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SYNOPSIS

Carbon nanotubes have become very important in molecular research because

of the potential applications of nanomachines in the field of computing, electron-

ics, robotics and drug delivery. The high tensile strength and strong mechanical

properties of these nanotubes make them a promising candidate for future nano-

machinery. These nanometer devices, either alone or attached to a propeller, are a

bright candidate for future machines which could be used for medical applications.

Nanometer-sized devices, especially nanomotors, based on carbon nanotubes, are of

interest for their novel applications in drug delivery techniques.

Earlier workers have reported the results of Molecular Dynamics (MD) simu-

lations of electrically-driven nanomotors based on double-walled carbon nanotubes

(DWNT). The inner and outer CNTs are called the “shaft” and “sleeve’ respectively.

Those studies broke new ground and yielded interesting insights into the atomistic

level behavior of such nanomotors. However, those studies either did not consider

certain aspects of nanomotor operation, or did not investigate them in sufficient

detail. Some of those limitations have been addressed in the present thesis. In this

thesis, we report on classical molecular dynamics simulations of a nanomotor based

on a DWNT. Four major problems have been examined.

Firstly, during MD simulations of a DWNT-based motor with the sleeve held

fixed, we found that distortion of the shaft at high electric fields leads to highly non-

ideal behavior of the motor, such as ‘locked states’ in the rotation of the shaft inside

the fixed sleeve. These results are in contrast to earlier MD results of other workers,

which had indicated both motor-like and oscillatory motion of the nanomotor at the

same electric field amplitudes. The frequency of shifts between the observed locked

states correspond to the frequency of the applied electric field. An explanation has

been given for these locked states in terms of the radial shape variations of the shaft

and shifts in the centroid of the shaft inside the fixed sleeve. In the other set of

simulations, where both the shaft and sleeve are free to move, the usual pendulum-

and motor-like behavior is observed. A simple theoretical model is also given and

we see that the motion of the shaft and the sleeve obtained from this model matches

reasonably well with the MD results, although there are differences of detail.

Secondly, we have obtained, for the first time, the complete set of the character-

istic modes of a single-walled carbon nanotube (SWNT) and a DWNT, using the

novel technique of singular value decomposition (SVD) analysis on our molecular
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dynamics data. Good agreement is observed between the calculated frequency of ra-

dial breathing modes (RBM) and published experimental measurements, as also the

inverse scaling of this frequency with tube diameter. A few other important modes

are obtained which are classified into two different classes, one having mz = 0, i.e.,

axial uniformity, and the other class having mθ = 0, with mz = 1 and 2, i.e., az-

imuthal uniformity. For the available cases, the frequencies of the above mentioned

modes matches well with those in the literature. We also study, for the first time,

the problem of resonant excitation of the SWNT. External excitation produced at

one of the mode frequencies shows a significant and steady increase in the ampli-

tude of centroid displacement. Excitation at the second harmonic frequency leads

to an initial increase in displacement amplitude, but eventual saturation. These

conclusions are important for the application of carbon nanotubes as nanomotors.

Similar to the characteristic mode study of an SWNT, the characteristic modes of a

DWNT are also studied. The RBM frequency is observed to be upshifted in the case

of a DWNT. Also the frequencies of a few other modes are observed to be slightly

different in this case. For some of the modes, multiple peaks are seen at more than

one frequency point.

It can be shown by simple arguments that only certain combinations of the fre-

quency and amplitude of the applied electric field should be able to produce pure

motor-like motion in the nanomotor. Thirdly, therefore, we have determined the

useful region in frequency-amplitude space for producing pure motor-like motion in

the nanomotor. We have developed a theoretical model which yields the nominal

operating point in amplitude-frequency space. We then study the full parameter

space around this operating point using molecular dynamics simulations. For a

given frequency, electric field amplitudes below a threshold are not able to overcome

the potential energy barriers due to interaction of the rotating shaft with the frozen

sleeve. This is then followed by a range of amplitudes where unidirectional motion

is observed. At still higher amplitudes, distortion of the shaft increases the potential

energy barriers to levels higher than those that can be overcome by the electric field.

Hence we get three regions during the amplitude scan, only one of which is useful

for a nanomotor. For a given amplitude, as the frequency is varied, more complex

behavior is obtained, which can be broken up into four regions. At low frequen-

cies (Region-1), large distortion of the shaft leads to an increase in potential energy

barriers, hindering rotation. Over an intermediate range (Region-2), unidirectional
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motion is observed, since shaft distortions are smaller than in Region-1. This is

followed by an anomalous region (Region-3), where resonant excitation of a charac-

teristic mode of the shaft leads to very large distortions, which greatly enhance the

barrier. Finally, in Region-4, the distortion again starts falling off with rise in fre-

quency. However, the frequency is now so high that the shaft cannot complete a full

rotation before the field reverse sign. Hence unidirectional rotation is not obtained.

A detailed physical explanation has been provided for the anomalous behavior in

Region-3, in terms of resonant excitation of a characteristic mode.

Depending on the application, some part of the nanomotor must be attached to a

surface, e.g. electrical contact for an electrically-driven motor. We must understand

the behaviour of such “joints”. Fourthly, therefore, we have made a start in this

area by examining the interaction of an SWNT with a graphite surface. At a fixed

temperature of 100 K, nanotubes of larger diameters are observed to acquire a large

contact area on the top of the graphite surface. The tubes are seen to deform to

have a larger contact area with the graphite surface and thus have larger binding

energy with the surface. The variation of the binding energy per unit length along

the axis of the CNT, obtained from our MD calculations, matches well with the

Molecular Mechanics (MM) results of other workers. The contact area between the

nanotube and the graphite surface is observed to become progressively smaller as

the temperature is increased. This is because at higher temperatures, the atoms

acquire higher kinetic energies, because of which they can overcome the interactions

between the tube and the graphite. We also study the effect of the separation

distance between neighboring nanotubes on the contact area between the tube and

the graphite surface. All nanotubes having an intial separation greater than 6.9213

Å are observed to show qualitatively good flattening over the graphite surface.
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Chapter 1

Introduction

There’s Plenty of Room at the Bottom – Richard Feynman

Carbon nanotubes (CNT) first discovered by Iijima [1] have now become very

important in molecular research because of their potential application for future

electrical and mechanical devices [2]. A CNT is a tubular structure made up of car-

bon atoms. A CNT structure is described by a pair of integers (n,m). Depending on

these integers (n,m), the tube is characterized as arm-chair, zig-zag or chiral. The

symmetry and electronic properties of a Single-Walled carbon nanotube (SWNT)

are completely described by these integers [3].

In the past few years the field of carbon nanotubes and nanomachines/nanodevices

based on them have attracted many researchers because of the various potential ap-

plications of them in the field of computing, electronics, robotics, drug delivery etc.

Some of the potential applications of carbon nanotubes are discussed below.

1.1 Applications of Carbon nanotubes

1.1.1 Electrochemical devices

Carbon nanotubes serve as a large number of electrochemical devices. Because of

the high electrochemically accessible surface area of porous nanotube arrays, high

electronic conductance and useful mechanical properties these tubes are attractive

as electrodes for devices that can be used in electrochemical double layer charge

2
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injection [4–6]. Examples include ”super-capacitors” made up of carbon nanotubes.

In contrast to the ordinary planar sheet capacitors these super-capacitors offer ca-

pacitance’s typically between 15 and 200 F/g and result in large amount of charge

injection when only a few volts is applied [4–7]. A large number of carbon nanotube

based electrochemical bio-sensors are discussed in the review [8].

1.1.2 Hydrogen Storage

Carbon nanotubes are predicted as a good candidate for hydrogen storage. [9] re-

ported on the hydrogen adsorption and storage inside single and multi-walled carbon

nanotubes. They predicted that hydrogen exists as H2 molecules inside CNTs and

the storage capacity of hydrogen is limited by H2 molecules inside the tube. Also the

storage capacity increases linearly with the tube diameter in case of a single walled

carbon nanotube. Whereas this capacity is independent of the tube diameter in a

multi-walled nanotube. Yuchen Ma et.al [10] studied the hydrogen storage inside

SWNT using Molecular Dynamics (MD) and ab-initio electronic calculations. They

showed that hydrogen atoms with kinetic energy of 16-25 eV penetrate inside the

CNT and form hydrogen molecules. Gradually these molecules condense to form

liquid hydrogen inside the tube. The Molecular Mechanics (MM) results in [11]

seem to indicate that high hydrogen content in the nanotubes can not be achieved

through physisorption.

1.1.3 Nanometer-Sized Electronic Devices

Carbon nanotubes can be used as field emission electron source [12, 13] for flat

panel displays [14], lamps [15], gas discharge tubes providing surge protection [16]

and x-ray [17] and microwave generators [18]. A potential field applied between a

carbon nanotube-coated surface and an anode produces high local fields as a result

of the small radius of the nanofiber tip and the length of the nanofiber. Unlike

for ordinary bulk metals, nanotube tip electron emission arises from discrete energy

states rather than the continuous electronic bands [19]. With crossed SWNTs, three

and four terminal electronic devices have been made [20] also a nonvolatile memory

that functions like an electromechanical relay [21]. Integrated nanotube devices

involving two nanotube transistors have also been reported [21, 22].
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1.1.4 Electromechanical Devices

Tuzan et. al [23] simulated a nanomotor made up of two concentric carbon nan-

otubes one placed inside another stimulated by an external electric field. Motor like

behavior is observed in combination to the usual pendulum like motion when this

motor is stimulated by an external electric field.

Srivastava [24] simulated a carbon nanotube based gear as shown in Fig.1.1. A

benzene molecule is attached to the gear and is powered by a laser. When the phases

of the applied laser and of the nanotube are properly matched, unidirectional mo-

tion with accelerating and decelerating angular velocities is seen. The dynamics of

Figure 1.1: A Carbon nanotube based gear with positive and negative charges. The
figure is adapted from [24].

an ion-driven nanomotor mimicking the F0 part of the ATPs molecule in presence

of and absence of an electric field is studied by [25]. They show that the motion of

such a motor is controlled by the parameters such as positive ions placed inside the

stator part of the motor, the density of the positive ions and the strength and the

frequency of the applied field.

Servantie et. al [26] studied the drag force acting between two coaxial CNTs in

such a system when they are set into relative angular motion. They studied the role

of translational sliding motion and dynamic friction for axial rotation of the inner
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nanotube in a Double-Walled carbon nanotube (DWNT) system using MD. They

showed that the dynamic friction is linear in angular velocity for a wide domain

of armchair-armchair, zigzag-armchair and zigzag-zigzag double walled CNT’s. A

gigahertz actuator based on multi-walled carbon nanotube encapsulating potassium

ions was studied in [27].

Experimentally, a novel method of construction and successful operation of a

fully synthetic nanoscale actuator incorporating a rotatable metal plate is reported

in [28]. A multi-walled CNT serves as a key motion-enabling element in this nano-

electromechanical system (NEMS). The device fully integrates electronic control and

its mechanical response. A similar NEMS is reported in [29] where the rotating plate

is attached to an inner multi-walled nanotube (MWNT) shell that turns inside outer

shells fixed to two anchor pads. Huaming et. al [30] showed their interest for the

application of such nanodevices for drug-delivery.

The present thesis focuses on the dynamics of a double-walled carbon nanotube

based motor stimulated by an external electric field.

This chapter will give an introduction to the structure and some of the physical

properties of the carbon nanotubes such as its vibrational properties. Many of the

properties of a Single-Walled carbon nanotubes can be derived by zone-folding of

the electronic and physical properties of the 2-D graphite [31]. Therefore we first

give the notation used to describe graphite and the carbon nanotubes and then the

respective unit cell and phonon dispersion relations are explained. In a later part of

this chapter, we explain in detail the problem studied in this thesis.

1.2 Graphite

Graphite is a layered material. In each layer called a graphene, the carbon atoms

are arranged in a hexagonal lattice with separation distance of 1.42 Å, and the

distance between planes is 3.35 Å. So graphene is an one-atom-thick planar sheet of

sp2 bonded carbon atoms that are densely packed in a honeycomb crystal lattice. It

can be visualized as an atomic-scale chicken wire made of carbon atoms and their

bonds.
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1.2.1 Unit Cell of graphene

The unit cell of a 2D graphene sheet consists of 2 carbon atoms as shown in

Fig. 1.2(a). The Brillouin zone of the 2D graphene sheet is as shown in Fig. 1.2(b).

The figure is adapted from [32].

Figure 1.2: (a) The unit cell and (b) Brillouin zone of two dimensional graphite are

shown as the dotted rhombus and the shaded hexagon, respectively. ~ai, and ~bi, (i = 1,2)
are unit vectors and reciprocal lattice vectors, respectively. Here Γ, K and M are the high
symmetry points in the reciprocal lattice.

1.2.2 Phonon Dispersion relation for 2D graphite sheet

The vibrational motion of a system of particles is often resolved in terms of its

phonon modes. The phonon modes give the information about the lattice vibra-

tions. These modes are often called as ’normal modes’ of the system as they are the

intrinsic modes of the system. These modes can give us information about various

physical properties of the system for example its specific heat.

The phonon dispersion relation of a 2D graphite sheet is emperically obtained

by fitting the force constant parameters [33] as explained in [31] to the neutron

scattering data. The force constant parameters for a 2D graphene sheet are as given

in Table 1.1 and the corresponding phonon dispersion curves plotted along the high

symmetry point in Fig. 1.3 as adapted from [31].

1.3 Carbon Nanotubes

A Single-Walled carbon nanotube can be viewed as a single graphene sheet, one

atom thick, rolled up into a seamless cylinder. Depending on the way the graphene
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Radial Tangential

φ1
r = 36.50 φ1

ti = 24.50 φ1
to = 9.82

φ2
r = 8.80 φ2

ti = -3.23 φ2
to = -0.40

φ3
r = 3.00 φ3

ti = -5.25 φ3
to = 0.15

φ4
r = -1.92 φ4

ti = 2.29 φ4
to = -0.58

Table 1.1: Force constant parameters for 2D graphite in units of dyne/cm. Here the
subscripts r, ti and to refer to radial, transverse in-plane and transverse out-of-plane
respectively.

Figure 1.3: (a) The phonon dispersion curves, plotted along high symmetry directions,
for a 2D graphene sheet, using the set of force constants in Table 1.1 (b) The corresponding
density of states vs phonon energy for phonon modes in units of states/1C−atom/cm−1×
10−2. The figure is adapted from [33]

sheet is rolled the SWNT is characterized as arm-chair, zig-zag or chiral tubes. The

electrical and mechanical properties of these carbon nanotubes depend upon their

type [31]. In the next few subsections we explain the basic notation used to describe

the structure of a carbon nanotube as in [32].

1.3.1 Notation

Fig. 1.4, reproduced from [32], shows the rectangle of the graphene sheet which can

be oriented to produce different types of nanotubes. The chiral vector Ch for the
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nanotube is defined as:

Ch = na1 + ma2 (1.1)

Where the vectors a1 and a2 are the lattice translation vectors of the graphite. Here

n and m are two integers which describe the chiral vector Ch. The chiral vector Ch

connects two crystallographically equivalent sites O and A on the two dimensional

graphene sheet where a carbon atom is located at the vertex of the honeycomb

structure. The length of the translation vector T can be obtained by traveling a

way from point O (at right angles to Ch) until one reaches an equivalent site to O.

A nanotube is a cylinder made by joining the line OB to the parallel line AB’ in

the Fig. 1.4. The unit cell shown in the Fig. 1.4 is for a (4,2) carbon nanotube.

Figure 1.4: The unit cell of the carbon nanotube is the rectangle OAB’B here. When the
point O is connected to point A, and B to B’, a nanotube is constructed. In this rectangle
~OA and ~OB define the chiral vector Ch and the translation vector T of the nanotube

respectively. This figure is adapted from [31]

Depending on the way of folding and the integers (n,m) the type of the nanotube

will be different. In our simulations, we have used mainly arm-chair and zig-zag

type of nanotubes. Fig. 1.5 shows a (5,0) SWNT and a (5,0)@(15,0) DWNT used

in our simulations.

The diameter of the nanotube dt is given as

dt = |Ch|/π =
√

3ac−c

√

(m2 + mn + n2)

π
(1.2)
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(a) (b)

Figure 1.5: (a) A (5,0) Single-Walled carbon nanotube (SWNT) (b) A (5,0)@(15,0)
Double-Walled carbon nanotube (DWNT)

Where Ch is the length of the chiral vector Ch and ac−c defines the length of the

carbon-carbon bond length. The chiral angle θ is given as:

θ = tan−1

[ √
3m

(m + 2n)

]

(1.3)

When the angle θ is zero in the Fig. 1.4, it results in a zigzag nanotube and when

θ is 30 deg, then it results in an armchair nanotube. Any angle of θ between 0 and

30 deg gives rise to chiral nanotubes.

1.3.2 Unit cell of a Carbon nanotube

The unit cell of a carbon nanotube is defined as the rectangle OBB’A. It can also

be defined in terms of its basis vectors a1 and a2. As shown in Fig. 1.4, a1 and a2

are the two basis vector of the carbon nanotube unit cell in the real space. b1 and

b2 are the reciprocal lattice vectors. The real space basis vector are given as:

a1 =

(√
3a

2
,
a

2

)

, a2 =

(√
3a

2
,
−a

2

)

(1.4)

where a = -a1 = -a2 = 1.42×
√

3 = 2.46 Å is the lattice constant of the 2D graphite.

The basis vector b1 and b2 of the reciprocal lattice are given by:

b1 =

(

2π√
3a

,
2π

a

)

, b2 =

(

2π√
3a

,
−2π

a

)

(1.5)
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corresponding to a lattice constant of 4π/
√

3a in reciprocal space. As shown in

Fig.1.2 the high symmetry points Γ, K and M are the center, the corner and the

center of the edge respectively.

The translation vector of the nanotube is given as the vector ~OB in Fig. 1.4 and

is given as:

T = t1a1 + t2a2 = (t1, t2) (1.6)

where t1 and t2 are defined as:

t1 =
(2m + n)

dR
, t2 =

−(2m + n)

dR
(1.7)

Where dR is the greatest common divisor of (2n + m, 2m + n) and is given as:

dR = d, if n − m is not a multiple of 3d, else (1.8)

dR = 3d, if n − m is a multiple of 3d (1.9)

where d is the greatest common divisor of (n,m). The magnitude of the translation

vector is given as:

|T | =
√

3L/dR (1.10)

where L is the length of the chiral vector Ch = π dt and dt is the nanotube diameter.

The unit cell of the nanotube is defined as the area under the rectangle defined

by vectors T and Ch. The number of hexagons, N in one unit cell of the nanotube

is defined as:

N =
2(m2 + n2 + nm)

dR
(1.11)

In the unit cell addition of a single hexagon to the honeycomb structure leads to

addition of two carbon atoms. Thus the unit cell of a carbon nanotube is defined

by the vector Ch and T. Similarly the reciprocal space is defined by the vectors K1

and K2 defined as:

K1 =
1

N
(−t2b1 + t1b2) (1.12)

K2 =
1

N
(mb1 − nb2) (1.13)

Where b1 and b2 are the reciprocal lattice vectors of a two dimensional graphene

sheet.

In the next section we explain the phonon dispersion relation of a carbon nan-

otube. Because of the similarity in the local structure of the carbon nanotube and

the graphene sheet, the electron and the phonon relation of a CNT can be obtained

from that of a graphene sheet by using zone-folding techniques [31].
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1.3.3 Phonon dispersion relation of a Carbon nanotube

As explained in subsection 1.2.2 the phonon modes give the information about the

lattice vibration of the system. As the main aim of this thesis is to study the

atomistic behavior of the carbon nanotube based devices, the phonon modes would

be helpful to study this behavior in terms of various modes and their frequencies.

The phonon branches of a CNT would give the information about the propagation

of waves in the system.

In the following subsection we explain the phonon dispersion relations of a car-

bon nanotube as given in [31]. Because of the symmetry in the structure the phonon

dispersion relation of an SWNT is obtained by folding the phonon dispersion curves

of a 2D graphene layer as discussed in subsection 1.2.2. Since there are 2N carbon

atoms in the unit cell of a carbon nanotube, there will be a total of 6N phonon dis-

persion relations. These phonon relations are for the x, y and z vibrations for each

atom and are folded into the one-dimensional Brillouin zone of a carbon nanotube

along the vector K2. The phonon dispersion relations of a carbon nanotube also

depend on (n,m) and the diameter of the the tube, dt, since the phonon wave vector

in the circumferential direction becomes discrete for vector K1.

