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CHAPTER 6

CONCLUSION AND OUTLOOK

In this chapter, we summarize the results obtained in the works included in the thesis to

conclude and discuss the prospects of studies along this line of research. We have focused

on studying the holographic entanglement entropy and holographic sub-region complexity

of various black solutions. After introducing the basic notions and contents of this the-

sis in chapter 1 and reviewing the very basic definitions of quantum information-theoretic

quantities (both quantum-mechanically as well as holographically), we moved on to dis-

cussing the works constituting this thesis. Primarily, we studied the perturbative changes

of HEE and HSC for the AdS Schwarzschild black holes in general spacetime dimensions

in chapter 3. Then we studied QI theoretic quantities for certain non-Susy black solutions

in chapter 4. Finally, we discussed the lessons we learn from studying these QI theoretic

quantities about the black hole information paradox by studying certain multi-boundary

wormhole models in AdS3 in chapter 5. In the following, we list down the lessons and con-

clusions from each of those chapters and finally conclude by mentioning certain interesting

future directions in section 6.4.
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6.1 Conclusions from Chapter 3:
First, we highlight the main findings of chapter 3. Then, the suggestions that these

results lead us to make, will follow.

1. We have computed the change in holographic entanglement entropy (HEE), ∆S, and

sub-region complexity (HSC), ∆C, for spherical entangling regions of radius R in

the background of the uncharged and charged AdSd+1 black holes. For the uncharged

case, we have performed the calculations perturbatively in the parameter λ = mRd,

where m is the black hole mass. We find formulae as functions of d for ∆S and

∆C up to the third order and we also provide exact numerical results for ∆S(4) in

spacetime dimensions 3 to 7. For the charged case, the perturbative study has been

done with respect to the small parameter η = R
zh

, where zh is the charged black hole

horizon radius. We compute ∆S and ∆C up to the first four orders and have again

found formulae as functions of d.

We observe that the change in entanglement entropy and sub-region complexity

at a particular order come with opposite signs relative to one another. This holds to

all the orders we have studied for both the uncharged and charged AdS black holes.

It also holds to leading order for the case of a scalar perturbation [74, 87]. This

exchange in sign is mysterious from the dual field theory perspective and begs an

explanation.

2. Another important finding of this work is the proof that the entanglement entropy

changes up to some order n depends on the embedding function only up to the highest

order less than or equal to n
2
. This upper bound has not been appreciated previously,

to the best of our knowledge. We hope that this allows others to push the calculations
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of HEE further. In addition, we note that the change in sub-region complexity up to

some order n depends on the embedding function all the way up to that same order.

We, therefore, gain a more quantitative sense of the information that is contained in

sub-region complexity but not in entanglement entropy.

With these main results and taking inspiration from previous works, largely from [4,

8, 87], we are lead naturally to several suggestions. From an information-theoretic per-

spective, it appears as though the information is being traded between the entanglement

between a boundary sub-region and its complement and the complexity of the CFT state

reduced to that sub-region. In particular, [87] in fact inadvertently suggests that the HSC

contributes a term to the first law of entanglement that is analogous to work:

∆E = TE∆SE +B∆C, (6.1)

where B is some known d-dependent quantity related to a pressure defined in (3.92). Us-

ing the closed-form of the second-order change in HSC, we have been able to fix the

d-dependent constant relating this to Fisher information, as proposed previously in [87].

That a first law in the form (6.1) does not hold in general at third-order begs the existence

of other information-theoretic quantities at higher orders. We hope that a more complete

picture from the perspective of the information geometry will emerge from these investi-

gations.

We note that certain modifications and generalizations to the first law of entanglement

have been considered before (e.g., in [8, 140]). Notably, in time-dependent scenarios (e.g.,

a collapsing black hole), it was found in [140] that the first law is naturally replaced by a

certain linear response relation. It would be interesting to study the modifications to the lin-

ear response relations that arise in second-order and if they are at all related to complexity
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as we have suggested here primarily for the static case.

Recent works have tried to come up with various field-theoretic definitions of com-

plexity from a few different perspectives, for example, geometric and circuit complex-

ity [26–28,141–144] and path integral complexity [145,146]. These two perspectives have

been very recently bridged in [59, 147]. Using this line of study, it would be interesting

to study the fidelity, primarily for free QFTs and then for holographic CFTs. It would be

interesting to check whether the third and higher-order expansion terms follow the relations

we found in higher orders.

6.2 Conclusions from Chapter 4:
In chapter 4, we have holographically computed the EE and the complexity of the QFT

whose gravity dual is given by the decoupled geometry of ‘black’ non-Susy D3 brane of

type IIB string theory for spherical subsystems. The field theory, in this case, is non-

supersymmetric and non-conformal and we have considered both the strip and spherical

entangling regions for computations of HEE. For the HSC study, we have focussed on the

spherical subsystems only.

6.2.1 Strip HEE:
For the strip entangling region, we have used Fefferman-Graham coordinates to com-

pute the entanglement entropy. For a small subsystem, we have shown that the total EE

can be split into a pure AdS5 part and an additional part corresponding to the weakly ex-

cited state of the field theory. The additional part was then found to match exactly with the

earlier result for ordinary black D3 brane when the parameter δ2 of the non-Susy D3 brane

takes a value −2. In the Fefferman-Graham coordinate, we have obtained the forms of the

boundary stress tensor of the non-Susy D3 brane. Using the expressions of the stress tensor

and identifying various components with the energy and pressure densities we have shown
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that the EE of the excited state satisfies the first law of entanglement thermodynamics pro-

posed earlier. We have also checked that at high temperature the total EE of the decoupled

theory of non-Susy D3 brane reduces to the thermal entropy of that of the ordinary black

D3 brane and not the ‘black’ non-Susy D3 brane. It is interesting to note that at high tem-

perature the EE of a non-Susy D3 brane prefers to cross over to the thermal entropy of the

ordinary black D3 brane, among all possible non-supersymmetric D3 brane configurations

(with different values of δ2).

6.2.2 Spherical sub-region HEE and HSC:

For the spherical entangling region, we have computed the entanglement entropy and

sub-region complexity for the decoupled ‘black’ non-Susy D3 brane geometry up to the

second-order in perturbation parameter using the prescription of Ryu and Takayanagi. We

have extended our calculation of complexity to compute the fidelity and the Fisher infor-

mation metric using the definition given earlier [87] for both the AdS5 black hole and the

decoupled ‘black’ non-Susy D3 brane geometry for the spherical subsystem. Since the

decoupled geometry of ‘black’ non-Susy D3 brane reduces to the standard AdS5 black

hole when its parameter δ2 takes value −2, we have observed that both the EE and the

complexity for the former geometry indeed reduce to those of the AdS5 black hole when

we put δ2 = −2, giving a consistency check of our results. We have also checked the

entanglement thermodynamics to be consistent for the spherical subsystem and gives the

same entanglement temperature as the AdS5 black hole. We have further observed that al-

though the fidelity and the Fisher information metric of the QFT dual to decoupled ‘black’

non-Susy D3 brane geometry remains the same as those of the AdS5 black hole when one

uses proposal of [87], using a more exact relation [74] without any arbitrary constant gives

us a different value of Fisher information in the case of the non-supersymmetric solution,
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which is parameter dependent. Putting the right parameter value gives back the AdS5 black

hole result, indicating (4.73) is a more general relation which includes the AdS5 black hole

relation as well.

6.3 Conclusions from Chapter 5:
From chapter 5, we have built a couple of parallel understandings in the context of the

multi-boundary wormhole models of island. Firstly we write down the learnings in line of

entanglement of purification and lastly, the ideas about complexity of islands as purification

complexity.

6.3.1 Entanglement Islands and EoP:
From the connections we made between multipartite entanglement of purification and

multi-boundary wormholes in AdS3, we can take away the following points.

1. First and foremost, the multipartite entanglement wedge cross-section represents the

boundary of the islands described in the toy model of the evaporating black hole.

We believe that knowing this would strengthen the possibility of building a concrete

understanding of the islands as well as purification in several different ways e.g;

quantum error correction, entanglement negativity, and many more. Precisely, in the

large n limit, i.e.; where the number of smaller exits is big, multipartite EoP and

the shared island match completely. In the multi-boundary wormhole picture, the

shared island is the region behind all the horizons present (which is also the case in

the original works discussing the actual model) and therefore it falls in the region

known as entanglement shadow. Our work suggests that through the multi-boundary

wormhole construction, the entanglement shadow can have a description through the

multipartite EoP of sub-regions in a vacuum AdS3 slice.
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2. The reproduction of the Page curve helps to describe an evaporating black hole as a

unitary system since the Page curve is typically found in systems that evolve unitarily

over time. Now, given the appearance of islands, or rather quantum error connection

makes sure that the unitarity of the black hole evaporation process is recovered, one

would hope that these two things are related. The natural way to somewhat realize

the connection is of course the purification of the Hawking quanta after the Page

time. This results in the appearance of the nontrivial islands. In our study as well,

we use ideas of purification regularly which give rise to the multipartite EWCS, and

the area enclosed is understood as the nontrivial island (quantum error correction).

In other studies as well, for example, in [133], people have explored connections

between entanglement of purification and quantum error correction. But, it would

be really interesting to understand such a connection as a triangular relation where

the three vertices of the triangle correspond to unitarity, purification, and quantum

error correction Regarding the line connecting unitarity to purification, a realization

to start the study is the fact that a reduced density matrix (from which the purification

is typically done) is derived by tracing out degrees of freedom from the initial pure

state.

ρred = Tr(pure−red)[ρpure]. (6.2)

This tracing out is a non-unitary operation. Therefore the reduced density matrix

indeed carries the effect of a non-unitary operation. Hence, it is not beyond expec-

tation that to get back the unitarity completely one needs to apply purification to the

reduced mixed state. This is a start that can be pursued in more detail to get a better

understanding of the above-mentioned triangle.
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3. Although the islands can be intuitively understood as the shared interior, the length

associated with the boundary of such a shared interior leads to a problem in over-

counting due to which the entropy associated with the shared interior does not fol-

low the Page curve (since the growth of the boundary of the nontrivial island after

the Page time persists as it includes the previously chosen HRT surfaces as well). To

be precise, in the toy model, it is assumed that the RT surfaces take care of the bulk

entropy between the fields that live on different sides of the HRT. But once the new

choice of HRT is made, it has both the partner modes in there. The modes for which

the partner modes are not yet inside the new HRT, their bulk entanglement with their

partners is again taken care of by the new HRT. But if one computes the sum of the

length of the shared interior simply considering it to be the boundary of the island,

one again counts the bulk entanglement between the modes which have already been

purified due to the choice of the new HRT. Let us call the shared interior SI. Then,

L(∂(SI)) = LBH + LHQ. (6.3)

SI only comes into the picture after the choice of nontrivial island is minimal. Start-

ing from that point, the boundary of SI also includes LHQ, which have bulk entan-

glement between partner modes of the two sides of the previous HRT choice, and

this is how the overcounting can again come into the picture.

In [110], the authors introduce a second model involving handles and pairs of TFD

states of the baby universe and the radiation states to understand the previous over-

counting that in the first place led to the information paradox. We see here that even

without introducing a new model, one can get the overcounting from the very first

model by naively following the formula of the quantum extremal surface to include
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the whole length of the boundary of the nontrivial island and get back to the earlier

paradox.

This is a warning that taking the intuitive understanding of islands too literally might

lead to several problems. In this particular toy model, it is necessary to compute the

lengths of the chosen HRTs only at any point in time. It is not only that one does not

need to include the bulk entanglement, but it is also wrong to consider the remaining

part of the quantum extremal surface formula in terms of the island. This subtlety

might also capture important insights in making a connection between islands and

QEC more concrete since QEC is well studied in the literature of EoP [133].

4. For the problem of multipartite EoP, one can make simple calculations that show

how the multipartite EoP grows over time and how different parts of it contribute to

the Page curve in the multi-boundary wormhole model of black hole evaporation in

AdS3. But it brings up another question that needs further understanding and study

that whether in multipartite EoP, there is any overcounting taking place that one

needs to be careful about. Since we consider the union of smaller black holes as our

radiation state, a possible resolution in the purification side is simply considering that

in the given limits (one black hole much much larger than all the other ones), the total

state behaves as a bipartite state instead of a multipartite state and the entanglement

of purification reduces to usual entanglement entropy.

∆W (A : B1 : B2 : .... : Bn) −→ EP (A : B) = SA = SB, (6.4)

Where A is the bigger black hole and B is the union of the smaller black holes

(B1, B2, ..., Bn). To specify what is going to be SA = SB at different times de-

pends on which part of ∆W is minimal choice. For example , we can divide ∆W
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into two parts, one coming from the EWCS of two boundary wormhole (∆W,1 =√
L2

0 − n`2) and the other coming from the EWCS of the unions of the smaller

boundaries (∆W,2 = n`). At all times, we can write,

∆W = ∆W,1 + ∆W,2, (6.5)

and at each time (for n > 2), in the limit where we consider the multipartite pure

state as a bipartite one,

EP (A : B) = SA = SB = min(∆W,1,∆W,2) = min(
√
L2

0 − n`2, n`). (6.6)

This is a justifiable assumption since ultimately we are bothered about the entangle-

ment between the radiation state (union of smaller black holes) and the evaporating

black hole state. Therefore it is not so unexpected that the initially multipartite sit-

uation reduces to a simpler bipartite one. A detailed field-theoretic study similar

to [134] in terms of purification would be able to shed more light on the necessity of

this consideration. This is an ongoing problem that is in progress. Also, it would be

interesting to consider different exits of a multi-boundary case differently and study

how would multipartite EoP behaves.

5. At this point, it is also important to note that how a multipartite EoP is reduced to

a bipartite case is very similar and pictorially same to choosing just the area of the

HRT instead of choosing the area of the nontrivial island in this toy model. In both

of the cases, one would encounter the information paradox had the alternate choice

been made.

In a recent model introduced in [112], the authors work with end of world branes
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and the multi-boundary wormhole appears in the auxiliary system introduced for the

purification. They consider something they term as ”inception geometry" to pro-

pose an extremal surface through which the nontrivial islands can again be marked.

They argue that there is some region behind the horizon that can only be found if

the Hawking radiation is considered as a union of different subsystems of the radi-

ation. They call such an event quantum/geometric secret sharing. In our discussion

through our resolution, we find that it is necessary to finally consider the system of

big and smaller black holes as a bipartite pure state to make sense of the Page curve.

But nevertheless, it is absolutely necessary to model numerous smaller black holes

(subsystem Hawking radiation) to get the analog and intuitive understanding of is-

lands. Had we just considered a bipartite pure state, i.e; a two boundary wormhole,

we would never be able to get the shared interior that appears after the Page time.

Note that in this case, there is only one choice in choosing the EWCS as well as the

HRT. Therefore, our discussion in a way also addresses the necessity of modeling the

radiation as a union of subsystems as discussed in [112]. In light of such findings,

we prefer to make the following statement,

Although multipartite purification in the multi-boundary wormhole toy model gives

back the overcounting once the boundary of the island is computed, it is absolutely

necessary to primarily have the multipartite nature in the modeling of the radiation

states to have a realization of the islands in the toy model. To resolve the overcount-

ing issue, we nevertheless need to review the model as the bipartite one and choose

the minimal one among the two parts of the multipartite EWCS as the entanglement

entropy of the bipartite pure state.
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6.3.2 Understanding volumes of Islands as CoP:
We have computed the sub-region complexity corresponding to the radiation subsys-

tem in the multi-boundary wormhole models in the second part of this chapter. We have

considered two models in which the islands appear, the three-boundary wormhole and the

n+1-boundary wormhole. Although the two models are qualitatively similar and the island

region in both the models corresponds to the causal shadows, there are some differences as

well. In [10], we discussed these causal shadow volumes from three different perspectives,

i) Ricci scalar (mentioned in this thesis) ii) kinematic space, and iii) tensor networks and

hyperbolic tessellations. In what follows, we explain the understanding built from [10].

As the volume computation using Ricci scalar and topology is what we explained in this

thesis, we stress mostly on the same. But we also briefly mention what kinematic space

and tensor networks teach us about these volumes.

1. Sub-region volumes: This is the central piece of this chapter 5. We computed

the volumes corresponding to a bipartite radiation subsystem for the three-boundary

wormhole and n-partite one for the n + 1-boundary wormhole. The remaining exit

in both cases represents the evaporating black hole. As we have mentioned already

the proposals in the literature [4, 71], the volumes dual to the sub-regions capture

the complexity of the corresponding state. Therefore, the computation of volumes

is aimed at enhancing our understanding of the complexity of the radiation state.

Recent findings and especially the implications of Python’s lunch [127,128], suggest

that even though quantum extremal surfaces enable us to reproduce the Page curve, it

is still exponentially hard to compute the restricted complexity of the radiation state.

Therefore, while Hawking was mistaken about entropy, his statements truly apply

to complexity. Now, since in these three- and n + 1-boundary wormhole models,
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one can reproduce the Page curve consistently, we performed explicit calculations to

investigate if the volumes feature precisely such exponential growth. However, it is

worth noting that within these multi-boundary models, the volumes can not capture

the exponential restricted complexity.

For both models under study, we find two kinds of plots that the volumes dual to the

radiation subsystem follow. One is a constantly decaying one whereas the other one

is of Gaussian nature. In both cases, at the Page time, a constant volume is added

to the otherwise UV divergent volume due to the change of the minimal surface.

The universality goes deeper since the overall plots are very similar even though

the nature of the Page curves, especially the Page time is quite different in the two

models. In the case of the three-boundary model, this volume is simply 2π whereas

for the n + 1-boundary analog, it depends on the Page time, here nPage. Therefore,

the only difference between the nature of the plots is the jump at Page time being

independent or dependent on the Page time. It would be interesting to see if this

addition of constant volume at Page time is a consequence of three-dimensional AdS

or not. But since the construction of multi-boundary wormholes is only well known

for AdS3, it is hard to check this for general spacetime dimensions.

Now let us come back to the nature of the two kinds of plots (figures 5.14 and 5.15).

In both cases, we find that although the minimal lengths increase steadily before the

Page time, there is no guarantee that the volumes also increase. For example, for

the three-boundary model the HRT length increases until it reaches the Page time,

but the Gaussian plot of the volume already starts decreasing before the Page time.

For the constantly decaying plots, this is even more evident since the volume keeps

decreasing irrespective of the nature of the plot that the HRTs follow. Again, the only
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effect that the Page transition leaves on the volume is a constant jump. This jump is

due to the addition of the causal shadow region and the UV divergent part remains

unchanged due to a homology constraint of the boundary spatial lengths. There is

nevertheless something universal about the nature of these plots since in both models,

we end up with very similar graphs with substantially different considerations only

distinguished by the quantity of the constant volume that is added at the Page time.

Interestingly, none of our plots feature exponential growth. This begs the question of

whether these volumes represent the complexity of the radiation or not. We do not

want to make any strong comments regarding that. But what our results show is how

the volumes dual to the radiation subsystems evolve with time within the scope of

these models. Now, for concluding how exact these models are, one indeed needs to

build a better understanding of the actual evaporating black hole rather than a multi-

boundary wormhole model. It would be interesting to check if similar calculations

can be done in an actual evaporating black hole situation instead of our simplified

models. If the results in those cases also mimic what we find, only then can we say

that these multi-boundary wormholes can model the evaporating black holes accu-

rately. Otherwise, the conclusion is simply that although within the purview of these

models, one can reproduce the Page curves by studying classical HRT surfaces, they

are not capable of capturing more complex phenomena like the complexity of the

radiation. It might also be interesting to investigate the nature of these volumes if

one works with the eternal BH construction using the multi-boundary wormhole ge-

ometries. There, we can expect continuing growth of the volume since the BH exit

does not shrink (transparent boundary conditions).

2. On the complexity of purification:The volume of the causal shadows for the multi-
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boundary wormholes have been discussed before briefly in [138, 139, 148] in the

context of purification complexity. The reappearance of these results in our context

strengthens the correspondence between the islands and purification. The correspon-

dence between multi-boundary wormholes and entanglement of purification (EoP)

was first advocated in [70]. In section 5.3 of this chapter, these similarities were dis-

cussed in regards to the multi-boundary wormhole model of islands and multi-partite

entanglement of purification. We can therefore argue for a similar but extended ver-

sion of this correspondence from the understanding of complexity in chapter 5. Ac-

cording to our results, the change of complexity (∆C) due to the island within these

models is simply equivalent to tripartite or multipartite complexity of purification

(CoP). The way one talks about purification in the context of the island is that after

the Page time, some of the Hawking modes outside the black hole horizon get puri-

fied by their partner modes inside the black hole since the radiation subsystem gets

access to those partner modes inside the horizon. This happens due to the inclusion

of the island regions in the entanglement wedge of the radiation subsystem. In terms

of complexity, our results signify that the access to the purifying partner modes also

enables the radiation subsystem to access a certain new number of gates which re-

sults in the jump at Page time. This jump from no-island to island phase has been

also addressed in [149](Section 4) and has been attributed to the mutual complexity,

which matches with the multipartite purification complexity as shown in [138, 139].

Within the scope of these models, to the best of our understanding, after the Page

time, the access to this new set of gates characterizes the non-trivial nature of the

plots of the sub-region complexity (as shown in Figures 5.14 and 5.15). We show

a representative figure of the above-mentioned event in Figure 6.1. However, the

consistent fact apart from the jump in the two candidate curves is that in both cases
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Figure 6.1: A representative figure of islands and purification: Phase I: In the beginning
phase, the black hole is the black sphere and there are no Hawking quanta. Phase II:
Evaporating black hole is a blue sphere (LHS) and HQ is a blue sphere (RHS). Phase III:
(Page time) Red spheres in LHS and RHS are BH and HQ respectively. P (purple spheres)
are the purified partner modes on both sides. The information of purification is carried by
the island region connecting LHS and RHS.

the mixed state complexity of the final radiation state becomes zero indicating a fi-

nal pure state. On the other hand, the initial complexity of the two candidate curves

shows different features (large value in the decaying one and small or zero value in

the other one) indicating that in the very initial phase, the radiation might go through

different evolution procedures within these models.

3. Kinematic Space lessons: Given the prominent role of bulk regions such as causal

shadows and islands in our analysis, we elucidated its properties from a complemen-

tary angle in [10]. We have shown how to reconstruct volumes of islands in the CFT

through the use of kinematic space. Our analysis displays which quantum informa-

tion encodes the volume of islands. For a wormhole geometry with n + 1 exits, the

correlations responsible for the entanglement of each sub-region within a single exit
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never contribute to the island’s volume. The protagonists are always the correlations

arising through the entanglement between the smaller exits. Other contributions to

the island’s volume arise from geodesics that are anchored in the causal shadow re-

gion. They contribute through their chords piercing the island and we have described

how these terms can be computed. Moreover, we have combined the expressions for

the volume of causal shadows and islands with our general results from pure gravity

analyses to derive integral identities for trigonometric integrals, in line with the pur-

pose of integral geometry. These identities might be of interest to the mathematical

community, and of course, any physicist working with trigonometric integrals.

4. Tensor Networks and Volumes: Finally, through our discussion in [10], we ex-

plained how the tensor network approach in multi-boundary wormholes can be used

to build a parallel understanding of the throat horizon minimal surfaces and the cor-

responding volumes. While the number of tensor legs cutting a minimal surface

quantifies the length of the throat horizons, the total number of tensor legs within

any volume encoded by boundary and bulk surfaces quantifies the volumes. This is

a rough way of quantifying volumes inspired by the study in [71]. The limitations of

this quantification stem from discretizing hyperbolic space through discrete Coxeter

group tessellations.

We have worked with various equivalent definitions of area and volumes within the

multi-boundary wormhole models of the island and black hole evaporation. The most

quantitative results that we obtain are from the exact volume calculations with the given

assumptions of the models in hand. In the other sections, we have partly explained the

qualitative lessons and partly turned the qualitative results into quantitative ones.
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6.4 Outlook and Future Directions:
The works constituting this thesis explores various properties of HEE and HSC in BH

backgrounds. Besides answering a few questions it also leaves open a few interesting

directions that can be explored further to understand the holographic and field-theoretic

results better. In the following, we briefly mention a few of these directions.

1. Entanglement Thermodynamics: As mentioned previously, in [5] we proposed a

work-like term using sub-region complexity that fails on its own in the third order. It

will therefore be interesting to look into this direction more to figure out what exactly

constitutes the full form of the thermodynamics-like relation. These missing pieces

are supposed to help us understand the exact QI measures contributing to the change

of the overall spacetime extending the entanglement builds geometry proposal to QI

builds geometry.

2. Non-susy directions: It would be nice to understand our holographic non-Susy re-

sults by introducing a relevant deformation to a supersymmetric CFT and construct

a non-Susy field theory. If one can compute EE and complexity even in the simplest

possible non-Susy example of field theory, the holographic results can be matched

and understood better along the way. Moreover, the fact that our results from [6, 7]

show that the version of entanglement thermodynamics remains unchanged gives us

hope to propose that even the non-supersymmetric geometries of spacetime can be

thought of as being consistently connected to QI theoretic measures.

3. Purification, Complexity and Quantum Error correction: Our results from [9,10]

not only indicate that the physics of islands might be related to the purification hap-

pening at Page time, but also shows signs of it being related to the holographic quan-
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tum error correction [123]. Therefore it would be immensely interesting and worthy

to check whether these connections can also be made by a field-theoretic computa-

tion. The idea is to try to mimic the island-inclusion using purification in QM or free

field theory scenario and check whether one ends up with a Page curve. Also, using

recent studies on CoP [60, 61] and quantum error-correcting codes (QECC) in free

QFT and pretty basic CFTs [150, 151], one can check whether a connection can be

found between purification and QECC.

4. Complexity for the evolution of Eternal BH-Radiation system: Apart from this,

another interesting holographic problem is to study the complexity of evolution for

the eternal BH-radiation system. The motivation is to see if similar signatures of

purification can be found at Page time for those models as well. A couple of models

that seem interesting from this perspective are [112, 152]. The complexity curve for

both BH and radiation states of eternal BH radiation described in [152] has been

studied already in [153].

The AdS/CFT and QI remain to be a very active field of research. It has many ramifi-

cations that are worthy of being explored and promises to give us a diverse understanding

of physical systems. Complexity and entanglement both continue to be critically crucial

pieces in these studies and studying more and more quantum mechanical and field theoret-

ical situations are believed to be critical in building a more concrete understanding. On one

side, whereas CFT sides are important to understand the results of the holographic stud-

ies precisely, the current research also revolves around condensed matter understanding of

quantum mechanical phenomena like chaos and quench. The tensor networks also work as

a very important piece in these studies, especially in understanding spacetime as quantum

circuits where different components of the network represent the entanglement and com-
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plexity of the physical systems in the study. We believe the research constituting this thesis

in the holographic aspect will play a role in all of these directions once we have a better

field-theoretic understanding.
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SUMMARY

In this thesis, the detailed computations of holographic entanglement entropy and sub-

region complexity have been presented for several black hole solutions. This is done with

the larger goal of understanding the connections between quantum gravity and quantum

information using the AdS/CFT correspondence [1]. The central notions used in this thesis

were introduced in the Ryu-Takayanagi (RT) proposal of holographic entanglement en-

tropy [2, 3] and the sub-region complexity proposal introduced in [4] (see figure 0.1). In

the figure, the blue region is the CFT which is divided into two regions A and B. The

green surface γRT , in dual bulk AdS with extra scaling dimension z, is the RT surface. The

area of this surface measures the entanglement between the boundary sub-region A and B.

The purple volume between γRT and the region A is proposed to measure the sub-region

complexity of the mixed state defined on A. It is proposed to measure the hardness of

preparing the mixed quantum state on A. We have done our computations perturbatively

for the AdS black holes [5] in general spacetime dimensions. Similar computations and

supporting conclusions have been drawn by studying non-supersymmetric D3 brane [6, 7]

which hopes to provide us some clue about QCD like theories in the long run. In both of

these cases, we have also discussed implications regarding something called entanglement

v



Figure 0.1: RT surface and Volume below RT surface in AdS/CFT

thermodynamics introduced in [8]. In the final part of thesis, we have studied the entan-

glement and complexity in a model of black hole evaporation [9,10] in which the apparent

version of the black hole information paradox is resolved. Building on our study, we have

been able to understand a few connections to this resolution with the physical phenomenon

known as purification. After introducing the basic concepts that are necessary for the main

part of thesis, we have discussed the research articles constituting this thesis and finally

concluded with open future directions.
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CHAPTER 1

INTRODUCTION

One of the biggest dreams of theoretical physicists has always been to unify four funda-

mental forces of nature (electromagnetic, strong-nuclear, weak-nuclear, and gravitational

forces). The beautiful framework of quantum field theory successfully incorporated three

of these four forces through the standard model of particle physics, leaving out only gravity.

