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Summary

Magnetic �elds play an important role in a wide variety of astrophysical and laboratory

plasmas. Observations indicate that such �elds exist in regular as well as chaotic states

with scale lengths ranging from small to large values.

The thesis describes the dynamical behavior of regular and chaotic magnetic �elds by

studying the properties of chaotic magnetic �eld lines in the context of three dimensional

Beltrami magnetic �elds as well as the di�usion characteristics of �eld lines and charged

particles in presence of such �elds. Many coupled nonlinear equations describing mag-

netic �elds in plasmas exhibit chaotic solutions under certain conditions. Energization of

charged particles by external electric �elds in presence of chaotic magnetic �elds forms

another subject of study in this thesis. A well known equation describing the nonlinear

evolution of magnetic �elds is the KdV equation. The conditions under which the KdV

equation gives rise to chaotic solutions is also explored in the thesis.

Three dimensional Beltrami �elds constitute simple models for the magnetic �elds

exhibiting chaotic �eld lines with regular �eld strengths. The phase space of some con-

�gurations of Beltrami magnetic �elds consist of some islands embedded into the chaotic

sea, whereas the �eld lines for certain pro�les of Beltrami magnetic �elds are chaotic over

the entire space. The islands in the phase space cause dynamical trapping of the chaotic

trajectories so that the �eld lines stay around such ux tubes for a long time. This

phenomena is called stickiness which is characterized by various statistical properties

like distribution of a chaotic �eld line in the spirit of central limit theorem, distribution

xi



of �nite distance Lyapunov exponents, recurrence length statistics etc. Moreover, in a

mixed phase space, the indication of long coherent displacements is observed. The pres-

ence of islands in the phase space has profound implication on the transport of chaotic

�eld lines which is found to be anomalous rather than usual normal or Gaussian di�usion

which happens in most cases of random uctuations.

Regular and chaotic magnetic �elds in which the uctuations are transverse to a

locally uniform mean magnetic �eld and vary only in the direction along that mean �eld

have been considered in the present thesis to study the energization of charged particles

in presence of an external electric �eld. Here, the uctuating magnetic �elds are obtained

from coupled nonlinear equations varying in one dimension. Such study reveals that the

energy gain of an ensemble of charged particles decreases with the increase in the RMS

values of uctuation when the overall pro�le of the chaotic magnetic �eld changes. On the

other hand, the same increase in RMS values by changing the amplitude of uctuation

for inhomogeneous regular magnetic �elds leads to an increase in energy gain.

Finally the dynamical properties of regular and chaotic magnetic �elds are studied

considering a KdV equation in presence of dissipative e�ects. Under the traveling wave

ansatz, the equation can not be reduced to a second order one and hence it is treated as

a third order ordinary di�erential equation known as the jerk equation. The key �nding

of this study points to the existence of chaotic solutions for left moving traveling waves.

xii
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CHAPTER 1

Introduction

1.1 Study of magnetic �elds in plasma

Plasma is a complex system consisting of a large number of interacting particles. The

charged particles in a plasma generate electric and magnetic �elds. These internally cre-

ated �elds together with the externally applied �elds govern the behavior of a plasma.

So magnetic �elds form an important part of plasmas. There are various approaches

for the theoretical description of plasma behavior. When the plasma density is very low

such as can be found in cosmic rays, solar corona etc., the single particle theory can be

used for predicting the plasma behavior. In this approach, the motion of each charged

particle is studied in presence of speci�ed �elds. Although this theory is very much

simple, it provides some insight that helps to understand the plasma phenomena. For

high density plasmas, the study of single particle motion becomes impractical because

to get an understanding of plasma behavior, actually one needs to solve a self-consistent

problem in which the particles generate �elds and the �elds cause the particles to move.

It is observed that the majority of plasma phenomena can be explained by the model of

uid theory. In this method, the plasma is considered as a mixture of two or more uids

depending on the number of species present in a plasma. Now we neglect the identity
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of individual particle and consider only the motion of each uid element. In contrast

to the ordinary uid in which collisions control the uid behavior, plasma behavior is

dominated by the long range e�ects due to the electromagnetic forces. The uid equa-

tions based on conservation of mass, momentum and energy together with Maxwell’s

equations can provide a self-consistent description for the plasma phenomena. In the

study of macroscopic equilibrium and stability of a plasma, the length and time scales

associated with the underlying phenomena are large compared to the Debye length and

the time scale of ion dynamics respectively. In such cases the whole plasma can be

considered as a single uid and the corresponding model is known as magnetohydrody-

namics (MHD). Besides the long wavelength and low frequency phenomena described by

the single uid MHD theory, in some situations, the ion dynamics dominates in a two

uid electron-ion plasma and such situations are handled by making the assumption of

zero mass for the electrons while keeping the mass of the ions �nite. This approximation

is called Hall-magnetohydrodynamics (Hall-MHD) approximation. On the other hand,

the electron dynamics dominated situations are handled by assuming the ion mass in�-

nite but the electron mass �nite. Such approximation leads to another model known as

electron-magnetohydrodynamics (EMHD) model.

