6 Solutions of the inhomogeneous Jacobi equations and
change in area

Our choice of the asymptotic metric to be considered as a perturbation over AdS} is the
Boosted AdS black brane metric written in the Fefferman Graham coordinates upto second
order. The CFT state dual to this bulk geometry is a thermal plasma which is uniformly
boosted along a certain direction and is characterized by a temperature 7" and boost .

This choice of a stationary spacetime is made to elucidate that our formalism can be easily
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applied to both static and non static spacetimes and yields expected results for the non-static
case. The metric for AdS, in Poincaré coordinates reads as

—dt? + da?® + dy? + dz?

ds® = 5
z

(5.26)

for simplicity we have set the radius of AdS to one. Now we will solve the inhomogeneous
Jacobi equation and obtain an expression for the change in area for the case of two boundary

subsystems namely

5.6.1 Circular disk subsystem

In the case where the boundary subsystem is a circular disk of radius %, it is known that
the minimal surface in the AdS,,; is a d — 1 dimensional hypersphere. The embedding of

such a surface in AdS, is given by the following embedding functions [14,34],
r=%Xsinfcosp+ X, y=Xsinfsinp+Y, z=%Xcosb, t=constant. (5.27)

The coordinates 6, ¢ are the coordinates intrinsic to the surface and have ranges, 0 < 6 < 5
and 0 < ¢ < 27. As is evident from the above expressions in eq.(5.27), the surface of
intersection of the half sphere with the AdS; boundary is at ¢ = 7. The intrinsic metric
can be calculated via a pullback of the metric on the full space time and is given as,

df? + sin? Od¢?

ds?
cos? 6

induced

= hyp da®da® =

(5.28)

To facilitate our calculation we will construct a local basis adapted to this surface. To start

with we first construct a local tangent basis. As is apparent from the expression for the
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induced metric, the tangent bases are,
ey = cos 00y, es = cot §0,. (5.29)

Since the surface is purely spacelike, this set provides the space like bases for the full
spacetime. The set of basis vectors spanning the normal bundle will provide us with the
other two basis vectors. To obtain them we first lift the tangent vectors to the space time,
by using the embedding functions and then use the orthogonality relations. As a matter of
convention we mark the time like normal as ey and the space like normal as e;.

2(y—Y)
I I

eg = 20, €1 =

2,2
0y + 50 (5.30)

To completely specify the embedding one also needs to find the extrinsic curvatures and
the intrinsic connection. To do so we need to find the covariant derivatives between the

tangent vectors. They turn out to be,
Ve,e2 =0, Ve,e3 = —cosec ey, V.,es = cosec e (5.31)
which gives the following for the intrinsic connection and the extrinsic curvature.

D.,es =0, D.,e3 = —cosect ey, D.,es =0, D.ey=cosecbes, D.es=cosecbes

K(eg,e9) =0, K(es,e3) =0, K(eg,e3) =0, K(es,ez) =0 (5.32)

The vanishing of the extrinsic curvature implies that the surface is totally geodesic i.e any
curve that is a geodesic on the surface is also a geodesic of the full spacetime. Recall that

the Jacobi equation involves the connection in the Normal bundle V+, which can be found
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by calculating the covariant derivative of a normal vector along a tangent vector.
V62€0 e O, Vegeg = 0, V@el = 0, Ve3€1 =0 (533)

From this one can read off the normal connection V*, using the Weingarten map. The
procedure involves expanding the normal connection as Vies = 85 (e%)ep (A, B denotes

an index for basis vectors in the normal bundle) and yields,

Vo eo = B(ea)en + By(e2)er =0, Vaeo = By(es)eo + Byles)er =0

V;el = BY(ex)eq + Bi(ez)er =0, ngel = BY(e3)eq + Bi(es)er = 0. (5.34)

The vanishing of the (’s is equivalent to saying that the normal bundle is flat. Using
the above results, calculating the left hand side of the Jacobi equation is just a matter of

A

algebra. We expand the deviation vector in the normal basis as a”* e 4 and find the following

equations for the o
cos? 9(930/l + cos? 6 cot 09y + cot? 083)0/1 — 2o = F4, (5.35)

Where F4 has been defined for compactness of the above expression and is given as in
FA = e;‘ (CL“ +H “). Note that in this case the both the normal projections yield the
one and the same equation. The source of this symmetry can be traced back as due to
the symmetry of the embedding surface itself. Before proceeding to find solutions of the
above equation, we need to analyze the homogeneous equations. In other words we will
impose the boundary condition that the deviation vector is zero at the boundary and check
if this implies that the only solution of the ‘homogeneous’ piece of the above equation is

the trivial solution. As we will see, this knowledge would be helpful in our effort to obtain
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solutions of the ‘inhomogeneous’ equations. The homogeneous equation can be solved
by the method of separation of variables o (0, ¢) = ©4(0) ®*(¢). The equations then
become ordinary differential equations.

d?e deA

gz T cot QW — (2sec? 6 4+ m2cosec 2 )04 = 0 (5.36)

and the ¢ equation is,

d*PA
d¢?

+m2d4 =0 (5.37)

For the ¢ equation the boundary condition is of course the periodic one (¢ + 27) =
®4(¢), which restricts the values of m to integers only. The most general solution of this

equation is given by,

3
O = O} cos*O(sin )™ gFl(l + %, 5 + %;m + 1; sin? 0)
3
+ Cy cos® f(sin§) ™™ 2F1<1 — %, 5 %; —m + 1;sin? 9)

(5.38)

Assuming the boundary condition © = 0 at # = 7 and demanding that the solution be
regular at § = 0, one concludes that C; = Cy = 0. To check this assume m to be positive
(Similar arguments would hold for m negative). Note that at § = 0 the second solution
diverges since o F} (1 —nd_mml O) = 1, while the sin~""(f) term diverges. This

implies C, must be set to zero. At ¢ = 7 the first solution diverges. This can be argued

2 Fy (a,b;c;z)
= D=0 for R(c —a — b) < 0.

in the following way. Note that [im,_,;- A=syeat OW0)
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Writing the first solution as,

o 2F1(1+%,§+ mm 4 1;z>
(1—2)2 (1—2)"2

: (5.39)

one can realize that solution is divergent at § = 7. Hence () has to be set to zero. As

expected for homogeneous spaces the only solution is the trivial one.

1

Now we will solve the inhomogeneous equation. By substituting C' = (% + ﬁ272) 3
0

— (1) 1 - 21 o 3 — % : .
D = (g) = B = gy et and writing R°> = EE the inhomogeneous equation for e; turns

out to be,

2
cos® 95a* + cos® § cot 0pat + cot? 9(9;&1 — 20! = R*cos* 0 (§ + 5272>

5R3sin?fcos* @ 5R3F%2y%sin?fOcos?d  5R3B%y2sin? O cos? 6 cos 26
+ + ,
6 4 4
(5.40)

and that for eg reads,
cos? 00;a° + cos® § cot 9y’ 4 cot? 9@%040 —2a° =3B7y*R3cos?fsinfcosp  (5.41)

Let us consider the e; equations first. Note that since the equation is linear one can find
the solutions for individual terms in the inhomogeneous piece separately. Let us therefore

consider the terms containing no function of ¢.

2
' + cot B9pa’ + cosec 20050’ — 2 sec? f o' = R cos* 0 <§ + ﬁ272)

N 5R?sin?fcos* @ HR3sin? 6 cos* 03%72

5.42
5 + 1 (5.42)
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Owing to the fact that the right hand side of this equation contains no function of ¢ the
only non trivial solution to this equation will come from m = 0. This can be understood
by taking a trial solution of the form Y~ (g, (0)e™ + g_,()e~"™?). If one now lists the
equations for individual m’s, then only the m = 0 equation will have an inhomogeneous
term on the right hand side, while the other equations will be all homogeneous. But we
have already shown that the solutions of the homogeneous equations are trivial. Therefore

we only need to solve the m = 0 equation, which reads,

201 1 9

ddg + cot 0% — 2 sec’f ©! = R3 cos? 0(5 + 5272)

N 5R3sin’ f cos? 4 N 5R? sin? 0 cos* 0522 N 5R? sin? 0 cos* 05%72 cos 2¢
6 4 4 ’

(5.43)

The solution to this equation with the conditions that it is zero at = 7 and regular at ¢ = 0

is given by,

o' = %Ry’ cos? 0 (35272 + 2) (3 cos 20 — 23)

The other equation containing a cos 2¢ is equivalent to solving the # equation for m = 2.

5R3 2,2 o2 4 2 2
070" + cot 00,0" — 4 cosec 20 O — 2 sec? 9 O = ] S;n (544
The solution to this equation with conditions as above yields,
1 2
ol = —6—4733/3272 (sin 29) (5.45)
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The full solution is then,

1

64

2
302 2(
533 R’y (st@) cos 2¢

(5.46)

1
al = —R3cos* 0 (35272 + 2) (3 cos 260 — 23) —

Now, we go over to the ey equation. By similar arguments, one concludes that the only

contribution to the solution will come from m = 1 term. Therefore, the equation becomes,
95a° + cot 09pa” — cosec 20 o — 2 sec® § a® = 33v*R? cos® O sin f (5.47)

Along with the usual boundary conditions, the solution to this equation is,
¥ = — iﬁszg sin 6 cos? f cos ¢ (5.48)

The very fact that the solution of the above ¢, equation is non trivial proves the fact that
the perturbed minimal surface ceases to be on a constant ¢ slice as was initially the case
with the unperturbed minimal surface in AdS, background. One can also check that setting
3 = 0, which gives the static case of an AdS Black Brane, makes o vanish.

