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CHAPTER 1

Preliminaries of Heavy-Ion Collision

1.1 Introduction

Mankind were keen to find the answer of a simple but profound question from the

beginning of human civilization— ‘what are the basic states of matter?’ In ancient

times, it was believed that matter exists in four fundamental elements — earth,

air, water and fire. As the advancement of science continued through di↵erent

civilisations, the quest for the knowledge about the nature in a much more deeper

level had been intensified progressively. As the science advanced, scientists and

philosophers had identified basic thoughts regarding nature in a categorical manner

as following

• What are the fundamental states and the constituents of matter?

• What are the fundamental interactions between them that govern their dy-

namics?

As per our current knowledge, the basic states of matter are — solid, liquid, gas and

plasma. But there are plethora of others that are worth mentioning — conductors,

insulators, superconductors, super-fluids, ferromagnets, spin-glasses and many more.
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CHAPTER 1. PRELIMINARIES OF HEAVY-ION COLLISION

As of now, the fundamental interactions that governs the dynamics of matter are

divided into four categories — electromagnetic, weak, strong and gravitational. The

electromagnetic and weak interactions were later combined in the Standard model

and called electroweak interaction. The most common interactions among the four

is the electromagnetic interaction which is responsible for most of the phenomena,

from contraction of muscle to explosion of dynamite, in our everyday life. It is the

force felt by two electrically charged particle at some distance. The modern theory

of electromagnetic interaction is quantum electrodynamics (QED). Next common

one is the gravitational force which acts between the particles due to their masses.

Other forces, e.g. weak and strong, have no role in our everyday life but are impor-

tant deciders of various processes in nuclear and sub-atomic levels. Weak force is

the force that is responsible for the beta decay and other phenomena. Strong force

is the force that binds the constituents of nucleus together. The strong force is the

strongest among them whereas the gravitational force is most feeble one.

So far, it is established that modern elementary particle physics deals with the

constituents of matter and their interactions. The fundamental particles can be

grouped together into two catagories based on their intrinsic spin— fermions (leptons

and quarks with there corresponding anti-particles) with half-integer spin and bosons

(gauge bosons like photons, gluons, W±, Z and Higgs bosons) with integer spin. The

fundamental constituents of matter are leptons (electron, muon, tau) and quarks

(up, down, strange, charm, beauty and top) with their corresponding antiparticles

which are all fermions. Their interactions are mediated through bosons which are

called mediators. In table 1.1, we have listed the fundamental interactions with

their corresponding mediators. Now, free quarks are not observed in nature. They

are combined to form mesons (a pair of quarks and anti-quarks) and baryons (a

2



CHAPTER 1. PRELIMINARIES OF HEAVY-ION COLLISION

combination of three quarks). In this dissertation, we shall focus on phenomena

Interaction Theory strength Mediator
Strong Quantum Chromodynamics 1 Gluons
Weak Quantum Flavourodynamics 10�13

W
± & Z bosons

Electromagnetic Quantum Electrodynamics 10�2 Photons
Gravitational Quantum Gravity 10�38 Graviton

Table 1.1: Fundamental interactions with their corresponding theory strength and
mediators

related to strong interactions. In the next section, some of the properties of strong

interactions will be discussed in a nutshell.

1.2 Quantum Chromodynamics

The modern theory of strong interaction is quantum chromodynamics (QCD) [1,

2]. It describes the interactions between fundamental partonic degrees of freedoms

(D.O..F), i.e., quarks and gluons. The Lagrangian of QCD for Nc colors and Nf

flavours is written as

LQCD = �1

4
G

µ⌫

a
G

a

µ⌫
+
X

f

 ̄f

�
i /D �m

�
 f (1.1)

Here  f is the 4Nc dimensional quark spinor, Ga

µ⌫
is strength tensor defined as

G
a

µ⌫
= @µA

a

⌫
� @⌫A

a

µ
+ gfbcaAµbA

c

⌫
, (1.2)

Dµ = @µ � igTaA
a

µ
is the covariant derivative, g is the strong coupling constant,

A
a

µ
’s are non-abelian gauge fields with a

�
= 1, 2, · · · , N2

c
� 1

�
being the color rep-

resentation. Ta’s are the generators of SU(Nc)c group satisfying the group algebra

[Ta, Tb] = ifabcTc. The third term on the right hand side in Eq. (1.2) is responsible

for the interactions of gluons among themselves. Due to the self interactions of

gluons, the vacuum of QCD behaves di↵erently from that of QED. In QED, the vac-

3



CHAPTER 1. PRELIMINARIES OF HEAVY-ION COLLISION

uum fluctuations are responsible for screening of electric charge of electrons which

is similar to the charge screening in dielectric medium. But due to the presence

of gluon-gluon interactions, color charges get anti-screened. As a result, the QCD

coupling constant decrease with the increase of probing energy (shown in Fig. 1.1).

This unique phenomena is the asymptotic freedom [3–5].

Figure 1.1: The strength of QCD coupling constant ↵s(Q) with probing energy scale
Q. The Fig. is taken from [7]

Another important property that strong interaction exhibits is color-confinement [8].

It is responsible for the fact that color charged particles are not directly observed in

the nature. There is no analytical proof suggesting that QCD should be confining

and the reason for this confinement is not yet understood completely. QCD pro-

vides a satisfactory description of strong interactions in high energy regime or short

distances when the appropriate D.O.F are quarks and gluons. As coupling constant

becomes very small due to the asymptotic freedom, perturbative formalisms can

be employed in calculating various observables. But as coupling constant becomes

large in the low energy limit, perturbative treatment completely breaks down. As

a result, it cannot be predicted analytically how quarks and gluons can confine in-

side a hadron. In this situation, various e↵ective models, which are based upon the

underlying symmetries of QCD, are employed to understand confinement and low
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energy dynamics. Lattice quantum chromodynamics (LQCD) [6] is the first prin-

ciple numerical calculations in non-perturbative regime both at zero and non-zero

temperature. But it su↵ers from infamous sign problem at finite chemical poten-

tial [9,10]. The infamous sign problem is related to the fact that the regular Monte

Carlo simulation can be applied only when µ is either zero or purely imaginary. For

real µ the fermion determinant is not real and the regular Monte Carlo fails. Also,

it takes a substantial amount of computational power and time for execution.

1.3 What is Quark Gluon Plasma (QGP)?

The quarks and gluons are confined inside hadrons in ordinary matter. Their inter-

action is governed by the strong force. As discussed in the previous section, when the

energy is increased the strength of the coupling constant decreases. Theoretically, if

one increases the energy of a system comprising of hadrons, at one point quarks and

gluons inside the hadrons will leave the hadronic volume and roam around a larger

volume in quasi free state. This particular phenomena is called de-confinement and

the created new state of matter is called Quark Gluon Plasma (QGP) [11,12].

The QGP can be achieved in two possible ways — at high temperature and/or high

density. If the QCD vacuum is gradually heated beyond a certain temperature, then

the similar sized hadrons will start to overlap. After crossing a critical temperature,

the constituents of the hadrons a.k.a quarks and gluons will no longer be confined

inside the hadrons and will form QGP (shown in Fig. 1.2). Similarly, when the

density of a hadronic system is increased beyond a critical baryon density via com-

pression, the quarks and gluons are forced to lose their individual hadronic identity

to form QGP (shown in Fig. 1.3).

Now, QGP is assumed to exist in the following cases:

5
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T < TC T ⇠ TC T > TC

Figure 1.2: Creation of QGP at high temperature

⇢ < ⇢c ⇢ ⇠ ⇢c ⇢ > ⇢c

Figure 1.3: Creation of QGP at high densities

1. Few microseconds after the Big Bang, the temperature (estimated as 1012 K

or 200 MeV) of the Universe was much greater than the critical temperature.

Thus, in the ’Particle Era’ during the evolution of the Universe, a transient

QGP state was likely to be present.

2. In the core of the neutron stars, the density is believed to exceed 1015 gm/cm3

(few times of that inside nucleus) with the temperature at the surface as low

as 105 K or less.

3. In high energy collision between two heavy nuclei a transient state of QGP is

predicted to be created.

The big bang is far remote in time and terrestrial ’laboratory’ like neutron stars

is far remote in space. So it is impossible to access to study the QGP properties.

These situations make the high energy Heavy Ion Collisions (HIC) (also known as

’little bang’) the only viable option to study QGP in the laboratory.
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1.4 QCD Phase Diagram

The ultimate goal of high energy HIC is to explore the phase diagram of hot and

dense strongly interacting matter. The first conjectured phase diagram [13] is de-

picted in Fig. 1.4(a). As time passed, it became very complicated with more investi-

gations and looked like Fig. 1.4(b). The most general QCD phase diagram is drawn

in the the space of all the possible parameters (temperature(T ), baryon chemical

potential (µB), isospin chemical potential (µI), quark masses (mu,md, · · · ) and oth-

ers) of the strongly interacting matter. But it is widely explored only in T�µB plane.

(a) (b)

Figure 1.4: Schematic diagram of QCD phase transition — a) The initially conjec-
tured diagram (taken from [13]), b) The modern version

The µB = 0 is well explored by LQCD studies. The Early LQCD related the energy

density (") to the pressure (p), i.e. the equation of state (EoS) at µB = 0 in the tem-

perature range 100 � 1000 MeV. Around T = 160 MeV, both pressure and energy

density were seen to rise (Fig. 1.5(a) and Fig. 1.5(b)) which indicated the change

of e↵ective D.O.F from hadrons to quarks and gluons. This phenomena is formally

identified as confinement-deconfinement phase transition. With the advancement of

LQCD studies, it has been established that confinement-deconfinement transition is

not a phase transition in true sense but rather a rapid cross-over [14].
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(a)

(b)

Figure 1.5: a) Energy density and b) pressure normalized by T 4 as a function of
temperature (T ) on Nt = 6, 8 and 10 lattices. Nt is the number of lattice points in
the temporal direction. In the high temperature limit, the EoS approaches to " = 3P
which is expected for massless particles. However, it is 20% less than "SB in the Stefan
Boltzman (SB) limit of non-interacting ideal gas (Consistent with holography [15]
based estimation for strongly coupled plasma). The arrows in the upper tight corner
indicates SB limits. Figure is taken from [30].

Now, at finite baryo-chemical potential, LQCD su↵ers from systematic uncertainties

and the infamous sign problem which restricts the standard Monte Carlo simulation

to the case where either µB = 0 or µB is purely imaginary. To circumvent this

problem, a number of methods were employed. A Taylor series expansion [16–20] of

the observables at µB = 0 and an analytic continuation [21, 22] from imaginary to

real µB are worth mentioning. From these, it can be concluded that the transition

from Hadronic phase to QGP is crossover upto the region where µB/T & 2 [9]. But

beyond this regime, LQCD cannot provide reliable information on phase transition.

So the QCD phase diagram at high baryon density still vastly remains unexplored
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from first principle calculations. From the theory of e↵ective models, there is a

strong evidence of first order phase transition near high baryon density. The chiral

models suggests a critical point (Tc, µc) in the phase diagram. When µB > µc, the

crossover becomes first order chiral phase transition [23–26]. The first order phase

boundary ends at another critical point at (TF , µF ). In very low temperature and

high density region along the µB axis, there are strong theoretical evidences of color

superconducting (CSC) phase [27–29] which occurs due to the attractive interac-

tions between two quarks at the Fermi surface. Then, by Cooper’s theorem, cooper

pairs are formed by these quarks in the ground state of QCD. This phenomena is

analogous to electrons in metals.

The current or bare mass of u and d quarks are as low as 5 MeV. But when they form

the lowest mass hadrons, e.g. pions, the mass of the hadrons turns out to be of the

order of 1 GeV. As a result, the constituent quark mass (obtained by dividing the

hadron mass by number of valance quarks) Mf ⇠ 300 MeV is bigger than current

or bare quark mass mf ⇠ 0. The reason behind this phenomena is the dressing

of quarks with gluons in QCD non-perturbative vacuum. Now, we know that the

dynamical origin of mass is spontaneous symmetry breaking. QCD at mf = 0 is

chirally symmetric. So, Mf 6= 0 implies spontaneous breaking of chiral symmetry

whereas, Mf ! 0 corresponds to the restoration of chiral symmetry. Thus, there

appears a phase transition called chiral phase transition in going from a state of

relatively heavy constituent quark phase to light bare or current quark phase at

high temperature and/or density.

Some exotic phases, like quarkonic phase [31, 32], chirally symmetric but confined

phase [33,34], are believed to exist if the chiral and de-confinement phase transition

does not coincide.

In this dissertation, we shall focus on the high temperature quark-gluon plasma
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phase.

1.5 Overview of Heavy Ion Collisions

The idea of creation of hot equilibrated nuclear matter in ultra-relativistic collision

was first conveyed by Fermi [35], Landau [36] and Hagedron [37]. With time, tech-

nology developed and as a result high energy regions were accessible to the particle

accelerator.

The first experimental heavy ion programme began at Bevelac facility in Lawrence

Berkley National Laboratory (LBNL) around early seventies [38, 39] when collec-

tive phenomena were first observed [40]. Next, the energy of the colliding ions

was increased at the Alternating Gradient Synchrotron (AGS) at Brookhaven and

at Super-Proton Synchrotron (SPS) at European council for Nuclear Research or

“Conseil Européen pour la Recherche Nucléeaire” (CERN). The measurements in

low energy regime were performed at Schwerionensynchrotron (SIS) at Gesellschaft

für Schwerionenforschung (GSI), Darmstadt. The experimental program at Rela-

tivistic Heavy Ion Collider (RHIC) has been initiated in the year 2000 which took

data at
p
sNN = 8 � 200 GeV. At

p
sNN = 200 GeV, a large coherence in the

created system was observed which was not achievable from mere one to one nu-

cleon nucleon collision [41,42]. The energy density " overshoots 1GeV/fm3 which is

predicted by LQCD if QGP is formed [43]. The November-December month of the

year 2010 marked the starting of a new era when lead-lead (Pb + Pb) collisions at

p
sNN = 2.76 TeV took place at Large Hardron Collider (LHC) at CERN. The LHC

experiments provided improved statistics and larger kinematic range for observables.

The highest energy achieved in HIC experiments at LHC was
p
sNN = 5.02 TeV in

Pb+ Pb collisions and
p
sNN = 5.44 TeV in Xenon-Xenon (Xe+Xe) collisions.
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Two heavy ions are accelerated in ultra relativistic speed directed towards each other

inside the beam pipeline. Each incident nucleus, which can be looked upon more

precisely as color-glass-condensate [44], gets Lorentz contracted in the direction of

their propagation. The diameter of the disc is roughly about 14 fm and its thickness

is about 14/� fm, where � = 1/
q

1�
�
v

c

�2
is the relativistic factor, v is the speed

of the nucleus for Au and Pb nucleus. The kinetic energies of the incoming nuclei

are lost and deposited in the region where they overlap. The nucleons in this region

take part in collisions and are called participant. The constituents of the nuclei that

do not participate in collision are called spectators. The spectators play a crucial

role in the creation of high magnetic field in HIC which will be explored later in

section 1.7.

Depending on the the collisional energy
p
sNN , there are two situations that arises.

Hadron Freezeout
Hydrodynamic"

Evolution
Energy Stopping
Hard Collisions

Initial state

Time 

Figure 1.6: Evolution of a HIC. Figure is taken from [45]

• When the collisional energy
p
sNN is low (⇠ 10 GeV/ nucleon), the incoming

nuclei lose almost all of their kinetic energy and the participating nuclei stop

each other in the process of collision. As a result of this, nuclear matter with

very high baryon density is created at the center. It mimics the conditions

at the core of the neutron stars where the baryon density exceeds that of the

nuclear density present in ordinary matter. The future Compressed Baryonic
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Matter (CBM) [46] experiment at Facility for Anti-proton Ion Research (FAIR)

at GSI, Darmstadt will explore the phase diagram of QCD at very high baryon

density and low temperature.

• At larger energies, owing to the asymptotic freedom, the interactions between

partons become weak and as a result the collision becomes transparent i.e. the

nuclei pass through each other. In this case the density of the created medium

becomes low but the temperature becomes very high.

z 

t

incoming nuclei CGCs

strong fields classical dynamics

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq. ideal hydro

hadrons kinetic theory

freeze out

Figure 1.7: Schematic diagram of the di↵erent stages of HIC as a function of the
coordinate z (the collision axis) and time t. The ‘time’ variable used is the proper
time ⌧ =

p
t2 � z2 and it is constant along the hyperbolic curves separating di↵erent

stages. Taken from [47]

In HIC, the system passes through di↵erent phases while colliding which are given

below

1.5.0.0.1 Pre-equilibrium: At relativistic energies when the two nuclei collides

with each other, a fireball is produced in highly excited state as a result of initial

partonic collisions. It is evident that initially the fireball is in non-equilibrium state.

The constituents of the fireballs collide with each other and reach thermal equilib-

rium state. The time taken to reach thermal equilibrium is called thermalization

time. Models like color-glass condensates (CGC) [48, 49] are used to describe the

states before thermal equilibrium.

1.5.0.0.2 Expansion: After the establishment of local thermal equilibrium stage,

the constituents of the fireball, i.e., quarks and gluons are in deconfined state. After
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this, the system undergoes a collective expansion in all direction due to the ther-

mal pressure that acts against the surrounding vacuum. This collective expansion

of the system is surprisingly well described by hydrodynamic models [50–54]. As

the system expands, it cools down and energy density decreases. When it goes be-

low a critical temperature, a phase transition happens and the system eventually

hadronizes.

1.5.0.0.3 Freeze-out: After hadronization, the constituents still collide with

each other and maintain local thermal equilibrium. Eventually inelastic collisions be-

tween hadrons ceases and as a result the chemical compositions of produced hadrons

do not change [55]. This stage is called chemical freeze-out. After attaining chemi-

cal freeze-out, the system further expands and cools with fixed hadron abundances.

The local equilibrium can still be maintained after chemical freeze-out due to the

occurrence of elastic collisions between hadrons. Then at one stage, the hadron gas

becomes so dilute that even the mean free path between the constituents becomes

greater than the dimension of the system. As a result, the local equilibrium can-

not be maintained further and hydrodynamic description of the system completely

breaks down. This stage is called kinetic freeze-out. Hadrons coming out from the

kinetic freeze-out surface are detected in the detector. The particle yield can be

described to a high degree of accuracy by thermal statistical models [56–59].

The pictorial representation of the evolution is schematically displayed in Fig. 1.6.

1.6 Probes of QGP

The production and most importantly the detection of QGP at RHIC and LHC

is very formidable task. The acceleration of heavy nuclei taking part in collision
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at ultra-relativistic speed requires very high energy. Not all of the events in the

collisions can produce QGP state. The production of QGP state depends on the

depletion of energy in the central region of collision which in turn depends on impact

parameter of the collision. The QGP state, if produced, is very transient in nature.

So it is impossible to perform any direct measurement on it to gain informations

about it’s properties. The only data that is accessible to the experimentalists is the

number of the clicks on the particle detector. In this circumstances, the information

regarding the hot de-confined matter is extracted by observing the spectra of di↵er-

ent particles that come out of the fireball. The probes can be broadly categorized

as

• Anisotropic flow,

• Electromagnetic probes

• Quarkonia dissociations

• Jet-energy losses

• Strangeness enhancements and etc.

Below, we briefly outline the basic ideas behind exploiting the above phenomena to

our advantages in gathering information about the hot and dense nuclear medium

1.6.1 Anisotropic Flow

After the collision and the confinement-deconfinement phase transition at Tc '

160� 180 MeV, when thermal medium hadronizes all the direct information about

the initial stages are lost. But a global hydrodynamic flow [61, 62] is generated

which gives an additional boost in overall momentum, if the early medium, formed

after the collision, posses a very high energy density and can expand freely. The
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produced hadron spectra show a radial flow depending on the initial energy density

of the medium. If, on the other hand, the collision is non-central between the

participating nuclei, then a further directed (v1), elliptic flow (v2) and/or higher

order harmonics (v3, v4, · · · ) are observed [63,64]. vn echoes the re-scattering among

the constituents after collision. The initial spatial anisotropy in the overlap zone

creates an anisotropy in the pressure gradient in the transverse plane which, in turn,

will cause momentum anisotropy in the produced particles. If the particles do not

interact with each other, the azimuthal momentum distribution will be isotropic.

Thus, the anisotropic flow coe�cients vn indicates the “degree of thermalization”

of the QGP medium. So the bottom line is that the spatial anisotropy is converted

into momentum anisotropy via rescattering of produced particles and it is these

rescattering processes which thermalizes the system. For a comprehensive analysis

of anisotropic flow in HIC and interpretations, see [65, 66].

1.6.2 Electromagnetic Probes

Photons and lepton-antilepton pairs or dileptons(e+-e� and µ
+-µ�) play prominent

role as a probe of QGP. They interact with the system only electromagnetically

and their mean free path is larger than the size of the fireball (⇠ 10 fm) [67, 68].

Since electromagnetic fine-structure constant is much much less than strong cou-

pling constant (↵em ⌧ ↵s), the photons and dileptons can escape the fireball with

very negligible final state interaction [69]. The situation is di↵erent for the case of

hadrons. Hadrons interact strongly with the system during its evolution and as a

result they lose initial informations about the system. So looking at the spectrum of

photons and dileptons, one can extract informations about the state of the medium

at the space-time coordinate of their formation [70]. But there is a problem in ex-

tracting informations from the spectrum of electromagnetic radiations. The most

prominent among them is the fact that photons and dileptons are produced in all
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stages of nuclear collision including initial hard scattering before the formation of

the medium and in hadronic decays. So, all these background contributions has to

be subtracted to gather informations about the hot deconfined media.

1.6.3 Quarkonia Dissociation

Quarkonia are essentially bound states of heavy quark and antiquark pair Q̄Q. By

the term heavy in this context, we usually indicate charm c and bottom b quark.

The mass of charm and bottom quarks are given by 1.2 � 1.5 GeV and 4.5 � 4.8

GeV. The quarkonia J/ is the bound states of charm anti-charm (c̄c) pair with mass

MJ/ = 3.1 GeV and ⌥ is the bound state of bottom anti-bottom (b̄b) pair M⌥ = 9.5

GeV, respectively. In nucleus nucleus collisions, quarkonia are formed at the early

stage of the collision before the formation of the deconfined QGP medium. In the

medium, there is screening of color charge of quarks due to presence of quarks,

antiquarks and gluons. It is called color screening. Similar to the Debye radius

of QED plasma, there is a temperature dependent color screening radius rD(T ).

It decreases with the temperature. When rD(T ) becomes less than the binding

radius ri of Q̄iQi, the quarkonium i dissociates as they can no longer bind together

[73–76]. This phenomena leads to the suppression of quarkonium production in high

energy nucleus nucleus (A + A) collisions as compared to proton-nucleus (p + A)

or proton-proton (p + p) collisions if the QGP is formed. This provides us with a

first-hand signature of the deconfined hot medium. The quarkonium dissociation

points Ti are determined through rD(Ti) ' ri. From this, a lower bound of the

temperature and energy density of the deconfined medium can be extracted. In

this way the quarkonium suppression acts as a singnature and a thermometer of the

QGP medium.
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1.6.4 Jet Energy Loss

As mentioned previously, in HIC before thermalisation and formation of the medium,

initial hard parton scattering processes take place. In A + A collision where a

thermal medium is formed, the scattered partons pass through the medium before

converting into jets of hadrons that eventually reach the detector. In this process,

the scattered partons lose their energy while traversing through the medium mainly

via collisions with the quasi-particles of the medium and gluon radiations [77]. But

in p + p collisions, such energy loss processes do not occur. Thus, comparing the

yields of p+ p and A+A collisions and calculating the energy loss in medium field

theoretically, one can get an estimates of di↵erent properties of the produced hot

and dense medium. For an extensive review on this topic, please consult [78–82].

1.6.5 Strangeness Enhancement

The strangeness enhancement is a very important signature of QGP formation in

heavy ion nuclear collision. Compared to pp data, the production of strange particles

is expected to enhance. Since the initial colliding nuclei have no strange particles

in it, any strange particle produced in the collision must be accompanied by its

antiparticle. The main production mechanism of strange hadron in an equilibrated

hadron gas proceeds via reactions like N N ! S S̄, where N denotes the nucleons

and S denotes the strange hadrons. The threshold of such a process to occur is 2mS,

where mS is the mass of any strange hadron. The lowest lying strange particle is

Kaon whose mass mK is around 493.7 MeV making the threshold energy of such

process around 1 GeV. But if a hot and/or dense deconfined QGP medium is pro-

duced after collision, the strange quark antiquark pair will be generated mainly via

q q̄ ! s s̄ and g g ! s s̄, with q = u, d. Since ms = 95 MeV. The threshold energy of

such process are 2ms = 190 MeV making it kinematically more favourable than pro-
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duction of strangeness via nucleon-nucleon interactions. Also, at the temperature as

high as in QGP, the huge abundance of u and d quark-antiquarks makes the ther-

mal production of ss̄ pair much more energetically favourable. Since, the strange

quark-antiquarks ultimately recombine to produce strange particles, a significant

enhancement of strangeness signals the production of QGP medium.

1.7 Magnetic Field in Heavy Ion collision

1.7.1 Geometry of the Collision

Before going to the generation of magnetic field, let us briefly discuss the geometry

of HIC shown in Fig. 1.8. As discussed earlier, two Lorentz contracted thin discs

travelling towards each other in opposite direction along the beam pipe collides

with each other. The plane perpendicular to the z-direction is called the transverse

planeas shown in Fig. 1.9(a) and Fig. 1.9(b). The projection of the distance between

Figure 1.8: The schematic representation of non-central heavy ion collision: The
spectator particles (in blue) are leaving the collision region (shown in orange). The
magnetic field is generated in the collision region along the y-axis perpendicular to
the reaction plane (x� y plane)

the two discs on the transverse or x � y plane is called impact parameter (b) of

collision. The impact parameter vector and the direction of motion of incoming
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nuclei z-direction together creates a plane which is called the reaction plane. The

angle that the reaction plane creates with x-axis is denoted as �R. The impact

parameter vector’s orientation in the transverse plane as well as the magnitude

fluctuates from event to event.
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Figure 1.9: The transverse view of nuclear collision — the almond shaped shaded
region contains the nucleons which take part in collision,

1.7.2 Magnitude and Profile of the Field

The participants in HIC carry electric charges. We know that moving charges pro-

duce electric currents. According to the classical electrodynamics, an electric current

produces a magnetic field [88]. The magnitude of this magnetic field thus created

can be obtained from a very beautiful and hand-waving argument by Tuchin [89].

Tuchin considered two heavy ions of radius R and electric charge Ze travelling to-

wards each other at some impact parameter b. Biot-Savart law tells us that the

magnitude of the magnetic field goes as

B ⇠ �Ze
b

R3
(1.3)
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in the center of mass frame and the direction is perpendicular to the reaction plane.

Here the factor � =
p
sNN/2mN . At RHIC, for Au + Au collision, using � = 100,

Z = 79, b ⇠ RA ⇠ 7 fm, we get B ⇠ 1018 Gauss or eB ⇠ m
2

⇡
as

p
sNN = 200

GeV. A similar calculation reveals that eB ⇠ 10m2

⇡
at LHC energies. Although this

argument is purely classical in nature, the estimation coming from it is quite good.

It is a well known fact that in HIC a high magnetic field is generated. The highest

magnitude of the field was roughly estimated to be eB ⇠ 3m2

⇡
= 3 ⇥ 1018 Gauss

at
p
sNN = 200 GeV by Kharzeev et.al. in [90]. Later, this qualitative estimate

was improved by Skokov et. al. [91] by considering properly several factors that can

heavily influence it like impact parameter of collision, the total energy of incoming

nuclei in center of mass reference frame. They have also done some very simple

analytic calculation and matched them with UrQMD simulations (for detailed de-

scription of UrQMD see [92, 93]). According to their results, the magnetic field in

the collision has non-zero component perpendicular to the reaction plane. It declines

rapidly with time but is homogeneous to a high degree along the y-direction as well

as the transverse plane. Technically, the magnetic field has both x and y components

with comparable value in event by event basis [94]. But when the x-component is

averaged over many events, it vanishes. So in conclusion according to this school of

thought, the magnetic field generated in HIC at a particular time is directed along

the y direction per event and decreases rapidly with time.

Tuchin proposed that when a medium is formed in the collision, the time depen-

dence of the magnetic field is a↵ected by the response of the medium via electrical

conductivity [89, 95, 96]. The electrical conductivity of the medium is responsible

for delaying the decay of the magnetic field. So the magnetic field lasts longer than

expected. Tuchin considered essentially two cases where a) the medium is static, i.e.,
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temperature of the medium is independent of time and b) the medium is expanding,

i.e., the temperature is time dependent and solved Maxwell’s equation with electri-

cal conductivity. He found out that the relaxation time of the magnetic field to be

larger in an expanding medium than in a static one. The magnetic field essentially

freezes out due to the electrical conductivity of the medium.

1.7.3 Observable E↵ects of Magnetic Fields

The e↵ects of magnetic field in the observables of heavy ion collision are gaining

increasing attention recently. Some novel phenomena are believed to be exhibited

due to the magnetic field. Below, we try to present some unprecedented e↵ects ac-

companied by magnetic field.

1.7.3.1 Chiral Magnetic E↵ect (CME)

The phenomena of charge separation along the direction of magnetic field induced

a by chirality imbalance is called chiral magnetic e↵ect [98–101]. It is a topological

e↵ect arising because of the transitions between the topologically distinct states.

This charge separation induces an electric current given as

j = Nc

X

f

q
2

fµ5

2⇡2
B, (1.4)

where Nc is the number of quark colors, qf is charge of the quark with flavour f , µ5

is the chiral chemical potential, B is the abelian magnetic field. The chiral chem-

ical potential measures the asymmetry between total number of left handed and

right handed quarks (with antiquarks substracted). CME was studied in numeri-

cal LQCD framework [102, 103] and in hydrodynamical approximation [104]. The

experimental searches for CME [105–109] in HIC is being carried out from decades
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but the signature is still a topic of debate. For a detailed review on this fascinating

subject, consult [110,111,113–115].