The one-dimensional phonon energy dispersion relation ωmµ
1D (k) for the nanotubes

as in [31] is given by,

ωmµ
1D (k) = ωm

2D

(

kK2

|(K2|) + µK1

)

(1.14)

where m = 1,...6, µ = 0,...,N-1 and −π/T < k < π/T . The phonon dispersion

branches calculated for a (10,10) nanotube by [31] is shown in Fig. 1.6. Here T

denotes the magnitude of the unit vector along the length of the nanotube. For

the 2N = 40 carbon atoms per circumferential strip for the (10,10) nanotube, they

have 120 vibrational degrees of freedom, but because of mode degeneracies there

are only 66 distinct phonon branches, of which 12 modes are non-degenerate and 54

are doubly degenerate. The distinct phonon branches can also be obtained by point

group theory for atoms in the unit cell [31].



Chapter 1: Introduction 12

Figure 1.6: (a) The calculated phonon dispersion relations of an armchair carbon nan-
otube with ch = (10,10). The number of degrees of freedom is 120 and the number of
distinct phonon branches is 66. (b) Phonon density of states of (10,10) nanotubes. The
figure is adapted from [33].

1.4 Major issues with CNT-based nanomotors

As discussed in subsection 1.1.4, one of the potential applications of a carbon nan-

otube is its use as an electromechanical device or a motor. But there are several

major issues related to the nanomotors examined by Tuzan, Servantie etc. Some of

these issues are listed below:

1. Non-ideal behavior of the inner CNT (shaft) when it rotates inside a static

outer CNT (Sleeve). For example, the DWNT configurations is likely to un-

dergo large distortions due to the application of a large electric field. How do

these distortions affect the performance of the motor?

2. When a nanomotor shaft is attached to a device like a rotating blade (e.g. in

a propeller), the non-ideal motion of the shaft is likely to produce non-ideal

motion of the propeller. This motion is likely to be related to the intrinsic

(characteristic) modes of the system. These modes must be determined.

3. For a given nanomotor configuration, are there any limits to its operation in

terms of the applied electric field and its frequency?
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4. For practical applications, such a nanomotor would have joints when attached

to a propeller. How would these joints behave at different temperatures?

5. Charges could be placed on certain atoms of the nanomotor by attaching

groups with different electronegativities. What kind of charge distribution

would be produced by attachment of specific groups, and how would this

charge distribution change as a function of time in a functioning nanomotor?

6. A nanomotor is likely to be immersed in a fluid. How would the presence of

the fluid affect the behavior of the nanomotor, especially if the fluid enters the

inter-CNT gap?

7. In the case of an electrically-driven nanomotors, a strong electric field may be

required to produce differential rotation of the two CNTs. Getting such a high

amplitude electric field of terahertz frequency is an open issue.

8. Would the high amplitude electric field affect the inter-particle interactions?

9. In case of a nanomotor attached to a propeller, the distortions produced in the

shaft would also produce distortions of various kinds in the propeller. These

distortions must be studied.

In the present thesis, we focus on items 1-4 above.

1.5 Overview of the problem

In the present work, we computationally study the behavior of a double-walled

carbon nanotube based motor in the presence of an external electric field. Tuzan

[23] performed simulations of such a motor using MD with an empirical Lennard-

Jones 6-12 potential for the intertube interaction (i.e for interaction between the

two nanotubes) and a three body interaction term for the intratube interaction

(interactions within the carbon nanotube). However we use the Brenner potential

[34] for intratube interactions which is an empirical many body potential that can

simulate hydrocarbons very well. For the intertube interactions we use Nordlund’s

long range interaction potential [35]. Unit positive and negative charges are assumed

on atom number 1 and 6 of the shaft and an external electric field of the form

qEacos(ωEt) is applied on the shaft (inner CNT) as seen in Fig.1.7. In the presence
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Figure 1.7: End-on view of the DWNT configuration. A sinusoidally varying electric
field is applied to atom no. 1 and 6 in the x direction at time t = 0 sec. The line joining
the two diametrically opposite atoms no. 1 and 6 makes an angle of 20 deg with the
direction of applied electric field (X axis).

of an external electric field, the two charged atoms experience equal and opposite

forces, which make the shaft to rotate inside the sleeve (outer CNT). Tuzan had

studied the case of both the shaft and the sleeve moving. The case of a static sleeve

was not studied. Also, the intertube separation used by Tuzan was more than the

actual separation distance found in case of a DWNT [36,37]. For a nanometer-sized

motor made up of carbon nanotubes, where a propeller can be attached to it, we

expect the shaft to exhibit unidirectional motor-like motion inside a static sleeve

like an ideal motor. Therefore, we also perform the simulations where the sleeve is

held fixed and the shaft is made to rotate inside this static sleeve.

Below we give the typical physical parameters of the nanomotor studied in this

thesis:

• Diameter - The typical diameter of the carbon nanotubes used in our simula-

tions ∼4-10 Å.

• Forces - In such nano-systems made up of carbon nanotubes the forces are of

the order of pico-newtons.

• Time-scales - The typical time scales of interest are few pico-seconds since we
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have to cover atleast few cycles of the applied electric field period.

• Electric field - Electric fields with amplitude ∼(109 − −1010) V/m and fre-

quency ∼(1010–1012) rad/sec are studied.

• Magnetic field - The typical atomic velocities in these systems are observed to

be ∼100 m/sec. A simple calculation shows that the magnetic fields produced

by the charge movement will thus be negligible.

1.6 Method of simulation

The main aim of this thesis is the study of a nanomotor based on a double-walled

carbon nanotube, driven by an externally-applied time-harmonic electric field. The

behavior of such a device depends sensitively upon inter-atomic interactions. Such

interactions, acting on picosecond time-scales, lead to non-rigid behavior of both the

inner and outer CNTs. This means that the components of this motor cannot be

modelled as rigid elements, and the behavior of individual atoms must be taken into

account. Hence it is necessary to perform atomistic simulations of such a system,

i.e., molecular dynamics (MD).

Starting from a state of rest, we expect the nanomotor to exhibit some transients

and then settle down to motor-like motion. These transients are likely to die out over

a period that is related to the period of the applied field, as well as the time periods

of the characteristic modes of the motor. Hence we expect that the simulation should

be run for a few nanoseconds. Furthermore, in order to get the ensemble average of

a physical quantity, we would need a significant number of atoms to be simulated.

Within molecular dynamics, there is a choice of two methods:

• Classical Molecular Dynamics : The aim of classical molecular dynamics is

to model the detailed microscopic dynamical behavior of many different types

of systems. It computes the time evolution of a system solving Newton’s

force equations, given the interaction between the species. The details of this

technique will be discussed in the next chapter.

• Ab-initio Molecular Dynamics (DFT) : This is the most popular extension of

classical molecular dynamics which includes first-principle derived potential

functions. This is assumed to be the most accurate way of doing molecular
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dynamics simulations but has a major drawback i.e, its computational cost.

The details of Ab-initio MD are discussed in [38].

Ab-initio MD would be the most accurate way of simulating such systems. However,

the heavy computational load associated with ab-initio simulations makes nanosec-

ond simulations impractical with our resources. Hence we have made use of classical

MD simulations.

We use the HCParCas code using the Brenner potential [34] to account for the

intratube interactions (interactions within a nanotube) with Nordlund’s long range

interaction term [35] to account for the intertube interactions (interactions between

two nanotubes).

1.7 Outline of the thesis

The outline of the thesis is as follows. In the next chapter we discuss the com-

putational technique in detail, covering MD as well as the application of Singular

Value Decomposition (SVD) to the analysis of MD results. The MD simulations

of a double-walled carbon nanotube based motor are discussed in Chapter 3. We

are interested in understanding the behavior of nano devices in the presence of an

external electric field. Therefore, it is important to understand the inherent motion

of such systems. This inherent motion of the system can be resolved in terms of the

characteristic modes of the system. Chapter 4 examines the characteristic modes of

single and double walled carbon nanotubes. In Chapter 5 we determine the useful

operating parameter space for a DWNT based motor. The interactions of carbon

nanotubes with a graphite surface are discussed in Chapter 6. Finally we summarize

the results of the thesis and discuss the future scope in Chapter 7.
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Simulation Technique

If we were to name the most powerful assumption of all, which leads one on and

on in an attempt to understand life, it is that all things are made of atoms, and

that everything that living things do can be understood in terms of the jigglings and

wigglings of atoms – Richard Feynman

In this chapter we give an overview of the computational techniques, viz., Molec-

ular Dynamics (MD) and the Singular Value Decomposition (SVD) analysis of MD

results.

2.1 Molecular Dynamics

Molecular Dynamics is a numerical way of solving the the N body problem. The

basic idea is to calculate how a system of particles evolves in time. The method was

first used with a realistic potential by Alder and Wainwright in 1959 to calculate

the vibrations of atoms in molecules.

Consider a set of atoms at positions ri and some interaction model which gives us

the potential energy of the system φij. The most intuitive method to study micro-

scopically the motion of such a collection of atoms and their interactions amongst

themselves is to solve the N-body force equation:

mi ~̈ri =
N
∑

j=1

(−∇φij) (2.1)

where ~ri is the position vector of a particle denoted by i, mi is the mass of the ith

particle and φij is the inter-atomic potential between the ith and the jth particle. MD

17
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solves the above equations numerically, since even for a small N, or for a complicated

φij, the above equation is not analytically solvable. MD algorithm is as follows:

Figure 2.1: Algorithm of the Molecular Dynamics (MD) scheme.

2.1.1 Choice of MD Time step

The most commonly used time steps in the MD simulations is assumed to be on the

order of femtoseconds. MD uses a Taylor’s expansion as follows to solve the Eqn.2.1:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)(δt)2 + .. (2.2)

v(t + δt) = v(t) + a(t)δt +
1

2
b(t)(δt)2 + .. (2.3)

a(t + δt) = a(t) + b(t)δt (2.4)

where r is the position, v is the velocity and a is the acceleration of the particle.

The neglect of higher order terms is justified if the acceleration of the particle does

not change significantly during a timestep. Now, the acceleration depends upon

the gradients of the potential energy of the system with respect to individual atom
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coordinates. The timestep must, therefore, be small enough so that these gradients

do not change significantly during a single timestep δt.

According to a simple thumb rule, as discussed in [39], it is assumed that a

particle can move at most (1/20)th of the distance between two neighboring atoms

in a time step of δt. As an example from [39] the inter-atomic distance in a graphene

plane is 1.4 Å and the typical velocity of an interstitial hydrogen atom which is

equilibrated with a graphene plane at 900 K is 0.047 Å / femtosecond. Therefore

the time step in this case becomes 1.5 femtosecond.

Another way to cross-check the suitability of the timestep is to check for energy

conservation in a simulation where there is no energy exchange with the surround-

ings, i.e., in an isolated system. Also, the overall simulation results should not

change significantly due to changes in the timestep.

Keeping in mind the above criteria, we choose a time step of 0.1 femtosecond in

most of our simulations. In some cases, where bigger timesteps were used, a detailed

explanation has been provided.

2.1.2 Ensembles used

An ensemble is a collection of all possible systems which have different microscopic

states but have an identical macroscopic or thermodynamic state. There exist dif-

ferent ensembles with different characteristics [40]:

• Microcanonical ensemble (NVE) : The thermodynamic state characterized by

a fixed number of atoms (N), a fixed volume (V) and a fixed energy (E). This

corresponds to an isolated system like an isolated CNT, for example, which is

neither going to gain nor loss energy or particles with the surrounding.

• Canonical Ensemble (NVT): This is a collection of all systems whose thermo-

dynamic state is characterized by a fixed number of atoms (N), a fixed volume

(V) and a fixed temperature (T). An example is a system at room temper-

ature, 300 K, which can exchange energy with a thermostat to maintain the

temperature. However no exchange of particles occur.

• Isobaric-Isothermal Ensemble (NPT): This ensemble is characterized by a fixed

number of atoms (N), a fixed pressure (P) and a fixed temperature (T) which

means that the volume of the system changes to maintain the pressure. Also

the thermostat maintains the temperature.
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• Grand canonical Ensemble (mVT): The thermodynamic state for this ensemble

is characterized by a fixed chemical potential (m), a fixed volume (V) and

a fixed temperature T which means that both particles and energy can be

exchanged. An example of this is an impurity atom in a semiconductor which

can exchange electron from the conduction band.

2.1.3 Potential used

The potential function in MD is a set of parameters e.g bond angles, bond lengths

etc, which defines the interactions between a set of atoms. These interaction param-

eters can be obtained theoretically or from experiments, or a combination of both.

The Brenner potential [34] is used in this work for the intratube interactions (inter-

actions within a nanotube), along with Nordlund’s long range interaction term to

account for the inter-tube interactions (interactions between nanotubes) [35]. The

Brenner potential is a reactive empirical many body bond-order potential energy

expression. Bond order potential means that the chemical bond depends on the

local bonding environment, including the number of bonds and possibly also angles

and bond lengths. It takes into account the number of neighbors an atom has in its

surroundings within a cutoff distance. Examples include the Tersoff potential [41],

the Brenner potential [34] and the second-moment tight-binding potentials [42].

These potentials have the advantage over conventional molecular mechanics force

fields in that they can, with the same parameters, describe several different bonding

states of an atom, and thus to some extent may be able to describe chemical reactions

correctly. The potentials were developed partly independently of each other, but

share the common idea that the strength of a chemical bond depends on the bonding

environment, including the number of bonds and possibly also angles and bond

length. More details about this potential can be found in [34]. In the past few

years, this potential has been used extensively for the study of carbon-nanotube

based systems.

Nodlund’s potential [35] is a radial potential which is used to define the interac-

tion between two carbon nanotubes or between one carbon nanotube and a graphite

surface. The typical cut off distance used in this potential is 4.2 Å.
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2.1.4 Boundary conditions

In most of the MD simulations, the atoms are arranged in a simulation ‘box’ which

has a size LxLyLz, the three parameters representing the dimensions in the x, y

and z directions. There are different ways of handling atoms crossing the boundary,

appropriate to the problem. In some cases, atoms on the box/cell boundary are

kept free (free boundaries). This would work if one wants to do an MD simulations

of an isolated system like an isolated molecule or a system in vacuum. For a system

which is essentially infinitely long in a given dimension, periodic boundary conditions

(PBC) can be used. PBC are implemented using the minimum image convention

method which is explained later.

The PBC boundary condition is implemented following the algorithm as in [39]:

• During the simulation, when an atom which crosses over a cell boundary it

is assumed to come back from the other side using the PBC as shown in the

figure below:

This can be implemented using a simple algorithm as given in [39] which

Figure 2.2: Implementation of periodic boundary conditions in MD algorithm.

calculates the present coordinate ’x’ of the atom and compares it with the size

of the simulation box ’xsize’ as follows:

if (periodicx) then

if (x < -Lx/2.0) x = x + Lx

if (x > Lx/2.0) x = x - Lx

end if

and same for y and z coordinates. Note that, here the simulation box size

varies from -Lx/2 to Lx/2.
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• Also when the distance between any two atoms is calculated, the periodic

boundaries have to be taken into account: The box shown with the solid line

Figure 2.3: Implementation of periodic boundary conditions in MD algorithm using
minimum image convention. This figure is adapted from [40]

is the simulation cell, with atoms i, j, k and l. This figure is adapted from [39]

which explains the method of minimum image convention. Minimum image

convention means that the periodic boundary conditions are used in such a

way, which calculates forces on each atom over and above periodic handling

of any atomic border crossings. Because of the PBC considered here, all the

atoms in the simulation will have image atoms in the neighboring cells like j’,

k’ and l’. Suppose we want to calculate the distance between the atoms i and

j then we would choose rij′ instead of rij because rij′ < rij and similarly for y

and z coordinate. The algorithm is adapted from [39]: if (periodicx) then

dx = x(j) - x(i)

if (dx < Lx/2.0) dx = dx - Lx

if (dx > - Lx/2.0) dx = dx + Lx

endif

and similarly for y and z coordinates. This way we get a simulation cell with

infinite number of image cells in the directions of periodicity X and Y in this

case.
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2.1.5 Integration Schemes

Various integration schemes are used in an MD simulation to integrate the equation

of motion of the atoms. The most commonly used are Leap-frog, Verlet, Velocity

Verlet and Predictor corrector method. All integration schemes assume that the

atom positions, velocities and accelerations can be approximated by a Taylor series

expansion as in [40]:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)(δt)2 + .. (2.5)

v(t + δt) = v(t) + a(t)δt +
1

2
b(t)(δt)2 + .. (2.6)

a(t + δt) = a(t) + b(t)δt (2.7)

where r is the position, v is the velocity and a is the acceleration of the particle.

Verlet algorithm

To derive the Verlet algorithm one can write [40]:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)(δt)2 (2.8)

r(t − δt) = r(t) − v(t)δt +
1

2
a(t)(δt)2 (2.9)

summing these two equations, one gets

r(t + δt) = 2r(t) − r(t − δt) + a(t)(δt)2 (2.10)

The Verlet algorithm uses positions and accelerations at time t and the positions

from time t − δt to calculate new positions at time t + δt. The Verlet algorithm

uses no explicit velocities. The advantages of the Verlet algorithm are, i) it is

straightforward, and ii) the storage requirements are modest . The disadvantage is

that the algorithm is of moderate precision.

Velocity Verlet algorithm

This algorithm yields positions, velocities and accelerations at time t. There is no

compromise on precision. The equations are as follows [40]:

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)(δt)2 + ... (2.11)

v(t + δt) = v(t) +
1

2
[a(t) + a(t + δt)δt (2.12)

Thus the velocities are used explicitly in the velocity-verlet algorithm.
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Leap-frog algorithm

The leap-frog algorithm uses the equations [40]:

r(t + δt) = r(t) + v(t +
1

2
δt)δt (2.13)

v(t +
1

2
δt) = v(t − 1

2
δt) + a(t)δt (2.14)

In this algorithm, the velocities are first calculated at time t + 1/2δt; these are then

used to calculate the positions, r, at time t + δt. In this way, the velocities leap

over the positions, then the positions leap over the velocities. The advantage of this

algorithm is that the velocities are explicitly calculated, however, the disadvantage

is that they are not calculated at the same time as the positions. The velocities at

time t can be approximated by the relationship:

v(t) =
1

2
[v(t − 1

2
δt) + v(t +

1

2
δt)] (2.15)

Predictor-Corrector algorithm

The HcParCas code uses the Predictor-Corrector (PC) integration scheme. This

scheme proceeds in two steps, firstly the predictor step predicts the approximate

values of certain quantities like position and velocities then the corrector step cor-

rects these predicted values. In short the steps of a PC scheme can be described as

follows [43]:

• In the Predictor step from the positions and their time derivatives, known at

time t, one can predicts the same quantities at time t+δt by means of a Taylor

expansion.

• Secondly the force is computed taking the gradient of the potential at the

predicted positions. The quantities computed in such will be different than

the predicted values.

• In the Corrector step the difference of these quantities calculated above is used

to correct the positions and velocities of the atoms.

2.1.6 Thermostat

The initial velocities in an MD simulation are set by assuming a Maxwell-Boltzmann

distribution which will be explained in the next section. This is done by choosing a
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Gaussian distributed random number which is then multiplied by the mean square

velocity in each direction. Since we are considering a driven system, we expect

it to gain energy from the applied field and hence it can acquire a high tempera-

ture. Therefore it becomes very crucial to maintain the temperature of the system

throughout the simulation. This high temperature can be obtained from the veloc-

ities of the particles.

We also want to make sure that the total momentum of the system remains

equal to zero which means that the center of mass of the system should not move

throughout the simulation. Thus by choosing the initial velocities for all the atoms

we have fixed the temperature of our system and also the total energy of the system.

But this process of fixing the temperature cannot be used at each step since it will fix

the temperature rigidly. Also in this method of fixing the temperature, the normal

fluctuations of the system will also be suppressed. That is why different temperature

control schemes are used to maintain the temperature of the system more accurately

equal to the desired temperature. The various schemes are:

• Berendsen’s thermostat

• Noose Hover thermostat

• Langevin thermostat

Berendsen’s thermostat [44] is used in the HcParCas code, used in this work. In this

scheme the system is coupled to a heat bath at some temperature. All the velocities

are scaled at each time step by a factor λ given as in [39]:

λ =

√

1 +
δt

τT

(
T0

T
− 1) (2.16)

Where δt is the time step, τ(T ) is the time constant for temperature control and

has to be greater than 100δt. T0 is the desired temperature and T is the current

temperature. Thus Berendsen’s thermostat is maintained by scaling the velocities

for a specified number of MD steps. The details of the Nose-Hover and Langevin

thermostats can be found in [45].