Many magnetic con�gurations in plasmas can be obtained as a result of self-organization

[1] which is the spontaneous generation of coherent structures in complex systems. Equi-

librium magnetic �eld in several plasma environments has been postulated as a result of

relaxation process that leads to the so-called Taylor’s minimum energy relaxed state [2]

given by r � B = �B. Later, the idea of self-organization gave rise to a lot of other

magnetic con�gurations that are obtained from alternative relaxation models [3,4] other

than that of Taylor. Such magnetic �elds are eigenfunctions of double or higher curl

operator. The relaxed states emerge from standard variational principles [5] for uid

models.

Several phenomena in plasmas can be explained considering plasma equilibria. Al-
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though many equilibrium magnetic �eld con�gurations can be explained in the frame-

work of uid theory, in some cases it is found to be inadequate. The processes with time

scales much shorter than the collision times require a di�erent description of plasma

in terms of kinetic theory based on the concept of single particle distribution function.

When collisions are neglected and the plasma is described by the self-consistent electro-

magnetic �elds, the distribution functions satisfy a partial di�erential equation known

as Vlasov equation. Stationary solutions of Vlasov equation for a magnetized plasma

can be constructed by choosing functions that depend on the invariants of single particle

motion. A well-known equilibria obtained from the Vlasov equation is the Harris current

sheet [6] whose magnetic �eld pro�le shows tangential discontinuities. Certain combina-

tion of invariants of single particle motion chosen as steady state solution describing the

Vlasov-Maxwell equilibria, can lead to coupled nonlinear di�erential equations govern-

ing the evolution of magnetic �elds [7]. Vlasov-Maxwell equilibrium solutions contain

exponential Maxwellian distribution function multiplied by other chosen functions of

constants of motion. The evolution equation of magnetic �elds are obtained from the

relations between the current and the vector potential.

A plasma system is associated with various waves and instabilities. The study of

small amplitude waves in plasmas can be performed using linear perturbation theory

in which we assume the variations in plasma parameters in presence of waves to be

much smaller than the undisturbed parameters. Linear phenomena can be described by

equations in which dependent variable appears in �rst power only. But in many exper-

iments, the observed phenomena can not be described by a linear theory. In the uid

description of a plasma, the set of electron and ion equations together with Maxwell’s

equations enables to cast the magnetic �eld equations in the form of nonlinear equa-

tions. However, one of the extensively treated popular nonlinear equations to deal with

propagation of weakly nonlinear waves is the Korteweg-de Vries (KdV) equation. The

KdV equation with its well known soliton solution was originated to represent water

waves. Soliton is a localized structure that maintains its shape while it propagates at
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a constant velocity. KdV equation can be derived based on various approaches of uid

theory and the soliton can explain the formation of localized concentrations of magnetic

�elds in a plasma. Formation of nonlinear structures in magnetic �elds is frequently

observed in many space plasma environments like planetary magnetosheaths, cometary

environments, interplanetary coronal mass ejections etc. Examples are magnetic holes

with signi�cant magnetic �eld reduction or a magnetic �eld upsurge, opposite to the

magnetic hole. The local formation of the small-scale magnetic structures can be ex-

plained using KdV equation. Later various modi�cations of KdV equation have been

derived such as the modi�ed KdV, KdV-Burgers (KdVB) equation etc. to model di�er-

ent physical phenomena in various branches of science. For example, plasma shock wave

which is a popular nonlinear phenomenon can be obtained as a solution of KdV-Burgers

equation.

Magnetic �elds originating in a plasma can be described by solutions of various linear

and nonlinear equations. Such solutions can exhibit regular or chaotic behavior. In

the following sections, we present a brief description of various magnetic �elds that are

considered in the present thesis.

1.1.1 The Beltrami magnetic �elds

Magnetic �elds in regions of low plasma pressure and large currents are force-free in

the sense that Lorentz force vanishes. The study of force-free magnetic �elds originates

from astrophysics. L�ust and Schl�uter [8] initially pointed out that cosmic magnetic �elds

might be force-free. In plasma regions of high electrical conductivity, large currents may

ow. The prevailing pressure gradients or gravitational or inertial forces cannot balance

a Lorentz force that arises from such current ow [9, 10]. Consequently, the Lorentz

force vanishes which constraints the current to ow parallel to the magnetic �eld. The

force-free magnetic �eld obeys

r � B = �B (1.1)
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where � is in general an arbitrary function of position. The corresponding situation is

the Beltrami ow [11] where the vortex �eld is parallel to the velocity �eld everywhere.

For turbulent ows, some numerical simulations [12] and experimental observations [13]

indicate that in certain regimes, the velocity and vorticity vectors have a tendency to

align. Consequently among various chaotic ows, Beltrami ow has attracted special

attention by various researchers.