1.7.3.2 Chiral Vortical E↵ects (CVE)

In non-central relativistic HIC, a high angular momentum Jsys of the order of 103~

is also generated at large impact parameter [116–118]. Also, a high vorticity is

generated as a result of shear forces that arises when two inter penetrating nuclei

pass each other. Mathematically vorticity ! can be expressed in terms of local fluid

velocity v as ! = 1

2
r ⇥ v [119, 120]. A polarization in local fluid rest frame along

the direction of vorticity is generated due to the spin orbit coupling describable by

an e↵ective interaction term ⇠ ! · S. When averaged over the entire system, this

polarization becomes parallel to Ĵsys. Now, if there is an imbalance in chirality, then

there will be more right handed (RH) particles than left handed (LH) one (assuming

µ5 > 0). On top of that, there are more RH quarks than anti-quark (assuming

µ > 0). So the net RH quarks move along the direction of !̂ and contribute to the

vector current

J =
1

⇡2
µ5µ!. (1.5)

This phenomena of generation of current in a chiral medium along the direction of

vorticity is called chiral vortical e↵ects [111].

1.7.3.3 Magnetic Catalysis (MC)

The magnetic field induced enhancement of dynamical symmetry breaking is broadly

called magnetic catalysis [122,123]. The order parameter of chiral phase transition is
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the thermal expectation value of hqqi. Now, in the chiral limit mf ! 0 we have [124]

hqqi = 0 in the Wigner-Weyl phase,

hqqi 6= 0 in the Nambu-Goldstone phase. (1.6)

When the temperature increases, there is a phase transition from Nambu-Goldstone

phase to Wigner phase around some temperature T = Tc. When there is a mag-

netic catalysis, Tc increases with the increase of B. The phenomena of magnetic

catalysis was exhibited in di↵erent e↵ective model calculations such as Nambu-

Jona Laisiono(NJL) model [125–132], its Polyakov loop extended NJL model(PNJL)

[133,134], chiral perturbation theory [135–137], quark-meson model [138,139] and its

Polyakov loop extended counterpart [140], renormalization group method [141–146],

Dyson-Schwinger equation [147] and from first principle numerical LQCD [148,149,

151–154] simulations.

1.7.3.4 Inverse Magnetic Catalysis (IMC)

The inverse magnetic catalysis (IMC) e↵ect is the opposite to that of magnetic

catalysis where the quark condensate decreases with the strength of the magnetic

field [155]. This phenomena first came to prominence in LQCD simulations of Bali

et. al. with Nf = 2 + 1 extrapolating the continuum and using a lower value

of quark mass corresponding to pion mass of m⇡ = 140 MeV [152, 153]. But for

Nf = 3, increasing light quark masses to the strange mass, they found out a in-

creasing trend of condensate at all T . This behaviour made them to conclude that

the pseudo-critical temperature is dependent on quark mass used in the simulations.

The mechanism behind this puzzling behaviour was sorted out subsequently within

a framework developed from LQCD techniques according to which there is competi-

tion between valance and sea quark contribution to the quark condensation around

pseudocritical temperature [156]. The absence of sea e↵ect in model calculation was
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attributed to the exclusion of dynamical gauge field. Another explanation comes

from the fact that strong coupling receives corrections from temperature as well as

magnetic field which is responsible for the increase or decrease of quark conden-

sate as a result of competition between thermal and magnetic e↵ects. This scenario

has been investigated in various e↵ective QCD models [157–163], Dyson-Schwinger

equation [147,164] etc. For a fascinating review on IMC, see Ref. [165].

1.7.3.5 Superconductivity of the Vacuum

The QCD vacuum can be superconducting under very strong magnetic field in low

temperature [166]. Under these conditions, the QCD vacuum obeys the basic condi-

tions that are required to exhibit superconductivity namely the presence of electrical

charge carriers, one-dimensional dynamics of those charge carriers and the presence

of attractive interaction between those charge carriers [167,168]. Under strong mag-

netic field, QCD vacuum produces u, u and d, d pair which condensate to form

⇢
+(ud), ⇢�(ud) mesons. These ⇢± mesons play the role of the charge carriers anal-

ogous to cooper pairs in conventional superconductivity. Also in presence of strong

magnetic field there is a phenomena of dimensional reduction from (3 + 1)D to

(1 + 1)D. The presence of an attractive interaction is ensured by gluon exchange

which binds the quark and anti-quark pair in ⇢ mesons. Although, the vacuum

superconductivity is not destroyed by high magnetic field unlike the conventional

superconductivity, it can be destroyed by thermal e↵ects similar to that of normal

superconductivity. The evidence of vacuum super conductivity was confirmed in

Vector Dominace Model (VDM) [169], NJL model [170] and in lattice gauge the-

ory [171].

These novel phenomena stimulated researchers to investigate the e↵ects of magnetic
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field on various aspects of heavy ion collision. Apart from this, a lot of e↵orts have

been made to understand the influence of magnetic field on QCD phase transitions,

thermodynamics of the QGP phase, collective excitations, various probes from per-

turbative and non-perturbative QCD, e↵ective field theory approaches.

1.8 Scope of this Thesis

In chapter 2, we shall discuss about the quantum field theory at non-zero temper-

ature. The basic formulation of QFT at non-zero temperature can be formulated

in three di↵erent formalisms — Imaginary time formalism, real time formalism and

thermofield dynamics. In this chapter we adhere ourselves to imaginary time for-

malism which will be used to calculate the main portion of the calculation carried

out in this thesis. Also we shall discuss the basic concepts of hard thermal loop

approximation technique at finite temperature in a nutshell.

In chapter 3, the derivation of fermion propagator in an external magnetic field shall

be discussed. Starting from the modified Dirac’s equation in presence of background

magnetic field, we shall employ Schwinger’s proper time method to derive the ex-

pression of fermion propagator.

In chapter 4, we shall review properties of quark two-point function at non-zero tem-

perature in hot de-confined medium. We shall employ HTL approximation to obtain

the expression of quark self energy at non-zero temperatue. Then, Dyson-Schwinger

equation was employed to get the quasi-quark propagator, collective modes and its

thermal mass. Subsequently, we shall examine the behaviour of the spectral density

of the e↵ective quark propagator and discrete symmetries.
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In chapter 5, we shall discuss quark two point function at non-zero temperature as

well as non-zero magnetic field. In doing so, we shall derive one loop HTL quark

self energy in weak field approximation of the propagator in background magnetic

field. Applying Dyson-Schwinger equation, we shall obtain one loop e↵ective quark

propagator. The pole of the propagator will give the collective modes of excitation.

We shall also investigate discrete symmetries, spectral functions etc.

In chapter 6, we shall compute hard dilepton rate in hot magnetised medium. In

doing so, we take one of the quasi-quark mode to be soft and another one hard. The

rate is obtained from imaginary part of photon polarization tensor. We shall see the

dilepton rate will be consists of two contribution — pole-pole contributions which

encodes the process involved in the dilepton production mechanism in quark sector

and pole-cut contribution giving the Landau damping part.

In chapter 7, we summarise and discuss the outlook.
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CHAPTER 2

Field Theory at Non-zero Temperature

2.1 Introduction

In this chapter, we shall discuss about the field theory at non-zero temperature.

The field theory at zero temperature has been developed a long ago by pioneer work

of Feynman, Schwinger, Tomonaga et al. It needs to be redefined to incorporate

non-zero temperature. Technically, thermal field theory is all about an alternative

description of quantum statistical mechanics of many particle system where the

number of particles are not fixed.

Currently, in thermal field theory, there are three formalisms exists — imaginary-

time formalism (ITF), real-time formalism (RTF) and thermofield dynamics(TFD).

Details of each of these methods can be found in [178–180]. ITF is the most common

and widely used formalism among these two which is used mainly in the case in equi-

librium system [181]. However, ITF is not applicable for non-equilibrium situation

but RTF [182–185] is. Lastly, thermofield dynamics [186, 187] is a framework that

arose from RTF which can naturally describe nature of thermal vacuum, Goldstone

states etc. We shall carry out all of our calculation in this thesis with ITF. It can
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be popularly introduced in two ways — the operator method and the path integral

method. We shall present a brief outline of these two method.

2.2 Partition Function

The thermodynamic properties of a system in equilibrium with a heat bath can be

extracted from the partition function. So the primary aim in statistical mechanical

calculation is to evaluate the partition function of a quantum mechanical system in

equilibrium.

Consider a system with Hamiltonian operator Ĥ and a set of conserved charge N̂i.

The density matrix operator ⇢̂ is defined as

⇢̂(�) = exp

"
��

 
Ĥ �

X

i

µiN̂i

!#
, (2.1)

where � represents the inverse of equilibrium temperature � = 1/kBT .(Here kB is

Boltzmann constant which is taken to be 1 in natural units) and µi is the chemical

potential of ith conserved charge.

The partition function is defined as trace of density matrix operator in any complete

set of basis as

Z(�) = Tr ⇢̂(�). (2.2)

The ensemble average of any observable Ô can be defined via ⇢̂ as

hÔi� =
Tr
⇣
Ô ⇢̂(�)

⌘

Z(�)
. (2.3)

For an arbitrary Schrödinger operator Â, we can define its Heisenberg picture rep-
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resentation as

Âh(t) = e
iHt

Âe
�iHt

, (2.4)

At this point it is convenient to perform analytic continuation to Euclidean time

t ! �i⌧ . So any operator Âh(t) is analytically continued to Âh(�i⌧), which we

write as Âh(⌧). So, in euclidean time, Eq. (2.4) takes the form

Âh(⌧) = e
⌧Ĥ

Âe
�⌧Ĥ

. (2.5)

Note that transformation defined in (2.5) is not unitary since Â
†

h
(⌧) 6= e

⌧Ĥ
Â

†
e
�⌧Ĥ .

Now, the thermal correlation function of two Heisenberg operators Ah(ta) and Bh(tb)

can be written as

hÂh(ta)B̂h(tb)i� =
1

Z(�)
Tr
h
e
��Ĥ

Âh(ta)B̂h(tb)
i

=
1

Z(�)
Tr
h
Âh(ta)e

��Ĥ
e
�Ĥ

B̂h(tb)e
��Ĥ

i

=
1

Z(�)
Tr
h
e
��Ĥ

e
�Ĥ

B̂h(tb)e
��Ĥ

Âh(ta)
i

=
1

Z(�)
Tr
h
e
��Ĥ

B̂h(tb � i�)Âh(ta)
i

(2.6)

In the second step of the above derivation, we have inserted the resolution of identity

operator 1̂ = e
��Ĥ

e
�Ĥ and in the last step cyclic property of trace has been used.

Thus, we have an important identity

hÂh(ta)B̂h(tb)i� = hB̂h(tb � i�)Âh(ta)i�. (2.7)

The identity in Eq. (2.7) is called Kubo-Martin-Schwinger or KMS relation.

It holds for both bosonic and fermionic operators. It is useful for obtaining the

periodicity properties of Green’s function. Here we note that i� is connected to the

29



CHAPTER 2. FIELD THEORY AT NON-ZERO TEMPERATURE

time variable. The KMS relation can be analytically continued to Euclidean time

as

hÂh(⌧a)B̂h(⌧b)i� = hB̂h(⌧b + �)Âh(⌧a)i�. (2.8)

We shall see in section 2.4 that the KMS relation in Eq. (2.8) is useful in deriving

Matsubara frequencies of boson and fermion Green’s function in ITF.

2.3 Imaginary Time Formalism

In general, partition function can hardly be evaluated because we have to perform

the summation over expectation values of e��Ĥ with all possible states of Fock space.

To circumvent this situation, we shall not work with states but with operators. In

this section, we shall discuss ITF first introduced by Matsubara [188] in nutshell

using operator as well as path integral method.

2.3.1 Operational Method

Let us write the total Hamiltonian operator Ĥ into two parts — the free part Ĥ0

and the interaction part Ĥ int as follows

Ĥ = Ĥ0 + Ĥint. (2.9)

The density matrix is given as

⇢̂(�) = e
��(Ĥ�µN̂)

. (2.10)

30



CHAPTER 2. FIELD THEORY AT NON-ZERO TEMPERATURE

Here for simplicity, we take only one conserved charge as opposed to Eq. (2.1). Now,

the ⇢̂(�) can also be written as

⇢̂(�) = ⇢̂0(�)Ŝ(�), (2.11)

where

⇢̂0(�) = e
��(Ĥ0�µN̂) (2.12)

is the density matrix of free theory and Ŝ is an operator playing a role analogous to

the S-matrix QFT at T = 0. The density matrices can be easily seen to satisfy the

following equations

@⇢̂0(⌧)

@⌧
= �Ĥ0⇢̂0(⌧), (2.13)

@⇢̂(⌧)

@⌧
= �(Ĥ0 + Ĥ

0) ⇢̂(⌧), (2.14)

where Ĥ0 ⌘ Ĥ0 � µ and ⌧ is bounded in the region 0  ⌧  �. From Eq. (2.11),

(2.13) and (2.14), it is a matter of a few steps of simple algebra to show that

@Ŝ(⌧)

@⌧
= Ĥ

0

I
(⌧)Ŝ(⌧), (2.15)

where the interaction Hamiltonian H
0 is evolved with free hamiltonian H0 in ⌧ to

define H
0

I
as

Ĥ
0

I
(⌧) = exp

⇣
�Ĥ0⌧

⌘
Ĥ

0

I
exp

⇣
Ĥ0⌧

⌘
. (2.16)

Note that such a transformation in Eq. (2.16) is not a unitary for real ⌧ because

the adjoint of an operator does not coincide with the transformed adjoint operator.

Now we can get a solution of Eq. (2.16), like in the case of zero temperature field
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theory, as

Ŝ(�) = T⌧

2

4exp

0

@�
�Z

0

d⌧ Ĥ
0

I
(⌧)

1

A

3

5 , (2.17)

where T⌧ is the ordering operator in ⌧ . It is analogues to time ordered product in

zero temperature field theory with the exception that in this case the range of ⌧ is

bounded in the region [0, �].

Furthermore, if we define

Ŝ(⌧1, ⌧2) = T⌧

2

4exp

0

@�
⌧2Z

⌧1

d⌧Ĥ
0

I
(⌧)

1

A

3

5 , (2.18)

then it can be seen to satisfy

Ŝ
�1(⌧1, ⌧2) = Ŝ(⌧2, ⌧1), (2.19)

Ŝ(⌧1, ⌧
0)Ŝ(⌧ 0, ⌧2) = Ŝ(⌧1, ⌧2) for ⌧1  ⌧

0  ⌧2, (2.20)

Ŝ(⌧, ⌧) = 1. (2.21)

2.3.2 Path Integral Formulation

The path integral formalism is very intuitive way to introduce finite temperature

field theory. The basic idea is to write the partition function Z(�) as a sum over all

posible routes between two states. In this section, we demonstrate how the identi-

fication of temperature with euclidean time, as hinted in section 2.2, is manifested

in a very natural way in path integral formalism. For simplicity, we demonstrate

the basic concept with the quantum field theory in (0 + 1) dimension which is es-

sentially ordinary quantum mechanics. It is straightforward to generalise the case

of quantum field theory in (3 + 1) dimension.
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The quantum mechanical amplitude of a particle going from position xi at euclidean

time ⌧i to a position xf at time ⌧f in potential V (x) is written as

hxf (⌧f )|xi(⌧i)i = hxf | e�(⌧f�⌧i)Ĥ |xii =
Z

Dx(⌧) e�S[x]/~
, (2.22)

Here S[x] is the euclidean action functional defined as

S[x] =

⌧fZ

⌧i

d⌧ L
�
x(⌧), @⌧x(⌧)

�
, (2.23)

where L is the Lagrangian

L
�
x(⌧), @⌧x(⌧)

�
=

1

2
m
�
@⌧x(⌧)

�2
+ V

�
x(⌧)

�
. (2.24)

The partition function, defined in Eq. (2.1) and Eq. (2.2), can be casted in the

following form

Z(�) =

Z
dx hx| e��Ĥ |xi , (2.25)

where |xi is position eigenket with X̂ |xi = x |xi.

Now, we can put the terms hxf | e�(⌧f�⌧i)Ĥ |xii and hx| e��Ĥ |xi in a one to one

correspondence by identifying both xf and xi as x and setting ⌧f = �, ⌧i = 0.

Therefore, we can write

Z(�) =

Z

x(�)=x(0)

Dx(⌧) exp

2

4�1

~

�Z

0

d⌧ L

⇣
x(⌧), @⌧x(⌧)

⌘
3

5 , (2.26)

where Dx(⌧) =
Q

⌧
dx(⌧) is the functional integral measure. Note that, the domain
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of euclidean time is bounded as ⌧ 2 [0, �] and x must satisfy periodicity condition

x(0) = x(�). Surprisingly, the inverse temperature � is traded of as euclidean time.

For any observable O(⌧0) in Heisenberg picture, the thermal expectation value can

be written in functional integral form as

hO(⌧0)i� =
1

Z(�)

Z
Dx(⌧) O(⌧0) exp


� 1

~

�Z

0

d⌧ L

⇣
x(⌧), @⌧x(⌧)

⌘�
. (2.27)

Now, in (3+1)D, there are uncountably infinite degrees of freedom (D.O.F) labelled

by position x = (x, y, z) as opposed to the case of single particle quantum mechanics.

We denote the D.O.F at position x or the field as �(x). Thus, the expression of

partition function in Eq. (2.26) takes the following form for a quantum field theory

at finite temperature

Z(�) =

Z

�(x,0)=�(x,�)

D�(x, ⌧) exp

0

@�
�Z

0

d⌧

Z
d
3
x L

1

A . (2.28)

where D�(x, ⌧) =
Y

x,⌧

d�(x, ⌧) is the measure of functional integral which is just the

product of d�(x, ⌧) at each space-time point where the field is defined and

L =
1

2
m
�
@
2

⌧
+r2

�
�(x, ⌧) + V (�(x, ⌧)) (2.29)

is the euclidean Lagrangian density.

The potential V (�) contains the mass term and the interaction term. For �4 theory,

it looks like

V (�(x, ⌧)) =
1

2
m

2
�
2(x, ⌧) +

�

4!
�
4(x, ⌧). (2.30)

In the absence of interaction the functional integration can be evaluated analytically.
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But when the interaction is turned on the partition function can be written as a

perturbation series in � for � < 1. The same conclusion is applied for N point

function. The two point function is defined as

G(xa � xb, ⌧a � ⌧b) =
1

Z(�)

Z
D�(x, ⌧) T⌧{�(xa, ⌧a)�(xb, ⌧b)} exp

0

@�
�Z

0

d⌧

Z
d
3
x L

1

A .

(2.31)

The rest of the computation is similar to the euclidean field theory at zero temper-

ature.

2.4 Green’s Function at Non-Zero Temperature

— Matsubara Modes

In quantum field theory at zero temperature, the two-point Green’s function or

propagator is defined as

h0|T {�(t,x)�(t0,x0)} |0i = ⇥ (t� t
0) h0|�(t,x)�(t0,x0) |0i

±⇥ (t0 � t) h0|�(t0,x0)�(t,x) |0i .

(2.32)

The state |0i is the ground state of interacting theory. The plus sign and minus sign

in Eq. (2.32) is used when � is bosonic and fermionic field, respectively.

Let us consider for simplicity the case of real scalar field. The definition of Green’s

function in non-zero temperature involves all the states in the Fock space. So, it is
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defined in ITF of thermal field theory as

G�(⌧ � ⌧
0
,x� x0) =

1

Z(�)
Tr
⇥
e
��H

T⌧ {�(⌧,x)�(⌧ 0,x0)}
⇤
. (2.33)

Consider, the case � > ⌧ > ⌧
0
> 0

G�(⌧ � ⌧
0
,x� x0) =

1

Z(�)
Tr
⇥
e
��H

�(⌧,x)�(⌧ 0,x0)
⇤

=
1

Z(�)
Tr
⇥
e
��H

�(⌧ 0 + �,x0)�(⌧,x)
⇤

=
1

Z(�)
Tr
⇥
e
��H

T⌧ {�(⌧,x)�(⌧ 0 + �,x0)}
⇤

= G�(⌧ � ⌧
0 � �,x� x0). (2.34)

Here we used KMS condition in Eq. (2.8) and the definition of euclidean time ordered

product for the case of ⌧ > ⌧
0. Likewise, for the case � > ⌧

0
> ⌧ > 0, we get

G�(⌧ � ⌧
0
,x� x0) =

1

Z(�)
Tr
⇥
e
��H

�(⌧ 0,x0)�(⌧,x)
⇤

=
1

Z(�)
Tr
⇥
e
��H

�(⌧ + �,x)�(⌧ 0,x0)
⇤

=
1

Z(�)
Tr
⇥
e
��H

T⌧ {�(⌧ + �,x)�(⌧ 0,x0)}
⇤

= G�(⌧ + � � ⌧
0
,x� x0). (2.35)

Thus, we have

GB

�
(⌧ � ⌧

0
,x� x0) =

8
>><

>>:

GB

�
(⌧ � ⌧

0 � �,x� x0) for ⌧ > ⌧
0
,

GB

�
(⌧ � ⌧

0 + �,x� x0) for ⌧ < ⌧
0
,

(2.36)

where the superscript B indicates bosonic Green function. Since we have periodicity

property in time argument of Green’s function at finite temperature, we can have
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the following Fourier expansion

GB

�
(⌧ � ⌧

0
,x� x0) =

T

V

1X

n=�1

Z
d
3
k

(2⇡)3
e
�i!

B
n ⌧+ik.x eGB

n
(k). (2.37)

The consequence of the periodicity property of Green’s function is the appearance

of the discrete spectrum of frequency

!
B

n
= 2n⇡T with n = 0,±1,±2, · · · . (2.38)

For the case of fermionic field, a similar analysis leads to the conclusion that the

position space Green’s function is anti-periodic

GF

�
(⌧ � ⌧

0
,x� x0) =

8
>><

>>:

�GF

�
(⌧ � ⌧

0 � �,x� x0) for ⌧ > ⌧
0

�GF

�
(⌧ � ⌧

0 + �,x� x0) for ⌧ < ⌧
0
.

(2.39)

As a result of this, we can write an expansion similar to that shown in Eq. (2.37)

with !n taking values

!
F

n
= (2n+ 1)⇡T with n = 0,±1,±2, · · · . (2.40)

2.5 Feynman Rules at Finite Temperature

Some of the rules for computing Feynman diagrams get modified in ITF but others

remain the same as in the case of zero temperature. Below, we outline the modified

rules

• Vertex:

Same as in the case of zero temperature.

• Momentum space propagator:
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Same as in the case of zero temperature but k0 ! i!n, where

!n =

8
>><

>>:

2n⇡T for Bosons,

(2n+ 1)⇡T for Fermions,

(2.41)

with T being the temperature of the system in equilibrium and n = 0,±1,±2, · · ·

• Loops

The four momentum integration is replaced by sum-integral. The spatial three

momentum integration is left unchanged. The k0 integration is replaced by

frequency sum as follows

1Z

�1

dk0

2⇡
f(k0,k) ! T

1X

n=�1

f(i!n,k), (2.42)

where !n is defined in Eq. (2.41).

• External line

The rules remain the same as in zero temperature field theory.

As an application of above mentioned Feynman rule, we wish to evaluate one loop

correction mass correction of a real scalar field theory with �
4 interaction. The

Lagrangian is written as

L =
1

2
@
µ
�@µ�� 1

2
m

2
�
4 � �

4!
�
4
. (2.43)

The scalar field propagator is written as

�F (K) =
1

k
2

0
� E

2

k

, (2.44)

where k0 = i!n = i2⇡nT and Ek =
p
|k|2 +m2. The interaction term in the La-

grangian is Lint = � �

4!
�
4. So, the interaction vertex is given as �i�. The expression
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of the self energy is written down applying the Feynman rule to the diagram as

⇧1(T ) = �T

1X

n=�1

Z
d
3
k

(2⇡)3
�F (K) = ��T

1X

n=�1

Z
d
3
k

(2⇡)3
1

4⇡2n2T 2 + E
2

k

. (2.45)

We isolate the frequency sum part as

T

1X

n=�1

1

4⇡2n2T 2 + E
2

k

=
1

2Ek

(1 + 2n(Ek)) , (2.46)

where n(Ek) =
1

exp(Ek/T )� 1
is the Bose-Einstein distribution function. Thus, we

are left with the three momentum integration

⇧1(T ) = �

Z
d
3
k

(2⇡)3
1

2Ek

(1 + 2n(Ek)) . (2.47)

Note that the self energy has two parts. The first part does not involve distribution

function and the second part does. It turns out that the first part is exactly equal

to the expression of ⇧1 at zero temperature. Therefore we identify the second part

as the thermal correction to the one loop boson self energy and write ⇧1(T ) =

⇧vac

1
+ ⇧th

1
(T ) where

⇧vac

1
= �

Z
d
3
k

(2⇡)3
1

2Ek

, (2.48)

⇧th

!
(T ) = �

Z
d
3
k

(2⇡)3
n(Ek)

Ek

. (2.49)

The vacuum part is ultraviolet (UV) divergent and it drops out after conventional

zero-temperature renormalization. The thermal part is UV finite due to the pres-

ence of distribution function associated with it. The integrand in both Eq. (2.48)

and Eq. (2.49) is spherically symmetric. So, to compute the thermal part, we can

write the integration measure in spherical polar coordinate. For m = 0 case the k
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integration can be performed analytically and the result is

⇧1(T,m = 0) =
�T

2

12
. (2.50)

For m 6= 0, we make a a change in variable x =
p

|k|2 +m2/T and obtain

⇧(T,m) =
�T

2

2⇡2

1Z

m/T

dx

p
x2 � (m/T )2

ex � 1
. (2.51)

Note that the dependence of m and T come in the form of a dimensionless quantity

m/T . This implies that when the temperature is very much higher than all the mass

scales, i.e. T >> m, we can approximate ⇧(T ) as that in the case of massless scalar

⇧(T,m) ' �T
2
/12. Therefore, the thermal mass acquired by the particle is given

as m2

T
= �T

2
/12.

2.6 HTL Resumation

To demonstrate the essence of HTL resummation method, we consider the simple

case of real massless scalar field theory with �4 interaction. The lagrangian is ob-

tained by setting m = 0 in Eq. (2.43). The one loop correction to the self energy is

given as

⇧1(T ) =
�T

2

12
. (2.52)

The correction due to the thermal fluctuations are incorporated into the e↵ective

propagator. It is given from the resumation as

�⇤

1
(k) =

1

k
2

0
� |k|2 �m

2

T

. (2.53)
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According to the standard perturbation theory, the �
4 self energy ⇧, which is

the sum of all 1PI diagram, is expected to have the perturbative expansion ⇧ =

�T
2 [1 +O(�)]. But this naive expectation breaks down due to the presence of in-

frared (IR) divergence in the thermal part of the diagram containing more than

one loops. But it turns out that if we resum all the higher order diagram into the

e↵ective propagator in Eq. (2.53), then we get the following advantages

1. The theory is saved from the infrared divergence by the thermal mass which

is of the order of mT ⇠
p
�T . It acts as a infrared cuto↵ to the theory and

plays an analogous role of Debye mass in QED plasma.

2. The e↵ects of thermal fluctuations are taken into account through the thermal

mass.

The one loop tadpole diagram is given as

⇧?

1
= �

XZ

K

1

K2 +m
2

T

. (2.54)

It is simplified after performing the frequency sum and angular integration to

⇧?

1
= �

1Z

0

dk
k
2

!
2

T

[1 + 2n (!T )] , (2.55)

where !T =
p

k2 +m
2

T
. The integration in Eq. (2.55) cannot be performed exactly

but it can be approximated by introducing a separation in the scale p
? such that

p
�T << p

?
<< T . In this scenario, we approximate k,mT << T below p

? and

k >> mT above p
? to get

⇧?

1
= �T

2


1� 3

⇡

p
�+O(�)

�
. (2.56)

The e↵ective tadpole ⇧?

1
is IR divergence free in spite of containing the summation
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of infinitely many IR divergent diagrams. This result is not perturbative as the

correction is not multiple of the coupling constant �. The reason of this surprising

behaviour is the use of e↵ective propagator containing the thermal mass as IR reg-

ulator. As a result, significant contribution from small momentum comes up in the

integral in Eq. (2.56) and successive order of the coupling constant is reduced. The

above steps motivates us to employ the following method in massless scalar theory

at finite temperature

1. The diagram that contribute to �T 2 is isolated. It is the tadpole diagram ⇧1

in this case.

2. Next, construction of e↵ective propagator �?(K) by resummation of the tad-

pole diagram is carried out.

3. Depending on the circumstance, bare or e↵ective propagator is used as in

ordinary perturbation theory.

If the momentum and energies flowing through the Green’s function is hard, i.e., of

the order of T , bare propagator �(K) is su�cient for the calculation as can be seen

from the example since m2

T
can be neglected if K2 & T

2. But if they are soft, i.e. of

the order of
p
�T , then the e↵ective propagator �?(K) must be used because higher

order diagram contributes to the lower order in the coupling constant [189]. These

higher order diagrams are called hard thermal loops (HTL) [190]. This method of

e↵ective perturbation theory was developed by Pisarsky and it is called HTL per-

turbation theory. Now, the whole argument of HTL perturbation theory is based

on the assumption that the coupling constant � is much smaller than 1, i.e., � << 1.

In case of gauge theory, there is an additional complication that arises from bare

perturbation theory. The gluon damping rate calculated using naive perturbative

method is not gauge invariant and it turned out to be negative in some gauges.
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This problem is traced to the fact that in bare perturbation expansion, higher order

diagram contribute to lower order in coupling constant. Also in gauge theory, the

self energy has dependencies on external momentum P . Now the diagrams that

contribute to the Green’s function at the same order in gauge coupling constant

g depend on the external momentum P . Loop corrections are g
2
T

2
/P

2 times the

corresponding tree level amplitude. Therefore, when the external momentum is soft

(P ⇠ gT ), the loop correction is of the same order in g as tree level. But when P

is hard (P ⇠ T ) the loop correction is suppressed by a factor of g2 from the tree

level amplitude. The gluon damping rate was recalculated with these resummation

technique in [191] which turned out to be gauge independent displaying the triumph

of this proposed method.