We are now in a position to calculate the change in area. We first calculate the first
order change in the area. As is known, at this order there is no contribution from deviations
of the minimal surface itself, and therefore at this order the change must match with that
obtained in [27]. The first order change in HEE(S) for the spherical entangling surface can

be extracted from eq.(5.4) and is given by,

1 () 1
AWGg = — A4 = —/ddl hh®P(d,,0,) = B> (36%+% +2
AGy 8Gx ™ VR P(0,, 0)) 326N (36%7° +2)

1
3
20
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The second order variation has contributions from various terms. The full expression is

given by eqn.(5.23),

(1)
AP A = / d 1 Vh (h‘“’thP(@b, 94)g(N*t, K (04, 0.)) — h®g(C(a,0p), NH)

+/dd_17 \/ﬁ[

ab (2 1 e N 1 ) )
%P(@a, 00) = SH WP (s, )P0, 00) + £hhP (0, 04) P00, ab)}

(5.49)

Let us analyze the above equation. The last three terms in the above equation eq.(49) are
the terms coming purely from the bulk metric perturbations. The first and the second term
arise from changes due change in the embedding function itself. The N in the above
equation therefore has to be substituted with the solutions of the Jacobi equation obtained
before and then the integrals calculated. We therefore enumerate the results one by one.
Consider the last three terms in the above expression which do not involve the deviation

vector.

ab (2)
[ VR PO ) = R (05~ 1) (5.:50)

The next term is a product of two metric perturbations gives,

1 &y W 2RY (2165 4 1475%4* + 49
/ A7 VRSh R P (8, 0,) PO, 00) = = (2165 72825 Fr+49) (55
Finally the other term containing a product of two perturbations evaluates to,
1 ey ey 2RO (1084%* 4 1415%4% + 47
At VB h P (0, 0) P (0a, 03) = mR” (1085 72825 I (s

124



Note that the contribution from the first term is zero owing to the fact that the extrinsic
curvature K (0,, 0p) is zero in this case of a spherical boundary subsystem. As we will see
later this term does give non zero contributions for the case of a strip subsystem. While
calculating the second term, the N+ contained in the term has to be substituted with the

solutions of the inhomogeneous stability equation. After substitution one obtains,

6 4.4 2 4 2
/dle V(0,0 NY) = TR (459584 +61(889107 597 £199) 553,

The total second order Change in HEE is then given by,

@4 w2 (18098%y* + 36 (817% + T13) 4* + 551)

1
APS = -
4GN 4GN 5670 Zg

(5.54)

This expression gives the second order change of HEE. Positivity of relative entropy be-

tween two states in the CFT demands that

AH > AS

Where H is the modular Hamiltonian for the spherical entangling surface, given in terms
of the boundary stress tensor. One can now check that the equality is satisfied at the first
order [27]. As the modular Hamiltonian remains unchanged at second order, positivity of

relative entropy demands that A®® S < 0 at second order. Our result eq (5.54) is therefore
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in agreement with this observation. The full expression for change of HEE is then given by

1
AS =AWS + §A<2>S

1 7% (18098 + 362 (8142 + T13) 42 + 551)
238Gy 5670

7% (35°7° +2)

6
0

(5.55)

B 1
392Gy 2

the above expression gives the net change in HEE for spherical entangling surface upto

second order over pure AdS(ground state) value.

5.6.2 'Thin Strip subsystem

We now consider a two dimensional strip like subsystem on the AdS; boundary. The
subsystem is given by the region [—L, L] x [—%, L] of the z — y plane, where L >> [. The
minimal surface corresponding to such a subsystem [14] is characterized by the following
embedding functions,

r=A y(0)=—zF (@ \2) , 2(0) = z,Vsinb, (5.56)

where z, is the turning point of the minimal surface in AdS, and E(«, () is the incomplete
elliptic integral of the second kind. Note that due to the condition L >> [ the effects of the
sides of the minimal surface can be neglected. The embedding function clearly reflects this

approximation. In intrinsic coordinates the metric takes the form

2,.2d0? + 4 sin Od)\?
422 sin 62 ’

d$2induced = (557)
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the range of the coordinates being 0 < 6 < 7 and —L < A < L. Further the turning point
(i
2y/a0(3)

to calculate the extrinsic curvature and the connection in the normal bundle. We again use

. We also need

z, can be written in terms of the width [ of the subsystem as z, =

a local tetrad adapted to the surface. The two spacelike bases are chosen such that they are

tangent to the embedded surface. In intrinsic coordinate, they have the form,

es = 28in 00y, e3 = z,Vsin 00, (5.58)

These are lifted to the full spacetime coordinates and then by using orthogonality relations

one can construct the bases which span the normal bundle.

e1 = 2(sin 60, — cos 00,), ey = 20, (5.59)

The covariant derivatives of the normal vectors are given by,

Ve,e1 =sinf es, Ve,eq = —sinfes, Ve,eg =0, Veeo=0 (5.60)

From these one can read of the Weingarten maps and therefore the extrinsic curvatures,

We, (e2) = —sinf eq, We, (e3) =sinf ez, W (ea) =0, W (e3) =0 (5.61)

We are now in a position to calculate the left hand hand side of the Jacobi equation. We

A

expand the deviation vector as o e4 and then by using the above expressions we get,

4sin*0 O5at + 2sinf cos§ dpa’ + 2.2 sinf d3a' — 2cos* 0 o' = F!

4sin® 6§ 90 + 2sinf cos @ 9pa + 2,2 sin 930 — 2a° = F° (5.62)
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As before, we first analyze the homogeneous equations by solving them using separation

of variables.

el 1 de! | k? 1
102 +§Cot6’%— <—cot 9+—>@ =0

200 0 2
ﬂ—|—lcot9@—(lcosec%’—i— k )@0:

d6? 2 de 2 4sin 6
BeOD kN
T (z—> 500 g (5.63)

The solution to the € part is given in terms of the generalized Heun’s function, and can be
shown to yield trivial solutions under the boundary conditions assumed. We will now solve
the inhomogeneous Jacobi equation for the strip subsystem for two separate cases ,

1. Strip along 'z’ boost along ’z’: In this case we consider the width of the strip to be
along the y direction and length along the = direction in bounday of Ad.S,. The inhomo-
geneous term for the Jacobi equation in this case is calculated for the asymptotic Boosted
AdS blackbrane geometry (appendix F) where the boost is along the x direction.

2. Strip along ‘2’ boost along 'y’: In this case the direction of the strip remains un-
changed but the inhomogeneous term is now calculated for the same geometry but with the
boost being along y direction.

Changing the boost direction results in different deformations of the minimal surface.
In the first case the surface remains on the same constant time (¢) slice while in the second

case there is a deviation of the surface along the time direction.

Strip along ‘x’ boost along ‘x’

In this case the e equation turns out to be trivial i,e the inhomogeneous term is zero in the

eo equation. Hence the surface remains on the same time slice. The e; equation is however
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non trivial. Note that since the right hand side is not a function of A, only the k£ = 0 solution

will be non trivial, which can be recast into,

2ot 1 de* 1 1
© +—cotei— (—cot2(9)6)1=Z (3D+£> 23 (sinf)? —

ot

Dz3 (sinf)2 ,

ool =3

ao? = 2 do 2
(5.64)

where expressions for C', D can be found in appendix F. The homogeneous solutions for
this is,

~ Cicost

sin 6

1 1
+ Cysinf o F; (1,1;5,0082 9), (5.65)

©'(0)

and the Wronskian is W (§) = ¢~z J cot(®)d6 — —+—- The full solution is then ©; + ©,.

) 1 1
= —— + CQ sin @ 2F1 (17 1, §,COS2 (9)

0 5 3
O 3 (035 ot = Loz et o (115

- =, cos? 9') do’
2

N

Nt

8
o 1
+sinf o Fy (—, 1; l, cos” 9> [1 (BD + 30) 23 (sin )2 — gsz (sin6) 1 cos(6')d’

(5.66)

It is not possible to get an analytical form of the integral involving the hypergeometric
function. However since certain definite integrals are known for hypergeometric function,
we hope that the final integral involving the change in area can be obtained by doing an
integration by parts. To evaluate the integration constants we put the boundary condition
© = 0atf = 0 and = 7. On demanding these the values of the constants turn out to be

1)?23(20+D)

C, = 7;23 (2C' + D) and Cy = I T

We now go over to the calculation of the integrals for calculating the change of area.
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Before calculating the terms involving the deviation vector, we first evaluate the ones in-

volving the metric perturbations only. The first order change in HEE is,

(1)
Ag— L / A7 VR P(0,,0,) =
8Gx
oL x 12 (1+282%)T (1)

ITEl 32T (2)?