Equation (1.1.1) for arbitrary �, appears as a MHD force balance condition in equi-

librium under low beta situation i.e. when plasma kinetic pressure is much smaller than

the magnetic pressure. The class of force-free Beltrami magnetic �elds with constant

� has been studied extensively in many publications. Such �elds can be obtained from

a variational principle that minimizes magnetic energy of a closed system keeping the

magnetic helicity constant [14]. Chandrasekhar [9] presented the solution to equation

(1.1.1) in terms of the Bessel functions when B has a symmetry about an axis and when

� is constant. Studies of force-free �elds on di�erent domains in R
3 were reported in

various works [15{17] that use representation of Beltrami �elds in terms of Bessel and

Legendre functions. Magnetic �elds in di�erent astrophysical and laboratory plasma en-

vironments such as coronal-arcades [18], twisted magnetic ux ropes through the coronal

mass ejections [19], reversed-�eld pinches [2] and spheromaks [15] can be described by

the solutions of single curl force-free equation under assumption of various symmetries.

In three dimensional (3 � D) Cartesian coordinate system, the solution of linear

single curl Beltrami equation with constant � is exactly known. The class of solutions

is commonly referred to as Arnold-Beltrami-Childress (ABC) �eld [20] which is a well

known helical steady solution of Euler equations for ideal incompressible ows.

But structures obtained as solutions of the single curl force-free equation su�er from

several limitations. They are incapable of describing states with high plasma beta or the

formation of fusion related topologies such as tokamaks and �eld-reversed con�gurations.

So, the force-free states have limited interest in fusion, since signi�cant plasma pressure

5



Chapter 1. Introduction

is needed in a practical system. Besides, force-free states appear experimentally only in

certain arrangements like reversed-�eld pinch and spheromak. The need for describing

a wide class of magnetic �elds in plasmas where the current is not aligned with the

magnetic �eld or the plasma beta is high enough necessitates to extend the search for the

alternative models of magnetic �elds. The simplest model that describes non force-free

magnetic �elds is the double curl Beltrami equation. Chandrasekhar [10] �rst proposed

the double curl equation in the form

r � r � B = �B (1.2)

with constant �, in the context of dissipative plasmas where the system is driven to

a state of minimum dissipation under conditions of constant magnetic energy. The

nature of the double curl equation indicates that for the double curl magnetic �elds, the

Lorentz force cannot vanish. Besides the double curl equation given in equation (1.2),

more general double curl equation [21] was derived later considering the strong coupling

of the uid kinetic and magnetic aspects of the plasma. The general double curl equation

is given by

r � r � B + �r � B + �B = 0 (1.3)

where � and � represent arbitrary complex numbers. Double curl equation can help to

model high-pressure con�ning, highly compact magnetic con�gurations in the laboratory

that are currently deriving lot of attention.

Various aspects of Beltrami �elds have been studied in the existing literature. But

most of the solutions are obtained by exploiting various symmetries of the con�gurations

to model di�erent realistic systems. Linear Beltrami equations admit exact solutions in

3 � D Cartesian coordinate system. Now, �eld lines are the most useful graphical tool

for the representation of �eld strength distributions. The �eld lines for 3 � D Beltrami

�elds exhibit chaotic behavior and their characteristics are studied in the present thesis.

This is important in connection with the transport of the �eld lines and has not been
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paid much attention till now.

1.1.2 Regular and chaotic magnetic �elds governed by coupled

nonlinear equations

Nonlinear equations can give rise to a variety of magnetic con�gurations showing periodic

as well as chaotic behavior. Although some nonlinear equations admit analytical solution

which can be expressed in terms of known standard mathematical functions, in most of

the cases we need to invoke numerical procedure. For collisionless plasmas, magnetic

�eld uctuations can be governed by simple coupled nonlinear equations varying in

1�D. Depending on the parameter of the equations, the inhomogeneous magnetic �elds

obtained from such equations can show either regular or chaotic behavior.

In the present thesis, we consider the description of regular and chaotic magnetic

�elds obtained by solving coupled nonlinear equations numerically. Then energization

of charged particles is studied in presence of such regular and chaotic �elds varying in

1 � D in presence of a constant electric �eld.

1.1.3 Regular and chaotic magnetic �elds obtained from KdV

type equation

The well-known KdV equation is given by

u� + uu� + u��� = 0 (1.4)

where u = u(�; �), with u; �; � being real variables. u represents the amplitude of the

uctuation and � and � denote time and space like variables respectively. The subscript

denotes the derivative with respect to the variable.

The modeling of various physical phenomena in many practical situations requires
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a modi�cation of the KdV equation to include terms arising due to the presence of

dissipative e�ects in the medium or due to an external perturbation. Such additional

terms modifying the KdV equation occur in the context of uid dynamics [22] or plasmas

in the form of viscous or collisional e�ects [23]. Weakly nonlinear dispersive waves in

presence of viscous damping can be modeled by KdVB equation

u� + uu� + u��� + �u�� = 0 (1.5)

where � is a real parameter.

