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Chapter 5

Summary and Conclusions

The main focus of the thesis has been the modification of hadronic properties in presence of

a uniform background magnetic field having magnitude typically of the order of m2
π. Among

the hadrons, specifically nucleons and neutral ρ mesons have been studied in two different

contexts. More explicitly, nucleons are considered in the study of vacuum to nuclear matter

phase transitions as discussed in chapter 3 whereas the main motivation for studying the

spectral properties of ρ0 (presented in chapter 4) is to investigate the magnetic field effects

on the ρ0 → π+π− decay in presence of a hot and dense medium.

The study related to nucleons considers Walecka model with mean field approximation

in presence of weak external background magnetic field. The most important feature of the

study is the incorporation of the anomalous magnetic moment of nucleons which brings in

non-trivial correction terms in the nucleon propagators. As a result, unlike the case with

vanishing magnetic moment, it is observed that the critical temperature decreases with the

external magnetic field. Thus, it can be inferred that in presence of external magnetic field,

the anomalous magnetic moment of the nucleons plays a crucial role in characterizing the

nature of vacuum to nuclear matter transition at finite temperature and density. It should be

mentioned here that Haber et.al [146] had speculated that the incorporation of AMM could

counteract the effect of magnetic catalysis [153]. Our study not only supports the speculation

but also concludes that the effect is significant enough to alter the qualitative behavior of

the nucleon effective mass even in weak magnetic field regime. However, it should be noted

here that the weak field approximation actually restricts the regime of validity of the present

study. The maximum value of the external magnetic field used in the present study is taken

to be 0.04 GeV2 and it has been argued to be considered as ‘weak’ only up to density 1.8 ρ0

where the assumption of ‘weakness’ is fixed by the condition that the chosen external field

has to remain less than 50% of the effective mass. One should also notice that in case of

81



82 Chapter 5. Summary and Conclusions

Walecka model, MC or IMC can only be seen indirectly. Similar studies in extended linear

sigma model might be interesting as in that case the possibility of (approximate) chiral

symmetry restoration is incorporated within the model framework. However, we should

also mention that in case of zero magnetic moment, only the quantitative difference in the

behavior of the effective mass is found to be attributed to the presence of the chiral partners

[146] whereas the qualitative behavior, which has been the main interest throughout our

work, seems to show model independence. Before applying the present results to obtain the

characteristics of compact stars such as mass radius relationship or the equation of state,

beta equilibrium and charge neutrality conditions have to be properly incorporated which

can be an important extension of the present study.

The main observation in the study of neutral ρ meson is that at certain critical value

of magnetic field, the decay width for ρ0 → π+π− channel vanishes. The magnitude of the

critical magnetic field depends on the temperature (T ) and baryon chemical potential (µB)

and is different for the two decay modes. Though the corresponding variation of the critical

field with T and µB shows increasing trend for large baryonic chemical potential, there exists

a maximum value of µB below which the temperature dependence gets reversed.

In Ref. [168], charged rho meson condensation has been studied at finite temperature

and density. For charged rho mesons, the critical field for which the vector meson mass

vanishes is observed to lie in the range of 0.2-0.6 GeV2 at zero density with temperature in

the range 0.2-0.5 GeV. However, in case of ρ0, the absence of the trivial Landau shift in the

energy eigenvalue results in much slower decrease in the effective mass. As a consequence,

unrealistically high magnetic field values are required to observe neutral rho condensation

in presence of temperature and medium (see Fig.4.14). In this scenario, the suppression

in the ρ0 → π+π− channel can serve as an important alternative. However, one has to

remember that the magnetic modification of rho meson properties studied in this work deals

with effective hadronic interactions. Thus, the observable modification can only occur if

the initial burst of magnetic field survives up to hadronization retaining an appreciable

field strength. However, the recent report [201] suggests no detectable suppression in the

branching ratio of ρ0 → π+π− channel implying that the magnetic field effects in the neutral

ρ decay is negligible in HIC experiments. On the other hand, the present study can be

relevant in situations present inside magnetars.
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Summary

In this thesis, the hadronic spectral properties are studied in presence of two non-trivial

backgrounds: one is the presence of background medium which is assumed to be in thermal

equilibrium and another is the presence of uniform magnetic field having magnitude typ-

ically of the order of m2
π. The main focus of the thesis is to analyze the modification of

effective mass of hadrons, specifically nucleons and neutral ρ mesons in presence of finite

temperature and magnetic field. Nucleons are considered in the study of vacuum to nuclear

matter phase transitions whereas the spectral properties of ρ0 is studied to investigate the

magnetic field effects on the ρ0 → π+π− decay in presence of a hot and dense medium.

The temperature/density and the magnetic field intensity considered in these theoretical

works possess significant relevance in the studies of strongly interacting matter created in

the ultra-relativistic heavy ion collison experiments at RHIC and LHC as well as in the

studies of magnetars.

The study related to nucleons considers Walecka model with mean field approximation

in presence of weak external background magnetic field. The most important feature of the

study is the incorporation of the anomalous magnetic moment of nucleons. For this pur-

pose, the weak field expansion of the fermion propagator including the anomalous magnetic

moment, is derived for the first time up to second order in external magnetic field. It is

observed that the anomalous magnetic moment brings in non-trivial correction terms in the

nucleon propagators. Implementing the derived propagator in the one loop self energy, it is

found that, unlike the case with vanishing magnetic moment, the critical temperature of vac-

uum to nuclear matter phase transition decreases with the external magnetic field. Though

in this case, it occurs in an entirely different system, the decreasing nature of the critical

temperature is similar to the inverse magnetic catalysis of the chiral/de-confinement phase

transition observed in LQCD studies. The study establishes that it is the incorporation of

the anomalous magnetic moments of the nucleons that changes the qualitative nature of the
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phase transition. On the other hand, in the study of neutral ρ meson, the complete Landau

quantized propagators are used to obtain the one loop self energy. For this purpose, the

effective ρππ and ρNN interactions are considered. Two main aspects of the study is the

introduction of an improved regularization procedure which is used to extract eB-dependent

vacuum part of the self energy and the step by step formulation of the general Lorentz struc-

ture for the in-medium vector boson polarization tensor. The procedures are quite general

and can be implemented in similar studies with other gauge bosons such as photons and glu-

ons. The main observation in this study is that, at certain critical value of the background

magnetic field, the decay width for ρ0 → π+π− channel vanishes. The magnitude of the crit-

ical magnetic field depends on the temperature (T ) and baryon chemical potential (µB) and

is observed to be different for the two decay modes. Though the corresponding variation of

the critical field with T and µB shows increasing trend for large baryonic chemical potential,

there exists a maximum value of µB below which the temperature dependence gets reversed

suggesting a possibility of observing suppression in the ρ0 → π+π− decay channel.



Chapter 1

Introduction

1.1 Heavy-Ion Collisions

In the framework of the standard model (SM) of particle physics, the strong interaction

between the quarks and gluons is described by quantum chromodynamics(QCD) which is

a non-abelian gauge field theory based on color SU(3) gauge symmetry. One of the most

remarkable properties of QCD is the color confinement for which the detection of any isolated

quark or gluon is forbidden. Instead of isolated manifestation, the colorful quarks bind

together to form colorless hadrons which we observe in nature. However, QCD predicts that

at high temperature and(or) density, the hadronic matter undergoes a phase transition. As a

consequence, a new state of matter is created where the hadrons, loosing individual identities,

dissolve into their constituents. The existence of such a deconfined state has been conjectured

in the mid-seventies [1, 2] just two years after the fascinating discovery of asymptotic freedom

[3, 4] that predicts the weakening of the inter-quark forces at short distances. In high

temperature studies of QCD, it is found that unlike the vacuum fluctuations of gluon fields

that provide anti-screening, thermal fluctuations lead to debye screening of the inter-quark

potential which is familiar in case of the classical electromagnetic plasma systems. This

novel state of matter with quarks and gluons as degrees of freedom is known as quark-gluon

plasma(QGP)[5].

The deconfined QGP state of matter is expected to be present in the early universe during

the first few microseconds after the big bang and may also exist in the cores of compact stars

[6] where highest possible densities of nature can be found. Understanding such strongly

interacting matter at extreme conditions is important for several reasons. For example,

1



2 Chapter 1. Introduction

the commonly accepted scenario of the evolution of the universe suggests that, since its

creation, the universe has gone through a series of first or second order phase transitions

which are associated with the spontaneous symmetry breaking of the non-abelian gauge

fields [7]. In the standard model of particle physics we have two such transitions, one is

the electroweak symmetry breaking at temperatures of a few hundred GeV and other is

the transition from quark matter(QM) to hadronic matter that occurs at temperatures of

the order of hundred MeV. Apart from this confinement-deconfinement phase transition,

spontaneous chiral symmetry breaking occurs also at the same temperature scale and is

related to the dynamical generation of constituent quark mass. As the chiral symmetry is

an exact symmetry of QCD lagrangian only for massless quarks, at higher temperatures, the

restoration of chiral symmetry is only approximate. While the mass generation of elementary

particles is explained by the Higgs mechanism, studies of such QCD phase transition gives

insights into the mechanism of mass generation of hadrons. As the initial condition for

nucleosynthesis is the hadronic phase, the nature of the QCD phase transition possesses

significant importance in our current understanding of the evolution of the universe.

Ultra-relativistic heavy-ion collision experiments make it possible to create and study

such extreme state of matter. Historically, the quest for producing QGP under laboratory

conditions has started in the late 1980s at the European Center for Nuclear Research known

by its French abbreviation CERN (Geneva, Switzerland) and Brookhaven National Labo-

ratory (BNL) [8, 9]. In the year 2000, CERN announced circumstantial evidence for the

creation of a new state of matter in Pb + Pb collisions [10]. However, the real discovery of

QGP took place in 2005, when first five years of measurements of Au + Au collisions at the

Relativistic Heavy Ion Collider (RHIC) at BNL is announced [11–14]. The deconfined mat-

ter produced is found to be the strongly coupled quark-gluon plasma (sQGP), which, having

unexpectedly small viscosity to entropy density ratio, lies among “the most perfect fluids”

known in nature. Since 2010, a new era of precision measurements in understanding QCD

at high temperatures has started with LHC providing Pb–Pb collisions at the energies more

than an order of magnitude larger than RHIC, thereby allowing us to explore to tempera-

tures well beyond what needed for the creation of QGP. A huge collection of measurements

starting from the the first run of LHC, from 2009 to 2013, with pp collisions at
√
s from 0.9

to 8 TeV, p-Pb collisions at
√
sNN = 5.02 TeV, and Pb-Pb collisions at

√
sNN = 2.76 TeV

to the second run with pp collisions at
√
s = 13 TeV and Pb–Pb collisions at

√
sNN = 5.02

TeV have substantially enriched our knowledge. A comprehensive view of the current un-

derstanding of the results as well as future perspectives can be found in Refs. [15–24] and
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in the vast collection of references therein.

1.2 Phases of QCD

One of the major goals of ultra-relativistic heavy-ion collisions is to unravel the structure of

the entire phase diagram of the strongly interacting matter. Though QCD allows the applica-

tion of perturbative methods at extremely high temperatures (T ) and/or baryonic chemical

potential (µB), the underlying mechanism related to phase transions at intermediate values

of T and µB belongs to the non-perturbative regime. As a consequence, familiar perturbative

methods fail to describe a large sector of the QCD phase diagram. One of the possible ways

to study QCD in non-perturbative regime is to take recourse to the functional approaches

using Dyson-Schwinger Equation(DSE) and Bethe-Salpeter Equation (BSE) [25, 26]. In gen-

eral, the functional approaches require a truncation procedure so that the infinite system of

equations can be restricted to a level which can be handled numerically. Another possible

first principle approach is to implement numerical QCD simulations on four dimensional

discretized space-time lattice, known as lattice quantum chromodynamics(LQCD) [27, 28].

Figure 1.1: Schematic phase structure of different phases of the strongly interacting matter.

Over the years, lattice QCD has emerged as the most successful non-perturbative frame-

work to study QCD in the strong coupling regime. Precise lattice results for hadronic masses

and decay widths, having excellent agreement with experimental values [29] justify its appli-

cability in the study of the strongly interacting matter under extreme conditions. However,

there exist few shortcomings in the LQCD framework. Perhaps, the most important of
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those is the well known sign problem for which the LQCD methods can not be applied

in case of finite baryonic chemical potential. So far, though several procedures have been

developed to circumvent this problem, the issue remains an active area of research [30].

The most widely used procedure is the Taylor series expansion method with which probing

the low chemical potential region becomes possible. On the other hand, effective mod-

els provide a reliable alternative framework to investigate the whole QCD phase structure.

In general, whenever a natural separation of energy scale is possible for the phenomenon

under investigation, the effective description becomes useful. Time and again, different ef-

fective model descriptions are proposed and confronted with lattice results of thermodynamic

observables like pressure, trace anomaly, entropy density, sound velocity, fluctuations and

correlation of conserved charges and so on. Indeed, effective descriptions like the Hadron Res-

onance Gas (HRG) model [31–37], Polyakov loop extended version of Nambu–Jona-Lasinio

(PNJL) [38–41] model as well as Polyakov loop extended Quark-Meson (PQM) model [42–44]

have achieved considerable success in explaining the lattice data as well as giving insights

into the finite baryon density region of the phase diagram schematically shown in Fig. 1.1.

At zero baryonic chemical potential, LQCD simulations with physical quark masses sug-

gest that the transition from ordinary hadronic matter to the QGP is an analytic transition,

known as crossover [45–47]. As a consequence, the order parameteres for the phase tran-

sions are only approximate. The approximate order parameter for the deconfinement phase

transition is the renormalized Polyakov loop whereas renormalized quark condensate plays

the similar role for the chiral phase transition. In case of crossover transitions, as there is no

characteristic singular behavior, a unique critical temperature can not be defined. However,

pseudocritical temperature can be defined from the location of inflexion points or peak po-

sitions of thermodynamic observables. It is observed that different observables correspond

to different pseudocritical transition temperatures [45, 48, 49]. In recent studies with 2+1

flavour QCD incorporating physical quark masses, a span of temperature from 147 to 157

MeV is obtained from different chiral observables [50]. On the other extreme of the phase

diagram that is with low temperatures and high values of baryonic chemical potential, color

superconducting (CSC) and color flavor locked (CFL) phases [51–53] may appear which play

important role in the studies of equation of state of comapct stars. Different approaches at

finite µB suggests that the phase transition from hadronic to CSC matter is a first order

phase transition (shown as black solid line in Fig. 1.1) and remains to be so between hadronic

and QGP phase up to the critical end point (CEP) where the phase transition changes its

nature and becomes a crossover. One of the major objectives of the Beam Energy Scan
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(BES-I and II) programme at RHIC is the experimental discovery of QCD critical point

[54, 55]. Other experimental endeavours like the Facility of Anti-proton and Ion Research

(FAIR) at GSI and the Nucotron-based Ion Collider Facility (NICA) at JINR will further

enrich our understanding of the colder and denser regimes of the phase diagram. Ref. [56]

provides the theoretical overview of our current understanding of the QCD phase structure

whereas recent progresses in experimental side as well as future opportunities in relativistic

heavy-ion physics are reviewed in Ref. [57].

1.3 Extreme states of matter in presence of background

magnetic field

Different external parameters can influence the characteristics of the QCD phase diagram.

One such parameter is the external magnetic field which has gained significant research

interests in recent years. There exists compelling experimental evidences for the existence

of large scale magnetization in galaxies, clusters and super-clusters indicating the existence

of primordial seed fields in the early universe. The origin of such primordial magnetic fields

[58, 59] is still an active area of research [60–62]. Imprints of cosmological magnetic fields

on the temperature and the polarization anisotropies of the cosmic microwave background

radiation (CMBR) can provide useful insights in the generation of the cosmological magnetic

fields [63–66]. Furthermore, the strong magnetic fields might have played a significant role

in several important phenomena in the early universe [67].

Strong magnetic fields also possess astrophysical consequences. The effect of external

magnetic fields in the dense phases of the strongly interacting matter [68–75] is extremely

important in the studies of compact stars [76–79] as they are also the sources of the strongest

magnetic fields observed in nature. While the surface magnetic field of radio pulsars is of the

order of 1013–1014 G [80], in the inner core of magnetars [81–83], magnetic field strength may

reach up to 1020 G depending upon the core constituents [84]. In presence of such strong

uniform magnetic field, the longitudinal and transverse pressure with respect to the magnetic

field direction are no longer degenerate and the equation of state becomes anisotropic. As, it

is the equation of state that determines the global properties of neutron stars [85, 86], studies

of magnetic field modification should play a crucial role in the analysis and interpretation of

astrophysical observations related to the neutron stars.

A terrestrial source of extremely strong magnetic field is the non-central heavy-ion col-
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lision experiments where magnitude of the produced magnetic field can be of the order of

1018–1019 G in RHIC and even larger at LHC [87–91]. The magnitude and time evolution

of the produced field depends on various parameters like the collision energy, impact pa-

rameter, the conductivity of the medium and so on [92–94]. So far, magnetic influences

on various observables have been studied [95–99]. However, complete understanding of

the consequences of the strong magnetic field on the evolution of QGP requires relativistic

magneto-hydrodynamic framework which is still under active investigation [100–102]. Apart

from the magnetic field, electric fields of similar magnitudes can also be generated in HIC

due to the event-by-event fluctuations [90, 91]. Electric fields can also be generated in case

of asymmetric collisions as discussed in Refs. [103–105].

On one hand, electromagnetic fields of extreme intensities are generated in HIC experi-

ments, on the other hand, the extreme temperatures achieved in heavy ion collisions provide

very large sphaleron transition rate which can generate P and CP-odd domains in QGP [87].

The electromagnetic fields in presence of such P and CP-odd domains can give rise to various

anomalous transport phenomena such as chiral magnetic effect(CME) [106], chiral separa-

tion effect(CSE) [107, 108], chiral electric separation effect(CESE) [109, 110], chiral magnetic

wave(CMW) [111], chiral vortical effect(CVE) [112] and so on which have attracted signifi-

cant amount of contemporary research interests. Review of theoretical understanding as well

as experimental searches of different anomalous transports can be found in Refs. [113–117].

As already mentioned, the background magnetic fields can have remarkable influences on

the QCD phase diagram. At vanishing chemical potential, modification due to the presence of

magnetic background can be obtained from first principle using lattice QCD simulations [118,

119] which shows monotonic increase in critical temperature with the increasing magnetic

field. The effects of external magnetic field on the chiral phase transition has been studied

using different effective models in recent years [120–133]. As discussed earlier, effective

theories are employed to describe the low energy behavior of the strong interaction. In

such a theory, the condensate is described as the non-zero expectation value of the sigma

field which is basically a composite operator of two quark fields. Now, if the condensate is

already present without any background field, the effect of its enhancement in presence of

the external magnetic field is described as magnetic catalysis (MC). Effective field theoretic

models in general contain a few parameters which can be fixed from experimental inputs.

Although most of the model calculations are in support of MC, some lattice results had

shown inverse magnetic catalysis (IMC) where critical temperature follows the opposite

trend [134–137]. It was pointed out in [138] that IMC is attributed to the dominance of the
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sea contribution over the valence contribution of the quark condensate. The sea effect has

not been incorporated even in the Polyakov loop extended versions of Nambu–Jona-Lasinio

(PNJL) model and Quark-Meson(PQM) model which might be a possible reason for the

disagreement. To investigate the apparent contradiction, a significant amount of work has

been done in quest of proper modifications of the effective models, most of which are focused

on the magnetic field dependence of the coupling constants or other magnetic field dependent

parameters in the model. A comprehensive list of literature in this line can be found in the

review article [139].

1.4 Work Outline

This thesis essentially concerns with the thermo-magnetic modification of hadronic proper-

ties. More specifically, only the nucleons and neutral ρ mesons are considered. The modifica-

tions arising from the background medium as well as external magnetic fields are incorporated

through one loop self energy with modified propagators. The derivation of the thermal prop-

agators are common in the literature. Some excellent monographs with detailed descriptions

of thermal field theory methods are collected in Refs. [140–144] which can be considered for

this purpose. However, at each chapter, the expressions of the real time propagators to be

used, are explicitly mentioned for completeness. Since the seminal work by Julian Schwinger

“On gauge invariance and vacuum polarization” [145], bosonic and fermionic propagators in

presence of magnetic fields have been extensively used in the literature. It is well known that

in presence of uniform background magnetic fields, the translational invariance of the propa-

gators is lost. The Momentum space representation of the translationally invariant part now

becomes a sum over infinite number of Landau levels. In chapter 2, the detailed derivation of

fermion propagator in presence of background magnetic field is discussed. Though, bosonic

propagators are also used in the study of ρ0, only the fermion propagator is considered in

detail as the method of obtaining the bosonic propagator remains essentially similar. Rather,

the bosonic case is comparatively less involved than the fermionic case where the presence of

the anti-commutating Dirac matrices brings in additional complicacies. However, it should

be mentioned that the derivation of the fermionic propagator presented here is not new and

in principle, only serves the purpose of completeness.

In chapter 3, we discuss the effect of external magnetic field on nucleon mass at finite

temperature and density. In the context of nuclear physics, the MC effect was first dis-

cussed by Haber et al in Ref. [146]. There, the effect of background magnetic field on the
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transition between vacuum to nuclear matter at zero temperature was studied using the

Walecka model [147] as well as the extended linear sigma model. The study includes the

B-dependent Dirac sea contribution of the free energy density which was ignored previously

(see for example [148–156]) in the case of magnetized nuclear matter. Following the renor-

malization procedure similar to the case of magnetized quark matter, the cut-off dependence

of the B-dependent sea contribution is absorbed into a renormalized magnetic field and a

renormalized electric charge. The onset of the vacuum to nuclear matter phase transition

is determined by equating the corresponding free energies. From the qualitative agreement

between the two models, it is evident that with the proper incorporation of the magnetic

catalysis effect, the creation of the nuclear matter becomes energetically more expensive in

presence of the background magnetic field. However, there exist an important qualitative

difference between the two models. As the analysis suggests, only in case of the Walecka

model, there exists a region where the critical chemical potential for the vacuum to nuclear

matter transition is lower than the same in the absence of the background field. This feature

has surprising similarities with the inverse magnetic catalysis(IMC) shown in NJL and holo-

graphic Sakai-Sugimoto model [157]. It is interesting to see whether similar feature exists

also in a more generalized scenario. Now, as the anomalous magnetic moment (AMM) of the

nucleons has not been taken into account in the analysis, an obvious generalization will be

to incorporate it in the study of vacuum to nuclear matter phase transition under external

magnetic field at non-zero temperature. A recent study [158] incorporating the magnetic

field dependent vacuum in presence of finite temperature and density, however, shows that

the AMM of charged fermions makes no significant contribution to the equation of state

at any external field value. Thus, among others, it will be interesting to see whether MC

persists in the presence of anomalous magnetic moment.

In our work [159], we restrict ourselves only in the “weak” field regime of the external

magnetic field and use the Walecka model to describe the nucleon-nucleon interaction. In

this model, the interaction between the nucleons are described by the exchange of scalar

(σ) and vector(ω) mesons. More realistic extension of the Walecka model where the self-

interactions of the meson fields are also considered, is ignored here for the sake of simplicity

as they hardly contribute to the qualitative nature of the results presented in here. Now, to

obtain the effective mass of the nucleons, instead of minimizing the free energy density with

respect to the condensate [146], we calculate the effective nucleon propagator by summing up

the scalar and vector tadpole diagrams self-consistently. In that case, the effective mass of

the nucleon appears as a pole of the effective nucleon propagator. In case of weak magnetic
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field, the nucleon propagator can be expressed as a series in powers of qB and κB where q

and κ represent the charge and the anomalous magnetic moment of the nucleons. It should

be mentioned here that in the calculation of the tadpole diagrams using the interacting

propagator, we employ mean field approximation. It is essentially equivalent to solving the

meson field equations with the replacement of the meson field operators by their expectation

values. In other words, under this approximation, the meson field operators are rendered

into classical fields assumed to be uniform in space and time and the fluctuation around this

background is neglected.

Spectral properties of neutral ρ meson is discussed in chapter 4. Such studies of effective

mass and dispersion relations of ρ meson are important in the context of magnetic field

induced vacuum superconductivity [160–167]. Using NJL model in presence of magnetic

background, Liu. et.al. have shown that the charged rho condensation in vacuum occurs at

critical magnetic field eBc ∼ 0.2GeV2 [166]. Generalization of the study to finite temperature

and density shows that the condensation survives even in presence of finite temperature and

density [168]. At vanishing chemical potential, the corresponding critical magnetic field is

observed to lie in the range 0.2 -0.6 GeV2 for temperatures in between 0.2-0.5 GeV. However,

the neutral ρ meson in vacuum, having no trivial Landau shifts in the energy eigenvalue,

shows a slow decrease in the effective mass [169] in weak magnetic field region. Thus, if

neutral rho condensation is possible, extremely large magnetic field values will be required

to observe the condensation. It should be mentioned here that it has been shown using NJL

model that the effective mass of ρ0 meson in fact increases at higher values of magnetic fields

showing no possibility of condensation [166]. In this scenario, ρ0 → π+π− decay may serve

as an important probe to observe the influence of the magnetic field. As argued in Ref. [160],

even if point like ρ0 meson is considered without any influence by magnetic field, there exists

a critical value of the external magnetic field for which the ρ0 to π+π− decay stops due to

the trivial enhancement of the charged pion mass. Later the magnetic modification arising

from the loop corrections are taken into account at weak [169, 170] as well as at strong field

limits [171] at zero temperature. An immediate generalization of the previous works will be

to incorporate the medium effects of the ρ0 meson which may reflect in the modification of

the decay rate and the required critical magnetic field. It should be noted here that apart

from being important in the study of dense hadronic matter at extreme conditions usually

expected to be present within compact stars, the incorporation of the medium effects is also

essential for the proper estimation of pion production in non-central heavy ion collisions.

In our work [172] we focus on the temperature and density modifications of neutral
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ρ meson properties in presence of a static homogeneous magnetic background. The one

loop self energy of ρ meson is calculated for the effective ρππ and ρNN interaction with

magnetically modified pion and nucleon propagators corresponding to general field strength.

After decomposing the self energy in terms of the form factors, the decay width for ρ0 →
π+π− channel is obtained. It should be mentioned here that the spectral properties of

rho meson in presence of finite temperature and magnetic field have been studied in our

earlier work [173]. However, unlike the previous case, dimensional regularization technique

is used here to extract the ultraviolet divergence as pole singularities of gamma and Hurwitz

zeta functions[174]. Also, instead of considering only the spin averaged thermal self energy

contribution, the general Lorentz structure has been addressed in detail. Apart from the

technical differences, the density dependence arising from the charged nucleon loop serves

as the most important extension of the previous study. Its importance can be understood

as follows. It is well known that the general expression of decay width is related to the

imaginary part of the self energy. Now, as far as the ρ0 → π+π− decay is concerned, the

invariant mass regime of interest does not allow the nucleon loop to directly contribute to

the imaginary part as the unitary cut threshold of NN loop begins at much higher value.

However, it should be noted that in the rest frame of the decaying particle, the decay width

depends on its effective mass. The contribution from the nucleon loop incorporates significant

modification in the effective mass of ρ0 which in turn influences the decay. As we shall see,

the critical field required to stabilize the neutral ρ against the π+π− decay has a non-trivial

dependence on the baryonic chemical potential. Finally, in chapter 5, the thesis concludes

with a brief summary of the presented work.



Chapter 2

Fermion Propagator in presence of

magnetic field

Fermion propagator in presence of external electro-magnetic field is obtained in the seminal

work “On gauge invariance and vacuum polarization” [145] by Julian Schwinger in 1951. The

propagator in that case is represented as an integral over proper time variable. However, the

integral can be manipulated in such a way that the propagator becomes an infinite sum over

Landau levels which is familiar in the conventional non-relativistic quantum mechanics of

electron gas in external magnetic field. The infinite sum can be reorganized to be expressed as

a power series of external field strength also known as weak field expansion [175]. There exists

different approaches to obtain the fermion propagator in presence of external magnetic fields.

Among them, Ritus eigenfunction method is another widely used approach [176–181]. Here,

unlike the mentioned approaches, we will follow mainly Ref. [182]. In this approach, the sum

over Landau levels arises simply from the completeness relation of the wave-functions which

are basically the solutions of the Dirac equation in presence of constant external magnetic

field. It is needless to say, the Schwinger proper time integral representation can be deduced

from Ritus method [179] as well as from our approach [182] with simple manipulations.

2.1 Derivation of the Green’s function

As already mentioned, our aim is to obtain the propagator using Green’s function approach.

Specifically, we want to solve the Dirac equation in presence of a constant external magnetic

field with a delta source i.e

(iD/−m)S(x, x′) = iδ4(x− x′)

11



12 Chapter 2. Fermion Propagator in presence of magnetic field

(i∂/ − eA/ −m)S(x, x′) = iδ4(x− x′) (2.1)

where we have used the definition

D/ = ∂/+ ieA/ (2.2)

More explicitely, with A0 = 0, we have

[

iγ0
∂

∂t
−
(

− iγ1
∂

∂x1
−eγ1A1 − iγ2

∂

∂x2
− eγ2A2

)

− (−iγ3 ∂

∂x3
− eγ3A3)−m

]

S(x, x′) = iδ4(x− x′) (2.3)

where the convention used is given by

xµ ≡ (x0, x1, x2, x3) ≡ (t, x, y, z)

xµ ≡ (x0, x1, x2, x3) ≡ (x0,−x1,−x2,−x3)

p2 ≡ py ≡ −p2 (2.4)

and now choosing the gauge as A ≡ (0, Bx1, 0) and with the definitions

Πi
⊥ = −i ∂

∂xi
− eAi (2.5)

ΠΠΠ⊥ ·γγγ⊥ = Π1γ1 +Π2γ2 (2.6)

we find

[

iγ0∂t −ΠΠΠ⊥ ·γγγ⊥ − γ3Π3 −m
]

S(x, x′) = iδ4(x− x′) . (2.7)

We can Fourier transform the delta function in terms of plane waves in time and x3 variables

as they do not contain any position or time dependence except in the form of derivatives.

Thus putting

δ4(x− x′) =

∫

dω

2π

dp3

2π
e−iω(t−t′)eip

3(x3−x3′)δ2(rrr⊥ − rrr′⊥) (2.8)

S(x, x′) =

∫

dω

2π

dp3

2π
e−iω(t−t′)eip

3(x3−x3′)S(ω, p3;rrr⊥, rrr
′
⊥) (2.9)
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we obtain

S(ω, p3;rrr⊥, rrr
′
⊥) = i

[

γ0ω − (ΠΠΠ⊥ ·γγγ⊥)− γ3p3 −m
]−1

δ2(rrr⊥ − rrr′⊥) . (2.10)

We can simplify the above expression as

S(ω, p3;rrr⊥, rrr
′
⊥) = i

γ0ω − (ΠΠΠ⊥ ·γγγ⊥)− γ3p3 +m
[

γ0ω − (ΠΠΠ⊥ ·γγγ⊥)− γ3p3 +m
][

γ0ω − (ΠΠΠ⊥ ·γγγ⊥)− γ3p3 −m
]δ2(rrr⊥ − rrr′⊥)

= i
γ0ω − (ΠΠΠ⊥ ·γγγ⊥)− γ3p3 +m

ω2 − p32 −m2 + (ΠΠΠ⊥ ·γγγ⊥)2
δ2(rrr⊥ − rrr′⊥) (2.11)

where after multiplication, all the cross terms vanish from the denominator because of the

anti-commutation relation among of gamma matrices. Now, we need to express the δ function

in terms of the completeness relation of the wave function obtained by solving the Dirac

equation in presence of magnetic field. We only need here the spatio-temporal part of the

wave-function and not the entire spinor and its two dimensional portion is given by

ψkp2(rrr⊥) =
1√
2πℓ

1
√

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−is⊥x2p2 (2.12)

where ℓ = 1√
|eB|

and s⊥ = sgn(eB). One may notice that the form of the wave-function

can be defined with a minus sign in the argument of the Hermite polynomial and in that

case using Hk(−x) = (−1)kHk(x) we should have an overall factor (−1)k multiplied with

our definition of ψkp2. But this will not matter in the analysis as we are always going to

start from the completeness relation where two ψkp2 s are multiplied and that makes overall

factor (−1)2k = 1. Now, using this wave-function we can write the Dirac delta function as

δ2(rrr⊥ − rrr′⊥) =

∫ ∞

−∞

dp2

k=∞
∑

k=0

ψkp2(rrr⊥)ψ
∗
kp2

(rrr′⊥) . (2.13)

Another relation we need is

(ΠΠΠ⊥ ·γγγ⊥)2 = (Π1γ1 +Π2γ2)(Π1γ1 +Π2γ2)

= −Π12 − Π22 +Π1γ1Π2γ2 +Π2γ2Π1γ1

= −ΠΠΠ2
⊥ + [Π1,Π2]γ1γ2

= −ΠΠΠ2
⊥ + ieBγ1γ2 (2.14)
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We need this relation as we are going to use the fact that the ψkp2 is the eigenfunction of

the operator ΠΠΠ2
⊥ with eigenvalue 2k+1

ℓ2
. Now as the operator can be simply replaced with its

eigenvalue when operating on its eigenbasis, we have the following simplification

S(ω, p3;rrr⊥, rrr
′
⊥) = i

∫ ∞

−∞

dp2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
ψkp2(rrr⊥)ψ

∗
kp2

(rrr′⊥)

− i

∫ ∞

−∞

dp2

k=∞
∑

k=0

ΠΠΠ⊥ ·γγγ⊥
ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2

ψkp2(rrr⊥)ψ
∗
kp2

(rrr′⊥)

= E1(ω, p3;rrr⊥, rrr
′
⊥)−E2(ω, p3;rrr⊥, rrr

′
⊥) . (2.15)

Before evaluating the individual Expressions we need a few more relations regarding the

operator ΠΠΠ⊥ · γγγ⊥ and also we have not shown the eigenvalue of ΠΠΠ2
⊥. But again to obtain

them, first we should verify the completeness relation used. These are discussed in Appendix

A. Using the relations the first term can be simplified as

E1(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
Lk(ζ)

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ s⊥s|eB|Lk(ζ)

(2.16)

where

Φ(rrr⊥, rrr
′
⊥) = s⊥

(x1 + x1
′
)(x2 − x2

′
)

2ℓ2
(2.17)

ζ =
(x1 − x1

′
)2 + (x2 − x2

′
)2

2ℓ2
=

(rrr⊥ − rrr′⊥)
2

2ℓ2
. (2.18)

Now, we can not specify here the spin direction and charge as we have considered only the

two dimensional wave function not the Dirac spinors. The wave function is in fact a part

of them i.e U± spinor or V± spinor with ± denoting the spin directions. As iγ1γ2 = Σ12, in

that case, s takes into account the spin directions.