2L
20+ D

, (5.67)

which again matched with the results obtained in [31,32]. As before the last three terms in

the second variation formula are,

hab 2 2L 3/2.5 / D
a1 Vi B, 0y = X T o ) (5.68)
2 21v2r (3)
The next term which involves the product of perturbations is,
1 () ) 2L x 22K (3) (T7C* + 45D?)
A7 Vh=h*h"P(d,, 8,) P (O, 8y) = r N2 5.69
/ 2 (92, )10z, 0a) 23112 669
Finally we have the term
1 ) e 2L x °T (2) (7702 4+ 1100D + 45D?
/ A7 V=D W P(De, 04) P (Do, Ob) = Vel () - :
4 4621 (Z)
(5.70)

Now we go over to the other integrals. Consider the term,

(1)
/ a1 VR (BB P (0, 00) g (N, K (D, 0.)) = 1 g(C(D0, ), N7 )

L pm 1 3C 5 7
— / / - [z3 <— + 3D) sinz 0 — ~z*Dsin? 9} ' df d\
—rJo 2z,sin2 6 2 2

(5.71)
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Note that ©! contains two terms. One that does not have an analytical form and the other
. . cos(0
which does. Lets write these as ! = — \/QST) fo f(8") d0' + G(0) + ©L(0). Therefore

the above integral becomes,

/ / {z (£ + BD) sin® 0 — ZzijDsm% 9} (5.72)
L 22, sin? 0 2 2

COS
X (0') do' + G(0) + O, |db dX
< \/SlIl / f ( ) )

Note that the GG(6) can be obtained easily and the value evaluates to,

2L x /7221 () (T7C? +110C'D + 29D?)

5.73
3521 (&) 6-73)
The complementary part of the solution gives,
2L °r 1y’ (20 + D)? (5.74)
V25 3 '

The other integral is of the form [ ( fo f(0"aey ) df and can be evaluated by parts,
[ o [ s@rasas = |( [ i) ([ooe)] - [t [oiras
0 0 0 o Jo
(5.75)

The first term in the above expression does not contribute, while the second term reproduces

the number obtained for G(6). The total variation A?)S is then given as,

5
A@g_ L a@y_ 2LxPT(5)° (=84(m — 1)B'y" +28(4 — 3m)5*)* + (48 — 21m))

1
4
4GN % T(3) 21504 x 4G yV/27
(5.76)
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This expression gives the second order change of HEE. As in the case of circular disk,
the positivity of relative entropy demands that A A < 0. This can be checked through
a plot of A® A against 5 (See Fig-1). The whole expression is negative (at 5 = 0) and
monotonically decreasing as . The change AS or the plot cannot however be trusted for
too large values of (3, since one needs to add further higher order corrections to the change

for large (.

Figure 5.1: Plot of A® A vs B for strip along x boost along y

The full expression for change of HEE is then given by

AS =AWS + %A@)S
AL x P(14280 (1) 2D x 5T (4)° (=84(r — 1)84y" + 28(4 — 37) 82 + (48 — 217))
4Gy 39T (%)2 2x 281 (3)7 4Gy x 21504 /21

(5.77)

the above expression gives the net change in HEE for strip entangling surface upto second
order over pure AdS(ground state) value. This is the most important result of this chapter.

One can easily check that the above result exactly matches with the (2.38) for d = 3 case.

132



It is also important to note that in this case the ey component of the deviation vector is zero.
This shows that the perturbed minimal surface for this choice of subsystem still remains
on the ¢ = constant slice. This is the reason why this result agrees with that in (2.38).
Although the boosted black brane background is not static, but our solution tells us that the

surface remains on the same slice as pure AdS at first order deviation.

Strip along ‘x’ boost along ‘y’

In this case all the integrals for e; are same as that of the previous case with C, D replaced
by C, D and C’, D’ replaced by C', D’ (see appendix F). However in this case the non
homogeneous part of the ey equation is non trivial. Hence the extremal surface doesn’t

remain on the same time slice . The equation is,
4sin® 6 970 + 2sin 0 cos O g’ + 2,2 sin 0 930’ — 2a° = —322(sin 9)33 cosf, (5.78)

which following the previous arguments reduces to solving only the equation,

4200 1 de’ 1 1
d«9@2 + = 5 ¢ Hd—@e — jcosec 200° = —%zf(sin 0)2 B cos b (5.79)

The solutions of this can be obtained in a straightforward manner and therefore we do not
have to resort to efforts made in the previous section. The full solutions turns out to be of

the form,

0_ —B2%0 Bz sin20 260,E ( ilm = 20) |2> Cy

4+/sin @ sin 0 \/sin(6) " \/sin(6)

(5.80)

133



Imposing the conditions © = 0 at § = 0 and € = m, fixes C'; and C} to, the solutions of

which are,

TBz3 1 -
C, = z , Oy = —nBz3,
8V2 (2B (3) - K (3)) 8

(5.81)

where K («) and E(«) are the complete elliptic integral of the first and second kind re-
spectively. The contributions coming from the component a! of the deviation vector turns
out to be same as that in the previous section with C, D replaced by C, D and C', D'
replaced by C’, D'. The only other contribution different from the previous case comes

from —T'r(C) for the component a° of the deviation vector and evaluates to,

2L /%217 — 80)B22>
336v/2T" (2)°

(5.82)

Total variation A®)S without the previous term is then given by,

oL x I5 T (3)°

1
APDS = L
4Gnzg T (3) 21504+/27

(5.83)

As in the previous case AP A < 0. This can be checked by plotting A(® S against 3(see
Fig-2). It is negative and monotonically decreasing as a function of . It is important to
note that the boost independent term in the expression for A()S for both the cases is same.

Setting boost to zero makes both the cases identical to AdS black brane geometry.

The first order change in HEE is given by

1 9L x 12 (1 + 8242 (1)
AW 4 — X2<+57)§9 (5.84)
4Gy 4G Nz 32T (%)
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Figure 5.2: Plot of A® A vs B for strip along x boost along y

Thus the full expression for change in HEE is then given by

AS =AWS + %A@)S
AL x (14 A (1)
AGnzg 32T (3)?
((20 — 217) 3% + 2(40 — 217) 5%% + 2(217 — 80)B~* + (48 — 217r)>
21504/ 27

oL x I5 T (3)°
+ 6 7
G T (2

(5.85)

the above expression gives the net change in HEE for strip entangling surface upto second

order over pure AdS(ground state) value.

5.7 Issues of Gauge dependence

The ®,’s in section 5.3 are called the identification maps. It encodes the information about
how points in the perturbed and the unperturbed space times are to be identified. The

notion of gauge transformation can be shown to arise due to different choices of the ®,’s.
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It is evident that the identification maps can be so chosen that the location of the perturbed
minimal surface in the unperturbed spacetime is same as that of the unperturbed minimal
surface. This is precisely the interpretation of the Hollands-Wald gauge [115] used in
[106, 116, 117]. But it seems that this in general can be done at any order of perturbation
and not just at the linear order. Further, it seems that by choice of such gauge one renders
the inhomogeneous term, in the Jacobi equation obtained, trivial and therefore irrelevant.
We must emphasize that this is not the case. In order to find the Hollands Wald gauge (at
linear order) one has to solve a linear second order differential equation which is precisely
the inhomogeneous Jacobi equation. This has also been pointed out in [118]. Therefore
choosing the Hollands-Wald gauge does not trivialize the problem of finding the change in
area. However, it is absolutely possible that the Holland- Wald gauge is a convenient choice
if one tries to find identities that the higher order perturbations of the area functional satisfy
or finding relations between two gauge independent quantities like the ‘Fisher information*

and the canonical energy [106].

Having discussed this it is quite viable to state that the inhomogeneous equation is
gauge covariant. In other words any gauge transformation of the metric perturbation can
be absorbed in a shift of the deviation vector itself. This is a quite plausible conclusion that
follows from the following lemma due to [114]. The linear perturbation (), of a quantity ()
on (M, g) is gauge invariant if and only if one of the following holds: (i) (o vanishes, (ii)
(0o is a constant scalar, (iii) () is a constant linear combination of products of Kronecker
deltas. In our case () is the mean curvature (H ) of the extremal surface in the background
spacetime and hence is identically zero. However there is a subtle issue in application of the
above lemma in our case. The quantities () defined in the lemma are globally defined while
H islocally defined on a codimension two surface. The expression for the second variation

of the area functional is however invariant under different choices of ®, : M — M,.
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5.8 Conclusion

A few comments about higher order perturbations are in order. As is usual with any per-
turbation theory, the homogeneous part of the second order perturbation equation would
be same as the Jacobi equation. However the inhomogeneous term will now depend both
on second order perturbations as well as first order deviations. Note the second order de-
viation vector M (say), can always be taken to commute with N owing to the fact that
they represent independent variations. Since the normal bundle is two dimensional one
can have at most two mutually commuting directions. Hence it seems that the perturba-
tion will terminate at second order and the complete change of entanglement entropy can
be obtained by exponentiating this change upto second order. However this is speculative
and requires further investigation. We have presented a systematic approach to obtain the
change in HEE up to second order. For simplicity we have calculated this in 4-dimensions
but the approach remains unchanged in higher dimensions. The inhomogeneous Jacobi
equation and second variation of the area functional presented here can be applied to non
AdS geometries also. In fact the Jacobi operator simplifies for the asymptotically flat case.
We have seen that second order change receives contributions from first order changes in
the embeddings and second order change of the bulk metric. In this approach the nature
of the flow of the extremal surface can be understood by looking at the components of
the deviation vector. Further, having obtained the second variation one can check if more
general entropy bounds [96-98, 100] or has any relation with geometric inequalities [99] in

general.
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meeeeesssssmmmmmn $ CHAPTER 6 S