Both KdV and KdVB equation can be treated as second order ordinary di�erential

equations considering traveling wave solution that depends on � �v� ,with v representing

the velocity of propagation of the disturbance.

In presence of dissipative e�ects represented by a Burger and a linear term, the KdV

equation

u� + uu� + u��� + �u�� + �u = 0 (1.6)

should be treated as a third order ordinary di�erential equation under consideration of

traveling wave solution. The linear term involving � destroys the possibility of reducing

the equation to a second order one, as is done conventionally. Now, the simplest ordinary

di�erential equation in single variable that is capable of exhibiting chaos is a third order

equation.

In the present thesis, it is observed that the third order ordinary di�erential equation

obtained from equation (1.6) with suitable choice of parameters can give rise to chaos

for a left moving traveling wave. Nonlinear uctuations in a plasma may be associated

with chaotic magnetic �elds which can be obtained from KdV equation in presence of

Burger and a linear term.
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1.2 Methods and statistical properties used for the

description of magnetic �elds

To characterize the behavior of magnetic �elds, we make use of various methods and

calculate several quantities which are mentioned briey in the following sections. We

will discuss their applicability in the respective situations.

1.2.1 Poincar�e surface of section

Global properties of any system can be predicted by plotting Poincar�e sections. For a

space with dimension higher than two, the trajectories are complex and it is hard to

see if they have any regularity or not. Interesting information about the motion can be

obtained by �nding a way to sample the trajectories in lower dimensions by exploiting

the constants of motion and studying the points where the trajectories pass through

some plane. This plane is known as Poincar�e section.

1.2.2 Lyapunov exponent

In case of chaotic dynamics, the trajectories must exhibit sensitive dependence on initial

conditions. Then two nearby trajectories starting very close together will rapidly diverge

from each other, making their futures totally di�erent. The exponential divergence of two

initially close trajectories, which is one characteristic of chaotic dynamics, is quanti�ed

by Lyapunov exponents. For an N dimensional system, there are N di�erent Lyapunov

exponents. We consider only the largest Lyapunov exponent, since it represents the

dominant divergence rate. There are two di�erent sets of Lyapunov exponents: one is

�nite time Lyapunov exponent which is calculated after a short time of evolution of a

trajectory and the other one is asymptotic time Lyapunov exponent which requires a

much longer time of evolution of the trajectory for its evaluation.
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1.2.3 Probability distribution

Probability distribution gives a clear description of any statistical event by providing the

probabilities of occurrence of di�erent possible outcomes of a random phenomenon, i.e.,

the observed set of all possible outcomes of an event specify the distribution function. A

distribution may consist of a single peak or two or more peaks. Single peak indicates that

a particular outcome appears most often which implies the uniformity of any dynamics.

On the other hand a bimodal distribution consisting of two peaks indicates the existence

of two di�erent types of dynamics in a system. Sometimes a distribution has a long tail

with a signi�cant number of occurrences far from the central part of the distribution. The

long tailed distribution suggests many important aspects of the dynamics of a system.

1.2.4 Fourier transform

The Fourier transform of any function of an independent variable enables us to observe

the corresponding representation in the inverse domain of that independent variable. The

presence of discrete peaks in the Fourier spectrum indicates that the system dynamics

is regular, while a broadband structure in the spectrum implies chaotic dynamics.

1.2.5 Recurrence statistics

Recurrence time is the time interval between two consecutive moments when a system

visits a particular state. The distribution of all such times serves as an excellent test

to understand the global behavior of the system. In case of random dynamics, all the

recurrence times are of the same order and the set of recurrence times exhibits a rapidly

decaying distribution. On the other hand, if the system involves some coherent dynamics

associated with memory e�ect, the recurrence time distribution consists of a long tail.
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1.2.6 Variance

Variance gives a measure of the spread of a set of random numbers away from their

average or mean value and based on the second central moment of a distribution. This

quantity plays a key role in statistics. The study of di�usion characteristics of any entity

can be performed by computing the variance of associated displacements considering an

ensemble of that entity. In order to get a quantitative idea about the nature of di�usion,

the numerically calculated variance is to be �tted with the transport law �2 � t�, where

�2 represents variance and t is the independent variable of the system. The exponent �

characterizes the random walk law of the entity under consideration. Gaussian di�usion

corresponds to � = 1, whereas for anomalous di�usive regime, � 6= 1 with � < 1 in case

of subdi�usion and � > 1 in case of superdi�usion.

1.2.7 Kurtosis

In statistics, kurtosis is another important quantity that provides a description of the

shape of a probability distribution and is a measure of the ‘tailedness’ of the distribution

of random variables. Computation of kurtosis is based on the fourth moment of the

data. The di�usion characteristics of an entity as obtained by computing the variance,

can be evidenced by calculating the kurtosis.

