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ABSTRACTThe present dissertation is dedi
ated to the study of the stability and transportproperties of many mi
roinstabilities whi
h play an important role in 
ausinganomalous transport of energy and parti
les in tokamaks using global, linear andnonlinear, gyrokineti
 formulations. In parti
ular, it highlights (1) e�e
ts of thenonadiabati
 passing ele
trons on the ion temperature gradient (ITG) mode, trappedele
tron 
oupled ion temperature gradient mode (ITG-TEM) and trapped ele
tronmode (TEM) by linear, global, gyrokineti
 numeri
al study; (2) the behaviour ofthe ion temperature gradient driven modes in the presen
e of highly steep densitypro�le typi
ally observed in the transport barriers inside the tokamak; a linear andnonlinear gyrokineti
 study on the o

urren
e of the short wavelength ion tempera-ture gradient mode (SWITG); (3) a linear, global, gyrokineti
 stability analysis ofthe universal toroidal mode, whi
h although is thought to be ubiquitous, yet over-shadowed by the temperature gradient driven modes; (4) the stabilization of themi
roinstabilities by the hot ions (those ions having temperature higher than thethermal ions), and �nally, the redistribution of the hot ions by mi
roturbulen
ewith the help of linear and nonlinear, global, gyrokineti
 simulations.The role of the nonadiabati
 passing ele
trons on the ion temperature gradientand trapped ele
tron modes has been studied. Addressing the fully nonadiabati
passing ele
trons in time dependent linear and nonlinear 
odes has been an uphilltask in the presen
e of full ion dynami
s with true ion to ele
tron mass ratio interms of the 
omputational 
ost. These parti
les are therefore 
onsidered eitheradiabati
 or nonadiabati
 with redu
ed ion to ele
tron mass ratio. Thus, thee�e
t of these nonadiabati
 passing ele
trons on the growth rate and global modestru
tures of the ITG mode, ITG-TEM and TEM is often overlooked. With aglobal, spe
tral, gyrokineti
 model it is possible to in
orporate the full dynami
sof the passing nonadiabati
 ele
trons in the linear limit without any assumptionregarding the ion to ele
tron mass ratio. Strong e�e
ts of these nonadiabati
passing ele
trons near the mode rational surfa
es where k‖ → 0 on the ITG mode,ITG-TEM and TEM have been observed.The vera
ity of a nonadiabati
 passing ele
tron model is established only if it
an produ
e modes inherent to the nonadiabati
 passing ele
trons, one of whi
h isthe ele
tron temperature gradient driven (ETG) mode. We have thus, extended12



our study from the ion s
ales of ITG mode, ITG-TEM and TEM to the ele
trons
ales of the ETG mode and 
ompared it with the already known results on theETG mode. With the in
lusion of the spa
e 
harge e�e
t in the form of Debyeshielding, the model enables one to study the pure ETG mode in the presen
e offully nonadiabati
 ions.The density gradient driven instability, known as the universal drift instability,is studied in the toroidal geometry and its linear properties have been dis
ussedin both ele
trostati
 and ele
tromagneti
 limit. The global mode stru
ture andstability properties of the low-n (toroidal mode number) toroidal universal modealong with its 
oupling to the trapped ele
trons have been studied perhaps for the�rst time to our knowledge.Although ions are 
onsidered adiabati
 at shorter wavelength or high wavenumber regime, they 
an behave nonadiabati
ally giving rise to a temperaturegradient driven mode even at the high wave number regime. This mode, hithertoknown to be slab like, is named as the short wavelength ion temperature gradient(SWITG) mode and studied only in the lo
al limit. We have presented a linear,global, gyrokineti
 study of the mode and shown that in the presen
e of trappedele
trons this mode 
an be further unstable and exhibit toroidal nature. A nonlin-ear, �ux tube, gyrokineti
 simulation of the SWITG mode also has been 
arriedout whi
h shows that in spite of the linear dominan
e of the mode 
ompared tothe standard ITG mode, the former has very low 
ontribution to the net thermalion transport.The behaviour of the energeti
 ions in tokamak plasmas is another issue thathas derived mu
h attention in the fusion 
ommunity. Presen
e of these parti
lesare inevitable in the fusion grade plasmas be
ause of the various auxiliary heat-ing s
hemes and fusion produ
ed α parti
les. The study of the in�uen
e of theseenergeti
 ions on the kineti
 ballooning mode (KBM), toroidal Alfven eigenmode(TAE), et
., is very mu
h important. These parti
les 
an give rise to the unsta-ble modes on their own, for example, energeti
 parti
le modes (EPM). We as a�rst step, have in
orporated a se
ond spe
ies of ions with higher energy than thethermal ions to a existing linear, global, gyrokineti
 model and studied its e�e
tson the ITG modes. It is observed that these energeti
 parti
les stabilize the ITGmode strongly. The He ions are found to be more stabilizing. Conversely, thee�e
t of the mi
roturbulen
e driven by the ITG mode and TEM on the energeti
13



ions is studied 
onsidering the energeti
 spe
ies as passive tra
ers using a global,nonlinear, gyrokineti
 simulation. Mi
roturbulen
e plays an important role in theredistribution of the energeti
 ions. The system size dependen
e and energy s
alingof the energeti
 ions have been dis
ussed. The transport of passing and trappedenergeti
 ions is found to display di�erent energy s
alings.
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< krρLi > (diamonds), < k⊥ρLi > (stars) as a fun
tion of toroidalmode number n at ηi(s0) = 2; (a) adiabati
 ele
tron response, (b)nonadiabati
 ele
tron response at ηe(s0) = 2, and (
) same as (b)at ηe(s0) = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.9 Mixing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ >in gyro-Bohm units as a fun
tion of toroidal mode number n; ηi(s0) =
2 for (a) adiabati
 ele
tron response (solid line), (b) nonadiabati
ele
tron response at ηe(s0) = 2 (dashed line), and (
) same as (b)at ηe(s0) = 8 (dot-dashed line). . . . . . . . . . . . . . . . . . . . . 362.10 For the highest growth rate mode toroidal mode number n = 9, ηis
an is performed for three 
ases of ele
tron model: (a) Adiabati
ele
tron response (solid line), (b) nonadiabati
 ele
tron response at
ηe(s0) = 2 (dashed line), and (
) same as (b) at ηe(s0) = 8 (dot-dashed line). Results 
learly show that ηi,crit is downshifted. . . . . 373.1 Growth rate γ (dashed line) and real frequen
y ωr (solid line) for
ηi(s0) = 2 (i) for pure ITG with adiabati
 ele
tron model (squares),(ii)ITG-TEM without nonadiabati
 passing ele
trons (diamonds), and(iii) ITG-TEM with nonadiabati
 passing ele
trons at ηe(s0) = 2.0(�lled 
ir
les). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



3.2 Two dimensional eigenmode stru
ture of global ITG at n = 8 and
ηi(s0) = 2 for (a) pure ITG with adiabati
 ele
trons, (b) ITG-TEM without nonadiabati
 passing ele
trons, and (
) ITG-TEMwith nonadiabati
 passing ele
tron at ηe(s0) = 2.0. . . . . . . . . . 473.3 Closeup of two dimensional eigenmode stru
ture for (a) pure ITGwith adiabati
 ele
trons, (b) ITG-TEM without nonadiabati
 pass-ing ele
trons, and (
) ITG-TEM with nonadiabati
 passing ele
tronsat ηe(s0) = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.4 Poloidal Fourier 
omponents for ele
trostati
 modes shown in Fig. 3.2(a) ITG with adiabati
 ele
trons, (b) ITG-TEM without nonadia-bati
 passing ele
trons, and (
) ITG-TEM with nonadiabati
 pass-ing ele
trons at ηe(s0) = 2.0. Note that at ea
h radial lo
ation,there are several poloidal harmoni
s 
oupled. A few lo
ations where
k‖m,n = 0 (i.e., nq = m) are indi
ated on the top axis. Nonadiabati
ele
trons introdu
e sharp stru
ture near these points. . . . . . . . 503.5 Upper panel: Radial Fourier harmoni
s for ea
h poloidal mode forthe ele
trostati
 mode shown in Fig. 3.2 for (a) pure ITG with adi-abati
 ele
tron response and (b) ITG-TEM without nonadiabati
passing ele
trons. Lower panel: Radial Fourier harmoni
s for ea
hpoloidal mode for the ele
trostati
 mode shown in Fig. 3.2(
) forITG-TEM with nonadiabati
 passing ele
trons at ηe(s0) = 2.0. . . 523.6 Eigenmode-averaged normalized mode numbers< kθρLi > (squares),
< krρLi > (diamonds), and < k⊥ρLi > (stars) at ηi(s0) = 2; (a)pure ITG with adiabati
 ele
tron response, (b) ITG-TEM withoutnonadiabati
 passing ele
trons, and (
) ITG-TEM with nonadia-bati
 passing ele
trons at ηe(s0) = 2.0. . . . . . . . . . . . . . . . . 533.7 Mixing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ >in gyro-Bohm units as a fun
tion of kθρLi for ηi(s0) = 2; (a) pureITG with adiabati
 ele
tron response (solid line with squares), (b)ITG-TEM without nonadiabati
 passing ele
trons (divided by 8)(solid line with diamonds), and (
) ITG-TEM with nonadiabati
passing ele
trons at ηe(s0) = 2 (dashed line with �lled 
ir
les). . . . 53
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3.8 Growth rate γ (dashed line) and real frequen
y ωr (solid line) versus
ηi at ηe(s0) = 2 (i) for pure ITG with adiabati
 ele
trons (squares),(ii) ITG-TEM without nonadiabati
 passing ele
trons (diamonds),and (iii) ITG-TEM with nonadiabati
 passing ele
trons (�lled 
ir-
les). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.9 Growth rate γ (dashed line) and real frequen
y ωr (solid line) for
ηi(s0) = 2; (i) for TEM without nonadiabati
 passing ele
tron model(squares) and (ii) for TEM with nonadiabati
 passing ele
tron modelat ηi(s0) = ηe(s0) = 2.0 (open 
ir
les). . . . . . . . . . . . . . . . . 553.10 Two dimensional eigenmode stru
ture for (a) TEM without nona-diabati
 passing ele
tron response and (b) TEM with nonadiabati
passing ele
tron response at n = 7 and ηi(s0) = ηe(s0) = 2.0. . . . . 563.11 Closeup of two dimensional eigenmode stru
ture of (a) TEM with-out nonadiabati
 ele
tron response and (b) TEM with nonadiabati
passing ele
tron response for n = 7 and ηi(s0) = ηe(s0) = 2.0. . . . 563.12 Poloidal Fourier 
omponents for ele
trostati
 mode shown in Fig. 3.10.Note that at ea
h radial lo
ation, there are several poloidal harmon-i
s 
oupled. A few lo
ations where k‖m,n = 0 (i.e., nq = m) areindi
ated on the top axis. Nonadiabati
 ele
trons introdu
e sharpstru
ture near these points. . . . . . . . . . . . . . . . . . . . . . . 573.13 Right panel: Radial Fourier harmoni
s for ea
h poloidal mode forthe ele
trostati
 mode shown in Fig. 3.10(a) for TEM without nona-diabati
 passing ele
tron response. Left panel: Radial Fourier har-moni
s for ea
h poloidal mode for the ele
trostati
 mode shown inFig. 3.10(b) for TEM with nonadiabati
 passing ele
tron response. . 583.14 Eigenmode-averaged normalized mode numbers< kθρLi > (squares),
< krρLi > (diamonds), and < k⊥ρLi > (stars) as a fun
tion of
kθρLi at ηi(s0) = 2: (a) TEM without nonadiabati
 passing ele
-tron response and (b) TEM with nonadiabati
 passing ele
trons at
ηe(s0) = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.15 Mixing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ >in gyro-Bohm units as a fun
tion of kθρLi with ηi(s0) = 2.0 for(a) TEM without nonadiabati
 passing ele
tron response (dashedline with squares) and (b) TEM with nonadiabati
 passing ele
tronresponse at ηe(s0) = 2.0 (dashed line with open 
ir
les). . . . . . . 604.1 The normalized real frequen
y ωr (upper panel) and growth rate γ(lower panel) for the ETG mode as fun
tion of ηe for kθρe ≃ 0.5,
ǫn = Ln/R = 0.2, and τ = 1.0. The lines with squares representmanually extra
ted points from Horton et al. [21℄ whi
h uses lo
alkineti
 formulation. The lines with open 
ir
les depi
t the resultsfrom our global linear gyrokineti
 model. . . . . . . . . . . . . . . 664.2 Figures 3 and 4 from Horton et al. [21℄ . . . . . . . . . . . . . . . . 674.3 The normalized real frequen
y ωr (upper panel) and growth rate
γ (lower panel) for the ETG with and without Debye shielding for
ηe(s0) = 2. Ions are 
onsidered adiabati
. . . . . . . . . . . . . . . 684.4 ηe(s0) s
an for the growth rate of the ETG mode with and withoutDebye shielding for n = 250 and 380, respe
tively. . . . . . . . . . 694.5 Upper panel: The normalized real frequen
y ωr for the ETG modewithout Debye shielding ηe(s0) = 2.0 with adiabati
 ions and nona-diabati
 ions. ηi(s0) takes values 2, 4, 6, 8 for nonadiabati
 ions.Lower panel: The 
orresponding growth rates γ. . . . . . . . . . . 704.6 Upper panel: the normalized frequen
y ωr for the ETG mode withDebye shielding for ηe(s0) = 2.0 with adiabati
 ions and nonadia-bati
 ions. ηi(s0) takes values 2, 4, 6, 8 for nonadiabati
 ions. Lowerpanel: the 
orresponding growth rates γ. . . . . . . . . . . . . . . 714.7 Upper panel: the normalized frequen
y ωr for the ITG mode for
ηi(s0) = 2.0 with adiabati
 and nonadiabati
 ele
trons. ηe(s0) takesvalues 2, 4, 6, 8 for nonadiabati
 ele
trons. Debye shielding is notin
luded for these runs. Lower panel: the 
orresponding normalizedgrowth rates γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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4.8 Mode stru
tures for the ITG mode for ηi(s0) = 2.0 (left) and ETGmode for ηe(s0) = 2.0 with (middle) and without (right) Debyeshielding on the poloidal 
ross se
tion of a tokamak for the maximumgrowth rates. The other spe
ies (ele
tron for ITG, ion for ETG) is
onsidered adiabati
. . . . . . . . . . . . . . . . . . . . . . . . . . 734.9 Closeup view of Fig. 4.8 . . . . . . . . . . . . . . . . . . . . . . . . 744.10 Poloidal Fourier harmoni
s for the modes shown in Fig. 4.8 . . . . 744.11 Top panel: mixing length estimate for transport 
oe�
ient DML =