2.7 Conclusion

In conclusion, we briefly outlined the techniques necessary for theoretical calculation

in quantum field theory at finite temperature in the most popular imaginary time

formalism in this chapter. As an example, we demonstrated a simple evaluation

of self-interacting scalar boson self energy using Feynman rules in presence of ther-

mal medium in equilibrium. We also introduced the basic recipes and underlying

concepts of hard thermal loop perturbation theory in a nutshell. The important

takeaway from this chapter is the discreteness of frequency in modified Green’s

function. These technicality will be useful in calculations in upcoming chapters.
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CHAPTER 3

Fermion Propagator in External

Magnetic field

3.1 Introduction

In this chapter, we shall derive the fermion propagator in the presence of background

magnetic field. We know from elementary quantum mechanics that there are some

notable changes that are observed in the system under consideration in presence

of background magnetic field. The most prominent one is the modification of the

energy spectrum of the particle moving in the field and the alteration of density of

states. The rotational invariance of the system is broken in presence of magnetic

field as the system picks up a preferred direction n̂ along the magnetic field. The

energy level of a particle gets quantised in Landau Levels on the plane perpendicular

to the field

E`(kn) =

8
>><

>>:

p
k2
n
+ (2`+ 1)|qB|+m2 for bosons,

p
k2
n
+ 2`|qB|+m2 for fermions,

(3.1)

45



CHAPTER 3. FERMION PROPAGATOR IN EXTERNAL MAGNETIC FIELD

where kn is the momentum of the particle along the direction of the field B = Bn̂,

` = 0, 1, 2, · · · is the Landau levels, q is the charge of the particle and m is the mass.

In the language of quantum field theory, any process from a specific initial state

to final states is accompanied by the creation and destruction of o↵-shell or vir-

tual particles. The propagation of the virtual particles are represented by two-point

functions called propagators. In the presence of a magnetic field, the structure of

the propagator of virtual or intermediate charged particles are modified which, in

turn, influence the S-matrix elements. Thus, it is necessary to examine propagator

of charged particles in external background field.

The problem of fermion propagator in the presence of background electromagnetic

field was first considered by the seminal work of Julian Schwinger [192] in 1951.

Schwinger employed proper time method in which the spacetime coordiantes were

parametrised by a quantity called proper time s 2 [0,1]. Later, Ritus [193] derived

the fermionic field propagator in a simplistic and innovative way by diagonalising

the Dirac operator in energy the eigenfunction basis. Apart from these two widely

used methods, in Ref. [194, 195], author solved the Dirac equation in background

field and derived the expression of fermionic propagator.

In this chapter, we shall employ the Schwinger’s proper time method in deriving the

expression of propagator.

3.2 Green’s Function

In this section, we look at the concept of Green’s function in a di↵erent perspective.

The Green’s function associated with a di↵erential operator can be defined as the
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matrix element of its inverse. To justify this, we shall work with just one variable

to demonstrate in this section.

Suppose, we have a di↵erential equation of the form

Oxf(x) = g(x), (3.2)

whereOx is a di↵erential operator involving derivatives of various orders with respect

to x. Here g(x) is some given function and f(x) is the function which we need to

determine. Let us define this equation in abstract form in some appropriate linear

vector space. Let |fi and |gi are the elements of a linear vector space which are

represented by f(x) and g(x) in function space. Then, we can write hx|fi = f(x)

and hx|gi = g(x). So, in the abstract linear vector space, the di↵erential equation

takes the following form

Ô |fi = |gi , (3.3)

where Ô is the abstract operator that is represented by Ox in function space. For-

mally, the general solution of this operator equation is given by

|fi = Ô�1 |gi+
X

i

ci |hii , (3.4)

where ci’s are the constants and |hii are linearly independent solution of the homo-

geneous equation

Ô |hii = 0 or, Oxhi(x) = 0. (3.5)
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We take the inner product of the above equation with hx| to get

hx|fi = f(x) = hx| Ô�1 |gi+
X

i

ci hx|hii

=

Z
dx

0 hx| Ô�1 |x0i hx0|gi+
X

i

cihi(x)

=

Z
dx

0G(x, x0)g(x0) +
X

i

cihi(x), (3.6)

where we have defined

G(x, x0) = hx| Ô�1 |x0i . (3.7)

Here G(x, x0) is called Green’s function of the di↵erential operator Ox. It is just a

‘matrix’ element of the operator Ô between hx| and |x0i.

Now

ÔÔ�1 = 1̂ ) hx| ÔÔ�1 |x0i = hx| 1̂ |x0i = �(x� x
0). (3.8)

But

hx| ÔÔ�1 |x0i =
Z

dy hx| Ô |yi hy| Ô�1 |x0i

=

Z
dy�(x� y)OyG(y, x0)

= OxG(x, x0) (3.9)

Thus, the Green’s function obeys the following di↵erential equation

OxG(x, x0) = �(x� x
0). (3.10)
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3.3 Fermion Propagator

The fermion Green’s function in external electromagnetic field reads

(i/@ � q /A(x)�m)G(x, x0) = �
(4)(x� x

0), (3.11)

where /@ ⌘ �
µ
@µ which is similar to the Feynman slash notation applied to a four-

vector. Here, Aµ(x) is the vector potential associated with background electromag-

netic field, q is the electric charge of the particle including its magnitude as well as

sign. As an example, for electron q = �e, q = +e for positron and so on. Also, m

is the mass of the particle. Now, as we have discussed in section 3.2, we can cast

Eq. (3.11) in the operator form. Green’s function is defined as an operator equation

as

( /̂⇧�m1̂)Ĝ = 1̂, (3.12)

where

⇧̂µ ⌘ P̂µ � qAµ(X̂). (3.13)

From now on, we shall not write explicitly the unit operator 1̂ where it is multiplied

with some number.

Inverting Eq. (3.12), we get

G(x, x0) = hx| ( /̂⇧�m)�1 |x0i . (3.14)

We can cast ( /̂⇧�m)�1 as

( /̂⇧�m)�1 =

✓
/̂⇧
2

�m
2

◆�1 ⇣
/̂⇧+m

⌘
. (3.15)
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Now, for any operator Â, we can write the identity

(Â+ i✏)�1 = �i

1Z

0

ds exp
h
is(Â+ i✏)

i
, (3.16)

where ✏! 0+ is incorporated to ensure the convergence of the integration at s = 1.

Applying this identity to Eq. (3.14), we arrive at

G(x, x0) = �i

1Z

0

ds hx| exp

is

✓
/̂⇧
2

�m
2

◆�⇣
/̂⇧+m

⌘
|x0i

= �i

1Z

0

ds e
�ism

2 hx| eis /̂⇧
2 ⇣

/̂⇧+m

⌘
|x0i

= �i

1Z

0

ds e
�ism

2 hx(s)|
⇣
/̂⇧+m

⌘
|x0i . (3.17)

We define Û(s) = e
�isĤ , where Ĥ = � /̂⇧

2

and write hx(s)| = hx| Û(s). Here s

is a parameter which is loosely called proper time variable and likewise Û(s) is

identified as time-evolution operator. The coordinate space manifestation of Û(s)

is hx|e�isĤ |x0i = U(x, x0; s). So, we have

G(x, x) = �i

1Z

0

ds e
�ism

2

h
hx(s)| /̂⇧ |x0i+mU(x, x0; s)

i
. (3.18)

Now, we write down two important commutators as

h
⇧̂µ, X̂⌫

i
= igµ⌫ ,

h
⇧̂µ, ⇧̂⌫

i
= �iqFµ⌫ , (3.19)

where Fµ⌫ = @µA⌫ � @⌫Aµ is the electromagnetic field strength tensor. In the

case of constant background field, Fµ⌫ does not have any dependence on space-time
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coordinate. We can write

Ĥ = � /̂⇧
2

= ��µ�⌫⇧̂µ⇧̂⌫ = ��µ�⌫
⇣
⇧̂⌫⇧̂µ � iqFµ⌫

⌘

= ��µ�⌫⇧̂⌫⇧̂µ + iq�
µ
�
⌫Fµ⌫ = (�⌫�µ � 2gµ⌫) ⇧̂⌫⇧̂µ + iqFµ⌫ (g

µ⌫ � i�
µ⌫)

= /̂⇧
2

� 2⇧̂2 + qFµ⌫�
µ⌫ = �H � 2⇧̂2 + qFµ⌫�

µ⌫
, (3.20)

where �µ⌫ ⌘ i

2
(�µ�⌫ � �

⌫
�
µ), �µ�⌫ = g

µ⌫� i�
µ⌫ and {�µ, �⌫} = 2gµ⌫ . So, we obtain

Ĥ =
q

2
Fµ⌫�

µ⌫ � ⇧̂2
. (3.21)

Now, we can write the equation of motion

i
@

@s
U(x, x0; s) = H(x, @)U(x, x0; s). (3.22)

Here H(x, @) is the function space manifestation of the operator Ĥ. Now, the

equations governing the evolution of X̂(s) and ⇧̂(s) are given as

d

ds
X̂

µ(s) = i

h
Ĥ, X̂

µ(s)
i
, (3.23)

d

ds
⇧̂µ(s) = i

h
Ĥ, ⇧̂µ(s)

i
. (3.24)

Now, we need to solve the equation of motions (3.23) and (3.24). Using
h
⇧̂µ

, X̂
⌫

i
=

ig
µ⌫ , it is just a matter of few steps of operator algebra to show that

i

h
Ĥ, X̂

µ

i
= 2⇧µ

, (3.25)

i

h
Ĥ, ⇧̂µ

i
= 2Fµ⌫⇧⌫ . (3.26)
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Thus, the equation of motions in Eq. (3.23) and Eq. (3.24) become

d

ds
X̂

µ(s) = 2⇧̂µ(s), (3.27)

d

ds
⇧̂µ(s) = 2Fµ⌫⇧̂⌫(s). (3.28)

Note that Eq. (3.28) and Eq. (3.27) are valid for the case of constant electromagnetic

field. Now, we consider the field to be directed along the +ve z direction in space.

In this case, only the components F12 and F21 survive and are given as

F12 = �F21 = �B. (3.29)

In this case, we arrange Eq. (3.28) and Eq. (3.27) in matrix form to solve them in

a convenient manner. For this purpose, we arrange the parallel and perpendicular

components of X̂ and ⇧̂ in a two by two matrix form as given below

X̂q =

0

B@
X̂

0

X̂
3

1

CA , X̂? =

0

B@
X̂

1

X̂
2

1

CA , (3.30)

⇧̂q =

0

B@
⇧̂0

⇧̂3

1

CA , ⇧̂? =

0

B@
⇧̂1

⇧̂2

1

CA . (3.31)

So, the equation of motions become

d

ds
X̂q(s) = 2⇧q(s),

d

ds
X̂?(s) = 2⇧?(s), (3.32)

d

ds
⇧̂q(s) = 0,

d

ds
⇧̂?(s) = 2qBF⇧̂?(s). (3.33)
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Here F = i�y, where we denote the i
th component of Pauli spin matrix as �i with

i = x, y, z. The solutions of Eq. (3.32) and Eq. (3.33) are given as

X̂q(s) = X̂q(0) + 2s⇧̂q(0), X̂?(s) = X̂?(0) +
i�y

qB

�
e
i2qBs�y � 1

�
⇧̂?(0), (3.34)

⇧̂q(s) = ⇧̂q(0), ⇧̂?(s) = ⇧̂?(0)e
i2qBs�y . (3.35)

The expression of X̂?(s) in Eq. (3.35) can be further simplified by applying the

identity

e
i�.a = cos(|a|) + i�.a

sin(|a|)
|a| (3.36)

to obtain

X̂?(s) = X̂?(0)� 2
sin(|qB|s)

|qB| e
iqBs�y⇧̂?(0). (3.37)

Note that /̂⇧ operator is sandwiched between hx(s)| and |x0i. So using Eq. (3.34) and

(3.35), we write ⇧̂ in terms of X̂ and apply X̂
µ(0) |x0i = x

0µ |x0i and hx(s)| X̂µ(s) =

hx(s)| xµ to get

hx(s)| /̂⇧q |x0i = 1

2s

�
/xq � /x

0

q
�
U(x, x0; s) (3.38)

and

hx(s)| /̂⇧? |x0i = |qB|
2 sin(|qB|s)

h
cos(|qB|s) + sgn(qB) sin(|qB|s)�1�2

i

�
/x� /x

0

?

�
U(x, x0; s). (3.39)
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So, we have

hx(s)| /̂⇧ |x0i = 1

2

⇢
1

s

�
/xq � /x

0

q
�
� |qB|

sin(|qB|s) [cos(|qB|s) + sgn(qB) sin(|qB|s)]

�
/x? � /x

0

?

� 
U(x, x0; s). (3.40)

Now, we are left to determine U(x, x0; s) = hx| e�isĤ |x0i. Note that

i
@

@s
U(x, x0; s) = hx| e�isĤ

Ĥ |x0i = hx(s)| Ĥ |x0i . (3.41)

Unlike evaluating by inserting directly the complete set of eigenkets of Ĥ between

e
�isĤ and |x0i in the expression of U(x, x0; s), the trick is to first compute hx(s)| Ĥ |x0i

and solve the obtained di↵erential equation to get U(x, x0; s). So, we have

hx(s)|H |x0i = �
⇣
hx(s)| ⇧̂2 |x0i+ iqB�

1
�
2 hx(s)|x0i

⌘
,

= �
⇣
hx(s)| ⇧̂2

q |x0i � hx(s)| ⇧̂2

? |x0i+ iqB�
1
�
2 hx(s)|x0i

⌘
. (3.42)

For the parallel part, the matrix element becomes

hx(s)| ⇧̂2

q |x0i =


1

4s2
(xq � x

0

q)
2 +

i

s

�
U(x, x0; s). (3.43)

Here we used commutation relations

h
X̂

0(0), X̂0(s)
i
= 2is,

h
X̂

3(0), X̂3(s)
i
= �2is, (3.44)

which is obtained by expressing X̂q(s) in terms of X̂q(0) and ⇧̂q(0) from the first

relation shown in Eq. (3.34). Now the calculation of the perpendicular part is a little

bit involved than its parallel counterpart. Firstly, we compute the commutation
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relation

s

h
X̂

i(0), X̂j(s)
i
= �2

sin(|qB|s)
|qB|

�
R�1

�jk h
X̂

i(0), ⇧̂k(0)
i
= 2i

sin(|qB|s)
|qB|

�
R�1

�jk
�
ik

= 2i
sin(|qB|s)

|qB|
�
R�1

�ji
, (3.45)

with i = 1, 2, where

R = e
�iqBs�y =

0

B@
cos(|qB|s) �sgn(qB) sin(|qB|s)

sgn(qB) sin(|qB|s) cos(|qB|s)

1

CA . (3.46)

So we have

hx(s)| ⇧̂2

? |x0i =
X

i=1,2

hx(s)| ⇧̂i⇧̂i

? |x0i

=
|qB|2

4 sin2(|qB|s)
X

i,j,k

�
jk


(x� x

0)j (x� x
0)k � 2i

sin(|qB|s)
|qB|

�
R�1

�jj
�
.

(3.47)

Using the unitary property ofR, we useRijRik =
�
RT

�ji Rik = �
jk and

P
j=1,2

(R�1)jj =

2 cos(|qB|s) to get the last line of the last equation and we arrive at

hx(s)| ⇧̂2

? |x0i =


|qB|2

4 sin2(|qB|s)
(x� x

0)2 � i
|qB|

tan(|qB|s)

�
U(x, x0; s). (3.48)

Putting Eq. (3.43) and Eq. (3.48) in Eq. (3.42), we get

hx(s)| Ĥ |x0i = �f(x, x0
, s)U(x, x0; s), (3.49)

where

f(x, x0
, s) =

1

4s2
(x� x

0)2q �
|qB|2

4 sin2(|qB|s)
(x� x

0)2? + i

✓
1

s
+

|qB|
tan(|qB|s)

◆
+ i�

1
�
2
qB.

(3.50)
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So from Eq. (3.41), we get the di↵erential equation satisfied by U(x, x0; s) as

i
@

@s
U(x, x0

, s) = �f(x, x0
, s)U(x, x0

, s). (3.51)

Eq. (3.51) can be solved as

U(x, x0; s) = C(x, x0) exp

2

4i
sZ
ds

0
f(x, x0

, s
0)

3

5 . (3.52)

Here C(x, x0) is the constant of integration which is independent of s. Thus, we get

the expression of U(x, x0; s) as

U(x, x0; s) = C(x, x0)
1

s sin(|qB|s) exp

� i

4

✓
1

s
(x� x

0)2q �
|qB|

tan(|qB|s)

(x� x
0)2?

⌘
� qBs�

1
�
2

i
. (3.53)

Substituting Eq. (3.53) and Eq. (3.40) in Eq. (3.18) we get

G(x, x0) = �iC(x, x0)

1Z

0

ds
e
�ism

2

s sin(|qB|s)


1

2

⇢
1

s

�
/xq � /x

0

q
�
� |qB|

sin(|qB|s)

⇥
cos(|qB|s) + sgn(qB) sin(|qB|s)�1�2

⇤ �
/x? � /x

0

?

� 
+m

⇤

⇥ exp

"
� i

4

 
(x� x

0)2q
s

� |qB|
tan(|qB|s) (x� x

0)2?

!#
e
�qBs�

1
�
2

. (3.54)

We define rµ = x
µ�x

0µ. So Green function can be written as G(x, x0) = C(x, x0)G(r),

where

G(r) = �i

1Z

0

ds

s sin(|qB|s)

✓
1

2s
/rq +m

◆
e
�qBs�

1
�
2 � |qB|

2 sin(|qB|s)/r?

�

⇥ exp


�i

✓
r
2

q
4s

� |qB|
4 tan(|qB|s)r

2

? + sm
2

◆�
. (3.55)
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We note that the Green’s function do have a translational invariant part G(r).

Now we wish to evaluate momentum space representation of G(x, x0). But as dis-

cussed earlier, the factor C(x, x0) is gauge dependent and in general breaks trans-

lational symmetry of the propagator which is clear from Eq. (3.54). So, unlike in

zero background field case, it is not convenient to define the Fourier transforma-

tion of G(x, x0) without choosing a gauge for the vector potential of the background

field. Therefore, we can choose a gauge in which C(x, x0) = 1 for convenience.

In this circumstance, translational invariance is restored. This allows us to define

the momentum space Green function G(p) via Fourier transformation of G(x, x0)

as eG(p) =
R
d
4
re

ip.r
G(r). To evaluate the r integral, we analytically continue the

expression of G(r) to the Euclidean space-time achieved through a series of trans-

formation s ! �isE, r0 ! �i⌧r. So, the propagator takes the following form

G(r) =

1Z

0

dsE

sE sinh(|qB|sE)

✓
� i

2s
/r
E

q +m

◆
e
iqBsE�

1
�
2 � i

|qB|
2 sinh(|qB|sE)

/r?

�

exp


�
✓
⌧
2

r
+ r

2

3

4s
+

|qB|
4 tanh(|qB|s)(r

2

1
+ r

2

2
) + sm

2

◆�
, (3.56)

where we define /r
E

q = �
3
r
3 + �

4
⌧r with �4 = i�

0.

In Euclidean space, the Fourier transformation of a function f is defined as

f̃(!,p) =

1Z

�1

d⌧

Z
d
3
x exp [�i(p.x+ !⌧)] f(⌧,x). (3.57)
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To compute the Fourier transformation, we have to tackle the following r integrals

I =

Z
d
4
rE e

�i(!⌧r+p.r) exp


�
✓
r
2

3
+ ⌧

2

r

4sE

+
|qB|

tanh(|qB|sE)
(r2

1
+ r

2

2
)

◆�
, (3.58)

Iq =

Z
d
4
rE e

�i(!⌧r+p.r)
/r
E

q exp


�
✓
r
2

3
+ ⌧

2

r

4sE

+
|qB|

tanh(|qB|sE)
(r2

1
+ r

2

2
)

◆�
, (3.59)

I? =

Z
d
4
rE e

�i(!⌧r+p.r)
/r
E

? exp


�
✓
r
2

3
+ ⌧

2

r

4sE

+
|qB|

tanh(|qB|sE)
(r2

1
+ r

2

2
)

◆�
, (3.60)

where

Z
d
4
rE ⌘

1Z

�1

d⌧r

Z
d
3
r. These can be done by using the following basic

Gaussian integral

1Z

�1

dx e
�ibx

e
�ax

2

=

r
⇡

a
e
�

b2

4a , (3.61)

1Z

�1

dx x e
�ibx

e
�ax

2

= �i
b

2a

r
⇡

a
e
�

b2

4a (3.62)

and the result is quoted below

I =
(4⇡)2

|qB|
s tanh(|qB|sE)

|qB| exp


�sE(p

2

4
+ p

2

3
)� tanh(|qB|sE)

|qB| (p2
1
+ p

2

2
)

�
, (3.63)

Iq = 2isEI, (3.64)

I? = �2i
tanh(|qB|sE)

|qB| I. (3.65)

Using the results of integrations shown in Eq. (3.63)-(3.65), we get eG(p) as

eG(p) =
(4⇡)2

|qB|

1Z

0

dsE

⇥�
�4p4 � �

3
p
3 +m

�
(1 + isgn(qB) tanh(|qB|sE)�

1
�
2)

� 1

cosh2(|qB|sE)

�
�
1
p
1 + �

2
p
2
��

⇥ exp


�sE

✓
p
2

q +
tanh(|qB|sE)

|qB|sE

p
2

? +m
2

◆�
.

(3.66)

Now, we go back to the Minkowski space and finally write the momentum space
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propagator as 1

eG(p) = i
(4⇡)2

|qB|

1Z

0

ds

⇢�
p
0
�
0 � p

3
�
3 +m

� ⇥
1 � sgn(qB) tan(|qB|s)�1�2

⇤

� sec2(|qB|s)
�
p
1
�
1 + p

2
�
2
��

⇥ exp


is

✓
p
2

0
� (p3)2 � tanh(|qB|s)

|qB|s
⇥
(p1)2 + (p2)2

⇤
�m

2
�⇤

.

(3.67)

This happened due to the sign di↵erence in the expression of Dµ.

3.4 The Phase Factor

The term C(x, x0) do not have any s dependence as indicated in previous section.

It satisfies the following di↵erential equations


i @µ � qAµ(x) +

1

2
qFµ⌫ (x

0 � x)⌫
�
C (x, x0) = 0, (3.68)


�i @

0

µ
� qAµ (x

0)� 1

2
qFµ⌫ (x

0 � x)⌫
�
C (x, x0) = 0. (3.69)

Integrating Eq. (3.68) and Eq. (3.69), we get

C(x, x0) = C
0(x0

, x
0) exp


�i q

Z
x

x0
d⇠

µ

✓
Aµ(⇠) +

1

2
Fµ⌫(⇠ � x

0)⌫
◆�

(3.70)

C(x, x0) = C
0(x, x) exp


�i q

Z
x

x0
d⇠

µ

✓
Aµ(⇠) +

1

2
Fµ⌫(⇠ � x)⌫

◆�
. (3.71)

Equating (3.70) and (3.71), we have C
0(x0

, x
0) = C

0(x, x). It follows from the

fact that, since Fµ⌫ is antisymmetric, (x � x
0)µFµ⌫(x � x

0)⌫ = 0. Thus we con-

clude from the last line that C
0(x, x) is just a constant. Note that the integral in

1In this chapter, we denote the complete momentum four-vector in Minkowsky space in small
letter, i.e., pµ = (p0,p). For the parallel and the perpendicular components we adopt /pq =

p0�0 � p3�3, /p?
= p1�1 + p2�2 and p2q = (p0)2 � (p3)2 and p2? = (p1)2 + (p2)2
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(3.71) is independent of the integration path connecting the points x and x
0 as the

curl of the term Aµ(⇠) +
1

2
Fµ⌫(⇠ � x)⌫ vanishes. Now the curl of a four-vector is

not a four-vector like ordinary three-vector but a 2nd rank tensor. For any four-

vector Vµ(x), the curl is proportional to the term @

@xµV⌫(x)� @

@x⌫ Vµ(x). In our case

Vµ(⇠) = Aµ(⇠) +
1

2
Fµ⌫(⇠ � x)⌫ and we can show that @

@⇠µ
V⌫(⇠)� @

@⇠⌫
Vµ(⇠) = 0.

Proof :

@

@⇠µ
V⌫(⇠)�

@

@⇠⌫
Vµ(⇠)

=
@

@⇠µ
A⌫(⇠)�

@

@⇠⌫
Aµ(⇠) +

1

2


F⌫↵

@

@⇠µ

�
⇠
↵ � x

0↵
�
� Fµ↵

@

@⇠⌫

�
⇠
↵ � x

0↵
��

= F
µ⌫

+
1

2

⇥
F
⌫↵
�
↵

µ
� F

µ↵
�
↵

⌫

⇤

= F
µ⌫

+
1

2

⇥
F
⌫µ

� F
µ⌫

⇤

= F
µ⌫

+ F
⌫µ

= 0 (QED)

This gives us freedom to choose the path connecting x
0 and x as a straight line. The

straight line is parameterized by t as follows

⇠
µ(t) = x

0µ + t (xµ � x
0µ) with t 2 [0, 1] (3.72)

This choice is consistent as can be seen by noting that ⇠µ(1) = x
0µ and ⇠µ(0) = x

µ.

In symmetric gauge Aµ(x) = B

2
(0,�y, x, 0) leading to

Z
x

x0
d⇠

µ Aµ(⇠) =
B

2

⇣
x
01
x
2 � x

02
x
1

⌘
. (3.73)
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The term

Z
x

x0
d⇠

µ
1

2
F

µ⌫
(⇠ � x)⌫ =

Z
1

0

dt (xµ � x
0µ)

1

2
F

µ⌫
(x⌫ � x

0⌫)(t� 1) (3.74)

= (xµ � x
0µ)

1

2
F

µ⌫
(x⌫ � x

0⌫)

Z
1

0

dt (t� 1) (3.75)

= 0. (3.76)

So, in the symmetric gauge, �(x, x0) ⌘ exp


�i q

Z
x

x0
d⇠

µ

✓
Aµ(⇠) +

1

2
F

µ⌫
(⇠ � x)⌫

◆�
=

exp


�i q B

2

⇣
x
01
x
2 � x

02
x
1

⌘�
. The four-vector potential enjoys gauge symmetry. So

for the same field configuration, we can choose another four-vector potential defined

by

A0

µ
(⇠) ⌘ Aµ(⇠) +

@

@⇠µ
⇤(⇠), (3.77)

where ⇤(⇠) is a function of ⇠ which we choose as

⇤(⇠) =
B

2

�
y ⇠

1 � x ⇠
2
�
. (3.78)

So, in the A0 gauge

�(x, x0) = exp


�i q

Z
x

x0
d⇠

µ

✓
A0

µ
(⇠) +

1

2
F

µ⌫
(⇠ � x)⌫

◆�

= exp

"
�i q

Z
x

x0
d⇠

µ

✓
Aµ(⇠) +

1

2
F

µ⌫
(⇠ � x)⌫

◆
� i q

Z
x
0

x

d⇠
µ ⇤(⇠)

#

= exp


�i q

Z
x

x0
d⇠

µ

✓
Aµ(⇠) +

1

2
F

µ⌫
(⇠ � x)⌫

◆�
exp

"
�i q

Z
x
0

x

d⇠
µ
@

@⇠µ
⇤(⇠)

#

= exp


�i q B

2

⇣
x
01
x
2 � x

02
x
1

⌘�
exp [�i q (⇤(x0)� ⇤(x))]

= exp


�i q B

2

⇣
x
01
x
2 � x

02
x
1

⌘�
exp


i q B

2

⇣
x
01
x
2 � x

02
x
1

⌘�

= exp (0)

= 1. (3.79)
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So, essentially in this special special gauge, C(x, x0) is just a constant C and we

can choose it to be C = � |qB|
(4⇡)2

. Also note that C is exactly the same as the

degeneracy associated with LLL. Finally, the expression of the momentum space

fermion propagator in presence of time independent uniform background magnetic

field is given as

eG(p) = �i

1Z

0

ds

⇢�
p
0
�
0 � p

3
�
3 +m

� ⇥
1 � sgn(qB) tan(|qB|s)�1�2

⇤
� sec2(|qB|s)

⇥
�
p
1
�
1 + p

2
�
2
��

⇥ exp


is

✓
p
2

0
� (p3)2 � tanh(|qB|s)

|qB|s
⇥
(p1)2 + (p2)2

⇤

�m
2 + i✏

�⇤
,

(3.80)

where the i✏ with ✏! 0+ is introduced to make the integral finite at s ! 1.

3.5 Landau Level Representation

In this section, we derive an alternative representation of the expression of fermion

propagator G(p) shown in Eq. (3.80) [196]. The propagator is essentially written as

a sum over the contribution coming from all the Landau levels. To do this, we start

by performing the s integration in Eq. (3.80) by employing the following identity of

generalised Laguerre polynomial

1X

`=0

L
(↵)

`
(x)t` =

exp
�
� t x

1�t

�

(1� t)↵+1
(|t|  1) (3.81)

Setting ↵ = 0 and rearranging the sum, i is easy to show

exp

✓
� xt

1� t

◆
=

1X

`=0

⇥
L`(x)� L`�1(x)

⇤
t
`
, (3.82)
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where L
(0)

`
(x) ⌘ L`(x) and also L�1(x) = 0 by definition. We can rearrange

tan(|qB|s) in the exponential to get

e
�i

p2?
|qB| tan(|qB|s) = exp

✓
↵p

2

v + 1

v � 1

◆
= exp

⇣
�↵p

2

⌘
exp

✓
� ↵pv

1� v

◆
, (3.83)

where v ⌘ �e
�i2|qB|s and ↵p ⌘ 2p

2

?
|qB|

. With the help of identity in Eq. (3.82) and

Eq. (3.83), we can write

exp

✓
�i

p
2

?

|qB| tan(|qB|s)
◆

= exp
⇣
�↵p

2

⌘ 1X

`=0

(�1)`
⇥
L`(↵p)� L`�1(↵p)

⇤
e
�i2`|qB|s

.

(3.84)

Now, we can cast the integral in Eq. (3.80) as

G(p) =
⇣
/pq +m

⌘ ⇥
I0 � sgn(qB)�1�2I1

⇤
� /p?