1.2.8 Linear stability analysis

For nonlinear systems, the possibility of �nding the trajectories analytically is quite

small. In such cases, �rst we �nd the equilibrium or �xed points where the ow of the

system is zero and then analyze the stability of the equilibrium points. The classi�cation

of the �xed points can be made easily on determining the eigenvalues of the corresponding

Jacobian matrix at the �xed point. In order to know the nature of the trajectories

near these equilibria, we approximate the trajectories near the �xed points by that of a
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corresponding linear system.

1.2.9 Bifurcation diagram

To visualize the long term behavior of a system for all values of associated parameters,

specially to detect the period doubling bifurcation of the system, we plot bifurcation

diagram. Bifurcation is the change in the qualitative structure of the dynamics of a

system and in a period doubling bifurcation, slight change in the system’s parameter

value leads the system to switch to a di�erent behavior in which the period of the system

is doubled. When the period of a system get doubled, the system repeats itself after twice

as many iterations as before. The bifurcation diagram is a magni�cent picture and an

icon of nonlinear dynamics. This diagram shows the characteristic values (e.g. the local

maxima or minima of oscillation) of a system as a function of bifurcation parameter

when the system approaches asymptotically to its eventual behavior for each parameter

values. A single point in the bifurcation diagram for a particular value of the parameter

indicates that the attractor has a single period. At some parameter value, the single

branch get split into two branches indicating a period doubling bifurcation. Then each

branches for the two period cycle split simultaneously, yielding a four period cycle and

a cascade of period doubling bifurcations occurs so on as the value of the parameter

increases. Finally the number of points for a parameter value becomes in�nite and the

system becomes chaotic.

1.3 Dynamics of magnetic �eld lines in the context

of Beltrami �elds

Magnetic �eld lines are tangential to the magnetic �eld at any spatial point. In general

magnetic �eld lines are determined by the equations of a 3 � D dynamical system. The

equations governing the evolution of magnetic �eld lines of Beltrami �elds are nonlinear

12



Chapter 1. Introduction

in nature. The force-free equation is known to have non-integrable �eld lines [24, 25]

in 3 � D for constant values of � independent of space. The streamlines corresponding

to the ABC ows have a complicated Lagrangian structure that has been studied by

Dombre et al. [26] with dynamical system tools. When one of the coordinates becomes

cyclic, the �eld lines become integrable. Evolution of magnetic �eld lines following the

double curl equation was also observed to be non-integrable. It was observed that while

the phase spaces of ABC �elds show a mixture of regular and chaotic regions, certain

solutions of double curl equation reveal a phase space that is totally chaotic [27].

To explore the long term behavior of the magnetic �eld lines, it is meaningful to study

their di�usion characteristics that preserve the full nonlinear properties of the �eld line

equations. One of the areas in which the transport properties of magnetic �eld lines has

received the most attention in past years is turbulence. In any real system, turbulent

magnetic �elds may coexist with a large scale mean �eld. Di�erent transport regimes

for the �eld line motion can be obtained depending on the strength of the uctuations

compared with the mean �eld. Because of random uctuations in the magnetic �elds,

adjacent �eld lines random walk away from each other [28]. Theoretical concepts of �eld

line random walk [29,30] have been developed considering the magnetostatic turbulence

to be much weaker than the large-scale mean �eld [31] or for the transverse turbulence

[32, 33] with uctuations being perpendicular to the unperturbed �eld. Zimbardo et

al. [34, 35] have numerically studied the transport properties of magnetic �eld lines in

3 � D turbulent magnetic uctuations in presence of a uniform magnetic �eld for a

wide range of uctuation level. Such study reveals that at low or moderate uctuation

levels, the system exhibits weak chaos accompanied by closed magnetic surfaces and the

transport is anomalous where mean square displacement follows a nonlinear relationship

in evolution parameter. With increase in uctuation levels, stochastic behavior increases

and the transport approaches Gaussian di�usion in which mean square displacement is

proportional to the independent variable. The existence of di�erent transport regimes

and the transitions between them is therefore closely related to the stochastic behavior
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of magnetic �eld lines.

Sometimes it may be of interest to study the dynamics of �eld lines and the nature

of their transport in a situation where the magnetic �elds are deterministic. Field line

equations of deterministic Beltrami �elds being non-integrable in 3 � D have some simi-

larities with that of turbulent magnetic �elds. Di�usion characteristic of the �eld lines of

ABC magnetic �eld was studied by Ram et al. [36] revealing that the transport in 3 � D

chaotic magnetic �elds is sometimes di�erent from the usual ordinary di�usion. Field

lines of ABC �eld are seen to undergo superdi�usion in space. This anomalous transport

property of chaotic �eld lines leads to the necessity of characterizing the behavior of

single �eld lines.

In the context of di�usion of charged particles in turbulent magnetized plasma, an

important issue was to understand the change in the transport properties when the level

of magnetic turbulence is increased [37, 38] and also when the mean �eld vanishes. In

the light of such studies, another pertinent question would be to study the di�usion

characteristics of �eld lines when the mean �eld is much smaller [39] or zero [40] and

much larger than the amplitude of uctuation.