The remaining piece of the puzzle, therefore, has been to consistently build an understand-

ing of the quantum nature of gravity. In trying to obtain this, physicists have nevertheless

come a long way during the last fifty years. Although the picture is not clear yet, the path to-

wards the ultimate goal has been a beautiful one to date. It has seemed darker at times. The

advent of string theory has however taught a lot of things in this regard. The primary suc-

cess of the theory was to provide us with a consistent theory in higher dimensions that can

accommodate all the four forces within its mathematical framework. Eventually, it became

clearer that this theory through its many avatars, can also successfully solve not one, but

many of the smaller puzzles in the way of the final one. The most exciting one among the

derivatives of string theory has undoubtedly been the AdS/CFT (Anti-de Sitter/Conformal
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Field Theory) correspondence a la Juan Martin Maldacena. This is a duality, like many

others present in physics, that is special in itself because it relates the observables of a five-

dimensional gravity theory to their respective counterparts in a four-dimensional quantum

field theory with some extra symmetries. The correspondence originates from a variant

of string theory in ten spacetime dimensions known as the type IIB string theory and is

manifest as a strong-weak duality from the perspective of the coupling strengths of the

two sides. The gravity side constitutes a theory in five dimensions with constant negative

curvature, known as the AdS whereas the exact CFT on the other side is the N = 4 SYM

(Supersymmetric Yang-Mills) quantum field theory in four spacetime dimensions. The ex-

tra dimension in the gravity side is attributed to the scaling dimension of the bulk theory.

Since its birth, the correspondence has been investigated in detail and largely believed to

hold in general spacetime dimensions as a co-dimension 1 duality. The symmetry structure

of the two sides also goes hand in hand and the observables in the two sides which define

the AdS/CFT dictionary mostly agree with each other for almost all the cases where both

of the two sides can be computed. Another plus point of the dictionary is that when one

intuitively understands what the two observables correspond to in the respective sides, one

can compute it in a way that is easier among the two sides by weighing in the difficulties

of calculation. In the following, we very briefly discuss the correspondence, which in no

way is self-sufficient, but gives a reader some quick exposure to moving forward with.

1.1 AdS/CFT and Holography:

AdS/CFT correspondence [1,12] is also known as the gauge/gravity duality, or at times,

holography. The reason behind naming such duality as holography is that it is a crucial

realization of something called the holographic principle.

In the context of a semi-classical version of quantum gravity, the holographic principle
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states that the information stored in a (d + 1) dimensional volume is captured by the d

dimensional area measured in units of the Planck area (Ldp). An important motivation in

this respect comes from the Bekenstein bound which asserts that the maximum entropy

stored in a volume is given as the area (again, measured in Planck units) divided by 4GN ,

where GN is the Newton’s constant. Hence, the situation is quite similar to the idea of

holograms in optics and therefore the name.

In the case of holography, the quantum gravity theory is defined on a manifoldAdS×Y ,

where Y is a compact manifold and the QFT lives on the conformal boundary of the Anti-

de Sitter spacetime. As mentioned earlier, the first and most understood version of the

duality was worked out in [1] relatingN = 4 Super Yang-Mills theory in 3 + 1 dimensions

to type IIB superstring theory on AdS5 × S5. The strongest form of this duality states that

the four-dimensional SYM theory with gauge group SU(N) and Yang-Mills coupling gYM

is equivalent dynamically to the string theory with string length (ls =)
√
α′ and coupling

gs on the AdS5 × S5 with the radius of curvature L (same for both the AdS as well as

the compact sphere). The parameters of the two theories are related to each other by the

following relation,

g2
YM = 2πgs, 2g2

YMN =
L4

α′2
. (1.1)

Although the above-mentioned exact correspondence is quite interesting, it is extremely

hard to do explicit calculations for the exact correspondence. Therefore, most of the time,

we deal with a relatively weaker version of the duality. This is done by taking limits on both

sides by treating it as a strong-weak duality. Precisely, we work with a strongly coupled

version of the field theory (N → ∞, λ = g2
YMN → Large), where the gravity side

becomes classical supergravity solutions, which is weakly coupled in terms of the string

coupling constant as well as the string length (gs,
α′

L2 → 0). This is sometimes called the
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planar limit, where the strength of the string theory is weakened and the corresponding

SU(N ) field theory is treated as a large N gauge theory.

The correspondence is sometimes also stated as the equivalence between the partition

functions of the bulk and the boundary theories. Apart from this, there is something called

the AdS/CFT dictionary [13–15], which is also known as the Extrapolate Dictionary. It

relates the operators of the field theory to the states(sources) of the gravity theory. The

states and operators have the same tensor structure. For example, vector fields Aµ in the

bulk is associated with the charges Jµ in the field theory side. Similarly, the metric gµν is

associated with the stress tensor T µν of the field theory. The variants of the bulk side are

associated with an exact quantum state [16] in the boundary theory.

Empty AdS→ |0〉 , Eternal Black Hole in AdS→ TFD state. (1.2)

Our treatment in this thesis will be somewhat similar. But we will be following the path

of quantum information theory. Given a QI theoretic measure on the field theory side, we

will try to compute the same measures by computing something else on the bulk gravity

side. We will use proposals that are made primarily on the vacuum state and compute the

changes of the QI measures when computed for black hole backgrounds.

1.2 Holography and Quantum Information:

Now that we have briefly talked about the correspondence, the details of which can be

found in many beautiful reviews [12, 13, 17, 18], we will concentrate on the things con-

stituting this thesis. We will be assuming the correspondence to hold. That is probably

the biggest educated assumption we make throughout the thesis. But we will be con-

cerned about a specific restricted subset of the dictionary which deals with the quantum
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information-theoretic quantities. Similar to classical information theory, quantum infor-

mation theory deals with various ways of information processing and transfer within a

quantum mechanical system, in our case the conformal field theory. Entropy plays a major

role both in classical and quantum information theory. Classical statistical entropy, which

measures the amount of classical information that can be stored in a system, is usually

computed by calculating the number of possible microstates in the system. But in quan-

tum information theory, one is usually most concerned about the quantum mechanical state

(|ψ〉) of the theory and how the quantum mechanical degrees of freedom interact with each

other. The two important QI theoretic quantities in this context, which we will be studying

in the thesis are the entanglement entropy and the complexity. Entanglement typically mea-

sures the quantum correlation within a quantum mechanical system whereas complexity is

related to the formation of the quantum state |ψ〉 using a smaller universal set of structural

components known as quantum gates. We will discuss more about these quantities in the

next chapter.

In this thesis, for the large part, we compute the entanglement entropy and sub-region

complexity for various black hole solutions that come within the purview of the AdS/CFT

correspondence. The holographic entanglement entropy computations were first discov-

ered in [2, 3] by Shinsei Ryu and Tadashi Takayanagi where they computed the area of

the bulk minimal surfaces corresponding to a boundary sub-region. These surfaces are

now known as the RT surfaces. This prescription has been subsequently extended fur-

ther to time-dependent (HRT) [19] and quantum corrected versions [20, 21]. The most

recent addition to these corrections has been the discovery of the quantum extremal sur-

faces (QES) [22]. The computations have matched in most of the cases with the calcu-

lations of entanglement entropy in the conformal field theories, although the example of

such cases in the CFT side is extremely less in number. Complexity on the other hand is
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more of a very recent development [11, 23, 24]. It measures the difficulty of preparing a

quantum state. The primary results regarding complexity in AdS/CFT came from certain

bulk volume and action computations. However, the definitions in the field theory side of

complexity [25–27] is much less understood than the entanglement entropy. But the little

that people have been able to work out has already shown promising results and certain

matching with the bulk computations. It is expected in general that complexity can teach

us something about the system that entanglement can not. For example, one limitation of

the entanglement entropy for an evolving quantum system is that it cannot give us much

information after the thermalization timescale. On the other hand, complexity is expected

to be able to teach us more about that regime since it has more to do with the wave-function

of the quantum state in the space of states. The field-theoretic definitions of complexity so

far have also been able to probe other physically important phenomenons like quantum

quench, chaos [28–30] etc. Therefore, it is indeed worth studying complexity for black

holes with the hope of finding interesting signatures of quantum gravity as well.

We focus on computing these QI theoretic quantities for black hole solutions because

black holes tend to be the ideal places where the signatures of gravity are at their most

extreme. Also one of the central pieces of our final puzzle being the black hole informa-

tion paradox (described in relevant details in chapter 5), the understanding of black hole

solutions as quantum systems is something that is of huge interest to the theoretical high

energy physics community. The rest of the thesis is constructed as follows. In chapter 2,

we give a brief review of the definitions and computations of entanglement entropy and

sub-region complexity for empty AdS spacetimes. In chapter 3, we discuss our perturba-

tive computations of the same for the charged and uncharged AdS Schwarzschild black

holes in general spacetime dimensions. We also explain a formulation known as entangle-

ment thermodynamics which will play an important role in most of the thesis. In chapter
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4, we discuss similar computations and the entanglement thermodynamics for certain non-

supersymmetric black (brane) solutions of type IIB string theory. It is worth mentioning

at this point that the gauge-gravity duality has been extended to certain non-conformal

examples in reference. But the non-triviality lies in these specific non-supersymmetric

solutions where the supersymmetry of the theory is broken explicitly. In chapter 5, we

discuss more recent developments in the field involving computations of entanglement en-

tropy between the black hole and the radiations in light of the new tools like quantum

extremal surfaces with the long-term goal of solving the black hole information paradox.

We discuss our works on this front by studying a couple of simplified models involving

ideas of multi-boundary wormholes. We compute both entanglement entropy as well as

sub-region complexity in these models and comment upon the physics that we learn from

our results. Finally, we conclude in chapter 6 with a summary of the results and interesting

future directions.
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CHAPTER 2

A BRIEF REVIEW OF ENTANGLEMENT,

COMPLEXITY AND THEIR

HOLOGRAPHIC DUALS

In this chapter, we review the basic definitions and understandings that will be important

for the rest of the thesis. Entanglement and complexity are two QI theoretic quantities

that are quite relevant in the studies of quantum many-body systems. These quantities

act as important probes indicating the structure and the interplay between parts of a quan-

tum system. Here we will review both bipartite as well as the multi-partite structures of

entanglement. We will also try to draw a basic sketch of complexity briefly from the per-

spective of quantum mechanical systems. Finally, we will end the chapter by discussing the

holographic proposals for computing various measures of entanglement and complexity in

gravity theories dual to quantum field theories due to the holographic duality.
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2.1 Entanglement Entropy:

Given a bipartite quantum mechanical system, quantum entanglement measures the

quantum correlations between parts of the system. Any quantum state can be of two types

(pure and mixed) depending upon the nature of its density matrix. For pure states, one can

write the state in the famous Dirac ket representation (|ψ〉), and the density matrix is written

as ρpure = |ψ〉〈ψ|. On the other hand the mixed states, which can be understood as classical

probabilistic mixtures of pure states |ψi〉, there is only the density matrix representation

ρmixed =
∑

i pi|ψi〉〈ψi|, where pis are the probabilities of different possible eigenstates

|ψi〉 in the mixture.

We will primarily be interested in the situation where the whole state is pure and we

wish to measure quantum correlations between two complementary parts of the full pure

state. Let us divide pure state degrees of freedom into two regionsA andB. In a typical spin

chain example, the way to do so is to artificially cut off the chain at some point and divide

the lattice points into two groups. Subsequently, the total Hilbert space can be considered

as a direct product of two Hilbert spaces corresponding to the two subsystems (A and B),

Htot = HA⊗HB. The first thing to remember here is that the measure we want to compute

should be symmetric under the change of A and B. This ensures that the entanglement

betweenA andB is the same as the entanglement betweenB andA. The way in which one

measures the entanglement between these two regions is by computing something called

the reduced density matrix. Given that the total state A ∪ B is pure, the reduced density

matrix of A is defined by taking partial trace over the degrees of freedom corresponding to

B (more precisely, HB) which is represented as ρA = TrB[ρtot] (similarly,ρB = TrA[ρtot]

). The reduced density matrix ρA can be understood as the quantum state of the total

system as observed by an observer who has access to the subsystem A only. The entropy

10



of entanglement is thereafter defined as the von-Neumann entropy of the reduced density

matrix

SEE(A ∼ B) = −Tr[ρA log ρA] = −Tr[ρB log ρB] (2.1)

An important point to remember is again that the entanglement entropy can measure

entanglement between parts of a system consistently only when the total state is pure.

For thermal systems also, entanglement entropy can be computed similarly where the

total density matrix is given by the thermal density matrix ρthermal = exp−βH(β = 1
T

,

T being the temperature and H the Hamiltonian of the system). For thermal systems, the

difference between entanglement entropy of two sub-regions approaches the difference be-

tween the thermal entropy of the same at a high-temperature limit. Hence entanglement

entropy for thermal systems is believed to encode important information about the entropy

of the thermal state. This understanding plays a major role in our perturbative calculations

in the high-temperature limit presented in chapter 4. Entanglement entropy also follows a

few interesting and strong relations that are analogs of the corresponding classical proba-

bilistic definition of entropy. These properties qualify entanglement entropy as a successful

quantum information-theoretic quantity and also tell us something about the quantum sys-

tem under study.

2.1.1 Properties of Entanglement Entropy:
As mentioned earlier, the entanglement entropy satisfies a few properties that are closely

related to properties of entropy as defined in classical information theory. We list a few of

them below1.

1The various sub-additivity relations mentioned here are believed to hold if the quantum system is unitary,
which we will assume to hold for all the states we study in this thesis.
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1. Weak Sub-additivity: For two or more sub-regions, the entanglement entropy fol-

lows the following relation,

SEE(A ∪B) ≤ SEE(A) + SEE(B). (2.2)

This inequality is true for classical probability theory as well. However, in the latter,

there is something closely related to this inequality known as the theorem of condi-

tional entropy [31]. The conditional entropies in classical probability theory satisfies

the following relation,

S(ρA∪B|ρA) = S(ρA∪B)− S(ρA) ≥ 0, S(ρA∪B|ρB) = S(ρA∪B)− S(ρB) ≥ 0.

(2.3)

However, it is easy to check that if A ∪ B is an entangled pure state, this relation

is not satisfied by the entanglement entropies (since SEE(A ∪ B) = 0, whereas

SEE(A, B) > 0 ). Hence the entanglement entropy can not be understood simply

as a straight-forward quantum analog of the conditional entropy defined by classical

probabilities. The sub-additivity relation allows one to define another interesting

quantity known as the mutual information (I) that follows I(A,B) = SEE(A) +

SEE(B)− SEE(A ∪B).

2. Araki-Lieb inequality: The closest inequality to the conditional entropy theorem

that SEE follows is known as the Araki-Lieb inequality. It holds for two or more

sub-regions.

SEE(A ∪B) ≥ |SEE(A)− SEE(B)|. (2.4)

The Araki-Lieb inequality can be derived from the weak sub-additivity most gener-
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ally by a mathematical formulation known as purification [31].

3. Strong Sub-additivity: For three or more sub-regions, the following relation always

holds and is known as the strong form of the sub-additivity [32].

SEE(A ∪B) + SEE(B ∪ C) ≥ SEE(B) + SEE(A ∪B ∪ C). (2.5)

Again, the strong sub-additivity relation is also followed by the conditional entropies

[33, 34] in classical information theory and can be recast as S(A|BC) ≤ S(A|B).

It looks very similar to the strong sub-additivity if we write the latter in terms of

the mutual information I(A,BC) ≤ I(A,B). From the perspective of quantum

systems, the validity of strong sub-additivity also qualifies the complete system as a

unitary one [35].

4. 2nd form of Strong Sub-additivity: The strong sub-additivity has another version

which is the following

SEE(A ∪B) + SEE(B ∪ C) ≥ SEE(A) + SEE(C). (2.6)

All these inequalities written above are relations that have been proved and strength-

ened the understanding of EE as a valid QI quantity.

2.1.2 Entanglement in QFTs:
Now let us shift to QFTs from QM and mention very briefly the behavior of entangle-

ment as studied in QFTs. For d + 1 dimensional continuum QFTs (d space dimensions),

the entanglement entropy between two regions A and B = Complement (A) is typically

divergent where the divergence is regularised by the introduction of a UV cutoff a and the
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coefficient of the divergent term is proportional to the area of the boundary ∂A of A that

distinguishes A and B. This is known as the area law of entanglement [36–42] and plays

a major role in understanding the probable relation between entanglement and black hole

entropies.

SEE(A) = c1
Area(∂A)

ad−1
+ ....(subleading terms). (2.7)

The area law indicates that the entanglement between A and B is strongest at the bound-

ary separating them from one another. The computations are done using the replica trick

where instead of computing the trA(ρA log ρA) directly, which is immensely hard to do

even in case of simplest situations, one takes n-copies of the Riemann surface to compute

trA(ρnA). This supposedly gives the so-called Renyi entropy and one can get the entangle-

ment entropy by analytically continuing to n→ 1.

In the following section, we discuss the situation when the complete state of interest is

mixed and we want to measure entanglement between parts of the mixed state. There are a

few measures of mixed state entanglement available in the literature, [43] e.g; entanglement

of purification, squashed entanglement, the entanglement of formation, logarithmic nega-

tivity, etc. However, we concentrate only on the entanglement of purification in this thesis.

This is because of the simple reason that compared to the other mixed state measures, EoP

has a clearer and better holographic proposal which can be applied readily and can provide

us with insightful information regarding the mixed state. In the case of a mixed state, one

needs to carry out a process called purification to define an entanglement measure.

2.2 Entanglement of Purification:
Purification is the process of making a mixed state pure. Although there are numerous

measures in quantum information theory, most of them are sensitive to the state at hand
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being a pure one. However, the mixed states behave quite differently than a pure one. A

mixed state density matrix (ρmixed =
∑

i pi|ψi〉〈ψi|) 2 follows the following property

Tr[ρmixed] = 1, T r[ρ2
mixed] < 1. (2.8)

The standard way to purify a mixed state is to add an auxiliary system with the mixed

state where the total state after adding the auxiliary system becomes a pure state. Hence,

the mixed state becomes a particular reduced state after tracing out a few degrees of free-

dom from the purified state. But, for a single mixed state, there might exist more than one

way of purification. Given all possible purifications, a particular one is chosen concerning

the information-theoretic measure one wants to calculate in a given scenario. Here, we will

be concerned with the entanglement of purification which is a candidate measure for en-

tanglement in mixed states and is argued to be related to other measures, e.g; entanglement

negativity, squashed entanglement, etc. EoP has been recently computed for free scalar

field theories [44] and also in the context of quantum many-body systems in [45]3.

2.2.1 Definitions and Properties:
The entanglement of purification (EoP) [46, 47], as the very name suggests, is related

to the purification of a mixed quantum state. The precise definition of entanglement of

purification between A and B for a bipartite mixed state AB (= A ∪ B) is the minimal

2Thermal states are also considered to be mixed states. Remember that we mentioned previously that the
entanglement entropy for thermal density matrix at high temperatures is found to match with thermal entropy.
Hence, one might run into an apparent contradiction that how is that possible if entanglement entropy is not
a good measure of entanglement for mixed states. But in fact, there is no contradiction. It is indeed right
that entanglement entropy does not measure quantum correlations between parts of a mixed state. However,
it does indeed measure classical correlations and hence can match with the thermal entropy of the thermal
system at high temperatures. This is because the thermal entropy in that limit behaves like the classical
statistical entropy and captures the same classical correlations as the entanglement entropy.

3In [45], although many-body systems have been studied, the mixed states under study were bipartite
(not multi-partite).
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Figure 2.1: A schematic diagram of bipartite purification (AA′BB′ forms a pure state and
EoP is entanglement between AA′ and BB′)

entanglement entropy between AA′ andBB′, where A′ andB′ are auxiliary systems added

to make the whole state AA′BB′ pure. It is important to remember the fact here that there

can be infinitely many ways to choose A′ and B′ such that the total state is pure. Among

all those possible purifications, the preferred choice for EoP is dictated by the minimum

of entanglement entropy between AA′ and BB′. Hence, one starts from a mixed density

matrix ρAB and extends the Hilbert space from HA ⊗ HB to a pure state Hilbert space

HA ⊗HB ⊗HA′ ⊗HB′ . The EoP (EP (ρAB)) is then defined as the following quantity,

EP (ρAB) = min|ψ〉AA′BB′SAA′ . (2.9)

We will not discuss the properties of the bipartite EoP, which can be found in [44]. How-

ever, we will discuss the properties of multi(n)-partite EoP below. Properties of bipartite

EoP are consistent with the properties of n-partite EoP when and if one takes n = 2.

Multi-partite states and entanglement:As mentioned earlier, since the QI theoretic

quantities are important in the context of quantum many-body systems, the other quantities

which are also of interest to physicists are the multi-partite entanglement measures. To

compute such quantities, one divides the quantum system into more than 2 parts. Now, a

multi-partite pure state can be fully separable, partially separable, or fully entangled and
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identification of such states involve many criteria. By separability, one means whether the

pure state can be written as a product between the states on different parts of the system. It

is worth pointing out that a bipartite system cannot be partially separable. It can either be

fully separable or fully entangled. For a multi-partite pure state [48], the entanglement is

calculated by the sum of all possible bipartite entanglement entropies that can be computed

within the system. By all possible bipartite entanglement, we mean that if we divide the

state into n parts and take one of them, we first compute the entanglement between that part

and its complement. The same is done for all other parts. Finally, the n partite entanglement

entropy is given by the sum of n such bipartite entanglement entropies. Let’s say we begin

with a n-partite pure state A1A2...An, then the multi-partite entanglement entropy is given

by the sum of the entanglement entropies SAi with their respective complements in the

whole state. So SA1 is the entanglement between A1 and Ac1 = A2 ∪ A3... ∪ An.

Sn−EE(multi) =
n∑
i=1

SAi . (2.10)

We will however be concerned about multi-partite mixed states. The simplest way to

grasp the idea of such a state is, to begin with, a mixed state and divide the mixed state

degrees of freedom into more than two regions.

Similar to multi-partite entanglement for pure state, multi-partite entanglement of pu-

rification [49–51] for a mixed state is where instead of a bipartite mixed state AB, we start

with a multi-partite mixed state A1A2.....An and add auxillary systems A′1, A′2,....., A′n to

make it pure. Then we compute the minimum of
∑

i SAiA′i for i = 1, ..., n.

The mathematical expression through which it is denoted is the following

Definition:

For a n-partite mixed state , with density matrix ρA1A2.....An , the multipartite entangle-
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ment of purification is defined as,

∆n(P )(ρA1A2.....An) = min|ψ〉A1A
′
1A2A

′
2.....AnA

′
n

n∑
i=1

SAiA′i . (2.11)

This boils down to the definition of bipartite entanglement of purification once n is

taken to be 2 with appropriate normalization ( 1
n

factor in the above definition). Let us call

the bipartite EoP as EP (= ∆2(P )).

Properties:

1. If one of the systems gets decoupled, ρA1...An = ρA1...An−1 ⊗ ρAn ,then

∆P (A1 : ... : An) = ∆P (A1 : ... : An−1). (2.12)

This is natural as if one of the systems is decoupled, the n-partite state is not mixed

anymore. Then again, the mixed state to be considered becomes the (n− 1)-partite.

2. For a n-partite pure state |ψ〉A1...An ,

∆P (A1 : ... : An) =
n∑
i=1

SAi . (2.13)

This relation ensures that once the system becomes pure, the EoP definition boils

down to the usual entanglement measure of pure states. Therefore, the multi-partite

EoP provides results of multi-partite entanglement entropy if the state of insterest is

pure.

3. For a n-partite product state (ρA1...An = ρA1 ⊗ ρA2 ⊗ ....⊗ ρAn),

∆P (A1 : ... : An) = 0. (2.14)
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This is in relation to the last property of pure states. This simply ensures the fact

that if the state is a product state, the multi-partite EoP gives a zero which is again

consistent to the fact there is zero entanglement for product states.

4. ∆p is bounded from above as follows,

∆P (A1 : ... : An) ≤ mini
(
SA1 + ...+ SA1...Ai−1Ai+1...An + ...SAn

)
. (2.15)

5. ∆p is bounded from below as follows,

∆P (A1 : ... : An) ≥ I(A1 : ... : An), (2.16)

where I(A1 : ... : An) is the n-partite mutual information. 4 The last two properties

can be treated as the mixed state analogues of the sub-additivity relations.

All of these are followed by bipartite EoP as well once one takes n = 2. Now that we

have defined the entanglement measures and discussed their properties, let us now discuss

the basics of complexity in the following section.

2.3 Complexity:
Complexity is a QI theoretic measure that should be of more concern to an experimental

physicist than a theoretical one. It measures the practical difficulty in preparing a quantum

state. In this preparation, the building components are of paramount importance and the

measure of course depends mostly on the predefined set of elementary quantum gates one is

allowed to use while preparing the quantum state in hand. One consequence of using these

pre-defined set of quantum gates is that one can only construct a complicated quantum
4Mutual information is another QI theoretic quantity which we will not be discussing in this thesis. The

definition and various properties of mutual information can be found in [32].
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state up to some tolerance ε. By the pre-defined universal gate set specific to a problem

(/dimension of the state), one generally means the minimum number of operators (/gates)

without the identity operator that is needed to span the space of all possible states on the

space of states starting from a typical initial state.

Complexity has been studied previously in detail in the QI literature mostly for qubit

systems to understand quantum circuits and to propose several different bounds on the

number on the gates needed [25, 52, 53]. In qubit systems, one can work with the Pauli

matrices to form the simplest elementary quantum gates, and therefore the whole circuit of

an n-qubit state can be represented in terms of higher dimensional Pauli matrices. However,

for most of the literature, the systems that have been studied are unitary ones which is

also the case for most of the QM systems. But this also limits the study to the finite-

dimensional pure states. For mixed states and infinite-dimensional field-theoretic states,

there remains the question of whether unitary gates are the most optimal choices or not [27].

The basic idea is nevertheless quite easy to grasp. Given a reference state |ψR〉 and a target

state |ψT 〉, one has to find the optimal unitary U that takes the reference state to some

final state |ψT−ε〉, where the final state is same as the target state up to certain tolerance

ε. There are other minute details one can consider while constructing such a circuit like

assigning a different cost to different gates (penalty factors) to build a circuit with non-

uniform cost functional. By the non-uniform cost functional, one simply means to assign

different weights to different gates within the pre-defined gate set. This enables to model

a scenario where one gate involves more cost (/hard work) than the other. This breaks the

symmetry of cost between the gates. But we will not be bothered about these details in our

study since we will be mostly concerned about the holographic (sub-region) proposal of

complexity in this thesis.
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Figure 2.2: Representative image for understanding complexity. Let’s say, the different
shapes with different numbers are the pre-defined gateset that can be used to construct the
target state |ψT 〉 starting from the reference state |ψR〉. The number of times each of the
gates used contributes to the complexity. Also, if we associate different costs with differ-
ent gates (shapes), the complexity becomes different and the ratios of the costs between
different gates are understood as the penalty factors.

|ψT−ε〉 = UT |ψR〉, |〈ψT |ψT−ε〉|2 ≤ ε. (2.17)

The job is therefore to construct the above unitary UT by using set of the elementary

quantum gates {Gi}. In doing so, Nielsen [25, 53] compared this situation as an optimal

Hamiltonian control problem which is constructed out of the universal gate set.

|ψT 〉 = e−i
∫ 1
0 H(t)dt|ψR〉. (2.18)

where time is normalized to 1 and the Hamiltonian (H(t)) is written as follows,

H(t) =
∑
i

(γσ)i(t)σi, (2.19)
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where γσ(t) are control functions notifying whether at a particular t, a gate was on or

off [25,52]. σi are generalized Pauli matrices. These are the set of n-fold tensor products of

the single qubit Pauli matrices. Once this Hamiltonian is optimized, the problem eventually

becomes a problem of of minimizing a cost function constructed of the control functions.