Let us take s⊥ = +1. In that case :

• s = +1:

ω2 − p3
2 −m2 − (2k + 1)|eB|+ |eB| = ω2 − p3

2 −m2 − 2k|eB| (2.19)

So k = n in this case. We can replace then Lk(ζ) ≡ Ln(ζ).
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• s = −1:

ω2 − p3
2 −m2 − (2k + 1)|eB| − |eB| = ω2 − p3

2 −m2 − 2(k + 1)|eB| (2.20)

So k + 1 = n in this case. We can replace then Lk(ζ) ≡ Ln−1(ζ).

Thus to write it in a compact notation we can use Lk(ζ) ≡ Ln(ζ)P+ + Ln−1(ζ)P−. This

notation is valid also in case of s⊥ = −1 as in that case the P+ behaves as P−. Finally we

have

E1(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

n=∞
∑

n=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − 2n|eB|
[

Ln(ζ)P+ + Ln−1(ζ)P−

]

.

(2.21)

In case of the second part we obtain

E2(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

1

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
iγ1

ℓ

×
[

2yL1
k(ζ)P− − 2zL1

k−1(ζ)P+

]

. (2.22)

Now, if we take s⊥ = +1 then for s = +1 we know from the consideration of the denominator

that if one wants to replace the sum to sum over n instead of k then she/he has to put

k = n and if s = −1 then k = n − 1. However, from the numerator, we have the factor

iγ1

ℓ

[

2yL1
k(ζ)P−−2zL1

k−1(ζ)P+

]

. The consideration of this factor suggests that in both of the

cases we can represent the numerator as i
ℓ2
γγγ⊥ · (rrr⊥−rrr′⊥)L1

n−1(ζ). Similarly, same expression

can be shown to be valid even for s⊥ = −1 case(as in that case the P± operators interchange

among each other). Thus the final expression in terms of sum over n for this part is given

by

E2(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

n=∞
∑

n=0

1

ω2 − p32 −m2 − 2n|eB|

×
[ i

ℓ2
γγγ⊥ · (rrr⊥ − rrr′⊥)L

1
n−1(ζ)

]

. (2.23)

Combining with the expression from (2.21) we get

S(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

n=∞
∑

n=0

1

ω2 − p32 −m2 − 2n|eB|

×
[

(

γ0ω − γ3p3 +m
)(

Ln(ζ)P+ + Ln−1(ζ)P−

)
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− i

ℓ2
γγγ⊥ · (rrr⊥ − rrr′⊥)L

1
n−1(ζ)

]

. (2.24)

It should be noted that the final form of the propagator possess a translationally non-

invariant phase factor Φ(rrr⊥, rrr
′
⊥). Apart from this multiplicative phase, the rest of the expres-

sion is translationally invariant i.e it depends on rrr⊥ and rrr′⊥ only in the combination rrr⊥−rrr′⊥.
Whether one needs to consider this non-trivial phase factor depends on the particular loop

integral involving the propagator(s). A discussion on this can be found in Ref. [175]. It

should be mentioned here, in all the applications presented in the thesis, the translationally

non-invariant phase factor will not play any roll and only the momentum space representation

of the translationally invariant part will be used.

2.2 Fourier transformation of the trnaslationally in-

variant part

To obtain the momentum space representation we need to Fourier transform the transla-

tionally invariant part of the mixed representation of the fermion propagator i.e Eq. (2.25).

Let us put rrr′⊥ = 0 and denote the conjugate momentum variable for x1 and x2 as p1 and p2

respectively. Thus we have to Fourier transform

S̃(ω, p3;rrr⊥) = i
e−

ζ
2

2πℓ2

n=∞
∑

n=0

1

ω2 − p32 −m2 − 2n|eB|

×
[

(

γ0ω − γ3p3 +m
)(

Ln(ζ)P+ + Ln−1(ζ)P−

)

− i

ℓ2
γγγ⊥ · (rrr⊥ − rrr′⊥)L

1
n−1(ζ)

]

(2.25)

where ζ =
rrr2⊥
2ℓ2

. In this regard we require two different kinds of integrals. One of them is

given by

In =

∫

dx2
∫

dx1e−ip1x1

e−ip2x2

e−
(x1)2

4ℓ2 e−
(x2)2

4ℓ2 Ln(ζ)

= e−p2⊥ℓ2
∫

dx1
∫

dx2e−
1

4ℓ2
(x1+2ip1ℓ2)2e−

1
4ℓ2

(x2+2ip2ℓ2)2Ln

[(x1)2 + (x2)2

2ℓ2

]

. (2.26)

At this point one can perform a variable transformation of the form :

x1 = 2ℓr cos θ, x2 = 2ℓr sin θ, dx1dx2 = 4ℓ2rdrdθ . (2.27)
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Note that here r is a dimensionless quantity. With the variable transformation, we now have

In = e−p2⊥ℓ24ℓ2
∫ ∞

0

rdre−(r2−ℓ2p2⊥)Ln(2r
2)

∫ 2π

0

dθe−2iℓr(p1 cos θ+p2 sin θ) (2.28)

Using the result

∫ 2π

0

dθe−ia(b cos θ+c sin θ) = 2πJ0
(

a
√
b2 + c2

)

(2.29)

the integral becomes

In = 8πℓ2
∫ ∞

0

rdre−(r2−ℓ2p2⊥)Ln(2r
2)J0

(

2ℓp⊥r
)

. (2.30)

To compute the r integral one can use [183]

∫ ∞

0

dx xe−
1
2
αx2

Ln

[1

2
βx2
]

J0(xy) =
(α− β)n

αn+1
e−

y2

2αLn

[ βy2

2α(β − α)

]

, y > 0, Re α > 0 .

(2.31)

In our case with α = 2 , β = 4 and y = 2ℓp⊥ we obtain

In = 4πℓ2(−1)ne−ℓ2p2⊥Ln

[

2ℓ2p2⊥
]

. (2.32)

Apart from this we need another integral to obtain the fourier transform of (rrr⊥.γγγ⊥)L
1
n−1(ζ).

The procedure remains exactly similar. However, in that case, the θ and r integral requires

different identities as listed below [183]:

∫ 2π

0

dθ cos θ e−2irℓ(p1 cos θ+p2 sin θ) =
2π

i
J1
(

2ℓrp⊥
) p1

p⊥
∫ 2π

0

dθ sin θ e−2irℓ(p1 cos θ+p2 sin θ) =
2π

i
J1
(

2ℓrp⊥
) p2

p⊥
∫ ∞

0

dxxν+1e−βx2

Lν
n

[

αx2
]

Jν(xy) = 2−ν−1β−ν−n−1(β − α)nyνe−
y2

4βLν
n

[ αy2

4β(α− β)

]

. (2.33)

Thus, after performing the r integrals one obtains the momentum space representation of

the translationally invariant part given by

S̃(ω, p3;p⊥) = 2ie−p2⊥ℓ2
∞
∑

n=0

(−1)nDn(ω, p
3;p⊥)

ω2 − p32 −m2 − 2n|eB| (2.34)

withDn(ω, p
3;p⊥) = (γ0ω−γ3p3+m)

[

Ln

[

2ℓ2p2⊥
]

P+−Ln−1

[

2ℓ2p2⊥
]

P−

]

+2(γγγ⊥·p⊥)L
1
n−1

[

2ℓ2p2⊥
]

.
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Chapter 3

Effect of external magnetic field on

nucleon mass

In this chapter, vacuum to nuclear matter phase transition has been studied in presence of

constant external background magnetic field under the mean field approximation of Walecka

model. The anomalous nucleon magnetic moment has been taken into account using the

modified “weak” field expansion of the fermion propagator having non-trivial correction

terms for charged as well as for the neutral particles. The effect of nucleon magnetic moment

is found to favour the magnetic catalysis effect at zero temperature and zero baryon density.

However, the critical temperature, at which the effective nucleon mass suffers a sudden

decrease corresponding to the vacuum to nuclear medium phase transition, is observed to

decrease with the external magnetic field which can be identified as the inverse magnetic

catalysis in Walecka model.

The chapter is organized as follows: The essential steps to obtain the weak field expanded

propagators of the charged and neutral fermion with non-zero magnetic moment is described

in Sec. 3.1. The suitable form of the corresponding thermal propagators are also discussed

which are used to obtain the effective mass of the nucleons in case of Walecka model described

in Sec. 3.2. Sec. 3.3 contains the numerical results and discussions. Finally a summary is

added in Sec. 3.4. Some of the relevant calculational details are provided in the Appendix.

19
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3.1 Fermion propagator with anomalous magnetic mo-

ment

The Dirac equation with anomalous magnetic moment (κ) in the momentum space repre-

sentation is given by [184, 185]

[

p/− i

2
qF µνγµ

∂

∂pν
−mf −

1

2
κσ · F

]

SB(p) = 1. (3.1)

The strategy to obtain the power expansion is to write

SB = S0 + S1. (3.2)

where S0 represents the vacuum propagator and S1 represents its linear order correction in

presence of external magnetic field. Now, let us define the operator

Ô =
[ i

2
qF µνγµ

∂

∂pν
+

1

2
κσ · F

]

(3.3)

Using the perturbative expansion in the Dirac equation and neglecting the higher order ÔS1

term one obtains

S1 = S0ÔS0. (3.4)

Thus the linear order correction to the weak expansion of the propagator is nothing but

an operator of non-commutative gamma matrices and differentials sandwiched between the

familiar vacuum propagators. Following the similar strategy one can extend the series to

higher order terms in powers of B. As we shall see that in our case, the leading order

contribution of the external magnetic field occurs due to the quadratic correction of the

weak field propagator and not due to the simpler linear order one, we must extend the

perturbative series as

SB = S0 + S1 + S2 (3.5)

for which one obtains

S2 = S0ÔS1 (3.6)
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where S1 = S0ÔS0 is given by ( see [184, 185] )

S1 =
1

(p2 −m2
f + iǫ)2

×
[

qBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

+ κB
[

(p/+mf)γ5u/b/(p/+mf )
]

]

(3.7)

with uµ ≡ (1, 0, 0, 0) and bµ ≡ (0, 0, 0, 1) in the fluid rest frame. It is straightforward to

derive the expression of S2 (see Appendix B for details). After plugging the correction terms

we finally obtain the weak field expansion of the fermion propagator given by

SB (p,m) =
− (✁p+m)

p2 −m2 + iǫ
+ (qB)

iγ1γ2
(

✁p‖ +m
)

(p2 −m2 + iǫ)2
+ (κB)

(✁p+m) iγ1γ2 (✁p +m)

(p2 −m2 + iǫ)2

+ (qB)2
−2
{

p2⊥
(

✁p‖ +m
)

− ✁p⊥

(

p2‖ −m2
)}

(p2 −m2 + iǫ)4
+ (qB) (κB)

−4✁p‖
(

✁p‖ +m
)

+ p2 −m2

(p2 −m2 + iǫ)3

+ (κB)2
− (✁p+m)

(

✁p‖ − ✁p⊥ +m
)

(✁p+m)

(p2 −m2 + iǫ)3
+O

(

B3
)

. (3.8)

In order to express SB (p,m) in a more compact form, we use the procedure given in Ref. [186]

and write

( −1

p2 −m2 + iǫ

)n

= Ân−1∆F (p,m1)
∣

∣

∣

m1=m
(3.9)

where,

∆F (p,m) =

( −1

p2 −m2 + iǫ

)

(3.10)

and

Ân =
(−1)n

n!

∂n

∂ (m2
1)

n . (3.11)

Using Eqs. (3.9)-(3.11), we can rewrite Eq. (3.8) as

SB (p,m) = F̂ (p,m,m1)∆F (p,m1)
∣

∣

∣

m1=m
(3.12)

where,

F̂ (p,m,m1) = (✁p+m) + (qB) iγ1γ2
(

✁p‖ +m
)

Â1 + (κB) (✁p+m) iγ1γ2 (✁p+m) Â1
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− 2 (qB)2
{

p2⊥
(

✁p‖ +m
)

− ✁p⊥
(

p2‖ −m2
)}

Â3

+ (qB) (κB)
{

4✁p‖
(

✁p‖ +m
)

− p2 +m2
}

Â2

+ (κB)2 (✁p+m)
(

✁p‖ − ✁p⊥ +m
)

(✁p+m) Â2 +O
(

B3
)

. (3.13)

The 11-component of the thermal propagator in this case can be written as [187],

S11 (p,m) = SB (p)− η (p · u)
[

SB (p)− γ0S†
B (p) γ0

]

(3.14)

where,

η (p · u) = Θ (p · u) f+ (p · u) + Θ (−p · u) f− (−p · u) (3.15)

with

f± (p · u) =
[

exp

(

p · u∓ µ

T

)

+ 1

]−1

. (3.16)

Substituting Eq. (3.12) into Eq. (3.14) and using the fact that γ0F̂ † (p,m,m1) γ
0 = F̂ (p,m,m1),

we get

S11 (p,m) = F̂ (p,m,m1)
[

∆F (p,m1)− 2πiη (p · u) δ
(

p2 −m2
1

)

]∣

∣

∣

m1=m
(3.17)

3.2 Effective mass of nucleon in Walecka model

The propagation of nucleons in hot and dense nuclear matter is well described using Quantum

Hadrodynamics (QHD) details of which can be found in Ref. [188, 189]. We briefly summarize

the main the formalism of QHD at zero magnetic field. We start with the real time thermal

propagator matrix of the nucleon [140, 141],

S0 (p,mN) = (✁p+mN )V





∆F (p,mN ) 0

0 −∆∗
F (p,mN)



V (3.18)

where the diagonalizing matrix V is given by,

V =





N2 −N1e
βµ/2

N1e
−βµ/2 N2



 (3.19)
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with

N1 (p · u) =
√

f+ (p · u)Θ (p · u) +
√

f− (−p · u)Θ (−p · u)

N2 (p · u) =
√

1− f+ (p · u)Θ (p · u) +
√

1− f− (−p · u)Θ (−p · u) .

In Walecka model, the nucleons interact with the scalar meson σ and vector meson ω.

The interaction Lagrangian is

LQHD = gσNN Ψ̄Ψσ − gωNNΨ̄γ
µΨωµ , (3.20)

where Ψ =





p

n



 is the nucleon isospin doublet and the value of the coupling constants are

given by gσNN = 9.57 and gωNN = 11.67 [188]. The complete nucleon propagator matrix

S
′ (p,mN) in presence of these interactions is obtained from the Dyson-Schwinger equation

given by,

S
′ = S0 − S0ΣS

′ (3.21)

where, Σ is the one-loop thermal self energy matrix of the nucleon. It can be shown that [141],

the complete propagator and the self energy matrices are diagonalized by V and V
−1 re-

spectively. This in turn diagonalizes the Dyson-Schwinger equation and Eq. (3.21) becomes

an algebraic equation (in thermal space),

S ′ = S0 − S0Σ S ′ . (3.22)

It is to be noted that, each term in the above equation is 4× 4 matrix in Dirac space. Here

S0 (p,mN ) = − (✁p+mN )∆F (p,mN) and Σ is the 11-component of the matrix V
−1ΣV

−1

and is called the thermal self energy function. In Walecka model the Dirac structure of Σ

comes out to be,

Σ = (Σs1+ Σµ
vγµ) = (Σs1+��Σv) . (3.23)

Using Eq. (3.23), we can solve Eq. (3.22) and obtain

S ′ (p,mN ) =
(

��P +m∗
N

)

∆F (P,m∗
N) (3.24)
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where

P = (p− Σv) and m∗
N = (m+ Σs) . (3.25)

We can finally write down the complete propagator matrix

S
′ (p,mN) =

(

��P +m∗
N

)

V





∆F (P,m∗
N) 0

0 −∆∗
F (P,m∗

N)



V , (3.26)

whose 11-component is,

S ′
11 (p,mN) = SF (P,m∗

N)− η (P · u)
[

SF (P,m∗
N)− γ0S†

F (P,m∗
N) γ

0
]

. (3.27)

Nucleon Nucleon

proton , neutron

p

Nucleon Nucleon

proton , neutron

p

Figure 3.1: Feynman diagrams for the one-loop self energy of nucleon in Walecka model.
Bold line indicates the complete/dressed propagator

Let us now calculate, the nucleon self energy function Σ̄ using the interaction Lagrangian

given in Eq. (3.20) and consider only the tadpole Feynman diagrams as shown in Fig. 3.1.

It is to be noted that, the loop particles are dressed i.e. the propagator for the loop particles

is S
′ (p,mN) as given in Eq. (3.26). Applying Feynman rule to Fig. 3.1 we obtain the

11-component of the thermal self energy as,

Σ11 = −
(

g2σNN

m2
σ

)

i

∫

d4p

(2π)4
Tr

[

S
′ (p)
11 (p,mN) + S

′ (n)
11 (p,mN)

]

+γµ

(

g2ωNN

m2
ω

)

i

∫

d4p

(2π)4
Tr

[

γµS
′ (p)
11 (p,mN) + γµS

′ (n)
11 (p,mN)

]

(3.28)

where (p) and (n) in the superscript corresponds to proton and neutron respectively. It is

easy to show that ReΣ11 = ReΣ. So we get from Eq. (3.23),

ReΣs = −
(

g2σNN

m2
σ

)

Re i

∫

d4p

(2π)4
Tr

[

S
′ (p)
11 (p,mN) + S

′ (n)
11 (p,mN)

]

(3.29)
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ReΣµ
v =

(

g2ωNN

m2
ω

)

Re i

∫

d4p

(2π)4
Tr

[

γµS
′ (p)
11 (p,mN) + γµS

′ (n)
11 (p,mN)

]

. (3.30)

Substituting S ′
11 (p,mN) from Eq. (4.19) into Eqs. (3.29) and (3.30) and performing the dp0

integral, we get

ReΣs (m
∗
N ) = ReΣ(pure vacuum)

s −
(

4g2σNNm
∗
N

m2
σ

)
∫

d3p

(2π)3

(

1

Ωp

)

[Np
+ +Np

−] (3.31)

ReΣµ
v (m

∗
N ) =

(

4g2ωNN

m2
ω

)∫

d3p

(2π)3
[Np

+ −Np
−] δ

µ
0 (3.32)

where, Ωp =
√

~p2 + (m∗
N )

2 and

Np
± =

[

exp

(

Ωp ∓ µ

T

)

+ 1

]−1

. (3.33)

In Eq. (3.31), ReΣ
(pure vacuum)
s is given by

ReΣ(pure vacuum)
s =

(

8m∗
Ng

2
σNN

m2
σ

)

Re i

∫

d4p

(2π)4

[

1

p2 − (m∗
N)

2 + iǫ

]

. (3.34)

We will neglect the contribution of vacuum self energy term ReΣ
(pure vacuum)
s in Eq. (3.31)

following the Mean Field Theory (MFT) [188] approach.

The effective mass of the nucleon (m∗
N) can be calculated from the pole of the complete

nucleon propagator which essentially means solving the self consistent equation,

m∗
N = mN + ReΣs (m

∗
N) . (3.35)

Let us now turn on the external magnetic field. Since we are only interested in the effective

mass of nucleon, let us calculate the scalar self energy ReΣs (m
∗
N). In this case, the proton

and neutron propagators in Eq. (3.29) have to be replaced as S ′
11 (p,mN) → S11 (P,m

∗
N)

where S11 (p,m) is defined in Eq. (3.17). This implies,

S
′ (p,n)
11 (p,mN ) = F̂ (p,n) (P,m∗

N , m1)

×
[

∆F (P,m1)− 2πiη (P · u) δ
(

P 2 −m2
1

)

]∣

∣

∣

m1=m∗
N

(3.36)

where F̂ (p) (p,m,m1) and F̂ (n) (p,m,m1) are obtained from Eq. (3.13) by replacing q and

κ with the corresponding values of proton and neutron respectively i.e. for proton q →
|e| , κ → κp and for neutron q → 0, κ → κn. Here |e| is the absolute electronic charge
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and the anomalous magnetic moments of proton and neutron are given by κp = gp

(

|e|
2mN

)

and κn = gn

(

|e|
2mN

)

respectively with gp = 1.79, gn = −1.91. Substituting Eq. (3.36) into

Eq. (3.29), and shifting the momentum p→ (p + ΣV ), we get

ReΣs = Σ(vacuum)
s + Σ(medium)

s (3.37)

with,

Σ(vacuum)
s = −

(

g2σNN

m2
σ

)

Re i

∫

d4p

(2π)4
T̂ (p,m∗

N , m1) ∆F (p,m1)
∣

∣

∣

m1=m∗
N

(3.38)

Σ(medium)
s = −

(

g2σNN

m2
σ

)
∫

d4p

(2π)4
T̂ (p,m∗

N , m1) 2πη (p · u) δ
(

p2 −m2
1

)

∣

∣

∣

m1=m∗
N

.(3.39)

In the above equations,

T̂ (p,m∗
N , m1) = Tr

[

F̂ (p) (p,m∗
N , m1) + F̂ (n) (p,m∗

N , m1)
]

= 8m∗
N − 8m∗

N (eB)2 p2⊥Â3 + 4m∗
N

{

(κpB)2 + (κnB)2
}{

(m∗
N )

2 + p2 − 2p2⊥ + 2p2‖
}

Â2

+ 4 (|e|B) (κpB)
{

(m∗
N )

2 − p2 + 4p2‖
}

Â2 (3.40)

The detailed calculation of Σ
(vacuum)
s and Σ

(medium)
s are provided in Appendices C.1 and C.2.

The expression for Σ
(vacuum)
s can be read off Eq. (C.11) as

Σ(vacuum)
s =

(

g2σNN

4π2m2
σ

)

[

(eB)2

3m∗
N

+
{

(κpB)2m∗
N + (κnB)2m∗

N + (|e|B) (κpB)
}

×
{

1

2
+ 2 ln

(

m∗
N

mN

)}]

. (3.41)

The calculation of Σ
(medium)
s is performed for two different cases separately, namely (1) the

zero temperature case and (2) the finite temperature case. For zero temperature, we have

from Eq. (C.23)

Σ(medium)
s = −

(

2g2σNN

π2m2
σ

)[

m∗
NI2 (µB, m

∗
N) +

1

3
(eB)2m∗

NC1 (µB, m
∗
N)

+2
{

m∗
N (κpB)2 +m∗

N (κnB)2 + (|e|B) (κpB)
}

{

m∗2
NC1 (µB, m

∗
N ) +

1

3
C2 (µB, m

∗
N)

}]

.

(3.42)
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Whereas For finite temperature, we have from (C.27),

Σ(medium)
s = −

(

2g2σNN

π2m2
σ

)∫ ∞

0

|~p|2 d |~p|
[

m∗
N

(

C̃+p
1 + C̃−p

1

)

+
2

3
m∗

N (eB)2 |~p|2
(

C̃+p
3 + C̃−p

3

)

+2

(

m∗2
N +

2

3
|~p|2
)

{

m∗
N (κpB)2 +m∗

N (κnB)2 + (|e|B) (κpB)
}

(

C̃+p
2 + C̃−p

2

)

]

(3.43)

The definition of the functions I2, C1, C2, C̃
±
1 , C̃

±
2 and C̃±

3 can be found in Appendix C.2.

3.3 Numerical Results
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Figure 3.2: Variation of m∗
N with |e|B at zero temperature and zero density. Results with

and without the anomalous magnetic moment of nucleons are compared with results from
Ref. [146].

We begin this section by obtaining the effective nucleon mass with external magnetic

field at zero temperature and zero density. In this case the contribution from Σ
(medium)
s = 0.

Thus we need to solve the transcendental equation,

m∗
N = mN + Σ(vacuum)

s (m∗
N ) (3.44)

where, Σ
(vacuum)
s (m∗

N ) is given in Eq. (3.41). At first we neglect the effect of anomalous

magnetic moment of nucleons so that the above equation simplifies to

m∗
N = mN +

g2σNN (eB)2

12π2m2
σm

∗
N

(3.45)

which can be solved analytically to obtain

m∗
N =

1

2



mN +

√

m2
N +

g2σNN (eB)2

3π2m2
σ



 . (3.46)
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As can be seen from the above equation, the effective nucleon mass increases monotonically

with the increase of eB. This enhancement is shown in Fig. 3.2 where it is also compared

with the result from Ref. [146]. Though the current approach to obtain the effective nucleon

mass differs from Ref. [146], there exists a noticeable quantitative agreement between the two

results in the weak magnetic field regime. Now we include the anomalous magnetic moments

of nucleons and solve Eq. (3.44) numerically. It is found that the incorporation of nucleon

magnetic moment further increases the effective mass and this effect remains significant even

in case of weak magnetic fields as shown in Fig. 3.2. In other words, the nucleon magnetic

moment favors the magnetic catalysis effect at zero temperature and zero baryon density.
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Figure 3.3: Variation of m∗
N −ReΣs (m

∗
N ) with m

∗
N at zero temperature for (a) three different

values of magnetic field (B = 0, Bπ, 2Bπ) at baryon density ρB = 2ρ0 (b) three different
values of baryon density (ρB = ρ0, 2ρ0, 5ρ0) at magnetic field (B = Bπ). Here |e|Bπ =
m2

π = 0.0196 GeV2 and ρ0 = 0.16 fm−3. The horizontal black solid line corresponds to
m∗

N = mN = 939 MeV.

Let us now proceed to the study of nucleon effective mass in presence of external magnetic

field at at finite baryon density and zero temperature. As can be seen from Eqs. (3.41)-(3.42),

the scalar self energy Σs is functions of magnetic field B and baryon chemical potential µB

of the medium. It is customary to use total baryon density ρB instead of µB where

ρB = 4

∫

d3p

(2π)3
Θ

(

µB −
√

|~p|2 +m∗2
N

)

=

(

2

3π2

)

[

µ2
B −m∗2

N

]3/2

. (3.47)

Inverting the above equation, we get the baryon chemical potential in terms of the baryon

density as

µB =

√

(

3π2

2
ρB

)2/3

+m∗2
N . (3.48)

We have expressed the strength of the magnetic field B with respect to the pion mass scale
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Figure 3.4: Variation of effective mass of nucleon at zero temperature (a) with baryon
density for three different values of magnetic field (B = 0, Bπ, 2Bπ). The horizontal axis
starts at ρB = 0.1ρ0. (b) with magnetic field for three different values of baryon density
(ρB = ρ0, 2ρ0, 5ρ0). Here |e|Bπ = m2

π = 0.0196 GeV2 and ρ0 = 0.16 fm−3. (c) At B = 2Bπ,
the variation of the effective nucleon mass with baryon density is compared with the case
where the vacuum contribution is ignored.

(Bπ) defined as

|e|Bπ = m2
π = 0.0196 GeV2. (3.49)

Similarly the total baryon density ρB is expressed with respect to the normal nuclear matter

density ρ0 = 0.16 fm−3.

Since we will be solving the transcendental Eq. (3.35), we first plot m∗
N − ReΣs (m

∗
N)

as a function of m∗
N in Fig. 3.3. Fig. 3.3-(a) depicts the variation of this quantity at three

different values of magnetic field (B/Bπ = 0, 1 and 2) with baryon density ρB = 2ρ0 whereas

Fig. 3.3-(b) shows its variation at three different values of total baryon density (ρB/ρ0 = 1,

2 and 3) with magnetic field B = Bπ. The intersections of this graphs with the horizontal

line corresponding to m∗
N = mN = 939 MeV represent the solutions of Eq. (3.35). We notice
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Here ρ0 = 0.16 fm−3.

from these figures that ReΣ (m∗
N) is always less than zero and it monotonically decreases as

we increase m∗
N . Also for a particular value of m∗

N , ReΣ (m∗
N) decreases with the increase of

B and ρB. In Fig. 3.4-(a), the variation of the effective nucleon mass with baryon density has

been shown at three different values of magnetic field (B = 0, Bπ, 2Bπ). As can be seen from

the figure, m∗
N/mN decreases with the increase of ρB and becomes less than 0.5 at ρB = 2ρ0.

It can be checked that the contribution from the first term within the square brackets in

Eq. (3.42) plays the dominant role in determining the ρB as well as the eB dependences of

the effective mass whereas the net contribution from all the other terms in Σ
(medium)
s and

Σ
(vacuum)
s (see Eq. (3.41)) remains sub-leading throughout. Also, it is clear from Fig. 3.4-(a)

that, with the increase of |e|B, the effective mass decreases and the effect of the external

magnetic field is more at a lower ρB region. At very high ρB(& 5ρ0) it is expected that the

effect of |e|B on nucleon effective mass becomes negligible. However, the conclusions based

on the weak field approximation will not be reliable for arbitrary large or small densities as

will be discussed later.

In Fig. 3.4-(b), the variation of m∗
N/mN with |e|B is shown at three different values of

baryon density (ρB = ρ0, 2ρ0, 5ρ0). We find a small decrease in effective nucleon mass with

|e|B. In order to observe the effect of the vacuum self energy correction to the effective

mass of nucleon, we have compared the density variations of m∗
N with and without the

vacuum contribution as shown in Fig. 3.4(c). Here the external magnetic field is kept fixed

at B = 2Bπ. It has been noticed that the effect of vacuum correction is subleading with

respect to the medium contribution at non-zero baryon density and the correction to m∗
N

due to vacuum self energy remains less than 6%. It is also interesting to observe the relative
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importance of the external magnetic field on the effective nucleon mass as shown in Fig. 3.5

where the ratio m∗
N(eB)/m∗

N (eB = 0) is plotted as a function of eB at three different

baryon densities( ρB = ρ0, 2ρ0, 5ρ0). It can be noticed that m∗
N decreases by about 25% at

a magnetic field eB ∼ 0.04 GeV2. The inset plot shows the lower eB region upto eB = 0.01

GeV2 which corresponds to the typical values of magnetic field expected inside a neutron

star/magnetar. At the maximum value eB = 0.01 GeV2, the effective mass of nucleon is

found to be lowered by less than 2%.
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Until now we have considered that under weak field approximation, the modifications

from the non-vanishing anomalous magnetic moment arise only through the effective mass.

Moreover, it is assumed that the modification in the expression of proton density as a sum-

mation over Landau levels can also be ignored for weak external fields. The motivation

behind this approximation lies in the fact that with smaller values of external field, the Lan-

dau levels become more and more closely spaced giving rise to a continuum at eB → 0. In

that case, the summations that appeared due to the Landau quantization, can be replaced

by the corresponding momentum integrals giving rise to exactly similar expression for pro-

ton and neutron density in isospin symmetric matter. As a result, the expression of baryon

density as given in Eq. (3.47) remains to be valid even in presence of eB as long as the

external fields are sufficiently weak to make the summation to integral conversion plausible.

It is advantageous to use this approximate expression to obtain the effective mass of the

nucleons as, in this case, µB can be analytically expressed in terms of ρB providing useful

simplifications in the numerics. However, to check the validity of the approximations, it is

reasonable to incorporate this magnetic modifications in the expression for the net baryon
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density which now becomes [190, 191]

ρB =
∑

s∈{±1}

∫

d3p

(2π)3
Θ







µB −
√

p2z +

(

√

m∗2
N − p2⊥ − sκnB

)2







+
eB

(2π)2

∑

s∈{±1}

∞
∑

n=0

(1− δn0 δ
s
−1)

∫ ∞

−∞

dpzΘ







µB −
√

p2z +

(

√

m∗2
N + 2n|e|B − sκpB

)2







.

