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meeeeeesssssssmmmm CHAPTER 5

CONCLUSION AND OUTLOOK

Historically, supersymmetric field theories have carved out a niche for themselves
in theoretical physics. From taming loop divergences via effective cancellations between
bosonic and fermionic loops to being open to non perturbative calculations, theories are
more amenable to extracting meaningful physical results when one adds an additional
spacetime symmetry which flips particle statistics. Although, its signature still remains elu-
sive at the energy scales accessible to present day experiments, notably, the LHC, leading
many to conjecture that the symmetry is broken at a much higher energy scale, supersym-
metry remains an elegant symmetry for theories to have. From purely a mathematical and
theoretical perspective, setting aside valid criticisms stemming from a lack of experimental
validation, a shot in the arm was received when Nekrasov in his seminal work in Ref. [125]
used principles of supersymmetric localization, discussed in Introduction in Ch. 1. The
technique allows exact calculations of BPS observables and since the days of Nekrasov and
Pestun, it has been used profitably to extract results, often even in the case of strongly cou-

pled theories, which, otherwise would have been opaque to manipulations. In this thesis,

139



following this direction of theoretical physics, we have calculated certain observables in

3d N = 2 theory placed on various manifolds and extracted physical results.

Counting black hole microstates has been an open and active area of theoretical physics,
especially in the context of string theory following the works of Sen et al in Ref. [126]. A
direction in this regard has been the proposal to use holography and get a measure of the
entropy from some observable of the dual field theory, following the works of Kim et al
in Ref. [127] and Zaffaroni et al in Ref. [47]. We take up the latter prescription in Ch. 2
for a large class of quiver gauge theories. It has been suggested that topologically twisted
indices, defined as the partition function on product spaces of the kind ¥; x S* with X,
being a 2d manifold of genus g, capture the entropy of the dual (magnetic) black holes.
This has also been explicitly verified for the so-called A, quiver gauge theory, also known
in the literature as the ABJM Model. Then, an interesting way forward is to calculate
the same observable for a much broader class of theories known as quiver gauge theories,
specially the A, quivers for n > 2 and the D,, quivers for theories preserving N' = 2
supersymmetry. We have further calculated the free energy for such theories on S* and
shown the relationship that exists between them. Our work then predicts the expected
black hole entropy (at the large rank limit) of the dual black holes. Future gravity side
calculations of entropy of dual black holes (in 4d) would provide necessary consistency
checks and we leave this is a future programme.

Witten showed in Ref. [70] that gravity in three dimensions may be reinterpreted as a
topological field theory. Following his idea in Ch. 3, we express 3d gravity with a positive
cosmological constant as a Chern Simons theory of two gauge fields each of which are
su(2) Lie algebra valued. Such a formulation of gravity is immediately helpful because we
can supersymmetrize the bosonic theory, by adding non-dynamical fermions and auxiliary

scalars (the remaining fields of the N' = 2 Vector Multiplet). Such a supersymmetric

140



Chern Simons theory forms the standard kinetic term for the vector multiplet and we are
free to use the full machinery of localization and we calculate the quantum gravity partition
function as the partition function of a Chern Simons theory with a gauge group G =
SU(2) ® SU(2). A question remains, of course, as to which saddles contribute to this
partition function. We obtain the saddles as orbifolds of S?, called the Lens spaces L(p, q),
the global topology of which is given S®/Z,. This countably infinite number of saddles
contribute to the partition function, leading to a divergence as p — oo. We express the
result in terms of the Kloosterman Zeta functions and analyse the divergences present in

such theories.

A natural extension of analysis of theories placed on compact manifolds would be to
consider theories placed on manifolds with a boundary. With appropriate boundary condi-
tions, such theories can preserve some supersymmetry - most often, however, supersym-
metry is reduced as translation invariance in the direction perpendicular to the boundary is
broken. In Ch. 4, we study a “mixed dimensional QED3”, which is an (abelian) N = 2
theory on 4d interacting with matter placed on a boundary. This theory is of interest in it-
self as a supersymmetric model, as well as in condensed matter systems, as a simple model
for graphene. Here, for concreteness, we have chosen the “bulk” to be a squashed hemi-
sphere HS* with chiral matter at the boundary placed at r = 7. In this chapter, we discuss
two separate types of squashing preserving different isometries. We have calculated the
boundary two point stress tensor (7'7"), which depends on the second derivative of the free
energy with respect to the squashing parameter. We see that the final expression depends
on the complexified gauge coupling 7 and R charges (which extremise the free energy). We
consider two separate cases of one and two (oppositely charged) chiral matter and state the
results for both at strong and weak coupling numerically. We also present analytical results

as a perturbative series in |7| (valid strictly in the regimes |7| >> 1 and|7| << 1). A
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graphical comparison between the two results is also presented to validate the calculations.

The details of some lengthy calculations have been shown in the Appendix section of
this thesis for clarity. Appendix A contains further details supplementing Ch. 2. Similarly,
Appendix B contains details relevant to Ch. 3 and Appendix C contains details relevant to
Ch. 4. Finally, some v matrix identities which were liberally used for all the calculations

relevant to this thesis have been presented in Appendix D.
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SUMMARY

Supersymmetric theories on curved spaces provide an interesting arena for physics. Ob-
servables like the partition function, two point functions of BPS observables etc in such
theories are often cured of IR divergences when they are placed on spaces that are compact.
Furthermore, supersymmetric theories on compact manifolds are often amenable to non-
perturbative techniques like supersymmetric localization. This tool gives powerful results
for different theories placed on various manifolds preserving various amounts of super-
symmetry. Using the well-established AdS/CFT Correspondence, such exact calculations
often provide strong coupling results of the dual theory, where, otherwise such calculations
would not have been possible. They further provide evidence of the correspondence when
results in the weakly coupled gauge or gravity sector (obtained with or without localiza-
tion) compares with results in the strongly coupled dual sector (obtained most likely using
localization).

In the literature, there has been evidence that the partition function on X X St. where,
>4 1s a two dimensional Riemann surface of genus g captures the degrees of freedom of
the dual (magnetic) black holes on spacetimes that are asymptotically anti de-Sitter. It has

been explicitly shown to reproduce known results for black holes dual to the ABJM theory



by Zaffaroni et al. Calculation of this partition function for a much larger class of field
theories, known as ADE quiver theories, then, becomes an important exercise as these ob-
servables are expected to predict the entropy of a large class of black holes placed in the
dual geometries.

Furthermore, one can duly exploit the fact that 3d gravity is topological and express
de-Sitter gravity as a topological field theory and supersymmetrize it. Such manipulations
help one to use the machinery of localization and calculate the quantum gravity partition
function as the partition function of (two copies of) supersymmetric Chern Simons theories.
There too, we are free to use supersymmetric localization desirably.

One can also imagine a theory placed on a manifold with a boundary - i.e., bulk degrees
of freedom interacting with those residing at the boundary. Carefully chosen boundary
conditions help preserve some amount of supersymmetry and such theories are the natural
extension of supersymmetric theories placed on compact spaces. Here, we have calculated
two point correlation function of a local operator - the stress tensor both at strong and weak

coupling for a mixed dimensional QED theory, which has bulk photons on a 4d hemisphere

s
5

interacting with matter at the three dimensional boundary placed at » =
In this thesis, I have primarily aimed at using the machinery of supersymmetric local-
ization specifically to A/ = 2 theories defined on various 3-manifolds with and without

boundary and extracted non-perturbative results for various BPS observables.
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meeessesssssmmmmn CHAPTER 1| S—

INTRODUCTION

1.1 Historical Development of Supersymmetry

Supersymmetry as a new spacetime symmetry connecting the bosonic and fermionic de-
grees of freedom of a theory first made its appearance in early string theory literature. In
the late 1960’s, in an effort to construct the S matrix for strong interactions, a new idea
was proposed that visualised hadrons, not as particles, but rather as vibration modes of

fundamental strings.

A two dimensional field theory of d bosonic fields was suggested with an action ( a

functional of X* (7, o) ) given by

(1.1.1)

B Y 1
T / o [ax 0X, 0X"oX,

Ll[X]:E or or 0o 0o

where, {7, 0} are the coordinates on the 2-dimensional “worldsheet”, formed as the string

propagates across a fixed d dimensional Minkowski background.



Later, a proposal to introduce fermions to the theory defined by the action in Eq. (1.1.1)
were given by Ramond in Ref. [1] and Neveu and Schwarz in Ref. [2] for a complete
spectrum. Finally, Gervais and Sakita proposed an action for this modified theory in Ref.
[3] as

oX"0X,,

r Oot do—

Lix.v) = [ dotdr vi(stgmtn i) [ 12

do+

+ — 7 4+ 5. Gervais

where, {o*, 0‘} are related to the string worldsheet coordinates as o
and Sakita noted, that in additional to conformal symmetry on the worldsheet and d di-
mensional Lorentz symmetry on the target space, the Lagrangian has additional symmetry

relating particles of two different statistics, namely

oboson ~ fermion , dfermion ~ boson ,
_ _ 0
(o™, 07) = zTe*(a*)a?X“ , (1.1.3a)
h(oT,07) = iTe_(a_);i_X“ , (1.1.3b)
o
dXH(oT, 07 ) =€ (o)l (0T, 07) + e (o7)oh(at,07) . (1.1.3¢)

where, {e+, e‘} are arbitrary Grassmann odd functions. This kind of spacetime symmetry

interchanging particle statistics was later called supersymmetry.

Eq. (1.1.3) furnished an example of what is known in string theory as world sheet
supersymmetry - supersymmetry in two dimensions. It was later extended to quantum field
theories in 4d first by Wess and Zumino in Ref. [4] giving rise to the celebrated Wess
Zumino models. Simultaneously, another group working separately in Russia, Gol’fand
and Likhtman in Ref. [5] extended the Poincare algebra to include graded algebras, as

discussed in Sec. 1.3.1 and constructed field theories that are invariant under these super-



algebras. Thus, independently, they discovered supersymmetric field theories in 4d as a
theory whose symmetry generators together form a closed graded lie algebra, of which the
Poincare algebra is the bosonic sub-algebra. We review the concept of graded algebras in

Sec. 1.3.1 to shed more light on generators of supersymmetry.

1.2 Conventions

In this thesis, the Latin letters {a,b,c,...,m,n,...} denote flat (tangent space) indices,
the middle Latin letters {7, j} will also denote the R symmetry index in Ch. 4, the early
Greek letters {«, 3, . . .} denote spinorial indices, whereas the later Greek letters {u, v, ...}

denote vector indices.

In the literature, various different yet consistent conventions are followed by different
authors. Here, at the onset, we define our conventions for disambiguation. Unless oth-
erwise specified, we follow the “van der Waerden” notation for two component (Weyl)
spinors. Further details, which are skipped in this section for brevity, are to be found in

Ref. [6].

We define spinors as those furnishing the basic representation of SL(2, C') group - the
group of unimodular complex 2 x 2 matrices. Since, for a given M € SL(2,C), M*
(complex conjugate), M T ~! (transpose inverse), and M T ~! (Hermitian conjugate inverse)

also belong to SL(2, C'), we define four objects below, defined by their transformation, as

Yo = U = MPyg, 0% o= (M) S0P (1.2.1a)

P = (MY T s — = (M) S (1.2.1b)



where,
o — Ea,@wﬁ 7 de = gdﬁ.d_)ﬁ ) (1.2.2)

and the SL(2,C) invariant totally anti-symmetric tensors are defined as ¢'? = 12 =
—¢13 = —€j5 = 1. Using the known homomorphism between SL(2,C') and SO(3,1)
groups, we define that v, furnishes the (%, 0) representation of the Lorentz algebra, where
as the 1), furnishes the (0, %) representation. With {aj} as the j-th Pauli matrix, we define

the basis for the SL(2, C') group as

(Um)aa:i(ﬂg,—gj) 7 (5m)da:¢<1[27aj)da for j=1,2,3. (1.2.3)

ad

We further define the 4d v matrices (in the Weyl representation) as
AT = ;o {Y™ A =20""L, ™ =diag(—1,1,1,1).  (1.2.4)

When working on Riemannian manifolds, we will use the following definitions.

(0")ai = (1o, i) @) = (o) for j=1,23, (125

ad

m 0 Um m n smn
N = . Y™ =20m . (1.2.6)
om 0

We work with the “NW-SE” contraction for the undotted indices (and the reverse for the



dotted indices) as
VY =a, PP =Pat . x0Md = X0h,0%, X' = XaT" o . (12.7)

This defines bilinears like 1%, and 14¢* as SL(2, C') scalars.

1.3 Supersymmetry Algebra Revisited

1.3.1 Graded Lie Algebra

Under very general assumptions like the existence of a finite number of particles below a
given mass, locality, unitarity and analyticity of S matrix, Coleman and Mandula proved
in Ref. [7] that the most general symmetry group G of a theory can be a direct sum of
Poincare group /.SO(3, 1) and some internal symmetry group 7" which are independent of

the momenta and spins of the particle states on which they act - that is,
[gpmm ,tA] —0, G=1IS0(3,1)xT (1.3.1)

where, gpoincare and t are the generators of 7S0(3, 1) and T respectively.

A key assumption to their celebrated theorem was that the symmetry generators are
bosonic and therefore, they form a Lie algebra. Soon after, Haag, Lopuszanski and Sohnius
(HLS) extended the ambit of the Coleman-Mandula theorem by relaxing the condition that
the algebra of the symmetry generators forms only a “Lie Algebra” to include “Graded
Lie Algebras”. In Ref. [8], they showed that such an extension to a Graded Lie algebra
enables us to accommodate fermionic generators of symmetry which, unlike the Poincare

generators, have specific anti-commutation relations.



Mathematically, an algebra is a vector space L acting on some real or complex fields

(denoted by R and C respectively) with an operator £ such that Vv; € L and Vo; € R or C,

O:[L L] L (1.3.2)

Linearity : [v1, vy + v3] = [v1, v2] + [v1, v3] (1.3.3)
Anti-Commutativity : [vq, ve] = —[vg, v1] (1.3.4)

Jacobi Identity :  [vy, [va, v3]] + [vs, [v1, Vo] + [va, [U3,11]] = 0 (1.3.5)

We can then, further, define a graded Lie algebra ( of grade n ) as the direct sum of vector

spaces (L;) and an operator £ such that for

L ==L (1.3.6)

O:[Li,L;} =L Vi (1.3.7)

[Up, v} € v Where, r =p+¢q mod (n+1) (1.3.8)
[0, 03} = =(=)"" [vg. v} (1.3.9)

(—1) [vi, [vj,vk}} + (—=1)7 vy, [og, vi} } + (=1)¥ [vk, [vi,vj}} =0 (1.3.10)

where {v;} € L;. Supersymmetry algebra, then, is the simplest graded Lie algebra - a

graded Lie algebra of grade 1, i.e.,
L=Ly® L, (1.3.11)

where, Ly is the standard Poincare Lie algebra and the generators (Q!, Q1 %) € L, for

1=1,2,...N.



1.3.2 3d N = 2 supersymmetry algebra

Here, we explicitly state the 3d N' = 2 supersymmetry algebra as this is the relevant case
for this thesis. Many more details of the theory may be found in Ref. [9], but in this section

we will have an occasion to present just the algebra.

3d N' = 2 theories may obtained as a dimensional reduction of 4d A/ = 1 theories to

3d. They have, therefore, the same number of supercharges. The supersymmetry algebra

is given by
[PH,QQ] —0, [PN,QQ] —0, (1.3.12a)
M Qi) =) Q) [Mu Q] = i(50)35Q" (1.3.120)
{Qi Qé} = Q(Uﬂ)aﬁpﬁté” + 2i€aﬁZU ’ { gw Qé} =0, { _(Iw Qé} =0.
(1.3.12¢)

Here, the notations are standard, i.e., {M,,, P,} are the Poincare generators, {Q!, Q'*}
are the supercharges and 7 is the real central charge of the theory. Furthermore, the theory
enjoys an automorphism among the supercharges, which gives rise to a non-trivial U (1)r R
symmetry. The (bosonic) R symmetry generator (R) has the following commutation rela-

tions with the supercharges and the Poincare generators, collectively denoted by gpoincare

[RQo)==Qa.  [RQT=0Q%  [R.8romeare =0. (1313

In Eq. (1.3.12), Z is a central charge. This is manifestly seen by the commutation relations

[Z, Qa] -0, [2,G=0, [Z ,R} —0. (1.3.14)



1.3.3 N =1and N = 2 multiplets

Here, we briefly review the field contents of N' = 1 and A/ = 2 theories (on 3d). Fields in
supersymmetry appear in multiplets. In each multiplet, the constituent fields vary in their
statistics, being formed by the action of supercharges on the Clifford vacuum. But, fields
of the same multiplet have the same mass. However, the theoretical prediction of this mass
degeneracy among a pair of bosons and fermions has not yet been observed empirically,
suggesting that supersymmetry is broken at some scale higher than that probed by present

day experiments.

N =1 Multiplets

The field content of the A/ = 1 chiral multiplet is a Weyl fermion (z/) and a complex scalar
(¢). For invariance under CPT transformations, one adds its CPT conjugate fields and the
multiplet is obtained as shown in Eq. (1.3.15a), where, the numbers in brackets denote
the spins of the constituent fields. Historically, this multiplet is also known as the Wess
Zumino (WZ) multiplet as they first wrote a Lagrangian involving a Majorana fermion and
scalars (in 4d) in Ref. [4]. For the N' = 1 vector multiplet, one has a gauge field (A,,) and
a Weyl fermion (transforming in the adjoint representation of the gauge group) and their
CPT conjugates. The field content is succinctly represented in Eq. (1.3.15b). Similarly, in

the gravitino and the graviton multiplet, one has a graviton and a gauge field, and a graviton



and its superpartner, a gravitino respectively, as shown in Eq. (1.3.15¢c) and Eq. (1.3.15d).

Chiral Multiplet : (0, %) D <— %,0) (1.3.15a)
Vector Multiplet : (%, 1) ® (— 1, —%) (1.3.15b)
Gravitino Multiplet : (1, %) D (— s, —1) (1.3.15¢)
Graviton Multiplet : (g 2> ) ( -2, —g) (1.3.15d)

N = 2 Multiplets

The field content of N' = 2 hypermultiplet consists of two copies of the WZ multiplets,
as shown in Eq. (1.3.16a). This multiplet forms the matter sector of the N’ = 2 theory.
The vector multiplet consists of one vector, two Weyl fermions and a complex scalar, all
of which necessarily transform in the adjoint representation of the gauge group. The mul-
tiplet is shown in Eq. (1.3.16b). The N/ = 2 gravitino and the graviton multiplet consist
of respectively, a gravitino, two vectors called gravi-photons and a Weyl fermion, and a
graviton, two gravitini and a gravi-photon. The multiplets are shown in Eq. (1.3.16¢) and

Eq. (1.3.16d) respectively.

Hypermultiplet : ( - 3,0,0, %) ® (— 3,0,0, 3 (1.3.16a)
Vector Multiplet : <0, .3 1) ) (— 1,-3, —%,0) (1.3.16b)
Gravitino Multiplet : (;, 11, g) ® <— 3 -1,-1, —%) (1.3.16c¢)
Graviton Multiplet : (1, s %,2) @ (— 2,-3,-3, —1) (1.3.16d)



1.4 Supersymmetry on curved spaces

1.4.1 General principle

A general prescription for placing field theories on curved spaces is as follows - we first in-
troduce gravitational interaction to the theory, so that the metric is made dynamical. Then,
we send the Newton’s constant (& to zero, which defines for us the rigid limit. This effec-
tively freezes the dynamics of the metric to a value ¢ different from the Minkowski metric
n, i.e., 7 — ¢ and we define then the theory on a curved manifold (M, g) instead of the
original Minkowski spacetime (RZ~51 7).

Festuccia and Seiberg in Ref. [10] followed a similar strategy to place supersymmetric field
theories on curved spaces. The idea was that since, now, we wish to define a supersymmet-
ric theory on curved spaces (or spacetimes), we need to couple the theory to supergravity
theories, instead of introducing just gravitational dynamics, as was the requirement for the
case of ordinary QFTs. However, unlike the case of purely bosonic gravity, the super-
gravity multiplet contains fields over and above the metric - viz., the gravitino and other
fields of spin 1. For example, the supergravity multiplet of the N' = 2 theory, given in
Eq. (1.3.16d), shows the presence of the graviton, the gravitini and the gravi-photon which
is a spin-1 field. These fields are off-shell in the rigid limit and are not determined in
terms of the other fields of the multiplet. Festuccia et al showed that to ensure that the
supersymmetric theory, upon placing on a curved manifold (M, g) retains some amount of
supersymmetry, it suffices to impose that the fermionic fields of the supergravity multiplet

and their variations becomes zero in the rigid limit. That is, we look for the values of the
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supergravity backgrounds that satisfy

Vua =0, ua = 0. (1.4.1)

Eq. (1.4.1) gives a set of partial differential equation, called the generalized Killing spinor
equation, which generically involves the bosonic fields of the supergravity multiplet. Should
a solution to the generalized Killing spinor equation exist on (M, g), we can place a theory

there and have some supersymmetry.

1.4.2 3d Case

Here, let us briefly investigate the Festuccia Seiberg prescription in a bit more detail. For
further details, we refers to Refs. [10, 11].

We recall the principle of minimal coupling in gauge theories. If any global symmetry is
gauged, we promote the partial derivatives to gauge covariant derivatives. This is equivalent
to coupling the theory to a gauge field via some conserved current J*. Explicitly, for

generic fields denoted by {®},
L[{2,0,0}] "8 £[{®,D,®}] = L[ {,0,0}] — T*A, . (14.2)

One may introduce dynamics for the gauge field via a Maxwell term, or one may also be
interested in keeping it as a fixed background, which has no equation of motion. In our
case, we will take this latter approach.

A similar story prevails when working with spacetime symmetries of the theory. Cor-
responding to the translation symmetries, generated by P, there exists a conserved sym-

metric stress tensor 7),,. This plays the same role as the conserved current J* for the

11



global symmetry. One can, then, work with linearised gravity models, by perturbing the
Minkowski metric n slightly such that n — g = n + h. The prescription for minimal

coupling then suggests that

£1{2,0,8) 0] — £[{2.V,0} 9] = L[ {®,8,8}] + ST"h, . (14.30)

2
2 4S8

ﬁ g

where V, is the general covariant derivative. However, for our case of supersymmetric

where , T = — (1.4.3b)

field theories on curved spaces, we have further fields constituting the supergravity multi-
plet. Especially, every supersymmetric theory will have at least one conserved supercharge
(0o Defining the corresponding supercurrent as S%, we have couplings of the kind S*),,,.
Depending on the fields in the supercurrent multiplet, we will have similar such interac-
tions.

We now focus on our specific case of 3d N/ = 2 theory with a U(1)g R symmetry. The
story will be similar and we will find interactions given by the fields in background super-
gravity multiplet coupling to currents in the supercurrent multiplet. Following Ref. [12],
the appropriate supercurrent multiplet containing the charges generating the algebra in Egs.

(1.3.12), (1.3.13) and (1.3.14) is given by the R multiplet. The SR multiplet is given by
= {1 S Sk gl 3% iz | (1.44)

Here, 1), is the symmetric stress tensor, S¥, Séj are the currents corresponding to the su-
percharges, j is the R current corresponding to the R charge, j/ is the Z current corre-
sponding to the central charge and j is a topological current which is present in 3d.