γ/ < k2⊥ > in ele
tron gyro-Bohm units as a fun
tion of kθρLi forthe ETG mode without Debye shielding at ηe(s0) = 2 with adiabati
ions and nonadiabati
 ions for ηi(s0) = 2, 4, 6, 8; Middle panel: mix-ing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ > inele
tron gyro-Bohm units as a fun
tion of kθρLi for the ETG modewith Debye shielding at ηe(s0) = 2 with adiabati
 ions and nonadi-abati
 ions for ηi(s0) = 2, 4, 6, 8; Bottom panel: mixing length esti-mate for transport 
oe�
ient DML = γ/ < k2⊥ > in ion gyro-Bohmunits as a fun
tion of kθρLi; ηi(s0) = 2, with adiabati
 ele
trons andnonadiabati
 ele
trons forηe(s0) = 2, 4, 6, 8. . . . . . . . . . . . . . 774.12 Left panel: normalized perpendi
ular wave numbers kr, kθ, k⊥ vstoroidal mode number n for the ETG mode without Debye shielding.Right panel: normalized perpendi
ular wave numbers kr, kθ, k⊥ vstoroidal mode number n for the ETG mode with Debye shielding. . 784.13 Equilibrium pro�les to study the global toroidal universal drift in-stability mode (for parameters in Table I): (a) normalized density(dots), temperature (
ir
le), ηi,e (triangle), (b) Safety fa
tor q (
ir-
le) and magneti
 shear ŝ (dots) pro�les as fun
tions of normalizedradius s = r/a. Note that q(s0) = 2.0, ŝ(s0) = 0.40, ǫn(s0) = 0.1,and τ(s0) = 3.0 for s0 = 0.6. . . . . . . . . . . . . . . . . . . . . . 814.14 Real frequen
y and growth rate for the ele
trostati
 
ase 
orrespond-ing to the parameters in the Table I and pro�les shown in Fig. 4.13. 82
ix



4.15 Upper panel: (Left) The ele
trostati
 mode stru
ture for toroidalmode number n = 10, kθρLi = 0.58, 
orresponding to the parame-ters in the Table I and pro�les shown in Fig. 4.13. (Right) poloidal
omponent of φ̃ in (top) radial Fourier representation and (bottom)radial dire
t spa
e. Lower panel: A 
loseup view of the mode stru
-ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.16 The e�e
t of ele
tron and ion Landau resonan
e for the mode n =

10 
orresponding to kθρLi = 0.58. This is done by weighting theLandau resonan
e term by α and running it from 0 to 1 for onespe
ies , and keeping α = 1.0 for the other spe
ies and vi
e versa. . 854.17 E�e
t of ion and ele
tron magneti
 drift resonan
e for the moden=10 
orresponding to kθρLi = 0.58. This is done by weighting themagneti
 drift term by α and running it from 0 to 1, and keeping
α = 1.0 for the other spe
ies and vi
e versa. . . . . . . . . . . . . . 864.18 Shear s
an for the mode n = 10 
orresponding to kθρLi = 0.58 atposition s = s0 = 0.6, where the density gradient peaks. For theses
ans the safety fa
tor at s = s0 is kept at the �xed value q = 2.0. . 874.19 Real frequen
y and growth rate for ǫn = Ln/R for the parametersand pro�les as in the Table I and Fig. 4.13 in the 
ase of mode
n = 10 
orresponding to kθρLi = 0.58. Note that a, Ln, Rq and nqare kept 
onstant in this s
an. . . . . . . . . . . . . . . . . . . . . 884.20 Real frequen
y and growth rate for τ = Te/Ti and for the parametersand pro�les of Table I and Fig. 4.13 in the 
ase of the mode n = 10
orresponding to kθρLi = 0.58. . . . . . . . . . . . . . . . . . . . . . 894.21 Real frequen
y and growth rate in the 
ase of a temperature gradients
an for the parameters and pro�les of Table I and Fig. 4.13 for themode n = 10 
orresponding to kθρLi = 0.58. The �at temperaturepro�le in Table I, has been repla
ed by one with δsT = 0.2 insteadof 0 for the previous 
ases. . . . . . . . . . . . . . . . . . . . . . . 904.22 Real frequen
y and growth rate for the ele
trostati
 (dashed 
urve)and ele
tromagneti
 
ase (solid 
urve) for the parameters in TableI and pro�les as shown in Fig. 4.13. The value of β 
onsidered hereis 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91x



4.23 (Upper panel) The global mode stru
ture for the φ̃ 
omponent inthe poloidal 
ross se
tion in the ele
tromagneti
 
ase for n = 10,
kθρLi = 0.58, and β = 0.001. (Lower panel) Poloidal 
omponent of
φ̃ in (top) radial Fourier representation and (bottom) radial dire
tspa
e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934.24 (Upper panel) The global mode stru
ture for the Ã|| 
omponent inthe poloidal 
ross se
tion in the ele
tromagneti
 
ase for n = 10,
kθρLi = 0.58, and β = 0.001. (Lower panel) Poloidal 
omponent of
φ̃ in (top) radial Fourier representation and (bottom) radial dire
tspa
e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.25 β s
an for the mode frequen
y and growth rate for the parame-ters and pro�les as in Table I and Fig. 4.13 for the mode n = 10
orresponding to kθρLi = 0.58 . . . . . . . . . . . . . . . . . . . . . 954.26 Ele
tromagneti
 ratio with in
reasing fun
tion of β for the param-eters and pro�les as in Table I and Fig. 4.13 for the mode n = 10
orresponding to kθρLi = 0.58 . . . . . . . . . . . . . . . . . . . . . 954.27 The real frequen
y and growth rate vs temperature gradient fordi�erent unstable modes in the presen
e of trapped ele
trons inthe same regime de�ned by the parameters and pro�les of TableI and Fig. 4.13 for the mode n = 10 
orresponding to kθρLi = 0.58.The �at temperature pro�le in Table I, has been repla
ed by onewith δsT = 0.2 instead of 0 for the previous 
ases. The threedashed 
urves (
ir
le, square, diamond) are for universal mode with-out trapped ele
trons (same as Fig. 4.21), three solid lines (
ir
le,square, diamond) are for universal mode in the presen
e of trappedele
trons (UNV-TE), the dashed 
urve with triangles is for ion tem-perature gradient mode with trapped ele
trons (ITG-TE) and thesolid 
urve with stars is for pure trapped ele
tron mode (TEM). . . 97
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5.1 Equilibrium pro�les to study the global SWITG mode( for param-eters in Table I): (a) normalized density (square), temperature (
ir-
le), ηi,e (triangle), (b) Safety fa
tor q (
ir
le) and magneti
 shear ŝ(diamond) pro�les as fun
tions of normalized radius s = r/a. Notethat η peaks at s = ρ/a = s0 = 0.6 and is equal to 2.5. Also
q(s0 = 0.6) = 2.0, ŝ(s0 = 0.6) = 1.0, ǫn(s0 = 0.6) = 0.1, and
τ(s0 = 0.6) = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045.2 The normalized growth rate γ̃ of the ITG (�rst peak) and of theSWITG (se
ond peak) mode with (solid line+square) and without(solid line + 
ir
le) the trapped ele
trons from the global as wellas lo
al formulation (dotted line + diamond, for the 
ase with thetrapped ele
trons and dotted line + 
ir
le, for the 
ase without thetrapped ele
trons.) ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0,and ǫn = 0.1. Upper axis shows the 
orresponding toroidal modenumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.3 The normalized real frequen
y ω̃r of the ITG and of the SWITGmode with (solid line+square) and without (solid line+
ir
le) thetrapped ele
trons from the global as well as lo
al formulation (dottedline+diamond, for the 
ase with the trapped ele
trons and dottedline + 
ir
le, for the 
ase without the trapped ele
trons.) ηe,i(s0) =
2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. Upper axisshows the 
orresponding toroidal mode numbers. . . . . . . . . . . 1075.4 Two dimensional eigenmode stru
tures of (a) the ITG mode at
kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21without the trapped ele
trons both 
orresponding to the maximumgrowth rate. The mode stru
ture of the SWITG mode is �ner thanthe ITG mode but yet global enough. . . . . . . . . . . . . . . . . 1105.5 Two dimensional eigenmode stru
tures of (a) the ITG mode at
kθρLi ≈ 0.4, n = 7, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21with the trapped ele
trons, both for the maximum growth rates re-spe
tively. The mode stru
ture of the SWITG mode is �ner thanthe ITG mode but still global enough. . . . . . . . . . . . . . . . . 111
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5.6 A 
loseup view of the eigenmode stru
tures of (a) the ITG mode at
kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21without the trapped ele
trons shown in Fig. 5.4. . . . . . . . . . . 1125.7 A 
loseup of the two dimensional eigenmode stru
tures of (a) theITG mode at kθρLi ≈ 0.4, n = 7, (b) the SWITG mode at kθρLi ≈
1.3, n = 21 with the trapped ele
trons shown in Fig. 5.5. . . . . . . 1145.8 Poloidal Fourier 
omponents for ele
trostati
 modes shown in Figs. 5.4and 5.5, (a) the ITG mode at kθρLi ≈ 0.5, n = 9, (b) the SWITGmode at kθρLi ≈ 1.3, n = 21, both without the trapped ele
trons,(
) the ITG mode at kθρLi ≈ 0.4, n = 7, and (d) the SWITG modeat kθρLi ≈ 1.3, n = 21, both with the trapped ele
trons. . . . . . . 1155.9 Radial Fourier 
omponents for ele
trostati
 modes shown in Fig. 5.4and 5.5, (a) the ITG mode at kθρLi ≈ 0.5, n = 9, (b) the SWITGmode at kθρLi ≈ 1.3, n = 21, both without the trapped ele
trons,(
) the ITG mode at kθρLi ≈ 0.4, n = 7, and (d) the SWITG modeat kθρLi ≈ 1.3, n = 21, both with the trapped ele
trons. . . . . . . 1165.10 Normalized growth rates γ̃ vs. ǫn s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +
ir
les) the trapped ele
trons (from the global gyrokineti
 model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, Ln = 0.2, and
a = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.11 Normalized real frequen
y ω̃r vs. ǫn s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +
ir
les) the trapped ele
trons (from the global gyrokineti
 model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, Ln = 0.2, and
a = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.12 Normalized growth rates γ̃ vs. ηi s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +
ir
les) the trapped ele
trons (from the global gyrokineti
 model).
ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. . . . . 1185.13 Normalized real frequen
y ω̃r vs. ηi s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +
ir
les) the trapped ele
trons (from the global gyrokineti
 model).
ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. . . . . 119xiii



5.14 Normalized growth rates γ̃ vs. τ s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +
ir
les) the trapped ele
trons (from the global gyrokineti
 model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, and ǫn = 0.1. . . . . . . . . 1205.15 Normalized real frequen
y ω̃r vs. τ s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +
ir
les) the trapped ele
trons (from the global gyrokineti
 model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, and ǫn = 0.1. . . . . . . . . 1205.16 Mixing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ >of the ions in the ion gyro-Bohm units as a fun
tion of kθρLi; (a)the ITG and the SWITG mode without the trapped ele
trons (solidline + 
ir
le) (b) the ITG and the SWITG mode with the trappedele
trons (solid line + square) (from the global gyrokineti
 model).Note that this 
urve is s
aled down by a fa
tor of 8. The upper axispresents the 
orresponding toroidal mode numbers. . . . . . . . . . 1215.17 (a) Real frequen
y ωr, and (b) growth rate γ versus wave number
kyρs of the linear short wavelength ion temperature gradient mode(SWITG) for di�erent values of R/Ln. Here ηi = 2.5, q = 2.0, ŝ =

1.0, τ = 1.0 in these simulations. . . . . . . . . . . . . . . . . . . . 1275.18 Time (in units of R/cs) evolution of ion heat �ux Q normalizedby Qnorm = prefcsρ
2
s/R

2 for SWITG simulation, with R/Ln =

5 and R/Ln = 10. The bla
k dashed lines represent the time av-erage of the heat �ux between t = 100 R/cs and t = 330 R/cs.For R/Ln = 5 the average Q = 195 Qnorm and for R/Ln = 10 theaverage Q = 302 Qnorm. . . . . . . . . . . . . . . . . . . . . . . . . . 1285.19 (a) Time averaged ion heat �ux versus normalized wavenumber kyfor R/Ln = 5 and R/Ln = 10 in lin-lin plot. (b) Time averaged ionheat �ux as a fun
tion of normalized wavenumber ky for R/Ln = 5and R/Ln = 10 in log-log plot. Q is normalized with respe
t to
Qnorm = prefcsρ

2
s/R

2. . . . . . . . . . . . . . . . . . . . . . . . . . . 1305.20 Cumulative sum of heat �ux for R/Ln = 10. The standard ITG
ontribution to the heat �ux is for kyρs ≤ 1 and SWITG 
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Chapter 1Introdu
tion
1.1 Magneti
ally Con�ned Fusion and Its Prospe
tsIn view of the mu
h spe
ulated dearth of energy in near future leading to an imbal-an
e between demand and supply, the fo
us of energy resear
h has largely shiftedto the nu
lear fusion of deuterium and tritium1 in the plasma state, whi
h is en-visaged to generate virtually limitless energy with minimal adverse environmentalimpa
t. Although, the phenomenon of nu
lear fusion is quite 
ommon in our uni-verse (for example, the sun in our solar system provides light and heat via fusionrea
tion naturally), the natural o

urren
e of fusion on earth is inhibited by theneed of the very high temperature propitious for the fusion rea
tion. One has toarrange, therefore, laboratory plasma experiments to harness energy from fusionon earth. And at the same time, one also has to look for ways that prevent di-re
t 
onta
t of this high temperature plasma with the 
ontainer wall. Sin
e fusionneeds high temperature and density, a material shielding therefore is in
apable to
ontain the hot fuel, as the high heat load on the 
ontainer wall will apparentlymake the latter unable to withstand so mu
h of heat. For this reason, one has todevise ingenious 
on�nement methods to avert su
h a situation.There are various spe
ial 
on�nement s
hemes that have been able to allureresear
hers in the �eld. Some of them are magneti
ally 
on�ned fusion (MCF) [1℄,inertial 
on�nement fusion (ICF) [2℄, et
. Here we fo
us on MCF whi
h has beenable to garner signi�
ant attention and resour
es sin
e its in
eption.1 2

1H + 3
1H = 4

2He+ 1
0n+ 17.4 Mev 1



Chapter 1: Introdu
tionThe MCF method relies on using powerful magnets to 
on�ne plasma in adonought-shaped high-va
uum vessel named as Tokamak. The 
on
ept of su
ha s
heme is to heat deuterium tritium (D-T) ions to a very high temperature ofthe order of hundred million degrees of 
entigrade and then 
on�ne the systemusing 
urved and 
losed magneti
 �eld for long enough time su
h that the twospe
ies of ions 
an fuse e�e
tively over
oming the Coulomb barrier to release energyin the range of MeV, whi
h then 
an be extra
ted by proper arrangements (Forexample, Test Blanket Module (TBM) [3℄.), and made 
ommer
ially available for
ivil purposes. Sin
e its realization during 1960s, s
ientists have a
quired mu
hexpertise on tokamak and have therefore moved one step ahead to build ITER [3℄to test fusion with gain fa
tor more than one. As is apparent, e�
ient heating andthen long 
on�nement are two key fa
tors that determine the su

ess of su
h anendeavor2.The heating pro
ess starts with the ohmi
 heating me
hanism and then in thelater phase where ohmi
 heating is no longer e�e
tive due to redu
ed 
ollisions,heating is supported by various auxiliary methods. Among the various auxil-iary heating s
hemes, neutral beam inje
tion (NBI) and RF heating (For exam-ple, ion 
y
lotron resonan
e heating (ICRH), ele
tron 
y
lotron resonan
e heating(ECRH), et
.), where the energy is �rst transferred to the thermal ele
trons andthen to the ions, are very often used. These heating s
hemes thus in
orporatelarge amount of hot ions into the system of thermal ions and ele
trons. Moreover,on
e the fusion is a

omplished, the tokamak itself be
omes populated with fusionprodu
ed Helium ions or α parti
les of MeV energy. In the self ignition phase,these helium ions are required to transfer their energy to the thermal ions. Thusit is 
lear that for e�
ient heating of the thermal ions and subsequent fusion, onerequires that the hot ions (along with the thermal ions and ele
trons) be 
on�nedin the system for long enough time, and transfer their energy to the thermal ionswhi
h are eventually going to fuse.The major hurdle in maneuvering fusion in a plasma laboratory, however, ap-pears to be the poor 
on�nement of plasmas brought about by the exoti
 behaviorof these extremely hot and dense 
harged parti
les in the presen
e of magneti
 �eld.Various physi
al me
hanisms whi
h are self-generated in the plasma throw parti-2Lawson 
riterion requires nTτE > 3× 1021 keV se
/m3, where, n, T and τE are, respe
tively,density, temperature of plasma and plasma 
on�nement time. 2