(3.50)

Performing the momentum integral in the above equation, we obtain

ρB =
∑

s∈{±1}

1

12π2

[

3πµ2
BsκnB + 2

√

µ2
B − (m∗

N − sκnB)2
{

2µ2
B − 2m∗2

N +m∗
NsκnB + (sκnB)2

}

+6µ2
BsκnB tan−1

{

sκnB −m∗
N

√

µ2
B − (m∗

N − sκnB)2

}]

+
eB

2π2

∑

s∈{±1}

nmax
∑

n=0

(1− δn0 δ
s
−1)

√

µ2
B −

(

√

m∗2
N + 2n|e|B − sκpB

)2

(3.51)

where, nmax =
[

(µB+sκpB)2−m∗2
N

2|e|B

]

in which [x] = greatest integer less than or equal to x. The

above equation can not be inverted analytically in order to express µB as a function of ρB

which was possible for eB = 0 case (see Eq. (3.48)). Thus we invert the equation numerically

to obtain µB = µB(ρB, eB). Using the above modified ρB, we have re-plotted the effective

mass variation with the external field for the same set of densities ρB = ρ0, 2ρ0 and 5ρ0

as shown in Fig. 3.6. The oscillating behavior is consistent with Ref. [146]. Comparison

with Fig. 3.4(b) suggests that the usual baryon density expression provides the average

qualitative behavior reasonably well even in presence of external magnetic field as long as the

background field strength is small and the agreement is more pronounced in higher density

regime. However, going to arbitrary large densities is restricted by the assumption of weak

field expansion of the propagator which demands the external eB to be much smaller than

m∗2
N . Now, apart from the external magnetic field, this effective mass depends on density

as well and more importantly, the dependence is of decreasing nature. Thus, even if one

starts with a constant eB much lower than m∗2
N , the decreasing trend of m∗

N with density

invalidates this basic weak field assumption at some higher ρB value for which m∗2
N becomes

comparable with the constant eB used. To estimate this density value, we fix the maximum

possible value of eB to be considered as a fraction times m∗2
N where the fraction is chosen

to be 0.5 and 0.1. The corresponding variation with respect to ρB are shown in Fig. 3.6(b)
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where the case eB = m∗2
N is also plotted for comparison. Each of these curves in fact serves

the purpose of a boundary and for a given value of ρB, only those eB values are allowed

which lie below it. The horizontal lines denote the constant magnetic field values used in

this work. It is clear from the figure that, once we have chosen the maximum eB curve(

say eB = 0.5m∗2
N curve), its intersection with each horizontal lines provides the maximum

density ( i.e around 3ρ0 for B = Bπ and around 1.8ρ0 for B = 2Bπ) up to which the eB

value corresponding to that line can be considered as ‘weak’.
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Figure 3.7: Variation of effective mass of nucleon with temperature (a) at µB=300 MeV for
three different values B (0, Bπ and 2Bπ) (b) at B = Bπ for six different values µB (0, 100,
200, 300, 400 and 500 MeV). Variation of effective mass of nucleon with baryon chemical
potential (c) at T=150 MeV for three different values of magnetic field (B = 0, Bπ, 2Bπ)
(d) at B = Bπ for six different value of T = 80, 100, 120, 140, 160 and 180 MeV. Here
|e|Bπ = m2

π = 0.0196 GeV2.

We now turn on the temperature and study the variation of m∗
N/mN with temperature

and baryon chemical potential in Fig. 3.7. Fig. 3.7-(a) depicts the variation of m∗
N/mN with

T at at µB=300 MeV and at three different values B (0, Bπ and 2Bπ) whereas Fig. 3.7-

(b) shows its variation at B = Bπ and at six different values µB (0, 100, 200, 300, 400

and 500 MeV). As can be seen from the figure, that the effective nucleon mass suffers a

sudden decrease at a particular temperature corresponding to the vacuum to nuclear medium

phase transition [146, 188]. We call this transition temperature as TC which we calculate
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Figure 3.8: Phase diagram for vacuum to nuclear medium phase transition in Walecka model
for three different values of B (0, Bπ and 2Bπ).

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0  0.01  0.02  0.03  0.04

(a)

T
C

 (
G

eV
)

|e|BC (GeV
2
)

(µB)C = 0 , (κp,n ≠ 0)
(µB)C = 0 , (κp,n = 0)

(µB)C = 200 MeV , (κp,n ≠ 0)
(µB)C = 200 MeV , (κp,n = 0)

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0  0.01  0.02  0.03  0.04

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0  0.01  0.02  0.03  0.04

(b)

(µ
B

) C
 (

G
eV

)

|e|BC (GeV
2
)

TC = 100 MeV , (κp,n ≠ 0)
TC = 100 MeV , (κp,n = 0)
TC = 130 MeV , (κp,n ≠ 0)
TC = 130 MeV , (κp,n = 0)

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0  0.01  0.02  0.03  0.04

Figure 3.9: (a) Variation of transition temperature with magnetic field at two different values
of µB (0 and 200 MeV). (b) Variation of transition baryon chemical potential with magnetic
field at two different values of T (100 and 130 MeV). Cases with and without the ANM of
nucleons are shown separately.

numerically from the slope of of these plots. As can be seen from Fig. 3.7-(a), TC decreases

with the increase of B, which may be identified as IMC in Walecka model. In Fig. 3.7-(b), we

observe that TC decreases with the increase of µB. The corresponding variation of m∗
N/mN

with µB is shown in Fig. 3.7-(b) and (c). Analogous to the upper panels, we see the phase

transition at a particular µB and we call this transition chemical potential as (µB)C . As can

be seen in the graphs, (µB)C decreases with the increase in B and T .

The behavior of TC and (µB)C at different B can be seen in Fig. 3.8, where, we have

presented the phase diagram for the vacuum to nuclear medium phase transition at three

different values of B (0, Bπ and 2Bπ). With the increase in (µB)C , TC decreases and vice-

versa. Also, with the increase in B, the phase boundary in this T −µB plane moves towards

lower values of T and µB showing IMC.

We conclude this section by presenting the variation of TC and (µB)C with external
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magnetic field in Fig. 3.9. Fig. 3.9-(a) shows the variation of TC with |e|B at two different

values of µB (0 and 200 MeV) whereas Fig. 3.9-(b) shows the corresponding variation at at

two different values of T (100 and 130 MeV). As already discussed, both the TC and (µB)C

decreases with the increase in B characterizing the IMC effect. However, once the anomalous

magnetic moment is ignored, TC as well as (µB)C can be observed to slowly increase with

the external magnetic field showing MC as expected [146].

3.4 Summary

In this chapter we have used the Walecka model to study the vacuum to nuclear matter

phase transition in presence of a weak and constant background magnetic field within mean

field approximation. In case of weak magnetic field, the nucleon propagators are derived as

a series in powers of qB and κB where q and κ represents the charge and the anomalous

magnetic moment of the nucleons. The effective mass of the nucleon (m∗
N) is obtained from

the pole of the nucleon propagator self-consistently. At zero temperature and zero density,

the incorporation of anomalous magnetic moment is shown to favour the effective mass

enhancement with the external magnetic field. The functional dependence of m∗
N on the

background field is extended to the case of non-zero nuclear density and further extended to

the finite temperature regime. It is observed that in the case of vanishing temperature within

dense nuclear medium, the effective mass decreases with the background magnetic field and

this trend is shown to survive in case of non-zero temperature as well. Moreover, there exists

a particular temperature (denoted by TC in the text) for which the effective nucleon mass

suffers a sudden decrease corresponding to the vacuum to nuclear medium phase transition.

It has been shown that this critical temperature decreases with the increase of B which can

be identified as inverse magnetic catalysis in Walecka model whereas the opposite behavior

is obtained in case of vanishing magnetic moment [159].
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Chapter 4

Spectral properties of neutral ρ meson

In this chapter the one loop self energy of the neutral rho meson is obtained for the effec-

tive ρππ and ρNN interaction at finite temperature and density in presence of a constant

background magnetic field of arbitrary strength. The eB-dependent vacuum part of the self

energy is extracted by means of dimensional regularization where the ultraviolet divergences

corresponding to the pure vacuum self energy manifest as the pole singularities of gamma

as well as Hurwitz zeta functions. This improved regularization procedure consistently re-

produces the expected results in the vanishing magnetic field limit and can be used quite

generally in other self energy calculations dealing with arbitrary magnetic field strength. In

presence of the external magnetic field, the general Lorentz structure for the in-medium vec-

tor boson self energy is derived which can also be implemented in case of the gauge bosons

such as photons and gluons. It is shown that with vanishing perpendicular momentum of

the external particle, essentially two form factors are sufficient to describe the self energy

completely. Consequently, two distinct modes are observed in the study of the effective mass,

dispersion relations and the spectral function of ρ0 where one of the modes possesses two

fold degeneracy.

The chapter is organised as follows: In Sec. 4.1 the vacuum self energy of ρ is discussed

followed by evaluation of the in-medium ρ self-energy at zero magnetic field in Sec. 4.2.

Next in Sec. 4.3, the in-medium self energy at non-zero external magnetic field is presented.

Sec. 4.4 is devoted to the discussion of the general Lorentz structure of the in-medium self

energy function in presence of a constant background magnetic field. After addressing the

Lorentz structure of the interacting ρ propagator in Sec.4.5, the analytic structure of the self

energy is discussed in Sec. 4.6. Sec. 4.7 contains the numerical results. Finally a summary

is added in Sec. 4.8. Some of the relevant calculational details are provided in the Appendix.

37
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4.1 ρ0 Self Energy in the Vacuum

The effective Lagrangian for ρππ and ρNN interaction is [192]

Lint = −gρππ∂µ~ρν · (∂µ~π × ∂ν~π)− gρNNΨ̄

[

γµ − κρ
2mN

σµν∂ν

]

~τ · ~ρµΨ (4.1)

where, Ψ =





p

n



 is the nucleon isospin doublet, σµν = i
2
[γµ, γν ] and the components of

~τ correspond to the Pauli isospin matrices. It is understood that, the derivative within the

square bracket in the above equation acts only on the ρ field. The value of the coupling

constants are given by gρππ = 20.72 GeV−2, gρNN = 3.25 and κρ = 6.1 with mN = 939

MeV as the mass of the nucleons. The metric tensor in this work is taken as gµν =

diag(1,−1,−1,−1). Using Eq. (4.1), the one-loop vacuum self energy of ρ0 is obtained

Figure 4.1: Feynman diagram for the one-loop self energy of neutral ρ meson.

as

Πµν
pure-vac = (Πµν

π )pure-vac + (Πµν
N )pure-vac (4.2)

where, (Πµν
π )pure-vac and (Πµν

N )pure-vac are respectively the contributions from the ππ-loop and

NN -loop which are given by

(Πµν
π )pure-vac (q) = i

∫

d4k

(2π)4
N µν

π (q, k)∆F (k,mπ)∆F (p = q + k,mπ) (4.3)

(Πµν
N )pure-vac (q) = −i

∫

d4k

(2π)4
Tr

[

Γν(q)Sp(p = q + k,mN)Γ
µ(−q)Sp(k,mN)

+Γν(q)Sn(p = q + k,mN )Γ
µ(−q)Sn(k,mN)

]

(4.4)

where,

∆F (k,mπ) =
−1

k2 −m2
π + iǫ

(4.5)
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is the vacuum Feynman propagator for the charged pion. Sp and Sn are respectively the

vacuum Feynman propagators for proton and neutron and are given by

Sp(k,mN) = Sn(k,mN) = (✓✓k +mN )∆F (k,mN). (4.6)

The second rank tensor N µν
π (q, k) and the vector Γµ(q) in Eqs. (4.3) and (4.4) contain the

factors coming from the interaction vertices:

N µν
π (q, k) = g2ρππ

[

q4kµkν + (q · k)2qµqν − q2(q · k)(qµkν + qνkµ)
]

(4.7)

Γµ(q) = gρNN

[

γµ − i
κρ

2mN

σµνqν

]

. (4.8)

The evaluations of the momentum integrals in Eqs. (4.3) and (4.4) are briefly sketched in

Appendix D.2 and the final results can be read off from Eqs. (D.17) and (D.18)

(Πµν
π )pure-vac (q) = (q2gµν − qµqν)

(−g2ρππq2
32π2

)
∫ 1

0

dx∆π

[

1

ε
− γE + 1− ln

(

∆π

4πΛπ

)]

∣

∣

∣

∣

∣

ε→0

(4.9)

(Πµν
N )pure-vac (q) = (q2gµν − qµqν)

(

g2ρNN

2π2

)
∫ 1

0

dx

[{

2x(1− x) + κρ +
κ2ρ
2

− κ2ρ
4m2

N

∆N

}

×
{

1

ε
− γE − ln

(

∆N

4πΛN

)}

− κ2ρ
4m2

N

∆N

]

∣

∣

∣

∣

∣

ε→0

(4.10)

where ∆π and ∆N are defined in Eqs. (D.13) and (D.14). As can be seen from the above

equations, the vacuum self energy is divergent and scale dependent which renormalizes the

bare ρ0 mass to its physical mass after adding proper vacuum counter terms in the La-

grangian. The particular Lorentz structure in the above equations renders the self energy

transverse to the ρ0 momentum i.e. qµΠ
µν
pure-vac = 0.

4.2 ρ0 Self Energy in the Medium

In order to calculate the ρ0 self energy at finite temperature and density, we employ the

real time formalism of finite temperature field theory where all the two point correlation

functions such as the propagator and the self energy become 2 × 2 matrices in the thermal

space [140, 141]. However, they can be put in a diagonal form where the diagonal elements

can be obtained from any one component (say the 11-component) of the said 2× 2 matrix.
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The 11-components of real time thermal pion and nucleon propagators are

D11(k) = ∆F (k,mπ) + η(k · u) [∆F (k,mπ)−∆∗
F (k,mπ)] (4.11)

S11
p,n(k) = Sp,n(k,mN)− η̃(k · u)

[

Sp,n(k,mN)− γ0S†
p,n(k,mN)γ

0
]

(4.12)

where η(x) = Θ(x)f(x) + Θ(−x)f(−x) and η̃(x) = Θ(x)f+(x) + Θ(−x)f−(−x) in which

f(x) and f±(x) are respectively the Bose-Einstein and Fermi-Dirac distribution functions

corresponding to pions and nucleons:

f(x) =
[

ex/T − 1
]−1

, f±(x) =
[

e(x∓µB)/T + 1
]−1

. (4.13)

Here, Θ(x) is the unit step function, uµ is the medium four-velocity; T and µB are respectively

the temperature and baryon chemical potential of the medium. In the local rest frame (LRF)

of the medium, uµLRF ≡ (1,~0).

For the evaluation of the 11-component of the thermal self energy matrix, the vacuum

pion and nucleon propagators in Eqs. (4.3) and (4.4) are replaced by the respective 11-

components of the thermal propagators given in Eqs. (4.11) and (4.12) as [141]

(Πµν
π )11 (q) = i

∫

d4k

(2π)4
N µν

π (q, k)D11(k,mπ)D
11(p = q + k,mπ) (4.14)

(Πµν
N )11 (q) = −i

∫

d4k

(2π)4
Tr

[

Γν(q)S11
p (k,mN )Γ

µ(−q)S11
p (p = q + k,mN)

+Γν(q)S11
n (k,mN )Γ

µ(−q)S11
n (p = q + k,mN)

]

. (4.15)

The thermal self energy function of ρ0 denoted as ReΠ
µν
(q0, ~q) = ReΠ

µν

π (q0, ~q)+ReΠ
µν

N (q0, ~q)

is related to the above quantities by the relations [141]

ReΠ
µν

π,N(q
0, ~q) =

(

ReΠµν
π,N

)

11
(q0, ~q) (4.16)

ImΠ
µν

π,N(q
0, ~q) = sign

(

q0
)

tanh

(

q0

2T

)

(

ImΠµν
π,N

)

11
(q0, ~q) (4.17)

where, sign (x) = Θ(x)−Θ(−x). After rewriting Eqs. (4.11) and (4.12) as

D11(k) = ∆F (k,mπ) + 2πiη(k · u)δ
(

k2 −m2
π

)

(4.18)

S11
p,n(k) = (✓✓k +mN)

[

∆F (k,mN )− 2πiη̃(k · u)δ
(

k2 −m2
N

)]

(4.19)

and substituting into Eqs. (4.14) and (4.15) the dk0 integration can be performed using the
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Dirac delta functions. Following Eqs. (4.16) and (4.17) one can obtain the the real parts as,

ReΠ
µν

π (q0, ~q) = Re (Πµν
π )pure-vac (q)

+

∫

d3k

(2π)3
P
[

f(ωk)

2ωk

{ N µν
π (k0 = −ωk)

(q0 − ωk)2 − (ωp)2
+

N µν
π (k0 = ωk)

(q0 + ωk)2 − (ωp)2

}

+
f(ωp)

2ωp

{N µν
π (k0 = −q0 − ωp)

(q0 + ωp)2 − (ωk)2
+

N µν
π (k0 = −q0 + ωp)

(q0 − ωp)2 − (ωk)2

}]

(4.20)

ReΠ
µν

N (q0, ~q) = Re (Πµν
N )pure-vac (q)

−
∫

d3k

(2π)3
P
[

1

2Ωk

{

f−(Ωk)N µν
N (k0 = −Ωk)

(q0 − Ωk)2 − (Ωp)2
+
f+(Ωk)N µν

N (k0 = Ωk)

(q0 + Ωk)2 − (Ωp)2

}

+
1

2Ωp

{

f−(Ωp)N µν
N (k0 = −q0 − Ωp)

(q0 + Ωp)2 − (Ωk)2
+
f+(Ωp)N µν

N (k0 = −q0 + Ωp)

(q0 − Ωp)2 − (Ωk)2

}]

. (4.21)

The imaginary parts are given by,

ImΠ
µν

π (q0, ~q) = −sign
(

q0
)

tanh

(

βq0

2

)

π

∫

d3k

(2π)3
1

4ωkωp

×
[

{1 + f(ωk) + f(ωp) + 2f(ωk)f(ωp)}N µν
π (k0 = −ωk)δ(q

0 − ωk − ωp)

+ {1 + f(ωk) + f(ωp) + 2f(ωk)f(ωp)}N µν
π (k0 = ωk)δ(q

0 + ωk + ωp)

+ {f(ωk) + f(ωp) + 2f(ωk)f(ωp)}N µν
π (k0 = −ωk)δ(q

0 − ωk + ωp)

+ {f(ωk) + f(ωp) + 2f(ωk)f(ωp)}N µν
π (k0 = ωk)δ(q

0 + ωk − ωp)
]

(4.22)

ImΠ
µν

N (q0, ~q) = −sign
(

q0
)

tanh

(

βq0

2

)

π

∫

d3k

(2π)3
1

4ΩkΩp

×
[ {

1− f−(Ωk)− f+(Ωp) + 2f−(Ωk)f
+(Ωp)

}

N µν
N (k0 = −Ωk)δ(q

0 − Ωk − Ωp)

+
{

1− f+(Ωk)− f−(Ωp) + 2f+(Ωk)f
−(Ωp)

}

N µν
N (k0 = Ωk)δ(q

0 + Ωk + Ωp)

+
{

−f−(Ωk)− f−(Ωp) + 2f−(Ωk)f
−(Ωp)

}

N µν
N (k0 = −ωk)δ(q

0 − Ωk + Ωp)

+
{

−f+(Ωk)− f+(Ωp) + 2f+(Ωk)f
+(Ωp)

}

N µν
N (k0 = Ωk)δ(q

0 + Ωk − Ωp)
]

(4.23)

where, P denotes the Cauchy Principal Value integration, ωk =

√

m2
π +

~k2, Ωk =

√

m2
N + ~k2

and NN(q, k) is defined in Eq. (D.10).
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4.3 ρ0 Self Energy in the Magnetized Medium

In presence of the external magnetic field ~B = Bẑ, the propagations of the charged pion and

proton are modified. One of the possible ways to incorporate the effect of external magnetic

field is the Schwinger proper time formalism in which the 11-components of charged pion

and proton propagators respectively become [145, 193]

D11
B (k) = ∆B(k,mπ) + η(k · u) [∆B(k,mπ)−∆∗

B(k,mπ)] and (4.24)

S11
B (k) = SB(k,mN)− η̃(k · u)

[

SB(k,mN)− γ0S†
B(k,mN)γ

0
]

(4.25)

where, ∆B(k,mπ) and SB(k,mN) denote the momentum space vacuum (zero temperature)

Schwinger proper time propagators for charged pion and proton respectively [145]:

∆B(k) = i

∫ ∞

0

ds exp

[

is

{

k2‖ +
tan(eBs)

eBs
k2⊥ −m2

N

}]

(4.26)

SB(k) = i

∫ ∞

0

ds exp

[

is

{

k2‖ +
tan(eBs)

eBs
k2⊥ −m2

N

}]

×
[

(

✓✓k‖ +mN

) {

1− γ1γ2 tan(eBs)
}

+✓✓k⊥ sec2(eBs)
]

. (4.27)

In the above equations, e = |e| is the charge of the proton; the four-vector k is decomposed

into k = (k‖ + k⊥) where k
µ
‖ = gµν‖ kν and kµ⊥ = gµν⊥ kν corresponding to the decomposition of

the metric tensor gµν = (gµν‖ + gµν⊥ ) with gµν‖ = diag(1, 0, 0,−1) and gµν⊥ = diag(0,−1,−1, 0).

The above decomposition can be done in a Lorentz covariant way by introducing another

four-vector

bµ =
1

B
Gµνuν (4.28)

where Gµν = 1
2
ǫµναβFαβ is the dual of the electromagnetic field tensor F µν . In the local rest

frame of the medium, bµLRF ≡ (0, 0, 0, 1), which is the direction of the external magnetic field.

Using bµ, we can write

gµν‖ = (uµuν − bµbν) and gµν⊥ = (gµν − uµuν + bµbν) . (4.29)

It is important to note that, the coordinate space Schwinger propagator contains a gauge

dependent translationally non-invariant phase factor. However, for the one-loop graphs

containing equally charged particle in the loop, the phase factor gets canceled and the mo-

mentum space propagator is sufficient for the calculation of the self energy. The proper time
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integral in Eqs. (4.26) and (4.27) can be performed in order to express the propagators as a

sum over discrete Landau levels as

∆B(k) = −
∞
∑

l=0

2(−1)le−αkLl(2αk)

k2‖ −m2
π − (2l + 1)eB + iǫ

(4.30)

SB(k) = −
∞
∑

l=0

[

(−1)le−αkDl(k)

k2‖ −m2
N − 2leB + iǫ

]

(4.31)

where,

Dl(k) =
(

✓✓k‖ +mN

) [(

1 + iγ1γ2
)

Ll(2αk)−
(

1− iγ1γ2
)

Ll−1(2αk)
]

− 4✓✓k⊥L
1
l−1(2αk) (4.32)

with αk = −k2⊥/eB. Here, La
l (z) denotes the generalized Laguerre polynomial with La

−1(z) =

0 and Ll(z) = L0
l (z). We now rewrite Eqs. (4.24) and (4.25) using Eqs. (4.30) and (4.31) as

D11
B (k) =

∞
∑

l=0

2(−1)le−αkLl(2αk)

[

−1

k2‖ −m2
l + iǫ

+ 2πiη(k · u)δ
(

k2‖ −m2
l

)

]

(4.33)

S11
B (k) =

∞
∑

l=0

(−1)le−αkDl(k)

[

−1

k2‖ −M2
l + iǫ

− 2πiη̃(k · u)δ
(

k2‖ −M2
l

)

]

(4.34)

where we have defined the Landau level dependent “dimensionally reduced effective masses”

(as a consequence of dimensional reduction) of pion and proton as

ml =
√

m2
π + (2l + 1)eB and Ml =

√

m2
N + 2leB . (4.35)

We now replace the 11-component of the charged pion and proton propagators in Eqs. (4.14)

and (4.15) asD11 → D11
B , S

11
p → S11

B i.e by the respective magnetized ones given in Eqs. (4.33)

and (4.34) and then perform the dk0 integrations (using the Dirac delta functions). Follow-

ing Eqs. (4.16) and (4.17) we get the thermal self energy functions under external magnetic

field which we will denote by a double bar to distinguish them from the thermal self energy

functions in the absence of magnetic field. Their explicit expressions are given by

ReΠ
µν

π (q0, ~q) = Re (Πµν
π )vac (q, eB)

+

∞
∑

l=0

∞
∑

n=0

∫

d3k

(2π)3
P
[

f(ωl
k)

2ωl
k

{

N µν
π,nl(k

0 = −ωl
k)

(q0 − ωl
k)

2 − (ωn
p )

2
+

N µν
π,nl(k

0 = ωl
k)

(q0 + ωl
k)

2 − (ωn
p )

2

}

+
f(ωn

p )

2ωn
p

{

N µν
π,nl(k

0 = −q0 − ωn
p )

(q0 + ωn
p )

2 − (ωl
k)

2
+

N µν
π,nl(k

0 = −q0 + ωn
p )

(q0 − ωn
p )

2 − (ωl
k)

2

}]

(4.36)
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ReΠ
µν

N (q0, ~q) =
1

2
ReΠ

µν

N (q0, ~q) + Re
(

Πµν
p

)

vac
(q, eB)

−
∞
∑

l=0

∞
∑

n=0

∫

d3k

(2π)3
P
[

1

2Ωl
k

{

f−(Ωl
k)N µν

p,nl(k
0 = −Ωl

k)

(q0 − Ωl
k)

2 − (Ωn
p )

2
+
f+(Ωl

k)N µν
p,nl(k

0 = Ωl
k)

(q0 + Ωl
k)

2 − (Ωn
p )

2

}

+
1

2Ωn
p

{

f−(Ωn
p )N µν

p,nl(k
0 = −q0 − Ωn

p )

(q0 + Ωn
p )

2 − (Ωl
k)

2
+
f+(Ωn

p )N µν
p,nl(k

0 = −q0 + Ωn
p )

(q0 − Ωn
p )

2 − (Ωl
k)

2

}]

(4.37)

ImΠ
µν

π (q0, ~q) = −sign
(

q0
)

tanh

(

βq0

2

)

π
∞
∑

l=0

∞
∑

n=0

∫

d3k

(2π)3
1

4ωl
kω

n
p

×
[{

1 + f(ωl
k) + f(ωn

p ) + 2f(ωl
k)f(ω

n
p )
}

×
{

N µν
π,nl(k

0 = −ωl
k)δ(q

0 − ωl
k − ωn

p ) +N µν
π,nl(k

0 = ωl
k)δ(q

0 + ωl
k + ωn

p )
}

+
{

f(ωl
k) + f(ωn

p ) + 2f(ωl
k)f(ω

n
p )
}

×
{

N µν
π,nl(k

0 = −ωl
k)δ(q

0 − ωl
k + ωn

p ) +N µν
π,nl(k

0 = ωl
k)δ(q

0 + ωl
k − ωn

p )
}]

(4.38)

ImΠ
µν

N (q0, ~q) =
1

2
ImΠ

µν

N (q0, ~q)− sign
(

q0
)

tanh

(

βq0

2

)

π

∞
∑

l=0

∞
∑

n=0

∫

d3k

(2π)3
1

4Ωl
kΩ

n
p

×
[{

1− f−(Ωl
k)− f+(Ωn

p ) + 2f−(Ωl
k)f

+(Ωn
p )
}

N µν
p,nl(k

0 = −Ωl
k)δ(q

0 − Ωl
k − Ωn

p )

+
{

1− f+(Ωl
k)− f−(Ωn

p ) + 2f+(Ωl
k)f

−(Ωn
p )
}

N µν
p,nl(k

0 = Ωl
k)δ(q

0 + Ωl
k + Ωn

p )

+
{

− f−(Ωl
k)− f−(Ωn

p ) + 2f−(Ωl
k)f

−(Ωn
p )
}

N µν
p,nl(k

0 = −ωl
k)δ(q

0 − Ωl
k + Ωn

p )

+
{

− f+(Ωl
k)− f+(Ωn

p ) + 2f+(Ωl
k)f

+(Ωn
p )
}

N µν
p,nl(k

0 = Ωl
k)δ(q

0 + Ωl
k − Ωn

p )
]

(4.39)

where,

N µν
π,nl(q, k) = 4(−1)n+le−αk−αpLl(2αk)Ln(2αp)N µν

π (q, k) (4.40)

N µν
p,nl(q, k) = −g2ρNN (−1)n+le−αk−αpTr [Γν(q)Dn(q + k)Γµ(−q)Dl(k)] (4.41)

ωl
k =

√

k2z +m2
l =

√

k2z +m2
π + (2l + 1)eB (4.42)

Ωl
k =

√

k2z +M2
l =

√

k2z +m2
N + 2leB . (4.43)

The first terms on the RHS of Eqs. (4.37) and (4.39) are the contributions from the neutron-

neutron loop which are not affected by the external magnetic field. The last terms on the

RHS of Eqs. (4.36) and (4.37) are the contributions from ππ and proton-proton loop which

depend on the external magnetic field but independent of temperature. Their explicit forms
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are given by

Re (Πµν
π )vac (q, eB) = Re

∞
∑

l=0

∞
∑

n=0

i

∫

d4k

(2π)4
N µν

π,nl∆F (k‖, ml)∆F (q‖ + k‖, mn) (4.44)

Re
(

Πµν
p

)

vac
(q, eB) = Re

∞
∑

l=0

∞
∑

n=0

i

∫

d4k

(2π)4
N µν

p,nl∆F (k‖,Ml)∆F (q‖ + k‖,Mn) . (4.45)

It is important to note that, the above quantities respectively contain the divergent pure

vacuum contributions (Πµν
π )pure-vac (q) and

1
2
(Πµν

N )pure-vac (q) in a nontrivial way (as the above

equations seem to appear non-perturbative in eB). In contrast, for the case of weak magnetic

field expansion of the Schwinger propagator, the pure vacuum contribution to the self energy

trivially decouples from the magnetic field dependent terms. Since we are working with the

full propagator including all the Landau levels, we have to properly regularize the above

expressions in order to extract the pure vacuum contributions from these quantities. We use

dimensional regularization in which the ultraviolet divergence appear as the pole of Gamma

and Hurwitz zeta function the details of which are provided in the Appendices D.3 and D.4.

Here, we take the transverse momentum of ρ0 to be zero i.e. q⊥ = 0 which makes substantial

simplifications of the analytic calculations. The final result can be read off from Eqs. (D.26)

and (D.35) as

(Πµν
π )vac (q‖, eB) = (Πµν

π )pure-vac (q‖) + (Πµν
π )eB-vac (q‖, eB) (4.46)

(

Πµν
p

)

vac
(q‖, eB) =

1

2
(Πµν

N )pure-vac (q‖) +
(

Πµν
p

)

eB-vac
(q‖, eB) (4.47)

where, the scale dependent divergent pure-vacuum parts are completely decoupled as the

first term on the RHS of the above equation; the scale independent and finite “eB-dependent

vacuum contribution” to the real part of the self energy functions are

(Πµν
π )eB-vac (q‖, eB) =

−g2ρππq2‖
32π2

∫ 1

0

dx

[{

ln

(

∆π(q⊥ = 0)

2eB

)

− 1

}

∆π(q⊥ = 0)(q2‖g
µν − qµ‖ q

ν
‖ )

−(q2‖g
µν
‖ − qµ‖ q

ν
‖ )2eB

{

ln Γ

(

zπ +
1

2

)

− ln
√
2π

}

+q2‖g
µν
⊥

{

∆π(q⊥ = 0) +
eB

2

−1

2
∆π(q⊥ = 0)

{

ψ

(

zπ +
1

2

)

+ ψ

(

zπ + x+
1

2

)}}]

(4.48)

(

Πµν
p

)

eB-vac
(q‖, eB) =

g2ρNN

4π2
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×
∫ 1

0

dx

[

ln

(

∆N (q⊥ = 0)

2eB

){

2x(1− x) + κρ +
κ2ρ
2

− κ2ρ
4m2

N

∆N (q⊥ = 0)

}

(q2‖g
µν − qµ‖ q

ν
‖ )

− 2x(1− x)

(

ψ(zN) +
1

2zN

)

(q2‖g
µν
‖ − qµ‖ q

ν
‖ ) + 2eBgµν⊥

{(

zN − m2
N

eB

)

ψ(zN + x) + zN

+ lnΓ(z + x)− ln
√
2π
}

− κρ

{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

(

ψ(zN) +
1

2zN

)

+ q2‖g
µν
⊥ ψ(z + x)

}

+
κ2ρ

4m2
N

2eB

[

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

{

−m
2
N

eB

(

ψ(zN ) +
1

2zN

)

+
1

2
ln(zN ) + ln Γ(zN)− ln

√
2π

}

−q2‖gµν⊥
{(

m2
N

eB
− zN

)

ψ(zN + x) + ∆N(q⊥ = 0)

}

+
κ2ρ

4m2
N

(q2‖g
µν − qµ‖ q

ν
‖ )∆N(q⊥ = 0)

]

.

(4.49)

Eqs. (4.46) and (4.47) imply that the vacuum counter terms are sufficient to renormalize

the theory and thus the external magnetic field does not create additional divergences.