The conjugate supergravity multiplet (£)) is called the “new minimal supergravity”, the

12



field content of which is given by

9 = { B Vs Vs AL, Cops B (1.45)

Here, h,, is the graviton, v, 1/?,“ are the gravitini, A/(,,R) and C, are 1-form gauge fields
and a 2-form gauge field B,,,,. We define the dual quantities via the equations

VP = —z’e”“’”é?[uCV} s H= %e”“’”a[pBM . (1.4.6)
Once we have the background supergravity multiplet, we follow the ideas of Sec. 1.4.1,

set the gaugino and its variation to zero, as in Eq. (1.4.1) and find the generalised Killing

spinor equation. We state the result as

. H , 1 ,
(vu - ZAELR))S—F = _37u5+ - ZVu§+ - ie;wpv Yy, (1.4.7a)
. H , 1 ,
(V. +iAP)e = — 5w+ iV, + 5ewpv VPE_ (1.4.7b)

where, {{,,¢_} are two Killing spinors (with opposite 12 charges), and the background
bosonic supergravity fields are defined following Eq. (1.4.5) and in Eq. (1.4.6). Now, the
Killing spinors are functions of the spacetime coordinates - this is a signature of supersym-
metric theories on curved spaces that their Killing spinors are functions of the spacetime
coordinates - and one finds specific solutions to Eq. (1.4.7) for the manifold (M, g). The
metric functions enter the equation via the gauge covariant derivate and the Levi-civita
tensor density €,,,. Should we find solutions to Eq. (1.4.7) on M, then we can place su-
persymmetric theories on M. In Ch. 4, we will follow this strategy and solve Eq. (1.4.7)

for our case of squashed sphere.
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1.5 Supersymmetric Localization

Exact or non-perturbative calculation of the partition function in Quantum Field Theories
(QFTs) has been the holy grail of theoretical physics for over three quarters of a century
now. Yet, the efforts have met only partial success. Till recently, non-perturbative results
were accessible only for the trivial case of free theories, where exact gaussian integrations
may be performed on the space of fields, or for a limited and special class of topological
theories defined on compact manifolds, as was worked out in Ref. [13] and for the su-
persymmetric case in Ref. [14]. Witten’s work in supersymmetric quantum mechanics in
Ref. [15] provides a precursor to these works. A wide range of results soon followed in
Refs. [16, 17]. Further progress has been made by Pestun in Ref. [18] where he explic-
itly calculated the Wilson Loop for the N' = 4 theory on S*. Since then, a plethora of
supersymmetry protected local and non-local operators' as well as surface operators have
been calculated for various theories in various dimensions. To instantiate, supersymmetric
observables have been calculated exactly for theories placed on S? in Ref. [19, 20], on S?
in Ref. [21], its orbifolds in Ref. [22], on S® in Ref. [23, 24], on squashed S in Ref. [25],
on squashed S° in Ref. [26].

I'Specifically, Wilson Loops and ’t Hooft Loops.
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1.5.1 General principle

The basic ingredients of supersymmetric Localization consist of the following :

A conserved supercharge () , Square of the supercharge B = ()*
BPS observables O (with {O|QO = 0}),

A @Q-exact term Q¥ (with {1I’|B\I/ = 0}) , (1.5.1)

Let us imagine we have a quantum field theory which enjoys a fermionic symmetry. The
generators of this symmetry are denoted by the Grassmann odd charge (). The symmetry is
assumed non-anomalous. Further, as explained in Eq. (1.5.1), let us have a bosonic charge
B which may generate some combinations spacetime symmetries or internal symmetries.

The operators which we would like to consider are denoted by O which are (Q-closed, i.e.,

B=Q?, QO=0. (1.5.2)

Generally, they entail a broad class of interesting operators, like local operators or their
products, surface operators and even non-local operators like Wilson Loops. With this

background, let us try and evaluate (O) given by?
(0) = / [DD] O =51 (1.5.3)
5

Under the assumptions that the symmetry generated by the fermionic charge () is non-

2Here, {®} denotes the generic fields present in the theory and § denotes the space of fields.
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anomalous and that there are no boundary terms,

(QU) = L [DD] (QW) e~51®) = /g [DD] Q(We 5%y =0 (1.5.4)

and , (O+QVU) =(0). (1.5.5)

This implies that the under these assumptions that the expectation values of operators are
insensitive to insertions of ()-closed observables and expectation value of ()-closed observ-
ables O depends on its ()-cohomology class. This allows us to calculate the expectation
value of O by choosing a representative element of its equivalence class instead. Often,
this simplifies the problem and allows one to do exact calculations.

With this observation, let us now focus on a perturbed path integral given by,
(0W) = / [DD] O e=SI-1RY i > (1.5.6)
S

for some fictitious parameter ¢. It stands to immediate checks that

d d
~(Oby — DP /—S[<I>] —tQV[P]
@@ = g [ Prec

= _/ [D(I)] Q\I}[(I)] O ¢ S101-tQu (3]
g

= - / [D@]Q(qf{@]oe—sm—tQM])
5
-0 (1.5.7)

again, on the assumption that there is a fast decay of the fields at the asymptotes.
Thus, the perturbed integral is actually independent of the parameter ¢ and we can

evaluate the integral for any judiciously chosen value of ¢. In practice, the saddle point

3In actual calculations, one finds a QU[®] such that its bosonic part (QW[®]) |posonic = 0.
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analysis at the large ¢ limit, ¢ — oo becomes exact and we can evaluate Eq. (1.5.3) non-

perturbatively. Mathematically,

(0) = lim [ [DD]O ¢ SI2I-tQ¥?]
t—0 3
= lim [DD) O ¢~ SEI-QVIT] (1.5.8)
*JF

In the large ¢ limit, the integral is dominated by the saddle points of the localizing part of

the action Sj,.[®], where Sj,.[®] = QU [P].

One canonical choice* for £;,.[®] is

Lin®]=Q > ((Q?/%)W)Hr#}f(@l/}w) (15.9)

1
1; EFermions

where, 1); € ® such that they are the fermions of the theory. Then,

‘Cloc[q)] |bosonic - Z ((Q¢Z)TQ¢1 + Qw;r(QQZ)Z)T)
wiEFeimions

- X (1eor+1eele) 1510

i
1; €EFermions

From Eq. (1.5.9) and Eq. (1.5.10) we see the saddles coincide with the BPS configurations

given by

b=yl =0,  Qii=Qyl=0. (1.5.11)

Let us collectively denote the BPS locus by ¢, = §¢ C §. We see that the infinite dimen-

4There exists other choices as well.
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sional integral over field space § reduces to a subspace which, often, is finite dimensional
and the integral proves tractable. To evaluate the integral, let us expand the fields ® about

the classical saddles of S;,.|P] as

1
O =Py+ —=0P. 1.5.12
ot ( )

The above normalization of the fluctuations is just a convenient choice which sets the

quadratic fluctuations ¢ independent.

Therefore, Eq. (1.5.8) simplifies to

(©) = Jm / [D@]oe—sm—t@@[@]]
— 00 3

1
= lim / [DDg) Olg—g, e~ 1) —l—O(\/%terms)
=00 SQ SDet |:62Sloc[(1>]:|
- 6D2
=g
1
= / [DDg] Olg—g, e 51! : (1.5.13)
Sa SDet[&z—gg@}
d=Pg

This result is 1-Loop exact as we are allowed to take the formal limit ¢ — oo which

suppresses any further corrections to exactly zero.

1.5.2 3d Case

Let us briefly see how this works out in our specific case of 3d. For clarity as well as
brevity, we will just turn on gauge sector. For localization of the three dimensional theory
with matter fields in some arbitrary representation fR;, we refer to Refs. [21, 27, 28].

The vector multiplet of the 3d N' = 2 theory has been explored in Eq. (1.3.16b). We

have two standard choices for Lagrangian of the gauge field - the super Yang Mills (SY M)
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Lagrangian and the topological supersymmetric Chern Simons (SC'S) Lagrangian. Both
actions are Q-closed (i.e., they preserve some supersymmetry), however, the former is also
Q-exact. Hence, following the argument in Sec. 1.5.1, the SY M action can be made use
of, in deforming the path integral in Eq. (1.5.6). However, in this brief section, we will
choose the topological action as the one providing dynamics to the gauge field. The action

is given by
f 21
Secg = % / d*z /|g| Tr (e’“’” (Au0,4, + EZAMA,,AP) + A+ 2iDa) (1.5.14)

We state the transformations that are a symmetry of the action given Eq. (1.5.14). They are

given by’
6A, = =iy, (1.5.15a)
do = —1NT¢, (1.5.15b)
6D = —i(D A&+ IATE + LA o)y, (1.5.15¢)
A= (—3y"F, —D— Do —0)&,, (1.5.15d)
AT =0. (1.5.15¢)

On S3, the generalised Killing spinor equations given in Eq. (1.4.7) reduce to®

i
Viés = i;/ué“i (1.5.16)

This is the equation & in Eq. (1.5.15) must satisfy.

3In euclidean signature, A and AT are independent degrees of freedom. The transformation of one is
independent of the other.

®0n 3, this equation implies that a solution for the Killing spinor exists for trivial values of the bosonic
fields of the background supergravity multiplet. This is not true if S is deformed.
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Localization As discussed in Sec. 1.5.1, to localize the theory one needs to choose a

deforming part of the action, which is Q-exact. One such choice is
QU = 5Tr ((6M)N) (1.5.17)
This is a judicious choice because
5Tt ((OA)™A) fbosonic = T ((M)T(SA) >0 (1.5.18)

and the path integral localizes to the BPS locus given by the saddles of this expression.

Saddles From Eq. (1.5.15d), Eq. (1.5.17) and Eq. (1.5.18), we evaluate

QU = [ &z \g] Tr (RF,, F"™ + D,oD"o + (D + 0)> +iXA*V, A + i\ g]A — IATA)

(1.5.19)
Therefore, the saddles {®,} are given by
F" =0, D=0, (D+o)=0. (1.5.202)
ie, ®g: A=0, D=-0, o=o0, (constant). (1.5.20b)
From Eq. (1.5.13), with O =1,
Z =)= / dog eSctassicall®ol 7, (1.5.21)
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From Eq. (1.5.14) with k = 47, A, = 0 and vol(S?) = 272,
Selassical|Po] = z'/dgx\/|g| 2Tr(Do) = —din? Tr(op) . (1.5.22)
Plugging Eq. (1.5.22) back into Eq. (1.5.21),

Z = / dog e O 7)o (1.5.23)

1 — Loop Determinant The last ingredient to the exact calculation using localization
is calculating the 1 — Loop determinant coming from the quadratic fluctuations. Here,
the fluctuations of the field about their classical values are parameterised as follows, i.e.,

O — Oy + \/iifb’ . Explicitly,

1 1 1
oc—so0g+—0d, D——0g+—D, ©——0 1.5.24
0 \/I_L 0 \/1_" \/I_L/ ( )

where, © denotes the rest of the fields of the vector multiplet’.
Plugging Eq. (1.5.24) in Eq. (1.5.19), and integrating the action by parts, we obtain as the

leading order term

tQU = / Px g Tr ( — APAA, — [A,, 00)? + 0,000 + NV 4 i[AT, o]\

_ %m> Lo (1.5.25)

where, A is the Laplacian operator and Y is the Dirac operator on S®. Following the

"The fluctuations are normalized such that the quadratic fluctuations are ¢ independent. Any other nor-
malization does not change the conclusion.
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strategy outlined in Ref. [29] and separating the gauge field into its divergence A% and
divergence free part Aﬁf , contribution of Eq. (1.5.25) to the path integral can be shown to

reduce to

. ) 1
tQ@:i/d%:|m1¥(—AﬁAAW“—{AﬁﬂmP+LVX+zDﬂadA—§AU>
boson;gsector

fermionic sector

(1.5.26a)

where, A, =9,A1+ AY (1.5.26b)

So, Eq. (1.5.26a) suggests that we have the final result of the path integral as a ratio of
the eigenvalues of the Laplacian and the Dirac operator on S® . The spectrum of these
operators on S% have been well studied over the years and we can directly borrow those

results.

As a last technical detail, we can use the Weyl integration formula, which reduces the
integral over the Lie algebra valued element o to a sub-space spanned by the Cartan sub-
algebra by C g at the cost of introducing a Vandermonde determinant [ [ a(oy) and we can
divide the integral by the order of the Coxeter group (V) to take of the residual symmetry.

Finally, in short, we obtain for the partition function

Z = \WL\ /dah J D (exp( — 4ir? Tr(a%))Zl_LOOp[ahD (1.5.27)

roots

To determine Z;_ ., (0], we need to project Eq. (1.5.26a) to the Cartan subspace. For the
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chosen normalization of the ladder operators { £, } given by Tr(E,Ejs) = d,,_s, we obtain

roots

tQU = / dx /9] Z(Adf“ (2 + Blon)?) (A)s+ N5 (6Y +iBloy) %)Aﬁ)

11

where, for clarity, we show a standard Lie algebra element calculation as

(o, AYH] =

> lovhi, AV ES] =Y "oy AS [y, Eg) = oy AYFBiEs =) Bloy) ATV Es (1.5.29a)

roots roots roots

where, i=1,..,r, {h}€bh, and, B:Hh—=F. (1.5.29b)

So, from Eq. (1.5.28), we conclude the problem finally reduces to finding the spectrum of
the operators defined in I, I on S3. Using the eigenvalues of the operators I, IT on S?,
we not a significant cancellation between the eigenvalues of the fermionic operator and the

bosonic operators® and we obtain a final result as

2sinh(7f(oy))
Zl—Loop - H ( 7'('/3((7()) b ) . (1530)

roots

From Eq. (1.5.27) and the denominator of Eq. (1.5.30), we see that Vandermonde determi-

nant drops out and we are left with

Z = |%| /dahexp( — 4im® Tr(oy)) H (2 sinh(ﬂﬁ(ah))) . (1.5.31)

roots

This shows the tremendous simplification supersymmetric Localization can bring about -

8This is almost always the case in such calculations.
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the infinite dimensional path integral has reduced to the Cartan subspace of the field space.
Often, given a gauge group, Eq. (1.5.31) is tractable, giving us tremendously powerful non-
perturbative results of certain theories on compact manifolds. In the following chapters,
we will, directly or indirectly, exploit the machinery of supersymmetric localization to

calculate supersymmetric observables in different contexts.
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CHAPTER 2 S

3D N = 2 ADE CHERN-SIMONS

QUIVERS

This chapter is based on

1. “3d N =2 A/D\E Chern-Simons quivers ”, D. Jain, A. Ray, Phys. Rev. D100
(2019) 4, 046007, [arXiv: 1902.10498].

2.1 Introduction and Outline

Supersymmetric localization has made a whole host of theories accessible to non-perturbative
analysis. It provides a powerful framework to construct and compute quantities along the
RG flow non-perturbatively. One of them is the exact partition function Z for supersym-
metric gauge theories put on various curved manifolds in different dimensions. This has led
to a deeper understanding, checks and / or discovery of various dualities among field theo-

ries, even across dimensions. Since one gets access to exact results, one can test AdS/CFT
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correspondence in the regime relating weak gravity results (may or may not have been
obtained via localization) to strong coupling results in the field theory (highly likely to
have been obtained via localization). We will focus here on this latter possibility with the
study of supersymmetric quiver gauge theories in three-dimensions, i.e., an example of

AdS,/CFTs.

Free Energy. Localization was successfully applied to compute the partition function
of 3d Chern-Simons-matter (CSm) theories placed on 3-sphere S® in Refs. [21, 30, 31].
The first explicit construction of a 3d N' = 6 gauge theory with M-theory dual was by
ABJM in Ref. [32]. It involved two U(N) gauge groups with CS terms at levels +k and
four bifundamental chiral multiplets (in terms of N* = 2 multiplets). The dual geometry
involved placing N M2-branes at the tip of a C*/Z,, singularity such that in large N limit,
the AdS; x S7/Z; vacuum solution of M-theory was obtained. Following this, a large
number of N' > 2 dual pairs have been identified, with the M-theory dual of the form
AdS, x Y7, where Y7 is a (tri-)Sasaki-Einstein manifold given by the base of a certain 8d
(hyper)kihler cone, as worked out variously in Refs. [33-39]. The AdS/CFT dictionary
relates Vol(Y7) to the free energy Fgs of the dual gauge theories in the large /N limit, as

explained in Refs. [34, 40]

276
Fos = —log | Zgs| = N2y | ————. 2.1.1
8 0g |Zs:| 27 Vol(Y;) 2.1.1)

This provides an important tool to compute the volumes via computations in the dual field

theory.

We will consider general N = 2 quiver gauge theories on S® involving matter multi-

plets with arbitrary R-charges A’s in the large /V limit. This will lead us to a large class of
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quiver theories whose free energy scales as N°/* from requiring that the long-range forces
in the resulting matrix model cancel (or equivalently, that the matrix model be local) along
with a constraint on the R-charges of bifundamental multiplets given by Eq. (2.2.6). A
subset of this constraint leads to the ADE classification via a simple constraint on the
bifundamental R-charges:

Awp) +Apa =1. (2.1.2)

We note that for N' > 3 case, this condition is automatic since the supersymmetry en-
hancement fixes the R-charges to be % and ADE classification was presented in Ref. [41].
We will then explicitly solve the large N matrix model of the NV = 2 D quiver theories',
whose dual geometry involves certain 7-dimensional Sasaki-Einstein manifolds Y7;. Com-
putation of their volumes directly does not necessarily give the volume for the Calabi-Yau
metric necessary for the AdS/CFT correspondence®. This can be circumvented by using
the geometrical result of volume minimization that fixes the Reeb vector and gives the
correct volume of the Ricci-flat Kéhler manifold, which corresponds in the dual field the-
ory to F-maximization that fixes the R-charges at the IR fixed point, as discussed in Refs.
[35, 45, 46]. We will leave the check of this correspondence in the case of D quivers for
future work and treat the Fgs computed in Section 2.4 as predicting the volumes of the

relevant Sasaki-Einstein Y7’s.

Twisted Index. Localization has also been used to compute the partition function of 3d

CSm theories on 3, x S* with a partial topological twist of Ref. [13] on the Riemann sur-

IThe N =2 A quivers have been discussed in detail in [42] and E quivers can be solved using the ap-
proach discussed in this chapter, but due to increasing complexity (and decreasing clarity) of the expressions,
we refrain from giving the explicit results here.

21t was not the case for N' > 3 theories where the hyperkéhler structure guarantees the CY condition,
which was used to calculate explicit volumes for toric quivers like A in Ref. [43] and nontoric ones like D in
Ref. [44].
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face (34) of genus g in Refs. [47-49]. This partition function is usually called topologically
twisted index and depends on chemical potentials v = Ai’g + io% (complex mass parame-
ters constructed from the background vector multiplets coupled to the flavour symmetries)
as well as background magnetic fluxes n through X, for the flavour and R-symmetry. It
was shown in Ref. [50] that the large N limit of R log Zg2 g1 for ABJM theory reproduces
the macroscopic entropy Sgp of supersymmetric magnetic AdS, black holes discussed in
Ref. [51]. The large N limit for many other theories has been considered in Refs. [52, 53],
which revealed a connection of Bethe potential )V — obtained as an intermediate step while
computing the twisted index — to the Flss discussed above. In addition, an “index theorem”
was proven which showed that the twisted index could be written directly in terms of the
V and its derivatives with respect to the chemical potentials.

We will again consider general N’ = 2 quiver gauge theories on X, x S* in large N
limit and find that ADE classification [as a subset of quiver theories which satisfy Eqgs.
(2.3.7) and (2.3.12)] follows from the requirement that the matrix model is local and the

following set of constraints is satisfied:
V) T Vo) =3  and Ny +0pa = 1. (2.1.3)

We will then compute the large /V limit of the topologically twisted index for AD quivers.
Abusing the terminology slightly, we will denote Z = log |Zy,, « 51| and call it the twisted
index most of the time®. Along the way, we will extend (and simplify) the proof of the
relation between the Bethe potential and the twisted index (i.e., the index theorem) to cover
not just the E—type quiver theories in [52] but a large class of theories including the DE

quivers. Once again, we will not construct the dual AdS, black hole solutions to compute

3We will consider here field theories having M-theory duals only. Theories with type IIA duals can also
be similarly considered as have been done in Refs. [54-56].
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the entropy Sy explicitly - a recent review [57] and references therein give more details
for on twisted index and entropy matching. Assuming AdS/CFT correspondence to hold,
we can conjecture that the twisted index computed in Section 2.5 for AD quivers is the
entropy for the corresponding dual black holes (after extremization with respect to the
chemical potentials), leaving an explicit check for future. However, for the specific case
of the universal twist in Refs. [58, 59], we provide further evidence for the AdS/CFT
correspondence. In this case, due to holographic RG flow from AdS, to AdS,, the black

hole entropy follows a simple relation (g > 1):
Sy =(g—1)Fss. (2.1.4)

The twisted index is also proportional to the free energy and a simple relation between

various quantities introduced till now follows

4 N/ 1 Vol(Ys)
Spul8]=Z[5] = (g — 1) |4V[5] = Fss[A] = A ith — = :
pul3] = T13) = (- 1) |4V[3] = Fisld) = T—pla]| with o5 = oy
(2.1.5)
Here, A’s are the R-charges of the bifundamental fields appearing in the ADE quiver at a
superconformal fixed point where Fgs is extremized, i.e., af(sg’b) =

Outline. In Section 2.2 we review the computation of free energy on S? in large N limit.
In Section 2.3 we revisit the twisted index computation in large /N limit and set up our
notation consistent with the previous section. Along the way, we provide some new results
including a simple proof of the index theorem. In Section 2.4 we specialize to the free
energy computation: we review the result for Em quivers; provide an explicit example of
D, quiver and conjecture the result for D, quivers. In Section 2.5 we move on to the

twisted index computation: we provide explicit computations for 121\3 and 134 quivers, and

29



present the general results for A% and D, quivers based on the previous section. We
discuss a few possible future directions arising from this work in Section 2.6. We present
a brief summary of the chapter in Section 2.7 and in the Appendix A.1 we collect some

derivations and proofs to make this chapter self-contained.

2.2 S3 and Free Energy

We consider N = 2 quiver CS gauge theories involving vector multiplets (VM) with gauge
group G = ®,U(N,) and matter multiplets (MM) in representation ®;R; of G. We will
deal with (anti-)bifundamental and (anti-)fundamental representations only. VM consists
of a gauge field A, an auxiliary complex fermion A\, (o = 1,2) and two auxiliary real
scalars 0 and D. MM consists of a complex scalar ¢, a complex fermion v, and an auxil-
iary complex scalar F'.

The theories in consideration have been localized on S3 in Ref. [21, 30, 31]. According
to them, Zgs gets localized on configurations where o, in the N' = 2 VMs are constant

N, x N, matrices and thus the original path integral reduces to a matrix model:

Ags = |W| /( Hdga>6m2 ko tr(o G)Hdet 2smh(7roz aa H det UGS A+Lpl(a-)))

a Cartan MMF}fn
rep
(2.2.1)
((z) = 5= Lip (e¥™) + 2% — zlog (1 — €7™%) — iZ; U'(z) = —mzcot(mz),
(2.2.2)

where k, are the CS levels of the VM corresponding to U(N,,), A; are the R-charges of the

“To our knowledge, the general result for twisted index of A\m quivers presented here is new and only
certain limits of that result are available in the literature.

30



corresponding MM in representation R;, and a(o), p(o) are the roots and weights of the
appropriate matter representations. Denoting the eigenvalues of o, matrices by A, ; with

1=1,---, N, leads to a simple expression for free energy:

Fgs = —log|Zgs| = Zgs = / HdAa,ie*FsWavi})
L

= Fgs =~ —im E kaXs; — 2 Z Z log ‘2 sinh (TAq; — TAay) |

a i>]

Z Zﬁ(l— (@) + iAo = Ao ) ZZZ (1= Ao+ iXgy).

(a,b)EE 1, a {fe} i

(2.2.3)

Here, we have included only bifundamental and fundamental representations explicitly; the
(anti-)reps can be similarly added and will be added below as required. We are concerned
mostly with the above expression’s large rank limit, keeping the CS levels fixed. For that
purpose, we rewrite N, — n, N for some integers n,(> 1) and then take N — oo by going
to a continuum limit. We will mostly follow Refs. [34, 37, 41, 42, 60] in our saddle point
analysis of Fgs so most of this section has appeared before in the literature in one form or

the other, apart from the explicit identification of N" = 2 ADE quivers.

