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order parameters for ¢’ = 0.45¢ and ¢ = 0.45¢. As shown only m changes due
to related particle hole symmetry between the model with +ve and ve values of

£
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4.12 Spectral functions and momentum distribution functions for -ve t’. Top

4.13

A.l

A2

panel shows the spectral functions in the metallic phases for ¢ = 0.45¢. First
row is for spin-up and the second row is for the spin-down component. The
bottom panel shows the momentum distribution function nyg, in the metallic
phases for ¢ = 0.45¢. Comparison of this plot with Fig. 4.9 shows that the
hole and electron pockets get interchanged for negative values of ¢'. For neg-

ative values of ¢/, we have electron pockets around (4, 0) and symmetrically

related points while we have hole pockets around (+7/2, +7/2) points. . . . .

Single particle Density of states. Panels (a)-(c) show the spin resolved sin-
gle particle density of states (DOS) p,(w) for ' = 0.15¢t and U = 10t. At
U/A ~ 1.04, p;(w = 0) is finite where as p+(w = 0) = 0 with a finite spectral
gap, corresponding to the AF half-metal phase. At U/A = 1.03, the DOS at
the Fermi energy is finite in both the spin channels but p;(w) # p;(w) corre-
sponding to the ferri metal phase. At U/A = 0.95, the DOS is spin symmetric
with a finite weight p,(w = 0) at the Fermi energy and the system is a para
metal. Panel (d) shows p(w) for the d-wave SC phase while panel (e) shows
that for the extended s-wave SC phase for U = 10t and ¢’ = 0.4¢. p(w) shows
a linear increase with |w| for w ~ 0 for both the SC phases. Panel (f) shows

the gap in the DOS, which is basically the peak to peak distance in p,(w), for

both the d-wave and the extended s-wave pairing symmetries. . . . . .. . ..

Figure shows the effective hopping of a hole and lies in the low energy Hilbert

space. Wecallit HI°®. . . . . . . . ...

Figure shows the effective hopping of a doublon and lies in the high energy

Hilbert space. We call it A", . . . . .. . .. . ... ... ... ...

Xiii
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A3

A4

A5

A.6

B.1

B.2

Figure shows the unpairing of a doublon into single occupancies and vice-
versa. It connects the high energy Hilbert space (left) to low energy Hilbert

space (right). We call it /oMo o

Figure shows the dimer term in the low energy space which consists of ei-
ther preservation of spins or flipping of spins on neighboring sites through an

intermediate virtual high energy state consisting of a doublon. . . . . . . . ..

Schematic showing steps involved in solving the effective Hamiltonian which

has been incorporated from Ref [1]. Note P here is in our notation P,.

Figure shows mean field parameters like pairing amplitude A, Fock shift £ and

the superconducting order parameter ® for J = 0.2¢ on a square lattice.

Inter and intra sublattice fock shifts obtained from the generic RMFT which
allows for spin symmetry breaking. Panel (a) shows inter sublattice fock shifts
XABo VS A while panel (b) shows intra sublattice fock shift xzp, along the
2x or 2y bond. Panel (c) shows intra sublattice Fock shift xppyy.. Effects
due to the phase transitions from the AF-MI to the paramagnetic BI phase [see

Fig. 3.6] are clearly presenthereaswell. . . . . . .. ... ... ........

The staggered magnetization m, and the density difference 0 as functions of
A for U = 20t. The top left panel shows the data for d-wave pairing and
the bottom left panel for the extended s-wave case. Right panels show the
pairing amplitudes for the d-wave and extended s-wave pairing for U = 20t.
As shown, the effect of including inter band pairing in the spin-asymmetric

caseisnegigible. . . . ... L L L
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B.3 The left panel shows the d-wave pairing amplitude for U = 20t in the spin-
symmetric calculation. There is a small change in the d-wave pairing ampli-
tude due to the interband pairing terms which lead to a small enhancement of
the pairing amplitude. The right panel shows the pairing amplitude for the ex-

tended s-wave symmetry. Inter band pairing terms have an even weaker effect

on the extended s-wave pairing amplitude than on the d-wave pairing amplitude.

C.1 Next neighbor hopping processes in low energy space. . . . .. ... ... ..

C.2 Pictorial representation of the Heisenberg terms on A and B sublattices. Sub-

lattices are indicated by . . . . . ... Lo

C.3 AAB trimer processes which involve spin preservation or spin flip at the inter-

mediate A SItE. . . . . . . . . e e e e e e

C.4 BBA trimer processes showing spin preservation and spin flip at intermediate

C.5 (a) Next neighbor hoppings in the unprojected and projected spaces on the A
and B sublattices. (b) Processes in the unprojected and projected spaces for the

Heisenberg terms on A and B sublattices. . . . . ... ... ..........

C.6 The tt' trimer terms on AAB sites: (a) with spin preservation at the interme-
diate site and (b) spin flip at the intermediate site. It is to be noted that in
(a), processes with hole at the intermediate site are not shown and must be

considered in the calculation. . . . . . . . . . . ... ...
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C.7

C38

Order parameters and the ground state energy. Left panels show various
mean fields, namely, the staggered magnetization m,, uniform magnetization
my, d-wave pairing amplitude A, and the extended s-wave pairing amplitude
Ay as functions of U/A for different values of ¢’ at U = 10t for the 2d square
lattice. Right panels show the ground state energies for the d-wave SC phase,

extended s-wave SC phase and the non-superconducting phase where only

magnetic order is allowed, as functionsof U/A. . . . . . . ... .. ... ...

Comparison of different renormalized mean field theories. Top left panel
shows several mean fields obtained from the third solution of the RMFT where
both SC pairing and magnetic order are allowed, namely, the staggered magne-
tization m, uniform magnetization my, and the d-wave pairing amplitude A,
as functions of U/A for ¢’ = 0.45¢t and U = 10t. Top right panel shows the
ground state energy of the non-superconducting phase where only magnetic or-
der is allowed and the energy for the third solution as functions of U/A. Note

that the phase with both orders coexisting is only a metastable phase. Lower

panels show similar results for the extended s-wave SCorder. . . . . . ... ..
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CONCLUSION

Through the preceeding chapters, we gradually developed the theory for dealing with
strong interactions and equally strong inhomogeneties which led to the prediction of a
novel high 7. superconductor mediated predominantly by spin-exchange interactions in a
strongly correlated band insulator at half-filling. In most of the known unconventional su-
perconductors, superconductivity is obtained only upon doping the parent compound away
from half filling, which brings in disorder into the system. Thus, searching for new mech-
anisms of unconventional superconductivity at half filling in strongly correlated systems is
a challenge both from theoretical and experimental point of view. In this thesis we demon-
strated that starting from a simple model of a strongly correlated band insulator, it is indeed
possible to attain a superconducting phase with a high enough transition temperature me-
diated mainly by spin exchange couplings, provided the system has enough frustration

against the magnetic order.

In this thesis, we also developed a formaslim for treating strong interactions and dis-

order. The formalism developed in the U ~ A > ¢ limit introduces the concept of site

134



specific hole and doublon projection which can be applied to a broad class of condensed
matter systems like ionic Hubbard model (IHM), binary alloy model, Hubbard model with
random disorder and even Hubbard model with strong attractive impurities. In this sense
the method of projection and the formulation of low energy effective Hamiltonian is quite
general. In all these systems competing U and A promises the possibility of many ex-
otic phases and is worth exploring. In this thesis, we specifically explored the physics of
IHM in the aforesaid limit. The low energy effective Hamiltonian in this case emphasized
that the system will not be charge frozen at half-filling unlike the strongly correlated Hub-
bard model at half-filling. The non-zero low energy hoppings intuitively suggested the
possibility of charge dynamic phases like metallic and superconducting phases. Indeed
the solution of the renormalized Hamiltonian confirmed that there exists a superconduct-
ing phase although metastable. The antiferromagnetic (AF) Mott insulator is energetically
stabler than the superconducting phase. There is also a thin sliver of antiferromagnetic
half metallic phase very close to the transition line. This is the story in the particle hole
symmetric state. The investigation turns more captivating when we make the Hamiltonian
particle hole asymmetric by introducing frustration in the form of next neighbor hopping.
Superconductivity in both d-wave and extended s-wave channels become stable and it is
enveloped by the paramagnetic metallic phase on one side and the ferrimagnetic metallic
phase on the other side. The phase diagram is strikingly different from cuprates but has a
high 7, and also a pseudogap phase. The most interesting thing about this superconductiv-
ity is that it is “clean” as it is devoid of any impurities being at commensurate filling. For
experimentalists realizing this kind of superconductivity in real materials is challenging.
IHM can possibly be used as a minimal model to understand layered heterostructures like
bilayer graphene with a transverse electric field where the electric field can create a stag-

geredness in the potential or graphene in h-BN substrate where the difference in energies
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of boron and nitrogen can act as a staggered potential. The limit of strong correlation and
onsite energies can be achieved by straining or twisting the material which will reduce the
overlap between the orbitals thus suppressing the tunneling and in turn making U, A > t.

Interestingly and surprisingly, this seemingly innocent looking model of a correlated
band insulator with onsite interaction and staggered potential has turned out to be a store-
house of many exotic phenomena, mainly the unconventional superconductivity without
doping, as investigated through these series of works. The competition between two in-
sulating tendencies viz, the AF Mott insulator and the correlated band insulator gives rise
to these interesting phases and we are hopeful that many other avenues relating to IHM
remains to be investigated. Specially, the particle hole symmetry can also be broken by
doping the system instead of adding next neighbor hopping. Our formalism will still hold
for low values of doping and infact we hope that the superconducting phase can be rela-

tively broadened if we allow for doping.
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SUMMARY

When we add strong e-e repulsive interactions to a metallic system at half-filling, the sys-
tem becomes an antiferromagnetic (AF) Mott insulator with charge degree of freedom
completely frozen. However, the effect of interactions on band insulators have not been
explored much in literature. In this thesis, we explore the physics of strongly correlated
band insulators. To start with, we develop a formalism for treating strong correlations in
the presence of equally strong inhomogeneties. We find the low energy effective Hamil-
tonian by suitably projecting out doublons from some sites and holes from some other
sites through a generalised Schrieffer Wolff transformation. Using a scheme of generalised
Gutzwiller renormalized mean field theory, we solve a simple model of a band insulator,
i.e., the ionic Hubbard model and explore the physics in strong correlation and strong on-
site potential limit. Within this model, we explore the possibility of a correlation driven
unconventional superconductor (SC) in the limit of strong e-e interactions and a large band
gap. We demonstrate that it is possible to have spin-exchange mediated unconventional
SC in a strongly correlated band insulator provided there is enough frustration against the
magnetic order. The most striking feature of this SC is that it is realized at commensu-

rate filling. Most of the common unconventional SCs are obtained by chemically doping



a parent Mott insulator away from half-filling with charge carriers as in cuprates. Chem-
ical doping however introduces disorder in the system which makes these systems highly
inhomogeneous. A SC at half-filling therefore eliminates the possibility of any disorder in
the system. Moreover, the SC obtained is observed to have a high transition temperature
comparable to cuprates which can possibly be further enhanced by tuning parameters in the
Hamiltonian. It is also found to have a pseudogap phase as in cuprates. But unlike cuprates,
this novel SC is enveloped by exotic metallic and half-metallic phases like ferrimagnetic
metal, paramagentic metal and AF half-metal, all with potential applications in the field of

spintronics.
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INTRODUCTION

Strong correlations between electrons play a very crucial role in a large class of materials in
condensed matter physics. Many experimental findings can be successfully explained only
after including the physics of strong correlations among the basic constituents. Independent
electron picture can explain metallicity in systems where kinetic energy is much larger than
the interaction strength which in turn can be treated perturbatively. However, this method
fails when we try to explain the properties of systems with narrow bandwidths where the
interaction scale starts dominating the tunneling between orbitals. Many interesting phases
like Mott insulators, antiferromagnets and high temperature superconductivity arise when
Coulomb interaction dominate over the kinetic energy. In most of the known unconven-
tional superconductors like cuprates [11], organic superconductors [3], iron-pnictides and
chalcogenides [12, 13], and very recently in magic angle twisted bilayer graphene [14, 15],
the low temperature phase of the parent compound is either a strongly correlated antifer-
romagnetic (AF) Mott insulator where charge dynamics is completely frozen, or an AF

spin-density-wave (SDW) phase with at least moderately strong correlations. The uncon-



ventional superconductivity in many of these materials can be understood, at least qualita-
tively, in terms of the strongly correlated limit of the paradigmatic Hubbard model (single
or multi band) doped away from half filling [11-16]. But the possibility of a superconduct-
ing phase in a strongly correlated band insulator has been explored very little so far, either
theoretically or experimentally. In this thesis, we study the effect of e-e interactions on a
band insulator and explore the possibility of unconventional superconductivity as an effect
of strong correlations in a band insulator.

In the following sections, a few of the key concepts and models involved in the work
presented in this thesis have been discussed, and the outline of the thesis is presented at the

end of this chapter.

1.1 Strong correlation and uncoventional superconductiv-

ity

LaO Cu Cu
CuO2
LaO Cu Cu

Figure 1.1: Left: Layered structure of La;Cu(O, along c-axis. Right: Structure of the
CuQ, plane. Adapted from Ref [1].

In this section we discuss different class of materials where unconventional supercon-

ductivity is believed to originate from strong Coulomb interaction between electrons in



the material. Superconductivity in Cuprates has been one of the most significant discover-
ies of the past century. In 1986, Bednorz and Miiller for the first time encountered what
is well known now as high 7. superconductivity in a certain class of ceramics known as
cuprates. The cuprates are layered materials of C'u — O planes coupled weakly to each
other (see Fig. 1.1). Although, initially 7, ~ 35K was found in lanthanum barium copper
oxide, higher transition temperatures were recorded in different cuprate compounds with

the highest of about 133K in mercury barium calcium copper oxide compounds.
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Figure 1.2: Schematic phase diagram of Cuprates where superconductivity arises in close
proximity of a parent Mott insulator. Adapted from Quantamagazine.

Fig. 1.2 is a schematic phase diagram of the cuprates which shows that the parent com-
pound is an AF Mott insulator and superconductivity arises upon doping the system with
oxygen which induces holes into the Cu-O planes. The basic features of the phase diagram
can be understood qualitatively by studying the strongly correlated limit of the one band
Hubbard model where in the strong correlation limit, double occupancies are not allowed in
the ground state [2,16]. The famous resonant valence bond (RVB) theory proposed that su-
perconductivity in cuprates can be explained as a resonant state of singlet pairs of electrons

where a state of simultaneous superposition of macroscopic wavefunctions of spin singlets


https://www.quantamagazine.org/mega-magnet-reveals-superconductor-secret-20160222 

and holes can be realized by Gutzwiller projection of the Bardeen-Cooper-Schrieffer (BCS)
wavefunction. Fig. 1.3 represents such a RVB liquid state. These singlet pairs which are
basically charged Cooper pairs constitute the supercurrent in the system. The RVB theory
could successfully explain the existence of d-wave pairing in cuprates and also indicated

the existence of pseudogapped phase.
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Figure 1.3: Snapshot of singlet pairs of electrons in the background of doped holes. The
RVB many body wavefunction is a linear superposition of such resonating valence bond
configurations. Adapted from Ref [2].

At half-filling, the charge degree is completely frozen and the system is a quantum Néel
ordered RVB solid described by the Heisenberg model. Doping holes into the system melts
the Mott insulating phase by introducing quantum fluctuations. Holes frustrate AF order
and the resonance in the valence bond liquid state (See Fig. 1.3) stabilizes superconductiv-
ity in cuprates. Since superconductivity arises upon doping of charge carriers, and doping
induces inhomogeneity in the system, these samples are highly disordered which is clearly
seen in scanning tunneling microscopy (STM) data on cuprates [17-20].

Superconductivity with anisotropic gap has also been observed in certain class of lay-



ered organic conductors. A transition temperature of ~ 33K can be obtained in these
systems by increasing hydrostatic as well as chemical pressure. Interestingly, the parent
compound is again an AF Mott insulator. As pressure is applied, the system remains in the
AF Mott insulator phase till a certain value of critical pressure above which superconduc-
tivity appears (See Fig. 1.4). Moreover, the chemical substitutions in these compounds play
an important role in deciding the ground state of the system at a particular value of pressure.
Thus, the transition from AF insulator to superconducting phase can also occur by effec-
tively changing “chemical pressure” of the system by modifying chemical substituents.
Pressure plays an important role in these systems since it effectively makes the correlation
dominant than the bandwidth of the system and thus unconventional superconductivity in
these organic molecular materials are driven by strong correlation. Also, superconductivity

in these systems are almost always at finite doping of charge carriers.
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Figure 1.4: Temperature versus pressure phase diagram of an organic superconductor x —
Cl. Adapted from Ref [3].

Few years ago considerably high superconducting transition temperatures were ob-



served in iron based materials like pnictides and chalcogenides [12, 13]. We know strong
correlation can result into magnetically ordered states formed due to the interaction be-
tween localized moments. On the other hand, relatively weak interactions drives magnetic
ordering due to Fermi surface nesting. In iron based superconductors, the parent compound
is a SDW ordered “bad” metal unlike the Cuprates where the parent compound is an AF
Mott insulator. This means that the ratio of the correlation and bandwidth is only moderate
in these systems incapable of localizing the itinerant electrons. Superconductivity arises
upon doping the parent compound which can be done by substituting elements that intro-
duces holes or electrons, e.g., by substituting Fe by Co or Ba by K (See Fig. 1.5). The
symmetry of the superconducting sate is s* where the gap changes sign between electron
and hole pockets. In fact the iron based superconductors are the first examples of electron-

ically driven s-wave superconductivity.
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Figure 1.5: Phase diagram of some typical iron based superconductors. Adapted from
Wikipedia.

Very recently superconductivity has also been observed in bilayers of graphene twisted

at some specific angles known as magic angles [14, 15]. In single layer graphene, the


https://en.wikipedia.org/wiki/Iron-based_superconductor

dispersion is linear near the Dirac cones which means electrons behave relativistically. In
large angle twisted bilayers, the layers behave as if they are decoupled and electrons still
behave as relativistic particles. However when untwisted, the dispersion is parabolic. So
the band structure is basically a function of the twist angle and something remarkable may
happen while moving from untwisted to large twist angles. At small magic angles the
bands become effectively flat i.e., independent of momentum resulting into the divergence
of density of states. In the twisted bilayer, there is a quasi periodicity in the structure on
large scales and the pattern so formed is known as moiré pattern (See Fig. 1.6(a)) [14, 15].
The effective falttening of the band makes the ratio of correlation and bandwidth large and
hence strong correlation physics play a very important role here like the previous examples.
The phase diagram of the magic angle twisted bilayer graphene consists of superconducting

domes separated by correlated isulating states at commensurate fillings (See Fig. 1.6(b)).
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Figure 1.6: (a) Moiré pattern formed by twisting bilayer graphene. Quasiperiodicity oc-
curs at large length scales. (b) Phase diagram of magic angle twisted bilayer graphene as
function of carrier concentration. Adapted from Physics Today.

Doping here can be varied by simply tuning the gate voltage and so superconductivity can
be obtained relatively easily because the complications of chemical doping are not present

here unlike in the cuprates. The superconducting transition temperature is very low in


https://physicstoday.scitation.org/doi/10.1063/PT.3.4384

this system (~ 1.7K at 1.05" twist angle) which is comparable to BCS superconductors.
However, in BCS superconductors (such as Al) the carrier density required for phonon
mediated coupling is very large. What is important is the ratio of 7. and carrier density.
Since, in twisted bilayer graphene superconductor carrier density is much lower and it is in
close proximity to a correlated insulator, unconventional superconductivity originating due
to strong correlation holds a valid ground here.

All these examples highlight the importance of strong correlation in driving unconven-
tional superconductivity in materials. At first glance strong Coulomb repulsion between
electrons may seem to destabilize the formation of Cooper pairs. And surely onsite s-wave
superconductivity as seen in BCS superconductors is not possible here. Frozen singlet pairs
which are spatially separated melt into a liquid state upon doping to constitute a supercur-
rent in these systems. One of the major goal of condensed matter physicists now-a-days is
to enhance the 7. to room temperatures. Keeping in mind the exciting development relating
to correlation driven superconductivity in the past, it will perhaps not be unjustified to hope

for an unconventional correlation driven room temperature superconductor in near future.

1.2 Model for strongly correlated electron systems

The Hubbard model [21-24] is historically one of the most successful models which ex-
plains strong correlation physics in many contexts, at least on a qualitative level. It is a
good approximation for electrons on a lattice at low temperatures in systems where long
range interactions are effectively screened. It has two simple ingredients : one electron
hopping term (~ t) and onsite Coulomb repulsion term (~ U) as seen from the model
Hamiltonian given by Eq. 1.1. The chemical potential, 1 tunes the particle density of the

system.



H=—t Z (c}acjo + h.c.)+ UZnZ-an — ,uZm (1.1)

<ij>,0 7
To explain the intricate behavior of real materials, we often extend this simple model

either by extending the range of interactions or by treating multiple bands.

The presence of two electrons on the same site which should necessarily be of opposite
spins (or else Pauli exclusion principle will be violated) cost an energy U. In the strong
correlation limit, this means in the ground state configurations with double occupancies on
sites will not be preferred as it is energetically unfavourable. At absolute zero, all sites will
hence be singly occupied at commensurate filling and any charge fluctuation is prohibited
on energetic grounds. The system is then a Mott insulator with charge degree of freedom
completely frozen. Thus the Hubbard model which may have looked like a trivial extension
of the tight binding model makes the non trivial prediction of an insulator instead of a band
metal when onsite correlations are significantly greater than the kinetic energy. On doping
the system with either holes or electrons can however induce charge fluctuations in the

system which can give rise to charge dynamic phases like metals or superconductors.

The Hubbard model in one dimension is exactly solvable in the thermodynamic limit
by Bethe ansatz method [25]. The problem of solving the stationary Schrodinger equation
is transformed into a problem of finding the roots of a set of non-linear coupled algebriac
equations, famously known as Lieb-Wu equations. The solutions of these equations con-
tain all the information about the one dimensional Hubbard model. Explicit solutions of
the N particle system is not known exactly. However in the thermodynamic limit the dis-
tribution of the solutions in the complex plane is what matters and physical quantities can
be calculated from solutions of integral equations. The system is metallic at U = 0 but for

any non zero value of U, it is an insulator highlighting the fact that the insulating property



is interaction induced.

However, the Hubbard model is not exactly solvable for d > 2. In higher dimensions
either one has to resort to numerical methods like quantum Monte Carlo (QMC) [26] or
exact diagonalization (ED) [27] or to approximate analytical calculations. The numerical
methods give exact answers for finite size systems. The QMC approach which can produce
results on much larger systems than ED is further restricted by the “fermion sign problem”,
and by the problem of analytic continuation of numerical data from imaginary time to the
real axis. ED or basically Lanczos diagonalization is limited to small system sizes such that
the eigenvalues are sparse and even a metallic phase may appear gapped. The analytical
methods include Green’s function methods which sum over selected subset of Feynman
diagrams (e.g., the random phase approximation) or functional integral approaches which
amount to a mean field theory plus fluctuations. Usually such approaches are accurate only

in the weak coupling limit.

The other methods one can use to extract information about the Hubbard model are dy-
namical mean field theory (DMFT) [28] and density matrix renormalization group (DMRG)
[29]. DMFT is a non-perturbative technique where the lattice model is mapped to an effec-
tive single site Anderson impurity model where the impurity and bath degrees of freedom
couple via a hybridization function. The impurity model can be solved by several schemes
like iterative perturbation theory (IPT), continuous time Monte Carlo (CTQMC) etc which
basically finds the interacting Green’s function. This method however approximates the
lattice self-energy to be momentum independent i.e., it neglects spatial fluctuations similar
to mean field approximations. The hybridization function remains time dependent which
allows DMFT to capture the temporal fluctuations owing to e-e interaction. Hence, the
name “dynamical” mean field theory. DMRG is a variational technique which can handle

large system sizes and give high precision results, specially in one dimension. The de-

10



grees of freedom are iteratively eliminated leaving behind the ones that are relevant for the
ground state.

In the limit U > ¢, a perturbative expansion in hopping is used to study the low en-
ergy properties of the system. The effective Hamiltonian in this limit is known as the “tJ

model” [30,31].

1.3 tJ model as strong correlation limit of the Hubbard

model

In the large U limit, a double occupancy is energetically expensive and is not allowed in the
ground state configurations. The low energy Hilbert space then consists of the following
spin 1/2 single site configurations: | 1),| J),|0). The double occupancy | 1)) forms
the high energy sector of the Hilbert space. In the hole doped case, the allowed hopping
between two sites is an effective hole hopping as it does not involve a doublon on any
site. There are other hopping terms which connect the low and high energy sectors in
the sense that they either start or end with a doublon. The effective hopping of doublon
however belongs entirely to the high energy sector and will eventually be eliminated when
we restrict ourselves to the low energy physics. After doing a similarity tranformation
which decouples the low and high energy sectors and confining to the low energy space
we get the following Hamiltonian in the doublon projected space which is known as the tJ

model,

H,; = Pd( Z —t(z c}acja + Hec)+ J<Si.5j — n?) -+ trimer terms) P, (1.2)

<ij> o
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where P; = [[(1—mn;n;,) is the projection operator which projects out doublons. Here

)
2

t
J = ia which is the coupling for the spin exchange term. Details of the steps involved in

the transformation are given in Appendix A.1l.

At half-filling, the low energy hopping term is completely projected out as holes will not
be allowed along with doublons and the tJ model reduces to the AF Heisenberg model. The
ground state therefore is an AF state without any charge dynamics. The simple components
of the tJ model can give us good intuition of the possible phases it hosts. In the strongly
correlated limit, even in the presence of holes, the ¢ term is suppressed because of the
constraint of no double occupancy. Further, the J term suppresses ¢ more, since it favours
singlets. Infact, we know that when J dominates over ¢, in the sense holes in the system
are less, then a macroscopic singlet insulating state is the favoured ground state. However,
as we increase doping fraction of holes, ¢ term is favoured over J term and we expect a
normal Fermi liquid behavior in this case. But what will happen when ¢ and J compete
with each other? Will it give rise to a liquid state of spin singlets? Thus the possibilty of a

superconducting state arises in this case.

After obtaining the low energy effective Hamiltonian, we are left with task of solving
it and finding the quantities of physical interest. Since the effective Hamiltonian in the
projected space is defined in terms of non-canonical operators, we can not use standard
Wick’s theorem as in usual perturbation theory. One can solve the Schwinger equation
of motion for the Greens function of projected electrons [32, 33] and use a systematic
perturbation theory in some parameter that controls double occupancy. Other methods are
the Variational Monte Carlo (VMC) method, the slave boson mean field theory (SBMFT)

and the method of Gutzwiller renormalized mean field theory (RMFT).

12



1.3.1 Variational Monte Carlo

Variational Monte Carlo (VMC) [1, 34] is a powerful non perturbative method for solving
the low energy effective Hamiltonian. The first job in VMC is to make a guess of the
starting wavefunction which is known as the variational ansatz. The guess often arises from
clues gathered from simple mean field calculations which are used for getting first hand
impressions about a problem. The variational ansatz in this case is a doublon projected

d-wave BCS wavefunction for a fixed particle number given by,

) = Pa Y (6(i — j)chel)V?(0). (1.3)

ij

Crux of the problem is to obtain expectation value of quantities like the energy in this
quantum state which is nothing but a slater determinant of ¢(i — j)’s (known as pair func-
tions) and finally extremize it with respect to the variational parameters which are in this
case the pair functions themselves, to obtain the required ground state. But calculation of
expectation values requires summation over lattice configurations which are exponentially
large in number. Here, comes the role of Monte Carlo. To simplify matters, we visit only
those configurations which have high probability of occurance. In other words, this is what
is called importance sampling. Using algorithms like Metropolis, two kinds of moves are
made: (1) moving an electron to a site if it is empty (2) exchanging of oppositely oriented
spins. These moves conserve the double occupancy number to zero, thus always moving
in the low energy subspace. However, the VMC calculations are computationally expen-
sive. This makes us look for other alternative routes like slave boson mean field theory or

Gutzwiller renormalized mean field theory.

13



1.3.2 Slave boson mean field theory

In the slave boson formalism [35] one introduces new auxiliary operators : two fermionic
operators for | 1),| J) and two bosonic operators for |0),| 1|). The fermionic operators
create o spin particle with zero charge while the bosonic opeartors create zero spin paticle
accompanied with an unit of electronic charge. The Hubbard operators, (X?<% = |5)(al)
are expressed in terms of the original c-operators, e.g, X°“% = ¢ |0) where the reference
state is the empty state |0) . However, the latter state is not a convenient starting point
in the sense that there is no Wick’s theorem for such states and therefore usual quantum
field theoretical methods cannot be applied. However, it is possible to express the Hubbard
operators exactly in terms of products of fermionic and bosonic operators which obey the
canonical anti-commutation/commutation rules. The empty site is now created starting
from a vacuum state by operating the bosonic operator b'. In the projected space double
occupanicies are not allowed so the constraint relation connecting fermionic and bosonic

operators become,

> L fi +blbi=1. (1.4)

Through this constraint relation the bosonic degrees of freedom are “slaved” as they
are not allowed to form macroscopic condensate like free bosons and hence the name slave

boson. The tJ model can be rewritten in slave boson language as

HtJ:_t Z fityfjob;bi‘f‘J Z fiLfia’f}g’ij‘ (1'5)

<ij>,0 <ij>,0,0’
The introduction of the slave boson theory however has made the problem complicated

by introducing new operators. The complication is also at the level of constraint relations
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that one has to follow. However, approximate mean field theories based on the slave bo-
son theory can give insights into the ground state properties of the system. This thesis is
however based on the technique of Gutzwiller renormalized mean field theory which will

be discussed in details in the next section.

1.4 Gutzwiller Approximation and renormalized mean field
theory

For a system with Fermi surface nesting, a metal to insulator transition occurs at U = 0
since there is an AF instability for any arbitrarily small value of U due to the nesting prop-
erty. The system then is a weakly correlated SDW insulator where the insulating property is
due to the long range magnetic order. However, this has nothing to do with Mott insulating
property which is born out of strong local correaltions. As U 1is tuned to relatively larger
values, the SDW insulator goes over to an AF Mott insulator smoothly without any observ-
able singularity. The absence of the singularity masks the onset of the local correlations
crucial for realizing a Mott insulator which we know will set in when U ~ W where IV is
the bare bandwidth of the system. To understand the Mott physics as arising out of slowly
building local correlations the system is constrained to be paramagnetic so that a paramag-
netic metal to insulator transition occurs. A popular approach to study this problem is the

Gutzwiller variational approach where we start from a variational trial wavefunction,

) = JJ(1 = (1 = )ninay)|FS), (1.6)

where 0 < 1 < 1 is the variational parameter which suppresses the weights of config-

urations with double occupancies as compared to the metallic Fermi sea |F'S). For n = 1,
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we get back the Fermi sea for which U = 0. For np = 0, the weights of many body config-
urations with even one double occupancy is made to be zero and corresponds to U = oo
which is the Mott insulating state with single occupancies at half-filling. When the den-
sity is lesser than unity, the system has charge fluctuations due to the presence of holes
and is metallic even at U = oo. For, any U > 0 the weights of configurations with dou-
ble occupancies are suppressed with factors of 7 < 1. With this trial wavefunction, the
ground state energy is evaluated and minimized with respect to 7 to find the ground state
and hence the double occupancy count for a particular value of U. Although this method
captures the physics well at two limiting points, it always predicts a metallic phase in fi-
nite dimensions for intermediate values of repulsion. This is beacuse the Gutzwiller wave
function misses the inter-site correlation of holons and doublons which are inevitably there
at finite values of U. For an insulating state the holons and doublons need to be bound so
that under an applied electric field these expensive charge configurations do not constitute
a current. Missing spatial correlations always make the state metallic at finite values of
U for conventional trial wavefunctions where the starting state is a paramagnetic metallic

Fermi sea.