Chapter 1: Introdu
tion
les and heat out of the system undermining the 
on�nement and hen
e blurringthe hope of realisti
 fusion ma
hines.These me
hanisms, often referred to as instabilities, are broadly 
lassi�ed asma
roinstabilities and mi
roinstabilities [4, 5℄ depending upon their s
ale-lengthand frequen
y 
ompared to the Larmor radius and gyrofrequen
y of the 
onstituent
harged parti
les. Ma
roinstability generally refers to the large-s
ale magnetohy-drodynami
s (MHD) instabilities. They 
an quen
h the plasma in mi
rose
ondswhi
h otherwise would have been several se
onds long lived [6℄. Though withproper �eld 
on�guration this 
lass of instabilities 
an be suppressed, the plasmais still subje
t to �ne-s
ale instabilities, often referred to as mi
roinstabilities driv-ing loss of energy and parti
le. These instabilities are equally 
apable to in�uen
ethe dynami
s of the energeti
 ions. Thus, in order to learn how to tame theseinstabilities, resear
hers, before 
onstru
ting real fusion rea
tors, would want tounderstand the basi
 
on�nement, stability and transport issues of 
harged par-ti
les in a relatively simpler environment. To that end, many tokamaks3 havebeen built around the world whi
h exploit the magneti
 
on�nement to lighter
harge parti
les, e.g., hydrogen in extreme 
onditions of temperature and densityto investigate the inherent stability and transport issues of toroidal plasma.The motion of the 
harged parti
les in a magneti
 �eld, in the simplest 
ase, is
on�ned to a heli
al path along the magneti
 �eld line [7℄. The maximum step sizeof any movement a
ross the magneti
 �eld, therefore, is equal to their Larmor radii.The 
ollisions among themselves, although infrequent (as the system is very hot),bring in random walks in the system. As a result of this, the 
harge parti
les jumpfrom one position to another with the step size of Larmor radius resulting in whatis 
alled 
lassi
al di�usion. However, the magnitude of su
h 
lassi
al di�usion ofparti
les and their thermal energy a
ross the magneti
 �eld lines is about thousandtimes lower than that observed in regular tokamak experiments [1℄.The 
lassi
al model of di�usion is nevertheless modi�ed and made 
omplex bythe presen
e of the 
urved magneti
 �eld in tokamaks. The 
urved magneti
 �eld
an trap 
harge parti
les leading to a larger step size of random walks, of theorder of radius of banana orbits [1℄ of the trapped parti
les, enhan
ing the amountof transport. This modi�es the estimate of the 
lassi
al di�usion and termed as3For example, JET, DIII-D, ASDEX, JT60, et
. 3



Chapter 1: Introdu
tionneo
lassi
al di�usion pro
ess. However, the experimentally observed di�usion rateis still order of magnitude higher than that predi
ted by the neo
lassi
al theory [1℄.This dis
repan
y between the theoreti
al predi
tion and experimental observationin di�usion rate of energy and parti
les is termed as �anomalous" due to the la
kof understanding of the physi
s issues imparting this anomaly.Even when plasmas are maintained free from MHD instabilities, they are farfrom being quies
ent. As 
on�ned plasmas are invariably asso
iated with inho-mogeneities in density and temperature, they are, therefore, always in the stateof tremulous movement indu
ed by some �ne s
ale (of the order of Larmor radiusof the 
harge parti
les) and low frequen
y �u
tuations (smaller than the gyrofre-quen
y of the ions). These turbulent, �ne s
ale and low frequen
y �u
tuations,generally de�ned as mi
roinstabilities, are 
apable to transport energy and 
hargedparti
les out of the system at a rate faster than the 
lassi
al and neo
lassi
al dif-fusion. Su
h a transport, in general, is the 
onsequen
e of random walks of the
onstituent 
harged parti
les with an enhan
ed step size and redu
ed 
orrelationtime in the presen
e of turbulen
e resulting from the mi
roinstabilities, and per-haps a

ounts for the observed anomaly in transport via ion and ele
tron 
hannels.Among the various mi
roinstabilities, ion temperature gradient (ITG) modes[4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄ are now �rmly believed to 
ause anomaloustransport of thermal ions, while, ele
tron temperature gradient driven (ETG) [19,20, 21, 23, 24℄ modes and trapped ele
tron modes (TEM) [11, 25, 26, 27, 28℄ areobserved to produ
e anomalous transport of ele
trons. The ITG modes are drivenby the free energy available in the gradient of temperature pro�le of thermal ions,while ETG and TEM draw free energy from the gradient of temperature pro�leof ele
trons. Universal toroidal modes whi
h live on the free energy available inthe inhomogeneity of ele
tron density, and hen
e seem to be ubiquitous, are alsoanother 
lass of mi
roinstabilities driving ele
tron transport.While ele
tron transport exhibits a multis
ale feature ranging from the ele
tronLarmor radius (k⊥ρLi >> 1) of the ETG mode to the ion Larmor radius (k⊥ρLi ≤
1) of the TEM, ion transport driven by the ITG mode, on the other hand, ishitherto known to be unstable only at one s
ale length on the order of the ionLarmor radius (k⊥ρLi ≤ 1). However, of late, a new mode [29℄ propagating inthe ion diamagneti
 dire
tion, on the intermediate s
ale between ITG and ETGmode with k⊥ρLi > 1 joins the group of mi
roinstabilities imparting multi-s
ale4



Chapter 1: Introdu
tionfeature to the thermal ion transport. This mode is generally referred to as the shortwavelength ion temperature gradient (SWITG) mode following its o

urren
e inthe shorter wavelength side of the dispersion spe
trum of mi
roinstabilities.Con
erted e�orts of theory, experiment and simulation to understand, bothqualitatively and quantitatively, the behavior of the plasmas in a tokamak are un-der way among the fusion 
ommunities. Attempt to 
ompose simulation modelsto make quantitative predi
tions of transport is very mu
h sought. As tokamakexperiments themselves are very mu
h expensive, a proper modeling of the me
ha-nisms 
ould prove very useful in identifying and separating the various underlyingphysi
s issues one by one without pursuing repeated experiments for that purpose.However, due to the disparate masses of the 
onstituting parti
les su
h as ions andele
trons, a 
onsistent numeri
al study of transport via ion and ele
tron 
hannelssimultaneously has proved to be a formidable task. When one attempts to model aphenomenon, where both ele
trons and ions are nonadiabati
, one has to take intoa

ount the larger spatial s
ales (i.e. Larmor radius) and slower time s
ales (i.e.gyro period) of ions on one hand, and the �ner spatial s
ales and faster time s
alesof ele
trons on the other hand for a given temperature and magneti
 �eld, whi
hsometimes goes beyond the 
omputational resour
es available, in parti
ular, in the
ase of nonlinear, time-evolving, numeri
al models using kineti
 theory. More-over, the instabilities are often found to be nonlo
al spreading over a substantialfra
tion of the tokamak 
ross se
tion both in the linear and nonlinear phase, the
omprehensive study of whi
h invariably demands global simulation aggravatingthe situation. A minimal nontrivial linear, global, gyrokineti
 numeri
al model 
anbe enormously useful to that e�e
t, at least, to identify and understand physi
alme
hanisms in the simplest 
ase. However, one needs eventually to validate themwith respe
t to the nonlinear turbulent models.1.2 Brief Review of Earlier WorksAnomalous transport in 
ollisionless hot tokamak plasmas is believed to be dueto the drift waves driven by the density and temperature gradients [4, 5℄ of the
harge parti
les in a magneti
ally 
on�ned plasma. While the turbulent heat �uxof ions is believed to be driven by the ion temperature gradient (ITG) mode, the5
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tionele
tron heat and parti
le �ux, on the other hand, is expe
ted largely to be drivenby the trapped ele
tron mode (TEM) in the low magneti
 �eld side of a tokamakon ion s
ales (of the order of ion Larmor radius) and by the ele
tron temperaturegradient (ETG) mode on ele
tron s
ales (of the order of ele
tron Larmor radius).Enormous e�ort has been put to understand the underlying physi
s issues boththeoreti
ally and 
omputationally and then to mat
h the predi
ted transport �uxwith that observed experimentally.The study of ion transport by the ITG mode has started with simple mod-els [30, 31℄, where ele
trons are treated adiabati
. The next step is then to in
orpo-rate the nonadiabati
 ele
trons. This has been a
hieved in the the form of trappedele
trons in
luded to the ba
kground model of nonadiabati
 ions and adiabati
passing ele
trons. This has extended the study of this 
lass of mi
roinstabilities tothe trapped ele
tron 
oupled ITG mode (ITG-TEM) [11, 12, 13, 14, 15, 16, 17, 18℄mode and TEM [11, 25, 26, 28, 32℄. The new models with trapped ele
trons givegrowth rate two to three times larger than that in the 
ase of simple adiabati
 ele
-tron models. At the same time, the transport �ux is observed to rise substantially.A 
omparison of gyro�uid [33℄ and 
ontinuum gyrokineti
 [34℄ simulation of trans-port in realisti
 geometry with experiments has been 
arried out, and the ele
tronthermal di�usivity, ion thermal di�usivity and perturbed density �u
tuation levelare found to ex
eed the experimental value by fa
tors more than two. The reasonof this deviation is spe
ulated to be due to the non-lo
al behavior owing to thevariation of plasma gradients.Following this, sophisti
ated �ux ribbon 
odes have 
ome up with advan
edfeatures [35, 36℄ to redu
e the dis
repan
y between experiments and 
omputa-tional results [37℄. The kineti
 ele
tron simulation with trapped parti
les usinggeneralized split weight s
heme to δf gyrokineti
 parti
le method has been 
ar-ried out [38℄. The results show signi�
ant in
rease in the ion heat di�usivity in
omparison with that in the 
ase of the adiabati
 ele
tron model in line with thein
reased growth rate. However, the experimentally observed ion di�usivity [39℄ ismu
h lower than that predi
ted by the adiabati
 ele
tron models. Thus, more 
om-prehensive gyrokineti
 models that treat ele
trons and ions on the same physi
sfooting with global pro�le e�e
ts are required to address su
h anomaly.The major problem with the in
orporation of full dynami
s of ele
trons in
lud-ing even the passing fra
tion nonadiabati
ally or kineti
ally in a time dependent6



Chapter 1: Introdu
tionmodel is their fast parallel motion. The high mobility of these ele
trons needshigher resolution in their response time s
ale, and is a formidable task in the pres-en
e of full ion dynami
s, the issue of whi
h is dis
ussed elaborately in Ref. [40℄.With advan
es in the 
omputational fa
ilities signi�
ant progress has been a
hievedto this end to treat the ele
trons fully kineti
ally [36, 157, 139℄. However, some-times simulations 
hoose redu
ed mass ratios of ion and ele
tron to downsize the
omputational 
ost [32, 40, 42℄.While ion transport 
an be brought down to neo
lassi
al level by the formationof internal transport barriers (ITBs) [67, 68℄, the ele
tron transport still remainsorders of magnitude above the neo
lassi
al level. The ele
tron anomalous transportis an issue of paramount 
on
ern in the fusion plasma be
ause of the fa
t that theele
trons will be heated dominantly by the 
ollisional relaxation of the highlyenergeti
 α parti
les and the instabilities inherent to ele
trons 
an deteriorate thepro
ess of 
on�nement of the plasma.The experiments on ele
tron transport [69℄ observe sti�ness in the ele
trontemperature pro�le and suggest a threshold in the ele
tron temperature gradi-ent ∇Te/Te above whi
h the turbulent transport takes pla
e. This supports twotheoreti
ally proposed modes, namely, the TEM and ETG mode.The existen
e of su
h a threshold has been established and its experimentaldetermination is a
hieved by further experiments [70, 71, 72℄. Although, a 
om-plete radial pro�le of transport threshold has been evaluated in Ref. [73℄, whetherthe observed transport is be
ause of TEMs or ETG modes remains di�
ult todetermine unambiguously, as both modes exhibit threshold in ∇Te/Te.The TEMs have their origin in the pre
ession of trapped ele
trons on the weakerside of the magneti
 �eld and been studied extensively, both experimentally [69,73, 74, 75, 76, 77℄ and theoreti
ally [25, 26, 27, 28, 78, 79, 80, 81℄. The TEMs havewave number in the range of ITG modes; they have dependen
e on the gradientthreshold, fra
tion of trapped ele
trons, and 
ollisionality; they are a
tive when
τ(= Te/Ti) > 1.The other sour
e of ele
tron transport, the ETG mode was studied initially inthe sheared slab geometry [19, 20℄ and then in the toroidal geometry [21℄. Withthe advan
ed diagnosti
s, now a days, it has been possible to identify the ETGmode even in experiments [82, 83℄. The ETG mode be
ause of its small s
ale,initially was not expe
ted to 
ontribute signi�
antly to the ele
tron transport. But7
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tionthe ele
tron heat di�usivity is usually found to be of orders of magnitude higherthan the simple mixing length estimate. The works in Refs. [23, 24, 84, 85, 86, 87℄showed that in spite of its small s
ale length, the ETG mode 
an indeed 
ontributeto the ele
tron parti
le and heat losses 
omparable to the experimental level by theformation of radially elongated stru
tures or 
onve
tive 
ells nonlinearly or throughele
tromagneti
 inverse 
as
ade pro
esses. While the ITG mode is suppressedby the E × B shear [88, 89℄ in ITBs, the ele
tron transport is still observed tobe anomalous as it is barely a�e
ted by the E × B shear [90℄. Under spe
ial
ir
umstan
es, su
h as reverse shear, one may be able to redu
e TEM indu
edtransport but ETG is nonetheless expe
ted to remain una�e
ted be
ause of itshigher growth rate than the E × B shearing rate.Earlier studies on mi
roinstabilities, in general, pro
eed with a ta
it assumptionthat the mode under 
onsideration is independent of other members of the 
lass.But, studies of the ITG mode in the presen
e of the trapped ele
trons, i.e., ITG-TEM [11, 12, 13, 14, 15, 16, 17, 18℄ have shown that one mode 
an have strong e�e
ton the other. For example, often ions are 
onsidered adiabati
 while studying theETG mode. The ions, be
ause of their larger Larmor radius, 
an attain adiabati
ityby moving a
ross the magneti
 �eld. However, re
ent works in Refs. [36, 37, 91, 92,93, 94℄ showed that the ion dynami
s 
an play an important role in the ETG s
aletransport and help a
hieving saturation of ele
tron �ux. Although ITG 
oupled tothe trapped ele
trons has been studied in details, studies of ETG 
oupled to TEM(ETG-TEM) have been very few [91, 92℄.In the absen
e of temperature gradients, there 
an be another 
lass of insta-bilities, whi
h is driven even by the slightest density gradient of the ele
trons inthe plasma and therefore 
alled the universal drift instability. In the late 1980s,there had been a large e�ort to understand the basi
 physi
s of the universal driftinstability. The motivation was that the universal drift mode was thought to bethe dominant mi
roinstability at that time and thus sour
e of plasma transport inthe various 
on�ning devi
es, su
h as, tandem mirror, tokamak, spheromak, stel-larator, et
. In situations where the density pro�le is steeper than the temperaturepro�le, one 
an indeed have �u
tuations and asso
iated transport dominated bythe universal drift instability. Moreover, the universal instability is the simplestone in the 
lass of drift waves and a thorough understanding of the mode 
an helpget insight in the other modes of the family as well. 8