The saddle point equation following from Eq. (2.2.3) for A, is:

8F33
g

x QZcoth (Aai — Aaj)]
J#1

_ Z (1 — A(a,b) + L</\a,i — /\b,j)) COth[ﬂ'(Aaﬂ' — /\b,j + L‘A(%b))]

bl(a,b)EE,]

= Y (1= Apay = i(hai — Any)) cothlm(Nas — Aoy — iApa)]. (2.2.4)
bl(a,b)EE,j
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The CS term and terms from fundamental matter are subleading compared to the vector
and bifundamental contribution so we do not write them above. To take the continuum

limit, we assume the eigenvalue distribution for U (n,/N) to be

Aai = Aag(x) = N + iyo(x) (withl =1, ,n,), (2.2.5)

and introduce an eigenvalue density p(z) = + >, 6(x — x;) such that [ dzp(x) = 1. This
allows us to use the large argument approximation for coth[m(A,; — Ay ;)] ~ sgn(z — ')
and convert >, — N [dap(z)>,. We note that if we demand the same number of
bifundamental and anti-bifundamental matters at each edge, then no contributions arise
at O(N'%). The contribution at O(N) then gives a constraint on n,’s and R-charges as

follows:

OF s o |
0= (()Aa’i X (Qna - Z (2 — A(a,,b) - A(@q))ﬂb) N/dLU p(gj ) Sgn(x — )

bl(a,b)EE
=2me= Y (2= Ay — D) (2.2.6)
b|(a.b)eE
This constraint originating from the saddle point analysis guarantees the cancellation of
long-range forces and the expression for free energy will turn out to be local. We will
present the off-shell expression for free energy with generic R-charges but for explicit
computation of free energy, we will consider a stricter constraint: Ay + Apqey = 1. It
is easy to see that this gives us an ADE classification (see Figure 2.1) for these N' = 2

quivers just like in the N = 3 case®. This condition can also be motivated from the analysis

SThis is not the only simple solution of Eq. (2.2.6). For example, ABJM (/Tl) and other odd A quivers can
still be constructed with the less strict condition: A¢,_1,4) + Ag,a—1) + A(a,a+1) T D(at1,a) = 2. It would

be interesting to study generic non-ADE theories with non-trivial constraints on R-charges compatible with
Eq. (2.2.6).
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of superpotential as discussed in Ref. [42].

oo

©)
B @
O—20—CE0—0—B—O—0

)
3

Figure 2.1: ADE quivers with comarks n,, written inside the nodes. (For ﬁn quivers, CS
levels are also marked.)

Now moving to Flss, we have from Eq. (2.2.3)

Fe ~ —LWN/dI[)(.T)Zka(NQI + iya,l(x))z

a,l

~ N? / dxdx’ p(x)p(2) Z log ‘2Sinh (7N%(z — &) + im(yar(z) — ya,J(x')))‘

- N [ st p(alple) Y Y UL By + N = 2) = (arle) = sl2)
(

ab)eE I,J

— N/dxp(x) Zé(l — Apo+iNT = yor) — N/d:vp(x)ZE(l = Ao = INz+ya ).
a{fehI a{f*nI

We change variables from N*(z — 2’) — £ where required and keep at most two highest
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orders of N in each term to get®

Fgs = —imr N1t Z(naka) / dzp(z)2® + 2r N+ / dzp(z) Z koxya,r(z)
a,l

a

1
+4_N201/d:1:p Zarg 27” UaI yanl/z))
™

a,l,J

1 .
B ENz_a/d”Tp Z Z { 1 — Atap) = War — ybyj)) arg (627”(1/2—A(a,b)—(ya,z—yb,,f)))2

(ab)eE 1.J

+ 3i arg (627”:(1/2_A(a,b)_(ya,l_yb,J))) (7-‘-2 _ arg (627”.(1/2_A(a,b)_(ya,l_ybﬂ])))2) _|_ (A(bﬂ) terms):|
™

%N”Q“Z(f“n - F'n) [ dapta)s
+7TN1+“Z/dxp |:1:|[

(=8 =)+ 3 (1= B )|
{re} {7}
(2.2.7)
Here, f¢(f®) are the total number of (anti-)fundamental fields at node a. We see 3 powers
of N so let us assume Y. nok, = 0 and Y., (f*— f*) n, = 0 so that we can match

N'*te = N27¢ giving us the expected @ = 3. We also point out that to get non-trivial

solutions, a much stricter equality f* = f® needs to be imposed’ leading us to the final

*We use arg (627‘-’:‘1) = 2mx + 27 L% — IJ later. We have omitted divergent (as well as constant) terms
that cancel due to Eq. (2.2.6). Appendix A.1 has further details.

"While solving the matrix models explicitly, we will set f¢ = 0 since non-zero f¢ modify the resulting
expressions in a well-known (and trivial) way (for example Refs. [60, 61]).

34



expression to be extremized:

; | . 1
Fgs = N / dzp(x) {27?3: Z koYar(z) + 4—7Tp(a:) < Z arg (62”(9”71_1’“*"_ /2))2
a,l a,l,J

_ Z Z [(1 _ A(&b) _ (.Ua,,l _ yb,.])) arg (627”3(1/2—A(a,b)—(ya,l—yw)))2

(a,b)eE I1,J
1

_I_ 3_7_[_ arg (ezﬂé(l/z_A(a,b)_(yayl_yb“]))) <7T2 — arg (ezﬂé(l/z_A(a,b)_(ya,l_yb“]))>2> _I_ (A(b7(l) terms)])

‘|’7T’.T’ (27117 — AF>

— 2ruN* ( / dz p(z) — 1). (2.2.8)

We defined np = 3, f*na = Y, [*Nas Ap = 30, 2 jay e (Age + Aga) and have
added a Lagrange multiplier (1) term to enforce the normalizability of the eigenvalue den-

sity. On general grounds described in Ref. [38], extremizing Fgs gives

_ 47 N°/2
Fogs = 3

. (2.2.9)

We will sometimes use a bar to denote an on-shell quantity as in Eq. (2.2.9) above, when

compared to the off-shell quantity given by an integral expression as in Eq. (2.2.8).

This completes the review of the free energy Fss. Let us now turn to computation of the

twisted index.

2.3 X, x S! and Twisted Index

The topologically twisted index is the ¥, x S* partition function with a topological twist
along the Riemann surface of genus g, 2,. It was derived for 3; = S? in Ref. [47] and

extended to generic g in Ref. [48]. The main result reads (we choose unit radius for the
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circle S1):

Zngsl =
1 1-g
S (L)oo T (T (1) [ e
| | Mg a Cartan a acG a>0
emp(ur)+mivy pr(m)+(g—1)(nr+(A7-1))
x 1:[ 1_1! (1 — 627rp(u1)+27r£u1> ) (2.3.1)
pERT

where u = i ([q1 A + io) are the holonomies and m = 5 [, [ are the magnetic fluxes
corresponding to the gauge group®, v = ( J g1 Ab9 4 Labg) are the holonomies (or chemical
potentials) and n are the fluxes for the background vector multiplet coupled to flavour
symmetry such that n(g — 1) is integer-quantized.” The real part of v is defined modulo

1 so we choose v to satisfy 0 < v < 1. The Hessian B is a contribution due to fermionic

92
g ch+l—loop

zero-modes and (up to some constant factors) is given by B ~ det;; Tt g where
’ g, Oy

Ze1+1-100p 18 the full integrand appearing in Eq. (2.3.1) except for the B? factor.

As with Zgs, we are interested in the large /V limit of the above expression. It was
studied for ABJM (A;) theory in Ref. [50] and for A-type quiver theories in Ref. [52].
As discussed there, due to the sum over magnetic fluxes, evaluating this limit becomes a
two-step process: (1) Sum over magnetic fluxes, m,; (2) Integrate over the holonomies, .
The first step involves summing a geometric series, which generates factors like m
leading to poles at 1, such that eiBalta) — 1. We solve for i, by constructing an auxiliary

object called the ‘Bethe potential’ V defined as 2% = 3! such that extremizing V' gives

- =
oul,

the Bethe ansatz equations (BAEs): 2%

oul lu=

= Bi(a) = 0."° V once again turns out to be
u

8We have kept the (—1)0‘(‘“) contribution of the vector multiplet explicitly as it contributes to the Bethe
potential and is required for a consistent result, the way we take the large N limit (see Appendix A.1).

The different definitions for the same quantities corresponding to gauge and flavour groups are chosen
for later convenience when comparing the large N results for twisted index to those for free energy on S2.

108 (4) = 0 is stricter than e®2(%a) = 1 but we will see that the solution obtained is consistent with

36



related to Figs so we can easily solve it in the large /V limit. The second step then involves

substituting this solution back in Zy_,s1 and using the residue theorem to get the final

result:
Zngsl =
p(ar)+mivy (g—1)(Ar—1)
> (@) T (=) I T
1— e27rp dr)+2mivy ’
GEBAE a acd I peR;

(2.3.2)

where the Hessian can now be rewritten as B = det and we have shifted the

_o%V
ai,bj 5.7 4.7 dui du g
flavour flux with the R-charge n = (n + A) but we will suppress the ~ over n in what

follows. Again, we will evaluate this final expression only in the large N limit.

2.3.1 Summing Fluxes

We consider N/ = 2 quiver theories with gauge group ®,U(NV,) now so most expressions
below have a non-trivial summation » b|(a,p)c 2 AcCOmpanying the vector and bifundamental
matter contributions when compared to similar expressions in the literature.

We begin with the BAEs which are obtained as coefficients of m/, from the exponenti-

ated form of the integrand in Eq. (2.3.1):

0 = iB, =
2k quy, +ngnj —4)im + Z Z( u! —ub—l—w(ab))—v(ub—u +w(ba)))
|(a,b)EE J
- Z U’(ui + iVfa) — Zv'(—ui + ilfa). (2.3.3)
re fa

known results and has expected behaviour in simplifying limits of v’s.
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oV .
oul, "

These can be derived from the following Bethe potential ) via B! =

b+ L w0t 3 3 (o
a,l

(LLJ (a,b)EE i)

+U(U£—U + iV(p,0) )—LZZ u + ivya) —LZZU u +ivpa), (2.34)

where we defined, in analogy to £(z),
v(z) = £ Lip (") + 222 — & = /(2) =Liy(e”™) + 7z (2.3.5)
We chose v(z) such that v(0) = 0, however, v'(2) is divergent at z = 0.

To take the continuum limit, we again denote the eigenvalues of the u, matrices by A, ;
and assume the eigenvalue distribution for a node with U(n,/N) group to be the same as
before:

Aai = Aag(x) = N2+ iye(x) (withl =1,--- n,), (2.3.6)

with an associated eigenvalue density p(r) normalized as [ dxp(x) = 1. We convert
> — N [dzp(z) )", and note that we again need the same number of bifundamental
and anti-bifundamental matters at each edge to cancel higher order terms. To cancel po-
tential divergent terms (as before), we are led to a constraint relating the comarks n,’s and

chemical potentials ©’s as follows (see Appendix A.1 for details):

Z = 7 (1= Viaw — Yo)am. 23.7)

(a,b)eE

This leads to a larger class of theories than those considered in the literature whose twisted

index turns out to scale as N*/? in the large N limit. We note that for v,y + Vipa) =
g (a,b) (b,a)

[N
-
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we get an ADE classification just like the Fgs as the above equation becomes equivalent
020 = D 4ap)er np.'" This condition can also be derived from the analysis of possible
superpotential terms as discussed in Refs. [50, 52]. Thus, we are led to the same constraint
on « as before (1 + o = 2 — ) implying o = % and the Bethe potential in large /V limit

reads

1 )
~ AT3/2 N 2706 (Ya, 1= Yb,J HV(a,b)—1/2)
YV~N /dT[)(T) [27177 E kaYa1(x) —247T2p(,1?) E E [arg (e Ya, 1= Yb,0HV(a,b) )

a,l (a,b)€E 1.J

y <7r2—arg (eZFO.(ya,I—yb,J‘FV(a,b)—1/2))2)_l_(l/(bﬂ) term)] +7r|x|(np—1/p)] —Or N’ < / dx p(a:)—l).
(2.3.8)

Here, vp = 3_, 3¢ jay a (Vje + Pja) and we have again set 3, nok, = 0, f* = f*. We
have also added a Lagrange multiplier (/1) term to enforce the normalizability of the eigen-
value density. We can also simplify the exponent by using the constraint v(q ) + V(p,q) = %,
which will be employed below to derive the twisted index in terms of the Bethe poten-
tial. We notice the similarities and differences of the above expression with the expression
for Fgs in Eq. (2.2.8), especially the scaling N and missing vector contributions. This
naively seems to suggest that )V ~ Fss may not hold for the larger class of theories being
considered here. We will see later that it is not so. On general grounds given in Ref. [38],

extremizing V gives (just like the free energy)

ArN°/2

V=" (2.3.9)

It turns out that the large N limit of V is not enough to compute the twisted index be-

1T As discussed in footnote 5, for ABJM and other odd A quivers, the condition can be made less strict:
Via—1,a) T Y(a,a—1) T V(a,a+1) T V(at+1,0) = 1. However, we will not discuss non-ADF constraints in detail.

39



cause V has no divergences at leading order whereas the original BAEs display divergent
behaviour. This behaviour follows due to bifundamental contributions involving v'(z) be-
ing divergent at z = 0, discussed in Ref. [50]. Let us separate out the divergent part of
Eq. (2.3.3) but continue to denote rest of the finite terms as B, and schematically introduce

exponentially small corrections as follows:

0=81+ 3 3 [ (i (war@) — s () + via) + ¢V orn @)

bl(a,b)eE J
) —N'2y,~ .
o U’(L (yb,J(J?) - yaJ(CC) + V(b,a)) +e N 1/(a,1;b,,])(']“)>i|
1 1/ )
7B v Z Z [O (8ab,15 () +V(a,p); O)Y(a I;b,J) (z) = (5(5yab,u($)—u(b,a)VO)Y(a,I;b,J) (37)] )
(ap)eE J

(2.3.10)

where 0 () 0) is the Kronecker delta symbol that equals 1 when f(x) = 0 and 0 otherwise.

We used the following large N limit:

Li (eXP(Qﬂe_Nl/ZY(w))) = —log(1 — exp(2me~ /ZY(“‘))) — log(— 27re_Nl/2Y(”“))

~ +N"2Y (z). (2.3.11)

We note that Y*(z) > 0 for all = so that the exponential term is subleading and is a
consistency check for explicit computations. We stress that the above equation is used to
extract the Y*(z) functions (while keeping track of the sign) from (naive) equations of

motion B evaluated at the saturation values of the y(z)’s as denoted by the 0(sy()+1,0)-
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2.3.2 Integrating Holonomies

Moving back to Zy;_, 51, we now have to derive the large IV limit of Eq. (2.3.2). This limit
can be taken in a similar way to the Bethe potential (see Appendix A.l for some details)
but with fixed o = % such that the overall scaling of the index turns out to be N°/* as
expected. To cancel the divergent terms in order to get local integrands as in the case of

Bethe potential, we are led to a constraint on the flavour fluxes:

done= D (2 Ny — N (2.3.12)

(a,b)eE

This general constraint goes together with Eq. (2.3.7) to define a larger class of theories
with N°/ scaling of their twisted index. For Nap) + e = 1, we recover the m
classification which we will impose for evaluating examples explicitly'?. Finally, the large

N limit of the twisted index reads (see appendix A.1 for some details):

3/2 1 T z)— 2)—1/2)\ 2
1= log |ZEH><SI| ~ (g — 1)N/ /d$p(l’) [Ep(gj)(z arg (62 (Ya,1(®)—Ya,s () /))

a,l,J
- > ) [n(b,a) arg (em(ya’l(x)_yb’J(x)_y(b’“)))2] — (Nap) tefm))
(ab)eE 1,J
3 s @t 0 Vi 1y (X) + | (200 — np)] : (2.3.13)
(a,b)eE 1,J

where np is defined similar to v and the conditions on n,’s and v, ’s have been
used. The above expression is to be evaluated by substituting { p(x), ya.;(2), Y(f b J)(:L')}

obtained from extremizing the Bethe potential.

2For ABJM and other odd A quivers, the condition is less strict: n_1.q) + Naa—1) + Na,at1) T
N(a+1,a) = 2, as expected by now.
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2.3.3 Index Theorem

For the statement and a slick proof of the index theorem, Ref. [52] is a good reference.
Here we present an enlightening proof by trying to relate Z to the Bethe potential V. First,
Vin Eq. (2.3.8) is augmented by terms similar to the bifundamental contributions that look
like adjoint contributions parameterized with 1, such that for v, = 0, these adjoint terms

vanish (basically we add 0 to V). Then, we can write off-shell:

%
IT=(g—-1 n,— 2.3.14
CEDY Tl (2.3.14)
I Ng Va
where [ runs over all multiplets and it is understood that for vectors we set n, = —1 and

v, = 0 at the end of the differentiation. This is true simply because ) depends on v(2)
functions and Z on v/(z) multiplied with (g — 1)n, though Eq. (2.3.12) has to be used to
cancel some 75’s. The Kronecker ¢ contributions are also included in this form, which can
be shown by using the equations of motion Eq. (2.3.10) and chain rule for differentiation,

for example,

oV 8ya,[ +
M) Dt By Y (5<5yab,1.](x>+u<aﬁb),o>Y(a,z;b,J) (l’)> (+1), (2.3.15)

which is what appears in Eq. (2.3.13). The n(;,q)Y ™ () term with proper sign also similarly
follows. Thus, we have proven that the twisted index can be obtained from the Bethe

potential and this relation is valid for a larger class of theories than considered in Ref. [52].

The above formula focusses on the integrands and under certain conditions (for exam-

ple, whenever definite integration and differentiation commutes), it is valid even after the
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integration is done (i.e., on-shell):

(g—1) an o (2.3.16)

It is understood that the index / now runs only over the matter multiplets since vector
v,’s are set to zero already at the level of the integrand. For (anti-)fundamental matter
contributions, we can take v; = ny — vp and n; = 2np — np and the above relation
continues to hold. We note that we are allowed to choose a suitable basis for the n’s
and v’s by including even redundant combinations. Thus, to keep the expression for V
tractable, constraints on v, ) and n, ;) may be imposed and that makes the sum over / for
all bifundamentals ill-defined leading to violation of Eq. (2.3.16). To understand this better,
let us compare what happens to the sum ) | (a.b) (b.a) if the two constraints v, ) + V(b0) = 1

2

and n, ) + 1.4 = 1 are imposed after and before the differentiation:

af}(V(a’b), o ) 6V(V(b’a), .. )

After: ny—

= n(a7b)l7’(7/(a,b), .. ) + (1 — n(a,b))v(% — Viap): - ) +.-- (23.17)

Before: Z m@w a,b) (]}/(y(a,b)7 .. ) — Vf(% — V(ab)s " )) + ...

av -,
:ZI:Wa—m_V(l — Viap)s ) (2.3.18)

/ . . . .
where Y denotes sum over independent set of ©’s, which seems to be missing a term when
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compared to the full . Let us look at the following expression now:

av 1.,
= g = V(= van. ), (2.3.19)

where the last term is half of the extra term found in Eq. (2.3.18). Now, the index theorem

follows:

)
SRR WS ) WD SR s

2%
_(g—]_) 22”18_1/1+ : ﬂ[—2V1)8V1:|

= I =(g— 1) o Z Ny — 2u)=— (2.3.20)

2% }
ovy

We used the ‘homogeneous’ property of V such that I V[g—lz = 2V (proven in appendix
A.1) to write the first term. We will also see later that 4V[v] = Fgs[2v] for the ADE
quivers. The 2v’s here become the R-charges A’s in Fgs for this comparison, as can be
expected from the constraints imposed on them to get ADE classification. In general, 7
needs to be extremized with respect to ’s and critical values for v’s are obtained in terms
of the flavour fluxes n’s. The resulting expression Z(v(n),n) is supposed to match the
corresponding black hole entropy Sgy as discussed in Section 2.1. However, for the case

of universal twist, n; = 2y, dealt with in Refs. [58, 59] leading to the expected simple
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relation for ADE quiver theories and their duals:

Universal twist:  Spy =T = (g — 1)4V = (g — 1)Fgs  given that g_f, = 85513 =0.

(2.3.21)

This completes the setup for the twisted index Z. Let us now turn to explicit computation

of the free energy of AD quivers.

2.4 Free Energy and Volume

In this section, we consider the AD quivers and evaluate their free energy, or equivalently
the Vol(Y7). We will follow the algorithm developed in Ref. [60] but suitably modified for
the case of general R-charges. We briefly review it here to introduce the terminology we

use when writing down the explicit solutions.

Algorithm. We take the principle value for the arg() functions leading to the inequalities:

0 < Ya1 — Yag <1; 0 <Yar =Yg+ 0@y <1, —1<Yss—yps— Dpa <0.

= [Ya,r — Ya,s| < 1; —Aap) < Yaq — Yo7 < Dpa) -
2.4.1)

As discussed in previous section, we will insist A, 3) + A q) = 1. Since we have pairing

up of bifundamentals, while the inequalities are not violated, the contribution from these
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fields to Eq. (2.2.8) simplifies:

e (-0) f <>z{<—>— (-2 -2

(a,b)®(b,a) 1,J

= W/d:l‘[) )?

(a,b)®(b,a) 1,J

)2 . (242)

where Aab) = A(ap) £ Ape). We will also insist that all yo () — yq,s(2) = 0 initially,

which simplifies the vector contribution to just 3=, [ dzp(x)* 35, ; 7.

Extremizing Fss now with respect to y(z)’s and p(x), we find a solution which is con-
sistent only in a bounded region around the origin (z = 0). This is because as |z| increases,
the differences vy, 1 (%) — ¥p.s () = 6yap.rs(x) monotonically increase (or decrease), satu-
rating at least one of the inequalities given above at some point on either side of x = 0,
which we label as 7. This saturation is maintained beyond these points, requiring the cor-
responding y, ;(x)’s to either bifurcate (for n, > 1) or develop a kink. Once an inequality
is saturated, we have to remove one of the y(z)’s from the integral expression Eq. (2.2.8)
by using the saturation value and solve the revised equations of motion separately on both
positive and negative side of the z-axis until new saturation points are encountered on both
sides. This leads to pair of regions on either side of the central region (or region 1), which
we will label as “region 2*” bounded by x5 for obvious reason. This procedure needs to
be iterated until either all y(x)’s get related or p(x) = 0, determining a maximum of ) | n,
regions for A quivers and ) ©_ n, — 1 regions for DE quivers'®. Once the eigenvalue den-

sity p(x) is determined in all the regions, the value of y is found from the normalization

3We count disjointed n* regions as one single region so //1\1 has two regions, even though there are four
saturation points bounding three apparent regions {-2~ - 1-2%.}.
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condition of p(z), which gives the quantities we want via the following relations:

7 _AaNE Vol(Y7) 1
STy Vol(ST) — 82

(2.4.3)

We combined the former equation with Eq. (2.1.1) to get the latter.

