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SYNOPSIS 
 

LOW DIMENSIONAL MAGNETIC 

STRUCTURES 

ARNAB SINGH 

Surface Physics and Materials Science Division,  

Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhan Nagar, Kolkata 700 064. 
 

 
 

Introduction: 

               During the last decade, much attention has been devoted to artificial layered magnetic 

materials which have revealed a large variety of fascinating new phenomena. The fundamental 

developments made such systems also of great interest from a technological point of view in the area 

of communication devices and storage media [1]. Stimulated by this physics resulting from the 

layering and reduction of the system size in the vertical direction, a natural extension was the venture 

into a further reduction of the lateral sizes and quite general into low dimensional systems of 

nanometer extend. Apart from the simple ferromagnetic, antiferromagnetic and ferrimagnetic domains 

as observed in bulk magnetic materials, complex domains of stripes, labyrinth, vortex, etc with 

competitive magnetic interactions has been observed in 2D magnetic systems and studied in great 

detail [2,3]. Very recently exotic spin structures like bubbles, skyrmions and merons has generated lot 

of interest in understanding the underlying interactions giving rise to such novel entity [4,5]. The 

control of the magnetic properties at nanometer lengthscales through a variation of the system 

dimensions has made these low dimensional magnetic structures interesting not only from a 

fundamental perspective, but also from a technological point of view. Research and development of 

new magnetic structures has largely benefited from the potential applications, particularly in energy 

efficient spinotronic devices [6].  With the advent of high brilliance synchrotron and neutron facilities 

around the globe, provide further insight into the structure and magnetic ordering in such nanometer 

sized objects both in real and reciprocal space which has not being realized before [7]. 
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Fig 1: (a) Schematic of the spin configuration in a magnetic skyrmion [22]. (b) Real space image of skyrmions as observed 

in LTEM [23]. (c) Reciprocal space image of skyrmion lattice using resonant soft X-ray scattering [17]. 

 

Recently discovered magnetic skyrmions were first observed in bulk MnSi, FeCoSi and FeGe 

just a decade back ago [8]. These skyrmions are multi-atom vortex spin textures in which the atoms 

spin orientations change from one direction in the middle to the opposite direction at the periphery. 

These structures are topologically protected and manifest as hexagonal lattice of spin vortices (See 

Fig 1). Due to the topological stability from defects and pinning sites, skyrmions can be moved with 

10
5
 times lower current density than a conventional magnetic domains thereby making them 

technologically promising for energy efficient spinotronic applications such as skyrmion based ultra-

dense storage, race track memory and magnetic random access memory etc [9,10]. In bulk, skyrmions 

are generally formed in B20 compounds with non-centrosymmetric crystal structure due to 

Dzyaloshinskii-Moriya (DM) interaction and exchange interaction. In thin films of FeGe, FeSi and 

FeGd skyrmions arises as a result of the dipolar interaction and magnetic anisotropy in presence of 

perpendicularly applied magnetic fields [11,12]. 

 

Fig 2: Schematic of the organic and metallic lattice of a LB monolayer at air-water interface along with the enlarged view of 

a metal-organic molecule. (b) Schematic of Gd-St multilayer LB film: out-of-plane stacking and layered arrangement of in-

plane spins with specular reflectivity geometry [14]. 
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            Magnetic vortex structures have also been reported in rare earth based multilayer films 

deposited by Langmuir-Blodgett (LB) technique. Langmuir films of monolayer thickness are formed 

when amphiphilic (surfactants) molecules or nanoparticles are spread on water surface at the air–

water interface. Multilayer stacks of amphiphilic fatty-acids attached with ions of rare-earth elements 

provide excellent 2D system to study low-dimensional magnetic ordering since the characteristic in-

plane separations between metallic ions are an order of magnitude smaller than the out-of-plane layer-

spacing decided by the hydrophobic tails (See Fig 2). It has been already reported that 2D short-range 

ferromagnetic order with no spontaneous magnetization occur in the gadolinium stearate (GdSt) LB 

films when a magnetic field is applied along any in-plane direction [13]. Further studies in gadolinium 

based LB films has predicted the existence of hexagonal lattice of spin vortices above a certain BKT 

transition temperature below which vortex and anti-vortex pairs annihilate to produce a homogenous 

phase with a saturation moment.  

The magnetic properties of rare earth elements mainly in lanthanide series are generally 

determined by the localized 4f orbital and spin moments. The exchange interaction results in the long-

range magnetic ordering here along with the existence of dipole-dipole long-range interaction among 

ions of a monolayer [14]. Apart from the ferromagnetic behaviour as observed in such systems, 

studies in MnSt LB films have also revealed about the existence of anti-ferromagnetic ordering 

occurring in these 2D structures [15].    

Experimental Techniques: 

Magnetic Characterization 

Resonant coherent X-ray scattering: By tuning the energy of the incident photons (linearly 

polarized) to the metal L-edge of a constituent element greatly enhances the magnetic scattering 

intensity. The scattering provides information about spatial modulations of magnetically ordered 

structures. By making the beam coherent we can do correlation study as a function of time, field or 

temperature due to formation of speckle pattern in the magnetic Bragg peaks.  



P a g e  | 16 

 

                                                                                                                Low Dimensional Magnetic Structures 

 

SQUID VSM: Magnetization measurement using the sensitivity of SQUID and speed of VSM 

together as a function of magnetic field and temperature. 

Structural Characterization 

X-ray Reflectivity: It is a surface sensitive technique used mainly in thin films and multilayers 

structures. It provides information about (i) film thickness, (ii) periodicity, (iii) electron density and 

(iv) surface and interfacial roughness. Reflectivity fitting was done using Parratt formalism [24]. 

Grazing angle X-ray Diffraction: It uses a small incident angle to study the surface properties of 

thin films or multilayer structures. The technique provides information about (i) in-plane and out-of 

plane lattice parameters, (ii) correlation length, (iii) tilt angle and (iv) surface roughness. GID data 

was analyzed using the Vineyard formalism [16]. 

 

Study of Skyrmions using magnetic scattering: 

Spin, charge, and orbital motions can be affected by fluctuations, thereby generating entropy and 

losing information. Controlling and minimizing this decoherence holds a key feature of deploying 

quantum matter in emerging information technologies. An interesting example for such study is to 

employ a lattice of skyrmions. Due to the topological protection and existence of multiple length scale 

energetics, skyrmions scatter weakly from defects and can be moved relatively easily through the 

lattice. 
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Fig 3: Schematic of phase diagram of the Fe/Gd sample as a function of temperature and applied magnetic field. (b-d) 

Schematic of order stripes, disorder stripes and skyrmion phase. (e-g) Magnetic diffraction spots in the three phases. The 

insets show enlarged image of the magnetic diffraction spots that are enclosed in yellow box. The red and black boxes are 

the regions of interest of magnetic diffraction and Airy fringes, respectively, for calculating the pair-wise correlation 

coefficients [21].  

 

We have studied a Fe/Gd thin film heterostructure that exhibit highly tunable stripe and skyrmion 

phases using X-ray resonant coherent scattering as a function of magnetic field and temperature 

[17,18]. Both stripe and skyrmion peaks show modulatation with speckles that indicate finite sized 

domain formation. At room temperature an ordered stripe domain with periodicity of 138 ± 5 nm 

forms at zero fields. Around 200 mT new peaks in the form of a distorted hexagonal pattern start to 

appear due to the onset of skyrmion formation. The periodicity of skyrmion hexagonal-lattice at 200 

mT is 190 ± 5 nm (See Fig 3). 

Resonant coherent soft X-ray scattering from a magnetic sample gives rise to speckle patterns due to 

the interference of randomly phase-shifted waves that are scattered by the magnetic domains. If the 

domain morphology changes either spontaneously or due to an external influence, then the speckle 

pattern will change as well. Such a change in an X-ray speckle pattern in reciprocal space provides a 

statistically significant measure of nanoscale changes in size, orientation and/or number density of the 
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magnetic domains in real space. We developed a statistical measure of field-induced domain jumps 

using the normalized pairwise correlation coefficient, a standard tool to measure the similarity of 

consecutive data sets. 

 

Fig 4: Plot of cross-correlation function (red line) versus magnetic field for (a) Stripe, (b) Skyrmion and (c) Disorder stripe 

diffraction spots. The black line in the figures corresponds to the correlation value from non-magnetic region (Airy fringes). 

Correlation between two consecutive image patterns was done for those regions as mentioned in Fig.3 with the 

corresponding color boxes. Color bar represents average jump size. Contour plot of average jumps size 𝑋 as a function of 

field and temperature for (d) entire magnetic phase and (e) skyrmion phase only. A peak in the jump size in Fig. 4 (d) (red 

area ≈ 225 K,150 mT) suggests a critical point [21]. 
 

We obtained direct experimental evidence that the magnitude and frequency of jumps in the skyrmion 

phase is significantly smaller compared to those in the stripe phase (for example, compare magnitude 

of jumps in Fig. 4 (b) with Fig. 4 (a) & (c)). The reduced jump size is most likely a consequence of 

the stability due to topologically protective nature of the skyrmions.  

In Fig. 4 (d) a contour plot spanning all the three magnetic phases present in the sample is shown as a 

function of field and temperature. The contour plot shows that the average size of jumps increase with 

both temperature and field. It is observed that in the stripe phase, the average jump size shows a 

maximum value near the point 𝑇 ~ 225 K and 𝐻 ~ 148 mT, indicating the presence of a critical point 

in temperature and field around these values. The green region inside the contour plot (Fig. 4(e)) 
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shows the temperature-field conditions where all the six peaks are of same intensity thereby 

representing the pure skyrmion phase. The magnitude of jumps is similar in both ordered and 

disordered stripes, however, the average jumps size in the skyrmion phase is almost an order-of-

magnitude smaller than in the stripe phase. 

 

Fig 5: (a,d) and (b,e) Complementary cumulative distribution (C(X)) function of domain cascades in the stripe phase below 

and above the critical points. (c) and (f) The corresponding scaling collapse with the critical exponent values [21].  

Our analysis was done according to the avalanche model using the scaling function of the form [19]. 

                                                                ….1 

Where „X‟ is the jump size and „f1‟ is a universal function of temperature or field. Figure 5 and figure 

6 clearly shows critical behavior for both stripes and skyrmion phase that is centred around different 

critical field and temperature. The critical exponent „𝑎’ has a similar value for both phases, but 

exponent „𝑛‟ takes different value for stripes compared to skyrmions. Since all the critical exponents 

are not same for both the phases, this indicates that stripes and skyrmions belong to different 

universality classes. 
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Fig 6: (a) and (c) Complementary cumulative distribution (C(X)) function of domain cascades in the skyrmion phase above 

the critical points. (b) and (d) The corresponding scaling collapse with the critical exponent values [21].  

 

Anamolous expansion of stripe periodicity: 

Self-organization of magnetic domains on surfaces and interfaces has attracted considerable 

recent interest, because it manifests in regular atomic scale structures, important in both fundamental 

and technological aspect. Self organized structures appear in nature whenever a system spontaneously 

chooses a preferred structure size and geometry due to minimization of energy. In thin films with 

perpendicular magnetic anisotropy (PMA), the dipolar interaction favours an in-plane magnetization, 

whereas the anisotropy prefers an out-of-plane magnetization. The competition between these two 

interactions results in periodic stripes in which the magnetization self organises in up and down 

magnetized bands. 

The evolution of the diffractions spots from the stripe phase to skyrmions as a function of 

applied field at 225K in a thin film of FeGd is shown in fig 7(a). At zero fields, the sample is in stripe 

phase and the diffraction image corresponding to that phase is shown at the top-left corner inset of 

figure 7(a). Diagonally opposite two sharp spots in the inset image are due to the diffraction from the 

stripe magnetic domains whereas the streaks of intensity surrounding the beam stopper is due to the 
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diffraction from the pin hole placed before the sample. The line profile corresponding to the Bragg 

peak marked in the shaded cone shows a peak at Q1 (= 0.052 Å
-1

) as evident from the profile in the 

inset next to the image in figure 7(a). The increase in field leads to first the appearance of a satellite 

peak at Q2 (lower than the Bragg peak at Q1) and subsequently this satellite peak transforms into the 

main Bragg peak as shown by the symbols in figure 7(a). First appearance of satellite peak at Q2 with 

less intensity and then the merger of the main Bragg peak to this Q2 at a certain magnetic field 

indicates that the number of magnetic domains having periodicity 2𝜋/𝑄1 decreases with increase in 

field while the number of domains having periodicity 2𝜋/𝑄2 starts increasing and finally all the 

domains transforms to periodicity 2𝜋/𝑄2.This sequence of events, changing Q values from Q1 to Q7 

with similar mechanism of peak shifts is repeated for higher field values and ultimately ends in a 

structure when the skyrmion phase emerges which is represented by the six diffraction spots (due to 

hexagonal ordering) as shown by the image at the bottom-right corner inset of figure 7(a) 

 

Fig 7: (a) The changes in the position of the diffractions peaks from the stripe phase to skyrmions as a function of applied 

field at 225K. The line profiles are extracted from the images of diffraction spots from the Fe/Gd multilayer structures. Two 

such images at stripe phase and skyrmion phase are shown at the top left and bottom right position of the figure.(b) The 

variation of the periodicity of the stripe domains normalised by the periodicity at remanence as a function of reduced fields 

(H/Hs) at different temperatures. Black lines are the theoretical fit to the experimental curve. 

The periodicity (2𝜋/𝑄1) corresponding to the stripes at remanence is 119 ± 5 nm. At around 170 mT, 

new peaks are formed and a distorted hexagonal pattern starts to appear instead of only two 

diagonally opposite Bragg diffraction peaks indicating a transition to the skyrmion phase. The 
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periodicity of skyrmions at 193 mT is 233 ± 7 nm. At sufficiently high field (Hs) the diffraction 

pattern disappears as the film becomes uniformly magnetized 

The periodicity of the stripe domains can be calculated simply from the position of the Bragg 

peak following the relation (Q = 2𝜋/𝑄). The variation of the periodicity () of the stripe domains 

normalised by the periodicity at remanence as a function of H/Hs at different temperatures 85 K, 

183K, 236K and 300K are shown in figure 7(b) respectively. Also it is observed that the rate of 

change of  with the variation in field increases with increase in the temperature. The solid lines in 

figure 7(b) show the fitting of a theoretical model following eq. (1) to the experimental data at 

different temperatures. The theoretical model was initially developed by Kooy, Enz and was later 

extended by Gehanno et al  to make it applicable to films with thickness smaller than the domain 

period. This model gives a relationship between the periodicity of the stripes as a function of the 

applied field [20].  

 𝜏 𝑕 = 𝐴𝑕 sec 𝑎𝑟𝑐 sin 𝐵𝑕𝑕                                                                                                        ….(2) 

 Here h is the reduced field (H/Hs), 𝐴𝑕  and 𝐵𝑕are the terms whose value depends on the film thickness 

and susceptibility (at zero fields) of the material.  

 

Fig 8: The collapse of normalised periodicity (symbols) as a function of (a) reduced temperature (T/Ts) and (b) reduced field 

(H/Hs). The solid lines are the fit with the expression as described in the text. 

The periodicities extracted at different fields and temperatures after normalization can be collapsed to 

a single curve when plotted against the T/Ts (figure 8a) or H/Hs(figure 8b). The collapsed curve can be 

fitted with a simple expression similar to thermal expansion of solids as 
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𝜏 = 1 + 𝑎 ∙ 𝑥𝑛                                                                …(3) 

Where x is the reduced temperature (t) for the temperature plot (figure 8a) or the reduced field (h) for 

the field plot (figure 8b). 

Two dimensional magnetism in LB films: 

Considerable interest in the 2D ferromagnetic and anti-ferromagnetic ordering has lead to 

several interesting neutron scattering measurements for understanding the nature of such ordering. In 

general it will be ideal if one can investigate in a system with minimal amount of structural change. 

2D magnetic materials confined within ultrathin films and multilayered structures have always 

aroused considerable attention in understanding the underlying physics which may explain several 

interesting phenomena. 

 

Fig 9: (a)Schematic of rare earth LB multilayer structure. (b)In-plane structure of multilayer Rare Earth LB film with the 

scattering geometry employed for the X-ray reflectivity measurements. All the molecules are in the same plane with the X-

ray incident on the plane at an angle . (c) amphiphilic molecule. (d) GID image of Gd-St multilayer LB film with qxy and qz 

plots along with their fits (red line). Specular X-Ray reflectivity of (d) Ho-St LB film (red color) with 21 monolayers, ErSt 

LB film (wine color) with 71 monolayers and Gd-St LB film (blue color) with 41 monolayers along with the corresponding 

fits. (f) Enlarged view of Kiessig fringes (with fit) in the above figure. (g) The electron density profile as a function of film 

thickness without roughness convoluted for initial few layers of Ho-St (red color), Er-St (wine color) and Gd-St (blue color) 

[25]. 
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The metal-organic multilayer structures formed by Langmuir-Blodgett (LB) techniques provide an 

ideal platform to investigate 2D magnetic ordering. Here the magnetic metal ions are separated by 

approximately 5Å within a monolayer that form a distorted hexagonal 2D lattice and in the out-of 

plane direction the monolayers are separated from each other by 50Å organic chains (See Fig 9). 

 

Fig 10: (a) Magnetization data for Ho-St LB film with 39 monolayers as a function of H/T (log scale) measured at 2.2 K 

(red), 5K (green), 10K (blue) and 20K (pink). Magnetization as a function of temperature at different field values derived 

from M-H curves for (b) Ho-St and (c) Er-St LB films. (d) Log-linear plot of the saturation magnetization Ms per RE (Gd, Er 

or Ho) ion at various temperatures and solid line is the linear fit. (e) The in-plane magnetization data for Ho-St (red), Er-St 

(wine) and Gd-St (blue) measured as a function of temperature T with an applied field H of 0.5 kOe. (f) Curie-Weiss plot of 

the inverse susceptibility vs temperature. The extrapolation of the high temperature data is shown by the dotted line which 

intercepts at a negative temperature only for Ho-St [25]. 

 

We observe different magnetic behaviour of HoSt LB films from both M-H and M-T data 

using SQUID VSM in the temperature range from 5K to 100K with field applied along the in-plane 

direction. Ferromagnetic behaviour in Gd-St LB films as previously reported is observed in Er-St 

films also. Whereas Ho-St LB film shows anti-ferromagnetic behaviour although the lattice structure 

of all the films are identical. The anti-ferromagnetic ordering temperature and Neel temperature is 

calculated to be 65K and 40K respectively (See Fig 10). 
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Conclusions: 

  It was shown in this thesis work, using coherent X-ray resonance scattering technique, that 

the domain fluctuations in one-dimensional (1D) magnetic stripe-phase are dramatically reduced in 

topologically protected two-dimensional (2D) skyrmion phase. Results of this study with a thin film 

of FeGd also show that the stripe and skyrmion phase follows different universality class [21]. Further 

observation of the periodicity of the stripe phase with applied magnetic-field has revealed a transition 

from discrete, staircase like behaviour at low temperatures to a smooth, continuous curve as we 

approach room temperature. 

 Through systematic X-ray reflectivity and magnetization studies of rare-earth LB films, it was 

shown that with similar structural configuration a ferromagnetic to anti-ferromagnetic crossover occur 

as the rare-earth ions of gadolinium or erbium is replaced by holmium ions in a LB films. 
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ncient civilization relied on energy and matter to meet their daily needs 

and survive against any natural calamities. The knowledge of using it 

much more efficiently has evolved from generations to generations.  

With the advent of modern civilization, the ever growing demand of energy and matter has 

increased considerably per capita in order to provide the latest facility and infrastructure. This 

has lead to the discovery of new materials where energy and matter can be used much more 

efficiently than ever before. From this perspective low dimensional materials in the 

nanometer regime has attracted our imagination due to their novel properties that are relevant 

not only from the technological aspect but also on our profound understanding of the 

quantum mechanical nature of energy and matter. 

Exotic materials showing new physical properties have already been realized. But one 

such property which has remained from the ancient times and still amazes us is magnetism. 

Magnetism was observed as early as 800 BC long before the birth of Christ, in naturally 

occurring load stones and was used mainly for navigation purpose. Today, information 

technologies ranging from personal computers to main-frames employs magnetic materials to 

store and process information in tapes, floppies, pen drives and hard disks. Personal 

computers, laptops and many other electrical devices are now mainly powered by lightweight 

A 

Introduction  
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switch-mode power supplies deploying new magnetic material technology that was 

unavailable 40 years ago [2, 36]. 

 

1.1  Types of Magnetism 

The way the local atomic moments couple to each other, parallel, antiparallel, or not 

at all, provides an initial way of classifying magnetic materials. The individual atomic 

moments ,μm may be randomly oriented if they do not interact with each other. In such case 

μm = 0 at zero field. Such uncoupled magnetic moments may be aligned partially 

(depending on thermally induced agitation) in an applied magnetic field H. This weak field-

induced magnetization behaviour defines a paramagnet. Alternatively, the atomic dipoles 

may couple somehow to each other and cooperatively align so μm  ≠0 even in the absence 

of an applied field. This defines an ordered magnetic material, examples of which are 

ferromagnets, antiferromagnets, and ferrimagnets [1-3, 36]. 

 

1.1.1  Weak Magnetism 

Diamagnetic materials are repelled by external magnetic fields and the induced 

magnetization forms in the direction opposite to that of the applied magnetic field whereas 

paramagnetic and ferromagnetic materials are attracted by a magnetic field. Diamagnetism is 

a property that manifest in every kind of material, and always makes a minor contribution to 

the material's own response to applied magnetic field. However, the other types of magnetism 

(such as ferromagnetism or paramagnetism) are so much dominant that when multiple 

different forms of magnetism are present in a material, the diamagnetic signal is usually 

https://en.wikipedia.org/wiki/Paramagnetic
https://en.wikipedia.org/wiki/Ferromagnetic
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negligible and suppressed. Substances in which the diamagnetic behaviour is the dominant 

effect are termed as diamagnetic materials, or diamagnets [4-6, 36]. 

Paramagnetism is another form of magnetism in which certain materials are weakly 

attracted by an externally applied magnetic field, and results in an internal, induced magnetic 

field in the direction of the applied magnetic field. Paramagnetism arises mainly due to the 

presence of unpaired electrons in the atoms constituting the material, implying that all atoms 

with incompletely filled atomic orbitals are paramagnetic [2, 3]. Due to their intrinsic spin, 

unpaired electrons have a magnetic dipole moment and act like tiny magnets. An external 

magnetic field induces the electrons' spins to align in the direction parallel to the field, 

causing a positive induced moment. Examples of paramagnetic materials include aluminium, 

oxygen, titanium, and iron oxide (FeO) [5, 6]. Paramagnetic material does not retain any net 

magnetization in the absence of an externally applied magnetic field unlike ferromagnetic 

material due to the thermal motion which randomizes the spin directions [36]. 

The magnetic susceptibility denoted by m is usually used to describe weak magnetic 

responses to applied field H as in paramagnetic and diamagnetic materials. The magnitude of 

m is usually ± 10
-4 

to 10
-6

 (dimensionless in SI). A material with a paramagnetic 

susceptibility of 10
-5

 would show a magnetization M = 1 A/m in a field of 10
-5

 A/m (applied 

field B, = 0.1 T). This value of magnetization corresponds to a flux density μ0M of order T, 

which is much less than the 1 T that our hydrogenic model suggests for fully aligned 

moments. What is keeping the moments in a paramagnet from aligning in an external field? 

Perhaps it is thermal energy, kBT [9, 10]. 

The degree to which a paramagnetic material will respond to a field can be understood by 

considering the potential energy U of the moment μm in an applied field B: 

𝑈 = −𝜇𝑚 ∙ 𝑩                                                                                                                         (1.1) 
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𝑈 = −𝜇𝑚 ∙ 𝑯 (𝑖𝑛 𝑐𝑔𝑠 𝑢𝑛𝑖𝑡)                                                                                                 (1.2) 

[In mks units the energy is written as μm ·B because the factor μ0 needed to relate μm to a flux 

density has been put with the field H. If μm were defined as μ0 IA (Wb/m
2
), then the energy 

would be – μm ·H]. 

Using the value of μm  10
-23

 Am
2 

as calculated for a hydrogenic orbit gives U  9.3 x 10
-24 

J  

= 6 x 10
-5

 eV (for B = 1 T, i.e., H = 8 x 10
5
 A/m). This energy is negligibly small in 

comparison to the thermal energy at room temperature, kBT  4 x 10
-21

J = 1/40 eV, so it is not 

expected for a 1T field to produce much magnetic response in a paramagnet. One can even 

crudely calculate the fraction of saturation moment that would be measured in a thermally 

disordered paramagnet by multiplying nμm with the scale factor (U/kBT) = μm B/BT; m= M/H 

 nμm(U/kBT)/(B/μ0) = μ0nμm /kBT  9.3 x 10
-4

. This shows why paramagnetic susceptibilities 

are so small. The field tends to have only a weak linear effect in aligning the moments 

because thermal energy is large in comparison to the magnetic energy [3-7, 36].       

 

1.1.2  Ferromagnetism 

Ferromagnetic materials are generally characterized by a long-range ordering of their 

atomic magnetic moments, even without the presence of an external field. This spontaneous, 

long-range magnetization is observed to exist only below an ordering temperature known as 

the Curie temperature T, (Fig. 1.1).  

The relative magnetic permeability μr= μ/μ0 (= 1 + m ) is more commonly used than 

the susceptibility to describe the magnetic response of a ferromagnetic material to an external 

magnetic field. This is due to the reason that ferromagnets are useful in electromagnetic 
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devices where it is B, particularly B/t, that is important in generating a voltage (see 

Faraday's law). Ferromagnets are efficient because a large B  1-2 can be produced by a 

fairly small field, H  100 A/m (B 10
-4

 T = 1 gauss). The full magnetization of ferromagnets 

M  B/μ0 is of the order 10
6
 A/m for fully aligned moments. The important question here is 

that where the energy for magnetic alignment in a ferromagnet is originated. For a 

paramagnet, M is of order nμm(U/kBT) which raises the question whether the moment-

disordering effect due to thermal energy just as strong in a ferromagnetic solid or could there 

be something else rather than the external field contributing towards the tendency to align the 

local moments? One of the pioneers in this field, Pierre Weiss thought long and hard about 

this inconsistency and eventually concluded that in ferromagnetic materials there must be a 

presence of a giant "molecular" field, Hmolec which exists even when no external field Hext is 

applied: H = Hext+ Hmolec. Hmolec aids in overcoming the thermal fluctuation and essentially 

aligns all the atomic moments in a ferromagnet so that M = nμm= Ms instead of M  

nμm(U/kBT) as in the case of a paramagnet [9,10,33].  But then another fundamental question 

arise that since ferromagnets have such strong magnetizations, why do not two pieces of iron 

attract each other the way they are attracted by a permanent magnet? What is reason for iron 

getting magnetized or demagnetized? Weiss came up with a hypothesis for that, too. He 

predicted the existence of magnetic domains, regions (ranging in size upwards from 

approximately 0.1 μm) in a ferromagnetic material within which all moments are essentially 

aligned parallel (see Fig. 1.1). Each domain is separated from one another by domain walls, 

surfaces over which the orientation of μm changes relatively abruptly (within about 10-100 

nm) from one direction to the other. The domain walls will be discussed in more details in 

later sections. The magnetizations in different domains have different orientations so that 

over the whole sample the vector sum of the net magnetic moment may vanish. Figure 1.3 

shows an image of the magnetic domains at the surface of a body-centered cubic (BCC) 3% 
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SiFe crystal. (The image was taken with a scanning electron microscope). In that figure the 

(100) directions of the crystal are parallel to the figure edges. It is not a coincidence that M 

inside the domains is parallel to these crystallographic directions. The coupling of the 

direction of M to the crystal axes is called magnetocrystalline anisotropy. Note also that 

domains often form so as to create closed flux loops. This minimizes magnetostatic energy. 

 

Figure 1.1: (a) Ferromagnetic horse-shoe magnetic, (b) Two-dimensional arrangement of magnetic moments in 

ferromagnetic ordering and (c) behaviour of magnetic suceptibility (M/H) as a function of temperature [101]. 

 

In an ideal magnet, it does not matter much where the domain wall lies. If the 

potential energy of a domain wall were independent of its position, it would only take a 

relatively weak field to move the wall, much as it is relatively easy to move a ripple in a 

carpet. In some soft magnetic materials, domain walls can be moved with fields of order 0.1 

A/m. However, defects such as grain boundaries and precipitates cause the wall energy to 

depend on position, so in most materials, higher fields are required to move domain walls. It 

is now possible to understand, at least qualitatively, the B-H loops of ferromagnets and 

connect them with domain wall motion and other magnetization processes. But before 

describing the B-H loop of a ferromagnet, the classification of strongly magnetic materials 

needs to be completed [2]. 
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1.1.3  Antiferromagnetism 

In some magnetically ordered materials (i.e., materials with atomic magnetic 

moments having long-range correlation in their orientations) the atomic moments couple in 

antiparallel arrangements with zero net moment, rather than parallel as in a ferromagnet. 

Such materials are called antiferrormagnets. 

When no external field is applied, the antiferromagnetic structure corresponds to a 

very small or nearly zero value of total magnetization. In an external magnetic field, a kind of 

ferrimagnetic behavior may be observed in the antiferromagnetic phase, due to the absolute 

value of one of the sublattice magnetizations differing from that of the other sublattice, 

resulting in a net nonzero value of net magnetization. Ideally the net magnetization should be 

zero at absolute zero, the effect of spin canting in some cases often causes a small net 

magnetization to develop, as seen for example in hematite. 

The magnetic susceptibility of an antiferromagnetic material is characterized by a 

maximum at the Néel temperature. In contrast, the susceptibility will diverge at the transition 

between the ferromagnetic to the paramagnetic phases. In the antiferromagnetic case, a 

divergence is seen in the staggered susceptibility. 

 

Figure 1.2: (a) Anti-ferromagnetic ordering, (b) Cr atoms in BCC lattice, (c) Fe atoms in SC lattice and (d) 

magnetic susceptibility of anti-ferromagnetic with temperature [41, 102]. 
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Various microscopic (exchange) interactions between the magnetic moments or 

atomic spins give rise to antiferromagnetic structures. In the simplest picture, one can 

consider an Ising model on a binary lattice, e.g. the simple cubic lattice, with interactions 

between spins at nearest neighbour sites. Depending on the sign of that coupling, 

ferromagnetic or antiferromagnetic order will prevail. Geometrical frustration or competing 

ferro- and antiferromagnetic interactions can lead to different and, perhaps, more complicated 

magnetic structures [1-5]. 

Antiferromagnetic materials occur more among transition metal compounds, 

especially oxides. Examples of antiferromagnetic materials include hematite, metals such as 

chromium, alloys like iron manganese (FeMn), and oxides such as nickel oxide (NiO). There 

are also numerous examples among high nuclearity metal clusters. Organic molecules can 

also exhibit antiferromagnetic coupling under rare circumstances, as seen in radicals such as 

5-dehydro-m-xylylene [4, 5]. 

In a crystalline material, the structure dictates how the anti-parallel spins are arranged. 

Many transition metal monoxides assume the rocksalt structure and are antiferromagnetic 

with alternate (111) planes oppositely magnetized. 

Chromium has the BCC structure with the body-center atoms having one direction of 

spin (parallel to  100 ) and the corner atoms having the opposite direction. (Actually, the 

period of the magnetic fluctuation is incommensurate with the crystal lattice by about 5%) 

(see Fig. 1.2b). 

Antiferromagnets can couple to ferromagnets, for instance, through a mechanism 

known as exchange bias, in which the ferromagnetic film is either grown upon the 

antiferromagnet or annealed in an aligning magnetic field, causing the surface atoms of the 

ferromagnet to align with the surface atoms of the antiferromagnet. This provides the ability 
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to "pin" the orientation of a ferromagnetic film, which provides one of the main uses in so-

called spin valves, which are the basis of magnetic sensors including modern hard drive read 

heads. The temperature at or above which an antiferromagnetic layer loses its ability to "pin" 

the magnetization direction of an adjacent ferromagnetic layer is called the blocking 

temperature of that layer and is usually lower than the Néel temperature [36]. 

Magnetic frustrations 

Unlike ferromagnetism, anti-ferromagnetic interactions can lead to multiple optimal 

states (ground states- states of minimal energy). In one dimension, the anti-ferromagnetic 

ground state is an alternating series of spins: up, down, up, down, etc. Yet in two dimensions, 

multiple ground states can occur. 

Let us consider an equilateral triangle with three spins, one on each vertex. If each 

spin can take on only two values (up or down), there are 2
3
 = 8 possible states of the system, 

six of which are ground states. The two situations which are not ground states are when all 

three spins are up or are all down. In any of the other six states, there will be two favorable 

interactions and one unfavorable interaction. This illustrates frustration: the inability of the 

system to find a single ground state. This type of magnetic behavior has been found in 

minerals that have a crystal stacking structure such as a Kagome lattice or hexagonal lattice 

[13].  