The Poincar�e section for the magnetic �eld lines of ABC ows, consists of islands of

regular �eld lines embedded into the chaotic sea [26]. The dynamical behavior of the �eld

lines can be characterized by monitoring the largest Lyapunov exponents (LLE). Explor-

ing the dependence of the LLE on the initial conditions of the system, one can identify

the areas with di�erent dynamical behavior in phase space, i.e. where the dynamics

is chaotic, and those showing regular, periodic or quasiperiodic dynamics. The regular

islands in the phase space cause dynamical trapping [41] of the chaotic trajectories so

that the �eld lines stay around such ux tubes for a long time. This phenomena is called

stickiness which can be characterized by various statistical properties like probability

distribution of a chaotic �eld line in the spirit of central limit theorem, probability distri-

bution of �nite distance Lyapunov exponents, recurrence length statistics etc. Moreover,
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in a mixed phase space, sometimes there is indication of long coherent displacements

which can be detected by the long tails in the displacement probability distribution.

The presence of nonchaotic islands in the phase space has profound implication on the

transport of chaotic �eld lines which is found to be anomalous rather than usual normal

or Gaussian di�usion which happens in most cases of random uctuations.

Characteristics of a chaotic trajectory has been studied extensively in the context of

standard map which is a convenient model for studying chaotic behavior of Hamiltonian

systems. A chaotic trajectory moving in a mixed phase space has parts that are almost

regular. The characteristics of such trajectories are quite di�erent from that moving

in a completely chaotic phase space. The phenomena of stickiness and its impact on

transport properties of a system have been extensively studied in the context of area

preserving maps [42{47]. Various techniques such as �nite time Lyapunov exponent, dis-

tribution of a trajectory, recurrence time statistics have been employed for this purpose.

Szezech et al. [48] have studied the �nite time Lyapunov spectrum for chaotic orbits

of non-integrable Hamiltonian systems. Zaslavsky and Tippet [49] have shown that

the transition from normal to anomalous transport is accompanied by a corresponding

change of the distribution of recurrence time statistics from exponential to power law.

1.4 Dynamics of charged particles

The properties of magnetic �eld lines inuence the behavior of magnetized particles.

The motion of charged particles in complex magnetic �elds exhibit interesting dynami-

cal properties. In spatially homogeneous magnetic �elds, charged particles gyrate about

the magnetic �eld lines. But in spatially inhomogeneous magnetic �elds, particle orbits

drift o� the �eld lines because of gradient and curvature drifts [50]. Also, the variation of

magnetic �eld strength along a �eld line causes reection of the particles from regions of

higher �eld strength to the regions of lower �eld strength. These e�ects cause signi�cant

di�erences between the dynamics of �eld lines and the motion charged particles in such
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magnetic �elds. The dynamics of charged particles can be chaotic even in regular mag-

netic �elds [51]. The equations describing charged particle motion in a magnetic �eld

form a Hamiltonian system. A Hamiltonian system with N degrees of freedom is inte-

grable if and only if there exist N constants of motion that are in involution. A nonzero

value of the Poisson bracket for any one pair of constants of motion leads the system to

possess nonintegrable stochastic orbits. However, in a chaotic magnetic �eld, the most

important feature of particles is their spatial di�usion across the ambient large scale

magnetic �eld. The concept of perpendicular particle di�usion via collisions is the most

evident notion and can be easily understood if collisions between the charged particles

and the neutral atoms in a plasma are taken into account. However chaotic magnetic

�eld lines also lead to di�usion of charged particles across the large scale �eld. In pres-

ence of uniform magnetic �elds, charged particles perform helical motion around the

�eld direction and they are completely con�ned in the perpendicular direction. But the

presence of chaotic �eld lines causes the particles to experience perpendicular scattering.

Such scattering leads to the perpendicular di�usion of charged particles.

The study of the dynamics of charged particle motion in complex electric and magnetic

�elds is interesting owing to its relevance in the acceleration of particles in many space

and laboratory plasma systems. Investigation of charged particle transport and acceler-

ation in a 2�D system with a uniform electric �eld and stationary magnetic uctuations

has been carried out by Shustov et al. [52], to obtain the dependence of transport and

acceleration on properties of magnetic �eld uctuations. The motion of charged parti-

cles in the vicinity of magnetic null con�gurations that are solutions of kinetic steady

state, resistive MHD equations have been investigated by Gascoyne [53] to understand

the role of sheared and torsional magnetic �elds on particle motion and energization.

Cohen et al. [54] have studied the role of chaotic orbits in �eld reversed con�gurations

in ion heating by application of rotating magnetic �elds. The spatial di�usion and ener-

gization of charged particles in ABC type magnetic �elds have been investigated [55] to

show that for an initial distribution of particles whose velocity is uniformly distributed
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within some interval, the probability density function of kinetic energy at late times is

close to a Gaussian with steeper tails. The study of charged particle acceleration in

various descriptions of electromagnetic �elds motivates the search for charged particle

energization in a uniform electromagnetic �eld together with stationary inhomogeneous

magnetic uctuations that can be obtained from simple nonlinear equations.