AN

24.1 A,, Revisited

We review the A quivers dealt succinctly in Ref. [42]. The above discussion applies to this
case just by setting the values of /,J = 1. The contribution from bifundamentals in Eq.
(2.4.2) can be rewritten as F given by eq (4.2) of Ref. [42]. The solution for free energy is

given in terms of the area of the following polygon:

P = {(s,t) € R2‘Z;":ﬁl|t+qas|+clt+cgs < 1}; ¢ = ZA(_a,b), co = anA(_a’b).
(a,b)eE (a,b)eE

(2.4.4)

The redefined CS levels ¢, are constrained parameters obeying ZZZI ¢. = 0 and are

related to k,’s as follows:
Qo = ka, - ka—l—l , @ = 17 e,y G4l = km+1 - kl . (245)

The Area(P) is related to [ dzp(z) such that we get'*

1
L aenl ] (2.4.6)
040a+1 Oa+m+10a+m+2

Vol(s7) ~ g2 ~ 2P =

a=1

Vol(Y;) 1 1 fian [I%,aﬂl

It is a fun exercise to show that the definition of P as given in Eq. (2.4.4) can be ‘integrated’ to get
precisely the area of P as given in Eq. (2.4.6) in Ref. [38].
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This reduces to the correct N' = 3 expression when all Ay, = % as can be directly

checked from the definition of ¢’s:

Ba:(qla> forCL:17---77n—|—1’/[37”_‘_2:—61; Vu,bzﬁa,/\ﬁb;
m—+1 m1

04 = Z [|7a,b| + %,aA(_b,bH)] v Oatm+1 = Z [|%,b| - “/b@A(_b,bH)] . (2.4.7)
b=1 b—1

A trivial example to check the above formulas is EI quiver (consider the ordering ¢; >

0> gzand q = %)

241 + 2q1
Vol(Y7) :1 GaAl )EaAR ) T Gadl,)6adE ) | 1 ‘
VOI(S7) 4 2q1 2q1 32AA AB AA AB a1
(4q1A(%A’1))(4q1A241’2)) _I_ (4q1A241$2))(4q1A242’1)) (172) (172) (2’1) (2’1)
(2.4.8)

This expression appears in literature a lot and it can be straightforwardly checked that it
reproduces the correct % for ABJM theory when all A’s equal % A slightly non-trivial

example is 121\3 but we will discuss it for twisted index in the next section.

Let us move on to the D quivers now (specifically D, which is related to 121\3 via unfolding

procedure in the N = 3 case of Refs. [60, 62]).

2.42 D, Solved

We give the detailed solution for the ﬁ4 quiver here and to make the expressions easier to

read, we do a bit of housekeeping first. Let us redefine the five constrained CS levels £’s to
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four unconstrained variables p’s as follows:

ki =—(p1+p2), ko=pi1—p2, ks=p3—ps, ki=0ps+ps, ks=pr—ps. (2.49)

We will also suppress the second index on the four y,; with a = 1,---,4. Furthermore,

we introduce a ‘vector’ of R-charges:

(A7) = {%( 15~ B0 2 (Bas 005 —3(Bus +05) —5 (B0 ‘A(_:m))}’

(2.4.10)
which will appear in a combination Zézl (A7) = p- a(A7) below. For generic p’s,
there are going to be 5 regions consisting of one central region spanning both negative
and positive side of the z-axis and 4 pairs of disjointed regions beyond the central one as
explained in the algorithm above. Let us now enumerate the solution in each region for a

particular ordering p; > ps > p3 > py > 0.

24

i - 2
Region 1: ST S Torip i)

4(p14p2)—2p-a(A7)

IN

plz) = 3p—3ap- a(A7);

_ _1a- z(p1+p2) _ _1A- T(—p1+p2)
Y1 —Ys2 = _§A(175) + —p—)—x;a(z‘) ) Y2 = Ys2 = _§A(2’5) + —!H-irplﬂ(z_) )
— _1A- (=p3+p4) — _1A- (p3+p4) _
Ys — Y52 = —gA(375) + _zﬂf_a(pﬁ-) ) Yo — Y52 = —§A(475) - _Miiz_a%-) ) Ys1 — Y52 =0.
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. - 20 )
Reglon 27 Ip1—2pa(A) <r< 4(p1+p2)—2p-a(A7)
plx) = 31— gap- a(A7);
/ - ( oy _ 2
Yi—Ys2=1—Auys, Yo = Ys2 = 5(1 - A(z,s)) N —u-l—x;g(ﬁ_) ’
3 _ @ (p1+pa+ps—pa) -1 - 2p1tp2tpstps)
ys —ys2 = 3(1 - A(3;3)) ~ repa(AT) v =52 =5(1 - A(4’5)) T apals)
- 2z (p1+p2)
Ysi — Ys2 =1 — —u+x;~a(2_) '
. .o —
Region 27! 1ot < 7 < prmpala

p(z) = 1p—3zp- a(A7);

Y1 —Ys2 = _A(1,5) ) Yo —Ys2 = —%(1 + A(_g,g,)) - —_Hz;ﬁm—) )

=3 p 2lprtpatps—pa) =1 - @(p1+patps-+ps)
Y5~ Y52 = 5(1 B A(375)> - Wa&’; ’ Yo = Y52 = 5(1 - A(4,5)) n —;11,+x;~a(3A’)4 )

_ 22(p1+p2)
y5,1—ys72—1—w.a(2—)'

N
dp1—2p-a(A7)

IN

X

IN

o 2
Region 37 _2(p1+p2+p3+£4)—2p'0‘(A_)
pr) = p+apy —ap- a(A7);

Y1 —Ys2=1-— A(175) ) Yo — Y52 = —A(2,5) ) Ys — Ys2 = _%A@,s) - —2uf2(Z;Tf;;£ﬁ(A—) )

_ _ _1a- 2(p2+p3+pa) _ - _ 22ps .
Ya —Ys2 = QA(475) —2u—2zp1+2ap (D) Ys,1 = Y52 = = 3 "up +20pa(a)
. +. 20 < 2p
Region 37 5,0 <4 S st 2aa )

p(r) = pp—apr —ap- a(A7);

Y1 = Y52 = —A(1,5) ) Yo —Ys2=1-— A(2,5) ) Ys —Ys2 = _%AE%,E)) o —2uf2(2§91+$$2m—) J

_ N z(p2-+p3+pa) _ — _ 21py .
Ya = Y52 22(4,5) T Topr2api+2apalA-) Y51 = Y52 —2p+2ap1+2ap-a(A~)
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H - 20 _ 21
Reglon 47 2(p1-+p2+p3—pa) —2p-a(AT) STS 2(p1+p2+p3+pa)—2p-a(A~)

p(z) = 2p+ 32(3p1 + p2 + ps + pa) — Sap - a(A7);

1 —ys2 =1—Anps, Y2 —Ys2 = —Dp),
_ 1 1aA- 22(2p4—p2—p3) o _
Ys = Y52 = 7% QA(375) - —9u—32(3p1+p2+p3+pa)+9zp-a(A~) Ya = Y52 = A(4’5) ’
_ 1 22(—2p2+p3+pa) .
Y1~ Ys2 = —3 —9p—3z(3p1+p2-+p3+pa)+9zp-a(A7)
Region 4t: 2 <z< 2u

2(p1+p2+ps3+pa)+2p-a(A7) 2(p1+p2+ps—pa)+2p-a(A7)

p(x) = 3p— 52(3p1 + p2 + ps 4+ pa) — Sap - (A7) ;
Y1 — Ys2 = —A(Ls) ) Y2 — Ys2 = 1— A(2,5) )
_ 1 1A- 22(2pa—p2—p3) _
Ys = Ys2 =75 — §A(3,5) + —9u+3x(3p1+p2ip3-2-p4)3+9xp'a(A—) ) Yo —Ysp =1 - A(4»5) )

_ =14 22(—2p2+p3+pa) .
Y51 = U5.2 = 3 T 0¥ 32(p1+patpatpa)tozpalA)

. - 24 _ 2p
Region 5~ 2(p1tp2)—2pa(BA) Sz < 2(p1+p2+p3—pa)—2p-a(A~)

p(z) = 2u+ x(2p1 + pa +p3) — 2zp - a(A7);

y1—yse =1-— A(1,5) ) Y2 — Ys2 = —A(2,5) ) Ys — Ys2 = —A(3,5) )
_ _ 1 (p2—p3)
Yo — Ys2 = —A(4,5) ) Ys1 — Ys2 = —5 — —4u—2m(2p1i£22+£§)+4mp-a(A_) :
Finally, the last saturation occurs at the end of this region with y5 ; — y52 = —1.
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H +. 20 2u
Reglon 5™ 2(p1+p2+ps—pa)+2p-a(AT) ST 2(p1+p2)+2p-a(A—)

p(r) =2u —x(2p1 + p2 + p3) — 2xp - (A7)

y1—Ys2 = —Agups), Yo —Ys2 =1 — Ags, ys —ys2 =1 — A@s,
_ _1 z(p2—ps3)
Yo —Ysp =1 — A(475) J Y51 = Ys2 =3 — —4u+2:r(2p1+p22+p§)+4xp~a(A—) )

Finally, the last saturation occurs at the end of this region with y5; — y52 = 1.

2
OE R
N

W=

= T =
Ty Ty Tty

Figure 2.2: Eigenvalue density p(z) and distributions v, ;(z) for D, quiver (y5,2(x) = 0).

To get a feel of these expressions for p(z) and y(x)’s, we have plotted them in Figure
2.2 using the numerical values: p; = 15, po = 8, p3 = 4, p4 = 1 and all A’s equal to
§. With the p(x) known in all the regions, we can just use the normalization condition
[dzp(x) =1 to get %, which is directly related to the Vol(Y). As with the A quiver, this

volume can be recast as a polygon’s area and for 34 quiver, this polygon turns out to be

P = {(s,t) € RQ‘Zizl (|t+pas| + |t —pas|) — 4|t +2p-a(A7)s < 1} ,

. VOI(Y7)
h
VI o1(57)

(2.4.11)

= iArea(P) :
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For the above mentioned numerical values, the polygon is shown in Figure 2.3 with ; Area(P) =

1992856091659101  ~_ : Vol(¥Y7) _ 1
sss64531312025600 ~ 0-005. This value matches Vol(57) = B2 exactly. Also, we note that

this construction is valid for all possible orderings and signs of p’s.

a4 A\

Figure 2.3: Polygon P for lA)4 quiver. (s — t coordinate system rotated by 7.)

We can, of course, write the explicit volume for 54 here but instead we prefer to give

the explicit expression for general lA)n quiver directly.

2.43 D, Result

Given the result for 154 quiver above and the known result for AV = 3 ﬁn quivers in Ref.

[60], we conjecture the polygon for N = 2 ﬁn quivers to be:

P = {(s,t) € R? i (|t + pas| + [t — pas|) — 4t| +cs < 1} . c= ” (2pp) o (A7),
a=1 b=1
(2.4.12)
ab(A_) = {%(A(_lj) - A(_275))7 %(A(_l,s) + A(_2,5))’A(_5,6)’ ) A(_n,n+1)7
_% (A(_4,n+1) + A(_3,n+l))’ _%(A(_zx,nﬂ) B A(_‘3>,n+l)) } (2.4.13)

For generic n, the p’s are related to the CS levels as follows:

kl = _<p1 +p2)7 k2 = P1 — P2, k3 = Pn—1 — Pn, k4 = Pn—1+t Pn,

ki = pis— Pyt =B nt1. (2.4.14)
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We note the difference with Eq. (2.4.4) for A quivers which requires two constants. As
explained in Ref. [42], this is due to the two U(1) isometries of the toric A quivers so it
makes sense that for the case of non-toric D quivers which has only one U (1) isometry, we

see only one constant in the polygon formula in Eq. (2.4.12).

One can verify that this polygon’s area gives the general volume formula corresponding

to D,, quivers:

VOI(Y}) 1 1 1 a |'7a a+l| h/a a+l|
U~ — Z Area(P) = = d : , 2.4.15
Vol(S7) 8?4 rea(P) 4= T Tait i 04 0qt1 ( :
which we have explicitly checked for Ds, - - -, D1o.'° The definitions of various quantities

are slightly elaborate here:

Bo = ((1))7 Bia = (i}Da) fora=1,---.,n, Bhy1 = ((l))u A/a,bzﬁa/\ﬁlﬂ

n

5-2: - Z [|A/a,b| + |7u,—b| + (7&,1} - 7@,—b)ab(A_)} o 4|7u,7z+1| : (2416)
b=1

The combination (V,p — Ya.—b) = 2pp for a # 0 is used to show similarity with the defi-

nitions for A quivers in Eq. (2.4.7), otherwise it is a simple factor defining c in Eq. (2.4.12).

This completes the free energy or dual volume computation of AD quivers. Let us now

continue with the computation of their twisted indices.

31t is interesting to note that the =+ structure in Eq. (2.4.15) produces independent terms, which is in
contrast to the expression in Eq. (2.4.6) of A quivers, where the analogous % and o~ terms produce one
mixed term. However, that is just an artifact of the way we have defined 8’s. [y is quite redundant if we

realize —r + —L — Iy 1.4l
90 91

5o 51 oL 57
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2.5 Twisted Index and Entropy

We will again work on AD quivers and first evaluate the Bethe potential in Eq. (2.3.8) and
then the index in Eq. (2.3.13) (equivalently, dual black hole entropy). We will follow the
same algorithm used to evaluate Fgs but start with the reduced set of inequalities as VM

do not contribute to V:
0< Ya, 7 — Yo,0 + V(ab) < 1; —-1< Ya,1 — Yb,0 — V(ba) < 0. (2.5.1)

As discussed before, we will insist v(q ) + V(p,a) = % Since we have pairing up of bifunda-

mentals, while the inequalities are not violated, the contribution from these fields simplify

to
v, 2 1
_ Zﬂ' <1 — V&@) /dmﬂ(m)Z Z [(Z/aJ — Upg + %) — EV(Z@) (2 — V(-;’b)) ]
(a,b)®(b,a) 1,J
T v 2 1
=25 / dap(z)’) [(yl — Y + “;”’)) - 1—6} . (25.2)
(a,b)®(b,a) I,J

where V?Z,b) = V(gp) £ Vpa). Comparing Eqs. (2.2.8) and (2.4.2) in the central region

(1.e., Ya,1 = Ya,s) With Egs. (2.3.8) and (2.5.2), we find that the two expressions (whether
off-shell or on-shell) are same up to the scalings given in Table 2.1.

Once an inequality is saturated, we have to use the general expression involving arg()
functions. This step is to be taken much more seriously here than the case of free energy
because moving away from the central region generates terms like (v, ; — v,.7)? leading to

new inequalities:

- % < Ya,1 — Ya,J <0 or 0< Ya,1 — Ya,J < %7 (253)
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| Free Energy ~ —  Bethe Potential |
Fgs — 4y
@ - A
A — 2v
Yy — 2y
T — 2z
p - o1

Table 2.1: Scaling different parameters to relate Fiss and V.

which can drastically affect the evaluation of V in the new regions. This process of gen-
eration of new terms and inequalities that look like coming from vector contributions of
Fss means that V can indeed be related to Flss in all the regions, not just in the central
region, even though these two expressions seemed very different for DE quivers in sub-
section 2.3.1. In fact, using the scalings given in Table 2.1, we can verify that it is indeed
so allowing us to use the results for Fgs to write down ) for the same quiver.

As far as saturation points, p(z) and y, s(x) are concerned, we can get them from the
similar computations already done for Fgs but to get the divergent contributions Y *(z),
we need to perform one more step during extremization of V in different regions. This
step is to substitute the solutions of each region n™ in the equations of motion B! found in
the region 1. Of course, B, # 0 in other regions but provide the divergent contributions
Y*(z)’s via Eq. (2.3.10). One technicality is that the B. of Eq. (2.3.10) are related to
the equations of motion obtained from V via % = Np(x)BL. This step needs a slight

modification as discussed in subsection 2.5.3.

2.5.1 A; Solved

As far as we know, only theories like gl quiver (ABJM) whose matrix models involve just

2 regions have been discussed in the literature. So we improve the situation by considering
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a non-trivial example explicitly for A quivers: 23, whose matrix model involves 4 regions.
Let us set up some notation before presenting the explicit solution. We use the redefined
CS variables following Eq. (2.4.5) with the given ordering: ¢; > g2 > 0 > g3 and ¢4 =
— ZZ:l go- We will again suppress the second index on the four y, ; witha = 1,---,4 and

introduce two short-hand notations:

Y = Vag) T Ve T Ve TV

(2.5.4)
ap(v™) = {(V(_Lz) - V(Z,l))a (V(_z,s) - V(_4,1))7 (V(_s,4) - V(_4,1)) )
which will appear in a combination Y, gy (™) = ¢ - a(v~) below.
: . 2ji 2
Region 1: _2q1+q1E»M—q~a(1/‘) SIS 2q1—q12ulj—q'a(v‘)
_ 32p—16xqa(vT) .
(1) = = m,
2(S0—4v(, 44 1)) T2da(E0—2) (S0 +2) —qa(v™) (S -4y, , 1 4))]
Ya — Yat+1 = — 16f—8xq-a(v—) wtls e =1,2,3.
: - 2 _ 2
Reglon 2 2(q1+q2+93)—(q1+q2+g3) X0 —q-a(v ) STs 2q1+q1¥y—q-a(v)
24ji—4z[q1 (S, —2)+3q-a (v~
pla) = —HEE I =5,
- 2/1(221,—61/(;’11“)—1)+m[(q1(1-|—2V(_a?a+1))+2qa(21,+1))(21,—2)—q.a(1f)(221,—61/(_117(1“)—1)] _93
Yo = Yat1 = 24ji—4xq1 (X, —2)—12zg-a(v ™) y 0=495
V- im0 42 -gao)]
(12) S+l
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ion 2+ 2ji 24
Region 27 21— 15 +ga(v) Szs 2(q1+ga+g3)+(q1+a2+43) Vv +g-a(v)

24ji—4a[qy (Sv+2)+3ga(v )] |
plo) = MRS - = ),
, , 20(250 =6v(, ) TDFel(q1 (=142 5))+2¢a (30 —1))(Bp+2)—q-(v ™) 28y —6v(, 1) +1)] =23
Ya = Yat+1 = 24fi—4zq1 (Z,+2)—12zq-a(v™) ,a T
+ _ Arp2re[q (B0 —2)—q-a(v )]
Vi = 12,—1 '
. - 2ji 241
Reglon 37! a1 +q2+93X,—q-a(vT) ST - 2(q1+q2+4q3)—(q1+92+43) Sy —qa(v)
—167—4 143,)—2g- B
plr) = Zolotleta) () 2eab )l oy gy = - vagy, Y = V)
AR =20 ) 4201 (=205 ) )+ a2 (120 ) —as(1— 22y+21/(34)))(Eu+1)—2q~a( )(E =2 )]
Y3 — Ys = 16/i+8zq1 +42(g2+43) (Sw+1)—8zg-a(v™) ’
Y- = Amae2nelg (Su42) —ga(vT)] Y+ _ Ama—2me{(qitg2+gs)(Sy—2)+ga@T)]
5 Eu+1 ’ Ey_l
: +. 24 20t
Region 37 s T a0 = 7 S tTa e aao)
—16fi+4x[2q1 — Y, —D)+2¢a(v”
pla) = —tn e B DBeali)l gy g = vy, G- Y= 3 - V)
AR 20 ) 2201 (X020 ) (a2 (1420 ) —a3 (1428 — 205 ) (Su—1)+2¢-a(v™ )(zy—2u(34))]
Ys — Ya = 16fi—8xq1+42(g2+g3)(Ev—1)—8zg-a(v ™) ’
y+t - Amji+2rz(qr (Ey—2)—q-a(v7)] Yo o — —dmjit2nz[(q1+g2+43) (S +2)+qa(vT)] |
= S,—1 ’ (451) vt
. - 2/ . 20
Region 47: araras o) =¥ S T arates. qae)

—8i—4x 1+ —q-a(v™
p(z) = =22 [ql—;g?;::i‘l)) qa(v7)] ;
Y1 —Y2 =35 — Va2, Y3 —Ys = —V(34), Yo — Y1 = V4,15
-  _ —Ari—2rz(q (Ev+2)—qa )] + Anfi+2nz(q1+g2+g35, —qa(v )]
Vo) = L Y = it ,
Yyt o — Ami+2nz(g1+g2—(q1+g2+93)Ev—ga(v )]
. EV
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; +. 2% 2%
Reglon 4™ qa+ge—q2Xu+qav™) ST at+a2—g3Xu+ga()

_ —Sitdzlgi+e—@Xitga@)] .
P($) = 12,(22U-3+1) ’
Y1 — Y2 = —Va,2), Yo — Y3 = —V(23), Yy — Y1 = % —V@4,1);
y+  — Arat2nelg Sy —(qtez)—ga(v)] Y. = dmi=2rela—ga(By—1)tgalvo)]
(1;2) 3y ’ (2;3) 3y ’
v- o — —4np+2re[(q1+g2+43) (B +2)Fg-a(v )]
(451) — Y41

Let us visualize all these expressions for p(z) and y(z)’s in Figure 2.4 using the nu-

merical values: ¢; = 78, g2 = 2, g3 = —29 and all A’s equal to % With the p(x) known in

p(z)
2 1
5
i ) ys(x)
10|
€T
Ty Mg o ot s
-/17
Yy2(T
_ ]
E
g1 (2)
xX —
oy vy - @y - b

Figure 2.4: Eigenvalue density p(x) and distributions y,(x) for A, quiver (ya(x) = 0).

all the regions, we can just use the normalization condition [ dzp(x) = 1 to get /i, which
gives the Bethe potential VV o [i. Next, we plot the divergent contributions in Figure 2.5,
which are crucial to get the correct twisted index. We note that all the Y= (z)’s are in the

upper half plane as required by consistency.

Finally, we have to integrate the expression given in Eq. (2.3.13) withall the { p(z), ya.1(z), Y(f 1.0) 1

obtained here in each region carefully. The result is a huge expression and unless we take
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L 5T

2

Figure 2.5: Divergent contributions Y(f_b) (x) for A, quiver.

the help of index theorem, it is hard to make sense of it. Though, we can make sure that
the integrated expression and the one obtained via the index theorem are identical, which
we have done for both Eg and ﬁg to check that Eq. (2.3.10) does give the correct Y+ (z)’s
Thus, instead of writing the full expression for Aj; here, we present the explicit general

result for Em quiver directly.

252 A,, Result

Having discussed the non-trivial case of A\3 quiver of this class explicitly, we write down
the generalization of (well-known) 21 and (above-mentioned) A\g results quite straightfor-

wardly:

A N°/?
3

m+1
Y= i with — 32 Z [' Yaatil | Paanl | (2.5.5)

1
,u 0a0a+1 Ua+m+10a+m+2
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where only the ¢’s definitions slightly changes compared to Eq. (2.4.7)

m+1 m+1
Oq = Z [|7a7b| + 27b,a7/(_b’b+1)] ;o Oatm+1 = Z [|A/a,b| 27 aV(b b+1)] (2.5.6)
b=1 b=1

Thus, we see that if we substitute A — 2v in Eq. (2.4.6), we get for A quivers:

I
p2v)2  164[v)?

= 4V[v] = Fgs[2v] (2.5.7)

as promised earlier.

The index is implicitly given by the relation in Eq. (2.3.20) but massaging it a little bit,
we can give an explicit expression in terms of /i that facilitates checking with the expression

given by the integral in Eq. (2.3.13):

_ 32 (=5
T-(g- 1) ~3[~2 —%Z (ny —2vy) (“) (2.5.8)

The derivative term reads explicitly (after some tedious algebra) as follows:

d(+5) m+1 (. 2f, () — 2, a
S (v - ) (” =642 Pien { Uara(m) = 2/, <>)+ 1<f (0) = 2£u(+)) 0us
N Oat+m+1 (fa+m+2( n) — 2fa+m+2(y)) (fa+m+1(ﬂ) — 2fa+m+1(y)) Taimais

2 2
Ua+m+10a+m+2

)

where foimin(n) = (=) X7 29 40511y, and similarly for £, (v).

Let us move on to the D quivers now with an explicit solution for ZA)4 quiver first.
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2.5.3 D, Solved

Given the scalings of Table 2.1, the boundary z-values, p(z) and y, ;(z) follow straightfor-
wardly from Section 2.4.2 so we do not repeat them here. Only the divergent contributions
Y*(x)’s are new and we enumerate them region-wise below (we again suppress the [ = 1
index fora = 1,---,4 and J = 2 for b = 5). It turns out that there are no kinks in Y'*(z)’s

here so we write only the new ones appearing in each given region.

. . 20 , 24
Reglon 1: 2(p1+p2)—2p-alv—) << 2(p1+p2)+2p-a(v—)

No Y= (z)’s yet.

: - 2/ _ 20
Region 2: o) <z < pitpa)—2p ()

(s = —Am (it z(p+p2) —ap-a(v?)).