However, when we want to study the effects of correlation only in the strongly cor-
related limit we resort to the scheme of Gutzwiller approximation [1, 36—40] where the
constraints due to strong correlation are treated in an approximate way. Within Gutzwiller
approximation, the expectation value of an operator in the fully projected space is related to
that in the unprojected space through a statistical weight factor known as Gutzwiller factor

which takes into account the projection of doublons in an approximate way as shown here,

(W[O) = go (1ol Olo). (1.7)

16



Here, 1y is the unprojected wavefunction which we seek through the renormalized
mean field theory calculation . In this section, we will only discuss the method of cal-
culating Gutzwiller factors through phase space counting which will be relevant for com-
prehension of future chapters. In the context of tJ model, as we go from the projected to
unprojected space , we incorporate two Gutzwiller factors: ¢, the kinetic energy renor-

malization factor and g, the renormalization factor for spin exchange term.

qurojecFed
1 OO {
T 1O 1
0 0—~10 1

o—1i 1

Figure 1.7: In unprojected space there are no constraints on double occupancies and hence
hopping can occur by all four processes (as shown on left) whereas hopping in the projected
space where doublons are not allowed, is purely a hole hopping (as shown on right).

Projected
i 3

i OOt

An up spin particle can hop from ¢ — th site to j — th site in four possible ways in the
unprojected space. Here, double occupancies are allowed unlike the projected space where
doublons are prohibited. In the projected space, this hopping is basically a hole hopping
from j —th site to © — th site. These are shown in Fig. 1.7. The Gutzwiller factor is defined
as the square root of the ratio of the probability of the process in the projected space to

that in the unprojected space. The probabilities can be calculated in a straightforward way.
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First, in the unprojected space, if we look at the initial state, there is always an up spin
particle on ¢ — th site and no up spin particle on the j — th site. So, probability of the initial
state in the uprojected space is n;+(1 — n;p). On the other hand, in the final state, there
is always an up spin particle on the j — th site and no up spin particle on the ¢ — th site
which makes the probability of the final state (1 — n;1)nj+. The probability of the process
in the unprojected space is the product of the probabilities for the final and initial states
Jde., ni(1 — njt)(1 — nip)njqp. In the doublon projected space, the probability for an up
spin particle at i — th site is n;; where as the probability of a hole on j — th site is (1 —n;)
which comes from the conservation of probability of configurations in the projected space
(X 4 X+ 4 Xheh = 1), Then the probability of the process in projected space is
ni+(1 —n;)(1 — n;)njy. The probabilities are calculated under the approximation that the

spin resolved densities before and after projection are equal. The expression of g is then,

giy = \/((1—7%)(1 _nj) (1.8)

1 —ni) (1 —nj)

If we put n,, = (1 — 2)/2 (in the spin symmetric case), where x is the hole doping
fraction, then g, = 2z /(1 + x).

Calculation of gg:

Unprojected/Projected
i

3 i 3
P i—-01
Figure 1.8: Figure shows spin flip term between ¢ — th and j — th sites which corresponds
to the same process in unprojected and projected space.

The Heisenberg term in the tJ model is renormalized by the Gutzwiller factor g,. There
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are two parts in the J term: (1) Spin flip part [5(S;"S; + S;°S;")] (2) Spin preserving part
[SZS j] We will calculate the Gutzwiller factor corresponding to the spin flip part and since
the Hamiltonian is SU(2) symmetric we will impose that the spin preserving part also has
the same scaling factor.

The probability of a ¢ spin particle in the unprojected space is n, (1 —n;) and that in the
projected space is n,. Therefore, the probabilities of the process shown in Fig. 1.8 in the
unprojected and projected spaces are n;4(1—n; )n; (1—nj4) x (i < j) and ngqng X (2 <> j)

respectively. Therefore, g, comes out to be,

1
= . 1.9
! V(1 = 1) (1 — nyy) (1 — np) (1 — nyy) (19

Thus the tJ model can be written in the unprojected space as,

Hyy ~ ( S t0) guclycio + He) + J(gssi.sj - ”fj)) (1.10)

<ij> o

where the density-density term has a scaling factor of 1. If we put n,, = (1 — x)/2 (in
the spin symmetric case) where x is the hole doping fraction, then g, = 4/(1 + x)2.

The effect of the projection is approximately captured through the Gutzwiller factors
in the renormalized tJ Hamiltonian given by Eq. 1.10. This Hamiltonian is now in terms
of unprojected normal fermionic operators with the Gutzwiller factors suitably suppressing
or enhancing the terms to take into account the effect of projection. In order to solve the
Hamiltonian, we treat the quartic terms at the mean field level to make them quadratic.
For example to explore superconductivity, one can introduce pairing amplitude, A, =
(c%c} T chcj 410 and Fock shift, &0 = (C)_¢i1re )0 as appropriate mean fields and solve
them self-consistently to find the approximate ground state of the system. Details of the

calculation are given in Appendix A.2.

19



[V
o

4 T T T 0.06 T T T
1 ® Monte Carlo ’5 — Gutzwiller Approx
= ° — Gutzwiller Approx ~ e Monte Carlo
3 3t = ARPES Expt. 18
o 0.04 - ee® o 7
2 41 = °
£ . £ . |
.E ° g 0.02 | o ]
o 1 ° T 6 °
| |
gy n S °
0 1 1 d O 1 1 1
0 0.1 0.2 0.3 0 0.1 0.2 0.3
Doping (x) Doping (x)

Figure 1.9: (a) Pairing gap A as a function of doping,  within VMC and Gutzwiller RMFT
calculations and comparison with experimental ARPES data. (b) Order parameter ¢ from
VMC and Gutzwiller RMFT calculations. Adapted from Ref [4].

Gutzwiller approximation, though is an adhoc technique, has been well tested against
more accurate methods like VMC in context of tJ] model. Fig. 1.9 shows the pairing gap
from VMC calculations, Gutzwiller RMFT and angle resolved photo emmission spec-
troscopy (ARPES) experimental results. Also shown is the superconducting order parame-
ter (from VMC and RMFT calculations) which captures the off diagonal long range order
in the superconducting state and also gives an estimate of 7.. The results are in qualita-
tive agreement in the sense that monotonic decay of gap and non-monotonicity in order

parameter are captured well within Gutzwiller approximation.

1.5 Strong e-e correlations in band insulators

In this thesis, we analyze the effects of on-site Coulomb repulsion U on a band insula-

tor, modeled by a tight-binding hopping together with an explicit one-body potential, also
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known as the ionic potential, which doubles the unit cell. We start with a band insulator
with two bands, one filled and other unfilled, and turn on the on-site Coulomb repulsion,
the Hubbard U. This model is also known as ionic Hubbard model (IHM). We show how
a spin-exchange mediated superconductivity can be realized without doping in a simple
model of a strongly correlated band insulator, where the bare band gap and the e-e interac-

tions both dominate over the kinetic energy.

1.5.1 Ionic Hubbard model

In this section we discuss a variant of the Hubbard model known as the ionic Hubbard
model (IHM). The IHM has in adddition to onsite Coulomb repulsion (~ U), a staggered

potential (~ A) acting on itinerant electrons. The Hamiltonian is given by,

H=—> (tycl,cjo + h.c) — MZn — %Zn + % > i+ U ngngy (L11)

i,jo 1€A 1€EB %

where —% is the ionic potential on A sites and % is the ionic potential on B sites.

In the non-interacting limit (U = 0), the Hamiltonian is exactly solvable and the system
is a band insulator with a gap equal to A as shown in Fig. 1.10. When we introduce U
slowly, the gap gets suppressed to |A — Ud| (where § is the density difference between
the sublattices) which is found within restricted (paramagnetic) Hartree Fock theory for
weak values of U and A [7]. On the other hand we can gain some insight about the strong
correlation limit by looking at the atomic limit of the model where t = 0. For A > U,
na = 2,ng = 0 forms the ground state of the system with a gap A — U which decreases

with U. While for A < U, ny = 1,ng = 1 is the ground state of the system with
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Figure 1.10: U = 0 limit of the IHM where the system is a band insulator with gap A.
Here, the dispersion Ej, is shown along the k, = k, direction in the full Brillouin zone
(FBZ) for A = 2.

a gap U — A which increases with U. Exactly at U = A, the system is gapless with
states ny = 2,np = 0 and ny = 1,np = 1 being degenerate. Introducing hopping
adiabatically, results into a metallic phase between a band insulator and a Mott insulator in
the paramagnetic sector [5,41-44].

In the presence of only nearest neighbor hopping, the Hamiltonian is particle hole sym-
metric under the transformation ¢!, — ¢p, and ¢, — —c4, with chemical potential
W= % at half-filling. But this particle hole symmetry is explicitly broken if we add a
next nearest neighbor hopping term as the Hamiltonian is no longer preserved under the
transformation. The ionic Hubbard model in U = 0 limit in the prsence of ¢’ shows a band
insulator to a band metal transition. The non-interacting Hamiltonian is exactly solavable
with eigenvalues,

2

A
2N = —p — 4t cos (k) cos (k,) & Vil 212 (1.12)

on a square lattice where I'y, = 2(cos (k,) + cos (k,)). For ¢ = 0, the system is a band
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insulator with a gap A as shown in Fig. 1.10 opening along the Fermi surface I';, = 0 at
half-filling. But as soon as we turn on #', the degeneracy on the Fermi surface is broken
and the points K = (+7/2,£7/2) and K’ = (0,+m)or(£m,0) become inequivalent.
The conduction band minima A* = A/2 occurs at K whereas the valence band maxima
A~ = 4t' — A/2 occurs at K’ and there is an indirect band gap of A — 4t for A > 4¢'.
The system is then a band insulator until # = A/4 when the band gap closes to give an

insulator to metal transition.

(A) IHM in low dimensions

IHM was used as a prototypical model for describing neutral-ionic transition in mixed-
stack organic compunds [45,46]. This model was also believed to capture the physics of
ferroelectric perovskites [47-51]. There has been quite an extensive study of IHM in 1d
in the past [49-57]. Exact diagonaliztion study in the paramagnetic phase at half-filling
reported a phase transition from band to Mott insulator with a metallic transition point
as U is increased for a given value of A [49,50]. A continuous transition from band
insulator to bond ordered wave (BOW) phase and another from BOW to Mott insulator was
observed at half-filling within an effective field theory [51]. DMRG studies also supported
the existence of these two continuous transitions in 1d at half-filling [55, 56]. In the limit
U, A > t an effective Hamiltonian was derived for the IHM in 1d where the existence of
spontaneously dimerized insulating BOW phase intervening the band and Mott insulator

phases was confirmed [57].

(B) Phase diagram of IHM in weak to intermeidate coupling regime

Large U prefers single occupancies and hence an AF Mott insulating state where as large

A prefers staggered charge density giving rise to a charge density wave (CDW) insula-
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Figure 1.11: (a) Intermediate metallic phase in the IHM on Bethe lattice in the param-
agnetic sector. Adapted from Ref [5]. (b) When AF order is allowed, it preempts the
formation of metallic phase. An intermediate bond ordered insulating phase is observed in
between the AF Mott insulating phase and paramagnetic band insulating phase based on
cluster DMFT study. Adapted from Ref [6].

tor. The IHM has been studied theoretically in the past using dynamical mean field theory
(DMFT) [5,7,43,58-62], determinantal quantum Monte carlo [41,42], cluster DMFT [6]
and coherent potential approximation [44]. For A = 0 we recover the usual Hubbard model
and the system is an antiferromagnetic spin density wave insulator for low U values which
goes over to an antiferromagnetic Mott insulator as we crank up U. For U = 0 the system is
a band insulator with a gap A (See Fig. 1.10). In the weak to intermediate values of U and
A, the zero temperature phase diagram shows an intervening correlation induced metallic
phase in the paramagnetic sector at half-filling within DMFT [5,41-44] (See Fig. 1.11(a)).
However, when spontaneous symmetry breaking is allowed the transition from paramag-
netic band insulator to AF insulator preempts the formation of the metallic phase [6, 59]
(See Fig. 1.11(b)), except for a thin sliver of AF half-metallic phase found within DMFT

using Iterated Perturbation Theory (IPT) as impurity solver [60]. On doping the IHM a
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broad ferrimangetic half-metallic phase [60] is obtained between a weakly correlated para-

magnetic metal for small values of U and a strongly correlated metal for larger values of

U.
«-2U/t=16.0
0.25 """ CT—HYBs-+U/t=14.0
—J/4 s-aU/t=12.0

~==U/t=10.0 |

Figure 1.12: The Néel temperature from CTQMC+DMFT calculation follows the coupling
of the Heisenberg term of the effective model (in the U >> t but A ~ ¢ limit) for A < U but
beyond that shows deviation from it. Adapted from Ref [7]. (Note that there is a difference
in convention used for A term in the Hamiltonian in Ref [7] and current Hamiltonian. The
two are related by a factor of 2)

(C) Strongly correlated limit of IHM

For U > t but A ~ t, the IHM maps to a modified tJ] model with an additional ionic
potential term and with spin-exchange term given by J = 4t2U/(U? — A?) [7]. Note
that in this limit doublons are projected out from the low energy Hilbert space from all
sites. In this case the Néel temperature of the AF order should obey J and hence increase
as A increases. In fact this was observed in DMFT+CTQMC calculation for the IHM
at half filling [7] where it was shown that for U as high as 16¢, up to A little less than U,

Ty~ J /4 (Note that there is a difference in convention used for A term in the Hamiltonian
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in Ref [7] and current Hamiltonian. The two are related by a factor of 2). But for A > U a
sudden drop in T was observed which could not be explained based on the spin exchange

coupling J (See Fig. 1.12).

(D) Limit of strong correlation and strong staggered potential

In this thesis, we explore the limit U ~ A > ¢t which has not yet been explored in detail.
In this limit, as we will discuss in detail in the following chapters, double occupancies are
expensive one one sublattice and holes are expensive on the other sublattice at half-filling.
In order to take into account these projection constraints, we do a generalized similarity
transformation which eliminates such high energy states from the Hilbert space and yields
the low energy effective Hamiltonian. We further generalize Gutzwiller approximation to
obtain scaling of various terms in the low energy effective Hamiltonian. Most striking
feature of the low energy effective Hamiltonian is the presence non zero hopping terms at
half-filling [10] which is unlike the strongly correlated limit of the Hubbard model which
is a charge frozen Mott insulator at half-filling. This indicates the possibility of charge
dynamic phases like metallic and superconducting phases which is the main motivation of
this thesis. In the presence of nearest neighbor hopping only, the superconducting phase we
find is meta-stable and it requires sufficient amount frustration in the form of next neighbor
hopping to stabilize this unconventional superconductivity. Next neighbor hopping (&)
acts as a mechanism of frustration of AF order. In the U, A > t¢,t' limit of the IHM, a

perturbation in hopping yields two competing Heisenberg terms:

* JS;4.5;p on nearest neighbor bonds.

* J'S;a.5;4 and J'S;5.S;p on the next nearest neighbor bonds.
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Figure 1.13: Antiferromagnetic interactions J and J' on nearest and next nearest neighbor
bonds respectively on a square lattice.

In Fig. 1.13 we take the example of the square lattice where spins on the nearest neigh-
bor bond AB interact antiferromagnetcally through coupling J and those on next nearest
neighbor bond BB interact antiferromagnetcally through coupling J'. If spins align an-
tiparallel on the AB bond, the spin on the third site is frustrated. Thus, the next neighbor
hopping frustrates the magnetic order and helps in stabilizing the superconductivity even
at half filling, which is the main conclusion from this thesis. The IHM in the presence of
frustration in the form of next neighbor hopping has been a focus of study in recent times

and many interesting phases are possible in such scenario [63—65].

(E) Experimental realizations of IHM

The THM has been experimentally realized on an optical lattice with honeycomb struc-
ture in the recent past where the Mott phase and the charge density wave insulator phase
have been observed [8] as shown in Fig. 1.14. Interaction strength was tuned by magnetic
Feshbach resonance while the modulation in the potential was achieved by interference of
counterpropagating laser beams. Due to the recent developments in layered materials and

heterostructures, there can be many scenarios where the IHM can be used as a minimal
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Figure 1.14: Experimental realization of IHM on a tunable optical honeycomb lattice.
Adapted from Ref [8].

model, for example, graphene on h-BN substrate and bilayer graphene in the presence of
a transverse electric field [66], which plays the role of the staggered potential. The limit
of strong correlation, crucial for realizing the superconducting phase, can be achieved in
these materials by applying a strain or twist. A strain/twist can suppress the tunneling by
reducing overlap between the orbitals which can make U/t, A/t effectively large. Band
insulating systems with two inequivalent strongly correlated atoms per unit cell, frustra-
tion in hopping and antiferromagnetic exchange, and lack of particle-hole symmetry, are

promising candidates in this direction.

1.6 Outline of the thesis

The aim of the thesis is to study the effect of strong correlations in band insulators. Par-
ticularly, we show that an unconventional superconductor can be realized at commensurate
filling starting from a strongly correlated band insulator.

In Chapter 2 we develop the formalism for treating strong correlations in the presence
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of equally strong inhomogeneities at half-filling. Particularly, we study two models: the
ionic Hubbard model and the Hubbard model with binary disorder. In both these models
for U ~ A > t, double occupancies are expensive on sites with positive ionic potential
and holes are expensive on sites with negative ionic potential at half-filling. Through a
generalized Schrieffer Wolff transformation, we do a site dependent projection to derive
the low energy effective Hamiltonian. The various couplings in the Hamiltonian are then
suitably renormalized using a scheme of generalized Gutzwiller approximation which cap-
tures the physics of the site dependent projection approximately. The striking feature of the
low energy Hamiltonian is that hopping terms still survive at half-filling unlike the strongly
correlated limit of the Hubbard model at half-filling which is a charge frozen Mott insula-
tor. This motivated us to look for charge dynamic phases like metallic and superconducting

phases.

In Chapter 3, we study a simple model of band insulator known as the ionic Hubbard
model and study the role of interactions in the origin of unconventional superconductivity.
In the spin symmetric phase where we force the staggered magnetization to go to zero,
we find both d-wave and extended s-wave superconducting phases turn up. However, the
d-wave phase is considerably broader and energetically also little lower than the extended
s-wave phase. But as soon as we allow for AF order to exist, the superconducting phase
becomes metastable with the AF Mott insulator phase being energetically more stable than
the superconducting phase. The phase diagram consists of a direct transition from an AF
Mott insulator to a paramagnetic band insulator through a sliver of AF half metal phase.
This made us think that if we could suppress the AF order by introducing frustration in the
system, we would be able to stabilize the superconducting phase.

In Chapter 4, we study the role of frustration in stabilizing unconventional superconduc-

tivity in strongly correlated band insulators. Introducing the next nearest neighbor hopping
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as a mechanism of frustration not only stabilizes superconductivity which is predominantly
d-wave with a small region where d-wave and extended s-wave are very close in energy,
but also leads to the emergence of exotic metallic phases like paramagnetic metallic phase,
ferrimagnetic metallic phase and AF half metallic phase which envelop the superconduct-
ing phase. The superconducting phase like in cuprates has a high 7T, as well as a pseudogap
phase.

Finally in Chapter 5 we conclude and summarise the work in this thesis.
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FORMALISM FOR STRONGLY
CORRELATED MODELS WITH LARGE

ONSITE POTENTIALS

2.1 Introduction

As mentioned in the chapter 1, strongly correlated systems are of immense interest and
importance in condensed matter physics. Strong e-e interactions leads to many interesting
phases like high-7. superconductivity, antiferromagnetically ordered phases and Mott in-
sulators. It is very essential to have a controlled many-body formalism for dealing with
strong correlations. Various methods and tools are available for treating strong interac-
tions in Hubbard type models in the limit when the e-e interactions form the largest energy
scale. We described some of these methods in the Introduction chapter. In this chapter,

we generalize the available formalism for treating strong correlations for the limit where
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both the e-e interactions and the one-body potential (like staggered potential in ionic Hub-
bard model (IHM) or disorder potential in the binary alloy Hubbard model) are dominant
and comparable. The method developed here is not only useful in exploring the special
strongly correlated limit of the IHM, which is the main focus of this thesis but will also be
essential to describe systems where strong impurities are present in the system e.g., Zn or

Ni impurities in cuprate superconductors [67,68].

The Hubbard model is a paradigmatic model in strongly correlated electron systems
with two simple ingredients, namely, hopping of electrons (~ t) and on-site Coulomb
interaction (~ U). In the limit of large U and finite hole doping, doublons are energetically
unfavorable and need to be projected out from the low energy Hilbert space. A regular
similarity transformation which projects out double occupancies, gives the effective low
energy Hamiltonian which is known as the ¢ — J model [30] and captures many aspects of
the physics of high 7. superconducting cuprates [2, 16,69-74].

The ¢ — J model is defined in the projected Hilbert space and since Wick’s theorem
does not work for the fermionic operators in the projected Hilbert space, standard many-
body physics tools of calculating various order Feynman diagrams for the self-energy [75]
can not be used to solve this model. One needs to solve the Schwinger equation of motion
for the Green’s function of projected electrons [32,33] and use a systematic perturbation
theory in some parameter that controls double occupancy. Numerically, the ¢ — J model
can be studied using the variational Monte Carlo method [34] where one starts with a
variational wavefunction and then carries out doublon projection from each site explicitly
. But because of the computational complexity, another alternative analytical tool most
commonly used in the community as an approximate way of implementing the Gutzwiller
projection (elimination of double occupancies) is known as the Gutzwiller approximation.

The Gutzwiller approximation, as first introduced by Gutzwiller [76,77], was improved and
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investigated later by several others [1,36—40] mainly in the context of the hole-doped ¢ — J
model. Under this approximation, the expectation values in the projected state is related to
that in the unprojected state by a classical statistical weight factor know as the Gutzwiller
factor that accounts for doublon exclusion. As an effect various terms in the Hamiltonian
become renormalized by the Gutzwiller factors and the renormalized Hamiltonian can be

studied in the unprojected basis.

Though the Gutzwiller projection for exclusion of doublons has been explored in detail
in the literature, the Gutzwiller projection of holes from the low energy Hilbert space and
its implementation in renormalizing the couplings in the effective low energy Hamiltonian
at the level of the Gutzwiller approximation are still completely unexplored. There are
models, like the electron doped ¢ — J model, where in the low energy Hilbert space one has
to allow for doublons and holes have to be excluded. But in this situation it is not really
essential to use the formalism of the Gutzwiller projection for holes as one can simply
do particle-hole transformation and map the model to the hole-doped ¢ — J model where
the low energy Hilbert space allows for holes excluding doublons. Hence probably the
formalism of the Gutzwiller projection of holes has not been explored yet. But there are
situations where the Gutzwiller projection of holes becomes crucial to carry out, e.g., in a
model where on some of the sites it is energetically favourable to do hole projection while
on some other sites doublon projection is required. With this motivation, we provide the
basic formalism for the Gutzwiller projection of holes and calculate the Gutzwiller factors
for implementing this projection approximately by renormalizing the couplings in the low

energy Hamiltonian for a couple of such models.

In this chapter we provide a general formalism for studying variants of the strongly
correlated Hubbard model with inhomogeneous onsite potential terms of the same order as

U or larger than that. Due to competing effects of onsite potential and U, there are sites at
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which holes are the maximum energy states (rather than doublons) and should be projected
out from the low energy Hilbert space. We do a systematic extension of the similarity
transformation in which the similarity operator itself varies from bond to bond depending
upon whether both sites of the bond have doublons projected low energy Hilbert space
dominated by large U physics, or both have hole projected low energy Hilbert space or one
of the site on the bond has a hole projected and the other site has a doublon projected low
energy Hilbert space. We further calculate generalised Gutzwiller approximation factors
for various terms in the low energy effective Hamiltonian which are also bond dependent.
Gutzwiller factors for bonds where one site requires hole projection and the other has dou-
blon projection or where both the sites have hole projection have not been calculated in the
literature earlier and here we derive them under the assumption that spin resolved densities

before and after the projection remain the same.

To be specific, we provide details of the formalism for two well studied models, namely,
the ionic Hubbard model (IHM) and correlated binary alloys represented by the Hubbard
model in the presence of binary disorder. IHM is an interesting extension of the Hubbard
model with a staggered onsite potential A added onto it. IHM has been studied in various
dimensions with a variety of numerical and analytical tools. In one-dimension [51,78,79],
it has been shown to have a spontaneously dimerized phase, in the intermediate cou-
pling regime, which separates the weakly coupled band insulator from the strong coupling
Mott insulator. In higher dimensions (d > 1), this model has been studied mainly us-
ing dynamical mean field theory (DMFT) [5,7,43,58-62], determinantal quantum Monte
Carlo [41,42], cluster DMFT [6] and the coherent potential approximation [44]. As men-
tioned in chapter 1, though the solution of DMFT self consistent equations in the paramag-
netic (PM) sector at half filling at zero temperature shows an intervening metallic phase [5],

in the spin asymmetric sector, the transition from paramagnetic band insulator (PM BI) to
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anti-ferromagnetic (AFM) insulator preempts the formation of a para-metallic phase [6,59].
In a recent work, it was shown that upon doping the IHM, one gets a broad ferrimagnetic
half-metal phase [60] sandwiched between a PM BI and a PM metal. IHM has also been

realised in optical lattices [8] on the honeycomb structure.

Most of these earlier works on IHM are in the limit of weak to intermediate U/t except
[7,61] where the strongly correlated limit of IHM has been studied for A < U within
DMEFT. Recently, [80] the A ~ U > t limit of IHM has been studied using slave-boson
mean field theory. The Gutzwiller approximation method has been used for studying IHM
[81] but in the limit of large U (not extreme correlation limit) where double occupancies are
not fully prohibited. To the best of our knowledge, the Gutzwiller approximation formalism
for this model has not been developed in the limit A ~ U > t which we present here. As
we will describe in detail later in this chapter, in the limit of large U and A (U ~ A),
holes are energetically expensive in the sublattice where the staggered potential is —A /2
(say, sublattice A) and double occupancies are expensive in the sublattice having potential
A /2(say, B). Therefore holes are projected out from the A sublattice and doublons from
the B sublattice, which gives us the low energy effective Hamiltonian.

The second model for which we provide details of the formalism is the model of corre-
lated binary alloys described by the Hubbard model in the presence of the binary disorder
potential. In all correlated electron systems, disorder is almost inevitable due to various
intrinsic and extrinsic sources of impurities. In high 7, cuprates, it is the doping of the par-
ent compound (e.g. with oxygen) which results in the random onsite potential along with
introducing holes [17]. Another type of common disorder is binary disorder which is for
example realized in disulfides (C'o;_,F'e, Sy and Ni;_,C0,S5) [82-85] in which two dif-
ferent transition metal ions are located at random positions, creating two different atomic

levels for the correlated d-electrons. Binary disorder along with interactions among basic
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degrees of freedom has also been realised in optical lattice experiments [86, 87]. Hence it
becomes crucial to study the interplay of disorder and interactions in order to understand
many interesting properties of these systems.

In the correlated binary alloy model, the onsite potential can be £1//2 at any site of
the lattice randomly. The physics of this model has been explored for the intermediate to
strong coupling regime mainly using DMFT [88-91]. But the limit of large onsite repulsion
as well as strong disorder potential U ~ V' > t, where holes are projected out from sites
having potential —V'/2 (A) sites and double occupancies are projected out from sites having
potential V/2 (B) sites, has not been explored so far. Though this model has similarity with
the IHM mentioned above, but the intrinsic randomness associated with the binary disorder
model makes the effective low energy Hamiltonian different from the case of IHM. The
interplay of disorder and interaction in this model may lead to very different physics like
many-body localization [92-95].

The rest of the chapter is structured as follows. First we provide the basic formalism
for hole projection by defining electron creation and annihilation operators in the hole pro-
jected Hilbert space. We enlist probabilities of various allowed configurations in the hole
projected Hilbert space and calculate the Gutzwiller approximation factors for hopping
processes. In the next section, we have derived the effective low energy Hamiltonian for
the IHM in the limit of U ~ A >> t and calculated the corresponding Gutzwiller approx-
imation factors for various terms in the Hamiltonian. Followed by this we have described
the similarity transformation and Gutzwiller approximation for correlated binary alloys in
the limit of strong interactions and strong disorder. At the end, we also touch upon the case
of fully random disorder and randomly distributed attractive impurities in the limit of both

interaction and disorder strength being much larger than the hopping amplitude.
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2.2 Basic formalism for hole projection

Though the formalism of Gutzwiller projection is well developed for the case of doublon
projection in the literature, case of hole projection has not been explored in detail so far.
In this section we derive the basic framework by defining new creation and annihilation
operators for electrons in a restricted Hilbert space where holes are projected out but which

still allows for doublons.

For a system of spin-1/2 fermions, at each site there are four possibilities, namely,
| 1,1 4),| T1) and |0). Consider a model in which the energy cost of having |0) is much
more than the other three states e.g., shown in Fig. [2.1]. It may also happen that due to
some other constraints e.g. to achieve certain density of particles in the system, one has to
retain doublons in the low energy Hilbert space (though the energy cost for doublons might
be close to that of holes) and exclude holes. In these situations, the effective creation and

annihilation operators for fermions in the low energy Hilbert space need to be modified.

U 10)

0 RONRAN RS

Figure 2.1: Separation in the energy scales of a hole and other states.

The simplest way to see this is the following. A normal electron creation operator can

be expressed in terms of local Hubbard operators:
b= X770 4 (o) X7, (2.1)
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where,

X = |b)(al. (2.2)

Here o can be 1 or | and d represents a double occupancy and (1) = 1 and n(}) = —1.

This means one can create a particle either starting from a hole or by annihilating one

Unprojected:

i J i J

m — M

T — T4
] —  f
v — T4

Projected:

i J i J

4 — T4

Figure 2.2: Top: Possible nearest neighbor hopping process in full Hilbert space. Bottom:
Allowed hopping process in reduced Hilbert space from which hole has been projected out.

particle from a double occupancy. Since, in the present case holes are projected out from
the low energy subspace, one can not create an up spin particle starting from a hole; rather
we can create an up spin particle only by annihilating a down spin particle from a doublon.