1.5 Organization of the thesis

The thesis describes the dynamical behavior of regular and chaotic magnetic �elds. In

chapter 2, we study the characteristics of magnetic �eld lines in connection with their

transport properties considering 3�D solutions of single and double curl Beltrami equa-

tions. Global qualitative properties of magnetic �eld lines are observed by plotting

Poincar�e sections and the study of characterization of single chaotic �eld line involves

various statistical properties like probability distribution of a chaotic �eld line, distribu-

tion of �nite distance Lyapunov exponents, recurrence length statistics etc. Chapter 3

consists of the study of the dynamics of magnetic �eld lines of a double curl Beltrami

�eld in presence of a uniform magnetic �eld. In this chapter, the chosen solution of dou-

ble curl equation is di�erent from that presented in chapter 2. In presence of a uniform

magnetic �eld, the most relevant study consists of the search of di�usion characteris-

tics perpendicular to the mean �eld. The study of di�usion properties of the �eld lines

is extended in chapter 4 taking the same magnetic �eld con�guration as in chapter 3.

Here, the characteristics of the chaotic trajectories are studied through the statistical

properties like variance, kurtosis, and probability distribution of their displacements fol-

lowed by the numerical results revealing the e�ect of �eld line transport on the di�usion

of charged particles. Now, we consider di�erent description of magnetic �elds obtained

from nonlinear equations. Such description can lead to magnetic �elds (varying in 1�D)

that are chaotic in magnitude unlike 3 � D Beltrami magnetic �elds that are regular in

strength. In chapter 5, we choose a simple coupled nonlinear equation for the description
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of magnetic �elds and study the dynamics of charged particles addressing their energiza-

tion in presence of a constant electric �eld. Then, we study the dynamical aspects of

magnetic �elds governed by KdV type equation in chapter 6. The KdV equation in pres-

ence of a Burger and a linear term can give rise to chaotic solutions for suitable choice

of parameters and the left moving traveling wave solutions of the equation are studied

numerically using bifurcation diagram, Lyapunov exponents etc. Finally, in chapter 7,

we conclude with a discussion of the results obtained in the thesis.
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CHAPTER 2

The Beltrami magnetic �elds:

Characterization of �eld lines in connection

with their transport

In this chapter, we introduce Beltrami magnetic �elds to deal with various dynamical

properties of the magnetic �eld lines. After presenting the solutions of single and dou-

ble curl Beltrami equations in 3 � D Cartesian coordinate system, the spatial evolution

pattern and di�usion of magnetic �eld lines governed by these �elds will be shown. Sub-

sequent sections of the present chapter consist of the study of characterization of single

chaotic �eld lines of two di�erent magnetic �elds by various statistical properties like

probability distribution of a chaotic �eld line in the spirit of central limit theorem, dis-

tribution of �nite distance Lyapunov exponents, recurrence length statistics etc.
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transport

2.1 Introduction

Many magnetized plasma con�gurations in laboratory as well as astrophysical environ-

ments shape into existence out of turbulent uctuations through free relaxation mech-

anisms that help the system to get rid of its excess energy. Evidence of relaxation has

been found in many laboratory plasmas, starting from the pinch experiments of early

days to fusion devices such as reversed �eld pinches, spheromaks, �eld reversed con�g-

urations, sawtooth relaxation in tokamak plasmas. In space and astrophysical plasmas,

the magnetic topologies owe their existence to self-organization and reconnection events

that leave their footprints in various observed phenomena.

The study of self-organization and relaxation in magnetohydrodynamic plasmas orig-

inated in the work of Woltjer [14] who derived the following Beltrami condition

r � B = �B (2.1)

by invoking an intuitively obvious variational principle of minimizing magnetic energy.

In equation (2.1), � playing the role of Lagrange multiplier, is a scalar �eld satisfying

B�r� = 0 since B is a solenoidal �eld. While deriving equation (2.1), Woltjer considered

an ideal MHD plasma, wherein the local magnetic helicity
R

A � BdV associated with

each ux tube is a conserved quantity. For a low-beta plasma, where forces due to plasma

pressure can be neglected, and ows are absent, equation (2.1) is also the MHD force-

balance condition in equilibrium. The inhomogeneous nature of �, brings in dependence

on initial conditions, so that equation (2.1), when obtained under conditions of in�nite

plasma conductivity, is not in con�rmation with the properties of relaxed states. Taylor

[2, 56] resolved this inconsistency, by introducing a variational principle for a slightly

resistive plasma, wherein all the local helicity constraints relax, leaving only the global

helicity to serve as a constraint in the minimization of magnetic energy. Relaxed states

[57] obtained by such minimization satisfy r�B = �B, where now � is a constant. Such
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Beltrami states, also called Woltjer-Taylor states, have the property that their existence

is independent of the initial conditions.