  Antiferromagnets have limited technical application because their net magnetization 

is zero; they produce no external field and the direction of the atomic moments is not easily 

affected by an external field. Antiferromagnetism plays a crucial role in giant 

magnetoresistance, as had been discovered in 1988 by the Nobel prize winners Albert Fert 

and Peter Grünberg (awarded in 2007) using synthetic antiferromagnets. 
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1.1.4  Ferrimagnetism 

When the two antiferromagnetically coupled sublattices in a material have unequal 

opposite moments - usually happens when two different species are found on the different 

sites making the net moment non- zero. Such materials are known as ferrimagnets and are 

characterized by consecutive atoms with opposing magnetic moments but the opposing 

moments are unequal in magnitude thereby resulting in a net spontaneous magnetization. 

This happens when the populations are exhibited by the presence of different materials or 

ions (such as Fe
2+

 and Fe
3+

). 

Ferrimagnetism is generally found in ferrites and magnetic garnets with the oldest 

known example being magnetite, Fe3O4. There the Fe ions of different valence appear at sites 

of different coordination, originally it was classified as a ferromagnet before Néel's discovery 

of antiferromagnetism and ferrimagnetism in 1948 [1-3]. 

Ferrimagnets are technologically very important because of their good high-frequency 

properties. Below the Curie temperature they possess a spontaneous magnetization and show 

absence of any magnetic ordering (as in case of paramagnet) above this temperature. 

However, at very low temperature below the Curie point when the two opposing moments are 

almost equal which results in a vanishingly small net magnetic moment; this is called the 

magnetization compensation point. This compensation point is readily observed in garnets 

and rare-earth–transition-metal alloys (RE-TM). Additionally, ferrimagnets may also show an 

angular momentum compensation point, at which the net angular momentum is zero. This 

compensation point is vital for achieving high speed magnetization reversal in magnetic 

memory devices [12, 10, 33]. 
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1.2  Low-dimensional Magnetism 

In one of a pioneering work, Mermin and Wagner in 1966 showed theoretically, that 

long-range ferromagnetic or antiferromagnetic ordering ceases to exist in one or two 

dimension considering isotropic exchange interactions between spins [14]. Later, some other 

studies also revealed the same for Heisenberg and xy spin systems by including RKKY type 

of interactions and showing that long-range order decreases as R
-

, with suitably large 

exponent „‟ [15].  

But the presence of anisotropy, resulting either from crystalline order or from long-

range dipolar interactions, is intrinsic in two- dimensional solids and thus plays a leading role 

in determining the long-range magnetic order in real 2D systems [16-19]. In this section and 

further, the domain theory along with the theory of two-dimensional solids will be discussed 

in a greater detail. 

 

1.2.1  Magnetic Domains  

A magnetic domain corresponds to a region inside a magnetic material whereby the 

magnetization is along a uniform direction. When a piece of ferromagnetic material is cooled 

below a certain temperature called the Curie temperature, the magnetization spontaneously 

divides into multiple small regions called magnetic domains. Although the magnetization 

within each of these domains points in a uniform direction, but the magnetization of different 

domains may orient in different directions. Structure of the magnetic domains are responsible 

for the magnetic behavior of different ferromagnetic materials like iron, cobalt, nickel and 

their alloys, and ferrimagnetic materials like ferrite [34]. This also includes the development 

of permanent magnets and the behaviour (attraction) of ferromagnetic materials in response 

https://en.wikipedia.org/wiki/Ferromagnetic
https://en.wikipedia.org/wiki/Curie_temperature
https://en.wikipedia.org/wiki/Ferromagnetic
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Cobalt
https://en.wikipedia.org/wiki/Nickel
https://en.wikipedia.org/wiki/Alloy
https://en.wikipedia.org/wiki/Ferrimagnetic
https://en.wikipedia.org/wiki/Ferrite_(magnet)
https://en.wikipedia.org/wiki/Permanent_magnet
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to an external magnetic field. The regions separating these magnetic domains are known as 

domain walls, in which the magnetization self rotates coherently from the particular 

orientation in one domain to that same direction in the next domain. The study of the 

behaviour of magnetic domains in the sub-micrometer regime is called micromagnetics [28, 

30, 31, 32].  

Magnetic domains appear in materials due to the magnetic ordering. This results in 

the spontaneous alignment of the dipoles due to the exchange interaction. These are the 

observed in ferromagnetic, ferrimagnetic and antiferromagnetic materials. In paramagnetic 

and diamagnetic materials the dipoles starts‟ aligning in response to an external applied 

magnetic field but the alignment is lost once the field is removed; hence do not have 

magnetic domains.  

 Once domains starts forming, the orientation of the magnetic moments within each 

domain and the size of each domains are determined by interactions due to magnetostatic, 

magnetoelastic, crystal anisotropy and domain wall energy. Formation of all domain structure 

in a magnetic material involves minimization of the appropriately selected energies. Figure 

1.3 shows the process of subdivision of a uniformly saturated sample (a), having high 

magnetostatic energy, into one composed of increasingly more number of domains. The 

changes in energy for each case are depicted in the Fig. 1.3. First, the large magnetostatic 

energy arising due to the end poles in the case shown at left is reduced as a result of the 

formation of two domains of opposite magnetization. The integral of HZ in the region outside 

the sample decreases in the second panel because the field lines now close at the ends of the 

neighbouring domains; the flux lines takes the path of low reluctance R, and thereby low 

energy. This process goes on from figure 1.3b (1) to (3) with the increase in the number of 

domains proceeding and ultimately this process ends when the energy cost of adding another 

https://en.wikipedia.org/wiki/Domain_wall_(magnetism)
https://en.wikipedia.org/wiki/Micromagnetics
https://en.wikipedia.org/wiki/Magnetic_ordering
https://en.wikipedia.org/wiki/Exchange_interaction
https://en.wikipedia.org/wiki/Ferromagnetic
https://en.wikipedia.org/wiki/Ferrimagnetic
https://en.wikipedia.org/wiki/Antiferromagnetism
https://en.wikipedia.org/wiki/Paramagnetic
https://en.wikipedia.org/wiki/Diamagnetic
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180
0
 domain wall is greater than the magnetostatic energy saved. There is always some 

magnetostatic energy cost for 180
0 

wall formation in such a finite sample. If the material has 

cubic anisotropy, or if the uniaxial anisotropy is not too strong, the sample may form closure 

domains at its end surfaces. These closure domains allow the flux to be fully contained within 

the sample, thus completely eliminating the magnetostatic energy contribution. However, 

there is a cost to formation of these closure domains in terms of magnetic anisotropy energy 

(for a uniaxial material) and in terms of elastic energy if the magnetostriction is not zero. In 

this section, analytic estimates of these energies will be required for samples of various 

geometries. Here the demagnetizing field will be approximated in many cases, so the 

estimates of the energies are useful only to the extent that the sample geometry meets the 

assumptions of the approximate demagnetizing factors. In ellipsoidal samples the 

demagnetizing field approximations fail near charged surfaces [29-33]. 

Magnetic domain theory was first developed by French physicist Pierre-Ernest Weiss 

[38] who, in 1906, suggested the existence of magnetic domains in ferromagnets [5]. He 

suggested that large number of atomic magnetic moments were aligned in the same direction. 

The direction of alignment varies from domain to domain in a more or less random manner, 

although certain crystallographic axis may be preferred by the magnetic moments, called easy 

axes. Weiss still had to explain the reason for the spontaneous alignment of atomic moments 

within a ferromagnetic material, and he came up with the so-called Weiss mean field. He 

assumed that a given magnetic moment in a material experiences a very high effective 

magnetic field due to the magnetization of its neighbours. In the original Weiss theory the 

mean field was proportional to the bulk magnetization M, so that 
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He = αM                                                                                                                                (1.3) 

where α is the mean field constant. However this is not applicable to ferromagnets due to the 

variation of magnetization from domain to domain. In this case, the interaction field is   

He = αMs                                                                                                                               (1.4) 

Where Ms is the saturation magnetization at 0K. 

Later, the quantum theory made it possible to understand the microscopic origin of the 

Weiss field. The exchange interaction between localized spins favours a parallel (in 

ferromagnets) or an anti-parallel (in anti-ferromagnets) state of neighbouring magnetic 

moments [3, 4, 5, 34, 35]. 

Magnetic materials such as iron spontaneously split into separate domains to 

minimize the free energy, rather than existing in one homogeneous phase.  

 

Figure 1.3: (a) Micrograph of a ferromagnetic surface, showing the crystal grains, each divided into several 

domains, with the magnetization in alternating directions (shown by red and green regions), (b) a ferromagnetic 

material divides into several small domains [103]. 

 

To reduce the field energy further, each of these domains can split also, resulting in 

smaller parallel domains with magnetization in alternating directions, with smaller amounts 

of field outside the material (see Fig. 1.3(b), right). 
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The domain structure of actual magnetic materials does not generally form by the 

process of large domains dividing into smaller ones as described previously. When a sample 

is cooled below the Curie temperature, for example, the equilibrium domain configuration 

simply appears. But domains can split, and the description of domains splitting is frequently 

used to reveal the energy tradeoffs in domain formation. 

As explained above, a domain which is too big is unstable, and will divide into 

smaller domains. But a small enough domain will be stable and will not split, and this 

describes the size of the domains created in a material. This size depends on the balance of 

several energies inside the material [11]. Each time a region of magnetization splits into two 

or more domains, it creates a domain wall between the domains, where magnetic dipoles 

(molecules) with magnetization pointing in different directions are adjacent. The exchange 

interaction which creates the magnetization is a force which tends to align nearby dipoles so 

that they point in the same direction. Forcing adjacent dipoles to orient in different directions 

requires energy. Therefore, a domain wall requires additional energy, called the domain wall 

energy, which is proportional to the area of the domain wall. 

Thus the net amount of energy that is reduced when a domain splits is equal to the 

difference between the magnetic field energy saved, and the additional energy required to 

create the domain wall. The field energy is proportional to the cube of the domain size, while 

the domain wall energy is proportional to the square of the domain size. As the size of the 

domains gets smaller, the net energy saved by splitting decreases. The domains keep dividing 

into smaller domains until the energy cost of creating an additional domain wall is just equal 

to the field energy saved. Then the domains of this size are most stable. In most materials the 

domains are microscopic in size, around 10
−4

 - 10
−6

 m. The different types of observation 

techniques used to study magnetic domain structure are [35, 36, 38]. 
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1) Real Space Imaging (See Fig. 1.4) 

(a) Magneto-optic Kerr effect (MOKE), (b) Lorentz force microscopy (LTEM) and     

(c) Magnetic force microscopy (MFM). 

2) Reciprocal Space Observations 

 (a) Small angle neutron scattering (SANS) and (b) Resonant soft X-ray scattering 

(RSXS).  

 

Figure 1.4: Different types of magnetic domain structure (a) labyrinth or stripe domain, (b) shape memory alloy 

domain structure and (c) magnetic bubble domains [103]. 

 

1.2.2  Domain Walls 

In magnetism, a domain wall is an interface separating the magnetic domains. It is a 

transition between different magnetic moments and usually undergoes an angular 

displacement of 90° or 180°. A domain wall is a gradual reorientation of the material‟s 

individual moments across a finite distance (See Fig.1.5 (a)). The domain wall thickness 

depends on the anisotropy of the material, but on average spans across around 100–150 atoms 

[33, 36, 41]. 

The energy of a domain wall is simply the difference in the magnetic moments before and 

after the creation of domain wall. This value is usually expressed as energy per unit wall area. 
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Figure 1.5: (a) Schematic of the magnetic moments within a domain wall and (b) different types of wall 

formations [104]. 

 

The width of the domain wall depends on the two opposing energies that create it: the 

magnetocrystalline anisotropy energy and the exchange energy ( Jex), both of which tend to 

be as minimum as possible so as to be in a more favourable energetic state. The anisotropy 

energy is least when the individual magnetic moments are aligned along the crystal lattice 

axes thus reducing the width of the domain wall. Also, the exchange energy is reduced when 

the magnetic moments are aligned parallel to each other and therefore makes the wall thicker, 

due to the repulsion between them (whereby anti-parallel alignment would bring them closer, 

tends to reduce the wall thickness). In the end equilibrium is restored between the two and the 

domain wall's width is set as such [36, 37]. 

An ideal domain wall would be fully independent of position, but the domain 

structures are not ideal and so get stuck on inclusion sites inside the medium, also known as 

crystallographic defects. These consist of missing or different (foreign) atoms, oxides, 

insulators and even stresses within the crystal. This prevents the formation of domain walls 

and also hinders their propagation through the medium. Thus a greater applied magnetic field 

is required to overcome these sites. 

Non-magnetic inclusions in the volume of a ferromagnetic material, or dislocations in 

crystallographic structure, can result in "pinning" of the domain walls. Such pinning sites 
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cause the domain wall to stay in a local energy minimum and an external field is required to 

"unpin" the domain wall from its pinned position. The act of unpinning will cause sudden 

drastic movement of the domain wall and abrupt change of the volume of both neighbouring 

domains; this is known as Barkhausen effect. 

It is therefore energetically much more favourable to align the magnetic moments 

gradually over a region at the interface: the domain wall. There exist two kinds of domain 

walls as shown in Fig. 1.6 that differ in the direction of canting. The more common one is the 

Bloch wall, but in thinner films a Neel wall is often preferred. 

Bloch Wall 

A Bloch wall is a slender transition region at the boundary between magnetic 

domains, within which the magnetization changes from its value in one domain to that in the 

next, named after the Swiss-American physicist Felix Bloch. The magnetization rotates out of 

the plane of the domain wall, in contrast to Néel walls. Figure 1.6 below shows an example of 

a Bloch and Néel wall. 

Bloch domain walls are commonly observed in bulk materials, i.e. when sizes of 

magnetic material are significantly larger than domain wall width [39]. In this case energy of 

the demagnetization field does not impact the micromagnetic configuration of the wall. 

Mixed cases are possible as well when demagnetization field changes the magnetization 

direction in domains but not the domain walls [40]. 

Neel wall 

A Neel wall is a narrow transition section between magnetic domains, named after the 

French physicist Louis Neel. In the Neel wall, the magnetization rotates smoothly from the 

direction of magnetization within the first domain to the direction of magnetization within the 
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next. In contrast to Bloch walls, the magnetization changes in plane of the domain wall. It 

consists of a core with fast varying rotation and two tails where the rotation logarithmically 

decays. Néel walls are the common type of magnetic domain wall in very thin films where 

the exchange length is very large compared to the thickness. Néel walls tend to spread across 

the whole volume if not for magnetic anisotropy [37, 41]. 

Figure 1.6: Neel and Bloch type of domain walls (a) front view and (b) 3D view [104]. 

 

1.3  Magnetocrystalline anisotropy 

Magnetic anisotropy represents the preference of an object's magnetic properties to be 

different depending on direction. In the simplest situation, there is usually no preferential 

direction to the object's magnetic moment. It will respond to an applied magnetic field in the 

same way, irrespective of which direction the external field is applied. This is known as 

magnetic isotropy. In contrast, it will be easier or harder for a magnetically anisotropic 

material to magnetize it in any particular direction. For most magnetically anisotropic 

materials, there exist two easy directions of magnetization, which are a 180° rotation apart. 

The line parallel to these directions is described as the easy axis. In other words, the easy axis 

corresponds to the energetically favourable direction of spontaneous magnetization. Since the 

two opposite directions along an easy axis are usually equivalent, hence easy to magnetize 
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along, and the actual direction of magnetization can just as easily orient into any one of the 

two directions, which also corresponds to an example of spontaneous symmetry breaking [8- 

10, 21, 22, 36]. 

When the physical property of a system is dependent on the direction, that property is 

said to exhibit anisotropy. As mentioned already the preference for the magnetic moments 

within a material to align in a particular direction is called magnetic anisotropy. Parameter 

describing the magnetization process could be the permeability or the susceptibility. 

Magnetic anisotropy can originate due to the sample shape, stress, crystal symmetry, or 

directed atomic pair ordering [8, 10, 23]. 

The spin-orbit coupling is the main source of magnetocrystalline anisotropy.  

Basically the orbital motion of the electrons interacts with crystal electric field giving rise to 

the first order contribution to magnetocrystalline anisotropy. The second order contribution 

arises due to the mutual interaction of the magnetic dipoles [10, 24, 25, 36].  

For example, in Fe having BCC crystal structure, the magnetization process is 

generally easy along the <100> directions and hard in the < 111> directions; this is because, 

the field needed to magnetize iron to saturation is much easier in the <100> directions than 

along any others directions. Whereas, in FCC Ni, the case is just the opposite with < 111> 

being the easy direction, <100> hard, and the strength of the applied magnetic field required 

for saturation along the hard directions is smaller for Ni than for Fe. Cobalt is hexagonal 

lattice, with the easy direction of magnetization being the c axis; saturating the sample along 

the basal plane is very difficult and requires more than an order of magnitude harder than in 

the < 111> directions in Fe [22, 26]. 

After attaining the saturation value, reduction of the field to zero leaves more of the 

magnetization remaining in the direction parallel to which the field had been applied if it 
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happens to be the easy axis as opposed to the hard direction. In the absence of an external 

applied magnetic field, the magnetization prefers to align along the easy directions. It should 

be noted that the value of the magnetization remaining at zero field (H = 0), is called the 

remanence which is non-zero for Ni and Fe when they are magnetized along the hard 

directions whereas it is zero in case of Co when magnetized in the hard direction. A 

quantifiable measure of the strength of the magnetocrystalline (or any other) anisotropy is the 

field, Ha, required to saturate the magnetization along the hard direction. This field is called 

the anisotropy field [27, 36]. 

1.3.1 Magneto-crystalline anisotropic interaction 

Magneto-crystalline anisotropy originates from the spin-orbit interactions [44, 45, 46]. 

The electron orbits are linked to the crystalline structure and their interaction with the spins 

which makes the spins to align in preferred well-defined crystallographic axes. In this 

direction, it is easier to magnetize for a crystal than in the other directions, and is called the 

easy-axis for magnetization of the crystal. Like the dipolar interactions, the magneto- 

crystalline anisotropy is also weak compared to the exchange interactions but the direction of 

the magnetization is determined only by this anisotropy, as exchange is isotropic in space. 

Exchange interactions always try to align the spins parallel to each other and the 

anisotropy tries to align them along a crystallographic axis. Anisotropy of a crystal will be a 

function of the angle  with respect to the normal to the layer (z-axis) and , the angle with 

respect to the x-axis within the layer. For a simplification, if we now assume the anisotropic 

term of the Hamiltonian depends on either  or , then the anisotropic energy term can be 

expanded in the series [44, 45, 46], 

HK =  𝐾𝑚 cos 𝑚𝜃𝑚                                          (1.5) 
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It is known from the experimental observations that the anisotropic contributions are of even 

order. Then, if K2 < 0, the out-of-plane anisotropy favours a magnetization direction 

perpendicular to the xy-plane. Without an external field, the spontaneous magnetization will 

orient the spins along the perpendicular direction which is the case for Fe/Gd thin films 

heterostructure discussed in chapter 3 and 4. 

 

1.3.2 Long-range magnetic order in presence of dipolar 

interaction 

Theoretical calculations for determining ferromagnetic ordering is not taken into 

account while considering dipolar interaction since it is comparatively weak than the 

exchange interactions. The long-range nature of the dipolar interactions plays a crucial role in 

two-dimensional systems for stabilizing long-range magnetic order. Such two-dimensional 

systems are characterized by a uniaxial anisotropy favoring an easy-magnetization axis [18]. 

The competition between the different on-site, short-range and long-range interactions results 

in the rich variety of novel magnetic properties within these systems. 

The contribution of the dipolar interactions to the system Hamiltonian is - 

HD = 
1

2
(𝑔𝜇𝐵)2  (

𝑺𝑖 ∙𝑺𝑗

𝑟𝑖,𝑗
3 − 3

 𝑺𝑖 ∙𝒓𝒊 (𝑺𝑗 ∙𝒓𝒋)

𝑟𝑖,𝑗
5

′
𝑖.𝑗 )              (1.6) 

= 
1

2
𝐶  (𝑺𝑖 ∙ 𝑺𝑗 − 3( 𝑺𝑖 ∙ 𝑟𝑖   𝑺𝑗 ∙ 𝑟 𝑗  )′

𝑖,𝑗 )                                                                           (1.7) 

where C = (2μB)
2
/a

3
 and the sum is over all the possible pairs of sites on the lattice and 

𝒓𝑖𝑗 =  𝑎𝑟𝑖𝑗   is the joining vector between sites i and j. An estimate of the relative strength of 

the dipolar to the exchange energy can be obtained by comparing a typical dipolar energy ED 
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= 4μBM0 [55, 56], where M0 (= 2μBS/a
3 

= CS/μB) is the saturation magnetization and „‟is 

spin-wave stiffness constant reflects the discreteness of the lattice. For a Gd hcp lattice 

having spin 7/2, the value of ED/kB will come out to be 1.66 K. The exchange energy J for a 

monolayer is not known, either experimentally or theoretically. However, we can 

approximately calculate the exchange from Rushbrooke-Wood mnemonic formula which 

gives a fairly good approximation for the transition temperature of a three-dimensional 

Heisenberg ferromagnet [57] 

𝐾𝐵𝑇𝐶

𝐽
=

5

96
 𝑧 − 1 [11𝑆 𝑆 + 1 − 1]                                                                                     (1.8) 

where z is the number of nearest neighbours. For example, bulk Gd has Tc=292 K which 

gives for centered hexagonal bravis lattice J/kB 3K, a value less than twice that of ED. 

Actually the physically meaningful parameter with which to compare ED is with 4SJ. Then 

the ratio (ED/(4SJ)) is 1/25 for Gd hcp lattice, which is not very small whereas this value is 

1/600 for spin 1/2 ions with same Tc. So it is clear that the effect of dipolar interactions can 

be important when S is large. 

 

1.4 Two dimensional spin textures 

1.4.1 Stripe formation in 2D systems 

As a result of exchange, long-range dipolar and magneto-crystalline anisotropic 

interactions a variety of spontaneous formation of domain structures have been predicted in 

2D systems [48]. Physically, the stability of the stripe domains can be understood as a 

compromise between the increment in exchange energy due to the formation of domain walls 
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and the decrease in dipolar energy due to the interaction between magnetization currents 

generated at the domain walls [49, 50]. 

For 0 < |Keff| < 
2
g

2
/(6J) in-plane spins cannot stabilize in a homogeneous phase as magneto-

crystalline anisotropy becomes large enough to pull some of the spins in the out-of-plane 

direction and create ripple like instability. It is known that both average magnetization M(T) 

as well as initial susceptibility (T) is proportional to the physical extent of ordered phase l
*
 

that minimizes the zero-field energy [55] and can be written as 

                                   𝑀 ∝  𝐻𝑙∗                      where 𝑙∗  ∝ 𝑒𝑥𝑝(−𝛾𝑇)                              (1.9) 

then  

                                 𝑀 ∝  𝑒𝑥𝑝(−𝛾𝑇)               (1.10) 

 is a parameter depends on the exchange interaction. So then, 

 =
𝜕𝑀

𝜕𝐻
∝ 𝑙∗ ∝ exp −𝛾𝑇                                                                                                    (1.11) 

It is likely that at low enough temperature l
* 

reaches a saturation either because l
*
 become 

comparable to sample size or due to the freezing of ripple walls. For systems having large 

exchange coupling to produce bulk Curie temperatures of several hundred Kelvin, the ground 

state stripe width is predicted to be much larger than any practical laboratory sample size and 

thus can show a net ferromagnetic moment at low temperatures [48, 51]. 

As the temperature is increased, a critical temperature will be reached where the 

domain width will become comparable to the sample size of the system and for further rise in 

temperature the net magnetization of the sample goes to zero due to the formation of stripe 

domain with alternating orientations within the sample. Monte Carlo simulation studies on 

2D spin system [49] with strong uniaxial anisotropy shows the transition of the stripe domain 
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structure to a randomly oriented multiple domain structure through a number of stages. First, 

at low temperature, the sample will be a single-domain phase in which the system has a net 

magnetic moment. But as the temperature increases, the system loses the magnetic moment 

due to the onset of multiple domains in the striped phase and the magnetization decreases 

exponentially due to exponential increase in number of domains with increasing temperature. 

As a matter of fact the susceptibility follows the law as in Eq. (1.11). There is also one 

phenomena, called the reorientation transition, involved in these patterned formed systems 

which is explained below.  

Typically a saturation magnetization in the perpendicular direction has been observed 

in a number of sufficiently thin films which decays following Eq. (1.11) until a region 

essentially on an average zero magnetization is reached. As the temperature is increased 

further, an onset of magnetization in the in-plane direction in a number of systems has been 

observed [52, 53, 54]. This phenomenon has also been observed with increasing thickness of 

the films. This phenomenon is known as the reorientation transition of the spin systems. 

1.4.2  Topological defects 

Topological defects are a class of entity in a system with continuous broken symmetry 

and are generally characterized by some core region (like point or line) where order is 

destroyed. Topological defects have wide variety of names depending on the nature of 

symmetry, like vortices in magnetic systems, superfluid helium or 2D xy-models, 

dislocations in periodic crystals, and disclinations in nematic liquid crystals. A topological 

defect plays a crucial role in determining the mechanical properties of bulk systems and 

particularly a crucial part in the phase transitions of two-dimensional materials. 
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Figure 1.7: Schematic diagram of spin configurations in case of (a) Bloch wall and (b) Néel wall. Topological 

magnetic domain texture of (c) vortex, (d) magnetic bubble, and (e) skyrmion [59, 60, 61]. 

 

1.4.3  Magnetic vortex, skyrmions and merons 

  Vortices occurs whenever a flow field „whirls‟ around a one-dimensional core, are 

among the simplest topological structures, prevalent in many branches of physics. In the 

crystalline state, vortex formation is very uncommon, due to the presence of long-range 

interactions: in ferroic materials (ferromagnetic and ferroelectric), vortices are observed 

mainly when the effects of the dipole–dipole interaction are modified due to confinement at 

the nanoscale, or when the parameter associated with the vorticity does not couple directly 

with strain (See Fig.1.7). 
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Figure 1.8: Illustration of diverse magnetic structures used for magnetic memory and storage based 

applications. They form the first generation of spintronics based devices [98]. 
 

Magnetic vortex structures have already been reported in rare earth based multilayer 

films deposited by Langmuir-Blodgett (LB) technique [75]. Langmuir films of monolayer 

thickness are formed when amphiphilic (surfactants) molecules or nanoparticles are spread on 

water surface at the air–water interface. Multilayer stacks of amphiphilic fatty-acids attached 

with ions of rare-earth elements provide excellent 2D systems to study low-dimensional 

magnetic ordering since the characteristic in-plane separations between metallic ions are an 

order of magnitude smaller than the out-of-plane layer-spacing given by the hydrophobic tails 

(See Fig.1.9). 

It has been reported that 2D short-range ferromagnetic order with no spontaneous 

magnetization occur in the gadolinium stearate (Gd-St) LB films when a magnetic field is 

applied along any in-plane (xy plane) direction, whereas the moments remains paramagnetic 

if the field is applied along the out-of plane direction (z direction) [74]. 
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Figure 1.9: (a) Schematic of the organic and metallic lattice of LB monolayers at air-water interface along with 

the enlarged view of a metal-organic molecule. (b) Schematic out-of plane and in-plane structure of Gd-St 

multilayer LB film [75]. 

Further studies in gadolinium based LB films have predicted the existence of 

hexagonal lattice of spin vortices above a certain BKT transition temperature below which 

vortex and anti-vortex pairs annihilate to produce a homogenous phase with a saturation 

moment [75]. The magnetic properties of rare earth elements mainly in lanthanide series are 

generally determined by the localized 4f orbital and spin moments. The exchange interaction 

mediated by the hybridized 6s and 5d conduction electrons results in long-range magnetic 

ordering along with the existence of dipole-dipole long-range interaction among ions of a 

monolayer [75]. Apart from the ferromagnetic behaviour as observed in such systems, studies 

in Mn-St LB films have also revealed about the existence of anti-ferromagnetic ordering 

occurring in these 2D structures [76].    

 

Figure 1.10: (a) Schematic of spin configuration in a skyrmion [105], (b) real space image of skyrmions as 

observed in LTEM [106] and (c) reciprocal image of skyrmion lattice as observed from resonant X-ray 

scattering [107]. 
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Recently discovered magnetic skyrmions were first observed in bulk MnSi, FeCoSi 

and FeGe just a decade back ago [69]. These skyrmions are multi-atom vortex spin textures 

in which the atoms spin orientations change from one direction in the middle to the opposite 

direction at the periphery (See Fig.1.10). These structures are topologically protected with a 

topological number 𝑁 ≥ 1 and manifest as hexagonal lattice of spin vortices. Due to the 

topological stability from defects and pinning sites, skyrmions can be moved with 10
5
 times 

lower current density than conventional magnetic domains thereby making them 

technologically promising for energy efficient spinotronic applications such as skyrmion 

based ultra-dense storage, novel memory and logic applications as shown in Fig. 1.8 [70,71] . 

These structures are formed in very few magnetic materials till date in their bulk or in 

magnetic thin films. In bulk, skyrmions are generally formed in B20 compounds with non-

centrosymmetric crystal structure due to Dzyaloshinskii-Moriya (DM) interaction and 

exchange interaction. In thin films of FeGe, FeSi and FeGd skyrmions arises as a result of the 

dipolar interaction and magnetic anisotropy in presence of perpendicularly applied magnetic 

fields [72, 73]. 

  Skyrmions with topological number, N = −1 have been discovered in chiral and polar 

magnets and at ferromagnetic interfaces, in which the antisymmetric spin exchange 

interaction arises from relativistic spin–orbit coupling (Dzyaloshinskii–Moriya interaction). 

In a skyrmion, whole magnetic moments swirl from the south pole at the core to the north 

pole at the perimeter, encompassing a sphere. The hexagonal skyrmion lattice is 

thermodynamically stabilized by the hybridization of three helices lying within the plane 

perpendicular to the magnetic field in chiral-lattice magnets [99]. 

Merons (N = −1/2) and antimerons (N = +1/2) are topologically distinct from 

skyrmions (N = −1) and antiskyrmions (N = +1); in merons and antimerons, the magnetic 

moments in the core region point upwards or downwards, and those near the perimeter align 
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in-plane, producing degrees of freedom for magnetic helicity and polarity (Fig. 1.11a–d). The 

topological number N of skymions and antiskyrmions is determined by the product of the 

vorticity (the rotation direction of the in-plane component of the magnetic moments) and the 

direction of the magnetic moment in the core [99,100].  

 

Figure 1.11: LHS image, (a–d), Schematics of the magnetization textures in a core-up antimeron (a) and a core-

down meron (b), each having a vorticity of +1, and a core-up meron (c) and a core-down antimeron (d), each 

with a vorticity of −1. Coloured arrows indicate directions of the magnetic moments. (e) Theoretically predicted 

square (anti)meron lattice structure. (f), Real-space magnetization textures of the square (anti)meron lattice, 

observed through a Lorentz TEM [99]. RHS image, Upper panel: dissociation of a skyrmion lattice into a meron 

and antimeron pair. Lower panel: a skyrmion covers the sphere, whereas a meron covers only half the sphere 

[100]. 
 

1.5  Recent Developments 

During the last decade, much attention has been devoted to artificial layered magnetic 

materials which have revealed a large variety of fascinating new phenomena. The 

fundamental developments made such systems also of great interest from a technological 

point of view in the area of communication devices and storage media [62]. Stimulated by 

this physics resulting from the layering and reduction of the system size in the vertical 

direction, a natural extension was the venture into a further reduction of the lateral sizes and 

quite general into low dimensional systems of nanometer extent [109]. Apart from the simple 

ferromagnetic, antiferromagnetic and ferrimagnetic domains as observed in bulk magnetic 

materials complex domains of stripes, labyrinth, vortex, etc with competitive magnetic 

https://www.nature.com/articles/s41586-018-0745-3#Fig1
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interactions in the nanometer regime has been observed in 2D magnetic systems and studied 

in great detail [63, 64]. Very recently exotic spin structures like bubbles, skyrmions and 

merons has generated a lot of interest in understanding the underlying interactions giving rise 

to such novel entity [65, 66]. The control of the magnetic properties at nanometer length 

scales through a variation of the system dimensions has made these low dimensional 

magnetic structures interesting not only from a fundamental perspective, but also from a 

technological point of view. In contrast a variety of tantalizing new possibilities for devices, 

structured from magnetic low dimensional systems has only been reported in the literature 

over the last few years. Research and development of new magnetic structures has largely 

benefited from these potential applications, particularly in energy efficient spinotronic 

devices [67].   

With the advent of high brilliance synchrotron and neutron facilities around the globe, 

provide further insight into the structure and magnetic ordering in such nanometer sized 

objects both in real and reciprocal space which has not being realized before [69]. The major 

part of this thesis work is done by using X-ray scattering techniques in synchrotron facilities. 

In Fig. 1.12 we have shown a schematic of such a synchrotron storage ring showing the 

different components required for delivering X-ray photons with the desired specifications to 

the sample for investigating its various physical properties. In the storage ring the charged 

particles are bent into a circular path by a magnetic field produced by a bending magnet. 

Insertion device like Undulators are used for increasing the brightness of synchrotron 

radiation. It consists a succession of magnets of alternating polarity and is used as being 

inserted at the straight section between bending magnets. Light produced by a storage ring is 

introduced to the experimental endstations known as beamlines. There are many common 

components called “optics” in the beamline for arranging the light, such as “slit” to cut it, 

“mirror” to focus it and “monochromator” to get only specific wavelength of it. 
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Figure 1.12: A representative of a typical X-ray beamline using a third generation X-ray source. Bunches of 

charged particles (electrons or positrons) are circulated inside a storage ring (typical diameter around 300 m). 