SUMMARY

In chapter(2) We found that the first law of entanglement thermodynamics for ‘boosted’

AdS41 having black hole in the IR region is given by

AE* =T5 A Sk + e AN +V, AP

Our result emphasizes the fact that the form of the first law changes under higher order
corrections to the entanglement entropy. It is apparent when the entanglement law (2.25)
at the first order is compared with the second order result in (6.1). We find that even in
the absence of boosts the renormalization of the thermodynamic quantities like entropy,
energy, subsystem size (all extensive quantities) and entanglement temperature (intensive
quantity) becomes essential at the second order. The chemical potential which is negligible
at the first order becomes relevant at next order. We expect no further changes in the form
of the first law for the AdS background (2.1), so the first law form (6.1) will remain un-
changed at higher orders provided we renormalize/redefine the thermodynamic quantities

appropriately. Also, we have determined that the entanglement temperature of the subsys-
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tem will be higher for a bigger size black hole. Finally, as we have studied (IR) excitations
in AdS spacetime, and since AdS background is an universal solution of (gauged) super-
gravities with negative cosmological constant, we expect these results will be holding true
quite generally.

The physical relevance of our results in chapter (3) is indicated by the fact that the
entanglement entropy of subsytems is affected in the presence of boost, or a flow. It is not
entirely an unexpected result as the boost indeed represents an asymmetric excitation of the
system. It means subsystems along the flow and perpedicular to it get differently entangled
as we have determined, AS, > AS). Upto first order this asymmetry is proportional to
3% (for small velocities). These result however will change at the second order perturbative
calculations. Our results however imply more generic situations. Even in the absence of
a flow, provided there exists pressure asymmetry in the CFT due to some other reason,
the entanglement asymmetry will always arise. The boosted black brane systems are used
here only as the known examples to study asymmetric systems. It would be worthwhile to
explore other systems like Bianchi models having more generic asymmetry.

In chapter (4) we found that second order changes in ASg for 2 + 1 dimensions corre-

spond to
1. Second order gravitational perturbations and
2. First order changes in the shape of extremal surface.

The second order gravitational perturbations can be obtained by solving the perturbed Ein-
stein’s equation. Alternatively when the bulk metric is known, this corresponds to the
O(z*) (in 2 + 1 dimensions) terms in the Fefferman Graham expansion. However a sys-
tematic approach for finding the change in shape of the extremal surface is not known. We

propose that these changes can be systematically calculated by solving the “generalized
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deviation equation”. We further write an alternative form of the first law for entanglement

thermodynamics given by,

d(ASE) = —d(AE) — Z2d(AJ) 6.1)

This has been shown to asymptote exactly to the black hole first law for BTZ in the large

system size limit.

In Chapter (5) we generalized our variational approach to higher dimensions. We were
able to generalize the geodesic deviation equation to a surface deviation equation(Inhomogeneous
Jacobi equation). We have obtained the area variation upto second order metric perturba-
tions and first order surface deviation. This gave us a covariant and coordinate independent
expression. We have checked our results with those in chapter(2) and the results are identi-
cal. It is important to note that our approach is independent of background geometry. One

can use this approach in asymptotically flat spacetimes as well.

Thus in this thesis we have seen two approaches of calculating second order change in
holographic entanglement entropy. The perturbative or passive approach discussed in (2)
and (3) starts with solving the minimal surface equation perturbatively in some asymptot-
ically AdS background. This perturbative or asymptotic approach take into consideration
only the asymptotic region of the perturbed background. The details of IR does not con-
tribute to the change in entanglement entropy. This approach is passive in the sense it
starts from the perturbed geometry and slowly reaches AdS near the asymptotic region as

perturbation.

The variational approach is active in the sense it starts from the pure AdS background
and reaches the asymptotically AdS geometry perturbatively. In this approach we don’t

solve for the minimal surface equation, instead we solve for the inhomogeneous Jacobi
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equation and try to get the minimal surface order by order in deviation. In this respect both
the approaches are perturbative. We conclude by saying that both the approach merge at

solving the minimal surface asymptotically or obtaining it order by order in the deviation.
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I A PPENDIX A S

CONVENTIONS FOR BOOSTED BLACK

BRANE

The physical observables such as energy, momentum and pressure can be obtained by ex-
panding the bulk AdS geometry (3.1) in suitable Feffermann-Graham asymptotic coordi-

nates [24, 84, 85]

9 L2 2 4 _fdtQ 2 2 2
ds = — | du® + Ga[—— + K(dy — w)* + daf + - + |
d 4@ d
G=1+ f=(l-—p) K=1+46%"5 (A1)

In u coordinate the boundary is at u = 0, and ug = 42¢. The Kaluza-Klein gauge form is

w=pB11- %)dt. (A.2)

In these asymptotic coordinates, the coefficients of u? terms in the metric expansion give

rise to the energy-momentum tensor of the boundary CFT. From (A.1) these coefficients of
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the metric are

1 4
< tgg >= (T 5272)_11’ < toy >= 5727
Up 0
14
<t >= - =<tlgg >= .- (A.3)
d uf
The boundary energy-momentum tensor, < 7,;, >= % < tgp >, 18 traceless as we have

conformal theory. The energy of excitations and the momentum for the boosted CFT; will

be

dL* Yy AL vgory d—

1
= < too >= 292) 25
167Gary G Ca TP
AL vy or
P, = Y B2z d (A.4)

where volume vy = l1ly---14-5, and we have compactified y on a circle of radius r,.

Note the momentum (charge) P, = Tﬂ is quantized and N would have integral values. In
Yy

the absence of boost the charge would be vanishing. We note down the nontrivial chemical

potential which is defined by the value of gauge potential at the horizon

UTh = — (A.5)

Corresponding thermal entropy and temperature can be obtained from (3.1). These are

given by
[Area]horizon 7-‘-Ld_lvdeTy Y
STh = - d—1
4G 441 2Gap1 2
d
Try, = 1 (A.6)
207
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These thermal quantities satisfy the following first law of black hole mechanics

0Ery, = Trn0Sth + [LTh5N . (A7)

But if we allow small volume changes, say dv = (dl1)lsl3 - - - l4_2, the black hole thermo-

dynamic law would be

éETh = TThéSTh + LLTh(SN — P15U . (AS)

Ldfl . _
Ty ,~d,
8Gaq1 70

where pressure component is P; =
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APPENDIX B m—

SOME USEFUL BETA FUNCTION

Some useful Beta function integrals we have used are given here

by = /01 dfé‘“\/lﬁ = Q(dl_ 1)B<2dd_ 2’%)

by = /01 df€2d_1\/1}—% = Q(dl_ 1)B(df 1’%)

by = /01 dffgdl\/lﬁ = Q(dl_ 1)B(2d35 2’ %)

I = /01 deet(1 —éd)é = Zt 161 - di 00

1 82 2 6)4 4 d
d—1 Y4 ) (1 t )
Jl - /0 dt t [ " — 3 <4 -3 R
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L(m)T'(n)

where B(m,n) = F(m—ri-n)

are the Beta-functions. Further integrals are

ap = /01 d&é_d“\/l}—% = 2(d1— 1)8(1d_—d{2’ %)

a = /01 dééd“j% = 2<d1_ 0 <di 1’%>

o= [t <2

I, = /01 dgg (1 —€2d)Ri/2 = zdd:lb? - ali 10

Some identities we have used are

2 2+d
bo = (2 — d)ay, bl—d+1a17 bQ_Qd—i—l

as .
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eeesssssmmmmmm— APPENDIX C S

THE ASYMPTOTIC EXPANSION FOR

NONCONFORMAL BLACK D-BRANES

The asymptotic expansion in the Fefferman-Graham coordinates is required to find the
energy-momentum tensor of the boundary field theory. The relevant details on holographic
renormalization can be found in [24, 84,85, 119]. Let us define a new holographic coordi-

nate u through

A=Fid, F=1+4—, o =4 (C.1)

In these u coordinates an expansion of (3.41) in the neighborhood of UV boundary (u = 0)

becomes
2 1 2,2 uP 2 1 2 2 u? 2
ds” = gerr| = [(= 1+4( 5 Ly, ) -~)dt+(1+4( T8+ )dy
0 Ug
2 4 4 4 2
uo P uf (5 P)
1 o 4 du? 9
fd geff |: (naﬁ + taﬁup )d:[} dl‘ (5 — p)2 ? + dQS—p (C2)
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The last line in the above equation indicates that the spacetime geometry is expanded in
asymptotic neighborhood of conformally AdS, > x S®P spacetime. Besides in these

coordinates, v coincides with the energy scale of the AdS, > geometry. The 7,5 is flat