For q⊥ = 0, the d2k⊥ integrals in Eqs. (4.36)-(4.39) can be analytically performed (see

Appendix D.5) and the real parts become

ReΠ
µν

π (q0, qz) = Re (Πµν
π )pure-vac (q‖) + Re (Πµν

π )eB-vac (q‖, eB)

+

∞
∑

n=0

(n+1)
∑

l=(n−1)

∫ ∞

−∞

dkz
2π

P
[

f(ωl
k)

2ωl
k

{

Ñ µν
π,nl(k

0 = −ωl
k)

(q0 − ωl
k)

2 − (ωn
p )

2
+

Ñ µν
π,nl(k

0 = ωl
k)

(q0 + ωl
k)

2 − (ωn
p )

2

}

+
f(ωn

p )

2ωn
p

{

Ñ µν
π,nl(k

0 = −q0 − ωn
p )

(q0 + ωn
p )

2 − (ωl
k)

2
+

Ñ µν
π,nl(k

0 = −q0 + ωn
p )

(q0 − ωn
p )

2 − (ωl
k)

2

}]

(4.50)

ReΠ
µν

N (q0, qz) = ReΠ
µν

N (q0, qz) + Re
(

Πµν
p

)

eB-vac
(q‖, eB)

−
∞
∑

n=0

(n+1)
∑

l=(n−1)

∫ ∞

−∞

dkz
2π

P
[

1

2Ωl
k

{

f−(Ωl
k)Ñ µν

p,nl(k
0 = −Ωl

k)

(q0 − Ωl
k)

2 − (Ωn
p )

2
+
f+(Ωl

k)Ñ µν
p,nl(k

0 = Ωl
k)

(q0 + Ωl
k)

2 − (Ωn
p )

2

}

+
1

2Ωn
p

{

f−(Ωn
p )Ñ µν

p,nl(k
0 = −q0 − Ωn

p )

(q0 + Ωn
p )

2 − (Ωl
k)

2
+
f+(Ωn

p )Ñ µν
p,nl(k

0 = −q0 + Ωn
p )

(q0 − Ωn
p )

2 − (Ωl
k)

2

}]

(4.51)

whereas the imaginary parts are given by

ImΠ
µν

π (q0, qz) = −sign
(

q0
)

tanh

(

βq0

2

)

π
∞
∑

n=0

(n+1)
∑

l=(n−1)

∫ ∞

−∞

dkz
2π

1

4ωl
kω

n
p

×
[{

1 + f(ωl
k) + f(ωn

p ) + 2f(ωl
k)f(ω

n
p )
}

×
{

Ñ µν
π,nl(k

0 = −ωl
k)δ(q

0 − ωl
k − ωn

p ) + Ñ µν
π,nl(k

0 = ωl
k)δ(q

0 + ωl
k + ωn

p )
}

+
{

f(ωl
k) + f(ωn

p ) + 2f(ωl
k)f(ω

n
p )
}
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×
{

Ñ µν
π,nl(k

0 = −ωl
k)δ(q

0 − ωl
k + ωn

p ) + Ñ µν
π,nl(k

0 = ωl
k)δ(q

0 + ωl
k − ωn

p )
}]

(4.52)

ImΠ
µν

N (q0, qz) =
1

2
ImΠ

µν

N (q0, qz)− sign
(

q0
)

tanh

(

βq0

2

)

π

∞
∑

n=0

(n+1)
∑

l=(n−1)

∫ ∞

−∞

dkz
2π

1

4Ωl
kΩ

n
p

×
[{

1− f−(Ωl
k)− f+(Ωn

p ) + 2f−(Ωl
k)f

+(Ωn
p )
}

Ñ µν
p,nl(k

0 = −Ωl
k)δ(q

0 − Ωl
k − Ωn

p )

+
{

1− f+(Ωl
k)− f−(Ωn

p ) + 2f+(Ωl
k)f

−(Ωn
p )
}

Ñ µν
p,nl(k

0 = Ωl
k)δ(q

0 + Ωl
k + Ωn

p )

+
{

− f−(Ωl
k)− f−(Ωn

p ) + 2f−(Ωl
k)f

−(Ωn
p )
}

Ñ µν
p,nl(k

0 = −Ωl
k)δ(q

0 − Ωl
k + Ωn

p )

+
{

− f+(Ωl
k)− f+(Ωn

p ) + 2f+(Ωl
k)f

+(Ωn
p )
}

Ñ µν
p,nl(k

0 = Ωl
k)δ(q

0 + Ωl
k − Ωn

p )
]

(4.53)

where, Ñ µν
π,nl(q‖, k‖) and Ñ µν

p,nl(q‖, k‖) can be read off from Eq. (D.41) and (D.44). The

presence of Kronecker delta functions in the expressions of Ñ µν
π,nl(q‖, k‖) and Ñ µν

p,nl(q‖, k‖) has

eliminated one of the double sums or in other words, the sum over index l now runs from

(n− 1) to (n+ 1).

4.4 Lorentz Structure of the vector boson self energy

in magnetized medium

In this section, we will derive the tensorial decomposition of the massive vector boson self

energy. We note that, the self energy Πµν(q) being a second rank tensor, has sixteen compo-

nents which will mix among themselves with the change of frame. It is useful to use linearly

independent basis tensors (constructed with the available vectors and tensors) to express

Πµν(q) so that the form factors (corresponding to each basis) remain Lorentz invariant. This

will also enable one to solve the Dyson-Schwinger equation in order to obtain the complete

interacting vector boson propagator. In order to proceed, we first note that the vector boson

self energy satisfies the following constrain

Πµν(q) = Πνµ(q) and qµΠ
µν(q) = 0 . (4.54)

Let us first consider the pure vacuum case i.e. for zero temperature and zero external

magnetic field. In this case, the only available vector is the momentum qµ along with

the metric tensor gµν so that Πµν(q) is a linear combination of qµqν and gµν i.e Πµν(q) =

(α1g
µν + α2q

µqν). Imposing the constrains of Eq. (4.54), we get α1 + α2q
2 = 0 which makes
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the only possible Lorentz structure of the self energy as

Πµν = α1

(

gµν − qµqν

q2

)

(4.55)

where the Lorentz invariant form factor α1 = α1(q
2) = 1

3
Πµ

µ. Note that, with q
µ and gµν , the

only possible Lorentz scalar that can be formed by contracting with Πµν(q) is the quantity

gµνΠ
µν = Πµ

µ implying the existence of only one form factor.

We now consider the case with finite temperature but zero magnetic field. In this case

we have an additional four vector uµ (medium four-velocity) along with qµ and gµν . This

makes Πµν to be a linear combination of gµν , qµqν , uµuν , qµuν and qνuµ i.e.

Πµν(q) = (α1g
µν + α2q

µqν + α3u
µuν + α4q

µuν + α5q
νqµ) (4.56)

However, imposing the constrains in Eq. (4.54), we find the following relationship among the

coefficients

α5 = α4 (4.57)

α1 + α2q
2 + α4(q · u) = 0 (4.58)

α3(q · u) + α4q
2 = 0 (4.59)

which makes only two of the coefficients independent. Choosing α1 and α2 as independent,

we get,

Πµν(q) = α1

[

gµν +
q2

(q · u)u
µuν − 1

(q · u)(q
µuν + qνuµ)

]

+α2

[

qµqν +
q4

(q · u)2u
µuν − q2

(q · u)(q
µuν + qνuµ)

]

. (4.60)

where the Lorentz invariant form factors α1 = α1(q
2, q · u) and α2 = α2(q

2, q · u) can be

obtained by contracting both side of the above equations with gµν and uµuν so that the form

factors will become functions of the Lorentz scalars gµνΠ
µν = Πµ

µ and uµuνΠ
µν . Note that,

with qµ, uµ and gµν , only two possible Lorentz scalars that can be formed by contracting

with Πµν(q) are the quantities Πµ
µ and uµuνΠ

µν implying the existence of only two form

factors. Unlike the pure vacuum case given in Eq. (4.55), here the decomposition of Πµν in

Eq. (4.60) is not unique. As already mentioned, it is useful to construct linearly independent
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(and mutually orthogonal) basis tensors (note that the basis tensors within square brackets

in Eq. (4.60) are not mutually orthogonal). One such choice of orthogonal tensor basis could

be

P µν
1 =

(

gµν − qµqν

q2
− ũµũν

ũ2

)

and P µν
2 =

(

ũµũν

ũ2

)

(4.61)

where

ũµ = uµ − (q · u)
q2

qµ, (4.62)

which is constructed from uµ by subtracting out its projection along qµ. It is easy to check

that P µν
1 and P µν

2 satisfy all the properties of projection tensors i.e.

gαβP
µα
i P βν

j = δijP
µν
i and gαβgµνP

µα
i P βν

j = δij . (4.63)

Therefore, Πµν can be written as

Πµν(q) = Π1(q
2, q · u)P µν

1 +Π2(q
2, q · u)P µν

2 (4.64)

where the form factors are

Π1(q
2, q · u) =

(

Πµ
µ −

1

ũ2
uµuνΠ

µν

)

and Π2(q
2, q · u) =

(

1

ũ2
uµuνΠ

µν

)

. (4.65)

Care should be taken when considering the special case like ~q = ~0 [141]. To see this, let us

consider qi = |~q|ni so that the spatial components of the projectors at ~q = ~0 become (in the

LRF)

P ij
1 = gij + ninj and P ij

2 = −ninj . (4.66)

This implies that the spatial components of self energy at vanishing three momentum

Πij(q0, ~q = ~0) = Π1g
ij + ninj (Π1 − Π2) (4.67)

depend on the direction of ~q even at |~q| = 0. This ambiguity is eliminated by setting

additional constraint on the form factors as Π1(q
0, ~q = ~0) = Π2(q

0, ~q = ~0).

Following the same strategy, we now construct suitable orthogonal tensor basis for the
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vector bososn self energy at finite temperature under external magnetic field. In this case we

have an additional four vector bµ (corresponding to the magnetic field direction) along with

qµ, uµ and gµν . This makes the symmetric Πµν to be a linear combination of seven tensors

as

Πµν(q) = α1g
µν + α2q

µqν + α3u
µuν + α4b

µbν

+α5(q
µuν + qνuµ) + α6(q

µbν + qνbµ) + α7(u
µbν + uνbµ) (4.68)

However, imposing the constrains in Eq. (4.54), we find the following relationship among the

coefficients

α1 + α2q
2 + α5(q · u) + α6(q · b) = 0 (4.69)

α3 + α5q
2 + α7(q · b) = 0 (4.70)

α4(q · b) + α6q
2 + α7(q · u) = 0 (4.71)

which makes only (7-3=4) four of the coefficients independent. The Lorentz invariant form

factors αi = αi(q
2, q · u, q · b) with i = 1, 2, ..., 7 can be obtained by contracting both side of

the above equations separately with gµν , uµuν , bµbν and uµbν so that the form factors will

become functions of the Lorentz scalars Πµ
µ, uµuνΠ

µν , bµbνΠ
µν and uµbνΠ

µν . Note that,

with qµ, uµ, bµ and gµν, only four possible Lorentz scalars that can be formed by contracting

with Πµν(q) are the quantities Πµ
µ, uµuνΠ

µν , bµbνΠ
µν and uµbνΠ

µν implying the existence of

only four form factors. Like the finite temperature case, here the the decomposition of Πµν

is also not unique. One convenient choice of tensor basis could be

P µν
1 =

(

gµν − qµqν

q2
− ũµũν

ũ2
− b̃µb̃ν

b̃2

)

(4.72)

P µν
2 =

(

ũµũν

ũ2

)

(4.73)

P µν
3 =

(

b̃µb̃ν

b̃2

)

(4.74)

Qµν =
1

√

ũ2b̃2

(

ũµb̃ν + ũν b̃µ
)

(4.75)

where ũµ is defined in Eq. (4.62) and b̃µ is defined as

b̃µ = bµ − (q · b)
q2

qµ − b · ũ
ũ2

ũµ . (4.76)
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The basis tensors in Eqs. (4.72)-(4.75) satisfy the following relations:

gαβgµνP
µα
i P βν

j = δij (4.77)

gαβgµνP
µα
i Qβν = 0 (4.78)

gαβgµνQ
µαQβν = 2 (4.79)

gαβP
µα
i P βν

j = δijP
µν
i (4.80)

gαβQ
µαQβν = P µν

2 + P µν
3 (4.81)

gαβP
µα
1 Qβν = gαβQ

µαP βν
1 = 0 (4.82)

gαβP
µα
2 Qβν = gαβQ

µαP βν
3 =

ũµb̃ν
√

ũ2b̃2
(4.83)

gαβP
µα
3 Qβν = gαβQ

µαP βν
2 =

ũν b̃µ
√

ũ2b̃2
(4.84)

Using the basis given in Eqs. (4.72)-(4.75), the self energy at finite temperature under ex-

ternal magnetic can be written as

Πµν(q) = ΠαP
µν
1 +ΠβP

µν
2 +ΠγP

µν
3 +ΠδQ

µν (4.85)

where the form factors are obtained as

Πβ =
1

ũ2
uµuνΠ

µν (4.86)

Πγ =
1

b̃2

[

bµbνΠ
µν +

(b · ũ)2
ũ4

uµuνΠ
µν − 2

(b · ũ)
ũ2

uµbνΠ
µν

]

(4.87)

Πδ =
1

√

ũ2b̃2

[

uµbνΠ
µν − (b · ũ)

ũ2
uµuνΠ

µν

]

(4.88)

Πα =
(

Πµ
µ − Πβ − Πγ

)

(4.89)

Analogous to the case of only finite temperature, care should be taken while considering

the special case q⊥ = 0. To see this, let us consider qi⊥ = |~q⊥|ni with i = 1, 2 so that the

following components of self energy at vanishing q⊥ become (in the LRF)

Πij(q
0, q⊥ = 0, qz) = Παgij + ninj (Πα −Πγ) (4.90)

Πi3(q
0, q⊥ = 0, qz) =

q0
√

q2‖

niΠδ (4.91)

which depend on the direction of ~q⊥ even at q⊥ = 0. This ambiguity is eliminated by setting
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additional constraints on the form factors as

Πα(q
0, q⊥ = 0, qz) = Πγ(q

0, q⊥ = 0, qz) and Πδ(q
0, q⊥ = 0, qz) = 0 . (4.92)

4.5 The Interacting ρmeson Propagator and its Lorentz

Structure

Let us first consider the zero temperature and zero magnetic field case for which the complete

interacting ρ propagator Dµν is obtained by solving the Dyson-Schwinger equation

Dµν = ∆µν −∆µαΠαβD
βν (4.93)

where

∆µν =

(

−gµν + qµqν

m2
ρ

)

∆F (q,mρ) (4.94)

is the free vacuum Feynman propagator and Πµν is the one-loop self energy of ρ meson which

has the Lorentz structure given in Eq. (4.55) as

Πµν =

(

gµν − qµqν

q2

)

Π (4.95)

with the form factor Π = 1
3
Πµ

µ. In order to solve Eq. (4.93), we rewrite it as

(Dµν)−1 = (∆µν)−1 +Πµν (4.96)

where (∆µν)−1 = (q2 −m2
ρ)g

µν − qµqν which satisfies ∆µα (∆αν)
−1 = gµν . Substituting Πµν

from Eq. (4.95) in the above equation, we get the inverse of the complete propagator which

can be inverted using the relation Dµα (Dαν)
−1 = gµν to obtain the complete propagator as

Dµν(q) =

(

−gµν + qµqν

q2

)( −1

q2 −m2
ρ +Π

)

− qµqν

q2m2
ρ

(4.97)

We now consider the case of finite temperature and zero magnetic field. As already

mentioned in Sec. 4.2, in RTF of finite temperature field theory all the two point correlation

functions become 2×2 matrices in thermal space. In this case the Dyson-Schwinger equation
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also becomes a matrix equation [141]

Dµν = ∆µν −∆µαΠαβD
βν . (4.98)

Each term of the above equation can be diagonalized in terms of the respective analytic

functions (denoted by a bar) so that the above equation becomes an algebric one

D
µν

= ∆
µν −∆

µα
ΠαβD

βν
(4.99)

where ∆
µν

= ∆µν . The above equation can be rewritten as

(

D
µν)−1

=
(

∆
µν)−1

+Π
µν
. (4.100)

In this case, the Lorentz structure of the thermal self energy function is given in Eq. (4.64)

as

Π
µν
(q) = Π1(q

2, q · u)P µν
1 +Π2(q

2, q · u)P µν
2 (4.101)

where the projection tensors and form factors are respectively defined in Eqs. (4.61) and

(4.65). Substituting the above equation in Eq. (4.100), we get the inverse of the complete

propagator. In order to obtain the complete propagator, we write

D
µν

= A1P
µν
1 + A2P

µν
2 + ξqµqν (4.102)

and use the relation D
µα (

Dαν

)−1
= gµν to extract A1, A2 and ξ. The final form of the

complete interacting thermal propagator is obtained as

D
µν

=
P µν
1

q2 −m2
ρ +Π1

+
P µν
2

q2 −m2
ρ +Π2

− qµqν

q2m2
ρ

(4.103)

Finally we consider the case with both finite temperature and external magnetic field.

In this case we need to solve the Dyson-Schwinger equation

(

D
µν)−1

=
(

∆
µν)−1

+Π
µν
. (4.104)

where a double bar is used to denote thermal self energy function and complete propagator

under external magnetic field as discussed in Sec. 4.3. In this case, the Lorentz structure of
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the thermal self energy function is given in Eq. (4.85) as

Π
µν
(q) = ΠαP

µν
1 +ΠβP

µν
2 +ΠγP

µν
3 +ΠδQ

µν (4.105)

where the basis tensors and form factors are given in Eqs. (4.72)-(4.75) and (4.86)-(4.89).

Substituting the above equation in Eq. (4.104), we get the inverse of the complete propagator.

In order to obtain the complete propagator, we write

D
µν

= AαP
µν
1 + AβP

µν
2 + AγP

µν
3 + AδQ

µν + ξqµqν (4.106)

and use the relation D
µα (

Dαν

)−1

= gµν to extract the coefficients as

Aα =
1

q2 −m2
ρ +Πα

(4.107)

Aβ =
q2 −m2

ρ +Πγ
(

q2 −m2
ρ +Πγ

) (

q2 −m2
ρ +Πβ

)

−Π2
δ

(4.108)

Aγ =
q2 −m2

ρ +Πβ
(

q2 −m2
ρ +Πβ

) (

q2 −m2
ρ +Πγ

)

−Π2
δ

(4.109)

Aδ =
−Πδ

(

q2 −m2
ρ +Πβ

) (

q2 −m2
ρ +Πγ

)

−Π2
δ

(4.110)

ξ =
−1

q2m2
ρ

. (4.111)

4.6 Analytic Structure of the Self Energy

In this work, we have considered the transverse momentum of the rho meson to be zero i.e.

q⊥ = 0. As shown in Eq. (4.92), for the special case q⊥ = 0, the additional constraints to be

imposed on the form factors are

Πα(q
0, q⊥ = 0, qz) = Πγ(q

0, q⊥ = 0, qz) and Πδ(q
0, q⊥ = 0, qz) = 0 . (4.112)

Using the above constraints, we get from Eqs. (4.86)-(4.89)

Πα = Πγ =
1

2

(

Π
µ

µ −
1

ũ2
uµuνΠ

µν
)

(4.113)

Πβ =
1

ũ2
uµuνΠ

µν
(4.114)

Πδ = 0 (4.115)
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which imply that we need to calculate only the two quantities quantities Π
µ

µ and uµuνΠ
µν

=

Π
00
. These are obtained from Eqs. (4.50)-(4.53) by contracting them with gµν and uµuν .

This essentially means replacing N µν for all the loops with N µ
µ or N 00, an explicit list for

which has been provided in Appendix D.6.

Let us now discuss the analytic structure of the self energy functions. We first consider

the zero magnetic field case. The imaginary part of the self energy function for ππ and NN

loops as given in Eqs. (4.22) and (4.23) each contains four Dirac delta functions. These delta

functions represent energy-momentum conservation and they are non vanishing in certain

kinematic domain. They are termed as the Unitary-I, Unitary-II, Landau-II and Landau-I

cuts as they appear in those equations. The kinematic regions for the Unitary-I and Unitary-

II cuts are given by [141]
√

~q2 + 4m2
L < q0 <∞ and −∞ < q0 < −

√

~q2 + 4m2
L whereas the

same for the two Landau cuts are |q0| < |~q| where mL is the mass of the loop particle i.e.

mL = mπ or mN . These cuts correspond to different physical processes such as decay or

scattering. For example, Unitary cuts correspond to the decay of ρ0 into a π+π− or NN̄ pair

and the Landau cuts correspond to the scattering of a ρ0 with a pion or nucleon producing

the same in the final state along with their time reversed processes. If we restrict ourselves

to the physical timelike kinematic regions defined in terms of q0 > 0 and q2 > 0, then only

the Unitary-I cut contributes. It is important to note that, a non-trivial Landau cut appears

in the physical timelike region only if the loop particles have different masses and lie in

the kinematic domain |~q| < q0 <
√

~q2 +∆m2 where ∆m is the mass difference of the loop

particles.

Let us now consider the case of both finite temperature and non zero external magnetic

field. In this case the imaginary parts of the self energy as given in Eqs. (4.52) and (4.53)

also contain four Dirac delta functions corresponding to the Unitary and Landau cuts. It is

important to note that the arguments of the delta functions contain only the longitudinal

dynamics (because of dimensional reduction) which implies that the analytic structure of

the self energy functions will only depend on the longitudinal momentum of ρ. On the

other hand, the transverse dynamics has appeared as Landau level dependent “dimensionally

reduced effective mass” to the loop particles as given in Eq. (4.35). Therefore, even if the loop

particles have the same masses, a non-trivial Landau cut may appear in the physical timelike

kinematic domain if the two loop particles reside in different Landau levels. Physically, this

means that ρ0 can get absorbed in a scattering with a pion or a proton in a lower Landau

level producing another pion or proton in a higher Landau level as the final state. A detailed

discussions on the analytic structure in presence of external magnetic field can be found in
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Refs. [173, 194]. The Unitary-I and Unitary-II terms for the ππ loop are non-vanishing in

the kinematic domains
√

q2z + 4(m2
π + eB) < q0 <∞ and −∞ < q0 < −

√

q2z + 4(m2
π + eB)

whereas the kinematic domain for both the Landau cuts is

|q0| <
√

q2z + (
√

m2
π + eB −

√

m2
π + 3eB)2 . (4.116)

The corresponding kinematic domains for the NN loop are
√

q2z + 4m2
N < q0 < ∞ and

−∞ < q0 < −
√

q2z + 4m2
N for the Unitary-I and Unitary-II cuts respectively and

|q0| <
√

q2z + (mN −
√

m2
N + 2eB)2 (4.117)

for the Landau cuts. Note that, the threshold of the Landau cuts appears when the “di-

mensionally reduced effective mass” difference between the loop particles is the maximum.

As can be seen from Eqs. (4.52) and (4.53), for a particular value of the index n, the sum

over the index l runs only for three values (n − 1), n and (n + 1) which implies that, the

Landau level difference between the loop particles can be at most one. Thus the maximum

difference in their “dimensionally reduced effective mass” appears when one of them is at

the lowest Landau level and the other one is at the first Landau level which in turn defines

the Landau cut threshold in Eqs. (4.116) and (4.117).

We now simplify the expressions of the imaginary parts given in Eqs. (4.22), (4.23),

(4.52) and (4.53) by evaluating one of the integrals using the Dirac delta functions. For

the imaginary parts at zero magnetic field, we evaluate the d(cos θ) integrals and get (after

imposing the kinematic restrictions discussed above),

ImΠ
µν

π,N(q
0, ~q) = −sign

(

q0
)

tanh

(

q0

2T

)

1

16π|~q|

×
[
∫ ω+

ω−

d (ωk,Ωk)
(

Uπ,N
1

)µν

(cos θ = cos θπ,N0 )Θ
(

q0 −
√

~q2 + 4m2
π,N

)

+

∫ −ω−

−ω+

dωk

(

Uπ,N
2

)µν

(cos θ = cos θ′π,N0 )Θ
(

−q0 −
√

~q2 + 4m2
π,N

)

+

∫ ∞

−ω+

dωk

(

Lπ,N
1

)µν

(cos θ = cos θ′π,N0 )Θ
(

−|q0|+ |~q|
)

+

∫ ∞

ω−

dωk

(

Lπ,N
2

)µν

(cos θ = cos θπ,N0 )Θ
(

−|q0|+ |~q|
)

]

(4.118)
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where,

ω± =







1
2q2

[

q0q2 ± |~q|λ1/2 (q2, m2
π, m

2
π)
]

for ππ loop

1
2q2

[

q0q2 ± |~q|λ1/2 (q2, m2
N , m

2
N)
]

for NN loop
(4.119)

(Uπ
1 )

µν = {1 + f(ωk) + f(ωp) + 2f(ωk)f(ωp)}Nµν
π (k0 = −ωk) (4.120)

(Uπ
2 )

µν = {1 + f(ωk) + f(ωp) + 2f(ωk)f(ωp)}Nµν
π (k0 = ωk) (4.121)

(Lπ
1 )

µν = {f(ωk) + f(ωp) + 2f(ωk)f(ωp)}Nµν
π (k0 = ωk) (4.122)

(Lπ
2 )

µν = {f(ωk) + f(ωp) + 2f(ωk)f(ωp)}Nµν
π (k0 = −ωk) (4.123)

(

UN
1

)µν
=
{

1− f−(Ωk)− f+(Ωp) + 2f−(Ωk)f
+(Ωp)

}

Nµν
N (k0 = −Ωk) (4.124)

(

UN
2

)µν
=
{

1− f+(Ωk)− f−(Ωp) + 2f+(Ωk)f
−(Ωp)

}

Nµν
N (k0 = Ωk) (4.125)

(

LN
1

)µν
=
{

−f+(Ωk)− f+(Ωp) + 2f+(Ωk)f
+(Ωp)

}

Nµν
N (k0 = Ωk) (4.126)

(

LN
2

)µν
=
{

−f−(Ωk)− f−(Ωp) + 2f−(Ωk)f
−(Ωp)

}

Nµν
N (k0 = −Ωk) (4.127)

cos θπ0 =

(

−2q0ωk + q2

2|~q||~k|

)

(4.128)

cos θ′π0 =

(

2q0ωk + q2

2|~q||~k|

)

(4.129)

cos θN0 =

(

−2q0Ωk + q2

2|~q||~k|

)

(4.130)

cos θ′N0 =

(

2q0Ωk + q2

2|~q||~k|

)

(4.131)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx being the Källén function.

For the imaginary parts at finite magnetic field, we evaluate the dkz integrals in Eqs. (4.52)

and (4.53) using the Dirac delta functions. The imaginary part due to ππ loop simplifies to

ImΠ
µν

π (q0, qz) = −sign
(

q0
)

tanh

(

q0

2T

) ∞
∑

n=0

(n+1)
∑

l=(n−1)

1

4λ1/2(q2‖, m
2
l , m

2
n)

×
∑

k̃z∈k̃
±
z

[(

Ũπ
1,nl

)µν

(kz = k̃z)Θ
(

q0 −
√

q2z + (ml +mn)2
)

+
(

Ũπ
2,nl

)µν

(kz = k̃z)Θ
(

−q0 −
√

q2z + (ml +mn)2
)
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+
(

L̃π
1,nl

)µν

(kz = k̃z)Θ
(

q0 −min (qz, E±)
)

Θ
(

−q0 +max (qz , E±)
)

+
(

L̃π
2,nl

)µν

(kz = k̃z)Θ
(

−q0 −min (qz, E±)
)

Θ
(

q0 +max (qz , E±)
)

]

(4.132)

where,

(

Ũπ
1,nl

)µν

=
{

1 + f(ω̃l
k) + f(ω̃n

p ) + 2f(ω̃l
k)f(ω̃

n
p )
}

Ñµν
π,nl(k

0 = −ω̃l
k) (4.133)

(

Ũπ
1,nl

)µν

=
{

1 + f(ω̃l
k) + f(ω̃n

p ) + 2f(ω̃l
k)f(ω̃

n
p )
}

Ñµν
π,nl(k

0 = ω̃l
k) (4.134)

(

L̃π
1,nl

)µν

=
{

f(ω̃l
k) + f(ω̃n

p ) + 2f(ω̃l
k)f(ω̃

n
p )
}

Ñµν
π,nl(k

0 = ω̃l
k) (4.135)

(

L̃π
1,nl

)µν

=
{

f(ω̃l
k) + f(ω̃n

p ) + 2f(ω̃l
k)f(ω̃

n
p )
}

Ñµν
π,nl(k

0 = −ω̃l
k) (4.136)

with, k̃±z = 1
2q2

‖

[

−yqz ± |q0|λ1/2
(

q2‖, m
2
l , m

2
n

)]

, y = (q2‖ + m2
l − m2

n), ω̃
l
k =

√

k̃2z +m2
l , and

E± = ml−mn

|ml±mn|

√

q2z + (ml ±mn)2.

The corresponding expression of the imaginary part due to NN loop reads

ImΠ
µν

N (q0, qz) =
1

2
ImΠ

µν

N (q0, qz)− sign
(

q0
)

tanh

(

q0

2T

) ∞
∑

n=0

(n+1)
∑

l=(n−1)

1

4λ1/2(q2‖,M
2
l ,M

2
n)

×
∑

k̃z∈K̃
±
z

[ (

Ũp
1,nl

)µν

(kz = k̃z)Θ
(

q0 −
√

q2z + (Ml +Mn)2
)

+
(

Ũp
2,nl

)µν

(kz = k̃z)Θ
(

−q0 −
√

q2z + (Ml +Mn)2
)

+
(

L̃p
1,nl

)µν

(kz = k̃z)Θ
(

q0 −min
(

qz, E
′
±

))

Θ
(

−q0 +max
(

qz, E
′
±

))

+
(

L̃p
2,nl

)µν

(kz = k̃z)Θ
(

−q0 −min
(

qz, E
′
±

))

Θ
(

q0 +max
(

qz, E
′
±

)

)]

(4.137)

where,

(

Ũp
1,nl

)µν

=
{

1− f−(Ω̃l
k)− f+(Ω̃n

p ) + 2f−(Ω̃l
k)f

+(Ω̃n
p )
}

Ñµν
p,nl(k

0 = −Ω̃l
k) (4.138)

(

Ũp
1,nl

)µν

=
{

1− f+(Ω̃l
k)− f−(Ω̃n

p ) + 2f+(Ω̃l
k)f

−(Ω̃n
p )
}

Ñµν
p,nl(k

0 = Ω̃l
k) (4.139)

(

L̃p
1,nl

)µν

=
{

−f+(Ω̃l
k)− f+(Ω̃n

p ) + 2f(Ω̃l
k)f(Ω̃

n
p )
}

Ñµν
p,nl(k

0 = Ω̃l
k) (4.140)

(

L̃p
1,nl

)µν

=
{

−f−(Ω̃l
k)− f−(Ω̃n

p ) + 2f(Ω̃l
k)f(Ω̃

n
p )
}

Ñµν
p,nl(k

0 = −Ω̃l
k) (4.141)

with, K̃±
z = 1

2q2
‖

[

−Y qz ± |q0|λ1/2
(

q2‖,M
2
l ,M

2
n

)]

, Y = (q2‖ +M2
l −M2

n), Ω̃
l
k =

√

K̃2
z +M2

l ,

and E ′
± = Ml−Mn

|Ml±Mn|

√

q2z + (Ml ±Mn)2. The first term on the RHS of Eq. (4.137) is the

contribution from the neutron-neutron loop (which is not affected by the external magnetic

field ) whose simplified form is given in Eq. (4.118).
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4.7 Numerical Results

We begin this section by presenting the real and imaginary parts of the in-medium self energy

functions of ρ0. As can be seen from Eqs. (4.89)-(4.115), we have only two non-zero form

factors for the self energy which are Πα and Πβ for q⊥ = 0. Let us first consider the zero

magnetic field case for which the imaginary and real parts of Πα and Πβ are depicted in

Figs. 4.2 and 4.3 respectively. In Fig. 4.2(a), ImΠα and ImΠβ due to ππ loop are plotted as
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Figure 4.2: Imaginary part of the self energy of ρ0 as a function of invariant mass at zero
magnetic field and at ρ0 three momentum |~q| = 250 MeV. The vacuum self energy for
T = µB = 0 is compared with the in-medium one obtained at temperature T = 160 MeV
and baryon chemical potential µB = 400 MeV for the (a) ππ loop and (b) NN Loop.
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Figure 4.3: Real part of the self energy of ρ0 as a function of invariant mass at zero magnetic
field and at temperature T = 130 MeV with ρ0 three momentum |~q| = 250 MeV. The
contributions from NN loop is shown for two different values of baryon chemical potential
(µB = 200 and 400 MeV respectively).

a function of invariant mass (
√

q2) of ρ0 for vacuum as well as for medium (T = 160 MeV

and µB = 400 MeV) with qz = 250 MeV. It is to be understood that in the case of vacuum

the two form factors are equal. In this case, the only contribution comes from the Unitary-I
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cut which starts at 2mπ in the invariant mass axis. With the increase in temperature , the

degeneracy between the form factor get lifted as well as they are enhanced with respect to the

vacuum. This is due to the enhancement of the thermal factor in Eq. (4.120) which increases

the available phase space with the increase in temperature. The corresponding results for

the NN loop is shown in Fig. 4.2(b) for which the threshold of the Unitary-I cut is 2mN . In

this case, with the increase in temperature and density, the imaginary part decreases slightly

with respect to the vacuum which can be understood from Eq. (4.124) where, because of

the negative signs in front of the thermal distribution functions of the nucleons, the thermal

factor reduces with the increase in temperature thus showing opposite behavior as compared

to the ππ loop.

In Fig. 4.3, ReΠα and ReΠβ are shown as a function of ρ0 invariant mass at zero external

magnetic field with ρ0 longitudinal momentum qz = 250 MeV at temperature T = 130 MeV.

For the ππ loop, the real part is positive at low invariant mass and becomes negative in the

high invariant mass region in contrast to the NN loop for which the contribution to the real

part is always negative. The real part due to NN loop is shown for two different values of

baryon chemical potential µB = 200 and 400 MeV respectively. For low values of µB, the

contribution of the NN loop is almost of the same order as ππ loop, however at high µB, the

contribution from NN loop dominates over the ππ loop.

We now turn on the external magnetic field. For the check of consistency of the calculation

at non-zero magnetic field, it is essential that eB → 0 limit of non-zero magnetic field results

reproduces the eB = 0 one. In order to take the eB → 0 limit numerically, we have

considered up to 500 Landau levels for a convergent result. We have shown the imaginary

part of the self energy as a function of invariant mass of ρ0 with longitudinal momentum

qz = 250 MeV at temperature T = 130 MeV and at baryon chemical potential µB = 300

MeV for the two cases: eB = 0 and eB → 0 in Fig. 4.4 separately for the ππ and NN

loops. Fig. 4.4(a) shows ImΠα for the ππ loop in which the eB → 0 graph has a series

of spikes infinitesimally separated from each other all over the whole invariant mass region

whereas the eB = 0 graph is finite and well behaved. Interestingly, the eB → 0 graph

does not miss the eB = 0 curve which implies that when average is done, the eB = 0

line will be exactly reproduced. The appearance of these spikes are due to the “threshold

singularities” [173, 194, 195] at each Landau level as can be understood from Eq. (4.132)

where the Källén function goes to zero at each threshold of the Unitary and Landau cuts

defined in terms of the unit step functions therein, which is a consequence of the dimensional

reduction. In order to extract physical and finite results out of these spikes, we have used
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Figure 4.4: The imaginary part of the form factors as a function of the invariant mass at
eB = 0 have been compared with the imaginary part at non zero magnetic field in the
numerical limit eB → 0 at temperature T = 130 MeV and at baryon chemical potential
µB = 300 MeV with ρ0 longitudinal momentum qz = 250 MeV. The contribution due the
ππ loop from the form factors Πα and Πβ are shown in panels (a) and (b) respectively. The
corresponding contributions due the NN loop are shown in panels (c) and (d). The respective
coarse-grained (CG) quantities from the eB → 0 results are also shown in (a), (c) and (d).