. +. 21 e _p
Region 27: seiipatorat) = %S Bpivapate)

Y(J1F;5) = —An (i — z(p1 +p2) —zp - a(v7)).

. - 20 . 2p
Region 37 — =7 ST < g pan)

Y(;;s) = _47r(/l +xp —p - a(u‘)).

2 << 2
2p1+2p-a(v=) — &= p1+p2+p3+pa+2p-a(v)

Region 37:
Yios = —4m(f— apy —ap - a(v7)).
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Region 4~

Region 4+:

Region 5:

Region 5+

20 < 2

_ < _
p1+p2+p3—pa—2palv™) — 7 —  pir+pat+pstpa—2p-a(vT

Y(jlr;ss) = =27 (2 + z(p1 + p2 + p3 + pa) — 2ap -
2/ 27
p1+p2+p3+pat2p-a(v) STS p1+p2+p3—pa+2p-a(v)

(455) — _27(2/1 —x(p1 +p2 + ps + ps) — 22p -

W << - 20
p1+p2—2p-a(v=) — L= p1+p2+p3—pa—2p-a(vT)

Yiis) = —2m(20 + x(p1 + p2 + p3 — pa) — 2ap-

20 <gp< 2
p1+p2+p3—pa+2p-alv=) — > p1+p2+2p-a(vT)

Yv(;;5) - _27{(2/1 —2z(p1 + p2+ps — pa) — 2ap -

)

These Y*(x)’s are plotted in Figure 2.6 using the numerical values: p; = 15, py = 8,

p3s =4, ps = 1 and all v’s equal to % and we see that all of them are in the upper half plane

as expected.

Finally, we integrate the expression given in Eq. (2.3.13) by substituting the {p(z), yo (),
in each region carefully. The result is again a huge expression and we take help of the in-
dex theorem to write it concisely. Before we do that, a comment about insufficiency of Eq.

(2.3.10) for ﬁn with n > 4 is in order, after which, we will present the explicit general

result for ﬁn quiver.
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Figure 2.6: Divergent contributions Y=

(a,l;s,z)(I) for ﬁ4 quiver.

2.54 D, Result

It should be no surprise that (after calculational dust settles) the result for D quivers will

look similar to that for A quivers:

4 N°/? 1 = a,a Ya,a
V=""f with - =32) Dol | Naasil ] (2.5.9)
3 [ 940411 0a0a

where only the &’s definitions slightly changes compared to Eq. (2.4.16)

5'2: = Z [l’ya,bl + |7a,—b| =+ 2(’7&,b - 7@,—b)ab<y_>} - 4|7a,n+1| : (2510)
b=1

Thus, we again see that upon substituting A — 2v in Eq. (2.4.15), we get for D quivers

11
p2v]2  16/[v)?

= 4V = Fs[2v] (2.5.11)

as expected.

64



One caveat here is that the result for Em quivers is an exact result whereas that for ﬁn
quivers is a conjecture. This boils down to the polygon formulas Eqs. (2.4.4) and (2.4.12).
While the former is a proven solution to the ﬁm matrix model Ref. [42], the latter is a
conjecture that we have checked for ﬁn matrix model up to n = 10.

Finally, the index can be written explicitly as follows:

AN T4 1 (7
I:(g—l) 7T3 #5lﬁ_§z(n1_2yl) (;:)
1
9(5)

with Z (Il[ — 2V1) aZ =
1

6 (1(n) —2700) (- 2;1')"1“’1 +Z s e P o)),

} ; (2.5.12)

where f(n) = >/, 2(Yap — Ya,—b)p(n), and similarly for f(v). Due to the fact that
(Yap — Va,—b) = 2pp does not depend on the subscript a, these f(-)’s become an overall
factor and the explicit expression for D quivers’ index simplifies considerably compared

to the analogous expression for A quivers.

2.6 Discussions and future directions

We note that one could study these theories on more general Seifert manifolds as discussed
in Ref. [63-65]. The M, manifolds include both the manifolds studied here as in M ; =
S%and My = X4 xSt In this framework, the observation 4V[v] = Fg3[2v] in the present
context may be easily explained following the logic of Ref. [64]. In addition, it should be
possible to generalize the results presented here straightforwardly to these manifolds.

An elephant in the room is the fact that expressions for free energies of E()‘j,g are miss-

ing in this chapter. As is well-known, even in the N' = 3 case in Ref. [60] the known
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expressions are valid only for a subset of CS levels. An all-encompassing formula in terms
of roots or graphs as in the case of AD quivers is not known for them. So we refrained
from giving the N' = 2 extensions of the A/ = 3 formulas but comment that it would be
much more interesting to figure out the fully general volume formula for E quivers. The
Fermi-gas formalism, Refs. [66—-69] could be a helpful tool in this quest, given that the
polygon formula appears naturally as a Fermi surface in this formalism.
Finally, it goes without saying that computing volumes of the Sasaki-Einstein 7-manifolds

explicitly and constructing explicit M-theory duals for ADE quivers with non-universal

flavour fluxes would be an interesting exercise to test the AdS/CFT correspondence.

2.7 Chapter summary
This chapter contains two interconnected results:

Volume: We computed the explicit free energy Flss for D quivers in terms of the R-charges
A(q,p) of the bifundamentals, obtained by combining Egs. (2.2.9) and (2.4.15). Ac-
cording to AdS/CFT correspondence, the formula Eq. (2.4.15) provides a predic-
tion for the volumes of certain Sasaki-Einstein 7-manifolds Y7, which describe the

AdS, x Y7 M-theory duals.

Entropy: We computed the explicit twisted index Z for AD quivers, Eq. (2.5.8) and Eq.
(2.5.12), in terms of the chemical potentials v/, ;) and flavour fluxes n(, ;). We expect
that the extremization of these formulas with respect to v’s leading to the expression
Z(v(n), n) reproduces the macroscopic entropy of the dual black hole solutions in the
4d gauged supergravity uplifted to M-theory with the above-mentioned Y7’s. In the

simplifying case of universal twist, the extremization procedure is automatic, leading
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ton; = 2vy and Spy = Z = (g — 1) Fss follows via the index theorem given in Eq.

(2.3.20) for ADE quivers as shown holographically in Ref. [58, 59].

Along the way, we computed the large N limit of the partition functions for 3d N =
2 quiver theories on S® and X; x S* involving bifundamental and fundamental matters.
We obtained constraints on relevant parameters (A for Fgs and {v,n} for Z) under the
requirement that the resulting matrix model be local, leading to a large class of CSm quiver
theories including the ADE quivers. The fundamental matters contribute in a trivial way
and that contribution can be included in the results presented here following Ref. [60, 61].
An intermediate construction to obtain the twisted index is that of the Bethe potential V),
which we find is related to the free energy via Fgs[2v] = 4V[v] with an explicit matching
of the matrix model. It was shown in Ref. [52] that for A quivers and related theories, this
relation is true off-shell too but with a different numerical factor. We extended this result
to DE quivers and showed that the relation holds true in all the integration regions with
the same numerical factor of 4. This fact fits nicely with the simpler proof of the index

theorem provided in the main text.
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meeeeeessssmmmmmn CHAPTER 3 S

SUPERSYMMETRIC LOCALIZATION ON

DE SITTER: SUM OVER TOPOLOGIES

This chapter is based on

1. “Supersymmetric Localization on dS: Sum over topologies”, R. Basu, A. Ray, Eur.

Phys. J. C 80 85 (2020), [arXiv: 1911.07480].

3.1 Introduction

Quantum theory of gravity in 3 space-time dimensions does not cease to surprise us, owing
to the richness of physical and mathematical structures that are being continually revealed
for more than 3 decades starting from Ref. [70]. It is interesting that, gravity in 3d is de-
void of local degrees of freedom. One of the main causes of non-triviality in 3d gravity is
the BTZ black hole solution, as reported in Ref. [71] for negative cosmological constant.

The most interesting sector of solutions for the case of negative cosmological constant is
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asymptotically AdS. A huge body of work has stemmed from the seminal work of Brown
and Henneaux, in Ref. [72], which showed that the asymptotic symmetries of asymp-
totically AdS space-time in 3d form two copies of Virasoro algebra; thereby hinting at a
plausible conformal field theory (CFT) at the two dimensional asymptotic boundary. As an
example of low dimensional holography, this generated a great deal of physical and math-
ematical curiosities; motivated just from the question of calculating partition function for
quantum gravity and arriving at black hole entropy from it. Refs. [73, 74] are directions in
this direction in recent times.

Analogous progress in the case for zero cosmological constant is being pursued re-
cently, specially in the works of Refs. [75, 76]. In this sector, one attempts at a quantum
gravity for asymptotically flat space-time, now equipped with the BMS3 algebra. Ref. [77]
contains a relatively extensive discussion of quantum gravity in 3d from the perspective of
asymptotic symmetries for asymptotically non-AdS space-time, even including higher spin
degrees of freedom.

Whereas these aspects of quantum gravity are under focus of intensive studies in re-
cent times, one might be curious for the case of positive cosmological constant. Vacuum
solution to the corresponding Einstein equation is the dS; space-time. However unlike
Minkowski space-time, here exists a horizon at thermal equilibrium. As argued in Ref.
[78], correlation function of any quantum degree of freedom with respect to a time-like
observer is a thermal correlator. The corresponding vacuum state, as discussed in Ref. [79]
and named as the Hartle Hawking state, is the Euclidean partition function.

The choice of Hartle Hawking state as a candidate for vacuum state circumvents an
otherwise conceptually difficult problem in the following manner. Standard wisdom says
that isometries of a maximally symmetric space-time like de Sitter should fix the vacuum

state. But if one wishes to incorporate effects from quantum gravity, one has to incorporate
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all possible quantum fluctuations on the de Sitter background, from a perturbative view-
point. Hartle Hawking state is however defined as the Euclidean path integral considering
all possible geometries with some fixed boundary data and therefore, captures quantum

gravity effects.

Now in de Sitter space, a time-like observer is in causal contact with what is known as

the static patch, defined in Euclidean time as:
ds? = dr® + cos® rdr? + sin® rd¢?. (3.1.1)

Euclideanizing has been done by setting ¢ = —i7 and it makes the static patch geometry

identical to that of S® with T € [0, 27|, ¢ € [0, 2x], 7 € [0,7/2].

It would therefore be natural to consider fluctuations over round S® background geom-
etry to construct the Hartle Hawking state. However, as pointed out in Ref. [78], there is
an infinite class of topologically distinct manifolds which allow smooth local geometry as
Eq. (3.1.1). These are of the form S®/T", where T is a discrete subgroup of the isometry
group of S3. In terms of the coordinates in Eq. (3.1.1), these quotient spaces with smooth

local dS geometry are understood by the following identifications:

(1,0) ~ (1,0) + 21 (%, % +n) for m,né€Z (3.1.2)

Here ¢, p are coprime positive integers with p always being the greater of the pair. That
this identification indeed results into the topological quotient space S*/Z, can be easily

understood by first defining
$* ={(21,22) € C*||z1]* + |22 = 1}. (3.1.3)
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Then the Z,, action on it is:

2mi 2miq
(21, 20) — (e P 2,€ P zQ>. (3.1.4)

Finally defining (21,22) = (cosr €', sinr ¢'?) makes the identification Eq. (3.1.2) clear.
The resultant manifold is named as a Lens space L(p, ¢), now equipped with the smooth
geometry given by Eq. (3.1.1). All of these manifolds are therefore valid classical smooth

saddles of Einstein equation.

Since S? as well as all the quotients L(p, ¢) are closed, Hartle Hawking state, consid-

ering all quantum gravity effects, would simply be given by:

Z=> / [Dgle5eld] (3.1.5)

L(p,q)

where Sg is the Euclidean action for the theory of gravity. Interestingly as reported in
Ref. [78], the functional integral, when summed over all Lens space saddles, diverges as a
harmonic series in the integer p: > % = ((1), which cannot be regularized. The com-
putation for a single Lens space (before summing up) was performed in a perturbative one-
loop calculation in metric variables and cross-checked with results from a non-perturbative

computation in first order formulation of gravity (Chern Simons (CS) theory), in Ref. [80].

The divergence seems to be tamed after including further degrees of freedom, like topo-
logical massive modes, as discussed in Ref. [81] making the Hartle Hawking vacuum state
normalizable. This was later established in Ref. [82] using a twisted first order theory of
gravity (again CS formulation) and a dimensionless parameter, which can be tuned to get
rid of the divergent piece. Interestingly, using results from SU (V) topological invariants

in Ref. [83] in 3-manifolds, one can repeat the calculations for higher spin cases. For
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this, one introduces a consistently truncated tower of higher spins over gravitational de-
grees of freedom, to see that the sum over all Lens spaces become finite, for spins > 4, as
worked out in Ref. [84]. Even with these attempts, it is still not clear, which deformations
or coupling of newer excitations on top of gravity can make the Hartle-Hawking vacuum
state normalizable. It therefore calls for further attempts to make a classification scheme
for such well behaving excitations, in a fashion analogous to classifying renormalizable

quantum field theories.

One further motivation towards a definition of Hartle Hawking state in 3d quantum
de Sitter comes from an analogous question in AdS;. Euclidean AdS has a topology of
solid torus. The two dimensional toric boundary serves as the asymptotics. Using the
fact that asymptotic symmetry in AdS;3 is given by 2d conformal algebra, one may come
up with speculations [85] regarding a candidate 2d CFT at the boundary. An exact non-
perturbative calculation for the bulk partition function (corresponding to fixed boundary
modular parameter) can lead one a long way towards a definite answer regarding the dual

field theory.

A series of recent remarkable results in AdS viz., Refs. [86, 87] have taken the approach
of supersymmetrizing the gravity theory (CS formulation) and exploiting the elegant meth-
ods of supersymmetric localization. Although the original theory is not supersymmetric,
modelled as a purely bosonic theory of gauge fields, the localization procedure brings in
fermionic degrees of freedom in the dynamics. However, it remains guaranteed, as we
will later review in the present article that the computation of the partition function for the
localized theory is same as the one, if one could evaluate the one for the original purely
bosonic one. In the AdS case it is believed that the non-perturbative result after localiza-
tion would constrain completely the CFT dual to the original bosonic gravity theory. For

further progress in localization in low-dimensional AdS space times, the interested reader
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is referred to Refs. [88, 89]. These references focus on the program of localization on

non-compact manifolds.

It is, in the passing, to be noted that in our present perspective we don’t aim at the
holographic point of view. Rather, we take cue from the above analysis as far as exact
partition function is concerned. We want to investigate if the divergence in Hartle-Hawking
state, previously found in purely bosonic theory, while summing over all saddles can be
tamed or modified by the introduction of supersymmetry. To this end we use the first order

CS formulation here, and supersymmetrize it to write down the exact partition function.

To put this point properly in context of our present work, let us digress a bit on the
meaning of partition function. As long as the quantum theory of a classical Euclidean

action Sg[®] is renormalizable, one is generally interested in the functional integral:
Z[J] = / D ¢ SelPl] )¢ (3.1.6)

in presence of a probe background field .J. Correlations of local operators

x1) -+ Op(xy,) e~ 55!
(O Oufrn = L2 )Z[O?( ) 3.1.7)

generally are found as appropriate derivatives of Z[.J] with respect to J at the point J = 0,
while the presence of ‘normalizing” factor Z[0] in the denominator of Eq. (3.1.7) is also

standard.

In contrast, the goal of the present series of works in Refs. [78, 81, 82, 84] is to inves-
tigate the Hartle-Hawking vacuum via evaluating the partition functions of Chern Simons
theory considering all saddles relevant to gravity on locally de Sitter background and then

sum over all geometries. These saddles being Lens spaces, each such partition function is
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a topological invariant, as was discussed in Ref. [83] and for each Lens space L(p, q), the
CS partition function is a functions of p, ¢ and the CS level £ (possible shifted by quan-
tum correction). We will see in this chapter, how this quantity for each Lens space, has
a spin-dependent multiplicative power law dependence on the volume of that particular
Lens space. We will further see that fermions brought in by supersymmetric localization
basically does the job of altering the volume prefactor’s power, keeping the rest of the
functional dependence of k, p, ¢ unchanged with respect to the bosonic case. This alter-

ation introduced by fermions, makes the previously encountered divergence worse.

However, it is fair to assume that, had we been interested in a fixed ( i.e., defined
by a particular value of p and ¢ ) background question of calculating correlators' via the
definition given in Eq. (3.1.7) on a fixed L(p, q), the prefactor would have gotten cancelled

due to normalization and the results would remain same as in the purely bosonic theory.

Furthermore, an investigation of whether inclusion of higher bosonic spins and the
corresponding supersymmetrization would change the behaviour of the proposed partition
function is also due. We here realize a better insight into the interplay between the spin
content in the theory and the divergence structure. In previous analysis in Ref. [84], it
was encountered that bosonic higher spin contributions make product of volume prefactors
suppress the divergent contributions. We will elaborate quite the opposite feature here

brought in by the fermionic degrees of freedom.

As choice of newer degrees of freedom, higher spins are obvious, as these in 3d are
much more tractable than in the case of higher dimensions, because of an allowed consis-
tent truncation of the higher spin tower at any finite spin > 2. Effect of finite number of

higher spin fluctuations coupled with the background spin-2 fluctuations has been as found

!Since pure Einstein gravity in 3 dimensions is devoid of local dynamics, it is hard to define physical,
non-trivial correlation functions, particularly in the bulk.
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in numerous AdS and flat-space calculations. Analysis in the presence of higher spin fields
in AdS spacetimes has been worked out in the seminal works by Gopakumar et al in Refs.
[90-94]. In flat spacetimes, similar such work has been carried out in Refs. [95-97]. In
this chapter we comment very briefly on the volume prefactor, as we are more interested in

the divergence structure of such theories.

The chapter is organized as follows. In Section 3.2, we introduce the CS formulation
of 3d bosonic gravity. In Subsection 3.2.1, we obtain the supersymmetric extension of
bosonic CS theory. In Subsection 3.3.1, we discuss the technique of supersymmetric lo-
calization of our theory. In Subsection 3.3.2, we explicitly evaluate the partition function,
obtained as a matrix model, for our case of spin-2 gravity. We also explicitly identify the
divergent pieces in the partition function. In the following Section 3.4 , we evaluate the
same for higher spin cases and comment on the divergences observed. In Section 3.5 , we
comment on some future directions that may be explored. Finally, Section 3.6 presents a

lightning summary of the chapter. Appendix B.1 carries a small note on our conventions.

3.2 Chern Simons formulation for 3d gravity and its su-

persymmetrization

Since the proposal by Witten in Ref. [70], 3d gravity is known to be equivalent to a pure CS
theory. Let us first briefly take a detour through this equivalence, particularly for the case
of positive cosmological constant in Euclidean setting. One can start with a CS functional
on a 3-manifold M out of a su(2) @ su(2) valued 1-form (gauge field). Also the Lie algebra
is equipped with an Ad invariant symmetric bilinear quadratic form Tr = (-, -) valued to be

diag(k, k, k) and diag(—Fk, —k, —k) respectively on the first and the second su(2). The CS
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functional then can be written as difference of two su(2) CS functional, Tr now evaluating

diag(1,1,1):
SeslAt AT = & Tr/ (A" A AT + 24T A AT A AT
dm M 3
_k Tr/ (A NdA + 24 NA-AAT) (320
4dm M 3
with,
1
+ .
A" =wte, k—4G (3.2.2)

keeping the positive cosmological constant A = 1, GG is the Newton’s constant in 3 dimen-
sions and e and w are the su(2) triad and connection respectively. Then, we see that Eq.

(3.2.1) is actually the action for first order gravity:

kol .
Sos[AT, AT = — / <el A (del +Z61JKwaK) + 3eIJKeI Ael A eK) (3.2.3)
A simple derivation:
+ A+ k + 2 0 + +
47T M 3
_ Kk I
= %/, (e +w ) A (der + dwy)

+ %E[JK <61+w1> N (e‘]+w‘]> A (eK+wK>

(3.2.4)

*Normalization: Tr T;T; = 167,
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Let us focus just on the terms in the integrand of the above equation.

Integrand: [eI Nder + el Adwr + w! Ader +w! Adwp +
T

(wIAwJ/\wK+w1AwJAef"+w1/\eJAwK+ef/\w’/\w’i+

11

| .

(3.2.5)

wlAeJAeK+e1AwJAeK+e’AeJAwfi+eIAeJAeK)
bt

On using Eq. (B.2.3), I] and /11 are simplified. Now,

Integrand: [el Adey +2e! A dwy + d(e! Awr) +w! A dwp +

~"

1

W | .

(wl Aw! AwE +3e Aw! Aw® + 3wl Ael Aef el Ael A eK)] (3.2.6)
On compact manifolds, the integral over closed forms vanishes and / simplifies. That is,

Integrand ~ [el Adey +2e! A dw; + wh A dw; +
——— ———

%(wl Aw! Aw® +3e! Aw! AwE 3w Aed A 4l Aed A eK)] (3.2.7)
———— N—

Further, on evaluating S;4[A |, we would obtain an equivalent expression given in Eq.
(3.2.7), with the substitution e/ — —e!. Taking their difference to evaluate Eq. (3.2.3),
we would be left with only those terms with an odd number of frame fields twice over, and
those with an even number cancels out. So, in Eq. (3.2.7), the terms with underbraces drop

out and Eq. (3.2.3) follows.

If M is closed (for example the manifolds we will be dealing with in this chapter, i.e.,

the static patch of Euclidean dS; ~ S® or S?/T), i.e., OM = (), the variational principle
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holds for the action Eq. (3.2.1) without any concern for boundary terms. Equations of
motion are flatness conditions of the CS connections, discussed in Eq. (B.2.4), which

translate into

torsionless condition : de! +e"%e; ANwg =0 and (3.2.8a)

curvature equation : 2dw’ +i el Bw; ANwrg = —i €l7Ee; A ek (3.2.8b)
for gravity variables. Interestingly, the following action

SlAT AT = Z—;Tr/(AU\dA++%A+/\A+/\A+)
M

P8 / A NdA-+ 2 A A A A A (329
4 M 3

with modified levels k. also gives the same equations of motion Eq. (3.2.8) for gravity
variables. For sake of convenience we introduce a parameter  such that, kL = %Z,ﬂ)
and Eq. (3.2.9) gives back Eq. (3.2.1) at the limit v — oo, as observed in Ref. [82]. The
equations of motion are independent of . This applies to the space solutions as well. On
the other hand, other aspects of the dynamics of the theory, i.e., canonical structures are

parametrized by . For example, the pre-symplectic structure on the space of solutions

given in Eq. (3.2.8) is®:

. k R k_
Q(Ol, 52) = i TI"/ 51A+ N 02A+ - % Tl”/ 51./4_ AN 52./4_
P b

_ 2a I I I I Z/ I I
= 370 (/2(51(,0 /\52&) +516 /\526 )_I—’Y 25[1(,0 /\52}6

(3.2.10)

3In our definition : AjaBy = %(AaBb — ApB,).
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3.2.1 Supersymmetrization

To evaluate the partition function given by Eq. (3.1.5) exactly, we would use the recently
developed supersymmetric Localization techniques of Pestun et al, adapted to our purpose.
Towards this, we start by supersymmetrizing a CS gauge field A valued in some semi-
simple Lie algebra. Later we will specialize to mainly su(2), the case of relevance to
3d gravity. We construct the 3d N' = 2 vector multiplet, discussed in Eq. (1.3.16b), as
V= (A0, D \N).

The supersymmetric CS Theory action is written as

1K

SSCS[V] = Scs[.A] + I

/d% lgl Tr(AX + 2iDo) (3.2.11)

We note that in the 3d N = 2 vector multiplet, the additional fields (o, D, A\, \) are not

dynamical and have no kinetic terms in the action.