2.1.7 Barostat

Similar to Berendsen’s thermostat, Berendsen’s pressure control is also implemented.

Here the atomic positions are changed, and the system size is scaled at each time
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step by a factor µ given by [39]:

µ = [1 − β
δt

τP
(P0 − P )]1/3 (2.17)

where τP is the time constant for pressure control which should be greater than

100δt. P0 is the desired pressure and P is the current pressure. β is the isothermal

compressibility.

2.1.8 Initializing atom velocities

The initial atom velocities of the atoms are generated according to the Eqn.2.18

which match a Maxwell-Boltzmann distribution. This Maxwell-Boltzmann distri-

bution correspond to a desired temperature. The distribution is given as:

P (viα) =

√

mi

2πKBT
exp

[ −1

2mi(viα)2KBT

]

(2.18)

where α = x, y, z. As explained in the subsection 2.1.6 certain parameters are to be

chosen to scale the positions and velocities of the atoms. We choose the parameters

suitably so that the velocity distribution is close to a Maxwellian distribution. In

order to check this, the velocity distribution obtained during the NPT relaxation

of the entire DWNT assembly is monitored throughout the simulation. Fig. 2.4 (i)

shows the cumulative velocity distribution plotted as a function of E/kT , at intervals

of 20 ps. Here, kT is the temperature and E is the kinetic energy. The theoretical

expression for maxwellian velocity distribution is also shown on the same figure.

A fair match can be seen. Defining the temperature as two-thirds of the average

kinetic energy per particle, we can study its temporal evolution through the NPT

relaxation. This is shown in Fig. 2.4 (ii). The temperature settles down to the

desired temperature of 0.025 eV (300 K) at ∼5000 fs.

One more point which should be kept in mind before starting an MD simulation

is that the the total momentum of the cell should be zero to prevent the entire cell

from moving i.e

P =
∑

(mivi) = 0 (2.19)

2.2 Singular Value Decomposition (SVD)

Another computational technique which is used in this work is Singular Value De-

composition (SVD). We use SVD on our MD data to extract the characteristic
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Figure 2.4: (i) Cumulative velocity distribution. (ii) Temperature (eV) during the NPT
relaxation (Note here that the temperature stabilizes to the desired temperature of 300 K
(0.025 eV) at 5000 fs.

modes of a Single-Walled carbon nanotube and a Double-Walled carbon nanotube.

SVD help us to extract all of the characteristic modes of the system in the order of

their hierarchy. The details of the SVD technique are discussed below.

SVD is a powerful technique for solving sets of equations involving matrices that

are either singular or numerically close to singular, where methods such as Gaussian-

elimination or lower-upper (LU) decomposition fail to give satisfactory results. This

method can readily be applied to problems where the number of equations is either

more or less than the number of unknowns. It is also the method of choice for

solving linear least-squares problems [46]. Details of the SVD method are available

in [46]. Its application to the determination of mode structures in fusion plasma

devices, including important features and limitations, is described in [47]. In the

following subsection, we give a brief description of the method and its application

to the modal analysis of MD simulation results.

2.2.1 SVD method

Let us consider a physical quantity ‘x’ simultaneously measured at ‘m’ different

positions (coordinates), and sampled at ‘n’ different times with a sampling interval

ts. The matrix representation of the above observation can be generally expressed
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by a rectangular array, xij = xj [(i− 1)ts], where the row index ‘i’ refers to time and

the column index ‘j’ to the coordinate. The SVD of the matrix xij is expressed as

X = USV T (2.20)

where superscript ‘T’ refers to the transpose of a vector. Here, U is a n×m matrix

and V is a m×m square matrix, both of which have orthogonal columns so that

UUT = V V T = I (identity matrix). S is a diagonal matrix i.e. Sij = δijsi, the

quantities sii ≥ 0 being called ‘singular values’. The SVD is an analogue of the

similarity transformation which diagonalizes a square matrix. The products SU are

analogues of eigenvalues, while the V columns vj = Vij are the analogues of the

eigenvectors. Therefore Eqn.2.20 is equivalent to the representation Xij = Uk
i skV

k
j .

The vectors vj, called the principal axes, form an orthonormal basis on which the

signal is decomposed. Since this basis diagonalizes the covariance matrix, it can be

expected that it describes better the features of the whole signal, compared to other

possible bases chosen a priori, such as the Fourier basis [47]. This is confirmed by the

fact that, in practice, most of the SUs are very small compared to a few dominant

ones. This explains why SVD is well known in the context of signal processing as a

noise-filtering technique [47].

The projections of X along V (i.e. the product SU) are the principal components

(PC) of X. They give the time evolution of the signal along the corresponding

principal axes. This means that the original time series x(t) is now described as

a sum of time series x((i − 1)ts) =
∑

j uj
isjv

j , each along the new coordinate axis

v(j). It is also possible to disregard as noise the components with SU below a given

leve [47]. Since S corresponds to singular values, it is justifiable to assume that U

is a representative of time bases.

Only the singular value S represents the amplitude of a mode. This has been

confirmed by performing the following exercise. Consider an artificially generated

signal having the form given in [47]

Xij = (1/
√

N)
∑

l

alcos[2πml(j − 1)/M

−2πνlts(i − 1)] (2.21)

This is a superposition of cosinusoids of mode number ml, having the frequencies

νl with amplitudes al, respectively, sampled at M equispaced coordinates with a

timestep ts. The indices ‘i’ and ‘j’ have their usual meaning. We have performed
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SVD for a superposition of three cosinusoids having the same ml but different al

and νl. We find that doubling the amplitudes al doubles the singular values, leaving

the basis vectors unchanged.

Now the matrix Xij has been decomposed into three parts – time (U), amplitude

(S) and space (V). We have already seen that U and V are simply the basis functions

and only the singular value S represents the amplitude. Hence, in the rest of the

thesis, we treat the variation of S-values of different modes as representative of their

respective strengths.

2.2.2 Conversion of SVD results to get distorted CNT shapes

Each set of three consecutive elements of the V-vector corresponds to the change

in x, y and z coordinates of one carbon atom, due to a particular mode. Let Vkx(i),

Vky(i) and Vkz(i) refer to the x, y and z displacements of the ith atom due to the

k-th mode. We can then write:

Xdistorted,i(t) = Scalek(t) ∗ Vkx(i) + Xoriginal,i (2.22)

where Xoriginal,i is the x-coordinate of the ith atom before starting the MD simulation,

Xdistorted,i is the distorted x-location of the ith atom due to this mode. Similar

relations apply for the y- and z-directions. The scale factor is given by

Scalek(t) = Uk(t)Sk (2.23)

where Sk is the amplitude of the k-th mode as yielded by SVD, and Uk is the time

series associated with the mode. The combined effect of ’N’ modes on the ith atom

can be obtained by superposition:

Xdistorted,i(t) =
N
∑

k=1

Scalek(t) ∗ Vkx(i) + Xoriginal,i (2.24)

The distorted positions can be used to compute the time series of average values,

e.g., the average radius of a single ring of the SWNT, or the azimuthal rotation of

each ring, the axial motion of each ring, and so on.

2.2.3 Advantages of SVD

A major advantage of SVD analysis is that is separates out modes in descending

order of their amplitudes. This means that even fairly weak modes can be identified.
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Note, however, that for a given initial perturbation, only certain modes may be

strong enough to be isolated. If the intention is to study the evolution of a specific

spatial mode, the MD simulation can be started to excite that particular distortion

in the SWNT, so that that mode becomes stronger. In the present work, we study

the modes of an SWNT and a DWNT using SVD analysis on the MD results. This

method offers three advantages:

• Firstly, it can, in principle, resolve the modes of a system in order of the

hierarchy, including the associated frequencies as well as spatial distortions.

• Secondly, it can handle small as well as large-amplitude perturbations given to

the system to excite these modes, i.e., SVD can identify an-harmonic behavior

as well.

• Thirdly, while the present study covers only SWNTs and DWNTs, it can

readily be extended to much more complex structures.

Other techniques to extract the characteristic modes of a carbon nanotube and

their differences with the SVD technique will be discussed in detail in Chapter 4.



Chapter 3

Molecular Dynamic simulations of

a double-walled carbon nanotube

motor subjected to a sinusoidally

varying electric field

3.1 Introduction

As explained in Chapter 1, one potential application of carbon nanotubes is in the

field of nanomachines or nanodevices. This field has attracted many researchers

because of the various potential applications of nanomachines in the field of com-

puting, electronics, robotics and drug delivery [23, 24, 28, 29, 48]. These nanometer

devices, either alone or attached to a propeller, are a bright candidate for future

machines which could be used for medical applications [30,49,50]. Our interest is in

nanometer-sized devices, especially nanomotors based on CNTs, which are of inter-

est for applications in novel drug delivery techniques [30]. Such nanometer systems

need stimulation by an external medium like a laser [23], gas [51] or ion-gradient [25].

Tuzan et. al [23] studied the laser excitation of such a nanometer-scale motor,

consisting of a DWNT. Such a configuration is revisited in this work where the

inner CNT behaves as a “shaft” while the outer CNT serves as a “sleeve”, as shown

in Fig. 3.1. Two diametrically-opposite atoms on the shaft are assumed to carry

unit electric charges with opposite sign. Such a situation could be created by the

presence of two dopant atoms, one with a smaller electronegativity than carbon on

31
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Figure 3.1: End-on view of the DWNT configuration. A sinusoidally-varying electric
field having only an x-component, is applied to the system. Two diametrically-opposite
atoms on the first ring, nos. 1 and 6, are assumed to have equal but opposite electric
charges. At t=0, the line joining the two diametrically opposite atoms no. 1 and 6 makes
an angle of 20 deg with the direction of applied electric field (X axis).

one side and the other with a higher electronegativity than carbon on the other side

of the shaft. When the system is exposed to a large-amplitude, linearly polarized

electric field, the force acting on the two charged atoms produces a torque, leading

to rotation of the shaft about its axis.

Tuzan [23] performed simulations of such a motor using molecular dynamics

with an empirical Lennard-Jones 6-12 potential for the intertube interaction (i.e for

interaction between the two nanotubes) and a three-body interaction term for the

intratube interaction (interactions within the carbon atoms within a nanotube). In

their studies, the sleeve was held fixed – configurations with both the shaft and

sleeve moving were not explored. Also, the DWNT considered in Tuzan’s [23] work

did not satisfy the conditions of a ‘real’ DWNT, since the gap between the two

carbon nanotubes was greater than that observed experimentally [36,37]. Servantie

et al. [26] studied the drag force between two coaxial CNTs when they are set into

relative angular motion, making use of the Brenner potential [34] for intra-tube in-

teractions and the Lennard-Jones (LJ) potential for interactions between the tubes.

They studied the role of translational sliding motion and dynamic friction for axial

rotation of the inner nanotube in DWNT systems using MD and showed that the dy-
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namic friction is linear in angular velocity for a wide domain of armchair-armchair,

zigzag-armchair and zigzag-zigzag double walled CNT’s.

We use the Brenner potential, which is a reactive, empirical, many body potential-

energy expression that can model intramolecular chemical bonding in a variety of

small hydrocarbons [34] to model the DWNT configuration shown in Fig. 3.1. The

inter-tube interactions are simulated by Nordlund’s long-range interaction correc-

tion [35]. Apart from the cases studied in [23] where the shaft was moving and the

sleeve was held fixed, we also study the cases where both the shaft and the sleeve

are moving.

3.2 Description of the simulations

SWNT in zig-zag configurations (5,0) and (15,0), of lengths 9.94 and 12.52 Å re-

spectively are used in our simulations as shaft and sleeve. The co-ordinates used

and the end-on configuration of the nanomotor are shown in Fig. 3.1. Both the shaft

and the sleeve are centered about a common rotational axis (Z axis).

3.2.1 Initializing atomic positions and velocities

The initial positions of the shaft and the sleeve are generated using the method as

in [52]. Berendsen’s temperature [44] and pressure controls are used to scale the

atomic velocities and positions respectively. The scaling parameters are chosen in

such a way that the velocity distribution is close to the desired Maxwellian. In order

to check this effect, we monitor the velocity distribution obtained during the NPT

relaxation of the entire DWNT assembly as discussed in the last chapter and make

sure that it is close to the desired Maxwellian distribution. The temperature is also

observed to be at 300 K as explained in Chapter 2.

3.2.2 Equilibration of the structure

After placing the shaft inside the sleeve, the structure is equilibrated at a tem-

perature of 300 K and zero pressure, using Berendsen’s temperature and pressure

control [44] with a time constant of 500 fs for simulations of 100 ps. The equili-

brated structure is found to have a shaft and a sleeve of diameter 4.55 Å and 12.04
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Å respectively. This is calculated at the end of the NPT relaxation run, and the ra-

dius of each CNT is calculated as the mean radius measured from the instantaneous

centroid of that CNT. Thus we find a radial gap of 3.74 Å between shaft and the

sleeve at the end of the NPT relaxation. Given the difference in the potentials with

other workers, this is fairly close to the standard 3.4 - 3.6 Å gap reported for normal

DWNTs [36, 37]. Before starting a real MD simulation, after the NPT relaxation

we make sure that the total energy and the pressure of the system is close to the

desired value as explained in appendix A.

3.2.3 Periodic boundary conditions used

Periodic boundary conditions (PBC) are used along the Z axis for all atoms in the

simulation, be it those of the shaft or sleeve. This is because we want the structure

to repeat along the length of the CNT to get an infinite length structure. PBC’s

are imposed through minimum image convention method which calculates forces

on each atom over and above periodic handling of any atomic border crossings as

explained in Chapter 2.

3.2.4 Application of an external field

After relaxation of the DWNT structure, unit positive and negative charges are

assumed on two diametrically opposite first and sixth atoms of the inner nanotube

as shown in Fig. 3.1. The line joining these two atoms is observed to make an angle

of 20 degree with the X axis. An external electric force of the form:

qEa cos(wEt), (3.1)

is applied to the already existing inter-atomic potential force term for the two

charged atoms, where ± q is unit charge assigned to atoms 1 and 6, and Ea de-

notes the applied electric field strength. Simulations for a field strength in the range

of 3 × 108 V/m - 3 × 109 V/m are performed. ωE is the frequency (= 2.045 × 1010

rad/sec) of the applied field. MD time step of 0.1 femto-second is used and the

simulations are run for 800 ps.

The applied field produces an equal and opposite force on the two charged atoms

which produces a torque on the two atoms and induces rotations in the system.
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These rotations are however not rigid body rotations since we see some distortions

in the shape of the shaft due to the high amplitude electric field acting on it and the

effect of these distortions will be taken into consideration when we explain our results

in the later sections. The instantaneous value of the angular velocity (rad/sec) for

both the shaft and the sleeve are calculated as:

ω(t) =
Lz(t)

Iz(t)
(3.2)

where Lz(t) and Iz(t) are the instantaneous angular momentum and moment of

inertia of the shaft about the z-axis. These terms, in turn, are defined as:

Lz(t) =

N
∑

i=1

Ii,z(t)ωi,z(t) (3.3)

and

Iz(t) =

N
∑

i=1

MiRi(t)
2 (3.4)

where N is the number of atoms in the shaft, Mi is the mass of the i − th

atom, Ri(t), ωi,z(t) and Ii,z are the instantaneous values of the radial location,

angular velocity and moment of inertia of the ith atom, measured with respect to

the instantaneous centroid of the shaft. All the above mentioned quantities are

calculated at every timestep in the MD simulation, making use of instantaneous

velocities and coordinates of all atoms in the shaft.

3.2.5 Types of simulations performed

Two sets of simulations are performed. In the first case both the shaft and the sleeve

are allowed to move. In the second set of simulations the shaft is kept free to move

but the sleeve is held fixed. Two locked states are observed for angular rotation of

the shaft in the fixed sleeve case, caused by minor shape changes of the shaft due

to the effect of the applied electric field on the atoms with assigned charges. The

simulation results for the values of drag co–efficient are in the range reported by

Servantie [26]. All these simulations are performed using the NVT ensemble in the

MD simulations as we expect the nanomotor to be in thermal equiliibrium with the

surroundings. Finally we simulate the effect of the absence of heat losses (or the

effect of insufficient heat losses) for the nanomotor configuration by doing an NVE

MD study, without temperature control.
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3.3 Case 1 : Both shaft and sleeve moving

3.3.1 Molecular Dynamics results

In this case rotary behavior is observed for a very small period of time accompanied

with the usual pendulum like oscillations. The typical angular velocities (in rad/sec)

for the shaft and the sleeve for an applied field of 3×109 V/m and angular frequency

of 2.045 × 1010 rad/sec are as shown in Fig. 3.2.

(i) (ii)

Figure 3.2: (i) Angular velocity (rad/sec) of shaft (ii) Angular velocity (rad/sec) of
sleeve.

In Fig. 3.2 we see that there is no significant angular velocity gain in the first

100 ps for both, the shaft and the sleeve. This is because, initially the shaft and

therefore the sleeve, due to the drag forces, are accelerated through only 20 degrees

to align with the electric field directed along the X axis and oscillate around it. For

the shaft, we see some thermal fluctuations present in this period. Note that the

angular velocity in Fig. 3.2 is plotted using a moving window average over 1000 MD

data points because of large number of data points obtained from MD. The total

angular momentum for the motor is plotted in the Fig. 3.3.

The momentum values oscillating between both positive and negative values

indicate a pendulum like behavior and decaying and then building up of angular

momentum without change of sign indicates a motor like behavior. This motor

like behavior is observed only when the electric field changes sign as is seen in
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Figure 3.3: Total angular momentum (maJ-ps) of the motor at 300 K for a simulation
run for 800 ps.

Fig. 3.4 where we plot the angular orientation, θ, of the shaft-sleeve configuration

as a function of time.

As explained before, the atoms with charges show angular oscillations around

the direction of the electric field. The frequency of the electric field is much lesser

than the oscillation frequency of the shaft and the sleeve. When the electric field

changes sign, depending on their phase of oscillation, the shaft-sleeve configuration

flips either clockwise or anti-clockwise, to align with the changed direction of the

electric field. Increasing the frequency of the applied electric field to 2.045 × 1011

rad/sec makes these flips faster.

3.3.2 Effect of field amplitude on shaft angular velocity

To see the effect of field amplitude on the shaft frequency a set of simulations are

done by varying the amplitude of the applied electric field. Fig. 3.5 shows the

temporal variation of the angular velocity of the shaft for three different amplitudes

of the applied electric field, viz., 3.2 × 109, 3.4 × 109 and 3.6 × 109 V/m. We see

that the amplitude of angular velocity increases monotonically with the amplitude

of the applied field.
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Figure 3.4: Temporal variation of the shaft angular orientation (θ) inside the sleeve and
the scaled applied electric field (Applied electric field amplitude is 3 × 109 V/m here).

3.3.3 Theoretical model results

The motion of the system is now solved by a set of three coupled ordinary differential

equations (ODE) using the fourth order Runga-Kutta method for the case where

both the shaft and the sleeve are free to move. The model generally follows the

ODE model used by [26] with some modifications. We also take into account the

time variation of the moment of inertia of both shaft and the sleeve. The drag force

acting between the shaft and the sleeve is given in terms of the difference of the

angular velocities of the shaft and the sleeve as in the model of [26]. The model is

as follows:

d

dt
(I1ω1) = −τ12 + Eacos(wEt) × 2qRasin(θE) (3.5)

d

dt
(I2ω2) = τ12 (3.6)

d

dt
(θE) = ω1 (3.7)

τ12 = k (ω1 − ω2) (3.8)

Where, τ12 is the drag force acting between the shaft and the sleeve, k is the drag

coefficient, Ra is the shaft radius and q is the unit electronic charge. Ea and ωE are

the amplitude and frequency of the applied electric field and θE is the angle which

the line joining the two charged atoms make with the electric field. The initial value
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Figure 3.5: Temporal variation of the shaft angular velocity (rad/sec) for three different
amplitudes of applied electric field 3.2 × 109, 3.4 × 109 and 3.6× 109 V/m (Note that the
angular velocity is plotted for the period 100-200 ps).

of θE , I1, I2 and Ra are obtained from MD. θE is 20 degree for this case. The

instantaneous values of I1 and I2 are obtained from MD. Solving these equations

numerically using a fourth order Runga-Kutta method we get the instantaneous

values of ω1 and ω2.