Ehrenfest’s coarse-graining (CG) [194, 196, 197]. In this method, the whole invariant mass

region has been discretized in small bins followed by bin averages. In other words, the self

energy at a given
√

q2‖ is approximated by its average over the neighbourhood around that

point. This in turn smears out the spike like structures. As can be seen in the figure, after

CG, ImΠα exactly matches with the analytic eB = 0 graph. The corresponding comparison

of eB → 0 and eB = 0 result for ImΠβ due to ππ loop is shown in Fig. 4.4(b). In this

case, eB → 0 graph is finite and free from the threshold singularities and it matches exactly

with the eB = 0 graph. The absence of the threshold singularities in this case is due to an

overall factor of Källén functions coming from Ñ 00
π,nl in Eq. (4.133) which cancels the Källén

functions in the denominator of Eq. (4.132). Thus the ImΠβ due to the ππ loop does not

require to be coarse grained.

The corresponding results for the NN loop is depicted in Figs. 4.4(c) and 4.4(d). In this
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Figure 4.5: The real part of the form factors as a function of the invariant mass at eB = 0
have been compared with the real part at non zero magnetic field in the numerical limit
eB → 0 at temperature T = 130 MeV and at baryon chemical potential µB = 300 with ρ0

longitudinal momentum qz = 250 MeV. The contribution from the form factors (a) Πα and
(b) Πβ are shown separately due to ππ and NN loop.

case, both the ImΠα and ImΠβ suffer threshold singularities as there is no overall Källén

functions coming from Ñ µν
p,nl. So both the form factors have to be coarse grained after which

they exactly reproduce the eB = 0 graphs.

We now turn our attention to the real part of the self energy at non-zero magnetic field

and show how a numerical limit of eB → 0 agrees with the eB = 0 results. This has

been shown in Fig. 4.5 where the real part of the form factors is shown as a function of ρ0

invariant mass with longitudinal momentum qz = 250 MeV at temperature T = 130 MeV

and at baryon chemical potential µB = 300 MeV for the two cases eB → 0 and eB = 0.

The contributions from the ππ and NN loops are shown separately. Fig. 4.5(a) depicts

ReΠα whereas Fig. 4.5(b) shows ReΠβ. As can be seen from the figure, the eB → 0 graphs

exactly reproduce the eB = 0 for the case of NN loop. Whereas, for the ππ loop, eB → 0

is slightly deviated from the eB = 0 graph but with an excellent qualitative agreement in

their behavior with respect to the variation of invariant mass of ρ0. This small disagreement

between the eB → 0 and eB = 0 graph is due to the inaccuracy in the numerical principal

value integration of Eqs. (4.20) and (4.50) for which the two particle bound state threshold
√

q2‖ > 2mπ = 280 MeV is less than the ρ0 mass pole mρ = 0.770 (in contrast, for the NN

loop, the two particle bound state threshold is at
√

q2‖ > 2mN = 1.878 GeV much higher

than the range of the plot).

Having checked the consistency of the non-zero magnetic field calculations, we now pro-

ceed to present the imaginary part of the self energy for nonzero values of the magnetic

field. In Fig. 4.6, the variation of ImΠα is shown as a function of ρ0 invariant mass with
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Figure 4.6: The contribution from the form factor ImΠα to the imaginary part of the ρ0

self energy is shown as a function of invariant mass at temperature T = 130 MeV and at
baryon chemical potential µB = 300 with ρ0 longitudinal momentum qz = 250 MeV for (a)
two different values of magnetic field (eB = 0 and 0.05 GeV2 respectively) and (b) three
different values of magnetic field (eB = 0, 0.05 and 0.10 GeV2 respectively). The coarse-
grained (CG) as well as coarse-grained interpolated (CGI) results are shown in (a) whereas
(b) shows only the CGI results. The inset plot in (b) shows the movement of the Unitary
cut threshold by focusing in smaller range of invariant mass.

longitudinal momentum qz = 250 MeV at temperature T = 130 MeV and at baryon chemical

potential µB = 300 MeV. We have plotted the self energy up to
√

q2‖ = 1.5 GeV for which

the Unitary cut of the NN loop does not contribute. Fig. 4.6(a) depicts ImΠα at magnetic

field eB = 0.05 GeV2 in which the spikes get separated from each other by a finite value

and it oscillates about the eB = 0 graph. This is more clearly visible in the CG points

which are used to obtain a coarse-grained interpolated (CGI) graph. Fig. 4.6(b) shows the

CGI imaginary part at two different values of the magnetic field (eB = 0.05 and 0.10 GeV2

respectively); both of them are found to oscillate about the eB = 0 graph. Moreover, with

the increase in magnetic field, the oscillation frequency decreases with an increase in the

oscillation amplitude. This behavior of the imaginary part with increasing magnetic field

is consistent with Fig. 4.4, where for the eB → 0 case, the oscillation frequency becomes

infinite and amplitude becomes zero, thus reproducing the eB = 0 graph. Also with the in-

crease in magnetic field, the threshold of the unitary cut moves towards the higher invariant

mass value as discussed in Sec. 4.6. This has been shown clearly in the inset plot.

The corresponding results for the ImΠβ due to ππ loop as a function of ρ0 invariant

mass with longitudinal momentum qz = 250 MeV at temperature T = 130 MeV and at

baryon chemical potential µB = 300 MeV are shown in Fig. 4.7 for the two different values

of the magnetic field eB = 0.10 and 0.20 GeV2. Analogous to ImΠα, ImΠβ also oscillates

about eB = 0 curve, but in this case the oscillation frequency is much smaller as compared
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Figure 4.7: The contribution from the form factor ImΠβ to the imaginary part of the ρ0

self energy is shown as a function of invariant mass at temperature T = 130 MeV and at
baryon chemical potential µB = 300 with ρ0 longitudinal momentum qz = 250 MeV for three
different values of magnetic field (eB = 0, 0.05 and 0.10 GeV2 respectively). The inset plot
shows the movement of the Unitary cut threshold by focusing in smaller range of invariant
mass.

to ImΠα. The threshold of the Unitary cut moves towards higher invariant mass with the

increase in magnetic field as clearly depicted in the inset plot.

As discussed in Sec. 4.6, a non trivial Landau cut contribution in presence of external

magnetic field may appear even if the loop particles have the same mass. In this case, we

have observed Landau cut contribution only in ImΠα, whereas the Landau cut does not

appear in ImΠβ. This can be understood from the expressions of trace and 00 component

of Ñ µν
π,nl and Ñ µν

p,nl as given in Appendix D.6. It can be noticed that, for both the ππ and

proton-proton loops, the expression for the trace (i.e Ñ µ
µ) contains two additional Kronecker

delta functions δn±1
l along with δnl which is absent in the expressions for the 00 component

(i.e Ñ 00) (see Eqs.(D.49)-(D.52)). This implies that, for ImΠα, the loop particles can be

in different Landau levels whereas for ImΠβ the loop particles will always stay in the same

Landau levels. Thus, as discussed in Se. 4.6, the non-trivial Landau cuts will appear only in

ImΠα and not in ImΠβ . The contribution of the CGI Landau cuts to ImΠα as a function of

ρ0 invariant mass with longitudinal momentum qz = 250 MeV is shown in Fig. 4.8. It is to

be noted that, the Landau cuts also contain the threshold singularities and thus have to be

coarse grained. Fig. 4.8(a) shows the variation of ImΠα at a temperature T = 130 MeV and

at baryon chemical potential µB = 300 MeV for three different values of the magnetic field

(eB = 0.05, 0.07 and 0.10 GeV2 respectively), whereas Fig. 4.8(b) shows the corresponding

variation at magnetic field (eB = 0.10 GeV2) for two different values of temperature (T = 100

and 130 MeV respectively). The contributions due to ππ loop and proton-proton loops are

shown separately and in Fig. 4.8(b); the contribution due to proton-proton loop is shown
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Figure 4.8: The contribution from the form factor Πα to the Landau cut of the coarse grained
(CG) imaginary part of the ρ0 self energy is shown as a function of invariant mass with ρ0

longitudinal momentum qz = 250 MeV (a) at temperature T = 130 MeV and at baryon
chemical potential µB = 300 for three different values of magnetic field (eB = 0.05, 0.07 and
0.10 GeV2 respectively) and (b) at magnetic field eB = 0.10 GeV2 for two different values of
temperature (T = 100 and 130 MeV respectively) and at baryon chemical potential (µB =
200 and 300 MeV respectively). The contribution from the ππ and NN loops are shown
separately in which the later is scaled with different factors for the sake of presentation.

for two different values of baryon chemical potential (µB = 200 and 300 MeV). As can be

seen from the figures, the threshold of the Landau cuts due to ππ loop is different (greater)

than that of proton-proton loop which can be understood from the discussions of Sec. 4.6.

The threshold for ππ loop is
√

q2‖ <
(

√

m2
π + eB −

√

m2
π + 3eB

)

, whereas the same for

proton-proton loop is
√

q2‖ <
(

mN −
√

m2
N + 2eB

)

. The shift of the Landau cut threshold

towards the higher invariant mass values with the increase in magnetic field can be clearly

seen in Fig. 4.8(a). It is observed the the magnitude of the Landau cut contribution due

to proton-proton loop is much less than that of ππ loop at lower values of the magnetic

field and they become comparable to each other only at eB & 0.10 GeV2. In Fig. 4.8(a),

we observe that with the increase in temperature and density, the Landau cut contribution

increases without changing its threshold in the invariant mass axis.

We now turn our attention to the real part of the self energy at finite temperature under

external magnetic field. In Fig. 4.9, we have shown the thermal contribution to the real part

of the self energy as a function of invariant mass with ρ0 longitudinal momentum qz = 250

MeV at temperature T = 130 MeV and at baryon chemical potential µB = 300 MeV for

two different values of the magnetic field (eB = 0.05 and 0.10 GeV2 respectively). The

contributions from the ππ and NN loops are summed up in this figure. We notice that, with

the increase in magnetic field, the thermal contribution to the real part of the self energy

oscillates about the eB = 0 curve. The oscillation frequency and the oscillation amplitude
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Figure 4.9: The real part of the thermal self energy of ρ0 as a function of invariant mass
at temperature T = 130 MeV and at baryon chemical potential µB = 300 MeV with ρ0

longitudinal momentum qz = 250 MeV is shown for three different values of magnetic field
(0, 0.05 and 0.10 GeV2 respectively).

respectively decreases and increases with the magnetic field.

Next in Fig. 4.10, the “eB-dependent vacuum” contribution to the real part of the self

energy is shown as a function of ρ0 invariant mass with longitudinal momentum qz = 250

MeV for two different values of magnetic field (eB = 0.10 and 0.20 GeV2 respectively).

Figs. 4.10(a) and 4.10(b) show the contributions from Πα and Πβ respectively. The contri-

butions due to ππ and proton-proton loops are shown separately. First of all, we note that

at eB = 0, these term will vanish. With the increase of the magnetic field, the eB-dependent

vacuum term also increases and the contribution of Πβ is more than Πα.

Having obtained the real and imaginary parts of the self energy, we now proceed to

evaluate the in-medium spectral functions of ρ0 under external magnetic field. We have

from Eq. (4.106), the complete ρ0 propagator as

D
µν

= AαP
µν
1 + AβP

µν
2 + AγP

µν
3 + AδQ

µν + ξqµqν (4.142)

where the coefficients are given in Esq. (4.107)-(4.111) and the basis tensors are provided in

Eqs. (4.72)-(4.75). Since we will be considering the special case q⊥ = 0 for which Πα = Πγ

and Πδ = 0 as given in Eq. (4.112), the coefficients in the above equation become

Aα =

(

1

q2‖ −m2
ρ +Πα

)

(4.143)

Aβ =

(

1

q2‖ −m2
ρ +Πβ

)

(4.144)
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Figure 4.10: The eB-dependent vacuum contribution to the real part of the self energy of ρ0

as a function of invariant mass with ρ0 longitudinal momentum qz = 250 MeV is shown at
two different values of magnetic field (eB = 0.05 and 0.10 Gev2 respectively ) for the form
factors (a) Πα and (b) Πβ. The contribution due to ππ and proton-proton loops are shown
separately.

Aγ =

(

1

q2‖ −m2
ρ +Πγ

)

(4.145)

Aδ = 0 (4.146)

ξ =
−1

q2‖m
2
ρ

(4.147)

so that the complete in-medium interacting propagator is given by

D
µν
(q0, qz) =

P µν
1

(

q2‖ −m2
ρ +Πα

) +
P µν
2

(

q2‖ −m2
ρ +Πβ

) +
P µν
3

(

q2‖ −m2
ρ +Πα

) −
qµ‖ q

ν
‖

q2‖m
2
ρ

. (4.148)

It is clear from the above equation, that there will be three modes for the propagation

of ρ0 meson in magnetized medium for vanishing transverse momentum of ρ0. Of the three

modes, two are found to be degenerate (the first and third term in the RHS of above equation)

leaving two distinct modes for the propagation of ρ0 which we denote as Mode-A and Mode-B

respectively.

We now define the spectral function Sρ of ρ0 for the two distinct modes as the the

imaginary part of the complete propagator which is obtained from Eq. (4.148) as

S(A)
ρ = Im

[

−1

q2‖ −m2
ρ +Πα

]

=
ImΠα

(q2‖ −m2
ρ + ReΠα)2 + (ImΠα)2

(4.149)

and

S(B)
ρ = Im

[

−1

q2‖ −m2
ρ +Πβ

]

=
ImΠβ

(q2‖ −m2
ρ + ReΠβ)2 + (ImΠβ)2

. (4.150)
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Figure 4.11: The in-medium spectral function of ρ0 as a function of invariant mass at zero
magnetic field and at baryon chemical potential µB=300 MeV with ρ0 longitudinal momen-
tum qz = 250 MeV is shown for three different values of temperature (T = 100, 130 and 160
MeV) and for different modes. The vacuum spectral function is also shown for comparison.

In Fig. 4.11, the spectral function for the two modes at zero magnetic field is shown as

a function of ρ0 invariant mass with ρ0 longitudinal momentum qz = 250 MeV at baryon

chemical potential µB = 300 MeV for three different values of temperature (T = 100, 130

and 160 MeV respectively). The vacuum spectral function (which is same for the two modes)

is also shown for comparison. We find that, the spectral functions have a nice Breit-Wigner

shape around the ρ0 mass pole with a width O(150 MeV) corresponding to the decay of

ρ0 → π+π−. With the increase in temperature, the width of the spectral function increases

and the peak decreases. Physically, it corresponds to the enhancement of the decay process

in the medium implying that the ρ0 become more unstable at a high temperature. It is

important to note that, for the invariant mass region shown in the plot, the imaginary part

of the self energy that enters in the calculation of spectral function is completely due to the

Unitary-I cut of ππ loop. On the other hand, the real part of the self energy that enters in

the spectral function calculation has contributions from both the ππ and NN loops.

It can be noticed that, even at a higher temperature (T ∼ 160 MeV), the peak of the

spectral functions have marginal shifts over the invariant mass axis which correspond to a

negligible mass shift of the ρ meson with respect to its vacuum mass. However, the hadron-

QGP phase transition of QCD occurs around this particular temperature (T ∼ 160 MeV) for

which a significant mass shift of ρ meson is expected. In some earlier works, small decrease

(< 20%) in ρ mass at high temperature (T ∼ 160 MeV) have been reported, for example: in

Ref. [198] using QCD sum rule approach; in Ref. [189] using Walecka model and in Ref. [199]

using effective interactions of ρ with π, ω, h1 and a1 mesons. The observed negligible mass

shift of ρ in the medium is a consequence of non-chiral phenomenological ρππ and ρNN
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interaction considered in this work. However in case of Walecka model, the shift of the

spectral function with temperature can be achieved by considering, in the loop, the effective

nucleon mass which will also be a function of temperature and chemical potential. However,

in that case, generalisation to the non-zero magnetic fields also requires proper incorporation

of the magnetically modified effective nucleon mass which is beyond the scope of the present

work. We should also mention that hadronic description is expected to brek down arround

the hadron-QGP phase transition region. A more sophisticated and realistic approach to

include the effect of chiral phase transition of QCD is to use models like NJL, PNJL, PQM

etc. for the study of the in medium spectral properties of ρ meson. Moreover, in presence

of the background magnetic field, those approaches can also shed light on the magnetic

catalysis or the inverse magnetic catalysis of the critical temperature corresponding to the

quark-hadron phase transition [139].

We now turn on the external magnetic field and show the spectral function of ρ0 as a

function of its invariant mass for the two modes in Fig. 4.12. The range of the invariant mass

axis is taken as 0.5-1.2 GeV which is dominated by the Unitary cut contributions from the

ππ loop. In Fig. 4.12(a), the spectral function with ρ0 longitudinal momentum qz = 250 MeV

at temperature T = 130 MeV and at baryon chemical potential µB = 300 MeV is shown for

three different values of the magnetic field (eB = 0.10, 0.15 and 0.20 GeV2 respectively). It

is observed that, with the increase in the magnetic field, the two modes get well separated

from each other and the threshold of the spectral function moves towards higher values

of invariant mass corresponding to the magnetic field dependent Unitary cut threshold of

the imaginary part of the self energy. At sufficiently high values of the magnetic field, the

spectral function misses the ρ0 mass pole (770 MeV) so that it looses its Breit-Wigner shape

which may be termed as ρ0 “melting” in presence of magnetic field. The critical value of the

magnetic field for a given temperature and baryon chemical potential for which the ρ0 will

melt is discussed later.

In Fig. 4.12(b), the spectral function with ρ0 longitudinal momentum qz = 250 MeV at

a magnetic field eB = 0.10 GeV2 and at a baryon chemical potential µB = 300 MeV is

shown for three different values of temperature (T = 100, 130 and 160 MeV respectively).

In this case, the threshold of the spectral function remains fixed and for both the modes,

the spectral function becomes shorter and wider with the increase in temperature with a

marginal shift of its peak. The shift of the peak is due to the modification in the real part

of the self energy with the change in temperature.

Fig. 4.12(c) depicts the spectral function with ρ0 longitudinal momentum qz = 250 MeV
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at a magnetic field eB = 0.10 GeV2 and at a temperature T = 160 MeV for three different

values of the baryon chemical potential (µB = 200, 300 and 400 MeV respectively). Analo-

gous to the previous case, the threshold of the spectral function remains fixed for both the

modes. Since the baryon chemical potential only affects the real part of the self energy in

the given kinematic region, the peak of the spectral function changes its position (keeping

the width almost same) with the change in baryon chemical potential. It can be noticed,

that in contrast to Fig. 4.12(b), the peak position of the spectral function is more sensitive

to µB as compared to the temperature which is due to the dominant contribution coming

from NN loop.

In Fig. 4.12(d), the spectral function at a magnetic field eB = 0.10 GeV2 and at a

temperature T = 130 MeV with baryon chemical potential µB = 300 MeV is shown for

two different values of ρ0 longitudinal momentum (qz = 0 and 500 MeV). In this case,

the threshold of the spectral function remains same and the height of the spectral function

increases with the increase of the longitudinal momentum.

We have already mentioned that, a non-trivial Landau cut in the physical kinematic

region would appear in presence of the external magnetic field. In our case, the non-zero

contribution to the Landau cut comes only from the form factor ImΠα which is reflected in

the the spectral function of Mode-(A). In Fig. 4.13, the spectral function as a function of ρ0

invariant mass with ρ0 longitudinal momentum qz = 250 MeV is shown in the low invariant

mass region which is dominated by the Landau cut contribution. It can be observed that

the magnitude of the spectral function in this region is much lower as compared to the

Unitary cut regions. Fig. 4.13(a) shows the spectral function at temperature T = 130 MeV

and at baryon chemical potential µB = 300 MeV for three different values of magnetic field

(eB = 0.10, 0.15 and 0.20 GeV2 respectively). As can be seen in the graph, the threshold

of the Landau cut moves towards the higher values of invariant mass with the increase in

magnetic field as a consequence of similar behavior of the Landau cut contribution to the

imaginary part as shown in Fig. 4.8. Also the height of the spectral function is enhanced

with the increase in eB. Fig. 4.13(b) shows the corresponding plots of spectral function at

magnetic field eB = 0.10 GeV2 for four different combinations of temperature and baryon

chemical potential ((T = 100 MeV, µB = 300 MeV), (T = 130 MeV, µB = 300 MeV),

(T = 160 MeV, µB = 300 MeV) and (T = 160 MeV, µB = 400 MeV) respectively). As

can be seen in the graph, the height of the spectral function increases with the increase in

temperature and density owing to an enhancement of the corresponding scattering processes

in presence of external magnetic field.
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We now proceed to obtain the effective mass and dispersion relation of the ρ0 in a

magnetized medium. They follow from the pole of the complete ρ0 propagator given in

Eq. (4.148) which are obtained by solving the following transcendental equations

ω2 − q2z −m2
ρ + ReΠα(q

0 = ω, qz, eB, T, µB) = 0 (4.151)

ω2 − q2z −m2
ρ + ReΠβ(q

0 = ω, qz, eB, T, µB) = 0 (4.152)

whose numerical solutions ω = ω(qz, eB, T, µB) represent the dispersion relations for the

Mode-(A) and (B) corresponding to ρ0 propagation in the magnetized medium. The effective

mass m∗
ρ of ρ

0 is obtained from the dispersion relation by setting qz = 0 i.e. m∗
ρ(eB, T, µB) =

ω(qz = 0, eB, T, µB).

Fig. 4.14(a) depicts the variation of m∗
ρ/mρ as a function of magnetic field at a tem-

perature T = 130 MeV and at a baryon chemical potential µB = 300 MeV. The effective

mass for the two modes starts from the same value arround eB = 0 and with the increase in

magnetic field, they get separated. For both the modes, the effective ρ0 mass decreases with

the increase in the magnetic field which is due to the strong positive contribution coming

from the dominating eB-dependent vacuum part. The effect of magnetic field is found to be

more in Mode-(B) as compared to Mode-(A). At a magnetic field value eB = 0.20 GeV2, the

effective ρ0 mass in Mode-(A) decreases by about 2% whereas for the Mode-(B) it decreases

by about 10%. Fig. 4.14(b) depicts the corresponding variation of effective mass with tem-

perature at a magnetic field eB = 0.10 GeV2 and at a baryon chemical potential µB = 300

MeV. We find that, for both the modes effective mass of ρ0 get enhanced by a small amount

with the increase in temperature. Even at T = 160 MeV the change in effective mass is less

than 2%. In Fig. 4.14(c), the variation of effective ρ0 mass is shown as a function of baryon

chemical potential at a magnetic field eB = 0.10 GeV2 and at a temperature T = 130 MeV.

In this case also, we observe an enhancement of the effective mass for both the modes with

the increase in baryon density. Though the effect of µB on effective mass is more at a higher

value of µB the change in the effective mass remains less than 2% even at µB = 500 MeV.

Next, we present the dispersion curves of ρ0 propagation in magnetized medium for both

the modes in Fig. 4.15. We have plotted the energy ω of the ρ0 scaled with the inverse

of the vacuum rho mass mρ = 770 MeV as a function of the longitudinal momentum of

ρ0. Fig. 4.15(a) depicts the dispersion curves at temperature T = 130 MeV and at baryon

chemical potential µB = 300 MeV for two different values of magnetic field (eB = 0.10 and

0.20 GeV2 respectively). Fig. 4.15(b) shows the same at a magnetic field eB = 0.10 GeV2
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and baryon chemical potential µB = 300 MeV for two different temperatures (T = 100 and

160 MeV respectively). Finally, Fig. 4.15(c) shows the corresponding graphs at a magnetic

field eB = 0.10 GeV2 and at a temperature T = 130 MeV for two different values of baryon

chemical potential (µB = 200 and 400 MeV respectively). In all the cases, the dispersion

curves are well separated from each other at lower transverse momentum. With the increase

in qz, the loop correction becomes subleading with respect to the kinetic energy of ρ0 and

thus, it approaches to a light-like dispersion.

Finally we calculate the decay width of ρ0 for the decay into charged pions which is

defined for the two modes as

Γ(A)(eB, T, µB) =
ImΠα(q

0 = m∗
ρ, qz = 0, eB, T, µB)

m∗
ρ(eB, T, µB)

(4.153)

Γ(B)(eB, T, µB) =
ImΠβ(q

0 = m∗
ρ, qz = 0, eB, T, µB)

m∗
ρ(eB, T, µB)

. (4.154)

In Fig. 4.16, the variation of the decay width Γ of ρ0 scaled with inverse of its vacuum width

(Γ0 = 156 MeV) for the two modes is shown as a function of magnetic field. Note that the

vacuum decay width is obtained from the imaginary part of the vacuum self energy as

Γ0 =
ImΠpure-vac(q

0 = mρ, ~q = ~0)

mρ
= 156 MeV . (4.155)

Results are presented for two different combinations of temperature and baryon chemical

potential ((T = 130 MeV, µB = 300 MeV) and (T = 160 MeV, µB = 400 MeV) respectively).

Because of the presence of threshold singularity in ImΠα, Γ
(A) also suffers from the presence

of threshold singularity for which it needs to be coarse grained. However, ImΠβ and hence

Γ(B) is finite and free from the singularities. As can be seen from the figure, the ratio Γ/Γ0

starts from a value greater than unity near eB = 0 which is due to the enhancement of the

decay width over its vacuum value due to the effect of finite temperature and density. Also

for a particular value of magnetic field, larger decay width is observed at higher temperature

and density. Near eB = 0, the two modes have almost the same decay widths which begin to

differ from each other with the increase in the magnetic field. An oscillatory behavior of the

decay width can be clearly seen throughout the magnetic field range. One should also notice

that, for both the modes, the oscillation amplitude increases whereas oscillation frequency

decreases with eB. Finally at a critical value of the magnetic field, the decay width becomes

zero. This is because of fact that, the eB-dependent Unitary cut threshold for the ππ loop
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has to satisfy

m∗
ρ(eB) > 2

√

m2
π + eB (4.156)

for a kinematically favorable decay of ρ0 → π+π−. But, with the increase in magnetic field,

the RHS of the above equation increases, whereas m∗
ρ in the LHS decreases so that at some

critical value of magnetic field, the above inequality is violated and the decay width becomes

zero. Physically it means, that ρ0 becomes stable against the decay into π+π− pair. This

critical value of the field may be considered as the critical value of the magnetic field required

for the “melting” of the spectral function of ρ0.

In order to calculate the critical value of the magnetic field eBc for a given temperature

T and baryon chemical potential µB, we need to solve the transcendental equation

m∗
ρ(eBc, T, µB) = 2

√

m2
π + eBc . (4.157)

The green dash-dotted curve in Fig. 4.14(a) corresponds to m∗
ρ/mρ = 2

√

m2
π + eB so that,

the intersection of this curve with the m∗
ρ = m∗

ρ(eB) represents the solution of the above

equation. In Fig. 4.17, we show the variation of the critical magnetic field eBc for the two

decay modes. Fig. 4.17(a) depicts eBc as a function of temperature for two different values

of baryon chemical potential (µB = 50 and 200 MeV) whereas Fig. 4.17(b) shows the cor-

responding variation with baryon chemical potential at two different values of temperature

(T = 100 and 160 MeV). Although, with fixed temperature, the variation with respect to

µB shows monotonically increasing trend, both the plots suggests non-monotonic variations

of the critical magnetic field with respect to the temperature. More specifically, there ex-

ists a maximum value of chemical potential (see Fig. 4.17(b)) below which the critical field

decreases with the temperature there by requiring relatively weaker magnetic field to com-

pletely stop the particular decay channel. However, for even larger values of µB, a significant

increase with temperature can be observed for both of the decay modes.

Few comments on the magnitude of the external magnetic field are in order. The ana-

lytical expressions provided in this paper are valid for any arbitrary value of the external

magnetic field which is constant in space-time. In presenting numerical results, we have

considered magnetic field values in the range 0 ≤ eB ≤ 0.20 GeV2. It is worth noting

that the magnetic field created in the HIC experiments is expected to decay rapidly with

time [89]. However, a non-zero electrical conductivity of the strongly interacting fireball

could possibly sustain the external magnetic field a bit longer [92, 98, 99] implying a slowly
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varying function of time during the entire life time of the QGP. The magnitude of the exter-

nal magnetic field at the time of chemical freezeout (when the hadronic degrees of freedom

manifests) is expected to be small because of the very small conductivity of the hadron gas.

The experimental estimation of the same is not reported yet. In order to understand the

plasma properties from the experimental data one solves relativistic magnetohydrodynamics

equation usually with the assumption of ideal QGP fluid in the background electromag-

netic field [100? , 101]. However, the ideal fluidity assumption can only be validated after

knowing the transport coefficients at temperatures of phenomenological interest which are

not yet certain. Despite these uncertinities, it should be mentioned here that the complete

blocking of the neutral rho decay seems to be quite unlikely in the recent energy regimes of

the HIC experiments. Though, one might expect a suppression in the ρ0 → π+π− channel.

Being the only possible strong decay channel of ρ0 meson, its suppression is expected to

lead to the enhancement of dilepton and photon production from ρ0 decay. For example

ρ0 → π0γ channel is expected to possess 64% branching ratio at the critical magnetic field

of the order 1015 T [200]. However, recent measurement [201] showing no suppression in

the strong decay channel of ρ0 suggests that the magnetic effects on the neutral ρ decay, if

exists, is negligibly small in the current HIC scenario. On the other hand, such magnetic

modifications of mesonic properties can occur in situations present inside the high density

compact objects with strong magnetic field such as magnetars. As a consequence, different

relevant properties like equation of state, mass radius relationship etc. can be influenced.

4.8 Summary

In this chapter the spectral properties of the neutral rho meson is studied at finite tem-

perature and density in a constant external magnetic field using the real time formalism

of finite temperature field theory. The effective ρππ and ρNN interactions are considered

for the evaluation of the one loop self energy of ρ0. Accordingly, the magnetically modified

in-medium propagators for pions and protons are used which contain infinite sum over the

Landau levels implying no constraint on the strength of the external magnetic field. From

the self-energy, the eB-dependent vacuum part is extracted by means of dimensional regu-

larization in which the ultraviolet divergence corresponding to the pure vacuum self energy

is isolated as the pole of gamma and Hurwitz zeta functions. It is shown that the external

magnetic field does not create additional divergences so that the vacuum counter terms re-

quired in absence of the background field remain sufficient to renormalize the theory at non
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zero magnetic field.

The general Lorentz structure for the in-medium massive vector boson self energy in

presence of external magnetic field has been constructed with four linearly independent basis

tensors out of which three form a mutually orthogonal set. Thus, the the extraction of the

form factors from the self energy becomes considerably simple. Moreover, it is shown that

with vanishing perpendicular momentum of the external particle, one can arrive at new set

of constraint relations among the form factors which essentially leave only two form factors

to be determined from the self energy. As a consistency check, the numerical B → 0 limit of

the real as well as imaginary parts of the form factors are shown to reproduce the zero field

results. Solving the Dyson-Schwinger equation with the one loop self energy, the complete

interacting ρ0 propagator is obtained. Consequently, two distinct modes are observed in the

study of the effective mass, dispersion relations and the spectral function of ρ0 where one of

the modes ( Mode-A) possesses two fold degeneracy. It is known [173, 194] that non trivial

Landau cuts appear in presence of external magnetic field along with finite temperature even

if the loop particles are of equal mass which is completely a magnetic field effect. However,

in contrast to Mode-A, the non-trivial Landau cut is found to be absent in case of Mode-B.

Also, sharper decrease in the effective mass is observed for the later which essentially stems

from the dominant eB-dependent vacuum contribution in the real part of the corresponding

form factor.

Finally, the decay width for ρ0 → π+π− channel is obtained for the two distinct modes

and is found to become zero at certain critical values of magnetic field depending upon the

temperature and baryon chemical potential. The corresponding variation of the critical field

with these external parameters shows increasing trend for large baryonic chemical potential.