Usually, a cost function f(γ (t)) is integrated in the t coordinate where one assumes that at

t = 1, the circuit-construction is complete. This integration of the chosen cost function is

known as the cost functional (Cf (γ)) and is minimized to derive the complexity(Cf (UT )).

As shown in [25], this eventually becomes a geometric problem of finding geodesic in a

class of geometries known as Finsler geometry.

Cf (γ) =

∫ 1

0

dtf (γ (t)) , Cf (UT ) = infγ [Cf (γ)] . (2.20)

Following the same basic set up, the complexity of free field theories (bosonic and

fermionic) was computed in [26, 27, 54, 55], where different norms can be used as the cost

function choices and the unitary can be thought of as the path ordered exponential of the

Hamiltonian to be optimized. In the case of discrete free QFT on a lattice with harmonic

oscillators playing the role of the degrees of freedom, the minimization procedure leads

to finding the minimal geodesic in a many-parameter family of geodesics in the space of

unitaries (GL(N,R)).

Very recently some very constrained states in CFT [56–59] have also been calculated.

There have also been some cases where complexity for mixed states has been studied in

such setups by starting with a mixed state and then adding purifying degrees of freedom

[60,61]. The complexity of the mixed states is then quantified as the minimum complexity

of the pure state among all possible purifications of the mixed state.

22



2.4 Holographic Proposals:

2.4.1 Holographic Entanglement Entropy:

In this subsection, we discuss the holographic proposals of the computation of en-

tanglement entropy. In recent times, the AdS/CFT correspondence has been used to de-

code secrets of a quantum theory of gravity through an elegant geometrization of concepts

from quantum information theory. This quest started by the Ryu-Takayanagi (RT) con-

jecture [2, 3] and its covariant generalization [19] for computing entanglement between

boundary subsystems through bulk calculations. The conjecture was later derived as an

instance of generalized entropy for Euclidean gravity solutions in [20]. In its original in-

carnation, the RT formula seeks to evaluate the entanglement entropy SA of any subsystem

A in the d-dimensional dual QFT by computing the area of a codimension-2 minimal sur-

face γRT homologous to A in the bulk space-time following

SHEE =
Area (γRT )

4G
(d+1)
N

, (2.21)

which remains true as long as we consider pure classical gravity.

For the AdS3/CFT2, this formula matches exactly with the CFT result and it is in general

believed to hold in general space-time dimensions. Infinite strip and spherical sub-regions

are the two typical entangling regions chosen in the boundary to compute the holographic

entanglement entropy. For 2d CFTs with central charge c, a sub-region of length `, the

entanglement entropy can be computed using the replica trick [37, 38]. The entanglement

in such a case with the rest of the subsystem is

SCFT2 =
c

3
ln(

`

ε
), (2.22)
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Figure 2.3: Ryu-Takanagi surface in AdS/CFT: The boundary sub-region A is the green
circle on the boundary denoted by the blue rectangle. Rest of the region is denoted as B. ε
is the UV cutoff along z axis. The green curve γRT along z direction sharing the boundary
of A (∂A) is the Ryu-Takayanagi surface.

where ε is a UV regulator near the boundary. This result is reproduced exactly when the

Ryu-Takayanagi proposal is applied to emptyAdS3 where one uses the relation between the

central charge and the AdS length scale c = 3R
2GN

. It is also worth noting that the various

sub-additivity inequalities have also been proved [62] directly from the holographic RT

proposal for three and higher space-time dimensions.

It is worth mentioning though that it is very hard to compute entanglement entropy be-

tween sub-regions in higher dimensional CFTs. Therefore the holographic proposal acts

as the simple tool for computation in such scenarios. In the following, we now discuss the

holographic proposal for computing EoP for bulk mixed states based on the RT prescrip-

tion.
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Figure 2.4: Entanglement Wedge Cross Section (holographic dual of Bipartite Entangle-
ment of Purification). The boundary sub-regions of the AdS time-slice after removing the
top and bottom regions are A and B. The two bulk geodesics (top and bottom) correspond-
ing to the removed grey regions can be thought of as Ã∪ B̃ which along with A∪B forms
a geometric pure state. Among all possible dotted lines shown in the figure dividing the
bulk geodesics into Ã and B̃, the minimal is the blue one marked as ΓÃB̃ (EWCS).

2.4.2 Holographic Dual of EoP:
The holographic duals of various purification measures have been proposed in various

articles [63–66]. Here we firstly discuss the holographic dual (EW ) of the bipartite EoP

(EP ) and then the n-partite case. For holographic states, it was conjectured that the holo-

graphic dual of EP is the minimum entanglement wedge cross-section which is the dotted

line in figure 2.4. The mathematical definition of entanglement wedge cross-section is the

following,

EW (A : B) = min{Area(Γ); Γ ⊂MAB −MA∩B} separates A \B and B \ A ,

where M denotes the entanglement wedge of some specified interval in the boundary

CFT. A \ B = (A− A ∩B) and B \ A = (B −B ∩ A). In Figure 2.4, the boundary
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sub-regions A and B do not have any overlap. Hence A ∩ B = 0. Also, it is important

to note that the grey regions are eliminated and therefore the boundary state on A ∪ B or

the dual bulk state is mixed. In the given scenario, the bulk eliminated regions are marked

through the grey regions below the geodesics on the top and bottom parts of Figure 2.4.

Γ is the bulk geodesic which is minimal among all possible geodesics dividing bulk states

corresponding to A and B. This is also known as the entanglement wedge cross-section

(EWCS). [63, 64, 67]

Typically for understanding purposes, it is easier to compare with the usual definition of

purification (by adding additional degrees of freedom) if one considers that the geodesics

connecting the boundary points of the removed (grey) sub-regions while constructing the

mixed state 5 in consideration (the geodesics marked as the combination of Ã and B̃ in

Figure 2.4) play the role of the purifying degrees of freedom in a way in the bulk proposals.

But, one does not know a priori what separates Ã and B̃, which is expected to be crucial

for computation of EoP as stated before in the definition of EoP. The minimal surface ΓÃB̃

plays the role of this separating surface. It divides both the top and the bottom geodesics

into Ã and B̃. Now, there can be infinitely many bulk geodesics connecting points between

the top and the bottom geodesic and all of them could be candidate purifying surfaces.

However, the minimal among all of those geodesics (in terms of area of the geodesics in

general space-time dimensions) is the preferred ΓÃB̃. This minimization is the bulk dual

to the minimization operation in the quantum mechanical definition of EoP. An arguably

more canonical bulk proposal of EoP (named as reflected entropy) was given later in [68].

We will however stick to the definition of [63] for this thesis. If the two subsystems A and

B are taken disjointly and symmetrically in an AdS3 Poincare disk (as in figure 2.4) such

5After removing the grey regions from the boundary and the bulk of the full Poincare disk, the state dual
to the rest of the system is a mixed state in general.
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Figure 2.5: EWCS for tripartite EoP: The combination of A, B, C (boundary regions form-
ing the mixed state) and the the HRT geodesics (Ã ∪ B̃ ∪ C̃) of the removed regions are
considered to form a tri-partite geometric pure state. ΓÃB̃C̃ = ΓAÃ ∪ ΓBB̃ ∪ ΓCC̃ becomes
the multi-partite EWCS. Contrary to the bipartite case, here the sum of the three orange
curves are minimized among all possible choices.

that their length is ` and distance is d, the holographic EoP (denoted as EW ) is found to be

EW (A : B) =


c
6

log[1 + 2`
d

] if d < (
√

2− 1)`

0 if d > (
√

2− 1)`
(2.23)

This phase transition (negative jump) of EoP at d = (
√

2− 1)` is somewhat similar to

the behaviour of mutual information I(A : B). 6

Multi-partite EWCS: For multi-partite states, one needs to consider sub-regions in-

volving boundary and bulk sub-regions (similar to the bipartite case as shown in figure

6The holographic mutual information have also been investigated in great details in [69].
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2.4) A, B, C, Ã, B̃, C̃ (for a tri-partite case) and then compute the multi-partite minimal

entanglement wedge cross-section ΓÃB̃C̃ , where A ∪ Ã ∪ B ∪ B̃ ∪ C ∪ C̃ is a geometric

pure state. This is pictorially described in figure 2.5 [64, 70]. Actually in case of bipartite

entanglement of purification as well, the boundary sub-regions A ∪ B is typically a mixed

state, but
(
A ∪B ∪ Ã ∪ B̃

)
is considered to be a geometric pure state and the minimal

length dividing the whole system into two is considered to be the bipartite entanglement

of purification. The HRTs (Ã ∪ B̃, B̃ ∪ C̃ and C̃ ∪ Ã) serve as the ancilla systems (A′i

parts mentioned in subsection 2.2.1) added to make the geometric state a pure one. One

important point to remember for the multi-partite EWCS however is that one needs to min-

imize the length of the sum of ΓAÃ, ΓBB̃ and ΓCC̃ , which is different from minimizing the

individual contributions. As argued in [64], for the tri-partite case, this minimized sum is

found when ΓAÃ, ΓBB̃ and ΓCC̃ by themselves form a closed curve ΓÃB̃C̃ by sharing the

boundary points with each other as shown in figure 2.5.

In [63], it has been checked that EW follows the same set of properties as EP , whereas,

in [64], ∆n(W ) and ∆n(P ) have been found to share the same set of properties. [64] deals

with this property-matching in a quite detailed way. It is also worth noting that although

[64] has been successful in finding the correct curve that satisfies all the properties of

tripartite EoP, finding analytical results for the length of such a curve, in a spirit similar to

equation (2.23) for bipartite EoP, is a hard job in general. We will discuss a holographic

scenario where the multi-partite EWCS can be computed approximately, later in chapter 5

of this thesis.

2.4.3 Holographic Complexity:

Holographic complexity came into the picture much later. Motivated primarily by the

area and the holographic dictionary, Susskind and collaborators suggested [23] that just like
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the extremal (minimal) area, extremal (maximal) volume slices in AdS should also mean

something physical for the boundary CFT. This statement was also inspired by the growth

of this maximal volume slice (where the time coordinates asymptote to boundary time)

that was found while studying two-sided AdS eternal BH, which is believed to be dual to

the thermo-field double state of the CFT. However, in this case, there was no sub-region

a priori, to begin with, and therefore whatever the volume corresponds to was expected

to tell us something about the whole boundary state. By looking at the growth of the

volume, which in terms of the thermalization timescale of the BH persists much longer

than the growth of entanglement between the two sides of the TFD state, Susskind et al

argued that this volume is dual to the complexity of the TFD state. They also vouched

for another property of complexity looking at the growth, which is that it can provide us

with more information about the evolution of the system than entanglement entropy can.

This conjecture is known as the CV conjecture. It has been studied in detail for diverse

situations.

Another proposal for the complexity was given later in [11, 24], which computes the

action of the causal domain of dependence of the maximal slice (Wheeler-de-Witt patch)

and is known as the CA proposal. It is also a candidate for holographic complexity. The

CV and CA proposals differ in some cases. But to understand which one is the more suited

dual of the CFT state complexity, the definition and properties on the CFT side have to

be investigated in far more details that have been done till now. Since it is still a work in

progress, we won’t be commenting upon these things in this thesis. The respective formulas

for the CV and CA are given below.

CV =

(
V (γ)

RGN

)
, CA =

IWDW

π~
(2.24)
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Figure 2.6: CV and CA conjectures: CV measures the volume of the time-slice where
the two sides of the eternal BH are connected by the Einstein-Rosen (ER) bridge. CA
measures the action on the causal patch of the ER bridge time-slice. This patch is known
as the Wheeler-de-Witt (WdW) patch. (Images are inspired by [11])

where R is the AdS radius, V (γ) is the maximum volume of the co-dimension one bulk

surface (time-sliced) bounded by the two boundaries of the black hole and IWDW is the

action of the Wheeler-de-Witt patch.

Holographic Sub-region Complexity: We will take the CV conjecture as our starting

point and expand upon this to understand how can one calculate the complexity of a sub-

region (a mixed state in general) inspired by the CV proposal. This was what Alishahiha

did exactly in [4]. The corresponding volume proposal for a sub-region is simple. Given

a boundary sub-region, the RT surface divides the bulk into two regions which can be

associated as the entanglement wedges of the subsystem A and B respectively. Alishahiha

proposed that given a boundary sub-region, we simply need to specify the RT surface and

then compute the volume between the RT surface and the boundary subsystem to come up

with a volume that is specific to a sub-region. This is known as the holographic sub-region

complexity (HSC). We show this volume in
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CHSC =
V (γRT )

8πRGN

. (2.25)

This volume is argued to quantify the complexity of preparing the reduced density

matrix corresponding to the boundary state. Therefore, it should be associated with the

idea of the complexity of purification. This volume has been computed for a few different

settings in [71, 72]. But the overall idea remains the same. In [71], the authors find that

this volume in AdS3 can be written completely in terms of the length of the boundary sub-

region and the topology of the bulk region. Therefore, the sub-region complexity in AdS3

is termed as Topological complexity, which will play a crucial role in our considerations in

Chapter 5. The details of the computations of sub-region complexity done in [4] will be

clear through our discussions in Chapter 3.

2.5 Relative Entropy and Fisher Information:

In this section, we finally discuss a couple of important and insightful QI distance

measures that will be put in use in the following chapters. Relative entropy [73, 74] is a

QI measure that indicates distinguishability between two density matrices ρ and σ. It is

defined as

S(ρ|σ) = Tr(ρLog(ρ))− Tr(ρLog(σ)). (2.26)

Two most important properties followed by relative entropy are the following,

1. Non-negativity: S(ρ|σ) ≥ 0 , with S(ρ|σ) = 0 when ρ = σ.

2. Monotonicity: It means that given two density matrices if we trace over the same

number of degrees of freedom, the relative entropy between the new reduced density ma-
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trices are always less than the relative entropy of the full density matrices.

S(ρ1|σ1) ≤ S(ρ12|σ12), where ρ1 = Tr2(ρ12) andσ1 = Tr2(σ12). (2.27)

First Law of Entanglement:

Relative entropy can be used to define a relation similar to thermodynamic entropy

and energy between the entanglement entropy and the modular Hamiltonian [35]. For this

thesis, let us define the modular Hamiltonian as the following. Given a reference density

matrix σ, the modular Hamiltonian is defined as Hσ = − log(σ). One can also define

something called modular free energy as the following

F1(ρ) = Tr(ρHσ)− SEE(ρ). (2.28)

Now, it is easy to write the relative entropy as

S(ρ|σ) = F1(ρ)− F1(σ) = ∆〈Hσ〉 −∆〈SEE〉. (2.29)

The monotonicity then implies the following relation between the expectation value of the

modular hamiltonian and the entanglement entropy.

∆〈Hσ〉 ≥ ∆〈SEE〉. (2.30)

This inequality (2.30) is known as the First Law of Entanglement and will be one of

the crucial points of the following chapter.
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Quantum Fisher Information:

If we start from the reference density matrix σ and write ρ as a perturbed density matrix

ρ = σ+ εσ1 + ε2σ2 + ...., the relative entropy is found to be a function of this perturbative

parameter ε and begins at least quadratic in the parameter , S(ρ|σ) = O(ε2) + ..... This

implies that upto first order in the parameter [74], the first law can be written as

δ〈Hσ〉 = δSEE. (2.31)

Now that we know that the perturbatively relative entropy begins only from the second

order, we define the quantum Fisher information [32,35,75] as the coefficient of ε2. In the

expression below, the εσ1 part in Log is needed (although there is an ε2 multiplied after the

trace operation ) because otherwise, the derivative operation inside the trace would always

give zero results.

S (σ + εσ1|σ) =
1

2
ε2Tr

(
σ1

∂

∂ε
Log (σ + εσ1)

)
. (2.32)

In the next chapter, we will explicitly use the ideas introduced in this chapter. We will

explain such a perturbative situation from a holographic perspective and discuss proposals

regarding Fisher Information from the area and volume calculations.
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CHAPTER 3

ENTANGLEMENT AND SUB-REGION

COMPLEXITY FOR CHARGED AND

UNCHARGED ADS-SCHWARZSCHILD

BLACK HOLES IN GENERAL SPACETIME

DIMENSIONS

This chapter is based on [5].

Corrections to the RT formula arising from bulk entanglement entropy of the RT surface

were first proposed at leading order in the bulk Planck constant in [21], extended to all

orders in [22] (see [76] as well) and fully justified in [77]. These corrections have been

checked in several cases [78], although it is difficult to do this for general perturbations

away from pure AdS due to complications in determining the modular Hamiltonian for
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generally excited states. On the other hand, there has also been some work in finding

higher-order corrections in the RT term itself (these are higher-order in a small parameter

measuring the perturbation away from pure AdS, e.g. the AdS black hole mass) [74, 79,

80]. These corrections are also expected to be related to the change of energy density

and pressure density of the gravity theory in the same way as the normal thermodynamic

entropy is related to the change of energy and other thermodynamic variables.

In the business of calculating the HEE, typically two types of subsystems are consid-

ered, namely the infinite strip and the ball subsystem. These cases were studied in detail

in the AdS black hole background to first order in the black hole mass [81]. This was

followed by a detailed analysis up to second order in a small perturbation away from pure

AdS (e.g., as a pure metric perturbation, one produced by a bulk scalar, or one produced

by a boundary current) [74].

Some recent works endeavor to capture important physics with these second-order

effects. The leading-order change in HSC for a spherical sub-region comes at second

order, which has led to connections with fidelity susceptibility [4] and Fisher informa-

tion [75, 82–87].

Complexity is a notoriously difficult concept to define in quantum field theory in a way

that does not appear to hinge on various arbitrary choices. Ordinarily, the measure of com-

plexity involves minimizing the number of unitary transformations (within some choice

of such transformations) required to transform the state of a system from some choice of

reference state to the desired target state. In the context of the AdS/CFT correspondence,

the cleanest aspect of this definition of complexity is the target state: we are interested in

CFT states which have known AdS duals. We hope that we can gain some insight into

complexity by studying it perturbatively around holographic states.

In a sense, what we do is a sub-region-reduced version of the idea explored in [88]. This
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latter work tries to extract data about the so-called “cost function” [32, 53, 89], which was

introduced to describe “minimal paths” between reference and target states in state space,

by studying the behavior of complexity under small variations in the target state. Keeping

the reference state fixed, the variation in complexity is controlled just by the endpoint of

the optimal path in state space. This result has been dubbed the “first law of complex-

ity” [88]. More concretely, a set of coordinates xa is introduced on the space of unitary

transformations U(xa) from some reference state |ψR〉, which can also be interpreted as

a set of coordinates on the space of states U(xa)|ψR〉. The path from the reference state

|ψR〉 to the target state |ψT〉 = UT|ψR〉 minimizes the cost
∫ 1

0
dsF (xa(s), ẋa(s)) of paths

between the reference and target state, where F is some “cost function”. Under a small

variation δxa of the target state, the leading-order change in complexity is

δC = paδx
a
∣∣
s=1

with pa =
∂F

∂ẋa
. (3.1)

Geometrically, then, δC is related to the angle between the tangent to the optimal path at

the target state and the displacement vector describing the variation away from the target.

If δC = 0 at leading order, as is typically found to be the case for the spherical sub-

region (shown in section 3.3), then the tangent to the optimal path and the displacement of

the target state are orthogonal at this order. The next-to-leading term is related to second

derivatives of F (for details, see [88]). This keeps going, of course, with higher-order cor-

rections to (sub-region) complexity being related to higher derivatives of the cost function.

Thus, the side-aim is to gain some insight into what the cost function might look like by

studying small changes in holographic states.

In [88] the starting target state was the ground state of the CFT, dual to pure AdS, and

the perturbation was introduced by a bulk scalar field excitation corresponding to a co-
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herent state. The complexity was that of the entire state, not a sub-region reduced state.

Furthermore, that calculation was done within the “complexity equals action” framework.

In our present discussion, however, we focus on thermal perturbations around pure AdS,

our states will be reduced to a spherical boundary sub-region, and we will be working

within the “complexity equals volume” (sub-region) framework. Nevertheless, we share

the same goal of studying the behavior of (sub-region) complexity in the vicinity of holo-

graphic states to gain some insight into what paths from some reference state to a target

state might look like.

In this chapter, we consider the changes in HEE and HSC for a spherical sub-region

in the uncharged and charged black hole background. The leading-order (LO) result for

the HEE is what is often referred to as the “first law of entanglement” [74] (mentioned in

(2.30)). At next-to-leading-order (NLO) for the HEE comes Fisher information, which has

been related holographically to canonical energy [75] and bulk entanglement [87]. For the

HSC, the only thing known is that it vanishes identically for a spherical sub-region in the

AdS3 black hole background, the first-order term vanishes identically, and the second-order

result is known only in the AdS4 black hole background [4, 87]. So far, the second-order

result is not known in any other dimension and nothing is known at higher orders. Our

goal is to fill in some of these gaps by computing second- and third-order corrections to

the HSC in closed-form as functions of d. We provide closed-form formulae for the HEE

up to third order as well as exact numerical expressions in fourth-order. We also do these

calculations for the case of a charged AdS black hole, which is an example in which the

current perturbation also plays a role in addition to the metric perturbation.

We also consider the first law of entanglement thermodynamics proposed in [8] and

which was shown therein to hold at first order. Combining previous work on holographic

complexity [4] and Fisher information [87], we propose a refinement of the first law of
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entanglement thermodynamics to include a general work term done on the system: ∆E =

T∆S + W . This work term is different from the V∆P term discussed in [8]. This latter

term appears at first order already and can be absorbed in the ∆E term by the equation of

state with a suitable redefinition of the entanglement temperature. These previous works

naturally suggest that this work term be related to the change in HSC. However, now we

find that the relation, which now holds at second order, does not hold at third order. This

leads us to speculate that other information-theoretic quantities of interest might also play

a role in a putative first law.

In the rest of the chapter, we firstly discuss the details of the embedding function in

section 3.1. Then we discuss the perturbative computations of HEE for uncharged and

charged BH in section 3.2. We also propose a general way of understanding which order

embedding contributes to which order change of HEE building upon our study for the

charged and uncharged BH in general dimensions. In section 3.3, we discuss similar study

for the volumes (HSC). Finally, we explain the entanglement thermodynamics and the

study of Fisher information from areas and volumes in section 3.4.

3.1 The Embedding Function:

First, we will discuss the case of the uncharged AdSd+1-Schwarzschild black hole (BH)

of mass m as a model example of a purely metric perturbation away from pure AdS (or, in

the language of the dual field theory, a stress tensor perturbation). Then, we will discuss

the case of a charged BH as well as a model example of a perturbation involving a current.

The latter is not a pure current perturbation but is a mix of current and stress tensor pertur-

bations. Generically, non-metric perturbations will inevitably be accompanied by metric

perturbations via backreaction. Since we are interested in higher-order corrections to en-

tanglement entropy and sub-region complexity, we cannot in general ignore backreaction.
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Thankfully, the charged AdS black hole furnishes us with a fully back-reacted solution in-

volving a current perturbation. We will expand the embedding function of the RT surface

associated with a spherical boundary sub-region of radius R in the limit when R is much

smaller than the black hole radius of the background. For the uncharged black hole, this

is equivalent to a “small mass” or “low temperature” expansion. For the charged case, the

horizon radius depends on both the mass and charge of the black hole. However, the charge

does not have to be small in our perturbative analysis, and so, even for the charged case,

one may think of the perturbation as being in the smallness of the mass of the black hole.

For the uncharged black hole, the first-order embedding function is known. We provide

an analytic expression as a function of d for the second-order result, which was not known

before this work. While we have not been able to find a closed-form analytic expression

for the third-order embedding function, we do supply explicit expressions for it in the cases

of AdS3 to AdS7 to cover the cases of immediate import to AdS/CFT applications.

For the charged black hole, there are orders which arise between the orders that are

present in the uncharged case. What is called the n-th order in the uncharged case corre-

sponds to what is more appropriately called the nd-th order in the charged case. It turns

out that there are simple relationships between the nd-th order embedding functions in the

charged case and the n-th order embedding functions in the uncharged case. The first in-

between order is 2d− 2 with all others being sums of multiples of d and 2d− 2. Already at

order 2d− 2, we are unable to give closed-form analytic expressions for the corresponding

embedding function. However, we provide the details of the derived embedding functions

in the appendix A. We give details of two kinds of embedding functions one can choose,

for both of which the final results (changes of HEE and HSC) remain the same.
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3.1.1 Uncharged AdS Black Hole:

We will work with the metric of a (d+1)-dimensional planar AdS-Schwarzschild black

hole of mass m. The action that one starts with is simply the Einstein-Hilbert action in

(d+ 1) dimensions.

Sbulk =
1

16πG
(d+1)
N

∫
ddx
√
−g
[
R+

d(d− 1)

L2

]
, (3.2)

whereR is the Ricci scalar and L is the AdS radius. Here, the second term in the action is

specific to AdS spacetime introduced due to the following relation between cosmological

constant Λ and AdS radius in (d+ 1) spacetime dimensions,

Λ = −d(d− 1)

2L2
. (3.3)

The form of the metric, derived as a solution of the vacuum Einstein’s equation following

the above action, is1

ds2 =
L2

z2

[
−f(z) dt2 +

dz2

f(z)
+ dr2 + r2dΩ2

d−2

]
, (3.4)

where t ∈ (−∞,∞) is the time coordinate, z ∈ (0, zh) is the bulk radial coordinate with

the boundary at z = 0 and black hole horizon at zh given by mzdh = 1, r is the boundary

radial coordinate, Ωd−2 is the collection of boundary angular coordinates, and f(z) is the

blackening function

f(z) = 1−mzd. (3.5)

1A different metric is used in [81], which is equivalent to this one up to first order in m in the region
mzd � 1.
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We work with the entangling region B, which is a ball of radius R (i.e., 0 ≤ r ≤ R). The

corresponding RT surface is described by a spherically symmetric embedding function

z = z(r), such that

z(R) = 0. (3.6)

The surface is often parametrized by r = r(z) instead, which is well-adapted to the com-

putation of counterterms [90] and the HSC [4]. However, there is a technical issue in

that the domain of z itself receives corrections in m. As a consistency check, we have

performed the second-order calculations using the r(z) parametrization as well, yielding

identical results. Higher-order computations were done purely in the z(r) parametrization.

One drawback of the z(r) parametrization is that it obscures the need for a cut-off at a

small value z = ε. Nevertheless, since we are computing only the difference relative to the

pure AdS background, no such cut-off will be required. The area of the RT surface as a

function of z(r) is

A = Ωd−2L
d−1

∫ R

0

dr
rd−2

z(r)d−1

√
1 +

z′(r)2

f(z(r))
, (3.7)

where z′(r) = dz(r)
dr

and Ωd−2 = 2π
d−1
2

Γ( d−1
2 )

is the volume of the (d − 2)-sphere with unit

radius. This area functional is extremized by solving the Euler-Lagrange equation. The

embedding function is expanded as

z(r) = z0(r) + λz1(r) + λ2z2(r) + λ3z3(r) + · · · , (3.8)
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where the small expansion parameter is

λ = mRd =

(
R

zh

)d
, (3.9)

and the Euler-Lagrange equation likewise expanded up to third order in λ to derive the

equations satisfied by z0, z1, z2 and z3. It is convenient to measure lengths in units of R

and pass to the dimensionless variables (in the relation below, 0 ≤ x ≤ 1, since 0 ≤ r ≤ R

was chosen previously)

x ≡ r

R
, y(x) ≡ z(r)

R
. (3.10)

The boundary condition (3.6) becomes

y(1) = 0. (3.11)

The function y0(x) is the pure AdS embedding

y0(x) =
√

1− x2. (3.12)

The equation for yn(x) for n ≥ 1 can be written as a Riemann-Papperitz equation [91]

y′′n + p(x)y′n + q(x)yn = σn(x), (3.13)

where
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p(x) =
d− 2− 2x2

x(1− x2)
, (3.14)

q(x) = − d− 1

(1− x2)2
, (3.15)

and σn(x) is a driving function.