3.3.4 Drag coefficient calculation

After setting up the ODE model, we try to get an approximate solution to these

equations by varying the value of drag coefficient k over the range 0.95 × 10−29 -

1.09 × 10−29 Nms. A value of k = 0.95 × 10−29 Nms gives ω lesser in amplitude

then the MD value, and k = 1.09 × 10−29 Nms overestimates this value. This

implies that the angular velocities of the shaft and the sleeve are highly sensitive to

k. We observe that an approximate value of k equal to 1.03 × 10−29 Nms gives a

qualitatively good match with our MD results. This value of drag coefficient is in

good agreement with that reported in [26].
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3.3.5 Comparison with MD results

A comparison of the angular velocities obtained with the ODE model (with k

= 1.03 × 10−29 Nms) with that of the MD results are shown in the Fig. 3.6.

Qualitatively there is a fair match with the MD results. But at some points there

(i) Shaft angular velocity (rad/sec) (ii) Sleeve angular velocity (rad/sec)

Figure 3.6: Comparison of the angular velocity (rad/sec) of the shaft and the sleeve
obtained from the ”ODE model” with that of ”MD” with both the shaft and the sleeve
moving.

are some mismatches also like:

• The start up behavior of the shaft and the sleeve angular velocities obtained

with this model does not follow the trends as we see in our MD results.

• At the time points where rotary behavior is observed the angular velocity

shows opposite sign as that to the MD results.

These mismatches could be because of the temperature effects and the kind of po-

tential used in the MD which are not taken into account in this model. Using the

results from this study we fitted an expression for the drag between the shaft and

the sleeve.
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3.4 Case 2 : Fixed sleeve case

3.4.1 Molecular Dynamics results

In this subsection we give the MD results of the case where the sleeve is kept immobi-

lized. Such a configuration can be useful for the future applications of nano-devices

where one would like to keep the sleeve fixed and attach it to some other nano-meter

sized assembly. At first sight, it seems reasonable to assume that the drag torque

should follow a similar form with and without the sleeve movement. This is then

examined in this subsection. Only the usual radial breathing of the shaft [53] is

observed in this case. This is due to the high drag force between the shaft and

the sleeve due to the fact that atoms have to overcome potential barriers as atomic

surfaces move with respect to each other [26, 48]. A higher amplitude electric field

therefore would be required for the rotation of the shaft inside the fixed sleeve.

3.4.2 Potential energy surface (PES) calculation

In order to quantify the electric field required to overcome the drag force, we map

the whole Potential energy surface (PES) of the system by giving small rotations

of 0.1 degree each to the shaft and finding out the total potential energy φ of the

system at each step. A plot of the PES with the starting configuration of the DWNT

system before the temperature and pressure thermalization is shown in Fig. 3.7 (i).

This PES gives 15 peaks, which is in agreement with Merkle’s [54] formula for the

periodicity of the potential energy of such a DWNT configuration. The number of

peaks depend on the number of atoms in the outer and inner nanotube. However

after relaxing this structure at 1 atmosphere pressure and 300 K temperature using

MD, one global maximum and two nearly equal global minimas in the PES are

observed as seen in the Fig. 3.7 (ii).

3.4.3 Threshold electric field calculation

The gradient of the PES plot along θ is calculated as shown in the Fig. 3.7 (iii).

The threshold electric field Ethreshold required for the rotation of the shaft inside the

fixed sleeve is given in terms of this gradient in θ as follows:

qRaEthreshold = dφ/dθ, (3.9)
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Figure 3.7: (i) Total potential energy (eV) of the system as a function of angular orien-
tation of shaft (θ) inside the immobilized sleeve before thermalization. (ii) Total potential
energy (eV) of the system as a function of the angular rotation of the shaft inside the
fixed sleeve after thermalization. (iii) Derivative of the total potential energy (eV) with θ
(deg).

Where Ethreshold is the threshold electric field, φ is the total potential energy of the

system, θ are the small angular rotations of 0.1 degree each given to the shaft, q is

the electronic charge and Ra is the radius of the shaft. In the ideal case, relaxed

DWNT case, we find that Ethreshold = 3.69x1010 V/m.

However we find that this simplistic argument for overcoming the potential bar-

rier for rotation is not sufficient to produce rotation. It is only after applying an

electric field of amplitude 4.43 × 1010 V/m we observe rotation in spurts, with the

inner nanotube spending most of its time in two different locked states in the angular

orientation of the shaft inside the fixed sleeve as seen by the flat regions in Fig. 3.8.
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Figure 3.8: Temporal variation of shaft angular orientation θ (deg) inside the fixed sleeve
and the scaled applied electric field (Applied electric field amplitude is 4.43 × 1010V/m
here).

The straight lines at 0, 180 and 360 deg in the plot correspond to the direction

of the applied electric field. Note that the observed locked states are not in the

direction of the applied field unlike the first case where both the shaft and sleeve

are free to move.

3.4.4 Theoretical model results

For the second case where the sleeve is held fixed, ω2 = 0, so the system of Eqns.

5.3-5.5 reduces to

d

dt
(I1ω1) = −τ12 + Eacos(wEt) × 2qRasin(θE) (3.10)

d

dt
(θE) = ω1 (3.11)

τ12 = k(ω1) (3.12)

we expect the drag force to be high in this case as compared to the first case since

ω2 is zero here. It is easy to see that the this simple theoretical model does not

reproduce the observed locked states, which are not aligned parallel to the electric

field. For locked states ω1 = 0 and Eqns. 3.10-3.12 gives only the trivial locked

states in the direction of the applied field.
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For one more case with ωE = 2.045 × 1011 rad/sec and same value of applied

electric field amplitude as earlier we compare the theoretical model results with

MD. As seen in Fig. 3.9 (i) model gives constantly decaying oscillations of the shaft

angular orientation, θ inside the sleeve. Different locked states can be seen in θ

values obtained from MD as seen in Fig. 3.9 (ii). In the next section we show that

the observed locked states are a result of radial shape changes and centroid shift

of the shaft due to the external applied electric field. This implies that Eqn. 3.12

needs to be modified to include these effects.
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Figure 3.9: Temporal variation of the shaft angular orientation θ inside the fixed sleeve
(i) Model Result (ii) MD result.

3.5 Fixed sleeve case with Eapplied > Ethreshold

We observe that the shaft has certain locked states, as indicated by the flat regions

for the angular orientation, θ, as a function of time in Fig. 3.8. Note that these locked

states need not be in the direction of the electric field unlike the case where both the

shaft and the sleeve are free to move. Note further that the transition between these

locked states occurs only when the applied external electric field changes direction.

These states are explained in terms of

• Radial shape changes of the shaft, and

• Shift in the centroid position of shaft inside the sleeve.
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By centroid shift we mean the shift in the location of the shaft center (xc,yc). The

above two causes for the locked states are addressed in more detail in the next two

subsections.

3.5.1 Radial shape changes of the shaft

The electric field preferentially acts only on the atoms to which charges are assigned

(atoms 1 and 6) and moves them. The other atoms of the shaft respond to the po-

sitional changes of these atoms through the interaction potential. This asymmetric

external force leads to radial shape changes of the shaft. Fig. 3.10 shows the radial

variation of these two atoms (normalized to Rshaft) and the variation of the applied

electric field (scaled to fit in the graph) as a function of time. Note that the radial
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Figure 3.10: Variation of radial positions of atom nos. 1 and 6 (normalized to the
Rshaft). Note that at the point of transitions in θ like at 8.25×10−11 sec and 2.37×10−10

sec, radial positions of these two atoms become close to 1.

position of both these atoms (specially atom no. 6) is much greater than unity

most of the times, implying radial shape change of the shaft. It is only when the

electric field flips direction, that the radial positions of these atoms comes close to

Rshaft, thereby decreasing the shape change. This reduction in the radial positions

of these two atoms when the applied electric field changes sign makes the interaction

between the shaft and the sleeve weak, thereby facilitating the flip from one locked

state to another. Note that the flip occurs at values of electric field lesser than the
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threshold electric value (Ethreshold = 3.69x1010 V/m) obtained by our static analysis

with no shape change. This indicates that dynamic shape change make pathways

for rotation.

Fig.3.11 (i) and (ii) shows the shape of shaft inside the sleeve before and after the

dynamic shape change, respectively. Fig. 3.11 (i) shows the shape of the shaft after

(i) Shaft before applying electric field

to it.

(ii) Shaft after applying electric field to

it.

Figure 3.11: Shape of the shaft inside the sleeve before and after applying electric field
to it. Note that the distortions are produced in the shaft due to the stretching of charged
atoms, after applying an electric field to it.

the NPT relaxation and Fig. 3.11 (ii) shows distortion produced in it due to the

stretching of the two charged atoms due to the application of an electric field. A

cross-section of the PES, as shown in Fig. 3.12, is then obtained from this distorted

configuration, following the method described in subsection 3.4.2. The initial atomic

coordinates for this are taken from the MD output at 10 ps, where we see a signifi-

cant distortion in the radial locations of atoms no. 1 and 6. Rotations are done in

steps of 0.2 deg each to cover a full rotation of 360 deg. Fig. 3.12 shows that the
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minimum energy state occurs at 170 deg, which is also the location of the locked

state of the shaft inside the fixed sleeve.
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Figure 3.12: PES plot of the shaft inside the fixed sleeve after dynamic shape change
produced in it due to the stretching of the charged atoms on application of electric field
to it.

3.5.2 Shift in the centroid location

In the ideal case, the centroid position of the shaft in the sleeve, xc and yc should be

(0,0). However, as seen in Fig. 3.13 (i) xc is 0.77 Å and yc is remains close to 0.0 near

the first flip, i.e at 8.25×10−11 sec. Note that there is a significant shift in xc and yc

near all the transition points in θ which occur with a change in the applied electric

field direction. In order to interpret the transition between these locked states in

terms of applied electric field, radial shape change and shift in centroid location,

we plot the scaled applied electric field, change in the the scaled radial positions of

atom no. 1 and 6, shift in centroid location (xc,yc) and the angular orientation θ

of the shaft for the first four transitions in Fig. 3.14 (i-iv). We make the following

general observations:

• First the applied electric field changes direction, followed by radial position

change of atoms 1 and 6. This is then followed by a shift in centroid location,

after which a transition between the locked states occurs.
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• The radial position of atoms 1 and 6 are usually greater that the average shaft

radius. In these simulations, we see that atom 6 has a higher deviation from

the average value than atom 1. This is probably because the relaxation of the

shaft in the sleeve does not yield a perfectly θ symmetric configuration.

• Large shifts in the centroid location are seen even at times where there are

no transitions between the locked states. However in these cases, the radial

deviations of atoms 1 and 6 from their average value are large and therefore

this seems to be a necessary condition for the transitions.

(i) Shift in x coordinate of centroid (xc). (ii) Shift in y coordinate of centroid (yc).

Figure 3.13: Temporal variation of the shaft centroid location.

3.6 Simulations with no temperature control

The foregoing simulations have been done with the temperature maintained constant

at 300 K. This means that part of the energy poured into the system by the applied

electric field is taken away by a constant temperature bath. Hence the DWNT is not

allowed to heat up. In reality, however, the device would have a finite heat transfer

rate to the surroundings, due to conduction and convection. This means that the

temperature could rise. It is thus of interest to examine the performance of the

device in the limit of no energy loss, i.e., without any temperature bath attached

to it. A constant energy simulation, NVE, is performed to study this effect. All
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other parameters are kept as before. The simulation is run for 800 ps. Pendulum-

like oscillations are seen for the first 300 ps but after that the motor breaks apart.

Since the Brenner potential does not accurately reproduce chemical reactions, the

process of breakup yielded by these simulations is not likely to be accurate. Hence

the detailed results are omitted here.

3.7 Conclusions

A DWNT configuration consisting of a shaft (inner nanotube) and a sleeve (outer

nanotube), which has been used to simulate a nanomotor [23], has been revisited

using MD with a better interatomic potential. This motor is stimulated by an

externally applied sinusoidally varying electric field. New situations, like keeping

the sleeve mobile and the effect of temperature on the nanomotor configuration have

been studied. Two different locked states are observed in the angular orientation of

the shaft inside the fixed sleeve, which precludes the motor- or even the pendulum-

like behavior for the parameters used in this study. This is due to radial shape

changes and shift in the centroid location of the shaft. The frequency of shift

between these two locked states correspond to the frequency of the applied electric

field. In the case where the sleeve is not fixed, angular oscillations of the whole

assembly around the direction of the electric field are observed with motor-like

behavior occurring only with a change in the direction of the applied electric field.

Since it is interesting to examine the performance of such a device in the limit of

no energy losses, we simulate the behavior of the motor in the absence of any heat

bath attached to it and observe that the motor breaks apart in this case.

In Chapter 5, we study the effect of applying different electric field frequencies

and amplitudes, with the objective of determining the useful parameter space for

pure motor-like behaviour.
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(i) At 1st transition in θ.
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(ii) At 2nd transition in θ.
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(iii) At 3rd transition in θ.
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(iv) At 4th transition in θ.
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Figure 3.14: Plots showing the variation of scaled applied electric field, scaled radial

positions of atom no. 1 and 6, shift in centroid location (xc,yc in Å) and scaled shaft
angular orientation θ.



Chapter 4

Mode analysis of Carbon

nanotubes based on Molecular

Dynamics : A Singular Value

Decomposition study

4.1 Introduction

The nanomotor discussed in this thesis involves a DWNT, with the outer CNT

behaving as a sleeve and the inner one as a shaft. Charges are assumed to be placed

on two diametrically-opposite atoms on one ring of the shaft, and is made to rotate

by the application of an external electric field [23,55]. The ideal situation would be

for the sleeve and shaft to exhibit rigid body rotation about their common axis, like

an ideal motor. However, at these scales, apart from pure rotation, the CNTs exhibit

rather complex motion involving distortions of various types as discussed in the last

chapter. Hence it behaves as a ‘non-ideal motor’. These distortions are particularly

prominent in the case of externally-driven systems, as seen in [55]. In a DWNT-

based nanomotor driving a propeller, complex motion of the shaft would translate

into complex motion of the propeller. Hence it is necessary to understand this

non-ideal behavior of CNT-based nanomotors. Such complex motions can often be

resolved into the normal/characteristic modes of the structure. Hence it is important

to develop a good understanding of the modes of a SWNT and DWNT, which

forms the subject of this chapter. The knowledge of the characteristic modes is also

51
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necessary from the point of view of application of these SWNTs for nano-devices,

where excitation at a particular mode frequency can give rise to resonance excitation,

which can then be used for extracting useful work from the device.

The simplest mode, involving in-phase radial movement of the carbon atoms of

an SWNT, is called the radial breathing mode (RBM). The RBM frequency is given

by

ωRBM = A/d (4.1)

where A is a constant derived experimentally [56] and d is the diameter of the

nanotube. Normal modes of CNTs have been studied experimentally using Raman

Spectroscopy [31, 57–60]. Raman spectra are obtained using a high intensity laser

field, such as that of an argon-ion laser [60]. The number of Raman-active vibrational

modes is just 15 or 16 [61], and includes modes like A1g, A2g, E1g and E2g [3]. Even

out of the Raman-active modes, only four bands are strongly resonance-enhanced

and hence can be identified easily in experiments [53,57,62,63]. Out of these modes,

RBM gives the most intense Raman signal and can be used for nanotube charac-

terization. Thus RBM remained the most widely explored mode for the purpose of

nanotube characterization.

Theoretically, the modes of an SWNT have been studied using Density Func-

tional Theory (DFT) [61] and also using classical Molecular Dynamics [60] simu-

lations. Kurti [53] used DFT, applying a plane wave basis set and extracted out

RBM frequencies of 40 different SWNT with small diameters. Nachiket [62] stud-

ied the temperature dependence of RBMs with classical molecular dynamics (MD)

simulations using the Tersoff-Brenner potential and also verified it using Raman

spectroscopy. Popov [64] calculated radial breathing and G-band vibrational modes

of SWNT calculated within a symmetry-adapted non-orthogonal tight-binding (TB)

model. The dynamical matrix was calculated using the linear-response approxima-

tion within the TB approach. Dobardzic [65] used a simple analytical model for

studying the breathing-like phonon modes in case of a DWNT where the tube walls

were treated as coupled oscillators. In all these theoretical studies, the main focus

remained on the RBM, since it is unique to nanotubes without any counterpart in

graphene sheets and it gives important information for the nanotube characteriza-

tion.

In this chapter, we first present the characteristic modes of an SWNT in detail,
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obtained using Singular Value Decomposition (SVD) analysis on the MD results.

Later we repeat the same analysis for a DWNT, which is discussed in the later part

of the chapter.

4.2 Phonon Modes

The most commonly determined characteristic modes of a system are discussed in

terms of the phonon modes/branches of the system.

The phonon frequencies ω as a function of the wave vector k can then be obtained

by solving the secular equation [66] :

det

∣

∣

∣

∣

1√
MsMt

Cαβ
st − ω2(k)

∣

∣

∣

∣

= 0 (4.2)

Where Ms and Mt are the masses of the atoms t and s and the dynamical matrix is

defined as:

Cαβ
st (k) =

∂2E

∂uα
s (k)∂uβ

t (k)
(4.3)

where uα
s denotes the displacement of atom s in the direction α, and E is the total

energy of the system which is determined by the interatomic potential. The normal

modes of a 2D system with N particles are the eigenvalues and eigenvectors of the

dynamical matrix [67] Cαβ
st (k) given in Eqn. 4.3.

Cαβ
st (k) =

∂

∂uα
s (k)

F β
t (k) (4.4)

In an explicit calculation of the dynamical matrix by displacing each of the atoms

of the unit cell into all three directions, a periodic supercell has to be used which

is commensurate with the phonon wave length 2π/k. Fourier transform of the k-

dependent dynamical matrix leads to the real space force constant matrix Cαβ
st (R)

where R denotes a vector connecting different unit cells.

A phonon calculation starts with the determination of the dynamical matrix in

real space or reciprocal space. In the force constant approaches, a reduced set of

force constants Cαβ
st (R) are fitted in order to reproduce experimental data. The

force constants can be calculated by displacing atoms from their equilibrium posi-

tion, calculating the total energy of the new configuration and obtaining the second

derivative of the energy through a finite difference method. This approach is chosen
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in the ab initio calculations of graphite phonons in [31, 56, 61, 63, 68]. In order to

calculate the dynamical matrix for different k, a super-cell has to be chosen that is

commensurate with the resulting displacement pattern of the atoms. An alterna-

tive is the use of density-functional perturbation theory (DFPT) [18,19] where the

atomic displacement is taken as a perturbation potential and the resulting change

in electron density and energy is calculated self-consistently through a system of

Kohn Sham like equations. In both the approaches, if the dynamical matrix is cal-

culated on a sufficiently large set of k-points, phonon’s for any k can be calculated

by interpolating the dynamical matrix.

4.3 Singular Value Decomposition analysis

4.3.1 Overview of SVD

Singular Value Decomposition (SVD) is a novel technique to determine all the char-

acteristic modes of a system. In our case we generate the atomic positions using

MD simulations. SVD is then done on the MD data. The details of the SVD tech-

nique are already been described in Chapter 2. In this Chapter we would give a

comparison between the SVD technique and the other methods of the calculation of

the modes of a system.

As stated in Section 4.2 the phonon dispersion relation calculation needs a suffi-

ciently large set of k-points for which a large supercell has to be assumed. Phonons

for any k is obtained by interpolating the dynamical matrix. In the present work

we are interested in the nanomachinaery/nanodevices made up of carbon nanotube

which are of finite sizes. For such systems the calculation of the mode frequencies

would be different than the continuous phonon branches. Rather we are more inter-

ested in the response of such systems on the application of some external excitation,

for example radial stretching given to all its atoms or an excursion given in the

axial direction etc. For studying such excitations SVD seems to be a more useful

technique because of the following three advantages:

• Firstly, it can, resolve the modes of a system in order of the hierarchy, including

the associated frequencies as well as spatial distortions.

• Secondly, it can handle small as well as large-amplitude perturbations given

to the system to excite these modes, i.e., it can identify anharmonic behavior
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as well.