The ring is designed with straight sections, where an insertion device, such as undulator, is attached. The lattice 

of magnets in an insertion device makes the particles to perform small oscillations which produce intense beams 

of radiation. This radiation then passes through a number of optical elements, such as a monochromator, 

focusing device, etc., so that a beam of radiation with the requisite properties is delivered to the sample. Typical 

distances are shown within the figure [108]. 

 

A wide diversity of two- and three-dimensional physical-chemical systems exhibit 

domain patterns in equilibrium. The different phases which give rise to a particular variety of 

domain patterns are stabilized by competing interactions and are described by periodic spatial 

variations of the relevant order parameter. The corresponding modulation period in general 

displays a dependence on temperature and applied fields. The prevalence of a small number 

of morphological features leads to patterns of remarkably similar appearance, regardless of 

the aspects of microscopic structure and interactions. Linear arrays of stripes and hexagonal 

arrays of bubbles are a universal feature in thin magnetic films, ferrofluids and also in 

Langmuir films. The modulation period is set by the relative magnitudes of the competing 
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interactions and can be modulated by varying parameters such as temperature and external 

magnetic, electric, or other fields. Apart from controlling the period of these condensed 

phases, the balance between the different competing interactions also determines the stability 

of the shapes realized by individual, isolated domains [77]. 

Another area of magnetism known by nanomagnetism, together with the 

understanding and design of complex multi-component novel magnetic nanostructures, is 

currently one of the promising frontiers in magnetism. Driven by the motivation of using the 

exchange bias effect for tuning the device characteristics in giant-magnetoresistance systems, 

strong efforts to study antiferromagnetic (AFM) films adjacent to ferromagnetic ones are 

currently being underway. This arrangement has lead to a wide variety of complex magnetic 

structures, such as, antiferromagnetism, spin-density waves, and frustrated spin-structures 

which constitutes the magnetic properties at the surfaces of thin films. Surface-sensitive 

techniques providing both high spatial resolution (< 10 nm) in real space along with a 

sufficient degree of magnetic sensitivity could give a great deal of insight into these 

phenomena. Unfortunately at present, such techniques are not routinely available. This makes 

understanding of domain boundaries or two-dimensional (2D) antiferromagnetism still novel 

field of research. Eventually the lower limit of a 2D AFM consists of a single magnetic 

monolayer (ML) of chemically equivalent atoms, where magnetic moments of the adjacent 

atoms at nearest-neighbor sites have opposite directions, deposited on a nonmagnetic 

substrate. Nearly a decade ago, Blugel et al. [78] predicted the existence of such 2D 

antiferromagnets, on the basis of first-principles calculations such as V, Cr, and Mn on noble-

metal substrates, However, experimental verification still possess a great scientific challenge 

because the antiferromagnetism is at the atomic scale plus the total magnetization is zero, and 

the Neel-temperature TN is unknown. Although there have been a large number of attempts to 
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verify that antiferromagnetism does exists in these structures and some supporting evidence 

[79] has been reported till date, unambiguous proof is still required. 

Layered van der Waals structures have shown sharp variations of their physical 

properties as they are thinned down to a single mono-molecular layer. These include: (1) 

transitions involving indirect to a direct bandgap material, thus opening new opportunities for 

optoelectronic based applications: (2) variations of multi-body quantum criticalities, such as 

charge density wave (CDW) or superconducting transitions; and (3) field tunability of many-

body systems. The rich variety of physical properties available in two-dimensional (2D) 

materials and the potential to arbitrarily combine materials of atomically sharp interfaces 

makes them promising candidate for designing heteromaterials that exhibit novel properties 

or enabling new device architectures [80-91]. 

Ferromagnetic materials of monolayer thickness are an important addition to the 

family of 2D materials. Such materials have great future in spintronics based devices, which 

makes the use of the spin degree of freedom of electrons rather than their electrical charge. 

As a result devices rely on nanomaterials of dimensions smaller than the spin relaxation 

length and controlled interface properties. This potential was realized soon after the discovery 

of graphene, the first true 2D material, and further attempts have been made to induce 

magnetism by introduction of ferromagnetic materials, adsorption, defects or doping of 2D 

materials. However due to low magnetic moments such disordered systems are not suitable 

for applications. Accordingly, layered materials having intrinsic magnetic ordering have been 

sought, mainly focusing on materials with dominant ferromagnetic interaction in the bulk. 

Recent advances in thinning such bulk-ferromagnetic materials to achieve single or bilayer 

thickness have demonstrated the existence of ferromagnetic order even to the ultrathin limit, 

despite pioneering work by the Mermin–Wagner theorem that demonstrates that long-range 

magnetic order cannot exist at finite temperatures in 2D materials [92-97].        
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1.6  Outline of the Thesis   

Different experiments and the consequent theories outlined in the previous sections 

indicate the development of low dimensional magnetic ordering both from the fundamental 

and applications point of view. It is also understood that recently considerable amount of 

attention has been given to layered magnetic Van-der Waals structures especially in anti-

ferromagnetic systems. Another fascinating subject that we have discussed consists of 

topologically protected magnetic state of vortex structures arising due to long range dipole 

interaction in 2D systems. This topologically protected magnetic structure has attracted 

tremendous interest due to their applications in energy efficient spintronic devices. In this 

Ph.D work the morphology and magnetic properties of low dimensional magnetic structures 

present in magnetic thin films are investigated and a short outline of the different chapters 

present in context of the scientific investigations are discussed in the subsequent paragraphs.   

This thesis work covers two distinct systems, first one is a Fe/Gd multilayer structure 

grown by DC magnetron sputtering technique and the second one consists of rare earth (Gd, 

Er and Ho) multilayer thin films grown by Langmuir-Blodgett (LB) method. For this, first in 

chapter 2 I have given the detailed description of the various experimental tools used in this 

thesis work to characterize the two different systems with special emphasis given on resonant 

coherent magnetic X-ray scattering technique. 

The behaviour of magnetic domains in stripe and skyrmion phases of a Fe/Gd 

multilayer film as a function external field and temperature has been discussed in chapter 3. 

A detailed X-ray scattering investigation for studying domain fluctuations along with the 

scaling behaviour in both stripe and skyrmion phases has been carried out for the first time 

which gives insights into the morphology of the different magnetic structures. We 
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demonstrate the existence of phase boundaries and underlying critical points in the stripe and 

skyrmion phases. The magnitude and frequency of abrupt domain jumps observed in the 

stripe phase are dramatically reduced in the skyrmion phase owing to its topological 

protection. We found that distinct scaling and universality classes are associated with these 

domain topologies. Our results provide an incisive way to probe and understand phase 

stability in systems exhibiting complex spin topologies. 

To understand the incommensurate-commensurate transitions and its significance in 

Devil‟s staircase like systems we have analysed the evolution of the magnetic stripe phase as 

a function of applied magnetic fields at different temperatures of a Fe/Gd thin film in chapter 

4. We observe modulated periodicities in the stripe phase as the field is varied and the 

staircase structure smears out with temperature in conformation with theoretical predictions. 

The behaviour of the stripe periodicity shows discrete random behaviour reminiscent to 

Devil‟s staircase like features which has been observed in very few systems till date will also 

be discussed.   

 

To investigate the nature of magnetic interactions present in rare earth multilayer LB 

films when the magnetic head group of the molecules are changed from gadolinium, erbium 

to holmium, we have done a detailed study covering both the structural and magnetic 

properties of the different LB multilayer systems in chapter 5. We show there that 2D 

magnetic ordering along the in-plane direction of multilayered LB films changes from 

ferromagnetic to anti-ferromagnetic as the rare-earth magnetic ion is changed from 

Gadolinium (Gd) to Holmium (Ho) even though both are iso-structural. The results of the 

magnetization study presented here show that the Ho based LB films exhibit an in-plane anti-

ferromagnetic ordering and unlike Gd the saturation moment is found to be almost 

independent of temperature indicating the possibility of absence of spin vortex structures.  
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                            2 

 

 

n the last few decades significant improvement in experimental techniques related to 

structural, electrical and magnetic properties of ultra-thin films along with the 

development of sophisticated technology for growing ultra-thin films with precision of 

sub-monolayer level has led to a outstanding development in low-dimensional physics. In this 

chapter we will discuss about the different experimental techniques, used in the thesis work 

and their basic working principle related to growth and characterization of magnetic thin 

films. Firstly we will discuss in the subsequent sections about the characterization techniques 

used for investigating the magnetic properties and magnetic structure in multilayer magnetic 

thin films. 
2.1  Magnetization measurement 

SQUID VSM 

SQUID-VSM is a hybrid system that couples together the sensitivity of the SQUID 

and speed of VSM to measure the magnetic moment. A SQUID magnetometer is one of the 

most efficient and sensitive method of measuring magnetic properties. In particular, it is the 

I 

Experimental Methods 
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only method which directly allows one to determine the overall magnetic moment of a 

sample in terms of its absolute units. The superconducting quantum interference device 

(SQUID) consists of two superconductors separated by thin insulating layers to form two 

parallel Josephson junctions.  

The main components of the SQUID magnetometer as shown in Fig. 2.1(b) are:  

(a) Superconducting magnet (with programmable bipolar power supply);  

(b) Superconducting detection coil which is coupled inductively to the sample;  

(c) A SQUID connected to the detection coil. 

(d) Console panel with necessary electronics to amplify and display the signal. 

Principle: The measure of the flux change through a pick-up coil system associated with a 

SQUID is based on the flux quantization within a superconducting loop. This signal depends 

on the magnetic moment produced by a sample which gets magnetized in the magnetic field 

produced by a superconducting magnet.  

 

Figure 2.1: (a) Phase difference of the current paths. (b) Schematic of a SQUID [88]. 

 

The phase difference of two current paths around a loop in Figure 2.1 is based on the flux 

through the loop (See Fig.2.1 (a)):  

∆∅ =
𝑞∅

ℏ
,                    (2.1) 

http://hyperphysics.phy-astr.gsu.edu/HBASE/Solids/Squid.html#c3#c3
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To avoid scattering of these two paths, the difference must be multiples of 2π, thus limiting 

the flux allowed within the superconducting loop to multiples of Φ0.  

∅ =
𝑛𝑕

𝑞
=

𝑛𝑕

2𝑒
= 𝑛∅0 = 2.07 × 10−15  𝑊𝑒𝑏𝑒𝑟,                    (2.2) 

The magnitude of flux quantum (called also as fluxon) is tiny. Therefore, the sensitivity of 

the SQUID is very high. 

Working method: As the sample is moved up and down it generates an alternating magnetic 

flux in the pick-up coil .The magnetic signal of the sample is obtained via a superconducting 

pick-up coil with 4 windings (Fig. 2.1(a)). This coil is, together with a SQUID antenna (red in 

Fig. 2.1(b)), part of a whole superconducting circuit transferring the magnetic flux from the 

sample to an rf SQUID device which is located away from the sample in the liquid helium 

bath. This device acts as a magnetic flux-to-voltage converter (blue in Fig. 2.1(b)). This 

voltage is then amplified and read out by the magnetometer‟s electronics (green in Fig. 

2.1(b)). 

VSM: This method is governed by the Faraday's law of electromagnetic induction [163] 

which states that the e.m.f. induced in a circuit is equal to the rate of change of magnetic flux 

linking the circuit having cross-sectional area A and N number of turns, i.e., 

𝑉 =  −𝑁 𝐴
𝑑𝑩

𝑑𝑡
                    (2.3) 

where B is the magnetic induction in the coil. Now if the coil vibrates, then the e.m.f. 

generated can be obtained by integrating above equation over a time period – 

 𝑉 𝑑𝑡 = −𝑁𝐴  𝑑𝑩 = 𝑁𝐴𝜇0𝑴                 (2.4) 

This principle of magnetic flux measurement is utilized in Vibrating Sample Magnetometer 

(VSM). 
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2.2  Scattering techniques for Magnetic structures 

An important aspect of any magnetic system is to understand its morphology from 

both structural and magnetic point of view. Low dimensional magnetic structures can be 

studied through different scattering techniques by employing X-ray photons, neutrons or 

electrons. Here in this section we will mainly discuss about resonant X-ray scattering 

technique while a brief overview of the polarized neutron reflectivity (PNR) and Lorentz 

TEM will be presented at the end. 

 

 

Figure 2.2: Graph showing the enhancement of the brightness of X-ray sources with time (black) in comparison 

to the development of the areal magnetic storage density in computers (gray). Moore‟s law, representing the 

doubling of the transistor density on an electronic chip every two years, is shown by the dotted curve. The 

brightness of X-ray is plotted as an average brightness on the left and has been aligned to the right scale of peak 

X-ray brightness at the point indicating 3rd generation synchrotron radiation sources [66]. 
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Resonant X-ray Scattering 

It is well know that although charge scattering remains the most dominant 

mechanism, the electric and magnetic field of the X-ray also interact with the magnetic 

moment of electron giving rise to magnetic scattering. The magnetic scattering cross section 

was calculated for the first time by Gell-Mann and Goldberger [15]. Later Platzman and 

Tzoar calculated the dependence of scattering cross section on the scattering vector and 

predicted the possibility to observe magnetic structures by using X-rays [16]. Ultimately in 

the year of 1972, magnetic X-ray scattering was for the first time experimentally observed by 

de Bergevin and Brunel in AFM NiO [17]. In comparison to charge scattering cross section, 

the magnetic scattering cross section is reduced by a factor of (h/m0c
2
)
2
 for a single electron. 

For typical X-ray energies of 10 keV this factor is of the order of 10
-4

. Scattering from atoms 

further reduces the magnetic-scattering cross section because only unpaired electrons take 

part in the magnetic-scattering process. Taking all these factors into account, the magnetic 

scattering intensity is typically 5 to 6 orders of magnitude less than the charge scattering 

intensity. Despite this serious drawback, magnetic X-ray scattering has made a rapid progress 

within the last few decades with the routine availability of high brilliance synchrotron 

radiation sources (See Fig.2.2). Tunability of the photon energy of synchrotron radiation has 

given rise to new technique of resonant (magnetic) X-ray scattering (see Fig. 2.3), which 

makes use of the large enhancement of the scattering cross section near absorption thresholds. 
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Figure 2.3: Schematic of the scattering geometry in resonant X-ray scattering and the detailed picture of the 

scattering process at the electron level [90]. 

 

The theoretical description of magnetic scattering process follows the treatment and 

the notation by M. Blume using quantum mechanical basics of magnetic scattering [18]. The 

detailed derivation of the scattering cross-section can be found in the paper by M. Blume. 

The scattering cross-section is derived by a perturbation treatment to second order of the 

transition probability of the interaction Hamiltonian (Hint) given by the golden rule: 

𝑆𝐶 =
2𝜋

ℏ
| 𝑓 𝐻𝑖𝑛𝑡  𝑖 +   

 𝑓 𝐻𝑖𝑛𝑡  𝑛   𝑛 𝐻𝑖𝑛𝑡  𝑖 

𝐸𝑖−𝐸𝑛
 |𝑛

2

𝛿(𝐸𝑖 − 𝐸𝑓) 
                                (2.5)                                 

with the initial state | 𝑖 , the final state | 𝑓 , the intermediate states | 𝑛  and the corresponding 

energies Ei, Ef, En respectively.
 
Equation 2.5 gives rise to resonant scattering with a huge

 

contribution if the energy denominator in the equation becomes very close to resonance. The 

excitation of inner core electrons into vacant intermediate states makes the scattering 

dependent on the constituent element and its chemical surroundings (See Fig.2.3). As a result 

of magnetic exchange splitting
 
and spin polarization terms, resonant scattering cross-section 

is also sensitive to magnetism. This magnetic scattering cross-section part will be discussed 

in more details in the following sections. 
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Most of the magnetic scattering experiments in this thesis were carried out by 

utilizing resonance. At resonance condition, when the photon energy is tuned very close to an 

absorption edge, there is an extra contribution of 𝐹𝑟𝑒𝑠
  to the scattering amplitude. Within a 

simple one-electron framework, an incident photon stimulates an inner-shell electron to an 

empty state above the Fermi level. The excited electron decays through emission of a 

scattered photon of the same energy as the incident photon. Figure 2.4 below shows the 

different possible phenomena that happen when a photon interacts with an atomic electron. 

 

Figure 2.4: Description of the quantum mechanical picture of the interaction of a photon with an atomic 

electron. (a)Photoelectric absorption and (b)Thomson scattering. (c)Resonant scattering is a second-order 

process and happens via an intermediate electronic state. However, as resonant scattering is a virtual process, 

and does not occur in the two discrete steps as suggested here [70]. 
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In comparison to non-resonant magnetic scattering, calculation of the resonant-

scattering amplitude is not so trivial. In case of electric dipole transitions E1, [84], the 

scattering amplitude can be written as the sum of three separate terms [96]. 

𝐹 𝑟𝑒𝑠
𝐸1 (𝑕𝜗) = 𝐹0

  𝑕𝜗 + 𝐹𝑐𝑖𝑟𝑐
  𝑕𝜗 + 𝐹𝑙𝑖𝑛

 (𝑕𝜗)                (2.6) 

Where 

𝐹0
  𝑕𝜗 = −  

3

4𝜋𝑘
  ℰ ´ ∙ ℰ   [𝐹+1

1 + 𝐹−1
1 ]                         (2.7) 

𝐹𝑐𝑖𝑟𝑐
  𝑕𝜗 = −𝑖  

3

4𝜋𝑘
  ℰ ´ × ℰ   . 𝑚 [𝐹−1

1 − 𝐹+1
1 ]               (2.8) 

𝐹𝑙𝑖𝑛
  𝑕𝜗 = −  

3

4𝜋𝑘
  ℰ ´ ∙ 𝑚  (ℰ ∙ 𝑚 )[2𝐹0

1 − 𝐹+1
1 − 𝐹−1

1 ]                           (2.9) 

here, the 𝐹ℓ
1 are energy-dependent dimensionless resonant oscillator terms for dipole 

transitions due to change in the magnetic quantum number ℓ. The first term, 𝐹0
  𝑕𝜗 , is 

independent of the local magnetic direction 𝑚 . Similarly like that of Thomson scattering it 

does not change the polarization direction, and is expressed as the inner product of the 

polarization vectors of the incoming and the outgoing light, ℰ  and ℰ ´ respectively. This gives 

rise to   ´ or   ´scattering, where  signifies the X-ray-polarization direction 

perpendicular and  denotes parallel to the scattering plane spanned by the wave vectors of 

the incident and scattered X-rays. This contribution leads to what is known as anomalous 

scattering. The second term arises due to the difference in the resonant oscillator strengths, 

𝐹ℓ
1, where ℓ is the projection of the photon spin on the local magnetic axis 𝑚   (unit vector). 

With the selection rule for photon absorption ℓ = MJ = ±1, this term is of circular dichroic 

nature. After scattering, the direction of polarization is rotated by some angle, leading to 

finite contributions in ´or ´components of the scattered light (  ´ or   ´ 

scattering). The scattering amplitude contains 𝑚  as a linear term, leading to peaks at the same 
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points in reciprocal space as those arising from the non-resonant scattering, which is also 

linear in 𝑚  as well. The last term appearing in the scattering amplitude is of linear dichroic 

nature. While the projection on local magnetic axis appears twice, this contribution is 

quadratic in 𝑚  [96]. 

The resonant E2 or the electric quadrupole amplitude contains terms in 𝑚  from zero 

up to fourth order with 13 different contributions. Therefore, E2 resonant scattering can 

contribute to the main Bragg reflections and satellites up to the fourth order [84]. Hence the 

scattering amplitude is the coherent sum of contributions from E1, E2, . . . events. In case of 

strong dipole resonances like the MIV,V absorption thresholds of the lanthanides, the 

contributions due to the electric quadrupole or higher transitions are very weak as compared 

to E1 and can be neglected. By tuning the energy of the photon to a resonance, an 

enhancement in the magnetic-scattering signal happens if there is a difference in the cross 

section between spin-up and spin-down electronic states. This difference can arise due to 

number of ways making the identification of the exact mechanism not as straightforward as in 

case of non-resonant scattering. The first and most apparent reason is the finite spin 

polarization of the partially filled electronic states into which the core electron is excited. If 

there are more unoccupied states of one spin direction in comparison of the other, then there 

is a higher transition probability to the first ones, leading to magnetic contrast in the 

scattering cross section. This is exactly the case for the 3d states of 3d-transition metals (LII,III 

absorption thresholds) and also for the 4f and 5f states of lanthanides and actinides (MIV,V 

absorption thresholds), respectively, where a resonant enhancement of the magnetic-

scattering signal can be expected. A second possible reason for the enhancement in magnetic 

signal arises due to the difference of overlap integrals between spin-up and spin-down states. 

This occurs from polarization via hybridization by another strongly polarized state [85]. It 

was found by Van Veenendaal et al. that the difference in the spatial extent of the spin-up and 
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spin-down 5d states owing to interaction with the strongly polarized 4f states makes a 

dominant contribution to the observed signal at the Ho LII,III thresholds. Excitation into 

polarized 5d states results in resonant enhancement of the magnetic signal by a factor of 50 as 

compared to off-resonant scattering. In fact, it was the LIII threshold of Ho at which the first 

observations of resonant magnetic scattering were made by Gibbs et al. [81]. Finally, if the 

resonant excitation energies, or lifetimes of the spin-up and spin-down channels are different, 

there might also be a magnetic contrast, i.e. an enhancement of the magnetic signal can occur 

as is seen in case of a Fe/Gd thin film (See Fig.2.5). Apart from the situations described 

above, this can occur even with a totally empty intermediate state, where the assignment of a 

finite polarization in the valence shell might not be correct [86]. Experimental evidence of 

this effect has been observed at the K threshold of Mn in the orbitally-ordered material 

LaMnO3 [87]. 

 

Figure 2.5: A Representation of Gd M5 resonant X-ray scattering patterns, square root scale. Scale bars 

represent a transfer momentum of 0.041 nm
-1

. (a) Scattering from stripe domains with the first, second, and third 

order stripe peaks visible. Parts (b), (c) illustrate evolution of skyrmion bound pair lattice with magnetic field 

[89]. 

 

 In an interesting work published by M. Blume (1985), the cross section for X-ray 

scattering was calculated by including magnetic terms and is derived in a way that allows the 

effects of electron binding to be taken into consideration. By starting with the nonrelativistic 

Hamiltonian equation for electrons [to order (v/c)
2
] and the quantized electromagnetic field, 

they produce a general formula for the cross section including virtually all types of scattering 
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phenomena within proper limits (in the "kinematic" or Born approximation), including 

Thomson, Rayleigh, Bragg, thermal diffuse, Raman and magnetic scattering, and also 

anomalous dispersion. 

The pure charge scattering by X-ray photons is greater than that of pure magnetic scattering 

by a factor given by [18] 

𝜍𝑚𝑎𝑔

𝜍𝑐𝑕𝑎𝑟𝑔𝑒
≅ (

ℏ𝜔

𝑚𝑐 2)2 𝑁𝑚
2

𝑁2
 𝑠 2 𝑓𝑚

2

𝑓2                  (2.10) 

where „Nm‟ is the number of magnetic electrons per atom and „N‟ is the number of electrons 

per atom. „fm‟ and „f‟ are the magnetic and charge form factors. For Fe and 10-keV photons, 

𝜍𝑚𝑎𝑔

𝜍𝑐𝑕𝑎𝑟𝑔𝑒
≅ 4 × 10−6 𝑠 2 

Also, it is understood that the magnetic form factor „f‟ of an atom decreases much more 

rapidly than the charge form factor as the magnetization density is more diffuse spatially than 

is the charge density which reduces the ratio even further. Finally, the term  𝑠 , which goes to 

zero at the Curie temperature, is unity only at low temperatures. 

 

Figure 2.6: A typical wavefunction and form factor plots of the 1s state for atomic number (Z=1 (dashed lines)) 

and Z=3 (solid lines) [70]. 

 

On the other hand the ratio of magnetic terms for X-rays and neutrons is approximately  

𝐼0
𝑥𝜍𝑥

𝑚𝑎𝑔

𝐼0
𝑛 𝜍𝑛

𝑚𝑎𝑔
≅

1

4
(

ℏ𝜔

𝑚𝑐 2)2 𝐼0
𝑥

𝐼0
𝑛 ≈

1

4
× 10−4 𝐼0

𝑥

𝐼0
𝑛                           (2.11) 
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Neutron sources can produce 10
8
 neutrons/sec on a sample. An X-ray source usually gives 

10
12

 photons/sec (monochromatic) will give comparable X-ray and neutron peaks.  

The X-ray pure magnetic scattering should be observed clearly in structures (like 

antiferromagnets or spirals) in which the Bragg peaks do not occur at the same point in Q-

space where the dominant charge scattering happen. The detailed analysis scheme for 

calculating the scattering cross-section is given in the paper by M.Blume (1985). Here we 

have given the final simplified representation of the scattering cross-section by taking into 

account only the spin-dependent terms. Thus the magnetic scattering amplitude is 

proportional to 

[ℏ2𝜔2/𝑐2] (< 𝑓|𝑯+(𝒌’)|𝑚 >< 𝑚| 𝑯(𝒌)|𝑖 >)/(𝐸𝑎 − 𝐸𝑐 +  ℏ 𝜔 −  𝑖 𝛤/2)                (2.12) 

At resonance conditions; ℏ𝝎 ≈  𝑬𝒂 − 𝑬𝒄, so the scattering amplitude reduces to 

2[ℏω/c] (< 𝑓|𝐇+(𝐤’)|m >< 𝑚| 𝐇(𝐤)|i >) × ( i 
ℏω

Γc
)                              (2.13) 

The factor 
ℏω

Γc
 can be as large as 10

4
.  

 

Polarized Neutron Reflectivity (PNR) 

Neutron scattering techniques have contributed a lot to our knowledge regarding the 

microscopic magnetic and structural properties of solids, starting with the pioneering work on 

anti-ferromagnetic system [85]. Polarized neutron reflectivity (PNR) has been used [67, 75-

84] to investigate the magnetization profiles along the out-of plane direction as a function of 

depth in thin films and multilayer structures by comparing the reflected intensity due to two 

anti-parallel neutron spin states. The interaction of the incoming neutrons with the scattering 

systems is generally comprised of two parts, [67-74, 84], viz 

(1) Incident neutron interacts with the nuclei of the target system through purely nuclear 

forces, and 
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(2) Interaction arising due to the magnetic moment of the neutron and the magnetic moment 

of the electrons present in the target system. 

The interaction between the neutron magnetic moment and the Coulomb field of the electrons 

and nuclei in most cases can be neglected with respect to the purely nuclear and magnetic 

interactions as detailed above. 

In a PNR experiment, the incident neutrons are polarized either parallel (+) or antiparallel (-) 

to an externally applied magnetic field H. The magnetization in the sample induces a change 

in spin state of the scattered neutrons. The final state of the neutrons is analyzed in terms of 

the polarization of the incident neutrons. As a result four reflectivities R
++

, R
--
, R

-+
, R

+-
 can be 

measured depending on the spin state of the incident and scattered neutrons [67, 75-83]. 

The reflected neutrons thereby carry information regarding the refractive index, n

(z) of the 

system. The refractive index profile containing both the nuclear and magnetic scattering 

terms and is expressed as 

𝑛(𝑧)  =  1 −
𝜆2

2𝜋
(
𝑏

𝜐
± 𝑐𝜇)                   (2.14)   

 

where b/v is the complex nuclear scattering amplitude per unit volume, c=mnμn /2ℏ2 

(=2.310
−10

 Å
−2

 Oe
−1

) and μ(μx, μy, μz) is the magnetization.   

 

Lorentz TEM 

Around 40 years ago TEM was first used to observe magnetic domain structures using 

the Fresnel or defocus mode. Since then Lorentz microscopy has been extensively used to 

study magnetic domain in magnetic thin films and multilayer structures [86].    

Magnetic structures are most commonly explored in the TEM by utilizing one of the 

modes of Lorentz microscopy. This standard name is used to describe all the imaging modes 

in which the contrast is generated due to the deflection experienced by electrons as they pass 

through a region of magnetic induction B [87]. The Lorentz deflection angle L is given by 
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𝛽𝐿 = 𝑒𝜆𝑡(𝑩 × 𝒏)/𝑕                                                                                                            (2.15) 

here B is the induction averaged in the direction of an electron trajectory, n is a unit vector 

parallel to the incident beam, t is the specimen thickness and  is the wavelength of electron.             

 

2.3  Coherent X-ray Scattering 

Microstructure plays a dominant role in determining physical properties of metals. 

Most of the recent advances in material technology consist of innovative treatments designed 

to control and improve this microstructure. X-rays scattering studies, in particular, provides 

us a direct probe to the nature of microstructure. The availability of high brilliance 

synchrotron sources comprising of sufficient volume of coherent X-ray flux to perform time-

resolved diffraction experiments has been perceived in the last few decades. These 

measurements have allowed further insights into the morphology and dynamics of 

microstructure. Generally in a diffraction experiment, one observes interference due to 

scattered waves coming from a small 3-dimensional volume, known as coherence volume. 

For typical X-ray scattering geometry, the detected intensity results due to an addition of the 

contributions from a large number of coherence volumes and each such volume has 

dimensions of less than a micron. In most cases, the local configuration of each coherence 

volume cannot be determined exactly since the experiment measures an ensemble average of 

the sample properties over the irradiated region. Information regarding the morphology of the 

structure is available by choosing the diffraction volume equal to the coherence volume. In a 

simplified image, this corresponds to the observation of the Fourier transform of the sample‟s 

real space configuration. The intensity in the momentum space has presence of strong fringes, 

irregular resulting due to summing a set of random amplitudes, called “speckles”, provided 

one has sufficient diffracted amplitude. The coherence volume is generally divided into 



93 | P a g e  

 

                Low Dimensional Magnetic Structures 
 

transverse Λt and longitudinal Λl (or temporal) coherence parts (See Fig.2.7). Λt is related to 

the divergence () of the beam. A rough generalization, valid for diffraction limited beams 

coming through a slit or pinhole gives [25]: 

 × Λt    λ/2                   (2.16) 

For X-rays with λ  1.5 Å and   10 μrad, Λt is 10 μm.  

Λl is directly related to the monochromaticity of the X-ray photons: 

Λl    λ
2 

/ (2 · δλ)                  (2.17) 

Where δλ/λ is the relative bandwidth, which yields Λl of the order of 0.5 μm with a Si(111) 

monochromator. Nowadays synchrotron radiation source (SRS) provides beams of high 

intensities in this angular range and thus makes it possible of carrying out experiments with 

fully (or at least partially) coherently irradiated samples [26]. A simple expression connecting 

the available coherent intensity Ic to the SRS brilliance B is given by: 

Ic = B (λ/2)
2
 (δλ/λ)                                                              (2.18) 

For an undulator beamline using third generation sources (APS, ESRF, Spring 8, Soleil, Petra 

III, Diamond, SLS, . . . ), B ∼ 10
20

 ph/(mrad
2
mm

2
 s) for a 0.1% bandwidth. This gives an 

approximate of Ic ∼ 10
11

 ph/s with a Si(111) monochromator at λ = 1.5 Å. In practice, Ic  

10
10

 ph/s, but coherent experiments can still be carried out with as little as Ic 10
6
 ph/s. 
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Figure 2.7: Representations of longitudinal and transverse coherence lengths. (a) Two plane waves with 

different wavelengths are emitted along the same direction. For better understanding we have shown the waves 

displaced from each other along the vertical direction. After a distance LL, the longitudinal coherence length, the 

two are out of phase by a factor of π. (b) Two waves with the same wavelength are emitted from the ends of a 

finite sized source of height D [70]. 

 

Observation of speckles 

 In a typical coherent experiment, the irradiated volume is kept generally of the order of 

the coherence volume. For maintaining transverse coherence condition, either small size 

samples are studied (from a few μm to a few nm) or by limiting the size of the transverse 

beam by slits or pinholes of diameter φ ≈ Λt . Longitudinal coherence allows one to limit the 

size of the irradiated region such that path length differences across the irradiated sample L 

remains of the order of Λl.   
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Figure 2.8: (a) Small Angle X-ray Scattering (SAXS) observation of a speckle structure in the diffraction ring 

of an Al–Li decomposed alloy. The central black region is the shadow due to the beam stop to prevent the main 

beam from damaging the detector [28-31].  (b) shows a typical profile observed across one side of the ring. (c) 

Image of the (001) superstructure peak from a Cu–Pd L12 ordering alloy. δq (in nm
−1

 units) is the distance from 

the superstructure peak position in the reciprocal lattice. Enlarged figures from each selection square are drawn 

at the right side in order to show the numerous speckles [35]. 

 

Detection 

The interference pattern resulting in the speckles, gives them a typical angular size 

which primarily depends on the beam divergence and also on the domain size. Thus for the 

observation of these speckles, one requires a high resolution detector having an angular 

aperture ´ of the order of the beam divergence . In such small solid angle, the detected 

intensity may be low and the use of area detectors is highly recommended. Pixel sizes of 20 

μm are standard for a CCD chip and direct illumination CCDs are frequently used in coherent 

scattering experiments [25-27]. These CCDs are characterized by low readout frequencies 

(less than a few MHz) and degrade slightly with radiation exposure.  