Therefore, the projected electron creation operator, which we denote by ¢, is:

&l =n(0) X7 = clns, (2.3)
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with

{¢s,C0} =ns. 2.4)

Here, (1) = 1 and n(}) = —1. Note that ¢, does not satisfy standard Lie algebra of
fermions as shown in Eq. 2.4. The corresponding number operator in this reduced Hilbert
space is n, = ny,ngs. Various Hubbard operators in terms of fermionic operators in the hole

projected Hilbert space are given as,

X0 = &6, (2.5)

From the completeness relation of X operators in hole projected Hilbert space we get,

XT(—T + XJ,(—J, + Xd<—d — I,
ny(1 —ny) +n (1 —n4) +nyny =7, (2.6)

nmny =mn—1.

Let us consider hopping of a particle to its nearest neighbor site in this reduced Hilbert
space. In the full Hilbert space, which does not have the constraint of hole projection,
there are four possible nearest neighbor hopping processes as shown in the top panel of
Fig. [2.2]. But the only allowed hopping processes in the low energy Hilbert space of the
hole projected system are those which do not have a hole in the initial state and in which
no hole is created in the final state as well. This leaves for only one process in which there
is a doublon at site j, and a spin |o) at site i. Then a ¢ hopes from site j to ¢ resulting in a

single occupancy at site j and a doublon at site ¢ as shown in the bottom panel of Fig. [2.2].
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Thus effectively only hopping of doublons takes place in the projected space resulting in an
overall suppression of the hopping process. The corresponding operator for this hopping

process is,

Hyopp = —t »  XF7XT ™ 4 he.

<i,j>,0

=—t Y o +he 2.7)

<t,j>,0

which is equivalently written in terms of normal fermionic operators as,

H’wpp =—t Z Czanié'nja-cjo— + h.c.

<i,j>0
= =Pult Y clycjo+ h.c)Ph. (2.8)
<ij>,0

Here P}, stands for the Gutzwiller projection operator for hole projection defined as P;, =
I, = (1 —ni)(1 —ny)). We now generalize the concept of the Gutzwiller approxi-
mation for hole projected Hilbert space. The expectation value of the hopping process in
the hole-projected Hilbert space can be obtained through the Gutzwiller approximation by
renormalizing the hopping term in the unprojected basis by a Gutzwiller factor which takes
into account of the physics of projection approximately. The Gutzwiller renormalization
factor then is defined as the ratio of the expectation value of an operator O in the projected

basis to that in the unprojected basis:

{Y10[y)

where, 1) is the unprojected state.

The Gutzwiller renormalization factors are determined by the ratios of the probabilities
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States | Unprojected | Projected

1) ny(l—ny) | (I—mn)
1) n(l-ny) | (1-—mny)

| 1) nn; (n—1)
0) | (1—mnp)(1—n) 0

Table 2.1: Probabilities of different states in terms of electron densities in unprojected and
hole projected basis.

of the corresponding physical processes in the projected and unprojected bases. Listed in
Table 2.1 are the probabilities of states in unprojected and hole projected spaces where the

spin resolved unprojected and projected densities have been taken to be equal.

Here n, is the electron density with spin 0. Consistently everywhere we use n for

density and n for the corresponding number operator.

The probability of hopping of an 1 spin electron in the unprojected basis is (1 —
n;)n;n;+(1 — njp). In the hole projected basis, the corresponding probability is (n; —

1)(n; — 1)(1 — ny;)(1 — nj4). Therefore, the Gutzwiller factor for the hopping process

e \/ (m — 1), — 1) .10

SR

comes out to be,

With this set up for the hole projected Hilbert space, we describe the strongly correlated

limit of IHM and binary alloys.
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2.3 Strongly Correlated Limit of Ionic Hubbard Model

IHM has tight-binding electrons on a bipartite lattice (sub-lattices A and B) described by

the Hamiltonian,

H=—t Z [cj-o_cja%—h.c]—%Zni%—%Zni—l—UZnnnu—,uZni. (211)

i€A,jEB,c icA icB i

Here t is the nearest neighbor hopping, U the Hubbard repulsion and A a one-body stag-
gered potential which doubles the unit cell. The chemical potential is ¢ = U/2 for the

average occupancy per site to be one, that is, ((na) + (ng)) /2 = 1, corresponding to

“half-filling”.

On A sites (-Al2) On B sites (+A/2)

0y o~

O

o

g - O

Figure 2.3: Single site sublattice specific energies in the limit U ~ A > t. On the A
sublattice, holes are the highest in energy while the single occupancies and doublons are
almost degenerate and form the low energy Hilbert space. On the B sublattice, doublons
are the highest in energy and the single occupancies and holes which are almost degenerate
form the low energy Hilbert space.
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Let us consider the t = 0 limit of this model in the regime U ~ A. On the A sublattice,
single occupancies have energy — (% + %) ~ —A, the hole has 0 energy and the doublon
has energy —A. So, among the four choices of occupancy, a hole on A is the highest energy
state and should be projected out from the low energy Hilbert space. On the other hand, on
the B sublattice, single occupancies cost (5 — g) ~ ( energy, holes also cost 0 energy,
while doublons cost energy A ~ U, and therefore, on the B sublattice, doublons should be

projected out from the low energy Hilbert space. This is shown in Fig. [2.3].

2.3.1 Low Energy Hamiltonian in the limit U ~ A >> ¢

In the presence of a non-zero hopping term, the following nearest neighbor processes can

take place as shown in Fig. [2.4].

tB—)A tA—)B .

tA—)B T~L| tB—)A

A B

tA—)B - tA—)B
tB—)A tB—)A

Figure 2.4: Nearest neighbor hopping processes for [IHM.

H," processes involve an increase in double occupancy and hole occupancy by one,
H, processes involve a decrease in the double occupancy and hole occupancy by one and

HY? processes involve no change in the double occupancy or hole occupancy. Note that
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H}, ., and H,, ,  are the only processes which are confined to the low energy sector of
the Hilbert space. All other hopping processes mix the high energy and the low energy part
of the Hilbert space. The effective low energy Hamiltonian in the limit U ~ A > ¢ can
be obtained by doing a similarity transformation which eliminates processes which inter-
connects the high and low energy sectors of the Hilbert space. The effective Hamiltonian
is given by,

'2

Hopp = SHe™™ = H +i[S, H] + %[S, S, H] + ... (2.12)
Here, S, the transformation operator is perturbative in ¢/A and ¢/(U + A) and is given by,

1 _ 1

H — H

U—i——A( t A>B t B—>A) A(HO

05 = t A—B H?B—Ml) (2.13)
Higher order (O(¢?/U)) terms that arise from [S, H;] and [S, [S, Hy]| and connects the low
energy sector to the high energy sector can be eliminated by including a second similarity
transformation S’ such that [S", Hy| cancels those terms. The effective Hamiltonian which
does not involve mixing between low and high energy subspaces upto order # is,

1
UJF—A[HanBv
HO

Vs H oAl + O /U?)... (2.14)

Heff = HO + Hl,low + Ht_B—>A]

1
N

Here Hy = U Y, nipn; — % Y oieami + %ZieB n; and Hyjop = Hy .4+ Hiy 5
is the hopping process in the low energy sector. If we now confine to the low energy
subspace, ix[H; 15, Hi ol ~ —gaxHi paH; 4, p because the first term in the
commutator demands a doublon at site B and a hole at site A which is energetically not
favourable. Similarly, <[H , 5. H g 4l ~ —xH? 5 4 HY 4,5 because the first term

in the commutator either demands a doublon at B or a hole at A and thus is not allowed
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because they belong to the high energy sector.

2.3.2 Low energy Hamiltonian in terms of projected Fermions

Since holes on the A sublattice and doublons on the B sublattice belong to the high energy
sector, we have projected them out from the low energy Hilbert space and introduced new
projected operators,

&y = (@) X577 = cly,nas, (2.15)
e =X =l (1—ng,). (2.16)

Note that {¢,, ¢t} =1 — ns.

While writing in terms of normal fermionic operators in the projected space, the order
of the terms in the projected basis becomes important for the A and B sublattices. On
the A sublattice, ¢ AaéTAa = Pyc AUCLUP}L where as éLUé Ao F PthUc 40 Ph. In the former
case, both forms of operators count & type single occupancies where as in the later case
ELUE 40 count double occupancies while CLUC A0 counts both double occupancies as well as
o type single occupancies in the hole projected space. On the B sublattice, the situation
is opposite. 6;0630 = Pdc}gacBan and 630620 #+ PchacLUPd. In the former case,
both projected and normal fermionic operators count o type single occupancies where as
in the latter case the projected space operators count holes while the normal fermionic

representation counts holes as well as ¢ type single occupancies in the doublon projected

space.
In terms of new projected operators, H in Eq. (2.14) can be written as U ) _,_ ,(n; —
1) — %[ZieA ni — ;5 Ni|. Here we have used that on a site i € A, nyn; = n; — 1

(see Eq. (2.6)). Since doublons have been projected out from the B sublattice, in the low
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energy effective Hamiltonian there is no Hubbard term for the B sublattice. The hopping
term H, 5., in the projected space does not involve holes on sublattice A and doublons on

sublattice B. The representation in terms of projected operators is,

_ f % 2
Hy 1o = —t E CiaoCiBo + CipyCino

<ij>,0
=—t > Plely,cino + hc]P, (2.17)
<i1j>,0
where,
P =[] = (1= niar) (X = niap)) (1 = nipynisy). (2.18)

i?j

Here the projection operator P projects out holes from the Hilbert space corresponding
to sublattice A and doublons from the Hilbert space on sublattice B.

O(t?/(U + A)) Dimer Terms: In terms of Hubbard operators, the dimer term correspond-

: 1o+ - 1 - +
ing to =z [H; o Hy poyal ~ —mHy pooaH;™ 4 p becomes,
1 tz TG o o
S <0 o<—0 <0 <0
Hdimer - _U T A E : [Xz Xj - Xz Xj ]
i€A,jEB,0

The corresponding process is represented in Fig. [2.5]. In terms of projected fermionic
operators, these dimer terms take the following form:
t2

_ D TR S ox oz
TTULA [CiA&CiAaCjB;erB& - CiAUCz‘A&CjBonB&]

1/"]’0-
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=J1 Y _PlSia-Sip — (2= nia)n;p /4P, (2.19)

7:7‘7‘

. 2
with J; = UQiA.

+ —
Ht A-B Ht B—A

+ [T
A B

Figure 2.5: Spin exchange and spin preservation dimer terms for [IHM.

The dimer term corresponding to [H} , , 5, HY 5 . ,] involves hopping of an electron or
a doublon from some site to its nearest neighbor site and back to the initial site as shown

in Fig. [2.6].

t A—)B t B—)A

t A—)B t B—)A

Figure 2.6: Top: Hopping of a single spin to site B and back to site A. Bottom: Hopping
of a doublon from A to B and back to A.

This process is of order ¢*/A and can be written as,

t2 oo d<d yo<07
; :_K [XiAH XJQEO"‘XZ‘X ng]

0,<t5>

dimer
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In terms of projected operators we get

2
_ = A B P B
N [ClAUCiAﬁc]BUCjBJ+CiAaClAUCjBﬁcJBU]
0,<ij>
Z P(1 — nias)(1 = njp) + (nia — Dngps | P. (2.20)
<1]>a

O(t?/A) Trimer terms:

Trimer terms involve hopping of a doublon or a hole from a site to it’s next nearest
neighbor site. Effectively there is doublon hopping which is intra A sublattice hopping
denoted by H;}4 where as the hole hopping is intra B sublattice hopping (H 2 ) as shown

hopp hopp

in Fig. [2.7, 2.8].

ABA ABA ABA
] 4= Bap T =% Boon, TR
H?B—)A tA—)B

LT Haon 7 NIt s, 1T [

Ht B—A Ht A—B

Figure 2.7: Effective next nearest neighbor hopping of a doublon within A sublattice.

In terms of X operators, hopping processes for doublon hopping, which is of O(t?/A),

on the A sublattice are represented as,

HAA o Z Xd<—0XJ<—aXU<—d + Xd<—UXJ<—UXU<—d + h.c.

hopp —
o,<ijk>

In terms of projected operators, they are represented as,
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t2 NT :T = ~ ~ :T = ~T
~TA E (CkAaCjBaCch‘rCiAa + CiAc‘erB&CjBackAa)
o,<ijk>

SN Z P( ckAgnngcZAa + CZAJC}LBUC]BUCLAJ)'P (2.21)
o,<ijk>
Similarly the hopping of holes within the B sublattice, shown in Fig. [2.8], can be

written in terms of X operators as,

Z Xl()<—UXU<—chU<—O 4 Xl()<—UXU<—UXa<—0 4 h.c.

o,<jil>

hopp

which can be written in terms of projected operators as,

t? .. L
— —Z (ClBoCiAE-C;rA(—)_C;BU -+ C}BUCiAGCIA&ClBE_)
o,<jil>
Z Plewss|(1 ~ niA"’)C}Bo + CzTAgciAc‘rC;B&DP- (2.22)
o,<jil>
BAB BAB B AB
tA—)B tB—)A
It == 0t It == [
0
HtB—)A Ht AsB

[l 4=, [ 0] —22=4y [ ]

Ht B—A Ht A—B

Figure 2.8: Effective next nearest neighbor hopping of hole for IHM.
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2.3.3 Gutzwiller approximation

The effective low energy Hamiltonian obtained in the above section can be written as
H.;; = PHP where P will project out holes from the A sublattice and doublons from
the B sublattice for half-filling and densities close to half-filling. Within the Gutzwiller
approximation, the effect of this projection is taken approximately by renormalizing var-
ious coupling terms in H by corresponding Gutzwiller factors such that eventually the
expectation value of the renormalized Hamiltonian can be calculated in the normal basis.
Further we will calculate the Gutzwiller approximation factors under the assumption that
the spin resolved densities before and after the projection remain the same which will make
Gutzwiller factors equal to 1 for some terms in H. The renormalized Hamiltonian can be

written as,

H=H,—1t Z gw[cZAchBa + h.c.]

o,<1j>
t2
N [(1 = niag)(1 = nyB) + (nia — 1)1;5,]
<ij>,0
t2 N
_Z Z (gAaC};Ao-njBﬁciAa + 9o CiAc_fC;[‘B&CjBJCLAg) + h.c.
o,<ijk>
t? B
N (9BoC1Bo (1 — niA(—,)c;Bg + g5 CZBUC,LTAUCZ-A(—,C}BC-,) + h.c.
o,<jil>
L [ xS — 22— mi) (2.23)
gs0iA-0;B — 7 a4 — NiA)N;B | - .
U+ A bl 4

Here g; , and g, are Gutzwiller approximation factors for the nearest neighbor hopping and
spin exchange terms. Note that in writing the above renormalized form of the Heisenberg

part of the Hamiltonian, we have imposed SU(2) symmetry by hand [1, 36—40, 96-98].

50



States | Unprojected | Projected

1) ny(l—m) n;

[ 4) n (1 —ny) n,

[T nin, 0
0) |(1—n4)(1-ny)| (1—mn)

Table 2.2: Probabilities of different states in terms of electron densities in unprojected and
doublon projected bases.

Within the simplest approximation of spin resolved densities being same in projected and
unprojected states, the Gutzwiller approximation factor for 57, S7 remains unity while the
Gutzwiller factor for the S, S5 + h.c. term is g,. Since the original Hamiltonian is SU(2)
symmetric, the renormalized Hamiltonian obtained after taking into account the effect of
projection, must also be SU(2) symmetric. Hence we used g5 to be the Gutzwiller factor
for the 57, S7p term as well. Gutzwiller factors of the dimer terms are unity which will
be discussed shortly . g, and gs5' are Gutzwiller factors for intra sublattice hopping of
doublons on the A sublattice and gp, and g2 are Gutzwiller factors for the intra sublattice
hopping of holes on the B sublattice. As we will demonstrate, some of the Gutzwiller
factors are spin symmetric while others might be spin dependent in a spin symmetry broken
phase like in antiferromagnetically ordered phases. Below we evaluate them one by one for
various processes involved in H.;¢. We have enlisted below in Table 2.2 the probabilities
of different states in the doublon projected basis. Probabilities for various states for the

hole projected sublattice were enlisted in Table 2.1.

As we mentioned earlier, this analysis holds at half-filling and for densities not far from

half-filling. Even if the system is overall half-filled, the individual sublattices are not, the
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(a)
Unprojected:
A B A B
—
E .
. Unprojected:
A B A B
— —
Projected: Projected:
A B A B A B A B
— —

Figure 2.9: (a) Processes involved in the calculation of nearest neighbor hopping renormal-
ization factor, g, ,. (b) Processes involved in the calculation of spin exchange renormaliza-
tion factor g;.

A subalttice is electron doped where asthe B sublattice is hole doped. At half-filling in
the Hubbard model, the Gutzwiller renormalization factor for hopping is zero because the
system is an antiferromagnetic Mott insulator where as in the case of IHM, the density
difference between the sublattices results in finite g;,. Here, as we will show, the density
difference between two sublattices plays the role of doping in the case of the Hubbard
model. Also, the trimer terms are present in the half-filled IHM which results in intra
sublattice hopping of holes and doublons where as the half-filled Hubbard model has no
trimer terms.

Below we first give the general expression for g, and g, at any filling and then eval-

uate them for the special case of half filling, nA—i_TnB = 1. The probability of near-
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est neighbor hopping of an 1 electron in the unprojected space (shown in Fig. [2.9(a)]) is
(1—nay)npinar(1—npe) and in the unprojected space it is (1 —na4)npr(ng—1)(1—npg).

Then, the Gutzwiller renormalization factor,

gt = \/ (= D1 - ns) (2.24)

nu(1 —npy)

Letd = LQHB be the density difference between two sublattices. Then at half-filling,
the density of A sublattice is ny = 1 + ¢ and that of the B sublattice is ng = 1 — 9.
Let the magnetization on the A sublattice, m4 = nay — nay, then at half-filling due to
20
particle-hole symmetry, m4 = —mp = m. One can re-write g, = ———— in an
’ 14+0+o0om
antiferromagnetically ordered phase at half-filling. For m = 0, g; takes a form similar to
that known for the doped ¢t — J model with ¢ , the density difference in IHM, playing the

role of hole doping in the ¢ — J model.

Now consider the spin exchange process shown in Fig. [2.9(b)]. The probability for
this process to take place in the unprojected basis is nst(1 — na)ng (1 —ngy)ng (1 —
nt)npt(1—npg;) where as in the projected basis itis (1 —n 4, )ng (1 —n44)npgy, resulting

in the Gutzwiller factor,

1
- _ 225
g \/nmnfu(l —npy)(1 —npy) (229)

Again at half-filling in an AFM ordered phase g; = 4/((1 + §)? — m?) which for m = 0
again maps to the g, factor for the doped ¢ — .J model with ¢ playing the role of hole-doping

in that case.

The Gutzwiller factors of the dimer terms are 1 because the dimer terms H %>

dimer

are

the products of densities. Under the assumption that the spin resolved unprojected and

53



projected densities are the same, the Gutzwiller factors for these terms are 1.

(2) (b

Unprojected: Unprojected:
Ai Bj Ak Ai Bj Ak | | Ai Bj Ak Ai Bj Ak
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N — Nt | —
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Projected: Projected:
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2
<
<

—

Figure 2.10: (a) Processes involved in the calculation of g4,. Similar physical processes
with doublon at B site in the unprojected basis are considered in the calculation (but not
shown here). (b) Processes involved in the calculation of g3'.

Now we will calculate Gutzwiller factors for various trimer terms shown in Fig.[2.7]
and Fig. [2.8]. Fig.[2.10(a)] shows hopping of an 1 electron within the A sublattice with a
spin ({) on the intermediate B site being preserved. In the unprojected basis, the probability
for this process to happen is n%, (1 — n4y)*n%,. It is to be noted that processes with either
a down type particle or a doublon at the intermediate B site have been considered in the
unprojected space. Like wise, the probability for the process to happen in the projected
basis is (n4 — 1)*(1 — nay)*n%, . Therefore, the Gutzwiller factor for this process is,

IIA—l_ 20
ng 1+6+m’

o = (2.26)

where the expression on the right most side holds in the case of half-filling for non-zero

staggered magnetization. In general one gets g4, = 24—, Fig. [2.10(b)] depicts hopping

NAs
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processes on the A sublattice in which spin on the intermediate B site gets flipped. The
probability in the unprojected basis for this process to occur is (1—n41)(1—n4y )nanag (1—
np)(1 — np;)ngnp, where as that in the projected basis is (na — 1)%(1 — nap)(1 —

ny | )npnp| resulting in the Gutzwiller factor,

A nyg — 1 49
gl = - : (2.27)
Y Vmama (I —np)(I—ng) (1462 —m?
(a) (b)
Unprojected: Unprojected:
Bj Ai Bl Bj Ai Bl Bj Ai Bl Bj Ai Bl
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Figure 2.11: (a) Processes involved in the calculation of gp,. Similar physical processes
with hole at A site in the unprojected basis are considered in the calculation of g, (but not
shown here). (b) Processes involved in the calculation of ¢gZ.

Now consider the hopping processes within the B sublattice depicted in Fig. [2.8].
Fig. [2.11(a)] shows hopping of an 1 spin particle within the B sublattice such that spin on
the intermediate A site is preserved. Here, again it must be noted that processes with either
an up particle or a hole at the intermediate A site have been considered in the unprojected

basis. In the unprojected basis the probability of this process is (1 — n4;)*n%, (1 — npy)?
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and that in the projected basis is (1 — n4;)’n%, (1 — np)* leading to the Gutzwiller factor,

1—HB_ 20
1—nBT_1+(5+m'

g1 = (2.28)

In general, gp, = (1 —ng)/(1 — np,) is spin dependent.

Another hopping process within the B sublattice is the one in which spin on the inter-
mediate A site gets flipped. The probability for this process to occur in the unprojected
basisis (1 —nu4)(1 —na4))nans (1 —np)(l —np)nging; and in the projected space
itis (1 — nap)(1 — n4y)npgng (1 — ng)? The Gutzwiller factor is therefore,

B l —np 46

- = : 2.2
” Viama (I —npy)(1—ng) (1+0)> —m? (2.29)

In cases, even when particle-hole symmetry is broken explicitly, such that sublattice
magnetizations are no longer equal and opposite in general, g5 = g2 = g,. This will be

seen in chapter 4.

2.3.4 Results for strongly correlated limit of IHM

In this section we present results for the IHM in the limit U ~ A > ¢ at half filling. To
be specific, we do mean field decomposition of the renormalized low energy Hamiltonian
in Eq. (2.23) giving non zero expectation values to the following mean fields: (i) magne-
tization on the A sublattice (B sublattice), m 4 (mpg) (ii) inter sublattice Fock shift (x a5)
(ii1) intra sublattice Fock shifts (iv) Hartree shifts and (v) the density difference between
the two sublattices (0). The quadratic mean field Hamiltonian is solved by appropriate
canonical transformation and mean fields are obtained self-consistently. Below we first

provide a comparison of our approach with the results obtained from an exact diagonal-
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ization (ED) study of this model for a one dimensional chain followed up by the results

towards a possible phase diagram of the IHM in the limit of validity of this approach.

2.3.4.1 Comparison with ED results

Below we first benchmark our approach of hole and doublon projection, implemented at
the level of the renormalized low energy Hamiltonian via the Gutzwiller approximation,
by comparing our results for a 1-d chain with those obtained from exact diagonalization
by Anusooya-Pati et. al [9]. Although, renormalized mean field theory is expected to give
reliable results for d > 2, here we have calculated simple quantities like sublattice density
for comparison with data available from exact diagonalization study of IHM for a 1d chain.

Interestingly, it matches quite well in this case.

Since the formalism we have developed in this chapter is valid for the regime of both
U and A being much larger than the hopping amplitude ¢ we compare our results for the
largest value of U for which results are shown in [9]. Fig. [2.12] shows the density on
sublattice A as a function of A for U = 10t for a 1d chain. The ED result, obtained by
digitizing the plot from the work of Anusooya-Pati et. al [9], is an extrapolation of finite
size chains in the thermodynamic limit. For smaller values of A our formalism does not
hold and hence the comparison has been shown for A > 7t. The qualitative trend in both
the calculations is the same and as A increases better quantitative consistency is observed
between the two calculations. Note that there is an overall factor of 2 difference in the ionic
potential term in our Hamiltonian and the one used in Anusooya-Pati et.al. After this check
to validate our formalism, we provide below the details of the phase diagram of IHM in the

limit under consideration.
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Figure 2.12: Density on sublattice A as a function of A for U = 10¢. ED results shown are
obtained from Ref [9].

2.3.4.2 Phase diagram of IHM for U ~ A >t

The phase diagram of IHM in the limit U ~ A >> ¢ has not been explored in detail so far.
There are a few numerical results available [7,9] but a complete understanding has been
lacking mainly because no perturbative calculation has been developed in this limit so far.
One of the reasons is that the formalism for hole projection, which is essential in this limit,
was missing so far in the literature. Below we provide details of various physical quantities
based on the mean field analysis of our renormalized Hamiltonian for a 1d chain and also
discuss possible phases in higher dimensional cases. Here, we are not trying to extract any
physical understanding from the mean field analysis in 1d, rather we are calculating some
basic quantities which has similarities with higher dimesional results as we will see in the

following chapters.
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Figure 2.13: The gap in the single particle density of states vs A for U = 20. For A < U,
gap, > gaps and both decrease with incraese in A eventually becoming zero for A ~ U.
As A increases further, the gap opens up again but the gap in the up and down channel are
equal in this phase.

Gap in the single particle spectrum: Fig. [2.13] shows the behavior of gap, as a
function of A for U = 20t. For U > A, the gap in the down spin channel is more than that
in the up spin channel but both decrease with increase in A becoming gapless near A ~ U.

Further increasing A opens up the gap in both channels which is now spin symmetric.

The existence of a metallic phase intervening between the two insulating phases of
the IHM has been a debatable issue in the literature. Though the solution of DMFT self
consistent equations in the paramagnetic (PM) sector at half filling at zero temperature
shows an intervening metallic phase [5], in the spin asymmetric sector, the transition from
paramagnetic band insulator (PM BI) to antiferromagnetic (AFM) insulator preempts the
formation of a para-metallic phase [6,59]. But determinantal quantum Monte Carlo results

demonstrated the presence of a metallic phase even in the spin asymmetric solution [41,42].
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Figure 2.14: Plot of ¢;, vs A for U = 20. In the metallic phase g;, provides the quasi-
particle weight.

Exact diagonalization for 1d chains [9] has also shown signatures of the presence of a
metallic phase via calculation of the charge stiffness. In all the cases, where an intervening
metallic phase has been demonstrated, it was also shown that the width of the metallic
phase shrinks with increase in U and A. A very narrow metallic regime observed in our
approach for the IHM at half filling for U ~ A > t is completely consistent with these

studies.

The renormalized momentum distribution function ny, (k) = [ dwA,q(k,w) = giynl,
(k), where n?_(k) is the momentum distribution function in the unprojected Hilbert space.
Thus the quasi-particle weight, which is the jump in the momentum distribution function at
the Fermi momentum, is Z = g,,. Fig. [2.14] shows ¢, vs A for U = 20t. In the metallic
regime, that is, for A ~ 20t¢, g, = ¢g;; < 1 which indicates that we actually have a bad

metal, with very heavy quasi-particles, intervening between the two insulators. Note that

60



in the insulating regime g;, does not carry the meaning of quasi-particle weight.

Magnetisation and staggered density: The staggered magnetization m, defined as
m = (my — mp)/2, calculated within the renormalized mean field theory is shown in
Fig. [2.15]. Fora given U > t, m = 0 for A > U but as A approaches U, the anti-
ferromagnetic order sets in with a jump in m at A.. As A decreases further, m increases
approaching the saturation value. Note that for very small values of A where m might tend
to unity, our approach does not work.

The staggered density difference 6 = (n4 — np)/2 is shown in the green curve in
Fig. [2.15] as a function of A. As expected for A > U, ¢ is large close to its saturation value
and with decrease in A, ¢ reduces monotonically for A > A.. At A, there occurs a change
in slope %. Note that within our approach the system can never attain the saturation values
m = 1 and § = 0 at which the Gutzwiller factor for the spin exchange term g, diverges and
the perturbation theory fails.

Possible superconductivity in higher dimensions: Based on the renormalized Hamil-
tonian in Eq. (2.23) one can see that even at half filling for the overall lattice, there is a
finite hopping between A and B sublattices in the projected space as long as the density
difference 0 is non-zero. This effectively gives a doped ¢ — J model for each sublattice even
at half filling. Further there are finite effective next nearest neighbor hopping terms within
each sublattice which appear through trimer terms in the Hamiltonian in Eq. (3.9). In this
renormalized Hamiltonian there is a possibility that the metallic phase mentioned above
can turn into a d-wave superconducting phase or d + is pairing superconducting phase in
higher dimensional system. The superconducting phase might survive for a larger range of
U — A space compared to the metallic phase with support of trimer terms. This has been
explored in the future chapters.

Non-monotonic behavior of Néel temperature with A: The renormalized Hamilto-
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Figure 2.15: Staggered magnetisation m and staggered density 6 vs A for U = 20t. At
A, ~ 19.8t, m drops to zero with a discontinuity. At the same point a discontinuity is seen
in the slope g—g.

nian in Eq. (2.23) is illuminating enough to predict the behavior of the Néel temperature
for the AFM order in the IHM in the large U and A regime at half-filling. For U > ¢ but
A ~ t, the IHM maps to the modified ¢ — J model with an additional ionic potential term
and with the spin-exchange term given by J = 4t2U/(U? — A?) [7]. Note that in this limit
doublons are projected out from the low energy Hilbert space from all sites. In this case the
Néel temperature of the AFM order should obey J and hence increase as A increases. In
fact this was observed in DMFT+CTQMC calculation for the IHM at half filling [7] where
it was shown that for U as high as 16¢, up to A little less than U, Ty ~ J /4 (Note that
there is a difference in convention used for A term in the Hamiltonian in [7] and current
Hamiltonian. The two are related by a factor of 2). But for A > U a sudden drop in Ty
was observed which could not be explained based on the spin exchange coupling J.

Our current renormalized Hamiltonian sheds light on this non-monotonic behavior of
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T since it is valid for the U ~ A as well as for the A > U regime. In this regime the
coefficient of spin exchange term is j = 2t?/(U + A) which decreases with increase in A.
Hence for U > t, for small values of A < U T follows J and hence T increases with
A. As A increases further T}y starts to follow the new coupling j and starts decreasing
with increase in A.

To summarize, in the strongly correlated limit of the ionic Hubbard model, the inter-
play of U and A promises a rich phase diagram, and our formalism of the renormalized
Hamiltonian obtained by Gutzwiller projection of holes on one sublattice and doublons on
another sublattice, further implemented by the Gutzwiller approximation, is illuminating

enough to give insight into this exotic physics.

2.4 Strongly Correlated Binary Alloys

In this section we will discuss the physics of hole projection in the context of the strongly
correlated limit of binary alloys, modelled with the Hubbard model in the presence of a

binary disorder. The Hamiltonian for this system is,

H=—t Z c cio+U Z NN — Z(,u — €)Ni, (2.30)

<ij> i

where ¢; is the random onsite energy drawn from the probability distribution function,
V V
pe(€;) = o (ei + 5) + (1 - x)d(ei - 5) (2.31)

. . . ) V V .
Here, z and 1 — x are the fractions of the lattice sites with energies ) and bl respectively.