Minkowski metric with index o = 0,1, 2, - - - | p. The effective coupling has the FG expan-
sion (RG flow) given by
Apu? p)ﬁ L 3—puP
e = — — )\ u3 p 5-p 1_ —
Geff == (Apu”P) 52 ( e )
(C.3)

In p = 3 (conformal) case the g.;r however remains fixed. The important point to notice
from the FG expansion is that the overall conformal factor of the string metric (C.2) and
the string coupling e? (given in (3.41)) are both governed by the fluctuations of the single
quantity g.rs. The fluctuations of the dilaton field, ¢, can also be obtained from the

expression

o @M\ i 3P "
= (1 + 6p@u? + ) (C.4)

where ¢, represents the dilaton field in the absence of the excitations. The first order

3—

fluctuation of dilaton are thus d¢ ;) = —=5° Obviously ¢z has opposite signs for

1
ub’
p > 3and p < 3 branes. (For D3 brane d¢ ;) vanishes as it should be for 4D conformal field
theory.) The nonvanishing components of stress-energy tensor of the boundary theory can

now be obtained from the expression within the angular brackets in asymptotic expansion
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(C.2)

p—1 4 1 4
to = (F=— + 8=, ty=(=+57)—
p 0 Ug
4 14 .
tOy = 5’72—]3, tu = j—ﬁ7 (Z = 2, 3, ,p) (CS)
U P uy

The tensor ¢, has a nonvanishing trace. It is worthwhile to observe that the trace, ¢ ", and

s Yoy 0

d¢ have a relationship

1 3—p
—t%— —0¢i =0 C.6
R o)

as they both depend on single deformation parameter uy. Actually this relation follows
from Ward identities in holographic renormalization of the boundary theory [120]. Also
Vot®? = 0 trivially. We should not be checking them over here as these are automatic in
the FG expansion (C.2) of nonextremal geometry. The energy of the excitations above the

extremality for the boosted solutions is then given by

Ag — %@S*PQP

p—1 9 o\ — D
e ea— C-7

where V,, is the p-dimensional spatial volume of all z;’s and (), is a combinatoric factor
defined earlier. ©g_,, is unit volume of the S8-P and Gy is the Newton’s constant in ten
dimensions. Similarly pressure components along the boost and in perpendicular directions

are

Os_,Qp 1 9 o —D
AP = APy = m(fa 5% )Z—g
B 08 ,Qpy7T—p B
MPL = BPu= Tt L = AP = (C.8)
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EEaeesssssmmmmm— APPENDIX D

FEFFERMAN GRAHAM EXPANSION,
BOUNDARY STRESS TENSOR AND

PERTURBATIONS ABOUT AdS3

The rotating BTZ metric is given as,

()t e

ds? = —
§ r2 (r2—=r2)(r2 —r2)

2, .2 T4r- 2
dr? 4 r @¢— = ﬁ),
D.1)

where 7, r_ are the radii of the outer and inner horizon respectively. The physical observ-
ables like energy and angular momentum can be obtained by expanding the above metric

in suitable Fefferman Graham(Asymptotic) coordinates near the AdSs; boundary. This can

dr

be realized by defining a new coordinate p through % = . In terms of p this metric

T

&\‘
—
3

-

becomes
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2 1 2 2 2 2
a2 = 1 2l Car ag) + L (Mdﬂ e v dtdo + Mdgbz)
p p 2 2
=02 =r2)? o (2117 ,
i (Tdt A T (D2)

In coordinates (p = 1) the metric becomes

s A2+ (nu + 290 4+ 2 + ) datda

22

ds (D.3)

The above metric is now in Fefferman Graham form.
Where the boundary energy momentum tensor ((7),,) = ﬁfy,(fi) in d + 1 dimensions)

[25,121] is given by

(ri+r2)
—rar_
_ A2 2 +
8r T'LW - 7£ ) = (r2+r2)
—ryr_ %

In 2+ 1 dimensions there are no conformal anomalies in the stress tensor [121] and %(f,)
is given by
—(r2-r3})?
4) _ 16 0
ﬁy;w - (r2 —r2)2
0 -

D.1 Length of space-like geodesic for rotating BTZ

According to HRT proposal extremal surfaces in 2+1 dimensions are given by spacelike
geodesics. Here we obtain HEE for rotating BTZ black hole by calculating geodesic length

without using the fact that BTZ is locally isometric to AdSs. In the rotating BTZ metric
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(D.1), we will introduce the following notations [122],

2T

%: 2 27 =2 — = )
ri+ri, 7 ror_, Bt P

(D.4)

These notations should be read independently of those introduced in the body of the chap-
ter. However the final expression is obtained in terms of quantities which have been intro-

duced earlier. For a general curve parametrized by A (say) such that the tangent vector (v*)

is given by v = (g—f\, j—;, %), one has,
2 ,2\(p2 _ 2 2
2 (r =) —r2) 4 r 2 2 ( S '>2
—-m” = — t — t) , (DS
" 72 * (r2 —r2)(r2 — r%)r e r? ©-5)

where dots imply derivative with respect to A. If the curve is a geodesic and J; and 0, being

Killing vectors, one has the following constants of motion.

& = —guv*&" = (—M +17) t+ %gﬁ, (D.6)
where £ = 07, and
L = g ®° = r2q5 — %i, (D.7)

where * = 04. We define the following dimensionless coordinates and parameters for

brevity.

&

F_ S
S =2 (D.8)
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If the parameter ) is taken to be the length along the geodesic, then following equations of

motion follow for space-like geodesics (m? = —1).

2
r2rt = (7’4—7”2—%%)+(c§’2—$2)7’2+$2—/c§’$

(- NL-L g6

(7))

. e -lgy

e (= (b2

where we have omitted the hat from the quantities.

It is easy to note that in the limit » — oo,

dt &
% ~Z (D.10)

The geodesic will penetrate most into the bulk if this is zero. This precisely implies that

£ = 0[123]. Therefore with the substitution u = r? the radial equation reduces to

i(%){z = - (1+ZL%u+ ($2+%2)

= (u—a)(u—>b), (D.11)
where the following relations hold for a and b.

2
a+b=(1+.2L7%, ab—,;f?—l—% (D.12)

Without loss of generality, we can take a to be the greater of the two roots and therefore
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the turning point of the geodesic. Then the geodesic length can be obtained as,

/auw N —f;(u— )

2
— log ( Ao ) (D.13)

a—>

To express the above in terms of the subsystem size one has to relate a — b to the

subsystem size. We note that,

dg 1 (u—1)%&
" 2w —u)y/{u— @b
1 A B 1
= Z D.14
2 u—u++u—u, \/(u—a)(u—b)7 ( )
where A = —uijf_, B = ﬁf"f_ I

Now each of the integrals are of the form,

/ dx _ 1
(r—c)y/(x—a)lx—b) +/(a—c)(b—c)
(a—c)(b—c)(c—x)

lo
& [a(—2b—|—c—|—x) —2y/(a—c)(b—c)(z —a)(z —b) — 2cx + b(c + z)

(D.15)

Putting the limits,

dx 1 Via—c)++/(b—rc)

= log

/a@—cmx—a)(x—b) Via—ob-0 = |Va-o- -0

(D.16)

2
Note that in these coordinates v, +u_ = 1 and uyu_ = %
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Therefore the ¢ integral gives,

A 10g<\/(a—u+)+\/(b—u+)>+ B log(\/(a—u_)+\/(b—u_))
Via—u) - o)) wmw B\ Ve - o))
(D.17)

[ =

Uy — U

where [ is the subsystem size. We need to impose a further restriction. Note that,

a _ 1 SZ
du Aw—uy)(w—u-)/(u—a)(u—b)
_1 { ¢ D 1 1 , (D.18)
4lu—ur  w—u_] \/(u—a)(u—D)
where C' = ™ iu, and D = — +iu,' Therefore the interval of time elapsed is given by,
I P S G/ RIS RV sy
2 (s — ) o\ Vla—ur) — /- )

I A OV T R/ U
NI <\/(a vy J/ u_>> (D19

Since the subsystem is on a constant ¢ slice on the boundary, the total elapsed time must be

zero [123]. Therefore,

b_i (D.20)

— (B, — A tamh | [ 2

a— Uy a— Uu_

(B4 + B-) tanh ™"

which can be re-ordered to give,

[b—u_ [b— b—u_ b—
By [tamh_1 Y= tanh! i] = [ [tauah_1 Y= tanh! u+]
a—u_ a— Uy a—u_ a— Uy

(D.21)
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Therefore using (D.21) one has the following conditions on the solutions (D.17),

(O —u)(a—uy)—/(b—uy

anh —
' e (a—uy)(a—u_
tanh—l Vib—u)
( )

((1/ — Uy +
= D.22
G- la—uy)(a—u_)+/(b—up)b—u_ (D22
From these one can get the following expression for smh ad and sinh gf .
2
L _ (V=) - V- u)a— )
S1n - =
By (@ —b)?
2
Lo _ (VB + VB ue—u) .
sin 5_—_ (@ =0 (D.23)
Therefore,
B 2
sinh? ll sinh? gf % (D.24)
Taking the positive square root we get,
4 2
sinh ™ sipn 1~ 4T (D.25)

6. "B T BiB(a—b)

Therefore one can has the desired result for the geodesic length in terms of the subsystem

size,

A =log (54;52 sinh <ﬂ+) sinh (;—j)) (D.26)

where we have put r, = %
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To find the turning point in terms of the subsystem size, note that

ml ml 47
tanh — tanh — = (D.27)
B B T BB (atb—1)

In the small subsystem size approximation,

4
a—l—b%l—Q
4
a—b~ —

l2

4
a5 (D.28)

So the turning point in the r coordinate upto leading order is given by

(D.29)

~ N

Ty =
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EEaeessssmsmmmmm APPENDIX E  m——

REVISITING THE DERIVATION OF THE
INHOMOGENEOUS JACOBI EQUATION

FOR GEODESICS

To make sure that in the used notation the equation we have obtained is indeed the correct
equation we are looking for, we will derive the inhomogeneous Jacobi equation derived

in [35].