Speckles in small angle X-ray scattering 

In material science problems, small angle scattering (SAXS in the case of X-rays) 

gives important information on the size of inclusions which contribute to sample 
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strengthening. In a SAXS experiment, with transmission geometry, two terms contribute to 

L: 

L = 2 · φ ×θ                  (2.19) 

and 

L = 2 · e ×θ
2
                   (2.20) 

Where L is the length of the sample irradiated, φ is the beam size, θ is the scattering angle 

and e is the thickness of the sample. 

Using a Si (111) monochromator with L smaller than Λl, SAXS experiments can still be 

carried out by using the 1% bandwidth “pink beam” obtained by filtering a harmonic of an 

undulator [32–34]. 

When the diffraction volume is large in comparison to the coherence volume than the 

beam is said to be partially coherent. Such beams results in reduced fluctuations in their 

speckle pattern. An incoherent beam can be considered due to the outcome of large size of 

the diffraction volume that the speckle contrast cannot be observed. Speckle contrast β can be 

estimated from the variations of the intensity, as compared to an incoherent SAXS intensity 

S(𝑞 ). For isotropic scattering 

1+ β(q) = 
 𝐼(𝑞)2 −𝑆(𝑞)2

𝑆(𝑞)2                  (2.21) 

In this equation, the “1” arises because of Poisson noise and the averages are over regions 

with the same magnitude, |(𝑞)     |. This means that S(𝑞 ) has to be measured under equivalent 

conditions.  
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In some papers, the speckle “visibility” is defined, as √β. These speckles correspond to 

averaging over 1/β 5 coherence volumes. In experiments involving speckles, improving the 

coherence significantly lowers the available intensity, and thus optimizing the setup can 

considerably improve the signal to noise ratio [24].  

Speckles at large angle 

In the locality of a Bragg peak, at large θ, the condition implied by Eq. (2.20) is 

satisfied only if the longitudinal dimension of the diffracting volume is a few microns. This 

can be achieved for thin enough samples or by studying strongly absorbing samples in the 

Bragg reflection geometry. If the absorption length is μ
−1

, one writes: 

L = 2×μ
−1

 sin
2
θ                  (2.22) 

An example is given by the superlattice peak of the Cu–Pd ordering alloy [35]. In this alloy, 

the L12 ordered structure induces a (001) superstructure peak. The ordering dynamics is 

slow, and in a conventional diffraction experiment, the (001) peaks are broadened by the 

presence of various antiphase domains. In a coherent scattering experiment, this superlattice 

peak displays speckles as shown in Fig. 2.8(c). 

In Fig. 2.8(c), incoherent scattering is varying slowly as the domains coarsen. An 

approximation of β  0.044 can be obtained from Eq. (2.21) by studying the speckle 

variations of a single image (see Fig. 2.8(c)). Here, L  1 μm from Eq. (2.22), which is 

appreciably larger than Λl  0.5 μm, and this reduces β from 0.25, as measured in a SAXS 

configuration to 0.044. 
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2.3.1  Beamline 12.0.2 at ALS 

 

Figure 2.9: An image of the X-ray coherent beamline 12.0.2 at the advanced light source, USA. 

 

The availability of high-power spectrally and spatially coherent soft X-rays would 

facilitate a wide variety of experiments as this energy region contains several important K 

and L absorption edges. Specifically, there are the carbon and oxygen K edges that are 

critical for biological imaging in the water window and the L edges of magnetic materials 

iron, nickel, and cobalt for which imaging and scattering studies can be performed. The 

coherent end-station beamline at ALS is a high tunable, spatially and spectrally coherent soft 

X-ray undulator branchline (See Fig.2.9 and Fig. 2.10). Using the third harmonic from an 8-

cm period undulator, this branch delivers coherent soft X-rays with photon energies ranging 

from 200 to 1000 eV. 
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Figure 2.10: Image of the beamline layout of the coherent soft X-ray endstation at the ALS [91]. 

 

                                                     TABLE 2.1 

 

 

2.3.2  Characterization of coherence 

A wave normally incident on a circular aperture will produce an airy intensity 

distribution in the far field if it has a sufficient level of spatial coherence [37]. As a first-order 

measurement of the spatial coherence of the beamline, we will look at the far-field patterns 

generated by the 2.5- μm diameter pinhole. The far-field patterns are recorded on a 1
”
  1”

, 

1024  1024 pixel (24.8 μm/pixel) charge-coupled device (CCD) camera (See Fig.2.11).  

 

[91] 
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Figure 2.11: Airy pattern and its cross section recorded using a 2.5-μm diameter pinhole at the focal plane of 

beamline 12.0.2 at the ALS. Picture was recorded at a wavelength of (a) 2.48 nm (500 eV) with an exposure 

time of 200 msec and (b) 2.07 nm (600 eV) with an exposure time of 1s [91]. 

 
 

 

Double-Pinhole Characterization 

The magnitude of the complex coherence factor of the soft X-ray branchline was 

measured using the classical Thompson and Wolf experiment [38] using the Young‟s double-

slit setup [39] as has been discussed at short wavelengths by [40-44]. In this experiment, the 

Young‟s slits are replaced by pinhole pairs placed at the focal plane of the beamline to better 

characterize the two-point spatial coherence. The soft X-rays pass through the pinholes and 

then propagate 1.44 m to the far-field region where they are detected on the 1
”
  1

”
 CCD 

camera. 

The visibility can be described as the sharpness of the fringes or [45] 

Visibility = 
𝐼𝑚𝑎𝑥 −𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 +𝐼𝑚𝑖𝑛
=

2 𝐼𝑃1𝐼𝑃2

𝐼𝑃1+𝐼𝑃2
 𝜇12                          (2.23) 

 

for the quasi-monochromatic case of undulator radiation passed through a monochromator 

where Imax and Imin are the maximum and minimum intensity of the fringe pattern, 

respectively, and I
(P1)

 and I
(P2)

 are the intensities on each of the pinholes. If the double 

pinholes are centered about the incident radiation such that I
(P1)

 = I
(P2)

, then the visibility is 



101 | P a g e  

 

                Low Dimensional Magnetic Structures 
 

simply equal to the magnitude of the complex coherence factor μ12. Figure 2.12-2.14 shows a 

detailed description of the measured double pin-hole pattern as function of pin-hole 

separation, energy and pin-hole diameter. 

 

 

Figure 2.12: Measured two-pinhole interference patterns at a photon energy of 500 eV (2.48 nm) and their 

respective lineouts for vertical pinhole separations of (a) 2 μm, (b) 6 μm, and (c) 8 μm. Each individual pinhole 

of the two-pinhole pairs has a diameter of 450 nm to ensure a spatially coherent wavefront over the individual 

pinhole. (d) Measured magnitude of the complex coherence function versus the pinhole separation. Least square 

error Gaussian curve is fitted to these data points. All data were taken on beamline 12.0.2 of the ALS. 
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Figure 2.13: Measured two-pinhole interference patterns at 500 eV, 600 eV, 700 eV and 800 eV and their 

respective lineouts for a 5-μm vertical pinhole separation at a photon energy of (a) 600 eV (2.07 nm), (b) 700 

eV (1.77 nm), and (c) 800 eV (1.56 nm). Note that airy envelope decreases for increasing energy. (d) Measured 

magnitude of the complex coherence function versus the pinhole separation. Least square error Gaussian curve 

is fitted to each energy‟s set of data points. All data was taken on beamline 12.0.2 of the ALS. Coherence length 

calculated are 5.4 μm (500 eV), 4.9 μm (600 eV), 4.2 μm (700 eV), and 3.6 μm (800 eV) [91]. 
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Figure 2.14: Measured two-pinhole interference patterns at a photon energy of 500 eV (2.48 nm) and their 

respective lineouts for horizontal pinhole separations of (a) 1μm, (b) 4 μm, and (c) 8 μm. (d) Measured 

magnitude of the complex coherence function versus the pinhole separation. Least square error Gaussian curve 

is fitted to these data points. All data were taken on beamline 12.0.2 of the ALS [91]. 

 

2.4  Langmuir-Blodgett (LB) deposition technique 

The Langmuir-Blodgett technique was first introduced by Irving Langmuir and 

applied extensively by Katherine Blodgett while working in Research and Development for 

General Electric Co. It involves the vertical deposition of a monolayer film formed at the air-

water interface onto a solid substrate. The as-formed monolayer film on water surface is 

known as Langmuir monolayer. The oil monolayer film on water surface was first observed 

and is named as Langmuir monolayer but the history of this oil film started with the 
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pioneering work of Benjamin Franklin in the year 1774 of making an oil film on Clapham 

pond [1]. However the importances of this monolayer was not realized at that time and 

further not much scientific work was done on it. About hundred years later Rayleigh, 

predicted that the layer can be one molecule thick while observing the maximum extent of the 

oil film on water surface. Around the same time with the help of her kitchen sink, Agnes 

Pockles introduced the idea of using barriers on top of the water surface which controls the 

quantitative measurements on this monomolecular layer. She added that surface tension 

changes with contamination of water [2]. Langmuir started performing systematic studies on 

mono- layer and developed the theoretical background of these insoluble monolayers on 

water surface [3]. Later Katherine Blodgett first demonstrated the detailed description of 

sequential transfer of monolayer from the air-water interface onto solid substrates [4]. These 

built-up monolayer assemblies are therefore named as Langmuir-Blodgett films. 

 

2.4.1  Preparation of Langmuir monolayer  

All compounds may be roughly divided into two broad categories, one those that are 

soluble in water and two, those that are not soluble in water. The former type of materials 

generally carries an uneven distribution of charge and hence termed as polar group. The 

materials which do not dissolve in water are commonly known as non-polar materials. The 

molecules of majority monolayer forming materials are composed mainly of two parts, one is 

polar and hence have positive affinity to water and other part is non-polar and have negative 

affinity (suffer repulsion) from water surface. The soluble part is termed as hydrophilic and 

the insoluble part as hydrophobic as a result these molecules are known as amphiphiles. It is 

the competition between the hydrophilic and hydrophobic forces that determines the 

monolayer forming abilities of the amphiphilic molecules on water surface. If for example, 

the hydrocarbon chain was too short, or the polar group too strong, then the material would 
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have simply immersed in the subphase. The amphiphilic nature of the molecules controls 

their orientation at the air-water interface in such a way that the polar head group always 

remains beneath the water surface and the long hydrocarbon chain (tail) is standing above the 

water surface. In Fig. 2.15 the structure and orientation of a amphiphilic molecule (stearic 

acid) at the air-water interface is shown. 

                

          

Figure 2.15: Schematic of a amphiphile - stearic acid on the water surface. The polar group (head) is 

immersed in water and the hydrocarbon chain (tail) is pointing outwards to the water surface [92]. 
 

The surface tension is one of the significant properties to characterize the formation of 

monolayer on water surface [5-8]. In presence of a monomolecular film on a liquid surface 

the surface tension will change. Surface pressure is measured mainly in monolayer 

experiments and is defined as, 

 = 𝛾0 − 𝛾                                                                                                                         (2.24) 

where 0 is defined as the surface tension of the pure liquid and  as the surface tension of the 
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film covering the surface. The two most common methods for monitoring the surface 

pressure are the Langmuir balance and the Wilhelmy plate or paper plate. 

 

Figure 2.16: Wilhelmy plate, (a) front view, (b) side view [92]. 

 

  Use of Wilhelmy plate or paper plate is perhaps the most popular and in this method 

the force due to surface tension exerted on a suspended plate which is partially immersed in 

the subphase is measured. The dominant forces acting on the plate are due to gravity and 

surface tension in the downward direction and buoyancy, due to displaced water in the 

upward direction. For a rectangular plate having dimensions l, w and t (as marked in Fig. 

2.16) and the density of the  material is W immersed to a depth h in a liquid having density 

L, the net downward force F acting on the plate is given by, 

𝐹 =  
𝑊

𝑔𝑙𝑤𝑡 + 2𝛾 𝑡 +  𝑤 cos 𝜃 − 𝜌𝐿𝑔𝑡𝑤𝑕             (2.25)  

where   is the surface tension due to the liquid,   is the contact angle of the liquid with the 

solid plate and g is the gravitational constant. The usual practice of a plate that is completely 
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wetted by the liquid (i.e.  =0) and measure the change in F with respect to a stationary plate. 

The change in force ∆𝐹 related to the change in surface tension ∆𝛾 is given by, 

∆𝛾 = ∆𝐹/2(𝑡 +  𝑤)                              (2.26) 

if the plate is sufficiently thin so that 𝑡 ≪ 𝑤 

∆𝛾 = ∆𝐹/2𝑤                   (2.27) 

Thus the sensitivity can be increased by using very thin plate and often very thin plate of 

platinum, glass, quartz, mica or paper can be used. 

Most monolayer forming materials are formed on the subphase first by dissolving it in 

a suitable solvent (like chloroform) and then spreading it on the subphase. The solvent should 

have the unique properties to disperse the molecules of the film forming material on the 

subphase and then quickly evaporate completely from the subphase surface so that the 

subphase does not get contaminated. That is the reason for choosing a solvent which is both 

volatile and insoluble in the liquid subphase as the spreading solvent like chloroform on 

water surface. Extremely volatile solvent is not chosen as a spreading solvent because it 

hinders accurate measurement of the solution concentration. Generally solvents having 

boiling temperature in the nearby ambient range 30
0
C to 70

0 
C are generally preferred for 

spreading. If a liquid droplet is placed on a solid or another liquid, the drop will spread or wet 

the surface in accordance to Young's equation 

𝛾𝐿𝐺 𝑐𝑜𝑠 𝜃 =  𝛾𝑆𝐺 − 𝛾𝑆𝐿                  (2.28) 

where the ’s corresponds to the surface tensions at the various interfaces between the solid 

(S), liquid (L) and gas (G) phases.   is the contact angle between liquid and solid surface. 

For completely wet surface,   is nearly equal to zero, implying that the liquid spreads 
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completely on the solid surface. The spreading coefficient of two immiscible liquids a and b 

can be calculated as, 

𝑆𝑏/𝑎 =  𝛾𝑎 − 𝛾𝑏 − 𝛾𝑎𝑏                     (2.29) 

where Sb/a corresponds to the spreading coefficient for liquid b on liquid a, a and b denotes 

the respective surface tensions and ab is the interfacial surface tension between two liquids. 

If Sb/a > 0 then the liquid b will simply spread over liquid a, but when Sb/a < 0 liquid b will 

tend to dewet and form droplet on the surface of the liquid a. Chloroform was used as the 

mixing solvent in our experiments and measured amount of solution is gently spread on water 

subphase with the help of a micro-syringe by keeping the syringe close to the water subphase 

without touching it (See Fig.2.17 (a)). 

As the monolayer is slowly compressed on the water surface by the barriers, it will go 

through several phase transitions [9]. These are almost analogues to the three-dimensional 

gas, liquid and solid phases according to the density variation. The phase changes may be 

recognized by observing kink in pressure-area isotherm. 

Such a typical pressure-area isotherm for a long chain ampiphilic fatty acid is shown in Fig. 

2.17(b). In this phase diagram the area generally implies to the area/molecule, i.e., total film 

area divided by the total number of molecules present in the monolayer. In the gaseous phase, 

the molecules are wide apart from each other on the water surface so that they exert little 

force on one another. As the surface area of the monolayer is decreased, the hydrocarbon 

chains will start to interact and a mixed phase called the liquid-expanded monolayer phase 

will appear in the isotherm.  
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Figure 2.17: Representative of (a) drop dispensing of the amphiphilic molecules dissolved in a volatile solvent 

onto a polar liquid sub-phase filling the Langmuir trough, (b) Typical Pressure-Area isotherm showing the 

presence of all the distinct phases [93]. 

 

The hydrocarbon chains of the molecules in this phase are in arbitrary positions, 

instead of a regular orientation, with their polar groups in contact with the subphase. From 

this condition as the molecular area is decreased further, a tilted condensed phase will emerge 

where the hydrocarbon chains are symmetrically tilted. 

Further compression will lead to a condensed phase where the molecules in the 

monolayer on the water surface are closely packed and hydrocarbon chains are oriented 

vertically. If the monolayer is compressed more, finally a point will reach where it is not 

possible to increase the surface pressure and may result in sharp decrease in area per 

molecule without variation in monolayer pressure or pressure falls as the area decreases. This 

is referred as collapse state of the monolayer. When this collapse occurs, molecules are 

forced out of the monolayer state and can form multilayer structures on the water surface 

(See Fig.2.17 (b)). Other types of structures are also possible for amphiphilic molecules 

having dominant polar head group, where the molecules join together and form micelles 

above a certain concentration (critical micelle concentration) [10]. 
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2.4.2  Deposition of LB Films 

LB multilayer film deposition takes place by dipping a substrate upwards and 

downwards through a Langmuir monolayer. A layer is deposited on the substrate during each 

upstroke and downstroke through the monolayer. The instrument which is used to prepare the 

Langmuir monolayer and within which subsequent LB film deposition occurs is called a LB 

trough. 

Today's LB troughs are much sophisticated with total computer control movement of 

every component, than the trough initially developed by Agnes Pockels. The essential 

constituents of a LB trough are (a) TEFLON (PTTE) made bath, (b) movable barriers for 

altering monolayer area and hence monolayer surface pressure (c) balance for measuring 

surface pressure and (d) dipper for deposition with the substrate. 

Here we have used a KSV5000 alternating bath trough for depositing LB films [11]. 

In Fig. 2.18, a schematic of the deposition process along with a close view of the dipper part 

of the trough is shown. In normal single bath trough, there is only one dipper arm. But the 

advantage of the double bath trough is that here there are two dipping arms and these two 

dipping arms can facilitate the interchange of the substrate from one arm to another. So one 

can spread two dissimilar types of materials separately in the two baths and deposit 

ABAB…… or ABBA…..types of films. The effective area of each bath was 120357.5 mm
2
 

with two independent barriers sets made of a special hydrophilic material called DELRIN to 

ensure that the monolayer material does not go underneath the barrier during compression. 

The speeds of the barriers are controlled through a micro-step driven stepper motor and the 

minimum and maximum speeds are 0.5 mm/min and 85 mm/min respectively. In addition 

each bath also contains a pressure sensor consisting of Wilhelmy plate made from 

sandblasted platinum. An elevator is provided to position these plates inside the subphase and 
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usually one third of the plates remain submerged in the sub-phase. The schematic of LB 

deposition mechanism is shown in Fig. 2.18. The substrate is attached to the upper arm clip 

and it brings the substrate near the sub-phase and then transfers it to the lower arm clip. The 

upper arm always remains above the sub-phase and lower arm always stay inside the 

subphase. Furthermore the dipper arms are controlled by independent stepper motors. We 

have used millipore (Milli-Q) water of 18.2 M/cm resistivity as the subphase in our 

experiments. The temperature of the bath is adjusted by circulating water from an external 

temperature controlled water bath through the circulator fitted underneath the trough. The 

subphase temperature can be varied from 10
0
 C to room temperature. It is evident from -A 

isotherm shows different molecular phase in the monolayer and deposition of LB films are 

done in the untilted condensed phase of the monolayer [9]. During the deposition process a 

constant monolayer pressure is maintained and this monolayer pressure can vary on the 

composition of different monolayers depending on the -A diagram. In our experiment, fatty 

acid salts of stearic acid are used which can be formed by gently spreading fatty acid on 

water containing dissolved metal salt like gadolinium acetate (Gd-Ac), erbium acetate (Er-

Ac) or holmium acetate (Ho-Ac). It is reported that preparation of LB films using this method 

and direct transfer of the substance is expected to give similar result but the isotherms are 

reported to be somewhat different in these two cases as observed for ferric stearate salt 

monolayer and stearic acid monolayer containing ferric ion in water [12]. Here mainly three 

types of LB films are studied which are gadolinium stearate (Gd-St), erbium stearate (Er-St) 

and holmium stearate (Ho-St). Separate LB films were prepared by spreading stearic acid 

(Aldrich, 99%) mixed in chloroform on water subphase containing dissolved Gd-Ac, Er-Ac 

or Ho-Ac salt. The surface pressure was maintained at a constant pressure of 30 mN/m and at 

a temperature 15
0
 C. The pH of the water subphase was unadjusted. The films were deposited 

at a surface pressure 30 mN/m at unadjusted pH and at 15
0
 C temperatures.  
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       Figure 2.18: Schematic of the LB deposition mechanism in a alternating bath trough [94]. 

 

The dipping speed of the substrates was kept at 3 mm/min and the drying time during 

up and down stroke was varied between 30-500 secs. The substrates used for LB deposition 

were Si (001) hydrophilized by special treatment for good transfer of multiple monolayer 

onto the substrates. During the deposition process of multilayered LB films, the monolayer 

on water gets deposited first on the substrate and as a result the surface area of the LB 

monolayer on the water subphase decreases. This percentage of transfer can be defined 

through the transfer ratio, which is the ratio of the total surface area decrease in Langmuir 

monolayer to the total surface area of the film deposited on substrate [5-8]. In the ideal case 

this transfer ratio must be unity for perfect transfer. This ideal condition assumes that the 

amphiphilic molecules simply form a model of the structure on water surface onto the 

substrate. But in actual reality this ratio may differ from unity due to imperfect transfer or 

loss of molecules during deposition. Also different packing of the molecules on the substrate 

makes the difference from unity transfer ratio. This transfer of molecules to a great extent 

depends on the hydrophilicity or hydrophobicity of the substrates. Both silicon and quartz 

type of substrates have been used to deposit the LB films. Silicon (100) single crystals were 

used as a primary choice of substrate and this silicon substrate were hydrophilized using RCA 

cleaning procedure. According to this standard substrate cleaning method, first the substrates 

were treated in aqueous solution containing 30% NH4OH and 30% H2O2 for 20 mins. Then 
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substrates were rinsed with acetone and alcohol and ultimately washed with copious amount 

of water. On the other hand silicon substrates can be made hydrophobic by first boiling in 

`piranha' solution (conc. H2SO4: 30% H2O2 = 70:30 by volume) for half an hour. After 

cooling, the substrate is subjected to the RCA cleaning procedure, washed, dried and then 

immersed in very dilute solution of octadecyltrichlorosilane (OTS) in acetone for 20 minutes 

in inert gas atmosphere to form a monolayer of OTS on this silicon. This silicon is again 

washed with copious amounts of acetone till no visible white condensation  is observed. 

 In LB deposition the hydrophilic or hydrophobic part of the amphiphilic molecules 

simply adhere to the substrate depending on the substrate-molecule interaction. In hydrophilic 

substrate the head part will get attached to the substrate and so first stroke will be upstroke. 

For hydrophobic substrate the opposite scenario will happen and the tail part of the molecules 

will get attached to the substrate first. So here downstroke will be the first stroke. Depending 

on these situations, normally three different modes of deposition is possible, (a) Y type 

deposition - both upstroke and downstroke occur, (b) X type deposition - only downstroke 

occurs and (c) Z type deposition - only upstroke occurs [5, 6]. One might expect that by 

depositing X or Z type deposition, the monolayer structure can be manufactured. But it is 

already well known that bilayer structure is the basic unit of the LB multilayer structure of 

divalent or trivalent fatty acid salt except in the first layer. X and Z type of deposition of 

divalent or trivalent actually produce the same structure as in Y type deposition [13, 14] (See 

Fig. 2.19). 
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Figure 2.19: Schematic of various multi-layer LB deposition alternatives using hydrophobic and hydrophilic 

substrates [94]. 

 

2.4.3  X-ray reflectivity and GIXD techniques 

X-Ray reflectivity method 

X-ray and neutron reflectivity are generally same in principle [46,68] but their 

interaction with material is fundamentally different for each other. The refractive index of a 

material is slightly less than unity for X-ray or neutron and can be written as [48-50] 

n = 1-  + i                             (2.30) 

The imaginary component denotes the absorption in the medium. Away from absorption edge 

for X-ray of the medium, in terms of electron density el, and mass absorption coefficient μ, 

these terms can be rewritten as 

𝛿𝑥 =  
𝑟0𝜆2

2𝜋
𝜌𝑒𝑙                         (2.31) 

𝛽𝑥 =  
𝜇𝜆

4𝜋
                       (2.32) 
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For neutrons  

𝛿𝑛 =  
𝜆2

2𝜋
[𝑁𝐴  

𝜌 𝑖

𝐴𝑖
𝑖 𝑏𝑖 −

𝑚

2𝜋ℏ2
𝝁𝑛 . 𝑩]                    (2.33) 

where NA is Avogadro's number, ro is the classical electron radius (2.82 X 10
-13

 cm),  is the 

wavelength of incident radiation, where bi is the scattering length of the element i and μn and 

B are the neutron magnetic moment and the induced magnetization in the medium. The 

magnetic contribution in neutron reflectivity will not be discussed in this section. Here we 

will explain the nonmagnetic part of the scattered neutron only. In most of the cases neutron 

absorption coefficient (n) is relatively small and can be neglected in reflectivity calculation. 

But for elements like Li, B, Cd, Sm, Gd and their isotopes with significant absorption 

coefficient this n cannot be neglected. 

                    

Figure 2.20: Snell‟s law and the Fresnel equations can be derived by requiring continuity at the interface of the 

wave and its derivative [70]. 

 

If a sample is irradiated by a plane wave of X-rays with incident and scattered wave 

vector ki and kf respectively, the momentum transfer vector is q = (kf - ki). In vacuum, the z 

component of the momentum transfer vector is, 

𝑞𝑧 =
2𝜋

𝜆
 𝑠𝑖𝑛𝜃𝑖 − 𝑠𝑖𝑛𝜃𝑟 = 𝑘0 𝑠𝑖𝑛𝜃𝑖 − 𝑠𝑖𝑛𝜃𝑟               (2.34) 
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where i and r are incident and scattered angle (as shown in Fig. 2.20). In specular condition 

i = r , only qz component of the momentum transfer vector q will survive (i.e., qx = qy = 0). 

At air/medium interface, from Snell's law of refraction 

𝑐𝑜𝑠𝜃𝑖 =  1 − 𝛿 𝑐𝑜𝑠𝜃𝑟                            (2.35) 

As  ~ 10
-6

, the critical angle c for total reflection (i.e., when c = 0) will be very small and 

under this approximation, we can write  

c≈  2𝛿                                                                                                                             (2.36) 

Using Eq. (2.36) in Eq. (2.31), the critical value of momentum transfer vector qc can be 

written as, 

𝑞𝑐
2 =  

4𝜋

𝜆
 

2

𝜃𝑐
2 = 16𝜋𝜚𝑠                      (2.37) 

where 𝜚𝑠 is the scattering length density of the medium and is equal to (r0el) for X-rays and 

(b) for neutrons. 

The reflected intensity (IR) falls of rapidly with q
-4

 for scattering angles large compared to the 

critical angle c=  2𝛿  [75]. A general description of reflection from N stratified 

homogeneous slabs is given by Parratt [72]. The situation is sketched in figure 2.21(b). In this 

case, the evaluation of the boundary conditions leads to a recursive formula for the 

reflectance of the interface, rj-1,j ,between the j
th

 and the (j-1)
th

 slab. 

𝑟𝑗−1,𝑗 = 𝑎𝑗−1
4  

𝑟𝑗+1,𝑗 +𝐹𝑗−1,𝑗

𝑟𝑗+1,𝑗𝐹𝑗−1,𝑗 +1
 ,                                            (2.38) 

where aj = exp(-iqjdj/4) is the phase factor and Fj-1,j = (qj-1 - qj) / (qj-1 + qj) are the Fresnel 

coefficients for a reflection from the interface j-1 and j, described by the complex momentum 

transfer qj. Starting from the substrate slab N with infinite thickness and therefore with 
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reflectance rN-1,N = a
4

N-1FN-1,N , and defining the phase factor on the vacuum side a1 = 1, the 

recursive solution leads to the intensity reflected from the surface (See Fig. 2.21). 

𝐼𝑟

𝐼0
=  𝑟1,2 

2
,                  (2.39) 

with the incident intensity I0. 

Since scattering at grazing angles is sensitive to the change of the index of refraction, 

it is sensitive to the exact electron-density profile at the surface and the interfaces of the 

sample.  

 

Figure 2.21: Schematic (a) scattering geometry from a monolayer on a substrate and (b) of a multilayer 

consisting of a stack of bilayers. Each bilayer, as shown separately to the right has a homogeneous high electron 

density region of thickness ΓΛ, and a low density region. The total thickness of a bilayer is Λ [70]. 

 

Thus, it is important to include surface and interface roughness into the model. The simplest 

expression can be derived in kinematical approximation, which describes the reflectivity by 

the Fourier transform of the electron-density profile perpendicular to the surface. While a 

sharp surface is described by an abrupt change of the electron-density profile, a rough surface 

with a height variation described by a Gaussian distribution of width rms leads to a Debye-

Waller -like damping of the reflected intensity [71, 75] 

IR = IR
Fresnel

[exp(-q
2
rms

2
)],                 (2.40) 
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The value of rms (root-mean-square roughness) is conventionally used to express surface and 

interface roughness. 

Grazing Incidence X-ray Diffraction (GIXD) 

X-ray diffraction for studying thin films is not generally performed using laboratory 

X-ray sources due to low flux. With the introduction of intense and well collimated X-ray 

beams of tunable energy from synchrotron sources, it has become feasible to obtain direct 

structural information from thin films [54, 55, 56, 57, 58]. When X-rays are made to fall on a 

sample at an incidence angle i smaller than the critical angle c of the sample, the beam is 

subjected to total reflection and only an evanescent wave propagates [60, 61, 62]. In this 

grazing incidence condition, the penetration depth of the X-rays is only upto few tens of 

Angströms and X-rays cannot traverse further inside the medium. In this situation, X-rays 

become surface sensitive [54, 55, 56, 57, 58], i.e., allowing it to probe the crystalline 

structure in the vicinity of the surface (See Fig. 2.22). If the X-ray is incident on the sample at 

an angle higher than critical angle c, it will get refracted from higher depth of the sample and 

the scattering signal will be dominated by the undesirable background noise. 

The Structure Factor 

As discussed in the previous section, if a sample is illuminated by a plane wave of X-

rays having incident and scattered wave vector ki and kf respectively, the momentum transfer 

vector will be q = (kf - ki). Then the phase difference due to the two scattered rays from 

lattice points ri and rj will be q•(ri-rj). The amplitudes of the two rays will differ by a term 

exp(iq•(ri-rj )). 

The amplitudes of the rays scattered at positions r1, r2, r3, …., rn are in the ratios 𝑒𝑖𝒒∙𝒓1  , 𝑒𝑖𝒒∙𝒓2  

, 𝑒𝑖𝒒∙𝒓3  ,…, 𝑒𝑖𝒒∙𝒓𝑛  , with a prefactor f1(q), f2(q), f3(q),…., fn(q) respectively for taking into 
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consideration the scattering contribution from different atoms. fj(q) represents the atomic 

form factor of the j
th

 atom. Hence the resultant X-ray scattered by the entire primitive cell is 

the sum of all individual rays and will therefore have an amplitude containing factor 

𝑆𝑞  =  𝑓𝑗 (𝒒)𝑗 𝑒𝑖𝒒∙𝒓𝑗                  (2.41) 

Where Sq denotes the structure factor. In the continuum limit, the structure factor can be 

represented as an integration of scattered wave from every infinitesimal elements contained 

in volume dV by the expression, 

𝑆𝑞  =  𝜌(𝒓) 𝑒𝑖𝒒∙𝒓𝑗 𝑑3𝑟                (2.42) 

(r) being the electron density at position r. The corresponding intensity of the Bragg peak 

from a lattice plane will be proportional to the square of the amplitude containing a factor 

|Sq|
2
. 

 

Figure 2.22: Geometry of a grazing incidence diffraction (GID) experiment from a solid single crystal surface 

at a synchrotron. The surface can be rotated around the surface normal „n‟, and the detector can be both rotated 

around „n‟ in the vertical plane and moved perpendicular to it so as to scan along the crystal truncation rods 

[70]. 
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Surface Crystallography 

       The momentum transfer vector qhk, for an (hk) reflection, is calculated by qhk = ha
*
 +kb

*
, 

where a
*
 and b

*
 represents the primitive translation vectors in the reciprocal space. If the 

primitive lattice vectors in real space are given by a and b, the intensity Ihk will thus be 

maximum when the two conditions (the Laue equations) are satisfied concurrently, 

𝒒 ∙ 𝒂 =  2𝑕𝜋                  (2.43) 

𝒒 ∙ 𝒃 =  2𝑘𝜋                  (2.44) 

Most of the LB films of fatty acid salts which are our interest of study, have a 

distorted hexagonal in-plane lattice structure in room temperature [64, 58, 59]. These LB 

films are powder-like along the in- plane, hence qx and qy component of the momentum 

transfer vector q cannot be determined separately, but only the combination 𝒒𝑥𝑦  =

  𝒒𝑥
2 + 𝒒𝑦

2  can be considered. As a result, a few peaks with different (hk) may overlap in 

the diffraction pattern. Usually two types of unit cells are considered for analyzing the 

diffraction pattern in hexagonal lattice and these are the primitive parallelogram and the non-

primitive centered rectangle. In our case the primitive parallelogram has been preferred for 

the analysis of GID data. If the molecules are ordered in a hexagonal lattice (i.e., |a| = |b| and 

 = 60
0
), simply a triply degenerate first order peak will be observed and can be indexed as 

(10 + 01 + 11 ). On the other hand if the molecules are arranged in distorted hexagonal 

lattice, two first order peaks will be observed containing the doubly degenerate peak assigned 

to (01 + 11 ) peak and the nondegenerate peak as (10) peak. Finally, for molecules arranged 

in a oblique unit cell (|a| ≠ |b| and  ≠60
0
), three non-degenerate peaks will be observed. The 

indexing scheme is usually assigned for the low-order peaks at first and confirmed by the 
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positions of higher-order peaks later. The lattice constants and A, the area per molecule, can 

be calculated from the relations,  

𝛾 = 𝑐𝑜𝑠−1 𝑞1

2𝑞2
                  (2.45) 

𝑎 =
2𝜋

𝑞1 sin 𝛾
                  (2.46) 

𝑏 =
2𝜋

𝑞2 sin 𝛾
                  (2.47) 

And          

𝐴 = 𝑎𝑏𝑠𝑖𝑛 𝛾                             (2.48)                                  

   

where q1 and q2 gives the positions of the degenerate and non-degenerate peaks respectively.    