The homogeneous part of this Riemann-Papperitz equation is identical for all orders,

including the in-between orders that arise in the charged black hole case. This is the case

because the homogeneous part of the equation for yn comes from expanding just the pure-

AdS part of the area functional to quadratic order in yn and then taking the variation of the

result concerning yn. The genuinely difficult part of this equation is the driving function

σn(x) which depends on a complicated nested hierarchy of second-order differential oper-

ators acting on each previous term, each operator itself depending on even earlier terms.

Needless to say, this problem increases in difficulty extremely quickly. The first-order

embedding is relatively easy to solve in general d, taking on a rather simple closed-form

(3.17). Already at second order, the result (3.19) is fantastically more complicated. In the

third order, we are unable to find a closed-form for the solution as a function of d.

The problem is made simpler if we relax the requirement of finding a formula as a

function of d and instead compute the result for specific values of d. Of course, the compu-

tation increases in difficulty as d increases, especially when d is odd. In fact, we are able to

determine the third-order embedding for d = 12, but not for d = 11. Nevertheless, we pro-

vide the third-order results for AdS3 to AdS7, thereby covering the cases most commonly

considered in the context of applications of the AdS/CFT correspondence.
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For n = 1, the driving function is given by

σ1(x) =
1

2
(1− x2)

d−3
2

[
2(d− 1)− (d+ 2)x2

]
. (3.16)

The first-order solution with boundary condition (3.11) is

y1(x) = −(1− x2)
d−1
2 (2− x2)

2(d+ 1)
. (3.17)

The Fefferman-Graham version of this result is in [74]. The r(z) parametrization result is in

[4,81]. We have verified that our y1(x) above is consistent with both of the aforementioned

results.

The second-order embedding function y2(x) does not contribute to the second-order

change in HEE and is therefore not computed in [74, 81]. It is needed for the second-order

change in HSC, which is studied in [4]. This latter work gives the result without explicit

computation for the second-order change in HSC for d = 2 and d = 3 and the second-

order embedding function is not mentioned there either, presumably having been taken for

granted. In fact, we know that the change in HSC for d = 2 should vanish identically at all

orders since the BTZ black hole is locally equivalent to AdS3, the distinction being purely

a topological one. Therefore, the relevant data point of genuine interest in [4] is the change

in HSC in d = 3. An explicit expression for the second-order embedding for AdS4, in the

form r2(z) is given in [87]. However, the result for the change in HSC therein is in conflict

with that in [4]. Therefore, we will give the expression for y2(x) for general dimension. To

the best of our knowledge, this has not been done previously.
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For n = 2,

σ2(x) = −(1− x2)d−
7
2

(
d2(d− 1)

(d+ 1)2
− 5d3 − 3d2 + d− 1

2(d+ 1)2
x2

+
5d3 + 6d2 − 6d− 1

4(d+ 1)2
x4 − d− 1

4
x6

)
. (3.18)

The solution is

y2(x) =
1

16
√
w

(√
π

2d
d(d− 1)

d+ 1

Γ(d+ 1)

Γ
(
d+ 3

2

)P +
(d− 1)(2d− 1)(d− 2)

(d+ 1)2
P0

− 3d3 − 15d2 + 11d− 3

(d+ 1)2
P1 −

2d3 + 3d2 − 3d+ 2

(d+ 1)2
P2 − (d− 1)P3

)
,

(3.19)

where w = 1− x2, and

P = B

(
w;
d

2
,
3− d

2

)
, (3.20)

Pn = PB

(
w;
d

2
− 1 + n,

d− 1

2

)
− 2wd−1+n

d(d− 1 + n)
3F2

(
1,

3

2
, d− 1 + n;

d

2
+ 1, d+ n;w

)
,

(3.21)

where B(w; a, b) is the incomplete beta function and range of w is same as range of x.

In the third order, we do not have a general formula for the embedding function, but

we give expressions for these in spacetime dimensions 3 to 7. Again, this covers all the

usual cases of interest within the AdS/CFT context. In the third order, we do not provide

the forms of the embedding functions in the r(z) parametrization as we perform our calcu-

lations exclusively in the z(r) parametrization, as in [74]. To get a sense of the behavior of

these higher-order embedding functions, we plot them in Figure 3.1. Notice that the behav-

ior of the embedding function near x = 1 for the case of AdS3 is very different compared

to the higher-dimensional cases. This will turn out to be crucial in the analysis of boundary
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Figure 3.1: Plots of y1, y2 and y3 in various dimensions. Note that we do not have y3 for
AdS12.

terms in subsection 3.2.3.

The general expression for y2(x) as a function of d is very useful since we can use it to

generate y2 for any value of dwithout having to solve its defining differential equation each

time. However, we are not actually able to perform the integrals needed to calculate the

higher-order changes in HEE and HSC using the general form of y2(x). This complication

will actually only be relevant to the second- and third-order changes in HSC. Therefore,

we must infer formulae for these quantities from results at specific values of d.

3.1.2 Charged AdS Black Hole:

We will now consider the charged AdSd+1 black hole, which represents a class of per-

turbation away from pure AdS that also involves a boundary current in addition to a bound-

ary stress tensor. The metric for the charged AdS BH takes on the same form as for the

uncharged case (3.4) with the blackening function (3.5) replaced with

f(z) = 1−
(
1 + q2z2

h

)zd
zdh

+ q2z2
h

z2d−2

z2d−2
h

. (3.22)
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Here the introduction of the new parameter q is due to the presence of a current.2 The

gauge potential corresponding to this current has a single nonzero component,

A0(z) =

√
2(d− 1)

d− 2
q

(
1 +

zd−2

zd−2
h

)
. (3.23)

This is the same form of metric and gauge field used in [74]. Note that there is no charged

AdS3 black hole solution since the metric simply reduces to the uncharged case when

d = 2. For convenience, we define the dimensionless parameter

p ≡ qzh, (3.24)

which is treated as an O(1) constant.

Unlike the previous case (uncharged AdS BH), for which we defined λ = Rd

zdh
= mRd,

in this case, we define our dimensionless variables in the following way,

x ≡ r

R
, y(x) ≡ z(r)

R
, η ≡ R

zh

. (3.25)

Here, η is our perturbation parameter, which corresponds to the condition R
zh
� 1. Note

that in the charged case, the orders in the expansion are controlled by two non-negative

integers n1, contributing n1d, and n2, contributing 2n2(d − 1). Thus, let us define the

two-component vector ~n and its “size” |~n| as the order at which it contributes:

~n =

(
n1

n2

)
, |~n| = n1d+ 2n2(d− 1). (3.26)

2This term is related to the charge density carried by the horizon at z = zh.
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Then, we expand the embedding function as

y(x) =
~∞∑
~n=~0

η|~n|y~n(x)

= y(0,0)(x) + ηdy(1,0)(x) + η2d−2y(0,1)(x) + η2dy(2,0)(x) + η3d−2y(1,1)(x) + · · · ,

(3.27)

with y(0,0)(x) being the pure AdS embedding function,

y(0,0)(x) =
√

1− x2. (3.28)

An important comparison between the expansion parameters of the uncharged and charged

black holes is due here. As functions of their respective horizon radius zh, one can see that

λ = ηd. Thus, the orders which are integer multiples of d in the charged case correspond to

the orders present in the uncharged case and must reduce to the latter when q = 0. On the

other hand, the orders which are not simple integer multiples of d (e.g., (2d− 2), (3d− 2),

etc.) are not present in the uncharged AdS BH.

With this in mind, we solve the embedding in the same way as we did in the uncharged

case. The orders at integer multiples of d can be written simply in terms of the uncharged

black hole embeddings in the following way,

y(n,0)(x) = (1 + p2)nyn(x), (3.29)

where n is a non-negative integer.

For the newly appearing orders, however, it is difficult to come up with general expres-

sions. Instead, we have to compute the embedding functions on a case by case basis for d
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Figure 3.2: Plots of 1
p2
y(0,1) and 1

p2(1+p2)
y(1,1) in various dimensions.

values starting from 3 to 6. In this chapter, we have considered up to order (3d− 2) for the

charged black hole case. Again, to get a qualitative sense of the embedding functions, we

plot different order embedding functions in Figure 3.2.

3.2 Holographic Entanglement Entropy:

It is convenient to define the reduced HEE

s ≡ S

2πΩd−2

(
L
`P

)d−1
. (3.30)

In terms of the dimensionless variables,

s =

∫ 1

0

dx
xd−2

y(x)d−1

√
1 +

y′(x)2

f(y)
, (3.31)

where

f(y) = 1− λy(x)d (3.32)

for the uncharged black hole and

f(y) = 1− (1 + p2)ηdy(x)d + p2η2d−2y(x)2d−2 (3.33)
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for the charged black hole.

3.2.1 Uncharged AdS Black Hole:

The explicit appearance of λ in (3.31) is due to its appearance in the metric. When this

factor of λ is expanded out, we refer to this as the “metric contribution” to the higher-order

HEE. We introduce the notation sn to denote the metric contribution at order λn.

There is also the “embedding contribution”, which comes from expanding the embed-

ding function as

y(x) = y0(x) + λy1(x) + λ2y2(x) + λ3y3(x) + · · · . (3.34)

We pick out the term in sn of the form yn1(x) · · · ynk(x) where n1 ≤ · · · ≤ nk and where

some number of derivatives may act on the embedding functions. This term is denoted

sn,n1···nk , (3.35)

and is a term in s of order λn+n1+···+nk . We make two exceptions in the above notation

regarding y0(x). The indices ni are taken to be nonzero as long as at least one of them is

nonzero. In other words, as far as the indices ni are concerned, we ignore factors of y0(x)

as long as we are extracting a term that contains at least one higher-order correction to the

embedding function. Otherwise, we write only one 0 after the comma in the subscript. For

example, s0,0 is the pure AdS result, while s1,11 is a term in s that is of order λ3 and consists

of first expanding the metric to first order and then expanding the embedding function and

picking out the terms that are quadratic in y1(x) and its derivatives. Since we are only
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interested in the difference from pure AdS, we define3

∆s = s− s0,0. (3.36)

We expand this out in powers of λ,

∆s = λ∆s(1) + λ2∆s(2) + λ3∆s(3) + · · · . (3.37)

As argued in [74], to calculate the first-order change in HEE, one needs only the zeroth-

order embedding function. In fact,

∆s(1) = s1,0 =
1

2

∫ 1

0

dx xd−2 y0y
′
0

2√
1 + y′0

2
=

1

2

∫ 1

0

dx xd =
1

2(d+ 1)
. (3.38)

The reason why y1 does not contribute to ∆s(1) is that, after integration by parts, its contri-

bution vanishes by the equation of motion for y0. However, a boundary term is generated

in the course of integrating by parts. In fact, this boundary term does not vanish and must

instead be subtracted out so that the variational principle for y0 be well-defined. Further-

more, in principle, there is an infinite hierarchy of such subtractions at higher and higher

order. We will discuss these boundary terms for both the uncharged and charged cases in

subsection 3.2.3.

For the same reason as above, to compute the second-order change in HEE, one needs

the embedding only up to the first order.4 In the course of our analysis of boundary terms in

3Note that counterterms must be subtracted from the pure AdS result if one wants to calculate that term
by itself (see [90]). This must also be done for the AdS black hole background separately. One considers
differences in HEE partly in order to avoid these complications.

4The nontrivial relationship between the depth of the RT surface in the bulk and the radiusR of the entan-
gling region complicates the disentangling of second-order contributions when using the r(z) parametriza-
tion. Nevertheless, using this method we get results consistent with the z(r) parametrization if we use the
full embedding function to second order.
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Section 3.2.3, we will derive the useful relations (3.54) and (3.65). Using these relations,

we find

∆s(2) = s0,2 + s0,11 + s1,1 + s2,0 =
1

2
s1,1 + s2,0. (3.39)

Using (3.65) to solve for s0,11 in terms of s1,1 is a substantial simplification since the latter

is operationally much easier to compute than is the former. Nevertheless, we still verified

this relation explicitly in this case. The final result is

∆s(2) = −
√
π

2d+4

(d− 1)Γ(d+ 1)

(d+ 1)Γ
(
d+ 3

2

) . (3.40)

For the third-order change, one finds

∆s(3) = s0,3 + s0,12 + s1,2 + s0,111 + s1,11 + s2,1 + s3,0

= s0,111 + s1,11 + s2,1 + s3,0. (3.41)

Indeed, the central result of Section 3.2.3 states that the embedding function up to the first

order is sufficient to compute ∆s up to the third order. The final result is

∆s(3) =
(9d2 − 19d+ 6)

192(d+ 1)2

Γ(d+ 1)Γ
(
d+1

2

)
Γ
(3(d+1)

2

) . (3.42)

With y2, we ought to be able to compute ∆s(4). However, as previously stated, we are

unable to evaluate the necessary integrals using the general form of y2 in (3.19). Already at

this point, the results for specific values of d are sufficiently complicated that we are unable

to infer a general formula as a function of d.

To summarize,
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∆s(1) =
1

2(d+ 1)
, (3.43)

∆s(2) = −
√
π

2d+4

(d− 1)Γ(d+ 1)

(d+ 1)Γ
(
d+ 3

2

) , (3.44)

∆s(3) =
(9d2 − 19d+ 6)

192(d+ 1)2

Γ(d+ 1)Γ
(
d+1

2

)
Γ
(3(d+1)

2

) . (3.45)

The first- and second-order terms agree with [74]. The third-order term is a genuinely

new result. Note that ∆s(2) ≤ 0, as required by the first law of entanglement [74]. Interest-

ingly, ∆s(3) is positive and the ∆s(4) results are all negative. It appears that ∆s is positive

in odd orders and negative in even orders.

3.2.2 Charged AdS Black Hole:
For the charged AdS BH, the perturbation parameter is η. Thus, the change of entan-

glement entropy with respect to pure AdS can be written as the following expansion,

∆s = ηd∆s(1,0) + η2d−2∆s(0,1) + η2d∆s(2,0) + η3d−2∆s(1,1) + · · · , (3.46)

where we extend the notation for the expansion of the embedding function introduced in

(3.27) to the change in HEE: ∆s(~n) is the term in ∆s of order |~n|, where |~n| was defined in

(3.26).

Our goal, in this case, is to compute the change in HEE for the charged BH up to order

(3d − 2). As shown in [74], to compute the HEE up to order (2d − 2), it is enough to
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take only y(0,0)(x). As in the uncharged case, this fact is actually just one of a hierarchy of

such facts, which is the central result of our analysis of boundary terms in Section 3.2.3.

For example, to compute the change in HEE to order (3d − 2), it is enough to use the

embedding up to order d, which is y(1,0)(x). This is due to the fact that the contribution of

y(0,1)(x) to ∆s(1,1) vanishes by virtue of the Euler-Lagrange equation defining y(1,0)(x).

We have already mentioned how to get y(1,0)(x) from the uncharged BH results in

(3.29). Using this, we can determine the change of HEE up to our desired order. The

following are the results up to order (3d− 2),

∆s(1,0) =
(1 + p2)

2(d+ 1)
= (1 + p2)∆s(1), (3.47)

∆s(0,1) = −p2d− 1

2
π
d+1
2

Γ
(
d
2

)
Γ
(
d+ 1

2

) , (3.48)

∆s(2,0) = −(1 + p2)2 π
1
2

2d+4

(d− 1)Γ(d+ 1)

(d+ 1)Γ
(
d+ 3

2

) = (1 + p2)2∆s(2), (3.49)

∆s(1,1) = p2
(
1 + p2

) (3d− 5)Γ(d)Γ
(
d+1

2

)
8(d+ 1)Γ

(
3d
2

+ 1
2

) . (3.50)

We observe that for the charged BH, ∆s(1,0) and ∆s(1,1) are positive definite whereas

∆s(0,1) and ∆s(2,0) are negative definite. Another fact that we can observe from (3.47) and

(3.49) is the relation between changes of HEE for uncharged and charged black holes. This
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can be generalized in the following way,

∆s(n,0) = (1 + p2)n∆s(n), (3.51)

where n is an integer. This is an expected observation analogous to (3.29). These results

will be important again after we compute the change of sub-region complexity.

3.2.3 Boundary Terms:
As in [74], we implicitly subtract off some boundary terms in the change in HEE.

This is justified as long as we take care to do this consistently. We give two cautionary

examples which demonstrate that consistency requires certain integral boundary terms to

be subtracted out. It should then be clear how to formalize these examples into proof of the

central results of this subsection:

1. Uncharged BH: ∆s(n) is determined by the embedding function up to and including

ybn
2
c;

2. Charged BH: ∆s(~n) is determined by the embedding function up to and including

y~m, where ~m is the highest possible order such that |~m| ≤ |~n|
2

.

The relationship (3.29) between the embedding function for the uncharged case and the

charged case implies that the first point above is a special case of the second point. In other

words, the second point reduces to the first when q = 0.

As a generalization of the fact discussed earlier that y1 does not contribute to ∆s(1),

consider the contribution of yn to ∆s(n) for n ≥ 1, which is just

s0,n =

∫ 1

0

dx

(
δs0

δy

∣∣∣∣
0

yn +
δs0

δy′

∣∣∣∣
0

y′n

)
, (3.52)
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where the symbol |0 means “set y = y0”. Integrating by parts and ignoring boundary terms

gives

s0,n =

∫ 1

0

dx

[
δs0

δy
−
(
δs0

δy′

)′]∣∣∣∣
0

yn. (3.53)

The expression in the square brackets is precisely the Euler-Lagrange equation defining y0,

which therefore vanishes when evaluated on y = y0. Thus,

n ≥ 1 : s0,n = 0. (3.54)

Of course, a boundary term was ignored in the process, which is given by

sbdy
0,n =

(
δs0

δy′

∣∣∣∣
0

yn

)∣∣∣∣
x=1

−
(
δs0

δy′

∣∣∣∣
0

yn

)∣∣∣∣
x=0

. (3.55)

Note that δs0
δy′

vanishes at x = 0 for the full function y and not just y0. Since yn is finite at

x = 0, the boundary contribution at x = 0 vanishes. However, even though yn(1) = 0, the

boundary contribution at x = 1 does not necessarily vanish because δs0
δy′

contains a factor

of y1−d, which diverges as x → 1. Indeed, for n = 1, one sees from (3.17) that y1 is yd−1
0

multiplied by a function which is finite at x = 1. The resulting boundary term is

sbdy
0,1 =

1

2(d+ 1)
, (3.56)

which happens to be exactly equal to ∆s(1) = s1,0. If one were to include sbdy
0,1 , then one

would overestimate ∆s(1) by a factor of 2.

For n = 2, one can show that the behavior of y2 in (3.19) near x = 1 is (1 − x2)d−
3
2 ,

whereas y1−d
0 ∼ (1 − x2)

1−d
2 . Thus, the boundary function behaves like (1 − x2)

d
2
−1 near

x = 1 and thus the boundary term vanishes identically except for d = 2 or AdS3. Since
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we do not have y3 or higher in closed analytic form as a function of d, we cannot prove

that this holds in general, but we have verified up to AdS13 (not included AdS12) that the

boundary term also vanishes when n = 3 except for AdS3. As was hinted at earlier, that

AdS3 is a special case can be seen quite clearly in the plots of the higher-order embedding

functions in Figure 3.1. The intuition here is that the boundary term s0,n arises because yn

is not “flat enough” at x = 1. Evidently, y1 is never flat enough, regardless of the value of

d. On the other hand, for n ≥ 2, yn is flat enough except for AdS3, which is not flat at all.

Nevertheless, the boundary term must be subtracted out anyway.

It should be clear why the boundary term must be subtracted out of the final result, or

simply ignored in the first place. If this is not done, then the variational principle used to

determine y0(x) is not well-defined. As in the case of the Gibbons-Hawking-York bound-

ary term in General Relativity, the appropriate boundary term must be added (or, indeed

subtracted) to provide a well-defined and consistent variational principle.

For our second example highlighting the technicalities of boundary terms, consider the

contribution of yn to ∆s(n+1) for n ≥ 1. Firstly, let us discuss how one derives the Euler-

Lagrange equation for y1. The leading term quadratic in y1 is s0,11, which is of order 2. We

add to s0,11 all the terms which are of order 2 and linear in y1, namely s1,1. Finally, we take

a variation of the sum s0,11 + s1,1 with respect to y1. Let us first write this sum out:

s0,11 + s1,1 =

∫ 1

0

dx

(
δ2s0

δy2

∣∣∣∣
0

y2
1 +

δ2s0

δyδy′

∣∣∣∣
0

y1y
′
1 +

δ2s0

δy′2

∣∣∣∣
0

y′1
2 +

δs1

δy

∣∣∣∣
0

y1 +
δs1

δy′

∣∣∣∣
0

y′1

)
.

(3.57)

The variation with respect to y1 gives

δ(s0,11 + s1,1)

δy1

= 2
δ2s0

δy2

∣∣∣∣
0

y1−
(
δ2s0

δyδy′

∣∣∣∣
0

)′
y1−2

(
δ2s0

δy′2

∣∣∣∣
0

y′1

)′
+
δs1

δy

∣∣∣∣
0

−
(
δs1

δy′

∣∣∣∣
0

)′
(3.58)
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The vanishing of the above variation is the Euler-Lagrange equation for y1. Note that the

homogeneous part of the equation comes from s0,11. In general, the homogeneous part of

the equation for yn when n ≥ 1 comes from s0,nn. It is therefore not surprising that the

homogeneous part of the Riemann-Papperitz equation (3.13) defining yn is the same for all

n ≥ 1.

Now, note that the contribution of yn to ∆s(n+1) for n ≥ 1 comes from s0,1n and s1,n.

The first of these contains a relative factor of 2 when n = 1 versus when n ≥ 2:

n = 1 : s0,11 =

∫ 1

0

dx

(
δ2s0

δy2

∣∣∣∣
0

y2
1 +

δ2s0

δyδy′

∣∣∣∣
0

y1y
′
1 +

δ2s0

δy′2

∣∣∣∣
0

y′1
2

)
, (3.59)

n ≥ 2 : s0,1n =

∫ 1

0

dx

(
2
δ2s0

δy2

∣∣∣∣
0

y1yn +
δ2s0

δyδy′

∣∣∣∣
0

(y1y
′
n + yny

′
1) + 2

δ2s0

δy′2

∣∣∣∣
0

y′1y
′
n

)
. (3.60)

The other contribution, s1,n, is given for n ≥ 1 by

n ≥ 1 : s1,n =

∫ 1

0

dx

(
δs1

δy

∣∣∣∣
0

yn +
δs1

δy′

∣∣∣∣
0

y′n

)
. (3.61)

Integrating by parts and ignoring boundary terms gives

n = 1 : s0,11 =

∫ 1

0

dx

[
δ2s0

δy2

∣∣∣∣
0

y1 −
1

2

(
δ2s0

δyδy′

∣∣∣∣
0

)′
y1 −

(
δ2s0

δy′2

∣∣∣∣
0

y′1

)′]
y1, (3.62)

n ≥ 2 : s0,1n =

∫ 1

0

dx

[
2
δ2s0

δy2

∣∣∣∣
0

y1 −
(
δ2s0

δyδy′

∣∣∣∣
0

)′
y1 − 2

(
δ2s0

δy′2

∣∣∣∣
0

y′1

)′]
yn, (3.63)
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n ≥ 1 : s1,n =

∫ 1

0

dx

[
δs1

δy

∣∣∣∣
0

−
(
δs1

δy′

∣∣∣∣
0

)′]
yn. (3.64)

When s0,1n and s1,n are summed together, then, for n ≥ 2, the expression multiplying yn is

precisely the Euler-Lagrange equation defining y1(x) and therefore the sum vanishes. For

n = 1 one has to multiply s0,11 by 2 to get the same result. Therefore,

n = 1 : 2s0,11 + s1,1 = 0, (3.65)

n ≥ 2 : s0,1n + s1,n = 0. (3.66)

Of course, boundary terms were ignored to get the above result. These boundary terms

should actually appear on the right-hand side of the above equations, instead of 0. Never-

theless, these boundary terms have to be subtracted out anyway to yield a well-defined and

consistent variational principle for y1(x).5 In fact, we have an even more immediate sign

that these boundary terms must be subtracted out: if not, then the result for ∆s(2) for the

AdS3 black hole would be 1
120

instead of − 1
180

. This is a positive number, which violates

the first law of entanglement stated in [74].

This argument generalizes completely to the following statement: the contribution of yn

to ∆s(n+m) for n ≥ 1 and m < n vanishes. Also, for m = n, the contribution is just equal

5Again, at least in the case of n = 2 and n = 3, which is as far as we have expanded the embedding
function in this work, it turns out that the boundary terms that have been ignored above actually vanish
identically except for AdS3. So, the process of subtracting out these boundary terms is only nontrivial for the
case of AdS3.
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to −s0,nn. The procedure is exactly the same as with m = 1. The desired contribution is

m∑
q=0

∑
P (m−q)

sq,P (m−q)n, (3.67)

where P (m − q) stands for all partitions of m − q into a list of integers which are non-

decreasing read left to right. Meanwhile, the Euler-Lagrange equation for ym is derived by

taking the variation with respect to ym of the exact same sum, but with yn replaced with

ym. The same analysis as for m = 1 shows that

m∑
q=0

∑
P (m−q)

sq,P (m−q)n =


0, n ≥ 1 and m < n,

−s0,nn, n ≥ 1 and m = n.

(3.68)

The sum does not simplify in general for m > n and is generally nonzero.

This argument generalizes with only cosmetic changes to the charged case: the contri-

bution of y~n to ∆s(~n+~m) vanishes when |~m| < |~n| and is equal to −s0,~n~n when |~m| = |~n|.

These statements are equivalent to the central result stated at the beginning of this

subsection.

3.3 Holographic Sub-region Complexity:

We now compute the change in HSC. The volume is given by

V = Ωd−2L
d

∫ R

0

dr rd−2

∫ z(r)

εR

dz

zd
√
f(z)

, (3.69)
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where we have introduced a cut-off εR near z = 0. The HSC is related to this by (2.25).

We define the reduced HSC c as the HSC measured in units of Ωd−2

d−1

(
L
`P

)d−1:

c ≡ C
Ωd−2

d−1

(
L
`P

)d−1
. (3.70)

In terms of the dimensionless variables,

c = (d− 1)

∫ 1

0

dx xd−2

∫ y(x)

ε

dy

yd
√
f(y)

. (3.71)

The subscript notation we defined for s carries through for c. The blackening functions f(y)

for uncharged and charged black holes are as mentioned in Section 3.2. An important point

to remember here is that, in contrast to the HEE case, to calculate the HSC to some order,

we require the embedding function up to that same order. The simplifications that arose in

the HEE case were due to the fact that the embedding function is derived by minimizing the

area integral. No such simplification will occur in general for the volume integral. Now we

jump into specific results for the uncharged and charged BH in the following subsections.

3.3.1 Uncharged AdS Black Hole:

The quantity of interest here is the change in going from the pure AdS case to the

uncharged AdS black hole case,

∆c = c− c0,0. (3.72)

which is finite as ε→ 0 and is at least first order in λ:

∆c = λ∆c(1) + λ2∆c(2) + λ3∆c(3) + · · · . (3.73)
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In fact, we find that the first-order term vanishes. This result was stated in [4, 92] and

demonstrated explicitly in [87]. Therefore, the change in HSC is at least second order.

Again, since we are unable to compute the requisite integrals using the general formula for

y2 in (3.19), nor do we have a general formula for y3, we must infer the general formulae

for ∆c(2) and ∆c(3) from the results at specific values of d. This might seem rather hopeless

at first. However, we do have some amount of guidance from the pieces in ∆c(2) and ∆c(3)

that depends only on y0 and y1, which we can compute exactly. This guidance is enough

for us to determine the formulae in general. We use the results for AdS3 to AdS7, the cases

of greatest interest in the AdS/CFT context, to come up with general formulae as functions

of d. We then test these formulae in the cases of AdS8 to AdS13, excluding AdS12 for ∆c(3)

since y3 for AdS12 is too lengthy and complicated to compute the requisite integrals. The

results as functions of d are

∆c(1) = 0, (3.74)

∆c(2) =

√
π

2d+2(d+ 1)

Γ
(
d+1

2

)
Γ
(
d
2
− 1
) , (3.75)

∆c(3) = −d(9d− 4)(2d− 3)(d− 1)(d− 2)

192(d+ 1)2

Γ
(
d− 3

2

)
Γ
(
d+1

2

)
Γ
(

3d
2

+ 1
) . (3.76)

The AdS3 and AdS4 results for ∆c(2) agree with [4], namely 0 and 1
128

, respectively.