• Thirdly, while the present study covers only SWNTs and DWNTs, it can

readily be extended to more complex structures.

4.3.2 Comparison between SVD and other methods

This subsection gives a brief comparison between the SVD technique and other

methods of calculating modes of an SWNT. As discussed in Section 4.2, phonon

modes are the most commonly used representation of the characteristic modes of a

system. These modes correspond to the vibrational behavior of the system.

Normal mode analysis yields the complete list of vibrational modes of a CNT,

giving their frequencies and the corresponding distortions (eigenvectors). The tech-

nique of normal mode analysis has also been applied successfully for the investigation

of the dynamical properties of finite dust clusters in [69–71].

Normal mode analysis, in its standard form, has a major limitation i.e it yields

the normal modes only in the limit of very small perturbations about the equilibrium

state of the CNT based systems. In nanomotors, which is our area of interest, there

can be fairly large distortions in the shape of the CNT-based system, as described

in Chapter 3. This could produce two kinds of changes in the characteristic modes

of the system. Firstly, the frequency of a given mode may change. Secondly, new

frequencies and eigenvectors (distortions) could be generated by the interactions of

modes, or by the generation of harmonics.

Therefore the characteristic modes under these conditions can be determined by

a two-step process. Firstly, MD simulations are performed for the system, using an

accurate interatomic potential. Secondly, the time-series data of atomic coordinates

so generated is analyzed using the Singular Value Decomposition technique. This

method also resolves the characteristic modes of a system in order of their relative

amplitudes in that particular problem, including the effects of finite-amplitude exci-

tation, boundary conditions, etc. This is particularly important for understanding

nanodevice behavior.

Thus SVD gives the characteristic modes of the system for either small (linear)

or large (nonlinear) perturbations. Strictly speaking, we cannot always call the SVD

modes as ‘normal modes’. However, in the limit of very small perturbations, it is

expected that the two methods would yield similar results. This kind of data analysis
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has been used, in the past, for studying instability-driven non-equilibrium melting

dynamics of finite two-dimensional dust clusters [72]. The dynamic properties of

the system have been described by both normal mode and SVD mode analysis.

Using SVD, it was found that the driving modes were unambiguously related to the

unstable oscillations, which were not accessible by normal mode analysis.

4.4 Computational technique

In this section we describe our MD simulations and the various parameters used.

SWNT’s in zig-zag and arm-chair configurations (5,0), (10,0), (15,0), (5,5), (10,10)

and (15,15) are used. The structures are first relaxed with NPT simulations at a

constant temperature of 300 K and pressure 0 atm. Berendsen’s temperature and

pressure controls [44] are used to give a desired velocity distribution and positions

to the atoms. The parameters are so chosen that the velocity distribution is close

to desired Maxwellian as explained in Chapter 2.

4.4.1 Choice of time step

MD time step of 0.2 fs is used in these simulations which is chosen on the basis of

the largest frequency present in the system. For that we obtain the power spectral

density (PSD) from the X coordinate of one of the atoms of the CNT as seen in

Fig. 4.1.

The PSD shows that the power reduces by 1010 times at a frequency of 5 × 103

cm−1 and stabilizes after that. We take 10 times of this frequency as the Nyquist

frequency so that we don’t miss any other higher frequencies present in the system

which gives us a time step of 0.3 fs. It means a time step of less than 0.3 fs should

give us a good energy conservation in the simulations. So we do energy conservation

checks with NVE runs for 2 time steps of 1 fs and 0.2 fs. We monitor the temporal

variation of total energy for these two time steps. A monotonic variation in total

energy is observed for the case with a time step of 1 fs while the total energy is

fairly conserved in the case of 0.2 fs time step. These energy conservation checks

are explained in appendix B.
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Figure 4.1: Power spectral density of X coordinate of one atom. The highest significant
frequency is used to fix the time step for MD simulations. For frequencies higher than
5 × 103 cm−1, the power spectrum resembles numerical noise.

4.4.2 Periodic boundary conditions used

Periodic boundary conditions (PBC) are used along the axial direction of the SWNT

i.e Z axis using the minimum image convention method. Radius of each CNT is

calculated as the mean radius measured from the instantaneous centroid of that

CNT obtained from the relaxed coordinates. (5,5) and (10,10) configurations are

observed to have a diameter of 6.97 and 13.85 Å respectively. These diameters are

calculated as 2Rc, where Rc is the instantaneous average radius obtained from the

NPT relaxation data. These diameters are fairly close to those reported in [60].

4.4.3 Types of physical conditions examined

An isolated CNT in a vacuum behaves like a micro-canonical system. This means

that it requires NVE simulations, since no energy can flow in or out of the system.

A realistic single CNT, on the other hand, would be exposed to a constant pressure

and temperature due to interactions with its surroundings. This requires NPT

simulations. It is possible that these two conditions could yield a different hierarchy

of SVD modes. In the present study, therefore, we have performed NVE simulations

for all the six configurations of SWNT described in Section 4.4. For illustration we
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repeat these simulations for one of the SWNT configurations under NPT conditions.

The significant modes are extracted using SVD. In all the cases, simulations have

been performed starting with the structures obtained through NPT relaxation, as

described in Section 4.4.

4.5 Modes of an SWNT under NVE conditions

In this section we describe the method used to excite these modes in a SWNT for two

different perturbations given to the system and report the various mode frequencies

and mode structures observed for a set of zig-zag and arm-chair nanotubes. We

broadly observe two classes of modes. Let mθ and mz refer to mode numbers in the

θ and z-directions. The first class of modes observed here is characterized by mz =

0, i.e., axial uniformity and the other with mθ = 0, are with radial uniformity. In the

next section we discuss the method used to excite RBM and the RBM frequencies

obtained in case of different SWNTs as this is the most commonly observed mode

in the literature. Modes other than RBM will be discussed in a different section.

4.5.1 Radial breathing Mode (RBM), mθ=0, mz=0

RBM (mθ=0, mz=0), the most commonly observed mode in a SWNT involves a

uniform (in-phase) expansion and contraction of the entire CNT. In the literature,

it is commonly reported as A1g mode. The frequency of this mode is known to vary

as in Eqn.4.1.

To excite RBM in an SWNT, we stretch the atomic positions of all the carbon

atoms, obtained from NPT relaxation runs, by 5% and 1% in two different cases

and then run an NVE simulation for 1 ns. We ensure that the atom velocities are

set to zero before starting the simulations. Here we discuss the results obtained for

5% initial radial stretching. Results of the 1% stretching case will be discussed in a

separate section. A typical set of S values, as yielded by SVD, is shown in Fig. 4.2

for a (5,0) SWNT.

The use of periodic boundary conditions permits MD simulations with 200 atoms,

which yields a maximum of 600 modes from SVD. For this case, and for other con-

figurations studied, only the first few modes have significant amplitudes. Hence, in

the rest of this work, we limit our analysis to the ten most significant modes.
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Figure 4.2: Values of amplitude S for all 600 SVD modes obtained using SVD analysis
of MD data for a (5,0) SWNT. The SWNT is perturbed by an initial radial stretch of 5%.
Only the first few modes have significant amplitudes.

The RBM peak is observed in two modes, numbers 1 and 2. The power spectral

density for mode 1 is shown in Fig. 4.3 for a (5,0) CNT. A clear peak can be seen at

492 cm−1, corresponding to RBM. Along with the RBM peak, a very low frequency

peak below 1 cm−1 is also observed in both the cases – this is examined in detail

later in this work. The spatial structure corresponding to the displacement due to

the usual in-phase movement of all the carbon atoms of the nanotube in the X-Y

and X-Z planes, for mode number 1, can be seen in Fig. 4.4 and Fig. 4.5 respec-

tively. The distortions are shown for two different configurations.

From the V vector yielded by SVD, we obtain the distorted positions of all

the carbon atoms in each case as explained in subsection 2.2.2 of Chapter 2. The

percentage change in the average radii of all 20 rings of a (5,0) SWNT, due to the

motion produced by mode number 1, are plotted in Fig. 4.6. A variation of nearly

12% is observed in the radii, with negligible variation along the length, clearly

indicating RBM. For mode number 2, a variation of ∼3.5% is observed for all rings,

as shown in Fig. 4.7. The analysis is then repeated for (10,0), (10,10), (15,0) and

(15,15) set of carbon nanotubes. The observed frequencies are listed in Table 4.1

and are compared with the available experimental/theoretical values for the available
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Figure 4.3: Frequency spectrum corresponding to mode number 1 for a (5,0) SWNT,
showing a clear peak at 492 cm−1, corresponding to RBM. A very slow frequency compo-
nent is also seen in addition to RBM.

cases.

As discussed in subsection 4.4.2, the relaxed CNT diameters changes by a factor

of two between (5,5) and (10,10), and the general frequency relation says that the

RBM frequency should also change by a factor of two. This is indeed observed in our

simulations, for the RBM frequencies. Hence the RBM mode frequency observed

here satisfies the empirical formula:

ωRBM = A/d, (4.5)

where d is the diameter of the nanotube and A is an empirical constant : determined

experimentally [56].

4.5.2 Modes other than RBM with finite mθ, mz

After explaining the first 2 modes we now explain the next eight modes in descend-

ing order of their amplitude. These modes are identified in terms of the spatial

distortions that they produce, such as distortions in average ring radius, average

centroid shift and rotation angle θ of a ring of carbon atoms etc. As explained in

the introduction of this chapter, these modes are significant from the point of view

of application of SWNTs for resonantly-driven nanodevices for which the frequency
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Figure 4.4: The spatial structure corresponding to the usual inphase movement of all
carbon atoms of the SWNT in the X-Y plane, due to RBM. (a) (5,0) SWNT (b) (5,5)
SWNT. The Z plane lies along the axis of the SWNT.

of the particular mode of interest should be known.

As stated earlier we broadly observe two classes of modes. The first class is

characterized by mz = 0, i.e., axial uniformity. Within this class, mθ = 0 is the

RBM, also called A1g, while mθ = 2, also called E1g, are both well explained in the

literature9. We also observe a mode with mθ = 3. The spatial distortions corre-

sponding to RBM have already been discussed in subsection 4.5.1. The distortions

associated with the other mz = 0 modes, for a (10,0) SWNT, are shown in Fig. 4.8.

The distorted positions of all atoms have been generated using Eqn. 2.22. How-

ever, instead of computing the time-varying ‘Scale’ using Eqn. 2.23, a single value of

‘Scale’ has been suitably chosen for clarity. It should be noted that the z-direction

is the one along the original axis of the SWNT and the x-y plane shown in the figure

contains the plane of each ring. From Fig. 4.8, we see an azimuthal variation in the

radial positions of atoms, with some azimuthal mode number.

The second class of modes has mθ = 0 (azimuthally uniform), with mz = 1 and

2. The typical spatial structures corresponding to these modes for a (5,0) SWNT

are shown in Fig. 4.9. These modes involve shifts in the X- and Y-centroid locations

of different rings. We now consider these modes in more detail for a (5,0) SWNT.

Table 4.2 shows that modes number 3, 4, 5 and 7 have mθ = 0 and mz = 1, and

produce changes in the X and Y centroid locations of each ring in the SWNT, as
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Figure 4.5: The spatial displacement of atoms corresponding to the in-phase movement
of all the carbon atoms of a (5,0) SWNT due to RBM in the X-Z plane is shown. Curves a
and b correspond to the unperturbed and the perturbed locations of the atoms respectively.
The atom numbers show the Z plane along the axis of the SWNT. Note that an arbitrary
scale factor is used here to get these distortions.

shown in Fig. 4.10.

We note that the amplitude of displacement in the X-centroid location is highest

for mode number 3 and lowest for mode 4, and there is an axial phase shift in the

amplitude. Mode 7 has higher X centroid displacements than modes 3,4 and 5, and

there is negligible displacement in the Y-centroid location. The changes in quanti-

ties like average radii of different rings, and azimuthal rotation θ, are negligible for

these modes. Modes number 6, 8, 9 and 10, all having mθ = 0 and mz = 2, also

involve changes in the X and Y centroid locations, as shown in Fig. 4.11.

The distortions in centroid locations due to the above modes mean that, at any

given time, different rings in the SWNT have different centroids.

4.6 Very low frequency rotational mode

As stated in subsection 4.5.1, the RBM modes extracted through SVD, viz., modes

number 1 and 2 in the amplitude hierarchy, also exhibit a very low frequency com-
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SWNT D RBM(SV D) RBM(Scaling) Experimental/Theoretical

(5, 0) 4.152 492 492

(10, 0) 8.056 250 246

(15, 0) 12.048 166 123

(5, 5) 6.978 295 295 264[60]

(10, 10) 13.850 146 147 182[60], 165[61]

(15, 15) 20.768 80 73

Table 4.1: Columns in the table show SWNT configuration, ’D’ diameter obtained from

NPT relaxation in Å, RBM frequency obtained from SVD in NVE simulations, RBM
frequency expected from scaling law and RBM frequencies obtained by other workers. All
the frequencies are in cm−1. Note that the reference numbers of the other workers in the
available cases, are mentioned in square brackets along with the frequencies.

(5, 0) S (10, 0) S (15, 0) S

N Freq. (mθ, mZ) Freq. (mθ, mZ) Freq. (mθ, mZ)

1 492, 0.04 (0,0) 250, 0.04 (0,0) 166, 0.04 (0,0)

2 492, 0.04 (0, 0) 250, 0.04 (0,0) 166, 0.04 (0,0)

3 24 (0,1) 38 (2,0) 17 (2,0)

4 24 (0,1) 38 (2,0) 17 (2,0)

5 24 (0,1) 103 (3,0) 46 (3,0)

6 80 (0,2) 103 (3,0) 46 (3,0)

7 24 (0,1) 99 (1,0) 88 (4,0)

8 80 (0,2) 99 (1.0) 88 (4,0)

9 80 (0,2) 99 (1,0) 95 (0,1)

10 80 (0,2) 99 (1,0) 95 (0,1)

Table 4.2: Columns in the table show mode sequence number ‘N’ in order of decreasing
amplitude, mode frequency and the mode structure S for different configuration of zig-zag
SWNTs in NVE simulations. All the frequencies are in cm−1. Mode structure is obtained
as explained in subsection 2.2.2 of Chapter 2.
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Figure 4.6: Percentage change in average radii of rings due to distortion produced by
mode number 1, in a (5,0) SWNT. The radii are measured with respect to the respective
centroid of the individual rings.

ponent. Analysis of the accompanying distortion shows that this corresponds to a

very slow rotation of the SWNT rings about their respective centroids. This rotation

is different from simple rigid body rotation of the entire SWNT which would raise

a question about angular momentum conservation. The rings rotate about their

own centroids which is different for different rings because of the various mz modes

involving movement of the centroids as discussed in Section 4.5.2. The total angular

momentum of the system is conserved as discussed below.

4.6.1 Angular Momentum conservation

Since the MD simulation is started with zero atom velocities, it implies zero initial

angular momentum of the SWNT about any specified axis. Conservation then de-

mands that the angular momentum about that axis should always stay equal to zero.

This can indeed be seen from Fig. 4.12, which shows the total angular momentum of

the SWNT about the axis x=y=0 as a function of time. This angular momentum is

negligible in comparison to the angular momentum of the individual rings as shown

in Fig. 4.13. A significant angular momentum of the individual rings implies a net

θ motion of the rings about their own centroid. As seen in Fig. 4.13 an individual

ring acquires an angular momentum of nearly 2x10−32 Kgm2/sec about the Z axis,
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Figure 4.7: Percentage change in average radii of rings due to distortion produced by
mode number 2 in a (5,0) SWNT. The radii are measured with respect to the respective
centroid of the individual rings.

which is along the length of the SWNT. As seen in Fig. 4.14 the angular momentum

of ring number 1 and 2 cancels out each other at times. Note that these two rings

are chosen for illustration here though its the sum of the angular momentum of all

the rings which makes the total angular momentum of the SWNT negligible. Thus

total rotation that appears in modes 1 and 2 is actually the individual rotation of

each ring about its instantaneous axis, this axis being different for different rings.

4.6.2 θ rotation of individual rings

Fig. 4.15 shows the temporal evolution of the azimuthal location θ of atom number

1 of ring 1, due to motion connected with modes 1 and 2. Here, θ(t) has been

computed using Eqn. 2.22 and 2.23.

Similar rotational motion is observed for other atoms on the same ring, and on

other rings. We also calculate the azimuthal rotation angle θ produced in atom

number 1 of ring 1 due to all the 600 modes and find that the main contribution to

this rotation comes from modes number 1 and 2.

Fig. 4.15 shows that the period of rotational motion is of the order of the complete

MD simulation time ∼0.8 nanosecond, corresponding to ∼0.04 cm−1. Since the

frequency resolution of the SVD analysis is determined by the total simulation time,
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Figure 4.8: Modes with mz = 0 and finite mθ in a (10,0) SWNT. (a) Atomic displace-
ments in the X-Y plane corresponding to (mθ = 2,mz = 0) (E1g) mode. Variation of
radial position of atoms with the azimuthal angle is clearly visible with a mode number
2. (b) Variation in atomic radii, measured with respect to the centroid of the respective
ring. Curve (i) shows the radii in the unperturbed configuration. Curves (ii) and (iii)
show the radii due to variations produced by modes (mθ = 2, mz = 0) and (mθ = 3,
mz = 0) respectively. Increasing ‘atom number’ from 1 to 20 corresponds to azimuthal
angle varying from 0 to 2π.

the low-frequency peak appears at the second frequency point, corresponding to 1.2

GHz or 0.04 cm−1. The exact frequency could be slightly lower or higher than this

value, but cannot be resolved.

One important point to be considered here is as to why this low frequency ro-

tational mode appears with RBM. One possible reason could be that these are the

only two observed modes for which the displacement produced in the atomic coor-

dinates of all the atoms are same. On the other hand in all other modes the atomic

coordinates of different atoms get perturbed by different amount as seen in Fig. 4.8

and Fig. 4.9.

4.7 Finite mθ, mz modes that are significant in

other configurations

Frequencies of some other modes with significant amplitudes, for all six configura-

tions of the SWNT mentioned in Section 4.4, are listed in Tables 4.2 and 4.3. Here

we discuss some of these modes that are not observed in the case of a (5,0) SWNT.
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Figure 4.9: Modes with mθ = 0 in a (5,0) SWNT (a) Atomic displacements in the X-Z
plane produced by mθ = 0, mz = 1. Curves (i) and (ii) show the atomic locations of
the atoms in the unperturbed and the perturbed configurations respectively. An arbitrary
scale factor is used here to get these distortions. (b) Curves (i) and (ii) show the shifts
produced in the X centroid locations of different rings, due to (mθ = 0, mz = 1) and (mθ

= 0, mz = 2) modes respectively. Although only the X-centroid displacements are shown,
these modes involve both X- and Y-shifts.

• (mθ = 2,mz = 0) (E1g) is seen as mode number 3 for (10,0) and (10,10)

SWNT’s with a frequency at 38 and 12 cm−1 respectively. This mode is well

understood in the literature of SWNT modes [57] with the spatial structure

as shown in Fig. 4.8(a).

• (mθ = 3,mz = 0) mode is also observed in many cases. It has a frequency

higher than that of the (mθ = 2,mz = 0) mode.

• In the case of (15,0) and (15,15) SWNTs, (mθ = 4,mz = 0) mode is also

observed with frequency higher than that of (mθ = 3,mz = 0) mode.

• The frequency of quasi-rigid body rotation is slightly higher in case of a (15,15)

SWNT, ∼ 0.08 cm−1, while in all other cases it is 0.04 cm−1.

These modes are significant from the point of view of application of these nan-

otubes for practical applications where knowledge of the frequencies of various modes

can be used for resonantly exciting them.
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Figure 4.10: Shift in X and Y centroid locations (Å) of different rings in (mθ = 0,mZ = 1)
mode for (5,0) SWNT calculated from the unperturbed and the perturbed coordinates of
the carbon atoms. Here curves a, b, c and d correspond to the distortions produced due
to mode numbers 3, 4, 5 and 7 respectively.