Chapter 1: Introdu
tionThe study of the universal drift wave had started with a very simple model,the shearless slab model [95, 96℄, that revealed that the 
ollisionless universal driftinstability is always unstable in the presen
e of a density gradient and absen
eof shear. The driving me
hanism in this 
ase is the wave parti
le resonan
e bythe ele
trons 
oupled with the density gradients. The mode remains unstable, inthe presen
e of weak but reasonable shear, when studied in the framework of theadiabati
 ele
tron model. Thus, up to that point, the spe
ulation was that theuniversal mode without or with weak shear is always unstable. However, in 
on-tradi
tion to all previous works, Ross et al. [97℄ and Tsang et al. [98℄ reported thatthe universal instability or 
ollisionless drift instability in the presen
e of magneti
shear is always stable in the slab geometry, irrespe
tive of the strength of the shearor transverse wave number when one takes into a

ount the full ele
tron dispersionfun
tion. The observed stability is attributed primarily to the stabilizing in�uen
eof the nonresonant ele
trons. These issues had further been addressed by Chenet al. [99℄ who 
on
luded that the mode 
an be damped and marginally stabledepending upon the strength of the shear and magnitude of the transverse wavenumber ky. For example, in the 
ase of su�
iently weak shear, i.e., with Ls/Lngreater than a 
riti
al value (where Ls and Ln are, respe
tively, the measure ofshear and density gradient s
ale length) 
ollisionless drift waves are marginallystable at shorter wavelength or high wave number regime, where the ele
tron dy-nami
s usually play the pivotal role in determining the nature of an eigenmode. Inthe opposite limit, i.e., at longer wavelength or lower wave number regime whereion dynami
s dominate, the eigenmode is damped. For strong shear, on the otherhand, the eigenmodes are always stable irrespe
tive of the wave number or wave-length. However, even in a sheared magneti
 �eld, an absolute instability 
anbe observed by the elimination of the stabilization produ
ed by the o�-resonantele
trons by the turbulent di�usion near the mode rational surfa
es [100℄.The investigation of the various properties of the universal drift instability in amore 
omplex situation su
h as in the presen
e of �nite toroidi
ity was undertakenby Cheng et al. [101℄. Two eigenmodes were found to 
oexist that are broughtabout by the equilibrium variation along the �eld line. One mode is not lo
alizedin the ballooning 
oordinate and gets strongly stabilized due to the magneti
 shear,mu
h like the slab version of the mode. The other eigenmode is observed to haveno slab 
ounterpart. It was shown to be intrinsi
ally driven by the toroidi
ity,9
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tionpartly lo
alized, and weakly a�e
ted by the stabilization of the magneti
 shear.It was shown that while it is rendered as an absolute instability by the ele
tronLandau resonan
e, ion Landau damping on the other hand has a stabilizing ef-fe
t on the mode. It is important to note that the formulation in Ref. [101℄ usesthe ballooning formalism appli
able only in the high n (toroidal mode number)limit, 
onsiders k⊥ρLi << 1 and keeps the toroidal 
oupling e�e
t only throughthe ion ∇B and 
urvature drift. The ion drift frequen
y, however, is assumed verysmall 
ompared to the mode frequen
y ω and ion drift resonan
e is thus ignored.Studies involving more 
omplex geometries, su
h as in small aspe
t ratio tokamaksor spheromaks [102℄ were reported later. Modes are found to be less lo
alized atdi�erent positions of poloidal angle when one removes the large aspe
t ratio as-sumption. However, ex
ept for the presen
e of more than one mode along thepoloidal dire
tion be
ause of the strong equilibrium variations along the �eld line,the results are qualitatively the same as for the 
ase of former large aspe
t ratio.The role of ion magneti
 drift resonan
e and ele
tron Landau resonan
e are dis-
ussed by Chep et al. [103℄ using the ballooning formalism with gyrokineti
 theory.The 
on
lusion is that along with magneti
 drift resonan
e, one requires ele
tronLandau resonan
e to make the mode unstable. However, this study pre
ludes therole of the transit frequen
y of the thermal ions by assuming the mode frequen
iesto be higher than the transit frequen
y of the thermal ions. Berk et al. [104℄ showedthat the universal drift instability is stabilized by the presen
e of �nite plasma β.This 
an be understood to result from the 
oupling of the universal drift wave tothe Alfven mode and from the e�e
t of ion Landau damping. Hastings et al. [105℄,
onsidering a slab geometry with �nite ∇B and using gyrokineti
 theory, �nd twome
hanisms of stabilization of the mode by �nite β: (1) for small values of β inthe range me/mi < β << 1, the stabilization is brought about by the 
oupling tothe Alfven wave and (2) for β ∼ O(1), the stabilization is due to the 
ompressionof the perturbed plasma motion.While ele
tron transport exhibits a multis
ale feature ranging from the ele
tronLarmor radius (k⊥ρLi >> 1) of the ETG mode to the ion Larmor radius (k⊥ρLi ≤
1) of the TEM, ion transport driven by the ITG mode, on the 
ontrary, is hithertoknown to be unstable only at one s
ale length on the order of the ion Larmorradius (k⊥ρLi ≤ 1). However, of late, a new mode, with mode frequen
y in thedire
tion of the ion diamagneti
 drift frequen
y, on the intermediate s
ale between10
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tionITG and ETG mode with k⊥ρLi > 1 has been identi�ed [29℄. This mode is foundto be driven by the temperature gradient of the ions in the presen
e of the Landauresonan
e/inverse resonan
e in a slab geometry and by the toroidal drift resonan
ein a toroidal geometry, in 
ombination with the nonmonotoni
 behavior of themode frequen
y with respe
t to the perpendi
ular wave number. Be
ause of itso

urren
e in the short wavelength limit and due to the nonadiabati
ity of ions,the mode is named as short wavelength ion temperature gradient (SWITG) modeto distinguish it from the 
onventional ITG mode at longer wavelength. It isgenerally spe
ulated that in the limit (k⊥ρLi)
2 >> 1, there should be no modeintrinsi
 to the ion nonadiabati
ity, sin
e ion dynami
s in this limit is expe
ted tobe adiabati
. However, if the s
ale length of the inhomogeneity is su
h that ω∗i,the ion diamagneti
 drift frequen
y be
omes larger than the mode frequen
y ω,there 
an be an instability related to the inhomogeneity in the ions even in thisshorter limit [106℄.Initially, the mode was thought to be of hybrid type [106, 107℄, requiring both

ηi and ηe (ratio of the density to temperature s
ale length of the ions and ele
tronsrespe
tively) to be above a threshold. Later parametri
 study by Gao et al. [108℄demonstrated that the ele
tron nonadiabati
ity is not an essential ingredient forthe mode to develop. E�e
t of the nonadiabati
 ele
trons is only to enhan
e thegrowth rate of the mode. The theoreti
al study of this mode started with thework of Smolyakov et al. [29℄ in a sheared slab and toroidal geometry using a lo
alformulation. The work was then extended by Hirose et al. [106℄ using a kineti
integral 
ode based on ballooning formalism. This was followed by the study of themode in the sheared slab [107℄ and then in the toroidal geometry [108℄ by Gao et al.E�e
ts of shear �ows on this mode have been studied in the sheared slab geometryand found to have strong stabilizing impa
t on the mode [109℄. However, it isexpe
ted that the toroidal SWITG mode will need higher rate of EXB �ow shearfor stabilization than the 
onventional toroidal ITG mode as the former has higherfrequen
y [108℄. The dependen
e of the 
riti
al gradient on the various physi
alparameters su
h as temperature ratio, toroidi
ity, magneti
 shear and safety fa
torhas been studied for this mode [110℄. It is to be noted that su
h a double humpbehavior was pointed out a long way ba
k by Pu et al. [111℄ while studying theion mixing mode. The main 
on
lusions, from the past works are the following.(1) In the slab limit (small toroidi
ity ǫn = Ln/R), a strong temperature gradient11
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tiondriven mode exists in the regime (k⊥ρLi)
2 >> 1. The instability requires both

ηi and ηe to be above a 
riti
al value [106, 107℄. But later study [108℄ revealsthat it is inherently an ion mode and exists even if the ele
trons are adiabati
.The same is observed in the work of Smolyakov et al. [29℄. (2) Toroidi
ity hasstrong stabilizing e�e
t on the mode [106℄. Stabilization o

urs at ǫn ≥ 0.15. (3)The instability is driven by magneti
 shear and the growth rate is approximatelyproportional to √|s| [106℄ where s stands for the shear. But a broader parameters
an [108℄ �nds that the growth rate initially in
reases and then starts de
reasingwith shear. (4) Similar to the 
onventional ITG, it is also stabilized by a modest α,the ballooning parameter. (5) Nonadiabati
 
ir
ulating ele
tron dynami
s providedestabilization. (6) E × B �ow shear has strong stabilizing e�e
t on the mode.The mi
roinstabilities dis
ussed above not only throw out the thermal ions andele
trons but also the energeti
 ions produ
ed by the auxiliary heating s
hemesand α parti
les of energy in the MeV range produ
ed as the fusion produ
t. Theseenergeti
 parti
les 
onstitute a 
onsiderable fra
tion of the total plasma, and thus asound understanding of the role of these energeti
 ions on the plasma 
on�nementthrough the intera
tion with the ba
kground instabilities is very mu
h required.The various magnetohydrodynami
s (MHD) events are observed to transport andredistribute the energeti
 ion population via resonant and nonresonant phenom-ena [115, 116℄. For example, resonant MHD a
tivities su
h as �shbone, toroidalAlfven mode (TAE), et
., 
an 
ause large transport of the energeti
 ions. Similarly,high β sawteeth 
an also produ
e loss of the energeti
 ions. The low frequen
yMHD modes su
h as neo
lassi
al tearing modes (NTM) are equally 
apable todrive both passing and trapped energeti
 ion loss [117, 118℄. The toroidal �eldripples and sto
hasti
 magneti
 �eld are also among the other me
hanism of fastion losses. The energeti
 ions 
an in turn also alter the stability of the plasma byex
iting and sometimes suppressing the MHD events. One may, for example, notethe observed stabilization of sawteeth by perpendi
ular energeti
 ion population,the destabilization of internal kink mode, TAE, �shbone, et
. The energeti
 ionsalso 
an give rise to modes on their own whi
h are generally named as energeti
parti
le modes (EPM) [119℄.Though mu
h understanding and 
on�den
e have been gained in the 
ase ofthe interplay between MHD and energeti
 ions via theory and experiments, littleattention is paid toward the intera
tion of these energeti
 ions with the mi
rotur�12



Chapter 1: Introdu
tionbulen
e indu
ed by the ITG mode, TEM, ETG mode, et
. One partial reason
ould perhaps be the observation of very weak di�usivities of the energeti
 ionsand α parti
les in 
omparison with the thermal ions experimentally [115, 116, 120℄as well as theoreti
ally [121℄. The reason for it, as spe
ulated, is that the ener-geti
 ions do not stay in resonan
e with these mi
roturbulen
e driven �u
tuationsas their drift orbit radii are far higher than the radial 
orrelation length of these�u
tuations, and therefore average over the �u
tuation spe
trum temporally andspatially. These phenomena are generally de�ned as drift averaging and gyroradiusaveraging [115℄. On the 
ontrary, re
ent numeri
al experiments [122℄ have shownthat α parti
le and energy loss 
ould be higher than the 
orresponding losses ofthermal ions and large orbit averaging is not strong enough to ignore the intera
tionof the α parti
les with ITG turbulen
e. However, it is a re
ent experiment [123℄reporting eviden
e of 
orrelation between mi
roturbulen
e and redistribution of en-ergeti
 ions that has spurred a fresh interest among the resear
hers in the subje
t.Even in the absen
e of any MHD a
tivity, fast radial broadening of the 
urrentpro�le driven by the o� axis neutral beam inje
tion (NBI) has been observed sup-porting the fa
t that there must indeed be some 
orrelation between redistributionof energeti
 ions and ba
kground mi
roturbulen
e. This has been further stud-ied in Refs. [124, 125℄. Following this, numeri
al analysis [126℄ on the intera
tionof energeti
 ions with ITG turbulen
e observes 1/E dependen
e for the passingenergeti
 ion di�usion, where, E is the energy of the energeti
 ions and 1/E2 de-penden
e for the trapped energeti
 ion di�usion. Similar study [127℄ found 1/Edependen
e of di�usion for the beam energeti
 ions in the presen
e of ele
trostati
�u
tuation. In 
ontrast, the di�usion of the energeti
 ions in the presen
e of mag-neti
 �u
tuations [127℄ has been found to be independent of the parti
le energy,and therefore, may play more important role than the ele
trostati
 �u
tuations inredistributing the energeti
 ions. The re
ipro
al dependen
e of di�usivity on theparti
le energy of the energeti
 ions 
ould be one of the reasons for the super�
iale�e
t of mi
roturbulen
e on the energeti
 ions observed in the earlier experiments.The di�eren
e in the born energy of the energeti
 ions between the earlier andre
ent experiments 
an be a likely explanation of the di�eren
e in the observa-tions regarding the e�e
t of mi
roturbulen
e on these energeti
 ions. Note thatsu
h phenomena of redistribution of hot ions by mi
roturbulen
e is not 
on�nedto only toroidal devi
es like tokamaks; experiments on linear system also 
on�rm13
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tionthe intera
tion of hot ions with density gradient driven turbulen
e [172℄. Astro-physi
al plasmas also en
ounter similar phenomena resulting from intera
tion ofthe energeti
 ions with turbulent �eld [129℄.Coming ba
k to the ba
k rea
tion of energeti
 ions on mi
roturbulen
e, onemay 
ite latest experiments [130℄ that has reported signature of internal transportbarrier (ITB) in the ion 
hannel even in the absen
e of reverse shear. The formationof the ITB has been observed to have 
orrelation with the transport suppressionme
hanism by the inje
ted energeti
 ions with a lifetime of the order of slowingdown time of the beam ions. Similar observation of the ITG mode suppressionby the energeti
 ions produ
ed by ion 
y
lotron resonan
e heating (ICRH) and
on
urrent formation of the ITB triggered by these energeti
 ions in a plasma withmonotoni
 safety fa
tor pro�le has been reported in Ref. [131℄.In the ba
kdrop of this wide, 
omplex and nonlo
al s
enario of plasma be-havior in MCF systems the present dissertation is dedi
ated to the study of thestability properties of few mi
roinstabilities whi
h usually play the pivotal role in
ausing anomalous transport of energy and parti
les in tokamaks. In parti
ular,it highlights (1) e�e
ts of the nonadiabati
 passing ele
trons on the ion temper-ature gradient (ITG) mode, trapped ele
tron 
oupled ion temperature gradientmode (ITG-TEM) and trapped ele
tron mode (TEM) by linear, global, gyroki-neti
 numeri
al study; (2) the behaviour of the ion temperature gradient drivenmodes in the presen
e of highly steep density pro�le typi
ally observed in thetransport barriers inside the tokamak; a linear and nonlinear gyrokineti
 study onthe o