Now, we have a formula for general d, not only for ∆c(2), but for ∆c(3) as well.

We observe some interesting behavior in ∆s and ∆c up to third order in uncharged
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Figure 3.3: Plots of ∆s and ∆c to second- and third-order in the uncharged black hole
background. The points are explicitly calculated values. The curves are plots of the general
formulae.

black holes. Note that ∆s(2) is negative whereas ∆c(2) is positive (or 0 for AdS3). In the

third order, the signs flip and ∆s(3) is now positive whereas ∆c(3) is negative (or 0 for

AdS3). Only the sign of ∆s(2) is constrained to be negative by the first law of entanglement

[74]. It is tantalizing that, ∆c appears to be of opposite sign as compared with ∆s at each

order (see Figure 3.3). We will find that this behavior continues to hold for the charged

black hole. It would be interesting to see if this behavior persists in other scenarios and to

higher orders and if it can be proven in general.

3.3.2 Charged AdS Black Hole:

In the charged AdS black hole case, we expand ∆c up to the first four orders for general

d:

∆c = ηd∆c(1,0) + η2d−2∆c(0,1) + η2d∆c(2,0) + η3d−2∆c(1,1) + · · · . (3.77)

Again, as in the case of entanglement entropy, we find
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∆c(1,0) = (1 + p2)∆c(1), (3.78)

∆c(2,0) = (1 + p2)2∆c(2), (3.79)

similar to (3.29) and (3.51). For the newly appearing orders (2d − 2) and (3d − 2) in

the charged BH case, we use embedding functions y(0,1)(x) and y(1,1)(x) derived for d = 3,

4, 5 and 6, presented in Appendix B of [5]. Using these embedding functions, we compute

the sub-region complexity changes at orders (2d− 2) and (3d− 2) for the aforementioned

d values. As in the uncharged case, we can separate out the dependence of these results

on y(1,0), which we do know for general d values. Using this piece as guidance, we can

deduce the changes of sub-region complexity at order (2d − 2) and (3d − 2) for general

d. We then checked our formula against results calculated for d values higher than 6 (up to

10). Indeed, our formula reproduces correct results in those cases as well. The following

are our expressions of ∆c(0,1) and ∆c(1,1):

∆c(0,1) = p2 π
1
2

2d+1

(d− 2)Γ
(
d−1

2

)
Γ
(
d
2

) , (3.80)

∆c(1,1) = −p2(1 + p2)
3(d− 1)(d− 2)Γ

(
d− 1

2

)
Γ
(
d+1

2

)
4(d+ 1)Γ

(
3d
2

) . (3.81)

Looking at these results (3.78), (3.79), (3.80), (3.81) and comparing them with the signs

of (3.47),(3.48),(3.49)and (3.50), we again see that whenever ∆s at some order is positive

(negative) definite, ∆c is negative (positive) definite. Therefore, for both the uncharged
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black hole (pure stress tensor perturbation) and the charged black hole (mixed stress tensor

and current perturbation), we observe that the change in HEE and HSC at some particular

order come with opposite sign. We add that this relative minus sign between the change in

HEE and HSC also holds for the leading-order result in the case of a perturbation due to a

scalar of conformal dimension ∆ [74, 87].

3.4 Entanglement Thermodynamics:

The field theories dual to the uncharged and charged AdS black holes are correspond-

ingly charged and uncharged perfect fluids with stress tensor taking the form

Tµν = (E + P )uµuν + Pηµν , (3.82)

where E is the energy density, P is the pressure, and uµ is the fluid velocity. In addition,

the fact that the dual field theory is actually a CFT implies that

P =
E

d− 1
. (3.83)

Matching this with the boundary metric for the case of the uncharged black hole gives the

standard AdS/CFT dictionary relationship between the boundary energy density and bulk

geometric data,

E =
d− 1

2

(
L

`P

)d−1
1

zdh
.

Both the uncharged and charged AdS black holes correspond to perfect fluids at rest, with a

fluid velocity is given by uµ = δµ0 . The stress tensor for the charged case is (1+q2z2
h) times

the stress tensor for the uncharged case in which the uncharged horizon radius is replaced

with the charged one. Both cases have a constant energy density and therefore the energy

66



contained in the ball entangling region of radius R scales as Rd−1 for both cases. To be

precise, for the uncharged black hole,

∆E =

∫
T00 dΩd−2 r

d−2dr =
1

2
Ωd−2

(
L

`P

)d−1
Rd−1

zdh
, (3.84)

and the charged case is the same result multiplied by (1 + q2z2
h). In other words, ∆E

is proportional to λ in the uncharged case and ηd in the charged case. This is not just

a perturbative result but is an exact one. Meanwhile, for the uncharged black hole, we

expand out the entanglement entropy as

∆SE = ∆S
(1)
E + ∆S

(2)
E + · · · , (3.85)

where ∆S
(n)
E is a term in ∆SE which is of order λn.6 We now place the explicit subscript

“E” to remind the reader that we are dealing with entanglement entropy and not the usual

thermodynamic entropy here. Nevertheless, the central idea of entanglement thermody-

namics in [8] is to make an analogy with thermodynamics and to define the entanglement

temperature in such a way that

∆E = TE∆S
(1)
E . (3.86)

Let us make the following two observations regarding this relation:

1. This is a perturbative relation that holds only at leading order;

2. To extend this relationship beyond leading order, one must introduce new terms be-

cause ∆E is exactly first-order while ∆SE contains higher-order corrections. Indeed,
6Note that ∆s(n) does not contain explicit powers of λ since that is factored out when we write (3.37).

However, our convention here is that ∆S
(n)
E does contain an explicit factor of λn.
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the new term would serve to cancel TE∆S
(2)
E at second order.

On the other hand, as we pass to the non-perturbative regime, in which the sub-region

covers more and more of the entire boundary CFT, the entanglement entropy approaches

the thermodynamic one, which does satisfy the laws of black hole thermodynamics. We

are motivated, therefore, to try to extend the above relation at least to second order. In

analogy with the usual first law, we write

∆E = TE∆SE +WE, (3.87)

where WE is some entanglement work analogous to thermodynamic work and encom-

passes the new terms mentioned in point 2 above to make the relation hold to a higher or-

der. It is important to point out that it is ∆E that appears in this relation and not TE∆〈H〉,

where H is the modular Hamiltonian. Firstly, the modular Hamiltonian is in general a very

non-local quantity whose connection to energy is unclear. Only in the case of spherical

sub-regions in CFTs in a vacuum do we find such a direct relationship between the mod-

ular Hamiltonian and energy. Of course, that happens to be the case in the study in this

work, but the first law of entanglement thermodynamics ought to be more widely applica-

ble than that. Secondly, if we were to base the first law around the modular Hamiltonian,

then WE would be equivalent to TESrel, where Srel is the relative entropy, which is always

non-negative, regardless of the initial and final state. Furthermore, for the first law to have

any actual content, the work term must have an entirely distinct ontology from energy and

entanglement. Otherwise, WE could simply be defined as ∆E−TE∆SE . What could this

work term be?

We do not know the answer to this question. However, we would like to point out

that we are not really the first to pose the question in the first place. The question turns
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out to be essentially equivalent to the problem studied in [87] based off of [4]. In fact,

the authors of [87] propose an answer to this question: the entanglement work contains a

term proportional to the change in sub-region complexity. To be very careful, [87] does

not actually propose this directly. Instead, they propose that the Fisher information is

proportional to the second-order change in the volume of the RT surface. In the context of

our perturbative analysis around pure AdS, the Fisher information is just

F =
d2

dλ2

(
∆〈H〉 −∆SE

)∣∣∣
λ=0

= − 2

λ2
∆S

(2)
E =

π3/2

2d+2

(d− 1)Γ(d+ 1)

(d+ 1)Γ
(
d+ 3

2

)Ωd−2

(
L

`P

)d−1

.

(3.88)

On the other hand, the change in RT volume is related to the change in sub-region com-

plexity:

∆V (2) =
Ωd−2

d− 1
Ld∆c(2) =

√
π

2d+2(d− 1)(d+ 1)

Γ
(
d+1

2

)
Γ
(
d
2
− 1
)Ωd−1L

d. (3.89)

Therefore, the proportionality constant Cd defined in [87] via F = Cd∆V
(2) is given by

Cd =
π(d− 1)2Γ(d+ 1)Γ

(
d
2
− 1
)

λ2L`d−1
P Γ

(
d+ 3

2

)
Γ
(
d+1

2

) . (3.90)

Note that this is the first time that this coefficient has actually been computed explicitly

since the expression in [87] contains a function of d that was unknown until now. There is

an ambiguity in the small parameter λ and thus an ambiguity in the definition of F . In [75],

the derivative is taken with respect to a parameter µ, which is related to our parameterm by

m = 2µ. Therefore, our F in (3.88) is related to the Lashkari-van Raamsdonk expression

by F = 4R2dFLvR. Note that they also set L = 1 and GN = 1
8π
`d−1

P = 1. Therefore, one

finds FLvR =
√
π

2d+3

(d−1)Γ(d+1)

(d+1)Γ(d+ 3
2

)
Ωd−2R

2d, which is indeed R4

45
for AdS3, as stated in [75].

Therefore, taken at face value, the suggestion in [87] is that ∆S
(2)
E is proportional to
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∆V (2), where V is the volume of the RT surface. Therefore, though this was not its express

intention, [87] suggests identifying the entanglement work with the change in the volume

of the RT surface:

∆E = TE∆SE + P∆V, (3.91)

where P is a concomitant pressure7, which is related to the coefficientCd introduced in [87]

and computed in (3.90) via

P = TE
λ2

2
Cd =

d+ 1

4πR

(
R

zh

)2

Cd. (3.92)

The relationship between volume and complexity then says that we can equally well ex-

press the entanglement work in terms of the change in HSC,

∆E = TE∆SE +B∆C, (3.93)

where B = L`d−1
P P .

In this picture, the change in HEE is morally playing the role of heat and the change

in HSC is playing the role of work. In fact, the definition of complexity naturally contains

within it connotations of work. It is usually defined roughly as the minimum number of

unitary transformations from some prescribed collection of such transformations required

to transform some particular reference state into the desired target state. It is sometimes

intuitively described as the amount of “computational power” or “resources” needed to per-

form these operations. It is certainly not a stretch to associate this intuitive idea with some

concept of work. Indeed, once a concrete and practicable definition of complexity in field

theory is given, and assuming some relation like (3.93) exists, then one could presumably

7This pressure is unrelated to what is called entanglement pressure in [8].
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exploit the relation to run information-theoretic periodic cycles (a.k.a. engines).

The apparent pattern that ∆C and ∆S are of opposite sign at each order is further

indication that such a relation (3.93) might hold. However, this cannot be the whole picture.

This relation holds up to the second-order but does not hold in the third order. Of course,

we should have known that this cannot be the whole picture since it would have implied

that ∆S and ∆C are not independent for the case in study. On the other hand, there is

a sense in which ∆C carries more, or at least different, information than ∆S, since ∆C

requires more information about the embedding function than does ∆S. As we have shown

in Section 3.2.3, the n-th order ∆S is determined by the embedding function up to at most

half that order. On the other hand, ∆C to n-th order depends on the embedding function

up to that same order n. Thus, while there does appear to be a flow of information from

being in the form of entanglement to sub-region complexity, this transfer is not complete.

From the perspective of a speculative theoretical engine, part of the work in a cycle can

arise as changes in complexity, and part of it can arise as something else, just as it can arise

as changes in volume as well as particle number in more familiar thermodynamic cases.

What other information-theoretic quantities might contribute to WE is a question worth

investigating. There are a number of important works deriving Einstein’s equations from

entanglement, to first order (e.g., in [93]) and then to second order (e.g., [94]; see also [95]).

These relate the variations of the relative entropy to bulk integrals in a formalism developed

in [96]. This approach claims an exact first law of entanglement entropy from the start and

it is plausible that we are rediscovering this same result perturbatively.
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CHAPTER 4

ENTANGLEMENT THERMODYNAMICS

AND FISHER INFORMATION METRIC FOR

NON-SUSY BLACK D3 BRANE

In this chapter, we discuss our results from [6] and [7].

We discuss entanglement and sub-region complexity in a class of non-supersymmetric

black solutions that are asymptotically AdS. Non-supersymmetric solutions are an im-

portant case study given the QCD theory doesn’t enjoy the supersymmetries. Therefore,

if a holographic gravity dual of a QCD theory exists, that is also expected to be non-

supersymmetric. Firstly, we discuss very briefly about D branes and howAdS5×S5 comes

out from the throat of supersymmetric theories. In this context, it is important to mention

that the best-studied version of the duality, where the gravity side is AdS5 × S5, can be

derived from the decoupling limit of the supersymmetric D3 brane solutions of type II B

string theory (linearized weak gravity version, SUGRA). Dp branes are extended objects
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in p spatial dimensions as solutions of string theory. These branes are objects where open

strings end. They can be obtained by quantizing the string with Dirichlet boundary condi-

tions. They can also be realized as objects charged under the antisymmetric tensor fields

Aµ1...µp+1 . They are dynamic objects and follow the action

S = −TDp
∫
dp+1x[...] (4.1)

Tension TDp = 1
(2π)pgs(ls)p+1 . Here inverse proportionality with gs confirms the non-

perturbative nature and dependence on ls is computed from the dimension analysis.

Now we discuss few concepts of Dp branes briefly.

• Dp branes have two kinds of excitations. The d.o.f corresponding to rigid motions

can be parametrized by (9-p) coordinates transverse to (p+1) dimensional volume in

the 10d target space. These are scalar fields.

• Dp branes also have internal excitations. Here we recall that endpoint of a string is a

charge. This charge corresponds to an Abelian gauge field living in the world volume

of Dp branes.

• Dirac-Born-Infeld Action takes into account both the excitations

SDBI = −TDp
∫
dp+1x

√
(gµν + 2πl2sFµν) (4.2)

gµν is the induced metric on the worldvolume and Fµν is the strength of the Abelian

gauge field.
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• In flat space the induced metric takes the form

gµν = ηµν + (2πl2s)
2∂µφ

i∂νφ
i (4.3)

• The Dirac-Born-Infeld action is expanded then up to quadratic terms and we get

S
(2)
DBI = − 1

g2
YM

(
1

4
FµνF

µν +
1

2
∂µφ

i∂µφi + ....) (4.4)

which is the ordinary action of gauge field and (9-p) scalar fields with Yang-Mills

coupling. gY−M = 2(2π)p−2(ls)
p−3gs.

• In the case of D3 branes in 10 d target space, the world volume is 3 + 1 = 4 dimen-

sional and we have 6 scalar fields. The corresponding 4 dimensional SU(N) gauge

theory can be identified with the super Yang-Mills theory with 4 supersymmetries

which is an exact CFT and a major example of the duality. in this case g2
Y−M = 4πgs

(dimensionless).

4.1 D Branes and Relation to Gravity:
In string theory, all kinds of matter distort spacetime. This can be measured by solving

Einstein’s equation and the action takes the form

S =
1

16πG

∫
d10x(

√
−g)R + ... (4.5)

and the 10 d Newton’s constant is related to gs and ls as

16πG = (2π)7(gs)
2(ls)

8 (4.6)
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Dp branes are solutions to Einstein’s equations. If we consider these solutions at the

level of linearized weak gravity, the metric for a point-like particle in D dimensions look

like

ds2 ≈ −(1 + 2ϕ)dt2 + (1− 2

D − 3
ϕ)(dx2

1 + .....dx2
D−1) (4.7)

ϕ parametrizes the deviation of the matric from D dimensional Minkowski metric.In 4d

, ϕ can be thought of as Newtonian potential and generalizing this idea in D dimensions,

ϕ ≈ GM

rD−3
(4.8)

(M is the mass of the particle and r =
√

(x2
1 + ...x2

D−1) is the radial distance in space).

ϕ is a solution of Poisson’s equation in D-1 dimensions and the no. of transverse directions

of the object is dT = D−1⇒ D−3 = dT −2. For an extended along p spatial dimensions

dT = D − p− 1 and ϕ ≈ GM
rD−p−3 . Then the metric takes the form

ds2 = (1 + 2ϕ)[−dt2 + dx2
1 + ...+ dx2

p] + (1− 2(p+ 1)

D − p− 3
ϕ)[dx2

p+1 + .....dx2
D−1] (4.9)

From 10d supergravity solution, the exact metric for D3 brane takes the form

ds2 = H−
1
2 (−dt2 + dx2

1 + dx2
2 + dx2

3) +H
1
2 (dr2 + r2dΩ2

5) (4.10)

where H = 1 + L4

r4
is the warp factor and L4 = 4πNgsl

4
s .

In linearized level this makes ϕ ≈ −1
4
L4

r4
. and thus from our previous form GM ≈ L4.

The geometry of this solution is asymptotically a 10d Minkowski spacetime with a throat

of infinite size. If we take r << 1 in the throat, then H = L4

r4
.Then the metric becomes
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ds2 =
r2

L2
(−dt2 + dx2

1 + dx2
2 + dx2

3) +
L2

r2
dr2 + L2dΩ2

5 (4.11)

Just changing the variable r as r = L2

z
we get

ds2 =
L2

z2
(−dt2 + dx2

1 + dx2
2 + dx2

3 + dz2) + L2dΩ2
5 (4.12)

which is nothing but the metric of AdS5 × S5. In the following section, we briefly

discuss the origin of the non-supersymmetric D branes we study and their decoupling limit.

In this limit, again a strong-weak version of duality is expected to hold but the strongly

coupled field theory, in this case, is supposed to be a non-supersymmetric deformation of

CFT.

4.2 Non-supersymmetric ‘black’ D3 branes and decoupling

limit:
To derive the non-Susy Dp branes, we start from the following action

S =
1

16πG

∫
d10x
√
−g
[
e−2φ (R + 4∂µφ∂

µφ)− 1

2. (8− p)!
F 2

[8−p]

]
, (4.13)

where G is 10d Newton’s constant, φ is the dilaton, g is the determinant of the 10d

string frame metric, R is the Ricci scalar and F[8−p] is (8 − p) Ramond-Ramond form

field. The standard procedure afterward is to solve the equations of motion from this action

by choosing an appropriate form-field and a static, spherically symmetric p brane metric

ansatz. The metric ansatz should satisfy the expected isometries of the action, which is

ISO(p, 1)×SO(9− p). But the difference from the supersymmetric solution is that while

solving the equations of motion of the metric, one needs to relax the supersymmetry condi-
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tion by introducing a nonzero term in the right-hand side of the equation of motion, which

otherwise would have been zero. By introducing this explicitly and not respecting the su-

persymmetry condition, one can get the non-Susy Dp brane solutions. We will not write

the zero temperature solutions explicitly here. But it can be found in [97]. In the following,

we discuss the black non-Susy solution from which one can easily get the zero temperature

result back by taking the appropriate limit of parameters.

The ‘black’ non-susy D3 brane solution of type IIB string theory has been discussed in

detail in [98]. The black version is constructed by introducing anisotropy in t as well as

one of the brane directions. The purpose for our discussion here is to fix the notation and

convention for the computation of HEE and HSC in the next sections. The solution in the

Einstein frame takes the form,

ds2 = F1(ρ)−
1
2G(ρ)−

δ2
8

[
−G(ρ)

δ2
2 dt2 +

3∑
i=1

(dxi)2

]
+ F1(ρ)

1
2G(ρ)

1
4

[
dρ2

G(ρ)
+ ρ2dΩ2

5

]
e2φ = G(ρ)−

3δ2
2

+
7δ1
4 , F[5] =

1√
2

(1 + ∗)QVol(Ω5). (4.14)

where the functions G(ρ) and F (ρ) are defined as,1

G(ρ) = 1 +
ρ4

0

ρ4
, F1(ρ) = G(ρ)

α1
2 cosh2 θ −G(ρ)−

β1
2 sinh2 θ (4.15)

Here δ1, δ2, α1, β1, θ, ρ0,Q are the parameters characterizing the solution. Now to compare

this solution with that given in eq.(6) of [98], we note that we have replaced δ by δ2 here

and also, the function F (ρ) there is related to F1(ρ) by the relation F1(ρ) = G(ρ)3δ1/8F (ρ).

1To be precise, G(ρ) is the function the logarithm of which is introduced in the R.H.S of the equation
of motion to relax the supersymmetry condition. Therefore had the function be simply 1, the solution of
equation of motion would give us the standard D3 branes.
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The parameters α and β there are related to α1 and β1 by the relations α1 = α+ 3δ1/4 and

β1 = β − 3δ1/4. We point out that the parameters are not all independent but they satisfy

the following relations

α1 − β1 = α− β + 3δ1/2 = 0

α1 + β1 = α + β =

√
10− 21

2
δ2

2 −
49

2
δ2

1 + 21δ2δ1

Q = (α1 + β1)ρ4
0 sinh 2θ (4.16)

Note that the solution has a curvature singularity at ρ = 0 and also the metric does not

have the full Poincare symmetry ISO(1, 3) in the brane world-volume directions, rather,

it is broken to R × ISO(3) and this is the reason we call it ‘black’ non-Susy D3 brane

solution. However, we put black in an inverted comma because this solution does not have

a regular horizon as in ordinary black brane but, has a singular horizon. The standard zero

temperature non-Susy D3 brane solution given in eq. (1) of [97] can be recovered from

(4.14) by simply putting δ2 = 0 and identifying 7δ1/4 as δ there. We remark that despite

the solution (4.14) has a singular horizon we can still define a temperature as argued in [99]

and by comparing the expression for the temperature there we can obtain the temperature

of the ‘black’ non-Susy D3 brane as,

Tnonsusy =

(
−2δ2

(α1 + β1)2

) 1
4 1

πρ0 cosh θ
(4.17)

From the above expression, it is clear that for the reality of the temperature the parameter

δ2 must be less or equal to zero. It is straightforward to check that when δ2 = −2 and

δ1 = −12/7 (which implies α1 = β1 = 1 and α1 + β1 = 2), the above solution (4.14)

reduces precisely to the ordinary black D3 brane solution and the temperature (4.17) also
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reduces to the Hawking temperature of the ordinary black D3 brane.

From now on we will put α1 + β1 = 2 for simplicity. Therefore, from the first relation

in (4.16), we have α1 = 1 and β1 = 1. In this case, the parameters δ1 and δ2 will be related

(see the second equation in (4.16)) by

42δ2
2 + 49δ2

1 − 84δ1δ2 = 24 (4.18)

The function F1(ρ) given in (4.15) then reduces to

F1(ρ) = G(ρ)−
1
2H(ρ), where, H(ρ) = 1 +

ρ4
0 cosh2 θ

ρ4
≡ 1 +

R4
1

ρ4
(4.19)

Therefore the Einstein frame metric in (4.14) reduces to

ds2 = H(ρ)−
1
2G(ρ)

1
4
− δ2

8

[
−G(ρ)

δ2
2 dt2 +

3∑
i=1

(dxi)2

]
+H(ρ)

1
2

[
dρ2

G(ρ)
+ ρ2dΩ2

5

]
(4.20)

where H(ρ) is given in (4.19). The decoupled geometry can be obtained by zooming into

the region

ρ ∼ ρ0 � ρ0 cosh
1
2 θ (4.21)

Note that in this limit θ → ∞ and the function H(ρ) can be approximated as H(ρ) ≈

R4
1/ρ

4, but G(ρ) remains unchanged. The metric (4.20) then reduces to,

ds2 =
ρ2

R2
1

G(ρ)
1
4
− δ2

8

[
−G(ρ)

δ2
2 dt2 +

3∑
i=1

(dxi)2

]
+
R2

1

ρ2

dρ2

G(ρ)
+R2

1dΩ2
5 (4.22)

where R1 = ρ0 cosh
1
2 θ is the radius of the transverse 5-sphere which decouples from the

five dimensional asymptotically AdS5 geometry. As the 5-sphere decouples, we will work
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with the rest of the five dimensional geometry to compute the HEE in the next section.

This geometry is the gravity dual of a non-supersymmetric, non-conformal QFT in

(3+1) dimensions at a finite temperature which is also confining and has a running cou-

pling constant very much like QCD. As we saw the geometry is asymptotically AdS5

which means that it can be thought of as some non-supersymmetric and non-conformal

deformation of the CFT which is N = 4, D = 4 SU(N ) super Yang-Mills theory at large

N . We compute the EE, complexity, and Fisher information metric holographically in this

background. The goal of this study would be to gain a better understanding of the various

phases of QCD-like theories and the transitions among them since it is believed that the EE

and the complexity are possibly related to some universal properties like order parameter or

some renormalization group flow [26]. However, this will be clearer once we have a better

picture of the holographic complexity in the (strongly coupled) interacting field theories. In

thermodynamics, the entropy of a system can be increased by injecting energy into the sys-

tem, where the proportionality constant is given by the inverse of temperature. This leads

to an energy conservation relation ∆E = T∆S, the first law of thermodynamics. An anal-

ogous problem was addressed in [81] for the EE, i.e., to see how the EE of a certain region

grows with the increase in energy. Here the EE is computed using AdS/CFT. The excited

state of a CFT is given by the deformation of AdS whose EE can be computed using the

RT proposal. This is then compared with the time component of the boundary stress tensor

Ttt or the energy density. For a small subsystem A, the total energy is found to be propor-

tional to the increase in EE and the proportionality constant is c/`, where c is a universal

constant and ` is the size of the subsystem. This has been identified with the entanglement

temperature in analogy with the first law of thermodynamics [81] and we discussed this in

chapter 3 as well. However, in [8], it has been noted that this is not the complete story.

Since the first law contains more terms here also ∆E can have a term analogous to P∆V
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term. Indeed, by calculating the other components of the boundary stress tensor it has been

found that ∆E contains a term d/(d + 2)Vd∆Px for asymptotically AdSd+2 space, where

∆Px is the pressure normal to the entangling surface and Vd is the volume. Therefore the

analogous entanglement thermodynamical relation takes the form [8],

∆E = TE∆SE +
d

d+ 2
Vd∆Px (4.23)

However, in the study of 3 based on [5], we already absorbed this V∆P term in the

T∆S term. In this chapter we consider the non-Susy D3 brane or, to be precise, a finite

temperature version of that solution in type IIB string theory [98]. We use this gravity dual

to compute the EE of the associated QFT from the Ryu-Takayanagi prescription. Since the

non-Susy D3 brane in the decoupling limit has an asymptotically AdS5 geometry, the HEE

can be written as a pure AdS5 part and the additional part which can be thought of as the

EE associated with an excited state. We use Fefferman-Graham coordinates to compute

the HEE and this helps us to identify the boundary stress tensor quite easily [100, 101].

Having identified the boundary stress tensor we then check that the additional EE of the

excited state indeed satisfies the first law like thermodynamical relation we just mentioned

in (4.23) for a small subsystem. We have identified the entanglement temperature in this

case which is inversely related to the size of the entangling region by a universal constant

and also an entanglement pressure normal to the entangling surface. We also checked that

at higher temperatures the HEE makes a cross-over to the thermal entropy of standard black

D3 brane.

The rest of the chapter is organized as follows. Firstly, we discuss the EE computations,

entanglement thermodynamics of the non-Susy black brane, and its crossover with the

thermal entropy of standard black brane in high-temperature limit in section 4.3. These
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calculations are done for a strip sub-region choice since it gives us an easier way to choose

the high-temperature limit whereas, for the spherical sub-region, the perturbative treatment

doesn’t work well for the high-temperature limit and one necessarily has to use numerics,

which is too hard to practically perform in that case. Then for the latter part of the chapter,

we study the HEE, HSC, and Fisher information for the non-Susy case with the spherical

entangling region in section 4.4.