4.8 Modes of (5,0) SWNT obtained for 1% radial

stretching

The results of Section 4.5 were obtained after applying a 5% radial stretch in all

atomic locations, as compared to the NPT-equilibrated locations. We repeat the

simulations with only a 1% initial radial stretching given to the atoms as to see the

effect of anharmonicity on the amplitude of the modes. The mode amplitudes for

this case are shown in Fig. 4.16 for a (5,0) SWNT. Recall that in the 5% case, modes

1 and 2 had almost similar amplitudes, followed by significantly smaller amplitudes

for the other modes. In the 1% case, mode 1 is observed to be clearly dominant and

stands alone. As seen in Fig. 4.17 the RBM peak is clearly visible in the frequency

spectrum and the relative strength of the RBM peak, in the relation to the low-

frequency peak, has increased significantly. The RBM frequency has also come up

to 495 cm−1 in comparison to 492 cm−1 in the NVE case. The hierarchy of other

modes remains the same as in the 5% case. The second RBM mode has disappeared,

as expected. The total range of rotational motion of atom 1 of ring 1 is 20 degrees,

as compared to 90 degrees in the 5% perturbation case. Hence it appears that
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Figure 4.11: Shift in X and Y centroid locations (Å) of different rings in (mθ = 0,mZ = 2)
mode for (5,0) SWNT calculated from the unperturbed and the perturbed coordinates of
the carbon atoms. Here curves a, b, c and d correspond to distortions produced due to
the mode numbers 6, 8, 9 and 10 respectively.

low-amplitude perturbations leads to weaker coupling between modes.

4.9 Modes of an SWNT under NPT conditions

We have so far studied the SVD modes of an SWNT under NVE conditions. This is

acceptable for an isolated SWNT. In real-life systems, however, the SWNT would be

in contact with the surroundings, which would tend to maintain a constant temper-

ature and pressure. Hence, for purposes of illustration, we repeat the same analysis

for a (5,0) configuration of the SWNT under NPT conditions, with a temperature

of 300 K and a pressure of 1 atm. A 5% initial radial stretch is used in this case.

The results are presented in Table 4.4. The frequencies of various modes are broadly

the same as those obtained in NVE simulations. However, the hierarchy of modes

is shuffled in a few cases. The RBM frequency is observed to be higher in this case

as compared to NVE simulations.
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(5, 5) S (10, 10) S (15, 15) S

N Freq. (mθ, mZ) Freq. (mθ, mZ) Freq. (mθ, mZ)

1 295, 0.04 (0,0) 146, 0.04 (0,0) 80, 0.08 (2,0)

2 295, 0.04 (0,0) 146, 0.04 (0,0) 80, 0.08 (0,0)

3 48 (2,0) 12 (2,0) 54 (2,0)

4 48 (2,0) 12 (2,0) 54 (2,0)

5 88 (0,1) 34 (3,0) 160 (4,0)

6 110 (0,1) 34 (3,0) 160 (4,0)

7 88 (0,1) 65 (4,0) 160 (4,0)

8 88 (0,1) 65 (4,0) 54 (2,0)

9 110 (0,1) 79 (0,1) 54 (2,0)

10 110 (0,1) 79 (0,1) 160 (4,0)

Table 4.3: Columns in the table show mode sequence number ‘N’ in order of decreasing
amplitude, mode frequency and the mode structure S for different configuration of arm-
chair SWNTs in NVE simulations. All the frequencies are in cm−1. Mode structure in
each case is obtained as explained in subsection 4.3 of Chapter 2.

(5, 0) S

N Frequency (mθ, mZ)

1 495, 0.04 (0,0)

2 495, 0.04 (0,0)

3 24 (0,1)

4 24 (0,1)

5 80 (0,2)

6 24 (0,1)

7 24 (0,1)

8 80 (0,2)

9 24 (0,1)

10 80 (0,2)

Table 4.4: Columns in the table show mode sequence ’N’ in order of decreasing amplitude,
mode frequency and the mode structure S for (5,0) configuration of a zig-zag SWNT in
an NPT simulation. All frequencies are in cm−1.
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Figure 4.12: Variation of the total angular momentum, of the SWNT about the axis
x=y=0 as a function of time. Shows that the SWNT exhibits a very small total angular
momentum hence a negligible angular frequency.

4.10 Resonance excitation of an SWNT

Normal modes of any structure are often weakly damped, since they are distortions

that are intrinsically supported by the structure. Hence it is reasonable to expect

that external excitation of a characteristic mode would lead to large amplitude

perturbations that are higher than those produced by non-resonant excitation. This

is illustrated below.

Let us attempt to excite the mode (mθ = 0,mz = 1), which involves x- and y-

directed motion of the centroids of different rings. We start with a (5,0) SWNT that

is relaxed at normal NPT conditions. We next assume that atom 1 of ring number

5 and atom 6 of ring 15 are given charges of +e and -e, respectively. The SWNT is

then exposed to an external electric field of the form

~E = Ex0Cos(ωt) (4.6)

as detailed in [55]. This field produces an x-directed acceleration of these two atoms.

The frequency of this externally applied electric field is chosen to be 24 cm−1, which

is the frequency of the (mθ = 0,mz = 1) mode. These two atoms are chosen due to

the spatial structure of this mode, shown in Fig. 4.10.

NPT simulations are run for 100 ps. The X and Y centroid locations of all the
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Figure 4.13: Variation of the angular momentum, of the ring number 1 of SWNT about
the axis x=y=0 as a function of time. This angular momentum is significant in comparison
to the total angular momentum of the SWNT implying that the individual rings are
rotating about their own centroids.

atoms are monitored during the simulation. Fig. 4.18 shows the X and Y centroid

locations of atom number 1 of ring number 5 to which the positive peak of the field

is applied.

A continuously rising amplitude of the X centroid location can be observed. This

is because of the sinusoidally applied electric field in this direction. The Y centroid

location shows a different behavior which could be because of the indirect coupling

of energy from the field. Fig. 4.19 shows the envelopes of the X centroid location

amplitudes for different rings.

The amplitude of the envelopes is seen to be decreasing as we move away from

the ring to which electric field is applied. For rings number 5 and 15, we see the

amplitude rising continuously, reaching 6 Å at t = 100 ps.

Let us now consider non-resonant excitation using two different frequencies.

Fig. 4.20 shows the envelopes of the X centroid location amplitudes for two dif-

ferent frequencies of the applied field. Also shown for reference is the case of no

applied field. For an applied frequency equal to 48 cm−1, twice the mode frequency,

oscillations in the range of +1 and -1 Å are observed – also, the amplitude is ob-

served to saturate, unlike the resonant case. For an arbitrary applied frequency =

56.88 cm−1, smaller oscillations with 0.5 Å are observed. These oscillations are even
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Figure 4.14: Variation of the angular momentum, of ring number 1 and 2 of SWNT
about the axis x=y=0 as a function of time. This angular momentum is significant in
comparison to the total angular momentum of the SWNT. Also note that at times like
624, 628 and 632 ps the angular momentum of the two rings seems to be canceling out
each other. Note that its the sum of the angular momentum of all the rings which makes
the net angular momentum of the system zero.

smaller in the case of no external field applied to the system.

This means that the excitations produced at a frequency other than the charac-

teristic mode frequency does not produce any significant resonance in the SWNT.

These studies involving the resonance excitations of the SWNT are important from

the point of view of application of these SWNTs as nano-devices.

4.11 Mode analysis of a (5,0)@(15,0) DWNT un-

der NPT conditions

Similar to the characteristic mode analysis done for an SWNT, we repeat this anal-

ysis for a DWNT. We choose a (5,0)@(15,0) DWNT. The structure is first relaxed

at room temperature and pressure. An NVE MD simulation is then performed.

SVD done on the MD data gives all the characteristic modes of the structure. We

study first ten modes in detail. The various characteristic modes obtained and the

corresponding frequencies are as in Table 4.5. As compared to the SWNT case, we
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Figure 4.15: Variation of azimuthal rotation angle θ produced in atom number 1 of ring
number 1, due to mode numbers 1 and 2. These slow rotations are produced due to a
quasi-rigid body rotation of the rings about their respective centroids.

(5, 0) S

N Frequency (mθ, mZ)

1 497, 0.04 (0,0)

2 497, 0.04 (0,0)

3 26 (0,1)

4 26 (0,1)

5 26 (0,1)

6 125 (0,2)

7 26,125 (0,2)

8 125,242 (0,2)

9 125,242 (0,2)

10 82 (0,2)

Table 4.5: Columns in the table show mode sequence ’N’ in order of decreasing amplitude,
mode frequency and the mode structure S for a (5,0)@(15,0) DWNT configuration in an
NPT simulation. All frequencies are in cm−1. Note that the outer carbon nanotube is
held fixed in this case.
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Figure 4.16: S values for all the SVD modes in a (5,0) SWNT configuration for a radial
stretch of 1% given to all its atoms. Amplitude of first few modes look significant.

see the following differences in the mode frequencies obtained in this case:

• In this case we see that the RBM frequency has got shifted up to 497 cm−1.

This is because as expected, this geometry produces a higher restoring force,

hence it leads to an upshift in the RBM frequency.

• Also the frequency of some axial modes like (mθ, mz) = (0,1) and (0,2), are

slightly different from the SWNT case.

• For some other mode numbers (same mθ & mz), where an SWNT exhibited a

single frequency, a DWNT exhibits more than one peak in the power spectral

density. This is possibly due to coupling between different modes due to

interaction with the outer CNT.

4.12 Conclusions

We have shown, for the first time, that the complete set of characteristic modes of

a single-walled nanotube can be extracted using SVD analysis on molecular dynam-

ics results. For the well-known case of radial breathing modes, this analysis gives

good agreement between the calculated mode frequency and published experimental

measurements, as also the 1/D scaling of RBM frequency.
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Figure 4.17: Frequency spectrum corresponding to mode number 1 of a (5,0) SWNT
showing a clear peak at 495 cm−1 for RBM. Note that the amplitude of the RBM peak is
more sharp in this case as compared to the 5% radial stretching case.

The first part of the study focuses on an SWNT under NVE conditions, i.e., an

isolated SWNT. For the case with 5% initial radial stretching in the SWNT, radial

breathing motion is seen in the two strongest modes. The distortion associated

with each of these modes is a combination of radial breathing with a very slow

rotational motion of individual rings of the SWNT, although the SWNT as a whole

has a zero rigid-body rotational motion. This coupling between these two modes

weakens when the radial stretching is reduced to 1%. These conclusions apply

to all six configurations examined in this work. Apart from these mixed RBM-

rotational modes, the next eight most significant modes can be broadly divided

into two classes. The first class is characterized by mz = 0, i.e., axial uniformity.

These modes produce an azimuthal variation in the radial positions of atoms, with

some azimuthal mode number. The second class of modes has mθ = 0 (azimuthally

uniform), with mz = 1 and 2. These modes involve shifts in the X- and Y-centroid

locations of different rings, i.e., transverse to the nominal axis of the SWNT. Some

modes arise only in the case of configurations other than (5,0), such as mz = 0 with

mθ = 2,3,4 and mz = 3 with mθ = 0.

The analysis has been repeated for a (5,0) configuration of SWNT under NPT

conditions, maintaining a temperature and pressure of 300 K and 1 atm, which mimic
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Figure 4.18: Temporal variation of the amplitudes of the X and Y centroid locations pro-
duced in atom number 1 of ring number 5 of a (5,0) SWNT, produced from the resonance
excitation at one of its characteristic mode frequency, 24 cm−1.

laboratory conditions. The frequencies of the modes are almost similar to those

obtained under NVE conditions, but the hierarchy of modes is slightly different.

The RBM frequency observed in this case is slightly higher as compared to that

observed in NVE simulations.

The knowledge of the characteristic modes thus obtained is then used to study

the difference between resonant and non-resonant excitation of an SWNT. Exci-

tation produced at one of the characteristic mode frequencies, corresponding to

centroid motion (mθ = 0, mz = 1), shows a significant and steady increase in the

amplitude of centroid displacement. Excitation at the second harmonic of the mode

frequency leads to an initial increase in displacement amplitude, but eventual satu-

ration. Non-resonant excitation leads to saturation at a lower level than that from

second harmonic excitation. These conclusions are important from the point of view

of application of SWNTs as nano-devices, e.g. as nanomotors.

The characteristic mode analysis has been repeated for a DWNT. We see that

majority of the modes are the same but the mode frequencies are slightly different.

The frequency of the RBM mode is observed to be higher in this case. Also the

frequency of few other modes is different than the SWNT case. Multiple peaks are

also seen for some of the modes at more than one frequency point. This variation is
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Figure 4.19: Envelopes of the amplitudes of the X centroid location of atom number
1 of different rings for resonance excitation produced in a (5,0) SWNT at one of its
characteristic mode frequency, 24 cm−1. Note that the amplitude of the perturbation
produced in the centroid locations decreases as we move away from ring number 5 to
which external field is applied.

expected because of the interaction between the inner and the outer carbon nanotube

in case of a DWNT.
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Figure 4.20: Temporal variation of the amplitudes of the X centroid location of atom
number 1 of ring number 5 of a (5,0) SWNT for excitations produced at different frequen-
cies. These frequencies are different from the mode frequencies of the SWNT.



Chapter 5

Determination of useful parameter

space for a double-walled carbon

nanotube motor subjected to a

sinusoidally varying electric field

5.1 Introduction

In Chapter 3 we saw that for a given frequency (∼ 2 × 1010 Hz), it was impossible

to produce full rotation of the shaft, regardless of the applied E-field amplitude [55].

This is because at low amplitudes, the torque produced by the electric force was less

than the torque required to overcome the restoring torque. This restoring torque

was due to the potential energy barriers in the system. A simple estimate of the

minimum E-field, Eth, required to produce rotation in the shaft was made using the

gradient of the potential energy surface in the direction of rotation. Locked states

were observed in the shaft on applying a field of frequency of 2.045 × 1010 Hz and

amplitude higher than Eth [55]. Application of higher amplitude fields led to distor-

tion of the shaft, in turn changing the potential energy surface (PES). This led to

even stronger potential energy barriers against rotation of the shaft, in turn increas-

ing the threshold electric field beyond the actual applied value. These locked states

limit the utility of these motors for the practical applications of these as nanomotors.

As discussed in Chapter 3, earlier the frequency was held constant, while a few

80
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different electric field amplitudes were tried in an attempt to produce unidirectional

motion of the shaft. In general, the electric field amplitude and frequency form a

two-dimensional parameter space. Now we attempt to determine a ‘useful’ region

in this parameter space where the shaft exhibits unidirectional (motor-like) motion.

Consider the use of a higher frequency at a given amplitude. We would expect

the shaft to deform less before the E-field reverses sign. This should lead to a re-

duction in the potential energy barrier against rotation, making rotation possible.

In the limit of very high applied frequency, however, the shaft would simply not

respond to the electric-field due to its own inertia. This imposes an upper bound

on the useful frequency. Therefore it seems, that there should be a useful range

of E-field frequencies, where the distortion of the shaft is small, but there is still

enough time to drive rotation. For a given frequency in this range, there could then

be a range of E-field amplitudes which is enough to overcome the rotational barrier

and yet does not cause too much distortion. Therefore now our objective is to de-

termine if such a useful region in parameter space exists at all and to define its limits.

This chapter is organized as follows. In Section 2, we present details of the

computational model. In Section 3, we present a simple rigid-body model of the

nanomotor to determine a useful operating point where unidirectional motor-like

motion is likely. Section 4 gives the results and discussion. A detailed explanation

for an unexpected result is presented in Section 5, and Section 6 lists the conclusions.

5.2 Computational Technique

5.2.1 Setting up the MD simulations

In this section we describe our MD simulations and the various parameters used.

Brenner potential [34] is used as earlier for carbon-carbon interactions within a

nanotube, with Nordlund’s long range interaction potential [35] for the interactions

between the nanotubes. SWNTs in zig-zag configurations (5,0) and (15,0), of lengths

41.81 and 12.52 Å respectively, are used in our simulations as shaft and sleeve.

The co-ordinates used and the end-on configuration of the motor are as shown in

Fig. 3.1. Both the shaft and sleeve are centered about a common rotational axis
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(Z axis). After placing the shaft inside the sleeve, the structure is equilibrated at

a temperature of 300 K and 0 atmosphere pressure, using Berendsen’s temperature

and pressure control [44] with a time constant of 500 fs for a simulation of 100 ps.

5.2.2 Application of external electric field

After relaxation of the DWNT structure, unit positive and negative charges are

assumed on the diametrically opposite first and sixth atoms of the shaft as already

discussed in Chapter 3. The line joining these two atoms makes an initial angle of

20 degree with the X axis. An external electric force of the form

qEa cos(wEt), (5.1)

is applied to the already existing interatomic potential force term for the two charged

atoms, where ± q is unit charge assigned to atoms 1 and 6, and Ea denotes the

applied electric field strength. To start with, we use a field amplitude Ea as 1.1×1010

V/m and frequency ωE equal to 2.0× 1012 rad/sec as obtained from a simple model

described in the next section. A parametric study can then be performed by varying

the field amplitude and the frequency over a range of values close to this point in

amplitude-frequency space. The MD time step is 0.1 femto-second in our simulations

and the simulations are run for 800 ps. The angular velocity for the shaft and the

sleeve are calculated in the same way as explained in the subsection 3.2.4.

5.3 Nominal operating point calculation

Before exploring a full parameter space for the nanomotor using MD it is essential

to obtain a nominal operating point since exploring a full parameter space with MD

would be computationally very costly. This nominal operating point would require

a point in the field amplitude and frequency space where unidirectional motion of

the shaft could be observed. Therefore we first calculate a threshold electric field

amplitude as explained below and then obtain a corresponding frequency for this

field amplitude which could produce possible motor like motion in the shaft.

5.3.1 Threshold electric field Eth

Consider the section of the potential energy surface (PES) for the DWNT system,

corresponding to rigid-body rotation of the shaft inside a static sleeve. The potential
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energy barriers produced by this PES imply a large drag force that opposes rotation

of the shaft inside the sleeve. As explained in Chapter 3 a high amplitude electric

field is needed to rotate the shaft inside the fixed sleeve, in order to overcome this

drag.

The above-mentioned section of the PES is generated as explained in Subsec-

tion 3.4.2. A plot of the PES with the starting configuration of the DWNT system

before NPT thermalization is as shown in Fig. 5.1 (i). This PES gives 15 peaks,

which is in agreement with Merkle’s [54] formula for the periodicity of the potential

energy of such a DWNT configuration. The number of peaks depend on the number

of atoms in the outer and inner nanotube. However after relaxing this structure at

0 atmosphere pressure and 300 K temperature using MD, the PES becomes smooth

as seen in Fig. 5.1 (ii). The reason for the smooth behavior of this PES will be

explained in the next subsection.

The gradient of this PES plot along the direction of rotation θ is as shown in the

Fig. 5.1 (iii). The threshold electric field Eth required for the rotation of the shaft

inside the fixed sleeve is given in terms of this gradient as follows:

2qRaEth = dφ/dθ (5.2)

where q is the electronic charge and Ra is the radius of the shaft. In the above

expression, the direction of the electric field is assumed to be perpendicular to the

line joining the two charged atoms, i.e., the orientation of maximum effectiveness in

generating a torque. A threshold electric field, Eth of 0.28×1010 V/m is obtained in

this case. Note that the model used above does not take into account the distortions

produced in the shaft due to the application of the electric field, Secondly, since the

shaft keeps rotating, the angle between the electric field and the line connecting the

two charges would vary, reducing the time-averaged torque. For both these reasons,

the actual field amplitude required might be significantly higher than this value.

5.3.2 Comparison with the Merkle’s hypothesis

In our simulations we have a 3.74 Å spacing between the shaft and the sleeve which

is close to the spacing observed in a DWNT obtained experimentally [36, 37]. Dur-

ing the NPT relaxation, the sleeve is held fixed and the shaft center shifts widely

within the sleeve. We observe a centroid displacement of the shaft at the end of

the simulation as seen in Fig.5.2. The shaft sits off-axially inside the fixed sleeve
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Figure 5.1: (i) Total potential energy (eV) of the system as a function of angular ori-
entation of shaft (θ) inside the immobilized sleeve before NPT thermalization. (ii) Total
potential energy (eV) of the system as a function of the angular rotation of the shaft inside
the fixed sleeve after NPT thermalization. (iii) Derivative of the total potential energy
(eV) with rotation angle θ (deg).

as seen in the figure. The potential energy surface of the system is calculated by

summing over the potential energy of all the atoms when the shaft is rotated about

the centroid (0,0). Therefore in this case the shaft atoms which are away from the

sleeve will not contribute much to the total potential energy of the system. That is

why we see a smooth PES after doing NPT relaxation.