Note that the geodesic equation can be written as (V1) = 0 (where T is the tangent
vector to the geodesic and satisfies V1T = fT). We will consider a variation of the
geodesic under dy. The variation accounts for both change of embeddings and metric

perturbations.

Sn(VeT)t = 6n(VeT) — S5 (VT)T (E.1)

= VZN + R(N,T)T + C(T,T) — V5 (fT) = 6,(f)T
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g(VrT,T)

STy > We can find

Our convention implies that 0p(VxY') = C(X,Y). Noting that f =

the variation J, f. After a few algebraic steps one gets the following expression,

_9(C(1,1),T)
opf = —g(T, 7) (E.2)
Also note that,
2

9(T,T) 9(T,T)

Substituting (E.2) and (E.3) in (E.1) we get

on(VeT)t = VAN — (VAN)T + R(NY, T)T — (fVeN — f(VeN)D) + C(T, T)*.
(E4)

Equating the above to zero gives the inhomogeneous equation,

VAN + R(N*, T)T — fVoN* + C(T,T)* = 0. (E.5)

In [35] the unperturbed geodesic was taken to be affinely parametrised. Therefore putting

f = 01in the above equation reproduces the equation obtained.
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ImEEEesssssmmm— APPENDIX F ——

BOOSTED BLACK BRANE AS A

PERTURBATION OVER ADS

The boosted black brane metric in holographic coordinates is of the following form

2 R? 2 2 2 dz?
ds® = — | —A(z)dt* + B(z)dx* + C(2)dtdz + dz* + , (F.1)
22 f(2)
where,
z
A(z) =1- 72(2—0)37 B(z) =1+ BQVQ(—O)?’,
2/ % \3 < \3
C(z2) =287 (=), flz)=1-(—)
20 20
. . . . . _ 1
2o 1s the location of the horizon and 0 < 8 < 1 is the boost parameter, while 7 = T

With the boost along x direction. The boosted black brane is a finite change from AdS
and hence cannot be observed as a perturbation over it. In order to see it as a perturbation

over AdS, we have to write it in suitable asymptotic (Fefferman Graham) coordinates. The
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Fefferman Graham coordinates are obtained by demanding [25, 121]

d d
= _9 (F.2)
N fz) P
Integrating this and setting the integration constant to (po® = 420%) we get
L= a2 = gt (F3)
2 Po p?

Now we expand the metric coefficient upto second order in (pﬂo)?’, Substituting this back in

the metric we get

R? ,
ds* = 5 |0 & (1 + p0) + 0P0) doda EDH
Where
—G-72)? AL 0
3
W= BREE G+ E)P o (E5)

One can check that Tr(v,g?,)) = 0 and

(5 +37) T —s57°(35)° 0
6) _
W R G w0 (E6)
2 1
0 0 9 1626
W 2) ) 3) L@ 6) 4
The perturbation P,, and P, can be read off as, P,, = yuwz and 55, = vyuwz" re-

spectively. To calculate the non homogeneous term in the Jacobi equation, we need the
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expression for C'(0,,, 0,), which in a given coordinate system can be written as,

1 (1) (1) (1) 1@
Cﬁp(aj) = égMU (auppa + aoPVU - aO'PVp) - §Pua (augpa + 8pgua - aagup) (F7)

Note that this quantity is a vector field in the tangent bundle and therefore it’s coordinate
expression has three indices. We will calculate this for boosts both in the x direction and
the y direction. Note that though the direction of the boost does not affect the results for a
spherical boundary subsystem, it does so for the strip subsystem. In the Fefferman graham
gauge the expression for C'(0,,, 0,).

(1) ©)
For boost along the x axis, the expression for P(9,, 0,) and P (0, 0,) is of the follow-

ing form.
Az Bz 0 0 A 24 B 0 O
o Bz Cz 0 0 1@ B Cz 0 0
PMV - §P'wj -
0 0 Dz 0 0 0 D' 24 0
0 0 0 0 0 0 0 O

The quantity ', can be calculated from eqn (F.7),

1 1 3 3
Cztt:_§Z2A7 szt:_522B7 Ctzt:_§Z2A7 Oxzt:§zzB
1 1 3 3
Cztx:_§Z2B, szx:_52207 Ctzx:—§Z2B, szm:§z20
2 1 3 3 . 3
ny:_§Z2D> Cyzy:§Z2D, C«ttZ:_§Z2A7 C tz:§Z2B
3 3 3
Ct“:—522B, mezﬁz?(], nyZ:§z2D, (F.8)

where C', D can be read off from the previous expression for P’s and v’s eqn. (F.5) and
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is given as C' = (3 + B%4?) X,

0

givenas C' = (3 — $6*%) 150, D' =
&) @

For boost along the y axis, P(d,,d,) and P(d,, 0,) is of the form,

Az 0 Bz 0 Al A 0 B ¢ 0
W 0 Cz 0 0 1@ 0 C'z 0 0
PMV: _ ~ §PNV_ ~ ~
Bz 0 Dz 0 Bz 0 Dz 0
0 0 0O O 0 0 0 0
The quantity ', is therefore,
1 ~ 1 ~ 3 ~ 3 -
Cztt——§Z2A, Czyt:—§ZZB, Ctzt——§Z2A, Cyzt:§Z2B
z 1 ~ T 3 ~ z 1 D z 1
Cx:c —5220,sz:§Z2C,Cty:—ﬁzzB,ny:—§ZzD
3 - 3 - 3 ~ 3 -
Ctzy——§Z2B, vazy__Z2D7 Cttz_—§z2A, CY,.,==-222B
3 9 A 3 45 = 3 ., -
C* .. 522 c, ct,, 2B, C y = 22D (F.9)

where C' = %(%)3, D= (% + 5272) (%)37 C' = %161:06’ D' = (% - %5272) 161:06’ B =

B = B7%(X)3. This completes our first step in calculation of area, now we can proceed
20

with solving the inhomogeneous Jacobi equation.

163



BIBLIOGRAPHY

(2]

J. Maldacena, The large-n limit of superconformal field theories and supergravity,

International journal of theoretical physics 38 (1999) 1113.

S. S. Gubser, 1. R. Klebanov and A. M. Polyakov, Gauge theory correlators from

noncritical string theory, Phys Lett B 428 (1998) 105.

E. Witten, Anti-de sitter space and holography, Adv Theor Math Phys 2 (1998) 253.

O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field
theories, string theory and gravity, Phys. Rept. 323 (2000) 183

[hep-th/9905111].

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information,

2000.

S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from

ads/cft, Phys Rev Lett 96 (2006) 181602.

S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP
0608 (2006) 045.

164


https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/hep-th/9905111
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1088/1126-6708/2006/08/045
https://doi.org/10.1088/1126-6708/2006/08/045

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

V. E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic

entanglement entropy proposal, JHEP 0707 (2007) 062.

D. V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP
09 (2006) 018 [hep-th/0606184].

A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08
(2013) 090 [1304.49256].

E. Bianchi and R. C. Myers, On the Architecture of Spacetime Geometry, Class.
Quant. Grav. 31 (2014) 214002 [1212.5183].

R. C. Myers, R. Pourhasan and M. Smolkin, On spacetime entanglement, Journal

of High Energy Physics 2013 (2013) 13.

D. V. Fursaev, Entanglement entropy in quantum gravity and the plateau groblem,

Phys Rev D 77 (2008) 124002.

P. Fonda, L. Giomi, A. Salvio and E. Tonni, On shape dependence of holographic

mutual information in ads,, JHEP 1502 (2015) 005.

P. Fonda, D. Seminara and E. Tonni, On shape dependence of holographic

entanglement entropy in AdSy/CFTs, JHEP 12 (2015) 037 [1510.03664].

E. Tonni, Holographic entanglement entropy: near horizon geometry and

disconnected regions, JHEP 05 (2011) 004 [1011.0166].

D. Carmi, On the Shape Dependence of Entanglement Entropy, JHEP 12 (2015)

043[1506.07528].