I3, (3.85)

where

I0 =

1Z

0

ds e
�i

p2?
|qB| tan(|qB|s)

e
is(p

2

q�m
2
+i✏)

, (3.86)

I1 =

1Z

0

ds tan(|qB|s)e�i
p2?
|qB| tan(|qB|s)

e
is(p

2

q�m
2
+i✏)

, (3.87)

I3 =

1Z

0

ds sec2(|qB|s)e�i
p2?
|qB| tan(|qB|s)

e
is(p

2

q�m
2
+i✏)

. (3.88)

Now, it is easy to see that I1 and I2 can be expressed in terms of I0 as

I1 = 2 i sgn(qB)
@I0

@↵p

, (3.89)

I2 = I0 � 4
@
2
I0

@↵2
p

. (3.90)
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From Eq. (3.84), we can perform the I0 integral very easily and obtain

I0 = ie
�

p2?
|qB|

1X

`=0

(�1)`
L`(↵p)� L`�1(↵p)

p
2
q � 2`|qB|�m2 + i✏

. (3.91)

Now, putting Eq. (3.91) in Eq. (3.89) and Eq. (3.90), we get the expression of I1

and I2. Lastly, substituting the resulting expression of I0, I1 and I2 written in terms

of infinite sum over ` in Eq. (3.85), we arrive at Landau level representation of the

fermion propagator in background magnetic field as

G(p) = exp

✓
� p

2

?

|qB|

◆ 1X

`=0

(�1)`
D`(p, qB)

p
2
q � 2`|qB|�m2 + i✏

, (3.92)

where the factor D`(p, qB) in the numerator is defined as

D`(p, qB) ⌘
⇣
/pq +m

⌘⇢
1 + isgn(qB)�1�2

�
L`

✓
2p2?
|qB|

◆
�

1 � isgn(qB)�1�2

�

L`�1

✓
2p2?
|qB|

◆�
+ /p?

L
(1)

`�1

✓
2p2?
|qB|

◆
. (3.93)

It is evident from the expression of Eq. (3.92), the propagator has a simple pole at

p0 = ±E`,p for ` = 0, 1, 2, · · · where

E`,p =
p
k2
z
+ 2`|qB|+m2. (3.94)

3.6 The Strong and the Weak Field Limit of the

Propagator

Calculations with the propagators in Eq. (3.92) and (3.67) are very cumbersome.

So, we can make approximations when the field is strong or weak.
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In the limit of very high background magnetic field (ideally in |qB| ! 1 limit),

the contributions coming from the ` � 1 terms to the fermion propagator S
B(p)2

becomes very substantial and thus can be neglected but in this circumstance ` = 0

term survives as there is no |qB| dependence in the denominator. It is called strong

field or lowest Landau level (LLL) approximation. In this case the propagator

becomes

S
B
LLL

(p) = e
�

p2?
|qB|

/pq +m

p2 �m2 + i✏

⇥
1 + i sgn(qB) �1�2

⇤
. Strong field approximation (SFA)

(3.95)

In the weak field limit, the full propagator can be written as a series in powers of

qB as

S
B(p) = S

(0)(p) + qB S
(1)(p) + (qB)2 S(1)(p) + · · · (3.96)

Here S
(0)(p) part of the propagator is the exactly the same as that in absence of

background field

S
(0)(p) =

/p+m

p2 �m2
. (3.97)

The expansion procedure is a bit involved. It can be performed step by step ana-

lytically as shown in Chyi et al [211]. Since it is su�cient to obtain the series in

Eq. (3.96) upto (qB)1, we employ Mathematica to get our job done. Starting from

the proper time representation in Eq. (3.80), we obtain

S
B
WFA(p) =

/p+m

p2 �m2 + i✏
�

/pq +m

(p2 �m2 + i✏)2
�
1
�
2
qB +O(qB)2 Weak field approximation (WFA).

(3.98)

2From now on, the fermion propagator will be denoted by the symbol S and B in the superscript
or subscript will indicate the presence of background magnetic field
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Note that the denominator of each term in the expansion has the structure (p2�m
2)n

with n being positive integer.

3.7 Conclusion

In this chapter, we have explicitly derived fermion propagator in the presence of

background magnetic field. We have also written down the strong and weak field

limit of the propagator. Due to the presence of the phase factor C(x, x0), the propa-

gator breaks gauge invariance as well as translational symmetry. But the latter can

be restored by going to a particular gauge as discussed in section. It is important

to note that the cancellation of phase factor to is no longer possible in complicated

processes like in triangle diagram where there is three fermion propagators are mul-

tiplied together. In this situation, one is compelled to start the work in position

space. In the rest of the thesis, we shall work in weak field approximation.
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CHAPTER 4

Collective Behaviour of Quarks at High

Temperature QGP

4.1 Introduction

At non-zero temperature, many physical quantities are modified as compared to zero-

temperature field theory. As an example, quarks gain an temperature dependent

e↵ective mass. Also, they get dressed by the medium and behaves collectively in the

plasma. Technically, they develop a quasi-particle or collective modes and exhibit

some of the collective properties which are absent at zero temperature.

The collective modes are is generally characterised by their dependecies of energy on

momentum encoded in dispersion law !(p). Contrary to stable particle, collective

modes posses a finite lifetime in the plasma which urge their decay rate �(p) to

be considered as a relevant parameter. Mathematically, the real part of the pole

of the resummed propagator gives dispersion law whereas the imaginary part gives

decay rate. The temperature T along with the strong coupling constant g introduces

an energy scale of the hot medium. Since at high temperature the QCD coupling

constant g ⌧ 1, the medium e↵ects can vastly be studied by the method of pQCD.
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Now, the phenomena which are important at soft energy scale gT are encoded in

the behaviour of the collective excitations of quarks, gluons and photons.

In this chapter, we shall investigate the medium induced collective properties of

quasi-quarks in hot QGP medium.

4.2 Covariant Description

At non-zero temperature, one of the most intriguing issue that arises is associated

with Lorentz covariance and definition of temperature. The question that comes

up is that in which frame, among the rest frame of the particle and the rest frame

of plasma, the particle’s motion should be described. It was addressed first by

Planck and Einstein and later by Tolman [197], Pauli [198] and Ott [199]. Finally,

Israel [200, 201] settled this issue by characterizing a fluid in thermodynamic equi-

librium by a Lorentz invariant parameter T and the four-velocity vector u
µ of the

heat bath. T is the temperature of the fluid in its own rest frame.

Consider a particle moving with momentum P
µ in medium. The higher order ra-

diative correction will also involve the four-vector u
µ. Now, we have to construct

Lorentz scalar variables of the theory from P
µ and u

µ. They are P
2, P.u and u

2.

But we have the constraint on u
µ that u

2 = 1. So, we have two Lorentz scalars

variables. We choose these two variables as P.u and P.u � P
2 for convenience. In

this bin the rest frame of heat bath, we have u
µ = (1, 0, 0, 0) and

P.u = p0, (P.u)2 � P
2 = |p|2. (4.1)

Thus, P.u and (P.u)2 � P
2 can be interpreted as energy and magnitude of three-

momentum vector squared of particle in the rest frame of heat bath, respectively.
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Since we will be working with the magnitude of three-vector, we drop the boldface

notation, i.e., for any three vector a, we shall denote its magnitude by a.

4.3 Structure of Quark Self Energy

The quark self energy has, apart from the dependence on four vectors P µ and u
µ, a

4⇥4 matrix structure. Any 4⇥4 matrix can be written as a linear combination of 16

linearly independent basis matrices. In quantum field theory, one of the convenient

choice of these basis is the set of gamma matrices � =
�
1, �5, �µ, �µ�5, �[µ�⌫]

 
,

namely, the identity matrix, �5 matrix, four �µ matrices, four �µ�5 matrices and six

�
[µ
�
⌫] matrices. Here �[µ�⌫] denotes the anti-symmetric combination of �µ and �⌫ ,

i.e., �µ�⌫ � �
⌫
�
µ. So the general form of quark self energy reads

⌃ = �a1 � a5�5 � (bP µ + b
0
u
µ) �µ � (b5P

µ + b
0

5
u
µ) �µ�5 � f (P µ

u
⌫ + P

⌫
u
µ) �µ⌫

,

(4.2)

where �µ⌫ =
i

2
(�µ�⌫ � �

⌫
�
µ). Here the coe�cients associated with various basis

matrices are analytic functions of Lorentz scalars P.u and P.u� P
2.

In our context, Eq. (4.2) gets further simplified based on the following assumptions

• At high temperature, chiral symmetry of the plasma gets restored. So, the

self energy is chirally symmetric. As a result, it anti-commutes with �5, i.e.,

{�5,⌃} = 0. This implies that the coe�cients of 1, �5 are zero. The parity

invariance of the theory does not allow �
µ
�5 to appear in the self-energy ⌃.

• Also, in one loop order, the terms involving �µ⌫ will be absent.

69



CHAPTER 4. COLLECTIVE BEHAVIOUR OF QUARKS AT HIGH
TEMPERATURE QGP

Thus, the structure of self energy reads in one loop order as

⌃(P ) = � (bP µ + b
0
u
µ) �µ. (4.3)

We change the notation from b to a and b
0 to b in Eq. (4.3) and get

⌃(P ) = �a/P � b/u. (4.4)

From Eq. (4.4), we can extract the coe�cients a, b as

a =
Tr(/P⌃)� (P.u)Tr(/u⌃)

4 [(P.u)2 � P 2]
,

b =
P

2Tr(/u⌃)� (P.u)Tr(/P⌃)

4 [(P.u)2 � P 2]
. (4.5)

In the rest frame of heat bath, Eq. (4.5) reduces to

a(p0, p) =
1

4p2
⇥
Tr(/P⌃)� p0Tr(/u⌃)

⇤
,

b(p0, p) =
1

4p2
⇥
P

2Tr(/u⌃)� p0Tr(/P⌃)
⇤
. (4.6)

4.4 Quark Self Energy at Non-Zero Temperature

In this section, we shall evaluate the structure functions a(p0, p) and b(p0, p) up to

one loop order in the strong coupling constant. The Feynman diagram relevant for

this computation is depicted in Fig. 4.1. The quark propagator of flavour f takes

P �K(= Q)

KP P

Figure 4.1: One loop Feynman diagram to compute quark self energy
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the form

Sf (K) =
/K +mf

K2 �m2
f

, (4.7)

where mf is the current quark mass. The gluon propagator

iD
ab

µ⌫
(P �K) =

�ig
µ⌫
�ab

(P �K)2
. (4.8)

The quark gluon vertex term is obtained from the interaction term in the Lagrangian

as ig�µT a. So, the expression of one-loop quark self energy of flavour f reads from

Fig. 4.1 as

�i⌃(P ) =

Z
d
4
K

(2⇡)4
(ig�µT a) iSf(K) (ig�⌫T b) iDab

µ⌫
(P �K). (4.9)

Substituting Eq. (4.7) and Eq. (4.8) in Eq. (4.9), we obtain

⌃(P ) = �ig
2
CF

Z
d
4
K

(2⇡)4
�
µ
�
/K +mf

�
�µ�

K2 �m2
f

�
[(P �K)2 + i✏]

. (4.10)

Here, we define CF = (N2

c
� 1)/2Nc which comes from the identity as

N
2
c�1X

a=1

T
a
T

a =
(N2

c
� 1)

2Nc

. (4.11)

Simplifying Eq. (4.10), we get

⌃(P ) = �i2g2CF

Z
d
4
K

(2⇡)4
2mf � /K�

K2 �m2
f

�
[(P �K)2 + i✏]

. (4.12)
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At of non-zero temperature, we replace the k0 integral by discrete sum over frequen-

cies k0 = i(2n+ 1)⇡T + µ as shown below

Z
1

�1

dk0

2⇡
! i T

1X

n=�1

. (4.13)

So, the self energy of fermion with flavour f is written in sum-integral as

⌃f(P ) = 2g2CFT

X

k0

Z
d
3
k

(2⇡)3
2mf � /K�

K2 �m2
f

�
[(P �K)2 + i✏]

. (4.14)

At this stage, we define the frequency sums as

F (0,0)

(F,B)
= T

X

k0

1

(k2

0
� E

2

k
) (q2

0
� q2)

, (4.15)

F (1,0)

(F,B)
= T

X

k0

k0

(k2

0
� E

2

k
) (q2

0
� q2)

. (4.16)

The summations are performed Appendix A. Here we quote the results.

F (0,0)

(F,B)
=

1

4Ekq


1� en�(Ek) + n(q)

p0 + Ek + q
� 1� en+(Ek) + n(q)

p0 � Ek � q
+
en�(Ek) + n(q)

p0 + Ek � q

�en+(Ek) + n(q)

p0 � Ek + q

�
, (4.17)

F (1,0)

(F,B)
= � 1

4Ek


1� en+(Ek) + n(q)

p0 � Ek � q
+

1� en�(Ek) + n(q)

p0 + Ek + q
+
en+(Ek) + n(q)

p0 � Ek + q

+
en�(Ek) + n(q)

p0 + Ek � q

�
, (4.18)

where en±(E) =
1

e�(E⌥µ) + 1
. Our goal is to compute the coe�cients a(p0, p) and

b(p0, p). To do so, first it is convenient to compute the traces, TP ⌘ Tr
⇥
/P⌃(P )

⇤
and

Tu ⌘ Tr [�0⌃(P )], and replace the result in Eq. (4.6). This leads to

TP = 8g2CF

Z
d
3
k

(2⇡)3

h
p.kF (0,0)

(F,B)
� p0F (1,0)

(F,B)

i
,

Tu = �8g2CF

Z
d
3
k

(2⇡)3
F (1,0)

(F,B)
. (4.19)
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From Eq. (4.6), we have

a(p0, p) = 2g2CF

Z
d
3
k

(2⇡)3
k.p̂

p
F (0,0)

(F,B)
,

b(p0, p) = 2g2CF

Z
d
3
k

(2⇡)3


F (1,0)

(F,B)
� p0

k.p̂

p
F (0,0)

(F,B)

�
. (4.20)

The three-momentum integration is performed, for convenience, in the spherical po-

lar coordinates. Also, we choose the z direction along the direction of external mo-

mentum p̂ which allows us to write k̂.p̂ = cos ✓, where ✓ is the angle between p̂ and

k̂. So we have q = |p� k| =
p

k2 + p2 � 2pk cos ✓. Now, we can perform the theta

integration analytically [202]. To do this, we need to remove the ✓ dependence from

the distribution function. The ✓ dependence comes from q =
p

p2 + k2 � 2kp cos ✓

which is eliminated by a change of variable k0 = p�k. After that, the k integration

is performed numerically to get the exact one loop self energy. It is performed in

ref. [202]. We shall obtain the expression of a and b in HTL approximation.

As discussed before, the hard thermal loop approximation we assume that the mo-

mentum flowing through the external legs are of the order of gT , i.e., soft and that

flowing through the loop are of the order of T , i.e., hard. We can simplify the

calculation of a(p0, p) and b(p0, p) by invoking the following approximations [203]

1. The current quark mass mf is very small compared to the relevant momentum

scale. So we can safely drop it and write Ek
⇠= k.

2. Also, the following approximation can be made on the momentum flowing

through the gluon line in the figure

q = |p� k| =
p

k2 + p2 � 2k.p '
p
k2 � 2k.p ' k � k̂.p (4.21)

In the last line, we ignored p
2 since it is of the order of g2T 2. It is smallest
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among k
2 and k.p which are of the order of T 2 and gT

2, respectively.

3. We can drop the term p0 ± (k + q) since it contributes to linear in T and is

small compared to p0 ± (k � q) which is of the order of gT .

4. In the light of approximation described in point no 1, we can write

n(q) ' n(k)� k̂.p
@

@k
n(k) ' n(k). (4.22)

Here in the last line, the second term which is associated with derivative of

n(k) is suppressed by a factor of g compared to the first one. Thus we drop

the 2nd term.

In this case, it is convenient to evaluate Tu and TP first and substitute that in

Eq. (4.6) to obtain HTL approximated result of a(p0, p) and b(p0, p). We drop the

vacuum contribution, i.e., the term that does not involves distribution functions.

The vacuum part is divergent which is eliminated using zero temperature renormal-

ization. Employing the approximations listed above, we arrive at

Tu = Tr [�0⌃(P )] = 2g2CF

Z
d
3
k

(2⇡)3
1

k


en+(k) + n(k)

p0 � p.k̂
+
en�(|k) + n(k)

p0 + p.k̂

�
(4.23)

and

TP = Tr
⇥
/P⌃(P )

⇤
= 2CFg

2

Z
d
3
k

(2⇡)3
1

k

✓
p.k̂


en�(k) + n(k)

p0 + p.k̂
� en+(k) + n(k)

p0 � p.k̂

�

+p0


en+(k) + n(k)

p0 � p.k̂
+
en�(k) + n(k)

p0 + p.k̂

�◆
. (4.24)

Now, we have k̂ varying in all direction in the space.

Z
d⌦

4⇡

1

p0 � p.k̂
=

Z
d⌦

4⇡

1

p0 + p.k̂
,

Z
d⌦

4⇡

p.k̂

p0 � p.k̂
= �

Z
d⌦

4⇡

p.k̂

p0 + p.k̂
. (4.25)
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We decompose the measure d
3
k = k

2
dk d⌦ to perform the integral. So, we have

Tu =
g
2
CF

⇡2

0

@
1Z

0

dk k [en+(k) + n(k)]

Z
d⌦

4⇡

1

p0 � p.k̂

+

1Z

0

dk k [en�(k) + n(k)]

Z
d⌦

4⇡

1

p0 + p.k̂

1

A

=
g
2
CF

⇡2

1Z

0

dk k

⇣
en+(k) + en�(k) + 2n(k)

⌘Z
d⌦

4⇡

1

p0 � p.k̂
. (4.26)

The integral over k is performed analytically as

1Z

0

dk k

⇣
en+(k) + en�(k) + 2n(k)

⌘
=
⇡
2

2

✓
T

2 +
µ
2

⇡2

◆
. (4.27)

Let us define a vector K̂µ = (1, k̂) and quantity defined through that vector

T µ(p0, p) =

Z
d⌦

4⇡

K̂
µ

P · K̂
=

*
K̂

µ

P.K̂

+

k̂

. (4.28)

This leads to

Tu =
1

2
g
2
CF

✓
T

2 +
µ
2

⇡2

◆
T 0(p0, p) = 4m2

thT 0(p0, p). (4.29)

Here mth is the thermal mass of quark which is a pure medium e↵ect and it is defined

as

m
2

th =
1

8
CFg

2

✓
T

2 +
µ
2

⇡2

◆
. (4.30)
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The angular dependence of the integral from the expression of TP goes away.

TP = 2g2CF

Z
d
3
k

(2⇡)3
1

k
=

g
2
CF

⇡2

1Z

0

dk k

⇣
en+(k) + en�(k) + 2n(k)

⌘Z
d⌦

4⇡

=
1

2
g
2
CF

✓
T

2 +
µ
2

⇡2

◆
= 4m2

th. (4.31)

So, a(p0, p) and b(p0, p) is written in terms of T 0 as

a(p0, p) =
m

2

th

p2

⇥
1� p0T 0(p0, p)

⇤
, (4.32)

b(p0, p) =
m

2

th

p2

⇥
P

2T 0 (p0, p)� p0

⇤
, (4.33)

where T 0(p0, p) can be written in closed form as

T 0(p0, p) =
1

2p
log

✓
p0 + p

p0 � p

◆
. (4.34)

4.5 Modified Quark Propagator

In the language of field theory, the e↵ective propagator is obtained from Dyson-

Schwinger equation. So, the quark propagator takes the form [204]

S
⇤

f (P ) =
(1 + a(p0, p)) /P + b(p0, p)/u

D(p0, p)
, (4.35)

where we have

D(p0, p) = [1 + a(p0, p)]
2
P

2 + 2 a(p0, p) [1 + b(p0, p)] P.u+ b
2(p0, p). (4.36)

Now, the quasi-particle modes are obtained from pole of the e↵ective propagator

obtained by solving D(p0, p) = [(1 + a)p0 + b]2 � (1 + a)2p2 = 0. It has two quasi-
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particle modes D±(p0, p) [179]

D±(p0, p) = [1 + a(p0, p)] (p0 ⌥ p) + b(p0, p) = 0. (4.37)

D+(p0, p) = 0 has two solutions

p0 = !+(p), p0 = �!�(p), (4.38)

whereas D�(p0, p) = 0 has the solutions

p0 = !�(p), p0 = �!+(p). (4.39)

The plasmino mode is a consequence of breaking of Lorentz symmetry due to the

presence of heat bath. The plus sign corresponds to normal propagating mode and

the minus sign corresponds to plasmino mode.

ω+(p)
ω-(p)
ω-p=0

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

p/mth

ω
/m

th

Figure 4.2: The dispersion relation of quasi-quark in HTL approximation. !+ is
the normal quasi-quark mode and !� is the plasmino mode which emerges as a result
of non-zero temperature. Both modes are time-like and starts from thermal mass�
!±(p ! 0) = mth

�
. The plasmino mode exhibits a minimum which is related to

Van-Hove singularity.
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4.6 Spectral Representation

The physical interpretation of any calculation will be clear if the propagator can be

casted in a simpler form

S
⇤

f (P ) =
�0 � � · p̂
2D+(p0, p)

+
�0 + � · p̂
2D� (p0, p)

, (4.40)

where

D±(p0, p) = p0 ⌥
✓
p+

m
2

th

p

◆
� m

2

th

2p

✓
1⌥ p0

p

◆
log

✓
p0 + p

p0 � p

◆
. (4.41)

The spectral representation of D± is defined via

1

D±(p0, p)
=

1Z

�1

ds
⇢±(s, p)

s� p0
. (4.42)

As quoted in section 4.5, the e↵ective propagator has four poles at p0 = !±(p),�!±(p)

in complex p0 plane above lightcone p0 > p and below the lightcone, i.e., in the re-

gion p0 < p, it has branch-cut singularity.

So the structure of spectral function can be written in the following form

Im
1

D±(p0, p)
⌘ ⇢±(p0, p) = Z±(p)�

�
p0 � !±(p)

�
+ Z⌥(p)�

�
p0 + !⌥(p)

�

+ �±(p0, p)⇥(p2 � p
2

0
), (4.43)

where Z±(p) are the residue at the pole of the propagator and �± are the cut-part.

Notice that the theta function is incorporated with argument p
2 � p

2

0
to indicate

that the cut part contributes only below the light-cone. The expressions of Z± can
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be written in terms of the modes !± as

Z±(p) =
!
2

±
(p)� p

2

2m2

th

(4.44)

and the cut part is written as

�±(x, y) =
1

2

y ⌥ x
h
y(x⌥ y)� 1

2

⇣
1⌥ x

y

⌘
log

���x+y

x�y

���⌥ 1
i2

+
h
1

2
⇡

⇣
1⌥ x

y

⌘i2 , (4.45)

where x = p0/mth and y = p/mth.

Z+(p)
Z-(p)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

p /mth

Z(
p)

Figure 4.3: Plot of residue of e↵ective quark propagator in HTL approximation

4.7 Asymptotic Form of Dispersion Relation

The analytical expression of the modes !±(p) can be found in the small and large

momentum limit.

For small momentum limit (p << mth)

!±(p) ' mth ±
p

3
(4.46)
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and for large momentum

!+(p) = p+
m

2

th

p
, (4.47)

!�(p) = p+ 2p exp

✓
�2p2 +m

2

th

m
2

th

◆
. (4.48)

4.8 Modified Dirac Equation

We get a new Dirac equation corresponding to the e↵ective propagator

⇥
(1 + a)/P + b�0

⇤
U = 0, (4.49)

where U is the modified Dirac spinor. In the rest frame of the heat bath, Eq. (4.49)

takes the form

{[(1 + a)p0 + b] �0 � (1 + a)�.p}U = 0 (4.50)

We solve the Eq. (4.50) by writing the gamma matrices in the chiral or Weyl basis.

In this basis, Eq. (4.50) becomes

0

B@
0 [(1 + a)p0 + b]� (1 + a)�.p

[(1 + a)p0 + b]� (1 + a)�.p 0

1

CAU = 0. (4.51)

Setting the determinant of Eq. (4.51), we get the following equations

[(1 + a(p0, p)] (p0 � p) + b(p0, p) = 0, (4.52)

[(1 + a(p0, p)] (p0 + p) + b(p0, p) = 0. (4.53)

Note that, these two equations are precisely the dispersion equations for quark. Now,

we note that if ! is a solution of Eq. (4.52), then �! is the solution of Eq. (4.53).
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When Eq. (4.52) is satisfied, we get a non-trivial solution of Eq. (4.51) which takes

the following form

0

B@
0 1� �.p̂

1 + �.p̂ 0

1

CAU = 0 (4.54)

and likewise we get

0

B@
0 1 + �.p̂

1� �.p̂ 0

1

CAU = 0, (4.55)

when Eq. (4.53) is satisfied.

We write the components of Dirac spinor U explicitly as U = (U1, U2, U3, U4). Now,

the solution of the eigenvalue problem reduces the same as the solutions of ordinary

Dirac equation.

U
(1)

� =

0

BBBBBBB@

� p̂x�ip̂y

1+p̂z

1

0

0

1

CCCCCCCA

, U
(2)

� =

0

BBBBBBB@

0

0

1

p̂x+ip̂y

1+p̂z

1

CCCCCCCA

, when p0 = !+(p),�!�(p),

(4.56)

U
(1)

+ =

0

BBBBBBB@

1

p̂x+ip̂y

1+p̂z

0

0

1

CCCCCCCA

, U
(2)

+ =

0

BBBBBBB@

0

0

� p̂x�ip̂y

1+p̂z

1

1

CCCCCCCA

, when p0 = !�(p),�!+(p),

(4.57)

where p̂i is the i
th component of unit vector p̂.

The chirality operator is defined as � = � = �

0

B@
1 0

0 �1

1

CA.
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The helicity operator is defined in chiral basis Hp =

0

B@
�.p 0

0 �.p

1

CA. The U
(1,2)

±

satisfies the helicity eigenvalue equations

HpU
(1)

� = �U
(1)

� , HpU
(2)

� = U
(2)

� , (4.58)

HpU
(1)

+ = U
(1)

+ , HpU
(2)

+ = �U
(2)

+ (4.59)

and chirality eigenvalue equations

�U
(1)

� = �U
(1)

� , �U
(2)

� = U
(2)

� , (4.60)

�U
(1)

+ = �U
(1)

+ , �U
(2)

+ = U
(2)

+ . (4.61)

We note that the chirality and helicity ratio for normal modes is = +1 whereas for

the plasmino modes it is = -1.

4.9 Discrete Symmetries

In this section, we list some of the properties of e↵ective propagator with respect to

the discrete symmetries. We denote the e↵ective propagator with a superscript e↵

instead of ⇤ to avoid the clash with the notation of complex conjugation.

1. Parity:

P : S
e↵
f (p0,p) = �0S

e↵
f (p0,�p)�0 (4.62)

2. Chirality:

Q5 : S
e↵
f (p0,p) = ��5Se↵

f (p0,�p)�5 (4.63)
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3. Time reversal symmetry

T : S
e↵
f (p0,p) = T�0

⇥
S
e↵
f (p0,�p)

⇤T
�0T (4.64)

where T = i�
1
�
3 and T denotes transposition.

4. Charge conjugation

C : S
e↵
f (p0,p) = C�0

⇥
S
e↵
f (�p

⇤

0
,�p)

⇤⇤
�0C, (4.65)

where C = i�
2
�0.

5. CPT symmetry All physical interactions must obey the combined ✓ = CPT

symmetry.

CPT : S
e↵
f (p0,p) = �5�0S

e↵
f (�p

⇤

0
,�p)�0�5 (4.66)

If we test our e↵ective propagator against these symmetries, it will be seen to satisfy

all of these [205]. So, our propagator in Eq. (4.40) is parity, chirality, time reversal

and charge conjugation invariant.

4.10 Conclusion

The properties of quasi-quark modes in hot deconfined medium are discussed in this

chapter. We observed that the structure of the quark self energy is modified. Due to

the presence of thermal medium, the Lorentz covariance of the system is broken. As

a result the energy and three-momentum have acquired unequal footing unlike in the

case of zero temperature. Consequently, a new collective quasi-particle mode called

plasmino has emerged with chirality over helicity ratio equal to �1. The spectral

representation of e↵ective propagator is obtained which is employed in calculation
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of dilepton rate.
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CHAPTER 5

General Structure and Properties of

Quark Two-point Function in Hot

Magnetised Medium

5.1 Introduction

In the last chapter, we discuss various properties of collective modes in hot QGP

medium. Introduction of magnetic field heavily alters the existing dynamics and

properties of the collective excitation. The magnetic field introduces a new energy

scale |eB| in the system apart from the temperature T and gT . Also it breaks the

rotational invariance of the space. In this scenario, a systemic study of the collec-

tive excitation is in order since a magnetic field causes a non-trivial e↵ects on the

collective excitations on thermalised media [206–209]. In this chapter, we derived

dispersion relations of the collective modes in the weak field approximation which

is relevent in the study of QGP.

This chapter is based onGeneral structure of fermion two-point function and its spec-
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tral representation in a hot magnetized medium by Aritra Das, Aritra Bandyopad-

hyay, Pradip K. Roy, Munshi G. Mustafa, Phys.Rev.D 97 (2018) 3, 034024 [210].

5.2 General Structure of the Fermion Self-Energy

The quark propagator in presence of the background magnetic fieldB = Bẑ pointing

in z-direction was derived in weak field approximation in chapter 3. It is given as

S(P ) =
/P +mf

P 2 �m2
f + i✏

�
/P q +mf

(P 2 �m2
f + i✏)2

�
1
�
2
qfB +O(qB)2 (5.1)

In presence of magnetic field, an additional vector space-like n
µ = (0,n) must be

taken into account whose space part specifies the direction of the magnetic field. It

is related to the electromagnetic field strength tensor given as

n
µ =

1

2B
✏
µ⌫�⇢

u⌫F�⇢ =
1

B
u⌫

eF µ⌫
, (5.2)

where the eFµ⌫ is the dual strength tensor defined by

eF µ⌫ =
1

2
✏
µ⌫�⇢

F�⇢, (5.3)

u
µ = (1,u) is the four-velocity of the heat bath. So the general structure of the self

energy involves an additional four vector n
µ to the existing P

µ and u
µ. Following

the same procedure in chapter 4, we can write the most general structure of the

quark self energy as

⌃(P ) = �↵ � ��5 � a/P � b/u� c/n� a
0
�5 /P � b

0
�5/u� c

0
�5 /n

� h �µ⌫P
µ
P
⌫ � h

0
�µ⌫u

µ
u
⌫ �  �µ⌫n

µ
n
⌫ � d�µ⌫P

µ
u
⌫ � d

0
�µ⌫n

µ
P
⌫ � 

0
�µ⌫u

µ
n
⌫
,

(5.4)
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where various coe�cients are known as structure functions. Now the term /P qi�
1
�
2

can be rearranged as

/P qi�
1
�
2 = �5 [(P · u)/n� (P · n)/u] (5.5)

The last Eq. suggests that in the structure of quark two point function there will

be terms involving �5. We note that the combinations involving �µ⌫ do not appear

due to antisymmetric nature of it in any loop order of self-energy. Also in a chirally

invariant theory, the terms ↵ and �5� will not appear as they would break the

chiral symmetry. The term �5 /P would appear in the self-energy if fermions interact

with an axial vector1. By dropping those in (5.4) for chirally symmetric theory, one

can now write

⌃(P ) = �a /P � b /u� c /n� b
0
�5 /u� c

0
�5 /n. (5.6)

Now we point out that some important information is encoded into the fermion

propagator in (3.98) for a hot magnetised medium. This suggests that c/n should

not appear in the fermion self-energy 2 and the most general form of the fermion

self-energy for a hot magnetised medium becomes

⌃(P ) = �a /P � b/u� b
0
�5 /u� c

0
�5 /n. (5.7)

When a fermion propagates in a vacuum, then b = b
0 = c

0 = 0 and ⌃(P ) = �a/P .