Merkle’s paper [54], does not take into consideration this kind of centroid shift

in the shaft. But he assumes symmetry around the Z axis which does not apply to

this case. So this case of the PES calculation after NPT relaxation is an exception

to the Merkle’s formula.
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Figure 5.2: X and Y coordinates of the atoms showing displacement of the shaft centroid
after NPT relaxation.

5.3.3 Operating frequency

A simple theoretical model, based on rigid-body rotation of the shaft [55], is used

to calculate an operating frequency point for the motor as follows:

d

dt
(I1ω1) = −τ12 + Eacos(wEt) × 2qRasin(θE) (5.3)

d

dt
(θE) = ω1 (5.4)

τ12 = Ra ×
dφ

dθ
(5.5)

where τ12 is the drag force acting between the shaft and the sleeve which is given as

the product of shaft radius Ra and the gradient of the total potential of the system

in the direction of rotation i.e dφ/dθ, q is the unit electronic charge, Ea and ωE are

the amplitude and frequency of the applied electric field and θE is the angle which

the line joining the two charged atoms make with the electric field. The values of

I1, I2 and Ra are kept constant here. The initial value of θE is 20 degree for this case.

These equations are solved numerically using a fourth order Runga-Kutta method

to get the instantaneous values of the shaft angular velocity ω1. With trial and error,

we get a unidirectional motion of the shaft at an applied field frequency of 2.0×1012

rad/sec and amplitude 1.1 × 1010 V/m as seen in Fig. 5.3. The corresponding vari-
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ation of rotation angle θ is shown in Fig. 5.4. It is noteworthy that motor-like

behavior occurs at an amplitude ∼ 4 times higher than the simple estimate made

in Subsection 5.3.1. Also, motor-like behavior is observed 200 ps after start, out of

a total simulation time of 800 ps.
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Figure 5.3: Temporal variation of the shaft angular velocity (rad/sec) inside static sleeve
at an applied field of frequency 2.0 × 1012 rad/sec and amplitude 1.1 × 1010 V/m. This
operating point is obtained from the theoretical model wherein full unidirectional motor-
like behavior is observed.

Having obtained a simple estimate of a useful amplitude-frequency combination,

the next step is to proceed to full MD simulations to study the parameter space

around this nominal operating point.

5.4 Results and discussion

MD simulations have been performed for a DWNT-based electrically-driven nanomo-

tor system. The applied electric field has a component only along the x-direction,

i.e., Ex. The amplitude and frequency of this field are varied around the nominal

operating point determined from the theoretical model in the last Section.

Unidirectional motor-like behavior of the shaft is observed on application of a

field amplitude of 1.1 × 1010 V/m and a frequency of 2.0 × 1012 rad/sec which



Chapter 5: Determination of useful parameter space for a double-walled

carbon nanotube motor subjected to a sinusoidally varying electric field 87

0 1 2 3 4 5 6 7 8

x 10
−10

−1400

−1200

−1000

−800

−600

−400

−200

0

200

 Time (Sec)

 R
o

ta
tio

n
 a

n
g

le
 

θ 
(d

e
g

re
e

)

Figure 5.4: Temporal variation of the rotation angle θ(degree) of the shaft inside static
sleeve at an applied field of frequency 2.0 × 1012 rad/sec and amplitude 1.1 × 1010 V/m.
Note that for times >200 ps, θ changes monotonically, indicating unidirectional motion.

was obtained from the theoretical model. The instantaneous angular velocity ω(t)

(rad/sec) of the shaft inside the fixed sleeve is shown in Fig. 5.5, and can be seen to

vary between (1-3)×1012rad/sec. Thus the instantaneous value of the shaft angular

velocity lies close to the applied value of 2.0 × 1012 rad/sec. The angular velocity

does not change sign, which implies full unidirectional motion of the shaft inside

the sleeve. Fairly large fluctuations in ω are observed, which could be due to three

physical reasons as well as a ‘numerical’ reason, as explained below. Firstly, even

with rigid-body rotation of the shaft, the effective drag force due to potential energy

barriers varies as a function of angular position of the shaft. Secondly, the applied

electric field produces distortions in the shape of the shaft, which in turn modifies

the potential energy barriers. Thirdly, the torque applied by the electric field varies

with the relative angle between the electric field (x-direction) and the line joining

the two charges. There could also be numerical ‘noise’, since the average angular

velocity ω is computed by averaging over all atoms in the simulation.

The parameter space around this amplitude and frequency point is then explored

to get a region where full unidirectional motion of the shaft can be observed. Two

sets of simulations are performed. Either the field amplitude or the frequency is

varied over a range of values, while keeping the other one fixed.
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Figure 5.5: Temporal variation of the shaft angular velocity (rad/sec) inside the static
sleeve at an applied field of frequency 2.0 × 1012 rad/sec and amplitude 1.1 × 1010 V/m
obtained from MD. Fairly large fluctuations are seen in the angular velocity, expected
cause of which is explained in the text.

5.4.1 Case 1 : Fixed ωE = 2.0 × 1012 rad/sec

The applied field frequency is kept fixed in this case at ωE = 2.0 × 1012 rad/sec,

while the amplitude is varied from 0.19 × 1010 V/m to 2.89 × 1010 V/m. Let us

define Rmax as the maximum radial position of any atom in the shaft, as measured

from the instantaneous centroid of the shaft. Rmax is a measure of the distortion

produced in the shaft due to application of the electric field. Before the electric field

is applied (initial conditions), the average radius of the shaft Rav,init = 2.27 Å and

Rmax,init is 2.74 Å.

For each applied combination of electric field amplitude and frequency, Rmax is

a function of time which can be determined from MD results. The highest value

of Rmax, throughout the simulation period, is recorded, and is shown in Fig. 5.6 as

a function of field amplitude. As expected, Rmax increases with the electric field

amplitude, thereby making the potential energy barriers stronger, which enhances

the hindrance to pure rotational motion of the shaft.

The complete range of the applied field amplitudes is divided into three regions,

which are discussed below.

• Region 2 : Full unidirectional motion of the shaft is observed in this region,
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Figure 5.6: Variation of Rmax (Å ) over the whole range of the applied field amplitudes
(0.19 − 2.89) × 1010 V/m. The frequency of the applied field is kept constant here as
2.0 × 1012 rad/sec. Region 2 observed to be the operational region in this range where
unidirectional motor-like behavior is observed.

where the amplitude varies between (0.57−1.70)×1010 V/m. Correspondingly,

Rmax varies between 2.92 and 3.01 Å. Over this range of small distortions,

there is a relatively small increase in the potential energy barriers, which makes

unidirectional motion possible. Hence Region-2 is found to be the useful region

over the range of field amplitudes examined in this work.

• Region 3 : In this region Rmax varies from 3.01 to 3.16 Å and unidirectional

motion is not observed. This is due to a greater enhancement in potential

energy barriers.

• Region 1 : At 0.19 × 1010 V/m, Rmax observed is 2.83 Å. However, unidirec-

tional motion is not observed in this case. This can be explained in term of

the threshold electric field amplitude, Eth, required to overcome the potential

energy barriers in the CNT configuration, as explained in Section 5.3.1. The

potential energy surface (PES) and Eth calculated from the gradient of the

PES w.r.t rotation angle θ is shown in Fig. 5.7 for two different values of the

applied electric field amplitudes. For an applied field amplitude of 0.19× 1010

V/m, the DWNT configuration is observed to have a Eth of 0.195 × 1010

V/m, slightly higher than the applied value. This explains why unidirectional
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motion is not observed. By comparison, in Region-2, for an applied field of

0.57×1010V/m, Eth is found to be 0.4×1010 V/m, i.e., the applied field is well

above the threshold field.

(i) Ea = 0.19 × 1010 (V/m)
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(ii) Ea = 0.57 × 1010 (V/m)
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Figure 5.7: PES and the corresponding threshold electric field Eth calculated from the
gradient of PES for an applied field amplitude of (i) 0.19× 1010 and (ii) 0.57× 1010 V/m.
Eth is observed to be (i) 0.195×1010 V/m (ii) 4×1010 V/m. Note that Eth is greater than
the applied field in the first case, which hinders unidirectional rotation. In the second
case, the applied field is higher than Eth, which makes unidirectional rotation possible.

5.4.2 Case 2 : Fixed Ea = 1.1 × 1010 V/m

The amplitude of the applied field is kept fixed at Ea = 1.1 × 1010 V/m and the

frequency ωE is varied from (1.5− 7.5)× 1012 rad/sec. The corresponding variation

of Rmax is as shown in Fig. 5.8. This frequency range can be divided into 4 different

regions as follows:

• Region 1 : In this region, Rmax is observed to be ∼3.1-3.2 Å . Unidirectional

motion is not observed in this region because of the high distortion produced

in the shaft which, in turn, makes the potential energy barriers higher.

• Region 2 : This region includes the points of applied frequency from 2.0×1012

to 3.5 × 1012 rad/sec. The Rmax varies from 2.79 to 3.05 Å in this region and

full unidirectional motion of the shaft is observed. This region also includes

our nominal operational point in the amplitude-frequency space, i.e., applied
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frequency of 2.0 × 1012 rad/sec. The distortions of the shaft are lower as

compared to Region-1, since the shaft atoms have less time to respond to the

applied electric field.

• Region 3 : This region includes applied frequency ranging from 4.0 × 1012 to

6.0 × 1012 rad/sec. We do not observe unidirectional behavior in this region.

A maximum Rmax value of 3.92 Å is observed in this region for an applied

frequency of ωE = 5 × 1012 rad/sec. PES are calculated for different applied

frequencies in this region, and the maximum barrier height (in eV) is measured

as listed in Table 5.1. The PES is shown for three different values of the applied

frequencies in Fig. 5.9. Note that the PES is calculated by rigid-body rotation

of the shaft configuration obtained at the point of maximum distortion. A

maximum barrier height of 2.5 eV is observed for an applied frequency of

5 × 1012 rad/sec. This value of barrier height becomes progressively smaller

as we move away from 5 × 1012 rad/sec to other frequencies. A physical

explanation for this peak is given in the next Section.

• Region 4 : This region includes applied frequency from 6.5×1012 to 7.5×1012

rad/sec. Rmax varies from 2.92 to 3.01 Å in this region which is close to the

distortions seen in Region 2, still unidirectional motion is not observed in this

region. This is because the frequency of the applied field is significantly higher

in this region which does not give enough time to the shaft to complete a full

rotation before the field reverses sign.

5.5 Explanation for sharp peak in Rmax

In Region 3 of Fig. 5.8, we have seen a sharp peak in Rmax over some range of

variation of the applied frequency. Such a variation is observed only with variation

in frequency, not with changes in the amplitude. Hence it is natural to hypothesize

that there is some resonant effect involved – it may be that the applied frequency

happens to match a natural frequency of the DWNT. Hence it is first necessary to

determine the characteristic frequencies of this DWNT system.

Earlier we have used the novel technique of Singular Value Decomposition (SVD)

to study the modes of a (5,0) SWNT [73] and a (5,0)@(15,0) DWNT. Similar to that



Chapter 5: Determination of useful parameter space for a double-walled

carbon nanotube motor subjected to a sinusoidally varying electric field 92

1 2 3 4 5 6 7 8
2.6

2.8

3

3.2

3.4

3.6

3.8

4

 ω (x 1012 rad/sec)

 R
m

ax
 (

A
ng

st
ro

m
)

Region 2

Region 3

Region 4

Region 1

Figure 5.8: Variation of Rmax (Å ) of the shaft atoms as a function of applied frequency.
The range is divided into four regions. The field amplitude is kept constant as 1.1 ×
1010 V/m. Region 2 is the region of interest where unidirectional motor-like behavior is
observed. A sharp peak in Rmax of 3.92 Å at 5.0 × 1012 rad/sec is observed, which is
explained in the text.

we perform a SVD analysis on the MD data for the shaft [73].

MD simulation for the nanomotor with a ‘frozen sleeve’, under NPT conditions,

and without the application of an external field, generates a time series of atomic

coordinates for all the atoms in the shaft. This time series data is analyzed using

SVD. The SVD gives the modes of the system in the descending order of the ampli-

tudes. We study first ten significant modes in detail and the distortion associated

with each mode as in [73]. An (mθ = 0, mz = 1) mode with radial symmetry is

observed at a frequency of 26 cm−1 ( 5× 1012 rad/sec) as the 4th SVD mode. This

mode correspond to the centroid displacement of the individual rings as shown in

Fig. 5.10. This centroid displacement is calculated w.r.t to the instantaneous cen-

troid of the ring. Note that the centroid displacement shown in this figure is in

arbitrary units.

We then calculate the actual centroid displacement of the individual rings from

their own instantaneous centroids from the MD data as in Fig. 5.11. This is calcu-

lated for different applied frequencies from 3×1012 to 7×1012 rad/sec. This centroid
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Figure 5.9: PES shown for three different cases of the applied field frequencies (i) 4.5 ×
1012 (ii) 5.0 × 1012 and (iii) 5.5 × 1012 rad/sec. Note that the PES is calculated at the
point of maximum distortion of the shaft i.e when Rmax is maximum. A maximum barrier
height of 2.5 eV is observed for the case where applied field frequency is 5.0×1012 rad/sec.

displacement (in Å) is then added to the average radius of the shaft, Rav,init, to get

the actual displacement of the individual rings due to the excitation of (mθ = 0,

mz = 1) mode. All these values are listed in Table 5.2. A maximum centroid dis-

placement of 1.95 Å is observed for an applied frequency of 5 × 1012 rad/sec. The

trend looks qualitatively similar to the trend of Rmax obtained directly from MD.

The slight differences in the numbers could be because of the effect of some other

modes at this frequency. The effect of the excitation of this mode can also be seen

at nearby frequencies, where a significant increase in Rmax is seen.

The conclusion is that application of a frequency around 5×1012 rad/s resonantly
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ωE(×1012rad/sec) Maximum barrier height (eV )

3.5 0.16

4.0 0.36

4.5 0.60

5.0 2.50

5.5 2.00

6.0 1.35

Table 5.1: The maximum height of the potential energy barrier (eV) as a function of
applied frequency, for an applied electric field amplitude of 1.1×1010V/m

.

ωE(×1012(rad/sec) Rmax (Å ) Rcentroid(Å ) Rcentroid + Rav,init(Å )

3.0 2.799 1.20 3.38

4.0 3.272 1.42 3.60

5.0 3.919 1.95 4.13

6.0 3.092 1.36 3.54

7.0 2.950 1.20 3.38

Table 5.2: Columns in the table show the applied frequency of the field ωE, Rmax

directly obtained from the code, displacement in the centroid Rcentroid and Rcentroid added
to the average equilibrated radius of the shaft Rav,init. Note that a maximum centroid
displacement of 1.95 Å is observed for applied frequency of 5.0 × 1012 rad/sec.
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Figure 5.10: X and Y centroid displacement of the individual rings of the shaft as
obtained after doing SVD analysis on the MD data. Note that the displacement is in
arbitrary units here.

excites a mode corresponding to centroid displacement. This shows up as a peak

in Rmax, even though the actual cause is displacement of an entire CNT ring away

from the initial axis.

5.6 Conclusions

A numerical analysis has been performed for a double-walled carbon-nanotube based

nanomotor driven by an externally applied sinusoidally varying electric field, in the

presence of a ‘frozen’ sleeve. Our earlier study had shown that distortion of the

nanomotor due to the applied field can lead to the production of ‘locked’ states,

where the nanomotor exhibits only intermittent or oscillatory motion. In this Chap-

ter it has been shown that to produce unidirectional (motor-like) rotation, it is

necessary to operate over a ‘useful’ region in the parameter space defined by the

amplitude and frequency of the applied electric field.

Firstly, a simple rigid-body rotation model has been used to determine a nominal

operating point. This has been followed by a systematic molecular dynamics study

around this nominal point. For a given frequency, electric field amplitudes below a

threshold are not able to overcome the potential energy barriers due to interaction
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Figure 5.11: Centroid displacement (Å) calculated directly from the MD for individual
rings of the shaft. Here (a-e) curves correspond to the applied frequencies (3 − 7) × 1012

rad/sec. Note that a maximum centroid displacement of 1.95 Å is observed for an applied
frequency of 5 × 1012 rad/sec which is explained in the text.

of the rotating shaft with the frozen sleeve. This is followed by a range of amplitudes

where unidirectional motion is observed. At still higher amplitudes, distortion of

the shaft increases the potential energy barriers to levels higher than those that can

be overcome by the electric field. Hence we get three regions during the amplitude

scan, only one of which is useful for a nanomotor.

For a given amplitude, as the frequency is varied, more complex behavior is

obtained, which can be broken up into four regions. At low frequencies (Region-

1), large distortion of the shaft leads to an increase in potential energy barriers,

hindering rotation. Over an intermediate range (Region-2), unidirectional motion is

observed, since shaft distortions are smaller than in Region-1. This is followed by an

anomalous region (Region-3), where resonant excitation of a characteristic mode of

the shaft leads to very large distortions, which greatly enhance the barrier. Finally,

in Region-4, the distortion again starts falling off with rise in frequency. However,

the frequency is now so high that the shaft cannot complete a full rotation before

the field reverses sign. Hence unidirectional rotation is not obtained. A detailed

physical explanation has been provided for the anomalous behavior in Region-3, in

terms of resonant excitation of characteristic modes.



Chapter 6

Molecular Dynamics simulations

of a Carbon Nanotube interacting

with a Graphite Surface

6.1 Introduction

We have so far determined the useful parameter space of a DWNT-based nanomo-

tor. Depending upon the application, such a nanomotor should be attached to some

surface, e.g. a carbon or metal surface. In some cases, it may also be necessary to

pass a current through the nanomotor. For example, the high electrical conductivity

of CNTs, depending on their diameter and helicity, make them good candidates as

nanowires for electrical devices. However, the contact resistance of the CNTs with

the electrical device is an important parameter in deciding their suitability for this

purpose.

The next step must, therefore, be to understand the interaction of CNTs with

other surfaces. To explore such possibilities, as a first step we study the interactions

of a Single-walled carbon nanotube with a graphite surface.

Experimental [74] and theoretical [75] studies indicate that the nanotube distor-

tions affect their electronic transport properties. Hertel et al. investigated the in-

teraction of single wall nanotubes (SWNT) and multiwall nanotubes (MWNT) with

a graphite surface using both experiments and molecular statics simulations [76].

97
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They used the MM3 force field, which is a Molecular Mechanics based potential and

used a Newtons method [77] to minimize the energy of the system so as to attain a

ground state configuration of the system. They showed that depending on the tube

diameter and number of shells, the Van der Waals interaction between nanotubes

and a substrate results in higher binding energies due to which the carbon nanotube

acquires a larger contact area over the graphite surface. This is essentially a Molec-

ular statics simulation at 0 K, and higher temperatures effects, as can be expected

at the points of contact resistance, do not show up. We therefore perform MD simu-

lations of carbon nanotubes of various diameters interacting with a graphite surface

at different temperatures (100 K, 300 K and 500 K) to study the effect of tempera-

ture on the interaction. We also study the effect of nanotube-nanotube separation

distance on the interaction of CNT with graphite using MD.

6.2 Setting up the MD simulations

In this section we describe the process of setting up our MD simulations. We used

armchair carbon nanotubes of diameters 8.105, 13.541, 20.290 and 27.110 Å and

length 76.570 Å in our simulations. The number of atoms simulated were 2880-3680

for the simulations.

6.2.1 Structure equilibration

The nanotubes and the graphite structures were relaxed at zero pressure and tem-

perature 100 K using Berendsen’s pressure and temperature controls as discussed in

earlier chapters. These relaxed SWNTs were then translated and rotated to sit on

the top of the graphite structures at a separation distance of 3 Å to get a structure

such as that shown in Fig. 6.1. We choose an axis such that the graphene plane lies

in the X-Y plane. The Z axis is perpendicular to this graphene plane. The axis of

the CNT lies along the X axis of the graphite structure.

6.2.2 Periodic boundary conditions used

Periodic boundary conditions (PBC) are used along X and Y directions to get repet-

itive structures along these directions. This means that if the distance between the

outermost edge of the CNT and the graphite edge is smaller than half the cut off
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Figure 6.1: CNT translated and rotated to sit on the top of a graphite crystal

distance of the long range interlayer potential term, the CNT will be seeing its oppo-

site edge due to the PBC in the Y direction. Along Z direction we use free boundary

conditions.