The paradigm of understanding relaxed states in a plasma through variational prin-

ciples was extensively extended by Mahajan and his coworkers over a series of pa-

pers [5, 21, 58{60] spanning over various MHD models, multiuid plasmas including

relativistic uids leading to double, triple and multi-Beltrami states.

Recent works on magnetouid uni�cation using the minimal coupling prescription of

incorporating the electromagnetic �elds in particle dynamics have extended the scope of

force-free �elds. The dynamics of hot relativistic charged uids in electromagnetic �elds

is described by the uni�cation of ow �eld and the electromagnetic �elds [61]. New con-

cepts of force-free �elds arise for homentropic uids upon using such uni�ed magnetouid

�elds. Following the ideas of magnetouid uni�cation, a new electro-vortical �eld has

been constructed [62] that uni�es all macroscopic forces into a single grand force that is

the weighed sum of electromagnetic and the inertial/thermal forces. In the context of all

these models, it is possible to delineate a whole class of solutions of magnetic �elds and

ows that can appropriately describe various physical systems. The double and higher

Beltrami states also can be shown to be force-free states if one considers generalized

forces.

The simplest among the several higher curl Beltrami equations, developed to describe

relaxation in a magnetouid, is the double curl equation,

r � r � B + �r � B = �B (2.2)

This two-parameter, double curl system of equations can describe the equilibrium mag-

netic (velocity) �eld in an ideal coupled magnetouid [21]. In a two-uid plasma, equa-

tion (2.2) also arises [5] through a mathematically well-posed variational principle by

minimizing enstrophy with the constants of motion adjusted through a weakly dissipa-
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tive process. The double Beltrami states of a two-uid plasma are capable of capturing

small scales [63] that plays an important role in various phenomena such as coronal heat-

ing [64]. The conventional force-free �eld equation r � B = �B is a special case of the

above equation with � = 0 and � > 0. The general solutions of force-free equation in

3�D with constant � are known as Arnold-Beltrami-Childress (ABC) �elds [24,25]. For

constant values of �, � and �, both single and double curl equations are linear, so that

the solutions of the latter can be written as a linear superposition of the ABC �elds. The

general and richer double Beltrami system allows a much wider class of solutions that are

qualitatively di�erent from the constant-� single-Beltrami magnetic �elds besides also

containing the solutions of the single curl equation as a subset.

2.2 Arnold-Beltrami-Childress (ABC) Magnetic �elds

For constant �, the ABC solutions of equation (2.1) in Cartesian coordinate system can

be written as

Bx = A1 sin �z + C1 cos �y

By = B1 sin �x + A1 cos �z

Bz = C1 sin �y + B1 cos �x (2.3)

where � is interpreted as the eigenvalue of the curl operator and signi�es a length scale

over which the B-�elds vary appreciably. The solution of equation (2.2) can be written

as a linear superposition of the above solutions and is given by

Bx = A1 sin �+z + C1 cos �+y + A2 sin ��z + C2 cos ��y

By = B1 sin �+x + A1 cos �+z + B2 sin ��x + A2 cos ��z

Bz = C1 sin �+y + B1 cos �+x + C2 sin ��y + B2 cos ��x (2.4)
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where �� = [�� �
p

�2 + 4�]=2 and A1; B1; C1; A2; B2; C2 are arbitrary constants. The

values of �� vary with the variation in the parameters � and � and can take both real

and complex values. In the present work, we choose only real values of ��.

Magnetic �eld lines are tangential to the magnetic �eld B(r) at any spatial point r.

The �eld line equations are thus obtained as [36],

dr

ds
=

B(r)

jB(r)j (2.5)

where B = Bxî + By ĵ + Bzk̂, r = x̂i + yĵ + zk̂, jB(r)j is the magnitude of B and s is the

length along the �eld line.

To integrate equation (2.5) numerically, dimensionless variables are used where dis-

tances are normalized by constant � for the single curl �eld and by constant �+ for the

double curl �eld. Magnetic �eld B is normalized by a constant magnetic �eld B0

0. A

specially signi�cant situation for ABC �eld is the case with zero value of one of the

three real parameters A1; B1 or C1. In this case, the ABC magnetic �eld does not de-

pend on one coordinate. Here the equations are integrated numerically using fourth

order Runge-Kutta scheme [49] with �xed step size guaranteeing desired accuracy for

the preservation of conservation of the quantity (C1 sin y + B1 cos x), when one coordi-

nate z is made cyclic. The normalized parameters for the magnetic �elds are chosen [26]

as A1 = A2 = 1, B1 = B2 =
p

2=3, C1 = C2 =
p

1=3 and � = �+ = 1, �� = �0:5.

The choice of such parameters enables to di�erentiate a mixed phase space from a fully

chaotic one.

2.3 Spatial structure and di�usion of magnetic �eld

lines

Global properties of the system can be predicted by plotting Poincar�e sections. For
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