But when it propagates in a background of pure magnetic field without any heat

bath, then a 6= 0, b = 0 and the structure functions, b0 and c
0, will depend only on

the background magnetic field as we will see later. When a fermion propagates in a

1The presence of an axial gauge coupling leads to chiral or axial anomaly and a chirally invariant
theory does not allow this. Other way, the preservation of both chiral and axial symmetries is
impossible, a choice must be made which one should be preserved. For a chirally invariant theory
this term drops out. Also the presence of �5 in a Lagrangian violates parity invariance.

2We have checked that even if one keeps c /n, the coe�cient c becomes zero in one-loop order in
the weak field approximation.
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heat bath, then a 6= 0, b 6= 0 but both b
0 and c

0 vanish because there would not be

any thermo-magnetic corrections as can also be seen later.

We now write down the right chiral projection operator, P+ and the left chiral

projection operator P� , respectively, defined as:

P+ =
1

2
( + �5) , (5.8a)

P� =
1

2
( � �5) , (5.8b)

which satisfy the usual properties of projection operator:

P2

±
= P±, P+ P� = P� P+ = 0, P+ + P� = , P+ � P� = �5. (5.9)

Using the chirality projection operators, the general structure of the self-energy in

(5.7) can be casted in the following form

⌃(P ) = �P+
/C P� � P�

/DP+, (5.10)

where /C and /D are defined as

/C = a /P + (b+ b
0) /u+ c

0
/n, (5.11a)

/D = a /P + (b� b
0) /u� c

0
/n. (5.11b)

From (5.7) one obtains the general form of the various structure functions as

a =
1

4

Tr
�
⌃/P

�
� (P.u) Tr (⌃/u)

(P.u)2 � P 2
, (5.12a)

b =
1

4

�(P.u) Tr
�
⌃/P

�
+ P

2 Tr (⌃/u)

(P.u)2 � P 2
, (5.12b)

b
0 = �1

4
Tr (/u⌃�5) , (5.12c)

c
0 =

1

4
Tr (/n⌃�5) , (5.12d)
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which are also Lorentz scalars . Beside T and B, they would also depend on three

Lorentz scalars defined by

! ⌘ P
µ
uµ, (5.13a)

p
3 ⌘ �P

µ
nµ = pz , (5.13b)

p? ⌘
⇥
(P µ

uµ)
2 � (P µ

nµ)
2 � (P µ

Pµ)
⇤1/2

. (5.13c)

Since P
2 = !

2 � p
2

? � p
z

2, we may interpret !, p?, pz as Lorentz invariant energy,

transverse momentum, longitudinal momentum respectively.All these structure func-

tions for 1-loop order in a weak field and HTL approximations have been computed

in section 5.3 and quoted here 3 as

a(p0, p) = �
m2

th

p2
Q1

✓
p0
|p|

◆
, (5.14a)

b(p0, p) =
m2

th

p


p0
p
Q1

✓
p0
p

◆
�Q0

✓
p0
p

◆�
, (5.14b)

b0(p0, p) = 4CF g
2M2(T,mf , qfB)

pz
p2

Q1

✓
p0
p

◆
, (5.14c)

c0(p0, p) = 4CF g
2M2(T,mf , qfB)

1

p
Q0

✓
p0
p

◆
. (5.14d)

We note that the respective vacuum contributions in a, b, b
0 and c

0 have been

dropped by the choice of the renormalisation prescription.

3In weak field approximation the domain of applicability becomes m2
th(⇠ g2T 2) < qfB < T 2

instead of m2 < qfB < T 2 as discussed in Appendix 5.3.
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5.3 Computations of Structure Functions in One-

loop in a Weak Field Approximation for Hot

Magnetised QCD Medium:

Here, we present the computations of the various structure functions in ((5.12a)) to

((5.12d)) in 1-loop order (Fig.5.1) in a weak field and HTL approximations following

the imaginary time formalism. In Fig.5.1, the modified quark propagator (bold line)

P

K

P

Q=P-K

Figure 5.1: One loop quark self-energy in a hot magnetized medium.

due to background magnetic field is given in (5.17). Since glouns are chargeless, their

propagators do not change in presence of magnetic field. The gluon propagator in

Feynman gauge, is given as [211]

D
µ⌫

ab
(Q) = �i�ab

g
µ⌫

Q2
. (5.15)

We note that we would like to explore the fermion spectrum in a hot magnetised

background in the limit m2

f
< qfB < T

2. We apply Eq. (5.5) to Eq. (3.98) and get

S(K) = i
/K

K2 �m2

f

� �5 [(K.n) /u� (K.u) /n]

(K2 �m2

f
)2

(qfB) +O[(qfB)2]

(5.16)

= SB=0

0 (K) + SB 6=0

1
(K) +O

⇥
(qfB)2

⇤
, (5.17)

where the fermion mass in the numerator has been neglected in the weak field

domain, m2

f
< (qfB) < T

2.
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The one-loop quark self-energy upto O(|qfB|) can be written as

⌃(P ) = g
2
CF T

XZ

K

�
µ

 
/K

K2 �m
2

f

� �5 [(K.n) /u� (K.u) /n]

(K2 �m
2

f
)2

qfB

!
�
µ

1

(P �K)2

(5.18)

' ⌃B=0(P, T ) + ⌃B 6=0(P, T ) ⌘ ⌃0 + ⌃B
, (5.19)

where g is the QCD coupling constant, CF = 4/3 is the Casimir invariant of SU(3)

group, T is the temperature of the system. The first term is the thermal bath

contribution in absence of magnetic field (B = 0) whereas the second one is from

the magnetised thermal bath.

Using (5.19) in ((5.12a)) and ((5.12b)), the structure functions a and b, respectively,

become

a(p0, p) =
1

4

Tr
�
⌃0 /P

�
� (P.u) Tr (⌃0

/u)

(P.u)2 � P 2
, (5.20a)

b(p0, p) =
1

4

�(P.u) Tr
�
⌃0 /P

�
+ P

2 Tr (⌃0
/u)

(P.u)2 � P 2
, (5.20b)

where the contributions coming from ⌃B vanish due to the trace of odd number of

�-matrices. Following the well known results in Ref. [204], one can write

a(p0, p) = �m
2

th

p2
Q1

✓
p0

p

◆
, (5.21a)

b(p0, p) =
m

2

th

p


p0

p
Q1

✓
p0

p

◆
�Q0

✓
p0

p

◆�
, (5.21b)

where the Legendre functions of the second kind read as

Q0(x) =
1

2
ln

✓
x+ 1

x� 1

◆
, (5.22a)

Q1(x) = xQ0(x)� 1 =
x

2
ln

✓
x+ 1

x� 1

◆
� 1, (5.22b)
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and the thermal mass [179,204] of the quark is given as

m
2

th = CF

g
2
T

2

8
. (5.23)

The thermal part of the self-energy in (5.19) becomes

⌃B=0(P, T ) ⌘ ⌃0(P, T ) = g
2
CF T

XZ

K

�
µ

/K

K2 �m2
�
µ

1

(P �K)2

(5.24)

= �a(p0, p)/P � b(p0, p)/u. (5.25)

Again using (5.19) in (5.12c) and (5.12d), the structure functions b0 and c
0, respec-

tively, become

b
0 = �1

4
Tr(/u�5⌃

B), (5.26)

c
0 =

1

4
Tr(/n�5⌃

B), (5.27)

where the contributions coming from ⌃0 vanish due to the trace of odd number

of �-matrices. For computing the above thermo-magnetic structure functions, one

needs to use the following two traces:

Tr
⇥
/u�5�µ�5 [(K.n)/u� (K.u)/n] �µ

⇤
= 8 (K.n) , (5.28)

Tr
⇥
/n�5�µ�5 [(K.n)/u� (K.u)/n] �µ

⇤
= 8 (K.u) . (5.29)
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With this one can obtain

b
0 = 2 g2 CF T qf B

XZ

K

(K.n) e�2(K)�(P �K), (5.30)

c
0 = �2 g2 CF T qf B

XZ

K

(K.u) e�2(K)�(P �K), (5.31)

where the boson propagator in Saclay representation [212] is given by

�(K) = �
Z

�

0

d⌧e
k0⌧�(⌧, k)

and

�(⌧, k) =
X

k0

e
�k0⌧�(K)

=
1

2!k

�
[1 + n(!k)] e

�!k⌧ + n(!k)e
!k⌧

 

where the sum is over k0 = 2⇡inT and !2

k
= k

2 +m
2

f
. Also the fermion propagator

in Saclay representation reads

e�(K) = �
Z

�

0

d⌧e
k0⌧ e�(⌧, k)

and

e�(⌧, k) =
X

k0

e
�k0⌧ e�(K)

=
1

2!k

�
[1� en(!k)] e

�!k⌧ � en(!k)e
!k⌧

 

where the sum above is over k0 = (2n+ 1)⇡iT . Now following HTL approximation
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in presence of magnetic field [213,214] the (5.30) and (5.31) are simplified as

b
0 = �4 g2 CF M

2(T,mf , qfB)

Z
d⌦

4⇡

K̂ · n
P · K̂

,

c
0 = 4 g2 CF M

2(T,mf , qfB)

Z
d⌦

4⇡

K̂ · u
P · K̂

.

Using the results of the HTL angular integrations [215]

Z
d⌦

4⇡

K̂ · u
P · K̂

=
1

p
Q0

✓
p
0

p

◆
, (5.32)

Z
d⌦

4⇡

K̂ · n
P · K̂

= �p
3

p2
Q1

✓
p
0

p

◆
, (5.33)

the thermo-magnetic structures functions become

b
0 = 4g2 CF M

2(T,mf , qfB)
p
3

p2
Q1

✓
p
0

p

◆
, (5.34)

c
0 = 4g2 CF M

2(T,mf , qfB)
1

p
Q0

✓
p
0

p

◆
, (5.35)

with the magnetic mass is obtained as

M
2(T,mf , qfB) =

qfB

16⇡2


ln(2)� T

mf

⇡

2

�
. (5.36)

We note here that for mf ! 0, the magnetic mass diverges but it can be regulated

by the the thermal mass mth in (5.23) as is done in Refs. [213,215]. Then the domain

of applicability becomes m2

th(⇠ g
2
T

2) < qfB < T
2 instead of m2

f
< qfB < T

2.

The thermo-magnetic part of the self-energy in (5.19) becomes

⌃B 6=0(P, T ) ⌘ ⌃B(P, T ) =� g
2
CF T qf B

XZ

K

�
µ

�5 [(K.n)/u� (K.u)/n]

(K2 �m
2

f
)2

�
µ

1

(P �K)2

(5.37)

= �b
0(p0, p)�5/u� c

0(p0, p)�5/n. (5.38)
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Now combining (5.25), (5.38) and (5.19), the general structure of quark self-energy

in hot magnetised QCD becomes

⌃(p0, p) = �a(p0, p)/P � b(p0, p)/u� �5b
0(p0, p)/u� �5c

0(p0, p)/n . (5.39)

which agrees quite well with the general structure as discussed in (5.7) and also with

results directly calculated in Refs. [213–215].

5.4 E↵ective Fermion Propagator

The e↵ective fermion propagator is given by Dyson-Schwinger equation which reads

as

S
⇤(P ) =

1
/P � ⌃(P )

, (5.40)

and the inverse fermion propagator reads as

S
⇤�1(P ) = /P � ⌃(P ) . (5.41)

= +

Figure 5.2: Diagramatic representation of the Dyson-Schwinger equation for one-
loop e↵ective fermion propagator.
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Using (5.10) the inverse fermion propagator can be written as

S
⇤�1(P ) = P+

⇥
(1 + a(p0, p))/P + (b(p0, p) + b

0(p0, p?, pz)) /u+ c
0(p0, p)/n

⇤
P�

+ P�

⇥
(1 + a(p0, p))/P + (b(p0, p)� b

0(p0, p?, pz)) /u� c
0(p0, p)/n

⇤
P+

(5.42)

= P+
/LP� + P�

/RP+ , (5.43)

where /L and /R can be obtained from two four vectors given by

L
µ(p0, p?, pz) = A(p0, p)P

µ + B+(p0, p?, pz) u
µ + c

0(p0, p)n
µ
, (5.44a)

R
µ(p0, p?, pz) = A(p0, p)P

µ + B�(p0, p?, pz) u
µ � c

0(p0, p)n
µ
, (5.44b)

with

A(p0, p) = 1 + a(p0, p), (5.45a)

B±(p0, p?, pz) = b(p0, p)± b
0(p0, p?, pz) . (5.45b)

Using (5.43) in (5.40), the propagator can now be written as

S
⇤(P ) = P�

/L

L2
P+ + P+

/R

R2
P� , (5.46)

where we have used the properties of the projection operators P±�
µ = �

µP⌥, P2

±
=

P±, andP+P� = P�P+ = 0. It can be checked that S⇤(P )S⇤�1(P ) = P+ +P� =

. Also we have

L
2 = L

µ
Lµ = (Ap0 + B+)

2 �
h
(Apz + c

0)2 +A2
p
2

?

i
= L

2

0
� |L|2 , (5.47a)

R
2 = R

µ
Rµ = (Ap0 + B�)

2 �
h
(Apz � c

0)2 +A2
p
2

?

i
= R

2

0
� |R|2 , (5.47b)

where we have used u
2 = 1, n2 = �1, u · n = 0, P · u = p0, and P · n = �pz.
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Note that we have suppressed the functional dependencies of L, R, A, B± and c
0

and would bring them back whenever necessary.

For the lowest Landau Level (LLL), l = 0 ) p? = 0, and these relations reduce to

L
2

LLL
= (Ap0 + B+)

2 � (Apz + c
0)2 = L

2

0
� L

2

z
, (5.48a)

R
2

LLL
= (Ap0 + B�)

2 � (Apz � c
0)2 = R

2

0
�R

2

z
. (5.48b)

The poles of the e↵ective propagator, L2 = 0 and R
2 = 0, give rise to quasi-particle

dispersion relations in a hot magnetised medium. There will be four collective modes

with positive energies: two from L
2 = 0 and two from R

2 = 0. Nevertheless, we will

discuss dispersion properties later.

5.5 Transformation Properties of Structure Func-

tions and Propagator

First, we outline some transformation properties of the various structure functions

as obtained in (5.14a), (5.14b), (5.14c) and (5.14d).

1. Under the transformation p ! �p = (p?,�pz):

a(p0, |� p|) = a(p0, p), (5.49a)

b(p0, |� p|) = b(p0, p), (5.49b)

b
0(p0, p?,�pz) = �b

0(p0, p?, pz), (5.49c)

c
0(p0, |� p|) = c

0(p0, p). (5.49d)
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2. For p0 ! �p0:

a(�p0, p) = a(p0, p), (5.50a)

b(�p0, p) = �b(p0, p), (5.50b)

b
0(�p0, p?, pz) = b

0(p0, p?, pz), (5.50c)

c
0(�p0, p) = �c

0(p0, p). (5.50d)

3. For P ! �P = (�p0,�p):

a(�p0, |� p|) = a(p0, p), (5.51a)

b(�p0, |� p|) = �b(p0, p), (5.51b)

b
0(�p0, p?,�pz) = �b

0(p0, p?, pz), (5.51c)

c
0(�p0, |� p|) = �c

0(p0, p). (5.51d)

We have used the fact that Q0(�x) = �Q0(x) and Q1(�x) = Q1(x).

Now based on the above we also note down the transformation properties of those

quantities appearing in the propagator: .

1. For A:

A(p0, p?, pz)
p ! �p����! A(p0, p?, pz), (5.52a)

A(p0, p?, pz)
p0 ! �p0�����! A(p0, p?, pz), (5.52b)

A(p0, p?, pz)
p0 ! �p0�����!
p ! �p

A(p0, p?, pz). (5.52c)
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2. For B±:

B±(p0, p?, pz)
p ! �p����! B⌥(p0, p?, pz), (5.53a)

B±(p0, p?, pz)
p0 ! �p0�����! �B⌥(p0, p?, pz), (5.53b)

B±(p0, p?, pz)
p0 ! �p0�����!
p ! �p

�B±(p0, p?, pz). (5.53c)

Using the above transformation properties, it can be shown that /L, /R, L
2 and R

2,

respectively given in (5.44a), (5.44b), (5.47a) and (5.47b) transform as

/L(p0, p?, pz)
p ! �p����! A(p0, p)(p0�

0 + p · �) + B�(p0, p?, pz)/u+ c
0(p0, p)/n , (5.54a)

/R(p0, p?, pz)
p ! �p����! A(p0, p)(p0�

0 + p · �) + B+(p0, p?, pz)/u� c
0(p0, p)/n , (5.54b)

L
2(p0, p?, pz)

p ! �p����! R
2(p0, p?, pz) , (5.54c)

R
2(p0, p?, pz)

p ! �p����! L
2(p0, p?, pz) , (5.54d)

(5.54e)

and

/L(p0, p?, pz)
p0 ! �p0�����!
p ! �p

�/L(p0, p?, pz), (5.55a)

/R(p0, p?, pz)
p0 ! �p0�����!
p ! �p

�/R(p0, p?, pz), (5.55b)

L
2(p0, p?, pz)

p0 ! �p0�����!
p ! �p

L
2(p0, p?, pz), (5.55c)

R
2(p0, p?, pz)

p0 ! �p0�����!
p ! �p

R
2(p0, p?, pz). (5.55d)

Now we are in a position to check the transformation properties of the e↵ective

propagator under some of the discrete symmetries:
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5.5.1 Chirality

Under chirality the fermion propagator transform as [205]

S(p0,p) �! ��5 S(p0,p) �5. (5.56)

The e↵ective propagator, S⇤(p0, p?, pz), in (5.46) transforms under chirality as

��5 S⇤(p0, p?, pz) �5 = ��5P�

/L(p0, p?, pz)

L2(p0, p?, pz)
P+�5 � �5P+

/R(p0, p?, pz)

R2(p0, p?, pz)
P��5

= P+

/L(p0, p?, pz)

L2(p0, p?, pz)
P+ + P�

/R(p0, p?, pz)

R2(p0, p?, pz)
P�

(5.57)

= S
⇤(p0, p?, pz), (5.58)

which satisfies (5.56) and indicates that it is chirally invariant.

5.5.2 Reflection

Under reflection the fermion propagator transforms [205] as

S(p0,p) �! S(p0,�p). (5.59)
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The e↵ective propagator, S⇤(p0, p?, pz), in (5.46) transforms under reflection as

S
⇤(p0, p?,�pz) = P�

/L(p0, p?,�pz)

L2(p0, p?,�pz)
P+ + P+

/R(p0, p?,�pz)

R2(p0, p?,�pz)
P�

= P�

A(p0, p)(p0�0 + p · �) + B�(p0, p?, pz)/u+ c
0(p0, p)/n

R2(p0, p?, pz)
P+

+ P+

A(p0, p)(p0�0 + p · �) + B+(p0, p?, pz)/u� c
0(p0, p)/n

L2(p0, p?, pz)
P�

6= S
⇤(p0, p?, pz). (5.60)

However, now considering the rest frame of the heat bath, uµ = (1, 0, 0, 0), and the

background magnetic field along z-direction, nµ = (0, 0, 0, 1), one can write (5.60)

as

S
⇤(p0, p?,�pz) = P�

A(p0, p)(p0�0 + p · �) + B�(p0, p?, pz)�0 � c
0(p0, p)�3

R2(p0, p?, pz)
P+

+ P+

A(p0, p)(p0�0 + p · �) + B+(p0, p?, pz)�0 + c
0(p0, p)�3

L2(p0, p?, pz)
P�

6= S
⇤(p0, p?, pz). (5.61)

As seen in both cases the reflection symmetry is violated as we will see later while

discussing the dispersion property of a fermion.

5.5.3 Parity

Under parity a fermion propagator transforms [205] as

S(p0,p) �! �
0
S(p0,�p) �

0
. (5.62)
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The e↵ective propagator, S⇤(p0, p?, pz), in (5.46) under parity transforms as

�
0
S
⇤(p0, p?,�pz) �0 = �

0
P�

/L(p0, p?,�pz)

L2(p0, p?,�pz)
P+�0 + �

0
P+

/R(p0, p?,�pz)

R2(p0, p?,�pz)
P��0

= P+�0

/L(p0, p?,�pz)

R2(p0, p?, pz)
�
0
P� + P��0

/R(p0, p?,�pz)

L2(p0, p?, pz)
�
0
P+

6= S
⇤(p0, p?, pz) , (5.63)

which does not obey (5.62), indicating that the e↵ective propagator in general frame

of reference is not parity invariant due to the background medium.

However, now considering the rest frame of the heat bath, uµ = (1, 0, 0, 0), and the

background magnetic field along z-direction, nµ = (0, 0, 0, 1), one can write (5.63)

by using (5.54a), (5.54b) and �
0
�
i = ��i �

0
as

�
0
S
⇤(p0, p?,�pz) �0 = P+

/R(p0, p?, pz)

R2(p0, p?, pz)
P� + P�

/L(p0, p?, pz)

L2(p0, p?, pz)
P+

= S
⇤(p0, p?, pz), (5.64)

which indicates that the propagator is parity invariant in the rest frame of the

magnetised heat bath. We note that other discrete symmetries can also be checked

but leave them on the readers.

5.6 Modified Dirac Equation

5.6.1 For the General Case

The e↵ective propagator that satisfy the modified Dirac equation with spinor U is

given by

�
P+

/LP� + P�
/RP+

�
U = 0. (5.65)

102



CHAPTER 5. GENERAL STRUCTURE AND PROPERTIES OF QUARK
TWO-POINT FUNCTION IN HOT MAGNETISED MEDIUM

Using the chiral basis

�0 =

0

B@
0

0

1

CA , � =

0

B@
0 �

�� 0

1

CA , �5 =

0

B@
� 0

0

1

CA , U =

0

B@
 L

 R

1

CA ,

(5.66)

one can write (5.65) as

0

B@
0 � ·R

�̄ · L 0

1

CA

0

B@
 L

 R

1

CA = 0 , (5.67)

where  R and  L are two component Dirac spinors with � ⌘ (1,�) and �̄ ⌘ (1,��),

respectively. One can obtain nontrivial solutions with the condition

det

0

B@
0 � ·R

�̄ · L 0

1

CA = 0

det[L · �̄] det[R · �] = 0

L
2
R

2 = 0 . (5.68)

We note that for a given p0 (= !), either L
2 = 0, or R

2 = 0, but not both of

them are simultaneously zero. This implies that i) when L
2 = 0,  R = 0 ; ii) when

R
2 = 0,  L = 0. These dispersion conditions are same as obtained from the poles

of the e↵ective propagator in (5.46) as obtained in subsec. 5.4.

1. For R2 = 0 but L2 6= 0, the right chiral equation is given by

(R · �)  R = 0. (5.69)

Again R
2 = 0 ) R0 = ±|R| = ±

p
R2

x
+R2

y
+R2

z
and the corresponding

103



CHAPTER 5. GENERAL STRUCTURE AND PROPERTIES OF QUARK
TWO-POINT FUNCTION IN HOT MAGNETISED MEDIUM

dispersive modes are denoted by R
(±). So the solutions of (5.69) are

(i) R0 = |R|; mode R
(+); UR(+) =

s
|R|+Rz

2|R|

0

BBBBBBB@

0

0

1

Rx+iRy

|R|+Rz

1

CCCCCCCA

=

0

B@
0

 
(+)

R

1

CA ,

(5.70a)

(ii) R0 = �|R|; mode R
(�); U

R(�) = �

s
|R|+Rz

2|R|

0

BBBBBBB@

0

0

Rx�iRy

|R|+Rz
.

�1

1

CCCCCCCA

=

0

B@
0

 
(�)

R

1

CA .

(5.70b)

2. For L2 = 0 but R2 6= 0, the left chiral equation is given by

(L · �̄) L = 0, (5.71)

where L
2 = 0 implies two conditions; L0 = ±|L| = ±

p
L2
x
+ L2

y
+ L2

z
and

the corresponding dispersive modes are denoted by L
(±). The two solutions of

104



CHAPTER 5. GENERAL STRUCTURE AND PROPERTIES OF QUARK
TWO-POINT FUNCTION IN HOT MAGNETISED MEDIUM

(5.71) are obtained as

(i) L0 = |L|; mode L
(+); UL(+) = �

s
|L|+ Lz

2|L|

0

BBBBBBB@

Lx�iLy

|L|+Lz

�1

0

0

1

CCCCCCCA

=

0

B@
 

(+)

L

0

1

CA ,

(5.72a)

(i) L0 = �|L|; mode L
(�); U

L(�) =

s
|L|+ Lz

2|L|

0

BBBBBBB@

1

Lx+iLy

|L|+Lz

0

0

1

CCCCCCCA

=

0

B@
 

(�)

L

0

1

CA .

(5.72b)

We note here that  (±)

L
and  (±)

R
are only chiral eigenstates but neither the spin nor

the helicity eigenstates.

5.6.2 For the Lowest Landau level (LLL)

1. For R
2

LLL
= 0 in (5.48b) indicates that R0 = ±Rz, Rx = Ry = 0. The two

solutions obtained, respectively, in (5.87) and (5.88) in subsec 5.6.3 are given
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as

(i) R0 = Rz; mode R
(+); U

R(+) =

0

BBBBBBB@

0

0

1

0

1

CCCCCCCA

=

0

B@
0

�+

1

CA . (5.73a)

(ii) R0 = �Rz; mode R
(�); U

R(�) =

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

=

0

B@
0

��

1

CA , (5.73b)

where �+ =

0

B@
1

0

1

CA and �� =

0

B@
0

1

1

CA.

2. For LLL, L2

LLL
= 0 in (5.48a) indicates that L0 = ±Lz, Lx = Ly = 0. The two

solutions obtained, respectively, in (5.89) and (5.90) in subsec 5.6.3 are given

as

(i) L0 = Lz; mode L
(+); UL(+) =

0

BBBBBBB@

0

1

0

0

1

CCCCCCCA

=

0

B@
��

0

1

CA , (5.74a)

(i) L0 = �Lz; mode L
(�); U

L(�) =

0

BBBBBBB@

1

0

0

0

1

CCCCCCCA

=

0

B@
�+

0

1

CA . (5.74b)
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The spin operator along the z direction is given by

⌃3 = �
12 =

i

2

⇥
�
1
, �

2
⇤
= i �

1
�
2 =

0

B@
�
3 0

0 �
3

1

CA , (5.75)

where � with single index denotes Pauli spin matrices whereas that with double

indices denote generator of Lorentz group in spinor representation. Now,

⌃3
U
R(±) =

0

B@
�
3 0

0 �
3

1

CA

0

B@
0

�±

1

CA =

0

B@
0

�
3
�±

1

CA = ±

0

B@
0

�±

1

CA = ±U
R(±) , (5.76)

⌃3
U
L(±) =

0

B@
�
3 0

0 �
3

1

CA

0

B@
�⌥

0

1

CA =

0

B@
�
3
�⌥

0

1

CA = ⌥

0

B@
�⌥

0

1

CA = ⌥U
L(±) . (5.77)

So, the modes L(�) and R
(+) have spins along the direction of magnetic field whereas

L
(+) and R

(�) have spins opposite to the direction of magnetic field. Now we discuss

the helicity eigenstates of the various modes in LLL. The helicity operator is defined

as

Hp = p̂ ·⌃ . (5.78)

When a particle moves along +z direction, p̂ = ẑ and when it moves along �z

direction, p̂ = �ẑ.

Thus

Hp =

8
>><

>>:

⌃3
, for pz > 0,

�⌃3
, for pz < 0.

(5.79)
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Thus,

Hp UR(±) =

8
>><

>>:

±U
R(±) , for pz > 0,

⌥U
R(±) , for pz < 0.

(5.80)

and

Hp U
L(±) =

8
>><

>>:

⌥UL(±) , for pz > 0 ,

±U
L(±) , for pz < 0 .

(5.81)

5.6.3 Solution of the Modified Dirac equation at Lowest

Landau Level (LLL)

At LLL, l ! 0 ) p? = 0 and the e↵ective Dirac equation becomes

�
P+

/L+ P�
/R
�
U = 0

0

B@
0 R

0
� �

3
R

z

L
0
+ �

3
L
z

0

1

CAU = 0, (5.82)

where U =

0

B@
 L

 R

1

CA with  L(R) are 2⇥1 blocks. Now, the condition for the non-trivial

solution to exist is given as

det

0

B@
0 R

0
� �

3
R

z

L
0
+ �

3
L
z

0

1

CA = 0

⇥
(R

0
)2 � (R

z
)2
⇤ ⇥

(L
0
)2 � (L

z
)2
⇤
= 0

or, R
0
= ±R

z
, L

0
= ±L

z
, (5.83)
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• Case-I: For R
0
= R

z
one can write (5.82) as

0

BBBBBBB@

0 0 0 0

0 0 0 2R
z

L
0
+ L

z
0 0 0

0 L
0
� L

z
0 0

1

CCCCCCCA

.