urren
e of the short wavelength ion temperature gradient mode (SWITG);(3) a linear, global, gyrokineti
 stability analysis of the universal toroidal mode,whi
h although is thought to be ubiquitous, yet overshadowed by the temperaturegradient driven modes; (4) the stabilization of the mi
roinstabilities by the hotions (those ions having temperature higher than the thermal ions), and �nally,the redistribution of the hot ions by mi
roturbulen
e with the help of linear andnonlinear, global, gyrokineti
 simulations.
14
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tion1.3 Thesis OutlineAs the title says, the present dissertation studies the linear and nonlinear propertiesof the temperature and density gradient driven mi
roinstabilities using global,linear and nonlinear, gyrokineti
 models.Chapter 2 details the linear, global, gyrokineti
 model whi
h is the 
ore ofthe linear gyrokineti
 spe
tral 
ode EM-GLOGYSTO [11, 44℄. The nonadia-bati
/kineti
 passing ele
trons are introdu
ed to the ele
trostati
 model. Therest of the se
tions of Chapter 2 thus elu
idates the observed e�e
t of the nonadi-abati
/kineti
 ele
trons on the various properties of the linear global ITG mode.In Chapter 3, the new nonadiabati
/kineti
 model introdu
ed in Chapter 2 forpassing ele
trons is used to study the trapped ele
tron 
oupled ITG (ITG-TEM)mode and trapped ele
tron mode using the 
ode EM-GLOGYSTO. The e�e
ton the linear growth rate and real frequen
y, global ele
trostati
 mode stru
ture,
riti
al temperature gradient, et
., have been dis
ussed for the ITG-TEM andTEM in separate se
tions.Chapter 4 dis
usses the modes inherent to nonadiabati
 passing ele
trons,namely, the ele
tron temperature gradient mode (ETG) driven by the temperaturegradient of the passing ele
trons and universal drift mode driven by the densitygradient of the passing ele
trons. For ETG, the basi
 properties of the mode havebeen studied with and without the Debye shielding e�e
t. The results obtainedfor the linear ETG mode are well known [21, 22℄. We then move to use the nona-diabati
 ele
tron model to study the universal toroidal drift instability, whi
h isovershadowed by the temperature gradient driven modes. We have dis
ussed thevarious linear properties of the mode and its presen
e amid the temperature gra-dient driven modes. It has been observed that this mode 
an 
oexist with the ITGand TEM, and 
an 
ontribute to the ele
tron transport whi
h is usually thoughtto be from the ETG and TEM only.A new bran
h of the ITG mode has been reported re
ently. This mode is un-stable at kyρi > 1, where, ky and ρi are, respe
tively, poloidal wavenumber andion Larmor radius, and therefore named as the short wavelength ion temperaturegradient (SWITG) mode. A linear global gyrokineti
 study has been 
arried outfor the �rst time, using the spe
tral 
ode EM-GLOGYSTO. The various linearproperties and global mode stru
ture have been studied with and without the15
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tionpresen
e of trapped ele
trons. The results are presented in Chapter 5. Corre-sponding nonlinear study is 
arried out using the �ux tube version of the global,nonlinear, Eulerian, gyrokineti
 
ode Gyrokineti
 Ele
tromagneti
 Numeri
al Ex-periment (GENE) [32, 84℄. It is observed that although linearly the SWITG mode
an be as strong as the standard ITG (with kyρi ≤ 1), nonlinearly the mode hasvery weak 
ontribution to the net thermal ion heat transport 
ompared to thestandard ITG mode.The study of the intera
tion of the mi
roturbulen
e and energeti
 ions hasemerged as a very important area of resear
h following experiments in ASDEXand DIII-D. In Chapter 6, the intera
tion between the energeti
 ions and mi
ro-turbulen
e generated by the temperature gradient driven modes has been studied.The 
hapter 
omprises of three se
tions. In the �rst se
tion, the e�e
t of ener-geti
 ions on the linear ITG mode is studied nonperturbatively using the spe
tral
ode EM-GLOGYSTO. A third spe
ies of ions has been added to the existing twospe
ies version nonperturbatively, and the e�e
t of the energeti
 ions on the linearproperties of the ITG mode has been studied. The se
ond se
tion deals with thenonlinear study on the e�e
t of the turbulent �eld generated by the ITG modeon the energeti
 ions. For the purpose we have used the global, nonlinear, gyroki-neti
, �rst prin
iple based (PIC method) 
ode Gyrokineti
 Tokamak Simulation(GTS) [139, 140℄. The energeti
 ions are introdu
ed to the 
ode as passive tra
ersthat exhibit random walks in the presen
e of the equilibrium and turbulent �elds.The energy and system size dependen
e of the energeti
 ions have been evaluatedin the presen
e of the ITG mode turbulen
e. In the third se
tion of the 
hapter,the in�uen
e of the TEM turbulen
e is studied using the 
ode GTS and same pas-sive tra
er method. Three di�erent distributions for the energeti
 spe
ies, namely,isotropi
, passing and trapped distributions have been 
onsidered and the respe
-tive transport properties have been investigated. The di�erent energy s
alings fordi�erent types of distribution mentioned above are estimated and the nature oftransport is studied.
16



Chapter 2Role of nonadiabati
/kineti
 passingele
trons in global ele
trostati
 iontemperature gradient driven modesin a tokamak
2.1 Introdu
tionTokamak plasmas, whi
h are stable to ideal magnetohydrohynami
 (MHD) distur-ban
es, exhibit transport of parti
les and energy a
ross magneti
 �ux surfa
es. Onlonger time s
ales 
ompared to parti
le and energy 
on�nement times, su
h trans-port phenomena, whi
h arise due to equilibrium inhomogeneities, are attributedto the low frequen
y drift waves in the plasma.Among others, toroidal ion temperature gradient driven drift modes (ITG) [8℄,trapped ele
tron modes [25℄, high-n Alfvén ion temperature gradient driven modesor high-n kineti
 ballooning modes [43℄ (n is the toroidal mode number) have beenstudied extensively both in linear and nonlinear regimes. For large n, where it isexpe
ted that the mode stru
ture would be lo
alized to a magneti
 �ux surfa
e,the ballooning formalism is a 
ommonly used te
hnique. For global modes withsmall n values, the pro�le e�e
ts do play a role, and therefore, the usual ballooningformalism fails to retain these e�e
ts. The global linear and nonlinear gyrokineti
models then be
ome ne
essary. 17



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakFor ITGs, su
h global gyrokineti
 models show that the linear growth ratepeaks between n ≃ 3 and 15 su
h that kθρLi ≈ 0.5. For example, for typi
al toka-mak parameters, the global ele
trostati
 toroidal gyrokineti
 spe
tral model GLO-GYSTO [11, 44℄ and time-evolving gyrokineti
 
odes [45℄ report typi
al toroidalmode numbers in the range 3 ≤ n ≤ 15 with eigenmode stru
ture o

upying agood fra
tion of the minor radius a. These eigenmodes span several mode ratio-nal surfa
es (MRS) r = rMRS de�ned as k||m,n(r = rMRS) = 0. In these models,the passing and trapped ions respond nonadiabati
ally while passing ele
trons areassumed adiabati
.An ele
tromagneti
 version of GLOGYSTO 
alled EM-GLOGYSTO has beendeveloped by in
luding passing drift kineti
 ele
trons 
oupled to A|| �u
tuations [46℄followed by fully gyrokineti
 ele
tron dynami
s 
oupled to A|| �u
tuations and equi-librium �ows [47℄. The 
ode EM-GLOGYSTO was generalized by in
luding fullygyrokineti
 nonadiabati
 passing ion and ele
tron dynami
s whi
h 
ouple to A⊥�u
tuations, Shafranov shift e�e
ts [48℄, followed by trapped ele
tron dynami
s
oupled to A⊥ �u
tuations [11, 49℄. It has been shown that when passing driftkineti
 ele
trons 
ouple only to A|| [46, 55℄, �nite-β e�e
ts have a benign e�e
ton ITGs with adiabati
 ele
tron response. Using the same model, unstable AlfvénITGs (AITGs) or Kineti
 Ballooning modes (KBMs) [43, 50, 51, 52, 53, 54℄ areshown to be
ome more unstable with in
reasing β [46, 48℄. Subsequent studies [55℄with more a

urate gyrokineti
 nonadiabati
 passing ele
tron dynami
s 
oupled to
A|| �u
tuations have shown about 10 % 
hange in growth rates of AITGs. How-ever, in all the above-mentioned studies, the e�e
t of nonadiabati
 passing ele
tronswhen 
oupled to ele
trostati
 �u
tuations φ̃ has not been explored.In time-evolving gyrokineti
 parti
le simulations where ions are pushed by solv-ing the �rst prin
iple laws, the di�eren
e in mass ratio of ions and ele
trons imposesa stringent 
onstraint on the numeri
al time-stepping. The assumption of adiabati
ele
tron response simpli�es the 
omputational demands enormously. However, ona given magneti
 �ux surfa
e, adiabati
 ele
tron model is known to introdu
e spu-rious 
harge a

umulation and zonal �ows if ele
tron adiabati
ity is not 
arefullyimposed [56℄. If one were to push ele
trons with �nite mass in a numeri
ally 
on-sistent fashion, then su
h problems 
an be avoided. Be
ause of the ion to ele
tronmass ratio, the ne
essity of using small time-steps is seen as a di�
ulty in time-evolving linear and nonlinear gyrokineti
 parti
le 
odes. It goes without saying18



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakthat the above mentioned mass-ratio related physi
s issues are equally relevant togyrokineti
 Vlasov 
odes as well. For trapped ele
trons, more sophisti
ated mod-els [13, 14, 15℄ are being developed, whereas for passing nonadiabati
 ele
tronsvery few models exist.Coming ba
k to the global linear spe
tral models [11, 46, 48, 55℄ mentionedearlier, the above-said di�
ulties en
ountered in time-evolving gyrokineti
 lin-ear/nonlinear 
odes are avoided as time-evolution is repla
ed by frequen
y responseof the system. As a result, at least for the linear regime, both ions and ele
trons
an be handled on exa
tly the same physi
s footing. This situation provides astrong advantage in favor of the linear global gyrokineti
 spe
tral models bothphysi
s-wise and also as a stringent numeri
al test 
ase for time-evolving nonlineargyrokineti
 
odes with nonadiabati
 ele
trons. We bring out interesting qualita-tive and quantitative di�eren
es between ITGs with the usual adiabati
 ele
tronresponse and with the nonadiabati
 passing ele
trons response.To this end, we fo
us on the ele
trostati
 version of the fully gyrokineti
, fullyele
tromagneti
 global linear stability model EM-GLOGYSTO extensively studiedand reported in [11, 46, 48, 55℄ as appli
able to large aspe
t ratio tokamaks. For thepurposes of this study, Shafranov shift, equilibrium �ows, trapped ele
tron e�e
ts,
B⊥, and B|| �u
tuations are dropped, while parti
le nonadiabati
ity for passingions and passing ele
trons, Landau damping of passing spe
ies, �nite Larmor radius(FLR) e�e
ts to all orders for all spe
ies, trapped and transit resonan
es, andpoloidal and radial 
oupling of modes due to parti
le drifts a
ross magneti
 �uxsurfa
es are in
luded.2.2 Model EquationsTo des
ribe tokamak plasmas, 
ollisionless Vlasov-Maxwell equations are used.In the following, we invoke the standard te
hnique of gyrokineti
 
hange of vari-ables as employed by Catto et al. [57℄ with an eikonal or spe
tral ansatz to ob-tain a gyrokineti
 Vlasov equation. Among others, a self-
onsistent and energy
onserving theoreti
al framework was given by Hahm [58℄ based on Hamiltonianand Lie transformations, and more re
ently a variational formulation for gyroki-neti
 Vlasov-Maxwell system was given by Brizard [59℄ resulting in gyrokineti
19



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakequations and gyro-averaged Maxwell's equations for �nite−β plasmas. The the-oreti
al formulations used here are dis
ussed in detail in Refs. [44℄ and [55℄. Forthe sake of 
ompleteness, we redo the formulation with one major 
hange, namely,the addition of the proper gyrokineti
 nonadiabati
 passing ele
tron response tothe ele
trostati
 potential �u
tuation. As our interest is in the passing nonadi-abati
 ele
tron dynami
s in ele
trostati
 limit, in the following we are redoing ades
ription of only the ele
trostati
 formulation [44℄.As appropriate for a linear stability study, the full distribution fun
tion fj(r,v, t)of spe
ies j is linearized about a suitable equilibrium f0j = f0j(r,v) su
h that
fj(r,v, t) = f0j(r,v) + f̃j(r,v, t) with the assumption that f̃j/f0j ≪ 1. Retainingterms up to the �rst order, we get ;

D

Dt

∣

∣

∣

∣

∣

u.t.p.

f0j(r,v) = 0, where
D

Dt

∣

∣

∣

∣

∣

u.t.p.