3.3 Localization of the 3d Supersymmetric Chern Simons

Theory on Lens Spaces

With the connection between 3d Euclidean gravity and the Supersymmetric CS Theory
made explicit in Egs. (3.2.1) and (3.2.3), we will now evaluate the partition function of the
3d Supersymmetric CS Theory via supersymmetric Localization techniques. Since, we are
interested in evaluating gravity partition function on Lens Spaces, we would we would try

localizing the CS Theory on Lens Spaces L(p, q).
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3.3.1 Principle of Localization

Suppose we have a theory on a compact manifold M, defined by an action S[®]*, which
has a Grassmann-odd symmetry> §. Let us further assume that there exists an operator V/
which is invariant under the transformation §2, i.e. 52V = (. Once we have established the
existence of such a special V, let us now consider not the original partition function, but

rather a perturbed one, viz.

Z(t) = / Dgp ¢ S1PI-10V (3.3.1)
M

Note that this function is independent of ¢ as®

dz(t) _ / Do sV e—SlE-V _ _ / D §(VeSI-15Vy _ (3.3.2)
dt M M

This means that the original unperturbed partition function maybe evaluated by evaluating
the perturbed partition function Z(¢) for any value of ¢ (that is dictated by convenience) and
especially, for £ — oo. This is immediately useful. If the perturbing operator has a positive
definite bosonic part, the integral localizes to a sub-space, often even a finite dimensional
one, of field spaces {®,} where we have (6V)g|(a,} = 0.

With this motivation, we will try and evaluate the partition function of Supersymmet-
ric CS theory on L(p,q). Now, to have some supersymmetric actions on some curved
3-manifold, we need to find some background, off-shell supergravity theories that preserve
some rigid supersymmetry. These theories can then be made to couple to some supersym-

metric field theory. This is done via the stress tensor multiplet.

4{®} stands for whatever the fields of the theory are.

3§ is assumed non anomalous. This is a crucial and non-trivial point.
brecalling S = 0 and 6%V = 0.

81



For our specific case of 3d N/ = 2 theory, this supergravity theory was called the “new

minimal supergravity" which has the following field content

Field Content: {Metric 9, R Symmetry Gauge Field ALR), 2-Form Gauge Field B,

Central Charge Symmetry Gauge Field C,,, Gravitini (H, 7/;“)} (3.3.3)
We define the (dualized) field strengths

H= %eﬂ"ﬂaﬂBw, V= —ie5,C, (3.3.4)

To ensure that we have rigid supersymmetry, we need to find Killing spinors (¢, () which

satisfy the Killing spinor equations, given in terms of these fields, as

. 1 , 1 ,
(V — Al = —QH%( —iV,( — §ewpv ¢

, . 1 - -1 L o:
(V. + AP = =S HuC + iV + SV (3.3.5)

In terms of these Killing spinors, the general Supersymmetric variations of the fields in the
gauge multiplet for the 3d A = 2 theory placed on S® (or its orbifolds), which is our case

of interest, are given by Eq. (1.5.15), which we reproduce here as

0A, = —EMé4 (3.3.6a)

b0 = —1XEy (3.3.6b)

0D = —4(D,M") & + TAEs + £\ olés (3.3.6¢)
A= (—4"F, —D—Do—0o)&, (3.3.6d)
A=0. (3.3.6¢)

82



The corresponding Killing spinor equation is given in Eq. (1.5.16).

We also recall that the 3d A = 2 super Yang-Mills (SYM) action on S3, given by’

1 1 1 P\ -
Ssym = / d’x\/|g| Tr [ZFMVF“” + 5D D' + 5 (D + %a) — iIMP DA

iXo, A — %M} : (3.3.7)

The action is invariant under the transformations given by Eq. (3.3.6).

Eq. (3.3.7) hands us a prime candidate for the operator 6V mentioned in the preceding
paragraph, viz. , 0V = Sgy . Explicitly, its variation under Grassmann odd symmetry o
is zero and has manifestly positive definite bosonic part.

So, we would like to evaluate
Z(t) = / Do e~ SscsVI-tSsym (3.3.8)
M

with M = L(p,q) and in the limit ¢ — oo where the partition function localises to a
finite dimensional integral and the evaluation is exact. The bosonic part of Eq. (3.3.7) is
manifestly positive, being expressed as the sum of squares, immediately gives us the BPS

configurations. They are viz. ,

F,=0, D=0, D—i—%a:O (3.3.9)

Here, solving the equations in Eq. (3.3.9), we face non trivialities due to difference in
global topology of L(p,q) when compared to S®. We need the classical saddles corre-

sponding to Eq. (3.3.8) on orbifolds L(p, ¢) on which the localized partition function will

7 Actually this is the action given not just on S® but also on quotient spaces of the kind S*/Z,,. This is
understood as such spaces are locally equivalent to 3-spheres and transformations generated by supercharges
are local.
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be supported. Non-triviality of this statement arises from the fact that the flat connections
on a manifold are characterized by holonomies around non-contractible loops on the base
manifold, modulo a homogeneous adjoint group action at the base point of the loop. These
loops form the fundamental group of the base manifold. Hence the moduli space of space

of flat connections modulo gauge transformation is given by
hom (71 (M) = G) /Adg. (3.3.10)

For the present case, L(p, ) is a free Z, quotient of the simply connected manifold S°.
Therefore we have the first homotopy group as 71 (L(p, ¢)) = Z,. This implies that the CS
saddles i.e., the flat connections are labelled by g € G, with g = 1. If we take g to lie in
the maximal torus (this can be always be done for simply connected lie groups by the Ad

action), we have

2mi

g=er™  meA/(pA) (3.3.11)

where, A is the co-weight lattice of the group G and m is N dimensional vector, where N
is the rank of group G.
Note that Eq. (3.3.11) would then imply that m; € Z, . For example, for G = SU(N), we

have

2mimg 2mimo 2mim

g:diag( e P ,e P ,....e P ) (3.3.12)
with > . m; = 0. The rest of the equations in the Eq. (3.3.9), imply

A

o =ilD = ? — constant,  [6g,m| =0 (3.3.13)
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We will take g to lie in the Cartan sub-algebra § of the Lie Algebra g of the group G.

Note that, the second equation of Eq. (3.3.9) motivates why we can expand m in the same

Cartan basis.

Classical Contribution : The classical (tree level) contribution to the action is obtained

by plugging in the BPS configurations in Sscg.

There will be two such contributions, one coming from the scalars, o and D, which have

been shown to be constant in Eq. (3.3.13) and the flat gauge fields. Since the volume of

S3/Z, is (2”7213), the contribution from the scalars is

iR vol(S*/Z,)
N 273

KT

Tr(53) = 3 Tr(63)

Sses(0)
where ¢* is defined via the relation g¢* = 1 mod p.
The contribution from the flat gauge fields is

Stfs(m) = == = Te(g" w?)

The total classical contribution is then

. . IR
Sscs(60,m) = Skeg(60) + Slig(m) = s Tr(65 — ¢* m?)
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1-Loop Determinants : We calculate the 1-Loop determinants from the quadratic fluc-
tuations of the fields about their BPS configurations. Specifically,
1

o, D= —l—2A0+t‘%D’, A=t"2N X =t"2)

D=

1y 00,
Ay =t73A4, o= Lt

(3.3.17)

Plugging these values in Eq.(3.3.7), we obtain the terms in the action proportional to ¢~ as

1

T 1 1 )
Sy =t /dsx lg| Tr L_LF‘/‘”FW - 5(9#0’8“0’ ~ 3B (A, 0]
1 ! l ! ? Y 1 i< ~1 ! 1 Y7 \/ —2
+5 D'+ ) - iNY DN + Z)\[UO, N — ﬂ)\ N +0(t2) (3.3.18)

The integration over D’ can trivially be done and it just alters the overall normalization
constant sitting in front. To deal with the Vector and Fermionic fields, we decompose the

gauge field into a divergenceless part (X) and the rest as

Al =X, + 0,0 (3.3.19)

The integrals over ¢ and ¢’ give determinants that cancel and we are left with a divergence-
less Vector field and Fermionic fields. Next, we expand them in the I', of the Lie Algebra

with the definition

(60, Ta] = a(0) (3.3.20)
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The action then becomes

1 o i1
/d?’l’\/l? Z ) ( VZ + ]2a( ) )Xau_l_)\ ( Z'y“Vu+ ZOZ(O’Q) — 5))\0[>

acAd(
(3.3.21)
The 1-Loop Determinant is then, simply
1—Loo, det( _ ifyuvﬂ + %(]/(0?()) — %)
Zgauge p(0_07m b, Q) (3322)

det(—V2 + La(5)2)

Following Refs. [22, 98], on Lens Spaces L(p, ¢) this contribution may be calculated as :

4 1], -0 sinh Ea(c}o + im) sinh za(&o —ig*m)
4 P

ch>0 CY(O?O)Q

Z1 Loor (G0, m;p, q) =

gauge

(3.3.23)

where, « are the roots of GG and ¢* is defined as ¢*¢ = 1 mod(p).

Finally, we integrate over the BPS configurations, here, denoted by o;’s and sum over
the holonomies, identified by the components of the vector m. Using Weyl Integration
formula, as always, the integral reduces from the vector space spanned by the entire Lie
Algebra to a vector subspace spanned by just the Cartan Sub-Algebra (h). This, however,
introduces a Vandermonde Determinant [, ., a(dy)?. This is exactly cancelled by the
denominator in Eq. (3.3.23). Also, to take into account the residual Weyl symmetry of the

gauge group, we divide the final expression by the order of the Weyl group of the gauge

group.
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Explicitly, the expression for the partition function becomes

. 1 . o _ .
Z(O-Oam;p7 q) = W Z /h dOO H a(o-o)z € Sscs Zglauzgap(o-oam;pv Q)
m

a>0

4 _ikm 62— a*m2 ) R . ) R )
= Wi Z/d&o e p el H sinh zoz(ao + 4m) sinh zoz(ao —i¢"m)
m /b p p

a>0

(3.3.24)

We will evaluate the RHS of Eq. (3.3.24) explicitly next.

3.3.2 Partition Function : Evaluation of the Matrix Model

for spin-2 Gravity

As described in the section 3.2, the CS version of the spin-2 gravity we are interested in
is based on the gauge group G = SU(2) x SU(2) for the gauge fields in Eq. Eq. (3.2.9).
Here we would perform the localized integral Eq. (3.3.24) and choose those CS saddles

that correspond to smooth gravity background solutions.

Let us, then, evaluate the partition function given by Eq. (3.3.24) for G = SU(2) x
SU(2).
The Weyl Group for SU(N) is the permutation group Sy , the order of which is N!. The
rank of SU(N) group is (N — 1), which, for our case of SU(2) is simply 1. Hence, flat
connections are identified by the component of a one component vector m, denoted by m 1

for the two gauge fields 4. corresponding to the two SU(2) groups of the gauge group G.

The partition function, for each saddle, identified by a value of p, receive contribution
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from two values of m... Following Ref. [78], they are calculated to be,

(3.3.25)

With the values of m.’s in our hand, we can directly proceed to calculate the integral
given in the RHS of Eq. (3.3.24) explicitly
As discussed, since the rank of SU(2) group is 1, the evaluation of the partition function

reduces to the problem of solving a one dimensional integral, viz. :

ikym

4 . - —q*m . . . .
Z (60, m;p,q) = 3 / d\, e P (Ki=amd) Slnh%()\+ +im, ) Slnh%()\+ —ig'm,)

(3.3.26)

Fortunately, the integral given in Eq. (3.3.26) is tractable.
Since our chosen gauge group is a product group we have another flat connection, iden-
tified by m_. The corresponding CS level is denoted by £ and we obtain an equivalent

expression for the second flat connection. Explicitly,

ik—m

4 _ T
Z (60, m;p,q) = —g/d/\— e P

(=) Goh D (A + im_) sinh ~(A_ — iq*m_)
P p

(3.3.27)

As yet, the CS levels are arbitrary but we will choose a special parametrization, viz. ,

1 1
ky=a(—+1), k. =a(——1) (3.3.28)
Y Y
Here, v is a tunable parameter, whose large limit, for e.g., reproduces k., + k- = 0 .

However, we would focus on the small v regime for the purpose of divergence structure of
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the partition function.

The total contribution to the partition function is their product. Explicitly,

Z(60,m;p,q) = Z4(60,m; p,q) X Z_(60, m;p. q) (3.3.29)
su(2)Ssu(2) su(2) su(2)

Using the the values of m, and m_ from Eq. (3.3.25), the RHS of Eq. (3.3.29) gives

( ) ipy ir(a(g+q"+27)—4(1+q)y) 4ir(1+q) 2in(g—=q")
Z(0g,m;p,q) = e 2py <1+e p +e P+
" (21)2a,/1 = 72
2im(2+q+¢*) 2im(a(1-q)(1—7)+27) 2im(a(3+q)(=1+7)+27) 2im(a(q* —1)(1—7)+27)
e p —e ap(y—1) —e ap(y—1) —e ap(y—1) —

2im(a(14+q)(1+7)—2v) 2im(a(14+29—¢*)(1+7)—27) 2im(a(14¢")(1+7)—27) dim(a(y>—1)+27)

2¢ ap(v+1) —e ap(y+1) —¢ ap(y+1) + e ap(l+7)(1-7) 4
dim(ag(y%>—1)+27) 2im(a(2+9—¢") (2 —1)+47) 2im(a(g+q*)(v>~1)+47) 2im(a(1429+¢") (v=1)+2v

e wp(yF)(-1) ¢ ap(y+1)(v—1) +e ap(y+1)(v—1) —e ap(y—1) )

(3.3.30)

This is one of the most striking points in our analysis, which requires further attention.
We should note that, the above expression is same as that appearing in the purely bosonic
analysis of Ref. [82] or the one in Ref. [78] (for v — 00), apart from the overall pre-
factor p. For this purpose we take v — oo and large a in Eq. (3.3.30) with an analytical
continuations a — i a. For large |a| (which means assuming large dS radius in comparison
to Planck length), i.e., where we expect the CS theory to be describe quantum gravity, Eq.

(3.3.30) yields:

872

z -
(a,p,q) “Viow

F(a,q,p). (3.3.31)

Whereas the result for pure bosonic gravity, as found in Ref. [78] 8, which also is a special

8There lingers a typo in Ref. [78], particularly in eq. (4.32), involving extra factors of 2 in the cosine
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case for higher spin result of Ref. [84] is

Vi
Z'(a,p,q) = 25 Fla.q.p). (3.332)

21k
—ep T _ nq T 7"
where F(a,q,p) =€ P ((cos 5 — cos p) (cos - — cos =1 )> .

Here, V() = 2% /p is the volume of L(p, ¢), measured in units of dS length cubed. This
clearly shows that inclusion of fermionic modes basically introduced an altered power law
volume dependence. This factor, as explained also in the introduction, would cancel if one
is interested in local physics i.e., calculate correlation functions on a particular Lens space.
However as already motivated, we defer that analysis here and go on finding an answer
to a question rather topological in nature. We sum over all possible gravity saddles, i.e.,
Lens spaces. In short, the overall contribution to the gravity partition function Zg,yiy, We
will have a sum over p and sum over g to accommodate the various contributions of all the

saddles. In short, the gravity partition function will be obtained by :

o P
grav1ty Z Z Z Uo,m p,q ) (3333)

p=1 gq=1
(p,g)=1

We observe an overall positive power of p multiplying the trigonometric terms. When
summed over all topologies, i.e., lens spaces, this p dependence might be a serious cause of
divergence. Interestingly, for the pure bosonic theory (for v — o0), in Ref. [78] and (finite
), in Ref. [82] the overall p dependence was 1/p. Therefore the supersymmetric theory
does not reproduce exactly the same answer as that of the purely bosonic theory. We will
shortly come back to the detailed analytic structure of the sum and explore deeper in this

aspect. We will express our result, after the sum over ¢’s in terms of Kloosterman Sums

phases
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S(z,y; p), which are tailor made for such sums. The Kloosterman sums are defined as

S(z,y;p) = e v (et

q=1
(p,9)=1

In terms of these Kloosterman sums, the ¢ sum in Eq. (3.3.33) gives’ :

iTa

er {400827”(5(04— La;p) + S(a+ 1704;19))_

i~ P
Z vity —
gravity (2!>2 p; a /1 _ ,72
2(1 + cos ) S(a, a;p)—

(S(oz— La—1;p)+2S(a+1,a—1L;p)+ Sla+1,a+ 1;p)>} (3.3.34)

To carry out the summation over p, we expand the cosine and the exponential function in
their respective Maclaurin series. We obtain an infinite series of Kloosterman Zeta func-

tion, defined as
Liw,yss) =3 p~S(x,y;p) (3.3.35)
p=1

The Kloosterman Zeta functions are analytic for fRe(s) > % Writing our result explicitly,

in terms of these functions, will also help us isolate the divergent pieces in the gravity

partition function, as explicitly those terms with Re(s) < % . The final expression for
9% = L
o= 47

92



Zgravity 18 then obtained as :

iy 2 (ima)™ [ 4 r2n I m+2n-1
Zoravity = —-1\V"—|( L -0, —
T (2201 — 277;) m! LZ::( S\t e T )F

( a Y 0

L m+2n—-1 5 m+2n—1.\ m—1,
L(oz—l—Q,a 5 ) =22 (o, e, 5 )) 2L (e, a, 9 )
L(a_l,a,mz‘l)_zL(a_é,m%,mT‘l)—L(a,a—é,mT_l)]. (33.36)

Let us investigate the analytic structure of the partition function summed over all Lens
spaces Eq. (3.3.36). From Eq. (3.3.35), i.e., the analyticity of the Kloosterman zeta func-
tion, it is easy to see a set of divergence is sourced from the terms for which m + 2n < 2

in Eq. (3.3.36) and another set being originated from m < 2 for n independent terms.

It might be instructive to review the divergence properties in semi-classical regime
along with v — oo, so that a direct comparison with the ((1) divergence appearing in
Ref. [78] can be made. This is actually made apparent by comparing Eqs. (3.3.32) and
(3.3.31). Even in the milder case of purely bosonic theory, which depends linearly on
volume as an over-all factor, a divergence occurs when one considers sum over all Lens
spaces as a harmonic series in p, since Vi, o) ~ 1/p, i.e., very slowly while accumulating
up smaller Lens space volumes. However, we should keep in mind that, this divergence
is completely different in nature to those commonly seen in local QFTs while probing
short length-scales, i.e., the UV divergences. Those originate from integrating high energy
modes. For a renormalizable theory these divergences can be absorbed into local counter-

terms. We don’t have any such mechanism here, as also commented in Ref. [78].

In contrast, our analysis shows existence of more such divergent pieces in Eq. (3.3.36),
due to dynamical fermions due to localization. Individual Lens space contributions are

finite as before but summing over Lens spaces makes the divergence worse. As the prior
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motivation for this sum over saddles was to inspect the Hartle-Hawking state for the static
patch of de Sitter space, the present result summarizes that quantum Hartle-Hawking is not

a good choice of vacuum for 3 dimensional dS, even in the supersymmetrized version.

3.4 Higher Spin Case

Linearized higher spin fields can be coupled consistently to gravity in 3 dimensions with
finite height of the higher spin tower, which is nicely captured by the Fronsdal action of
symmetric traceless tensor fields. In principle, we imagine a (finite) tower of higher spins,
namely s =3, 4, 5, ... , N over and above the spin-2 cases. This construction is possible
only in three dimensions where we can have a consistent truncation to arbitrary spins. For
higher dimensions (d > 3) we must include all the higher spin fields. In three dimensions,
however, we have the added advantage where we can have a truncated tower of higher spin

fields.

These higher spin fields are all minimally coupled to the spin-2 field which forms a
background. Following the analysis put forward in Ref. [94], we would include higher
spins in our analysis and evaluate the partition function and see the nature of divergence,
if any. We would explicitly work out the effect of adding a spin-3 fields as that is the
most tractable case in these theories of higher finite spins. As explained, the background
is still furnished by the spin-2 field such that g, remains the metric of the static patch of
Euclidean de Sitter spacetime, given by (3.1.1). We define a metric compatible connection

V on the manifold such that
V..V, A =R A" (3.4.1)
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which defines the Riemann Curvature tensor on the manifold for a probe field A*.

Spin-3 case To introduce a massless spin-3 field ¢,,,) which is minimally coupled to
pure gravity in 3 dimensions, following Ref. [99], we introduce the linearised Fronsdal

action given by

. 1
S[¢] = /dST\/§ ¢a1aza3 (Halazag - ig(alagHag);> (342)

where the definitions are as follows,

1
Harasas = Adarasas — Viar VPagag)r + §v(a1va2¢a3)§ + 20(crasPagn (34.3)

We also note, in passing, that the linearised theory enjoys a gauge symmetry given by

5¢a1a2a3 = v((h 502(%)

where, £, is symmetric and traceless.

Interestingly, a first order version of this theory can also be formulated in terms of CS
gauge fields. Ref. [100] gives an elaborate AdS counterpart of that exposition. Our work
is similar in spirit but with a positive cosmological constant, which, has not been explored
before. At the level of corresponding Lie algebra for CS theory, going from AdS to dS
background amounts to changing the structure constants. The CS theory that describes
spin 3 fields on the backdround of (euclideanised) 3d dS spacetime, has a gauge group
SU(3) x SU(3) as discussed in Ref. [84].
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For the ease of generalizing to spin-3 case, in spirit of the Eq. (3.2.2), we define
() = (wxe)f (3.4.4)

Let us further define higher tensorial objects obtained similarly as a linear combinations

gauge potentials

(ti)‘u{)lp?--ps—l = ((A} :l: e)‘uplplnps—l (345)

We then define the one form gauge fields as
At = ((G)f Ip + (t2) P2 P Ty, ) (3.4.6)

where {7, p,_, } are higher spin generators which are to be added to {j,}.

Here too, there are no local degrees of freedom, and we associate the equations of
motion with the condition for flatness for these gauge fields. This is, again, similar in spirit
to the d = 3 Einstein gravity we explored earlier. Thus, we arrive at the Chern Simons

formulation of higher spin gravity.

Explicitly, we need to state the algebra of these higher spin generators {TPHDQH_I,F1 }
Firstly, we note that, from Egs. (3.4.4), (3.4.5) & (3.4.6), the generators must transform
in some irreducible representation of su(2). This implies that they are symmetric and

traceless. Furthermore, similar to the {.J, }, they satisfy

[Jq» JT] = €’

[J“ TP1P2--~Ps—1] = ¢ r(plepgps_l)q (3.4.7)
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Particularly, for the case of s = 3, Eq. (3.4.7) allows for a non-trivial algebra of the higher

spin generators, namely,

[qu‘]’f‘} = g’
[Jmem} = Eq«r(plsz)q

[Tmmv Tp3p4} = (6171(1336;04)1)27’ + 51)2(17361)4)1311“) J’ (3.4.3)

One can further show that the algebra given by Eq. (3.4.8) is isomorphic to su(3). That we
are working on a Riemannian manifold is made explicit by the appearance of the Kronecker

delta as opposed to the Minkowski metric in the algebra Eq. (3.4.8) .

With the set of generators {Jp, Tplm__ps_l} which generate a Lie Algebra g, assumed
to admit a non-degenerate bilinear form Tr, we define a Chern Simons action

SIAY, AT] = ’Z—; Tr/ (A" AdAT + %AJ“ A AT A AT
M

_ kB Tr/ (A NIA + 2 A ANANA). (349)
4m M 3

We would like to calculate the exact partition function in this case so as to check whether
supersymmetric version of the higher spins make the sum over topologies better in terms
of convergence properties. Let us now evaluate the partition function given by Eq. (3.3.24)
for G = SU(3) x SU(3). As the rank of the group SU(3) is 2, the flat connections
are identified by the component of a two component vector m, denoted by mi), where, 1
running from 1 to 2, denotes the two components of m and +, as before, denote the two

gauge fields A, corresponding to the two SU(3) groups of the gauge group G.

At this point, as in the case for spin-2 in Eq. (3.3.25), we will have to choose a pair of

elements from the corresponding A, co-weight lattice. This choice is physically motivated
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by the fact that quantum fluctuations are considered over the background that describes dS
geometry in terms of gravitons and zero excitations for higher spin degrees of freedom.
The exact co-weight points are thus found by a principal embedding of su(2) in su(3).