0

BBBBBBB@

 
(1)

L

 
(2)

L

 
(1)

R

 
(2)

R

1

CCCCCCCA

= 0, (5.84)

which leads to the following conditions:

2R
z
 

(2)

R
= 0,

(L
0
+ L

z
) (1)

L
= 0,

(L
0
� L

z
) (2)

L
= 0,

(5.85)

 
(1)

R
= Arbitrary. (5.86)

For normalisation, we choose only non-zero component,  (1)

R
= 1 which leads

to

U
(+)

R
=

0

BBBBBBB@

0

0

1

0

1

CCCCCCCA

. (5.87)

Now, for R
0
= �R

z
, similarly one can obtain as

U
(�)

R
=

0

BBBBBBB@

0

0

0

1

1

CCCCCCCA

. (5.88)
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• Case-II: For L
0
= L

z
, one gets

U
(+)

L
=

0

BBBBBBB@

0

1

0

0

1

CCCCCCCA

, (5.89)

whereas for L
0
= �L

z
, one finds

U
(�)

L
=

0

BBBBBBB@

1

0

0

0

1

CCCCCCCA

. (5.90)

5.7 Dispersion
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Figure 5.3: Dispersion plots for higher Landau level, l 6= 0. The energy ! is scaled
with the thermal mass mth for convenience

In presence of magnetic field, the component of momentum transverse to the mag-

netic field is Landau quantised and takes discrete values given by p
2

? = 2l|qfB|,

110



CHAPTER 5. GENERAL STRUCTURE AND PROPERTIES OF QUARK
TWO-POINT FUNCTION IN HOT MAGNETISED MEDIUM

where l is a given Landau levels. In presence of pure background magnetic field and

no heat bath (T = 0), the Dirac equation gives rise a dispersion relation

E
2 = p

2

z
+m

2

f
+ (2 ⌫ + 1) qf |Q|B � qf QB � , (5.91)

where ⌫ = 0, 1, 2, · · · , Q = ±1, � = +1 for spin up and � = �1 for spin down. The

solutions are classified by energy eigenvalues

E
2

l
= p

2

z
+m

2

f
+ 2 l qf B . (5.92)

where one can define

2 l = (2 ⌫ + 1) |Q|�Q � . (5.93)

Now we discuss the dispersion properties of a fermions in a hot magnetised medium.

For general case (for higher LLs, l 6= 0) the dispersion curves obtained by solving,

L
2 = 0 and R

2 = 0 given in (5.47a) and (5.47b), numerically. We note that the

roots of L0 = ±|L| ) L0 ⌥ |L| = 0 are represented by L
(±) with energy !

L(±)

whereas those for R0 = ±|R| ) R0 ⌥ |R| = 0 by R
(±) with energy !R(±) . The

corresponding eigenstates are obtained in (5.72a), (5.72b), (5.70a) and (5.70b) in

subsection 5.6.1. We have chosen T = 0.2 GeV, ↵s = 0.3 and qfB = 0.5m2

⇡
, where

m⇡ is the pion mass. In Fig. 5.3 the dispersion curves for higher Landau levels are

shown where all four modes can propagate for a given choice of Q. This is because

the corresponding states for these modes are neither spin nor helicity eigenstates

as shown in subsec. 5.6.1. We also note that there will be negative energy modes

which are not displayed here but would be discussed in the analysis of the spectral

representation of the e↵ective propagator section 5.10.

At LLL l = 0 ! p? = 0 and the roots of R0 = ±Rz give rise to two right

handed modes R
(±) with energy !

R(±) whereas those for L0 = ±Lz produce 4 two

4We make a general note here for left handed modes at LLL. At small pz, Lz itself is negative
for LLL and becomes positive after a moderate value of pz. This makes the left handed modes
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Figure 5.4: Dispersion plots for LLL, l = 0. The energy ! is scaled with the thermal
mass mth for convenience. For details see the text.

left handed modes L(±) with energy !L(±) . In section 5.9 the analytic solutions for

the dispersion relations in LLL are presented which show four di↵erent modes and

the corresponding eigenstates are obtained in subsec. 5.6.2. Now at LLL we discuss

two possibilities below:

(i) for positively charged fermion Q = 1, � = 1 implies ⌫ = 0 and � = �1 implies

⌫ = �1. Now we note that ⌫ can never be negative. This implies that the

modes with Q = 1 and � = �1 (spin down) cannot propagate in LLL. Now,

the right handed mode R
(+) and the left handed mode L

(�) have spin up as

shown in subsec. 5.6.2, will propagate in LLL for pz > 0. The R
(+) mode

has helicity to chirality ratio +1 is a quasiparticle whereas the mode L
(�) left

handed has that of �1 known as plasmino (hole). However, for pz < 0, the

right handed mode flips to plasmino (hole) as its chirality to helicity ratio

becomes -1 whereas the left handed mode becomes particle as its chirality to

helicity ratio becomes +1. The dispersion behaviour of the two modes are

shown in the left panel of Fig. 5.4 which begins at mass m
⇤�

LLL

��
pz=0

as given in

(5.126).

L(+) and L(�) to flip in LLL than those in higher Landau levels. For details see section 5.9.
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(ii) for negatively charged fermion Q = �1, � = 1 implies ⌫ = �1 and � = �1

implies ⌫ = 0. Thus, the modes with Q = �1 and � = +1 (spin up) cannot

propagate in LLL. However, the modes L(+) and R
(�) have spin down as found

in subsec. 5.6.2 will propagate in LLL. Their dispersion are shown in the right

panel of Fig. 5.4 which begin at mass m
⇤+

LLL
as given in (5.126). For pz > 0

the mode L
(+) has helicity to chirality ratio +1 whereas R(�) has that of �1

and vice-versa for pz < 0.

L (+)

R (+)

L (-)

R (-)

-2 -1 0 1 2
0.0

0.5

1.0

1.5

2.0

pz /mth

ω
/
m
t
h

T=0.2 GeV

αs =0.3

qf B=0

ℓ=0

Figure 5.5: The dispersion plots corresponding to HTL propagator in absence of
magnetic field, i.e., B = 0.

In the absence of the background magnetic field (B = 0), the two modes, the

left handed L
(+) and the right handed R

(+) fermions, merge together whereas the

other two modes, the left handed L
(�) and the right handed R

(�) fermions, also

merge together. This leads to degenerate (chirally symmetric) modes for which the

dispersion plots start at mth and one gets back the usual HTL result [216] with

quasiparticle and plasmino modes in presence of heat bath as shown in Fig. 5.5.

As evident from the dispersion plots (Figs. 5.3 and 5.4) both left and right handed

modes are also degenerate at pz = 0 in presence of magnetic field but at non-zero |pz|

both left and right handed modes get separated from each others, causing a chiral

asymmetry without disturbing the chiral invariance (subsec. 5.5.1) in the system.
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Also in subsec. 5.5.2, it was shown that the fermion propagator does not obey the

reflection symmetry in presence of medium, which is now clearly evident from all

dispersion plots as displayed above.

5.8 Three Point Function

The (N + 1)-point functions are related to the N -point functions through Ward-

Takahashi (WT) identity. The 3-point function is related to the 2-point function

as

Qµ�
µ(P,K;Q) = S

�1(P )� S
�1(K) = /P � /K � ⌃(P ) + ⌃(K)

(5.94)

= (/P � /K)| {z }
Free

�
�
⌃B=0(P, T )� ⌃B=0(K,T )

�
| {z }
Thermal or HTL correction

�
�
⌃B 6=0(P, T )� ⌃B 6=0(K,T )

�
| {z }
Thermo-magnetic correction

(5.95)

= /Q+ a(p0, |p|)/P + b(p0, |p|)/u� a(k0, |k|) /K � b(k0, |k|)/u+ b
0(p0, p?, pz)�5/u

(5.96)

+ c
0(p0, p?, pz)�5/n� b

0(k0, k?, kz)�5/u� c
0(k0, k?, kz)�5/n , (5.97)

where Q = P �K. We note that recently the general form of the thermo-magnetic

corrections for 3-point [213, 215] and 4-point [215] functions have been given in

terms of the involved angular integrals, which satisfy WT identies. Nevertheless, to

validate the general structure of the self-energy in (5.7) vis-a-vis the inverse propa-

gator in (5.41), we obtain below the temporal component of the 3-point function at

q = 0; p = k and p = k .
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Using (5.14a), (5.14b), (5.14c) and (5.14d), we can obtain

�0(P,K;Q)
��
q=0

= �0 � m
2

th

pq0
�Q0 �

0 +
m

2

th

pq0
�Q1 (p̂ · �)

| {z }
Thermal or HTL correction

(5.98)

� M
02

pq0


�Q0 �5 +

pz

p
�Q1

�
i�

1
�
2
��
�
3

| {z }
Thermo-magnetic correction

(5.99)

= �
0 + ��0

HTL
(P,K;Q) + ��0

TM
(P,K;Q) , (5.100)

with

�5�
0 = �i�

1
�
2
�
3
,

(5.101)

M
02 = 4CF g

2
M

2(T,m, qfB) ,

(5.102)

�Qj = Qj

✓
p0

p

◆
�Qj

✓
k0

p

◆
. (5.103)

where Qj are the Legendre functions of the second kind given in (5.22a) and (5.22b).

Important to note that the thermo-magnetic (TM) correction ��0

TM
matches exactly

with that from direct calculation in (5.113) in Appendix 5.8.1. The result also agrees

with the HTL 3-point function [213, 215] in absence of background magnetic field

by setting B = 0 ) M
0 = 0 as

�0

HTL
(P,K;Q)

��
q=0

=


1 � m

2

th

pq0
�Q0

�
�
0 +

m
2

th

pq0
�Q1 (p̂ · �)

(5.104)

= �
0 + ��0

HTL
(P,K;Q) , (5.105)
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where all components, i.e., (0, 1, 2, 3), are relevant for pure thermal background.

Now in absence of heat bath, setting T = 0 ) mth = 0 and M
02 = 4CF g

2
M

2(T =

0,m, qf , B), the temporal 3-point function in (5.100) reduces to

�0

B
(P,K;Q)

��
q=0

= �
0 �M

02

pq0


�Q0 �5 +

pz

p
�Q1 (i�

1
�
2)

�
�
3

| {z }
Pure magnetic correction

(5.106)

= �
0 + ��0

M
(P,K;Q) . (5.107)

We now note that the 3-point function with pure background magnetic field but

no heat bath, the gauge boson is oriented along the field direction and there is no

polarisation in the transverse direction. Thus, only the longitudinal components (i.e,

(0,3)-components) of the 3-point function would be relevant for pure background

magnetic field in contrast to that of (5.105) for pure thermal background.

5.8.1 Verification of the Three Point Function from Direct

Calculation

In this section, we would verify the general structure of the temporal 3-point function

as obtained in sec. 5.8 using the general structure of the self-energy.

We begin with the one-loop level 3-point function in a hot magnetised medium

in [215] within HTL approximation [190,217] as

�µ(P,K;Q) = �
µ + ��µ

HTL
(P,K) + ��µ

TM
(P,K), (5.108)

where the external four-momentum Q = P �K. The HTL correction part [216–218]

116



CHAPTER 5. GENERAL STRUCTURE AND PROPERTIES OF QUARK
TWO-POINT FUNCTION IN HOT MAGNETISED MEDIUM

is given as

��µ

HTL
(P,K) =m

2

thG
µ⌫
�⌫

= m
2

th

Z
d⌦

4⇡

Ŷ
µ
Ŷ
⌫

(P · Ŷ )(K · Ŷ )
�⌫

= ��µ

HTL
(�P,�K), (5.109)

where Ŷµ = (1, ŷ) is a light like four vector and the thermo-magnetic (TM) correction

part [213, 215] is given

��µ

TM
(P,K) = 4�5g

2
CFM

2

Z
d⌦

4⇡

1

(P · Ŷ )(K · Ŷ )

h
(Ŷ · n)/u� (Ŷ · u)/n

i
Ŷ

µ
.(5.110)

Now, choosing the temporal component of the thermo-magnetic correction part of

the 3-point function and external three momentum q = 0, we get

��0

TM
(P,K)

��
q=0

= �5M
02

Z
d⌦

4⇡

1

(P · Ŷ )(K · Ŷ )

h
(Ŷ · n)/u� (Ŷ · u)/n

i

= �5M
02

Z
d⌦

4⇡

1

(P · Ŷ )(K · Ŷ )

h
(Ŷ · n)�0 + (Ŷ · u)�3

i
(5.111)

Along with this following identity:

✓
1

K · Ŷ
� 1

P · Ŷ

◆
=

Q · Ŷ
(P · Ŷ )(K · Ŷ )

=
q0

(P · Ŷ )(K · Ŷ )
,

(5.112)

and, Eq. (5.32) and Eq. (5.33), we one finally obtain

��0

TM
(P,K)

��
q!0

=
M

02
pz

p2q0
�Q1�5�

0 � M
02

pq0
�Q0�5�

3

= �M
02

pq0


�Q0 �5 +

pz

p
�Q1 (i�

1
�
2)

�
�
3
, (5.113)
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where �Qn = Qn

✓
p0

p

◆
� Qn

✓
k0

p

◆
. We note that this expression matches exactly

with the expression obtained in (5.107) from the general structure of fermion self-

energy.

5.9 Analytical Solution of the Dispersion Rela-

tions and the E↵ective Mass in LLL

The dispersion relations at LLL can be written the equations (5.48a) and (5.48b) as

L
2

LLL
= (Ap0 + B+)

2 � (Apz + c
0)2 = L

2

0
� L

2

z
= 0 , (5.114a)

R
2

LLL
= (Ap0 + B�)

2 � (Apz � c
0)2 = R

2

0
�R

2

z
= 0 , (5.114b)

each of which leads to two modes, respectively, as

L0 = ±Lz

(5.115a)

Ap0 + B+ = ± (Apz + c
0) , (5.115b)

and

R0 = ±Rz

(5.116a)

Ap0 + B� = ± (Apz � c
0) . (5.116b)

Below we try to get approximate analytical solution of these equations at small and

high pz limits.
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5.9.1 Low pz limit

In the low pz region, one needs to expand a(p0, |pz|), b(p0, |pz|), b
0(p0, 0, pz) and

c
0(p0, |pz|) defined in (5.14a), (5.14b), (5.14c) and (5.14d), respectively, which depend

on Legendre function of second kind Q0(x) and Q1(x) as given in equations (5.22a)

and (5.22b), respectively. The Legendre function Q0 and structure coe�cients are

expanded in powers of
|pz|
p0

as

Q0

✓
p0

|pz|

◆
=

|pz|
p0

+
1

3

|pz|3
p
3

0

+
1

5

|pz|5
p
5

0

+ · · · (5.117)

a(p0, |pz|) = �m
2

th

p
2

0

✓
1

3
+

1

5

|pz|2
p
2

0

+ · · ·
◆

, (5.118)

b(p0, |pz|) = �2
m

2

th

p0

✓
1

3
+

1

15

|pz|2
p
2

0

+ · · ·
◆

, (5.119)

b
0(p0, 0, pz) = 4 g2 CF M

2(T,m, qB) pz

✓
1

3 p2
0

+
|pz|2
5 p4

0

+ · · ·
◆

, (5.120)

c
0(p0, |pz|) = 4 g2 CF M

2(T,m, qB)

✓
1

p0
+

|pz|2
p
3

0

+ · · ·
◆

. (5.121)

Now retaining the terms that are upto the order of pz in (5.118), (5.119), (5.120),

(5.121), we obtain the following expressions for the dispersion relation of various

modes:

1. L0 = Lz leads to a mode L
(+) as

!
L(+)(pz) = m

⇤+

LLL +
1

3
pz . (5.122)

2. L0 = �Lz leads to a mode L
(�) as

!
L(�)(pz) = m

⇤�

LLL �
1

3
pz . (5.123)
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3. R0 = Rz leads to a mode R
(+) as

!
R(+)(pz) = m

⇤�

LLL +
1

3
pz . (5.124)

4. R0 = �Rz leads to a mode R
(�) as

!
R(�)(pz) = m

⇤+

LLL �
1

3
pz . (5.125)

where the e↵ective masses of various modes are given as

m
⇤±

LLL =

8
>>>>>><

>>>>>>:

p
m

2

th + 4g2CFM
2(T,M, qfB), for L

(+) &R
(�)

,

p
m

2

th � 4g2CFM
2(T,M, qfB), for R

(+) &L
(�)

.

(5.126)

5.9.2 High pz limit

We note that pz can be written as

pz =

8
><

>:

|pz|, for pz > 0

�|pz|. for pz < 0

In high pz limit, we obtain

1.

[1 + a(p
0
, |pz|)] (p0 � pz) + b(p

0
, |pz|)

=

8
>><

>>:

p
0
� |pz|� m

2

th
|pz |

, for pz > 0

2 |pz|+ m
2

th
|pz |

� m
2

th
|pz |

ln
⇣

2 |pz |

p
0
�|pz |

⌘
, for pz < 0

(5.127)
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2.

[1 + a(p
0
, |pz|)] (p0 + pz) + b(p

0
, |pz|)

=

8
>><

>>:

2 |pz|+ m
2

th
|pz |

� m
2

th
|pz |

ln
⇣

2 |pz |

p
0
�|pz |

⌘
, for pz > 0

p
0
� |pz|� m

2

th
|pz |

, for pz < 0

(5.128)

3.

b
0(p

0
, 0, pz) + c

0(p
0
, |pz|)

=

8
>><

>>:

4g
2
CFM

2

|pz |
ln
⇣

2|pz |

p
0
�|pz |

⌘
� 4g

2
CFM

2

|pz |
, for pz > 0

4g
2
CFM

2

|pz |
for pz < 0

(5.129)

4.

b
0(p

0
, 0, pz)� c

0(p
0
, |pz|)

=

8
>><

>>:

�4g
2
CFM

2

|pz |
for pz > 0

�4g
2
CFM

2

|pz |
ln
⇣

2|pz |

p
0
�|pz |

⌘
+ 4g

2
CFM

2

|pz |
. for pz < 0

(5.130)

1. L0 = Lz leads to a mode L
(+):

For pz > 0,

!L(+)(pz) = |pz|+
(m⇤+

LLL)
2

|pz|
. (5.131)

For pz < 0,

!
L(+)(pz) = |pz|+

2 |pz|
e

exp

✓
� 2 p2

z

(m⇤+

LLL)2

◆
. (5.132)

2. L0 = �Lz leads to a mode L
(�):
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For pz > 0,

!
L(�)(pz) = |pz|+

2 |pz|
e

exp

✓
� 2 p2

z

(m⇤�

LLL)2

◆
. (5.133)

For pz < 0,

!
L(�)(pz) = |pz|+

(m⇤�

LLL)
2

|pz|
. (5.134)

3. R0 = Rz leads to a mode R
(+):

For pz > 0,

!
R(+)(pz) = |pz|+

(m⇤�

LLL)
2

|pz|
. (5.135)

For pz < 0,

!
R(+)(pz) = |pz|+

2 |pz|
e

exp

✓
� 2 p2

z

(m⇤�

LLL)2

◆
. (5.136)

4. R0 = �Rz leads to a mode R
(�):

For pz > 0,

!
R(�)(pz) = |pz|+

2 |pz|
e

exp

✓
� 2 p2

z

(m⇤+

LLL)2

◆
. (5.137)

For pz < 0,

!
R(�)(pz) = |pz|+

(m⇤+

LLL)
2

|pz|
. (5.138)

Note that In the high momentum limit the above dispersion relations are given in

terms of absolute values of pz, i.e. |pz|.

We further note that the above dispersion relations in the absence of the magnetic
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field reduce to HTL results, where left and right handed are degenerate.

5.10 Spectral Function Representation of the Ef-

fective Quark Propagator

The e↵ective propagator as obtained in (5.46) is given by

S
⇤ = P�

/L

L2
P+ + P+

/R

R2
P� , (5.139)

where /L and /R can be written in the rest frame of the heat bath and the magnetic

field in the z-direction following (5.44a) and (5.44b), respectively, as

/L = [(1 + a(p0, p))p0 + b(p0, p) + b
0(p0, p?, pz)] �

0

� [(1 + a(p0, p))pz + c
0(p0, p?, pz)] �

3 � (1 + a(p0, p))(� · p)?

= [(1 + a(p0, p))p0 + b(p0, p) + b
0(p0, p?, pz)] �

0 � [p(1 + a(p0, p))] (� · p̂)

� c
0((p0, p?, pz)�

3

= g
1

L
(p0, p?, pz)�

0 � g
2

L
(p0, p?, pz)(� · p̂)� g

3

L
(p0, p?, pz)�

3
, (5.140)

/R = [(1 + a(p0, p))p0 + b(p0, p)� b
0(p0, p?, pz)] �

0

� [(1 + a(p0, p))pz � c
0(p0, p?, pz)] �

3 � (1 + a(p0, p))(� · p̂)?

= [(1 + a(p0, p))p0 + b(p0, p)� b
0(p0, p?, pz)] �

0 � [p(1 + a(p0, p))] (� · p̂)

+ c
0(p0, p?, pz)�

3

= g
1

R
(p0, p?, pz)�

0 � g
2

R
(p0, p?, pz)(� · p̂) + g

3

R
(p0, p?, pz)�

3
, (5.141)

where p̂ = p/p and, pz and p? are given, respectively, in (5.13b) and (5.13c). We

also note that though g
2

L
= g

2

R
; g

3

L
= g

3

R
, but they are treated separately for the

sake of notations that we would be using, for convenience, as gi
L
and g

i

R
.
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The e↵ective propagator in Eq. (5.46) can be decomposed into six parts by separating

out the � matrices as

S
⇤(p0, p?, pz) = P��

0P+

g
1

L
(p0, p?, pz)

L2
� P�(� · p̂)P+

g
2

L
(p0, p?, pz)

L2

� P��
3P+

g
3

L
(p0, p?, pz)

L2
+ P+�

0P�

g
1

R
(p0, p?, pz)

R2
� P+(� · p̂)P�

g
2

R
(p0, p?, pz)

R2

+ P+�
3P�

g
3

R
(p0, p?, pz)

R2
.

(5.142)

It was discussed earlier that L2 = 0 yields four poles, giving four modes with positive

and negative energy, !L(±)(p?, pz) and �!R(±)(p?, pz). Similarly, R2 = 0 also gives

four poles, namely !R(±)(p?, pz) and �!L(±)(p?, pz). With this information, the

spectral representation [179,216,218,219] is obtained for the e↵ective propagator in

Eq. (5.142) as

⇢ =
�
P��

0P+

�
⇢
1

L
� (P�(� · p̂)P+) ⇢

2

L
�
�
P��

3P+

�
⇢
3

L

+
�
P+�

0P�

�
⇢
1

R
� (P+(� · p̂)P�) ⇢

2

R
+
�
P+�

3P�

�
⇢
3

R
, (5.143)

where the spectral functions corresponding to each of the terms can be written as

⇢
i

L
=

1

⇡
Im

✓
g
i

L

L2

◆
=

1

⇡
Im

�
F

i

L

�

= Z
i+

L(+)
(p?, pz)�(k0 � !L(+)(p?, pz)) + Z

i+

L(�)
(p?, pz)�(p0 � !L(�)(p?, pz))

+ Z
i�

R(�)
(p?, pz)�(p0 + !R(�)(p?, pz)) + Z

i�

R(+)
(p?, pz)�(p0 + !R(+)(p?, pz)) + �

i

L
,

(5.144)

⇢
i

R
=

1

⇡
Im

✓
g
i

R

R2

◆
=

1

⇡
Im

�
F

i

R

�

= Z
i+

R(+)
(p?, pz)�(p0 � !R(+)(p?, pz)) + Z

i+

R(�)
(p?, pz)�(p0 � !R(�)(p?, pz))

+ Z
i�

L(�)
(p?, pz)�(p0 + !L(�)(p?, pz)) + Z

i�

L(+)
(p?, pz)�(p0 + !L(+)(p?, pz)) + �

i

R
,

(5.145)
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where i = 1, 2, 3. The delta functions are originated from the timelike domain (p2
0
>

p
2) whereas the cut parts �i

L(R)
are involved with the Landau damping originating

from the space-like domain (p2
0
< p

2) of the propagator. The residues Z
i

L(R)
are

determined at the various poles as

Z
i sgn of pole
L(R)

(p?, pz) = g
i

L(R)
(p0, p?, pz)

�����
@L

2(R2)

@p0

�����

�1

p0= pole
, (5.146)

where the expressions of residues can be written in terms of the structure coe�cients

a, b, b0, and c
0 and their derivatives.

5.11 Conclusions

In this chapter, the general structure of fermionic self-energy for a chirally invariant

theory has been formulated for a hot and magnetised medium. Using this we have

obtained a closed form of the general structure of the e↵ective fermion propaga-

tor. The collective excitations in such a non-trivial background has been obtained

for a time-like momenta in the weak field and HTL approximation in the domain

m
2

th(⇠ g
2
T

2
< |eB| < T

2). We found that the left and right handed modes get sep-

arated and become asymmetric in presence of magnetic field which were degenerate

and symmetric otherwise. The transformation of the e↵ective propagator in a hot

magnetised medium under some of the discrete symmetries have been studied and its

consequences are also reflected in the collective fermion modes in the Landau levels.

We have also obtained the Dirac spinors of the various collective modes by solving

the Dirac equation with the e↵ective two-point function. Further, we checked the

general structure of the two-point function by obtaining the three-point function

using the Ward-Takahashi identity, which agrees with the direct calculation of one-

loop order in weak field approximation. We also found that only the longitudinal

component of the vertex would be relevant when there is only background magnetic
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field. The spectral function corresponding to the e↵ective propagator is explicitly

obtained for a hot magnetised medium which will be extremely useful for studying

the spectral properties, e.g., photon/dilepton production, damping rate, transport

coe�cients for a hot magnetised medium. This has pole contribution due to the

various collective modes originating from the time-like domain and a Landau cut

contribution appearing from the space-like domain. It has explicitly been shown

that the spectral function reduces to that obtained for thermal medium in absence

of the magnetic field. Our formulation is in general applicable to both QED and

QCD with nontrivial background like hot magnetised medium.
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CHAPTER 6

Hard Dilepton Production in Hot

Magnetised QGP Medium

6.1 Introduction

The electromagnetic probes is among the most important ones. As Discussed in

Chapter 1, dileptons are very powerful and e�cient probes to study the evolution

of the heavy ion collision and the medium created in the collision owing to the fact

that they interact only electromagnetically. The dileptons are massive unlike real

photons. So by tuning their invariant mass M and transverse momentum pT to

investigate various stages of expanding medium [220]. Depending on the invariant

mass, the lepton pairs can be broadly classified in three distinct regimes [69,221,222]

1. Low-Mass Region (LMR) In this region, we have M  M�(= 1.024MeV)

and the domination source of dilepton emission are vector meson (e.g. ⇢, !,

�) decays.

2. Intermediate-Mass Region (IMR) Radiations from QGP dominates the

intermediate mass region with M� < M < MJ/ (= 3.1GeV).
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3. High-Mass Region (HMR) Lastly in HMR, i.e. M � MJ/ , heavy quarko-

nia (such as J/ , ⌥) suppression and primordial emission are the source of

dileptons.

For a current phenomenological and experimental understanding of dilepton emis-

sion from thermalised QCD matter, see [223].

The background magnetic field influences particle production in heavy-ion collision.

This conclusion is motivated by the challenges thrown at the existing theories of elec-

tromagnetic radiation by recent experimental results. A significant underestimation

of electromagnetic spectrum was observed in low momentum region [224,225]. Thus,

it is necessary to take into account the e↵ect of a magnetic field in the calculations

of dilepton production rate (DPR). Tuchin [226] first considered the magnetic con-

tribution to dilepton rate using equivalent photon approximation. In refs. [227–230],

authors have carried out field theoretical calculation in this direction. The presence

of magnetic field influences the general characteristics of the medium. As a result,

the properties of the quarks also get modified which in turn governs the DPR. But

none of the aforementioned work had taken the e↵ect of quasi-quark mode in DPR

into account. In our work, we attempt to fill this gap.

In this chapter, we shall discuss about dilepton production rate (DPR) from weakly

magnetised QGP medium. This discussion is based on Hard dilepton production

from a weakly magnetized hot QCD medium, Aritra Das, Najmul Haque, Munshi G.

Mustafa, Pradip K. Roy, Phys.Rev.D 99 (2019) 9, 094022 [231].
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6.2 Formulation of Dilepton Production Rate

In this section, we derive the rate equation for the dilepton production. This was

derived by McLarren-Toimela [232] and later reformulated by Weldon [233] in ther-

mal field theoretical approach. We follow the work of Weldon to derive the rate

equation. Consider a process (Fig. 6.1) in which an initial asymptotic state |Ii con-

I

F

`

`

�

Figure 6.1: Dilepton production amplitude

taining two nuclei converts into a final state |F `(k, �)`(k0
, �

0)i containing hadronic

species F along with lepton anti-lepton pair `` with momenta and z-component

of spin P , � and P
0, �0, respectively. The S-matrix element for the transition is

hF, `(k, �)`(k0
, �

0)|S |Ii where

S = T exp

✓
i

Z
d
4
XLint(X)

◆
. (6.1)

with T being time ordering operator. So, the probability of the transition from a

particular initial state |Ii to a final state |F, `(k, �)`(k0
, �

0)i
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is
��hF, `(k, �)`(k0

, �
0)|S |Ii

��2. The interaction Lagrangian is given as

Lint(X) = �e
�
j
µ

`
(X) + j

µ

h (X).
�
Aµ(X), (6.2)

In Eq. (6.2), the leptonic current jµ
`
(X) is given as

j
µ

`
(X) =  (X)�µ (X). (6.3)

The specific form of the hadronic current jµh (X) depends on the stage of the collision

under consideration. To evaluate the total rate, we note the following points

• Since the spin polarization (� and �0) of the final states of dileptons `` are not

being observed, they are summed over.

• Since we are considering a thermalized medium, all the informations about the

initial states |Ii are erased. As a result, we take the ensemble average over

all the initial states. This amounts to multiply a factor of exp (��EI) /Z(�)

with
��hF, `(k, �)`(k0

, �
0)|S |Ii

��2. Here EI is the energy of the state |Ii, i.e.,

H |Ii = EI |Ii with H being the total hamiltonian of the system and Z(�) =
P

I
exp (��EI) = Tr

�
e
��H

�
being the partition function.

• Also, analogous to the spin, we sum up all the final states |F i as the final

states are not observed except the leptons with momentum k and k0.