6.2.3 Types of simulations performed

Two sets of simulations are performed, one set consist of the simulations done at

different temperatures (100 K, 300 K and 500 K) to study the dynamics of various

sized CNT’s interacting with the graphite surface. The second set of simulations

were carried out to study the effect of the separation distance between neighboring

CNTs. This separation distance was varied by varying the graphite size in the

simulations and using PBC along the Y direction. The nanotubes having an initial

separation of 51.303, 16.429, 11.175 and 2.667 Å are studied. The MD simulations

are performed for 100 pico-seconds with a time step 0.1 fs. The system was allowed

to relax to zero pressure using Berendsen pressure control at different temperatures

using Berendsen thermostat such that it attains a minimum energy state.

6.3 Results and Discussion

In this section we describe the results of our MD simulations as follows:

• Interaction of SWNTs of different diameters with graphite structure at a con-

stant temperature (100 K).
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• The effect of temperature on the contact area between SWNTs and the sub-

strate.

• The effect of separation distance between neighboring SWNTs on their distor-

tions.

6.3.1 Interaction of SWNTs of different diameters with graphite

surface at 100 K

The results of the MD simulations at 100 K are as shown in the Fig. 6.2. At 100

(i) 27.11 Å diameter, initial state. (ii) 27.11 Å diameter, final state.

(iii) 20.29 Å diameter, initial state. (iv) 20.29 Å diameter, final state.

(v) 13.54 Å diameter, initial state. (vi) 13.54 Å diameter, final state.

Figure 6.2: The initial and final states of a MD simulation of SWNT of different diameters
on graphite at 100 K. Note that the SWNT with larger diameters deform more.

K we observe that the nanotubes of larger diameters acquire larger contact area

on the top of the graphite surface. The tubes are seen to deform to have a larger
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contact area with the graphite surface and thus have larger binding energy with the

graphite surface as they maximize their contact area with the surface. We compare

the binding energy per unit length along the axis of the CNT, obtained from our MD

calculations at 100 K with that of [76] as shown in Fig. 6.3. The trends are observed
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Figure 6.3: Comparison of variation of Binding energy in (eV/Å) as obtained from our
MD simulations at 100 K with the results of MM simulations.

to be the same and we see that the binding energy per unit length increases with

the diameter of the CNT. There is however a quantitative mismatch which could be

due to the different kind of potential used and the effect of temperature. Hertel et.

al give the total energy of the system as an integral of the strain energy u(c) and

the adhesion energy over the entire tube profile:

E =

∫

([u(c) + V (z)])dx, (6.1)

with c(x) being the local nanotube curvature and V(z(x)) the nanotube-substrate

interaction potential at a distance z above the surface (eV/Å ). They explain this

flattening of the nanotubes as the compensation between the strain energy developed

in the nanotube due to deformation and the gain in the binding energy as the tube

maximizes its contact area with the substrate. We plot the potential energy of the

atoms in the system as shown in the Fig. 6.4. The atoms in yellow and red colors,

at the deformed edges of the nanotube, are at a higher potential then the atoms in

the blue color.
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(a) SWNT of diameter 8.105 Å (b) SWNT of diameter 13.541 Å

(c) SWNT of diameter 20.290 Å (d) SWNT of diameter 27.110 Å

Figure 6.4: The final states of a MD simulation of SWNTs on a graphite surface at 100
K. The colorbar depicts the potential energy of different atoms of SWNT in (eV).

6.3.2 Temperature effects on the interactions of SWNTs

and graphite

Temperature seemed to be playing an important role on the contact of different

SWNTs with the graphite surface as shown in the Fig. 6.5. We find that the contact

area between the nanotube and the graphite surface becomes progressively smaller

as the temperature is increased. The higher temperatures imply that the atoms get

higher kinetic energies because of which they are able to overcome the interactions

between the tube and the graphite. The variation of binding energies with the

temperature are as shown in the Fig. 6.6. The plots show that the binding energy per

unit length decreases with the temperature, which is also observed in the simulations

as the contact area between the tube and the graphite decreases. We notice that

the CNT’s of smaller diameters (8.105 Å) move away from the graphite surface at a

temperature of 500 K as shown in the Fig. 6.7. Note that from (a) to (f) the contact

area of the CNT with the graphite surfaces decreases. This flying away of the small
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(a) 100 K, diameter 27.11

Å

(b) 300 K, diameter 27.11

Å

(c) 500 K, diameter 27.11

Å

(d) 100 K, diameter 20.29

Å

(e) 300 K, diameter 20.29

Å

(f) 500 K, diameter 20.29

Å

(g) 100 K, diameter 13.54

Å

(h) 300 K, diameter 13.54

Å

(i) 500 K, diameter 13.54

Å

Figure 6.5: The final states of a MD simulation of CNT of diameters 27.11 Å 20.29 Åand

13.54 Å at different temperatures. Note that the deformation of the SWNT decreases with
temperature.

sized CNT could be due to some thermal effects which needs further analysis. To

summarize, we observe that there is a temperature effect of the binding energy. The

binding energy decreases with increase in temperature. This effect is observed to

be stronger for lower diameter SWNTs (diameter 8.105 Å ). At 300 and 500 K the

binding energy for this SWNT becomes nearly zero, as seen in the Fig. 6.6.

6.3.3 Effect of separation distance between neighboring SWNTs

on tube distortion

We also study the effect of separation distance between the neighboring CNTs on

their flattening on the top of graphite surface. CNT bundles are used to make

contacts and here we are exploring a realistic situation where the bundles are be-

side each other. We are finding maximum distance between CNTs that will give

maximum contact area and assure best contact with the graphite. This separation

distance is varied by changing the size of the graphite surface used in the simulation.

We find that in all the simulations where the neighboring CNTs had a separation
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Figure 6.6: Comparison of variation of Binding energy in (eV/Å) as obtained from the
MD simulations at different temperatures.

greater than 6.9213 Å show qualitatively good flattening. Nanotubes having a sep-

aration of 51.303, 16.429, 11.175 Å before the simulation are observed to have an

equilibrium separation of 20.016, 5.929 and 3.023 respectively after a simulation of

100 picoseconds. A contact length of 38.028, 36.68 and 34.017 Å is observed re-

spectively in these cases due to the flattening of the tube on the graphite surface.

However when the CNTs were imposed to have a separation distance of 2.667 Å

initially, they come as close as 2.054 Å acquiring almost a rectangular shape after

the simulation as shown in the Fig. 6.8. In this case a contact length of 29.141

Å and a binding energy per unit length of the nanotube equal to 0.2131 eV/Å is

observed. A plot of the potential energy of the atoms in this case is shown in the

Fig. 6.9. The figure shows the strain developed on the carbon atoms when the

separation distance between the two carbon nanotubes was kept equal to 2.667 Å

before the simulation. A variation of the binding energy (eV/Å) developed with the

intial nanotube-nanotube separation distance is as shown in the Fig. 6.10. As can

be seen from the figure, as the separation distance between the nanotubes decreases

the binding energy also decreases.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Different frames of a movie of a MD simulation of CNT of diameter 8.105 Å
on a graphite surface at 500 K (note that from (a) to (f) the contact between CNT with
graphite decreases).

6.4 Conclusions

In summary, we have observed that the interlayer forces between the nanotube and

the graphite surface gives rise to radial distortions in the nanotube, as reported

earlier by Hertel et. al using Molecular Mechanics. The tubes are seen to deform

to have a larger contact area with the graphite surface and thus have larger binding

energy with the graphite surface as they maximize their contact with the graphite

surface. We observe that nanotubes of larger diameters have a larger contact area

with the graphite surface, whereas the CNTs of comparatively smaller diameter do

not deform to such an extent.

Results at higher temperatures show that the interlayer interactions between

the nanotubes and the substrate are overcome by the SWNT which gives rise to a

lesser contact area between the tube and the graphite. We observe a decrease in
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(i) before simulation. (ii) after simulation.

Figure 6.8: The initial and final states of a MD simulation of CNT of diameter 27.110

Å on a graphite surface with a separation of 2.667 Å between CNTs before simulation.

Figure 6.9: Figure showing the strains developed in the nanotube of diameter 27.110 Å

with a separation of 2.667 Å between neighboring CNTs before simulation.

the binding energy of the SWNT with graphite with increase in the temperature

because of the gain in the kinetic energy acquired by the SWNTs. At a temperature

of 500 K, nanotubes of small diameters i.e 8.105 Å are observed to have nearly zero

binding energy and fly away from the graphite surface. This needs further analysis.

However. such an analysis lies beyond the scope of this thesis.
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) between the nanotubes.



Chapter 7

Conclusions and Future Scope

7.1 Conclusions

Carbon nanotubes have become very important in molecular research because of

the various potential applications of nanomachines in the field of computing, elec-

tronics, robotics and drug delivery. The high tensile strength and strong mechanical

properties of these nanotubes make them a promising candidate for future nano-

machinery. These nanometer devices, either alone or attached to a propeller, are a

bright candidate for future machines which could be used for medical applications.

Nanometer-sized devices, especially nanomotors, based on carbon nanotubes, are of

interest for their novel applications in drug delivery techniques.

Other workers have reported the results of Molecular Dynamics simulations of

electrically-driven nanomotors based on double-walled carbon nanotubes. Those

studies broke new ground and yielded interesting insights into the atomistic level

behavior of such nanomotors. However, those studies either did not consider certain

aspects of nanomotor operation, or did not investigate them in sufficient detail.

Some of those limitations have been addressed in the present thesis.

In this thesis, we report on classical molecular dynamics simulations of a nanomo-

tor based on a DWNT. Two diametrically-opposed atoms at one axial location on

the shaft are assumed to have attached charges of equal magnitude but opposite

polarity. The application of a linearly-polarized electric field produces a torque,

resulting in rotational motion of the shaft with respect to the sleeve. Important

results of the study are described below.
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7.1.1 Molecular Dynamic simulations of a double-walled car-

bon nanotube motor subjected to a sinusoidally vary-

ing electric field

We performed two sets of simulations. In the first set, where both the shaft and

sleeve are free to move, the usual pendulum- and motor-like behavior is observed.

Also a simple theoretical model is given. The motion of the shaft and the sleeve

obtained from the model matches reasonably well with our MD results, although

there are differences of detail.

In the second set of simulations, the sleeve is held fixed. In this case, two locked

states, not aligned along the direction of the applied electric field, are observed in

the angular orientation of the shaft inside the fixed sleeve. The frequency of shifts

between these locked states correspond to the frequency of the applied electric field.

These locked states are in contrast to the usual pendulum like motion reported by

other workers. The simple theoretical model is incapable of explaining these locked

states, An explanation has been found in terms of the radial shape variations of the

shaft and shifts in the centroid of the shaft inside the fixed sleeve.

In the limit of no energy losses, i.e., in the absence of any heat bath attached

to the system, we observe that the motor breaks apart due to energy acquired from

the electric field.

7.1.2 Mode analysis of Carbon Nanotubes based on Molecu-

lar Dynamics : A Singular Value Decomposition study

For the first time, the complete set of the characteristic modes of both single-walled

and double-walled carbon nanotubes has been extracted using singular value de-

composition analysis of molecular dynamics data. For SWNTs, good agreement is

observed between the calculated frequency of radial breathing modes and published

experimental measurements, as also the inverse scaling of this frequency with tube

diameter.

The first part of the study, which focuses on NVE simulations of an isolated

SWNT, has been performed with a 5% initial radial stretching given to all its atoms.

We find the two strongest modes to involve RBM combined with a very slow rota-
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tional motion of individual rings of the nanotube. The coupling between these two

motions weakens for a smaller initial perturbation of 1%. The next eight most sig-

nificant modes consist of two classes, one with mz = 0, i.e.,axial uniformity and the

other class has mθ = 0, with mz = 1 and 2, i.e radial uniformity. For the available

cases, the frequencies of the above mentioned modes match well with those in the

literature.

Under NPT conditions, similar to laboratory conditions, i.e., at a constant tem-

perature and pressure, mode frequencies change only slightly, but the hierarchy of

modes is slightly different.

Resonant excitation of the SWNT is also studied using MD. External excita-

tion produced at one of the mode frequencies, corresponding to centroid motion

with (mθ = 0, mz = 1), shows a significant and steady increase in the amplitude

of centroid displacement. Excitation at the second harmonic frequency leads to an

initial increase in displacement amplitude, but eventual saturation. These conclu-

sions are important for the application of carbon nanotubes in nano-devices, e.g. as

nanomotors.

Similar to the characteristic mode study of an SWNT, the characteristic modes

of a DWNT are also studied, for the case where the outer CNT is immobilized.

As expected, this geometry produces a higher restoring force, hence it leads to an

upshift in the RBM frequency. Also the frequency of some axial modes like (mθ,

mz) = (0,1) and (0,2), are slightly different from the SWNT case. For some mode

numbers (same mθ & mz), where an SWNT exhibited a single frequency, a DWNT

exhibits more than one peak in the power spectrial density. This is possibly due to

coupling between different modes due to interaction with the outer CNT.

7.1.3 Determination of useful parameter space for a double-

walled carbon nanotube based motor subjected to a

sinusoidally varying electric field

A theoretical model is given which gives a nominal operating point in the amplitude-

frequency space where pure unidirectional motor-like behavior of the motor is ob-

served. The full parameter space around this operating point is then explored using

molecular dynamics simulations.
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For a given applied frequency, electric field amplitudes below a threshold are

not able to overcome the potential energy barriers due to interaction of the rotat-

ing shaft with the frozen sleeve. This is followed by a range of amplitudes where

unidirectional motion is observed. At still higher amplitudes, distortion of the shaft

increases the potential energy barriers to levels higher than those that can be over-

come by the electric field. Hence we get three regions during the amplitude scan,

only one of which is useful for a nanomotor.

For a given amplitude, as the frequency is varied, more complex behavior is

obtained, which can be broken up into four regions. At low frequencies (Region-

1), large distortion of the shaft leads to an increase in potential energy barriers,

hindering rotation. Over an intermediate range (Region-2), unidirectional motion is

observed, since shaft distortions are smaller than in Region-1. This is followed by an

anomalous region (Region-3), where resonant excitation of a characteristic mode of

the shaft leads to very large distortions, which greatly enhance the barrier. Finally,

in Region-4, the distortion again starts falling off with rise in frequency. However,

the frequency is now so high that the shaft cannot complete a full rotation before

the field reverse sign. Hence unidirectional rotation is not obtained. A detailed

physical explanation has been provided for the anomalous behavior in Region-3, in

terms of resonant excitation of a characteristic mode.

7.1.4 Molecular Dynamic simulations of a Carbon Nanotube

interacting with a Graphite Surface

Depending upon the application, such a nanomotor should be attached to some

surface, e.g. a metal surface. The next step must be to understand the interaction

of these tubes with other surfaces. To explore such possibilities, as a first step we

study the interactions of single-walled carbon nanotube with a graphite surface.

At a fixed temperature of 100 K, nanotubes of larger diameters are observed to

acquire a large contact area on the top of the graphite surface. The tubes are seen

to deform to have a larger contact area with the graphite surface and thus have

larger binding energy with the surface. The variation of the binding energy per unit
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length along the axis of the CNT, obtained from our MD calculations, matches well

with the MM results of the other workers.

The contact area between the nanotube and the graphite surface is observed

to become progressively smaller as the temperature is increased because at higher

temperatures, the atoms acquire higher kinetic energies, because of which they can

overcome the interactions between the tube and the graphite.

We also study the effect of the separation distance between neighboring nan-

otubes on the contact area between the tube and the graphite surface. All nanotubes

having an intial separation greater than 6.9213 Å are observed to show qualitatively

good flattening over the graphite surface.

7.2 Future Scope

The present work involves only classical MD simulations. The best way would be to

do ab-initio MD simulations of a nanomotor while considering the following points:

• The addition of dopant charges to the shaft will change its electronic configu-

ration and that can affect the behavior of the motor in presence of an external

field. So the charge distribution should be computed self-consistently, and

as a function of time. We have assumed point charges on only two atoms.

Since we expect the charges to be produced by attached groups with different

electronegativity, that would also imply a mass, which should be taken into

account. Simple simulations done with the MOPAC code show that the at-

tachment of a group leads to appearance of only a fractional charge not just on

the specified carbon atom, but also, to a lesser extent, on the nearby atoms.

This should be taken into account.

• Finally, the application of a strong electric field, and centrifugal forces dur-

ing nanomotor operation, would lead to inter-atomic separations that vary in

time. That implies that the charges arising due to polarization would also

become time-dependent. Ideally, therefore, the charge distribution should be

self-consistently evolved during the MD simulation.
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• The high amplitude electric field used in our simulations would affect the

inter-particle interactions which should be studied in detail.

• For practical applications, such a nanomotor would have joints when attached

to a propeller. The behavior of the nanomotor should be studied in presence

of such joints with the propeller.

• The present study of characteristic mode analysis of an SWNT and DWNT

can be extended to more complex structures like one discussed above.

• For practical applications a nanomotor would likely be immersed in a fluid.

Therefore the behaviour of the nanomotor should be studied in presence of a

fluid, especially when the fluid enters the inter-CNT gap.



Appendix A

Energy and Pressure Conservation

Checks

Before starting a real MD simulation the system is equillibrated at room temperature

and pressure as explained in Chapter 2. This is done with an NPT simulation. This

equilibration is required to adjust the system according to the potential energy

expression used. While doing this equilibration we monitor the temperature of the

whole system and see that it fluctuates around the desired 300 K as explained in

the subsection 2.1.8.

Apart from monitoring the temperature of the system during these NPT simu-

lations we do two more checks which are as follows:

• Energy conservation - Before starting a real MD simulation we confirm that

the total energy of the system is conserved as shown in Fig. A.1(i).

• Pressure fluctuations - Like the total energy, the pressure of the system should

also be constant in an NPT simulation. Fig.A.1(ii) shows the pressure variation

of the total system during the entire simulation of 100 ps. It can be seen that

the total pressure of the system fluctuates around zero throughout the whole

NPT simulation.

Both the above mentioned checks were done during all NPT relaxation simulations,

before starting a real NPT/NVE MD simulation.

114



Appendix A: Energy and Pressure Conservation Checks 115

(i)

0 2 4 6 8 10

x 10
4

−7.1

−7.05

−7

−6.95

−6.9

−6.85

−6.8

−6.75

 MD Units

 T
ot

al
 e

ne
rg

y 
(e

V
)

(ii)

0 2000 4000 6000 8000 10000
−40

−20

0

20

40

60

80

 MD Units

 P
re

ss
ur

e 
(a

tm
)

Figure A.1: (i) Temporal variation of the total energy of the system. (ii) Temporal
variation of the pressure of the system during an NPT thermalization.



Appendix B

Time Step Calculation

One of the most important criteria in an MD simulation is choosing a right time

step. Different type of simulations need different time steps but a general rule of

thumb is followed in many cases as discussed in Chapter 2. Based on this rule of

thumb we chose a time step of 0.1 fs in most of our simulations. But we chose

a different time step for the determination of characteristic modes of the carbon

nanotubes. This is because NVE simulations are performed for the determination

of the characteristic modes of the carbon nanotubes and thus the total energy of the

system should be conserved throughout the simulation. This selection was based

on a energy conservation criteria as follows. The largest frequency present in the

system is obtained by doing power spectral density (PSD) from the X coordinate of

one of the atoms of the CNT as seen in Fig.4.1.

As explained in Chapter 4 this PSD shows that the power reduces by 1010 times

at a frequency of 5 × 103 cm−1 and stabilizes after that. We take 10 times of

this frequency as the Nyquist frequency so that we don’t miss any other higher

frequencies present in the system. This gives us a time step of 0.3 fs. It implies

that a time step of less than 0.3 fs should give us a good energy conservation in the

simulations. So we do energy conservation checks with NVE runs for 2 time steps

of 1 fs and 0.2 fs. We monitor the temporal variation of total energy for both these

runs. A monotonic variation in total energy is observed for the case with time step

of 1 fs as shown in Fig.B.1(i) while the total energy of the system does not change

upto second decimal place for a time step of 0.2 fs as shown in Fig.B.1(ii). Hence

we perform all our NVE simulations for the characteristic mode determination with

a time step of 0.2 fs.
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Figure B.1: (i) Temporal variation of the total energy of the system for a time step of
1 fs. A drift in the total energy of the system is clearly seen in this case. (ii) Temporal
variation of the total energy of the system for a time step of 0.2 fs.
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