≡ ∂

∂t
+ r · ∇ +

qj
mj

(v ×B) · ∇v, (2.1)and
D

Dt

∣

∣

∣

∣

∣

u.t.p.

f̃j(r,v, t) = − qj
mj

Ẽ · ∇vf0j . (2.2)Here u.t.p implies unperturbed traje
tories of parti
les. As the formulation is linear,the traje
tories of the parti
les remain unperturbed. Also, note that B = ∇×A =

B ê|| is the equilibrium toroidal magneti
 �eld, Ẽ is the perturbed ele
trostati
�eld, qj and mj are the ele
tri
 
harge and mass of the spe
ies j, respe
tively.Expressing Ẽ in terms of ϕ̃ and de�ning the following 
hange of variables: (r,v) →
(r, ξ = v2/2, µ = v2⊥/2B) and using parti
le 
anoni
al angular momentum forthe spe
ies j, i.e., ψ0j = êφ · [r× (A+mjv/qj)] = ψ + mjrvφ/qj, one 
an write
f0j(r,v) = f0j(r, ξ, µ, ψ0j). Here 
ylindri
al 
oordinates r ≡ (r, φ, z) have beenintrodu
ed and ψ = rAφ is the poloidal �ux fun
tion per unit radian. Su
h atransformation would enable one to express f0j in terms of single parti
le 
onstantsof motion. Thus, ∇vf0j term on the right hand side of Eq. (2.2) be
omes

∇vf0j(r, ξ, µ, ψ0j) = v

(

1 +
mjrvφ
qj

∂

∂ψ0j

)

∂f0jψ
∂ξ

+
v⊥

B

∂f0jψ
∂µ

+
mjrêφ
qj

∂f0j
∂ψ0j

∣

∣

∣

∣

∣

ψ0=ψ

, (2.3)20



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakwhere f0jψ ≡ f0j(ψ0j = ψ) and êφ is the toroidal unit ve
tor. To obtain Eq. (2.3),
f0j is Taylor expanded to �rst order in {mjrvφ/qj} around ψ0j = ψ. Then, thefollowing gyrokineti
 ordering is used: ω/wcj ≪ 1, k⊥̺Lj ≃ O(1), k||̺Lj ≃
̺Lj/Leq << 1, where k−1

⊥ , k−1
|| , and ̺Lj are perpendi
ular perturbation s
ales,parallel perturbation s
ales and Larmor radius of the spe
ies j, respe
tively, and

Leq is a typi
al equilibrium s
ale length. Rewriting f̃j in Eq. (2.2), using the 
hangeof variables de�ned by
f̃j = h

(0)
j + ϕ̃

qj
mj

[

(

1− vφ
Ωpj

∇n

)

∂f0jψ
∂ξ

+
1

B

∂f0jψ
∂µ

]

, (2.4)and then invoking gyro-ordering followed by some standard ve
tor algebra, wearrive at
D

Dt

∣

∣

∣

∣

∣

u.t.p

h
(0)
j (r,v, t) = − qj

mj

[

∂f0jψ
∂ξ

∂

∂t
+
v||
B

∂f0jψ
∂µ

ê|| · ∇

+
1

Ωpj
∇nf0j

∣

∣

∣

∣

∣

ψ

êφ · ∇
]

ϕ̃+O(ǫ). (2.5)In Eqs. (2.4) and (2.5), we have introdu
ed the following de�nitions: Ωpj =

wcjBp/B, wcj = qjB/mj , ∇n = −rBp∂/∂ψ, Bp = |∇ψ|/r and h
(0)
j is the zerothorder term of the perturbative series in the �inverse gyro-frequen
y expansion� ofthe nonadiabati
 part

hj = h
(0)
j +

1

wcj
h
(1)
j +

1

w2
cj

h
(2)
j ......Note that sin
e D/Dt ≃ O(wcj), only h(0)j is retained whi
h is independent of wcjand hen
e the gyroangle (de�ned below). In the rest of this 
hapter h(0)j is referredto simply as hj. Equation (2.5) is our starting equation. Now let us pro
eed withthe gyro-averaging pro
edure. In a large aspe
t ratio tokamak geometry, velo
ity

v of a parti
le gyrating around a �eld line is v = v⊥(ê̺cosα+ êθsinα)+v||ê||, whereunit ve
tors (ê̺, êθ, êφ) de�ne the toroidal 
oordinates and α is the gyroangle. We
21



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakde�ne the gyro-averaging of a quantity �Q� as
< Q >=

1

2π

∫ 2π

0

dαQ(α; ..).In Eq. (2.5), the terms in square bra
kets [..℄, on the right hand side, are all equi-librium quantities and are independent of α. Thus, only the ele
trostati
 potentialis to be gyroaveraged. Similarly, on the left hand side, hj is independent of α,hen
e only D/Dt|u.t.p is to be gyro-averaged. Therefore,
D

Dt

∣

∣

∣

∣

∣

u.t.p

gyro−averaging
=⇒ D

Dt

∣

∣

∣

∣

∣

u.t.g

≡ ∂

∂t
+ (v||ê|| + vdj) ·

∂

∂R
,where vdj = (v2⊥/2 + v2||)êz/(rwcj), u.t.g. implies unperturbed traje
tory of guiding
enters, and R is de�ned by R = r+ v × ê||/wcj. Therefore,

< ϕ̃ >=
1

2π

∫ 2π

0

dα
[

ϕ̃(r[α], t)
]

∣

∣

∣

∣

∣

r=R−v×ê||/wcj

.Sin
e ϕ̃(r[α], t) is an unknown fun
tion, the gyro-averaging is performed by �rstFourier de
omposing these fun
tions, then representing the parti
le 
oordinate rby gyro-
enter R and remembering that
Jp(x) =

1

2π

∫ 2π

0

dα exp[ι(xsinα − pα)],With the above-mentioned pro
edure, one obtains the following gyrokineti
 equa-tion:
D

Dt

∣

∣

∣

∣

∣

u.t.g

hj(R,v, t) = −
(

qj
mj

)

[

∂f0jψ
∂ξ

∂

∂t
+
v||
B

∂f0jψ
∂µ

ê|| · ∇

+
1

Ωpj
∇nf0j

∣

∣

∣

∣

∣

ψ

êφ · ∇
]

(ϕ̃(k; )J0(k⊥̺Lj)) +O(ǫ). (2.6)The solution to Eq. (2.6) is obtained by the Green fun
tion te
hnique (unit sour
esolution say P) [60℄. An expli
it form of P is obtained analyti
ally by the methodof 
hara
teristi
s of unperturbed traje
tories of guiding 
enters (u.t.g) and followed22



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakby a perturbative te
hnique for the guiding 
enter velo
ity [44℄. Moreover, theunit sour
e solution, P, to Eq. (2.6) is independent of the type of perturbation(ele
trostati
 or ele
tromagneti
) and solely depends on the 
onsidered equilibrium.We assume for equilibrium f0j a lo
al Maxwellian of the form
f0j(ξ, µ, ψ) = fMj(ξ, ψ) =

N(ψ)
(

2πTj(ψ)

mj

)3/2
exp

(

− ξ

Tj(ψ)/mj

)

,so that ∂f0j/∂µ ≡ 0 by 
hoi
e and density pro�le N(ψ) is independent of thespe
ies type j. Thus, for a �sinusoidal� time dependen
e, the solution to Eq. (2.6)in guiding 
enter 
oordinates R is
hj(R,v, ω) = −

(

qjFMj

Tj

)
∫

dk exp
(

ιk ·R
(

ω − ω∗
j

))

(ι Pj) ϕ̃(k; )J0(k⊥̺Lj) +O(ǫ).Here, k = κ êρ + kθ êθ + kφ êφ and κ = (2π/∆ρ) kρ, with ∆ρ = ρu − ρl whi
hde�nes the radial domain, kφ = n/r and kθ = m/ρ; ω is the eigenvalue and
ω∗
j = ωnj

[

1 +
ηj
2

(

v2||
v2thj

− 3

)

+
ηjv

2
⊥

2 v2thj

]

,with ωnj = (Tj∇n lnNkθ)/(qjB) is the diamagneti
 drift frequen
y and ηj =

(d lnTj)/(d lnN). Note also that sin
e the large aspe
t ratio equilibria 
onsideredare axisymmetri
, the toroidal mode number �n� 
an be �xed and the problem ise�e
tively two dimensional in (ρ, θ) (
on�guration spa
e) or (κ, kθ) (Fourier spa
e).As our interest is in the nonadiabati
 passing ele
trons, let us now pro
eed tothe 
onstru
tion of the propagator for passing gyrokineti
 spe
ies. For trappedions one 
an see Ref. [44℄. Sin
e a gyroaveraged Vlasov equation 
an be solvedusing the method of integration along its u.t.g, for our spe
ial 
lass of �sinusoidal�time dependen
e, the solution P for a given (k, ω) is simply
P(R,k, ǫ, µ, σ, ω) =

∫ t

−∞

dt′ exp (ι [k · (R′ −R)− ωt′])

=

∫ t

−∞

dt′ exp

(

ι

∫ t′

dt′′k · vg(t′′)− ιωt′

)

, (2.7)
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Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakwhere guiding 
enter velo
ity dR/dt = vg = v||+vd and R(t) is to be obtained bysolving for guiding 
enter traje
tories as an �initial value problem� in equilibrium
onsidered above. This is done by �rst assuming that the 
ross-�eld drift terms[vd℄ are small and drop them at the zeroth order and to in
lude them iterativelyat the next order. This pro
edure gives us P,
ιP =

∑

p,p′

Jp(x
σ
tj)Jp′(x

σ
tj)

ω − σk||v|| − pωt
exp(ι(p− p′)(θ − θ̄σ)), (2.8)where xσtj = k⊥ξσ, ξσ = vd/ωt, vd =

(

v2⊥/2 + v2||

)

/(ωcR), ωt = σv||/(q(s)R), σ = ±1(sign of v||), k⊥ =
√

κ2 + k2θ , k|| = [nq(s)−m] /(q(s)R) and θ̄σ is de�ned as
tan θ̄σ = −κ/kθ and s = ρ/a, a−is the minor radius. A few points to be noted hereare as follows: (1) Note that the grad-B and 
urvature drift e�e
ts appear throughthe argument of Bessel fun
tions (xσtj = k⊥vd/ωt) of Eq. 2.8. Thus, for example,�radial and poloidal 
oupling� vanishes if xσtj = 0 in Eq. 2.8 and one would arrive at�
ylindri
al� results. Hen
e in our model, Bessel fun
tions in Eq. 2.8 bring about
oupling between neighboring �ux surfa
es and also 
ouple neighboring poloidalharmoni
s. (2) The argument of Bessel fun
tions Jp's in Eq. (2.8) i.e., xσtj = k⊥ξσ,also depends on transit frequen
y ωt, xσtj 
an be
ome xtj ≃ O(1). Hen
e transitharmoni
 orders are to be 
hosen a

ordingly. (3) While performing the numeri
al
al
ulations, we have approximated the parti
le speeds in ξσ by their lo
al thermalvelo
ity values and hen
e use ξσ =< ξσ > where < ξσ >= 2σsign(qj)q(s)̺Lj . (4)The parallel velo
ity v‖ of the parti
les are 
onsidered to be independent of time.That means that the passing parti
les are modelled as deeply passing. In thisform, P 
ontains e�e
ts su
h as transit harmoni
 and its 
oupling, parallel velo
ityresonan
es and poloidal mode 
oupling.To obtain the parti
le density �u
tuation ñj(r;ω), one requires to go fromthe guiding 
enter (GC) 
oordinate R to the parti
le 
oordinate r using R =

r + v × ê||/wcj, by repla
ing hj using Eq. (2.4) followed by the integration over vkeeping in mind the gyroangle integration over α. This last integration on α yieldsan additional Bessel fun
tion �J0� for ϕ̃. Thus, in real spa
e r, for spe
ies j, we
24
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/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamak�nally have
ñj(r;ω) = −

(

qjN

Tj

)

[

ϕ̃+

∫

dk exp (ιk · r) ×

∫

dv
fMj

N

(

ω − ω∗
j

)

(ιPj) ϕ̃(k; )J2
0 (xLj)

]

, (2.9)where xLj = k⊥̺Lj . It may be worthwhile to emphasize that the equilibriume�e
ts (in
orporated in P) and perturbation e�e
ts are 
learly delineated in theformulation. Equations are �nally 
losed by invoking the quasineutrality 
ondition,
∑

j

ñj(r;ω) ≃ 0. (2.10)Equation (2.10) de�nes a generalized eigenvalue problem with eigenvalue ω andeigenve
tor ϕ̃. This eigenvalue problem is 
onveniently solved in Fourier spa
e.By Fourier de
omposing the potential in Eq. (2.10) and then taking Fourier trans-form,we obtain a 
onvolution matrix in Fourier spa
e. If we assume a hydrogen-likeplasma (i.e., single 
harged) with ions, ele
trons, trapped ions, we have
∑

k′

∑

j=i,e,tr−i

M̂j
k,k′ ϕ̃k′ = 0, (2.11)where k = (κ,m) and k

′ = (κ′, m′). Note that we have three spe
ies: Passing ions(i), passing ele
trons (e), and trapped ions (tr-i).In the following, we dis
uss in detail the formulation for nonadiabati
 passingspe
ies. With the de�nitions, ∆ρ = ρu − ρl (upper and lower radial limits), ∆κ =

25
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/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamak
κ− κ′ and ∆m = m−m′ the matrix elements are given as follows.

M̂i
k,k′ =

1

∆ρ

∫ ρu

ρl

dρ exp(−ι∆κρ)

×
[

αpδmm′ + exp(ι∆mθ̄)
∑

p

Î0p,i

]

, (2.12)
M̂e

k,k′ =
1

∆ρ

∫ ρu

ρl

dρ exp(−ι∆κρ)

×
[

αp
τ(ρ)

δmm′ +
exp(ι∆mθ̄)

τ(ρ)

∑

p

Î0p,e

]

, (2.13)where
Î lp,j =

1√
2πv3th,j(ρ)

∫ vmaxj (ρ)

−vmaxj(ρ)

vl||dv|| exp

(

−
v2||

v2th,j(ρ)

)

×
{

N j
1I

σ
0,j −N j

2I
σ
1,j

Dσ,j
1

}

p′=p−(m−m′)

, (2.14)
Iσn,j =

∫ v⊥max,j(ρ)

0

v2n+1
⊥ dv⊥ exp

(

− v2⊥
2v2th,j(ρ)

)

×

J2
0 (xLj)Jp(x

′σ
tj )Jp′(x

′σ
tj ). (2.15)We have introdu
ed the following de�nitions: v⊥max,j(ρ) = min(v||/

√
ǫ, vmax,j)whi
h is �trapped parti
le ex
lusion� from ω−independent perpendi
ular velo
-ity integral Iσn,j; αp = 1 −

√

ǫ/(1 + ǫ) is the fra
tion of passing parti
les; Î lp,j, is
ω − dependent parallel integrals; xσtj = k⊥ξσ. Also,

N j
1 = ω − wn,j

[

1 + (ηj/2)(v
2
||/v

2
th,j)− 3)

]

,

N j
2 = wn,jηj/(2v

2
th,j), and

Dσ,j
1 = < wt,j(ρ) > (nqs −m′(1− p)(σv||/vth,j)− ω,where < wt,j(ρ) >= vth,j(ρ)/(rqs), is the average transit frequen
y of the spe
ies

j. As integrals Iσn,j are independent of ω and dependent only on v⊥, σ and otherequilibrium quantities, one may 
hoose to 
al
ulate and store them as interpolation26
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/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamaktables (memory intensive) or, alternatively, one may 
hoose to 
al
ulate them whenneeded (CPU-time intensive). In the next se
tion, we will spe
ify some diagnosti
sand normalizations used in the 
ode.2.2.1 Diagnosti
s: Eigenmode-averaged quantitiesSimple diagnosti
s for various physi
al quantities are 
omputed as averages overthe eigenmode. For example, mode-averaged poloidal, radial and perpendi
ular
omponents of the wave ve
tor ~k of the most unstable mode 
an be evaluated as
< kθ >

2=

∫

dρ
∑

m

|m
ρ
ϕ(k,m)|2

∫

dρ
∑

m

|ϕ(k,m)|2
,

< kρ >
2=

∑

(k,m)

|φ(k,m)(k2π/△ρ)|2

∑

(k,m)

|ϕ(k,m)|2
,and

< k⊥ >
2=< kρ >

2 + < kθ >
2where quantities with su�x �(k,m)� imply Fourier weights of the 
orrespondingperturbations.2.2.2 Normalization for full radius 
al
ulationDistan
es are normalized to minor radius �a�; i.e., s = ρ/a. Radial position where

ηj peaks is represented as s = s0. Frequen
ies and growth rates are normalizedto ωd0 = vthi(s = s0)̺Li/a
2, k⊥ is normalized to its lo
al (ion/ele
tron) inverseLarmor radius ̺−1

Lj (s), k|| to L−1
n (inverse density gradient length s
ale), magneti
�eld B to B(s = 0), density to N(s = s0), temperature T to T (s = s0), andvelo
ities (v⊥, v||) to vthi(s) (i.e., to their radially lo
al thermal values).All input quantities to the 
ode EM-GLOGYSTO are in SI units, ex
ept tem-perature of given spe
ies whi
h is in eV . Hen
e, for example, vthi is 
omputedusing v2thi(in m/s) = Ti(in Joule)/mi(in Kg) = |e|Ti(in eV)/mi(in Kg), where |e| is27
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/kineti
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trostati
 ion temperature gradient driven modes in a tokamakabsolute value of ele
troni
 
harge. Thus, for example, for parameters throughoutthis 
hapter, we have ωd0 ≃ 3× 104 s−1.2.3 Eigenvalue �nding methodThe eigenvalue solver is devised by Brunner et al. [11℄ applying the method pro-posed by Davies [176℄ along with further optimization. For the sake of 
ompletenesswe elu
idate the method again as follows.The method uses the advantage of the fa
t that D(ω) is analyti
. Let us 
onsiderthat h(z) is an analyti
 fun
tion inside a 
losed positively oriented 
ontour C. Ifit is possible to determine the number N of the en
losed zeros ai, i = 1, ..., Nusing the prin
iple of argument, the method is then based on the evaluation of anequivalent number of integrals:
Sn =

1

2i

∫

C

zn
h(z)

h(z)
dz n = 1, ......, N,whi
h have the property

Sn =
N
∑

i=1

ani , n = 1, ..., N. (2.16)The set of equations (2.16) is then solved �nding the roots of the asso
iated poly-nomial de�ned by
PN(z) =

N
∏

i=1

(z − ai) =
N
∑

i=1

Aiz
N−i.One 
an 
al
ulate the 
oe�
ients An from Sn using a re
ursive relation as follows.