Thus, the inclusive probability of the transition, where the final state hadrons are

not observed, is given as

R =
X

F

X

I

X

�,�0

exp (��EI)

Z(�)

��hF, `(k, �)`(k0
, �

0)|S |Ii
��2 . (6.4)
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The S matrix element, defined in Eq. (6.1), is written, to the second order in the

interaction, as

hF, `(k, �)`(k0
, �

0)|S(2) |Ii = �e
2

Z
d
4
Xd

4
Y h`(k, �)`(k0

, �
0)| jµ

`
(Y ) |0i hF | jµh (X) |Ii

h0|T
✓
Aµ(X)A⌫(Y )

◆
|0i .

(6.5)

Here, the photon propagator is defined as

h0|T
✓
Aµ(X)A⌫(Y )

◆
|0i =

Z
d
4
P

0

(2⇡)4
e
�iP

0
·(X�Y )

�igµ⌫

P 02
. (6.6)

Also, the matrix element of the leptonic current is calculated as

h`(k, �)`(k0
, �

0)| jµ
`
(Y ) |0i = u(k, �)�µv(k0

, �
0)ei(K+K

0
).Y

. (6.7)

Here u and v are the Dirac spinors and k
0

0
=
p
k02 +m2 and k0 =

p
k2 +m2. Using

(6.7) and (6.6), the R.H.S of Eq (6.5) is written as

hF, `(k, �)`(k0
, �

0)|S(2) |Ii = ie
2
u(k, �)�µv(k

0
, �

0)

Z
d
4
Xe

�iP
0
·X hF | jµh (X) |Ii

Z
d
4
P

0

(2⇡)4
1

P 02

Z
d
4
Y e

i(P
0
+K+K

0
)·Y

.

(6.8)

To further simplify (6.8), we first do the y integration which yields �(4)(P 0 + P ).

Then, the P
0 integral is performed to get

hF, `(k, �)`(k0
, �

0)|S(2) |Ii = ie
2
u(k, �)�µv(k0

, �
0)

P 2

Z
d
4
Xe

iP ·X hF | jµh (x), |Ii , (6.9)
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where P µ = K
µ+K

0µ being the total four-momentum of the lepton-antilepton pair.

The complex conjugation of Eq. (6.9) leads to

�
hF, `(k, �)`(k0

, �
0)|S(2) |Ii

�⇤

= hI|S(2) |F, `(k, �)`(k0
, �

0)i = �ie
2
v(k0

, �
0)�⌫u(k, �)

P 2

Z
d
4
Ze

�iP ·Z hI| j⌫h (Z) |F i .

(6.10)

The leptonic spinor factor in front of Eq. (6.10) is obtained as follows

[u(k, �)�⌫v(k
0
, �

0)]† = v
†(k0

, �
0)�†

⌫
u
†(k, �) = v(k0

, �
0)�⌫u(k, �) (6.11)

by using the properties of conjugation  =  
†
�0 and �⌫† = �0�

µ
�0. So, we get

R =
X

F

X

I

X

�,�0

exp (��EI)

Z(�)

e
4

P 4
u(k, �)�µv(k

0
, �

0)v(k0
, �

0)�⌫u(k, �)

⇥
Z

d
4
Xd

4
Ze

iP ·(X�Z) hF | jµh (X) |Ii hI| j⌫h (Z) |F i

=
e
4

P 4
`µ⌫W

µ⌫

+ . (6.12)

Here, the leptonic tensor `µ⌫ is computed as

`µ⌫ =
X

�,�0

v(k0
, �

0)�µu(k, �)u(k, �)�⌫v(k
0
, �

0)

=
X

�,�0

Tr [v(k0
, �

0)�µu(k, �)u(k, �)�⌫v(k
0
, �

0)]

=
X

�,�0

Tr [v(k0
, �

0)v(k0
, �

0)�µu(k, �)u(k, �)�⌫ ]

= Tr

" 
X

�0

v(k0
, �

0)v(k0
, �

0)

!
�µ

 
X

�

u(k, �)u(k, �)

!
�⌫

#

= Tr
h⇣

/K
0 �m

⌘
�µ

�
/K +m

�
�⌫

i

= 4
⇥
KµK

0

⌫
+K

0

µ
K⌫ �

�
K ·K 0 +m

2

`

�
g
µ⌫
⇤
, (6.13)
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where m` is the mass of the lepton. Analogously, the hadronic tensor part is defined

as

W
µ⌫

+ =
X

F

X

I

exp (��EI)

Z(�)

Z
d
4
Xd

4
Ze

iP ·(X�Z) hF | jµh (X) |Ii hI| j⌫h (Z) |F i . (6.14)

To perform one of the position integral in R.H.S of Eq. (6.14), we make a change of

variable X
0 = X, ⌅ = X � Z. Thus

W
µ⌫

+ =
X

F

X

I

exp (��EI)

Z(�)

Z
d
4
X

0
d
4⌅eiP ·⌅ hF | jµh (X 0) |Ii hI| j⌫h (X 0 � ⌅) |F i .

(6.15)

Now, the initial and final states are asymptotic states which are the simultaneous

eigenstates of Hamiltonian and momentum operator. Combining this fact and the

identity j
µ

h (X
0) = e

iP.X
0
j
µ

h (0)e
�iP.X

0
, we arrive at

W
µ⌫

+ =
X

F

X

I

exp (��EI)

Z(�)

Z
d
4⌅eiP.⌅

Z
d
4
X

0
e
i(PF�PI).X

0 hF | jµh (0) |Ii ei(PI�PF ).(X
0
�⌅)

⇥ hI| j⌫h (0) |F i

=
X

F

X

I

exp (��EI)

Z(�)

Z
d
4⌅ei(P+PF�PI).⇠

Z
d
4
X

0 hF | jµh (0) |Ii hI| j⌫h (0) |F i ,

(6.16)

where P
µ

I
and P

µ

F
are the total four-momentum of the initial and final hadronic

states. Note that the integrand in Eq. (6.16) is independent of X 0 and the integral

is formally infinity. But, before performing it, we assume that the system is enclosed

in some large but finite volume V and the interaction is turned on for a large finite

time interval T . So, the X 0 integration is just the total spacetime volume VT of the
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system. Moreover, the ⌅ integral gives delta function

W
µ⌫

+ = (2⇡)4VT
X

F

X

I

exp (��EI)

Z(�)
�
(4)(P + PF � PI) hF | jµh (0) |Ii hI| j⌫h (0) |F i .

(6.17)

Since p
0

F
= EF and p

0

I
= EI , we use the delta function to replace EI with EF + p0

in exp(��EI) in Eq. (6.17) and get

W
µ⌫

+ = (2⇡)4VT e
��p0

X

F

X

I

exp (��EF )

Z(�)
�
(4)(P + PF � PI) hF | jµh (0) |Ii hI| j⌫h (0) |F i

= VT e
��p0

X

F

X

I

exp (��EF )

Z(�)

Z
d
4
Xe

i(P+PF�PI).X hF | jµh (0) |Ii hI| j⌫h (0) |F i

= VT e
��p0

X

F

X

I

exp (��EF )

Z(�)

Z
d
4
Xe

iP.X hF | jµh (X) |Ii hI| j⌫h (0) |F i .

(6.18)

Now, using the completeness relation of the states |Ii hI| = 1, we arrive at

W
µ⌫

+ = VT e
��p0

X

F

exp (��EF )

Z(�)

Z
d
4
Xe

iP.X hF | jµh (X)j⌫h (0) |F i

= VT e
��p0

X

F

1

Z(�)

Z
d
4
Xe

iP.X hF | exp (��H) jµh (X)j⌫h (0) |F i

= VT e
��p0

X

F

Z
d
4
X hjµh (X)j⌫h (0)i� (6.19)

From the definition of thermal expectation value, we finally arrive at the compact

form of the hadronic tensor W µ⌫

+ as

W
µ⌫

+ = VT e
��q0

Z
d
4
X hjµh (X)j⌫h (0)i� . (6.20)

Now the joint probability that the one lepton in momentum k and anti-plepton in

momentum state k0 per unit volume and per unit time is = R

VT

d
3
k

(2⇡)32Ek

d
3
k
0

(2⇡)32E
0
k
. So

the total number of dilepton in the four momentum range d4P per unit volume and
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per unit time is given as

d
4
P

Z
d
3
k

(2⇡)32k0

Z
d
3
k
0

(2⇡)32k0

0

Z
�
(4)(P �K �K

0)
e
4

(K +K 0)4
e
��p0`µ⌫Wµ⌫

+ , (6.21)

where

Wµ⌫

+ =

Z
d
4
Xe

iP ·X hjµh (X)j⌫h (0)i� . (6.22)

So, the total di↵erential multiplicity

dR

d4Xd4P
= e

4

Z
d
3
k

(2⇡)32Ek

Z
d
3
k
0

(2⇡)32E 0

k

�
(4)(P �K �K

0)
e
��p0

(K +K 0)4
`µ⌫Wµ⌫

+ (K +K
0).

(6.23)

It can be evidently simplified as using the delta function

dN
d4q

= e
��p0

e
4

P 4
Lµ⌫Wµ⌫

+ (Q), (6.24)

where

Lµ⌫ =

Z
d
3
k

(2⇡)32Ek

Z
d
3
k
0

(2⇡)32E 0

k

�
(4)(P �K �K

0)`µ⌫ . (6.25)

The Lµ⌫ is calculated by integrating over k and k0 as

Lµ⌫ =
1

(2⇡)6
2⇡

3

✓
1 +

2m2

`

P 2

◆r
1� 4m2

P 2
(PµP⌫ � P

2
gµ⌫), (6.26)

which upon neglecting the mass m
2

`
with respect to P

2 and noting that Wµ⌫

+ is

conserved, Eq. (6.23) becomes

dR

d4Xd4P
= � ↵

2

6⇡3q2
e
��p0gµ⌫Wµ⌫

+ , (6.27)
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where ↵ ⌘ e
2
/(4⇡) is the electromagnetic fine structure constant. Now, Wµ⌫

+ can be

written in terms of Fourier transformation of current-current commutator as

Wµ⌫

+ (P ) =
e
�p0

e�p0 � 1
Wµ⌫(P ), (6.28)

with

Wµ⌫(P ) =

Z
d
4
Xe

iP ·X h[jµh (X), j⌫h (0)]i� . (6.29)

Using the expression of hadronic current, we finally arrive at the expression of dif-

ferential DPR per unit volume

dR

d4Xd4P
=

↵

12⇡4

1

P 2

1

e�p0 � 1
Im⇧µ

µ
(p0 + i✏,p), (6.30)

where ⇧µ⌫ is the photon polarisation tensor.

6.3 DPR at Vanishing Magnetic Field

In this section, we first discuss the DPR from deconfined QGP medium without

any external magnetic field. In this stage, the dominant process to the lowest order

is the annihilation of a quark and an antiquark to produce a virtual photon which

subsequently decays into a lepton and and antilepton pair.

6.3.1 Born Rate

The Born rate is obtained from the annihilation of bare quarks and anti-quarks. It

is calculated from the imaginary part of the photon self energy as shown in Fig 6.2.
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2

Figure 6.2: Born rate follows from the imaginary part of photon polarisation tensor
which is obtained by cutting the one loop photon self energy

In the case of massless two flavour up and down quarks, Born rate takes the form

dR

d4Xd4P
=
X

f

⇣
qf

e

⌘2 ↵
2

4⇡4

n(p0)

�p0
ln

�
x2 + e

��(p0+µ)
� �

x1 + e
��µ

�

(x1 + e��(p0+µ)) (x2 + e��µ)
, (6.31)

where x2 = exp [��(p0 � p)], x1 = exp [��(p0 + p)] and n(y) =
�
e
�y � 1

��1

with µ

being the chemical potential of the medium. For µ = 0, Eq. (6.31) becomes

dR

d4Xd4P
=
X

f

↵
2

2⇡4

⇣
qf

e

⌘2 n(p0)

�p0
ln

cosh
⇥
�

4
(p0 + p)

⇤

cosh
⇥
�

4
(p0 + p)

⇤ . (6.32)

In the center of mass of the dilepton where the total three momentum becomes zero

p = 0, Eq. (6.31) becomes

dR

d4Xd4P
=
X

f

↵
2

4⇡4

⇣
qf

e

⌘2

en
⇣
p0

2
� µ

⌘
en
⇣
p0

2
+ µ

⌘
, (6.33)

where en(y) =
�
e
�y + 1

��1

.

6.3.2 Hard DPR at B = 0

We know that it is unwise to judge the reliability of the lowest order result of

DPR without considering the higher order correction into account. But infrared

singularity and gauge dependent result in higher order calculation is the inevitable

consequence of using bare perturbation theory. This problem can be circumvented

partially by using HTL resummation method as discussed in chapter 1. This sce-
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nario compels us to take into account one more possibility even if the momentum

flowing through the photon line is hard(⇠ T ). Since in this case, the momentum

flowing through one of the quark propagator can be hard while the other one can

be soft, it is su�cient to dress only one quark propagator and leaving the other one

and the vertices bare following the rule of HTLpt [235]. For this purpose, we use

q+
q-
q

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 6.3: Soft (HTL) and hard (free) quark dispersion relation. q+ and q� are
soft quarks coming from HTL resummed propagator and q is hard quark coming from
free propagator.

one hard quark propagator and Hard Thermal Loop (HTL) resummed soft quark

propagator with two modes [179] : one quasi-quark mode q+ with energy !+ and

other a plasmino mode q� with energy !�. The free hard quark is represented by q

with energy k. The corresponding dispersion is shown in Fig. 6.3. Now, in this case

the allowed dilepton production processes coming from pole-pole part are annihila-

tion processes qq+ �! �
⇤ �! l

+
l
� and soft decay process q� �! q�

⇤ �! ql
+
l
�.

There will also be other processes which are not allowed by energy conservation and

kinematic restriction with the photon momentum, p = 0. In addition, there will

also be pole-cut contributions, as will be discussed below in detail. We also note

that there is no cut-cut contribution as the spectral function for the hard propagator

has only pole contributions. Now, the one-loop photon self-energy ⇧µ

µ
with one hard
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propagator S0 and one resummed HTL propagator SHTL can be written as

⇧µ

µ
= �Nce

2
X

f

⇣
qf

e

⌘2XZ

K

Tr
⇥
�
µ
S0(K)�

µ
SHTL(Q)
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2
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e

⌘2X
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Z
d
3
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(2⇡)3

"
1
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1� k̂ · q̂
d+(q)

+
1 + k̂ · q̂
d�(q)

!

+
1

D�(k)

 
1 + k̂ · q̂
d+(q)

+
1� k̂ · q̂
d�(q)

!#
, (6.34)

with

d±(q0, q) = q0 � q (6.35)

D±(k0, k) = k0 ⌥ k � m
2

th

2k

✓
1⌥ k0

k

◆
log

k0 + k

k0 � k
± 2

�
. (6.36)

Now, the imaginary part of Eq. (6.34) is obtained as

Im⇧µ

µ
= 2Nce

2
T

X

f

⇣
qf

e

⌘2 �
e
E/T � 1

�
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3
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(2⇡)3
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1
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Z
1
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h
(1� k̂ · q̂)(⇢+r� + ⇢�r+)

+ (1 + k̂ · q̂)(⇢+r+ + ⇢�r�)
i
,

(6.37)

which at p = 0 reads as

Im⇧µ

µ
= 2Nce

2
T⇡

X

f

⇣
qf

e

⌘2 �
e
E/T � 1

�

⇥
Z

d
3
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(2⇡)3

Z
1

�1

d!

Z
1

�1

d!
0
�(E � ! � !

0)en(!)en(!0)2(⇢+r+ + ⇢�r�). (6.38)

139



CHAPTER 6. HARD DILEPTON PRODUCTION IN HOT MAGNETISED
QGP MEDIUM

The spectral representations of soft and hard propagator read [179], respectively, as

⇢±(!, k) =
!
2 � k

2

2m2

th

[�(! � !±(k)) + �(! + !⌥(k))] + �±(!, k)⇥(k2 � !
2), (6.39)

r±(!
0
, k) = �(!0 ⌥ k), (6.40)

with

�±(x, y) =
1

2

y ⌥ x
h
y(x⌥ y)� 1

2

⇣
1⌥ x

y

⌘
log

���x+y

x�y

���⌥ 1
i2

+
h
1

2
⇡

⇣
1⌥ x

y

⌘i2 , (6.41)

where x = !/mth and y = k/mth. The soft spectral function contains the pole part

coming from the poles of the HTL propagator and Landau cut contribution from the

space-like domain, k2
< !

2, of the HTL propagator. The hard spectral function has

only pole parts. So, there will be four energy conserving � functions from the pole-

pole part, namely, �(E+!++k), �(E�!�+k), �(E�!++k) and �(E�!+�k). But

two processes qq+�⇤ �! nothing and q �! q��
⇤ �! q�l

+
l
� coming, respectively,

from �(E + !+ + k) and �(E + !� � k) are not allowed by the energy conservation.

The remaining two allowed processes coming from �(E�!+�k) and �(E�!�+k)

lead to the respective processes qq+ �! �
⇤ �! l

+
l
� and q� �! q�

⇤ �! ql
+
l
� as

discussed earlier. The resulting pole-pole part of the dilepton rate is
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(6.42)

140



CHAPTER 6. HARD DILEPTON PRODUCTION IN HOT MAGNETISED
QGP MEDIUM

Scaling !±, k with mth as x± = !±/mth, Es = E/mth and we get
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����
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#
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(6.43)

Now, the pole-cut part of the rate is obtained as
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⇥ [�+(x, y)en(x)en(y)�(Es � x� y) + ��(x, y)en(x)en(�y)�(Es � x+ y)] .

(6.44)

We note that the second term of the pole-cut rate will vanish as the delta function

gives the condition x = Es + y, which lies outside of the domain �y  x  y and

the pole-cut contribution becomes

dR

d4xd4P

����
pole�cut

=
2↵2

⇡4E2
s

X

f

⇣
qf

e

⌘2
Z

y
2
dy �+(Es � y, y)en(Es � y)en(y)⇥(2y � Es).

(6.45)

It is worth it to write the Born rate [234] by setting µ = 0 in Eq. (6.33) as

dR

d4xd4P

����
Born

=
X

f

⇣
qf

e

⌘2 ↵
2

4⇡4
en2(E/2). (6.46)

In Fig. 6.4, we display the dilepton rate in the absence of magnetic field. For E = 0

the dilepton rate begins with the transition process q� �! q�
⇤ �! ql

+
l
�. This rate
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Figure 6.4: Dilepton rate for vanishing magnetic field

begins with a divergence as all plasmino, q�, modes with higher energy (Fig. 6.3)

prefer to make the transition to a free quark mode with lower energy and thus the

density of states diverges. However, this rate decays very first because the plasmino

mode q� is exponentially suppressed and merges with the free hard quark mode as

shown in Fig. 6.3. Then the annihilation of one soft (q+) and one hard (q) mode,

qq+ �! �
⇤ �! l

+
l
�, begins when E = mth (as the mass of the hard mode is zero).

It then grows with E and matches with the Bonn rate at large E. The dilepton rate

coming from pole-cut part dominates at low E and falls o↵ below the Bonn rate at

large E. The net rate dominates the Bonn rate at low energy.

6.4 DPR at Non-Zero Magnetic Field

The dispersion solutions [210] are noted as a function of p? and pz as

L+ = 0 =) p0 =
⇣
!L(+),�!R(�)

⌘
, (6.47)

L� = 0 =) p0 =
⇣
!L(�),�!R(+)

⌘
, (6.48)

R+ = 0 =) p0 =
⇣
!R(+),�!L(�)

⌘
, (6.49)

R� = 0 =) p0 =
⇣
!R(�),�!L(+)

⌘
. (6.50)
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The corresponding dispersion of various quark modes qL(+), qL(�), qR(+) and qR(�) with

respective frequencies !L(+), !L(�), !R(+) and !R(�) are displayed in Fig. 5.3. The free

dispersion of hard quark q with energy ! =
p

p2
z
+ p

2

?
is displayed in Fig. 6.3. It

is clear from Fig. 5.3 that the processes that we expect will involve one hard and

one soft quark since we are using one free (hard) quark propagator in the presence

of magnetic field and one resummed thermomagnetic quark (soft) propagator in

Fig. 6.5. Now, one can write the various dilepton production processes from the

dispersion plot as qqL(+) �! �
⇤ �! l

+
l
�, qqL(�) �! �

⇤ �! l
+
l
�, qqR(+) �! �

⇤ �!

l
+
l
�, and qqR(�) �! �

⇤ �! l
+
l
�. There could also be soft decay processes like

qL(+) �! q�
⇤ �! ql

+
l
�, qL(�) �! q�

⇤ �! ql
+
l
�, qR(+) �! q�

⇤ �! ql
+
l
�, and

qR(�) �! q�
⇤ �! ql

+
l
�. We will see below that all of them may not be allowed due

to kinematic restrictions. Also, besides these processes there will be soft processes

from Landau cut contributions.

K-P(=Q)

K

PP

Figure 6.5: Feynman diagram for the production of the hard dileption in presence
of weak background magnetic field

In this section, we shall investigate dilepton production in the presence of weak

homogeneous background magnetic field. We are concerned on the dilepton whose

momenta are of the order of T , i.e., p0, p ⇠ T . In that case, as discussed, we need

to dress just one quark propagator [235] as in Fig. 6.5. The bare propagator in the

weak magnetic field approximation is given as

SF (K) =
/K +mf

K2 �m
2

f

+ i�
1
�
2

/Kk +mf

(K2 �m
2

f
)2

qfB +O[(qfB)2]

= S
(0)

F
(K) + S

(1)

F
(K) +O[(qfB)2], (6.51)
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where S(0)

F
is the O[(qfB)0] and S

(1)

F
is the O[(qfB)] part of the propagator SF . The

dressed propagator is given as

S
⇤(K) = P�

/L(K)

L(K)2
P+ + P+

/R(K)

R(K)2
P�, (6.52)

which, for convenience, is decomposed into two parts as

S
⇤(K) = S

⇤

L
(K) + S

⇤

R
(K), (6.53)

where

S
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L2
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⇤

R
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/R

R2
P�. (6.54)

Now, using Eqs. (6.51) and (6.53), the one-loop photon polarization tensor corre-

sponding to Fig. 6.5 can be obtained as
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(6.55)

The result of the Dirac trace is

Tr
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µ
S
⇤(K)�µSF (Q)

⇤
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(6.56)

where mf is the current quark mass. The components of Lµ = (L0
, L

1
, L

2
, L

3) and
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R
µ = (R0

, R
1
, R

2
, R

3) are given by

L
0 = [1 + a(k0, k)] k0 + b(k0, k) + b

0(k0, k?, kz),

L
i = [1 + a(k0, k)] k

i; i = 1, 2

L
3 = [1 + a(k0, k)] kz + c

0(k0, k),
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R
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R
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0(k0, k). (6.57)

Now Eq. (6.57) can be expressed in terms of gi
L,R

(i = 1, 2, 3) as
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3 � g
3
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(k0, k). (6.58)

As discussed in the previous subsection, we will investigate the case in which the

virtual photon is at rest in the plasma rest frame, i.e., p = 0, P µ = (p0,0). In this
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case, Qµ = K
µ � P

µ = (k0 � p0,k). Thus, Eq. (6.55) becomes
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(6.59)

Here in Eq. (6.59), !k ⌘
p

k2 +m2
f and we used the shorthand notation as F i

(L,R)
⌘

F
i

(L,R)
(k0, k?, kz) and f

(0),(1)

0,1
⌘ f

(0),(1)

0,1

�
k0 � p0, k

�
. Written explicitly they are given
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(6.60)

We take the imaginary part of Eq. (6.59) with a decomposition as
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where p
0

0
= p0 + i✏. The various terms on the R.H.S. of the above equation are
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defined as
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Now, by applying the Braaten-Pisarski-Yuan prescription [216], the imaginary parts

of Eqs. (6.62) -(6.67) can be obtained in terms of the spectral function of the prop-
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agators [Eqs. (5.144), (5.145), (C.1), (C.2), (C.3) and (C.4)] as
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As before, the rate has a pole-pole and a pole-cut part. There will also be no cut-cut

part since the spectral function for a hard quark has only the pole part. Below, we

compute various contributions.
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6.4.0.1 Pole-Pole Part

Here, to compute the pole-pole contribution of the dilepton rate, we divide it by

two parts. The contribution coming from the free part of SF and S
⇤ is termed as

(a) magnetic field-independent part, whereas that coming from the O[(qfB)] part

of SF and S
⇤ is termed as (b) magnetic field-dependent part. Note that we neglect

current quark mass mf so that !k = k.

(a) Magnetic Field Independent Part:

Using Eq. (C.11) in (6.68), we get,
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(6.74)

Now, the spectral functions ⇢1
L
and ⇢1

R
have a pole part as well as a cut part. But

here we will only use the pole part of the spectral functions. In the pole part, there

are four terms in ⇢
1

L(R)
[Eqs. (5.144) and (5.145)] out of which the terms with a

positive sign of the pole will survive from energy conservation and we now write
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them as
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Now, in a similar manner and using Eq. (C.12) in Eq. (6.69), we get

Im2µ

µ

��
pole-pole

=
3e2

2⇡

X

f

⇣
qf

e

⌘2 �
1� e

�p0
� Z 1

0

dk k
2

Z
1

�1

d⇠

Z
1

�1

d! en(!)
⇥
⇢
2

L
(!)

+⇢2
R
(!)

⇤ ⇥
en(k)�(p0 � ! � k)� en(�k)�(p0 � ! + k)

⇤

=
3e2

2⇡

X

f

⇣
qf

e

⌘2

(1� e
�p0)

Z
1

0

dk k
2

Z
1

�1

d⇠

"
Z

2+

L(+)
en(!L(+))en(k)�(p0 � !L(+) � k)

+ Z
2+

L(�)
en(!L(�))en(k)�(p0 � !L(�) � k) + Z

2+

R(+)
en(!R(+))en(k)�(p0 � !R(+) � k)

+ Z
2+

R(�)
en(!R(�))en(k)�(p0 � !R(�) � k)� Z

2+

L(+)
en(!L(+))en(�k)�(p0 � !L(+) + k)

� Z
2+

L(�)
en(!L(�))en(�k)�(p0 � !L(�) + k)� Z

2+

R(+)
en(!R(+))en(�k)�(p0 � !R(+) + k)

� Z
2+

L(+)
en(!L(+))en(�k)�(p0 � !L(+) + k)

#
. (6.76)

151



CHAPTER 6. HARD DILEPTON PRODUCTION IN HOT MAGNETISED
QGP MEDIUM

Also using Eq. (C.12) in Eq. (6.70), we obtain
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(b) Magnetic Field Dependent Part:

We begin by stating that some terms with derivatives of Dirac � functions are

present. But after doing integration by parts, these terms will eventually get elim-

inated. Also, using the parity properties of the � function and its derivatives it is

easy to see that ⇢1
(0)
(�!0) = �⇢1

(0)
(!0). Using Eq. (C.16) in Eq. (6.71), we get
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(6.78)
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At this point, we use partial fraction method to eliminate �0(! ± k), and it gives
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(6.79)

The last term, i.e., the term that contains a derivative with respect to k, when

integrated out gives the boundary term and it vanishes. Also, by using the properties
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of the � function, one obtains the pole-pole part as
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Using (C.15) in Eq. (6.72), we get
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Finally using Eq. (6.73), we get
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(c) Dilepton rate from various processes in pole-pole part in presence of magnetic field:

We note that for numerical computation we change the integration from spherical

polar to cylindrical polar through the transformation k? = k

p
1� ⇠2, kz = k⇠,

where ⇠ = cos ✓. Using (6.61) and grouping the delta functions together we get the

dilepton rates in terms of the cylindrical polar coordinate from various processes

discussed before as follows:
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From the parity symmetry of the dispersion mode, it is possible to show that
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Finally, the pole-pole contribution of the hard dilepton rate becomes
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We note that the various soft decay modes will contribute only to the soft dilepton

production at low energy. Since we are interested in hard dilepton production rate,

only the annihilation modes will contribute and we will omit those soft decay modes

from our considerations. The resulting pole-pole contribution is plotted in Fig. 6.6.

In the left panel the rate is displayed as a function of dilepton energy at T = 200

MeV but for di↵erent magnetic fields. In the absence of magnetic field (eB = 0) the

annihilation between a hard and a soft quark starts when dilepton energy E = mth
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and resembles that of qq+ �! �
⇤ �! l

+
l
� as given in Fig. 6.4. As the magnetic

field is turned on, all four quasiparticle modes, namely, !L(+), !L(�), !R(+), !R(�), as

shown in Fig. 5.3, separately participate in annihilation with hard quark. As can

be seen, the dilepton rate at finite magnetic field begins at little higher energy of

the virtual photon compare to the vanishing magnetic field. This is because the

presence of magnetic field contributes to the thermomagnetic mass which is lower

than the thermal mass. As the energy of the dilepton increases, the rate becomes

almost equal to that in absence of magnetic field. In the right panel of Fig. 6.6, the

rate is displayed for various temperatures for a given magnetic filed. At energy up

to the E = p0 ⇡ 2mth, the rate is found to be almost independent of T as magnetic

field may be the dominant scale there. At energies E = p0 > 2mth, the rate increases

with the increase of T as T is the dominant scale in the weak field approximation.

B=0
eB=mπ

2

eB=2mπ
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Figure 6.6: Pole-pole contribution of the dilepton production rate as a function of
the energy of dilepton in the center-of-mass reference frame at T = 200 MeV with
di↵erent magnetic field (left panel) and eB = m2

⇡ with di↵erent temperature (right
panel).

6.4.0.2 Pole-Cut Contribution

The presence of ⇥ due to spacelike momentum in the Landau cut contribution of

the spectral function, ⇥(k2 � !
2)�i

L(R)
(!, k?, kz), immensely simplifies the pole-cut
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rate. From Eq. (6.74), we get
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We note that the term with �(p0 � !+ k) will have no contribution because ⇥[k2 �

(p0 + k)2] = ⇥[�p0(p0 + 2k)2] will never be satisfied since k, p0 > 0. The expression

to evaluate the pole-cut contribution is
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where �i

(L/R)
⌘ �

i

(L/R)
(p0 � k, k?, k

3).
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Figure 6.7: Same as Fig. 6.6 but for the pole-cut contribution.