However, it is observed that, both the distinct modes possess a maximum value of µB below

which the temperature dependence gets reversed. Especially, at a given temperature (say

T = 160 MeV) , eBc attains the lowest values (123 MeV2 for Mode-A and 116 MeV2 for

Mode-B) in case of zero chemical potential [172].
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Figure 4.12: The in-medium spectral functions of ρ0 as a function of invariant mass is shown
for different modes (a) at temperature T = 130 MeV and at baryon chemical potential µB =
300 MeV with ρ0 longitudinal momentum qz = 250 MeV for three different values of magnetic
field (eB = 0.10, 0.15 and 0.20 GeV2 respectively) (b) at magnetic field eB = 0.10 GeV2

and at baryon chemical potential µB = 300 MeV with ρ0 longitudinal momentum qz = 250
MeV for three different values of temperature (T = 100, 130 and 160 MeV respectively) (c)
at magnetic field eB = 0.10 GeV2 and at temperature T = 160 MeV with ρ0 longitudinal
momentum qz = 250 MeV for three different values of baryon chemical potential (µB = 200,
300 and 400 MeV respectively) and (d) at magnetic field eB = 0.10 GeV2 and at temperature
T = 130 MeV with baryon chemical potential µB = 300 MeV for two different values of ρ0

longitudinal momentum (qz = 0 and 500 MeV respectively). The vacuum spectral function
is also shown for comparison.
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Figure 4.13: The in-medium spectral functions of ρ0 for Mode-(A) as a function of invariant
mass is shown in the low invariant mass region dominated by Landau cut contributions with
ρ0 longitudinal momentum qz = 250 MeV : (a) At temperature T = 130 MeV and at baryon
chemical potential µB = 300 MeV for three different values of magnetic field (eB = 0.10,
0.15 and 0.20 GeV2 respectively) and (b) at magnetic field eB = 0.10 GeV2 for four different
combinations of temperature and baryon chemical potential ((T = 100 MeV, µB = 300
MeV), (T = 130 MeV, µB = 300 MeV), (T = 160 MeV, µB = 300 MeV) and (T = 160 MeV,
µB = 400 MeV) respectively).
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Figure 4.14: The ratio of effective mass of ρ0 to its vacuum mass for different modes (a) as
a function of magnetic field at temperature T = 130 MeV and at baryon chemical potential
µB = 300 MeV (b) as a function of temperature at magnetic field eB = 0.10 GeV2 and at
baryon chemical potential µB = 300 MeV and (c) as a function of baryon chemical potential
at temperature T = 130 MeV and at magnetic field eB = 0.10 GeV2. The green dash-
dotted curve in (a) corresponds to the Unitary cut threshold for decay of ρ0 → π+π−. Here
mρ = 770 MeV.
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Figure 4.15: The dispersion relations of ρ0 for different modes: (a) At temperature T = 130
MeV and at baryon chemical potential µB = 300 MeV for two different values of magnetic
field (eB = 0.10 and 0.20 GeV2 respectively), (b) at magnetic field eB = 0.10 GeV2 and
at baryon chemical potential µB = 300 MeV for two different temperatures (T = 100 and
160 MeV respectively) and (c) at magnetic field eB = 0.10 GeV2 and at temperature T =
130 MeV for two different values of baryon chemical potential (µB = 200 and 400 MeV
respectively).
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Figure 4.16: The ratio of the decay width of ρ0 to its vacuum width as a function of magnetic
field for different modes with two different combinations of temperature and baryon chemical
potential ((T = 130 MeV, µB = 300 MeV) and (T = 160 MeV, µB = 400 MeV) respectively).
Here Γ0 = 156 MeV.
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Figure 4.17: The variation of the critical value of magnetic field for stopping the decay of ρ0

into π+π− pair for different modes as a function of (a) temperature at two different values
of baryon chemical potential (µB = 50 and 200 MeV respectively) and (b) baryon chemical
potential at two different values of temperature (T = 100 and 160 MeV respectively).



Chapter 5

Summary and Conclusions

The main focus of the thesis has been the modification of hadronic properties in presence of

a uniform background magnetic field having magnitude typically of the order of m2
π. Among

the hadrons, specifically nucleons and neutral ρ mesons have been studied in two different

contexts. More explicitly, nucleons are considered in the study of vacuum to nuclear matter

phase transitions as discussed in chapter 3 whereas the main motivation for studying the

spectral properties of ρ0 (presented in chapter 4) is to investigate the magnetic field effects

on the ρ0 → π+π− decay in presence of a hot and dense medium.

The study related to nucleons considers Walecka model with mean field approximation

in presence of weak external background magnetic field. The most important feature of the

study is the incorporation of the anomalous magnetic moment of nucleons which brings in

non-trivial correction terms in the nucleon propagators. As a result, unlike the case with

vanishing magnetic moment, it is observed that the critical temperature decreases with the

external magnetic field. Thus, it can be inferred that in presence of external magnetic field,

the anomalous magnetic moment of the nucleons plays a crucial role in characterizing the

nature of vacuum to nuclear matter transition at finite temperature and density. It should be

mentioned here that Haber et.al [146] had speculated that the incorporation of AMM could

counteract the effect of magnetic catalysis [153]. Our study not only supports the speculation

but also concludes that the effect is significant enough to alter the qualitative behavior of

the nucleon effective mass even in weak magnetic field regime. However, it should be noted

here that the weak field approximation actually restricts the regime of validity of the present

study. The maximum value of the external magnetic field used in the present study is taken

to be 0.04 GeV2 and it has been argued to be considered as ‘weak’ only up to density 1.8 ρ0

where the assumption of ‘weakness’ is fixed by the condition that the chosen external field

has to remain less than 50% of the effective mass. One should also notice that in case of
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Walecka model, MC or IMC can only be seen indirectly. Similar studies in extended linear

sigma model might be interesting as in that case the possibility of (approximate) chiral

symmetry restoration is incorporated within the model framework. However, we should

also mention that in case of zero magnetic moment, only the quantitative difference in the

behavior of the effective mass is found to be attributed to the presence of the chiral partners

[146] whereas the qualitative behavior, which has been the main interest throughout our

work, seems to show model independence. Before applying the present results to obtain the

characteristics of compact stars such as mass radius relationship or the equation of state,

beta equilibrium and charge neutrality conditions have to be properly incorporated which

can be an important extension of the present study.

The main observation in the study of neutral ρ meson is that at certain critical value

of magnetic field, the decay width for ρ0 → π+π− channel vanishes. The magnitude of the

critical magnetic field depends on the temperature (T ) and baryon chemical potential (µB)

and is different for the two decay modes. Though the corresponding variation of the critical

field with T and µB shows increasing trend for large baryonic chemical potential, there exists

a maximum value of µB below which the temperature dependence gets reversed.

In Ref. [168], charged rho meson condensation has been studied at finite temperature

and density. For charged rho mesons, the critical field for which the vector meson mass

vanishes is observed to lie in the range of 0.2-0.6 GeV2 at zero density with temperature in

the range 0.2-0.5 GeV. However, in case of ρ0, the absence of the trivial Landau shift in the

energy eigenvalue results in much slower decrease in the effective mass. As a consequence,

unrealistically high magnetic field values are required to observe neutral rho condensation

in presence of temperature and medium (see Fig.4.14). In this scenario, the suppression

in the ρ0 → π+π− channel can serve as an important alternative. However, one has to

remember that the magnetic modification of rho meson properties studied in this work deals

with effective hadronic interactions. Thus, the observable modification can only occur if

the initial burst of magnetic field survives up to hadronization retaining an appreciable

field strength. However, the recent report [201] suggests no detectable suppression in the

branching ratio of ρ0 → π+π− channel implying that the magnetic field effects in the neutral

ρ decay is negligible in HIC experiments. On the other hand, the present study can be

relevant in situations present inside magnetars.
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Appendix A

Essential steps used in the derivation

of propagator

A.1 Solution of Drac equation in presence of magnetic

field

We consider magnetic field is along z direction. So we choose magnetic vector potential as

~A = (0, Bx1, 0) in Landau gauge. However, we can write this in other gauges also.

Modified Dirac equation in presence of magnetic field can be written as,

i
∂Ψ

∂t
= HBΨ (A.1)

where modified Hamiltonian is given by

HB = ~α · ~Π+ βm , ~α = γ0~γ , β = γ0 (A.2)

αi = γ0γi =





0 σi

σi 0



 (A.3)

β = γ0 =





1 0

0 −1



 (A.4)
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Modified momentum in presence of magnetic field is

~Π = −i~∇− q ~A (A.5)

Solution of Dirac equation is 4 component vector.

We can write plane wave solution of Eq. (A.1) as

Ψ = e−iEt





φ

χ



 (A.6)

Now Eq. (A.1) implies,

E





φ

χ



 e−iEt =





m ~σ · ~Π
~σ · ~Π −m









φ

χ



 e−iEt (A.7)





Eφ

Eχ



 =





mφ+ ~σ · ~Πχ
~σ · ~Πφ−mχ



 (A.8)

So we get two coupled equations,

(E −m)φ = ~σ · ~Πχ (A.9)

(E +m)χ = ~σ · ~Πφ (A.10)

From Eq. (A.9) using Eq. (A.10), we get decoupled equation.

(E −m)~σ · ~Πφ = (~σ · ~Π)2χ

(E +m)(E −m)χ = (~σ · ~Π)2χ (A.11)

Similarly, (E +m)(E −m)φ = (~σ · ~Π)2φ (A.12)

Πi = −i ∂
∂xi

− qAi (A.13)

Π1 = −i ∂
∂x1

, Π2 = −i ∂
∂x2

− qBx1 , Π3 = −i ∂
∂x3

(A.14)
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We use the well known identity

(~σ · ~a)(~σ ·~b) = ~a ·~b+ i(~a×~b) · ~σ (A.15)

(

~σ · ~Π
)2

=
(

~σ · ~Π
)(

~σ · ~Π
)

= (Π)2 + i
(

~Π× ~Π
)

· ~σ

= (Π)2 + iǫijkΠjΠkσi (A.16)

Here we note that, ~Π× ~Π 6= 0.

iǫijkΠiΠjσi = iǫ312Π1Π2σ3 + iǫ321Π2Π1σ3 , (Other terms vanish)

= iΠ1Π2σ3 − iΠ2Π1σ3 = i [Π1,Π2] σ3 (A.17)

Π1Π2ψ = (−i ∂
∂x1

)(−i ∂
∂x2

− qBx1)ψ

= (−i ∂
∂x1

)(−i ∂ψ
∂x2

− qBx1ψ)

= − ∂2ψ

∂x1 ∂x2
+ iqBψ + iqBx1

∂ψ

∂x1
(A.18)

Π2Π1ψ = (−i ∂
∂x2

− qBx1)(−i ∂
∂x1

)ψ

= (−i ∂
∂x2

− qBx1)(−i ∂ψ
∂x1

)

= − ∂2ψ

∂x2 ∂x1
+ iqBx1

∂ψ

∂x1
(A.19)

So we get1 [Π1,Π2] = iqB. Using this in Eq. (A.16) one can get

(

~σ · ~Π
)2

= (Π)2 − qBσ3 (A.20)

From Eq. (A.12)

((Π)2 − qBσ3)φ = (E2 −m2)φ

(A.21)

1ψ and it’s derivatives need to be well behaved to satisfy ∂2ψ
∂x1 ∂x2 = ∂2ψ

∂x2 ∂x1 .
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LHS,

[

− ∂2

∂x2
+ (i

∂

∂y
+ qBx)2 − ∂2

∂z2
− qBσ3

]

φ

=

[

−∇2 + 2iqBx
∂

∂y
+ q2B2x2 − qBσ3

]

φ

Here only x is explicitly present in the expression. y and z are cyclic co-ordinates2. So we

write trial solution as,

φ = ei(pyy+pzz)f(x) (A.22)

σ3 is 2× 2 matrix. So f(x) must be 2 component vector. Now we write f(x) in eigen basis

of σ3.

f(x) = F+(x)





1

0



+ F−(x)





0

1



 (A.23)

So we have

[

−∇2 + 2iqBx
∂

∂y
+ q2B2x2 − qBσ3

]

ei(pyy+pzz)





F+(x)

F−(x)





=

[(

− d2

dx2
+ p2y + p2z + 2qBxpy + q2B2x2

)

I− qBσ3

]

ei(pyy+pzz)





F+(x)

F−(x)





=
[

ÂI− qBσ3

]



F+(x)





1

0



+ F−(x)





0

1









= ÂF+





1

0



− qB(+1)F+





1

0



 + ÂF−





0

1



− qB(−1)F−





0

1



 (A.24)





ÂF+ − qBF+

ÂF− + qBF−



 = (E2 −m2)





F+

F−



 (A.25)

By writing this in compact notation,

ÂFs − sqBFs = (E2 −m2)Fs , s = ±1

−d
2Fs

dx2
− (py − qBx)2Fs + (E2 −m2 − p2z + sqB)Fs = 0 (A.26)

2We have chosenAµ = (0, Bx, 0), so y,z become cyclic. For symmetric gauge, z is cyclic and corresponding
momentum is conserved.
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(A.27)

Now we change the variable.

ξ =
√

|qB|
(

py
qB

− x

)

(A.28)

where ξ2 = |qB|
(qB)2

(py − qxB)2.

d

dx
=

d

dξ

dξ

dx
= −

√

|qB| d
dξ

(A.29)

d2

dx2
=

d

dx
(−
√

|qB| d
dξ

) = |qB| d
2

dξ2
(A.30)

From Eq. (A.26) we get,

[

|qB| d
2

dξ2
− |qB|ξ2 + (E2 −m2 − p2z + sqB)

]

Fs = 0

[

d2

dξ2
− ξ2 + as

]

Fs = 0 (A.31)

where as =
1

|qB|
(E2 −m2 − p2z + sqB).

Again we apply a variable transformation,

Fs = e−
ξ2

2 H(ξ)

dFs

dξ
= −e− ξ2

2 ξH(ξ) + e−
ξ2

2 H ′(ξ)

d2Fs

dξ2
= e−

ξ2

2 (ξ2 − 1)H(ξ)− 2e−
ξ2

2 ξH ′(ξ) + e−
ξ2

2 H ′′(ξ)

We can now write Eq. (A.31) as,

[H ′′ − 2ξH ′ + (as − 1)H ] = 0 (A.32)

Solution of Eq. (A.32) is Hermite polynomial when as − 1 = 2k,k ≥ 0.

E2 = m2 + p2z − sqB + (2k + 1)|qB| (A.33)

1. When s = +1 and q = +e
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E2 = m2 + p2z + 2kB. (A.34)

2. When s = +1 and q = −e

E2 = m2 + p2z + 2(k + 1)B

= E2 = m2 + p2z + 2k′B (A.35)

where k′ = k + 1.

3. When s = −1 and q = +e

E2 = m2 + p2z + 2k′B (A.36)

4. When s = −1 and q = −e

E2 = m2 + p2z + 2kB. (A.37)

Energy of fermion becomes quantised in presence of magnetic field.

E2 = m2 + p2z + 2nB (A.38)

Various values of n in Eq. (A.38) gives various Landau levels. In case of lowest Landau level

(n = 0) k = −1 for case 2 and 3. This is not allowed for Hermite polynomial.

1. s = +1, q = −e

2. s = −1, q = +e

These states are not allowed. That means for negative charge particle s = +1 state (spin

up) is not possible for LLL. And for positive charge particle s = −1 state (spin down) is not

possible.



A.2. The details of completeness relations and operators 91

A.2 The details of completeness relations and opera-

tors

At first we prove the wave function normalizability.

∫

d2rrr⊥ψkp2(rrr⊥)
∗ψk′p′2

(rrr⊥)

=
1

2πℓ

1
√

2kk!
√
π

1
√

2k′k′!
√
π

×
∫

dx1Hk

(x1

ℓ
+ p2ℓ

)

Hk′

(x1

ℓ
+ p′2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1+p′2ℓ
2)2

×
∫

dx2eis⊥x2p2e−is⊥x2p′2

=
1

2πℓ

1
√

2kk!
√
π

1
√

2k′k′!
√
π

×
∫

dx1Hk

(x1

ℓ
+ p2ℓ

)

Hk′

(x1

ℓ
+ p′2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1+p′2ℓ
2)2

× 2π

|s⊥|
δ(p2 − p′2)

=
1

ℓ

1
√

2kk!
√
π

1
√

2k′k′!
√
π

×
∫

dx1Hk

(x1

ℓ
+ p2ℓ

)

Hk′

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1+p2ℓ2)2

× δ(p2 − p′2)

=
1

√

2kk!
√
π

1
√

2k′k′!
√
π

×
∫

dx1

ℓ
Hk

(x1

ℓ
+ p2ℓ

)

Hk′

(x1

ℓ
+ p2ℓ

)

e−
1
ℓ2

(x1+p2ℓ2)2δ(p2 − p′2)

=
δ(p2 − p′2)

√

2kk!
√
π
√

2k′k′!
√
π

×
∫

d
(x1

ℓ
+ p2ℓ

)

Hk

(x1

ℓ
+ p2ℓ

)

Hk′

(x1

ℓ
+ p2ℓ

)

e−(x
1

ℓ
+p2ℓ)2

= δkk′δ(p2 − p′2) (A.39)

where we have used

∫

dzHk(z)Hk′(z)e
−z2 = 2kk!

√
πδkk′ (A.40)

|s⊥| = 1 (A.41)
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Another completeness relation we have used is

∫ ∞

−∞

dp2

k=∞
∑

k=0

ψkp2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)

=

∫ ∞

−∞

dp2
1

2πℓ

k=∞
∑

k=0

[ 1

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

× e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1′+p2ℓ2)2e−is⊥x2p2eis⊥x2′p2

=

∫ ∞

−∞

dp2
1

2πℓ

k=∞
∑

k=0

[ 1

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

× e
− 1

2

[

(x
1

ℓ
+p2ℓ)2+(x

1′

ℓ
+p2ℓ)2

]

e−is⊥(x2−x2′ )p2

=

∫ ∞

−∞

dp2
1

2πℓ
δ
(x1

ℓ
+ p2ℓ−

x1
′

ℓ
− p2ℓ

)

e−is⊥(x2−x2′)p2

=
|ℓ|
ℓ
δ(x1 − x1

′

)

∫ ∞

−∞

dp2
2π

e−is⊥(x2−x2′ )p2

= δ(x1 − x1
′

)
δ(x2 − x2

′
)

|s⊥|
= δ2(rrr⊥ − rrr′⊥) (A.42)

Here we have used

k=∞
∑

k=0

[ 1

2kk!
√
π
Hk(x)Hk(y)

]

= e
x2+y2

2 δ(x− y) (A.43)

|ℓ| = ℓ (A.44)

Now we need to know the result of the operator ΠΠΠ⊥ ·γγγ⊥ operating on the wavefunction.

(ΠΠΠ⊥ ·γγγ⊥)ψkp2(rrr⊥) = (Π1
⊥γ

1 +Π2
⊥γ

2)ψkp2(rrr⊥) (A.45)

(Π1
⊥γ

1)ψkp2(rrr⊥) = γ1
(

− i
∂

∂x1

) 1√
2πℓ

1
√

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−is⊥x2p2

= (−iγ1) 1√
2πℓ

1
√

2kk!
√
π

( ∂

∂x1

)[

Hk

(x1

ℓ
+ p2ℓ

)

e−
1
2
(x

1

ℓ
+p2ℓ)2

]

e−is⊥x2p2

= (−iγ1) 1√
2πℓ

1
√

2kk!
√
π

[1

ℓ
H ′

k

(x1

ℓ
+ p2ℓ

)

− 1

ℓ
(
x1

ℓ
+ p2ℓ)Hk

(x1

ℓ
+ p2ℓ

)]

× e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2

= −iγ
1

ℓ

1√
2πℓ

1
√

2kk!
√
π

[

H ′
k

(x1

ℓ
+ p2ℓ

)

− (
x1

ℓ
+ p2ℓ)Hk

(x1

ℓ
+ p2ℓ

)]
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× e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2 (A.46)

(Π2
⊥γ

2)ψkp2(rrr⊥)

= γ2
(

− i
∂

∂x2
− eBx1

) 1√
2πℓ

1
√

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−is⊥x2p2

= γ2
1√
2πℓ

1
√

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2

(

− s⊥p2 − eBx1
)

e−is⊥x2p2

= γ2
1√
2πℓ

1
√

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2

(

− s⊥p2 − s⊥|eB|x1
)

e−is⊥x2p2

= γ2
1√
2πℓ

1
√

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2

(

− s⊥p2 − s⊥
x1

ℓ2

)

e−is⊥x2p2

=
1√
2πℓ

1
√

2kk!
√
π
(−s⊥)

γ2

ℓ

(x1

ℓ
+ p2ℓ

)

Hk

(x1

ℓ
+ p2ℓ

)

e−
1

2ℓ2
(x1+p2ℓ2)2e−is⊥x2p2

= −iγ
1

ℓ

1√
2πℓ

1
√

2kk!
√
π
(is⊥)γ

1γ2
(x1

ℓ
+ p2ℓ

)

Hk

(x1

ℓ
+ p2ℓ

)

× e−
1

2ℓ2
(x1+p2ℓ2)2e−is⊥x2p2 (A.47)

(ΠΠΠ⊥ ·γγγ⊥)ψkp2(rrr⊥) = −iγ
1

ℓ

1√
2πℓ

1
√

2kk!
√
π

[

H ′
k

(x1

ℓ
+ p2ℓ

)

− (1− is⊥γ
1γ2)(

x1

ℓ
+ p2ℓ)

×Hk

(x1

ℓ
+ p2ℓ

)]

e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2

= −iγ
1

ℓ

1√
2πℓ

1
√

2kk!
√
π

[

H ′
k

(x1

ℓ
+ p2ℓ

)

− 2(
x1

ℓ
+ p2ℓ)

×Hk

(x1

ℓ
+ p2ℓ

)

P−

]

e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2 (A.48)

where P− is a projection opeartor defined along with P+ as

P± =
1

2

(

1± s⊥γ
1γ2
)

(A.49)

Now we can use two identities of hermite polynomials.

H ′
n(x) = 2nHn−1(x) (A.50)

Hn+1(x) = 2xHn(x)− 2nHn−1 (A.51)
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(ΠΠΠ⊥ ·γγγ⊥)ψkp2(rrr⊥) = −iγ
1

ℓ

1√
2πℓ

1
√

2kk!
√
π

×
[

2kHk−1

(x1

ℓ
+ p2ℓ

)

−
{

Hk+1

(x1

ℓ
+ p2ℓ

)

+ 2kHk−1

(x1

ℓ
+ p2ℓ

)}

P−

]

× e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2

= −iγ
1

ℓ

1√
2πℓ

1
√

2kk!
√
π

[

2kHk−1

(x1

ℓ
+ p2ℓ

)(

1−P−

)

−Hk+1

(x1

ℓ
+ p2ℓ

)

P−

]

e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2

=
iγ1

ℓ

1√
2πℓ

1
√

2kk!
√
π

[

Hk+1

(x1

ℓ
+ p2ℓ

)

P− − 2kHk−1

(x1

ℓ
+ p2ℓ

)

P+

]

× e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2

=
iγ1

ℓ

[

√

2(k + 1)
√

2(k+1)(k + 1)!
√
π
Hk+1

(x1

ℓ
+ p2ℓ

)

P−

−
√
2k

√

2(k−1)(k − 1)!
√
π
Hk−1

(x1

ℓ
+ p2ℓ

)

P+

]

e−
1
2
(x

1

ℓ
+p2ℓ)2e−is⊥x2p2

=
iγ1

ℓ

[

√

2(k + 1)ψ(k+1)p2(rrr⊥)P− −
√
2kψ(k−1)p2(rrr⊥)P+

]

(A.52)

Another operator used is

ΠΠΠ2
⊥ψkp2(rrr⊥) =

2k + 1

ℓ2
ψkp2(rrr⊥) (A.53)

Earlier we have seen (ΠΠΠ⊥ · g⊥)2 = −ΠΠΠ2
⊥ + ieBγ1γ2. Now using this we find

ΠΠΠ2
⊥ψkp2(rrr⊥) =

[

ieBγ1γ2 − (ΠΠΠ⊥ · g⊥)2
]

ψkp2

=
1

ℓ2
(is⊥γ

1γ2)ψkp2 − (ΠΠΠ⊥ · g⊥)
[

(ΠΠΠ⊥ · g⊥)ψkp2

]

=
1

ℓ2

[

P+ −P−

]

ψkp2

− (ΠΠΠ⊥ · g⊥)
iγ1

ℓ

[

√

2(k + 1)ψ(k+1)p2(rrr⊥)P− −
√
2kψ(k−1)p2(rrr⊥)P+

]

=
1

ℓ2

[

P+ −P−

]

ψkp2 −
[

√

2(k + 1)(ΠΠΠ⊥ · g⊥)ψ(k+1)p2(rrr⊥)
iγ1

ℓ
P−

−
√
2k(ΠΠΠ⊥ · g⊥)ψ(k−1)p2(rrr⊥)

iγ1

ℓ
P+

]

=
1

ℓ2

[

P+ −P−

]

ψkp2 −
[

√

2(k + 1)(ΠΠΠ⊥ · g⊥)ψ(k+1)p2(rrr⊥)P+
iγ1

ℓ

−
√
2k(ΠΠΠ⊥ · g⊥)ψ(k−1)p2(rrr⊥)P−

iγ1

ℓ

]

(A.54)



A.3. Simplification 95

In the last line we have used

γ1P± = γ1
1

2

[

1± is⊥γ
1γ2
]

=
1

2

[

γ1 ± is⊥γ
1γ1γ2

]

=
1

2

[

γ1 ± is⊥γ
1(−)γ2γ1

]

=
1

2

[

1∓ is⊥γ
1γ2
]

γ1

= P∓γ
1 (A.55)

Again, as P±P∓ = 0 so only coefficient of P+(−) contributes out of the two terms comming

from (ΠΠΠ⊥ · g⊥)ψ(k+(−)1)p2(rrr⊥) and keeping only those terms we get

ΠΠΠ2
⊥ψkp2(rrr⊥) =

1

ℓ2

[

P+ −P−

]

ψkp2 −
[

√

2(k + 1)
(

−
√

2(k + 1)ψkp2(rrr⊥)
iγ1

ℓ
P+

)

P+
iγ1

ℓ

−
√
2k
(√

2kψkp2(rrr⊥)
iγ1

ℓ
P−

)

P−
iγ1

ℓ

]

=
1

ℓ2

[

P+ −P−

]

ψkp2 + 2(k + 1)ψkp2(rrr⊥)
iγ1

ℓ
P+

iγ1

ℓ

+ 2kψkp2(rrr⊥)
iγ1

ℓ
P−

iγ1

ℓ
As P2

± = P±

=
1

ℓ2

[

P+ −P−

]

ψkp2 + 2(k + 1)ψkp2(rrr⊥)P−
iγ1

ℓ

iγ1

ℓ

+ 2kψkp2(rrr⊥)P+
iγ1

ℓ

iγ1

ℓ

=
1

ℓ2

[

P+ −P−

]

ψkp2 +
2(k + 1)

ℓ2
ψkp2(rrr⊥)P− +

2k

ℓ2
ψkp2(rrr⊥)P+

=
2k + 1

ℓ2
ψkp2(rrr⊥)

[

P+ + P−

]

=
2k + 1

ℓ2
ψkp2(rrr⊥) (A.56)

A.3 Simplification

Now using the operator relations we proceed to simplify the r.h.s of Eq.(2.15). Starting with

the first term we get

E1(ω, p3;rrr⊥, rrr
′
⊥) = i

∫ ∞

−∞

dp2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
ψkp2(rrr⊥)ψ

∗
kp2(rrr

′
⊥)

= i

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2

∫ ∞

−∞

dp2ψkp2(rrr⊥)ψ
∗
kp2

(rrr′⊥)
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= i
k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2

×
∫ ∞

−∞

dp2
1

2πℓ

[ 1

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

× e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1′+p2ℓ2)2e−is⊥x2p2eis⊥x2′p2

Let us concentrate on the phase part separately.

e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1′+p2ℓ2)2e−is⊥x2p2eis⊥x2′p2

= exp
[

− 1

2

{(x1

ℓ
+ p2ℓ

)2

+
(x1

′

ℓ
+ p2ℓ

)2}

− is⊥p2ℓ
x2 − x2

′

ℓ

]

= exp
(

−
[1

2

{

(x1

ℓ

)2
+
(x1

′

ℓ

)2
}

+
(

p2ℓ
)2

+ p2ℓ
x1 + x1

′

ℓ
+ is⊥p2ℓ

x2 − x2
′

ℓ

])

= exp
(

−
[1

2

{

(x1

ℓ

)2
+
(x1

′

ℓ

)2
}

+
(

p2ℓ
)2

+ 2p2ℓ
{x1 + x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

}])

= e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

× exp
(

−
[1

2

{

(x1

ℓ

)2
+
(x1

′

ℓ

)2
}

−
(x1 + x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

)2])

= e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

eis⊥
(x1+x1

′
)(x2−x2

′
)

2ℓ2

× exp
(

−
[1

2

{

(x1

ℓ

)2
+
(x1

′

ℓ

)2
}

−
(x1 + x1

′

2ℓ

)2

+ s2⊥

(x2 − x2
′

2ℓ

)2])

= e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

eiΦ(rrr⊥,rrr′⊥)e
−

(

x2−x2
′

2ℓ

)2

× exp
(

−
[1

2

{

(x1

ℓ

)2
+
(x1

′

ℓ

)2
}

−
(x1 + x1

′

2ℓ

)2])

as s2⊥ = 1

= e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

eiΦ(rrr⊥,rrr′⊥)e
−

(

x2−x2
′

2ℓ

)2

e
−

(

x1−x1
′

2ℓ

)2

= e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

eiΦ(rrr⊥,rrr′⊥)e−
1
2

(x1−x1
′
)2+(x2−x2

′
)2

2ℓ2

= e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

eiΦ(rrr⊥,rrr′⊥)e−
ζ
2 (A.57)

with

Φ(rrr⊥, rrr
′
⊥) = s⊥

(x1 + x1
′
)(x2 − x2

′
)

2ℓ2
(A.58)

ζ =
(x1 − x1

′
)2 + (x2 − x2

′
)2

2ℓ2
=

(rrr⊥ − rrr′⊥)
2

2ℓ2
(A.59)

Putting back the phase factor we obtain

E1(ω, p3;rrr⊥, rrr
′
⊥) = i

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
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×
∫ ∞

−∞

dp2
1

2πℓ

[ 1

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

× e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

eiΦ(rrr⊥,rrr′⊥)e−
ζ
2

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2

×
∫ ∞

−∞

d
(

p2ℓ+
{x1 + x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

})

e
−

(

p2ℓ+

{

x1+x1
′

2ℓ
+is⊥

x2−x2
′

2ℓ

})2

×
[ 1

2kk!
√
π
Hk

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
1

2kk!
√
π

×
∫ ∞

−∞

dxe−x2
[

Hk

(

x+
x1

ℓ
+ p2ℓ−

{

p2ℓ+
x1 + x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

})

× Hk

(

x+
x1

′

ℓ
+ p2ℓ−

{

p2ℓ+
x1 + x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

})]

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
1

2kk!
√
π

×
∫ ∞

−∞

dxe−x2
[

Hk(x+ y)Hk(x+ z)
]

(A.60)

where we define

x = p2ℓ+
x1 + x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

y =
x1 − x1

′

2ℓ
− is⊥

x2 − x2
′

2ℓ

z = −x
1 − x1

′

2ℓ
− is⊥

x2 − x2
′

2ℓ
(A.61)

Now we can apply an identity

∫ ∞

−∞

dxe−x2

Hm(x+ y)Hn(x+ z) = 2nπ
1
2m!zn−mLn−m

m (−2yz) for m ≤ n
with

L0

m=Lm

(A.62)

Before using that we see

−2yz = −2
[x1 − x1

′

2ℓ
− is⊥

x2 − x2
′

2ℓ

]

(−1)
[x1 − x1

′

2ℓ
+ is⊥

x2 − x2
′

2ℓ

]

= 2
[

(x1 − x1
′

2ℓ

)2
+
(x2 − x2

′

2ℓ

)2
]

= ζ (A.63)
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Thus we obtain

E1(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
Lk(ζ)

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

γ0ω − γ3p3 +m

ω2 − p32 −m2 − (2k + 1)|eB|+ s⊥s|eB|Lk(ζ)

(A.64)

Now we begin the second part of Eq.(2.15).

E2(ω, p3;rrr⊥, rrr
′
⊥)

= i

∫ ∞

−∞

dp2

k=∞
∑

k=0

ΠΠΠ⊥ ·γγγ⊥
ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2

ψkp2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)

= i

∫ ∞

−∞

dp2

k=∞
∑

k=0

iγ1

ℓ

[

√

2(k + 1)ψ(k+1)p2(rrr⊥)P− −
√
2kψ(k−1)p2(rrr⊥)P+

]

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
ψ∗
kp2(rrr

′
⊥)

= i

k=∞
∑

k=0

1

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
iγ1

ℓ

×
[

√

2(k + 1)

∫ ∞

−∞

dp2ψ(k+1)p2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)P− −

√
2k

∫ ∞

−∞

dp2ψ(k−1)p2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)P+

]

(A.65)

We need to know the two integrals now. First one is

∫ ∞

−∞

dp2ψ(k+1)p2(rrr⊥)ψ
∗
kp2

(rrr′⊥) =
1

2πℓ

[ 1
√

2k+1(k + 1)!
√
π

1
√

2kk!
√
π
Hk+1

(x1

ℓ
+ p2ℓ

)

×Hk

(x1
′

ℓ
+ p2ℓ

)]

e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1′+p2ℓ2)2e−is⊥x2p2eis⊥x2′p2 (A.66)

This is similar to the case of Eq.(A.60) and we can write it as

∫ ∞

−∞

dp2ψ(k+1)p2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)

=
1

√

2(k + 1)

1

2πℓ

1

2kk!
√
π

∫ ∞

−∞

dp2Hk+1

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

× e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1′+p2ℓ2)2e−is⊥x2p2eis⊥x2′p2

=
1

√

2(k + 1)

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

1

2kk!
√
π

∫ ∞

−∞

dxe−x2
[

Hk+1(x+ y)Hk(x+ z)
]

(A.67)

See, in Eq.(A.62) the condition is m ≤ n which means in the above integral m = k

and n = k + 1 and the factor sitting outside should be y as it is in the argument of higher
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polynomial order. Thus we have

∫ ∞

−∞

dp2ψ(k+1)p2(rrr⊥)ψ
∗
kp2

(rrr′⊥) =
1

√

2(k + 1)

2k+1
√
πk!

2kk!
√
π

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2yL1

k(ζ)

=
1

√

2(k + 1)

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
22yL1

k(ζ) (A.68)

Similarly

∫ ∞

−∞

dp2ψ(k−1)p2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)

=
1

2πℓ

[ 1
√

2k−1(k − 1)!
√
π

1
√

2kk!
√
π
Hk−1

(x1

ℓ
+ p2ℓ

)

Hk

(x1
′

ℓ
+ p2ℓ

)]

× e−
1

2ℓ2
(x1+p2ℓ2)2e−

1
2ℓ2

(x1′+p2ℓ2)2e−is⊥x2p2eis⊥x2′p2

=
√
2k
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

1

2kk!
√
π

∫ ∞

−∞

dxe−x2
[

Hk−1(x+ y)Hk(x+ z)
]

(A.69)

This time we have m = k − 1 and n = k and we get

∫ ∞

−∞

dp2ψ(k−1)p2(rrr⊥)ψ
∗
kp2

(rrr′⊥) =
√
2k

2k
√
π(k − 1)!