We label sites with €(i) = —V//2 as A sites and sites with €(i) = V/2 as B sites. At half-
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filling, the above Hamiltonian is particle hole symmetric only if the percentages of A and

B sites are equal.

Most of the earlier studies have solved this model using variants of DMFT in the weak
to intermediate limit of U/t [88-91]. Using DMFT+QMC, this model has also been solved
at finite temperature in the limit of sufficiently large U and V' [90]. We are interested in
the strongly correlated, strongly disordered limit of this model, that is, U ~ V' > t. The
single site energetics is similar to IHM, that is, holes are projected out from Hilbert space
at A sites and doublons are projected out from Hilbert space at B sites. The difference
here is that the hole projected sites and doublon projected sites are randomly distributed
on the lattice in each disorder configuration. This makes all three type of nearest neighbor
bonds possible: AA, BB and AB. Also in three site processes, as we will show later, there
are many more hopping processes possible which do not occur for IHM. Every disorder
configuration has a different combination of two site and three site hopping terms due to

different environment of a site in each configuration.

2.4.1 Similarity transformation

The nearest neighbor hopping processes between two sites can be classified as follows
depending upon which sites are involved in the hopping; AA sites, BB sites, or AB sites

and whether the hopping process changes the number of doublons or not:
AA -
HAY = H y g+ Hy g o0+ HY g,
HtBB - Ht+B—>B +H gt HtOB—>Bv
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HtAB = Ht+A—>B + Ht+B—>A + Ht_A—>B + Ht_B—>A + H)?A—>B + H)?B—>A' (232)

Since an A type site has doublons allowed in the low energy sectors and holes should be
projected out while on B type sites the reverse happens, one needs to do different similarity

transformations on the local Hamiltonian depending on whether the bond is AA type, BB

type or AB type:
‘ 1 )
iS4 = E(H:_A—ml —Hy 4 4)
. 1 )
1§78 = U<Ht+B—>B —H; 5 .p)
- QAB 1 + _ 1 0 0
iS4 = U+V(Ht Asp — Hi B—>A)+V(HtA—>B—HtB_>A)- (2.33)

Note that S44 and SPP are perturbative in /U while S4Z has term which are pertur-

bativeint/(U + V) ort/V.

If we consider the commutators of the type [S*%, H*"] and [S°?, [S*?, H{P]], we get
terms connecting the low energy sector to the high energy sector which must be removed
through suitable similarity transformation. The terms that do not interconnect the low
energy sector and the high energy sector constitute the effective Hamiltonian. The effective

Hamiltonian itself is a function of disorder configuration. In a disorder configuration, dimer
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terms in H,.y; depend on whether bonds are AA, BB or AB type:

Hepr=Ho+ HY y o+ H)p g+ H g4+ H 45
1 B 1 _
+5[Ht+A—>A>Ht A—>A] + E[HjBaB>Ht B—>B]
1 _ 1
+m[Ht+A—>B7Ht Boal T V[H?AaB?H?BaA]

1/1 1
2 <U * V) ([H;FAHA +H, 5, HEB%AD

+

1/1 1 _ _
) (5 + V) ([Ht asa T H 5op, HtOA—>B]>' (2.34)

2.4.2 Effective Low energy Hamiltonian in terms of pro-

jected fermions

Now we represent the effective low energy Hamiltonian of Eq. (2.34) in terms of projected
fermionic operators on A and B sites as defined in Eq. (2.15) and (2.16). Let us first
consider the O(t) hopping terms which are confined in the low energy Hilbert space and

are represented as,

A A .o . .
}Jl,lo,w'7 — HtOA—>A(Z7,]) = —t Z[CIAO_C]AO— + hC],

Hfliéij = Hp,p(i,5) = —t Z[éngéjBo + h.c], (2.35)

Ai,B' — .. .. ~ =
Hl,lowj = HtA—>B(Z>]) + Ht—i_B—>A(Za]) = _tZ[CIAUCjBU +hcl.

Here, H} , . , involves hopping of a doublon while H} , . , involves hopping of a hole:

O(#?/U) Dimer terms:

H; ] terms with

t a—a?

1
Now we consider O(t*/U) dimer terms obtained from E[H A

66



1 1
a = A, B. Let us first look at the AA term. ﬁ[HjA_)A,Ht_A_,A] ~ —ﬁHt_A_)AH;“A_)A
since the first term in the commutator requires a hole to start with which lies in the high
energy sector for A type sites. The dimer term corresponding to this commutator is,

i j t2 o o o o . .
it = =5 2 1Xia™ X" = Xua ™ "X i) (236)

This in terms of projected operators can be expressed as,
£§ [CinoCl oy CigChyn — CinoClaaCianCha]
) tATYAg ) AT 5 AG 1AC{AG VI AT Ao
g

= JPs (Sm.sj i "”L’“)f - "jA))Ph. (2.37)

with J = 4t2/U. A factor of 4 = 2 x 2 comes from spin summation and from hoppings

from ¢ to j site first or vice versa. A similar analysis can be extended in the case of B
. 1 . .
sites. E[HfB%B, H 5.5l ~ —UH[B%BH;“BﬁB since the first term in the commutator

requires a doublon to start with which lies in the high energy sector for B type sites. The

dimer term corresponding to this commutator is,

2
dimer — ~ 77

[XiBO'<—O' jB6<—6 _ XiBU<—6Xj35<—J +] o Z] (238)

<1)>,0
Again, in terms of projected operators it is,

L S B Bino patine — Epotinadlastin
9 iBo“iBo“;B5“jBG iBo“1Bc“ ;B jBo
o

= JPy (SiB.SjB - ”iBjjB>7>d. (2.39)
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There are also t*/(U + V') order terms obtained from hopping of a spin-1/2 from site A
1
to B and back. In H. ¢ the corresponding term for this process is 71V [H, 4 ., Hi 5.4l

which, as explained in the section on IHM, can be expressed as,

HAi’Bj =J; [SiA-SjB — (2 - ﬁz‘A>ﬁjB/4]7 (2.40)

dimer

with J; = Note that all the above expressions are defined in projected Hilbert space.

U+V

The dimer term corresponding to [H} , , 5, HY 5, 4] involves hopping of a particle or
a doublon from one site to the nearest neighbor site and back to the initial site as shown
in Fig. [2.6]. This process is of order ¢*/V and the corresponding expression is given in

Eq. (2.20).

O(#?/U) Trimer terms:

Since on each site there is possibility of having an A type site or B type site, in total there
are 8 trimer terms possible arising from various commutators in H.s. Trimer terms from
the commutator involving only A type sites %[H;r aas Hy 4, 4] involves hopping of a
particle from the intermediate site resulting in the formation of a doublon in the nearest
neighbor site and the other doublon unpairs in two ways : one in the spin preserving way,

the other in the spin flip way, as shown in Fig. [2.16]. Eventually we get H44 (i, j, k) as,

trimer

t2 00 vo<dvyvd«ad yv0+o t2 00 vo<dvyd«o yv0+ao
—U% (XTTOX T X X0 +h.c.]+ﬁ§a IXTOXTTXETX O 4 he
£ t t t t
= 7 2_6a0Ci40C) a5Cha0 — CiagCiaaCiasChas] + hec.
t? t Pt
=7 E Prlciag(l — Mjaz)Cras + CiasCiAsCiAsCrAs T h.c.|Pp. (2.41)
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A similar trimer term on BBDB sites is obtained from E[HQL popn Hi |- In the BBB
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Figure 2.16: Trimer term on AAA sites for correlated binary alloy model.

trimer terms, the effective next nearest neighbor hopping of hole takes place just asin AAA

terms it is the effective next nearest neighbor hopping of a doublon which takes place. The

HBBB

trimer

corresponding trimer term can be expressed as

t? ; : 2 ] )
=-7 (X X IX T X7 + hee] + i D XXX XS + heel
t? - U
= _ﬁ [ zBJ~]BJC]BUCk’BU ~iB66jB06jB56kBG]
t2
- U Z Pd(cl‘LBanjB&CkBU - CjBac;r‘BgchﬁckBa + h.c.)Py. (2.42)

Then there are ABA and BAB type trimer terms, which are of order 2 /V. Note that
similar terms also appeared in IHM and are represented in Fig. [2.7] and Fig. [2.8]. Below

we summarize their forms for the case of the binary alloy model,

i t?
HﬁzrfejrAk - V Z P(CLAU [njBéciAo' - CiA&C;Ba-CjBa])P, (243)

g
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i, Aj t°
H7po 0 Pr = v Z Perpo[(1 — niAa)C}L'BU + CZAgCiAaC;Ba])P (2.44)

AAB and BBA trimer terms:

Next we consider the remaining trimer terms, namely, AAB(or BAA) and BBA(or ABB)
type terms. We would like to emphasize that these terms never appear in strongly correlated
limit of IHM presented in earlier section and are characteristic of random arrangement of
A and B type sites in the binary alloy model.

(U+V)

The AAB trimer terms, shown in Fig. [2.17], arise from the commutator ~57- [H," 44,

HYp oAl ~—5H),  H 4, 4 where we have defined the coupling strength for this term

K — t2(U+V)

s - Lhis is because the first term of the commutator requires a hole at the inter-

mediate A site to begin with which is energetically unfavourable. As shown in Fig. [2.17],
this consists of the usual spin preserving and spin flip terms. In one case, the spin at the

intermediate site remains the same as the initial state and in the other case it flips.

AAB AAB AAB
LIt Y B, [T ]
Ht A—A HtA—)B

IR —= s M N —= Aot FL T

t A—A t A—B

Figure 2.17: AAB trimer processes for correlated binary alloy model.

The fermionic representation of these terms H 4P g ag follows,

trimer

K3 o) X7 OX T XX XXX X0
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_ S DR N DEPT -
=K Z(CiAackAﬁck/wchU — CiaoChAoCisCiBs)
= KZ P(C,}LAU<1 — nkA(;.)chU + CIAJCLAEC;CAUC]'B(;)P. (245)

. : K[+ 0
Similarly, the BBA trimer terms appear from the commutator 5 [H," p_ 5, H) 5, 4] ~
—X SHY, H 5, . The first term in the commutator requires a doublon at the intermedi-
ate site B to start with which is energetically unfavourable. As shown in Fig. [2.18], these

terms also come in two variants, spin preserving and spin flip at the intermediate site.

BBA BBA BBA
tHLH] — A s [ N ] —= i sy [ VI
Ht B—B HtA—)B

AT —2=2, (i) —22=4s [

Ht_ B—B Ht A—B

Figure 2.18: BBA trimer processes for correlated binary alloy model.

VR l’A
rimer

Below we represent Ht in terms of X operators and then in terms of projected

operators as,

- K Z 77 d(—o <—dX <—UX0<—U + de;‘—ch <—Xm X;RB—U]

- _Kz(é;eréjBé'élBﬁéjBU - 6},406;35-6!300]‘36)
= —KZP(CZTAUWB&CJ-BU — CIAUC;BE_ClBO-CjBa-)P. (2.46)

The terms from the commutators [H; ,_, o, H , .zl and [H; 5, H , . 5] are the her-

mitian conjugate terms of the trimer terms in Eq. (2.45) and (2.46) and are represented by
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the lower arrows in Fig. [2.17] and [2.18].

2.4.3 Gutzwiller Approximation

After finding various terms in the low energy effective Hamiltonian for the strongly cor-
related binary disorder model, we will now evaluate Gutzwiller factors for various terms
in H.s; of Eq. (2.34). The low energy effective Hamiltonian for binary alloys consists
of certain dimer and trimer terms and for some of these terms we have already found the
Gutzwiller factors in the section on IHM. However here, unlike in IHM, the densities on
A or B sites are not homogeneous. They are site dependent and depends on the local envi-
ronment. Let us first consider the hopping process of O(t) between two neighboring sites.

Within the Gutzwiller approximation,

AiAj .o
Hl,lowj = —t Za Ph[CIAaCjAU + h'c‘]Ph = —t Za gzéfA(Z?.])[C;[AchjAU + h.C.],

HBi’Bj =—t Za Pd[C;rBUCng + h.C-]Pd =—t Zo’ ggB(ivjﬂczBachU + h.C.],(2.47)

1,low

e S, Plelagcipo + hc]P ==t > g8 (i, j)[clancine + o).

1,low

As explained for AB terms in the section on IHM, one can evaluate these Gutzwiller factors
by evaluating probability for hopping process on corresponding bonds within the projected
and unprojected Hilbert space. By doing an exercise similar to the one explained in the

section on IHM, we obtain,

9io (i) = \/(nm — Uya— 1)

N 46N A
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gBB (i, j) = \/(<1 — Bip)(1 = 1) (2.48)

1-— niBU)(l - njBJ)7

5 ) = \/ (mia = 1)(L~nyp).

n4,(1 —n;ps)

Next let us consider the renormalization of O(t*/U) or O(t* /U +V') dimer terms which
are also of three type depending upon the bond under consideration in a given disorder
configuration. Within the Gutzwiller approximation, couplings in Eq. (2.37), (2.39) and

(2.40) get rescaled with the corresponding Gutzwiller factors to give,

o 2 —1n;4)(2 —n;
Hiet = JQ?A(i,j>(5iA-5j - nA)4( n]A)>,
Hyper = J922 (i, ) (SiB-SjB -~ jB)a (2.49)
Hz;’ii = Jlg?B(%]) <SiA'Sj - #).

The corresponding Gutzwiller factors are obtained, as explained for an AB term in the

section on IHM, to be,

1
1, = )
) VA A T A A |
. . 1
gSBB(Z,j) _ , (2.50)
\/(1 —n;pt)(1 —nip ) (1 —n;pp)(1 — n;py)

1
Vniarnia (1 —np1) (1 —nyp))

g2 (i, 4) =

In the calculation of Gutzwiller factors for the trimer terms, the intermediate step is

unimportant, only the initial and final states are used to calculate the probabilities. The
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(a) (b)

Unprojected: Unprojected:

Ai Aj Ak Ai Aj Ak | |Ai Aj Ak Ai Aj Ak
H — T ] L] — il
[t — i —
— N[ — Nt |
— —

Projected: Projected:

Ai Aj Ak Ai Aj Ak | |Ai Aj Ak Ai Aj Ak
— —

Figure 2.19: Processes involved in the calculation of g, and g, which are renormalization
Gutzwiller factors for AAA trimer terms.

renormalized form of the AAA trimer term which is written in Eq. (2.41) is given below,

U

+g

A, A A t? AAA /- -
Htrimejr b= _Z(gloA (Zvjak)C;rAa(]' - njAC_f)CkAU

(i, 4, k)l asCh anCiasCras + hoc). (2.51)

The processes in projected and unprojected spaces for the calculation of g+ are shown in
Fig. [2.19(a)]. The probability of the process in the unprojected basis is (1 —1n;41)1n;41(1 —
n;4;) 041 (1—ngat) and in the projected basis it is (n;4 — 1) (1 —n;a1) (1 —1n;4))* (0 —

1)(1 — nga4). The Gutzwiller factor then comes out to be,

ia— 1 -1
g (i, g, k) = \/ (i — e — 1) (2.52)
;AN A1

In Fig. [2.19(b)], the processes in unprojected and projected spaces required for the cal-
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culation of g, are shown for which the total probability in the unprojected basis is (1 —
04 )04; (1 — 0j40)0441 (1 — ngar)n;a4(1 —nj4;)n;4; and in the projected basis is (1 —
n;4;)(1—mn;44)(nga —1)(1 —ngap) (1 —1nj4;)(n;4 — 1). The Gutzwiller factor then comes

out to be,

9o (i, 5, k) = \/ (s = Dinia = 1) (2.53)

N AN A Np AT AG

Similarly, the BB B trimer terms of Eq. (2.42) can be obtained by replacing n 4, with

(1 —np,) and (ny — 1) with (1 — np) in the above two equations.

Now we consider the trimer terms of ABA and BAB types for which we also calcu-
lated the Gutzwiller factors in the section on IHM. The renormalized form of these terms

under the Gutzwiller approximation is,

Ai,Bj, Ak _
Hypier chAa 914 (i, J, k)njpsCiae — oo (i, 7, k)CiAac;BaCjBa]a (2.54)

i Ai t? .
Htégrfer"Bl = _V Z CiBo [gﬁrAB(j7 Z l)( nzAa) jBO' + g;irAB(jv L, l) CiAoCiAs jBU](Z 55)

Now we will calculate Gutzwiller factors for these trimer terms shown in Fig.[2.7] and
Fig. [2.8]. Fig.[2.10(a)] shows hopping of an 71 electron from an A site to its next nearest
neighbor A sites with a spin () on the intermediate B site being preserved. In the unpro-
jected basis, the probability for this process to happen is n; ATn]z B i(l —1ya1) (1 —10;41) 0541
It is to be noted that processes with either a down type particle or a doublon at the interme-
diate B site have been considered in the unprojected space. Like wise, the probability for

the process to happen in the projected basis is (n;4 — 1)(1 —1ga)n3 g (N4 — 1) (1 —1n449).
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Therefore, the Gutzwiller factor for this process is,

1, AN A4

gii (i, k) = \/ g~ Dl =), (2.56)

Fig. [2.10(b)] depicts hopping processes on A sublattice in which spin on the intermediate
B site gets flipped. The probability in the unprojected basis for this process to occur is
;4051 (1—1n;p) (1 —nxar) (1 —n;4, )05, (1 —n;jpr)ngar where as that in the projected

basis is (n;4 — 1)n,pr(1 —ngap)(1 —n;4; )05, (ng4 — 1) resulting in the Gutzwiller factor,

A — 1) (npa — 1

9o (0,5, k) = s = Dimea—1) (2.57)
1450k A (1 = 1551) (1 — 1))

Similarly, we can obtain the Gutzwiller factors gBAZ(j,4,1) and gZAP(4,4,1) from

above two equations by replacing n, with (1 —ng,) and (ng — 1) with (1 —npg).

Now we will focus on the Gutzwiller factors of the new trimer terms which arise out
of the AAB and BBA processes. The renormalized AAB and BB A trimer terms can be

expressed as,

A Ag,Bj AAB AAB
tmm:r KZ 9o Z k j zAa(]' nkAU)CJBU7 +g2a (Z k .]) ZAUCIJLAUckAUCJBU>
B;,B;,A BBA BBA :
Htmmelr =-K Z 910 ]’ l7 t on-nlBUC]BU 920 (J7 l’ Z)CjAaCjBﬁclBUCjBl?)'
(2.58)

The AAB and BBA spin preserving hopping as depicted in Fig. [2.20(a)] and [2.21(a)] are
effective next nearest neighbor hopping processes, the Gutzwiller factors for which are like
nearest neighbor AB hopping. If we look at Fig. [2.20(a)] for the processes involved in the

calculation of the Gutzwiller factor gAAB we see that the probability of the process in the
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(a) (b)

Unprojected: Unprojected:

Ai Ak Bj Ai Ak Bj || Ai Ak Bj Ai Ak Bj
] — T LIt — AN
il — It It —
— N[ — N
— —

Projected: Projected:

Ai Ak Bj Ai Ak Bj || Ai Ak Bj Ai Ak Bj
— i — N

Figure 2.20: (a) Processes involved in the calculation of gi{AZ. Similar AAB physical

processes with hole at intermediate A site in the unprojected basis are considered in the

calculation. (b) Processes involved in calculation of g55,

unprojected basis is (1 — n;41)n;41(1 — ngay)*(1 — n;p4)n;51 and in the projected basis it

is (1 — nyar)(nia — 1)(1 — ngay)®n;pr(1 — n,p) resulting in the Gutzwiller factor,

aaB; oy | (Bia =11 —np) 5 59
911 (17 7]) \/ n@AT(l _ n]BT) ( )

It is to be remembered that in the unprojected basis, processes with either up spin or hole
at the intermediate A site have been considered. In Fig. [2.21(a)], processes involved in the
calculation of gﬁBA has been depicted. The probability of the process in the unprojected

basis is (1 — niAT)niATanm(l — n,p+)n;p+ and in the projected basis is (1 — n;44) (04 —

1)njg, (1 — n;p)n;ps. Then, the Gutzwiller factor is,

BBA(: [ ;) — (nja —1)(1 —nyp) 2.60
ng (.]7 72) \/ niAT(l — njBT) ) ( )
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which is the same as gf‘TAB (i,k, j). The Gutzwiller factors for spin flip terms depicted in

(a) (b)

Unprojected: Unprojected:

Ai Bl Bj Ai Bl Bj | | Ai Bl Bj Ai Bl Bj
L ]t — TR L] — TR
AN — [t It —
— N | — ]
— —

Projected: Projected:

Ai Bl Bj Ai Bl Bj | | Ai Bl Bj Ai Bl Bj
— AN — AN

Figure 2.21: (a) Processes involved in the calculation of g2P4. Similar BBA physical

processes with doublon at intermediate B site in the unprojected basis are considered in the

calculation. (b) Processes involved in calculation of giBA.

Fig. [2.20(b)] and [2.21(b)] can be found out similarly. For gg‘TAB (i, k, j), the probability in
the unprojected Space is (1 — niAT)niAT(l — nkm)(l — nkAi)nkmnkAinjBi(l — njBi) and
in the projected space is (1 —1n;44)(n;4 — 1)(1 — ngaqr) (1 — ngay)n;p (1 — n,p) resulting

in the Gutzwiller factor,

935 (i, k. ) = \/ s = 0 0] @261)

Ny ata 0ar(l —njp))
For gﬁBA (j,1,1), the probability in the unprojected space is (1 — n;a1)narmypyg (1 —

n;p1)(1—nyp,)n;p (1—n,p,) and that in the projected space is (1—n;4+)(n;4—1)n 105 05, (1—
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n,p) leading to the Gutzwiller factor,

BBAL; | ) (nia —1)(1 — nyp) _ 2.62
9oy (4, 1,7) \/(1 —npy)(1 — nypy)niar(l — n;py) (262

2.4.4 Insights into correlated binary alloy from the renor-

malized Hamiltonian

The renormalized Hamiltonian derived above brings deep insight towards the possible
phase diagram of the strongly correlated binary alloy. Let us first focus at the projected
hopping terms given in Eq. (2.47) and the corresponding Gutzwiller factors in Eq. (2.48).
At half-filling for U > t, if the disorder is weak, the system will be an antiferromagnetic
Mott insulator because the hopping term is completely projected out. As disorder increases
and becomes comparable to U, the local particle density does not remain close to one on
all the sites and the Gutzwiller factors gf‘f for various hopping processes become finite re-
sulting in finite kinetic energy of the electrons. Also the Mott gap reduces with increase in
V. This indicates the possibility of a metallic phase in the system for V' ~ U. This is con-
sistent with what has been shown within DMFT + coherent potential approximation [99].
In the metallic phase, the quasiparticle weight will be given by the most probable value of
the Gutzwiller factors for hopping terms (in Eq. (2.48)). Since V' ~ U, the local electron
densities will not deviate much from unity. Hence the Gutzwiller factors gf‘f are very small

resulting in very small quasiparticle weight in the metallic phase.

Let us now turn our attention to the spin exchange terms in the low energy Hamiltonian.
For the parameter regime V' ~ U > t, since the effective hopping in the projected Hilbert

space becomes finite, and the electron density on each site is not one, spin exchange terms
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might give rise to disordered superconductivity with either d wave pairing or d+ s pairing.
Due to the presence of large binary disorder, we might get a disordered superconducting
phase coexisting with an incommensurate/dis-commensurate charge density wave which is

a topic of great interest in context of high 7. superconductors [100, 101].

2.5 Conclusions

In this chapter, we have extended the idea of inhomogeneous Gutzwiller projection for
excluding holes from the low energy Hilbert space from some sites while projecting out
doublons from the other sites of the lattice, which so far has been developed only for
exclusion of doublons, e.g., in context of the hole doped t — J model. We have discussed
variants of the Hubbard model with large onsite potentials because of which, in the limit of
strong correlations and comparable potential terms, on some sites doublons are projected
out from low energy Hilbert space while from some other sites holes are projected out
from the low energy Hilbert space. In order to understand the physics of these systems,
it becomes essential to understand how to carry out Gutzwiller projection for holes. We
defined new fermionic operators in the case of hole projected Hilbert space and derived
effective low energy Hamiltonian for these models by carrying out systematic similarity
transformation. We further carried out rescaling of couplings in the effective Hamiltonian
using the Gutzwiller approximation to implement the effect of site dependent projection
of holes and doublons. To be specific, we provided details of the similarity transformation
and Gutzwiller approximation for [HM and Hubbard model with binary disorder.

The effective low energy Hamiltonian derived in both the cases shines light on the pos-
sibility of exotic phases. In the half filled IHM, our renormalized Hamiltonian predicts a

half-metal phase followed up by a metal with increase in A for U ~ A and a superconduct-
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ing phase for higher dimensional (d > 2) systems. Our effective Hamiltonian also explains
the non-monotonic behavior of the Néel temperature as a function of A in the AFM phase
of the IHM realized for U > t. In the correlated binary alloy model, for both disorder and
e-e interactions being much larger than the hopping amplitude (V' ~ U > t), there is a
possible metallic phase which might turn into a very narrow disordered superconducting
phase coexisting with a dis-commensurate charge density wave in two or higher dimen-
sional systems with the help of effective next nearest neighbor hopping. The nature of
Gutzwiller factors indicate that the metallic phase intervening between the two insulating
phases in the IHM or the correlated binary alloy model will be a bad metal with very high

effective mass of the quasiparticles.

Although we have considered so far the case of the strongly correlated Hubbard model
in the presence of large binary disorder, the formalism can be easily used even in the case
of fully random disorder V(i) € [V, V]. The strongly correlated Hubbard model in the
presence of fully random disorder has been mostly studied in the limit of weak disorder
mainly in context of high 7, cuprates [19,96-98]. The case of strong disorder has been
studied in order to understand the effect of impurities like Zn in high 7. cuprates [67,68]
but that too keeping V' < U so that the constraint of no double occupancy remains intact.
But for the limit of strong correlation as well as strong disorder such that U ~ V' > ¢t the
formalism of hole projection is essential and has not been studied before. For V(i) < 0
and |V (i)| > V., where V.. > t, holes will not be allowed in the low energy Hilbert space.
But due to the limit of strong correlations for the hole-doped case, doublons will not be
energetically allowed at other sites of the system which have either V(i) > 0 or V(i) < 0
but |V'(7)| < V.. Hence, even in the case of fully random disorder there will be effectively
two type of sites A where holes are projected out from low energy Hilbert space and B

type sites where doublons are projected out from low energy Hilbert space and one can
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easily use the formalism we have provided for strongly correlated binary alloys. Another
situation where this physics is of relevance is a strongly correlated Hubbard model with
large attractive impurities randomly distributed over the lattice with V(i) = —V at the
impurity sites and V(i) = 0 at other sites of the lattice. For V' ~ U > t, at the impurity
sites energetics will not allow holes in the low energy Hilbert space while at all other sites
of the lattice for which V(i) = 0 large U will not allow for doublons in the low energy
sector for the hole doped case. Again in this situation one can use the formalism developed
here for the case of strongly correlated binary alloys.

To conclude, in this chapter we have provided an essential tool which has been missing
so far in the field of stongly correlated electron systems, that is, the Gutzwiller projec-
tion for holes allowing for doublons which happens in many correlated systems in various
possible scenarios explained above. We have described its implementation at the level of
the Gutzwiller approximation. We would like to mention that so far we have evaluated
Gutzwiller factors under the simplest assumption of spin resolved densities being the same
in the projected and unprojected state. It will be interesting to find Gutzwiller factors in

more general scenarios.
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meeeessssssmmmmmn $ CHAPTER 3 S

PHASE DIAGRAM OF THE HALF-FILLED
IONIC HUBBARD MODEL IN THE LIMIT

OF STRONG CORRELATIONS

3.1 Introduction

Doping a strongly correlated Mott insulator (MI) away from commensurate filling results in
a superconducting phase [16] as known from high 7. cuprates and the recently discovered
superconductivity in magic angle twisted bilayer graphene [14]. The minimal model to
describe this physics is the strongly correlated Hubbard model, which at half-filling maps
onto an effective Heisenberg model having an antiferromagnetic (AF) insulating ground

state and doping holes or electrons into this system results in a superconducting state.

In this chapter, we study the half-filled ionic Hubbard model (IHM) and explore the

possibility of superconducting phase. As mentioned in the Introduction chapter, the IHM
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is basically the Hubbard model defined on a bipartite lattice with an additional staggered
potential A. The physics of IHM is governed by the competition between the staggered
potential A and the Hubbard U [5, 51,78, 79]. At half-filling, in the large U limit, the
system is a MI while for large A regime, the system is a band insulator (BI) due to doubling
of the unit cell. The physics of the intermediate regime in which U ~ A, straddling the
two insulating phases, has been of interest to the condensed matter community. Here we
focus on the limit when U ~ A but both are much larger than the hopping amplitude ¢, that
is, U ~ A > t and explore the possibility of a superconducting phase in this limit of the

IHM at half-filling.

The IHM has been realized for ultracold fermions on an optical honeycomb lattice [8].
Due to recent developments in layered materials and heterostructures, it is indeed possible
to think of many scenarios where the IHM can be used as a minimal model to understand
the qualitative physics. Some of these examples are graphene on h-BN substrate where
due to the difference in energy of B and N sites, electrons in the graphene sheet also feel
a staggered potential. Also for a bilayer graphene in the presence of a transverse electric
field, a potential difference is induced between the two layers [66] which plays the role of
the staggered potential. Interactions are inevitably present in all real materials.

The IHM has been studied in various dimensions by a variety of numerical and ana-
lytical tools [5-7,9,41-44,51,58-61,78,79]. In one-dimension [9,51,78,79] it has been
shown to have a spontaneously dimerized phase which separates the weakly coupled BI
from the strong coupling MI. In higher dimensions (d > 1), this model has been mostly
studied in the weak to intermediate coupling regime for A ~ ¢ by many groups using
the dynamical mean field theory (DMFT) [5,7,43,58-61], determinantal quantum Monte
carlo [41,42], and coherent potential approximation [44]. The solution of the DMFT self

consistent equations for intermediate strength of U and A ~ ¢, in the paramagnetic (PM)

84



sector at half filling at zero temperature shows an intervening correlation induced metallic
phase [5,41-44]. When one allows for spontaneous spin symmetry breaking the transi-
tion from paramagnetic BI to AF insulator preempts the formation of the para-metallic
phase [6,59], except, as shown in Ref [60] using DMFT with iterated perturbation theory
(IPT) as the impurity solver, for a sliver of a half-metallic AF phase. Upon doping the [HM
in the intermediate coupling regime for A ~ ¢, one gets a broad ferrimangetic half-metal
phase [60] sandwiched between a weakly correlated PM metal for small U and a strongly
correlated metal for large U. Recently the IHM was solved at half-filling within DMFT
using continuous time Monte Carlo (CTQMC) as an impurity solver [7,61]. In the large
U limit U > (A,t) it maps onto an effective Heisenberg model with the spin-exchange
coupling J = t2U/(U? — A?) [7,61]. At any finite T, for A ~ ¢, as U increases, first
the magnetic order turns on via a first order phase transition followed up by a continuous
transition back to the PM phase. There is a line of tricritical point 7}, that separates the
two surfaces of first and second order phase transitions [7].