In the left panel of Fig. 6.7, the pole-cut contribution is plotted for various magnetic

fields with T = 200 MeV. It is found to be independent of of the magnetic field. This

is because magnetic field appears as a correction in the weak field approximation

and we have considered the rate up to O[(eB)]. On the other hand, in the left panel
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of Fig. 6.7, it is plotted for various temperatures for a given magnetic field. The

rate is found to be enhanced with the increase in temperature as the temperature is

the dominant scale in the weak field approximation. Total dilepton rate is obtained

by adding the pole-pole contribution from Eq. (6.92) and the pole-cut contribution

from Eq. (6.94) and is plotted in Fig. (6.8) with similar behavior as in Fig. 6.6.
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Figure 6.8: Total rate, sum of pole-pole and pole-cut contributions, of dilepton
production r as a function of the energy of dilepton for various magnetic fields (left
panel) and for various temperatures (right panel).

6.5 Conclusion

In conclusion, we have systematically investigated thermal dilepton production from

a hot magnetized QCD medium in the weak field approximation. Since we are in-

terested in the hard dilepton rate, it is su�cient to use just one resummed and one

bare propagator in the presence of magnetic field in the photon polarization tensor

diagram in Fig. 6.5. We note that the earlier works were carried out using free prop-

agators for both the fermions in the loop in the presence of magnetic field. Since

we have one resummed propagator, its spectral representation contains a pole and

a (Landau) cut contribution. On the other hand, a hard spectral function corre-

sponding to bare propagator has only pole contribution. The dilepton rate contains

two types of contributions: pole-pole and pole-cut. As the magnetic field is turned

on, all four quasiquark modes, namely, !L(+), !L(�), !R(+), and !R(�) individually
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participate in annihilation with a hard quark and contribute to the pole-pole part

of the dilepton production. These annihilation processes start at higher energies as

the thermomagnetic mass increases in the presence of magnetic field. The pole-cut

contribution is found to dominate over those annihilation processes at low energies.

In weak field approximation, magnetic field appears as a correction to the thermal

contributions. Since, for simplicity, we have considered only O[(eB)] correction, the

e↵ect of magnetic field on the rate is found to be very marginal here. For having

a moderate e↵ect of the magnetic field, one may need to take into account QCD

corrections.
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CHAPTER 7

Summary and Outlook

The phenomena of asymptotic freedom in QCD makes the theory of strong interac-

tion distinct. It is accountable for the creation of a deconfined state of matter when

the coupling constant decreases making quarks and gluons asymptotically free. In

nature, QGP is believed to persist after few microseconds of Big Bang and in the

core of neutron stars. But they are too unattainable for us to perform any real-time

experiments. However, much to our surprise, ultra-relativistic heavy-ion collision ex-

periments can generate a transient deconfined state of matter in a very small spatial

volume. Characterization of QGP has great implication in understanding the laws of

nature on another level as it acts as a bridge between the physics of early universe

and neutron stars. A high anisotropic magnetic field is generated in non-central

heavy ion collision in the direction perpendicular to the reaction plane. There are

good reasons, based on LQCD and hydrodynamics simulations along with recent

experimental observations, to believe that this magnetic field gives rise to some

novel phenomena and influences QCD confinement-deconfinement and chiral phase

transitions, properties of the medium and signatures of QGP. In this dissertation,

we have discussed DPR in weakly magnetized medium. Dileptons are considered

as one of the excellent probes as they bring least contaminated information of the

medium because interact only electromagnetically with the medium. A huge amount
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of works were dedicated towards the production rate of dileptons from various stages

of HIC. Dileptons that are produced in the QGP medium are called thermal dilep-

tons. Thermal dileptons are the decay product of virtual photons which, in turn,

are originated either from quark-antiquark anihillation or decay of radiation from

quarks. Now, quarks are a↵ected by the background magnetic field which in turn

influences the production rate of dileptons.

In chapter 1, we have first discussed some prelimenaries related to QGP and HIC

such as QCD phase transitions, probes of QGP, a brief timeline regarding HIC. Then

we presented the impact of magnetic field followed by the mechanism involved in its

generation. In chapter 2, we have took the readers on a short trip to the basics of

thermal field theory. We have developed the formalism of ITF based on operational

method as well as path integral method. While developing the Feynman rules in

ITF, we noted that integral over the zeroth component of loop momentum is replaced

by discrete sum over Matsubara frequencies owing to the fact that the topology of

space-time becomes S
1 ⇥ R3 from R4. However, any physical result should be ob-

tained after analytic continuation from discrete frequency from continuous domain.

Also HTL resummation method was also introduced and it’s inevitable presence in

the calculation of gauge independent observable was illustrated.

In chapter 3, we have thoroughly presented the two point green’s function of a free

fermion subjected to external, time-independent, homogeneous background mag-

netic field. We employed Schwinger’s proper time method in deriving the prop-

agator. We presented the propagator in two representation, namely integral over

proper time and a summation over Landau levels., and explicity derived one rep-

resentation starting from the other. Also, the analytical expression of two extreme

limits,namely the strong and weak field limit, was obtained. When the scale of the
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magnetic field is much greater than all the involved scale of the system, the strong

field approximation is relevant. On the contrary, when the strength of the magnetic

field is much less, the weak field approximation can be used.

In chapter 4, we discussed the properties of collective excitations of quarks in hot

deconfined medium in a nutshell. In doing so, we have used HTL approximation

which is based on physics of two distinguishable scale — hard scale (⇠ T ) and soft

scale (⇠ gT ). When a quark propagates in an interacting zero-temperature vac-

uum, it gets dressed due to the interactions. As a result, it’s mass gets modified.

However, while travelling in thermal medium apart from the ordinary quasi-quark

mode q+, an additional collective mode, called plasmino mode q� appears due to the

breaking of Lorentz invariance. Similar to the case in vacuum, the collective modes

propagates with an e↵ective mass. It is called thermal mass and it depends on the

temperature and strong coupling constant as mth ⇠ gT . It is evident from the scale

of the thermal mass that one needs to take into account the e↵ect of quasi-quark

modes to describe the physics at the soft scale. The e↵ective propagator, whose

poles gives us quasi-quark dispersion relation of quasi-quark mode, obeys all of the

discrete symmetry of the system along with ward identity.

In chapter 5, we discussed the properties of quasi-quark excitations in hot decon-

fined medium in presence of external background magnetic field. The discussions in

this chapter goes hand to hand with that of chapter 4. The presence of magnetic

field introduces a magnetic scale |eB| in the medium in addition to hard (⇠ T ) and

soft scale (⇠ gT ). We have considered the scale hierarchy m
2

th(⇠ T ) < |eB| < T
2

which is relevant for the late time in the evolution of magnetic field. Therefore it is

su�cient to use weak field approximated propagator upto O (|eB|). The collective

quasi-quark mode splits into four, namely !L(±) and !R(±), in weakly magnetised
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QGP medium. All of these modes are timelike. The transverse momentum of these

modes are quantised into Landau Levels as quarks carries electric charge. Also, the

quasi-quark excitations acquires a thermo-magnetic mass analogous to thermal mass

in hot medium. Next, we investigated discrete symmetry of the e↵ective propagator

and found out that it is invariant under parity, chirality, charge conjugation and

time-reversal.

In chapter 6, we derived hard dilepton production rate in weakly magnetised medium.

The DPR has two contributions — pole-pole and pole-cut contributions. The

pole pole contribution gives the amplitude of the processes involved in production

mechanism namely the annihilation of a hard quark with quasi-quark and decay

of a quasi-quark. These processes are !L(±)q ! �
⇤ ! ``, !R(±)q ! �

⇤ ! ``,

!L(±) ! q�
⇤ ! q`` and !R(±) ! q�

⇤ ! q``. The cut-pole contribution comes from

the spacelike domain of virtual photon momenta. Physically, Landau damping is

manifested through the cut-pole contribution. The magnetic field is responsible for

very marginal increment of the threshold energy of annihilation process. From the

parity symmetry of the dispersion mode, one can show that the annihilation and

decay process involving !L(+)

�
!L(�)

�
is the same as that of !R(+)

�
!R(�)

�
.

The complete determination of quasi-quark modes in magnetised media would in-

volve the exact fermion propagator in presence of magnetic field. With this, the

calculation of hard as well as soft dilepton production rate would complete the pic-

ture. However, for the soft dilepton rate, we need to replace all of the bare vertex

with e↵ective vertex and the bare prapagators with e↵ective propagators.
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APPENDIX A

Frequency Sums

The frequency sums F (0,0)

(F,B)
shown in Eq. (4.15) and F (1,0)

(F,B)
shown in Eq. (4.16) are

performed in this Appendix.

We define two factors

e�(k0, E) ⌘ 1

k
2

0
� E2

, (A.1)

with k0 = i(2n+1)⇡T+µ related to the fermionic propagator where µ is the chemical

potential of the system and

�(k0, E) ⌘ 1

k
2

0
� E2

, (A.2)

with k0 = i2n⇡T related the bosonic propagator.

So the frequency sums take the following form

F (0,0)

(F,B)
= T

1X

n=�1

e�(k0, E1)�(p0 � k0, E2) (A.3)

F (1,0)

(F,B)
= T

1X

n=�1

k0
e�(k0, E1)�(p0 � k0, E2) (A.4)
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Now, we can rewrite e� and � from Eq. (A.1) and Eq. (A.2), respectively,as

�(k0, E) =
X

s=±1

�s(k0, E), e�(k0, E) =
X

s=±1

e�s(k0, E), (A.5)

where we have defined

e�s(k0, E) ⌘ s

2E

1

k0 � sE
, (A.6)

�s(k0, E) ⌘ s

2E

1

k0 � sE
. (A.7)

Next, we write e�s1
(k0, E1) in Eq. (A.6) and �s2

(p0 � k0, E2) in Eq. (A.7) in mixed

representation as

e�s1
(k0, E1) = en+(s1E1)

�Z

0

d⌧ e
�⌧(k0�s1E1) (A.8)

�s2
(p0 � k0, E2) = �n(s2E2)

�Z

0

d⌧ e
�⌧(p0�k0�s2E2) (A.9)

A.0.1 F (0,0)
(F,B)

We note that term in Eq. (A.3) can be casted as

F (0,0)

(F,B)
=

X

s1=±1

X

s2=±1

Is1,s2 , (A.10)

where we have defined

Is1,s2 ⌘ T

X

k0

e�s1
(k0, s1E1)�s2

(p0 � k0, s2E2). (A.11)
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Now, the k0 sum in Is1,s2 is computed as

Is1,s2 = �T

X

k0

en+(s1E1)n(s2E2)
s1s2

4E1E2

�Z

0

d⌧1d⌧2 exp
�
�
⇥
⌧1(k0 � s1E)

+ ⌧2(p0 � k0 � s2E2)
⇤ 

= �T

X

k0

en+(s1E1)n(s2E2)
s1s2

4E1E2

�Z

0

d⌧1d⌧2 exp
�
�
⇥
⌧1(i!n + µ� s1E)

+ ⌧2(i!l + µ� i!n � µ� s2E2)
⇤ 

= �T

X

k0

en+(s1E1)n(s2E2)
s1s2

4E1E2

�Z

0

d⌧1d⌧2 exp [�i⌧2!l � ⌧1µ+ s1⌧1E1

+s2⌧2E2] exp [i!n (⌧2 � ⌧1)]

= �en+(s1E1)n(s2E2)
s1s2

4E1E2

�Z

0

d⌧1d⌧2 exp [�i⌧2!l � ⌧1µ+ s1⌧1E1 + s2⌧2E2]

T

X

k0

exp [i!n (⌧2 � ⌧1)] .

(A.12)

Applying the following resolution of delta function

T

1X

n=�1

exp [i2n⇡T (⌧2 � ⌧1)] = �(⌧2 � ⌧1), (A.13)

we get

Is1,s2 = �en+(s1E1)n(s2E2)
s1s2

4E1E2

�Z

0

d⌧1d⌧2 exp [�i⌧2!l � ⌧1µ+ s1⌧1E1 + s2⌧2E2]

e
i⇡T (⌧2�⌧1)�(⌧2 � ⌧1).

(A.14)
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First, we integrate out ⌧2 using the definition of delta-function and then we perform

the remaining integration over ⌧1 as follow

1Z

0

d⌧1e
�⌧1(i!l+µ�s1E1�s2E2) =

1� e
��(i!l+µ�s1E1�s2E2)

i!l + µ� s1E1 � s2E2

. (A.15)

We note that

exp (�i�!lT ) = exp (�i!l) = exp (�i(2l + 1)⇡T ) = �1 (A.16)

Thus, Eq. (A.15) reduces to

1Z

0

d⌧1e
�⌧1(i!l+µ�s1E1�s2E2) =

e
�(s1E1�µ)

e
�s2E2 + 1

i!l + µ� s1E1 � s2E2

=
1� en+(s1E1) + n(s2E2)

en+(s1E1)n(s2E2)(i!l + µ� s1E1 � s2E2)
(A.17)

In the last term of the above equation, we expressed the exponentials in terms

of B.E. and F.D. distribution functions. Using this and performing the analytic

continuation from i!l + µ ! p0, we arrive at

Is1s2 = T

X

k0

e�s1
(k0, E1)�s2

(p0 � k0, E2) = � s1s2

4E1E2

1� en+(s1E1) + n(s2E2)

p0 � s1E1 � s2E2

(A.18)

Now , we have

F (0,0)

(F,B)
=

X

s1=±1

X

s2=±1

� s1s2

4E1E2

1� en+(s1E1) + n(s2E2)

p0 � s1E1 � s2E2

. (A.19)
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Using 1� en+(±E)� en�(⌥E) = 0 and 1 + n(E) + n(�E) = 0, we can write

F (0,0)

(F,B)
=

1

4E1E2


1� en�(E1) + n(E2)

p0 + E1 + E2

� 1� en+(E1) + n(E2)

p0 � E1 � E2

+
en�(E1) + n(E2)

p0 + E1 � E2

�en+(E1) + n(E2)

p0 � E1 + E2

�
.

(A.20)

We can compare this results to well known one for the µ = 0 case

F (0,0)

(F,B)

���
µ=0

=
1

4E1E2

⇢
[1� en(E1) + n(E2)]

✓
1

p0 + E1 + E2

� 1

p0 � E1 � E2

◆

+ [en(E1) + n(E2)]

✓
1

p0 + E1 � E2

� 1

p0 + E1 � E2

◆�
.

(A.21)

A.0.2 F (1,0)
(F,B)

Now we go on to evaluate

F (1,0)

(F,B)
= T

X

k0

k0
e�(k0, E1)�(p0 � k0, E2). (A.22)

Now we can see that

k0
e�(k0, E1) =

k0

k
2

0
� E

2

1

=
X

s1=±1

1

2

1

k0 � s1E1

. (A.23)

Thus, we have

F (1,0)

(F,B)
=

X

s1=±1

X

s2=±1

s2

4E2

T

X

k0

1

k0 � s1E1

1

p0 � k0 � s2E2

. (A.24)
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From Eq. (A.18), we note that

T

X

k0

1

k0 � s1E1

1

p0 � k0 � s2E2

= �1� en+(s1E1) + n(s2E2)

p0 � s1E1 � s2E2

. (A.25)

Finally, we get from the last two equations

F (1,0)

(F,B)
=

X

s1=±1

X

s2=±1

� s2

4E2

1� en+(s1E1) + n(s2E2)

p0 � s1E1 � s2E2

. (A.26)

Writing the sum explicitly, we have

F (1,0)

(F,B)
= � 1

4E2


1� en+(E1) + n(E2)

p0 � E1 � E2

+
1� en�(E1) + n(E2)

p0 + E1 + E2

+
en+(E1) + n(E2)

p0 � E1 + E2

+
en�(E1) + n(E2)

p0 + E1 � E2

�
. (A.27)

Now, we have for µ = 0

F (1,0)

(F,B)

���
µ=0

= � 1

4E2

⇢
[1� en(E1) + n(E2)]

✓
1

p0 + E1 + E2

+
1

p0 � E1 � E2

◆

+ [en(E1) + n(E2)]

✓
1

p0 + E1 � E2

+
1

p0 + E1 � E2

◆�
.

(A.28)
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Brateen-Pisarsky-Yuan Formula

The Brateen Pisarski Yuan formula relates the imaginary part of multiplication of

two function with their spectral representation.

Let f1(k0) and f2(k0) are two functions whose spectral representation is written

as [68]

f1(k0) =

1Z

�1

d!1

⇢1(!1)

!1 � k0
,

f2(k0) =

1Z

�1

d!2

⇢2(!2)

!2 � k0
. (B.1)

Then the Bratten-Pisaski-Yuan formula reads [216]

1

2i
DiscT

1X

n=�1

f1(k0)f(p0 � k0) = ImT

1X

n=�1

f1(k0)f(p0 � k0)

= ⇡
�
e
�p0 � 1

�
1Z

�1

d!1d!2⇢1(!1)⇢2(!2)en(!1)en(!2)�(p0 � !1 � !2), (B.2)

where k0 = i(2n + 1)⇡T + µ is the fermionic Matsubara frequencies with n =

0, 1, 2, · · · , ⇢i is the spectral representation of the function fi and en(!) =
1

exp(�!) + 1
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is the Fermi-Dirac distribution.

So,

ImT

X

n

f1(i!n + µ)f2(i! � i!n � µ)

= ImT

X

k0

1Z

�1

d!1d!2

⇢1(!1)

!1 � i!n � µ

⇢2(!2)

!2 � i! + i!n + µ

=

1Z

�1

d!1d!2⇢1(!1)⇢2(!2)ImT

X

k0

1

!1 � i!n � µ

1

!2 � i! + i!n + µ

=

1Z

�1

d!1d!2⇢1(!1)⇢2(!2)ImT

X

n

1

i!n + µ� !1

1

i! � i!n � µ� !2

(B.3)

Now, we have to use the following frequency sum [179]

T

X

n

�̃s1
(i!n + µ,E1)�̃s2

(i(! � !n)� µ,E2) = � s1s2

4E1E2

1� en+(s1E1)� en�(s2E2)

i! � s1E1 � s2E2

,

(B.4)

where

�̃s(x,E) ⌘ � s

2E

1

x� E
(here s = ±1) (B.5)

and

en±(y) ⌘
1

e�(y⌥µ) + 1
. (B.6)
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Thus, performing the frequency sum using Eq. (B.4), we obtain

ImT

X

n

f1(i!n + µ)f2(i! � i!n � µ) = �
1Z

�1

d!1d!2⇢1(!1)⇢2(!2)

⇥ Im
1� en+(!1)� en�(!2)

i! � !1 � !2

.

(B.7)

Now, we perform the analytic continuation i! ! p0 + i✏ and use

Im
1

x± i✏
= ⌥⇡�(x) (B.8)

to get

ImT

X

n

f1(k0)f2(p0 � k0) = ⇡

1Z

�1

d!1d!2⇢1(!1)⇢2(!2) [1� en+(!1)� en�(!2)]

⇥ � (p0 � !1 � !2) (B.9)

With the help of delta function we can write

[1� en+(!1)� en�(!2)] � (p0 � !1 � !2) =
�
e
�p0 � 1

�
en+(!1)en�(!2)� (p0 � !1 � !2) .

(B.10)

Thus, we derived the BPY formula for non-zero µ as

ImT

X

n

f1(k0)f2(p0 � k0) = ⇡
�
e
�p0 � 1

�
1Z

�1

d!1d!2⇢1(!1)⇢2(!2)en+(!1)en�(!2)

⇥ � (p0 � !1 � !2) ,

(B.11)

which reduces to Eq. (B.2) after setting µ = 0.
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Spectral Representation of Weak Field

Propagator

We need to find the spectral representation of SB(K) upto O(qfB). To do this we

write [211]

SB(K) =
/K

K2 �m
2

f

+ i�
1
�
2

/Kq
(K2 �m

2

f
)2
qfB

=
/K

K2 �m
2

f

� �5
k0�

3 � k
3
�
0

(K2 �m
2

f
)2
qfB

=
k
0

k
2

0
� !

2

k

�
0 � k

1

k
2

0
� !

2

k

k̂.� � �5


k
0

(k2

0
� !

2

k
)2
�
3 � 1

(k2

0
� !

2

k
)2
k
3
�
0

�
qfB.

We define the spectral functions as follows

⇢
(1)

0
(k0, k) =

1

⇡
Im f

(1)

0
(k0 + i✏, k) =

1

⇡
Im

k0 + i✏

(k0 + i✏)2 � !
2

k

. (C.1)

⇢
(0)

0
(k0, k) =

1

⇡
Im f

(0)

0
(k0 + i✏, k) =

1

⇡
Im

1

(k0 + i✏)2 � !
2

k

, (C.2)

⇢
(1)

1
(k0, k) =

1

⇡
Im f

(1)

1
(k0 + i✏, k) =

1

⇡
Im

k0 + i✏

[(k0 + i✏)2 � !
2

k
]2
, (C.3)

⇢
(0)

1
(k0, k) =

1

⇡
Im f

(0)

1
(k0 + i✏, k) =

1

⇡
Im

1

[(k0 + i✏)2 � !
2

k
]2
. (C.4)
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Now to prove this we need to use [178]

lim
✏!0

Im
1

x+ i✏
= �⇡�(x), (C.5)

lim
✏!0

Im
1

(x+ i✏)2
= ⇡�

0(x), (C.6)

where x, ✏ 2 R, ✏ > 0.

To prove (C.5) and (C.6), we use the following limiting representation of Dirac

delta function

lim
✏!0

✏

x2 + ✏2
= ⇡�(x). (C.7)

Taking derivative with respect to x on both sides of equation (C.7), we get

lim
✏!0

2✏x

(x2 + ✏2)2
= �⇡�0(x). (C.8)

Now

lim
✏!0

Im
1

x+ i✏
=

1

2i
lim
✏!0


1

x+ i✏
� 1

x� i✏

�
=

1

2i
lim
✏!0

�2i✏

x2 + ✏2
= � lim

✏!0

✏

x2 + ✏2
= �⇡�(x),

(C.9)

and

lim
✏!0

Im
1

(x+ i✏)2
=

1

2i
lim
✏!0


1

(x+ i✏)2
� 1

(x� i✏)2

�
=

1

2i
lim
✏!0

�4i✏x

(x2 + ✏2)2

= � lim
✏!0

2✏x

(x2 + ✏2)2
= ⇡�

0(x). (C.10)
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This proves equation (C.5) and (C.6). With these it is easy to get the spectral

representation for the free part:

⇢
(1)

0
(k0, k) =

1

⇡
Im

1

2

✓
1

k0 � !k + i✏
+

1

k0 + !k + i✏

◆
= ��(k0 + !k) + �(k0 � !k)

2
,

(C.11)

⇢
(0)

0
(k0, k) =

1

⇡
Im

1

2!k

✓
1

k0 � !k + i✏
� 1

k0 + !k + i✏

◆
=
�(k0 + !k)� �(k0 � !k)

2!k

.

(C.12)

Now for the first order part, we need to

k0

(k2

0
� !

2

k
)2

=
1

4!k

4k0!k

(k0 + !k)2(k0 � !k)2
=

1

4!k

(k0 + !k)2 � (k0 � !k)2

(k0 + !k)2(k0 � !k)2

=
1

4!k


1

(k0 � !k)2
� 1

(k0 + !k)2

�
, (C.13)

and

1

(k2

0
� !

2

k
)2

=
1

4!2

k


1

k0 � !k

� 1

k0 + !k

�2
=

1

4!2

k


1

(k0 � !k)2
+

1

(k0 + !k)2

� 2

k
2

0
� !

2

k

�

=
1

4!2

k


1

(k0 � !k)2
+

1

(k0 + !k)2
� 1

!k

✓
1

k0 � !k

� 1

k0 + !k

◆�
. (C.14)

Thus

⇢
(1)

1
(k0, k) =

1

⇡
Im

1

4!k


1

(k0 � !k + i✏)2
� 1

(k0 + !k + i✏)2

�

=
�
0(k0 � !k)� �

0(k0 + !k)

4!k

. (C.15)
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Also

⇢
(0)

1
(k0, k) =

1

⇡
Im

1

4!2

k


1

(k0 � !k + i✏)2
+

1

(k0 + !k + i✏)2
� 1

!k

✓
1

k0 � !k + i✏

� 1

k0 + !k + i✏

◆�

=
1

4!2

k

⇢
�
0(k0 � !k) + �

0(k0 + !k) +
1

!k

[�(k0 � !k)� �(k0 + !k)]

�
.

(C.16)
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In non-central high energy heavy ion collision experiments, a very strong magne�c �eld (up to 1019 Gauss in 

Large Hadron Collider (LHC) and unto 1018 Gauss in RHIC) is generated perpendicular to the reac�on plane. 

This magne�c �eld gives rise to a lot of novel phenomena like chiral magne�c e)ects due to axial anomaly, 

magne�c catalysis, inverse magne�c catalysis, superconduc�vity of the vacuum and so on. The decay pro�le

of the magne�c �eld is believed to be rapid with �me from some of the studies, whereas others suggest a 

compara�vely slow decay owing to the high electrical conduc�vity in the produced medium. So with �me 

the magne�c �eld gets weak

When fermions traverse through hot-magne�sed de-con�ned medium, their dispersion rela�ons get 

modi�ed or get “dressed”due to its interac�on with the cons�tuents of the medium. Now the modes of any 

propaga�ng par�cles are obtained from quantum loop corrected e)ec�ve propagator. In the �rst part of the

thesis, the one loop e)ec�ve propagator in presence of weak background magne�c �eld have been 

computed. The one loop quantum correc�on has been invoked through one loop quark self energy. In 

compu�ng quark self energy, we have used hard thermal loop(HTL) approxima�on. In this approxima�on, 

the external momentum is taken as so2 (i.e. of the order of gT) and the loop momentum is taken as hard (of

the order of T). We have also assumed that the magne�c �eld is su3ciently weak. In the presence of the 

magne�c �eld the momentum component transverse to the magne�c �eld is quan�sed into di)erent 

landau levels. The prime observa�on reported in the �rst part of the thesis is the emergence of four quasi-

quark modes from the pole of the e)ec�ve quark propagator in the weak �eld limit. Using the e)ec�ve 

quark propagator, the fermion dispersion rela�on in a hot magne�sed medium have been analysed. Apart 

from this, the transforma�on proper�es of the e)ec�ve propagator under some of the discrete symmetries,

the spinor solu�on of the one loop modi�ed Dirac equa�on describing these dressed quark modes have 

also been examined in this work. The fermion spectra is found to re7ect the discrete symmetries of the two-

point func�ons. 

It is well known that dileptons (lepton an�-lepton ) act as a good indirect probe of QGP medium since it 

interacts only electromagne�cally. Dileptons are produced at all stages in the evolu�on of the �reball 

throughout the en�re volume and come out of the �reball with minimal �nal state interac�ons. As a result 

of this, they carry vital informa�ons about the forma�on and evolu�on of the de con�ned medium. Owing 

to the presence of magne�c �eld in QGP phase, the dilepton spectrum is believed to be in7uenced. In the 

second part of the thesis, the produc�on rate of hard dilepton is calculated in presence of weakly 

magne�sed media. It consists of rates when all four quasi-quarks, origina�ng from the poles of the 

propagator as computed in the �rst part of this thesis, individually annihilate with a bare quark to produce a

virtual photon which eventually decays into lepton-an�lepton pairs. Besides these, there are also 

contribu�ons to dilepton produc�on rate from the decay of quasi-quarks. In the weak �eld approxima�on, 

the magne�c �eld appears as a perturba�ve correc�on to the thermal contribu�on. 

 


	List of Tables
	List of Figures
	Preliminaries of Heavy-Ion Collision
	Introduction
	Quantum Chromodynamics
	What is Quark Gluon Plasma (QGP)?
	QCD Phase Diagram
	Overview of Heavy Ion Collisions
	Pre-equilibrium:
	Expansion:
	Freeze-out:



	Probes of QGP
	Anisotropic Flow
	Electromagnetic Probes
	Quarkonia Dissociation
	Jet Energy Loss
	Strangeness Enhancement

	Magnetic Field in Heavy Ion collision
	Geometry of the Collision
	Magnitude and Profile of the Field
	Observable Effects of Magnetic Fields
	Chiral Magnetic Effect (CME)
	Chiral Vortical Effects (CVE)
	Magnetic Catalysis (MC)
	Inverse Magnetic Catalysis (IMC)
	Superconductivity of the Vacuum


	Scope of this Thesis

	Field Theory at Non-zero Temperature
	Introduction
	Partition Function
	Imaginary Time Formalism
	Operational Method
	Path Integral Formulation

	Green's Function at Non-Zero Temperature — Matsubara Modes
	Feynman Rules at Finite Temperature
	HTL Resumation
	Conclusion

	Fermion Propagator in External Magnetic field
	Introduction
	Green's Function
	Fermion Propagator
	The Phase Factor
	Landau Level Representation
	The Strong and the Weak Field Limit of the Propagator
	Conclusion

	Collective Behaviour of Quarks at High Temperature QGP
	Introduction
	Covariant Description
	Structure of Quark Self Energy
	Quark Self Energy at Non-Zero Temperature
	Modified Quark Propagator
	Spectral Representation
	Asymptotic Form of Dispersion Relation
	Modified Dirac Equation
	Discrete Symmetries
	Conclusion

	General Structure and Properties of Quark Two-point Function in Hot Magnetised Medium
	Introduction
	General Structure of the Fermion Self-Energy
	Computations of Structure Functions in One-loop in a Weak Field Approximation for Hot Magnetised QCD Medium:
	Effective Fermion Propagator
	Transformation Properties of Structure Functions and Propagator
	Chirality
	Reflection
	Parity

	Modified Dirac Equation
	For the General Case 
	For the Lowest Landau level (LLL)
	Solution of the Modified Dirac equation at Lowest Landau Level (LLL)

	Dispersion
	Three Point Function
	Verification of the Three Point Function from Direct Calculation

	Analytical Solution of the Dispersion Relations and the Effective Mass in LLL
	Low pz limit
	High pz limit

	Spectral Function Representation of the Effective Quark Propagator
	Conclusions

	Hard Dilepton Production in Hot Magnetised QGP Medium
	Introduction
	Formulation of Dilepton Production Rate
	DPR at Vanishing Magnetic Field
	Born Rate
	Hard DPR at B = 0

	DPR at Non-Zero Magnetic Field
	Pole-Pole Part
	Pole-Cut Contribution


	Conclusion

	Summary and Outlook
	Frequency Sums
	F(F,B)(0,0)
	F(F,B)(1,0)


	Brateen-Pisarsky-Yuan Formula
	Spectral Representation of Weak Field Propagator
	Bibliography