Thus the two components of m_. as

m? = {g+1,0}, m?={g—10 (3:4.10)

With the values of mg) ’s in our hand, we can directly proceed to calculate the integral

given in the RHS of Eq. (3.3.24) explicitly.

Z:I:(a-()? m;p, q) =

(1)2

4 L 22 . (12, (2)2
i?/ AP ¢ O Gy DAl 2@ 4 iem) — m))x
: p
sinh = (20 = AZ —ig*(@m{! — m®)) sinh =208 — AP +i(m — m{))x
p p

sinhz(2)\£_3) —AY —ig*(m® — m{))sinh Z()\;l) + A% +im + mP)) x
p p

sinh%(A;” + A2 —ig*m? + m?)) (3.4.11)

The integral in Eq. (3.4.11) is Gaussian and therefore, tractable. The argument preceding

Eq. (3.3.29) holds in this case too, and we have

\Z(&O) m;p, Q)J = \Z+(CAT(), m;p, Q)J X \Z— (6-07 m;p, Q)j (3412)

su(3)dsu(3) su(3) su(3)

with k4 being parameterized similarly as in the SU(2) case, via Eq. (3.3.28), and the
values of my obtained in Eq. (3.4.10), obtained in the preceding section, the RHS of Eq.
(3.4.12) gives
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(m)

(a(q+q +27)—4(1+9)7)
G . 3.4.13

eP’Y

Z(O-Ovm b, Q)

Here the function G is a linear combination of 824 phase factors, similar in form, to those
appearing inside Eq. (3.3.30). Due to the cumbersome appearance and of less significance

of these terms, they have been omitted here.

Again, following similar arguments as before, the gravity partition function is given by

a sum over the topologies, which classify the various saddles, and is obtained as

Mﬁ

[
grav1ty E

p=1 ¢
(p,q

Z(69,m;D,q) (3.4.14)

Il
—

1

s
Il

Even without knowing the explicit structure of the terms in the right hand side of Eq.
(3.4.13), just from the pre-factor p? we can conclude as in the spin-2 case that Eq. (3.4.14)
will diverge because of terms appearing in the non-analytic domain of Kloosterman zeta

function.

We conclude by a comparative remark with the purely bosonic theory. For example,
Ref. [84] states that the partition function for a purely bosonic theory of higher spins

truncated at a tower of spin /N on a Lens space is given by:

N-1s-1 +1 £ 4
~ (Vi)Y e2m/p H H Hsm (rﬂq ) sin (rwq ) : (3.4.15)

+ s=2 r=1 p p

This makes the sum over topologies more convergent for higher spins. In the supersym-
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metrized version however:

N-1 1

Zs in—-N ~ ~
PN P VL(pyq)

)N—l ’

Due to the opposite statistics of the fermions and opposite power of fermionic determinants
in partition function calculations, the divergence in the full partition function gets only
worse. However, as already discussed before, this divergence only tells about stability
of quantum gravity fluctuations on de Sitter background, but goes away while calculating

correlators of non-gravitational interactions on fixed Lens space backgrounds.

3.5 Discussions and future directions

We have calculated, as the definition of Hartle-Hawking vacuum state, the exact quantum
gravity partition function on the static patch of Euclidean de Sitter space-time. In trying to
do so, we have argued that the quantum gravity path integral receives contributions from
all the classical saddles, which we have obtained as the quotient spaces of S* by the abelian
group, Z,. This have been identified with the Lens Space L(p, ¢) and we expect a formal
sum over p and ¢, the parameters of the space to capture the contributions from the saddles.

To evaluate the quantum gravity partition function exactly, we have worked in the CS
formulation of 3d gravity. This has proved immediately helpful in calculating the exact par-
tition function by supersymmetric localization technique. We have calculated the partition
function for both spin-2 gravity and higher spin cases. We observe that the Kloosterman
zeta functions arise naturally in the result of the partition functions from where we identify
explicitly the divergent pieces. We also observe that our result, being exact, reproduces

the known result in large k& limit, apart from an overall volume factor. That contribution

100



has been ascribed to the effect of introduction of dynamical fermionic degrees of freedom.
Due to the presence of this change in the prefactor, the analytic properties of the sum over
all Lens space does change. It becomes divergent even for those ranges of parameters, for

which the bosonic theory was finite.

To explore further, let us focus that the divergence is caused basically from the prefactor
volume contributions from Lens space of higher p. As one goes on incorporating higher
values of p, smaller volumes contribute as p/(272) as per Eq. (3.3.31). Therefore one of
the most natural yet brute-force regularization would be to consider only those Lens space
whose volumes are greater than some particular volume V), similar in spirit to putting
a UV cut-off. One obvious choice for V), is of course the Planck volume. This gives a
seemingly plausible regulator. However the ultimate physicality of this scheme would be
to first compute expectation value of local operators or correlators and then take Vy — 0
and check that the results converge uniformly to a finite limiting value. That would make
a very clear sense of the Hartle-Hawking vacuum for 3 dimensional dS space, with all
quantum gravity effects included. In fact the above scheme is planned for an immediate
future check, which we would like to perform by including local degrees of freedom in the
form of scalar fields. The present results of this article from the localized gravitational part
of the path integral would make that calculation relatively more tractable.

For the higher spin cases, we have proposed a set of saddles which are points in the A,
co-root lattice. With this prescription for m, we calculate the partition function and observe
that the divergence is indeed worse. Observing the trend of the divergence reflected on the
the volume prefactor, we have also predicted a conjectural form for arbitrary higher spin
cases. The dependence of the individual partition function on each Lens space scales as
positive spin dependent power law. In contrast, in the purely bosonic theory this depen-

dence was a negative power law, which made a concrete proof of convergence result for
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spins greater than 3, possible.

Apart from the immediate future problem as pointed above, as a further direction worth
exploring we set aside the task of evaluating the quantum gravity partition function for
the N' = 2 supergravity theory, instead of the above purely Einstein gravity using the CS
formulation. In that case, the fermions would be dynamical and we expect non-trivial con-
tributions to the partition function, coming directly from the fermionic sector. It would
also be interesting to see if the addition of dynamical fermions takes care of the diver-
gences in the partition function, as one might expect from boson-fermion loop contribution
cancellations. It would be interesting to study how the fermionic contributions from the su-
pergravity theory differ from the present case. That eventually will be a valuable progress
in classifying all possible excitations consistent with quantum gravity on de Sitter static

patch.

3.6 Chapter summary

The objective of the present work was the exact evaluation of quantum gravity partition
function with a positive cosmological constant in 3d. We focus on the space of solutions
which constitutes the dS3 spacetime, the static patch of which has been euclideanised for
the rigorous definition of the partition function. This leads one to the S® metric. Since
we are dealing with quantum gravity partition functions, we let the metric fluctuate and
the integral receives non trivial contributions from all the saddles. The saddles have been
identified as the orbifolds of S®, denoted by the Lens spaces L(p, q). Thus, we expect a
formal sum over all the contributions coming from each Lens space, denoted by individual
values of p and ¢q. For the purpose of exact evaluation, we take help of the CS formulation

of gravity, and we supersymmetrize the (two copies of) su(2) Lie algebra valued bosonic
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CS theory to obtain the A/ = 2 VM. We use the technique of supersymmetric localization
to evaluate the partition function of the N' = 2 theory as the partition function of the
gravity theory. Eq. (3.3.36) is the main result of this chapter for the case of s = 2. We see
the presence of fermions, albeit non-dynamical, modifies the purely bosonic result by a p
dependent factor, which diverges as p — co. We further identity the divergent pieces in
terms of the Kloosterman Zeta functions. They are finite in number and these divergences
have been well studied in the mathematical literature. For the higher spin case s > 2, we
indicate the nature of divergence as p — oo in Eq. (3.4.13) . We also show that since the
divergence appears as an overall multiplicative factor, in calculating correlation functions

of well defined operators, it would cancel out and we expect finite and physical results.
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meeesssesssmmmmmn CHAPTER 4 S

SUPERSYMMETRIC GRAPHENE ON

SQUASHED HEMISPHERE

This chapter is based on

1. “Supersymmetric Graphene on squashed Hemisphere”, R. Gupta, A. Ray, K. Sil, [arXiv:

2012.01990].

4.1 Introduction

Quantum field theory on a manifold with boundary finds diverse applications ranging
from string theory to condensed matter physics such as D-branes, topological insulators
and graphene. The fixed point in the renormalization group flow in quantum field theory is
particularly interesting as the physics is described by a conformal field theory. These theo-
ries also find a useful application in condensed matter systems, for example, in describing

the second-order phase transitions.
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Our focus here will be on 4-dimensional conformal field theories in the presence of
a boundary with conformally invariant boundary conditions. One such example of 4-
dimensional boundary conformal field theories (bCFT) is mixed dimensional quantum
electrodynamics where 4-dimensional electromagnetic field interacts with charged mat-
ter fields on the 3-dimensional boundary. These theories exhibit many novel properties,
as described for example in Refs. [101-104]. Interestingly, the mixed dimensional quan-
tum electrodynamics belongs to a more general class of field theories called reduced or

pseudo-QED, as described in Refs. [105—-108].

One of the characteristic features of a conformal field theory is the presence of a quan-
titative measure of the number of degrees of freedom that decreases along the RG flow
connecting two CFTs. In 2d and 4d, it coincides with the central charge ¢ and a, respec-
tively, while in 3d CFTs, the free energy of the theory computed on S® plays the similar
role. Monotonicity theorem also exists in d-dimensional bCFTs, as discussed in Refs.

[109-113]. The boundary free energy defined from the hemisphere partition function as

Zygal? :
| HSdl — ele.—QFg; , (411)
Zga
where terms in “div.” are divergent terms which have (d — 1)-dimensional origin, con-
jectured to decrease along the RG flow triggered by the boundary relevant operator. Our
goal would be to compute the boundary free energy in the 4-dimensional supersymmetric

bCFTs.

The localization computation of the partition function for 4-dimensional ' = 2 super-
symmetric theories with Neumann and Dirichlet boundary conditions was first performed
in Ref. [114]. Subsequently, the partition function of N' = 2 supersymmetric graphene-

like theories with general boundary conditions appeared in Ref. [115]. Here, the authors
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computed the partition function as a function of trial R-charge of the charged matter fields
at the boundary. The partition function takes the form of real one-dimensional integral with
integrand given in terms of Jafferis /-function. One of the novel features of the partition

function is that it depends on the complexified gauge coupling
T=—+—7 4.1.2)

which is exactly marginal. This gives rise to a boundary conformal field theory for every
value of the complex coupling 7. Thus, the partition function computed using the method
of localization is a function of the complex coupling 7 and the choice of R-symmetry. The
R-symmetry is determined using the 3-dimensional F-maximization as reported in Ref.
[30]. Moreover, the partition function, as a function of the background sources for gauge
and flavor currents, was used to compute boundary transport coefficients that appear in the

2-point function of the corresponding currents.

In the present article, we will generalize the above computation to include the met-
ric background deformations. More specifically, we will consider N/ = 2 supersymmet-
ric mixed dimensional QED on a squashed hemisphere. Supersymmetric theories on a
squashed sphere have been studied in various dimensions. Provided the squashing de-
formations preserve some supersymmetry, the partition function as the function of the
squashing parameters can be computed using the localization technique, for example in
Refs. [25, 28, 116, 117]. The free energy as a function of squashing deformations allows
us to compute correlation functions that contain the insertion of the energy-momentum
tensor. We will be interested here to compute the transport coefficient that appears in the
2-point function of the energy-momentum tensor in 3-dimensional boundary. Conformal

symmetry and the conservation law fix the 2-point function of energy-momentum tensor in
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3-dimensional flat space up to a constant.

The two point correlator of the stress tensor is given by

T 1
<TuV($)Tp0(O)> = _641:;2 (5NV82 - auaV)((SpoaQ - apaa)p
T L ) 1
o (008 = 0,0, (0008 — 0,05) + (1 > ) = (4.1.3)

The quantity of interest 7 can be computed by placing the conformal field theory on S. It
is given by the second derivative of the squashed free energy with respect to the squashing
parameter b, as was first discussed in Ref. [11]. That is,

2 _ 0°F,

Th = —Re
w2 Ob? lp=1’

where F, = —1n27,, 4.1.4)

where the free energy is evaluated using the superconformal R-charge.

We extend the above computation to 2-point function in bCFT. In particular, we com-
pute the 2-point function of the boundary energy-momentum tensor by differentiating the

boundary free energy as

2 PFy,
w2 0b% lp=1

TR —

(4.1.5)

Basically, the idea is that after integrating over the bulk degrees of freedom for a given
conformal boundary condition (and dividing by the sphere partition function), we can think
of the Fj as the free energy of some effective CFT at the boundary. At the perturbative
level, the effect of bulk degrees of freedom can be mimicked by introducing interactions in

the boundary theory involving auxiliary fields. These were the original arguments in Ref.
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[118] that provided evidence in support of the decrease of boundary-free energy along the
boundary RG flow.

To compute 7, we follow the strategy outlined in Ref. [119]. We

1. Evaluate the partition function on S; and determine the R-charge that maximizes the

real part of the free energy,
2. Use the R-charge thus obtained to evaluate the free energy on S, and

3. Compute the second derivative of the free energy, which is the function of squashing

parameter b, to obtain the expression for 7x.

The outline of the rest of the chapter is as follows. In Section 4.2, we review two differ-
ent ways of squashing a S*. We then discuss supersymmetry on the squashed sphere. After
that, we discuss the condition the background fields need to satisty to have supersymmetry
on the squashed hemisphere. In Section 4.3, we find the partition function of mixed dimen-
sional QED coupled to charged matter fields at the boundary. In Section 4.4, we compute
the 2-point function of the energy-momentum tensor. In Section 4.5 we discuss the possi-
ble future directions. Finally, Section 4.6 presents a lightning summary of the chapter. In
Appendix C.1, we present our conventions for gamma matrices and reality condition on
fermions. In Appendix C.2, we discuss the supersymmetry on the squashed hemisphere.
Here we also discuss the requirement on the supergravity background fields. In Appen-
dices C.3 and C.4, we present the supersymmetric action and background fields on the
squashed sphere. In Appendix C.5, we give explicit expressions for functions that appear
in the subleading computations of 7z. Finally, in Appendix D.1, we state various Pauli
and ~y matrices identities needed for various manipulations in simplifying supersymmetric

transformations.
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4.2 Supersymmetry on squashed hemisphere

In this section, we will introduce the supersymmetric background on a squashed hemi-
sphere. The squashed hemisphere is obtained by considering the squashed sphere and
placing the boundary at the equator. We will be considering here two different kinds of
squashing depending on the isometry preserved by the deformation of S*. The first kind of

squashing preserves SU(2) x U(1) isometry. The metric is given by
1
ds} = dr” + 7 sin’ r(d62 +5in2 0 dg? + h(r)2(di + cos 0d¢)2> “2.1)

where 0 <r <7,0<60<70< ¢ <2rand 0 < ¢ < 47 and h(r) is an arbitrary
smooth function. The regularity of the metric near the north pole (i.e., at r = 0) and south

pole (i.e., at = 7) requires the following behaviour the function

North pole:  A(r) =1+ cor* + O(r?), (4.2.2)

Southpole:  h(r) =1+ do(m —1)* + O((m —1)?) . (4.2.3)

The squashed hemisphere is obtained by the requirement that 0 < r < 7. The induced

metric at the boundary is given by
2 1 2 ) 2 T\ 2 2
ds?, = Z(de +sin?0dg? + h(a) (dip + cos 6 dgb) ) 4.2.4)

The above metric on the squashed S® preserves SU(2) x U(1) symmetry. Thus, any ar-
bitrary smooth function satisfying the regularity condition given in Eq. (4.2.2) gives rise
to a smooth deformation of the H.S*. The deformation can then be used to compute the

2-point function of energy momentum tensor of the boundary conformal field theory. For
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the convenience of the later computations, will choose the following form of the function

2 .
h(r) =1+ —2[ sin’r. (4.2.5)

™

In the above « is a positive real parameter with & = 0 correspond to unsquashed back-
ground. The above form of h(r) satisfies the smoothness criteria given in Eq. (4.2.2) with

CQZO.

The second kind of the deformation we will consider preserves U (1) x U(1) isometry.

The squashed metric is given by
ds?, = 0 EE" (4.2.6)
where the vielbeins are

E'=(sinr cosdy, E?={sinrsinfdy, FE*= f(0)sinrdb+ h(r,0)dr,

E* = g(r,0)dr. 4.2.7)

In the above, the range of the coordinates are 0 < r < 7,0 < 0 < % and 0 < ¢, x < 2.

The parameters ¢ and { are constants and the functions appearing in the metric are given by

- 22
f(0) = \/€2 sin? @ + (2cos20, g(r,0) = \/p2 sin?r + ;(5)2 cos2r,
(2 — 2
h(r,0) = 70) cosr sinf cosf . (4.2.8)
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The induced metric at the boundary of the squashed hemisphere i.e., at r = 7 is
dsprp = (7 cos® 0 dg? + (*sin® 0 dy* + (572 cos” 6 + (*sin? 0) dH* . (4.2.9)

Next, we will discuss the background which needs to be turned on in order to preserve

supersymmetry on the squashed hemisphere.

4.2.1 Supersymmetric background on squashed hemisphere

We will be interested in N = 2 supersymmetric theory on the squashed hemisphere back-
grounds given in Eq. (4.2.1) and Eq. (4.2.6). The squashed metric background does not
admit any rigid supersymmetry itself. However, the supersymmetric theory can be put
on the squashed hemisphere if we turn on some non-dynamical supergravity background
fields. The theory is invariant under the rigid supersymmetry transformations that are gen-

erated by the solution of the Killing spinor equation

Dy’ + T a6’ = 1€ (4.2.10)
In addition to above, the Killing spinor also satisfies an auxiliary equation

DIDE + 4D Tyt = ME . 4.2.11)
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The fields 7% and M are auxiliary background fields. Also, the SU(2)x connection ap-
pears in the Killing spinor equation through the covariant derivative given by

i . 1 ab\ ¢i i ¢j
Dy’ = (O + JWpay N+ Ve (4.2.12)

These Killing spinors also satisfy the symplectic Majorana condition
L= () =¢,8"0C, (4.2.13)

where C' is the charge conjugation matrix.

Now, the presence of the boundary at r = 7 breaks half of the supersymmetry transfor-
mations i.e., the boundary in our case preserves 4 out of 8 supercharges. Given a solution
&' to the Killing spinor equations (4.2.10) and (4.2.11), we define the following projected

spinors following Ref. [115]
g =114 ¢, (4.2.14)
where the projector is given by
i L g . g
Iy ; = 5(8) £ 7} 957 (4.2.15)

Here, 7, is the flat space gamma matrix corresponding to the direction perpendicular to

the boundary i.e., n. We require that at r = Z, TI, ij =0, and & generates the
r==I r:g

supersymmetry on the boundary. It is important to note that £ are not the solution of the

4-dimensional Killing spinor equations.

_ being the Killing spinor on the boundary, i.e., a solution to the boundary

The spinor £

N
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Killing spinor equation, requires the background to satisfy certain conditions. Using the
fact that the components of spin connections corresponding to the metrics given by Eqgs.

(4.2.1) and (4.2.6) satisfy

wh™ =0, for A,B=1,2,3, (4.2.16)

it turns out that £© _ solves 3-dimensional Killing spinor equation if the background

2
satisfies the following condition (see the Appendix (C.2) for more details)

Tpnlrez =0. (4.2.17)

Note that the above condition is the requirement for having N' = 2 supersymmetry with
U(1)r symmetry at the boundary. Thus, the spinor £’ at the boundary satisfies the Killing
spinor equation

; 1 , 1 .
'Dl34d 4+ TBC’("VBC”}/A + g’}/A’YBc)g, = g /A’)/BD%dfi . (4.2.18)

In particular, one can write the above as

. 1 . .

VAL = SHyaul + Vaysdl (4.2.19)
for some choice of H and V4 and ¢* = (£_,¢’ ). The Appendix C.1 sets the convention.
This is the 3-dimensional Killing spinor equation with A and V4 being the auxiliary fields
in 3-dimensional supergravity.

In the following, we will try to find a possible solution for the supergravity background

fields 7", V and M that solves the sets of Killing spinor equation as given in Egs. (4.2.10),
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(4.2.11) and also at the same time satisfies the condition as given in Eq. (4.2.17) at the
boundary. For this we have considered two different kinds of squashing of the four di-
mensional manifold as already mentioned, namely the one which preserve SU(2) x U(1)
isometry and other with U(1) x U(1) isometry. The supersymmetric backgrounds for the

two cases are separately discussed below.

Squashed sphere with SU(2) x U(1) isometry

In this section, we will consider supersymmetric theories on the squashed hemisphere de-
scribed by the metric in Eq. (4.2.1). The squashing was first discussed in Ref. [120] in
the context of supersymmetric localization. The presentation below follows their analysis

closely. Our choice of vielbeins are

1 sir o Sinr

¢ =—=5 (cos 1df + sin ¢ sin fd) ¢ =— (sindf — costpsinfdg)
¢’ = —Slgrh('r')(dz/f +eosfdp), et =dr. (4.2.20)

Following Ref. [120], we choose an ansatz for the Killing spinors that is compatible with

the symplectic Majorana reality condition, given in Eq. (4.2.13). The ansatz is

s(r) 0
0 s(r
¢ = , &= ) (4.2.21)
i) gin 0
s(r)
0 —ic% sinr
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with ¢ being a real constant. Solving the Killing spinor equation with the above ansatz, we

find

s(r) = h(r)cos = . (4.2.22)

Note that in the limit of vanishing squashing parameter (o« = 0), the above ansatz for the
Killing spinor satisfies Killing spinor equation on the round sphere. However for non zero
«, the above spinors solve the Killing spinor equation provided one turns on appropriate
background supergravity fields. These background fields, the antisymmetric matrix 1'%

and the SU(2)r gauge field V,, defined in Eq. (4.2.10) have the following form,

ity i(t] —it]) 0 0
i(tf + ity —itd 0 0
Ty = (7 +ity) ° . (4.2.23)
0 0 ity i(ty —ity)
0 0 ity +ity) —ity
and
10: a 1(v a + v ,a
v, = > (1 + f020) : (4.2.24)
i(vl,a — Z.’UQ@) —Z"U37a

with, V, = eZV}L. The only non zero components of the background fields, vs s, t;f, s
and also M are given in Appendix (C.3). In presence of the boundary at r = 7/2, we also
require to impose the boundary condition as given in Eq. (4.2.17) on the antisymmetric
tensor. Given the explicit results for the background field components in Eq. (C.3.1), the

above condition on the antisymmetric tensor at the boundary translates into the following
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relation between ¢ and ¢3,

1
(t5 —t5) lr=np =0=c== (— + = > : (4.2.25)

2 " w2
In other words, the real constant c is fixed by considering the above boundary condition.

Moreover, due to the boundary, we expect only half of the supersymmetry to be present

compared to the case with no boundary. We define a projected spinor £, as
& = IIy,¢ . (4.2.26)

Imposing the condition that &' |,_./» = 0 sets the value ¢ = + (3 + %) = 1h(%). The

boundary supersymmetry is generated by the Killing spinor £

[SE]

The corresponding Killing vector is given by

0

K= —4h(g)% . 4.2.27)

The boundary Killing spinor equation is given by Eq. (4.2.19) and the supergravity fields

are

1
H= h(g)7 Vi = —idas (h(g) - —)) . (4.2.28)

Squashed sphere with U(1) x U(1) isometry

In this section, we will discuss the squashing described by the metric Eq. (4.2.6). This
particular kind of squashed geometry for S* was considered in Ref. [28]. The solution of

Killing spinor equations and the exact results for the background fields were obtained in
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Ref. [28]. The Killing spinors are given by,

i .