In this chapter we study the half-filled IHM in the limit where both the Hubbard U
and the staggered potential A are much larger than the hopping amplitude. Cluster DMFT
study in this limit [6] demonstrated a direct transition between the AF MI and the BI as
A is increased for a fixed large value of U. Recently this limit has been explored using
slave-boson mean field theory [80] which demonstrated a transition from MI to BI as A
increases followed up by a transition to a broad superconducting phase as A is increased
further. Clearly there is no clear consensus on the phase diagram of the IHM in this limit.
In order to develop some understanding of the IHM in this limit, here we solve it using a
Gutzwiller projected renormalized mean field theory as well as using the DMFT+CTQMC

technique. Below we summarize our main findings from this analysis.

The IHM we study is on a 2-dimensional square lattice, at zero temperature. We find
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that within a spin symmetric Gutzwiller projected mean field theory, the d-wave pairing
does indeed turn on for a small range of A ~ U sandwiched between a paramagnetic MI
and a BI. Though the extended s-wave pairing amplitude is also non zero for a small A
range, it is always a little higher in energy than the d-wave superconducting (SC) phase.
But in a generic calculation, where the system is allowed to have phases with broken spin
symmetry as well, the AF Mott insulating phase wins over the superconducting phase, and
the system does not have any stable superconducting ground state. There occurs a transition
from the AF MI to the paramagnetic BI, with a thin half-metallic phase intervening between
the two insulators close to the transition point. This phase diagram shows consistency with
the earlier analysis [5,7] in weak to intermediate U and A regime, where a metallic phase is
observed within a spin symmetric calculation; however, once spin-ordering is allowed for,
the AF MI preempts the formation of metal, except for a thin half-metallic phase close to
the transition between the MI and the BI. Hence there is a continuity in the phase diagram
along the U ~ A line as U increases. Surprisingly, the phase diagram obtained from the
Gutzwiller projected mean field calculation differs from the one obtained from the slave
boson mean field theory calculation [80] where a broad SC phase appears beyond the BI
phase as A increases. We have benchmarked the AF transition point obtained within the
Gutzwiller projected mean field theory calculation against the DMFT+CTQMC calculation
which has earlier been shown to capture the correct strongly correlated limit of IHM [7,61]

within a mean field description of the AF order.

The rest of this chapter is organized as follows. In section 3.2, we describe the model,
the low energy Hilbert space which is relevant to the limit U ~ A > t, and the effec-
tive low energy Hamiltonian , obtained using a similarity transformation. Furthermore,
we describe the Gutzwiller approximation used to solve this low energy Hamiltonian. In

section 3.3, we briefly describe the Gutzwiller projected renormalized mean field theory
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(RMFT) for the AF phase and then benchmark our results against the DMFT+CTQMC
calculations. In section 3.4, we describe the spin symmetric RMFT calculation which al-
lows for superconducting pairing amplitude followed up by the generic RMFT calculation
where we include the pairing amplitude as well as the magnetic order. At the end we

conclude and summarize.

3.2 Model and Method: Low energy effective Hamilto-

nian and Gutzwiller Approximation

The IHM is described on a bipartite lattice by the Hamiltonian,

H=—t > (chejo+he)- %Zn + % D i+ U iy — %Zn (3.1)

<1,5>,0 1€A i€B %

Here t is the nearest neighbor hopping amplitude, A is the staggered one body potential and

U is the onsite Hubbard repulsion. At half-filling, corresponding to ((n4) + (np))/2 = 1,

v
5 -

the Hamiltonian is particle-hole symmetric, with ;1 =

In the limit U ~ A > ¢, the t = 0 model can be thought of as the unperturbed model
and the hopping can be treated perturbatively. For ¢ = 0, and U ~ A, from the energies
associated with all possible configurations at each site, it is easy to see that holes on the A
sublattice are energetically expensive and doublons are energetically unfavorable on the B
sites. Hence holes on A and doublons on B sublattice get eliminated from the low energy

Hilbert space. As shown in Chapter 2, the effective low energy Hamiltonian in the limit

U ~ A > t, obtained by a similarity transformation which eliminates processes which
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inter-connect the high and low energy sector of the Hilbert space is given by,

Heff = H0+Ht,l0w + Hg+ Hy + He,. (32)

Here H, ., is the hopping process in the low energy Hilbert space. As an effect of pro-
jection of holes and doublons from A and B sublattice, respectively, many of the nearest
neighbor hopping processes between sites of sublattice A and B, where either the initial or
the final state has holes on A sublattice and/or doublons on B sublattice, belong to the high
energy sector of the Hilbert space and hence get projected out from low energy Hamilto-
nian. But interestingly, in the half filled IHM there are hopping processes which belong

only to the low energy Hilbert space, e.g.,

ds0p) < | Talp). This is in contrast to
the half-filled Hubbard model [30], where hopping is completely projected out of the low

energy Hilbert space. Hence we have the following expression for H; ;,,,
gy P ;

—t 3 i G-
HtJow =—1 CiasCjBo + Cng-ciAO'
<ij>,0

=—t Z Plct,cipo + h.c]P. (3.3)
<ij>,0
Here P is the projection operator that projects out holes from sublattice A and doublons
from sublattice B. The new fermionic operators in the projected Hilbert space are defined
as,

& =n(0) X377 = ¢ hg, (3.4)

b= X570 =l (1 —nips). (3.5)

A second order hopping process starting from and returning to the sector of states with

single occupancies on two neighboring sites, where the first hopping results in a virtual
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hole on A and a doublon on B, results in an effective spin exchange process ., given by,

J ~ ~ = = ~ ~ = =
He, = —51 [CiA&CIAEC;BﬁcJB?f - CiAJC;‘[Aﬁc}L'BaCjBE]
<13>,0
= J1 Y P(Sia-Sjp — (2 — fia)ijs/4)P, (3.6)
<15>

. 2 . . .
with J; = U2J+A. There are dimer processes H,; where a spin from an A site hops to an

empty B site, and then hops back to the same A site, creating a virtual state with a hole on
the A site. In another dimer process, a spin o from a doubly occupied A site hops to a B
site which has ¢ and then hops back to A site, resulting in a virtual state with a doublon on

B site. Both these processes are of order 12 /A and can be written as,

t? ~ ~ = = ~ ~ x z
Hd = _Z [ciAﬁcha—CjBUC;BU + CIAO.CiAa—C}BC—TCjB&:I
0,<15>
t2
=5 2 Pl = fuag)(1 = fgp) + (ia — Ditjo] P. (3.7)
<ij>,0

Trimer terms, leading to Hy,., correspond to the hopping of a doublon or a hole from a
site on the A(B) sublattice to its second neighbor site in the same sublattice via a two hop
process. Effectively, there is a doublon hopping which is intra A sublattice, where as the

hole hopping is intra B sublattice. In terms of projected operators, these are represented as,

tQZ~T:T:~ sz o
Hy = A (CkAonBaCjBaCiAa + CiAachaCjBaCkAg)
o,<ijk>

12 .

S Gimotinslanl gy + &g Giaotl il
A (ClBaCiA&CiAaCjBa + CjBaCiAUCiAaclef)
o,<jil>
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= —g Z P(CZ:AUﬁjBETCiAU + CiAaC}L'B&CjBUCILAa),P
o,<ijk>
2
-5 > Plasel(l = fuas)clp, + cla,cinac)p,))P. (3.8)
o, <jil>

The effective low energy Hamiltonian mentioned above cannot be solved using regular
perturbation theory because the projected fermionic operators ¢4 and ép do not satisfy
the standard anti-commutation relations of canonical fermions and hence Wick’s theorem
can not be applied. The possible approaches to solve H.;s are either fully numerical,
like variational Monte-Carlo (VMC) [34] where the projection constraints can be handled
exactly in each configuration but is computationally very expensive, or one can use the
Gutzwiller approximation in the same spirit as it is used for doublon projection in the tJ
model [1,2,19,36-40,76,77]. Within the Gutzwiller approximation, the effect of projection
is treated approximately by renormalizing the coefficients of the various terms in H.s¢ by
corresponding Gutzwiller factors and calculating the expectation value of the renormalized
Hamiltonian in the unprojected basis. The Gutzwiller factors, for the half-filled IHM in the
limit U ~ A > t, for the hole projection from the A sublattice and the doublon projection

from the B sublattice have been calculated in chapter 2. The renormalized Hamiltonian

obtained is of the form,

H=Ho—t Y giolclyyino + clp,cins]

0,<1j5>

t? . . . .
N D (1= iag) (1 = iyp) + (aa — 1))

<ij>,0

tQ P i i
N > (GroChasiBaCine + 92CiaaClpsCinath,) + hoc.
o,<ijk>
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t2

A (9toC1Bo (1 — ﬁma)c; Bs T QQCZBUQT AUCiAaC; 35)
o,<jil>
1 A
+ 21 Z [95Sia-Sjp — 1(2 — fia)MiB). (3.9)
<ij>

Here g;,, g1, gs and gy are the Gutzwiller renormalization factors. The factors for var-
ious processes in H.;y were calculated under the approximation that the local densities
before and after the projection are the same. Table 3.1 provides expressions for the various
Gutzwiller factors in terms of the mean field quantities, namely, § = (n4 — ng)/2, the
density difference between the two sublattices, and m, = (m4 — mp)/2, the staggered

magnetization in the symmetry broken antiferromagnetic phase.

Gutzwiller Factors | Expressions
20
Jto 1+6+oms
4
9s (14+6)2—m?2
g1 1
13
92 (110)2—m2

Table 3.1: Gutzwiller factors for various terms in H,y at half-filling in the antiferromnag-
netically ordered phase [10].

Note that for ms = 0, the expressions for g; and g, become similar to that of the familiar
hole-doped tJ] model with ¢ in IHM playing the role of doping in tJ model [1, 36—40]
although the projection constraints in the two situations are completely different.

Hy, the unperturbed part of the Hamiltonian in the projected space is equivalent to

Hy=3" Y=2(f, arfria, + (1 — fypp) (1 — fypy )]. To see this, consider first the A sublattice,

7

where holes are not allowed in the low energy Hilbert space. The unperturbed Hamiltonian

can be written as Hy 4 = Py |U(1 — foar)(1 — nay) + (%)ﬁA} Ps,. Since holes are
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projected out, only the second term survives under the projection. Using the completeness
relation in the hole projected Hilbert space, 7.4+ (1 — 7v4)) + 14y (1 — foar) + Nariva, = 1,
one can show that Pyn Py, = (1 + a4y ). Similarly, on the B sublattice where doublons
are not energetically favourable Hy p = Py [U NN, — (%) n B] P4 where only the
second term survives. Using the completeness relation on the B sublattice, Hy g = (U —
A)/2[(1 = fpy)(1 —npy) — 1],

We have solved the renormalized low energy effective Hamiltonian within a mean field
theory. Before we go into details of this renormalized mean field theory (RMFT) and the

phase diagram obtained from it, below we first benchmark the results obtained from RMFT

against DMFT+CTQMC.

3.3 Benchmarking the renormalized Hamiltonian and

Gutzwiller Approximation

The Gutzwiller approximation for the projection of doublons done for the hole-doped -
J model has shown qualitative and quantitative consistency with results obtained from
VMC [2]. Hence we expect that the Gutzwiller approximation for the projection of holes
and doublons from A and B sublattice sites, respectively, will also capture the physics
qualitatively correctly. To check the validity of this expectation, in this section we com-
pare the results obtained within RMFT against those obtained from DMFT+CTQMC.
DMFT+CTQMC has been shown to capture the physics of strong correlations and the
projection correctly in the limit U > At as demonstrated by the correct dependence of

Néel temperature for the AF order as a function of A [7,61].

However, within a single sitt DMFT, we cannot explore the possibility of d-wave or
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extended s-wave superconductivity. Hence our comparison of the results of RMFT with the
DMFT+CTQMC calculations is without including the superconducting pairing amplitude
as a mean field. To be precise, we give nonzero expectation values only to (a) the staggered
magnetization m,, = <CIaTCiaT_CIa 1Cia 1)» (b) the density difference between two sublattices
5 = ((ha—"np))/2, (c) the inter-sublattice Fock shift x a5, = (¢! ,_¢;B,), and (d) the intra-
sublattice Fock shifts Yaa.s = (¢l Cias + h.c.). Here a is the sublattice index and o is the

spin index. The mean field quadratic Hamiltonian can be written as,

Hyp = Z Mo (B)[€h 4y Chao — €l poCrBo] + hoo(k)[ch 4oChBo + h.C], (3.10)
k.o

where hy, (k) = L52 (”5%""> ~£ {4(1—25)+gta(2xBB&+4xBBxya)+gtal‘5#7}c} —

2 2
Tk gsom + gz (1 = 9)

hoo (k) = [— LGt — %(_QXABO' +692XaBs) — Ui—l[gs(%XABa +XaBs) + %XABO’]:| V-
3.11)

Here, v, = 2[cos (k,) + cos (k,)] and v, =2[cos (2k,) + cos (2k,)] + 4[cos (k, + k,) +
cos (ky — ky)).

The mean field Hamiltonian H;r can be diagonalized using standard canonical trans-
formation ¢y, = Qredris + Brodros and Crpy = Qpedros — Brodri, Where v and [ are
fixed such that the off-diagonal part of Hamiltonian written in terms of the d operators van-
ishes. This results in 202, = (1 — hy,(k)/E,(k)) and 287 = (1 + hi,(k)/E,(k)) with
Ey(k) = \/hio(k)? + hao (k)2

At half filling, the magnetization on A and B sublattices are equal and opposite to each

other owing to the particle-hole symmetry. Hence ms; = (ms — mp)/2 = my. Self-
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consistent equations for various mean field order parameters are,

ms =(Riar) — (iay) = & Z oy — ),

QNZ ﬁka

XABo = —m ; Vo Brors (3.12)
1
XBBo = N Z[COS (2k$) + cos (Qky)]ﬁlgaa
k

1
XBBrys = 7 Z 23%, cos (k) cos (ky).
k

The DMFT is done using CTMQC as an impurity solver using the hybridization expansion
method, details of which can be found in our earlier work [7]. Below we compare the stag-
gered magnetization and the density difference obtained from the RMFT at 7" = 0 for a
half-filled THM on the 2D-square lattice with those obtained from the DMFT+CTQMC at
[ = 50/t where [ is the inverse temperature. Fig. 3.1 shows good qualitative consistency
between the Gutzwiller projected RMFT and the DMFT+CTQMC calculations. The tran-
sition in both the calculations is first order, as reflected in the jump in the magnetization at
the transition point. Furthermore, the consistency between the RMFT and DMFT+CTQMC
calculations improves for larger values of U and A, as expected. For large values of U and
A, where the doublon density on B sublattice and the hole density on A sublattice within
the CTQMC calculations become really small (less than 0.01 or so, as shown in Fig. 3.2),
then even quantitative consistency is seen between the two calculations at least deep in the
ordered state or away from the transition point in the disordered state, as shown in the lower
right panel of Fig. 3.1. In contrast, in slave boson mean field calculations [80] in the same

limit one obtains the staggered magnetization transition point at ~ 15.8¢ for U = 20t and
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also the value of m, is much smaller as compared to what is obtained within the RMFT or

the DMFT+CTQMC calculations.

1

RMFT —-' RMFT —-
0.8 E CTQMC & | CTQMC -&-
06 ¢ (@u=12
€
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Figure 3.1: Staggered magnetization, m, and the density difference, 0 vs A for U = 12t
and 20f. Blue circles show the data obtained in a DMFT+CTQMC calculation and the red
data points are obtained within a Gutzwiller projected RMFT calculation respectively.

We have also calculated the density of holes hy = ((1 — n.44)(1 — 724;)) and doublons
da = (nasnay) on A sublattice within DMFT+CTQMC. Due to the p — h symmetry at
half-filling, hy = (npsnip) = dp and hp = da. Fig. 3.2 shows the density of holes and
doublons on the A sublattice. As shown, sublattice A has negligible fraction of holes for
U ~ A > 12t. The density of holes decreases as U increases and also for a fixed U > 8¢,
as A increases h 4 decreases becoming eventually less than one percent. This explains why
a better consistency is observed at higher values of U and A between the DMFT+CTQMC
calculation and the Gutzwiller projected RMFT theory, where holes from A sublattice and
doublons from B sublattice have been fully projected out in the process of obtaining the

low energy Hamiltonian.
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Figure 3.2: Hole occupancy and double occupancy on A sites as a function of A obtained
from the DMFT+CTQMC calculation for the IHM at half-filling on a 2D square lattice.

3.4 Phase Diagram within Renormalised Mean Field The-

ory

In this section, we provide details of two versions of the Gutzwiller projected RMFT cal-
culations for the low energy Hamiltonian in Eq. 3.9 allowing for the presence of a super-
conducting order parameter. One is the spin symmetric calculation where we do allow
for a d-wave (or extended s-wave) pairing amplitude to have nonzero expectation value
but ny+ = ng| is imposed. The other is a less restricted calculation where we allow for

superconductivity as well as symmetry breaking in the spin sector.

Our solution of the mean field Hamiltonian involves a two step transformation. The
Hamiltonian obtained after the first step of the transformation has both interband and intra-
band pairing terms. The results presented below are obtained by ignoring the interband
pairing term, as it is smaller than the gap between the two bands at most of the points in
the Brillouin zone, whence the second step of the transformation can be done analytically.

Details of these calculations are given in Appendix B.1. In Appendix B.2, we have shown a
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comparison of these results with the calculations where the interband pairing term is kept,
in which case the mean field Hamiltonian needs to be diagonalized numerically. As shown
in Appendix B.2, at zero temperature, the contribution of the interband pairing term is neg-
ligible for most of the physical quantities of interest. Hence to obtain the zero temperature

phase diagram it is a reasonably good approximation to ignore the interband pairing terms.

3.4.1 Results from Spin-symmetric RMFT

In the spin symmetric RMFT, along with the mean fields mentioned earlier, we allow for a
non zero value of the superconducting pairing amplitude A 45(7, j) = (clT ATC} Bl cZT A ¢c} BT>
looking for d-wave and extended s-wave pairing in the U ~ A >> t limit of the half-filled
THM on a 2d square lattice. For d-wave pairing A 4p5(i,i+2) = Ay = —Aap(i,i+y) while
for the extended s-wave Aap(i,i + ) = Aap(i,i = y) = As. This implies Ayp(k) =
2A4[cos(k;) — cos(k,)] for the d-wave pairing while for the extended s-wave A p(k) =
2A;[cos(ky)+cos(k,)]. We impose the spin symmetry (7;4+) = (7, ), which further implies
that all the inter- sublattice and intra sublattice Fock shifts are spin independent. Details of
the mean-field calculations are given in Appendix B.1.

Fig. 3.3 shows the pairing amplitude with the d-wave and the extended s-wave symme-
try as a function of A for four values of U. Both the pairing amplitudes are nonzero for a
finite range of A close to but less than U. For most of U values of interest, the range of
A over which the extended s-wave pairing appears is much smaller than the A range over
which the d-wave pairing amplitude is non-zero. Note that though the pairing amplitude
A4 s remains nonzero for values of A smaller than the range shown in Fig. 3.3, the density
difference ¢ becomes close to zero for these smaller values of A. This, as shown below,

results in a vanishing SC order parameter for these smaller values of A.
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Figure 3.3: The superconducting pairing amplitude for d-wave and extended s-wave sym-
metry vs A obtained from spin symmetric RMFT. The pink curves shows the d-wave order
parameter ¢, vs A while the green data points represent the extended s-wave order param-
eter ¢,. Different panels show results for different values of U ranging from U = 8t to
U = 20t. The extended s-wave pairing is observed for a smaller A regime while there is
nonzero d-wave pairing amplitude for a comparatively broader range of A.
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Figure 3.4: Ground state energy, Fs vs A for extended s-wave pairing and d-wave pairing.
For A ranges where the extended s-wave pairing amplitude is non zero, the ground state
energy for the extended s-wave solution is higher than the ground state energy for the
d-wave pairing superconducting phase.
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Fig. 3.4 further shows the comparison of the ground state energies for the self-consistent
solutions with d-wave pairing and extended s-wave pairing. For almost the entire A regime
where extended s-wave superconductivity is seen, the ground state energy of the extended
s-wave superconducting phase is higher than that of the d-wave superconducting phase,
making the latter the stable phase in the spin symmetric calculation.

The superconducting order parameter ¢, and ¢, for the d-wave and extended s-wave
channel respectively is defined as ¢7, = g7 limrﬁoo(c%c; (CitrtCiyry). For a given U,
though the pairing amplitude is larger for smaller values of A, because probability for
formation of a singlet is larger for smaller A, these singlets can hop around coherently only
when there are sufficient number of doublons on A sublattice and holes on B sublattice.
This can happen only when n 4 is sufficiently larger than and np is sufficiently smaller than
the average density of one. This is exactly what is indicated in the definition of the SC
order parameter ¢, ; where g, is the Gutzwiller renormalization parameter for the kinetic
energy. Fig. 3.5 shows the behavior of Gutzwiller factor g; as a function of A for d-wave
pairing SC. For a given U, the density difference d between two sublattices increases with
increase in A. This enhances the hopping between two sublattices through increase of g;.
On the other hand, the pairing amplitude A 45 decreases with increase in A, resulting in a
dome shaped non monotonic behavior of ¢ as a function of A as shown in Fig. 3.3.

Fig. 3.5 also shows the antinodal gap Gap, = h3(0, ) for the d-wave SC, which is
also the energy scale at which coherence peaks appear in the single particle density of
states. Here h3(k) is the off-diagonal part of the mean-field Hamiltonian as shown in
Appendix B.1. The antinodal gap monotonically decreases with increase in A as both
the pairing amplitude A, and the dominating Gutzwiller factor g, involved in hs(k) are
monotonically decreasing functions of A.

The superconducting phase is sandwiched between two insulating phases. For A < Ay,
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Figure 3.5: Gutzwiller renormalization factor g; and the density difference 6 vs A for
the d-wave pairing SC phase. With increase in A, the density difference between two
sublattices increases, which results in enhanced coherent hopping of singlets. Gap, is the
anti-nodal gap for the d-wave SC which, in contrast to the SC order parameter ¢4, decreases
monotonically with increase in A.

where the SC order-parameter ¢ becomes nonzero first, the system is a paramagnetic MI
with the gap in the single particle spectrum increasing monotonically with U. SC survives
for Ay < A < Ay, and for A > A, the system goes into a trivial BI phase. The range in
A for which the system shows the SC phase decreases with increase in U. Note that the
range of A for which the system shows the SC phase in this spin symmetric RMFT is much

smaller than what is obtained using SBMFT [80].

3.4.2 Results from Spin-asymmetric RMFT

In the last section we showed that the half-filled IHM in the limit U ~ A > t has a d-
wave superconducting phase on a 2D square lattice, provided the system is constrained to
have spin symmetry. In this section, we carry out a less restricted calculation allowing for
symmetry breaking in the spin sector and explore the fate of the SC phase in competition

with the magnetic order in the system. Thus we give non zero values to the AF order
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m, as well as to the superconducting pairing amplitude A 45 along with other mean fields
like 0 and the Fock shifts. The mean field Hamiltonian is then a 4 x 4 matrix for each
allowed momentum k and requires a canonical transformation followed up by a Bogoliubov
transformation to diagonalize it. Details of the mean field Hamiltonian, the transformations

and the self-consistent equations for various order parameters are given in Appendices B.1

and B.2.
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Figure 3.6: The staggered magnetization m, the density difference ) between the two sub-
lattices and the d-wave and extended s-wave pairing amplitudes from the spin asymmetric
calculation vs A. The pairing amplitude remains vanishingly small for both the symme-
tries considered. Thus, the AF order is energetically more stable than the SC order in the
spin-asymmetric calculation.

Fig. 3.6 shows the staggered magnetization m, the density difference between the two
sublattices ¢ and the pairing amplitude with d-wave and extended s-wave symmetry for
U = 8t and U = 20t. Comparing with Fig. 3.3, we see that, for a fixed U, as A decreases
from a large value the development of AF order preempts the formation of SC order, and
hence the SC does not appear either with d-wave or extended s-wave symmetry. The system

undergoes a direct transition from an AF MI into a paramagnetic insulator with possibility
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of only a thin half-metallic phase near the transition point, which we will discuss in a little
while. Thus, though the recent SBMFT treatment of the half-filled IHM for U ~ A >t
showed a broad SC phase, our Gutzwiller projected RMFT suggests that the system has
only a metastable d-wave SC phase, which is hidden under the AF ordered phase. The SC

phase is likely to get stablised only if the AF order is frustrated somehow.
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Figure 3.7: The single particle DOS for U = 20t. (a) At A = 18¢, the system has spin
asymmetry with gap; > gap;. (b) Very near to A = 19.6¢, the gaps are equal in both
the spin channels but p+ # p;.(c) At A = 19.82¢, the system is a half-metal with down
spin electrons conducting and up spin electrons insulating. (d) At A = 21¢, the gaps are
spin-symmetric with p; = p;.

Fig. 3.7 shows the average single particle density of states (DOS) p,(w) = 1/2 " pac(w).
The spin-resolved sublattice single particle DOS is defined as

oo () = = T G (I, )

where, o represents the sublattice A or B and o is the spin index. Note that the Green’s
function in the projected Hilbert space is related to the Green’s function G°_(k, w) in the
unprojected space with appropriate Gutzwiller factor such that G, (k, w) = g;0G°, (k,w)

[19]. As shown in Fig. 3.7, for A = 18t, p,(w) is spin asymmetric with the gap in the down
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spin DOS being more than that in the up spin DOS. As we increase A, the gaps in both
channels as well as the asymmetry in the DOS for up and down spin channels decrease.
Finally, at a particular A the gaps in both the channels become equal to each other, even
though py # p,, as is suggested by panel (b) of Fig. 3.7. After this the asymmetry in
the gaps in the up and down spin channels opens up again but now the gap in the up spin
channel is more than that in the down spin channel [see panel (d) of Fig. 3.8]. As shown
in panel (c) of Fig. 3.7, there is a sliver of A for which p,(w = 0) is non-zero indicating
the metallic behavior of the down-spin electrons while p;(w = 0) is still zero with a small
gap around w = 0. This is the half-metallic point. With a further finite increment in A the
system makes a transition at A = A, to the band insulating phase with full spin symmetry

in the DOS.
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Figure 3.8: The gap in the single particle excitation spectrum for the up and down spin
channels. For small A, where the system has AF order, gap; > gap;. On increasing A, the
gaps become equal and after that, gap: > gap,. Inset shows existence of a half-metallic
state where gap, = 0. On further increase in A, there is a transition to the paramagnetic
BI phase, where the gaps are equal for the two spin components and increase with A.

Fig. 3.8 shows that this behavior of the gaps in the single particle excitation spectrum
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for the up and down spin channels is similar for various values of U. For A < U, the gaps
are spin-asymmetric with the gap in the down spin channel being more than that in the up
spin channel until at some A < A, the gaps cross and become equal. Post this crossing
point, for A still below the transition point A, the gap in the up spin sector is more than
that in the down spin sector. There occurs a point where gap in the down spin channel
diminishes to zero (less than 0.001 within our numerical calculations of the self-consistent
mean field equations), where as there is a finite gap in the up spin channel as shown in the
inset. This indicates a half-metallic point within the AF phase but close to the transition
into the BI phase. After the transition, for A > A, the system is in the spin-symmetric

band-insulating phase where gapy = gap,.
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Figure 3.9: Spin resolved densities on A and B sublattices as a function of A for U = 8t.
A shows the half-metallic point and Apj, is the point where AFM order is lost and the
system enters into the paramegnetic (PM) phase.

Some insights into the nature of half-metal phase can be gleaned by looking at the spin-
resolved densities on A and B sites, shown in Fig. 3.9. For a given U, for smaller values of

A, when the system is in an AF ordered Mott insulating phase, the density of up electrons
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on A sites, n 44, decreases with increase in A, while its density on B sites, nps, increases
with increase in A, as shown in Fig. 3.9. Thus, the density difference for the up-spin
electrons 0 = n 4+ —nps decreases with increase in A. However, the density of down spins
on the A sites, n 4, increases while np, decreases as A increases, which implies that the
density difference for the downspin electrons §; = np; —n 4, also decreases as A increases.
Note that § = (6 — d;)/2, still increases as A increases. At Ay, nay = np, leading to
the metallic nature of the down spin electrons while the up spin electrons continue to show
density modulation on A and B sublattices, with 144 > np, and hence continue to show a
gap in the single particle density of states. Thus, the half-metal phase can be visualized as
the density modulation of up-spin electrons only, while the AF ordered insulating state has

density modulations for both the up and the down spins electrons.
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Figure 3.10: Complete phase diagram of the IHM in the U ~ A > ¢ limit at half-filling on
a two dimensional square lattice, obtained within the Gutzwiller projected RMFT analysis.
The system shows only one first order transition from an AF ordered phase to a paramag-
netic insulating phase. Most of the AF ordered phase is a MI. Inside the AF phase, there
is a metastable d-wave SC phase. Very close to the transition line between AF and the
paramagnetic BI, the system shows a line of AF ordered half-metallic phase.
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Fig. 3.10 shows the complete phase diagram of the IHM at half-filling in the U ~
A > t limit on a 2D square lattice obtained within the Gutzwiller projected RMFT. The
system undergoes a first order transition from an AF ordered state into the paramagnetic
BI phase which is shown by the red line. Most of the AF phase is also Mott insulating
in nature except for the thin half-metallic sliver close to the transition line, inside the AF
phase. Therefore, at the parameter values along this sliver there will be spin polarized
conductivity in the system at half-filling. Inside the AF phase, over the limited region
shown, there also exists a metastable d-wave SC phase though the AF order is stabler than
the SC order. Therefore, there is no stable superconducting phase in the IHM at half-
filling in U ~ A > t regime within the Gutzwiller projected RMFT. This is in contrast to
Ref [80], where a robust extended s-wave SC phase is obtained within slave boson mean
field theory.

The phase diagram we have obtained here using Gutzwiller projected RMFT in the
limit U ~ A > t is adiabatically connected to the phase diagram obtained within DMFT
(solved using CTQMC and iterative perturbative theory (IPT) as an impurity solver), for
intermediate ranges of U and A [7], where also a direct transition between AF MI and the
paramagnetic insulator is obtained except for a sliver of half-metallic phase. It is also con-
sistent with the phase diagram obtained from cluster DMFT [6] where results were shown
upto large values of U and A and a direct transition between the MI and the paramagnetic

BI is obtained.

3.5 Conclusions

In summary, in this chapter we have studied the IHM at half-filling in the limit U ~ A > .

The low energy effective Hamiltonian in this limit is defined on a projected Hilbert space
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where holes are projected out from one sublattice and the doublons are projected out from
the other sublattice. Since the projected fermionic operators on either sublattice do not
satisfy the algebra of canonical fermions, Wick’s theorem does not hold for these operators
and hence the effective low energy Hamiltonian can not be solved using standard pertur-
bation theory. We implemented the Gutzwiller projection approximately by renormalizing
the coefficients of the various terms in the effective Hamiltonian and solved the renormal-
ized Hamiltonian within a mean field theory. On a 2D square lattice, we showed that the
system has a d-wave superconducting phase sandwiched between a paramagnetic MI and
a BI, provided the spin symmetry is enforced. But in a more general RMFT where the spin
symmetry breaking is allowed, the AF order wins over the d-wave superconductivity. The
system undergoes a transition from an AF MI to a paramagnetic BI with a thin sliver of a
half-metallic phase in between, inside the AF insulating region.