165


https://doi.org/10.1088/1126-6708/2006/09/018
https://doi.org/10.1088/1126-6708/2006/09/018
https://arxiv.org/abs/hep-th/0606184
https://doi.org/10.1007/JHEP08(2013)090
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://doi.org/10.1088/0264-9381/31/21/214002
https://doi.org/10.1088/0264-9381/31/21/214002
https://arxiv.org/abs/1212.5183
https://doi.org/10.1103/PhysRevD.77.124002
https://doi.org/10.1007/JHEP02(2015)005
https://doi.org/10.1007/JHEP12(2015)037
https://arxiv.org/abs/1510.03664
https://doi.org/10.1007/JHEP05(2011)004
https://arxiv.org/abs/1011.0166
https://doi.org/10.1007/JHEP12(2015)043
https://doi.org/10.1007/JHEP12(2015)043
https://arxiv.org/abs/1506.07528

[18] O.Ben-Ami, D. Carmi and J. Sonnenschein, Holographic entanglement entropy of

multiple strips, JHEP 1411 (2014) 144.

[19] P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J.

Stat. Mech. 0406 (2004) P06002 [hep—-th/0405152].

[20] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J.
Phys. A42 (2009) 504005 [0905.4013].

[21] A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50 (1978) 221.

[22] V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod.

Phys. 74 (2002) 197.

[23] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical
property of entanglement entropy for excited states, Phys Rev Lett 110 (2013)
091602.

[24] V. Balasubramanian and P. Kraus, A stress tensor for anti-de sitter gravity,

Commun Math Phys 208 (1999) 413.

[25] S. de Haro, S. N. Solodukhin and K. Skenderis, Holographic reconstruction of
space-time and renormalization in the ads / cft correspondence, Commun Math

Phys 217 (2001) 595.

[26] D. Allahbakhshi, M. Alishahiha and A. Naseh, Entanglement thermodynamics,

JHEP 1308 (2013) 102.

[27] D. D. Blanco, H. Casini, L. Y. Hung and R. C. Myers, Relative entropy and

holography, JHEP 1308 (2013) 060.

166


https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://doi.org/10.1103/RevModPhys.50.221
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/RevModPhys.74.197
https://doi.org/10.1103/PhysRevLett.110.091602
https://doi.org/10.1103/PhysRevLett.110.091602
https://doi.org/10.1007/JHEP08(2013)102

[28]

[29]

[30]

[32]

[33]

[34]

[35]

[36]

[37]

G. Wong, L. Klich, L. A. P. Zayas and D. Vaman, Entanglement temperature and

entanglement entropy of excited states, JHEP 1312 (2013) 020.

S. He, D. Li and J. B. Wu, Entanglement temperature in non-conformal cases,

JHEP 1310 (2013) 142.

D. W. Pang, Entanglement thermodynamics for nonconformal d-branes, Phys Rev

D 88 (2013) 126001.

R. Mishra and H. Singh, Perturbative entanglement thermodynamics for ads

spacetime: Renormalization, JHEP 1510 (2015) 129.

R. Mishra and H. Singh, Entanglement asymmetry for boosted black branes and the

bound, Int J Mod Phys A 32 (2017) 1750091.

M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of

entanglement entropy from einstein equation, Phys Rev D 88 (2013) 026012.

J. Bhattacharya and T. Takayanagi, Entropic counterpart of perturbative einstein

equation, JHEP 1310 (2013) 219.

A. Ghosh and R. Mishra, Generalized geodesic deviation equations and an

entanglement first law for rotating btz black holes, Phys Rev D 94 (2016) 126005.

A. Ghosh and R. Mishra, Inhomogeneous Jacobi equation for minimal surfaces and
perturbative change in holographic entanglement entropy, Phys. Rev. D97 (2018)

086012 [1710.02088].

J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75

(1995) 4724 [hep-th/9510017].

167


https://doi.org/10.1142/S0217751X17500919
https://doi.org/10.1103/PhysRevD.94.126005
https://doi.org/10.1103/PhysRevD.97.086012
https://doi.org/10.1103/PhysRevD.97.086012
https://arxiv.org/abs/1710.02088
https://doi.org/10.1103/PhysRevLett.75.4724
https://doi.org/10.1103/PhysRevLett.75.4724
https://arxiv.org/abs/hep-th/9510017

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

N. Ogawa, T. Takayanagi and T. Ugajin, Holographic fermi surfaces and

entanglement entropy, JHEP 1201 (2012) 125.

M. Natsuume, AdS/CFT duality user guide, vol. 903. Springer, 2015.

H. Nastase, Introduction to the ADS/CFT Correspondence. Cambridge University
Press, 2015.

M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and

applications. Cambridge University Press, 2015.

B. Zwiebach, A first course in string theory. Cambridge university press, 2004.

O. Biquard, AdS/CFT correspondence: Einstein metrics and their conformal
boundaries: 73rd Meeting of Theoretical Physicists and Mathematicians,

Strasbourg, September 11-13, 2003, vol. 8. European Mathematical Society, 2005.

O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N=6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008)

091 [0806.1218].

P. Pasti, D. P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p

forms, Phys. Rev. D55 (1997) 6292 [hep-th/9611100].

A. Ashtekar and V. Petkov, Springer handbook of spacetime. Springer, 2014.

A. Zee, Einstein gravity in a nutshell. Princeton University Press, 2013.

S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, vol. 1.

Cambridge university press, 1973.

168


https://doi.org/10.1007/JHEP01(2012)125
https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://doi.org/10.1103/PhysRevD.55.6292
https://arxiv.org/abs/hep-th/9611100

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

S. Cotsakis and G. W. Gibbons, Mathematical and quantum aspects of relativity
and cosmology. Proceedings, 2nd Samos Meeting on cosmology, geometry and
relativity, Pythagoreon, Samos, Greece, August 31-September 4, 1998, Lect. Notes
Phys. 537 (2000) pp.1.

P. Francesco, P. Mathieu and D. Senechal, Conformal field theory, graduate texts in

contemporary physics, 1997.

L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, A Quantum Source of Entropy for

Black Holes, Phys. Rev. D34 (1986) 373.

M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666

[hep-th/9303048].

T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement

entropy, JHEP 02 (2007) 042 [hep—th/0608213].

M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of

entanglement entropy, Phys. Rev. D76 (2007) 106013 [0704 .3719].

T. Nishioka and T. Takayanagi, AdS Bubbles, Entropy and Closed String Tachyons,
JHEP 01 (2007) 090 [hep-th/0611035].

M. Rangamani and T. Takayanagi, Holographic entanglement entropy, in

Holographic Entanglement Entropy, pp. 35—47. Springer, 2017.

S. Bhattacharjee, A. Bhattacharyya, S. Sarkar and A. Sinha, Entropy functionals
and c-theorems from the second law, Phys. Rev. D93 (2016) 104045

[1508.01658].

169


https://doi.org/10.1007/3-540-46671-1
https://doi.org/10.1007/3-540-46671-1
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevLett.71.666
https://arxiv.org/abs/hep-th/9303048
https://doi.org/10.1088/1126-6708/2007/02/042
https://arxiv.org/abs/hep-th/0608213
https://doi.org/10.1103/PhysRevD.76.106013
https://arxiv.org/abs/0704.3719
https://doi.org/10.1088/1126-6708/2007/01/090
https://arxiv.org/abs/hep-th/0611035
https://doi.org/10.1103/PhysRevD.93.104045
https://arxiv.org/abs/1508.01658

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, Constraining

gravity using entanglement in AdS/CFT, JHEP 05 (2014) 029 [1401.5089].

A. Bhattacharyya and A. Sinha, Entanglement entropy from surface terms in

general relativity, Int. J. Mod. Phys. D22 (2013) 1342020 [1305.3448].

A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress

tensor, Class. Quant. Grav. 30 (2013) 235032 [1303.1884].

A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher

derivative holography, JHEP 08 (2013) 012 [1305.6694].

R. Bousso, A Covariant entropy conjecture, JHEP 07 (1999) 004

[hep-th/9905177].

R. Bousso, Holography in general space-times, JHEP 06 (1999) 028

[hep-th/9906022].

E. E. Flanagan, D. Marolf and R. M. Wald, Proof of classical versions of the
Bousso entropy bound and of the generalized second law, Phys. Rev. D62 (2000)

084035 [hep-th/9908070].

R. Bousso and L. Randall, Holographic domains of anti-de Sitter space, JHEP 04

(2002) 057 [nep—th/0112080].

R. Bousso, The Holographic principle, Rev. Mod. Phys. 74 (2002) 825

[hep-th/0203101].

J. C. Nitsche, Lectures on minimal surfaces: vol. 1. Cambridge university press,

1989.

170


https://doi.org/10.1007/JHEP05(2014)029
https://arxiv.org/abs/1401.5089
https://doi.org/10.1142/S0218271813420200
https://arxiv.org/abs/1305.3448
https://doi.org/10.1088/0264-9381/30/23/235032
https://arxiv.org/abs/1303.1884
https://doi.org/10.1007/JHEP08(2013)012
https://arxiv.org/abs/1305.6694
https://doi.org/10.1088/1126-6708/1999/07/004
https://arxiv.org/abs/hep-th/9905177
https://doi.org/10.1088/1126-6708/1999/06/028
https://arxiv.org/abs/hep-th/9906022
https://doi.org/10.1103/PhysRevD.62.084035
https://doi.org/10.1103/PhysRevD.62.084035
https://arxiv.org/abs/hep-th/9908070
https://doi.org/10.1088/1126-6708/2002/04/057
https://doi.org/10.1088/1126-6708/2002/04/057
https://arxiv.org/abs/hep-th/0112080
https://doi.org/10.1103/RevModPhys.74.825
https://arxiv.org/abs/hep-th/0203101

[68] H. B. Lawson, Lectures on minimal submanifolds, vol. 1. Publish or Perish, 1980.