_les(0+o+) gip -
gh=1 72 2, = , 2 (4.2.29)

s
Lea(=0T00) cos L —

_ i i (0+0+x) r _i,5(0—6—X) r
se? cos se? Cos

Given this Killing spinor one can easily obtain the projected Killing spinors &) and & on
the three dimensional boundary. It turns out that £ being proportional to (cos 5 —sin g)
goes to zero at r = m/2. Moreover, for the Killing spinor equation Eq. (4.2.10) to be
satisfied at the boundary with the remaining spinor !, the antisymmetric tensor must obey
equation Eq. (4.2.17). The components of 1z, which are nonzero turn out to be 7y, and

T\, given by,

h(r, @) sin 0 h(r,8) cos 6
Ty = —2 2227 o TR (4.2.30)
TR f(0)g(r0) T 8f(0)g(r,6)
These two components vanish at 7 = 7 /2, since h(,0) = 0.
The corresponding Killing vector is given by
10 10
K=———>-—. 4.2.31
oy ¢ Ox ( )

At the boundary, the Killing spinors in Eq. (4.2.29) satisfy the 3-dimensional Killing spinor

equation (4.2.19). The background supergravity fields are given by

H:_L %:_T(Z')S@(%_%)7 %:_255n6<%_%>’ Vs =0,

(4.2.32)
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4.3 Supersymmetric partition function

In this section, we will compute the partition function of a supersymmetric theory of inter-
est on the squashed hemisphere using localization. In particular, we will be interested in the
supersymmetric theory of n number of chiral multiplets on the boundary of the squashed
hemisphere coupled to an abelian vector multiplet having propagating degrees of freedom
in bulk. We will further denote by n, and n_, with n = n, +n_, the number of positively
and negatively charged chiral multiplets, respectively. The Lagrangian of the theory on a
squashed background is available in the literature Refs. [25, 28], however, for the conve-

nience of a reader, we have given the Lagrangian for vector multiplet in the Appendix C.4.

4.3.1 Squashing preserving SU(2) x U(1)

We begin with the partition function computation on the squashed hemisphere in Eq.
(4.2.1). The supersymmetric locus is obtained by solving the bosonic equations d\* = 0.
To state the solution explicitly, we choose the deformation to be Eq. (4.2.5). With this we
have a Killing spinor with

r 2a

_ .3
s(r) = cos 5(1 + — sin T). (4.3.1)

The solution to the variation A" = 0 is given by (in perturbative expansion in «)

S = sy — SO—SSinzg(4+5sinr+4sin2r—|—sin3r) + ...
T

So¥

Ds = sy +
3 0t

(—8+ 16 cosr + 8sinr + 2s8in2r 4+ 8sin3r 4+ 5sindr) + ...  (4.3.2)
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In the above s is constant and all other fields are set to zero. Evaluating the classical action

(see Appendix C.4) on the localization background we obtain (to order a?)!

4o 1202
[ = —is (w e )% (4.3.3)
T N
where
0 omi
F=— - (4.3.4)
2T Gy um

The « expansion of the action agrees with the closed form expression of the action given

as (we have checked it for a quite a few order)

m m
[ = —is2—s—T = —iso——T. 4.3.5
T mr T Gy o
Thus, the partition function is given by
_izxe 7
ﬁé/@emﬁﬁm@% (4.3.6)

where the integration contour is chosen along the imaginary direction of sy i.e., sg = 0

with o € R. The one loop determinant for each chiral multiplet is given by Ref. [25]?

n+1—q+ih(")

(MIE}

Z117100p<0-7 a) = (437)

st lHa—ing

wﬂq

Note that the partition function depends on 7. This reflects the choice of the Killing spinor. It is possible
to find the Killing spinor which gives rise to the classical action on the localization background depending
on 7. However, we will not be using the partition function for the future computations, and hence we will not
proceed to find such Killing spinor.

Note that our Killing spinor is normalized differently than Ref. [25]. In particular, at r = 5 itis given

by ;&' = 2h(%)?%. Also, the localization background at r = Z is S = gz and Dy = 5245,
2 2
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Thus, we see that the partition function depends trivially on i(7).

4.3.2 Squashing preserving U(1) x U(1)

Next, we consider the deformation given by Eq. (4.2.6). The localization background is

obtained by solving the bosonic equations S\’ = () and is given by Ref. [28]

__ b 0)so o __ A 0)so _ %
Dr= 50900y MO X Da =g gy eoslo ), D=
(4.3.8)

and s is the constant value of the scalar field S. Rest all other fields are zero. The bulk

action (see Appendix C.4) evaluated on the localization background is given by

272

I,=———Ms}. (4.3.9)
Iy m

Similarly, the boundary action evaluated on the localization background is

Ipg = gsg 0. (4.3.10)

Thus, the complete action on the localization background is given by

_ 0 omi ~
I =1y + Dyy = itlsir (5 + ) = itlnrs} 4.3.11)
2m - Gy

The partition function is given by

Zé)[[ _ /dO' 6%2%7’022[1 (4312)

1—loop
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where the integration contour is chosen along the imaginary direction of s i.e., s9 = 0

with ¢ € R and Z/!

1=100p 18 the one loop contribution from the matter multiplets at the

boundary. The one-loop contribution from the n . and n_ chiral multiplets at the boundary
with R-charge ¢, and ¢_, respectively is given in terms of hyperbolic Gamma function in
Ref. [25, 116] as

leiloop = (Fh(éga + iwqy; iwy, z'wg))n+ (Fh(—ﬁga + dwq_;iws, z'wg)) . (43.13)

where w; = b,wy = % and w = %(wl + wy). The parameter b is the squashing parameter

14
12

given by b = . For our purposes, it is convenient to use the integral representation of

the hyperbolic Gamma function. It is given by

1’000 iy( Z—w —5 'sin2y(z'—w) )
Dy (23w, wy) = ¢ 0 ¥ \Pivan T ) (4.3.14)

The above integral is well defined for 0 < Imz < 2Imw, where w = %(wl + ws). In
the case when there is no squashing, the hyperbolic Gamma function reduces to Jafferis

(-function. The precise relation is
Dy(z;i,1) = e F82) (4.3.15)

Next, we will use the above partition function to compute the 2-point correlation function

of boundary energy-momentum tensor.
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4.4 7 computation

In this section, we will compute the 2-point function of boundary energy-momentum tensor
for various matter degrees of freedom at the boundary interacting with a bulk photon. The
2-point function of energy momentum tensor in flat space is given by

T ‘ 1
(T ()T (0)) = = 5 O 0® = 0,0) (300" — p0)

!
(8 = 0,0,) (8,08 = 0,0) + (1 3 1))

G0 ok (4.4.1)

As discussed previously, the quantity of interest, 7z can be computed by placing the theory
on a squashed sphere. It is given by

2 _ 0*F

Th = —Re——
w2 0b? lp=1’

F=—-InZ°. (4.4.2)

4.4.1 Free matter at the boundary

We begin with the case of the free conformal matter at the boundary i.e., there is no inter-
action with the bulk photon. This case will be important for our future discussion when
we will consider the interaction to be very small. For a conformal chiral matter, we have

q= % Thus, the one-loop determinant is given by

Z\Sop = € = Tnlw(iq); iy, i)
_ 'exp<i /oo dx [ ~ w(ig) —iw N si'n(Z:L’(z'qw.— w)) ]) ‘ 4.4.3)
0 T WiWa T 2 sinh wyz sinh wyx
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In the above w; = b, wy = 1_1) and w = %(wl + wy). Thus, the free energy is given as

C[Cdep (b+bN(g—1) | sinh(z(b+b7")(g—1))
" /0 E [ - 2x 2sinh bx sinh b~1x ] ' (4.4.4)

Substituting the R-charge ¢ = % in the above, we get the free energy

o] — : x —1
poo [Ti[oGaEh | i) was)
0

T 4z 2sinh bz sinh b1z

Calculating the second derivative w.r.t b and then setting b = 1, we obtain

< dx 1  xcoshz x? T
_ e T ):—. 44.6
b=1 /0 x ( 2 2sinh®*z  sinh®a 8 ( )

Thus, the coefficient 75 for a free chiral multiplet is

o°r
O0b?

TR= . (4.4.7)

4.4.2 Interacting case: Non chiral theory

Next, we will consider the partition function of non-chiral matter at the boundary interact-
ing with the bulk photon. It consists of an equal number of chiral multiplets of positively
and negatively charged coupled to a single U(1) gauge field. In this case, the squashing

dependent partition function is given by?

79 = / do €™ (T (0 + iwqy s iws, iws ) ) (Da(—0 + iwq_; iwy , iws )" . (4.4.8)

SHere onwards we will consider only the squashing dependent part of the partition function, ignoring the
overall factor of ¢¢.
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In the above expression, we have not included the monopole charge ¢; since it vanishes at

the extremum in the present case.

We first consider the case of n = 1 i.e., of two oppositely charged chiral multiplets.
Using the exponential form of the hyperbolic gamma function, the partition function is

given by
77 = / do 7m0 (4.4.9)

where

Cdyr2w(qr—1
G(o) = / Y [M
o Y Y
+i sin(2y(o + iwqy — iw)) +isin(2y(—o + iwg_ — iw))]
2sinh by sinh b=y '

(4.4.10)

We will further write ¢4 as ¢+ = g5 £ q,.
Large 7 analysis: We will start with saddle point calculation in the weak coupling limit

i.e., |7| >> 1. In this limit, the matter degrees of freedom at the boundary interact weakly

with the bulk photon, and as a result, one would expect 7z ~ % = % to leading order in

large |7| expansion. We will see this explicitly below.

In the large |7| limit, the partition function on S® is extremum at the value ¢ given by Ref.

[115]

sina 7w —4+ 4+ (1+2n)7?) cos2a
7|7 A2 |T|?

+0(7 ),

1
¢gg=0, and gq;= 3

(4.4.11)
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where 7 = |7|e" . We will do saddle point calculation with the above choice of ¢; and g,.

We see that o = 0 is the saddle point, since the function G(o) satisfies

0G(0)

=0.
Oo  lo=0

Let the function has the following Taylor series expansion about o = 0
1 2 3
G(o) =Gy + §G20 + O(07)

The values of the above functions are

o /°° dy [Zw(qf —1)  sinh(2yw(gy — 1))]
0 0o Y Y sinh by sinh b1y 1’

and

G /'Ood [4ysinh(2yw(qf—1))
2 0 sinh by sinh b—1y

(4.4.12)

(4.4.13)

(4.4.14)

(4.4.15)

Note that both the integrals are entirely convergent since gy < 2. Thus the partition function

to a leading order is given by

1 1

77 =
N\ T2 o (—ir)

Thus the real part of free energy is

6@0+G0

|20 = el (14 =5 (Gor = Gor)) + O(7 ).

7]

47 |T|?
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3G ) + O(Ir ).

(4.4.16)

(4.4.17)



Thus the expression for 75 1s

2
2 J Fa :———(GQ+G0+

Th= 2R ‘bzl 2 2 G —TG)|  (4418)

We will calculate the above one by one

0? 72  7wsina  wsina 72 2mrsina
2 G+ G ] T Tama 7 o) =-1_° O(r2
g\ Ot = Ty Ty PO )T sy O
(4.4.19)
Next we calculate
32( i (=G o) Imr  O? Im7 772( 8 + ) 7TIII17'( S 4 12)
—(——(7FGy — 1 = =— (84 71)=——(-8+47
o \ag|r2t P e 2wfr2 o0 Plemr 27|72 2 4|72
(4.4.20)
Thus we have
1 sin av
— - 2 3n? -2 4.4.21
TR 2+127T|T|(3 3m°) +O(177), ( )

where 7 = |T|e'@.
We can easily extend the above analysis for the case of n,. = n. In this case, the partition

function is given by

79 = / do " TTHE) (4.4.22)
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- dyr2w(gr—1) isin(y(o +iwgy — iw)) + isin(2y(—o + iwg_ — iw))
Flo)=n —[ + ; :
0o Y Y 2 sinh by sinh b1y
(4.4.23)
Since n is an overall factor, one, therefore, has
n nsina
= — 32 — 312) + O(17?). 4424
=5 o] ) +0ET) (2429

Small 7 analysis: Next, we consider the large coupling expansion, i.e., |7| << 1, for the

coefficient 7. We will focus here the case of n,. = n_ = 1. The partition function is
79 = / do e Th(o +iwqy; iwr, twe)Th(—0 + iwq_;iwy, iws) . (4.4.25)

We will evaluate the above partition function for the value of ¢y and ¢, which extremizes
the corresponding S* partition function in the limit of |7| << 1. To the leading order, the

extremum occurs at ¢, = 0 and

1 4v/3 — 2
g ==+ 54V3 = 90m + 8v/3n 7| sina + O(7?). (4.4.26)

3 9(87r(3¢§ ~om) — 27)

Thus, we have

9 OPF 2 1
~ R —‘ __‘R (—8226‘ ) , 4407
TR 2 ef)b2 b=1 2 © R P ( )

where the RHS is evaluated at Eq. (4.4.26).
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In the above we have used the relation

BT (£ + iqyw; ib, %) =0 (4.4.28)
=1

Calculating the second derivative w.r.t b, we obtain

agz@\

b=1

— / do ez‘a27r7— 62(1—ia—q_)+€(1+ia—q+) (X+(O', (]+) + X_(O', (1—)) , (4429)

where

. [ drsin(2z(£o +igiw —iw)) 0+ iwgy — iw
o =0 [ T - ]
(0,02) = 9 {0 0 T 2sinh bx sinh ¢ T b=1’

_ /Ooo d [(Qj: .y (i cosh(2z(l —qs F z‘a))>_

x? sinh? x

inh(2z) — 2z
w sinh(27(1 — g + :I:Qimo))} (4.4.30)
2sinh” x

In the above we have used the relation
Ty(z;i,1) = eHE) (4.4.31)

where /(z) is the Jafferis /-function. To evaluate Eq. (4.4.29) at strong coupling, we go
to the dual frame where the computation reduces to the weak coupling computation. The

dual frame is obtained by using the Fourier transform, as described in Ref. [115]

) ) ) +q_ | . +q_ .
/da 6((1—q++w)+£(1—q_—w)+27rmo _ 66(1—q+—q_)+€(q+2q +m)+€(q+2q —ik)+mr(g+—q—)

(4.4.32)
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Using the above identity, we obtain

. . . —+ . —+
8528‘ — / do dr 6—271'maewzm' e@(l—q+—q_)+é(m+%)+£(—m+q 2q+)e7ﬂi(q+—q_)

X (X+(0, q+)+ X (o, Q—)> ;

" im 2 oo a—+ay . a—tay
_ / e o= gy g )it ) (it ) (a4 —qo)

></ d56i62”7<X+(5+E,Q+)+X_(&+E,q7)>,
Im&:% T T

'ﬁm2 . _+ ) _+
:/dﬁe_zf (=01 =)+ L(int T ) Hl(—int S5 ) (g4 —g-)

X / dé ¢ (X+(5f + ];),cn) +X7(6+ g,q—)) :

[e e}

* d i [ a2 2 -1 2 —1 2
x/ =% [eﬁ (gr=1) @f 5 ) cos 25 cosh(2z(qy — 1))
. v —ir 2 sinh® z T
inh(2z) — 2 2
_sinh(2z) — 2z cos 2P¥ sinh(2z(1 — qf))] ' (4.4.33)

sinh* T

2 . .
_/d1€€_m: ot (1=2g7)+L(in+qs)+(—intqy)

In the above we have deformed the contour back to the real axis and also substituted ¢ =
gy, since ¢, = 0. In the limit |7| ~ 0, we evaluate the above integral in the saddle point

approximation. In this approximation, we get

1 o0 2 -1 1 -y x
7702, = [ [P S s (24 o) + i ()
, 2(qr — 1 sinh(2z) — 2z |
207171(0)) (22 coshaa(yy — 1))~ TEED 2 (201 — )] + O(P).

(4.4.34)
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Figure 4.1: The plot of 7 vs. Im7 for the n, = n_ = 1 theory. The dots represent the
numerical computations and the solid lines are the saddle point approximation.

where the function f; () is given in the Appendix C.5. Thus, we have

TR = —FRe/ dx [% + 56724(%)%(%%)“(%;%) (2 + |7l fi(@) + [7]fi(=2)
0

—2|7‘|f1(0)) ( — Q((Jf—hgl) cosh(2z(q; — 1)) — w sinh(2z(1 — qf))>]

sinh” z sinh® z

+ O(7%), (4.4.35)

with the R-charge ¢, to the first order in |7| given in Eq. (4.4.26). We could not evaluate the
above integral explicitly; however, numerical evaluation is possible for the various values

of the angle . In particular, for o = 7, we obtain
Tr = 0.545 — 0.07035|7| + O(|7|*) . (4.4.36)

The full behaviour of 75 as a function of Im7 can be seen in Fig. 4.1.

Large n-analysis: We can also find the expression for 7 in the large n-limit. In this case,
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we consider the partition function given by
79 = / do €™ (T (0 + iwqs ;iws, iws) ) (Ch(—0 + iwq_;iwy, iws))" . (4.4.37)

The computation of 75 in %—expansion proceeds in a similar manner as in previous cases
and we will not repeat here. To compute 75, we need to know the R-charge which maximize

the free energy on S3. In the %—expansion itis given by Ref. [115]
q = 5" 3 + (’)(71_2)7 and ¢, =0. (4.4.38)
Using the above expression for the R-charge, the explicit computation then gives

TR —

—2(1- i) + O™, (4.4.39)

n
2 372

4.4.3 Interacting case: Chiral theory

Next, we consider the chiral theory with a positively charged matter field at the boundary

i.e.,,ny = 1,n_ = 0. The squashing dependent partition function is given by

chiral —

79 / do e’ ™™ Iy (0 + iwqy; iwy, iwy) 2™ (4.4.40)

where ¢, is the monopole charge. Note that since 6bw‘ = 0, we have a vanishing one
b=1

point function of energy momentum tensor

72

chiral

—0. (4.4.41)
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For the computation of 7z, we need the second derivative of the partition function with

respect to the squashing parameter and is given by

0} 7

chiral

— / do eiﬂ702+f(l—qg+i0)+27rqtaX(O_) 7 (4442)

where

° g, — 1 1—gq,)cosh(2x(q, — 1) — 2ixo
X (o) =2moq +/ dx [ g$2 + ( ) (sin}(l;jz ) )
0

— 5 (sinh(22) — 20) sinh(22(1 - ;) + zz':m)] (4.4.43)

We first calculate the 75 in the weak coupling limit i.e., |7| — oo. The superconformal
R-symmetry is determined by the value of g, and ¢; that extremize the partition function

on S3. In the saddle point approximation, these are calculated in Ref. [115] as

1 I R
G ==~ L O(r?), @=——r +O(r). (4.4.44)

2 mwlr|? 47

The computation of 7; proceeds similarly as in the non-chiral case and we will not repeat

here. The saddle point approximation in the limit |7| — oo gives

1+ sin o
Tp = —
B4 24nl7|

(32 =373 + O(17?). (4.4.45)

Note that to the order O<|71\)’ the result of 75 is exactly half of the non chiral case as shown

in Eq. (4.4.21). For the computation of 7 at the strong coupling |7| < 1, we will use the
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Figure 4.2: The plot of 7 vs. Im7 for the n,. = 1,n_ = 0 theory. The dots represent the
numerical computations and the solid lines are the saddle point approximation.

following identity

imw 2 ; _ ; o2 9g+1 .\ 3mi e 1y2 im
/dae Toi+2miok+L(l—qgt+io) _ e 2mik +0(~5—+iK) — 25t (qg+2ik—5)°+ 15 . (4446)

Using the above identity, the derivative of the partition function can be written as

q+1 37

—omi ; _1Ne2 92 g+ly_3micsz_ 132, im
85Z3ﬁral = / dk dp€ 27”pli€2ﬂ-qtﬂ€“r(7 2)‘% e 2mip €£( 2 ) 3 (G 3) +12X(/€)7

(4.4.47)

where the function X (k) is given in Eq. (4.4.43). After some simplifications and perform-

ing the integration over x, the integral on the RHS can be written as

; ; ; ; ; +1 . 3qg—1
ORZG :e?qg—gém(‘19—3)2—33’%(‘19—:13)*1175/dpe_?pzee(qu Fatik) 2 (=) ()
chira. N
b=1

(4.4.48)
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_1_zwk2

with

y = Le_f‘% /<:+/ dx [
) \/7

qg_l)e TT 2)(7Tk+1') ] )

(1 - qg) Qx(qg_l)e_#._%)(ﬂk-‘rl') (smh(Zx) - 2(17) o2
2sinh? x
(4.4.49)

sinh?

Next, we compute the integral given in Eq. (4.4.48) in saddle point approximation when

the coupling 7 ~ L. Let us define a complex coupling 7’ by
(4.4.50)

In the limit |7/| >> 1, the superconformal R-symmetry is given by
3 5 3
) cos 20/) +O(]7)7%),

1 2sin o 1 /3
— 1 0O(7]2 2 = —— _(___ -4 —
4y 4 + (’T | )7 4y +2q 7T|T/| + ’7_,|2 2 + (4 + T2
(4.4.51)
where 7/ = |7/|¢’®’. Evaluating the integral in Eq. (4.4.48) in the saddle point approxima-
tion, using the above R-charge, we find to the first subleading order
1 1—2
TR=7~ —Re— dT g(z, o)+ O 2), (4.4.52)
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where the explicit form the function g(z, ') is given in the Appendix C.5. For o/ = 7, we

have

1 0.0570
TR — +

- -2
1 7 +O(|7'77). (4.4.53)

The full behaviour of 71 as a function of Im7 can be seen in the Fig. 4.2.

4.5 Discussions and future directions

As a future direction, it would be interesting to extend the above computation for the case
when the bulk involves non-abelian gauge fields, in particular for the NV = 4 SYM. As-
pects of Ref. [121] also deal with this direction - however, not in the context of squashed
geometries. Another interesting analysis would be to compute the anomalous contributions
to the trace of the energy-momentum tensor. These contributions depend on the extrinsic
curvature of the boundary. For the computation of these contributions, we need to consider
the manifold where the boundary has non zero extrinsic curvature. The squashed hemi-
sphere has a vanishing extrinsic curvature. It would be interesting to see if it is possible to
find a squashing deformation that preserves some supersymmetry so that the localization
computation can be done, and also has non zero extrinsic curvature. For example, one way
to obtain non zero extrinsic curvature is to start with a 4-dimensional sphere and put the

boundary at r # 7.

4.6 Chapter summary

Our original motivation for the present work is to compute the correlation function of the

energy-momentum tensor for the 4-dimensional bCFT. The most general form of the 2-
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point function of the energy-momentum tensor requiring the conservation law and confor-
mal invariance is known of which further details may be found in Refs. [122-124]. It is
given in terms of 3 arbitrary functions that encode the dynamics of the bCFT. Our goal was
to compute these coefficients in a supersymmetric bCFT. In this direction, we computed the
partition function of the mixed dimensional supersymmetric dimensional QED on squashed
hemispheres. We considered two different squashings that preserve either SU(2) x U(1)
or U(1) x U(1) isometry of the original sphere. The boundary free energy depends on the
deformation parameter. In the case of the squashing that preserves SU(2) x U(1) isom-
etry of the original sphere, the free energy is trivial as a function of the deformation. In
contrast, the boundary-free energy depends on the squashing parameter in the case of the
squashing that preserves U(1) x U(1) isometry. We then computed the coefficient 75 by
differentiating the free energy twice with respect to the squashing parameter. An important
feature of 75 is that it depends on the bulk marginal coupling 7. We then find the behaviour
of 7 as we change the coupling. For the non-chiral case, we find that the coefficient 75
decreases from strong coupling to weak coupling. This is the main result for the non chiral
theory which is presented graphically in Fig. 4.1. In contrast, the computation in the chiral
case reveals that it first increases and then decreases as we change the coupling. Fig. 4.2
highlights this behaviour for the chiral theory. We present both the numerical and analytic
results for the boundary stress tensor two point correlator, both at strong and weak cou-
pling. We see excellent convergence between the analytic results and numeric results in the

perturbative regions.
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