S1 + A1 = 0

S2 + A1S1 + 2A2 = 0

Sk + A1Sk−1 + A2Sk2 + ... + kAk = 0, k = 1, ..., N.The original numeri
al te
hnique by Davies is developed for 
ir
ular 
ontours. Thishas been generalized by Brunner et al. [11℄ to allow for more elongated 
urves in28
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y plane. This is a
hieved by applying the above method along a unit
ir
le to the fun
tion D(z) = D(ω(z)) with ω(z) being a 
onformal transformationof the unit dis
 at origin. By 
onsidering,
ω(z) = ω̃ + r z(Ez2 + 1)the unit 
ir
le in the z-plane is transformed to a more oval-shaped 
urve in the

ω-plane 
entered at ω̃ with average radius r. The elongation and orientation arede�ned by the 
omplex parameter E (|E| ≤ 0.1). In this method the determinantmust only be evaluated along a 
ontour. Furthermore, up to ten roots inside asingle 
urve 
an dire
tly be obtained without any further re�nement. To a
hievea

ura
y, the number of equidistant sampling points along the unit 
ir
le is in-
reased until the maximum jump in the argument of D(ω(z)) is less than π/2.On
e an eigenfrequen
y ωi is identi�ed, the 
orresponding eigenmode 
an be eval-uated by 
onsidering an inhomogeneous right hand side in (2.11) by putting ω = ωiand then solving the equation for φ. The initial right hand side is taken as a �rstguess of the eigenve
tor stru
ture whi
h is then repeated iteratively until 
onver-gen
e is attained.2.4 Results and Dis
ussionWe 
hoose pro�les and parameters as presented in Table 2.1 to demonstrate thee�e
t of nonadiabati
 passing ele
trons on global ITGs. For these parametersequilibrium pro�les are shown in Fig. 2.1. For the above-mentioned parameters,value of ρ∗ ≡ ρLi(s = s0)/a ≃ 0.0175.2.4.1 n-s
an: E�e
t of variation of ηe, multis
ale featuresand mixing length transportGrowth rates γ and real frequen
ies ωr of global ITG mode as fun
tions of kθρLiis shown in Fig. 2.2. E�e
t of adiabati
 and nonadiabati
 ele
tron responses forvarious values of ηe is presented in the �gure. Note that this kind of higher ηevalues are often seen in ele
tron internal transport barriers [63℄. The growth peaksaround n ≃ 9. This result shows that the ele
tron nonadiabati
ity indeed a�e
ts29



Chapter 2: Role of nonadiabati
/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamak
Table 2.1: Pro�les and parametersParameters: Equilibrium Pro�les:

• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.4 m, LT0 = 0.2 m −0.06 s4

• ηi,e(s0) = 2.0, ǫn = Ln0/R = 0.2 su
h that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.
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Figure 2.1: Equilibrium pro�les for global ITGs stability studies (parameters forTable 2.1: Normalized density, temperature, ηi,e (left), Safety fa
tor q and magneti
shear ŝ (right) pro�les as fun
tions of normalized radius s = r/a. Note that η peaksat s = ρ/a = s0 = 0.6
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Figure 2.2: Growth rates and frequen
ies for pro�les in Fig. 2.1: Growth rate γ andreal frequen
y ωr for ηi(s0) = 2 with adiabati
 ele
tron model and nonadiabati
ele
tron model 
hara
terized by in
reasing ηe.the growth rates, in general. For �nite time taken by passing ele
trons to respond to
E-perturbations, espe
ially in regions where the magneti
 surfa
e is mode-rational(i.e., where k||m,n ≃ 0), the nonadiabati
 
ontribution is signi�
ant.To elu
idate this idea, for ηi = 2.0, we have 
omputed the global eigenmodestru
tures of ITG at n = 9, where the growth rate peaks. Again, for ele
trons wehave two 
ases: (i) Adiabati
 ele
tron response and (ii) nonadiabati
 ele
tron re-sponse with in
reasing values for ηe. For example, in Fig. 2.3, eigenmode stru
turesfor the adiabati
 ele
tron 
ase are 
ompared with that for the 
ase of nonadiabati
ele
tron response with ηe = 2.The �ballooning� nature of the modes on the �bad 
urvature� region is also
learly demonstrated. For example, unlike a �
ylindri
al� or �slab� ITG, here forea
h value of n there are about 10 poloidal mode numbers m 
oupled. This isagain seen in Fig. 2.4, where at a radial lo
ation say s = r/a = 0.6, one 
an seea predominant Fourier 
ontribution from several m numbers. The global natureof the mode is adequately demonstrated by proje
ting the eigenmode on to thepoloidal plane. The mode width indeed o

upies about 30 % of the minor radius
a extending over several mode-rational surfa
es r = rMRS .Note that at lo
ations where k‖m,n = 0, the mode stru
ture is very sharp forITGs with nonadiabati
 ele
trons, whereas no su
h e�e
t is dete
table for ITGswith the usual adiabati
 ele
trons. Consequently, the number of radial wavenum-31
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Figure 2.3: Two-dimensional eigenmode stru
ture of global ITG at n = 9, ηi(s0) =
2 for adiabati
 ele
tron response (left panel) and nonadiabati
 ele
tron response(right panel) at ηe(s0) = 2. Global nature of the mode is 
learly visible 
overingabout 30% of the minor radius.bers kr needed to be resolved in
reases, as seen in Fig. 2.5.To understand the stru
tures, let us look at the mode-rational surfa
es andphase velo
ity vphm,n a
ross the entire minor radius for equilibrium q pro�les shownin the above table (Fig. 2.1). In Fig. 2.6 for n = 9, ωr/k‖m,n, the per-modephase velo
ity is plotted as fun
tion of normalized radius along with vthe and
vthi. If one assumes adiabati
 ele
tron response, as is usually done, then in bothrapidly in
reasing regions of vphm,n (i.e., as r → rMRS) as well as in regular regions(r 6= rMRS), ele
trons are �for
ed� to respond �instantaneously�. However, as
an be seen from Fig. 2.6, in regions 
lose to r = rrms ele
trons 
annot respondinstantaneously, but take �nite time to respond. Thus, if the 
orre
t nonadiabati
response is in
orporated then for all radial lo
ations (i.e., for all per-mode phasevelo
ities), there would be appropriate ele
tron response. For example, for regions
r 6= rMRS, where vphm,n is small 
ompared to vthe(r), automati
ally the response willbe adiabati
. In the same way, as r → rMRS, the lo
al phase velo
ity in
reasesand hen
e strong deviations from adiabati
ity o

ur, whi
h will be automati
allya

ounted for. Su
h nonadiabati
 e�e
ts are indeed important for global ITGs asthey alter both growth rate and mode stru
tures remarkably. 32
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Figure 2.4: The poloidal Fourier 
omponents for ele
trostati
 mode shown inFig. 2.3. Note that at ea
h radial lo
ation, there are several poloidal harmon-i
s 
oupled. A few lo
ations where k‖m,n = 0 (i.e, nq = m) are indi
ated on thetop axis. Nonadiabati
 ele
trons introdu
e sharp stru
ture near these points.
33
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k
rFigure 2.5: Radial Fourier harmoni
s for ea
h poloidal mode for the ele
trostati
mode shown in Fig. 2.3. Here we have used 144 modes. For numeri
al 
onvergen
e,we have tested with larger number of radial harmoni
s and observe that the resultsare 
onverged.An alternate way of understanding this situation is as follows: Nonadiabati
ele
tron response allows residual unneutralized E �eld, and introdu
es phase delaybetween density and potential �u
tuations and the 
on
omitant growth. Multi-s
ale features seen in mode stru
ture may remind one of nonlinear e�e
ts su
has zonal �ows, whi
h �break up� the modes resulting in slower rates of growthfor ITGs. However, here the exa
t opposite happens. The linear mode stru
tureis �broken up� due to linear nonadiabati
 response of ele
trons introdu
ing phasedelays and thus pronoun
ed growth rates. In Fig. 2.7, we show a 
loseup of globaleigenmodes with adiabati
 and nonadiabati
 ele
tron responses.These �broken up� stru
tures, whi
h we 
all as multis
ale stru
tures, in turn, in-
rease the e�e
tive or mode-averaged wavenumber as 
ompared to the adiabati
ele
tron model. For example, eigenmode averaged krρLi, kθρLi and k⊥ρLi for adia-bati
 ele
tron model and nonadiabati
 ele
tron model with ηe = 2 and ηe = 8 areshown in Fig. 2.8 for various values of n. Note that due to the sharp radial stru
-ture introdu
ed by nonadiabati
 ele
trons, the e�e
tive k⊥ρLi has been enhan
edin both 
ases of ηe. It would then be interesting to 
onstru
t the so-
alled �mixinglength� transport for transport 
oe�
ient, DML = γ/ < k2⊥ > from the lineargrowth rate γ and mode-averaged k⊥, i.e., < k⊥ >. In Fig. 2.9, we present themixing-length estimates in the usual gyro-Bohm units as a fun
tion of the toroidalmode number n. It is found that 
ompared to the adiabati
 ele
tron model, the34
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Figure 2.6: Typi
al per-mode phase velo
ity ωr/k‖m,n versus normalized minor ra-dius s = r/a for equilibrium pro�le of q shown in Fig. 2.1 with ηe(s0) = 8, ηi(s0) =
2, n = 9. Lo
ations of peaks (r = rMRS) indi
ate mode rational surfa
es. Thehorizontal dashed lines are the ele
tron thermal velo
ities vminthe and vmaxthe at radiallo
ations at the beginning (s=0.4) and end (s=0.7) of mode stru
ture, respe
tively.The horizontal dashed-dotted lines are ion thermal speeds at same lo
ations as theele
trons.

Figure 2.7: Closeup of two dimensional eigenmode stru
ture of global ITG at n = 9,
ηi = 2 for (a) adiabati
 ele
tron response, (b) nonadiabati
 ele
tron response at
ηe(s0) = 2 and (
) same as (b) at ηe = 8(s0). 35
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Figure 2.8: Eigenmodeaveraged normalized modenumbers < kθρLi >(squares), < krρLi >(diamonds), < k⊥ρLi >(stars) as a fun
tion oftoroidal mode number n at
ηi(s0) = 2; (a) adiabati
ele
tron response, (b) nona-diabati
 ele
tron responseat ηe(s0) = 2, and (
) sameas (b) at ηe(s0) = 8.
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ient DML = γ/ < k2⊥ > ingyro-Bohm units as a fun
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 ele
tron response at
ηe(s0) = 2 (dashed line), and(
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Figure 2.10: For the highest growth rate mode toroidal mode number n = 9, ηis
an is performed for three 
ases of ele
tron model: (a) Adiabati
 ele
tron response(solid line), (b) nonadiabati
 ele
tron response at ηe(s0) = 2 (dashed line), and(
) same as (b) at ηe(s0) = 8 (dot-dashed line). Results 
learly show that ηi,crit isdownshifted.transport predi
ted from global ITGs for nonadiabati
 ele
trons results in redu
-tion in transport. It is important to note that the presen
e of nonadiabati
 trappedele
trons [11℄ may alter the levels of transport observed here due to nonadiabati
passing ele
trons.It may be of interest to note that both nonlinearly generated zonal �ows andlinear but non adiabati
 passing ele
trons "breakup" the mode stru
tures. Whilethe zonal �ow breakup is not related to any parti
ular surfa
e (k‖ = 0 everywherefor the m = 0, n = 0 zonal �ow potential perturbation), the presently studiede�e
t o

urs due to m 6= 0, n 6= 0 but k‖ = 0 mode-rational surfa
es.2.4.2 ηi s
an: Nonadiabati
 ele
trons 
ause down-shift of
riti
al ηiNext, we study the e�e
t of nonadiabati
 passing ele
trons on the 
riti
al ion tem-perature gradient parameter ηi. For adiabati
 ele
trons, global ITGs are known tobe unstable at about ηi,crit ≃ 1.1. Here, we follow the highest growth rate mode,namely, n = 9, and investigate the smallest value of ηi at whi
h this mode be
omes37
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/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakunstable. We have studied again three 
ases: Global ITGs (i) with adiabati
 ele
-trons (ii) with nonadiabati
 ele
trons at ηe = 2, and �nally (iii) with nonadiabati
ele
trons with ηe = 8. We �nd that the 
riti
al ηi is redu
ed 
ompared to the adia-bati
 ele
tron model. This result is perhaps not surprising. As we have seen in thepre
eding se
tion, nonadiabati
 ele
trons tend to further destabilize global ITGsas 
ompared to global ITGs with adiabati
 ele
trons. Hen
e one may expe
t thata relatively weaker ion temperature gradient would destabilize global ITGs now as
ompared to the adiabati
 ele
tron model. This expe
tation is indeed shown tobe true in Fig. 2.10. Physi
s-wise this result implies that, for example, for similardensity pro�les, in tokamaks with steeper ele
tron temperature gradient than ions,global ITGs would be
ome unstable for smaller values of ηi than predi
ted by adi-abati
 ele
tron models, thus down-shifting the 
riti
al ηi. This linear phenomenonis in 
ontrast to up-shifting of 
riti
al ηi when nonlinear zonal �ows are allowed toevolve simultaneously with ITGs [5, 114℄.2.5 Con
lusionWe have presented a 2D global gyrokineti
 stability study as appli
able to largeaspe
t ratio tokamaks. We have fo
used on the e�e
t of treating ele
trons onthe same physi
s footing as ions, meaning fully nonadiabati
 ele
trons. For thisstudy, we have in
luded passing ions, trapped ions and passing ele
trons. Themodel in
ludes arbitrary order FLR e�e
ts, kineti
 e�e
ts su
h as Landau damping,transit/trapped parti
le resonan
es, poloidal and radial 
oupling, and magneti
resonan
es. With the above-mentioned model for ele
trons, we have reported thestudy of global toroidal ITGs for low toroidal mode numbers in the range 3 < n <

15. There are several interesting new results:[1℄ For nearly the same values of ηi and ηe, the global mode stru
ture is observedto 
hange dramati
ally. With in
reasing ηe values, i.e., with more nonadia-bati
ity, growth rates also are seen to in
rease. Thus, we 
on
lude that, ingeneral, nonadiabati
 passing ele
tron dynami
s destabilize global ITGs.[2℄ Important stru
tural 
hanges in the eigenmode stru
ture appear near themode-rational surfa
es where per-mode k‖m,n vanishes. On these surfa
es,the lo
al phase velo
ity grows qui
kly. Be
ause the mode is global and38
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/kineti
 passing ele
trons in globalele
trostati
 ion temperature gradient driven modes in a tokamakspans a
ross several mode rational surfa
es, generalizing ele
tron dynam-i
s, as done in the present study, introdu
es a multis
ale nature in globalITG eigenmodes. These e�e
ts in turn alter the e�e
tive k⊥. A 
ombinationof these e�e
ts appears to bring down the mixing length transport estimatesas 
ompared to global ITGs with adiabati
 ele
tron dynami
s.[3℄ Finally, an important fall out is the down-shift of 
riti
al ηi values as 
om-pared to the adiabati
 ele
tron model.