In the case of two-dimensional lattice of point particles, there is absence of periodicity in the 

direction perpendicular to the lattice plane in real-space, and hence, there is no condition to 

be satisfied by the out-of-plane component qz of the diffracted wave vector. In reciprocal 

space, this lattice will represent a two-dimensional array of vertical lines, as they are simply 

called „rods‟ that extends upto infinity in the direction normal to the lattice plane. But the LB 

film does not consist of point like particles and the molecules have the variation in electron 

density along the length of the molecules and also have periodicity between different layers. 

The molecular degrees of freedom are tilt, orientation of the molecular structure and lattice 

distortion. The tilt and tilt azimuth of the unit-cell, can be calculated from the Bragg rod scan, 

by keeping qxy fixed at a peak position in qxy scan and scanning the qz component. 
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Bragg Rods 

Now let us assume a cylindrical rod of length `L' having constant electron density  

and define 𝑛  as the unit vector along the rod length. Following Eq. (2.42), the structure factor 

for one such cylinder will be [f(q) sq], where f(q) is the form factor for the cylinder and 

𝒔𝑞  =   𝑒𝑖𝑥𝒒∙𝒏 𝑑𝑥
+𝐿/2

−𝐿/2
 = 𝐿  

𝑠𝑖𝑛
𝐿

2
𝒒∙𝒏 

𝐿

2
𝒒∙𝒏 

                 (2.49) 

 

This function is peaked when 
𝐿

2
𝒒 ∙ 𝒏  = 0 and will lead to a diffraction pattern along qz, 

whenever 𝒏  is tilted from the surface normal. When 𝒏   is tilted the factor 𝒒 ∙ 𝒏  = u = [qz cos  

- qx sin ], where  is the tilt angle and qx is the component along tilt direction. Explicitly, qx 

= |Ghk| cos hk, where Ghk is the reciprocal lattice vector and hk is the angle from Ghk to the 

tilt direction 𝒏  . More detailed analysis can be done in a similar way by dividing the vertical 

stack of molecules in a number of cylinders of constant electron densities. Let the molecular 

stack be divided in a number of cylinder each of length lj having constant electron density j 

and centered at z = cj . Then the intensity for (hk) reflection, 

𝐼𝑕𝑘(𝑞𝑧)  =   𝑉 𝑥 𝑆 𝑮𝑕𝑘 , 𝑞𝑧  2 𝑒𝑥𝑝[−𝑞𝑧
2𝜍2]              (2.50) 

Then the structure factor as defined above will be 𝑆 𝑮𝑕𝑘 , 𝑞𝑧 =  𝜌𝑙 𝑙𝑗 𝑆
′
𝑗  𝑢 ,𝑗  where 

𝑆′
𝑗  𝑢 = exp −𝑖𝑐𝑗 𝑢 sin(0.5𝑙𝑗𝑢)/(0.5𝑙𝑗𝑢). The Vineyard function V(x) describes the 

interference between the diffracted and subsequently reflected waves. It show a peak at qz = 

qc/2. Explicitly, V(x) = 2x for x < 1 and = 2x/[x + (x
2
 - 1)

1/2
] for x > 1, where x = qz/qc. 

The Debye-Waller factor 𝑒𝑥𝑝[−𝑞𝑧
2𝜍2] accounts for the surface roughness. 
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Indian Beamline, Photon Factory, KEK, Japan 

 

Figure 2.23: The Indian Beamline (BL-18B) at the photon factory, KEK, Japan [95]. 

 

GID measurements were carried out at BL-18B, Photon Factory, KEK, Japan with 

monochromatic X-ray beam [175] (See Fig.2.23). The Photon Factory is an accelerator-based 

light source facility, as a part of the High Energy Accelerator Research Organization (KEK) 

Japan. The Photon Factory operates two storage rings; the 2.5-GeV PF Ring and the 6.5-GeV 

PF Advanced Ring (PF-AR). The Photon Factory supplies brilliant X-rays and VUV light, 

which provide the means to understand the function of materials and life. BL-18B beamline 

is operated by DST, India is a multi-purpose monochromatic hard X-ray station operating 

within 7-20 KeV. The Indian beamline at Photon Factory synchrotron radiation facility (in 

Japan) has been set up successfully to cater the needs of Indian scientists and research fellows 

in a wide variety subject areas. The project is sponsored by Department of Science and 

Technology (DST), Govt. of India, with Saha Institute of Nuclear Physics and Jawaharlal 

Nehru Centre for Advanced Scientific Research being the nodal institutes implementing the 

same.  
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GID experiments were carried using Pilatus 2D detector placed in direction to the incident X-

ray beam and then moved in the horizontal direction to get the GID pattern from the sample 

placed on the 1
st
 goniometer.

 
 The different components of the beamline used for the 

reflectivity and GID measurements are shown in Fig.2.24.  

 

Figure 2.24: Different experimental techniques used in this thesis available at BL-18B, KEK, Japan [95]. 

 

TABLE 2.2 Comparison of factors determining the interactions of neutrons, low energy (< 10 eV) electrons, X-

rays, and optical photons with magnetic materials such as the ferromagnets Fe, Co, and Ni. Listed are the 

combined charge and magnetic cross sections and the magnetic contribution through a fractional value for the 

magnetic contrast P is given. Also the incident monochromatic flux per appropriate experimental bandwidth Φ, 

and the relative figure of merit per atom per second, defined as σΦP
2
 is indicated. [66]. 

 

a
 1 barn = 10

−24
 cm

2
 

b
We have used monochromatic fluxes with appropriate experimental bandwidths (BW). The BWs are 1% for 

neutrons and 0.1% for electrons and photons. 

c
 The nuclear and magnetic neutron cross sections are about the same. 

d
 Total resonant cross-section at 3d transition metal L-edge. 
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                                       3 

 

 

n order to explain the stability of particles which is a nontrivial issue, Skyrme 

in 1960 proposed that the particles can be topologically protected. His 

theoretical formalism showed that such particles are designated by a 

topological number that cannot be varied by a continuous deformation of the field 

configuration. The particles satisfying this model are called skyrmions and have been 

proposed to explain hadrons in nuclear physics. Later on, such entity has also been attributed 

to condensed-matter systems such as the quantum Hall system, Bose condensate and liquid 

crystals. Around 1980 it was theoretically predicted that topologically protected particles 

referred to as magnetic skyrmions can also be realized in chiral magnets in the form of stable 

spin textures (See Fig. 3.1). Following these pioneering theoretical works, large number of 

recent experiments using neutron scattering, X-ray magnetic scattering, Lorentz transmission 

electron microscopy (LTEM) and spin-resolved scanning tunnelling microscopy has 

experimentally demonstrated the existence of magnetic skyrmion phases. In this chapter 

through a soft X-ray speckle metrology technique we have studied in detail regarding the 

stability of the magnetic stripe and skyrmion lattice as the external field was varied. 

I 

Scaling of domain cascades in 

stripe and skyrmion phases 
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3.1  Introduction 

Magnetic skyrmions was first experimental discovered in MnSi sample (2009) are 

multi-atom vortex-like nanometre-sized spin-swirling object where the atoms spin 

orientations changes from one direction at the centre to the reverse direction at the periphery. 

They are topologically protected and manifest as hexagonal lattice of spin vortices (See Fig. 

3.1). Due to the presence of properties like novel Hall effects, current driven motion with 

ultra-low current density and multiferroic behaviour they are envisaged as technologically 

promising candidate for energy efficient spinotronic devices [6].  

Various mechanisms can give rise to skyrmion phase in a magnetic system. These are:  

(1) Long-ranged dipole-dipole interactions: In thin films with perpendicular magnetic 

anisotropy, the dipolar interaction favours an in-plane orientation of the atomic spins, 

whereas the anisotropy prefers an out-of-plane direction. The competition between these two 

interactions results in periodic stripes in which the magnetization direction rotates in the 

plane perpendicular to the thin film. A magnetic field applied perpendicular to the film turns 

the stripe phase into a hexagonal ordering of magnetic bubbles or skyrmions. 

 (2) The relativistic Dzyaloshinskii–Moriya (DM) interaction: In non-centrosymmetric bulk 

magnets such as MnSi, Fe1–xCoxSi, FeGe and Mn1–xFexGe the transformation from the helical 

spiral into the triangular-lattice skyrmion crystal under an external magnetic field occurs due 

to the DM interaction and exchange interaction [6].  

(3) Frustrated exchange interactions or (4) four-spin exchange interaction, which can lead to 

atomic-sized skyrmion structures. 
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Figure 3.1: (a) illustrative diagram of a single Bloch skyrmion and (b) skyrmion lattice. (c) Real-space Lorentz 

TEM image of skyrmion array [36] and (d) SANS pattern from a skyrmion hexagonal lattice in reciprocal space 

[16]. (e) magnetic helix state in B20 crystals [19].  

 

Skyrmion number 

The swirling structure of a skyrmion is characterized by the topological skyrmion number 

defined by [6] 

Nsk= 
1

4𝜋
 𝑑2𝒓𝒏 ∙ (

𝜕𝒏

𝜕𝑥
×

𝜕𝒏

𝜕𝑦
)                  (3.1) 

as the integral of the solid angle, and counts how many times n(r) = n(x,y) wraps the unit 

sphere [14,15]. Using the symmetry of the skyrmion, one can write  

n(r) = (cosΦ(φ)sinΘ(r), sinΦ(φ)sinΘ(r),cosΘ(r))                (3.2) 

where we introduce the polar coordinates r  = (rcosφ, rsinφ).  

Putting this form into Eq. (3.1), we obtain  

Nsk = 
1

4𝜋
 𝑑𝑟

∞

0
 𝑑𝜑

2𝜋

0

𝑑(𝑟)

𝑑𝑟
 
𝑑 𝜑 

𝑑𝜑
𝑠𝑖𝑛 𝑟 = [𝑐𝑜𝑠 𝑟 ]𝑟=0

𝑟=∞  [ 𝜑 ]𝜑=0
𝜑=2𝜋

                 (3.3) 
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Accordingly, one can classify the skyrmion structures as follows. Suppose the spins point up 

at r  →  ∞ while they point down at r  = 0. Then, [𝑐𝑜𝑠𝛩(𝑟)]
𝑟  = 0

𝑟  = ∞
  = 2. Now, there are several 

possibilities for Φ(φ). The vorticity is defined by the integer m  = [𝛷(𝜑)]
𝜑  = 0

𝜑  = 2π 
/2π. 

Therefore, the vorticity determines the skyrmion number as Nsk  = m, once the boundary 

condition at r  →  ∞ is fixed. We further define the helicity by the phase γ appearing in  

Φ(φ) = mφ  + γ                               (3.4) 

We show in Fig. 3.2 various skyrmion structures corresponding to vorticity m  = ±1, and γ 

 = 0, ±π/2 and π, first image of Fig. 3.2 corresponds to m  = 1 and γ  = π/2. 

 

Figure 3.2: Representative of skyrmion structures with varying m and γ. The arrows indicate the direction of the 

in-plane spin component, and the brightness denotes the normal component to the plane, with white indicating 

the up direction and black the down direction. All the spin structures of the anti-skyrmions (m = −1) are 

equivalent on rotation in the x–y plane. The relative stability of each configuration is determined by the 

mechanism or interaction generating the skyrmion [6]. 

 

The Fe/Gd sample which we have studied comprises of disorder stripe phase, order 

stripe phase and also shows the presence of topologically protected phase of skyrmion 

lattices. Here the Gd and Fe moments are ferrimagnetically aligned and Gd provides the 

dominant moment within the temperature of interest. Resonant coherent X-ray scattering 

(RCXS) measurements were performed starting from the magnetic stripe phase observed at 

remanence. The remanent order stripe period is 138 ± 5 nm at room temperature. At 
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remanence odd-order diffraction peaks are dominated indicating that the up and down 

domains are nearly of equal widths. By applying an out-of-plane magnetic field resulted in 

appearance of both even and order diffraction peaks due to breaking of the equality. At fields 

around 170 mT, the intensity of all order peaks due to the stripe phase gradually started 

diminishing and eventually new peaks started to appear in the form of an approximately 

hexagonal pattern. Around 200 mT the nominally hexagonal scattering pattern became more 

distinct and resulted in six peaks of similar intensity. At still higher fields, the film became 

uniformly magnetized and all diffraction peaks disappeared. 
It is well known that spin, charge, and orbital motions can be scattered by fluctuations 

due to external sources and leads to loss of information. Controlling and minimizing this 

decoherence plays a vital role in deploying quantum matter in emerging information 

technologies. An interesting and possible solution for such study is to employ a lattice of 

skyrmions. Due to the topological protected nature and existence of multiple length scale 

energetics, skyrmions scatter weakly from defects and can be moved relatively easily through 

the lattice. For this purpose we have carried out a detailed RCXS measurement within the 

entire magnetic phase as a function of applied field and temperature of the Fe/Gd sample to 

study the nature of magnetic fluctuations in topologically protected skyrmion phase and 

topologically trivial stripe phase [1-9].  

Magnetic skyrmions provide an ideal system to probe the effect of topology on 

fluctuations and scaling. Skyrmions have already been found relevant in various condensed 

matter systems ranging from liquid crystals [12], 2D quantum Hall systems [10, 11], 

multiferroics [13], ferroelectrics [14] to even Bose condensates [15]. Interestingly, skyrmions 

in 2D magnetic systems provide unusual flexibility in measuring the behaviour of nanoscale 

topological features under applied fields [6, 16-18]. The topology of a skyrmion is defined in 

terms of its winding number, which is a quantized and conserved quantity. The topological 



P a g e  | 136 

 

                                                                                                                Low Dimensional Magnetic Structures 

 

protection allows it to move through defects and pinning sites much more easily in 

comparison to the trivial stripe domains, and makes skyrmions a potential candidate for 

dissipation less technology and logic applications [18, 19]. Since the stability of a device 

depends crucially on fluctuations, it is important to understand that how topology affects the 

nature of abrupt domain jumps and avalanches as the applied magnetic field or the external 

temperature is varied. In spite of a lot of advances in materials discovery for skyrmions, still 

the role of it on topics pertaining to stability, abrupt jumps, domain stability have not been 

addressed in detail. There are very few studies which have focused on this topic, for example, 

in a recent theoretical study, it has been predicted through simulations that skyrmions do 

exhibit avalanches with power law distribution and the context of universality has been 

discussed [20]. Magnetic structures, such as bubble domains which are topologically trivial, 

have been discussed in the context of avalanches and scaling behaviour where, under the 

application of external magnetic field the bubble domains were found to self organize in a 

sub-critical state [21]. 

Crucial to the understanding of scaling and critical behaviour is to determine the 

existence of power law behaviour. Power law variation and the absence of characteristic 

scales are of paramount significance in understanding the emerging macroscopic properties 

from microscopic stochastic events [27-33]. The power laws are generally governed by 

different parameters such as, material microstructure, external stress, demagnetizing field, 

etc. If power laws obtained at different conditions over many scales share the same behaviour 

and can be collapsed to a unique scaling behaviour, the system is said to exhibit universality. 

Scaling and universality suggest that the relevant symmetries, interactions, and conservation 

laws affect the behaviour of the system, while many other quantitative aspects are irrelevant. 

We have used resonantly tuned coherent X-ray scattering technique because it 

provides a unique platform to execute element-specific studies of stochastic events to 
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quantitatively characterize fluctuations. We have used a Fe/Gd thin film heterostructure 

exhibiting highly tunable stripe and skyrmion phases [22, 23] to address the topic of phase 

boundaries and underlying critical point in the context of topologically trivial stripe phase 

and topologically protected skyrmion phase. Our study has shown that even within a stripe 

phase an order and disorder phase is distinguished by critical points. It was observed that in 

the pure skyrmions phase, magnitude and frequency of domain cascades were dramatically 

reduced. The distribution of the cascade size although followed similar pattern as in the case 

of stripe phase. The divergence of correlation length was found to vary much faster for the 

stripes near the critical point than for the skyrmions, implying a higher degree of criticalness 

for skyrmions. Through a detailed analysis of the data within the framework of statistical 

mechanics we show that the distribution of fluctuations could be collapsed to a unifying 

scale. By collapsing the data over a large range of the length scale we found that the scaling 

parameters were distinct in the stripes and skyrmions phases indicating the presence of two 

separate universality classes [35]. Now all these will be discussed in much greater detail in 

the subsequent sections. 

 

3.2  Experimental details  

3.2.1  Sample fabrication 

The samples studied were nominally [Fe (0.34 nm)/Gd (0.4 nm)] × 80 multilayers 

deposited on Si3N4 membranes using DC magnetron sputtering in an ultrahigh vacuum 

(UHV) environment under a 3 mTorr argon environment with a 20 nm Ta seed and capping 

layers. 
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3.2.2  Resonant coherent soft X-ray scattering (RSXS) 
 

The incident photon was linearly polarized and tuned to the Fe L3 edge ( 707 eV 

photon energy or 1.75 nm photon wavelength). Resonant coherent soft X-ray magnetic 

scattering patterns of the Fe/Gd multilayer are shown in Fig. 3.3e–g. Both stripe and 

skyrmion peaks are modulated with speckles that indicate finite-sized domain formation. We 

used the following field protocol consistently throughout the experiment to get to the specific 

phases. The sample was subjected to a magnetic field that was first raised to 500 mT, then 

reversed to −500 mT and finally reduced to zero before taking the measurements. The field 

ramp rate for the first two segments was 13 mT/s while the final drop of field from −500 mT 

to 0 mT to took place at a rate of 380 mT/s. We started our measurement at this zero-field 

condition and proceeded to measure diffraction data as a function of applied magnetic field 

using a ramp rate of 1.575 mT/s. The above protocol was repeated at different temperatures 

between 85 and 300 K. 

 

Figure 3.3: Schematic of phase diagram of the Fe/Gd sample as a function of temperature and applied magnetic 

field. (b-d) Schematic of order stripes, disorder stripes and skyrmion phase. (e-g) Magnetic diffraction spots in 

the three phases. The insets show enlarged image of the magnetic diffraction spots that are enclosed in yellow 

box. The red and black boxes are the regions of interest of magnetic diffraction and Airy fringes, respectively, 

for calculating the pair-wise correlation coefficients [35].  
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At room temperature an ordered stripe domain with periodicity of 138 ± 5 nm forms 

at zero field. Around 200 mT new peaks in the form of a distorted hexagonal pattern start to 

appear due to the onset of skyrmion formation. The periodicity of skyrmion hexagonal-lattice 

at 200 mT is 190 ± 5 nm. The ordering of the stripe was found to decrease as we lowered the 

temperature. At the lowest measured temperature of 85 K, we start with a disordered phase at 

zero-field condition. As the field is increased the diffraction spots smear into arcs indicative 

of formation of meandering or labyrinth stripes. The amount of field-dependent rotation of 

the diffraction spots decreases with increasing temperature, and stops eventually at some 

higher temperature where hexagonal Bragg spots appear due to the formation of skyrmions. 

Consequentially, there must exist a minimum temperature where there is a field-driven 

transition from stripe to skyrmion phase, which we have identified as T = 205 K. The rotation 

and movement of the diffraction pattern gives a hint about the presence of temperature and 

applied field dependent instability in the system. 

To illustrate how the structure evolves from stripe to skyrmion phase, we plot in Fig. 

3.4(a), 3.4(b) line scans of the diffraction data along the azimuthal direction (constant 

scattering momentum contour) as a function of applied magnetic field. At T = 196 K (near 

the stripe–skyrmion phase boundary), we initially obtain two diffraction spots corresponding 

to an ordered stripe state. The two spots persist to around 200 mT when two additional new 

spots appear 50° in azimuthal angle away from the original spot position. The intensity of the 

original spot diminishes although it does not disappear. In effect this means the stripes 

predominantly rotate while some stripes persist in the original direction. In contrast, the 

skyrmion phase at T = 226 K (Fig. 3.4(b)) starts with two diffraction spots corresponding to 

stripes and develops as field increases into six spots characteristic of the skyrmion phase. 

Thus, as skyrmions form, four diffraction spots appear in addition to the two 

diffraction spots due to the stripes without involving any further rotations. In Fig. 3.4(c), 
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3.4(d) we show that diffraction peaks at zero field are much more spread out in the azimuthal 

direction in reciprocal space at 85 K compared to 300 K, indicating a shorter correlation 

length and hence a larger degree of disorder in the stripes. A contour plot of the full width 

half maximum (FWHM) of the stripe diffraction peak as a function of applied field and 

temperature in Fig. 3.4(e) shows that the degree of disorder is highest at the lowest measured 

temperature and decreases continuously till 230 K after which the FWHM becomes constant. 

 

Figure 3.4: Evolution of stripe and skyrmion phase: Azimuthal variation of scattered intensity for different field 

values at (a) 196 K and (b) 225 K. The black dotted arrows show the position of stripe and skyrmion peaks. (c), 

(d) Enlarged image of the diffraction spot for disordered stripes and ordered stripes, respectively. (e) Contour 

plot of angular full width half maximum (FWHM) of the stripe diffraction spot along the azimuthal direction as 

a function of field and temperature. Color bar represents the FWHM of the diffraction spot. The FWHM is 

related to degree of disorder of the stripe domains. The panel inset shows representative diffraction pattern as 

the temperature is changed. Clear evolution from a broad pattern to a strong diffraction peak is evident [35]. 
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Around T = 230 K a transition from disordered to ordered stripe is observed. We therefore 

conclude that our Fe/Gd undergoes a transition from disordered to ordered stripe phase at 

(TCstripe, HCstripe) ≡ (230 K, 148 mT) and stripe-to-skyrmion transition at (TCsk, HCsk) ≡ (205 K, 

220 mT). The importance of these transition temperatures and fields in context of criticality 

will be discussed below. 

The schematic of real and reciprocal space representation of stripe and skyrmion 

lattice is shown in the figure 3.5 below. Linear arrangement of stripes results in two intense 

diffraction spots. The skyrmion are arranged as hexagonal lattice in real space that manifests 

as six-fold diffraction pattern. 

 

Figure 3.5: Schematic experimental arrangement and expected diffraction patterns on the detector from stripe 

and skyrmion domains. As the data is taken at the absorption edge that enhances magnetic scattering, red spots 

denote basically the magnetic diffraction peaks. The central black dot indicates the shadow of the direct-beam 

stopper [35]. 
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3.3    Results and discussions 

 

3.3.1  RSXS in stripe and skyrmion phase 

A Fe/Gd thin film heterostructure exhibiting highly tunable stripe and skyrmion 

phases is studied using X-ray resonant coherent scattering as a function of magnetic field and 

temperature. Both stripe and skyrmion diffraction peaks are modulated with speckles that 

indicate finite sized domain formation. Resonant coherent soft X-ray scattering of a magnetic 

sample results in the appearance of speckle patterns due to the interference from randomly 

phase-shifted waves that are scattered by the magnetic domains. A speckle pattern in the 

reciprocal space is like a fingerprint which is unique to the specific domain configuration 

illuminated by the X-ray beam. If the morphology of the domains changes either 

spontaneously or due to an external influence, then the speckle pattern in the reciprocal space 

will change as well. Such a change in an X-ray speckle pattern in reciprocal space assigns a 

statistically significant measure of nanoscale variations in size, orientation and/or number 

density of the magnetic domains in real space. We have developed a statistical measure of the 

field-induced domain jumps by using the normalized pairwise correlation coefficient, p, a 

standard tool to measure the similarity of consecutive data sets. 

Pairwise correlation coefficient (PCC) is calculated using the relation 

        𝑃𝐶𝐶 =
   𝐴𝑚𝑛 − 𝐴  (𝐵𝑚𝑛 − 𝐵 )𝑛𝑚

 (   𝐴𝑚𝑛 − 𝐴  2)𝑛𝑚  (   𝐵𝑚𝑛 − 𝐵  2)𝑛𝑚
                (3.5) 

where, Amn= Intensity value at m
th

 row and n
th

 column of the first image (A), Ᾱ = Average 

intensity value of the first image (A). 𝐵mn and  𝐵   are defined in the same way for the second 

image (B). 
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The value of p is 1 for correlated and 0 for uncorrelated images A and B. For two partially 

correlated images we get 0 < p < 1. 

 

Figure 3.6: Data analysis scheme for extraction of pair-wise correlation coefficient as a function of magnetic 

field for the different magnetic phases. 

3.3.2  Determination of stochastic domain jumps using 

speckle metrology 

Resonant coherent soft X-ray scattering from a magnetic sample gives rise to speckle 

patterns due to the interference of randomly phase-shifted waves that are scattered by the 

magnetic domains. A speckle pattern is a fingerprint, unique to the specific domain 

configuration illuminated by the X-ray beam. If the domain morphology changes either 

spontaneously or due to an external influence, then the speckle pattern will change as well. 

Such a change in an X-ray speckle pattern in reciprocal space provides a statistically 

significant measure of nanoscale changes in size, orientation and/or number density of the 

magnetic domains in real space. We developed a statistical measure of field-induced domain 

jumps with the normalized pairwise correlation coefficient, p, a standard tool to measure the 

similarity of data sets (See Fig. 3.6(a)). Specifically, we correlated consecutive speckle 

patterns, collected near the magnetic Bragg peaks discussed above, as the field was swept. If 

p = 1 for particular pairs of consecutive speckle patterns, then the domain patterns are the 

same and no jump has occurred. By contrast, p < 1 indicates a change in speckle pattern and 

domain morphology, and the magnitude of the drop of p from unity quantifies the magnitude 
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of change in the domain morphology. This is shown graphically in Fig. 3.7 for a large domain 

jump with p = 0.61, for which the change in the speckle pattern is readily apparent. The 

evolution of domain states under applied magnetic fields results through a collection of 

different physical mechanisms. If we were to perform pair correlations that take into account 

all potential field-dependent (e.g. stripe domain phase, coexisting stripe, and skyrmion phase) 

domain morphologies, then the resulting scaling laws would be complex and the dynamics 

from each phase could not be distinguished. (In Figs. 3.9 and 3.10 we show simulation of 

jumps appearing due to position change and size change of domains.) Here, we performed 

analysis of pair correlations in distinct pure phases, namely stripe phases and the skyrmion 

phase using a well-established mean field model of avalanche dynamics. A magnetic material 

magnetizes in a phase through a series of jumps under slowly changing external field with no 

characteristic size scale, similar crackling happens in many systems when pushed slowly. The 

statistical formalism used here has been making rapid progress to predict behavior of such 

systems on long scales of length and time, independent of many microscopic details. 

Figure 3.8(a) – 3.8(c) shows the variation of the pairwise correlation coefficient of two 

consecutive datasets as a function of magnetic field in the ordered stripe, skyrmion, and 

disordered stripe phases, respectively. The correlation curve of stripe phase shows multiple 

sharp drops (jumps) indicating abrupt changes in the topological configuration of domains 

(red curve in Fig. 3.8(a)). The onset of the jump is the point at which the slope of the 

correlation curve changes from zero or positive to negative while the position of a jump is 

defined as the value of the magnetic field where the slope of the correlation curve sharply 

changes its sign from negative to positive. The correlation curves were repeated for more 

than 100 hysteresis loops at each temperature to build up statistics. The appearance of the 

abrupt jumps is reminiscent of domain avalanches/cascades observed in Barkhausen events. 
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Figure 3.7: Pair-wise correlation coefficient: Pair-wise correlation function (blue line) versus perpendicular 

magnetic field. We show the speckle pattern at T = 236 K for four consecutive field values that produces small 

and big jumps. The speckle patterns are represented within an area of 90 by 90 pixels. Large change in speckle 

pattern gives rise to large magnitude of jump indicating a large change of domain morphology [35]. 

 

By using the above relation of PCC we obtained direct experimental evidence that the 

magnitude and frequency of jumps in the skyrmion phase is significantly reduced in 

comparison to those in the stripe phase, both order and disorder (for example, compare 

magnitude of jumps in Fig. 3.8(b) with Fig. 3.8(a) and 3.8(c)). The reduced jump size and 

jump frequency is most likely the outcome of the stability due to topologically protective 

nature of the skyrmions.  

In the disordered stripe phase the size of the jumps are smaller at lower field values, but at 

higher applied field large jumps dominate (Fig. 3.8(c)). Interestingly, large and more 

cascades appear in the same field region where the skyrmions would appear for T ≥ 205 K. 
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Since the characteristics of jumps are representative of a phase, a change in average jump size 

indicates a phase change and may have an underlying critical point. 

A contour plot of the average jump size  X  as a function of field and temperature is a 

simple way to visualize the jump characteristics and ascertain probable presence of critical 

points. In Fig. 3.8(d) a contour plot is shown spanning all the three magnetic phases present 

in the sample as a function of field and temperature. The contour plot depicts that the average 

size of jumps increase with both temperature and field. By approaching from any direction in 

the contour plot it is observed that in the stripe phase, the average jump size shows a 

maximum value near the point 𝑇 ~ 225 K and 𝐻 ~ 148 mT, indicating the presence of a 

critical point in temperature and field around these values. The green region inside the 

contour plot (Fig. 3.8(e)) shows the temperature-field conditions where all the six peaks are 

of same intensity thereby representing the pure skyrmion phase. The pure skyrmion phase is 

surrounded by bigger jumps indicating presence of mixed phases, which is in close agreement 

with the line scan shown in Fig. 3.8(a). As shown before in the line scans (Fig. 3.8(a-c)), the 

magnitude of jumps is similar in both ordered and disordered stripes, however, the average 

jumps size in the skyrmion phase is almost an order-of-magnitude smaller than in the stripe 

phase. The stability of the incident beam is indicated by the horizontal black line in Figs. 3.8 

(a-c) in all the three phases. The pair-wise correlation function from the region occupied by 

Airy fringes shows nearly perfect correlation between consecutive frames with negligible 

fluctuations. This confirms the stability of the beam throughout the experimental time. 



147 | P a g e  

 

                Low Dimensional Magnetic Structures 
 

 

Figure 3.8: Plot of cross-correlation function (red line) versus magnetic field for (a) Stripe, (b) Skyrmion and 

(c) Disorder stripe diffraction spots. The black line in the figures corresponds to the correlation value from non-

magnetic region (Airy fringes). Correlation between two consecutive image patterns was done for those regions 

as mentioned in Fig.3.3 with the corresponding color boxes. Color bar represents average jump size. Contour 

plot of average jumps size 𝑋 as a function of field and temperature for (d) entire magnetic phase and (e) 

skyrmion phase only. A peak in the jump size in Fig. 3.8 (d) (red area ≈ 225 K, 150 mT) suggests a critical point 

[35]. 
 

In order to understand the specific role of the changes in size, orientation and/or 

number density of the magnetic domains in real space we have carried out simple 

simulations. We have carried out simulations to calculate the pair-wise correlation coefficient 

(PCC) using a model comprising of two magnetic domains of rectangular shape in real space 

(See Fig. 3.9 and 3.10 below). Each yellow rectangular box corresponds to an intensity 

normalized to one while the blue background has zero intensity. Next we performed Fourier 

transform (FT) of the 2D real space image of the rectangular magnetic domains and generated 

the corresponding 2D diffraction pattern in the reciprocal space. The reciprocal image was 

generated within a region of 1024 by 1024 pixels. By varying the position and size of the 
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domains separately through random number generation we have created diffraction patterns 

for 100 different images. Furthermore, by changing the centre of the diffraction pattern which 

corresponds to a change in the lattice parameter, we have created a set of real space images 

and the FT of those real space images was generated. Then a small region was selected about 

the centre of the diffraction pattern and the pair-wise correlation coefficient was calculated 

between two such regions of consecutive images with variation to size, position and centre 

separately for 100 images. The generated correlation plots resemble the PCC plots obtained 

from the experimental data. 

 

Figure 3.9: Plot of Correlation coefficient (PCC) between two consecutive diffraction images with variation of 

position. The x-axis corresponds to the image number which is assumed to vary due to applied magnetic field 

(1.575mT/image). Insets inside the plot shows a sequence of real space images comprising of two stripes (light 

blue squares) whereby there is a drastic change in the value of the simulated correlation coefficient. The images 

below show the real space images and the corresponding diffraction pattern. The plots show the presence of 

sharp jumps [35]. 
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Figure 3.10: Plot of Correlation coefficient between two consecutive diffraction images with variation to size 

and lattice parameter. The x-axis corresponds to the image number which is assumed to vary due to applied 

magnetic field (1.575mT/image). The real space images are shown below with the corresponding diffraction 

patterns [35]. 