[69] R. M. Schoen and S.-T. Yau, Lectures on harmonic maps, vol. 2. Amer

Mathematical Society, 1997.

[70] T. H. Colding and W. P. Minicozzi, Minimal surfaces, vol. 4. Courant Institute of

Mathemetical Sciences, 1999.

[71] R. Kusner, Conformal geometry and complete minimal surfaces, Bulletin of the

American Mathematical Society 17 (1987) 291.

[72] K. Narayan, Extremal surfaces in de Sitter spacetime, Phys. Rev. D91 (2015)

126011 [1501.03019].

[73] K. Narayan, de Sitter space and extremal surfaces for spheres, Phys. Lett. B753
(2016) 308 [1504.07430].

[74] K. Narayan, On dS, extremal surfaces and entanglement entropy in some ghost

CFTs, Phys. Rev. D94 (2016) 046001 [1602.06505].

[75] K. Narayan, On extremal surfaces and de Sitter entropy, Phys. Lett. B779 (2018)

214[1711.01107].

[76] C.M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and

engineers I: Asymptotic methods and perturbation theory. Springer Science &

Business Media, 2013.

[77] C.-C. Lin and L. A. Segel, Mathematics applied to deterministic problems in the

natural sciences, vol. 1. Siam, 1988.

[78] W. Mathematica, Wolfram research, Inc., Champaign, Illinois (2009) .

171


https://doi.org/10.1103/PhysRevD.91.126011
https://doi.org/10.1103/PhysRevD.91.126011
https://arxiv.org/abs/1501.03019
https://doi.org/10.1016/j.physletb.2015.12.019
https://doi.org/10.1016/j.physletb.2015.12.019
https://arxiv.org/abs/1504.07430
https://doi.org/10.1103/PhysRevD.94.046001
https://arxiv.org/abs/1602.06505
https://doi.org/10.1016/j.physletb.2018.02.010
https://doi.org/10.1016/j.physletb.2018.02.010
https://arxiv.org/abs/1711.01107

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

A. Maplesoft, Division of waterloo maple inc, Available from World Wide Web

(www. maplesoft. com) (2004) .

P. Musgrave, D. Pollney and K. Lake, Grtensor. symbolic computation package for

doing gr on computers, 1996.

O. Ben-Ami and D. Carmi, On Volumes of Subregions in Holography and

Complexity, JHEP 11 (2016) 129 [1609.02514].

M. Alishahiha, Holographic Complexity, Phys. Rev. D92 (2015) 126009

[1509.06614].

T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 1311 (2013) 074.

P. Kraus, F. Larsen and R. Siebelink, The gravitational action in asymptotically ads

and flat space-times, Nucl Phys B 563 (1999) 259.

M. Bianchi, D. Z. Freedman and K. Skenderis, Holographic renormalization, Nucl

Phys B 631 (2002) 159.

H. Singh, Special limits and non-relativistic solutions, JHEP 1012 (2010) 061.

H. Singh, Lifshitz/schrodinger dp-branes and dynamical exponents, JHEP 1207
(2012) 082.

K. Narayan, T. Takayanagi and S. P. Trivedi, Ads plane waves and entanglement

entropy, JHEP 1304 (2013) 051.

172


https://doi.org/10.1007/JHEP11(2016)129
https://arxiv.org/abs/1609.02514
https://doi.org/10.1103/PhysRevD.92.126009
https://arxiv.org/abs/1509.06614

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

N. Itzhaki, J. M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity
and the large n limit of theories with sixteen supercharges, Phys Rev D 58 (1998)
046004.

N. Lashkari, M. B. McDermott and M. V. Raamsdonk, Gravitational dynamics

from entanglement 'thermodynamics’, JHEP 1404 (2014) 195.

T. Pyne and M. Birkinshaw, Null geodesics in perturbed space-times, Astrophys J
415 (1993) 459.

M. Banados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional

space-time, Phys Rev Lett 69 (1992) 1849.

N. Engelhardt and S. Fischetti, The gravity dual of boundary causality, Class
Quant Grav 33 (2016) 175004.

G. Levine and B. Caravan, Entanglement temperature and perturbed adss

geometry, Phys Rev D 93 (2016) 126002.

P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular

momentum and u(1) charge, JHEP 1311 (2013) 052.

J. D. Bekenstein, A universal upper bound on the entropy to energy ratio for

bounded systems, Phys Rev D 23 (1981) 287.

S. Hod, Universal entropy bound for rotating systems, Phys Rev D 61 (2000)
024018.

J. D. Bekenstein and A. E. Mayo, Black hole polarization and new entropy bounds,

Phys Rev D 61 (2000) 024022.

173



[99] S. Dain, Geometric inequalities for axially symmetric black holes, Class Quant

Grav 29 (2012) 073001.

[100] C. Park, Thermodynamic law from the entanglement entropy bound, Phys Rev D 93
(2016) 086003.

[101] J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from
entanglement of conformal field theories, Phys Rev Lett 114 (2015) 221601.

[102] M. M. Sheikh-Jabbari and H. Yavartanoo, Excitation entanglement entropy in two

dimensional conformal field theories, Phys Rev D 94 (2016) 126006.

[103] H. Anciaux, Minimal submanifolds in pseudo-Riemannian geometry. World

Scientific, 2011.

[104] S. He, J.-R. Sun and H.-Q. Zhang, On holographic entanglement entropy with

second order excitations, Nuclear Physics B 928 (2018) 160.

[105] W.-z. Guo, S. He and J. Tao, Note on entanglement temperature for low thermal

excited states in higher derivative gravity, JHEP 2013 (2013) 50.

[106] N. Lashkari and M. Van Raamsdonk, Canonical Energy is Quantum Fisher

Information, JHEP 04 (2016) 153 [1508.00897].

[107] N. Kim and J. H. Lee, Time-evolution of the holographic entanglement entropy and

metric perturbations, Journal of the Korean Physical Society 69 (2016) 623.

[108] D. V. Fursaev, ‘thermodynamics’ of minimal surfaces and entropic origin of

gravity, Phys Rev D 82 (2012) .

174


https://doi.org/10.1007/JHEP04(2016)153
https://arxiv.org/abs/1508.00897
https://doi.org/10.1103/PhysRevD.82.064013

[109] D. V. Fursaev, Erratum: “thermodynamics” of minimal surfaces and entropic

origin of gravity [phys. rev. d 82, 064013 (2010)], Phys. Rev. D 86 (2012) 049903.

[110] T. H. Colding and W. P. Minicozzi, A course in minimal surfaces, vol. 121.

American Mathematical Soc., 2011.

[111] J. Simons, Minimal varieties in riemannian manifolds, Annals of Mathematics 88

(1968) 62.

[112] R. Capovilla and J. Guven, Geometry of deformations of relativistic membranes,

Phys Rev D 51 (1995) 6736.

[113] S. Bhattacharya, S. Kar and K. L. Panigrahi, Perturbations of spiky strings in flat
spacetimes, JHEP 1701 (2017) 116.

[114] J. M. Stewart and M. Walker, Perturbations of spacetimes in general relativity,

Proc Roy Soc Lond A 341 (1974) 49.

[115] S. Hollands and R. M. Wald, Stability of black holes and black branes, Commun
Math Phys 321 (2013) 629.

[116] T. Faulkner, F. M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. V.
Raamsdonk, Nonlinear gravity from entanglement in conformal field theories,

JHEP 1708 (2017) 057.

[117] M. J. S. Beach, J. Lee, C. Rabideau and M. V. Raamsdonk, Entanglement entropy

from one-point functions in holographic states, JHEP 1606 (2016) 085.

[118] B. Mosk, Metric perturbations of extremal surfaces, Classical and Quantum

Gravity (2018) .

175


https://doi.org/10.1103/PhysRevD.86.049903
https://doi.org/10.1103/PhysRevD.51.6736
https://doi.org/10.1007/JHEP01(2017)116
https://doi.org/10.1098/rspa.1974.0172
https://doi.org/10.1007/s00220-012-1638-1
https://doi.org/10.1007/s00220-012-1638-1
https://doi.org/10.1007/JHEP08(2017)057
https://doi.org/10.1007/JHEP06(2016)085

[119] I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for
non-conformal branes, JHEP 0809 (2008) 094.

[120] H.J. Boonstra, K. Skenderis and P. K. Townsend, The domain-wall/gft

correspondence, JHEP 9901 (1999) 003.

[121] K. Skenderis and S. N. Solodukhin, Quantum effective action from the ads / cft

correspondence, Phys Lett B 472 (2000) 316.

[122] N. Cruz, C. Martinez and L. Pena, Geodesic structure of the (2+1) black hole,

Class Quant Grav 11 (1994) 2731.

[123] V. E. Hubeny, Extremal surfaces as bulk probes in ads/cft, JHEP 1207 (2012) 093.

176