It 1s surprising that though the Gutzwiller projected RMFT finds only a metastable
SC phase, that too over a limited regime in the U — A plane, slave boson mean field
theory (SBMFT) on the other hand shows a broad stable SC region [80]. The RMFT
treatment of the IHM gives AF order and the AF transition point which show consistency,
both qualitatively and quantitatively, with the results obtained within DMFT+CTQMC; and
the latter has been earlier shown to capture the correct physics of strong correlations and
Gutzwiller projection in the limit U > A, ¢ [7,61]. Hence we expect that our RMFT results
yield the correct strong correlation physics in the limit U ~ A >> ¢. Furthermore our study
based on Gutzwiller projected RMFT is consistent with CDMFT study of IHM [6]. Also
the phase diagram within the RMFT is adiabatically continuous with the phase diagram
obtained within DMFT (using IPT as well as CTQMC as impurity solver) for the weak to

intermediate values of U and A [7].

It will be interesting to explore the possibility of the explicit addition of a term to the
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IHM which can frustrate the AF order and can stablise the SC phase. Also IHM has recently
been implemented in the context of ultracold atoms [8] where the relative strengths of U
and A can be tuned controllably. It will be really interesting to study this system in the

limit U ~ A > t and to look for the superconducting phase experimentally.
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CHAPTER 4

UNCONVENTIONAL
SUPERCONDUCTIVITY IN A STRONGLY
CORRELATED BAND-INSULATOR

WITHOUT DOPING

4.1 Introduction

In this chapter, we present how sufficient frustration against magnetic order helps in sta-
bilizing a spin-exchange mediated superconducting phase at half filling in a strongly cor-
related band insulator. The discovery of unconventional superconductivity in a variety of
materials, such as high 7, superconductivity in cuprates [11], iron pnictides and chalco-
genides [12], in organic superconductors [3], in heavy fermions [102] and very recently in

magic angle twisted bilayer graphene [14,15], has always ignited worldwide interest owing
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to their rich phenomenonology, the theoretical challenges they pose, scientific implications
and broad application potential. In almost all of these examples, superconductivity appears
upon chemically doping the parent compound away from commensurate filling [11-16],
though in some cases inducing charge fluctuations by changing pressure also leads to the
superconducting phase [3, 13]. An important experimental fact is that chemical doping in-
evitably induces disorder, as is clearly the case in high 7. superconductors (SCs), which
makes these materials very inhomogeneous [17-20]. It is a theoretical and experimental

challenge to come up with new mechanisms and materials for clean high 7. SCs.

Theoretical analysis has shown that strong e-e correlations are crucial to achieve un-
conventional superconductivity. In most of the known unconventional SCs [3, 11-16] the
low temperature phase of the parent compound is either a strongly correlated AF Mott in-
sulator where charge dynamics is completely frozen, or a AF spin-density-wave phase with
at least moderately strong correlations. The unconventional superconductivity in many of
these materials can be understood, at least qualitatively, in terms of the strongly correlated
limit of the paradigmatic Hubbard model (single or multi band) doped away from half-
filling [2, 13, 16,69, 103, 104]. But the possibility of a SC phase in a strongly correlated
band-insulator has been explored very little so far, either theoretically or experimentally.

In this chapter, we show how a spin-exchange mediated SC can be realized without
doping in a simple model of a strongly correlated band insulator (BI), where the bare band
gap and the e-e interactions both dominate over the kinetic energy. As e-e interactions are
increased (but still remain of the order of the band-gap), the single particle excitation gap
in the BI closes, resulting in a metallic phase. Upon further increasing the e-e interactions,
superconductivity develops by the formation of a coherent macroscopic quantum conden-
sation of electron pairs, provided the metal has enough low energy quasiparticles and the

system has enough frustration against the magnetic order. The superconductivity, which
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survives for a broad range of e-e interactions, features tightly bound short coherence length
Cooper pairs with a 7, well separated from the energy scale at which the pairing amplitude
builds up. The phase diagram, whose section with all model parameters fixed except for
the interaction to band-gap ratio is shown in Fig. 4.1, presents a plethora of exoctic phases,

that we discuss further below, in the vicinity of a broad region of the SC phase.
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Figure 4.1: Phase Diagram at a fixed ¢’ . The zero temperature phase diagram for the 2d
square lattice for U = 10t and ¢’ = 0.4¢. For A > U > t, the system is a correlated band
insulator without any magnetic order which is adiabatically connected to the Bl at U = 0.
On increasing U, first the gap in the single particle excitation spectrum closes, as shown
by the non-zero single particle density of states (DOS) at the Fermi energy p(w = 0),
resulting in a metallic phase. On further increasing U/A, superconductivity sets in and
lasts over a broad range (A € [9.3 : 10]t) before the ferrimagnetic order with a non-zero
staggered magnetization (m,) and non zero uniform magnetization (1my) sets in via a first
order transition. This is a Ferri metal phase with py(w = 0) # p;(w = 0) > 0. As
U/A increases further, m; — 0 whence the magnetic order becomes AF. Furthermore, a
spectral gap opens up for the up-spin electrons such that pr(w = 0) = 0 while the down-
spin electrons are still conducting with p; (w = 0) being finite, resulting in a sliver of AF
half-metal. Eventually the system becomes a AF Mott insulator as U/A increases further.
Note that the SC phase is surrounded by metallic phases on both the sides.
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4.2 TIonic Hubbard model and the limit of strong correla-

tions

Our starting point is a variant of the Hubbard model, known as the ionic Hubbard model
(IHM), where, on a bipartite lattice with sub-lattices A and B, a staggered ionic potential

A/2 is present in addition to electron hopping and coulomb repulsion (U):

H= =3, (tccio+he)—pdn;

— 3 Y ieani+ 5 Yiepni + U X nipng 4.1)

The amplitude for electrons with spin o to hop between sites 7 and j is ¢;; = ¢ for near-
neighbors and ¢;; = ¢’ for second neighbors. The chemical potential 1 is chosen to fix the
average site occupancy at n = 1, corresponding to half-filling. The staggered potential
doubles the unit cell, and (for ¢ < A/4) induces a gap between the two electronic bands
that result, making the system a BI at half-filling when the Hubbard on-site interaction U

is zero.

The parameter range of interest here is U ~ A > ¢, ¢/, where a theoretical solution can
be obtained based on a generalization of the projected wavefunctions method [1,2,4,10,38—
40, 105]. In this limit and at half-filling, holons are energetically expensive on the A sites
(with onsite potential —%) and doublons are expensive on the B sites (with onsite potential
%); i.e., in the low energy subspace h4 and dg are constrained to be zero (with d represent-
ing a doublon and A a holon). Consequently, we can carry out a similarity transformation to
eliminate all hopping processes connecting the low and high energy sectors of the Hilbert

space. Nevertheless, and unlike in the Hubbard model, in the half-filled IHM the system
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still has charge dynamics through hopping processes which take place entirely within the
low-energy Hilbert space, e.g., first neighbor processes such as |dahp) < | Tals) and
second neighbor hopping processes which allow doublons to hop on the A sublattice and
holons to hop on the B sublattice. Further details can be found in Appendix C.1.

The effective low energy Hamiltonian at half-filling, H. s, is an extended t —t' — J — .J'

model acting on a projected Hilbert space:

Hepp=—t Z P[CIAUCJ'BU +h.c]P -t Z P[cgwcjw + h.c.|P
<ij>,0 <<Lij>>,a,0

, 1 1
+J Z P [SiA-SjA - 1(2 —nia)(2 — njA)} + lSiB~Sj - _nz’anB:|,P

<<ij>> 4
+J Y P(Sia-Sip = (2= nia)np/4)P + Ho+ Hy+ Hy — Y i+ ... (42)
<ij> i
Here J = 2t>/(U 4+ A) and J' = 4t*/U. Hjy is the rescaled Hubbard interaction term
in the projected Hilbert space. H,(H;.) indicates other dimer (trimer) processes. We
treat the projection constraint in /. using the generalized Gutzwiller approximation [10]
and solve it using a renormalized Bogoliubov mean field theory. Gutzwiller approxima-
tions [1, 10, 39] of the sort we use have been well vetted against quantum Monte Carlo
calculations [2,4, 105] and dynamical mean field theory [106]. Details of the Gutzwiller

approximation and the various terms in [, are given in Appendices C.1, C.2 and C.3.

4.3 Phase diagram and the order parameters

We solve the renormalized effective low energy Hamiltonian using three different ver-
sions of the renormalized mean field theory (RMFT). (1) To explore the SC phase, we

use a generalized spin-symmetric Bogoliubov mean field theory, which basically maps
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onto a two-site Bogoliubov-deGennes (BdG) mean field theory for each allowed % point
in the BZ. We do a mean field decomposition of the various terms in the Hamiltonian,
and self-consistently solve for the following mean fields : (a) pairing amplitude, A’ =
<cj ATC;r Bl cj. A ic} oy BT> , Where 7 is x or y, considering d-wave pairing symmetry (A% 5 =
—A%5 = A,) and extended s-wave pairing symmetry (A%, = A%z = A;) separately;
(b) density difference between two sublattices, 0 = (n4 — ng)/2; (c) inter sublattice Fock
shifts, x{ b, = (¢l Cino)s i = ita, ity Xon, = (¢l cipo),j = it 2r+yorit2y+u;
and (d) intra sublattice Fock shift on A(B) sublattice, with Y oae = <c;.ragcii2m J2yacth.C.),
and X'mo_ = <c}aacz~ixiyw+h.c.). (2) To explore the magnetic order and the phase transi-
tions involved, we solve the renormalized Hamiltonian using standard mean field theory
allowing non-zero values of the sublattice magnetization m, = 1.+ — Ny Witha = A, B,
from which one gets the staggered magnetization my, = (ms — mp)/2 and the uniform
magnetisation my = (ma4 + mp)/2, along with all other mean-fields mentioned above
except for the SC pairing amplitudes A, /4. (3) The third calculation, where we allow for
both the SC pairing amplitudes and the magnetization along with all other mean fields
metioned above, uses a standard canonical transformation followed up by the Bogoliubov
transformation to diagonalize the mean field Hamiltonian neglecting the inter-band pairing
as weak. We solve the resulting RMFT self-consistent equations on the square lattice for
various values of U, A and t’ to obtain the phase diagram shown in Fig. 4.1 and Fig. 4.2
(See Appendix C.5 for details). In the parameter regime where solutions with nonzero SC
pairing amplitudes and magnetization (from the first two calculations) are both viable, we
compare the ground state energy of the two mean-field solutions to determine the stabler
ground state. We finally compare the energy of this state with the one obtained in the third

calculation to determine the true ground state.
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Figure 4.2: Order Parameters and Complete Phase diagram. Top panels show the
staggered magnetization, m, and the uniform magnetization, m as functions of U/A for
several values of ¢ and U = 10t. With increasing ¢/, the transition point at which the
magnetic order turns on first decreases for ¢ < 0.12 and then starts increasing again. The
magnetic transition is of first order for ¢ = 0 as well as for large values of t/, though
for intermediate values of ¢ the magnetization tuns on continuously. Panel (c) shows the
SC pairing amplitude A/, for the d-wave and extended s-wave pairing symmetry. With
increasing ¢’ the range in U/A over which the superconductivity is stable gets wider, and
the amplitudes of both d-wave and extended s-wave pairings get enhanced. Note that the
extended s-wave order turns on only for ¢’ > 0.35¢. Panel (d) shows the SC order parameter
®,4/5, which also gives an estimate of the SC transition temperature, T.. The bottom panel
(e) shows the complete zero temperature phase diagram for U = 10t in the ¢'-U /A plane.
As we approach the SC phase from either the correlated band insualtor or the MI phase, the
charge fluctuations build up gradually through metallic phases, and the superconductivity
develops by the formation of coherent Cooper pairs between electrons which reside on the
Fermi pockets of these metallic phases.
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Our main findings are summarised in the phase diagram of Fig. 4.1, which shows a
linear section (along the U/A axis) of the full phase diagram in Fig. 4.2[e], for the IHM
on a 2d square lattice. The unconventional SC phase is sandwiched between paramagnetic
and ferrimagnetic metallic phases, which in turn are sandwiched between a correlated band
insulator and an AF Mott insulator (MI), along with an intervening sliver of AF half-metal.
The correlated band insulator, stable for A > U > t, is paramagnetic and adiabatically
connected to the BI phase of the non-interacting IHM. As A approaches U, the low en-
ergy hopping processes (|[dahp) < | Talp)) become more prominent, increasing charge-
fluctuations such that the gap in the single particle excitation spectrum closes, leading to a
finite density of states (DOS) p(w = 0) at the Fermi energy, though for most of the param-
eter regime the resulting paramagnetic metallic (PM) phase is a compensated semi-metal
with small Fermi pockets as shown in detail in Fig. 4.6. This PM phase is adiabatically
connected to the metallic phase observed for weak to intermediate strength of U/t as long
as U ~ A and the system is constrained to be paramagnetic, as shown in earlier work on
the THM using DMFT and other approaches [5,41,43,44]. On further increasing U/A, in
the presence of sufficiently large t’, superconductivity sets in for U ~ A (irrespective of
the strength of U/t, as shown in Fig. 4.3) due to the formation of coherent Cooper pairs of

quasi-particles which live near the Fermi pockets, and survives for a broad range of U/A.

The pairing amplitude Ay, for both the pairing symmetries we have studied, namely,
the d-wave and the extended s-wave, increases monotonically with U/A and drops to zero
via a first order transition at the transition to the ferrimagnetic metal. Though there is
a metastable state in which the SC phase coexists along with the ferrimagnetic order for
a range of U/A after the transition (see Appendix C.5 for details), due to the really tiny
Zeeman splitting (< 0.035¢ for U = 10¢t) produced by the small uniform magnetization m

the possibility of a Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state seems unlikely [107-
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109].

The ferrimagnetic metal (FM) phase is characterised by non-zero values of the stag-
gered magnetization m, as well as the uniform magnetization m ¢, along with a finite DOS
po(w = 0) at the Fermi energy. With further increase in U/A the FM evolves into an AF
half-metal phase in which the system has only staggered magnetization (i.e., m; = 0) and
the single particle excitation spectrum for up-spin electrons is gapped while the down-spin
electrons are still in a semi- metal phase. Eventually, for a large enough U/A, both the spin
spectra become gapped, and the system becomes an AF MI. Though we have studied the
IHM on a square lattice, a qualitatively similar phase diagram is expected on any bipartite
lattice, but with changes involving appropriate symmetries, e.g., d + id pairing symmetry
on a honeycomb lattice.

We next discuss the changes in behavior of the system with increasing U/A for varying
values of ', as depicted in Fig. 4.2. For t' = 0, the system shows a direct first order transi-
tion from an AF ordered phase to a correlated band insulator with a sliver of a half-metallic
AF phase close to the AF transition point. This is consistent with a variational quantum
Monte Carlo study of the half-filled IHM for ¢ = 0 [110] as well as with most other earlier
work [6,7]. When t’ is non-zero, due to the breaking of particle-hole symmetry as well as
the frustration induced by the second neighbor spin-exchange coupling J', the system first
attains ferrimagnetic order characterized by non-zero values of both the staggered (m,) and
the uniform (m ;) magnetizations, for a range of U/A, beyond which it has pure AF order
as shown in panel (a) of Fig. 4.2. The magnetic transition occurs at increasingly larger val-
ues of U/A with increasing t' (except for an initial decrease for small values of ') which
helps in the development of a stable SC phase.

To stabilize the superconducting phase, a minimum threshold value of ¢ (which is a

function of U) is required, partly in order to frustrate the magnetic order as mentioned
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above, but more importantly to gain sufficient kinetic energy by intra-sublattice hopping of
holons and doublons on their respective sublattices where they are energetically allowed.
While a stable d-wave SC phase turns on for ¢’ > 0.1t for U = 10¢, as shown in Fig. 4.2
, superconductivity in the extended s-wave channel gets stabilized for the much larger
value of ¢ > 0.35¢ . In an intermediate regime of U/A and ¢/, states with both d-wave
and extended s-wave symmetry are viable solutions with energies that are very close (See
Appendix C.5 for details). As ¢’ increases, the pairing amplitude increases and the range
of U/A over which the SC phase exists becomes broader for both the pairing symmetries
studied. Though ¢’ helps in the formation of the SC phase with pairing amplitudes living
on the nearest neighbor bonds, there is no significant second neighbor pairing induced by
J'.

The pairing amplitude discussed above signals the strength of Cooper pairing on a bond,
but the SC order parameter @, is defined in terms of the off-diagonal long-range order in
the correlation function F, ., (r;—r;) = (B;1 B;,,) where ij creates a singlet on the bond
(7,1+y). Fig. 4.2 shows the SC order parameter, which has been obtained after taking care

of renormalization required in F.

e (r; — 1;) in the projected wavefunction scheme (see

Methods section). Since the SC order parameter for this system is much smaller than the
strength of the pairing amplitude, with increase in temperature the superconductivity will
be destroyed at 7. by the loss of coherence among the Cooper pairs, leaving behind a
pseudo-gap phase with a soft gap in the single particle density of states due to the Cooper
pairs which will exist even for 7" > T.. Thus ®,4/, also provides an estimate of the SC
transition temperature 7.. The maximum estimated 7. for U = 10¢ on a square lattice is
approximately 0.03¢ for the d-wave SC phase, which for a hopping amplitude comparable
to that in cuprates (¢t ~ 0.4eV’) gives a T, ~ 150/, and there is a considerable scope for

enhancing 7, by tuning U/A as well as t'.
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Figure 4.3: Phase diagram in U/t — U/A plane. Phase diagram of the half-filled IHM
on a 2d square lattice in U/t — U/A plane for t' = 0.4¢. Note that the SC phase always
turns on for U ~ A irrespective of the value of U/t within the range of validity of the
calculation. As U/t increases, the range of U/A over which both the s-wave and the d-
wave SC phases are viable solutions and almost degenerate shrinks rapidly while the range
of U/A over which only the d-wave SC phase is stable reduces rather slowly.

Earlier in this chapter we have shown and discussed the phase-diagrams for the IHM
on a 2d square lattice for a fixed value of U/t. Fig. 4.2[e] shows the phase diagram in
t'/t — U/A plane for a fixed U and Fig. 4.1 shows a section of this phase diagram for ¢’ =
0.4¢. In order to understand how the different phases and the phase boundaries between
them evolve with varying U, here we show in Fig. 4.3 the phase diagram in U/t — U/A
plane for a fixed ¢'/t. As is clear from the figure, superconductivity always turns on for
U ~ A irrespective of the value of U/t though with increase in U/, the range of U/A
over which both pairing symmetries are almost degenerate solutions shrinks rapidly such

that eventually, for large enough values of U/t, the system has only a d-wave SC phase.

All the results presented so far in the chapter are for the 2d square lattice. We would

like to emphasize that within the renormalized mean field theory the phase diagram is
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qualitatively similar for higher dimensional systems as well. This is clear from Fig. 4.4

which shows the phase diagram for a cubic lattice.
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Figure 4.4: Phase diagram for cubic lattice. Phase diagram of the half-filled IHM on a
3d cubic lattice for U = 12t and ¢’ = 0.35¢. Note that the phase diagram obtained for cubic
lattice is qualitatively similar to the one obtained for a 2d square lattice.

We note that, in an earlier work [80] on the strongly correlated half-filled IHM with
t' = 0, (i.e., in the absence of any of the frustration effects we have discussed above,)
using slave bosons to represent the projection processes in Eq. 4.2, and using a slave-boson
mean field theory approach to treat the problem, SC was shown to exist when U ~ A >>
t. However, this result is not consistent with the variational quantum Monte-Carlo study
mentioned above [110] where no SC phase was reported at half-filling in the absence of
frustration against the magnetic order. Within the Gutzwiller projection approach, while
we do find regions of parameter space inside the AFI region where SC pairing is viable
even in the ¢ = 0 case, the SC phase has higher energy than the AFI phase and is therefore
metastable [106]; and as we have demonstrated above, only in the presence of sufficient

frustration against the magnetic order does SC exist in this simple model of a band-insulator
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at half-filling.

4.4 Low energy spectral functions
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Figure 4.5: Sublattice specific spectral functions. A4 (k,w ~ 0) and Agp(k,w ~ 0) in
the para metallic phase. The non-zero quasiparticle weights have k-dependence along the
Fermi pockets.

A striking feature of the phase diagram in Fig. 4.2 is that, though the origin of su-
perconductivity in this model lies predominantly in the spin-exchange interactions (with
a weaker contribution from other dimer and trimer terms), superconductivity sets in only
after the system has evolved to a para metallic or a FM phase. Here, we first show the
sublattice specific low energy spectral functions, A4 (k,w ~ 0) and Agp(k,w ~ 0) in the
para metallic phase which are obtained from the retarded Green’s functions in the case of
the calculation where pairing has not been allowed (Refer to Eq. C.28 of Appendix C.4.1).
As shown in Fig. 4.5, the sublattice specific spectral functions vary over the Fermi contours

to a large extent. However, the experimentally relevant quantity is the sublattice averaged
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single particle spectral function, A(k,w) = —(Aaa(k,w) + App(k,w)). In this case in

!
2
the para metallic phase, the non-zero quasiparticle weight will have no k-dependence and
is constant over the Fermi pockets where as in the ferri metallic phase there will be very
weak k-dependence along the Fermi pockets (Refer to Eq. C.26 of Appendix C.4.1 for
details). Henceforth, we will be looking at only the sublattice averaged spectral functions.

In order to understand the charge dynamics as the system approaches the SC phase with
the tuning of U/A, we have analysed the single particle spectral functions which can be
directly measured in angle resolved photoemission spectroscopy (ARPES). Fig. 4.6 shows
the low energy spin resolved spectral functions A, (k,w ~ 0), the non-zero value of which
determine the energy contour on which low energy quasiparticles live in the Brillouin zone
(BZ) (see Appendices C.1, C.4.1, C.4.2 for details). Panels (a-c) show A,(k,w ~ 0)
in the FM phase for which the up-spin channel has electron pockets around the points
K = (£7/2,+7/2) in the BZ and the down spin spectrum has small hole pockets around
the points K’ = (£, 0), (0, £) in the BZ as shown in panel (a). As U/A decreases within
the FM phase, and approaches the SC phase, the electron pockets (hole-pockets) in the up-
spin (down-spin) spectral function become bigger, the down-spin channel gets additional
electron pockets while the up-spin channel gets additional hole pockets as shown in panel
(c).

In the PM phase, the low energy spectral functions have both electron pockets (around
K) as well as the hole pockets (around K’). As U/A increases through the PM phase, these
Fermi pockets slowly expand such that they almost touch each other before the system
enters into the SC phase. Similar behavior is seen with an increase of ¢’ in the PM or the
FM phases.

In order to understand the charge dynamics as the system approaches the SC phase with

the tuning of second neighbor hopping, ¢/, we have analysed the single particle spectral
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Figure 4.6: Spectral Functions. The top two rows show the spin resolved low energy
spectral functions A, (k,w ~ 0) (integrated over |w| < (0.01 — 0.02)¢ for a 3000 x 3000
system) in the full Brillouin Zone (BZ) for ' = 0.35¢,U = 10t, to emphasize how the
charge fluctuations evolve as we approach the SC regime from the ferri metal side, with
Ar(k,w ~ 0)(A (k,w ~ 0)) shown in the first (second) row. At U/A = 1.09, the up spin
channel has electron pockets while the down spin channel has small hole pockets. As U/A
decreases, these Fermi pockets become bigger, the down spin spectral function gets addi-
tional electron pockets and the up-spin spectral functions get additional hole pockets. The
last row shows A(k,w ~ 0) (same for up or down spins) for the para metal phase. Moving
towards the SC phase by increasing U/A, Fermi pockets in the para metallic state go on
expanding until they almost start touching each other, at which point the superconductivity
sets in by formation of Cooper pairs between electrons close to the Fermi energy.
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Figure 4.7: Spectral functions for varying t’. Here we show the low energy spectral
functions A, (k,w ~ 0) (integrated over |w| < (0.01 — 0.02)¢ on a 3000 x 3000 lattice) in
the full Brillouin zone (BZ) for the ferrimagnetic phase at a fixed U/A = 1.02 and for two
values of ¢'. Upper panels show A;(k,w ~ 0), and the bottom panels A, (k,w ~ 0).

functions for a fixed U/A in the ferrimagnetic metallic phase. We can understand why
the SC phase does not get stabilized for small values of ¢’ by looking at the evolution of
A, (k,w ~ 0) for a fixed U/A as one tunes t'. Fig. 4.7 shows A,(k,w ~ 0) close to the
magnetic transition point of ¢ = 0, that is, for U/A = 1.02. For small values of ¢/, at
this value of U/A the system is in the ferrimagnetic metal phase. As we increase ¢’ inside
the ferrimagnetic metal phase, the up spin spectral functions get bigger electron pockets
around K = (£7/2, £7/2) points while the down spin spectral functions get bigger hole
pockets around K’ = (£m,0), (0, £7) points. In addition to this, as ¢’ increases even
the up-spin spectral functions get hole pockets and the down spin spectral functions get
electron pockets. As a result of both these effects, an almost connected contour of Fermi

pockets is formed, whence superconductivity emerges by the formation of Cooper pairs of
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the corresponding low energy quasiparticles.

U/A=1.04,'=0.15t
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Figure 4.8: Spectral functions in the AF half-metal phase. Spin resolved low energy
spectral function A, (k,w ~ 0) (integrated over |w| < 0.01¢) in the AF half-metal phase.
Left (right) panel shows the spectral function for the up-spin (down-spin) channel.

We also show the low energy spectral function A,(k,w ~ 0) for the AF half-metal
phase (see Fig. 4.8), which is fully consistent with the band-dispersions shown above. The
up-spin channel is gapped while A|(k,w ~ 0) has tiny electron pockets at the K points
and hole pockets at the K’ points in the BZ.

The electron and hole pockets mentioned above, are best identified based on the mo-
mentum distribution function n, (k) as defined in Appendix C.1. n,(k) is uniformly half
in the entire BZ for any insulating phase of the model studied here. When the system goes
into a metallic phase, at least one of the bands cross the Fermi level resulting in filled or
empty Fermi pockets depending on the curvature of the band. Filled Fermi pockets, also
called electron pockets, have n, (k) > 1/2, while empty Fermi pockets, also called hole
pockets, have n, (k) < 1/2. Fig. 4.9 shows n, (k) for ¢’ = 0.35¢ for two values of U/A.
Panel (a) shows the result for the ferrimagnetic metal phase and panel (b) shows the results

in the para metal phase. In the ferri-metal phase, n+(k) has filled pockets around the K
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(a)u/A=1.09,1'=0.35t b)U/A=0.91,t'=0.35t

0.0 0.5 1.0

Figure 4.9: Momentum Distribution Function. Momentum distribution function n, (k)
in the ferrimagnetic metal and the para metal phases for ¢ = 0.35¢. In the ferrimagnetic
metal phase shown in panel (a) n+(k) > 1/2 on (electron) pockets centered around the K
points while n| (k) < 1/2 on (hole) pockets centered around the K’ points in the BZ. Panel
(b) shows the results for the paramagnetic metal phase, where the systen has spin symmetry
and n, (k) < 1/2 around the K’ points while n,(k) > 1/2 around the K points for both
the spin components. Everywhere else in the BZ n,(k) = 1/2 in all the panels.

points while the down-spin component has hole pockets around the K’ points in the BZ. In
the para-metal phase, shown in panel (b), there is a spin symmetry and n, (k) has electron

and hole pockets for both the spin channels.

Nature of Fermi pockets

Fig. 4.10 shows the band dispersion E,,, (k) for both the bands on paths along high sym-
metry directions in the BZ. In the AF half-metal phase, the down spin channel has small

hole pockets around K’ and tiny electron pockets around K. In the Ferrimagnetic metal
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Figure 4.10: Band Dispersion. Band dispersion FE,,(k) on paths along high symmetry
directions in the BZ. Panel (a) shows bands in the AF half-metal phase where both the
down spin bands cross the Fermi level near the K and K’ points while the up spin bands
are fully gapped. Panel (b) shows bands in the ferrimagnetic metal phase, where one down-
spin band crosses the Fermi level near the K’ points while one up-spin band crosses the
Fermi level near the K point and the other two bands are gapped. Panel (c¢) shows bands in
the paramagnetic metal phase where there is a spin symmetry and all the bands cross the
Fermi level. The lower panels zoom in close to the band crossing at the Fermi energy.

phase, the down spin band E;| (k) crosses the Fermi energy around the K’ points resulting
in small hole pockets and Fa (k) crosses the Fermi energy near the K points resulting in
small electron pockets. In the paramagnetic metal phase, F; (k) crosses the Fermi energy
around the K’ points resulting in hole pockets and Es(k) crosses the Fermi level around
K resulting in electron pockets, where, because of the spin symmetry, we have suppressed

the spin indices.
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U=10t, |t'|=0.45t, 2D (Spin Asymmetric Calculation)
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Figure 4.11: Comparison between +ve and -ve t’. The pairing amplitude and magnetic
order parameters for ¢’ = 0.45¢ and ¢ = 0.45¢. As shown only m changes due to related
particle hole symmetry between the model with +ve and ve values of ¢'.

Sign of t’ and related p-h symmetry

Although the analysis so far presented is for positive values of t’, we would like to empha-
size that the phase diagram is invariant under the reflection symmetry of the next neighbor
hopping amplitude. The Hamiltonians in the two cases are simply related through a particle

hole transformation (as described in chapter 1),
1 .
Cias — CjBo;

4.3)

7
C]BCT — _CiAO"

Under this transformation the Hamiltonian of the IHM with positive value of ¢’ gets

mapped to the Hamiltonian with negative value of ¢, the other terms remaining invariant
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Ask,0~0)
(a)U/A=1.09, Ferri metal, t'=-0.45t (b)U/A=1.0, Para metal, t'=-0.45t

Ng(k)
(a)U/A=1.09, Ferri metal, t'=-0.45t (b)U/A=1.0, Para metal, t'=-0.45t

Figure 4.12: Spectral functions and momentum distribution functions for -ve t’. Top
panel shows the spectral functions in the metallic phases for ' = 0.45¢. First row is for
spin-up and the second row is for the spin-down component. The bottom panel shows the
momentum distribution function ny, in the metallic phases for ¢ = 0.45¢. Comparison
of this plot with Fig. 4.9 shows that the hole and electron pockets get interchanged for
negative values of ¢’. For negative values of ', we have electron pockets around (£, 0)
and symmetrically related points while we have hole pockets around (£7/2, £7/2) points.
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under the transformation.