 

3.3.3  Scaling behaviour of stripe and skyrmion domains 

Distribution of the Jumps as a function of its size at 300 K is shown in figure 3.11 

below. The number of Jumps is extracted from the pair-wise correlation plots from over 100 

field cycles. From the distributions we have calculated the cumulative distribution function 

(CDF) and the complementary cumulative distribution function (CCDF), defined a 

          𝑃𝑛 =
𝐶𝑛

 𝐶𝑛
𝑁
𝑛 =1

                                                                                        (3.6) 

𝐶𝐷𝐹 =  𝑃𝑛
𝑁
𝑛=1  & 𝐶𝐶𝐷𝐹 = 1 − 𝐶𝐷𝐹  
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Where,  𝐶𝑛= Number of counts at the n
th

 bin, N= total number of bins in the histogram and 𝑃𝑛  

= probability distribution function of the n
th

 bin. In order to make the scaling function 

independent of the bin size and to minimise the effect of fluctuations at low counts we have 

done the statistical part using the complementary cumulative distribution function (CCDF) 

analysis scheme. 

Figure 3.11: (a) Histogram showing the number of Jumps as a function of Jump size. (b) Histogram of CCDF 

as a function of Jump size [35]. 

To test criticality, we make an assumption that there is presence of a critical point 

where the moments of the avalanche size distribution become maximum. If there is an 

existence of a critical point, i.e. a non-equilibrium phase transition, then the mean field model 

for avalanche dynamics can be used in such case according to Ref. [34], which has already 

been tested in several systems like earthquakes, nanocrystals, and granular materials [33]. 

According to the avalanche model, the distribution of jump sizes is expected to have the 

following general behaviour 

𝑍 𝑋, 𝑇, 𝐻 = 𝑋−𝑎𝑓1(𝑋 𝑇 − 𝑇𝐶 
1

𝑛𝑇  , 𝑋 𝐻 − 𝐻𝐶 
1

𝑛𝐻  )~𝑋−𝑎  𝑓(
𝑋

𝑋𝑚𝑎𝑥
)                           (3.7) 
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where 𝑋 denotes the jump size 𝑇𝐶 , 𝐻𝐶  corresponds to the critical temperatures and fields, 

respectively, and, 𝑛𝑇  and 𝑛𝐻  are critical cut-off exponents, respectively, and 𝑋𝑚𝑎𝑥  ~ (𝜉(T-𝑇𝐶 , 

H-𝐻𝐶))1/𝜍𝜐  is the maximum (cutoff) jump size with 𝜉 𝑡, 𝑕  denoting the correlation length 

that diverges at the critical point, with 𝑡 ≡  𝑇 − 𝑇𝐶 → 0 and 𝑕 ≡  𝐻 − 𝐻𝐶 → 0. The critical 

exponents 𝑛𝑇  and 𝑛𝐻  are related to how the correlation length grows as one approaches the 

critical point along the 𝑇 or 𝐻 direction. 1/συ is the fractal dimension of the jumps, and the 

universal scaling function 𝑓 𝑥  is expected to decay exponentially as 𝑓 𝑥 = 𝐴𝑒−𝐵𝑥 , with 𝐴 

and 𝐵 being non-universal constants.  

According to Eq. (3.7), the distributions follow a power law up to the maximum jump size 

cut off values given by 𝑋𝑇𝑚𝑎𝑥 ~ 𝑇 − 𝑇𝐶 
1

𝑛𝑇 for 𝐻 = 𝐻𝐶and 𝑋𝐻𝑚𝑎𝑥 ~ 𝐻 − 𝐻𝐶 
1

𝑛𝐻  for 𝑇 = 𝑇𝐶 .  

Further, we can also obtain cumulative distribution function (𝐶𝐶𝐷𝐹) given by,  

𝐶𝐶 𝑋, 𝑇, 𝐻 = 𝑋−(𝑎−1)𝑔1(
𝑋

𝑋𝑇𝑚𝑎𝑥
,

𝑋

𝑋𝐻𝑚𝑎𝑥
)~𝑋−(𝑎−1) 𝑔(

𝑋

𝑋𝑚𝑎𝑥
)              (3.8) 

where, 𝑔 𝑥 ~𝑥𝑎−1  𝑒−𝐴′𝑡 . 𝑡−𝑎  𝑑𝑡
∞

𝑥
, with 𝐴′being a non-universal constant. 

From eqn. (3.7) we can derive the relation for the average size of the jumps,  𝑋(𝑇) =

 𝑋 𝑍 𝑋, 𝑇 𝑑𝑋
∞

0
, which at 𝐻 = 𝐻𝐶  is given by  𝑋(𝑇) ~ 𝑇 − 𝑇𝐶 (𝑎−2)/𝑛𝑇 . Analogously, for 

temperature 𝑇 = 𝑇𝐶we obtain  𝑋(𝐻) ~ 𝐻 − 𝐻𝐶 (𝑎−2)/𝑛𝐻 .  

We have calculated the 𝐶𝐶𝐷𝐹 of the Number of Jumps (NOJ) i.e. 𝐶𝐶𝐷𝐹 = 1 − 𝐶𝐷𝐹 and 

plotted it as function of Jump Size in log-log scale (Details are given in Fig. 3.11). Figures 

3.13(a) and 3.13(b) show the 𝐶𝐶𝐷𝐹 for the stripe phase, at a fixed magnetic field 𝐻𝐶 𝑠𝑡𝑟𝑖𝑝𝑒 , 

for temperatures below and above 𝑇𝐶 𝑠𝑡𝑟𝑖𝑝𝑒 respectively. Similarly, the 𝐶𝐶𝐷𝐹 at fixed 

temperature 𝑇𝐶 𝑠𝑡𝑟𝑖𝑝𝑒  for fields below and above 𝐻𝐶 𝑠𝑡𝑟𝑖𝑝𝑒  are shown in Fig. 3.13(d) and 

3.13(e), respectively. 
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The average value of the jumps and jumps squared was determined. First, we used the 

equations below to fit our data to obtain the critical exponents „a‟ and „n‟ (See Fig. 3.12). 

After that, we used the obtained critical exponents to collapse the data as shown in Fig. 3.13 

and Fig. 3.14 in this chapter for stripes and skyrmions, respectively 

  
 X2 

 X 
∝ Δ−1/n                                                                                                     (3.9) 

 X2 ∝ 𝛥(𝑎−3)/𝑛                                                                                (3.10)                                                   

 X ∝ 𝛥(𝑎−2)/𝑛                                                                                             (3.11) 

where,  

𝛥 =  T − TC , or, 𝛥 =  H − HC  

 

Figure 3.12: Above plots are shown for the stripe phase only. The first row corresponds to the critical field 

(Hc=148 mT) for temperatures below and above the critical value for 
 X2 

 X 
,  X  and  X2 , respectively. The 

second row is generated at the critical temperature (Tc=225 K) for fields below and above the critical value. 

Similar procedures are followed for the skyrmion phase also [35]. 

 

In the inset of Fig. 3.13(c) we plot  𝑋 𝑇   versus  𝑇 − 𝑇𝐶 𝑠𝑡𝑟𝑖𝑝𝑒   at 𝐻 = 𝐻𝐶 𝑠𝑡𝑟𝑖𝑝𝑒 , and fit the 

data to obtain the critical exponents 𝑎𝑇 𝑠𝑡𝑟𝑖𝑝𝑒 = 1.1 ± 0.2 and 𝑛𝑇𝑠𝑡𝑟𝑖𝑝𝑒
= 3.4 ± 0.6. We find 

same critical exponents for both 𝑇 < 𝑇𝐶 𝑠𝑡𝑟𝑖𝑝𝑒  and 𝑇 > 𝑇𝐶 𝑠𝑡𝑟𝑖𝑝𝑒  cases. The obtained values of 
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critical exponents were used to collapse the data using eqn. (3.8). Fig. 3.13(c) shows the 

collapse for all the distributions presented in Fig 3.13(a) and 3.13(b). Similar results are 

shown as a function of 𝐻 for the case of 𝑇 = 𝑇𝐶 𝑠𝑡𝑟𝑖𝑝𝑒  in the inset and main panel of Fig. 

3.13(f), where the critical exponents were found to be 𝑎𝐻 𝑠𝑡𝑟𝑖𝑝𝑒 = 1.1 ± 0.3 and 𝑛𝐻𝑠𝑡𝑟𝑖𝑝𝑒
=

3.73 ± 1.0.  

 

Fig. 3.13: (a,d) and (b,e) Complementary cumulative distribution (C(X)) function of domain cascades in the 

stripe phase below and above the critical points. (c) and (f) The corresponding scaling collapse with the critical 

exponent values [35].  

 

A similar analysis was performed for the skyrmion phase (shown in Fig. 3.14). We found that 

the critical exponents that collapsed the data best at 𝐻 = 𝐻𝐶𝑠𝑘
= 220 𝑚𝑇 are 𝑎𝑇𝑠𝑘 = 1.1 ±

0.3 and 𝑛𝑇𝑠𝑘
= 2.06 ± 0.5, while at 𝑇 = 205 𝐾 ~ 𝑇𝐶𝑠𝑘

, we obtained the critical exponents 

values of 𝑎𝐻𝑠𝑘 = 1.1 ± 0.2 and 𝑛𝐻𝑠𝑘
= 0.5 ± 0.2. 
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Fig. 3.14: (a) and (c) Complementary cumulative distribution (C(X)) function of domain cascades in the 

skyrmion phase above the critical points. (b) and (d) The corresponding scaling collapse with the critical 

exponent values [35]. 

 

Our analysis was done according to the avalanche model and it clearly shows critical 

behaviour for both stripes and skyrmion phase that is centred on different critical field and 

temperature. The critical exponent „𝑎’ has a similar value for both phases, but exponent „𝑛‟ 

takes different value for stripes compared to skyrmions. The similarity of the exponent „𝑎‟ 

suggests that near the critical point the distribution of avalanche sizes for both stripes and 

skyrmions follows roughly the same power law distribution although the magnitudes are 

much different. The difference in the 𝑛H and 𝑛T exponents between stripes and skyrmion, on 

the other hand, suggests that the divergence of the correlation length is much faster in one 

case than the other. Since all the critical exponents are not same for both the phases, this 

indicates that stripes and skyrmions belong to different universality classes. 
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3.4  Conclusion  

One of the most important findings of this work from the behavior of the jumps or 

cascades is that once the skyrmion phase sets in there is hardly any noticeable evidence of 

sudden or drastic change in the periodicity, orientation or number density of the distorted 

hexagonal lattice as is the case in stripe phase where sharp changes are observed in both order 

and disorder states. Till date experimental studies have not reported the exact nature of 

changes occurring in such topologically protected skyrmion phase relative to the size, 

morphology or number density. It is most likely that due to the topological protection that 

allows skyrmions to move easily through the lattice is also the reason that the domain walls 

are not pinned and consequently show smaller magnitude and frequency of jumps with 

respect to the stripe phase.  

Our theoretical analysis of the jump data on the basis of mean field avalanche model 

clearly shows critical behavior for both stripes and skyrmion phase that is positioned around 

different critical field and temperature. It is observed that the critical exponent 𝑎 has a similar 

value for both stripe and skyrmion phases, whereas the cut-off exponent 𝑛𝐻  have different 

value for stripes in contrast to skyrmions. The similarity of the exponent 𝑎 in the scaling 

function suggests that close to the critical point the size distribution of the avalanche in both 

stripe and skyrmion phase roughly follows the same power law behaviour even though the 

magnitudes are much different. Since long-range dipolar interactions play an important role 

in the Fe/Gd heterostructure [22], it is not surprising that the value of the exponent 𝑎 comes 

out to be similar in all the magnetic phases. It is reported that dipolar interaction in addition 

to frustration lead to small power law exponents 𝑎 in other avalanche type systems: for 



P a g e  | 156 

 

                                                                                                                Low Dimensional Magnetic Structures 

 

example the Sherrington Kirkpatrick avalanche model gives an exponent value of 𝑎 = 1 ±

0.1, which is very close to our findings [37].  

On the other hand the difference in the 𝑛𝑇 and 𝑛𝐻  exponents between stripes and 

skyrmion, suggests that the correlation length diverges much more rapidly in one case than 

the other. Since all the critical exponents of the scaling function are not identical for both the 

phases, this indicates that stripes and skyrmions belong to different universality classes. Apart 

from average size of the jumps, which is a non-universal quantity, we can therefore use the 

avalanche statistics and universal exponents 𝑛𝐻  for distinguishing stripes and skyrmions.  

Distinctly separate critical fields 𝐻𝐶  and temperatures 𝑇𝐶  indicate differences in 

energetic that govern the formation of stripes and skyrmions. It is well established that stripe 

and skyrmion lattice have different symmetry and dimensionality. One can conclude that the 

reasons for anomaly in jump size and critical exponents could be attributed to differences in 

dimensionality. A stripe represents a one-dimensional structure whereas a skyrmion is a two-

dimensional lattice. Results in Fig. 3.8 suggest that under the application of an external 

magnetic field, stripe domains undergo large avalanches while skyrmions become locally 

distorted. Since it is known that the skyrmion winding number needs to be conserved, which 

makes them move relatively smoothly through lattice, the domain walls are weakly pinned 

leading to a small magnitude of jumps. As a consequence, topology and dimensionality 

affects the dynamic behavior of stripe and skyrmion phases.  

Apart from field induced domain fluctuation that was observed, thermal fluctuations 

are most likely to get enhanced near the critical temperature. Future studies will be focused 

more towards understanding the nature of the disorder-order transition particularly that 

involves meron and skyrmion spin textures [38]. Indeed, study of magnetic fluctuations as a 

function of time will enable us to determine “correlation function” that may shed light into 
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formation of skyrmions. It will be exciting and important to perform similar such studies on a 

Dzyaloshinskii-Moriya based skyrmion system and evaluate the critical nature of the helical 

and skyrmion state. Beyond magnetic systems, our X-ray based versatile technique can be 

applied to a wide variety of condensed matter system such as liquid crystals, polymers, 

ferroelectrics to directly study stochasticity and scaling behavior at the nanometer scale 

regime. 
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              4 

 

elf-organization of magnetic domains on surfaces and interfaces has 

attracted considerable recent interest because it manifest in regular atomic 

scale structures, important in both fundamental and technological aspect. 

Self organized structures appear in nature whenever a system spontaneously chooses a 

preferred structure size and geometry due to minimization of energy. Behaviour of magnetic 

domains is a basic instance of complexity in materials science which has been the subject of a 

long and abiding series of research in condensed matter physics. Understanding the nature of 

magnetic domains gives insight into fundamental interactions that give rise to different 

magnetic phases. Resonant X-ray magnetic scattering offers a versatile technique to probe the 

magnetic structure in Fourier space and provides the ensemble average properties of the 

magnetic domains. Further, by using coherence property of the incident X-ray photons we 

can study the speckle pattern due to the interference of randomly phase shifted waves that are 

scattered by the domains. The speckle patterns are fingerprints of the domain structure and 

therefore reveal heterogeneity of the magnetic texture. 

S 

Modulated periodicities and Devil‟s 

staircase in an amorphous magnetic 

thin film 
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4.1   Introduction 

Stripe patterns appear in a wide variety of materials, extending from biological to 

strongly correlated electron systems. The common mechanism behind stripe formation in 

most system is a natural tendency to balance two or more different phases that appear 

because of competing interactions. In case of ferromagnetic thin films, the competition 

between short-range exchange and long-range dipole–dipole interactions results in periodic 

stripes in which the magnetization self organises in up and down magnetized bands. In 

antiferromagnets, however, due to absence of finite magnetization that could facilitate long-

range interactions between magnetic domains, the stripe formation is not expected. In some 

cases like in biological membranes, stripe modulation may also appear due to the coupling 

between different order parameters that is governed primarily by short-range forces. Similar 

mechanisms can also appear in antiferromagnets and may be active in other strongly 

correlated electron systems like in high-temperature superconductors, where the competition 

between charge-stripe ordering and superconductivity has become increasingly evident. 

 In a seminal work by Kooz and Enz in 1960 on single crystal of bulk BaFe12019 by 

using optical Faraday effect the domain configuration and magnetization process was studied 

in presence of external applied magnetic field. They developed a theoretical formalism to 

understand the behaviour of magnetic domains in applied fields [1]. 

Magnetic domains for a long time have played a dominant role in data storage devices 

due to the presence of the domain structure.  In such devices the magnetic structure is 

generally confined in the nanometer length regime for energy efficient applications. Newer 

techniques has paved way to exploit the strong magneto-optical contrast at certain absorption 

edges which in turns gives deeper insight into the study of magnetic structures in real space: 
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transmission X-ray microscopy (TXRM) [2-4] and photoelectron emission microscopy 

(PEEM) have been able to image magnetic structures with resolutions in the 10 nm range [5-

8]. On the other hand techniques like X-ray resonant magnetic scattering (XRMS), probes the 

magnetic structure in reciprocal space and presents the ensemble averaged properties of the 

magnetic structure [9-10]. In this chapter we discuss new aspects of X-ray resonant magnetic 

scattering through a detailed analysis of data on the evolution of stripe domains in amorphous 

Fe/Gd films under perpendicularly applied magnetic fields. 

Stripe domains are meandering domain patterns found in thin films displaying 

perpendicular anisotropy (PMA), in which the magnetization self-organizes in alternating up 

and down magnetized bands. They result from the competition between the local exchange 

and anisotropy interactions that favour a single saturated domain state with the long ranged 

demagnetizing dipolar field that tends to break up this single domain, at the cost of the 

creation of domain walls. Given the right combination of thickness and magnetic properties, 

highly correlated up and down domains form. In their seminal work on stripe domains, Kooy 

and Enz [1] found accurate expressions for the width of the up and down domains in 

perpendicular fields, assuming infinitely thin domain walls. However, when the film 

thickness is comparable to the domain period, the structure of the domain wall has to be 

considered. Thus, closure domains can form, further minimizing the dipolar energy [16] and 

altering the domain wall energy. To some extent, these effects have been incorporated in 

extensions of the Kooy and Enz model [11-15]. Alternatively, the true domain structure can 

be calculated accurately using micromagnetic finite element methods which, however, 

require the stripe period as an input parameter. Given this situation, high resolution 

experimental data are required to further test these models. 
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4.2  Commensurate phases, incommensurate 

phases and the Devil’s staircase 

Modulated structures with periods which are incommensurable (or high-order 

commensurable) with the basic lattice are quite common in condensed-matter physics. The 

structure may be another lattice, a periodic lattice distortion, a helical or sinusoidal magnetic 

structure, or a charge density wave in one, two or three dimensions. 

Let us consider a model as shown in figure 4.1 which consists of an array of atoms 

connected with harmonic springs interacting through a periodic potential of period b. A 

simple example will be an interacting gas atoms adsorbed on a crystalline substrate. Despite 

its extreme simplicity the model exhibits most of the features which will be discussed in the 

subsequent part. 

 

Figure 4.1: The one-dimensional FVdM model. The springs represent interactions between atoms, the wavy 

line the periodic potential. (a) Commensurate structure, (b) incommensurate structure, (c) chaotic structure. 

 

The model with a cosine potential was initially introduced by Frenkel and Kontorowa (1938) 

[21], and it was latter studied extensively by several authors, in particular by Frank and Van 
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der Merwe (1949) [17], Theodorou and Rice (1978) [18], Aubry (1979) [60], Greene (1979) 

[19] and Bak (1981) [20]. 

The Hamiltonian of the model may be taken to be: 

𝐻 =  
1

2𝑏2 (𝑥𝑛+1 + 𝑥𝑛 + 𝑎0)2 + 𝑉(1 − 𝑐𝑜𝑠
2𝜋

𝑏
𝑥𝑛 )𝑛                                                             (4.1) 

where xn gives the position of the nth atom. If the periodic potential, V, is absent then the 

harmonic term would favour a lattice constant a0 which; in general, may be incommensurable 

with b. In such condition the adsorbed lattice forms an incommensurate (I) structure (Fig. 

4.1(b)). In a diffraction experiment this results in the formation of Bragg spots (or sheets) at 

positions Q = 2N/ao, where N is a integer. These spots doesn‟t coincide with the Bragg spots 

formed due to the periodic potential at positions G=2M/b, where M is another integer. If the 

potential is dominant enough it may favour the lattice to relax into a commensurate (C) 

structure in which the average lattice spacing, a, will be a simple rational fraction of the 

period b. Figure 4.1(a) depicts such a situation where 2a = 3b. This results in the atoms 

gaining potential energy at the cost of the elastic energy. The diffraction pattern due to the 

substrate and the adsorbed layer has an infinite number of coinciding Bragg peaks (sheets). 

Even in the case where the potential is not sufficiently strong to force the chain into a 

commensurate structure, the potential will always try to modulate the chain. The atoms will 

move towards the minima position. The average periodicity may advance to a simple 

commensurate value, but still remain incommensurate. In the most general case of 

incommensurate structure the position of the nth atom may be written [22, 60] in the form: 

𝒙𝒏  = 𝑛𝑎 + 𝜶 + 𝑓(𝑛𝑎 + 𝒂)                                                     (4.2) 

where  represents a phase and f is continuous and periodic function of period b. Here a 

being the average distance between atoms (which in general is different from ao) and f 
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represents the modulation of the chain owing to the potential. Since the energy is independent 

of , the chain is not locked to the potential. The symmetry of incommensurate systems, as 

well as the continuous symmetry related to , has been explained in the elegant work of 

Janner and Janssen (1977). The Bragg peaks are at positions 

𝑄 =
2πM

b
 +

2πN

a
                                                                                  (4.3) 

The spots at non-vanishing N thus form satellites around the diffraction spots from the basic 

lattice. Experimentally it is not possible to differentiate between a high-order commensurate 

structure and an incommensurate structure. Since the commensurate numbers are everywhere 

dense one may consider that the incommensurate phase will always be unstable with respect 

to a few nearby high-order commensurate phase. However, the commensurate and in-

commensurate structures do not satisfy all the stable configurations as there are additional 

chaotic structures which cannot be explained by the Eq. (4.2). The diffraction pattern 

corresponding to such condition is not composed of well-defined Bragg spots. It is not hard to 

imagine that such structures are possible by nature, although an accurate prediction requires 

some very complex mathematics. For example let us consider the situation where the 

potential is very strong in contrast to the elastic term. Clearly there exist metastable states 

where the atoms are distributed in a random way amongst the potential minima. An example 

of such a structure is shown in Fig. 4.l(c) where the chaotic phase gets „pinned‟ to the 

potential. In contrast to the incommensurate phase it is not possible to move the lattice 

without overcoming a potential barrier. In this respect the chaotic phase is quite similar to the 

commensurate phase, although the average period is generally incommensurate with the 

potential. On the other hand a fascinating works shows that if the atoms are charged, the 

incommensurate phase would be conducting whereas chaotic phase becomes insulating [46, 

20]. 
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Figure 4.2: Various types of staircase. (a) Continuous behaviour. (b) In-complete devil staircase. (c) Complete 

devil staircase. (d)  Harmless staircase [24]. 

 

The model as shown in Fig. 4.1 is a one-dimensional at zero-temperature one. At 

finite temperature the dimensionality becomes significant, and the prospect of a disordered 

fluid or paramagnetic phases arises. The incommensurate phases and the global phase 

diagrams are qualitatively distinct in two or three dimensions. In general, the periodic 

potential will tend to „lock‟ the system into a commensurate configuration. How does the 

periodicity, a (or wavevector q = 2/a), varies as some parameter is changed? Figure 4.2 

shows the different possible situations which shall be encountered in the following paragraph.  

When the parameter say x goes from x1 to x2, q changes from q1 to q2. Figure 4.2(a) 

shows a simple analytic continuous behaviour. The periodicity happens to pass through an 

infinite number of commensurate values without locking at any values; this corresponds to a 

so-called „floating‟ phase. Such situation may arise in two dimensions also. In Fig. 4.2(b) it is 

shown that a function locks-in at an infinite number of commensurate values. The value of 
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q/2 remains fixed and rational at an infinity of finite intervals of the variable x. Of course, 

the stability intervals reduce rapidly as the order of the commensurability increases. If there 

are some incommensurate phases present between the commensurate phases the function is 

known as „the incomplete devil‟s staircase‟ [18]. Figure 4.2(c) shows an example of „the 

complete devil‟s staircase‟ where the locked portions of the function fill up the entire range 

of the argument x. Even if the function takes only rational values, there are no jumps or first-

order like transitions. Figure 4.2(d) shows a “harmless staircase” where q takes only finite 

number of rational values. The most important „devilish‟ type system is probably the rare-

earth magnet of CeSb, in which up to seven distinct commensurate phases were observed. 

Figure 4.2 does not provide the complete picture of all the possible situations and it‟s not 

hard to imagine the different types of possible combinations. The phase diagram can 

comprise of regions showing a complete devil‟s staircase, regimes containing an incomplete 

devil‟s staircase and also harmless regimes.  

Some examples of commensurate and in-commensurate phases are shown in the figures 4.3 -

4.6 below. 
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Figure 4.3: Krypton monolayer adsorbed on graphite. (a) Commensurate „3 structure‟. The krypton atoms 

occupy 1/3 of the graphite honeycomb cells. (b) Incommensurate phase [23]. 

 

 

Figure 4.4: Stacking of metal (M) and graphite (A, B, C) layers in stage 2 graphite intercalation compounds 

such as CsC24. The intralayer ordering may be commensurate or incommensurate as shown in the previous 

figure [25]. 
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Figure 4.5: Scattering from a 1D incommensurate chain. The top panel shows the position of atoms in a 1D 

chain with a commensurate, λm= 5a, and an incommensurate, λm= (2/ √3)a modulation wavevector. The bottom 

panel is the calculated scattered intensity for a chain of N=2000 atoms, with positions given by Eq. (4.2), a 

modulation wavelength of λm= (2/√3)a, and a displacement amplitude of u=0.2. For simplicity it has been 

assumed that the atomic scattering length is unity, and independent of wavevector transfer Q [59]. 

 

Figure 4.6: Temperature dependence of wavevector for sinusoidally modulated structure of cerium antimonide, 

CeSb (Fischer et ai 1978). •, intense satellite; o, weak satellite [24]. 
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4.3  Modulated periodicities in stripe phase of a 

Fe/Gd thin film 

Modulated periodicities arise out of competition between local attractive potential and 

long-range repulsive interaction and provide a pathway to topologies and phases with 

spatially varying order parameter. While prevalent in single crystal and epitaxial systems, 

observation of modulated phases in amorphous system with perpendicular magnetic 

anisotropy is rare. Herein we show the wavevector Q due to ordered stripe domains in an 

amorphous Fe/Gd heterostructure does not change continuously, rather exhibits a staircase 

structure where the steps are rational fraction of two periodicities, similar to a Devil‟s 

staircase. The steps appear randomly with no defined size for height and width. Distribution 

of the step width and height follow a power law behaviour thereby indicating self-similar 

nature of the steps. We also observed that thermal fluctuations smear out the steps, consistent 

with theoretical prediction. 

A complex system when subjected to multiple interactions with competing 

periodicities can exhibit new phases whose ground state is defined by the modulation of the 

original periodicities. Understanding of modulated structures therefore shed insight into the 

basic mechanism that produces the non-trivial textures and provides a pathway to discover 

novel exciting phases. Commensurate and incommensurate phases, such as charge and spin 

density waves in solids [37], stripes and charge density waves in cuprate superconductors 

[38, 39], charge ordered state in manganites [40] , helical spin structure in magnetic systems 

[41], skyrmion lattices in quantum materials [42, 43] are some examples of modulated 

periodicities. In some special cases of interactions the system goes through numerous 

metastable states and the corresponding wavevector Q shows a complex self-similar staircase 
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structure resemblance of Devil‟s staircase [44-47] like structure. As mentioned earlier Devil‟s 

staircase has the property that the step width is rational fraction of the two periodicities. 

Experimentally such a complex metastable states have been observed in diverse systems. For 

example, in magnetic diffraction due to rare earths [48], charge density waves [49], in phase 

diagram of Kondo lattice CeSb [50], in evolution of ordered phases in Pb/Si(111) structure 

[51], in current-voltage characteristics of a niobium Josephson junction [52], spin crossover 

bimetallic 2D coordination polymer [53], spin valves [32].  

For modulated period to exist, it is customary to describe an ordered lattce with a 

lattice constant a, which gives a diffraction signal at wavevector Q=2πn/a, where n is an 

integer. A modulation to the lattice periodicity will give superlattice diffraction peaks at a 

wavevector (Q ± τ) where τ is the modulated wavevector. An interesting question is, how will 

modulated periodicity manifest for an amorphous material which may have local order but no 

well defined momentum transfer wavevector Q [46, 54]? In this article we address this 

question.  

The local symmetries and global symmetries in an amorphous system could be 

different. If these symmetries are in conflict with each other, with their respective ground 

state energies being near-degenerate, a small perturbation can result in the system follow 

different pathway and fall into a metastable state. Herein we show using resonant coherent X-

ray scattering that the scattering wavevector Q due to ordered stripe domains in an 

amorphous Fe/Gd heterostructure does not change continuously, rather exhibits a series of 

distinct field dependent steps. The staircase structure satisfies the criteria of a Devil‟s 

staircase. The steps were rational fraction of two periodicities. The steps appear randomly 

and its width and height has no defined size. Histogram of the step width and height follow a 

power law behaviour thereby indicating self-similar nature of the steps [58].  
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A central component to the problem of modulated phases that lead to exhibition of 

staircase structure is the existence of long range repulsive interaction. In case of 1D-Ising 

model with long range antiferromagnetic interaction the ground state has a compete Devil‟s 

staircase structure [55]. It has been theoretically shown that for an array of magnetic 

nanostripes with long range antiferromagnetic interaction of the form r
-p

, the magnetization 

reversal goes through a number of metastable states and shows a staircase structure [56]. A 

competition of exchange and dipolar interaction that has different spatial variation can give 

rise to a conflict in net interaction at a certain positions in space. Such a system is frustrated 

and is a candidate to exhibit modulated periodicities. 

The same sample was used which was already discussed in chapter 3. The Fe and Gd 

layers are antiferromagnetically coupled making Fe/Gd a ferrimagnet. The sample displays 

perpendicular magnetic anisotropy and exhibits disordered stripe, aligned stripe and skyrmion 

phases. Particularly, in the presence of a small applied in-plane field a magnetic phase 

consisting of bound pairs of unit winding number skyrmions with opposite helicity and 

aligned polarity is observed [30, 26]. The magnetic phase of the sample can be tuned by 

varying the applied magnetic field and temperature. Previous studies showed the existence of 

phase boundaries and underlying critical points in the stripe and skyrmion phases [57]. 

At resonant condition the X-rays are 10
4
 times more sensitive to the magnetization than at 

non-resonant energies [27]. Resonant coherent X-ray magnetic scattering patterns of the 

Fe/Gd thin film in the three magnetic phases are shown in Fig. 4.7. The central dark circular 

region is the beam-stopper to prevent the direct transmitted beam from falling on the CCD 

camera. The circular fringes surrounding the beam-stop are the Airy patterns and the streaks 

of intensity surrounding the beam stop are due to scattering from the pinhole edge (refer Fig. 

4.7(c)). Intense bright peaks consisting of speckles away from the central region are due to 
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scattering from the magnetic domains. We start our measurement at the zero field condition 

and then measured a series of scattering data as a function of applied magnetic field at 85K, 

183K, 220K, 236K and 300K temperatures. From our measurements we found that the Fe/Gd 

thin film comprises of three distinct phases: (i) an ordered stripe phase, (ii) skyrmion phase 

and (iii) disorder stripe phase at different fields and temperatures. 

 

Figure 4.7: Resonant X-ray scattering patterns due to (a) order stripes, (b) disorder stripes and (c) skyrmions. 

Insets show the enlarged view of the diffraction spot which shows speckle pattern. (d) Temperature Vs. 

magnetic field phase diagram of the Fe/Gd sample [36]. 

 

Formation of well aligned stripes at 220 K is shown in Fig. 4.7(a) with periodicity of 

119 ± 5 nm at remanence. The intensity profile is dominated with speckles which indicate 

heterogeneity in the domain morphology (see inset of Fig. 4.7(a)). With further increase in 

field starting from remanence the periodicity of the stripes starts to increase (See Fig. 4.7(c)) 

but around 170 mT the symmetry of the diffraction pattern began to change as new peaks in 

the form of a distorted hexagonal pattern as shown in Fig. 4.7(c) starts to appear. The 

intensity of the peaks in the skyrmion phase is much less compared to the peaks in the stripe 

phase. The skyrmion peaks show speckle pattern that indicates domain formation in the 

skyrmion lattice (see inset of Fig. 4.7(c)). An interesting feature is that due to the topological 
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protection the periodicity of skyrmions at any field value within the skyrmion phase (refer 

Fig. 4.7(d)) always remains 180 ± 5 nm. 