4.3 Entanglement and Thermal Entropy cross over with

Strip Sub-region:

4.3.1 Holographic entanglement entropy in FG coordinates:

In this subsection we first rewrite our asymptotically AdS5 metric (leaving out the 5-

sphere part) given by

ds2 =
ρ2

R2
1

G(ρ)
1
4
− δ2

8

[
−G(ρ)

δ2
2 dt2 +

3∑
i=1

(dxi)2

]
+
R2

1

ρ2

dρ2

G(ρ)
(4.24)

in the Fefferman-Graham form and then compute the HEE from this geometry. Note that

as ρ → ∞, G(ρ) → 1 and the metric reduces to AdS5 form. The (d + 2)-dimensional

asymptotically AdS space can be written in Fefferman-Graham coordinates as,

ds2
d+2 =

R2
1

r2
dr2 +

r2

R2
1

gµν(x, r)dx
µdxν (4.25)

where gµν = ηµν + hµν(x, r) with

hµν(x, r) = h(0)
µν (x) +

1

r2
h(2)
µν (x) + · · ·+ 1

rd+1
h(d+1)
µν (x) + · · · (4.26)
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and for d = odd, the (d + 3)/2-th term can contain an additional log r piece, however, for

our solution (4.24) this does not appear. Now in order to express (4.24) in the form of

(4.25), we must change the radial coordinate ρ to r. By inspecting (4.24) and (4.25) (for

d = 3), we get the relation,

ρ2 +
√
ρ4 + ρ4

0 = r2 (4.27)

and inverting this relation we get,

ρ2 =
r2

2
− ρ4

0

2r2
(4.28)

By scaling r →
√

2r, the above relation reduces to

ρ2 = r2

(
1− ρ4

0

4r4

)
(4.29)

Using (4.29) the metric (4.24) takes the form,

ds2 =
r2

R2
1

[
−
(

1 +
3δ2

8

ρ4
0

r4

)
dt2 +

(
1− δ2

8

ρ4
0

r4

) 3∑
i=1

(dxi)2

]
+
R2

1

r2
dr2 (4.30)

Since here we are considering only weakly excited states, our geometry will be near the

boundary and that is the reason as a first order approximation we have replaced (1−ρ4
0/r

4)a

by (1 − aρ4
0/r

4) for any real number a in writing the metric (4.30). This choice is also

needed so that we can apply Ryu-Takayanagi prescription for the calculation of EE [3]. To

compute HEE, we choose another coordinate z by the relation z = R2
1/r and rewrite the

metric in the following form,

ds2 =
R2

1

z2

[
−
(

1 +
3δ2

8

z4

z4
0

)
dt2 +

(
1− δ2

8

z4

z4
0

) 3∑
i=1

(dxi)2 + dz2

]
(4.31)

84



where z4
0 = R8

1/ρ
4
0. This is the form of the metric in Fefferman-Graham coordinates.

Now to compute the holographic entanglement entropy , we have to first calculate the

minimal area of the surface embedded in the time slice of the background (4.31) bounded

by the edge of A, i.e., ∂A which is a strip given by −`/2 ≤ x1 ≤ `/2 and 0 ≤ x2,3 ≤ L.

We parameterize the surface γA by x1 = x1(z), then the area of the embedded surface

would be given as,

Area(γA) =

∫
dx1 dx2 dx3

√
g (4.32)

where g is the determinant of the metric induced on γA. For the strip and for the parame-

terization mentioned above, the area reduces to

Area(γA) = R3
1

∫
dx2 dx3 dz

√[
1 +

(
1− δ2

8
z4

z40

)
x′21

] (
1− δ2

4
z4

z40

)
z3

(4.33)

Here ‘prime’ denotes the derivative with respect to z. Now since x1 is a cyclic coordinate

in the above integral (4.33), we get a constant of motion as follows,

(
R1

z

)3

(
1− δ2

4
z4

z40

)
x′1√[

1 +
(

1− δ2
8
z4

z40

)
x′21

] = k = constant (4.34)

Solving this we get x′1 to be

x′1 =
k√(

1− δ2
8
z4

z40

) [(
1− 3δ2

8
z4

z40

) (
R1

z

)6 − k2
] (4.35)

Actually here we are considering the hanging string configuration given by (4.35) in which

the two end points of the string is at the boundary z = 0 and has a turning point at z∗ where
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dz/dx vanishes. This determines the constant of motion k in terms of z∗ as,

k2 =

(
1− 3δ2

8

z4
∗
z4

0

)(
R1

z∗

)6

(4.36)

Substituting this value of k in (4.35) and integrating we find the size of the entangling

region in terms of z∗ as,

` = 2

∫ z∗

0

dz

(
1− 3δ2

16
z4∗
z40

)
√(

1− δ2
8
z4

z40

) [
z6∗
z6
− 1− 3δ2

8
z4∗
z40

(
z2∗
z2
− 1
)] (4.37)

We will assume that the subsystem is very small such that ` � z0 which amounts to

the condition that γA is close to the asymptotically AdS5 boundary. We note from the

above that when the parameter δ2 related to the temperature of the non-susy D3 brane (see

eq.(4.17)) is put to zero, the metric in (4.31) reduces to that of AdS5 and the constant of

motion (4.36), i.e., the turning point z∗ as well as the size of the entangling region in terms

of z∗ (4.37), take the same forms as those of AdS5 case. Therefore, δ2 6= 0 solutions are

the deformations of AdS5 and represent excited states in the boundary theory. The above

relation (4.37) can be simplified (as z, z∗ � z0) as,

` = 2

∫ z∗

0

dz
z3/z3

∗√
1− z6

z6∗

1− 3δ2

16

z4
∗
z4

0

+
δ2

16

z4

z4
0

+
3δ2

16

z4

z4
0

1(
1 + z2

z2∗
+ z4

z4∗

) + · · ·


=

2
√
πΓ
(

2
3

)
Γ
(

1
6

) z∗(AdS5) + δz∗ (4.38)

where z∗(AdS5) is the turning point for AdS5 and δz∗ is the deviation from that value. It has

been shown earlier that there is no change of EE upto the first order due to this change of the

turning point from AdS5. So, in evaluating EE we will use the turning point corresponding
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to AdS5 only and omit the subscript ‘AdS5’ for brevity. To compute EE, we use the value

of k from (4.36) in (4.35) and substitute it in (4.33) to first obtain the minimized area as,

Area(γmin
A ) = 2

∫ L

0

dx2

∫ L

0

dx3

∫ z∗

ε

dz

(
R1

z

)6

√√√√√√
(

1− 5δ2
8
z4

z40

)
(

1− 3δ2
8
z4

z40

) (
R1

z

)6 −
(

1− 3δ2
8
z4∗
z40

)(
R1

z∗

)6

(4.39)

where ε is an IR cut-off and then use equation (2.21) to obtain the EE upto first order in

z4/z4
0 as,

SE = SE(0) +
R3

1L
2

4G(5)

∫ z∗

0

dz

 (−3δ2)z4

8z40

z3
√

1− z6

z6∗

+

δ2z4

8z40

√
1− z6

z6∗

z3

 (4.40)

In the above

SE(0) =
2R3

1L
2

4G(5)

∫ z∗

ε

dz

z3
√

1− ( z
z∗

)6
(4.41)

is the EE of the pure AdS5 background. Note that SE(0) is divergent and that is the reason

we put an IR cutoff at ε to make it finite, but the additional term in (4.40) is divergence free

and we can evaluate the integrals to get the change in EE as,

∆SE =
R3

1L
2

4G(5)

z2
∗

[
(−3δ2)

√
πΓ
(

1
3

)
48z4

0Γ
(

5
6

) +
δ2

√
πΓ
(

1
3

)
80z4

0Γ
(

5
6

) ]

=
R3

1L
2

4G(5)

z2
∗
(−δ2)

√
πΓ
(

1
3

)
20z4

0Γ
(

5
6

) (4.42)

Here z∗ is the value of the turning point for pure AdS5 background given by

z∗ =
`Γ
(

1
6

)
2
√
πΓ
(

2
3

) (4.43)
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Using this in (4.42) we get,

∆SE =
(−δ2)R3

1L
2`2

320
√
πG(5)z4

0

Γ2
(

1
6

)
Γ
(

1
3

)
Γ2
(

2
3

)
Γ
(

5
6

) (4.44)

This is the change in the EE of the decoupled theory associated with the ‘black’ non-Susy

D3 brane from the pure AdS5 solution. We remark that as δ2 = 0 implies from (4.17) that

the temperature of the non-Susy D3-brane vanishes, ∆SE given in (4.44) also vanishes.

This means that the zero-temperature non-Susy D3 brane also has vanishing ∆SE , similar

to the case of ordinary black D3 brane, where it vanishes when the temperature goes to

zero.

As we have already mentioned in section 2, the non-susy D3 brane solution can be

reduced to standard black D3 brane solution when the parameters take the values δ2 = −2

and δ1 = −12/7. Simply taking this limit in (4.44), we find that the change in EE takes the

form,

∆SE =
R3

1L
2`2

160
√
πG(5)z

4
0

Γ2
(

1
6

)
Γ
(

1
3

)
Γ2
(

2
3

)
Γ
(

5
6

) (4.45)

This result can be compared with that given in [81] and we find that they indeed match

once we identify 1/z4
0 = m and d = 4.

4.3.2 Entanglement thermodynamics:

As we mentioned in the previous subsection, the asymptotically AdS space in (d + 2)

dimensions can be expressed in Fefferman-Graham coodinates and it is given in (4.25). In

this coordinate one can extract the form of boundary stress tensor as follows [100, 101],

〈T (d+1)
µν 〉 =

(d+ 1)Rd
1

16πG(d+2)

h(d+1)
µν (4.46)
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The decoupled ‘black’ non-Susy D3 brane geometry (leaving out the S5 part) in Fefferman-

Graham coordinate is given in (4.31). So, using this general formula (4.46) for (4.31), we

can write down the form of the stress tensor for the boundary theory of ‘black’ non-susy

D3 brane as,

〈Ttt〉 =
−3R3

1δ2

32πG(5)

, 〈Txixj〉 =
−R3

1δ2

32πG(5)

δij, where i, j = 1, 2, 3. (4.47)

As we mentioned before, since the parameter δ2 ≤ 0, both temporal as well as spatial com-

ponents of the stress tensor are positive semi-definite. Also since here we are considering

AdS5, we have put d = 3 in (4.46). Now using these values (4.47) we can rewrite the

change in EE given by the first expression in (4.42) as,

∆SE =
L2z2

∗π
3
2

6

Γ
(

1
3

)
Γ
(

5
6

) [〈Ttt〉 − 3

5
〈Tx1x1〉

]
(4.48)

Putting the value of z∗ from (4.43) we get,

∆SE =
L2`2
√
π

24

Γ2
(

1
6

)
Γ
(

1
3

)
Γ2
(

2
3

)
Γ
(

5
6

) [〈Ttt〉 − 3

5
〈Tx1x1〉

]
(4.49)

In terms of the stress tensors the change in total energy and the pressure are defined as,

∆E = L2`〈Ttt〉, ∆Px1x1 = 〈Tx1x1〉 (4.50)

Using this in (4.49) we get the change in EE as,

∆SE = `

√
π

24

Γ2
(

1
6

)
Γ
(

1
3

)
Γ2
(

2
3

)
Γ
(

5
6

) [∆E − 3

5
∆Px1x1V3

]
(4.51)
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where V3 = L2` is the volume of the subspace. Comparing this with the first law of

thermodynamics we identify the entanglement temperature to be

TE =
24Γ

(
5
6

)
Γ2
(

2
3

)
`
√
πΓ
(

1
3

)
Γ2
(

1
6

) (4.52)

We note that the entanglement temperature is inversely proportional to the size ` of the en-

tangling region with a universal proportionality constant [81]. Thus from here, we conclude

that the decoupled theory of ‘black’ non-susy D3 brane satisfies the first law of entangle-

ment thermodynamics

∆E = TE∆SE +
3

5
∆Px1x1V3 (4.53)

This is indeed the relation we mentioned in (4.23) for d = 3 [8].

4.3.3 Cross-over to thermal entropy:

In this subsection we will show how the total HEE of the decoupled theory of ‘black’

non-susy D3 brane we calculated in (4.40) reduces to thermal entropy of that of standard

black D3 brane. For this purpose we first look at the expression for the size of the entan-

gling region in (4.37). By defining z/z∗ as x, the integral can be written as,

`

2
= z∗

∫ 1

0

dx
x3
(

1− 3δ2
16

z4∗
z40

)
√(

1− δ2
8
z4∗
z40
x4
) [

1− x6 − 3δ2
8
z4∗
z40
x4 (1− x2)

]
= z∗I

(
z∗
z0

)
(4.54)
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On the other hand the total area integral given in (4.39) can be written as,

Area(γmin
A ) =

2R3
1L

2

z2
∗

∫ 1

0

dx
1

x3

√√√√√
(

1− 5δ2
8
z4∗
z40
x4
)

(
1− 3δ2

8
z4∗
z40
x4
)
−
(

1− 3δ2
8
z4∗
z40

)
x6

=
2R3

1L
2

z2
∗
Ĩ
(
z∗
z0

)
(4.55)

In the high temperature limit z∗ → z0 and both the integrals I and Ĩ are dominated by the

pole at x = 1 and therefore have the same values, i.e., in this limit

I
(
z∗
z0

)
≈ Ĩ

(
z∗
z0

)
(4.56)

From the second expression of (4.54) we, therefore, have

I
(
z∗
z0

)
=

`

2z∗
≈ Ĩ

(
z∗
z0

)
(4.57)

Using this in the second expression of (4.55) and then dividing by 4G(5), we get the EE at

high temperature as,

SE =
Area(γmin

A )

4G(5)

=
R3

1L
2`

4G(5)z3
∗

=
π3R3

1V3

4G(5)(πz0)3
(4.58)

Now using the five dimensional Newton’s constant G(5) = (πR3
1)/(2N2), where N is the

number of branes and 1/(πz0) = T , where T , is the temperature of the standard black D3

brane, we get from (4.58)
SE
V3

=
π2

2
N2T 3 (4.59)

91



the thermal entropy of a standard black D3 brane. This clearly shows that at high temper-

ature the entanglement entropy of a non-susy D3 brane makes a cross-over [102] to the

thermal entropy of a black D3 brane.

4.4 EE and complexity for (decoupled) ‘black’ non-susy

D3 brane in case of spherical subsystem:
The decoupled geometry of ‘black’ non-susy D3 brane is given in eq.(4.22). To com-

pare our results with those of the previous section we will not directly use this geometry,

but instead try to recast the solution in a form very similar to the AdS5 black hole geom-

etry. For this purpose we first make a coordinate transformation ρ̃4 = ρ4 + ρ4
0. Then we

make another coordinate transformation by taking ρ̃ =
R2

1

z
. With these transformations the

decoupled geometry of non-susy ‘black’ D3 brane (4.22) takes the form

ds2 =
R2

1

z2

[
−(1−mz4)

1
4
− 3δ2

8 dt2 + (1−mz4)
1
4

+
δ2
8

3∑
i=1

(dxi)
2 +

dz2

(1−mz4)

]
(4.60)

where m = 1
z40

and z0 =
R2

1

ρ0
. To compute the entanglement entropy, the complexity and

the associated Fisher information metric for the decoupled geometry of ‘black’ non-Susy

D3 brane we will use the metric given in (4.60) with the choice of a spherical subsystem.

We remark that as the Ryu-Takayanagi area or the volume formula uses the Einstein-frame

metric, we also use the Einstein frame metric for the decoupled ‘black’ non-Susy D3 brane

geometry. This, in turn, takes into account that we have a non-trivial dilaton in the back-

ground. The area integral, after taking the embedding r = r(z), in this case takes the

form,

AnsD3 = 4πR3
1

∫
dz
r(z)2(1−mz4)

δ2
8
− 1

4

z3

[
1 + (1−mz4)

5
4

+
δ2
8 r′(z)2

] 1
2

(4.61)
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Again, as before, we are assuming the small subsystem and consider up to the second-order

change in the metric. To minimize this area, we use the Euler-Lagrange equation of motion

once we consider the area as an action integral. The equation of motion is a bit long and so

we do not write it explicitly here. We just give its solution. As mentioned earlier, we know

that by taking m = 0, we can get back the pure AdS5 case. Thus we take our solution as a

perturbation over pure AdS5 and work with the ansatz

r(z) =
√
L2 − z2 +mr1(z) +m2r2(z). (4.62)

Now solving the equation of motion with this ansatz, and with proper boundary conditions

and regularity conditions , we get r1(z) and r2(z) to be of the form

r1(z) =
1

80

√
L2 − z2

[
(10− 3δ2)L4 + (10− 3δ2)L2z2 + (δ2 + 10)z4

]
,

r2(z) =
1

806400

√
L2 − z2

[
(δ2(5207δ2 − 18900) + 30460)L8

+80(δ2(58δ2 − 189) + 302)L6z2 + 3(δ2(683δ2 − 2100) + 7660)L4z4

+8(δ2(263δ2 − 1260) + 4300)L2z6 + 175(δ2 + 10)(δ2 + 26)z8
]

(4.63)

We can now use this form of r(z) to get the relation between ` and L, but, what we

need is the inverse of that. This comes out as,

L = `+
1

80
m`5(3δ2 − 10) +m2`9 (463δ2

2 − 18900δ2 + 32540)

806400
(4.64)

Using the form of r(z) along with (4.63) in the area integral (4.61) and then expanding the

integral in the second order in m in the way we mentioned before, we perform the integrals

up to order m2.
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After performing the integral (as done before) and replacing L by (4.64), we get the

first and second order change of EE with respect to m as,

∆S
(1)
EE(nsD3) = −πδ2R

3
1

20G5

m`4 (4.65)

∆S
(2)
EE(nsD3) =

(δ2
2 − 10)πR3

1

3150G5

m2`8 (4.66)

Note that both of these matches precisely with the change in EE we obtained for AdS5

black hole once we put δ2 = −2 and provides a consistency check of our result (4.65) and

(4.66).

Now to compute the complexity we have to find the RT volume from the geometry

given in (4.60). The volume integral has the form,

VnsD3 =
4πR4

1

3

∫ L

ε

dz

z4
r(z)3

(
1− δ2

8
mz4

)( δ216−
1
8)

(4.67)

Putting the functional form of r(z) and expanding up to second order in m, we get the

integrals upto second order.

Evaluating these integrals and taking ε→ 0 limit, we find that the change of complexity

upto first order in m is zero similar to the case of AdS5 black hole. On the other hand, the

change of complexity in the second order in m is

∆C
(2)
V (nsD3) =

(
4πR3

1

24πG5

)[
π (60− 9δ2

2)

10240

]
(m`4)2 =

∆V
(2)

(nsD3)

8πR1G5

(4.68)

This can be seen to match with the change in AdS5 black hole complexity once we take

δ2 = −2. Now using the 〈Ttt〉 calculated in the previous section (4.47), the change in
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energy for the non-susy geometry can be obtained as

〈Ttt〉 =
−3R3

1δ2

32πG5

, ∆E =
4π`3

3
〈Ttt〉 = −δ2R

3
1m`

3

8G5

. (4.69)

Thus we see that again we can write the change in EE in the form ∆S
(1)
EE(nsD3) =

∆E
Tent(nsD3)

, where Tent(nsD3) = 5
2π`

. Note that the entanglement temperature remains the

same as for the AdS5 black hole. Similarly, we can express the change in complexity

(4.68) as,

∆C
(2)
V (nsD3) =

5 (60− 9δ2
2)G5

256πδ2
2R

3
1

(
∆E

Tent(nsD3)

)2

(4.70)

We also compute the fidelity and Fisher information metric for the non-Susy geometry.

Comparing this with the general expression of a change of volume (3.90), we identify the

d-dependent constant C4 and fidelity in this case as

C4 =
π (60− 9δ2

2)

10240
, FnsD3 =

π

525G5

R3
1m

2`8 (4.71)

The corresponding Fisher information metric has the form

GFnsD3,λ = ∂2
λFnsD3 =

2π

525G5

R3
1 (4.72)

Interestingly, here we observe that both the fidelity and the Fisher information metric do not

depend on the non-Susy parameter δ2 and by comparison we see that they have the same

value as those of the AdS5 black hole. But this is due to the choice of the d-dependent

constant Cd in the denominator of the fidelity used in [87]. Next, we consider the direct

way of calculating the Fisher information metric as discussed in the previous chapter by

taking the second-order change of the relative entropy. Using the definition given in (3.88)
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and also the relation for ∆V
(2)

(nsD3) in (4.68) we get,

GFnsD3,λ = − 2

λ2
∆S

(2)
EE(nsD3)

=
512 (10− δ2

2)

105π (60− 9δ2
2) πR1λ2G5

∆V
(2)

(nsD3)

=
(10− δ2

2) πR3
1

1575G5

. (4.73)

Here we find that the Fisher information metric indeed depends on the non-supersymmetric

parameter δ2 which at δ2 = −2 gives back the AdS black hole result GFBH ,λ.

It is, therefore, clear that the definition of fidelity, used in [87] which contains the

d-dependent constant Cd needed to get the correct AdS black hole result for Fisher in-

formation metric, does not produce the correct result for the non-supersymmetric back-

ground. This calculation gives the Fisher information metric which is independent of the

non-supersymmetric parameter δ2 and has precisely the same value as that of the AdS5

black hole. However, a direct way of calculating the Fisher information metric given

in [74], yields a different result and in this case, it depends on the non-supersymmetric

parameter δ2 as expected and for δ2 = −2, it gives the correct AdS5 black hole result. We

observe from (4.73) that the decoupled ‘black’ non-Susy D3 brane geometry stores more

quantum Fisher information than its AdS5 black hole counterpart. For δ2 = 0 which corre-

sponds to the zero temperature non-Susy solution, in fact, stores the most quantum Fisher

information, whereas for δ2 = −2, which corresponds to the AdS5 black hole stores the

least.

96



CHAPTER 5

PAGE CURVE AND COMPLEXITY OF

ISLANDS IN MULTIBOUNDARY

WORMHOLE MODELS OF BLACK HOLE

EVAPORATION

This chapter is based on the two papers [9] and [10].

Since the advent of the RT formula, it has gone through many changes. Corrections of

the RT formula (equation (2.21)) due to quantum effects of bulk fields were first discussed

in [21] and later explored in [22,103] which introduced the idea of a QES. Of late, the quan-

tum extremal surface program has been very successfully utilized to reproduce the Page

curve for an evaporating black hole [104] from semi-classical constructions [105–109].

The difficulty in this program was that a systematic description of fine-grained (entangle-

ment) entropy was missing which can be applied both to the black hole and the radiation.
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Hence, the understanding of the Page curve remained incomplete and kept running into elu-

sive contradictions. Using the QES, the authors of [105–109] were able to show that indeed

one can systematically start from a pure state black hole for which, in the process of evap-

oration, a natural definition for consistent fine-grained entropy arises. The curve displayed

by this fine-grained entropy is the ever-expected Page curve, fully devoid of any contradic-

tions involving fine-grained-to-coarse-grained shift during the process. In describing such

a process successfully, it was found that a bulk region is added to the QES after the Page

time and aids in the appearance of the Page curve. These bulk regions are typically known

as islands. It is also noteworthy that the Page curves are different for the evaporating and

the eternal black holes and so are the islands. For the evaporating situation, the degrees of

freedom of the BH keep decreasing with time and therefore, the Page curve starts coming

down after Page time and comes down to zero when the BH is fully evaporated. In the case

of eternal BH however, the Page curve saturates at the Page time and the entanglement

between the radiation and the BH remains constant after Page time.

Since the islands came into the picture, they have been greatly investigated, and grasp-

ing the origin of islands from a more physical perspective is a subject of current research.

In this vein, a few classical models have been introduced [110–112], where the picture is

purely classical-gravitational and one gets away by working only with HRT surfaces in-

stead of QES. Ideally, in such a situation, we obtain an analog of an island and a Page

curve is also realized. Strictly speaking, however, due to the absence of bulk entanglement

entropy, this picture is a purely coarse-grained approach. Nevertheless, these models have

played an important role in understanding the origin of the islands from various perspec-

tives and also realizing the analogs of Page curve for other quantum information-theoretic

measures e.g; reflected entropy [68], the entanglement of purification [44, 63] etc.

These models rely on multi-boundary wormholes in AdS3, which are very special ob-
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jects since they can be constructed as quotients of empty AdS3 by its isometries. Once

the fundamental domain is known and one avoids the fixed points to have well-defined

curvatures at each point of the fundamental domain, the problems become a lot easier to

deal with. As the very name suggests, multi-boundary solutions have multiple boundaries

where independent CFTs live. We will call these boundaries as exits throughout this chap-

ter. Now, within the multi-boundary wormhole models of the island, the radiation quanta

themselves are typically modeled as multi-partite (at least bipartite, i.e. three-boundary

wormhole ) systems where they are represented by smaller exits of the multi-boundary

wormhole. To begin with, the actual black hole is modeled by a bigger exit and if evap-

orating, it keeps shrinking with time whereas more and more quanta are accumulated in

the smaller exits. In these models, the minimal throat horizons at different times play the

role of the HRT surface measuring the entanglement between the black hole and the com-

bination of the Hawking quanta. Since the situation is dynamic, at some critical point, the

choice of minimal surface changes and an island is included. There have been a few such

models in which the difference is how one stores the emitted quanta in different exits. Dif-

ferent entanglement measures have also been computed within the scope of these models.

One among them is the reflected entropy [21,111] . It measures the entanglement between

different parts of a mixed state. For example, one can compute how entangled the different

emitted quanta are with each other individually or with the black hole. The Page curve for

the reflected entropy differs as well from its entanglement entropy counterpart.

On the other hand as reviewed in subsection 2.4.2, the authors of [63] have conjectured

bulk counterparts of a more general information-theoretic quantity called the entanglement

of purification. This has been studied both in gravitational setups as well as in free field

theories [44, 45, 113, 114]. In the gravitational ones, the holographic EoP is conjectured to

be related to the entanglement wedge cross-section. Such results include the study of pure
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AdS, BTZ black holes as well as time-dependent scenarios. A study of few other quantum

information-theoretic quantities e.g; multipartite entanglement of purification [64,67,115–

117], reflected entropy [68, 118–122] have been motivated by the EoP computations.

In this chapter, we primarily discuss the possible connections between the multi-boundary

wormhole model of BH evaporation and the holographic entanglement of purification in the

case of AdS3. We use the concepts of the holographic dual of multipartite entanglement

of purification for states in the boundary of pure AdS3. We use these concepts in the toy

model of evaporating black hole [110].

We would try to get an understanding of the islands from the perspective of multipartite

EoP. We would also comment upon the analog of the island from the point of view of

quantum error connection [123–125], but by taking a detour through the entanglement of

purification. This is not very surprising since both of the programs are heavily dependent

on the ideas of entanglement wedge reconstruction and nesting. Our study relates the body

of a multi-boundary wormhole to a geometric pure state construction. We further figure

out how in such a model, there are two sides to the whole story. The classical picture gives

us an intuitive understanding of the islands and helps to reproduce the Page curve. But the

quantum version of the extremal surface again gives back the familiar paradox addressed

by Hawking. Finally, we give resolutions through which one can understand how to deal

with the problem both in the toy model as well as in the entanglement of purification case.

Another interesting question that this line of study hopes to answer in the long run

is the computational complexity associated with the decoding of the information stored

within the evaporating black hole and radiation state. The complexity being in general

different from entanglement and by definition, it captures different Physics than the entan-

glement entropy. Due to the Harlow-Hayden protocol [126] and later works by Susskind

and collaborators [127], there is a general idea in the literature that this kind of state de-
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coding is an exponentially hard task. By exponentially hard task, one means here that the

minimum number of gates equals the minimum number of time steps required to go from

one quantum state to another which is exponential in time steps in this case. Hence, the

complexity of the evolving black hole state is expected to grow exponentially in time. This

is supported by proposals about a state-of-the-art geometric structure known as Python’s

lunch [127, 128] that shows some signs of why this is supposed to be such a complicated

task. Nevertheless, the gravitational proposals of complexity [11,23,24] have not yet been

able to find a situation that agrees with this particular suggestion.