Accordingly, in the spin asymmetric phase m4 — —mp and vice-versa such that the
staggered magnetisation, m, remains invariant. However, the uniform magnetisation, m
flips in sign. The pairing amplitude, A 4p remains invariant under this transformation.
These are shown in Fig. 4.11. Also, shown in Fig. 4.12 are the spectral functions in the
case of negative t’. Under this transformation the electron and hole pockets switch i.e.,
the electron pockets now appear at K’ = (0, £7), (£, 0) and the hole pockets appear at

K = (£m/2,+7/2).

4.5 Single particle density of states

Fig. 4.13. shows the spin-resolved single particle density of states (DOS) p,,(w) which can
be measured directly in scanning tunneling spectroscopy (STS) experiments and provides
additional evidence for the existence of various metallic phases as in the phase diagram in
Fig. 4.2. The DOS atw = 0 for these phases was presented in Fig. 4.1 as a function of U/ A,
and here we present the full p,(w) vs w. The para metal, ferri-metal and the AF half-metal
phases are all compensated semi metals, which is reflected in the depletion in the DOS at
the Fermi energy and is consistent with the small Fermi pockets shown in Fig. 4.6. We have
also analysed the DOS in the SC phase. As shown in Fig. 4.13[d], p(w ~ 0) ~ |w| which
is a signature of the gapless nodal excitations in the d-wave SC phase. Interestingly, even
for the extended s-wave SC phase p(w ~ 0) ~ |w]| as the pairing takes place around small
Fermi pockets which are centered at K or K’ points in the BZ where the pairing amplitude
As(k) = Ag(cos(k,) + cos(k,)) has nodes as well, resulting in gapless excitations. The
gap, which is the peak to peak distance in the DOS, is much larger in the d-wave SC phase

than in the extended s-wave phase, consistent with the former being the stable phase. Infact
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Figure 4.13: Single particle Density of states. Panels (a)-(c) show the spin resolved
single particle density of states (DOS) p,(w) for ¢’ = 0.15¢t and U = 10¢t. At U/A ~ 1.04,
p;(w = 0) is finite where as p(w = 0) = 0 with a finite spectral gap, corresponding to the
AF half-metal phase. At U/A = 1.03, the DOS at the Fermi energy is finite in both the spin
channels but p;(w) # p,(w) corresponding to the ferri metal phase. At U/A = 0.95, the
DOS is spin symmetric with a finite weight p,(w = 0) at the Fermi energy and the system
is a para metal. Panel (d) shows p(w) for the d-wave SC phase while panel (¢) shows that
for the extended s-wave SC phase for U = 10t and ¢’ = 0.4¢. p(w) shows a linear increase
with |w| for w ~ 0 for both the SC phases. Panel (f) shows the gap in the DOS, which is
basically the peak to peak distance in p,(w), for both the d-wave and the extended s-wave
pairing symmetries.

for the extended s-wave phase, Gap; is only slightly larger than the SC order parameter
®,, which indicates that the extended s-wave SC phase will have a narrower pseudogap
phase above T, compared to the d-wave case. The gaps in the d-wave and extended s-
wave pairing channels are proportional to the Gutzwiller renormalized pairing amplitudes

in the respective channels.

4.6 Conclusions

As mentioned in the introduction, the origin as well as the basic features of unconventional

SC in most of the superconducting materials known today [3,13,14,16] can be understood,
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at least at the broad qualitative level [2, 13, 16,69, 103, 104], in terms of the strongly corre-
lated limit of the Hubbard model (single or multi band), but only upon doping the system
away from half-filling. In the theoretical model we have studied here, superconductivity
appears even at half-filling, and therefore without the disorder that inevitably accompanies
doping, in the special strongly correlated limit where U, A > ¢, ¢ and the second neighbor
hopping is sufficiently strong. A remarkable feature is that the SC phase in this model of a
correlated band insulator is sandwiched between paramagnetic metallic and ferrimagnetic
metallic phases (Fig. 4.2[e]), which makes the zero temperature phase diagram very differ-
ent from that of the known unconventional superconductors like high 7, cuprates [16] or
the more recent magic angle twisted bilayer graphene [14]. We expect that the SC phase in
this model has transition temperatures comparable to those of cuprates and that it also has

a pseudogap phase like in cuprates.

The question as to what are the possible experimental situations where this mechanism
of superconductivity at half-filling, with its promise of large transition temperatures and
no intrinsic disorder, can be realized is of obvious importance. Since the IHM has been
realized for ultracold fermions on an optical honeycomb lattice [8], where the state-of-the
art engineering allows the parameters in the Hamiltonian to be tuned with great control,
it will be interesting and perhaps the easiest to explore our theoretical proposal in these
systems. Due to the recent developments in layered materials and heterostructures, it is in-
deed possible to think of many scenarios where the IHM can be used as a minimal model,
for example, graphene on h-BN substrate and bilayer graphene in the presence of a trans-
verse electric field [66], which plays the role of the staggered potential. The limit of strong
correlation, crucial for realizing the SC phase, can be achieved in these materials by ap-
plying a strain or twist. Band insulating systems with two inequivalent strongly correlated

atoms per unit cell, frustration in hopping and antiferromagnetic exchange, and lack of
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particle-hole symmetry, are likely tantalizing candidate materials as well. The work pre-
sented in this chapter suggests that further theoretical and experimental exploration of such
novel possibilities where superconductivity can be realized with sufficiently high transi-
tion temperatures without doping in strongly correlated band insulators is an exciting and

worthwhile pursuit.
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I A PPENDIX A

APPENDIX

A.1 Derivation of the tJ model

In the strong correlation limit of the Hubbard model, double occupancies belong to the high
energy sector. Through a Schrieffer Wolff transformation, all hopping processes connecting
low and high energy sectors are eliminated and finally if we confine to the low energy
space, we obtain the low enrgy effective Hamiltonian in the projected space known as the

tJ model. In this section, we go through the steps for deriving the effective Hamiltonian.

As a first step for finding the effective Hamiltonian, we have to do a similarity transfor-

mation given by,

H = e “He™, (A.1)

where S is the similarity operator. Upon expanding the exponentials, the effective

Hamiltonian H looks like,
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2
~ . . . . Z
H = Hy+ H"Y + H"™" 4 @79 LGS Hol 4 i[S, Hy] + 5 (8,18, Hol| + ... (A2)

where H) is the unperturbed part of the Hamiltonian consisting of the Coulomb and the
chemical potential terms, H; is the hopping term which is introduced perturbatively into
the system and is a sum of H°® H"9" and H/°“"9"Hlow is confined to the low energy
Hilbert space in the sense that doublons are not involved in this process whereas chigh
is the process which involves doublons in both the initial and final states. Htlothigh are
processes which connect the low and high energy Hilbert spaces in the sense that doublons,
which belong to the high energy sector, are present either in the initial or final state. Below
we pictorially show the classification of hopping processes and their expression in terms of

fermionic operators.

I O—0O 1

1 j i j

Figure A.1: Figure shows the effective hopping of a hole and lies in the low energy Hilbert
space. We call it H!°®.

Fig. A.1 represents the low energy hopping of holes which can be expressed in fermionic

language as,

HPw = —t Z c}a(l —njz)(1 — nig)cio + H.c. (A.3)

<1j>,0
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Figure A.2: Figure shows the effective hopping of a doublon and lies in the high energy
Hilbert space. We call it H,"9",

Fig. A.2 represents the high energy hopping of doublons which can be expressed in

fermionic language as,

H"" = —t Yl njonisciy + H.e. (A.4)
<ij>,0
i j i j

Figure A.3: Figure shows the unpairing of a doublon into single occupancies and vice-
versa. It connects the high energy Hilbert space (left) to low energy Hilbert space (right).
We call it F}ov¢mioh

Fig. A.3 represents hopping processes which connect the low energy Hilbert space to
the high energy Hilbert space. Doublons either unpair or form through hopping, mixing low
energy configurations like the single occupancies to the high energy configuration which
in this case is the doublon. These two conjugate processes are expressed in the fermionic

language as,
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Hlow<—>hzgh ¢ Z 1 _ nja' NizCig + 1 <> j + H.c. (AS)

<1j>,0

We choose the similarity operator, .S in such a way that,

i[S, Hy] = —H/*whioh (A.6)

Therefore, the parts of the hopping that mixes the low and high energy Hilbert spaces
are thus eliminated from the effective Hamiltonian. In this case,
i _
§=—p(H = H), (A7)
where H," are processes which increase the number of doublons and holes by one and is
represented by the process given by the backward arrow of Fig. A.3. On the other hand, /,

are processes which decrease the number of doublons and holes by one and is represented

by the process given by the forward arrow of Fig. A.3.
If we plug in S in rest of the terms of the Hamiltonian we get,

- 1
H:W+mﬁ5m;mm (A.8)

where HY = H!v + ch igh represent processes which do not change the number of

double occupancies or holes.

We now introduce Hubbard operators X <% = |¢) (1| which represents a process in
which state ¢ is created from state 7). ¢ and 1) belong to the configuration space of a spin

1
3 particle. The hopping terms in language of these Hubbard operators are expressed as,
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HY = —t »  [XPOX770 4 X7XI77 + Hel, (A.9)

<ij>,0
HY =t Y n(o)[ XX 4 XJo X)), (A.10)
<ij>,0
Hy =—t Y n(o)[X7OX7" 4 X70X71, (A.11)
<ij>,0
where d represents the double occupancy state and 7(1) = 1 and n(]) = —1 are

introduced to account for the fact that if we create a doublon starting from a up spin particle,
it will result in —|d) = cc[|0) state.

In the projected state, the density of doublons is zero. So, we can define a creation
operator in the projected space EZTU which is a non-canonical operator which creates a o
spin particle on a site when there is no ¢ particle already sitting on that site or else it would
have created a doublon which is prohibited. This is evident from the definition,

&=l (1 —ny) = X770 (A.12)

o

The low energy hopping H!°* is the part of H? which does not involve double occu-

pancies and can be expressed in terms of the projected operators like this,

Hlw = —¢ Z & Gig+ He. =Py —t(c cjo + H.c.)Py, (A.13)

<ij>,0

where Py = [[(1 — nsn;y) is the projection operator which projects out doublons.

)

1
The dimer term which arises from the commutator T [H;t, H; ] in the effective Hamil-

tonian is the Heisenberg term and is derived as follows:
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1 1
SIS H )~ =5 > Hy Y (A.14)

tigte 45
<ij>

+ il
0 05O M ¢
i3 i3 ﬂﬁ

j

J

Figure A.4: Figure shows the dimer term in the low energy space which consists of either
preservation of spins or flipping of spins on neighboring sites through an intermediate
virtual high energy state consisting of a doublon.

The first term in the commutator requires a doublon in the initial state to operate and
since doublon density is zero in low energy Hilbert space, the term does not contribute.
If H;" are now expressed in terms of the Hubbard operators then it contributes two terms

(pictorially shown in Fig. A.4) like,

1 t2 . t2 .
i > HyHF G~ -5 O XTTTXITO 4 - D XTTTXT (A.15)

<ij>

In doublon projected space, X7 = % + 057 such that the first term is nothing but
2 (geg: ~ Ty i E (558~ + S~ 5+) which is simpl
7( 75% — T) The second term can be written as 5< . S; +S;S;) which is simply

the spin flip part. The low energy effective Hamiltonian is then,
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HtJ = Pd( Z —t(z CIUCJ‘J + HC) + J(SZS] —

<ij> o

nilnj ) -+ trimer terms) Pa, (A.16)

4t?
where J = e An extra factor of 2 comes in the coupling of the Heisenberg term

because we have to consider both processes 7 <+ j. Infact, there can be 3-site hopping

terms arising from the commutator of H," and H, which belong to the low energy sector

but we leave it as an exercise for the reader to find those terms. Also, there will be terms

which still mixes the low energy and high energy Hilbert spaces arising from the same
2

t
commutator but they will be of order i and can be eliminated by considering a second

similarity operator.

A.2 Renormalized mean field theory

The mean field Hamiltonian corresponding to the renormalized tJ model in the spin sym-

metric case on a square lattice is expressed as,

3 ~ J ~
Hyrp :Z {— tgel'r — p— ngsﬁrk + Zfrk —J(1 - 37)} CLUCIW
ko

+ Z K Jgs + )A(cos(kx) — cos(ky))} clchy + Hee, (A.17)

where, T, = 2(cos(k,) + cos(k,)). For homogeneous case &, = &, = . And d-wave pair-
ing symmetry imposes A, = —Ay = A. We have choosen d-wave pairing symmetry here
because experimentally the pairing symmetry observed in Cuprates is of d-wave nature, the

phase diagram of which this renormalized mean field theory qualitatively explains.
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| Hubbard Hamiltonian |

canonical transformation GZSHG_ZS ﬁ

| t-J Hamiltonian |

Gutzwiller renormalisation g¢;, gs (X
Variational
| renormalised Hamiltonian | Monte Carlo
mean-field decoupling E”“ l’ u numerical evaluation:
| renormalised mean-field Hamiltonianl (Wo| PoHy— s Pg| Vo)
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ground state |Wy) U (Wo| P Pa|Yo)

| projected trial wavefunction |¥) = Pg|Ug) l

Figure A.5: Schematic showing steps involved in solving the effective Hamiltonian which
has been incorporated from Ref [1]. Note P here is in our notation P.

This quadratic mean field Hamiltonian can be diagonalized easily by Bogoluibov trans-

formation given by,

Crt = UEVko T Uk%ip (A18)

CT_kJ, = —UgYko T uk%]:;p

1 1
where v = 5(1 - é—k) and u; = (1 - %) Here, E;, = /& + A7 where
k k

2
3. - J - 3 J
&= —tgtFk—pL—ZJgséTk—i-ZéFk—J(l—a:) and A\, = ZLJgS+Z A(cos(k;) —

cos()|
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The self-consistent equations as shown,

~ 1 9
£ = m;%pk? (A.19)

A= % ; ugvg(cos(ky) — cos(ky)), (A.20)

0.4
0.35 1 g X+ O -
0.3 ¢
0.25
0.2t
0.15
0.1 ¢
0.05 ¢

0

J=0.2t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
X

Figure A.6: Figure shows mean field parameters like pairing amplitude A, Fock shift & and
the superconducting order parameter ¢ for J = 0.2¢ on a square lattice.

are solved self-consistently to find |1)y) which is the unprojected state. This state can
be used as a variational ansatz for the VMC calculation and this is how RMFT can be
incorporated into VMC calculations. However, our target state is P,|¢y) which is the
approximate ground state of the tJ] model in the projected Hilbert space. A schematic
flow chart is shown in Fig. A.5 which shows the steps for solving the low energy effective
Hamiltonian. The physical quantities of interest should be calculated with respect to the
projected state. The superconducting order parameter, ¢ is one such quantity which is

defined as,

145



® = (to|Palclicl,,, — cl el ) Paltho). (A21)

It is nothing but ¢:A and represents superconducting order in the projected state. It is
to be noted that two times the maximum value of A, represents the superconducting gap
in the projected state and &, gives the renormalized dispersion in the absence of pairing.

The superconducting gap is proportional to A which decreases monotonically with z as
can be seen in Fig. A.6. The probability of formation of singlets is more for low doping but
the pairs also need enough kinetic energy to propagate through the system so as to make
the system superconducting. ® captures this effect very well in the sense it goes to zero at
half-filling (where the system consists of frozen singlets), reaches a maxima and then again

decays. Thus it has a non-monotonic dome like dependence.

146



I APPENDIX B m—

APPENDIX

B.1 Details of RMFT

In this Appendix, we provide details of the renormalized mean field theory used in chapter 3
where both, the SC order and the magnetic order, are allowed. We diagonalize the mean
field Hamiltonian using a two step transformation. After the first step of the transformation,
the effective Hamiltonian obtained has both interband and intra-band pairing terms. The
interband pairing terms are much smaller than the gap between the two bands for most of
the points on the Brilluion zone and should not contribute significantly at zero temperature.
Hence we ignore the interband pairing terms which allows us to carry out the second step of
the transformation also analytically. Below, we provide details of these transformations and
the self consistent equations obtained for various order parameters. We also give results for
the inter-sublattice and intra-sublattice Fock-shifts calculated within this mean field theory
which were not presented in the section on results.

Details of the renormalized mean field theory: The mean field quadratic Hamiltonian,
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where we have allowed for nearest neighbor spin-singlet pairing as well as spin ordering,

18 as follows,

Cr At

H= Z ( Char C-kaL Chpp Cokpy ) h (B.1)
k

CkxBt

C_kB|

hit (k) 0 hat(k) — —hs(k)
0 —hy(k) —hs(k) —hay(k)

har(k)  —hs(k)  —hiy(k) 0

—hs(k)  —hay (k) 0 hy (k)

The expressions for hy, (k) and ho, (k) are the same as given in Sec. 3.3. For the d-

where, h =

42 42 39s 1
wave symmetry the expression for h3(k) is hg(k) = [K(l —g2)+ UrA ( Z — Z) —

2t? A

N (Gr,+9e1) % [cos (ka:)—cos (ky)]. For the extended s-wave symmetry the expression
, 42 42 (3gs 1 6t2 A

1S h3(/€) = [K(l —|—3gz> + m ( Z - Z) + K(gw—i—gﬁ)] ;B [COS (kJZL’) -+ cos (k?y)]

As mentioned earlier, here we need to do a two step canonical transformation to di-
agonalize the Hamiltonian. The first set of transformations are the same as mentioned
in Sec. 3.3. We neglect the interband pairing terms from the Hamiltonian obtained after
the first set of transformations and perform a regular two band Bogoluibov transformation
which is given by,

dr1r = U f1re + vmfgk,

dT_ku = — U1 fik + w1 flps
(B.2)
dror = Upa far + Ukangv

dT_ku = —Upa far + qufLC-
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wr + W, ) 2 2 1 ( wr Wy
—| 1+ =viganduy, = - | 1—
2< V(W +w))? + 42 RETTR T S w))? + 2
= v}, where, w, = hi,(k)(a2, —B2,)—2has (k) ko fre and v = —hs(k) (ot By + k) Ber)-

2
Here, uj, =

The self-consistent equations for various order-parameters are given below:

YN B | oot
Aap _<CiATCjBJ,> - <Cz‘A¢CjBT>

1
=N Z(Oémﬁmumkz — et By U1 Vg1 ) Yse(K), (B.3)
k

with v,.(k) = cos (k;) & cos (k,). The plus sign is for the extended s-wave symmetry

while the minus sign is for the d-wave symmetry in the pairing amplitude.

The magnetization on the A sublattice is equal and opposite to the magnetization on the
B sublattice owing to particle-hole symmetry of the Hamiltonian at half-filling. Hence the

staggered magnetization ms; = (m4 — mpg)/2 = ma,

ms =(ap — Nay)

1
=N Z[(aiT - O‘iJ,)Ul%l + (BET - 513¢)U1%2]~ (B.4)
%

The density difference between A and B sublattices, also equal to the doublon density on

the A sublattice and the hole density on the B sublattice, is given by,

1
“oON Z[aia(vil — Uity) + B (Vi — Vi) (B.5)
ko

X ABo defined below, gives the intersublattice Fock shift which comes from the mean field

decomposition of the exchange term and the trimer terms in the low energy effective Hamil-
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tonian in Eq. 3.9,

XABo = <C;'rAgchU>

1
= IN Z o Bro (Vo — Vi) k- (B.6)
k

Similarly, xgp, and X ppzys represent second neighbor hoppings within the B sublattice

obtained by the mean-field decomposition of the trimer terms and are given by,

XBBo = <c;rBo_chU + h.c.) j=i£2x or i+2y

1
= D_lcos 2ks + cos 2k} (o}, v + B vi), (B.7)
k

1
=¥ Z 2 cos (k,) cos (k,)(aj viy + Bi,vi). (B.8)
k

The spin symmetric RMFT can be obtained from the generic equations, described above,

by imposing the spin symmetry.

Results for Fock Shift: Fig. B.1 shows the variation of the inter and intra sublattice
Fock shifts as a function of A for U = 20¢. The inter sublattice Fock shift first increases
with increase in A with xap; > Xap¢, reaches a maximum near the AF transition point,
and then decreases with increase in A in the paramagnetic phase. This is because in the
AF ordered regime, the density difference between the two sublattices is very near to zero
but increases slowly with increasing A due to the presence of some doublons on the A
sublattice and holes on the B sublattice. x 45 in both the spin channels increase due to

the increased hopping probability. But beyond the magnetic transition point, densities of

150



0.24

0.2

o 016

Figure B.1: Inter and intra sublattice fock shifts obtained from the generic RMFT which
allows for spin symmetry breaking. Panel (a) shows inter sublattice fock shifts x 45, Vs
A while panel (b) shows intra sublattice fock shift x g, along the 2x or 2y bond. Panel
(c) shows intra sublattice Fock shift x pp,y,. Effects due to the phase transitions from the
AF-MI to the paramagnetic BI phase [see Fig. 3.6] are clearly present here as well.

doublons on the A sublattice and holes on the B sublattice increase quite rapidly, resulting
in an increasing charge density wave insulating behavior with increasing A; hence xap
in the paramagnetic regime decreases with increase in A. This is shown in panel (a) of
Fig. B.1. Panel (b) shows the intra sublattice Fock shift on the B sublattice, with two B
sites separated by next neighbor spacings in either the x or y direction on the square lattice.
While x pp; initially increases and then decreases in the magnetically ordered phase, x g5
decreases and then increases and finally the two become equal to each other in the para-
magnetic phase. Panel (c) shows the behavior of x pp,, With A which is the B sublattice
fock shift for the two B sites separated by one unit spacing along the x direction and one

unit spacing along the y direction. It shows a behavior qualitatively similar to x g5.

B.2 Numerical Diagonalization

In this Appendix, we provide details of the full numerical diagonalization of the mean
field Hamiltonian. We also show a comparison of the results of this calculation with our

earlier calculations where interband terms were ignored. The comparison shows that the
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interband terms have a very weak effect on all physical quantities of interest at zero tem-
perature. Thus the phase-diagram we have obtained remains same both qualitatively and
quantitatively even in this full numerical calculation. In the following discussion, we will
refer to these calculations as the calculation with interband pairing terms and without the

interband pairing terms.

We diagonalize the mean field Hamiltonian by a transformation

CrAY Ut U2kt Vikr U2kt Jix
CkBt _ Ukt Uakr U3kt U4kt fan (B.9)
clns —Ulk,  —Uky Uik Uzky £
cT_ kB —U3k] —U4k| U3k, Udk| f L«

After the transformation, the diagonalized Hamiltonian is assumed to have the form H =
> ka1 Ealk) fl far + const. We calculate the commutators of the fermionic ¢ p Op-
erators with the mean field Hamiltonian and the diagonalized Hamiltonian and equate the
coefficients of the Bogoluibov operators f,; for a = 1,4 to obtain the eigenvalue equa-
tions. Finally we solve the eigenvalue equation numerically for every k-value in the Bril-

louin zone to get the eigenvectors and obtain various physical quantities using the following

self-consistent equations:
1
XABs =7 g(vlkav?)ka + VokoVako ) Vs
1
XBBo :N Z(’nga + UZka)(COS (zkx) + cos <2ky))7
¥ (B.10)

1
XBBayo =77 Z(nga + U3y ) (2 cos (ky) cos (Ky)),
A

1
0 “oN Z(U%ka + Uity — Uik = Vlko)s

k,o
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2 2 2 2
(VTkr — Vigy + Vogr — Vagy),

2= =2~

-] -

(V1krUsk) + VagrUak) ) Vse(k).

1 0.001 T

(b)U=20,d-wave

19 20 21

with inter-band term —e—
without inter-band term —e—

18 19 20 21

Figure B.2: The staggered magnetization m and the density difference ¢ as functions of A
for U = 20t. The top left panel shows the data for d-wave pairing and the bottom left panel
for the extended s-wave case. Right panels show the pairing amplitudes for the d-wave and
extended s-wave pairing for U = 20t¢. As shown, the effect of including inter band pairing
in the spin-asymmetric case is negigible.

Comparison of results: We first compare the results of the two calculations with and
without interband pairing terms for the case where magnetic order is allowed along with
the SC order. As shown in Fig. B.2, the staggered magnetization and the density difference
in the two calculations are exactly the same. The pairing amplitudes for the d-wave and the
extended s-wave pairing are shown in right panels of Fig. B.2. Superconductivity does not
turn on even in the calculation with interband pairing and the pairing amplitude for both
the d-wave and the extended s-wave symmetry remains zero.

We have also compared the results for the case where the spin symmetry is enforced
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Figure B.3: The left panel shows the d-wave pairing amplitude for U = 20t in the spin-
symmetric calculation. There is a small change in the d-wave pairing amplitude due to
the interband pairing terms which lead to a small enhancement of the pairing amplitude.
The right panel shows the pairing amplitude for the extended s-wave symmetry. Inter band
pairing terms have an even weaker effect on the extended s-wave pairing amplitude than
on the d-wave pairing amplitude.

and only the SC order is allowed. In this case, the transformation used to diagonalize the
mean field Hamiltonian gets simplified due to the smaller number of variables involved.
Here, due to spin symmetry v+ = Vi, and u;x+ = ;i) for i = 1,4. Fig. B.3 shows the d-
wave pairing amplitude as a function of A for the calculations with and without interband
pairing terms. There is a weak effect of the interband pairing term on the d-wave pairing
amplitude though the range in A over which A, remains non-zero is more or less same in
the two calculations. The effect of the interband pairing on the extended s-wave pairing

amplitude is even weaker as shown in the right panel of Fig. B.3.
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APPENDIX

C.1 Details of strong correlation limit and Gutzwiller pro-
jection

We first describe the similarity transformation used to obtain the different terms in the low
energy effective Hamiltonian (Eq. 4.2). We then describe the generalized Gutzwiller pro-
jection for obtaining the projected Hilbert space on which the low energy effective Hamil-
tonian acts, along with the details of Gutzwiller factors which renormalize the various cou-
plings in the low energy Hamiltonian when the projection is implemented approximately.
We solve the model in Eq. 4.1, in the limit U ~ A > ¢, . In this limit and at half-
filling, holons are energetically expensive on the A sites (with onsite potential —%) and
doublons are expensive on the B sites (with onsite potential %); i.e., in the low energy
subspace h 4 and dp are constrained to be zero. We do a generalized similarity transforma-
tion on this Hamiltonian, H = e * He'S, such that all first and second neighbor hopping

processes connecting the low energy sector to the high energy sector of the Hilbert space
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are eliminated. The similarity operator of this transformation is S = —UJ%A(H;r AsB —

- i (170 0 i 7+ i 7+ .
Hip )= xHa g—Hig  4)— %(Ht' A~ My A_>A) - ﬁ(Ht' pop — Hy BHB) where

H+

4/ Tepresents first or second neighbor hopping processes which involve an increase in

h4 or dg by one and H ¢y ON the other hand represent hopping processes which involve a
decrease in h4 or dg by one. Hto processes do not involve a change in h4 and dg. The
low energy effective Hamiltonian obtained by this transformation is given in Eq. 4.2, with
Hy, = U;—A > ilniarniag + (1 — nipy)(1 — n;py)]. Further details can be found in chap-
ter 2. H.yy acts on a projected Hilbert space which consists of states |®) = P|®;) where
the projection operator P eliminates components with 4 > 1 or dg > 1 from |$y). We
use here the Gutzwiller approximation [1,2, 10] to handle the projection, by writing the
expectation value of an operator () in a state P|®P,) as the product of a Gutzwiller factor
go times the expectation value in |®) so that (Q)) =~ go(Q)o. The standard procedure [1]

for calculating g has been generalised by us for the case where holons are projected out

from one sublattice and doublons from the other [10] as described in chapter 2.

We thus obtain the renormalized effective Hamiltonian with the inter-sublattice ki-
netic energy (¢!, ¢ips) & gio(c! 1,CiBo )0, and intra-sublattice kinetic energy (¢l ¢jas) =
Joo (c}aacjw)o. The inter-sublattice spin correlation (S;4 - S;p) =~ gsa5(Sia - S;jp)o while
the intra-sublattice spin exchange term gets renormalized with a different factor of gs...

The only other dimer term which does not get rescaled under the Gutzwiller projection is,

Hy= =% 3 [(1=nias)(1 = nyp) + (nia — D)n;ns] €D

as it consists of only density operators [1, 10].
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Then we have the important trimer terms:

3 i i i
Hy = —% > 940k agnjBoCiAg + G2Cia5C 5y CiBaCL o)
<ijk>,0

t2
N > [980Bo(1 = nias)cl gy + 9201800l agCinsC) 5]
<jil>,o

+tt’(U +A) Z

SUA [gtUCIAU(l — NkAs)CjBo — GioC) 4 MkBoCiBo +

<kj>,<<ik>>c

o P
9AABoCiasChasChAcCiBs T+ YBBAGCj A ChpsChBaCiBs | + hoc. (C.2)

The various Gutzwiller factors involved (see chapter 2 and Appendix C.3 for details)

are as follows:

* gas =20/(1+ 86+ o0ma), gpo = 20/(1 + 0 — omp) and g;o = /940980

* Goonar = 4/3/((1+0)* —=mZ )(1+0)* —mZ,), and g = 0gaas;

® Jaraiane = 45/\/((1 + 5)2 - mgl)(l +0+ Umal)(l +0+ Uma2) .

Superconducting order parameter ®;:
The SC correlation function is the two particle reduced density matrix defined by £, ., (r; —

where BZT7 ,

r;) = (Bl B

i Bira) defined above, creates a singlet on the bond (i,7 + ).

The SC order parameter ®4/, is defined in terms of the off-diagonal long-range order in
this correlation £, ., (r; — r;) — <BZT71><BW2> = &, as |r;, —r;| — oo. Since
F, +,(r;—r;) also corresponds to hopping of two electrons from (j, j+2) to sites (¢, i+71),
in the projected wavefunction scheme it scales just like the product of two hopping terms
such that F, ., =~ ga19B ¢F$W2. Hence the rescaled form of the superconducting order

parameter is 94/ ~ | /Ga19B ﬂ>2 /s where (ID?l /s = Agy, is the order parameter calculated in

the unprojected wavefunction of the low energy effective Hamiltonian in Eq. 4.2.
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Spectral Functions and Density of States:
In chapter 4 we also discuss the single particle density of states (DOS) and the spectral
functions. In the Gutzwiller projection method, the Green’s function is rescaled with the
appropriate Gutzwiller factor such that G, (k, w) = gue G2, (k,w) where G°_(k,w) is cal-
culated in the unprojected basis. Here « represents the sublattice A or B and o is the spin
index. The spectral function, A, (k,w) which is imaginary part of the Green’s function
also get rescaled with the same Gutzwiller factors. The results presented in chapter 4 are
for the spectral functions averaged over the two sublattices A, (k,w) = 3> Ao (k,w)
which can be expressed as A(k,w) = (Jui)® + |uokl?)0(w — Eir(k)) + (Jus]® +
uapi|*)6(w — Eap (k) + (Jore] + [v2ra]2)0(w + Ery (k) + ([vspw|® + [vam[*)d (w + B2y (k).
The down spin spectral function can be obtained by replacing u;y, <+ v;); (and vice-
versa) and by replacing E;,(k) by —E;,(k). Here E;,4(k) are the eigenvalues of the
BdG equation for a given & in the BZ with eigenvectors (wyry, Uk, —U1k, —V2)k) and
(Usts Wark, —Vsyk, —Vay) Tespectively and —F 5| are eigenvalues corresponding to eigen-
vectors obtained by u;s, — Vior and v,y — —U;k. In order to get the low energy spectral

functions, we integrate A, (k,w) over a small w range such that |w| < (0.01 — 0.02)¢.