At sufficiently high fields the diffraction spots becomes faint and finally disappears as 

the film becomes homogeneously magnetized. Figure 4.7(b) shows the magnetic diffraction 

pattern at 183K. At sufficiently low field values there are two distinct spots. However, the 

zero field diffraction peak has a larger FWHM (4 deg) compared to 220K data (2.6 deg) 

along the azimuthal direction, which indicates that our sample at higher temperature (220K) 

has a high degree of perfection in the alignment of the stripe system. As the field is increased, 

instead of an appearance of six-fold diffraction pattern, as was the case in skyrmion phase, 

the diffraction spots transforms into an arc characteristic of meandering or disordered stripe 

domains formation. The periodicity of the disorder stripes at remanence is 114 ± 5 nm. As 

shown in the insets of Fig. 4.7, diffraction patterns are modulated by speckles arising due to 

presence of domains. The speckle pattern corresponding to a diffracted beam will change 

whenever the morphology of the domains changes due to variations in magnetic field or 

temperature. 

 

4.3.1  Experimental details 

Resonant coherent X-ray scattering experiments were performed at the Coherent Soft 

X-ray Science beamline of the Advanced Light Source at Lawrence Berkeley National 

Laboratory. The beamline was designed to produce linearly polarized coherent soft X-rays. 

The resonant condition was achieved by tuning the energy of the incident beam to the Fe L3 

edge (≈ 707 eV photon energy or 1.75 nm photon wavelength). Since at resonant condition 

the X-rays are sensitive to the magnetization along the beam propagation direction, we used a 

normal incidence transmission scattering geometry to enhance the magnetic contrast. A 10 

μm pinhole was put in the path of the incident beam to establish transverse coherence in the 
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beam. Typical transverse coherence length of the beamline is about 5 μm. The existence of 

Airy fringes and magnetic speckle pattern in the measured data (see Fig. 4.7) clearly 

demonstrate the coherence of the soft X-ray beam. A charge-coupled device detector was 

used to record the scattered intensity patterns as a function of magnetic field over entire field 

cycles and repeated at different temperatures.The schematic of X-ray scattering experiment in 

transmission geometry is shown in Fig. 4.10(a). A 10 micron pinhole in the beampath and 

energy of Fe L3 edge (707 eV) was set to establish transverse coherence of the beam and the 

resonant condition respectively. The magnetic field was placed perpendicular to the sample 

and the scattered intensity patterns were recorded with a CCD camera placed at a distance of 

0.5 m downstream of the sample. 

 

4.3.2  Lorentz TEM data and analysis 

 

Figure 4.8: (a) & (d) Real space image of magnetic stripe domains using LTEM at fields F1 and F2 respectively 

(F2>F1). (b) & (e) Line profile (yellow line in Fig. 4.8a, d) of the stripes at F1 and F2 respectively along with the 

Gaussian fit. (c) & (f) The fitting parameters of the Gaussian profile are for all the peaks are listed in the 

corresponding tables (here width denotes FWHM).  
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The real space images of magnetic order stripes are shown in Fig. 4.8 above using 

LTEM. Field/Temperature-dependent in-plane domain morphology images were recorded in 

Lorentz mode using an FEI Titan equipped with an image aberration corrector at the Center 

for Advanced Materials Characterization, University of Oregon. 

The images show the changes happening in the domain structure as the field is increased 

from F1 to F2 as shown in Fig. 4.8 (a) and 4.8(d). From the parameters derived by fitting a 

Gaussian profile one can observe that with increase in field the width of the up-domains start 

increasing (see Fig 4.8(c) and (d)) whereas the width of the reversal domains remains almost 

constant. The net result is the increase of domain periodicity as evident from the centre to 

centre distance between two peaks shown in Fig. 4.8(c) and (d).  

4.3.3   Experimental Results 

 

Figure 4.9: The field vs. temperature phase map of the Fe/Gd multilayer films. The reciprocal space image (a) 

and the X-ray microscopy real space images (b) are shown for the disorder stripe, order stripe and the skyrmion 

phases. The red dotted lines show the resonant X-ray scattering measurements.  
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The presence of different magnetic phases, disorder stripes, ordered stripes and 

skyrmions in the Fe/Gd multilayer films as a function of the magnetic field and temperature 

is shown in the phase map in Fig. 4.9. The X-ray microscopy real space image and the 

corresponding reciprocal images measured using resonance soft X-ray scattering (RSXS) at 

different magnetic phases are shown as the insets corresponding to that particular phase [28]. 

The disorder stripes phase shows more like a maze pattern whereas the order stripes shows 

alignment in a particular direction. In both the stripe phases (ordered and disordered) the 

diffraction image corresponding to the stripes shows two distinct diffraction spots 

diametrically opposite to the central scattering region. The real space image of skyrmions is 

represented by the circular dots arranged in a hexagonal lattice. The corresponding diffraction 

image also shows six Bragg spots in the hexagonal arrangement [31]. The white region in 

between the skyrmion and order stripe phase in Fig. 4.9 represents a broadened stripe-

skyrmion transition and the region corresponding to the uniform magnetization, the magnetic 

diffraction spots completely disappears. We have selectively chosen the temperatures 

spanning over different phases in the phase map for the experiments using the RSXS 

technique which are marked as the red dotted vertical lines and will be discussed next.  
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Figure 4.10: (a) Schematic of the experimental setup. (b) Evolution of the stripe phase at 225K at different 

applied magnetic fields. (c) The changes in the Q value of the diffraction peaks from the stripe phase to 

skyrmion phase as a function of applied field at 225K. The line profiles are extracted from the images of 

diffraction spots from the Fe/Gd multilayer structures. Two such images at stripe phase and skyrmion phase are 

shown at the top left and bottom right position of the figure. (d) The periodicity of the stripes as a function of 

applied field at 236K. Also shown in the figure are the different rational steps indicating Devil staircase like 

behaviour. 

 

The evolution of the diffractions spots from the stripe phase to skyrmions as a 

function of applied field at 225K is shown in Fig. 4.10(c). At zero fields, the multilayer 

sample is in stripe phase and the diffraction image corresponding to that phase is shown at the 

top-left corner inset of Fig. 4.10(c). Diagonally opposite two sharp spots in the inset image 

are due to the diffraction from the stripe magnetic domains whereas the streaks of intensity 

surrounding the beam stopper is due to the diffraction from the pin hole placed before the 

sample. The line profile corresponding to the Bragg peak marked in the shaded cone shows a 

peak at Q1 (=0.052 Å
-1

) as evident from the profile in the inset next to the image in Fig. 
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4.10(c). The increase in field leads first to the appearance of a satellite peak at Q2 (lower than 

the Bragg peak at Q1) and subsequently this satellite peak transforms into the main Bragg 

peak as shown by the symbols in Fig. 4.10(c). The position of the Bragg peak indicates the 

periodicity in the stripe domains and the intensity is related to the number of domains having 

such periodicity. First appearance of satellite peak at Q2 with less intensity and then the 

merger of the main Bragg peak to this Q2 at a certain magnetic field indicates that the number 

of magnetic domains having periodicity 2𝜋/𝑄1 decreases with increase in field while the 

number of domains having periodicity 2𝜋/𝑄2 starts increasing and finally all the domains 

transforms with periodicity 2𝜋/𝑄2.This sequence of events, changing Q values from Q1 to Q7 

with similar mechanism of peak shifts is repeated for higher field values and ultimately ends 

in a structure when the skyrmion phase emerges which is represented by the six diffraction 

spots (due to hexagonal ordering) as shown by the image at the bottom-right corner inset of 

Fig. 4.10(c). It is important to note here that the Q values of the Bragg peaks always change 

in a discrete random step representing a staircase like phenomena and this change in the 

position occurs through an evolution of a satellite peak (Q1 to Q2, Q3 to Q4&Q5 to Q6). In 

some cases, direct change in Q values corresponding to the Bragg peaks (Q2 to Q3 & Q4 to 

Q5) is also observed. 

The periodicity (2𝜋/𝑄1) corresponding to thestripes at remanence is 119 ± 5 nm. As 

the incident beam is coherent, the intensity profile within the Bragg spot consists of speckles 

which indicate heterogeneity in the stripe domain structure. Around 170 mT, new peaks are 

formed in distorted hexagonal pattern start to appear instead of only two diagonally opposite 

Bragg diffraction peaks indicating a transition to the skyrmion phase. It is to be noted that the 

intensity of the initial two Bragg peaks is much higher than the other four new peaks in the 

hexagonal pattern appear in the skyrmion phase. The new skyrmion peaks also show speckles 

pattern which indicates skyrmion domain structure formation in the spin lattice. The 
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periodicity of skyrmions at 193 mT is 233 ± 7 nm. At sufficiently high field (Hs) the 

diffraction pattern disappears as the film becomes uniformly magnetized. 

 

Figure 4.11: Resonant X-ray scattering pattern at different fields (a-c) and the corresponding intensity profile of 

the diffraction spots as a function of Q. 

 

In figure 4.10(c & d) plotted is the periodicity of the stripes in the order phase at 236K 

as a function of applied external field from 0 mT to 157.5 mT. We obseve steps like 

behaviour in the periodicity plot as the magnetic field is changed at the rate 1.575 mT/s. We 

start measuring the periodicity (2/Q) at zero field where the periodicity of the stripes is 

minimum and end our measurement at 157 mT just before the onset of the skyrmion phase 

where we get the maximum periodicity for the stripes. On the right side of the plot the 

normalized values are shown. To calculate the normalized values we have first determined 

the total change in periodicity from 0 mT to 157.5 mT. Then we have subtracted the 

periodicity at different fields starting at 0 mT from that obtained 157.5 mT and divided the 

subtracted values by the total change in periodicty obtained before. So this makes all the 



P a g e  | 182 

 

                                                                                                                Low Dimensional Magnetic Structures 

 

normalized values to lie within zero and one. The position of the different steps corresponds 

to a particular value of the periodicity and we can allocate different values of these steps from 

the normalized periodicity values as shown in Fig. 4.10(d). The most interesting thing that we 

observe from the values is that most of the stairs corresponds to a rational number (nearly 

five in our case) and the values closely agrees with those that are observed in magnetic 

materials showing Devil staircase like behaviour [31-35].     

In figure 4.11 we have shown the enlarged images of the diffraction pattern from the 

stripe phase. In the reciprocal pattern presence of two diffraction spots are visble along the q-

direction. The correponding line plots of the intensity profile as a function of q are shown 

below each of the diffraction patterns taken at different fields. From the pattern it is evident 

that at 124 mT there are two peaks, one corresponding to the Bragg Peak (label 1) and the 

other corresponding to the satellite peak (label 2). As the field is inreased slowly a 

changeover takes place whereby the intial Bragg peak moves to the previouly formed satellite 

peak. The line plots in the lower panel clearly shows the transformation. As the Bragg peak 

shifts its position the intial position doesn‟t disappear but a small peak remains which latter 

disappears as the field is increased. 

Thus the satellite peak initially formed transforms into a Bragg peak and then again 

another satellite peak starts forming at a lower q value. This sequence is repeated as described 

earlier. The transformation incommensurate-commensurate actually gives rise to the staircase 

type variation of the stripe periodicity as a function of applied field. 
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Figure 4.12: Schematic of the extraction of Hs and Ts from the phase boundary of the saturation magnetization 

in Fe/Gd multilayer films from the phase diagram [28]. The solid black and red lines are the line of 

extrapolation in the low and high temperature regions respectively. The dotted lines signify the measurement 

temperatures and fields for the films and the arrows mark the corresponding Hs and Ts. 

 

The estimation process of uniform magnetization at a specific field (Hs) and the same 

at a temperature (Ts) from the phase boundary of the uniform magnetisation is shown 

schematically in Fig. 4.12. Previous measurements to map different phases of the Fe/Gd 

multilayer was limited in the range of 50K to 300K in temperature and 0 mT to 500 mT in 

field. The simple assumption followed here to calculate the Hs beyond the field of 500 mT 

was the extrapolation of the slope of the phase boundary at 500 mT to the higher magnetic 

field region as shown by the black solid line in the Fig. 4.12. The black dotted lines are the 

temperatures where measurements were done and the corresponding Hs are marked by the 

arrows. Similarly the phase boundary for uniform magnetisation was extrapolated beyond 

300K with an additional constrains, the Curie temperature (700K) for the Fe/Gd multilayers 

and the Ts were extracted from that line as shown in Fig. 4.12. 
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The periodicity of the stripe domains can be calculated simply from the position of the Bragg 

peak following the relation (Q = 2𝜋/𝑄). The variation of the periodicity () of the stripe 

domains normalised by the periodicity at remanence as a function of H/Hs at different 

temperatures 85 K, 183K, 236K and 300K are shown in Fig. 4.13(a) to 4.13(d) respectively. 

The treads in stairs at 85K are longer and also the riser is much bigger in this case. As the 

system goes from the disorder stripe to the order stripe phase with increase in temperature, 

both the treads and riser become shorter leading to more number of small steps and ultimately 

more of a continuous variation with the applied fields. Also it is observed that the rate of 

change of  with the variation in field increases with increase in the temperature. The solid 

lines in Fig. 4.13(a) – 4.13(d) show the fitting of a theoretical model following eq. (4.4) to the 

experimental data at different temperatures. The theoretical model was initially developed by 

Kooy, Enz [1] and was later extended by Gehanno et al [15] to make it applicable to films 

with thickness smaller than the domain period. This model gives a relationship between the 

periodicity of the stripes as a function of the applied field [29]. 

𝜏 𝑕 = 𝐴𝑕 sec 𝑎𝑟𝑐𝑠𝑖𝑛 𝐵𝑕𝑕                                                                                                                  (4.4) 
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Figure 4.13: The variation of the periodicity of the stripe domains normalised by the periodicity at remanence 

as a function of reduced fields (H/Hs) at temperatures (a) 85 K, (b) 183K, (c) 236K and (d) 300K. 

 

Here h is the reduced field (H/Hs), 𝐴𝑕  and 𝐵𝑕  are the terms whose value depends on the film 

thickness and susceptibility (at zero field) of the material. For a thin film, the ratio of 𝐴𝑕 /

𝐵𝑕 gives the value of the film thickness (t) at a temperature and the fitted values are shown in 

the figure. It is clear from the fitting that the theoretical model fits well with our experimental 

data for the ordered stripes than the disorder stripes. 

The variation of the periodicity () of the stripe domains as a function of T/Ts at 

different fields 0mT, 63mT, 110mT and 150mT are shown in Fig. 4.14(a) - 4.14(d) 

respectively. Following eq. (4.4), a similar equation has been conjectured just replacing the 

H/Hs by t = T/Ts as shown in eq. (4.5). 

𝜏 𝑡 = 𝐴𝑡sec⁡[arcsin 𝐵𝑡𝑡 ]                                                              (4.5) 
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Figure 4.14: The variation of the periodicity of the stripe domains normalised by the periodicity at remanence 

as a function of reduced fields (T/Ts) at fields (a) 0mT, (b) 63mT, (c) 110mT and (d) 150mT. 

 

The curves in figure 4.14 can be fitted quite well with the eq. (4.5) where the value for Ts at 

different fields has been extracted following the procedure mentioned in Fig. 4.12. The At and 

Bt are treated as fitting parameters and the ratio (At/Bt) also agrees with the estimated value of 

the film thickness. Although the agreement of the ratio with the thickness is much better at 

lower fields than the higher field values. 
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Figure 4.15: The collapse of normalised periodicity (symbols) as a function of (a) reduced temperature (T/Ts) 

and (b) reduced field (H/Hs). The solid lines are the fit with the expression as described in the text. 

 

The periodicities extracted at different fields and temperatures after normalization can be 

collapsed to a single curve when plotted against the T/Ts (Fig. 4.15(a)) or H/Hs (Fig. 4.15(b)). 

The collapsed curve can be fitted with a simple expression similar to thermal expansion of 

solids as 

𝜏 = 1 + 𝑎 ∙ 𝑥𝑛                                                                                            (4.6) 

Where x is the reduced temperature (t) for the temperature plot (Fig. 4.15(a)) or the reduced 

field (h) for the field plot (Fig. 4.15(b)). The values of n higher than 3 in both the cases 

indicate higher order expansion of spin structure with the field or the temperature. 
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Distribution of step height and step width of a Devil’s staircase 

 

Figure 4.16: Complementary cumulative distribution function (CCDF) of step height at temperatures (a) 236 K,  

& (c) 300 K and step width at (b) 236 K, & (d) 300 K. The distribution could be fitted with a power law. 

 

Since a staircase comprises of multiple steps each having a step width and step height 

so we carried out the distribution of these step height and step width at two different 

temperatures as shown in Fig. 4.16. Here we have plotted the CCDF, the formalism of which 

has already been described in chapter 3.  

The distributions are plotted from over 30 field-loops consisting around 250 data points. We 

have fitted the distribution function with a simple power law equation of the form: 

 

𝑃 𝑥 = 𝐴 ∙ 𝑥𝑠 + 𝑦0,                                                                                                (4.7) 
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where 𝐴 is the amplitude, 𝑠 is the exponent and 𝑦0 is the intercept. At T = 236 K the value of 

exponent is -1.41±0.16 and -0.440±0.04 and at T = 300 K it is -1.30±0.1 and -0.480±0.05 for 

ΔQ (step height) and ΔH (step width), respectively. We note that the range of the height and 

width distribution at T = 236 K and 300 K are different, yet, the distributions follows similar 

power law behaviour confirming the self-similar nature. 

A negative slope, similar to earthquakes and stock market fluctuation, imply that there 

are more numbers of small step width and shorter step size. In fact, from our Q vs Applied 

Field plots (see Fig. 4.10(c, d)) we have observed that generally steps width (ΔH) at smaller 

applied fields is associated with shorter heights (ΔQ) and magnitude of both increases with 

increasing applied field. This implies that as the periodicity of stripe domains changes 

through different metastable states there is always a tendency of the stripes to favour those 

states that are more stable, hence more amount of energy is needed to change the periodicity.  

While the exponent for ΔQ and ΔH do not change significantly with temperature, the 

value is different between the height and width distribution. An interesting observation could 

be made that if we remove the applied field for which the periodicity is locked, then we are 

left with a set of vertical bars (of ΔQ) that constitutes all sizes that the stripe domains 

underwent during the field excursion. Similarly, we can determine a set of horizontal bars (of 

ΔH) where the periodicity does not change that will describe all the magnetization value that 

the sample can have during a hysteresis loop. A change in Q and/or H causes change in 

magnetization M, but with different proportionality. We can write, ΔQ ≈ M
a
 and ΔH ≈ M

b
. 

Since the exponent between ΔQ and ΔH differs, we can say that for same change in Q or H, 

the magnetization changes differently. Further, the ratio (ΔQ/ΔH) ≈ (M)
a-b

. In case of a=b, 

this would constitute a linear relation between step width and height. The non-equivalent 



P a g e  | 190 

 

                                                                                                                Low Dimensional Magnetic Structures 

 

values between ΔQ and ΔH indicates non-linearity and is likely due interactions present in 

the system. 

As the temperature is increased the thermal energy starts to compete with the 

interaction that gives rise to the step jump. Due to difference in spatial variation between the 

thermal and magnetic energies, temperature changes should change the characteristics of the 

staircase. For temperatures where KT<<Estep, where Estep is the amount of energy needed to 

make a step jump, the jumps will be sharp. At elevated temperatures fluctuation should smear 

the steps [56]. 

 

4.4  Discussions and Conclusion 

If we normalize the change in the periodicity of the stripe phase to vary it between 0 

and 1, then a fractional value corresponding to a particular position of the step height can be 

obtained (see Fig. 4.17(a)). If the value of the normalized periodicity for a particular step is 

known, then one can construct a schematic of the spin configuration with respect to a known 

ground state spin configuration. In Fig 4.17(a) we show an example of staircase with 

normalized periodicity at room temperature. The various rational fractions for each of the 

staircase are also depicted. To construct a schematic of the spin configuration with respect to 

a known ground state spin configuration we use the following relationship: 

 

Periodicity𝒊 =
𝑃𝒊−𝑃𝟎

𝑃𝑵−𝑃𝟎
 ,                                                                         (4.8) 

 

where P is the periodicity, the subscript i = 0, 1, 2, 3….., N (field intervals) and each field 

value corresponds to 1.575 mT. Let us assume that at the coercive field number (0 mT) 

number of “up” domain equals the number of “down” and that each domain is constituted of 

four spins. Under an applied field in the up direction, we will also assume that only up 
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domains increase in size. This means number of blue spins increases and number of red spins 

remain constant. This is consistent with smaller Q-values with increasing field (as observed 

in experiments) and LTEM images [Fig. 4.8]. Using relation (4.8), we can get spin 

configuration for some of the modulated periodicity, viz, Periodicity0 = (8-8)/(12-8) = 0; 

Periodicity3 = (9-8)/(12-8) = 1/4; Periodicity5 = (10-8)/(12-8) = 1/2; PeriodicityN = (12-

8)/(12-8) = 1. Here the numbers denotes the number of spins (adding both up and down 

spins) in a particular configuration at a given field step. The spin structures are schematically 

shown in Fig. 4.18(a).  

Using normalized periodicity we can also draw a schematic of the magnetic stripe 

domain pattern (=blue colour and = red colour) as shown in Fig. 4.17(b). In the ground 

state up and down domains are of equal width and hence we get a value of zero from the 

normalized periodicity equation (Eq. 4.8). The domain (spin) configurations are cyclic with 

respect to the ground state at some particular field values. The cyclic condition holds only in 

case of a commensurate phase whereas for incommensurate phases this cyclic condition will 

not hold as is the case for the ratio 1/3. For simplicity we have shown only three different 

ratios (Fig. 4.17(b)) comprising of fewer number of stripe periods (one period= +) where 

the spin configurations are both cyclic and commensurate. The other commensurate phases 

that are also present in Fig. 4.17(a) will become cyclic with respect to the ground state at 

higher number of periods which was not possible to show in figure 4.17(b) for availability of 

space in the horizontal direction. 
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Figure 4.17: (a) Periodicity of the magnetic stripes using Eq. (4.8) as a function of applied magnetic fields at 

room temperature. Schematic of different spin configurations considering Ising type spins of stripes 

corresponding to the different rational fractions are shown inside. (b) Ratio of the number of stripes present at 

different fields with respect to the number of stripes present at zero field (blue region consists of all up spins and 

red region of all down spins. Blue and red region combined makes for a periodic of the stripes). The spin 

configurations in the blue and red regions at a particular field is given as in figure 4.17(a) with P=0 at 0mT, 

P=1/4 at 100mT, P=1/2 at 120mT and P=1 at 140mT as calculated from equation 4.8. 

 

We showed existence of remarkably distinct staircase structure in an amorphous 

magnetic system. Our study confirms the theoretical prediction that periodicity and 

modulated structures do not necessarily need a crystalline sample. It could be that the aligned 

stripe in the Fe/Gd sample sets the basic periodicity and other modulated periodicities 

follows. An obvious next question would be to determine generality of Devil‟s staircase in 

other perpendicular anisotropy magnetic system where aligned stripes do not form. We also 

confirmed the theoretical prediction that thermal fluctuation smears the steps. Indeed, one of 

the important consequences of our study is that stripe domains in an amorphous magnetic 

system show many similarities with stripe found in other quantum system although the 

lengthscale of the interaction are very different. Since there could be infinite numbers of 

rational fractions between two rational fractions, it means that resolution permitting, more 

steps between any two steps could be observed. Since modulated periodicities are intricately 

linked to textures, discovery of new modulated wavevector can lead to discoveries of new 

quantum phases. 
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5 

 

n a remarkable study it was found that topological order can persist in two-

dimension through the formation of vortex structures [1] although thermal 

fluctuations [2, 3] destroy such conventional long-range ordering. There has 

been a considerable recent interest in Van-der Waals heterostructures and the possibility of 

technological application in spintronics devices has produced interesting results pertaining to 

2D ferromagnetic ordering and skyrmion like vortex structures [4-6]. Moreover, recent 

studies have focussed on the vortex formation in anti-ferromagnetic (AFM) phase due to the 

speciality that AFM-skyrmion will be able to move parallel to the applied current –a major 

problem [7] in the development of ferromagnetic (FM) skyrmion based devices. 

Experimentally generation of magnetic vortex structures in AFM materials has not been 

observed. Although such vortex formation in AFM phase could be imposed [8, 9] from 

adjacent FM-skyrmions, AFM-skyrmions have not been found experimentally and is of great 

theoretical interest [10].   

I 

Two dimensional magnetic ordering 

in rare-earth Langmuir-Blodgett films 
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Langmuir-Blodgett (LB) films of magnetic ions can provide an ideal platform to 

investigate vortex structure and dynamics in 2D ferromagnetic and anti-ferromagnetic 

systems with minimal amount of change in the structural configuration. 2D magnetic 

materials with such ferromagnetic and anti-ferromagnetic spin arrangement confined within 

ultrathin films and multilayered structures have always attracted considerable attention for 

understanding the underlying physics in some other phenomena like superconductivity [11, 

12]. 

The metal-organic multilayer structures with magnetic ions can be formed by LB 

techniques to investigate 2D magnetic ordering [13-15]. In LB films the magnetic metal ions 

are separated by approximately 5Å within a monolayer that form a distorted hexagonal 2D in-

plane lattice and in the out-of plane direction the monolayers are separated from each other 

by 50Å organic chains (refer to Fig. 5.5) [16-18].  

It has been reported that 2D short-range ferromagnetic order with no spontaneous 

magnetization occurs in gadolinium stearate (Gd-St) LB films when a magnetic field is 

applied along any in-plane (xy plane) direction, whereas the moments remains paramagnetic 

down to 2 K if the field is applied along the out-of plane direction (z direction). Higher value 

of magnetization was observed when the field was applied in the z direction than that 

obtained in any in-plane direction at any temperature indicating that the z direction is the easy 

axis [19, 20]. Due to vortex formation in Gd-based LB films, sub-Kelvin polarized neutron 

reflectivity (PNR) measurements have shown [21] that the saturation moment could never 

reach the expected ~7μB magnetic moment per Gd ions unless the sample is cooled below the 

Berezinskii-Kosterlitz-Thouless (BKT) transition temperature of 600 mK when a field was 

applied in the in-plane direction. We show here that spin-vortex dynamics in Ho-based LB 

films are quite different from Gd-based or Er-based LB films and exhibits anti-ferromagnetic 

ordering [37]. 
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5.1  Langmuir-Blodgett (LB) multilayer films 

Initially the Langmuir trough is thoroughly washed by de-ionized (DI) (Millipore, 

resistivity ∼18.2MΩ cm) water. Then the empty trough was cleaned with isopropyl alcohol 

and finally with chloroform using kimwipes (KIMTECH). The Gd-St, Er-St and Ho-St 

Langmuir monolayer was prepared by gently spreading stearic acid (SA; CH3(CH2)16COOH) 

solution prepared by mixing stearic acid in chloroform (concentration ∼0.2 mg/ml) on the 

surface of water (Millipore, resistivity ∼18.2MΩ cm) sub-phase containing 0.5mM rare-earth 

ions (dissolved gadolinium acetate, erbium acetate or holmium acetate ) by using a gas-tight 

micro-syringe (Hamiltonian). The trough was placed in a closed chamber on an anti-vibration 

table and the sub-phase temperature was fixed at 15°C. After spreading the stearic acid 

solution on the water sub-phase there was a delay of 10 minutes before starting the 

compression process in order to allow the chloroform to evaporate.  

The silicon (100) substrate was first cleaned by sonicating in iso-propyl alchohol then 

in acetone and finally washed in water. The as-cleaned silicon substrate is then hydrophillized 

by immersing it inside a solution containing H2O:NH4OH:H2O2 (RCA-I) in the ratio 10:3:3 

for 20 minutes at 70
o
 C. After disposing the solution the substrate was further washed 

thoroughly by DI water. Finally the substrate was dried in order to make the surface of 

substrate free from any dust and trapped air-bubble by blowing dry N2 gas before loading it to 

the sample holder. Presence of such dust and trapped air-bubble on the surface inside the 

water sub-phase hinders the transfer of Langmuir monolayer onto the substrate surface.  

The LB monolayer was compressed at a fixed rate of 8 mm/min to reach the target 

pressure. The LB films were deposited on a hydrophilic Si substrate at a constant dipping 

speed of 3 mm/minute for decent transfer ratio and a constant pressure (30 mN/m) was 
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maintained throughout the entire deposition process by an automated differential feedback 

arrangement. During the dipping process the substrate was hold at the top position for 6 

minutes during the upward stroke for the initial layer. After that it was made to hold at the top 

position for 30 seconds during the upward stroke and at the bottom position for 10 seconds 

during the downward stroke.  

The deposition of a LB multilayer film involves dipping of a substrate through a 

Langmuir monolayer formed on the water sub-phase, by keeping constant surface pressure 

during transfer of molecules from air-water interface to the substrate. The first monolayer 

gets deposited during the water-to-air (up-stroke) on a hydrophilic substrate. Then a series of 

air-to-water (down-stroke) and up-stroke deposit bilayers on the substrate [17]. The first layer 

forming on the hydrophilic substrate during the first upstroke is an asymmetric molecular 

layer having metal-heads on the substrate and the hydrocarbon tails pointing upwards as 

shown in Fig. 5.5(a). The symmetric bi-layer deposited in the subsequent down-stroke-up-

stroke cycles have hydrocarbon tails pointed in opposite directions (see Fig. 5.5(a)) [16-18]. 

We have shown representative X-ray data of Gd-St, Er-St and Ho-St in Fig. 5.6(b) having 

different odd number of layers. 

We have obtained the total thickness of the film from the separation between two 

Kiessig fringes in the reflectivity data (see Fig. 5.6(c)). The bi-layer periodicity is obtained 

from the separation between two Bragg peaks (see Fig. 5.6(b)). The number of layers that 

were deposited in the LB trough matched with the total-thickness obtained from the 

reflectivity data for all the three LB films [16]. 

X-ray reflectivity (XRR) and X-ray grazing incidence diffraction (GID) 

measurements were performed at the Indian beamline in Photon Factory, KEK, Japan with a 

focused beam of energy 11keV to characterize the out-of plane and in-plane structure of the 
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deposited multilayer LB films. Since the synchrotron (Photon Factory) uses a bending 

magnet the focused beam is of diameter 0.6 mm. In order to minimize the effects of radiation 

damage on the sample we focus the beam away from the sample along the horizontal 

direction (~ 1.5 meter). The incident slit size was fixed at 0.2 mm X 1.5 mm (H X V). 

The magnetization measurements were carried out using a 7-T Quantum Design 

(MPMS 3) SQUID VSM as a function of magnetic field and temperature down to 2.2 K. 

Magnetization isotherm measurements (M vs H at a constant temperature) over all four 

quadrants including the virgin curve were measured as a function of magnetic field up to ±50 

kOe. All the data presented here were collected by applying field in the in-plane direction of 

the samples. 

The magnetization isotherm measurements were carried out first by cooling the 

sample from 300K to the desired temperature of measurement under zero magnetic field 

condition. M vs T magnetization measurements were also carried out over the temperature 

range 5K to 100K by applying a magnetic field of 500 Oe (in-plane) during the warming 

cycle from 5K. 

 

Langmuir monolayer studies 

Isotherm study 

A schematic of the experimental set-up and a typical pressure-area (π-A) isotherm of 

the Gd-St Langmuir monolayer at the air-water interface is presented in the Fig. 5.1. The 

region of flat plateau and high compressibility in the isotherm is the „gaseous‟ phase. The 

phase of low compressibility is identified as „liquid expanded‟ (LE) phase followed by the 

„liquid condensed‟ (LC) phase. The „kink‟ in the isotherm during transition (LE to LC) 

manifests the second order phase transition [33]. Beyond this phase the available area per 
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molecule reaches to a limit and the monolayer goes into the „collapsed‟ phase (C). The area 

per molecule of Gd-St just before collapsed phase was obtained as ∼22 Å
2
. 

 

Figure 5.1: (a) Schematic of the experimental set-up and the scattering geometry including incident and 

scattered X-ray beam directions are indicated. (b) Typical π-A isotherm of Gd-St Langmuir monolayer at the 

air-water interface is presented (refer text for details) [18]. 

 

 

X-ray reflectivity study 
 

The collected reflectivity in an X-ray detector from the liquid surface can be written as [32, 

34] 

R(qz) =RP(qz)S(qz, qxy)                   (5.1) 

where, RP(qz) is the reflectivity as considered in Parratt Formalism [35] and S(qz, qxy) is the 

contribution of diffuse scattering that depends primarily on the capillary wave fluctuations 

[32, 34, 36]. To avoid inclusion of diffuse scattering contribution S(qz, qxy) in the fitting of 

measured data [31], we have divided measured reflectivity (RM(qz)) by that of the pure water 

surface (RW(qz)). The obtained data was multiplied by theoretical Fresnel reflectivity (Rf(qz)) 

of water surface to generate reflectivity profiles (R(qz)) as given below. 