2kk!
√
π

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2zL1

k−1(ζ)

=

√
2k

k

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2zL1

k−1(ζ) (A.70)

Thus putting these integrals we get

E2(ω, p3;rrr⊥, rrr
′
⊥) = i

k=∞
∑

k=0

1

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
iγ1

ℓ

×
[

√

2(k + 1)

∫ ∞

−∞

dp2ψ(k+1)p2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)P− −

√
2k

∫ ∞

−∞

dp2ψ(k−1)p2(rrr⊥)ψ
∗
kp2(rrr

′
⊥)P+

]

= i
k=∞
∑

k=0

1

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
iγ1

ℓ

×
[

√

2(k + 1)
1

√

2(k + 1)

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
22yL1

k(ζ)P− −
√
2k

√
2k

k

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2 zL1

k−1(ζ)P+

]

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

1

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
iγ1

ℓ

×
[

2yL1
k(ζ)P− − 2zL1

k−1(ζ)P+

]

(A.71)
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A.4 Numerator simplification

• For s = +1 case, any coefficient of P− does not contribute and that implies the

numerator can be simplified as

iγ1

ℓ

[

− 2zL1
k−1(ζ)P+

]

=
i

ℓ

[

−
(

− x1 − x1
′

ℓ
− i

x2 − x2
′

ℓ

)1

2

(

γ1 − iγ2
)

L1
k−1(ζ)

]

=
i

ℓ

[(x1 − x1
′

2ℓ
+ i

x2 − x2
′

2ℓ

)

(

γ1 − iγ2
)

]

L1
k−1(ζ)

=
i

ℓ

[(x1 − x1
′

2ℓ
γ1 +

x2 − x2
′

2ℓ
γ2 + i

x2 − x2
′

2ℓ
γ1 − i

x1 − x1
′

2ℓ
γ2
)]

L1
k−1(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2 − x1 − x1

′

2ℓ
γ1 − i

x1 − x1
′

2ℓ
γ2

+ i
x2 − x2

′

2ℓ
γ1 − x2 − x2

′

2ℓ
γ2
]

L1
k−1(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2 − x1 − x1

′

ℓ
γ1

1

2

(

1− iγ1γ2
)

+ i
x2 − x2

′

ℓ
γ1

1

2

(

1− iγ1γ2
)]

L1
k−1(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2 − x1 − x1

′

ℓ
γ1P− + i

x2 − x2
′

ℓ
γ1P−

]

L1
k−1(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2
]

L1
k−1(ζ)

=
i

ℓ2
γγγ⊥ · (rrr⊥ − rrr′⊥)L

1
n−1(ζ) as k = n (A.72)

• For s = −1 case, any coefficient of P+ does not contribute and we get form the

numerator

iγ1

ℓ

[

2yL1
k(ζ)P−

]

=
i

ℓ

[(x1 − x1
′

ℓ
− i

x2 − x2
′

ℓ

)1

2

(

γ1 + iγ2
)

L1
k(ζ)

]

=
i

ℓ

[(x1 − x1
′

2ℓ
− i

x2 − x2
′

2ℓ

)

(

γ1 + iγ2
)

]

L1
k(ζ)

=
i

ℓ

[(x1 − x1
′

2ℓ
γ1 +

x2 − x2
′

2ℓ
γ2 − i

x2 − x2
′

2ℓ
γ1 + i

x1 − x1
′

2ℓ
γ2
)]

L1
k(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2 − x1 − x1

′

2ℓ
γ1 + i

x1 − x1
′

2ℓ
γ2

− i
x2 − x2

′

2ℓ
γ1 − x2 − x2

′

2ℓ
γ2
]

L1
k(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2 − x1 − x1

′

ℓ
γ1

1

2

(

1 + iγ1γ2
)

− i
x2 − x2

′

ℓ
γ1

1

2

(

1 + iγ1γ2
)]

L1
k(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2 − x1 − x1

′

ℓ
γ1P+ − i

x2 − x2
′

ℓ
γ1P+

]

L1
k(ζ)

=
i

ℓ

[x1 − x1
′

ℓ
γ1 +

x2 − x2
′

ℓ
γ2
]

L1
k(ζ)
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=
i

ℓ2
γγγ⊥ · (rrr⊥ − rrr′⊥)L

1
n−1(ζ) as k = n− 1 (A.73)

Thus we obtain

E2(ω, p3;rrr⊥, rrr
′
⊥) = i

eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

k=∞
∑

k=0

1

ω2 − p32 −m2 − (2k + 1)|eB|+ ieBγ1γ2
iγ1

ℓ

×
[

2yL1
k(ζ)P− − 2zL1

k−1(ζ)P+

]

= i
eiΦ(rrr⊥,rrr′⊥)

2πℓ2
e−

ζ
2

n=∞
∑

n=0

1

ω2 − p32 −m2 − 2n|eB|

×
[ i

ℓ2
γγγ⊥ · (rrr⊥ − rrr′⊥)L

1
n−1(ζ)

]

(A.74)
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Appendix B

Weak field expansion of the

propagator

B.1 Power series expansion of Dirac equation

Dirac equation along with magnetic moment is given by

[

i∂/ − efA/−mf −
1

2
kfσ · F

]

S(x, x′) = δ(4)(x− x′) . (B.1)

We choose the gauge such that

Aµ = −1

2
Fµνx

ν . (B.2)

The idea is to write

S(x, x′) = φ(x, x′)

∫

d4p

(2π)4
e−ip·(x−x′)SF (p) (B.3)

with φ(x, x′) = e
i
2
efx

µFµνx′ν

(B.4)

i∂µφ = −ef
2
Fµνx

′νφ . (B.5)

In that case

(i∂µ − efAµ)S(x, x
′) = (i∂µ − efAµ)φ(x, x

′)

∫

d4p

(2π)4
e−ip·(x−x′)SF (p)

= i∂µφ

∫

d4p

(2π)4
e−ip·(x−x′)SF (p) + φ

∫

d4p

(2π)4
pµe

−ip·(x−x′)SF (p)

− efAµφ(x, x
′)

∫

d4p

(2π)4
e−ip·(x−x′)SF (p)

103
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= −ef
2
Fµνx

′νφ

∫

d4p

(2π)4
e−ip·(x−x′)SF (p) + φ

∫

d4p

(2π)4
pµe

−ip·(x−x′)SF (p)

+
ef
2
Fµνx

νφ(x, x′)

∫

d4p

(2π)4
e−ip·(x−x′)SF (p)

=
ef
2
Fµν(x− x′)νφ

∫

d4p

(2π)4
e−ip·(x−x′)SF (p)

+ φ(x, x′)

∫

d4p

(2π)4
e−ip·(x−x′)pµSF (p)

=
ef
2
Fµνφ

∫

d4p

(2π)4
i
∂

∂pν
e−ip·(x−x′)SF (p)

+ φ(x, x′)

∫

d4p

(2π)4
e−ip·(x−x′)pµSF (p)

= φ(x, x′)

∫

d4p

(2π)4
e−ip·(x−x′)

[

pµ −
i

2
efFµν

∂

∂pν

]

SF (p) . (B.6)

The Dirac equation in the momentum space representation thus becomes

[

p/− i

2
efF

µνγµ
∂

∂pν
−mf −

1

2
kfσ · F

]

SF (p) = 1 (B.7)

The strategy to obtain the power expansion is to write SF = S0 + S1. Defining the operator

Ô =
[ i

2
efF

µνγµ
∂

∂pν
+

1

2
kfσ · F

]

(B.8)

the Dirac equation can be simplified as

1 =
[

p/−mf − Ô
]

(S0 + S1)

= (p/−mf )S0 + (p/−mf )S1 − ÔS0 − ÔS1

= 1 + S−1
0 S1 − ÔS0 As ÔS1 is higher order

S1 = S0ÔS0 . (B.9)

The obtained propagator up to leading order with moment is given by :

S1 = S0ÔS0

= S0

[ i

2
efF

µνγµ
∂

∂pν
+

1

2
kfσ · F

]

S0

=
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ
∂

∂pν
+

1

2
kfσ · F

] p/+mf

p2 −m2
f + iǫ

.

(B.10)
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At kf = 0 we get

S1 =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ
∂

∂pν

] p/+mf

p2 −m2
f + iǫ

=
p/+mf

p2 −m2
f + iǫ

[ i

2
ef

F µνγµγν
p2 −m2

f + iǫ
− i

2
efF

µνγµ
(p/+mf )2pν

(p2 −m2
f + iǫ)2

]

=
p/+mf

p2 −m2
f + iǫ

[

(efB)
γ5u/b/

p2 −m2
f + iǫ

− i

2
efF

µνγµ
(p/+mf )2pν

(p2 −m2
f + iǫ)2

]

=
1

p2 −m2
f + iǫ

[

(efB)
(p/+mf )γ5u/b/

p2 −m2
f + iǫ

− i

2
efF

µν (p/+mf )γµ(p/+mf )2pν
(p2 −m2

f + iǫ)2

]

=
1

p2 −m2
f + iǫ

[

(efB)
(p/+mf )γ5u/b/

p2 −m2
f + iǫ

− i

2
efF

µν

[

2pµ − γµ(p/−mf)
]

(p/+mf)2pν

(p2 −m2
f + iǫ)2

]

=
1

p2 −m2
f + iǫ

[

(efB)
(p/+mf )γ5u/b/

p2 −m2
f + iǫ

− i

2
efF

µν

[

− γµ(p/−mf )
]

(p/+mf )2pν

(p2 −m2
f + iǫ)2

]

=
1

p2 −m2
f + iǫ

[

(efB)
(p/+mf )γ5u/b/

p2 −m2
f + iǫ

+ ief
F µνγµpν

(p2 −m2
f + iǫ)

]

=
1

p2 −m2
f + iǫ

[

(efB)
(p/+mf )γ5u/b/

p2 −m2
f + iǫ

+ ief
iBγ5u/b/p/⊥

(p2 −m2
f + iǫ)

]

=
1

p2 −m2
f + iǫ

[

(efB)
(p/|| − p/⊥ +mf )γ5u/b/

p2 −m2
f + iǫ

− (efB)
γ5u/b/p/⊥

(p2 −m2
f + iǫ)

]

=
1

p2 −m2
f + iǫ

[

(efB)
(γ5u/b/p/|| + γ5u/b/p/⊥ + γ5u/b/mf)

p2 −m2
f + iǫ

− (efB)
γ5u/b/p/⊥

(p2 −m2
f + iǫ)

]

= (efB)

[

γ5u/b/(p/|| +mf )
]

(p2 −m2
f + iǫ)2

= −i(efB)

[

γ1γ2(p/|| +mf )
]

(p2 −m2
f + iǫ)2

= (efB)

[

γ5u/b/(p
0γ0 − p3γ3 +mf )

]

(p2 −m2
f + iǫ)2

= (efB)

[

γ5(−p0b/ − p3u/+mfu/b/)
]

(p2 −m2
f + iǫ)2

[

as b/ = −γ3
]

= (efB)

[

γ5((p · b)u/− (p · u)b/+mfu/b/)
]

(p2 −m2
f + iǫ)2

. (B.11)

Following the similar strategy we write

SF = S0 + S1 + S2 (B.12)

and simplify

1 =
[

p/−mf − Ô
]

(S0 + S1 + S2)

= (p/−mf)S0 + (p/−mf )S1 + (p/−mf )S2 − ÔS0 − ÔS1
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= 1 + S−1
0 S1 + S−1

0 S2 − ÔS0 − ÔS1

= 1 + ÔS0 + S−1
0 S2 − ÔS0 − ÔS1

S2 = S0ÔS1 . (B.13)

Thus the propagator in second order along with the moment is given by

S2 = S0ÔS1 . (B.14)

where we already know S1 = S0ÔS0.

B.2 Detailed derivation of the second order term in eB

S2 =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ
∂

∂pν
+ kfBγ5u/b/

] 1

(p2 −m2
f + iǫ)2

×
[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

+ kfB
[

(p/+mf )γ5u/b/(p/+mf )
]

]

. (B.15)

We can re-write the equation as a sum of two contributions: part involving differentiation

and part without it.

S2 = D +D

where

D =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ
∂

∂pν

] 1

(p2 −m2
f + iǫ)2

[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

+ kfB
[

(p/+mf )γ5u/b/(p/+mf)
]

]

(B.16)

and

D =
p/+mf

p2 −m2
f + iǫ

[

kfBγ5u/b/
] 1

(p2 −m2
f + iǫ)2

[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

+ kfB
[

(p/+mf )γ5u/b/(p/+mf )
]

]

. (B.17)

Simplification of the first part:

D =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] −4pν
(p2 −m2

f + iǫ)3
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×
[

efBγ5
[

(p · b)u/− (p · u)b/ +mfu/b/
]

+ kfB
[

(p/+mf)γ5u/b/(p/+mf )
]

]

+
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] 1

(p2 −m2
f + iǫ)2

×
[

efBγ5
[

bνu/− uνb/
]

+ kfB
[

γνγ5u/b/(p/+mf ) + (p/+mf )γ5u/b/γν
]

]

. (B.18)

To verify the vanishing magnetic moment case we first put kf = 0 and see that D does not

contribute and the expression for D simplifies to

D =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] −4pν
(p2 −m2

f + iǫ)3

[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

]

+
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] 1

(p2 −m2
f + iǫ)2

[

efBγ5
[

bνu/− uνb/
]

]

= a+ b . (B.19)

In case of pure magnetic field

F µν = iBP µν

P µν = iǫµναβbαuβ

F µν = iBiǫµναβbαuβ

= −Bǫµναβbαuβ .

At first take a look at the second term:

b1 =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] 1

(p2 −m2
f + iǫ)2

[

efBγ5
[

bνu/
]

]

=
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµbν

] 1

(p2 −m2
f + iǫ)2

[

efBγ5
[

u/
]

]

= 0 (B.20)

using

F µνγµbν = −Bǫµναβbαbνuβγµ = −Bǫµανβbνbαuβγµ
= Bǫµναβbαbνuβγµ = −F µνγµbν (B.21)

and similar relation for F µνγµuν. We should mention here that we follow the convention

ǫ0123 = 1. The consequence of it is

1

2
σ · F = Bγ5u/b/ . (B.22)
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To be more explicit, with γµ = (γ0,−γ1,−γ2,−γ3) we have

1

2
σ · F =

1

2

i

2

[

γµ, γν
]

F µν

=
i

2
γµγνF

µν

= −Biγ1γ2 . (B.23)

where we have used the special case that magnetic field only along +ẑ we get in the rest

frame

bα = (0, 0, 0, 1), bα = (0, 0, 0,−1), uβ = (1, 0, 0, 0), uβ = (1, 0, 0, 0)

F 12 = −Bǫ1230b3u0 = Bb3u0 = −B . (B.24)

Now the simplification can be performed in a straightforward manner as:

a =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] −4pν
(p2 −m2

f + iǫ)3

[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

]

=
p/+mf

p2 −m2
f + iǫ

ief

[ −2F µνγµpν
(p2 −m2

f + iǫ)3

][

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

]

=
−2ief

(p2 −m2
f + iǫ)4

(p/+mf)
[

− B(γ1p2 − γ2p1)
]

[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

]

= (efB)2
2i

(p2 −m2
f + iǫ)4

(p/+mf)
[

(γ1p2 − γ2p1)
]

[

γ5
[

− p3γ0 + p0γ3 −mfγ
0γ3
]

= (efB)2
2i

(p2 −m2
f + iǫ)4

(p/+mf)
[

(γ1p2 − γ2p1)
]

[

ip3γ1γ2γ3 − ip0γ1γ2γ0 − imfγ
1γ2
]

= (efB)2
−2

(p2 −m2
f + iǫ)4

(p/+mf)

×
[

− p2p3γ2γ3 + p2p0γ2γ0 +mfp
2γ2 − p1p3γ1γ3 + p1p0γ1γ0 +mfp

1γ1
]

. (B.25)

Up to now we have not used any new definitions regarding parallel and perpendicular com-

ponents. Now we specify them as follows:

(a · b)|| = a0b0 − a3b3, (a · b)⊥ = a1b1 + a2b2 . (B.26)

It means :

p/ = γ0p0 − γ3p3 − γ1p1 − γ2p2 = p/|| − p/⊥, p2|| = (p0)2 − (p3)2

p2⊥ = (p1)2 + (p2)2, p/||p/|| = p2||, p/⊥p/⊥ = −p2⊥ . (B.27)
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Using the relations along with the fact that p/⊥p/|| = −p/||p/⊥ one can further simplify as:

a = (efB)2
−2

(p2 −m2
f + iǫ)4

(p/+mf)
[

p1γ1(p/|| +mf) + p2γ2(p/|| +mf)
]

= (efB)2
−2

(p2 −m2
f + iǫ)4

(p/|| − p/⊥ +mf )
[

p/⊥(p/|| +mf )
]

= (efB)2
−2

(p2 −m2
f + iǫ)4

[

(p/|| +mf )− p/⊥

][

p/⊥(p/|| +mf )
]

= (efB)2
−2

(p2 −m2
f + iǫ)4

[

(p/|| +mf )p/⊥(p/|| +mf ) + p2⊥(p/|| +mf )
]

= (efB)2
−2

(p2 −m2
f + iǫ)4

[

(p/|| +mf )(−p/|| +mf)p/⊥ + p2⊥(p/|| +mf)
]

= (efB)2
−2

(p2 −m2
f + iǫ)4

[

(m2
f − p2||)p/⊥ + p2⊥(p/|| +mf )

]

= (efB)2
−2p2⊥

(p2 −m2
f + iǫ)4

[

(p/|| +mf ) + p/⊥
m2

f − p2||
p2⊥

]

. (B.28)

From Eq.(B.17) consists of two parts: (1) The part with (kfB)(efB) is given by

D1 =
p/+mf

p2 −m2
f + iǫ

[

kfBγ5u/b/
] 1

(p2 −m2
f + iǫ)2

[

efBγ5
[

(p · b)u/− (p · u)b/+mfu/b/
]

]

=
p/+mf

(p2 −m2
f + iǫ)3

[

(kfB)(efB)
][

u/b/
[

(p · b)u/− (p · u)b/+mfu/b/
]

]

=
p/+mf

(p2 −m2
f + iǫ)3

[

(kfB)(efB)
][

− (p · b)u/u/b/− (p · u)u/b/b/−mfu/u/b/b/
]

=
p/+mf

(p2 −m2
f + iǫ)3

[

(kfB)(efB)
][

− (p · b)b/ + (p · u)u/+mf

]

=
[

(kfB)(efB)
] p/+mf

(p2 −m2
f + iǫ)3

[

− p3γ3 + p0γ0 +mf

]

=
[

(kfB)(efB)
] p/+mf

(p2 −m2
f + iǫ)3

[

p/|| +mf

]

=
[

(kfB)(efB)
](p/|| − p/⊥ +mf )(p/|| +mf )

(p2 −m2
f + iǫ)3

=
[

(kfB)(efB)
]p2|| − p/⊥p/|| +mf(2p/|| − p/⊥) +m2

f

(p2 −m2
f + iǫ)3

. (B.29)

Other terms in this order comes from D :

D2 +D4 =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] −4pν
(p2 −m2

f + iǫ)3

[

kfB
[

(p/+mf )γ5u/b/(p/+mf )
]

]

+
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] 1

(p2 −m2
f + iǫ)2

[

kfB
[

γνγ5u/b/(p/+mf ) + (p/+mf )γ5u/b/γν
]

]

.

(B.30)
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Let us calculate each part one by one:

D2 =
p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] −4pν
(p2 −m2

f + iǫ)3

[

kfB
[

(p/+mf )γ5u/b/(p/+mf)
]

]

=
[ i

2
ef (kfB)F µν(−4pν)

] 1

(p2 −m2
f + iǫ)4

[

(p/+mf)γµ(p/+mf)γ5u/b/(p/+mf )
]

=
[ i

2
ef (kfB)F µν(−4pν)

] 1

(p2 −m2
f + iǫ)4

[

(p/γµ + γµmf )(p/+mf )γ5u/b/(p/+mf )
]

=
[ i

2
ef (kfB)F µν(−4pν)

] 1

(p2 −m2
f + iǫ)4

[

(pργργµ + γµmf )(p/+mf )γ5u/b/(p/+mf)
]

=
[ i

2
ef (kfB)F µν(−4pν)

] 1

(p2 −m2
f + iǫ)4

[

(2pµ − γµγρp
ρ + γµmf )(p/+mf )γ5u/b/(p/+mf)

]

=
[ i

2
ef (kfB)F µν(−4pν)

] 1

(p2 −m2
f + iǫ)4

[

− γµ(p/−mf )(p/+mf )γ5u/b/(p/+mf)
]

=
[ i

2
ef (kfB)F µν(4γµpν)

] 1

(p2 −m2
f + iǫ)3

[

γ5u/b/(p/+mf )
]

=
[

2i(efB)(kfB)(γ2p1 − γ1p2)
] 1

(p2 −m2
f + iǫ)3

[

− iγ1γ2(p/+mf)
]

=
[

2(efB)(kfB)(γ2p1 − γ1p2)γ1γ2
] 1

(p2 −m2
f + iǫ)3

[

(p/+mf )
]

=
[

2(efB)(kfB)(γ1p1 + γ2p2)
] 1

(p2 −m2
f + iǫ)3

[

(p/+mf )
]

=
[

(efB)(kfB)
] 2p/⊥
(p2 −m2

f + iǫ)3

[

(p/+mf )
]

. (B.31)

Next we decompose the D4 into two parts and consider one at a time:

D1
4 =

p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] 1

(p2 −m2
f + iǫ)2

[

kfB
[

γνγ5u/b/(p/+mf )
]

]

= ef (kfB)
p/+mf

(p2 −m2
f + iǫ)3

[ i

2
F µνγµγνγ5u/b/(p/+mf)

]

]

= ef (kfB)
p/+mf

(p2 −m2
f + iǫ)3

[

Bγ5u/b/γ5u/b/(p/+mf )
]

]

=
[

(efB)(kfB)
](p/+mf )(p/+mf)

(p2 −m2
f + iǫ)3

=
[

(efB)(kfB)
]p2 +m2

f + 2mfp/

(p2 −m2
f + iǫ)3

=
[

(efB)(kfB)
]p2 −m2

f + 2mfp/+ 2m2
f

(p2 −m2
f + iǫ)3

=
[

(efB)(kfB)
][ 1

(p2 −m2
f + iǫ)2

+ 2mf
p/+mf

(p2 −m2
f + iǫ)3

]

. (B.32)
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D2
4 =

p/+mf

p2 −m2
f + iǫ

[ i

2
efF

µνγµ

] 1

(p2 −m2
f + iǫ)2

[

kfB
[

(p/+mf )γ5u/b/γν
]

]

=
1

(p2 −m2
f + iǫ)3

[ i

2
ef (kfB)F µν

][

(p/+mf)γµ(p/+mf )γ5u/b/γν

]

=
1

(p2 −m2
f + iǫ)3

[ i

2
ef (kfB)F µν

][

[

2pµ − γµ(p/−mf )
]

(p/+mf )γ5u/b/γν

]

=
[ i

2
ef (kfB)

] 1

(p2 −m2
f + iǫ)3

[

F µν
[

2pµ(p/+mf )γ5u/b/γν − γµ(p/−mf )(p/+mf )γ5u/b/γν
]

]

=
[ i

2
ef (kfB)

][2(p/+mf )γ5u/b/F
µνpµγν

(p2 −m2
f + iǫ)3

− F µνγµγ5u/b/γν
(p2 −m2

f + iǫ)2

]

=
[ i

2
(efB)(kfB)

][2(p/+mf )(−iγ1γ2)(p2γ1 − p1γ2)

(p2 −m2
f + iǫ)3

− γ2(−iγ1γ2)γ1 − γ1(−iγ1γ2)γ2
(p2 −m2

f + iǫ)2

]

=
[ i

2
(efB)(kfB)

][2(p/+mf )(−i)(p2γ2 + p1γ1)

(p2 −m2
f + iǫ)3

− (+i)− (−i)
(p2 −m2

f + iǫ)2

]

=
[

(efB)(kfB)
][ (p/+mf )p/⊥

(p2 −m2
f + iǫ)3

+
1

(p2 −m2
f + iǫ)2

]

. (B.33)

The term having (kfB)2 as proportional factor comes from 2nd term of D in Eq.(B.17):

D =
p/+mf

p2 −m2
f + iǫ

[

kfBγ5u/b/
] 1

(p2 −m2
f + iǫ)2

[

kfB
[

(p/+mf )γ5u/b/(p/+mf )
]

]

=
(kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf)
[

γ5u/b/(p/+mf)γ5u/b/
]

(p/+mf )
]

=
(kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf)
[

(−iγ1γ2)p/||(−iγ1γ2)− (−iγ1γ2)p/⊥(−iγ1γ2)

+ (−iγ1γ2)mf (−iγ1γ2)
]

(p/+mf )
]

= − (kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf )
[

(γ1γ2)(γ1γ2)p/|| − (γ1γ2)p/⊥(γ
1γ2)

+ (γ1γ2)(γ1γ2)mf

]

(p/+mf )
]

= − (kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf )
[

− p/|| − (γ1γ2)(γ1p1 + γ2p2)(γ1γ2)−mf

]

(p/+mf )
]

= − (kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf )
[

− p/|| − p/⊥ −mf

]

(p/+mf )
]

=
(kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf)
[

p/|| + p/⊥ +mf

]

(p/+mf )
]

. (B.34)

Thus the second order term can be written as :

S2 = (efB)2
−2p2⊥

(p2 −m2
f + iǫ)4

[

(p/|| +mf ) + p/⊥
m2

f − p2||
p2⊥

]

+
[

(efB)(kfB)
] p/+mf

(p2 −m2
f + iǫ)3

[

p/|| +mf

]
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+
[

(efB)(kfB)
] 2p/⊥
(p2 −m2

f + iǫ)3

[

(p/+mf )
]

+
[

(efB)(kfB)
][ 1

(p2 −m2
f + iǫ)2

+ 2mf
p/+mf

(p2 −m2
f + iǫ)3

]

+
[

(efB)(kfB)
][ (p/+mf )p/⊥

(p2 −m2
f + iǫ)3

+
1

(p2 −m2
f + iǫ)2

]

+
(kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf )
[

p/|| + p/⊥ +mf

]

(p/+mf )
]

= (efB)2
−2p2⊥

(p2 −m2
f + iǫ)4

[

(p/|| +mf ) + p/⊥
m2

f − p2||
p2⊥

]

+ (efB)(kfB)
[ p/+mf

(p2 −m2
f + iǫ)3

(p/|| + 3mf )

+
2p/⊥

(p2 −m2
f + iǫ)3

(p/+mf ) +
(p/+mf )p/⊥

(p2 −m2
f + iǫ)3

+
2

(p2 −m2
f + iǫ)2

]

+
(kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf )
[

p/|| + p/⊥ +mf

]

(p/+mf )
]

. (B.35)

Further we can reduce the second term as :

S
efkf
2 = (efB)(kfB)

[ p/+mf

(p2 −m2
f + iǫ)3

(p/|| + 3mf ) +
2p/⊥

(p2 −m2
f + iǫ)3

(p/+mf)

+
(p/+mf)p/⊥

(p2 −m2
f + iǫ)3

+
2

(p2 −m2
f + iǫ)2

]

= (efB)(kfB)
[p2|| + 4mfp/|| + 3p2⊥ + 3m2

f

(p2 −m2
f + iǫ)3

+
2

(p2 −m2
f + iǫ)2

]

= (efB)(kfB)
[4(p2|| +mfp/||)− 3(p2 −m2

f )

(p2 −m2
f + iǫ)3

+
2

(p2 −m2
f + iǫ)2

]

= (efB)(kfB)
[ 4p/||(p/|| +mf)

(p2 −m2
f + iǫ)3

− 1

(p2 −m2
f + iǫ)2

]

. (B.36)

Thus, the weak field propagator along with anomalous magnetic moment is given by:

S2 = (efB)2
−2p2⊥

(p2 −m2
f + iǫ)4

[

(p/|| +mf ) + p/⊥
m2

f − p2||
p2⊥

]

+ (efB)(kfB)
[ 4p/||(p/|| +mf )

(p2 −m2
f + iǫ)3

− 1

(p2 −m2
f + iǫ)2

]

+
(kfB)2

(p2 −m2
f + iǫ)3

[

(p/+mf )
[

p/|| + p/⊥ +mf

]

(p/+mf)
]

. (B.37)



Appendix C

Walecka model

C.1 Calculation of Σ
(vacuum)
s

We have from Eq. (3.38),

Σ(vacuum)
s =

(

g2σNN

m2
σ

)

Re i

∫

ddp

(2π)d
T̂ (p,m∗

N , m1)
1

p2 −m2
1 + iǫ

∣

∣

∣

∣

m1=m∗
N
,d→4

(C.1)

In order to perform the d4p integration, we use the following identities [202]

∫

ddp

(2π)d

(

1

p2 −∆

)

=
−i

(4π)d/2
Γ

(

1− d

2

)(

1

∆

)1−d/2

(C.2)

∫

ddp

(2π)d

(

p2⊥
p2 −∆

)

=
i

(4π)d/2

(

d

4

)

Γ

(

−d
2

)(

1

∆

)−d/2

(C.3)

∫

ddp

(2π)d

(

p2‖
p2 −∆

)

=
i

(4π)d/2

(

d

4

)

Γ

(

−d
2

)(

1

∆

)−d/2

(C.4)

∫

ddp

(2π)d

(

p2

p2 −∆

)

=
i

(4π)d/2

(

d

2

)

Γ

(

−d
2

)(

1

∆

)−d/2

(C.5)

so that, Eq. (C.1) will become

Σ(vacuum)
s = ReΣ(pure vacuum)

s + Σ(divergent)
s + Σ(regular)

s (C.6)

where ReΣ
(pure vacuum)
s is the ultra-violate divergent pure vacuum contribution given in Eq. 3.34

and

Σ(divergent)
s = −

(

g2σNN

4π2m2
σ

)

{

(κpB)2m∗
N + (κnB)2m∗

N + (|e|B) (κpB)
}

113
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× Γ

(

2− d

2

)(

1

m∗2
N

)2−d/2
∣

∣

∣

∣

∣

d→4

(C.7)

Σ(regular)
s =

(

g2σNN

4π2m2
σ

)

[

(eB)2

3m∗
N

+
1

2

{

(κpB)2m∗
N + (κnB)2m∗

N + (|e|B) (κpB)
}

]

. (C.8)

In this case also, we will neglect the pure vacuum contribution ReΣ
(pure vacuum)
s which is

equivalent to use the MFT. We now extract the divergence of Σ
(divergent)
s from the pole of the

Gamma function and use MS scheme to obtain,

Σ(divergent)
s =

(

g2σNN

4π2m2
σ

)

{

(κpB)2m∗
N + (κnB)2m∗

N + (|e|B) (κpB)
}

ln

(

m∗2
N

Λ

)

(C.9)

where Λ is a scale of dimension GeV2. Its value is fixed from the condition

Σ(divergent)
s (m∗

N = mN ) = 0 (C.10)

which gives Λ = m2
N . So the final expression of Σ

(vacuum)
s becomes

Σ(vacuum)
s =

(

g2σNN

4π2m2
σ

)

[

(eB)2

3m∗
N

+
{

(κpB)2m∗
N + (κnB)2m∗

N + (|e|B) (κpB)
}

×
{

1

2
+ 2 ln

(

m∗
N

mN

)}]

. (C.11)

C.2 Calculation of Σ
(medium)
s

We have from Eq. (3.39)

Σ(medium)
s = −

(

g2σNN

m2
σ

)
∫

d4p

(2π)4
T̂ (p,m∗

N , m1) 2πη (p · u) δ
(

p2 −m2
1

)

∣

∣

∣

m1=m∗
N

(C.12)

where T̂ (p,m∗
N , m1) is given in Eq. (3.40). Using Eqs. (3.15) and (3.16), we can write the

above equation as,

Σ(medium)
s = −

(

g2σNN

m2
σ

)
∫

d3p

(2π)3

∫ +∞

−∞

dp0T̂
(

p0, ~p,m∗
N , m1

)

(

1

2ω1

)

×
[

f+ (ω1) δ
(

p0 − ω1

)

+ f− (ω1) δ
(

p0 + ω1

)

]

m1=m∗
N
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where ω1 =
√

~p2 +m2
1. Performing the dp0 integration using the Dirac delta functions and

noting that T̂ (p0, ~p,m∗
N , m1) is an even function of p0, we get

Σ(medium)
s =−

(

g2σNN

2m2
σ

)
∫

d3p

(2π)3
T̂
(

p0 = Ωp, ~p,m
∗
N , m1

)

(

1

ω1

)

[

f+ (ω1) + f− (ω1)
]

m1=m∗
N

(C.13)

Substituting Eq. (3.40) into (C.13) and performing the angular integration we get,

Σ(medium)
s =−

(

g2σNN

8π2m2
σ

)
∫ ∞

0

|~p|2 d |~p| B̂ (~p,m∗
N , m1)

(

1

ω1

)

[

f+ (ω1) + f− (ω1)
]

m1=m∗
N

(C.14)

where,

B̂ (~p,m∗
N , m1) = 16m∗

N +
32

3
(eB)2m∗

N |~p|2 Â3 + 16

(

2m∗2
N +

4

3
|~p|2
)

×
{

m∗
N (κpB)2 +m∗

N (κnB)2 + (|e|B) (κpB)
}

Â2 . (C.15)

C.2.1 Zero Temperature Case

From Eq. (3.16) we have at T = 0,

lim
T→0

f± (ω1) = Θ (±µB − ω1) (C.16)

where µB is the baryon chemical potential of the medium. Substituting Eq. (C.16) into

(C.14) we get,

Σ(medium)
s = −

(

g2σNN

8π2m2
σ

)
∫ ∞

0

|~p|2 d |~p| B̂ (~p,m∗
N , m1)

1

ω1
Θ (µB − ω1)

∣

∣

∣

∣

m1=m∗
N

.(C.17)

The the d |~p| integration of the above equation can be evaluated analytically using the

following identities

I2 (µ,m) =

∫

√
µ2−m2

0

|~p|2 d |~p|
√

|~p|2 +m2

=
1

2

[

µ
√

µ2 −m2 +m2 ln

{

m

µ+
√

µ2 −m2

}]

(C.18)

I4 (µ,m) =

∫

√
µ2−m2

0

|~p|4 d |~p|
√

|~p|2 +m2

=
1

8

[

µ
(

2µ2 − 5m2
)
√

µ2 −m2 − 3m4 ln

{

m

µ+
√

µ2 −m2

}]

(C.19)
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and we get,

Σ(medium)
s = −

(

2g2σNN

π2m2
σ

)[

m∗
NI2 (µB, m1) +

2

3
(eB)2m∗

N Â3I4 (µB, m1)

+2
{

m∗
N (κpB)2 +m∗

N (κnB)2 + (|e|B) (κpB)
}

×
{

m∗2
N Â2I2 (µB, m1) +

1

3
Â2I4 (µB, m1)

}]

m1=m∗
N

. (C.20)

It is now trivial to check that

Â2I2 (µ,m1)
∣

∣

∣

m1=m∗
N

= 2Â3I4 (µ,m1)
∣

∣

∣

m1=m∗
N

=
µ

8m∗2
N

√

µ2 −m∗2
N

= C1 (µ,m
∗
N) (C.21)

Â2I4 (µ,m1)
∣

∣

∣

m1=m∗
N

= −
(

3

8

)

ln

{

m∗
N

µ+
√

µ2 −m∗2
N

}

= C2 (µ,m
∗
N) (say) . (C.22)

So finally Σ
(medium)
s becomes,

Σ(medium)
s = −

(

2g2σNN

π2m2
σ

)[

m∗
NI2 (µB, m

∗
N) +

1

3
(eB)2m∗

NC1 (µB, m
∗
N) + 2

{

m∗
N (κpB)2

+m∗
N (κnB)2 + (|e|B) (κpB)

}

{

m∗2
NC1 (µB, m

∗
N) +

1

3
C2 (µB, m

∗
N )

}]

. (C.23)

C.2.2 Finite Temperature Case

At finite temperature, the d |~p| integration in Eq. (C.14) can not be performed analytically.