In this chapter, motivated by these studies, we also study the volumes dual to the throat

horizons in the multi-boundary wormhole models sketched above. Primarily put forward

by Alishahiha [4] and reviewed in details in chapter 2 and 3 , the volumes V (S) subtended

by HRT surfaces S are conjectured to represent the so-called subregion complexity,

CHSC =
V (S)

8πLG
, (5.1)

where G is Newton’s constant and L is the AdS radius. Subregion complexity is argued to

measure the difficulty of an algorithm to construct a mixed density matrix. In AdS3, this

has been studied in detail and is understood as a compression algorithm constructed using

tensors [71]. In the tensor network picture, the number of bonds associated with some

cost successfully mimics the behavior of subregion complexity. Kinematic space provides

yet another way of understanding these volumes [72]. Usually kinematic space yields

a description in which the bulk curves are understood roughly as the number of boundary

anchored bulk geodesics crossing that curve [129] and the volumes as to the number of such

geodesics along with the chord lengths that each of them contribute to the volume. All of

these are mostly understood within AdS3/CFT2. Since the multi-boundary wormholes are
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also best understood in three spacetime dimensions, we use the machinery built in [71, 72]

to study the Page curve analog of subregion complexity in these models.

The remainder of the chapter is structured as follows. In section 5.1, we review the

basic ideas that have been instrumental in the derivation of the Page curve for the Black

holes and the Hawking radiation. In section 5.2, we discuss the construction of the multi-

boundary wormholes in AdS3. Then we briefly explain the two multi-boundary models that

we worked on in [9] and [10]. In section 5.3, we then discuss the connections, contradic-

tions and resolutions between the n+1 boundary wormhole model and the entanglement of

purification found in [9]. Finally, in section 5.4, we discuss volume computations in these

models and the main findings of [10].

5.1 A Note on recent developments regarding Page curve:
This is a very brief review of the recent program [105,107,110,130,131] that has been

instrumental in describing the time evolution of a black hole to be a unitary process by

considering the combination of an evaporating black hole and the Hawking radiation to

form a pure state. It has then been shown that using particular techniques, one can show

that separately both system’s entanglement entropy follows the same curve which is not

ever-growing, but indeed comes down after Page time. This is a path-breaking result since

it is the very first time that some program has been able to arguably solve the longstanding

information paradox. Although it was always argued since the discovery of AdS/CFT that

it can solve the information paradox, this is the very first concrete example where people

have been able to show it in a somewhat convincing manner.

The technique through which this program was successful to achieve such a task is

though yet to be made complete sense of. It involves the introduction of certain bulk

regions called islands, which is essential to derive a Page curve for the emitted Hawking
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radiation along with new but familiar concepts of the quantum extremal surface.

5.1.1 Information Paradox and Resolutions (Islands) :

Information is ideally considered to be a sacred thing, which one should always keep

track of. If there is a flow of information between two parts of the system, then the infor-

mation missing in one part should necessarily show up in the other part. But, in the case

of the black hole, it has been a longstanding problem in such a scenario. In the case of

black holes, the way one typically compares information inside and outside is by specify-

ing the entanglement between the two systems. The paradox appearing in this computation

had been a peculiar one since the information found in the radiation outside the black hole

seemed to be more than what the black hole could store. If we talk in terms of entan-

glement entropy, which is a standard information measure between two entangled states,

the entanglement entropy of the radiation outside the black hole was found to be growing

over for a very long time, whereas the black hole’s entropy seemed to become less and

less over time. They crossed each other much before the radiation entropy saturates. But,

since the evaporating black hole and the radiation states should form a combination that is

a pure state, the entanglement between them for all times should be the same. This is one

of many ways in which the information paradox can be realized. Let us explain a bit more

concretely.

Let us assume that the radiation state is considered just combinations of the Hawking

quanta radiated by an evaporating black hole. For all such Hawking quanta, there is one

partner-quanta each behind the black hole horizon, which is entangled to its outside partner.

Let us schematically write the radiation quanta and their partner modes as a combination,

which is a pure state,
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|ψ〉rad ≡
∑
ω,n

e−
ωn
2 |n〉in|n〉out (5.2)

at any point of time t, where the time is kept track of the frequencies ω (summed over) and

n counts entangled pair of Hawking quanta emitted till that time.

Now, tracing over |n〉in states, one can find out the reduced density matrix of the out-

state (ρrad,out), which in this case comes out to be in form of a thermal density matrix,

ρrad,out ≡
∑
ω,n

e−ωn|n〉out〈n|out. (5.3)

This leads to the paradox since once the entanglement entropy is calculated for this

reduced density matrix following the usual formula of von Neumann entropy, it keeps

growing until the black hole evaporates (number of n increases). On the other hand, the

Bekenstein Hawking entropy, which is supposed to be representative of black hole entropy

keeps decreasing as the black hole evaporates and the area decreases. After some time

(known as the Page time),

S(ρrad,out) >
ABH
4G

. (5.4)

The situation then complicates as the bipartite entangled state between the radiation

outside and the black hole becomes oversaturating what the black hole can entangle with.

In another way, the black hole is entitled to more entanglement than it has microstates

available.

There have been several attempts and effort in solving this paradox and deriving a

formula which follows the well-known Page evolution (grows initially, then comes down

to zero after Page time). But, until very recently, there has not been a convincing way in
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Figure 5.1: Penrose diagram of two sided Black Hole with nontrivial island included (red
and blue lines represent Hawking partner modes outside and inside the black hole horizon
respectively.)

which people have been able to do it. In this recent set of papers [105, 107, 110, 130, 131],

the resolution is brought in by introducing certain regions, termed as islands, which are

null before Page time but are non-null region (behind the black hole horizon) after the

Page time. This also has to be considered for computing the entanglement entropy of the

radiation states. Given such a situation, one has to also work with the idea of quantum

extremal surfaces since while computing the entanglement associated with the nontrivial

regions behind the horizon, Ryu-Takayanagi also contributes in a nontrivial way to the

entanglement entropy of the radiation states.

Let us now look at Figure 5.1 to get a better understanding. We consider a two-sided

BH in AdS3. The extreme left and extreme right regions represent non-gravitational flat

space (NGF) coupled with the asymptotic AdS boundaries. These are needed as we are

considering evaporating black holes and these coupled NGFs provide us a way to introduce

absorbing boundary conditions in the shared boundary through which outside Hawking

quanta can escape (unlike eternal BH case, where the outside quanta are reflected from
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the AdS boundary to feed the black hole back). Using this, we compute the entanglement

entropy of the outside quanta in the NGFs. It is like stacking up the quanta escaping AdS in

the NGFs. But simply doing these would again lead to the usual paradox. Say we compute

entanglement entropy at an anchored time-slice t for a region from infinity (in the NGF) to

very near the AdS boundary on both sides of AdS. Let us call these two regions R1 and R2

and their union (R1∪R2 =) R. Sout[R] would again grow for a very large time and lead to

the information loss.

The introduction of the islands comes to the rescue here along with the consideration

of quantum extremal surfaces. In the picture, where islands are included (shaded region

behind the horizon, after the Page time), the new notion of entanglement entropy for the

outside quanta looks like,

Sout[R](new) = min
I

[
ext
I

{
A(∂I)

4G
+ Susual[R ∪ I]

}]
, (5.5)

where ∂I is the boundary of the region enclosed by the islands. Susual is the entangle-

ment between quantum fields in the region [R ∪ I] and its complement. This is sometimes

also known as bulk entanglement entropy in the standard literature. This is marked as usual

here because, before the new development regarding the islands, this is all one used to ap-

ply (for region R, I regions were not included) and found the ever-growing curve leading

to the usual Hawking’s version of the information paradox.

For a given timescale, firstly one has to take all choices of I (any interval in AdS3,

inside or outside the horizon can be a candidate for I). Then the sum of the two things in

the curly bracket has to be extremized. The notion would be that in general, there exists

more than one choice of I for which the sum is extremized. One has to choose the one

which minimizes the sum at any given time. This solves the paradox since one finds that
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Figure 5.2: Choice of islands before and after Page time and Page Curve

before Page time, minimal choice of island is the null (trivial) one, and therefore up to that

time, the new entropy is the same as the usual one which grows. In this case, A(∂I)
4G

is zero

whereas Snew = Susual. But after the Page time, the choice of the island which minimizes

the sum among other choices of extremas is the one just behind the horizon. In that case,

A(∂I)
4G

becomes the dominant contributor, as in the other part, both the entangled Hawking

quanta (inside and outside black hole) are included. In that case, this piece contributes

much less as the Hawking quanta are purified. This is an important point we would come

back to while making connections to the multi-partite entanglement of purification. But,

the dominant contributor (A(∂I)
4G

) decreases over time which helps in the production of a

Page curve (see Figure 5.2).

5.2 Multiboundary Wormholes and the toy models:
In this section, we briefly discuss multi-boundary wormholes (MbW) in AdS3 and then

we discuss the toy model introduced in [110, 111], where the authors have shown that

classical RT surfaces can also reproduce a Page curve in some situations and the aspects of
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the newly introduced islands can be given an intuitive understanding from the perspective

of quantum error correction [123–125].

Multiboundary wormholes are situations where many boundary CFTs are connected by

a wormhole. All these different boundaries are independent of each other. The construc-

tion of multi-boundary wormholes in AdS3 is a well-discussed topic, but an active area of

research in itself. In usual understanding, multi-boundary wormholes can be thought of as

multiple exits created by quotienting AdS3 and by removing semicircles from a timeslice

of pure AdS3 by orientation reversing isometries in the upper half-plane. This defines the

fundamental domain. Since in three spacetime dimensions, true dynamical degrees of free-

dom is lacking, only global topological data and boundary dynamics classify a classical

saddle implying that for smooth asymptotically AdS3, all geometries locally belong to the

same universal class and are distinguished only by global features.

In AdS/CFT, this is related to the study of n fold tensor product of CFT states in dif-

ferent boundaries. For n = 2, the resulting geometry is of a BTZ which is dual to a

TFD (thermofield double) state. [132] is a recent paper that discusses these things in detail.

Figure 5.3 is the way one creates two boundaries by removing two semicircles from pure

AdS3 slice at t = 0 through a killing vector that generates dilatation. The standard way of

addressing dynamical questions in CFTs is the formalism known as Schwinger-Keldysh,

which in the context of holography is translated as considering multi-boundary geometries

in Euclidean and Lorentzian signature and gluing across a surface of zero extrinsic curva-

ture (boundary anchored geodesics). As a spacelike slice of AdS3 always maps onto the

Poincare disk by stereographic projection, we start with a Poincare disk and take a quo-

tient by a single hyperbolic isometry producing a Riemannian surface with constant -ve

curvature everywhere. This manifold is the one that one gets if one cuts a strip bounded by

geodesics anchored on the boundary out of the disk and glues it shut. This produces a time-
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Figure 5.3: Two boundary case and Horizon length, equivalent to EWCS for bipartite sys-
tem.

symmetric slice at t = 0 of a two-sided BTZ. Let us give a surprise at this point. Figure

5.3 is the fundamental domain of a 2 sided BTZ, defined by removing two semicircles that

are related through a dilatation. This in Poincare disk representation would simply look

like Figure 2.4 of bipartite entanglement of purification, where A and B (bipartitions of the

mixed state A ∪B) in Figure 2.4 have to be associated with the two boundaries where two

CFTs live. We will discuss these connections in detail in the next section.

Nevertheless, one can introduce more and more exits by removing more and more semi-

circles in an orientation reversing way on one side of the smaller semicircle of Figure 5.3.

These removals simply correspond to quotienting by more and more number of isometries.

Removing semicircles from the other side would mean introducing handles. 1

A multi-boundary wormhole can be understood as a diagram that resembles a pant with

leg space of more than two (typically known as pair of pant geometries in the mathemat-

ical community). In such a construction, all the different horizon lengths can be tuned or

changed independently in terms of the parameter in the timeslice of AdS3 through which

the semicircles are removed. But for a two-boundary case, there is only one horizon, which

both the CFT sees and there is only one parameter involved which is the ratio of the radius

1The introduction of a handle involves removing two semicircles from two sides of the lower semicircle
of Figure 5.3, but it also reduces the number of exits/horizons by one.

109



of the semicircles in figure 5.3. Starting from n > 2, an n-boundary wormhole would

have parameters such that all the horizons can be made big or small independently using

a non-overlapping set of parameters. A more mathematically sound description of this

construction can be found in Section 2 of [10].

5.2.1 Multiboundary Wormhole Models of Black Hole Evap-

oration:

Having constructed multi-boundary wormholes in hyperbolic geometry, let us discuss

the precise models we are interested in. We concentrate on two models which effectively

capture some of the central ideas associated with the island program. In both models, we

start from a three-boundary wormhole. One of its exits is much larger than the other two,

which have a coinciding size. The bigger exit is the analog of the evaporating black hole

whereas the smaller ones model the radiation quanta being emitted from the BH. The two

models we consider are distinguished by the way the geometry changes with time as more

and more quanta get stored in the radiation geometry whereas the BH keeps getting smaller.

a) Three Boundary Model: In the first model, we evolve the exit sizes of a three-

boundary wormhole as the system moves forward in time. Therefore, in this model the

size of the bigger exit (BH) decreases with time while the smaller exits increase. We insist

that the sizes of the smaller exits remain the same as time evolves. Hence, both the smaller

exits increase at the same rate. We track the minimal throat horizon lengths corresponding

to the union of smaller exits (Hawking quanta) with time. There is a shift in the choice

of minimal geodesic at certain timescale, the Page time, after which the connected mini-

mal throat horizon (corresponding to the bigger exit) is the favored choice as opposed to
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Figure 5.4: Change of preferred HRT in 3 boundary model. Left: Before the Page time
the HRT surface separates the Ri from the remainder of the pair of pants. Right: After the
Page time L0 has shrunk to L′0 and the HRT surface has jumped to include the island I .

the disconnected unions (throat horizons of the smaller exits)2. This change of preference

gives rise to the Page curve in this model. The situation is shown through the pair of pant

geometry in figure 5.4. After the Page transition, the region I is added to the entanglement

wedge of the Hawking quanta. This is the representative island in this model. The corre-

sponding Page curve is shown on the left-hand side of figure 5.6. Note that the topology of

this model never changes; it remains a three-boundary wormhole at all times.

b) n + 1-Boundary Model: In the second model, instead of increasing the size of the

smaller exits, we increase the number of smaller exits. Hence, in this model, the topology

changes with each time step, and the no. of exits n represents this time. Although it is

hard to realize dynamically from Einstein’s equations, it is perfectly reasonable as discrete

snapshots at different times during the radiation. All the different topologies are time re-

flection symmetric. The bigger exit, similar to the three-boundary model, keeps decreasing,

and again a transition of HRT surface corresponding to the union of the Hawking quanta

2It is to be noted that both these choices are homologous to the BH as well as the union of Hawking
quanta for all times. Hence they are the candidate HRT surfaces.
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Figure 5.5: Change of preferred HRT in n+ 1-boundary model.
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Figure 5.6: Page curves corresponding to the left: three and right: n boundary models.

(union of the n smaller exits in this case) takes place at a certain point of time (npage), this

is shown in figure 5.5. The corresponding Page curve is shown on the right-hand side of

figure 5.6.

An important assumption made in these models is that the ADM energy is conserved

during the evaporation process. The relation between entropy and ADM energy in AdS3 is

the following

S = 2π

√
cE

3
. (5.6)

Now, in three bulk spacetime dimensions, the area of the HRT surface is simply propor-
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tional to the length. Let us consider the initial length of the horizon of the evaporating black

hole is L0 which decreases over time as it emits more and several smaller black holes with

horizon lengths `. Using the relation between length (entanglement entropy) and ADM

energy, one can show that at any point of time, where n (two) smaller black holes have

been emitted for the n+ 1 (3)boundary model, the horizon length of the bigger black hole

decreases in the following way,

LBH =
√
L2

0 − n`2 (n+ 1 boundary model), LBH =
√
L2

0 − 2`(t)2 (3 boundary model),

(5.7)

where the `(t) is the time-evolving HRT length for the three boundary model. The union of

the length of the horizons of the smaller horizons scales likeL(HQ) = n`(2`(t) for3 boundary model)

3. For smaller values of n (for the n + 1 boundary model) and t (for the three boundary

model), LHQ is the minimal choice, which grows over time as n increases. The LBH

decreases as time moves forward. At certain timescale n ∼ L0

`
, LBH and LHQ become

comparable and after that LBH becomes the minimal HRT choice.

This region between the chosen HRTs at different times (here the number of exits, n, is

considered to be the analog of time), has also similarities with the shared interior that ap-

pears in a study of quantum error correction through bulk reconstruction picture. Through

this similarity, the authors in [110] provided a possible understanding of the islands, which

is due to the full and restricted set of observables that can be reconstructed depending upon

which surface is chosen. According to them, as the shared interior is not dual to any single

boundary subregion, it appears as a quantum error-correcting region in the computation of

entanglement entropy. Now, in the next section, we discuss few connections between the

n+ 1 boundary model and the multipartite entanglement of purification (holographic) with
3LHQ corresponds to the length of the horizons of the smaller black holes that are analogs of Hawking

quanta in the radiation
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Figure 5.7: The three-boundary Riemann surface as quotients of the two-boundary Rie-
mann surface. The three-boundary surface is obtained by pinching one of the boundaries
into two. The island is marked by the closed region spotted by the dotted purple, black,
blue, and blackline respectively.

the hope to get a better understanding of what the toy model implies and how can it be

connected to the study of multipartite entanglement.

5.3 Connections between EoP and MbW Toy Model:

5.3.1 Connections to be drawn:
The two topics discussed in the two previous sections have striking similarities which

are yet to be pointed out. The following observations can be made to help us understand

the connections and also give a few important lessons that should be kept in mind while

comparing the two scenarios.

1. As we have already pointed out once in the previous section, the pictures of bipartite

entanglement of purification where the bipartition made by choosing two disjoint,

but substantially larger subregions of a timeslice of pure AdS3 is very similar to
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the construction of a wormhole connecting two boundaries, where the boundaries

exactly correspond to subregions A and B of the bipartite system.

To be more exact, in the case of two boundaries, one takes two boundary anchored

geodesics in Poincare disk, the fundamental domain (corresponding to the HRT sur-

faces of the region A∪B not sharing any endpoints) and uses a unique isometry (di-

latation to be precise) that defines a bijective map from points on one of the geodesics

to the closest points on the other. This map is the part where one identifies points

on the two geodesics periodically and glues them. This isometry doesn’t involve any

fixed points in the strip between the two geodesics. 4

2. Another striking similarity is the entanglement wedge cross-section for a bipartite

state is the only possible horizon length that one can compute in a two boundary

case. After the identification and gluing procedure is done among the two boundary

anchored geodesics in the Poincare disk, all one needs to specify the two-sided BTZ

is not two, but a single geodesic specifying the horizon length.

Now, we can also simply go on to pictures including more exits and compare the

two cases in one of which, we increase the number of exits in the MbW picture,

and in the other picture, we introduce more number of disjoint subregions in one

of the subregions A and B. 5 But there is one subtlety involved that one should

keep in mind while doing so. For n ≥ 3, one needs to remove two semicircles for

introducing each new exit. Thus after n = 2, in the partitioning of the boundary, we

have to introduce two disjoint subregions at each step in the purification picture, a

4Multiboundary wormhole constructions can involve isometries including pathologies like fixed points
and closed timelike curves in general. But both can be avoided by making suitable choices as mentioned
in [132].

5If we introduce more subregions on both sides, that would mean introducing handles in the MbW
picture. We avoid such scenarios for the time being.
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Figure 5.8: Three and Four Boundary cases : Semicircles to be removed are are marked.
Blue-shaded regions represent the shared interiors. These are the choices that minimizes
the boundary of the shared interior with respect to the corresponding geometric pure state.

combination of which will be equivalent to the newly constructed boundary.

In doing so, in each step, we should also keep decreasing the size of the other sub-

system A very slowly so that our picture goes well with the previously introduced

toy model. We also introduce new subsystems in such a way that their contributions

in multipartite EoP are much smaller initially w.r.t the contribution of the bigger

subregion A.

We can define our newly defined subsystems in the following way so that it again

goes well with the boundaries that are defined in the MbW case. We take two disjoint

boundary intervals connected to A on two different sides and call them B1 and B2.

We call their union to be a partition B. Similarly, for more exits, we keep taking

unions of intervals connected to B1 and B2 on two sides and define them as a new

partition. (as shown in figure 5.8)

3. Now, by looking at the two pictures, one can easily point out that the dotted lines in
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Figures 5.5 and 5.7 are equivalent to each other. But, in multipartite EoP, we take the

sum of all of them, whereas, in the MbW toy model, they are treated as two different

sets that naturally provide one with a way to choose one of them as the HRT surface.

If we look at the figures more carefully, it is not hard to find out that the codimension

1 region enclosed by the multipartite entanglement wedge cross-section is the shared

interior (/island) in the MbW picture. It is then obvious to define the multipartite

entanglement wedge cross-section as the boundary of the nontrivial island. We thus

get an understanding of the boundary of the nontrivial island after the Page time in

terms of entanglement of purification between the evaporating black holes and the

radiation quanta (union of all other boundary subregions except A).

4. An important fact while talking about the connections between the two scenarios is

to realize the correspondence between a geometric pure state and the multi-boundary

wormholes connecting the bigger and the smaller black holes. In the case of mul-

tipartite entanglement of purification, we consider the bulk HRT surfaces for the

subsystems of the pure AdS along with the boundary subregions as a geometric pure

state, 6 The multi-boundary wormhole connecting CFTs at different exits acts as a

machine to make the whole multipartite state (/combination of multiple exits) a pure

state. Making this connection helps us to understand the multi-boundary wormhole

along with the exits as a geometric pure state for which we consider the HRT surfaces

to compute the entanglement entropy.

6To be precise, the HRT surfaces of the multi-boundary cases do not form a closed region by themselves.
The shared interior is understood as the union of HRTs along with certain regions of the wormholes connect-
ing different exits. But since while considering a geometric pure state in the dual EoP picture, we make the
choices of ΓÃB̃ , ΓB̃C̃ and ΓÃC̃ in such a way that the combination of them forms a minimally closed curve
(See Figure 2.5) among all other choices. This choice is always the minimal choice of choosing the boundary
of the analog of the islands.
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5.3.2 Realization of over-counting:
The previously mentioned comparisons and connections indeed support the connec-

tion between the islands and quantum error connection since multipartite EoP has well-

discussed connections to quantum error corrections as well as discussed in [133]. But as

mentioned in the formula of quantum extremal surface, if one computes the area (length in

case of AdS3) of the boundary of the island, it doesn’t behave as per our expectation. This

is because the A(∂I) = ∆W and it consists of both the union of smaller horizons as well

as the bigger horizon. It also means that the length of the boundary of the nontrivial island

would follow the properties followed by multipartite EoP, which we have already listed in

section 2.2.

A(∂I) = ∆W =
√
L2

0 − n`2 + n`. (5.8)

Now although the length of the bigger horizon keeps decreasing over time, the length

of the combination of the smaller ones keeps increasing. The sum of them still grows (see

figure 5.9) until the black hole evaporates (in this case, this corresponds to the case where

subregion A becomes so small that the entanglement wedge [123] of the partitions simply

become the union of the causal wedge of each of them).

Therefore if one strictly assumes the shared interior to be the analog of the nontrivial

island, its boundary area is evergrowing even after the Page time. (shown in figure 5.9).

Nevertheless, we prescribe the following resolution to the paradox. Our prescription is that

this is again the same paradox that this whole program began to deal with. In the toy model,

the authors try to realize the notion of the islands just through the classical HRT surfaces

neglecting the bulk entropy part (second term in QES equation) assuming that the length of

the smaller horizons individually is enough to keep track of the bulk entanglement entropy
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associated to the smaller black holes.

The argument is not so unsatisfying once we take into account that the analogs of the

Hawking quanta are small black holes in the MbW picture, which are classical geometric

objects. But from the point of entanglement of purification, when we consider the whole

multipartite EWCS, we include both the bigger black hole horizon as well as the smaller

ones. This, if translated to the statements made in [110], effectively means that we double

count the bulk entropy of Hawking quanta in multi-partite EWCS. Hence, once the island

is included, in our calculations, the entanglement between the partner modes of the emit-

ted quanta also contributes to the multipartite EoP. But, in fact, as the new HRT includes

both the partners, they are purified. Multipartite EoP is insensitive to this purification and

overcounts this to make the entanglement of purification larger than it should be.

The final resolution on the choice of multipartite entanglement wedge cross-section can

be drawn from [134] in which again multipartite entanglement has been studied in detail.

Drawing connections from that paper, we can resolve the problem in the following way. As

one of the black holes is considered to be much much bigger than the other ones, primarily

all other horizon lengths can be considered as `→ 0. The reverse limit would be taking the

smaller horizons ` to be finite whereas LBH → ∞. In both of these limits, the combined

state behaves like a bipartite state [134] between the bigger BH and the union of the smaller

ones. In that situation, the multipartite case boils down to a simplified bipartite case where

the entanglement of purification reduces to usual entanglement entropy. Therefore, one can

simply choose either the union of the horizons of smaller black holes or the horizon of the

bigger black hole as the HRT surface depending on whichever is minimal at that time. But

even in that scenario, if the newly entered shared interior is considered to be the analog of

the nontrivial island, the growth of the length of the boundary of the island is paradoxical.

The reason why this paradox arises only in the toy model is that in this case, the analog of
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Figure 5.9: (left) Growth of the multipartite EWCS (for the minimal choice). (right)
Comparison between primary (red) and later (green) choice of HRT with the minimal is-
land(blue) growth at different times.

islands is connected to the earlier null island. On the other hand, in the case of the actual

case, the island is behind the black hole horizon and is disconnected from the trivial island

choice before the Page time.

If we treat different smaller black holes differently, we would have to necessarily con-

sider multiparty entanglement of purification. Say we consider the bigger black hole as

subsystem A, whereas n smaller black holes as B1, B2, ...., and Bn, then Multipartite EoP

should be

∆P (A : B1 : .... : Bn) =
1

n
min|ψ〉Pure

n∑
i=1

(
SAA′ + SBiB′i

)
. (5.9)

In this scenario, where all the smaller black holes are treated as a combination, and along

with the bigger black hole, they form a pure state, we can take A′ = B′i = ∅ and therefore,

∆(n+1)P (A : B1 : .... : Bn) = ∆(2)P (A : B) =
1

2
(SA + SB). (5.10)

Note that it is necessary to consider the full state as a bipartite pure state. A multi-

partite pure state would not solve the problem. For example, if we considered that the
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combination of the big black hole and n smaller black holes to be an (n + 1)-partite pure

state, we would have to still apply property 2 of the multipartite EoP.

∆P (A : B1 : .... : Bn) =
n∑
i=1

(SA + SBi) =
√
L2

0 − n`2 + n`, (5.11)

where for each small black hole, even after the Page time, ` would be the HRT surface

for individual smaller black holes instead of LBH . Thus the multipartite EoP would still

give us the ever-growing entanglement. Thus the resolution appears only when in the limit

of a very large number of very small black holes, we take the union of the smaller black

holes to be a single mixed state, which along with the large black hole state forms a bipartite

pure state.

5.4 Sub-region Complexity in AdS3 and multi-boundary

models:
In this section, we describe the computations of volume in AdS3 and the multi-boundary

wormhole exits, which have mostly to do with the topology of the bulk region. This is

crucial for our study of complexity in [10].

5.4.1 Volumes in AdS3:
In this chapter, we content ourselves with constant time slices of AdS3 space-time.

The HRT formula [2, 3, 19] suggests that the entanglement entropy of any region A on the

boundary of AdS3 is equivalent to the length of the bulk geodesic γRT (A) anchored at ψA;

one also needs to introduce a cutoff surface γε near the boundary for regularization. Our

primary interest is in the volume of the co-dimension-1 surface Σ with boundary ∂Σ =

γRT (A) ∪ Aε, where Aε is the segment of the cutoff surface γε, which hovers over A. This

volume appears in the original definition of holographic complexity in (5.1). In this work,
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we employ, however, an alternate definition of subregion complexity put forward in [71].