R(qz ) ≈ 
𝑅𝑀 (𝑞𝑧)

𝑅𝑊 (𝑞𝑧)
 𝑅𝑓(𝑞𝑧)                                                                                                           (5.2) 

The electron densities (ρ), thicknesses (d) and interfacial roughness (σ) along the depth of the 

film are then extracted from the fitting of the corrected reflectivity data (R(qz)) by using 

Parratt formalism [35]. This is valid when the measured reflectivity of the LB film on the 
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water surface can be treated uncorrelated as the reflectivity of the water surface plus 

reflectivity from the LB film which usually is the case for fatty acid molecules where the 

correlations between the water surface and Langmuir film are negligible. The measured and 

fitted reflectivity profiles (RP) are shown in Fig. 5.2(a) and the corresponding R/Rf profiles 

are shown in Fig. 5.2(b) for better clarity. The fitting was performed by considering a simple 

box model having two sub-layers of thickness d1 and d2 representing organic-tails and head-

ions, respectively. The extracted electron density profiles (EDPs) of the Gd-St monolayers 

along the depth are shown in the Fig. 5.2(c). The higher electron density than that of water 

corresponds to the Gd-ions coupled with carboxyl group of stearic acid and the lower electron 

density implies the hydrocarbon tail (C17H35) of stearic acid. The reflectivity is proportional 

to the square of the Fourier transform of the derivative of the electron density (dρ/dz) (refer 

Fig. 5.2(d)). The amplitude of negative peak is 0.31 el/Å
3
 – the electron density-difference of 

head-layer (0.64 el/Å
3
) and water (0.33 el/Å

3
). The positive peak is appearing due to the 

electron density of the organic tail. The obtained fitted parameters ρ, d and σ of the sublayers 

at different surface pressures, are provided in Table 5.1 and the corresponding theoretical 

values in the bottom row (calculated by assuming standard bond lengths). The electron 

density (ED) of a tail (ρ1) with 137 electrons in the cross-sectional area of 21 Å
2
 is 0.33 el/Å

3
 

[20, 21] and in the first layer of LB films near the substrate, tails form asymmetric 

configuration and in upper layers of LB films tails get attached from two-sides of gadolinium 

forming symmetric configuration. The symmetric configuration has larger (∼8.3 Å) box-size 

as compared to that of asymmetric configuration (∼5.5 Å) giving the ED of the complex- 

head part (ρ2) with 59 electrons (one COO and half of Gd+OH), for same cross-sectional area 

of a tail become 0.51 el/Å
3
 and 0.34 el/Å

3
 for asymmetric and symmetric configurations, 

respectively. The sublayer electron densities (ρ1 and ρ2) increase with increasing surface 

pressure due to more compact packing of the molecules. The obtained thickness of the 
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stearate tails implies a tilt of 22° at π=30 mN/m, while it reduces to 16° at collapsed phase 

(Table 5.1). The reduction in ρ2 at the collapsed phase can be attributed to the buckling on the 

monolayer. The increase of interfacial roughness (σ) and decrease of ρ2 in the box (Fig. 

5.2(c)) indicates a diffusion of the head-part along vertical directions due to this buckling. 

 

Figure 5.2: (a) XRR profiles of Gd-St Langmuir monolayer on the water surface. (b) Corresponding R/Rf 

profiles. The profiles are shifted vertically for clarity. (c) Extracted electron density (ρ) profiles after fitting (line 

color same). (d) Derivative plot of EDP for π=30 mN/m [18]. 
 

GIXD study 

A typical GIXD profiles of Gd-St monolayers on the water surface (π=15 mN/m) are 

presented in Fig. 5.3(a) (qz integrated intensity profile) and Fig. 5.3(b) (measured qxy-qz 

intensity map). We could detect only broad peak, having a clear asymmetry in the lower qxy-

region, due to the variation in tilt angles and small domain size. The qz-integrated profile 

could not be fitted with one Lorentzian shaped peak and two peaks were required to represent 

the data (refer Fig. 5.3(a)). These peaks were found to be located at 1.52 ± 0.01 Å
−1

 and 1.47 

± 0.03 Å
−1

, which are attributed to an in-plane ordering of the Gd-St hydrocarbon tails and 

indexed as (11) and (02) in a centred rectangular cell with two chains per unit cell [5,10]. The 

associated lattice parameters are ar=5.0 Å and br=8.3 Å and the unit cell area 41.4 Å
2
, which 
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correspond to an area of two tails (20.7 Å
2
 per tail). We estimated the tilt angle (τ) of the tails 

from the fitting of intensity distribution along (11) and (02) diffraction rods shown in Figs. 

5.3(c) and 5.3(d) respectively. The (11) peak is located at qz=0Å
−1

 and a sinc function fit give 

a width of 0.92 corresponding to a layer thickness about 22 Å. The (02) peak could not be 

fitted with a single sinc function centered at qz=0 (black dashed line) and a second sinc 

function was required for this peak at qz=0.59 Å
−1

 along out-of-plane direction. The presence 

of stronger degenerate peak (11) at higher qxy value and existence of non-zero qz value of 

non-degenerate peak (02) indicate next-nearest-neighbour (NNN) tilt of rod-shaped 

molecular tails though we could not detect expected shift in (11) peak at half of the above qz 

value for NNN-tilt due to weak statistics. The tilt (τ) angle was estimated to be 22° following 

well-known formalism [5] and this value is consistent with the XRR results. 

 

Figure 5.3: (a) qz-Integrated intensity profile of GIXD spectra as a function of qxy of GdSt Langmuir 

monolayer; the profile is fitted by a linear background and two Lorentzian shape peaks, (b) qxy-qz map of GIXD 

spectra. (c) and (d) Intensity profile of the (02) and (11) peaks along qz direction along with their fits [18]. 

 
 

 

 



207 | P a g e  

 

                Low Dimensional Magnetic Structures 
 

Table 5.1 

 

 

 
 

5.2  LB multilayer studies 

 
 

The metal-organic multilayer structures comprising of rare-earth magnetic ions 

formed by LB technique is used to investigate the 2D magnetic ordering [13-15]. In LB films 

the magnetic metal ions are separated by approximately 5Å within a monolayer that form a 

distorted hexagonal 2D in-plane lattice and in the out-of plane direction the monolayers are 

separated from each other by 50Å organic chains (refer to Fig. 5.5) [16-18].  

5.2.1  X-ray reflectivity (XRR) study 

 
XRR profiles of 1 and 9 monolayer GdSt LB films are depicted in Figs. 5.4(a) and 

5.4(b), respectively. The extracted EDP of 1 monolayer film indicate head and tail thickness 

(see Fig. 5.4(c)) as 5.4 Å and 19.3 Å with corresponding electron densities of 0.51 el/Å
3
 and 

0.32 el/Å
3
 - these are close to theoretical values (Table 5.1). The XRR data of 9 monolayer 

film (Fig. 5.4(b)) was fitted using a model [18, 23] that has an asymmetric layer on the 

substrate and four bi-layers of symmetric molecules with interfacial roughness and a small 

gap (1.2 Å) between end-points (CH3) of the organic tails. The obtained electron densities 

(Fig. 5.4(d)) of the head and tail regions are found to be 0.57 el/Å
3
 and 0.33 el/Å

3
 with 

corresponding thicknesses as 8.1 Å and 20.0 Å respectively. For the asymmetric layer, just 

[18] 
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above the substrate, the tail-region were found to be same but the density and thickness for 

the head-region were 0.44 el/Å
3
 and 6.0 Å. 

The multilayer film shows excellent periodicity in the out-of-plane direction with 

efficient deposition of 9 monolayers. The representative AFM images of both the LB films 

(inset of Figs. 5.4(a) and 5.4(b)) give an average thickness to be about 30 Å and 260 Å 

respectively, confirming with the XRR results. 

 

Figure 5.4: XRR profiles of Gd-St LB films (a) monolayer (ML), (b) multilayer (9-ML) and their fits (black 

solid line). Corresponding AFM tomography images of Gd-St LB films are in the insets. Extracted EDPs for (c) 

monolayer and (d) multilayer (without any roughness convolution) films [18]. 
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Figure 5.5: Schematic diagram of the (a) out-of-plane and (b) in-plane structure of multilayer Rare-earth (Gd,Er 

& Ho) Stearate Langmuir-Blodgett films is shown with the scattering geometry employed for the X-Ray 

measurements. All the molecules are in the same plane with the X-ray incident on the plane at an angle . The 

x-z plane is the scattering plane and the magnetic field is applied along the +y direction.  and α are the 

wavelengths of the radiation and the angle of incidence, respectively. (c) Shows a single RE-St amphiphilic 

molecule where the central RE ion is connected to two hydrocarbon chains [37]. 

 

In order to determine the out-of plane structure of a monolayer or multilayer, the X-

ray reflectivity (XRR) technique is generally used. We have carried out the XRR technique to 

determine the film thickness, periodicity, electron density and interfacial roughness of the 

multi-layered LB films. X-ray reflectivity (XRR) and grazing incidence X-ray diffraction 

(GIXD) measurements were performed at the Indian beamline in Photon Factory, KEK, 

Japan with a focused photon beam of size 0.6 mm diameter at energy 11keV to characterize 

the out-of plane and in-plane structure of the deposited multilayer LB films. The GID part 

will be discussed in the next section. The schematic of the scattering geometry of XRR is 

shown in Fig. 5.5(c). In Fig. 5.6 (b & c) we have shown the measured and calculated specular 

X-ray reflectivity data of multilayer rare earth LB films of Ho, Er and Gd respectively. In this 

data the presence of both Bragg peaks and Kiessig fringes (see Fig. 5.6(c)) corresponding to 

out-of-plane head-head distance and total film thickness, respectively, are evident. For films 
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with large number of layers, Bragg peaks become strong and Kiessig fringes could not be 

resolved properly (see Figs. 5.6(b) and 5.6(c)). The measured data matches quite well with 

the theoretical reflectivity values calculated from the electron-density profile (refer upper 

insets) according to the parratt formalism for all the three films [24]. The electron density of 

the organic tail and the metallic head group for Ho-St, Er-St and Gd-St is given in Table 5.2. 

Table 5.2: X-ray reflectivity fitting parameters as used in Fig. 5.6. Each film is composed of first monolayer on 

the substrate followed by several bilayers stack having same parameters as shown below [37].      

Film           First Monolayer  
       

               Bi-Layer Stack  

       Head         Tail        Head         Tail  

 d(Å)  (el/Å)  d (Å)  (el/Å)  d(Å)  (el/Å)  d (Å)  (el/Å)  

Ho-St  6.00.1  0.420.05  25   0.1  0.300.05  6.80.1  0.520.05  19.50.1  0.320.05  

Er-St  5.80.1  0.450.05  21.20.1  0.29 0.05  7.90.1  ~ 0.640.05  200.1  ~ 0.30.05  

Gd-St  5.80.1  0.340.05  18 0.1  0.29 0.05  7.50.1  0.570.05  19.60.1  0.370.05  
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Figure 5.6: (a) Grazing Incidence Diffraction image of Gd-St (21ML) with the extracted qxy and qz plots along 

with their fits (red lines). Specular X-Ray reflectivity of (b) Ho-St LB film (open circle) with 21 monolayers, 

Er-St LB film (open square) with 71 monolayers and Gd-St LB film (open triangle) with 41 monolayers - the 

plots are shifted vertically for clarity. (c) Enlarged view of Kiessig fringes (with fit). (d) The electron density 

profile as a function of depth for initial few layers upto 220Å. Open coloured circles are experimental data 

points and solid lines are the fitted curves [37]. 
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5.2.2  Grazing incidence X-ray diffraction (GIXD) study 

To determine the in-plane structure of the multi-layer LB films we have done grazing 

incidence X-ray diffraction (GIXD). A typical GID image collected in Pilatus (1M) 2D 

detector along with its extracted line profile for Gd-St multilayer LB film (21ML) is 

presented in Fig. 5.6(a). The extracted data and corresponding fits (shown in red line) after 

background subtraction (shown by the dotted line) are given in Fig. 5.6(a). The qxy GID plot 

show a broad peak which was fitted by the Gaussian function to obtain the peak center (refer 

arrow in the figure). From the peak position in the GID plot along the in-plane direction we 

have calculated the in-plane separation between two consecutive rare-earth (Gd) atoms to be 

4.95 Å. From this value of separation the calculated mean area occupied by each head comes 

out to 19.25Å
2
.
 
The calculated electron density of the head group (Gd-2COO) approaches to 

the value of 0.69 el/Å
3

 while the value of the organic tail group comes around 0.35 el/Å
3
.  

The organic tails in the LB films are not point like objects and the molecular degrees 

of freedom are tilt, orientation of the molecular structures and lattice distortion. The tilt and 

tilt azimuth of the unit-cell, can be measured from the Bragg rod (qz) scan, keeping qxy fixed. 

The data was fitted with the profile [22, 23] 

I𝑧𝑧 =  V qz , qc Sq L, θ, qz , qx  
2

Dwf (qz , σ)                                (5.3) 

Where V is the Vineyard function, Sq is the structure factor with L, θ being the length and tilt 

angle of each tail and Dwf is the Debye-Waller factor that depends on the interfacial 

roughness (σ). After fitting with the above intensity profile the length, tilt angle and 

roughness comes out to be 22.2Å, 22.56
o
 and 1.9Å respectively.  From the length and tilt 

angle of the organic tail one can estimate the out-of plane tail length to be 19.58Å which is 

close to the value obtained from the fitting of the reflectivity data. 
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5.3  Magnetization measurements 

 It has been already reported that 2D short-range ferromagnetic order with no 

spontaneous magnetization occur in the gadolinium stearate (Gd-St) LB films when a 

magnetic field is applied along any in-plane (xy plane) direction, whereas the moments 

remains paramagnetic down to 2 K if the field is applied along the out-of plane direction (z 

direction). Higher value of magnetization was observed when the field was applied in the z 

direction than that obtained in any in-plane direction at any temperature indicating that the z 

direction is the easy axis [19, 20]. Due to vortex formation in Gd-based LB films, sub-Kelvin 

polarized neutron reflectivity (PNR) measurements have shown [21] that the saturation 

moment could never reach the expected ~7μB magnetic moment per Gd ions unless the 

sample is cooled below the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature of 

600 mK and a field was applied in the in-plane direction. We show here Ho-based LB films 

are quite different from Gd-based films and exhibit anti-ferromagnetic ordering. 

Now we present the as-measured magnetization (M) data as a function of field (H) 

measured at 2.2K temperature (T) for a Ho-St LB film (refer Fig. 5.7(a)). The diamagnetic 

signal measured from silicon substrate is also presented in this figure. In Fig. 5.7(b) we have 

shown typical data of Ho-St obtained after subtracting silicon background. Similar 

measurements were carried out for all the three types of LB films namely Ho-St, Er-St and 

Gd-St. We observe field-induced saturation-magnetization in the in-plane direction for all the 

three types of films as reported [19-21] earlier for the Gd-St films. The Gd-St LB films 

exhibited temperature dependent saturation moment (MS) and we find Er-St LB films are also 

showing similar trends (refer Figs. 5.7(c) and 5.7(d)). However, for the Ho-St LB films all the 

magnetization curves measured at different temperatures saturated at almost the same value 

of magnetization (refer Fig. 5.7(b)).  
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Figure 5.7: (a) Raw data of in-plane magnetization as a function of applied magnetic field taken at 2.2 K for 41 

ML Ho-St LB film (open red square) and for bare Si substrate at 2.2K used here (open black square). The in-

plane magnetization data after substrate correction in terms of Bohr magneton per unit Rare-earth atom at 2.2K 

(open square), 5K (open circles), 10K (open up-triangles) and 20K (open down-triangles) for (b) Ho-St LB film 

with 39 monolayers (red symbol) (c) Er-St LB film with 37 monolayers (violet symbol) and (d) Gd-St LB film 

with 41 monolayers (blue symbol). The black horizontal lines show the value of the respective saturation 

magnetization [37]. 
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We have compared the low-field M-H data collected for three different types of films 

in details. The magnetization data of Ho-St, plotted against (H/T) in log-linear scale clearly 

show reduction in magnetization as the temperature is lowered indicating anti-ferromagnetic 

in-plane ordering. It should be noted here that anti-ferromagnetism in manganese stearate 

(Mn-St) powders, reported [25-27] earlier, the magnetization exhibited increase with the 

lowering of the temperature, indicating presence of ferromagnetic clusters.   

 In Fig. 5.14(b) and 5.14(c) we have plotted magnetization data collected at different 

temperatures to compare the behavior of Ho-St and Er-St LB films. The data for Ho-St 

clearly showed reduction in M with lowering of T in data taken with lower field values as 

expected in AFM ordering. The Er-St data do not show such trend; it shows reduction in M 

with increasing T as observed in the behavior of saturation moments (MS). In Fig. 5.13(d) we 

have shown variation of MS values (refer Fig. 5.13) with temperature for Ho-St, Er-St and 

Gd-St LB films in log-linear plots.   

Substrate correction  

All the raw M-H and M-T data were substrate corrected before further analysis were 

done. M-H silicon substrate data has already been shown in Fig. 5.7(a) (black open squares). 

All M-T (refer Fig. 5.15(a)) sample data was also substrate corrected using bare Si(100) M-T 

data and also taking into account the minor contribution of the trace amount of Fe impurities 

present in all the Si substrate material which was experimentally verified from the SIMS 

measurement data. The next section details the measurements done for Si (100) substrate to 

correct the raw M-T data for all the three different LB multilayer systems studied here.  
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5.4  Substrate magnetization and Secondary Ion 

Mass Spectrometry (SIMS) 

 We have carried out magnetization of the silicon bare substrates that we have used for 

depositing the LB multilayer films of Ho-St, Er-St and Gd-St. The M-H data for silicon 

substrate is already shown in Fig. 5.7(a) (black open circles) and shows the typical 

diamagnetic behaviour. In Fig. 5.8 below we have shown raw M-T plots of both sample and 

substrate from 260 mK to 100K temperature. 

 

Figure 5.8: Raw magnetization data as a function of temperature, (a) Ho-St on Si (open red circles) and bare Si 

(open black circles) from 260 mK to 2.4 K and (b) Gd-St on Si (open blue circles) and bare Si (open black 

circles) from 2.2 K to 100 K. 

 

The high temperature (2.2K to 100K) measurements were done in SQUID VSM at 

Rutherford Appleton Laboratory (UK) whilst the low temperature magnetization (260mK to 

2.4K) measurements were done using an instrument in Sakakibara Lab at ISSP (Japan). In the 

high temperature plot there is a slight up-ward raising trend of the silicon data at low 

temperatures although the value is negative whereas in the low temperature plot it is almost 

flat but the value is positive. In order to check the consistency of this raw magnetization data 



217 | P a g e  

 

                Low Dimensional Magnetic Structures 
 

we have further carried out SIMS measurement to identify the presence of any magnetic 

impurities present in the silicon substrate. Before going into the experimental results we have 

first presented a brief introduction along with a schematic (see Fig. 5.9) of the SIMS 

instrument.     

Secondary-ion mass spectrometry (SIMS) is generally used to analyze the 

composition of solid surfaces and thin films by sputtering the surface of the sample with a 

focused primary ion beam and thereby collecting and analyzing ejected secondary ions. The 

mass/charge ratios of these secondary ions are measured by a mass spectrometer to determine 

the elemental, isotopic, or molecular composition of the surface to a depth of 1 to 2 nm (See 

Fig. 5.9). Due to large variation in ionization probabilities corresponding to different 

materials, SIMS is usually considered to be a qualitative technique, although quantization is 

achievable with the use of standards. SIMS is the most sensitive surface analysis tool, with 

elemental detection limits ranging from parts per million to parts per billion. 

 

 

Figure 5.9: (a) Image comprising of the different components of the SIMS instrument. (b) Sputtering 

mechanism from a sample using O2 ion beam [34]. 

 

https://en.wikipedia.org/wiki/Thin_film
https://en.wikipedia.org/wiki/Sputtering
https://en.wikipedia.org/wiki/Ion_beam
https://en.wikipedia.org/wiki/Mass_spectrometry
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SIMS measurements of LB multilayer samples 

In order to check the presence of trace amount of magnetic elements present in the Si 

substrate on which multilayered LB films of Gd-St, Er-St and Ho-St were deposited was 

studied by using secondary ion mass spectrometer (SIMS) technique available at Saha 

Institute of Nuclear Physics (See Fig. 5.10 and Fig. 5.11). Apart from the constituents 

elements like Er, Gd or Ho along with Si which are already present we also probed for the 

presence of any magnetic impurities in the substrate like Fe, Co and Ni. First we did the mass 

spectrum of all the three distinct type of LB films as shown in figure 5.12. Then from the 

mass spectrum data we specified our region of interest and performed counts/second as a 

function of time measurements for the different atomic masses observed in the samples. 

Finally we calculated the depth of sputtered region in each sample by using Dektak 

instrument and plotted the composition profile as function of depth. The energy of the 

primary ion beam was 5 Kev with the chamber pressure at 4X10
-7

 torr. The size of the beam 

was around 100 X 100 nm
2
. 
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Figure 5.10: Image of the SIMS instrument used for calculating the composition profile of the rare-earth based 

LB fims at Saha Institute of Nuclear Physics, Kolkata, India. 

 

Figure 5.11: (a) Image of the sample holder along with samples inside it. The red box shows the region to be 

studied. (b) Instrumental parameters of the ion beam (O2) at the time of measurement. 
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Figure 5.12: Mass spectrum of Ho-St (red symbol) and Gd-St (blue symbol) LB films from mass number (a, c) 

0 to 70 and (b, d) 150 (Gd) or 160 (Ho) to 170 respectively. 
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Table 5.3: Constituent elements and their corresponding Mass number considered for SIMS measurements as 

observed from Mass spectrum results (see Fig. 5.12)  

 

 Ho/Er/Gd Silicon Iron Nickel Cobalt 

Ho-St 164.9 (Ho) 28 .0 55.9 57.9 58.9 

Er-St 166.9 (Er) 28 .0 55.9 57.9 58.9 

Gd-St 157.25 (Gd) 28 .0 55.9 57.9 58.9 

 

 

 

Figure 5.13: Intensity vs time profile in SIMS measurement of (a) Gd based LB film, (c) Er based LB film and 

(e) Ho based LB film. Depth vs Lateral distance profile as observed in Dektak instrument for (b) Gd based LB 

film, (d) Er based LB film and (f) Ho based LB film. All the samples were deposited on Si (100) substrates. 
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From Fig. 5.13 one can observe that apart from the dominant contribution coming due to the 

sample and substrate constituents in each of the three samples there is also some additional 

amount of Iron (Fe) contribution present in each of the three samples. Careful observation of 

Fig. 5.13 (a, c & e) illustrates that the Fe contribution is very small and is coming from the 

silicon (100) substrate where it is assumed to be present as impurities whereas that of Ni and 

Co is almost negligible. Although the percentage of Fe impurity is small in comparison to the 

sample still the amount varies slightly from one sample to another. The other magnetic 

impurities that we have considered was Cobalt (Co) and Nickel (Ni), which are insignificant 

or almost absent in all the three cases. From Fig. 5.13 (b, d & f) we have calculated the height 

of depth up to which the film was sputtered by subtracting the minima point from zero. The 

plot of the Intensity as a function of depth of the sputtered region as obtained from figure 

5.13 for all the three different LB films of Gd-St, Er-St and Ho-St are shown in figure 5.14.  
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Figure 5.14: Plot of composition profile as a function of depth for (a) Gd-St LB film, (b) Er-St LB film and (c) 

Ho-St LB film. 
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5.5 Anti-ferromagnetic ordering in Ho-St LB 

multilayer films 

 

Figure 5.15: (a) Magnetization data in terms of Bohr magneton for Ho-St LB film with 39 monolayers as a 

function of H/T (log scale) measured at 2.2 K (red), 5K (green), 10K (blue) and 20K (pink). Magnetization 

value as a function of temperature at different field values (shown within Fig. 4(c)) derived from M-H curves for 

(b) Ho-St (red colour) and (c) Er-St LB films (violet colour). (d) Log-linear plot of the saturation magnetization 

Ms expressed in Bohr magneton per RE (Gd, Er or Ho) ion as a function temperature and solid black line is the 

linear fit [37]. 
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The saturation magnetization (MS) of Gd-St and Er-St LB films decay exponentially 

with temperature giving a relation (ln MS = 0.66-S*T). Here MS is expressed in the unit of 

μB/ion. The value of the slope, S, obtained from linear fit and was found to be 0.077 and 

0.062 for Er-St and Gd-St respectively. The exponential decay in the value of the saturation 

magnetization, MS, is known to be due to the existence of vortex structure in Gd-St [21] and 

we observe similar trend in Er-St data. Ho-St shows almost temperature independent, giving 

a very small value of S, 0.0023, saturation moment (MS) of ~10.2μB - this is close to the 

theoretical value 10.5μB. The saturation value of Er-St and Gd-St at the lowest observed 

temperature (2.2K) is ~ 6.7μB and ~ 6.9μB respectively. The theoretically predicted value of 

Er-St and Gd-St is around 9μB and 7μB respectively. The mismatch in experimental and 

theoretical value is primarily due to error in calculation of the number of molecules. 

We now present the M vs T curves (refer Fig. 5.15(a)) for all the three types of films, 

measured with an applied field of 500 Oe applied along the in-plane direction. The Er-St and 

Gd-St LB films showed similar trends in M-T data. The anti-ferromagnetic characteristics in 

the Ho-St data became clear in the of 1/ vs T plot (refer Fig. 5.15(b)). 
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Figure 5.16: (a) The in-plane magnetization data for Ho-St (open red circles), Er-St (open violet traingles) and 

Gd-St (open blue squares) LB films measured as a function of temperature T with an applied field H of 0.5 kOe. 

(b) Curie-Weiss plot of the inverse susceptibility vs temperature of Ho-St. The extrapolation of the high 

temperature data is shown by the dotted line which intercepts at a negative temperature [37]. 

 

By fitting a straight-line to the higher temperature data of the form 1/ = (T- )/C we get C = 

1.275 emu-K/mole-Oe, and an intercept at a negative temperature  = -66 K, as expected in  

anti-ferromagnetic ordering (refer Fig. 5.16(b)) for the Ho-St LB films. The value of Neel-

temperature TN for this film was obtained as 42K. It should be mentioned here that similar 

M-T plots were obtained earlier [25, 26] for Mn-St powders giving  and TN of -41.6K and 

10K respectively. These measurements were not done with LB film, hence in-plane 

component could not be separated. The value of   in Mn-St was obtained as -26K in a 

systematic study of 3d transition-metal based LB films. 
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5.6  Conclusion 

Magnetic properties of rare-earth elements mainly in lanthanide series are generally 

determined by the localized 4f orbital and spin moments. The exchange interaction mediated 

by the hybridized 6s and 5d conduction electrons results in the long-range magnetic ordering. 

Moreover dipole-dipole long-range interaction exists among ions and that will be dominating 

in the in-plane direction due to reduced distance within a monolayer. 

Here we have presented the structural and magnetic properties of rare-earth based LB 

films of holmium, erbium and gadolinium. The earlier studies on gadolinium based LB film 

have already shown the existence of vortex structures [21] showing BKT transition 

temperature of 600 mK. Below this temperature vortex and anti-vortex pairs were bound and 

can be annihilated by magnetic field yielding total moment of ~7μB per Gd-ions. In higher 

temperature vortices are generated spontaneously giving lower MS values.  

Gd-St LB films have shown exponential decay of MS as a function of temperature 

below 30K [19]. We find similar behaviour of Er-St (refer Fig. 5.15(d)). At higher 

temperatures (refer Fig. 5.16) for both Gd-St and Er-St magnetization remain almost 

independent of temperature perhaps due to spontaneous generation of vortices. On the other 

hand magnetization exhibit continuous rise as the temperature is lowered (refer Fig. 5.16) for 

Ho-St LB films and 1/ vs T plot clearly showing an anti-ferromagnetic behavior. The M vs 

H data at various temperatures shown in figure 5.15(a) and figure 5.15(b) also indicate anti-

ferromagnetic ordering in Ho-St LB films. The saturation magnetization data of Ho-St LB 

films was also found to be quite different (refer Fig. 5.15(d)) from that of Gd-St and Er-St. 

One can get the maximum saturation moment as predicted theoretically for Ho-St LB films 

but not for Er-St and Gd-St LB films unless the sample is cooled below BKT transition 
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temperature. Although further neutron scattering measurements at sub-Kelvin temperature 

will be required, but the results presented here clearly show that Ho-St LB films are 

exhibiting anti-ferromagnetic order at low applied fields and vortex dynamics in Ho-St LB 

films is quite different from that observed in Gd-St LB films although these are iso-structural. 

We observe different magnetic behaviour of Ho-St LB films from both M-H and M-T 

data using SQUID VSM in the temperature range from 2.2K to 100K with field applied along 

the in-plane direction. Ferromagnetic behaviour in Gd-St LB films as previously reported is 

observed in Er-St films also. Whereas Ho-St LB film shows anti-ferromagnetic behaviour 

although the lattice structure of all the films are identical. The anti-ferromagnetic ordering 

temperature and Neel temperature is calculated to be 66K and 42K respectively. Neutron and 

X-ray scattering experiments have shown that magnetic structure of Holmium [28] is quite 

different from that of Gadolinium [29] and Erbium [30], we plan to extend the present study 

on LB films having these rare-earth ions further using scattering techniques. 
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6 

 

n this thesis, we mainly demonstrate the use of resonant coherent X-ray 

scattering, X-ray reflectivity, grazing incidence X-ray diffraction and 

magnetization measurement techniques to study the behaviour of low 

dimensional magnetic structures in a Fe/Gd thin film and rare-earth based Langmuir-Blodgett 

multilayer films under the application of external magnetic field at different temperatures. 

In the first chapter, the introductory materials relevant for the scientific investigations 

are described in details. After the basic magnetic interactions required describing the usual 

family of magnetic materials, we have mainly focused on magnetism in low dimensional 

systems, as this topic is specifically related to the investigations carried out in this thesis 

work. With the help of magnetocrystalline anisotropy, we finally discuss about more complex 

and novel magnetic pattern formations that are reported in two-dimensional systems. In the 

second chapter, we have provided a comprehensive description of all the experimental 

techniques used in this Ph.D research work, reported in the thesis.  

 

I 

Summary and outlook 
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Research results obtained and their analysis and interpretations of a Fe (0.34 nm)/Gd 

(0.4 nm) multilayer (80) film and rare-earth (Gd, Er and Ho) LB multilayer films were 

presented in the following three chapters. The works are summarized here and possible future 

research directions are given. 

In Chapter 3, we show using coherent X-ray resonance scattering technique that the 

domain fluctuations in one-dimensional (1D) magnetic stripe-phase are dramatically reduced 

in topologically protected two-dimensional (2D) skyrmion phase. Results of this study with a 

thin film of Fe/Gd also show that the stripe and skyrmion phases follow different universality 

class. One of the important conclusions of this chapter is that the skyrmion phase unlike the 

other phases hardly shows any significant extent of sudden or large changes in the 

periodicity, orientation or number density of the distorted hexagonal lattice. Future studies 

using this novel X-based metrology will be directed towards understanding the nature of the 

disorder–order transition particularly that involves meron and skyrmion spin textures. 

Definitely, study of fluctuations as a function of time will enable us to determine “correlation 

function” that may shed light into formation of skyrmions. It will be important to perform 

similar studies on a Dzyaloshinskii–Moriya based skyrmion system and evaluate the critical 

nature of the helical and skyrmion state. Beyond magnetic systems, our X-ray based 

technique can be readily applied to a wide variety of materials system, such as liquid crystals, 

polymers, ferroelectrics to directly study stochasticity and scaling behaviour at the nanometer 

length regime. 

In Chapter 4, we study the behaviour of the magnetic stripe periodicity in a 

amorphous magnetic Fe/Gd thin film (as used in chapter 3) using resonant X-ray scattering 

techniques as a function of magnetic field at different temperatures. We observe that the 

periodicity of the stripe phase with applied magnetic-field revealed a transition from discrete, 

staircase like behaviour at low temperatures to a smooth, continuous curve as we approach 
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room temperature. This nature is remanence of Devil‟s staircase like behaviour observed in 

very few systems till date. We also assign different rational number ratios to different steps 

height using a formulation for deriving normalized periodicity. Using this formulation and 

with the Lorentz TEM we have shown the representative spin configuration consisting of up 

and down spin states at different rational values. Finally we have shown that these spin 

configurations are commensurate with the basic ground state spin configuration of the 

system. Thus we conclude that distinct staircase structure can exists also in amorphous 

magnetic system with thermal fluctuations smearing out the steps, confirming theoretical 

predictions. This reciprocal based technique can be applied to other magnetic system showing 

Devil staircase behaviour to demonstrate the real space spin configurations for different 

metastable states. 

In chapter 5 we describe the structural and magnetic properties of multi-layered films 

grown by Langmuir-Blodgett (LB) method which also provide an ideal platform to study 2D 

magnetic structures. Through systematic X-ray reflectivity and magnetization studies of rare-

earth LB films, it was shown that with similar structural configuration a ferromagnetic to 

anti-ferromagnetic crossover occur as the rare earth ions of gadolinium or erbium is replaced 

by holmium ions in a LB films. The result of the magnetization study shows that the 

saturation moment of a Ho based LB films is found to be almost independent of temperature 

indicating the absence of spin vortex structures. In future we plan to extend the present study 

on LB films having these rare-earth ions further using neutron scattering techniques and 

magnetization studies at sub-Kelvin temperature range. Also in future it would be interesting 

to study two-dimensional melting or order to disorder transition in these rare-earth Langmuir-

Blodgett multilayer films. 
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