We simplify the expression by evaluating the derivatives with respect to m2
1 explicitly. For

this we use the following results

[

f± (ω1)

ω1

]

m1=m∗
N

=
Np

±

Ωp
= C̃±p

1 (C.24)

Â2

[

f± (ω1)

ω1

]

m1=m∗
N

=
Np

±

8Ω5
p

[

3 + 3 (1−Np
±) βΩp +

{

1− 3Np
± + 2 (Np

±)
2
}

β2Ω2
p

]

= C̃±p
2

(C.25)

Â3

[

f± (ω1)

ω1

]

m1=m∗
N

=
Np

±

48Ω7
p

[

15 + 15 (1−Np
±)βΩp + 6

{

1− 3Np
± + 2 (Np

±)
2
}

β2Ω2
p

+
{

1− 7Np
± + 12 (Np

±)
2 − 6 (Np

±)
3
}

β3Ω3
p

]

= C̃±p
3 (say) (C.26)

and obtain from Eq. (C.14)

Σ(medium)
s = −

(

2g2σNN

π2m2
σ

)
∫ ∞

0

|~p|2 d |~p|
[

m∗
N

(

C̃+p
1 + C̃−p

1

)

+
2

3
m∗

N (eB)2 |~p|2
(

C̃+p
3 + C̃−p

3

)
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+2

(

m∗2
N +

2

3
|~p|2
)

{

m∗
N (κpB)2 +m∗

N (κnB)2 + (|e|B) (κpB)
}

(

C̃+p
2 + C̃−p

2

)

]

(C.27)
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Appendix D

Calculation of the self-energy of ρ

meson

D.1 Useful Identities

We have the following list of d-dimensional integrals in Minkowski space [202]:

∫

ddk

(2π)d
1

(k2 −∆)n
=

i (−1)n

(4π)d/2
Γ (n− d/2)

Γ (n)

(

1

∆

)n−d/2

(D.1)

∫

ddk

(2π)d
k2

(k2 −∆)n
=

i (−1)n−1

(4π)d/2

(

d

2

)

Γ (n− 1− d/2)

Γ (n)

(

1

∆

)n−1−d/2

(D.2)

∫

ddk

(2π)d
kµkν

(k2 −∆)n
=

i (−1)n−1

(4π)d/2

(

gµν

2

)

Γ (n− 1− d/2)

Γ (n)

(

1

∆

)n−1−d/2

. (D.3)

Using the orthogonality properties of the generalized Laguerre polynomials, one can

derive the identity

∫

d2k⊥
(2π)2

e−2αkLl(2αk)Ln(2αk)k
µ
⊥k

ν
⊥ = −gµν⊥

(eB)2

32π

[

(2n + 1)δnl − (n+ 1)δn+1
l − nδn−1

l

]

(D.4)

where, αk = −k2⊥/eB. Other relevant identities used in the calculations are

∫

d2k⊥
(2π)2

e−2αkLl(2αk)Ln(2αk) =
eB

8π
δnl (D.5)

∫

d2k⊥
(2π)2

e−2αkL1
l−1(2αk)L

1
n−1(2αk)k

µ
⊥k

ν
⊥ = −gµν⊥

(eB)2

32π
nδn−1

l−1 (D.6)

∫

d2k⊥
(2π)2

e−2αkL1
l−1(2αk)L

1
n−1(2αk)k

2
⊥ = −(eB)2

16π
nδn−1

l−1 . (D.7)
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D.2 Calculation of Vacuum Self Energy

In order to evaluate the momentum integrals in Eqs. (4.3) and (4.4), they are rewritten as

(Πµν
π )pure-vac (q) = i

∫

d4k

(2π)4
N µν

π (q, k)

(k2 −m2
π + iǫ)((q + k)2 −m2

π + iǫ)
(D.8)

(Πµν
N )pure-vac (q) = i

∫

d4k

(2π)4
N µν

N (q, k)

(k2 −m2
N + iǫ)((q + k)2 −m2

N + iǫ)
(D.9)

where, N µν
N (q, k) contains the trace over Dirac matrices:

N µν
N (q, k) = −2g2ρNNTr

[

Γν(q)(✁q +✓✓k +mN )Γ
µ(−q)(✓✓k +mN)

]

= −8g2ρNN

[

(m2
N − k2 − k · q)gµν + 2kµkν + (qµkν + qνkµ) + κρ

(

q2gµν − qµqν
)

+
κ2ρ

4m2
N

{

(m2
N + k2 − k · q)(q2gµν − qµqν)

−2q2kµkν − 2(k · q)2gµν + 2(k · q)(qµkν + qνkµ)
}]

. (D.10)

Applying standard Feynman paramerization, the denominators of Eqs. (D.8) and (D.9) are

combined to get,

(Πµν
π )pure-vac (q) = i

∫ 1

0

dx

∫

ddk

(2π)d
Λ2−d/2

π

N µν
π (q, k)

[(k + xq)2 −∆π]
2

∣

∣

∣

∣

∣

d→4

(D.11)

(Πµν
N )pure-vac (q) = i

∫ 1

0

dx

∫

ddk

(2π)d
Λ

2−d/2
N

N µν
N (q, k)

[(k + xq)2 −∆N]
2

∣

∣

∣

∣

∣

d→4

(D.12)

where,

∆π = m2
π − x(1− x)q2 − iǫ (D.13)

∆N = m2
N − x(1− x)q2 − iǫ (D.14)

and the space-time dimension has been changed from 4 to d in order to work with the

dimensional regularization so that the additional scale parameters Λπ and ΛN of dimension

GeV2 have been introduced to keep the overall dimension of the self energy same. It is

now straight forward to perform the momentum integrals of the above equations after a

momentum shift k → (k − xq) using the identities provided in Appendix D.1, so that, the

vacuum self energies becomes

(Πµν
π )pure-vac (q) = (q2gµν − qµqν)

(

g2ρππq
2

32π2

)
∫ 1

0

dxΓ(ε− 1)

(

∆π

4πΛπ

)−ε
∣

∣

∣

∣

∣

ε→0

(D.15)
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(Πµν
N )pure-vac (q) = (q2gµν − qµqν)

(

g2ρNN

2π2

)
∫ 1

0

dx

[{

2x(1− x) + κρ +
κ2ρ
2

}

Γ(ε)

+
κ2ρ

4m2
N

∆NΓ(ε− 1)

](

∆N

4πΛN

)−ε
∣

∣

∣

∣

∣

ε→0

(D.16)

where ε = (2− d/2). Expanding the above equations about ε = 0, we get

(Πµν
π )pure-vac (q) = (q2gµν − qµqν)

(−g2ρππq2
32π2

)

×
∫ 1

0

dx∆π

[

1

ε
− γE + 1− ln

(

∆π

4πΛπ

)]

∣

∣

∣

∣

∣

ε→0

(D.17)

(Πµν
N )pure-vac (q) = (q2gµν − qµqν)

(

g2ρNN

2π2

)
∫ 1

0

dx

[{

2x(1− x) + κρ +
κ2ρ
2

− κ2ρ
4m2

N

∆N

}

×
{

1

ε
− γE − ln

(

∆N

4πΛN

)}

− κ2ρ
4m2

N

∆N

]

∣

∣

∣

∣

∣

ε→0

(D.18)

where, γE is the Euler-Mascheroni constant.

D.3 Calculation of eB-dependent Vacuum Contribu-

tion for ππ Loop

In this appendix, we sketch how to obtain Eqs. (4.46) and (4.48). We rewrite Eq. (4.44) as

(Πµν
π )vac (q, eB) = i

∞
∑

l=0

∞
∑

n=0

∫

d2k‖
(2π)2

∫

d2k⊥
(2π)2

N µν
π,nl(q, k)

(k2‖ −m2
l + iǫ)((q‖ + k‖)2 −m2

n + iǫ)
(D.19)

For the simplicity in analytic calculations, we take the transverse momentum of the ρ0 to

be zero i.e. q⊥ = 0. This implies that the d2k⊥ integration can be performed analytically

using the orthogonality of the Laguerre polynomial details of which can be obtained from

Appendix D.5, so that the self energy becomes

(Πµν
π )vac (q‖, eB) = i

∞
∑

l=0

∞
∑

n=0

∫

d2k‖
(2π)2

Ñ µν
π,nl(q‖, k‖)

(k2‖ −m2
l + iǫ)((q‖ + k‖)2 −m2

n + iǫ)
(D.20)

where, Ñ µν
π,nl(q‖, k‖) is given in Eq. (D.41). Next, we use the standard Feynman parametriza-

tion technique to combine the denominators of Eq. (D.20) and change the reduced space-time

dimension from 2 to d in order to apply the dimensional regularization for which a scale pa-

rameter Λπ of dimension GeV2 has to be introduced in order to keep the overall dimension
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of the self energy same. This leads to

(Πµν
π )vac (q‖, eB) = i

∞
∑

l=0

∞
∑

n=0

∫ 1

0

dx

∫

ddk‖
(2π)d

Λ1−d/2
π

Ñ µν
π,nl(q‖, k‖)

[

(k‖ + xq‖)2 −∆π
nl

]2

∣

∣

∣

∣

∣

d→2

(D.21)

where,

∆π
nl = ∆π(q⊥ = 0) + 2eB {l + 1− x(l − n)} (D.22)

with ∆π is defined in Eq. (D.13). It is now trivial to perform the ddk‖ integration after a

shift of momentum k‖ → (k‖ − xq‖) using the identities provided in Appendix D.1, so that

the self energy becomes

(Πµν
π )vac (q‖, eB) =

−g2ρππq2‖
16π2

eB

∫ 1

0

dx
∞
∑

n=0

(n+1)
∑

l=(n−1)

(−1)n+l (4πΛπ)
ε

×
[

− (q2‖g
µν
‖ − qµ‖ q

ν
‖ )δ

n
l Γ(ε) (∆

π
nl)

−ε − q2‖g
µν
⊥

eB

2
{(2n+ 1)δnl

−(n + 1)δn+1
l − nδn−1

l

}

Γ(ε+ 1) (∆π
nl)

−ε−1

]∣

∣

∣

∣

∣

ε→0

(D.23)

where ε = (1 − d/2) and the presence of Kronecker delta functions in Eq. (D.41) has made

the double sum into a single one or in other words the sum over index l runs only from

(n − 1) to (n + 1). The infinite sum in the above equations can be expressed in terms of

Hurwitz zeta function so that we get after some simplifications

(Πµν
π )vac(q‖, eB) =

−g2ρππq2‖
16π2

eB

∫ 1

0

dx

(

4πΛπ

2eB

)ε [

−(q2‖g
µν
‖ − qµ‖ q

ν
‖ )Γ(ε)ζ

(

ε, zπ +
1

2

)

−
q2‖
2
gµν⊥ Γ(ε+ 1)

{

ζ

(

ε, zπ +
1

2

)

+ ζ

(

ε, zπ + x+
1

2

)

−zπζ
(

ε+ 1, zπ +
1

2

)

− zπζ

(

ε+ 1, zπ + x+
1

2

)}]

∣

∣

∣

∣

∣

ε→0

. (D.24)

where, zπ = ∆π(q⊥=0)
2eB

. Expanding the above equation about ε = 0, we get,

(Πµν
π )vac (q‖, eB) =

−g2ρππq2‖
32π2

∫ 1

0

dx

[{

1

ε
− γE + ln

(

4πΛπ

2eB

)}

∆π(q⊥ = 0)(q2‖g
µν − qµ‖ q

ν
‖ )

−(q2‖g
µν
‖ − qµ‖ q

ν
‖ )2eB

{

ln Γ

(

zπ +
1

2

)

− ln
√
2π

}

+q2‖g
µν
⊥

{

∆π(q⊥ = 0) +
eB

2
− 1

2
∆π(q⊥ = 0)
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×
{

ψ

(

zπ +
1

2

)

+ ψ

(

zπ + x+
1

2

)}}]

∣

∣

∣

∣

∣

ε→0

(D.25)

where, ψ(z) is the digamma function. It is now trivial to check that, in the limit eB → 0,

the above equation exactly boils down to the pure vacuum contribution given in Eq. (4.9).

Thus extracting the pure vacuum contribution from the above equation we get,

(Πµν
π )vac (q‖, eB) = (Πµν

π )pure-vac (q‖) + (Πµν
π )eB-vac (q‖, eB) (D.26)

where,

(Πµν
π )eB-vac (q‖, eB) =

−g2ρππq2‖
32π2

∫ 1

0

dx

[{

ln

(

∆π(q⊥ = 0)

2eB

)

− 1

}

∆π(q⊥ = 0)(q2‖g
µν − qµ‖ q

ν
‖ )

−(q2‖g
µν
‖ − qµ‖ q

ν
‖ )2eB

{

ln Γ

(

zπ +
1

2

)

− ln
√
2π

}

+ q2‖g
µν
⊥

{

∆π(q⊥ = 0)

+
eB

2
− 1

2
∆π(q⊥ = 0)

{

ψ

(

zπ +
1

2

)

+ ψ

(

zπ + x+
1

2

)}

}

]

(D.27)

which is finite and independent of scale.

D.4 Calculation of eB-dependent Vacuum Contribu-

tion for proton-proton Loop

In this appendix, we sketch how to obtain Eqs. (4.47) and (4.49) We rewrite Eq. (4.45) as

(

Πµν
p

)

vac
(q, eB) = i

∞
∑

l=0

∞
∑

n=0

∫

d2k‖
(2π)2

∫

d2k⊥
(2π)2

N µν
p,nl(q, k)

(k2‖ −M2
l + iǫ)((q‖ + k‖)2 −M2

n + iǫ)
(D.28)

where, N µν
p,nl(q, k) is given in Eq. (4.42). For the simplicity in analytic calculations, we

take the transverse momentum of the ρ0 to be zero i.e. q⊥ = 0. This implies that the d2k⊥

integration can be performed analytically using the orthogonality of the Laguerre polynomial

details of which can be obtained from Appendix D.5, so that the self energy becomes

(

Πµν
p

)

vac
(q‖, eB) = i

∞
∑

l=0

∞
∑

n=0

∫

d2k‖
(2π)2

Ñ µν
p,nl(q‖, k‖)

(k2‖ −M2
l + iǫ)((q‖ + k‖)2 −M2

n + iǫ)
(D.29)

where, Ñ µν
p,nl(q‖, k‖) can be read off from Eq. (D.44). Next, we use the standard Feynman

parametrization technique to combine the denominators of Eq. (D.29) and change the re-

duced space-time dimension from 2 to d in order to apply the dimensional regularization for
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which a scale parameter ΛN of dimension GeV2 has to be introduced in order to keep the

overall dimension of the self energy same. This leads to

(

Πµν
p

)

vac
(q‖, eB) = i

∞
∑

l=0

∞
∑

n=0

∫ 1

0

dx

∫

ddk‖
(2π)d

Λ
1−d/2
N

Ñ µν
p,nl(q‖, k‖)

[

(k‖ + xq‖)2 −∆p
nl

]2

∣

∣

∣

∣

∣

d→2

(D.30)

where,

∆p
nl = ∆N(q⊥ = 0) + 2eB {l − x(l − n)} (D.31)

with ∆N is defined in Eq. (D.14). Performing the ddk‖ integration after a shift of momentum

k‖ → (k‖ − xq‖) the self energy becomes

(

Πµν
p

)

vac
(q‖, eB) =

g2ρNN

4π2
eB

∫ 1

0

dx
∞
∑

n=0

(n+1)
∑

l=(n−1)

(−1)n+l (4πΛπ)
ε

[

[

4eBgµν‖ nδn−1
l−1

+
{

(m2
N + x(1 − x)q2‖)g

µν
‖ − 2x(1− x)qµ‖ q

ν
‖

}

(

δn−1
l−1 + δnl

)

− gµν⊥ (m2
N + x(1− x)q2‖)

(

δnl−1 + δn−1
l

)

]

Γ(ε+ 1) (∆p
nl)

−ε−1

−
{

gµν‖
(

δn−1
l−1 + δnl

)

ε+ gµν⊥
(

δnl−1 + δn−1
l

)

(−ε+ 1)
}

Γ(ε) (∆p
nl)

−ε

+ κρ

{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )
(

δn−1
l−1 + δnl

)

− q2‖g
µν
⊥

(

δnl−1 + δn−1
l

)

}

Γ(ε+ 1) (∆p
nl)

−ε−1

+
κ2ρ

4m2
N

[

{

−4eBnδn−1
l−1 + (m2

N + x(1− x)q2‖)
(

δn−1
l−1 + δnl

)}

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

−q2‖(m2
N + x(1 + x)q2‖)g

µν
⊥

(

δnl−1 + δn−1
l

)]

Γ(ε+ 1) (∆p
nl)

−ε−1

− κ2ρ
4m2

N

{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )(−ε− 1)

(

δn−1
l−1 + δnl

)

+ q2‖g
µν
⊥

(

δnl−1 + δn−1
l

)

ε
}

Γ(ε) (∆p
nl)

−ε

]∣

∣

∣

∣

∣

ε→0

(D.32)

where ε = (1 − d/2) and the presence of Kronecker delta functions in Eq. (D.44) has made

the double sum into a single one or in other words the sum over index l runs only from

(n − 1) to (n + 1). The infinite sum in the above equations can be expressed in terms of

Hurwitz zeta function so that we get after some simplifications

(

Πµν
p

)

vac
(q‖, eB) =

g2ρππ
4π2

∫ 1

0

dx

(

4πΛN

2eB

)ε
[

[

2eBgµν‖ {ζ(ε, zN)− zNζ(ε+ 1, zN)}

+
{

(m2
N + x(1− x)q2‖)g

µν
‖ − 2x(1− x)qµ‖ q

ν
‖

}

{

ζ(ε+ 1, zN)−
1

2
z−ε−1
N

}

+(m2
N + x(1− x)q2‖)g

µν
⊥ ζ(ε+ 1, zN + x)

]

Γ(ε+ 1)− 2eB

{

gµν‖ ε

(

ζ(ε, zN)−
1

2
z−ε
N

)
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+gµν⊥ (ε− 1)ζ(ε, zN + x)
}

Γ(ε) + κρ

{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

(

ζ(1 + ε, zN)−
1

2
z−ε−1
N

)

+q2‖g
µν
⊥ ζ(ε+ 1, zN + x)

}

Γ(ε+ 1) +
κ2ρ

4m2
N

[{

−2eB
(

ζ(ε, zN)− zNζ(ε+ 1, zN)
)

+(m2
N + x(1 − x)q2‖)

(

ζ(ε+ 1, zN)−
1

2
z−ε−1
N

)}

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

+q2‖g
µν
⊥ (m2

N + x(1− x)q2‖)ζ(ε+ 1, zN + x)
]

Γ(ε+ 1) +
κ2ρ

4m2
N

2eB
{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )(ε+ 1)

×
(

ζ(ε, zN)−
1

2
z−ε
N

)

+ q2‖g
µν
⊥ εζ(ε, zN + x)

}

Γ(ε)

]∣

∣

∣

∣

∣

ε→0

, (D.33)

where, zN = ∆N (q⊥=0)
2eB

. Expanding the above equation about ε = 0, we get,

(

Πµν
p

)

vac
(q‖, eB) =

g2ρNN

4π2

∫ 1

0

dx

[

{

1

ε
− γE + ln

(

4πΛN

2eB

)}

×
{

2x(1− x) + κρ +
κ2ρ
2

− κ2ρ
4m2

N

∆N(q⊥ = 0)

}

(q2‖g
µν − qµ‖ q

ν
‖ )

− 2x(1− x)

(

ψ(zN) +
1

2zN

)

(q2‖g
µν
‖ − qµ‖ q

ν
‖ ) + 2eBgµν⊥

{(

zN − m2
N

eB

)

ψ(zN + x) + zN

+ lnΓ(z + x)− ln
√
2π
}

− κρ

{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

(

ψ(zN) +
1

2zN

)

+ q2‖g
µν
⊥ ψ(z + x)

}

+
κ2ρ

4m2
N

2eB

[

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

{

−m
2
N

eB

(

ψ(zN ) +
1

2zN

)

+
1

2
ln(zN ) + ln Γ(zN)− ln

√
2π

}

−q2‖gµν⊥
{(

m2
N

eB
− zN

)

ψ(zN + x) + ∆N (q⊥ = 0)

}]

∣

∣

∣

∣

∣

ε→0

. (D.34)

It is now trivial to check that, in the limit eB → 0, the above equation exactly boils down to

the 1
2
times pure vacuum contribution given in Eq. (4.10). Thus extracting the pure vacuum

contribution from the above equation we get,

(

Πµν
p

)

vac
(q‖, eB) =

1

2
(Πµν

N )pure-vac (q‖) +
(

Πµν
p

)

eB-vac
(q‖, eB) (D.35)

where,

(

Πµν
p

)

eB-vac
(q‖, eB) =

g2ρNN

4π2

∫ 1

0

dx

[

ln

(

∆N(q⊥ = 0)

2eB

)

× (q2‖g
µν − qµ‖ q

ν
‖ )

{

2x(1− x) + κρ +
κ2ρ
2

− κ2ρ
4m2

N

∆N(q⊥ = 0)

}

− 2x(1− x)

(

ψ(zN) +
1

2zN

)

(q2‖g
µν
‖ − qµ‖ q

ν
‖ ) + 2eBgµν⊥

{(

zN − m2
N

eB

)

ψ(zN + x) + zN

+ lnΓ(z + x)− ln
√
2π
}

− κρ

{

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

(

ψ(zN) +
1

2zN

)

+ q2‖g
µν
⊥ ψ(z + x)

}
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+
κ2ρ

4m2
N

2eB

[

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )

{

−m
2
N

eB

(

ψ(zN ) +
1

2zN

)

+
1

2
ln(zN ) + lnΓ(zN )− ln

√
2π

}

−q2‖gµν⊥
{(

m2
N

eB
− zN

)

ψ(zN + x) + ∆N(q⊥ = 0)

}

+
κ2ρ

4m2
N

(q2‖g
µν − qµ‖ q

ν
‖ )∆N(q⊥ = 0)

]

(D.36)

which is finite and independent of scale.

D.5 Analytic Evaluation of d2k⊥ Integral for q⊥ = 0

In this appendix we will calculate the quantities

Ñ µν
π,nl(q‖, k‖) =

∫

d2k⊥
(2π)2

N µν
π,nl(q‖, q⊥ = 0, k) (D.37)

Ñ µν
p,nl(q‖, k‖) =

∫

d2k⊥
(2π)2

N µν
p,nl(q‖, q⊥ = 0, k) . (D.38)

We have the expression for N µν
π,nl(q, k) from Eqs. (4.40) and (4.7) as

N µν
π,nl(q, k) = 4g2ρππ(−1)n+le−αk−αpLl(2αk)Ln(2αp)

×
[

q4kµkν + (q · k)2qµqν − q2(q · k)(qµkν + qνkµ)
]

(D.39)

which for q⊥ = 0 becomes

N µν
π,nl(q‖, k) = 4g2ρππ(−1)n+le−2αkLl(2αk)Ln(2αk)

×
[

q4‖k
µkν + (q‖ · k‖)2qµ‖ qν‖ − q2‖(q‖ · k‖)(qµ‖kν + qν‖k

µ)
]

. (D.40)

We now perform the d2k⊥ integration using the orthogonality of the Laguerre polynomial

(identities provided in Appendix D.1) to obtain

Ñ µν
π,nl(q‖, k‖) = 4g2ρππ(−1)n+l eB

8π

×
[{

q4‖k
µ
‖k

ν
‖ + (q‖ · k‖)2qµ‖ qν‖ − q2‖(q‖ · k‖)(qµ‖kν‖ + qν‖k

µ
‖ )
}

δnl

−q4‖gµν⊥
eB

4

{

(2n+ 1)δnl − (n + 1)δn+1
l − nδn−1

l

}

]

. (D.41)

Similarly, N µν
p,nl(q, k) is obtained from Eq. (4.42) as

N µν
p,nl(q, k) = −g2ρNN (−1)n+le−αk−αpTr [Γν(q)Dn(q + k)Γµ(q−)Dl(k)] . (D.42)
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Evaluating the trace over the Dirac matrices in the above equation, we get for q⊥ = 0

(considering the Lorentz symmetric part since the self energy should be symmetric in the

two Lorentz indices)

N µν
p,nl(q‖, k) = −8g2ρNN(−1)n+le−2αk

[

8(2kµ⊥k
ν
⊥ − k2⊥g

µν)L1
l−1(2αk)L

1
n−1(2αk)

+
{

(m2
N − k2‖ − k‖ · q‖)gµν‖ + 2kµ‖k

ν
‖ + (qµ‖ k

ν
‖ + qν‖k

µ
‖ )
}

×
{

Ll−1(2αk)Ln−1(2αk) + Ll(2αk)Ln(2αk)
}

− (m2
N − k2‖ − k‖ · q‖)gµν⊥

{

Ll(2αk)Ln−1(2αk) + Ll−1(2αk)Ln(2αk)
}

+ κρ

[

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )
{

Ll−1(2αk)Ln−1(2αk) + Ll(2αk)Ln(2αk)
}

−q2‖gµν⊥
{

Ll(2αk)Ln−1(2αk) + Ll−1(2αk)Ln(2αk)
}]

+
κ2ρ

4m2
N

[

8
{

k2⊥(q
2
‖g

µν − qµ‖ q
ν
‖ )− q2‖g

µν
⊥

{

Ll(2αk)Ln−1(2αk) + Ll−1(2αk)Ln(2αk)
}}

−
{

2(k‖ · q‖)2gµν‖ + 2q2‖k
µ
‖k

ν
‖ − 2(k‖ · q‖)(qµ‖kν‖ + qν‖k

µ
‖ )− (m2

N + k2‖ − k‖ · q‖)(q2‖gµν‖ − qµ‖ q
ν
‖ )
}

×
{

Ll−1(2αk)Ln−1(2αk) + Ll(2αk)Ln(2αk)
}

− gµν⊥
{

q2‖(m
2
N + k2‖ − k‖ · q‖)− 2(k‖ · q‖)2

}

×
{

Ll(2αk)Ln−1(2αk) + Ll−1(2αk)Ln(2αk)
}]

]

. (D.43)

We now perform the d2k⊥ integration using the orthogonality of the Laguerre polynomial

(identities provided in Appendix D.1) to obtain,

Ñ µν
p,nl(q‖, k‖) = −g2ρNN(−1)n+l eB

π

[

4eBgµν‖ nδn−1
l−1 +

(

δn−1
l−1 + δnl

)

×
{

(m2
N − k2‖ − k‖ · q‖)gµν‖ + 2kµ‖k

ν
‖ + (qµ‖k

ν
‖ + qν‖k

µ
‖ )
}

− (m2
N − k2‖ − k‖ · q‖)gµν⊥

(

δnl−1 + δn−1
l

)

+ κρ

[

(q2‖g
µν
‖ − qµ‖ q

ν
‖ )
(

δn−1
l−1 + δnl

)

− q2‖g
µν
⊥

(

δnl−1 + δn−1
l

)

]

+
κ2ρ

4m2
N

[

−4eB(q2‖g
µν
‖ − qµ‖ q

ν
‖ )nδ

n−1
l−1 −

{

2(k‖ · q‖)2gµν‖ + 2q2‖k
µ
‖k

ν
‖ − 2(k‖ · q‖)(qµ‖ kν‖ + qν‖k

µ
‖ )

−(m2
N + k2‖ − k‖ · q‖)(q2‖gµν‖ − qµ‖ q

ν
‖ )
}

(

δn−1
l−1 + δnl

)

−
{

q2‖(m
2
N + k2‖ − k‖ · q‖)− 2(k‖ · q‖)2

}

gµν⊥
(

δnl−1 + δn−1
l

)]

]

(D.44)

It is to be noted that, a Kronecker delta with -ve index is zero which comes from our

constraint on the Laguerre polynomials La
−1 = 0.
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D.6 Details of N µ
µ and N 00 for different loop

In this appendix, we list the explicit forms of N µ
µ and N 00 for all the different loops. For

the zero magnetic field case, we have for the ππ Loop

gµνN µν
π (q, k) = g2ρππ

[

q4kµkν + (q · k)2q2 − q2(q · k)2q · k
]

(D.45)

N 00
π (q, k) = g2ρππ

[

q4k20 + (q · k)2q20 − q2(q · k)2q0k0
]

(D.46)

and for the NN-Loop,

gµνN µν
N (q, k) = −8g2ρNN

[

(m2
N − k2 − k · q)4 + 2k2 + q · k + κρ3q

2

+
κ2ρ

4m2
N

{

(m2
N + k2 − k · q)3q2 − 2q2k2 − 2(k · q)24 + 4(k · q)2

}

]

(D.47)

N 00
N (q, k) = −8g2ρNN

[

(m2
N − k2 − k · q) + 2k20 + 2q0k0 − κρ~q

2

+
κ2ρ

4m2
N

{

−(m2
N + k2 − k · q)~q2 − 2q2k20 − 2(k · q)2 + 4(k · q)q0k0

}

]

. (D.48)

The corresponding expressions for ππ loop for finite magnetic field case are given by

gµνÑ µν
π,nl(q‖, k‖) = 4g2ρππ(−1)n+l eB

8π

[

{

q4‖k
2
‖ + (q‖ · k‖)2q2‖ − q2‖(q‖ · k‖)2q‖ · k‖

}

δnl

−q4‖
eB

2

{

(2n+ 1)δnl − (n+ 1)δn+1
l − nδn−1

l

}

]

(D.49)

Ñ 00
π,nl(q‖, k‖) = 4g2ρππ(−1)n+l eB

8π

[

q4‖k
2
0 + (q‖ · k‖)2q20 − q2‖(q‖ · k‖)2q0k0

]

δnl (D.50)

whereas the same for proton-proton loop are

gµνÑ µν
p,nl(q‖, k‖) = −g2ρNN(−1)n+l eB

π

[

8eBnδn−1
l−1 +

{

2(m2
N − k2‖ − k‖ · q‖) + 2k2‖ + 2q‖ · k‖

}

×
(

δn−1
l−1 + δnl

)

− 2(m2
N − k2‖ − k‖ · q‖)

(

δnl−1 + δn−1
l

)

+ κρ
[

q2‖
(

δn−1
l−1 + δnl

)

−2q2‖
(

δnl−1 + δn−1
l

)]

+
κ2ρ

4m2
N

[

−4eBq2‖nδ
n−1
l−1 −

{

2q2‖k
2
‖ − q2‖(m

2
N + k2‖ − k‖ · q‖)

}

×
(

δn−1
l−1 + δnl

)

− 2
{

q2‖(m
2
N + k2‖ − k‖ · q‖)− 2(k‖ · q‖)2

} (

δnl−1 + δn−1
l

)]

]

(D.51)

Ñ 00
p,nl(q‖, k‖) = −g2ρNN(−1)n+l eB

π

[

4eBnδn−1
l−1 +

{

(m2
N − k2‖ − k‖ · q‖) + 2k20 + 2q0k0

}

×
(

δn−1
l−1 + δnl

)

+ κρ
[

−q2z
(

δn−1
l−1 + δnl

)]

+
κ2ρ

4m2
N

[

4eBq2znδ
n−1
l−1 −

{

2(k‖ · q‖)2 + 2q2‖k
2
0
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−2(k‖ · q‖)2q0k0 + (m2
N + k2‖ − k‖ · q‖)q2z

} (

δn−1
l−1 + δnl

)]

]

. (D.52)
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