The single particle density of states is defined as, po,(w) = >, Aao(k,w). The results
presented in chapter 4 are for the single particle density of states (DOS) in the up spin
and down spin channels, defined as p,(w) = (pa,(w) + pps(w))/2. The zero temperature
momentum distribution function, which helps in identifying whether a Fermi pocket is
an electron pocket or a hole pocket can also be obtained from the spectral function using

ne(k) = [°_dwA,(k,w).
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C.2 Details of the calculation of the terms in effective Hamil-

tonian arising from t’

In chapter 2, we have elaborately discussed about how to get the low energy effective
Hamiltonian when there is only nearest neighbor hopping processes present. Here we shall
focus on the terms in the effective Hamiltonian that arise from the next nearest neighbor
hopping terms as discussed in chapter 4. The hopping term has now two parts : nearest

neighbor and next nearest neighbor terms such that H,,, = H; + Hy.

Hy = HtJrAaB + HtJrBaA + H;A—)B + HtiBHA + HtOAaB + HtOBa/U (C3)

_ + - 0
Ht/ - E : Ht’ a—a + Ht’ a—a + Ht/
a€A,B

(C.4)

a—o”

As already mentioned, out of these H," , , 5, H, p_, 4, HY s ., Hy 5 . 4 from the near-

est neighbor hopping sector and H,/ H,

assar Hy oy, from the next nearest neighbor sector,

connect the low and high energy sectors and must be eliminated through suitable similarity
transformation. The total similarity operator is perturabative in both ¢/(U + A) and t/U

and is of the following form,

i B )
=— m(HjA—)B —H;p,4)— Z(HtoAﬁB - HtOB—>A>
7

Hi oy — Hy g — —
7

' A=A t! A—>A) U<H+ - H,

t" B—»B t B—>B)' (CS)

If we consider now the commutators [S, Hy,,,] and [S, [S, Ho|, where Hj, is the unper-
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turbed term of the Hamiltonian, we find terms which again connect the low and high energy
sectors and should be suitably eliminated through a second similarity transformation to get

the effective Hamiltonian. The effective Hamiltonian is of the form,

Hepp = Hot+ Hyaa+ Hyp o+ Hi o+ H 4p
+ %[H:;A—}A’ H;A—m] + %[H;B%B’ HtTB—>B]

+ Uv_}_;A[H:_AaB7 Hy poal + %[HEA%B’ HtOB—M]

* %(% * %) (Y asa + H oy HY 5 a)

1/1 1 _ _
- é(ﬁ—i_Z) ([Ht/ AHA—i_Ht/ B—)B’H?A—)B])‘ (C6)
Let us now consider the terms in the effective Hamiltonian arising from the next nearest

neighbor hopping and express them in terms of fermionic operators on A and B lattice sites.

The next neighbor hopping in the low energy space, shown in Fig. C.1, is of the form,

0 0
Ht'JOlU = Hypg,qT Ht’BaB
=—t' > [ 4Ga + Clp,Cine + hocl]. (C.7)
<<L8,j>>,0

Here, the projected operators on A and B sublattice are éTAU = chn 45 and EEJ =

cga(l — Nps).

O(t?/U) Dimer terms:
1
Now we consider O(t”/U) dimer terms coming from E[Hj asser Hy o .,,) terms where
1 1
a = A, B. For A sublattice, E[HjA_)A,HtTA_)A] ~ —EH;A_)AH;“A_)A since the first
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Figure C.1: Next neighbor hopping processes in low energy space.

term in the commutator requires a hole to start with which is forbidden on the A sites. The

dimer term corresponding to this commutator is,

t/2 o _ _
HAA - Z [Xz oo jAO'<—O' - XiAO'<—O'XjAO'(—O' +j ’l] (C.8)

t' dimer
<< j>>0

Here, X% = |a)(b].

In terms of projected operators this can be expressed as

A
S [Conrlag ot gy — GioPlanlinedh
D) [CiA&CiAaCjAJCjAa - CiA&CiAECjAUCjAU]
<i1j>,0

= J"Ph (Sm.sj _e- ”"A)f — ”jA))Ph, (C.9)

with J' = 4t2/U. Spin summation and hoppings from i to j site first or vice versa

contribute a factor of 4 = 2 x 2. A similar analysis can be extended for the B sublattice.
1 1

E[H;’FB—)B’ HgB—»B] ~ _ﬁHtTB—>B

quires a doublon to start with which belongs to the high energy sector for the B sublattice.

Htf BB since the first term in the commutator re-

The dimer term corresponding to this commutator is,
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HBB  _ _f

t' dimer

[Xz oo ch_H—c_r _ iBo‘<—c_fXjB6'<—cr_‘_j o Z] (CIO)

<1j>,0

In terms of projected operators this becomes,

!
:T :‘ :T = ) :‘ :T = )
) § :[Cz’BaCZBUCjB&CJBC_f - CiBJCZBC_ijB&CJBU]
(on

= J'P, (SiB.Sj - ”iijB)Pd. (C.11)

Py, and P, represent the hole and double projection operators respectively. The process

underlying these Heisenberg terms are shown in Fig. C.2.

Q[—
Q [«

J, T H;’_a—)a; TJ, Ht7a—>a}
a o a «

+ T

a o«

Figure C.2: Pictorial representation of the Heisenberg terms on A and B sublattices. Sub-
lattices are indicated by .

We have not considered the O(¢?/U) trimer terms within our approximate calculation

as evidently their contibutions will be small.

AAB and BBA trimer terms:
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Due to the presence of next neighbor hopping in the Hamiltonian, AAB and BBA

type three site hoppings become possible which live in the low energy sector of the hilbert

space.
. - . U+A) .
The AAB trimer terms, shown in Fig. C.3, arise from the commutator ~————=[H,; , . ,,
K t'(U + A
HYp ]~ o —H}, ,,H; , ., , where the coupling strength K = g The first

2UA
term of the commutator requires a hole at the intermediate A site to begin with which is

energetically not favourable. Fig. C.3 shows usual spin preserving and spin flip terms. In
the first case, the spin at the intermediate site remains the same as the initial state where as

in the second case it flips.

AAB AAB AAB
Ht'A—)A H?B—)A

VI — T —— [t
H;A—)A H?A—>B
IﬂﬁA—»A Iﬂ%—aA

TR == M 1] =% {1
Ht7A—>A H?A—>B

Figure C.3: AAB trimer processes which involve spin preservation or spin flip at the inter-
mediate A site.

The fermionic representation of these terms H: is as follows,

t’ tmmer

K Z 77(0_) [XISA_OX](’)EJX?XUXO(_J + Xa<—0X](‘)<B—6XZ‘dA—UX0<—U]

<<ik>>
<kj>,o

—K Y 4 s oz
=K zAUCkAUCkAoC]BU - CiAackAUCkA5Cj35)

<<ik>>
<kj>,o
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=K Y Plcha,(1 = nkas)eipe + clayChasCractins) P (C.12)

i

BB A BB A BB A

TRR] 2=t [ 2= [T
Ht’ B—B H?A—>B

tB—aB Iﬂ%—%A
TR —= [Nt —= [ [t

Ht’ B—B tA—B

Figure C.4: BBA trimer processes showing spin preservation and spin flip at intermediate
B site.

K
Similarly, the BBA trimer terms appear from the commutator — 0 —[Hf g HY o] ~

K . . :
_ﬁHE 5 1H; 5, 5. The first term in the commutator requires a doublon at the interme-

diate B site to start with which is energetically not favourable. As shown in Fig. C.4, these
terms also come in two variants, spin preserving and spin flip at the intermediate site.

Below we represent them in terms of X operators and then in terms of projected oper-

HBBA

ators t’ trimer

as,

K Z 7](0_) [XidXoXaedXd%aXOeo + XdeaXaedXdeaXOHU]

<<lj>>
<il>,o0

o ~‘|‘ :T = =
=—K E zAUClBUClBGC]BU — 1400155 C1BaCBs)
<<lj>>
<il>,0
_ T oot
=-K E P(clapMiBsCiBo — CiayClpsCiBoaCins)P- (C.13)

<<lj>>
<il>,o
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The terms from the commutators [H,, , , ,, HY ,_, 5l and [H,, , . 5, H ,_, ;] are the her-
mitian conjugate terms of the trimer terms in Eq. (C.12) and (C.13) and are represented by

the lower arrows in Fig. C.3 and C.4.

C.3 Gutzwiller factors for the t’ terms

The Gutzwiller factors for the terms in the Hamiltonian when we consider only the nearest
neighbor hopping have been calculated in details in chapter 2. Here, we will calculate
the Gutzwiller factors for the terms arising on introducing next neighbor hopping in the
Hamiltonian under the approximation that the spin resolved densities before and after the
projection are equal.

Let us first look at the next neighbor hopping renormalization factor. The probability of
the hopping in the unprojected space is n?, (1 —n,,)?, where a € A, B. The probability of
the hopping process on the A sublattice is (n4 —1)?(1 —n 4, )* where as on the B sublattice
is (1 — np)?n%, in the projected space. Then, the Gutzwiller factor, which is the square

root of the ratio of probabilities in the projected and unprojected space becomes,

ng — 1
gir = a=l) zA ) = ga, (C.14)
BB (1-— ”B)
b= 7 — gp,. C.15
(e (1 _nBO') 9B ( )

gy comes out to be nothing but the Gutzwiller factors of trimer terms involving effec-
tive hopping between a sites. These hopping processes are shown in Fig. C.5(a).
The process of spin exchange is shown in Fig. C.5(b). The probability of the process in

unprojected basis is 7%,,n2| (1 — n41)*(1 — n4;)*. The probabilities in the projected space
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Unprojected:
a « a «
A A A A —
— Projected:
B B B B a « a o
— 1 —

Figure C.5: (a) Next neighbor hoppings in the unprojected and projected spaces on the A
and B sublattices. (b) Processes in the unprojected and projected spaces for the Heisenberg
terms on A and B sublattices.

for A and B sublattices are (1 —n.47)*(1 —n.4;)* and n},n3, respectively. The Gutzwiller

factors for the Heisenberg term for the two sublattices then become,

1

nATnAi’

gsaA = (C.16)

1
1L —mnpp)(1—ngy)

JsBB = ( (C.17)

Let us now calculate the Gutzwiller factors for the ¢¢’ trimer terms involving a pair of
next nearest neighbor sites and a pair of nearest neighbor sites. Let us look at the AAB

terms. Fig. C.6(a) represents the processes in the unprojected basis and in the projected
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Figure C.6: The tt’ trimer terms on AAB sites: (a) with spin preservation at the intermediate
site and (b) spin flip at the intermediate site. It is to be noted that in (a), processes with hole
at the intermediate site are not shown and must be considered in the calculation.

basis for the spin preserving term. In the unprojected basis, the probability of the process
is (1 — nap)nar(l — nrap)*(1 — npr)nps and in the projected basis it is (1 — nap)(na —

1)(1 — nyay)?npt(1 — np) resulting in the Gutzwiller factor,

AAB _ (na—1)(1 —np)
91t - \/ nAT(l o nBT) : (Clg)

This is nothing but the gutzwiller renormalization factor for the nearest neighbor hop-
ping of an up-spin electron. It is to be remembered that in the unprojected basis, processes
with either an up-spin or a hole at the intermediate A site have to be considered. Fig C.6(a)
shows only the processes with up-spin at the intermediate site in the unprojected space.
Here, I stands for the intermediate site. The Gutzwiller factor for the spin preserving hop-

ping on the BBA sites has the same expression as for the AAB term since both of them
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connect A and B type sites via an intermediate site and is nothing but g;,.

The Gutzwiller factor for the spin flip term on the AAB sites can be calculated similarly.
The probability of the process in the unprojected space is (1 —na4)narnrar(1 —nrap) (1 —
nray)nraynp, (1 —np)) and in the projected space is (1 — naq)(na — 1)(1 — nyar)(1 —

nray)np (1 — np) resulting in the Gutzwiller factor,

nap — (1 — ng
nratnianar(l —npy)
We get gBBA if for the intermediate A site in the AAB term we replace nyanay by

(1 — nrpy)(1 — nrp,) for the intermediate B site in the BBA term which results into,

i \/( (s — 1)1~ np) | 20

L —nrp)(1 = ngpy)nar(l — npy)

Here, I stands for intermediate site. g5.“'“* has been simply referred as ¢u,a,a,0 i

Appendix C.1.

C.4 Mean field Hamiltonian and self-consistent equations

The mean field quadratic Hamiltonian is expressed as,

CrAT

~ CkBt
H= Z ( CrAt CkBT C—kA]l C—kB| ) H ; ) (C.21)
k
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Har(k)  Hapy(k) 0 Hp(k)
where, /] — Hapy(k) Hpy(k) —Hc(k) 0
0 —He(k)  —Hay(k) —Hapy(k)
Hp(k) 0 —Hapy (k) —Hpy(k)
Here,

Hao(k) = T4, (k) + Th, (k)
Hpo (k) = Th, (k) — Th,(k)

2

+U + A
tt’(U + A) d d
2U—A {16 Cagt5 Z

i=1

U—-A t? a
ng(k) - - 4 O-ma_‘_Z gaJ’kaUm?
4t/2 t/2

t/’7k39a0+7d0295aa0-ma_ ﬁ |:gsaaX:;yaa+2.gsaaXlaa5_X;aa:| Yk3—

_gaa(anaJ+4d02X;ia&):| dgsapoma—

o+ 4G |
where, G(A) = gaap, and G(B) = gppas-

U—-A t2
) = LB s -1 [Qd(1—25)+gaﬂkz(

_ d _
5 | P Rd( -0+ G

1-9) t2 4¢
4 A

t2 1 1 t2 1
Hapo(k) = | —tgio — [ —2x% +202d = 1)gax s | = ———goapx'h —
AB ( ) |: Gt A( XABo + ( )gQXABU Q(U—{—A)g ABX ABo&
t? L 12 (1) tt/(U + A) maq+mpg
U+ AJABXaBe o A X aBe T g \J T

Yz —27C2944B5 X ans —

29Cy98B40X B35 } Vi1
He(k) = Tf(cos (ky) £ cos (ky))

Hp(k) = —Tf(cos (ky) £ cos (ky))
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where,

22 22 3gsap 1 t? 22
e b _ L R L
o H A U+A( 1 +4) A(QA”+QB"> AQQ} AB]

2t2 2t2 37 1 3t2 6t2
T = {{K_U—FA(_ 4AB+Z)+K<9AJ+QBJ>+KQ2}A—£B:|

For cubic lattice, pairing terms will have an extra contribution for extended s-wave
2

4t
pairing symmetry which is x cos(k,)(ga; + gBr + 292)A% 5 and will have to be added

to Ho(k) and the opposite spin version will have to be subtracted from Hp(k). Here,

Yer = 2> cos (k;), Y2 = 2> cos (2k;) + 4> [cos (k; + k;j) + cos (k; — k;)] and 3 =
i i i,j
i#£]
2 [cos (k; + k;) + cos (k; — k;)] where 7, j can take X,y or X,y,z values depending upon
i,
i#£]
whether it is square or cubic lattice. Also, d refers to the number of dimensions in the

above Hamiltonian. If &« = A, then @ = B and vice-versa.

We diagonalize the Hamiltonian in three routes: (1) Diagonalize the block diagonal
Hamiltonian keeping pairing terms zero (2) Full numerical diagonalization in the spin sym-
metric case keeping pairing (3) Two step diagonalization in spin asymmetric phase keeping

pairing. The self-consistent equations of the mean field parameters are as follows,
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1 1
XELH)?U ~9%IN Z<CLAO-CkBa>’Yk1,
k

2 1
X(Aé" T2dC,N Zk:@AUCkBo) ZZJ: cos (2k;) cos (kj),
i#j

1
XS?BU =N Z(CZAUC;CB(Q cos (kz) cos (ky) cos (kz),
k

1 i
XBBo = 7 ;<0k300k30> Z 2 cos (2k),

1
! —72 f . .
XBBU_QngN d (Ch o ChBo) g 4 cos (k;) cos (kj),

2%
i#]
1
_ T
XAdo == Ek:<6k Ao ChAG) Z:QCOS (2k;), (C.22)
1
XAdo 50, N ;(CLAgckAg> ; 4 cos (k;) cos (kj),
i#
1
b =57 > ((chaschar) = (el pocrna)).
k,o

1
maA =N > ek arcrar) = (chaycrar)),
k
1
mB =77 Z«CLBTCICBT) - <CLB¢CkB¢>)>
k

1
A:r/lx:B ToN Z(<CLATCT—kB¢> - <cT—kA¢CLBT>)(COS (kz) % cos (ky)).
k y,

The ground state energy is in general a sum of a k-dependent term (which will be spec-
ified for each case) and the constant terms which come from the mean field decomposition.

It has the following general structure,
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Egs/N

1 1 2 2 2dt? 2
:{_ 3 F(k’)+§(U—A)(%+1—52) L@+ O+

A
keFBZ
A M2, W2, g e M2 2
20U + A) [gsaB(=mamp + Xupr + Xap, +4XapXany) — ( Xapr — Xapy )+

2 , ,
& 29401 =0 —omp)(dxass + 4°CoXang) + 9Bo(1 4+ 8 — oma)(dxBes + 4°Coxpp,)|+

’ 2 ’ 2
42 y @ t? ¢ Xaat T Xaa
K92<4d02 + d)XEA)BTXEA)BJ, - U Z gsaadCZmi + E Z dCQ Jsaa %"’_
a€A,B a€A,B

’ 2 ’ 2
P Xoot T Xaa 42 2t'2 (U + A
XaaTXaa¢> - %} dCQ C ( 62) + %dcb Z Sgto

g

o(ma + mp / 1 ’ 1
<1 - ) Z X'4bo + 4494485X aaoX 4k + 4dgBBAGX BB&XELU)BU}

+ Fairing term contribution (C.23)

Pairing term contribution for d-wave:

t? [3 1]+2t2 t2[< N N T an)] 212 A- 2

Pamng term contribution for extended s-wave:

t? [3 1]+2t2+3t2[( as e ome )]+6t2 _A+2

C.4.1 Calculation without pairing

In this case, we put o p = 0 i.e., we turn off pairing. The mean field Hamiltonian in
Eq. C.21 is then block diagonal. The following transformation diagonalizes the Hamilto-

nian,
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ChAo = Qkoliio + Brodi2s
(C.24)

CkBo = akadeU - Bkadkla

where,

o _ 1 (Hao(k) — Hpo(k))
ot =g (1 - PR,
o 1 (Hao(k) — Hpo (k)
= (1 Pt~ Pl

Here, (, = \/(Hao(k) — Hp,(k))? + 4Hap,(k)?. The energy eigenvalues of the
(Hao(k) + Hpo(F)) = ¢

Hamiltonian in Eq. C.21 are E\y, —E\ |, Eor, —Ey where By, (k) = 5

(HAO'(k> + HBU(k)) + CO’
5 .

and Es, (k) =

The appropriate self-consistent equations in Eq. C.22 should be substituted by the fol-

lowing,
)
Nk Ao :[alga<d1l;ladk10> + 61%0<dl£20'dk20>]7
NkBo :[Bl%cr(dlladk’lﬁ) + a/2€0<d1120dk20>]7 (CZS)
(Ch 4o ChBo) =[— ko Bro (dhy s di10) + ko Bro (dhgy diao)]- )
Here, (d,twdkm, i € 1,2 is the Fermi-Dirac distribution function at absolute zero tem-

perature which means all those states will be summed over which are below the Fermi level.
In the ground state energy expression, F'(k) = > E, (k){(d},, di1s) + Eas(k)(dLy, diao)

in this case.

In chapter 4, we have shown the spectral functions in the non-superconducting phase
viz, the ferrimagnetic metallic phase and the paramagnetic metallic phase. The relevant

expression of the single particle spectral function is shown below,
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1
Aa(ka w) = 5[(9,4004%0 + gBUB]%g)(S(W - Ela) + (gAO'/Blzo' + +gB0'aio')5(w - E20')]7 (C26)

which can be obtained from the definition of the retarded Green’s functions defined on

A and B sublattices,

Gaao(t) = —i0(—t)({cas(0)

Here,

i
) Cao

(£)})-

a2 ﬁQ

G " k, _ ko ko
Ad ( w) W—Elg—i‘iﬁ W—E20+i7]7

Bi g
G o k, - z . z )
BB ( W) W_E10+Z77 W_EQO'_'—ZH

(C.27)

(C.28)

where, g4, = 26/(1 +0 + oma), ggo = 20/(1 + 0 — omp) which are different for

ferrimagnetic phase but equal in para phases.

C.4.2 Spin-symmetric calculation with pairing

We do the following generalized Bogoluibov transformation on the mean field Hamilto-

nian:

CrAr Utk Ugk  Vik

CkBt U3k Ugr U3k
cT —v —

—kA| 1k Var Uik
cl —v —v U

—kBl 3k 4k 3k

174

U2k

U4k

Uk

Ugk

fik
Fn
i
£l

(C.29)



We impose that the above transformation diagonalizes the Hamiltonian in the form H =
S El(k?)f;[kflk — EQ(k)kafgk + Eg(k:)fgkf:xk — E4(k:)f4kflk + const. Next we calculate
commutators of the fermionic ‘cpa, cxp’ operators with the mean field Hamiltonian and
the diagonalized Hamiltonian and equate the coefficients of the bogoluibov operators to
get the eigenvalue equations. Then, we diagonalize the Hamiltonian matrix for every k-
value in the Brillouin zone to get 4 eigenvectors which are nothing but the columns of the

transformation matrix.

The excitation energies E;;,i € {1,4} are all positive for the Bogoluibov spectrum.
Hence, to get the self-consistent equations in this case, we substitute the following in

Eq. C.22,

Nk Ao :[U%k + U%k]?
NkBo :[U?%k + UZk]?
<CLAngBa> =[v1xvs + Varvar), ; (C.30)

<CITCATCT—1€B¢> =[v1kUsk + VogUag),

<CT—I<;A¢CI];BT> = — [vipUsk + VopUak]-

In the ground state energy, F'(k) = Ha(k) + Hp(k) — E2(k) — E4(k) in this case of

spin symmetric numerical diagonalization calculation.

The spin symmetric spectral function obtained from the retarded Green’s function,

Gaa(t) = —i0(=t){{ca(0), ¢l (t)}) in this case is,

Ak, w) :%[(gAvfk +9505,)0(w — Er(k)) + (9403 + g5vi,)0(w — E3(k))+

(gaudy, + gpusy)o(w + Ea(k)) + (gauz, + gpui)d(w + Ea(k))],  (C.31)
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where, 1 = F5 and E3 = Ejy.

C.4.3 Two step spin asymmetric calculation

In this calculation, we do a spin asymmetric calculation keeping pairing as a mean field
parameter. Firstly we do the transformation as in Eq. C.24. Subsequently, we do a second
Bogoluibov transformation to diagonalize the Hamiltonian. Here, we have neglected the
interband pairing terms considering them as weak.

The Hamiltonian after first set of transformation ( neglecting interband pairing terms)

is,

Hy =) [wodly,diio + Godl,dize) + Y [vd  dhyy + MLy dlyy + Hel]  (C32)

k,o k

where,
W — HAG(k) + HBO(k) - Ca(k)
5, — Haslk) + Hpo (k) + G (k)

5 :
Co(k) = /(Hao(k) — Hpo(k))? + 4H aps(F)?,
v =—(He(k)owBer — Hp(k) ot Bry),

A = (Ho(k)agrBry — Hp(k)ag, Brs)-

The second transformation to diagonalize the above Hamiltonian is,

dip1r = g1 fr1 + Uklfiim

dT_ku = — U1 fr1 + w1 fiy,
(C.33)

dr2t = Uk2 frz + Uk2f]147

dT_ku = —Upa fiz + Uk2f1i4-
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1
Here, u}, = = (1 + i )
2\ st + 02
02 1(1 B wr +w, )
TS 5 3
V{wr +wy)? +4v
1 +
“z2:—(1—|— ) ? 2)
2 V(o1 +¢1)? +4X

1 1+ ¢y )

2 _ _
T (1 V(O + 6,7 +4X°

The diagonalized Hamiltonian is of the form,

Hq = Zﬁﬁ VLS + Ev (k) o fie + B (k) flsfrs + By (k) fl,fea + Constant terms.

(C.34)
where,
Ef(k) =+ 2% g i %\/(WT +w))? + 42
i) =+ 2222 ooy 1 axe
In this case, F'(k) = (W%__\/ wi (k) + w, (k)2 + 41/(]{:)2—|-¢T(k) ‘;’ o (k)

—¢ (or(k) + oy (k))? + 4A<kz)2) + EF () (fl fur) + By () (Flofro) + ES () (flsfrs) +

Ey (k)(f!, fra) in the ground state energy calculation.

The following expectation values should be substituted in Eq. C.22 to get the self-

consistent equations which are solved iteratively,
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miar = a2y (s i) + 0 Feaffo) + B (ol Pl fia) + 0o (frafli)):
nay = gy (i (Fafl) + wi (Flafra)) + By (vRa (Frs fls) + o (flafin)),
s = i (s fls frs) + 0ol fra fla)) + B2 iy (L fia) + i (Frafla)),
nsy = afy (R (frafls) + s Flafun)) + BR 0k (Fi flh) + wia (fils fio)),
(charcnr) = —ouBur (upy (Fl fr) + v (Fra o))+

i Bt (o Fls frs) + via{ frafL)),

(chayern) = =By (Vi (i L) + i (Fla fea))+

akiﬁki(vé <fk3f113> + Ui2 <f114fk4> ),

(C.35)

(charc i) = —erBry(—urvr (fl frr) + werve (fraflo))+
amﬁm(—ukzvkﬂf;gfk?)) + UpoUra ( frafi ),

(cparchpr) = —am B (v (fur fly) + wmve (o frz))+

et By (—Uk2Uk2 (fk3f;13> + Ug2Vk2 <f£4fk4> ).

If we do a spin symmetric two step calculation keeping intraband pairing but neglecting
inter-band pairing then we can get analytical expressions for the superconducting gap in the
d-wave and extended s-wave pairing channels.

The gap in case of d-wave turns out to be

H (k) _HB(k))2> >

Gapg = 2Max | (| Ho(k)?[ 1 — o(op(k

Where as the gap for extended s-wave is,

Ha(k) — HB(k))2> )

Gap, = 2Max Ho (k)21 — O(w(k

g <\/ o < (HA(k>+HB<k) )

The absolute value of eigenvalues in the spin symmetric case from 2 step transformation

are vw? + v? and /¢? + v2. The gap then will become the maximum value of v on the
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countour in the Brillouin zone where w = 0 or ¢ = 0.

The expression of 2 in this case is v? = 4H%5;HZ /2. Since for w = 0 or ¢ = 0,
4H3p = (Ha+ Hp)> — (Hy — Hp)? and (* = (H4 + Hp)?, we have substituted these in
the expression of v under the constraint that these quantities are calculated on the contour

where w = 0 or ¢ = 0, while finding the gap.

C.5 Competing order-parameters and ground state energy

comparison

We solve the effective low energy Hamiltonian using three different versions of renormal-
ized mean field theory (RMFT) (as explained in Appendix C.4), the first which allows for
superconductivity but not magnetic order, the second which allows for the magnetic order
but not superconductivity, and the third which allows for both, along with various other
mean fields, as discussed in Section 4.3 of chapter 4. When we compare the results from
the first two calculations, we find that there is a significantly broad regime of parameters
over which the SC and magnetic orders both exist and compete with each other. In order
to determine the true nature of the ground state in this parameter regime, we compare the

ground state energies of the different RMFT solutions.

As shown in Fig. C.7 , even for small values of ¢/, the SC pairing amplitudes, in both
the pairing channels studied, turn on but the magnetic transition precedes the transition
into the SC phase. Once the magnetic order turns on, the ground state energy of the non-
superconducting solution becomes lower than that of both the SC phases studied as shown
in the right panels of Fig. C.7. Thus for ¢’ < 0.1t there is no stable SC phase, as shown in

Fig. 4.2[e] of chapter 4. For larger values of t’, as U/A increases superconductivity turns
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Figure C.7: Order parameters and the ground state energy. Left panels show various
mean fields, namely, the staggered magnetization m,, uniform magnetization my, d-wave
pairing amplitude A, and the extended s-wave pairing amplitude A as functions of U/A
for different values of ¢ at U = 10t for the 2d square lattice. Right panels show the
ground state energies for the d-wave SC phase, extended s-wave SC phase and the non-
superconducting phase where only magnetic order is allowed, as functions of U/A.

180



0.8 T T -0.2 ‘
(a) d-wave (b)
06 mg—~ : 031
2X?f w -0.4 d-wave
04 d ™ 1 2
0.5 Pairin
META- g+
0.2 | STABLE STABLE - magnetic order
s¢ sc -0.6 Non-pairing —~ |
0 - - ; : -0.7 I I L |
1 1.04 1.08 1.12 1.16 1 1.04 1.08 1.12 1.16
U/A U/A
08 T T T '02 T T
(c) extd s-wave (d)
06 mg 1 03
2x My » 04|
0.4 s 1 2 extd s-wave
-0.5 R
| STABLE
0.2 sc 06 |
0 ! I -0.7 L L L L
1 1.04 1.08 1.12 1.16 1 1.04 1.08 1.12 1.16
U/A U/A

Figure C.8: Comparison of different renormalized mean field theories. Top left panel
shows several mean fields obtained from the third solution of the RMFT where both SC
pairing and magnetic order are allowed, namely, the staggered magnetization mg, uniform
magnetization m, and the d-wave pairing amplitude A, as functions of U/A for t' = 0.45¢
and U = 10¢. Top right panel shows the ground state energy of the non-superconducting
phase where only magnetic order is allowed and the energy for the third solution as func-
tions of U/A. Note that the phase with both orders coexisting is only a metastable phase.
Lower panels show similar results for the extended s-wave SC order.

on before the magnetic order sets in. There continues to be a solution of the RMFT with
pairing amplitudes, in either of the symmetry channels, non zero even in the magnetically
ordered regime, but the non-superconducting magnetically ordered solution is lower in
energy here. Thus the pure SC phase is a stable phase only before the magnetic transition

point.

There is a third scenario possible where one can do a RMFT allowing for non-zero
values of both SC and magnetic order parameters along with other mean fields. Before the

magnetic order turns on, this theory is consistent with the spin-symmetric Bogoliubov the-
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ory described above. After the magnetic order sets in, differences between the two calcula-
tions become visible. In the third calculation, the SC order coexists with the ferrimagnetic
order for a range of parameters as shown in Fig. C.8 though the pairing amplitudes decrease
with increasing U/A. Comparing the energy of this phase with that of the ferrimagnetic
metal phase, which was found to be the stabler phase by comparing the energies in the
first two calculations in this regime, we find that the coexistence phase is also a metastable
phase, and the system actually stabilizes into the ferrimagnetic metallic phase as shown in

Fig. 4.2 of chapter 4.
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