Definition 1. Let Σ ⊂ H2 be a hyperbolic surface with boundary ∂Σ = γRT (A) ∪ Aε for

boundary interval A. Its topological subregion complexity is defined through

CHSC (A) ≡ −1

2

∫
Σ

Rdσ , (5.12)

where R is the scalar curvature of the bulk space-time.

In the cases of interest in this chapter, R is a constant so that the topological subre-

gion complexity (5.12) and the original proposal (5.1) differ only in normalization. One

benefit of using topological complexity is that it is naturally dimensionless as desired for

complexities. However, the main advantage of (5.12) lies in the fact that it determines the

complexity completely by topological data through the use of the Gauss-Bonnet theorem

Theorem 1. Let Σ be an orientable, compact, two-dimensional Riemannian manifold with

piecewise smooth boundary ∂Σ and scalar curvature R. Denote by kg the geodesic curva-

ture of the curve carved out by ∂Σ. Then

− 1

2

∫
Σ

Rdσ =

∫
∂Σ

kg ds+
r∑
i=1

αi − 2πχ (Σ) , (5.13)

where χ (Σ) is the Euler characteristic of Σ. r is the number of corners in ∂Σ and αi are

the corner angles at which the piecewise smooth segments of ∂Σ intersect.

The geodesic curvature kg measures how much ∂Σ, or any other curve under scrutiny,

deviates from a geodesic. If we anchor Σ at a boundary interval A, then the left hand side

is of course the topological complexity CHSC (A). Moreover, in this case, the corner angles

αi are always π/2 [35] since geodesics γRT intersect the cutoff surface perpendicularly.
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Let us illustrate the formula with standard examples. In the simplest case the subsystem

A is a single connected interval A ∈ [x1, x2]. The boundary has two corners, those at which

γRT and Aε intersect, each of which contributes π/2, yielding

∫
∂Σ

kg ds+
2∑
i=1

αi =
x2 − x1

ε
+ 2× π

2
. (5.14)

The Euler characterisic of Σ is 1 as it is topologically equivalent to a disk, thus we obtain

CHSC (A) =
x2 − x1

ε
− π . (5.15)

As another example let us consider two disjoint sub-regions A = A1 ∪ A2 , where A1 =

[x1, x2] and A2 = [x3, x4] , (x1 < x2 < x3 < x4) . There are two candidate HRT surfaces

for this configuration. In phase I the complexity is simply the sum of that for each subre-

gion, i.e.

CI =
x2 − x1

ε
+
x4 − x3

ε
− 2π (5.16)

In phase II where Σ is a connected surface, only χ (Σ) is different and hence

CII =
x2 − x1

ε
+
x4 − x3

ε
+ 4× π

2
− 2π =

x2 − x1

ε
+
x4 − x3

ε
(5.17)

Thus subregion complexity exhibits a discontinuous jump at the transition. It is easy to

generalize this result for an arbitrary number of intervals and has been shown in [71],

which also considers non-zero temperature.

Volumes in Multiboundary Wormholes:

Let us now consider the multi-boundary wormhole model. We are interested in the

evolution of subregion complexity associated with the Hawking radiation during evapora-
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Figure 5.10: HRT surfaces and entanglement wedges in AdS3 for one (left) and two inter-
vals. The latter has two phases, (middle) Phase I and (right) Phase II.

tion. In the toy model of [110] the evaporation is described by an initial large black hole

regurgitating smaller black holes, which represent the Hawking quanta. For simplicity,

all such black holes are considered to be placed in their own separate asymptotically-AdS

space-time. As the evaporation proceeds, the asymptotically-AdS regions are connected by

a wormhole with an increasing number of exits. The subregion we are concerned with is

the union of all the smaller exits at one instant of time.

As described in [110] and 5.2.1 above, there are two competing HRT surfaces for the

sub-region of our choice, viz. ∪nj=2`j and L0. The corresponding entanglement wedges

have been illustrated in figure 5.5. At the Page transition, the entanglement wedge changes

which results in a constant shift of complexity.

a) Three boundary model: As explained before, we fix the two smaller boundaries by

identifying the pair of geodesics that are not concentric. We assume these two semicircles

to be of the same radius in our consideration, as shown in 5.11. In addition, we also assume

that the corresponding throat horizons are of the same length. This assumption constrains

the choice of parameters in the fundamental domain in a particular way as mentioned in

[111, 112]. The relation is between the center of the non-concentric semicircles. Among

these two, let the center of the semicircle near x = 0 be c1 and the other one is c2. Note

that these are the semicircles removed to create a three-boundary wormhole from the two-

boundary case. Recall that for the latter, one has to identify two concentric semicircles in
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Figure 5.11: Pair of Pants and Polygonal Representation. In the figure, concentric geodesic
edges are denoted by C1 and C2, whereas Ca and Cb stand for geodesics that are not con-
centric. c1 and c2 denote the centres of the non-concentric geodesics on the horizontal
plane.

the UHP. These two concentric semicircles have their center at x = 0 and their radii R0

and µ2R0 respectively, where µ > 1. For the three-boundary evaporating model, we have

µ ≥ 1, which saturates at the end of the evaporation process. The relation constrained by

the fact that the two throat horizons are of equal length is c2 = µc1. Let us label the radii

of these two semicircles as R1 and R2. In this chapter, we work with the particular choice

R1 = R2 = R. 7 We also make the following choice for c1, and thus also for c2, motivated

by [111],

c1 =
µ+ 1

2
R0, c2 = µc1. (5.18)

Our parameter choices secure the positivity of the volumes of the smaller exits for all

times, as desired. We should nevertheless keep in mind that among these two equal throat

horizons, one is connected whereas the other is disconnected according to the construction,

see figure 5.11. Let us call the connected one L1 and the disconnected one L2 = LL2 +LR2 =

7In [111], the authors assumed R2 = µR1. But in that case, one ends up with negative volumes for the
smaller exits, which is unsatisfying physically.
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L1, where the superscripts stand for left and right. It is easy to see that once R0 is specified

and we assume that with time L1 and L2 increase, while the primarily bigger vertical throat

horizon L0 keeps decreasing via L′0 =
√
L2

0 − 2L2
1, the only time dependence left to be

solved for a consistent construction is the time dependence of R. In this case, we replace

time by the increasing length L1 (or equivalently L2) and plot the volumes with increasing

L1. There are two solutions of R = R(L1). Ideally, R should also depend upon µ. But

since L′0 can be written either simply in terms of L1 or equivalently in terms of µ, there is

a relation between these two, µ = e

√
L2
0−2L2

1
2 , with L0 chosen to be a constant (the starting

length of the vertical throat horizon).

The expressions for L1 and L2 are the following once the equality constraint, hyperbol-

icity condition, and the equation (5.18) are used

L1 = log

cot

1

2
Arcsec

 µ2 − 1√
(µ2 − 1)2 − 16R2


− log

tan

1

2
Arcsec

 µ2 − 1√
(µ2 − 1)2 − 16R2

 (5.19)

L2 = log

cot

1

2
Arcsec

µ (µ2 − 1)
√
µ2
(
(µ2 − 1)2 − 16R2

)
µ6 − 2µ4 + µ2 − 8 (µ2 + 1)R2


− log

tan

1

2
arccos

 µ5 + µ− 2µ3 (4R2 + 1)− 8µR2

(µ2 − 1)
√
µ2
(
(µ2 − 1)2 − 16R2

)
 (5.20)

Given the above expressions of L1 and L2, we solve for R asking for the linear growth

of L1 so that we can use it as an analog of time.8 There are two solutions, both of which

8It is important to note that solving thisR for given parameter choices is just for exactness and calculation
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feature positive volumes for any instance of time, as required by consistency, in particular

of the fundamental domain. It is also easy to check that for both of the solutions, L1 and

L2 are indeed equal to each other.

Just to be precise, let us mention the volumes of the smaller exits at any particular

instant in terms of the parameters of the fundamental domain.

V1 =
(c1 −R−R0) + (µ2R0 − c2 −R)

ε
, (5.21)

and

V2 =
(c2 − c1 − 2R)

ε
(5.22)

where ε is again a UV cutoff. The total volume is simply V = V1 + V2. At the Page

time, when the minimal surface corresponding to the union of the smaller exits changes

from L1 + L2 to (the decreased) L′0, a volume is added to the previous volume V . We will

come back to this point in the next subsection and where we present plots of the volumes

corresponding to the two solutions of R = R(L1).

b) n + 1-boundary model: This is a good time to explain how we wish to perceive

black hole evaporation á la [110] from the quotient perspective with more details about

the explicit construction. Recall figure 5.4. We start with three exits and at each time-step

include two more geodesics with opposite orientations, which upon identification provide

a new boundary. For simplicity, we consider all semicircles to have the same radius at

any moment. The radius is thus a function of the number of exits, which is an analog of

discretized time.

The moduli space of an n + 1-boundary wormhole contains n + 1 physical parame-

of volume. In general, for any constant or functional dependence of R, L1 and L2, although they look
different, scale in the exact similar way with µ.
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ters that characterize the system. These are the periodic geodesics between two identified

semicircles in our quotient picture. Consider the 3-boundary construction in figure 5.11.

The dashed lines denote the geodesics which after performing proper identification be-

come closed and the metric outside the causal development of these closed curves is the

BTZ metric [135]. Thus the periodic geodesics can be identified as black hole horizons

and in fact, constitute the candidate HRT surfaces in the evaporation model. In figure 5.11

we have denoted the identification of each geodesic with the corresponding BH horizon for

the 3-boundary wormhole.

The sub-region complexity is essentially determined by the volume under the horizons.

Before Page time, it is the volume under ∪nj=2`j while after Page time it is that under L′0 as

marked in figure 5.5. The explicit formulae for the volumes are given below. Here we only

point out that they depend on the radii of the semicircles and the length of the horizons.

The horizon lengths are in general difficult to compute, the authors of [132] provide two of

the three lengths for the 3-boundary wormhole

L0 = L log
(
µ2
)
, (5.23)

L1 = 2L arcsinh

√( d
R

)2

− 1

 , (5.24)

but an analytic answer for L2 = LL2 ∪LR2 remains elusive. Here L is the AdS radius and d is

the distance between the centers of the orientation reversed semicircles, other parameters

are explained in figure 5.11. After identification, L0 becomes the horizon of the parent

black hole. Throughout the calculation, we shall follow the footsteps of [110] and assume

all smaller horizons have equal length L1.

In our model, we demand that all smaller semicircles have identical radii, R, at any
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moment in time. Since we accommodate an increasing number of semicircles, hence also

boundaries, in the same region as time progresses,R cannot remain constant. Also, starting

from the three-boundary wormhole, as we increase the number of boundaries, the distance

(say d1) between the centers of the semicircles are managed in a way to make sure that all

the other disconnected throat horizons, except for the one that is attached to the concentric

semicircles, have the same length as the connected one between the first set of orientation

reversed semicircles. Therefore, in our model, we make sure that out of the (n− 1) smaller

exits, (n− 2) have the same horizon length and only the remaining one is assumed to have

constrained equality. There is no way to fix the time dependence of R explicitly. We can

however assert that it must satisfy the constraint

R (n) <
(µ2 (n)− 1)

4 (n− 1)
R0 , (5.25)

where n denotes the number of smaller exits. This constraint makes sure that the adequate

number of semicircles are accommodated within the interval (µ2 (n)− 1)R0.

Choosing a good function, one that satisfies (5.25), we can determine the volume and

complexity through the help of (5.23). As we will see, it exhibits a finite discontinuity at

the Page transition. The source of this discontinuity is purely topological, which we explain

in section 5.4.1. Thereafter we give explicit formulae for the volumes and show complete

evolution of complexity during the entire evaporation process.

Gauss-Bonnet & hyperbolic polygons

As explained in subsection 5.4.1, the Gauss-Bonnet theorem plays a central role in the

calculations of volumes in AdS3. Here, we discuss another consequence of the Gauss-

Bonnet theorem (5.13), which regards the computation of the area of hyperbolic triangles.

Corollary 2. Consider a 2d hyperbolic surface. Let it be tessellated by triangles with
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angles (α, β, γ) =
(

2π
p
, 2π
q
, 2π
r

)
. Then the Gauss-Bonnet theorem along with the triangle

group imply the following relation

π

p
+
π

q
+
π

r
< π. (5.26)

The area of the hyperbolic triangle, therefore, becomes |(π−α−β−γ)|L2, where L stands

for an intrinsic length scale, which is the AdS radius.

We choose L = 1 for the remainder of this section. Next, we aim for the computation

of the volumes9 of the different kinds of causal shadow regions that crossed our way when

contemplating multi-boundary wormholes. As explained previously, these regions corre-

spond to the analog of islands in our models. In the following, we describe a simple way

to compute such volumes in two-dimensional hyperbolic space. In the following, we will

only make use of the above-mentioned area of a hyperbolic triangle to compute the area of

any hyperbolic polygon in two-dimensional hyperbolic space.

A general look into causal shadows: Let us first point out to the reader that the causal

shadow volumes that are added to the entanglement wedge of the radiation subsystem after

the Page time, both in the case of the three-boundary as well as the n+ 1-boundary model,

are hyperbolic polygons in general.

For the three-boundary case, the region is a hyperbolic octagon, whereas, for the n-

boundary scenario, the region is a hyperbolic 4nPage-gon. nPage stands for the n-value at

which the Page transition, or in case of volume, the wheel-eyeglass phase transition [136],

occurs.

Therefore, the first thing to understand is that in the case of the n+ 1-boundary model,

9Strictly speaking, our volumes are of course areas, but we stick with conventional terminology of higher-
dimensional geometries.
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Figure 5.12: Hyperbolic octagon and Causal Shadow in three-boundary wormhole model.

Figure 5.13: Hyperbolic octagon through hyperbolic triangles.

the structure of the causal shadow depends upon the Page time. Now, let us understand

the volumes of general hyperbolic polygons in terms of hyperbolic triangles. Firstly, we

discuss the three-boundary causal shadow and then generalize it to a general number of

boundaries.
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Hyperbolic octagon: First, we discuss the three-boundary case. In this case, as men-

tioned in 5.4.1, the minimal surface change gives an additional contribution to the volume

of the radiation subsystem. Now, from the Figure 5.12, we can see that this is the causal

shadow region. For the three-boundary case, as has been marked in the figure, eight ver-

tices are constructing a hyperbolic polygon. In general, it can have any volume depending

on the nature of the edges of the polygon. However, in our case, we easily see that at each

vertex at least one of its edges is always a geodesic (throat horizon) in the fundamental do-

main of the three-boundary wormhole. Now, any bulk curve or geodesic in the fundamental

domain is bound to hit the boundary of the domain with a corner angle π
2
.10

Knowing the corner angles, we can use the formula for the area of the hyperbolic tri-

angle in computing the area of the hyperbolic octagon by dividing it into eight triangles as

shown in Figure 5.13.

The vertices of the octagon are marked by the numbers i = 1, 2, ..., 8 and the eight

triangles that we divide this octagon into have a common vertex 0. The sum of all angles

joined at the center 0, we call these ^i0j with i, j = 1, 2, ..., 8, is of course 2π. This allows

for a simple derivation of the octagon’s volume,

Area of the octagon(∆V(3)) =
∑

i,j(i 6=j)

∆(i0j) =
∑
I

∆(I) , (I = 1, 2, .., 8)

= 8π −
∑

i,j(i 6=j)

^i0j −
∑

Corner angles = 8π − 2π − (8× π

2
) = 2π. (5.27)

Hence, the area of the hyperbolic octagon is constant in our case and the volume ex-

periences a jump of 2π at the Page transition (wheel-eyeglass phase transition). In Figure

10Another way of understanding these bulk geodesics and the corner angles is as entanglement wedge
cross-sections as pointed out in [9, 70] and as proved in [137] using Klein coordinates.
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Figure 5.14: Complexity plots of 3 boundary island model for two solutions of R

5.14, we have shown the volume vs time plots for the two solutions of R (time-dependent

radius of the non-concentric pair of semicircles) as mentioned in 5.4.1.

Hyperbolic m-gon: Now we generalize our previous computation for any general m-

gon of the given kind, i.e; the corner angles being π
2
. In this case as it turns out again, we

can divide it into m hyperbolic triangles and the area simply becomes,

Area of m-gon = mπ − 2π −mπ

2
= π(

m

2
− 2). (5.28)

Now for a given n+ 1-boundary wormhole, we find that the value of m becomes m = 4n.

Therefore, for the n+1-boundary wormhole, the volume that is added at the Page transition

becomes,

Jump in volume: ∆V(n) = [2 (nPage − 1)− 2]π = (2nPage − 4) π. (5.29)

Hence, we find that for the n+ 1-boundary model, the jump in volume depends on the

Page time whereas, for the three-boundary model, it does not. For the three-boundary case,

there is no topology change in the process of evaporation and therefore, the previous result,
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Figure 5.15: Complexity plots of n+ 1 boundary island model for two choices of R.

2π, is recovered by setting nPage = 3.

The full evolution of holographic complexity during the evaporation is illustrated in

figure 5.15 for two different choices ofR(n), both of which obey (5.25). While there exists

a large pool of choices for R(n) producing distinct plots, we emphasize that all of them

have similar qualitative features as either of our two choices for R(n),

Ra (n) =
100− n

(2n+ 2)1.05

Rb (n) = (100− n)× 10−3 (5.30)

Indeed, our choices seem to have been conjured out of the blue. They are not completely

ad-hoc, though. While certainly not unique; these are two of the many choices which

ensure that at any moment all circles can be sufficiently accommodated in the fundamen-

tal domain as well as generate physically meaningful plots of the volume. In absence of

any true analytical time-dependence of R, these are our best guides to fix a meaningful

evolution of complexity. Further, we assumed that the disconnected throat horizons were

equally divided into two halves with each of them having length L1

2
, where L1 is the length
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of the solely connected horizon and we have already assumed all horizons to have the same

length. Under these assumptions and with the help of equations (5.23) and (5.24), we can

express the volume associated with each smaller horizon as

Vinitial =
4(n− 1)

(
cosh

(
`
4

)
− 1
)
R (n)

ε
+

2
(
cosh

(
`
2

)
− 1
)
R(n)

ε
(5.31)

This is the volume that goes into the complexity before Page time, after the Page transition

there’s a constant addition (5.29) to the volume. The figures clearly display these required

features.

5.5 Results

In this chapter, we have discussed the details of the recent progress concerning the

black hole information paradox and Page curve. Then we have discussed the MbW models

that mimic the evaporating BH vs radiation scenario. We have drawn connections between

the (n+ 1) boundary model and the multipartite EoP building on [9]. The boundary of the

analog islands is seen to be dual to the multipartite EoP after Page time. However, applying

the island formula naively lands one into the paradox once more where the multipartite

entanglement keeps growing. Therefore, it is instructive to take proper limits at which

bipartite entanglement dominates, and then we get the correct Page curve.

For the volumes, which are supposed to represent the sub-region complexity of the

radiation state [10], we get two candidate curves for both the three and (n + 1) boundary

models. In this case, there is a jump at Page time for both the candidate curves and the

jump is argued to be dual to the complexity of purification (CoP). The idea is that due to

the purification of Hawking quanta at Page time, there are extra gates needed to radiation

state at Page time. Same jump was found to be multi-partite CoP in the studies [138, 139].
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We discuss these implications in a more detailed fashion in the next chapter.
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APPENDIX A

DETAILS OF EMBEDDING FUNCTIONS

FOR CHARGED AND UNCHARGED ADS

BH

A.1 Uncharged BH Embedding

The second-order embedding functions y2(x) in dimensions 3 to 7 are

yAdS3
2 (x) =

√
1− x2

360

(
48− 32x2 + 3x4

)
, (A.1)

yAdS4
2 (x) =

√
1− x2

4480

(
513− 771x2 + 346x4 − 40x6

)
+

3

140

(
ln
(
1 +
√

1− x2
)

√
1− x2

− 1

)
, (A.2)
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yAdS5
2 (x) =

(1− x2)3/2

4200

(
376− 592x2 + 267x4 − 35x6

)
, (A.3)

yAdS6
2 (x) =

√
1− x2

66528x2

(
320− 4935x2 + 18045x4 − 24469x6 + 15607x8 − 4592x10

+ 504x12
)

+
10

2079

(
1

x2
+ 2−

3 ln
(
1 +
√

1− x2
)

√
1− x2

)
, (A.4)

yAdS7
2 (x) =

(1− x2)5/2

168168

(
11140− 28356x2 + 25227x4 − 9006x6 + 1155x8

)
. (A.5)

The inverse relations require us to define the variable u = y/y(0):

xAdS3
2 (u) =

√
1− u2

40

(
3u4 + 4u2 + 8

)
, (A.6)

xAdS4
2 (u) =

√
1− u2

4480(1 + u)2

(
240u8 + 480u7 + 639u6 + 798u5 + 634u4 + 890u3 + 1122u2

+ 1310u+ 703
)

+
3

140
√

1− u2
ln

(
1 + u

2

)
, (A.7)

xAdS5
2 (u) =

√
1− u2

4200

(
175u8 + 328u6 + 228u4 + 380u2 + 464

)
, (A.8)
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xAdS6
2 (u) =

√
1− u2

66528(1 + u)2

(
2268u12 + 4536u11 + 6853u10 + 9170u9 + 8046u8 + 6922u7

+ 5838u6 + 7526u5 + 9294u4 + 10138u3 + 11222u2 + 11666u+ 5353
)

− 10

693
√

1− u2
ln

(
1 + u

2

)
, (A.9)

xAdS7
2 (u) =

√
1− u2

168168

(
4851u12 + 10332u10 + 8196u8 + 6180u6 + 9452u4

+ 11168u2 + 12884
)
. (A.10)

Note that y(0) is the turning point of the RT surface in the bulk. The point of defining

u is to impose the boundary condition x(u = 1) = 0. Now, we present the third-order

embedding functions only in the y(x) parametrization:

yAdS3
3 (x) =

√
1− x2

15120
(3x6 − 46x4 + 584x2 − 816), (A.11)

yAdS4
3 (x) =

3

280
(1− x2)3/2 +

(1− x2)

2508800
(1400x8 − 13055x6 + 89470x4 − 204924x2 + 128544)

+
3

560
(3x2 − 4) ln

(
1 +
√

1− x2
)
− 3

280

(
ln
(
1 +
√

1− x2
)

√
1− x2

− 1

)
, (A.12)

yAdS5
3 (x) =

(1− x2)3/2

30030000

(
21175x10 − 193940x8 + 1106251x6 − 2993238x4

+ 3441368x2 − 1405296
)
, (A.13)
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yAdS6
3 (x) =

1− x2

684972288x2
(513513x16 − 5481333x14 + 32079432x12 − 109571268x10

+ 211009892x8 − 225264756x6 + 128106720x4 − 37981640x2 + 2196480)

− 10
√

1− x2

6237
(3x6 − 4x4 − 7x2 + 2) +

10(1− x2)

2079
(3− 2x2) ln

(
1 +
√

1− x2
)

+
40

2079

(
ln
(
1 +
√

1− x2
)

√
1− x2

− 1

)
, (A.14)

yAdS7
3 (x) =

(1− x2)5/2

760455696

(
569415x14 − 5926650x12 + 32824206x10 − 109100880x8

+ 208361675x6 − 222638554x4 + 124255928x2 − 28455732
)
. (A.15)

We are able to give the exact embedding for the AdS3 BH. This is given by

yAdS3(x) =
1√
λ

√√√√1−
cosh2

(
x
√
λ
)

cosh2
(√

λ
) . (A.16)

The perturbative expansion of this around λ = 0 up to third order precisely gives the AdS3

second- and third-order results given above.

A.2 Charged BH Embedding

The (2d− 2)-order embedding functions y(0,1)(x) in dimensions 4 to 7 are

yAdS4

(0,1) (x) =
1

30
p2

[√
1− x2(3x4 − 8x2 + 9) + 8

(
ln
(
1 +
√

1− x2
)

√
1− x2

− 1

)]
, (A.17)

yAdS5

(0,1) (x) =
1

70
p2
(
1− x2

) 3
2
(
5x4 − 13x2 + 11

)
, (A.18)
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yAdS6

(0,1) (x) =
1

315
p2

[√
1− x2

2x2

(
35x10 − 160x8 + 286x6 − 240x4 + 63x2 − 32

)
+ 16

(
1

x2
+ 2−

3 ln
(
1 +
√

1− x2
)

√
1− x2

)]
, (A.19)

yAdS7

(0,1) (x) = − p2

4158
(1− x2)

5
2

(
189x6 − 672x4 + 852x2 − 409

)
. (A.20)

The (3d− 2)-order embedding functions y(1,1)(x) in dimensions 4 to 7 are

yAdS4

(1,1) (x) =
p2(1 + p2)

15

[
2(1− x2)

3
2 +

1− x2

480

(
135x6 − 990x4 + 2328x2 − 1568

)
+ 2

(
1−

ln
(
1 +
√

1− x2
)

√
1− x2

)
+ (3x2 − 4) ln

(
1 +
√

1− x2
)]
, (A.21)

yAdS5

(1,1) (x) = −p
2(1 + p2)

23100

(
1− x2

) 3
2
(
405x8 − 3020x6 + 7833x4 − 9199x2 + 4261

)
(A.22)

yAdS6

(1,1) (x) =
p2(1 + p2)

945

[
−16
√

1− x2

x2

(
3x6 − 4x4 − 7x2 + 2

)
− 1− x2

9240

(
138600x12 − 1258950x10 + 4551330x8 − 8660015x6 + 9241635x4

− 5719176x2 + 2593616
)

+ 48(1− x2)(3− 2x2) ln
(
1 +
√

1− x2
)

+ 32

(
1

x2
− 7 +

6 ln
(
1 +
√

1− x2
)

√
1− x2

)]
, (A.23)
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yAdS7

(1,1) (x) = −p
2 (1 + p2)

989604

(
1− x2

) 5
2

(
14175x12 − 125832x10

+ 447405x8 − 837755x6 + 887386x4 − 510857x2 + 127526
)
. (A.24)

As we can see by looking at these embedding functions, y(0,1)(x) always carries the pre-

factor p2 with it whereas y(1,1)(x), being a mixing of orders d and (2d − 2), consistently

carries a pre-factor p2(1 + p2) along with it. In our plots of the embedding functions, we

plot the functions of x apart from these pre-factors. If one wishes to get the exact rescaled

plots for some particular p, these plots will be rescaled with these respective pre-factors.

We also have the inverse forms of these embedding functions. But we do not present

them as they are very big expressions and we do not necessarily need them. The results

were reproduced using the inverse embedding functions as well and were unchanged.

A.3 Fourth-Order Change in Entanglement Entropy

The fourth-order change in HEE is given by

∆s(4) = (s0,1111 + s1,111 + s2,11 + s3,1 + s4,0) + (s0,22 + s0,112 + s1,12 + s2,2)

+ (s0,13 + s1,3) + s0,4

= (s0,1111 + s1,111 + s2,11 + s3,1 + s4,0)− s0,22, (A.25)

where the contribution of y4 and y3 vanish by virtue of the Euler-Lagrange equations

for y0 and y1, respectively. Furthermore, and the contribution of y2 simplifies significantly

by virtue of the Euler-Lagrange equation for y2 itself. These simplifications are discussed

and proven in Section 3.2.3.
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Despite the simplifications, this still depends explicitly on y2. Since we are unable to

perform the requisite integrals using the general form of y2 as a function of d given in

(3.19), we have to infer the general formula for ∆s(4) from results at specific values of

d. In general, this is a difficult task and we cannot yet give a general formula for ∆s(4).

Nevertheless, we give the values of ∆s(4) for AdS3 to AdS7 below.

AdSd+1 ∆S(4)
(
in units of 2πΩd−2

(
L
`P

)d−1
m4R4d

)
AdS3 − 1

37800

AdS4
643689

3139136000
− 9 ln 2

19600

AdS5 − 213784
3350221875

AdS6
5(−824827123+931170240 ln 2)

33539518244232

AdS7 − 54651392
5471241090315

Note that, just like ∆S(2) and ∆S(3), we find that ∆S(4) is also of fixed sign. In this case,

∆S(4) is negative. This suggests that the change in HEE is of fixed sign at each order

and it appears to alternate from positive to negative at odd and even orders, respectively.

There may be interesting physics underlying this observation, which we postpone to future

investigation.
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