39



Chapter 3Trapped Ele
tron Coupled IonTemperature Gradient Mode AndTrapped Ele
tron Mode In ThePresen
e Of Nonadiabati
 PassingEle
trons
3.1 Introdu
tionAnomalous transport in 
ollisionless hot tokamak plasmas is believed to be dueto the drift waves driven by the density and temperature gradients [4, 5℄ of theparti
les in a magneti
ally 
on�ned plasma. While the turbulent heat �ux of ionsis believed to be driven by the ion temperature gradient (ITG) mode, the ele
tronheat and parti
le �ux, on the other hand, is expe
ted largely to be driven by thetrapped ele
tron mode (TEM) in the low magneti
 �eld side of a tokamak on ions
ales (of the order of ion Larmor radius) and by the ele
tron temperature gradient(ETG) mode on ele
tron s
ales (of the order of ele
tron Larmor radius). Enormouse�ort has been put to understand the underlying physi
s issues both theoreti
allyand 
omputationally and then to mat
h the predi
ted transport �ux with thatobserved experimentally.The study of ion transport by the ITG mode has started with simple mod-40



Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsels [30, 31℄, where ele
trons are treated adiabati
. The next step is then to in
orpo-rate the nonadiabati
 ele
trons. This has been a
hieved in the the form of trappedele
trons in
luded in the ba
kground model of nonadiabati
 ions and adiabati
passing ele
trons. This has extended the study of this 
lass of mi
roinstabilities tothe trapped ele
tron 
oupled ITG mode (ITG-TEM) [11, 12, 13, 14, 15, 16, 17, 18℄mode and TEM [11, 25, 26, 28, 32℄. The new models with trapped ele
trons givegrowth rate two to three times larger than that in the 
ase of simple adiabati
ele
tron models. At the same time, the transport �ux is observed to rise substan-tially. A 
omparison of gyro�uid [33℄ and 
ontinuum gyrokineti
 [34℄ simulationof transport in realisti
 geometry with experiments has been 
arried out, and theele
tron thermal di�usivity, ion thermal di�usivity, and perturbed density �u
tu-ation level are found to ex
eed the experimental value by fa
tors of more thantwo. The reason of this deviation is spe
ulated to be due to the non-lo
al behaviorowing to the variation of plasma gradients.Following this, sophisti
ated �ux ribbon 
odes have 
ome up with advan
edfeatures [35, 36℄ to redu
e the dis
repan
y between experiments and 
omputa-tional results [37℄. The kineti
 ele
tron simulation with trapped parti
les usinga generalized split weight s
heme to δf gyrokineti
 parti
le method is performedin Ref. [38℄. The result shows signi�
ant in
rease in the ion heat di�usivity in
omparison to that in the 
ase of the adiabati
 ele
tron model in line with thein
reased growth rate. However, the experimentally observed ion di�usivity [39℄ ismu
h lower than that predi
ted by the adiabati
 ele
tron models. Thus, a more
omplete gyrokineti
 model that treats ele
trons and ions on the same physi
sfooting with global pro�le e�e
ts is very mu
h sought to address su
h anomaly.The major problem with the in
orporation of full dynami
s of ele
trons in
lud-ing the passing fra
tion nonadiabati
ally or kineti
ally in a time dependent modelis their fast parallel motion. The high mobility of these ele
trons needs higherresolution in their response time s
ale, and is a formidable task in the presen
e offull ion dynami
s, the issue of whi
h is dis
ussed elaborately in Ref. [40℄. Withadvan
es in 
omputational fa
ilities signi�
ant progress has been a
hieved to thisend to treat the ele
trons fully kineti
ally [36, 157, 139℄. However, sometimes sim-ulations 
hoose redu
ed ion to ele
tron mass ratio to downsize the 
omputational
ost [32, 40, 42℄.In the present 
hapter, we take into a

ount the e�e
t of the trapped ele
-41



Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronstrons [11℄ in the model. The spirit is to show the role of kineti
 ele
trons, whi
hwe term as �nonadiabati
� passing ele
trons, on the trapped ele
tron 
oupled iontemperature gradient mode (ITG-TEM) and trapped ele
tron mode (TEM). It isobserved that in
lusion of nonadiabati
 passing ele
trons in�uen
es strongly thegrowth rate of the ITG-TEM and TEM and brings �ne radial stru
tures of themode on the mode rational surfa
es. A 
al
ulation of �ux is done based on themixing length estimation. It predi
ts transport level below those obtained fromadiabati
 ele
tron models.To serve our purpose, we use the ele
trostati
 version of the fully gyrokineti
,fully ele
tromagneti
 global linear stability model EM-GLOGYSTO appli
able tolarge aspe
t ratio tokamaks. We drop the parallel and perpendi
ular magneti
 �eldperturbation, i.e., B⊥ and B|| �u
tuations, Shafranov shift and equilibrium �ows.Thus, parti
le nonadiabati
ity for passing ions and trapped ions, passing ele
tronsand trapped ele
trons, FLR e�e
ts to all orders for all spe
ies, kineti
 resonan
es,viz., trapped and transit resonan
es, poloidal and radial 
oupling of modes due toparti
le drifts a
ross magneti
 �ux surfa
es are taken into a

ount.3.2 Model equationsIn real spa
e r, for spe
ies j, the perturbed density 
an be expressed as due toadiabati
 and nonadiabati
 responses of the 
onstituting parti
les. Thus, for our
ase, the perturbation in density for spe
ies j 
an be expressed as
ñj(r;ω) = −

(

qjN

Tj

)

[

ϕ̃+

∫

dk exp (ιk · r)

∫

dv
fMj

N

(

ω − ω∗
j

)

(ιPj) ϕ̃(k; )J2
0 (xLj)

]

, (3.1)where the �rst term on right hand side 
orresponds to the adiabati
 response,while the se
ond term represents the nonadiabati
 response of the parti
les toa perturbation with all its kineti
 e�e
ts. Also, qj and Tj are the 
harge and
42
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tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronstemperature for spe
ies j, respe
tively, and N is the equilibrium density.
ω∗
j = ωnj

[

1 +
ηj
2

(

v2||
v2thj

− 3

)

+
ηjv

2
⊥

2 v2thj

]

,where ωnj = (Tj∇n lnNkθ)/(qjB) is the diamagneti
 drift frequen
y; ηj = (d lnTj)/(d lnN),
v‖ and v⊥ represent parallel and perpendi
ular velo
ities, respe
tively, and vthjis the thermal velo
ity of spe
ies j. J0(xLj) is the Bessel fun
tion of argument
xLj = k⊥ρLj, presenting the FLR e�e
t. We 
onsider a lo
al Maxwellian for ea
hspe
ies of mass mj as

fMj(ξ, ψ) =
N(ψ)

(

2πTj(ψ)

mj

)3/2
exp

(

− ξ

Tj(ψ)/mj

)

where ξ = v2/2. Also in Eq.(4.3) Pj represents the guiding 
enter propagator forpassing parti
les of type j = i, e. For details of the propagator for trapped parti
lesthe reader is referred to Ref. [11℄.Introdu
ing quasineutrality 
ondition
∑

j

ñj(r;ω) ≃ 0; , (3.2)one would �nally end up with a generalized eigenvalue problem where ω and ϕ̃respe
tively are the eigenvalue and eigenve
tor, whi
h 
an then be 
onvenientlysolved in Fourier spa
e by Fourier de
omposing the potential in Eq.(6.1) �rst andthen taking Fourier transform to eventually obtain a 
onvolution matrix in Fourierspa
e. With single 
harged passing ions (i), ele
trons (e) along with trapped ions(tr-i) and ele
trons (tr-e) we have
∑

k′

∑

j=i

M̂j
k,k′ ϕ̃k′+

∑

k′

∑

j=tr−i

M̂j
k,k′ ϕ̃k′+

∑

k′

∑

j=e

M̂j
k,k′ ϕ̃k′+

∑

k′

∑

j=tr−e

M̂j
k,k′ ϕ̃k′ = 0,where k = (κ,m) and k

′ = (κ′, m′).
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Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsThe trapped ion 
ontribution to the matrix is given by [11℄
M tr−i

k,k′
=

1

△ρ

∫ ρu

ρl

dρe−i(κρ−κ
′
ρ)ρ

(

−Rqs
B0

Nq2

T

)[

αbδm,m′ +

√

2A−1

π
×

∫ +∞

0

dE
√
Ee−E(ω − ω∗

′

)J2
0 (x

′

L)

IX

(

x̃b(k
′
, m), x̃b(k

′
m

′
), p

)

e
ip

[

βb(k
′
,m)−βb(k

′
,m

′
)

]

n < φ̇ >b −pωb − ω

]

,(3.3)where
IX(x̃b, x̃

′

b, p) =

∫ 1

0

dXJp(xb)Jp(x
′

b)

=

∫ 1

0

dXJp(
√
Xx̃b)Jp(

√
Xx̃

′

b),

x̃b(k,m; ρ, ε) = 2

√

(m− nqs)2 +
(qskρ

Ω

)2 ε

A−1
,

cos βb(~k) =
(m− nqs)θb

xb
, and sin βb(~k) =

kbρb
xb

.Also,
X =

1− λBmin/B0

2λA−1
,For 
ir
ulating parti
les,

0 < λ <
B0

Bmin
⇐⇒ 1 < X < +∞,and for trapped parti
les,

B0

Bmax
< λ <

B0

B
<

B0

Bmin
⇐⇒ 0 < sin2 θ

2
< X < 1,where Bmax, min = B0(1 ± A−1) and B = B0(1 − A−1 cos θ) the magneti
 �eld at44



Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsthe point of interest (ρ, θ). Furthermore, we use the following standard notations:
E = ε/v2th is normalized energy variable,
ε = v2/2 the kineti
 energy,
xL = k⊥

√
2ε/Ω,

Ω = qB/M the 
y
lotron frequen
y,
vth =

√

T/M the thermal velo
ity,
µ = v2⊥/2B the magneti
 moment,
λ = B0µ/ε the pit
h angle variable,
ωb =

√
A−1ε/Rqs the boun
e frequen
y,

θb = 2
√
X the turning point angle of the trapped parti
les,

ρb = 2qs
√
εX/Ω

√
A−1 the half banana width,and A−1 = ρ/R the inverse aspe
t ratio.The toroidal pre
essional drift < φ̇ >b for the large aspe
t ratio 
an be written as[177℄

< φ̇ >b= − ε

R2Ω

qs
A−1

G,

G(ρ,X) = 4λ
{

ŝ
[

(X − 1) +
E(X)

K(X)

]

+
1

2

[E(X)

K(X)
− 1

2

]}

, for 0 < X < 1,where K(X) and E(X), respe
tively, are 
omplete ellipti
 integrals of �rst andse
ond kind, and ŝ = d ln qs/d ln ρ stands for magneti
 shear. A singleX− averagedvalue < G >X for ea
h magneti
 surfa
e ρ is 
onsidered instead of 
onsidering thedeeply trapped limit X << 1 [11℄. Note that the adiabati
 term in Eq. (3.3) isweighted by the fra
tion αb of the trapped parti
les. For the ele
trons, a boun
eaveraged relation [178℄ is 
onsidered. Also the FLR and banana width e�e
ts 
anbe negle
ted. Thus the simpli�ed relation for trapped ele
trons [11℄ 
an be writtenas
M tr−e

(k,k′)
=

1

△ρ

∫ ρu

ρl

dρe−i(κρ−κ
′
ρ)ρ

(

−Rqs
B0

Nq2

T

)[

αbδm,m′ +

√

2A−1

π
×

∫ 1

0

dXλ
√
λ

Iθ(m)Iθ(m′ )

n < φ̇ >b0 K(X)
×

{

[

ω − ωne(1−
3

2
ηe)
]

W (z)− ωneηe
[ ω

n < ϕ̇ >b0

W (z) +
1

2

]

}

]

, (3.4)
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Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsFigure 3.1: Growth rate
γ (dashed line) and realfrequen
y ωr (solid line)for ηi(s0) = 2 (i) forpure ITG with adiabati
ele
tron model (squares),(ii)ITG-TEM without nonadia-bati
 passing ele
trons (dia-monds), and (iii) ITG-TEMwith nonadiabati
 passingele
trons at ηe(s0) = 2.0(�lled 
ir
les). 0.2 0.4 0.6 0.8
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where
W (z) =

1

2π

∫ +∞

−∞

x

x− z
exp

(−x2
2

)

dx, Im(z) > 0,is the plasma dispersion fun
tion [179℄. The other quantities are de�ned as follows.
Iθ(m; ρ,X) =

∫ θb

0

dθ
cos(m− nqs)θ

√

(X − sin2(θ/2))
,and

τb =
2Rqs√
ελA−1

∫ θb

0

dθ
√

X − sin2(θ/2)
=

4Rqs√
ελA−1

K(X).3.3 Results and Dis
ussionThe e�e
ts of the nonadiabati
ity of passing ele
trons on ITG mode have beenexplored and dis
ussed in the pre
eding 
hapter. In the present 
hapter, we shallinvestigate the e�e
ts of nonadiabati
ity of the passing ele
trons on ITG-TEM andTEM.For this purpose we 
onsider the same pro�les and parameters presented in Ta-ble 2.1 of the pre
eding 
hapter. The equilibrium pro�les 
orresponding to theseparameters are shown in Fig. 2.1. 46
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Figure 3.2: Two dimensional eigenmode stru
ture of global ITG at n = 8 and
ηi(s0) = 2 for (a) pure ITG with adiabati
 ele
trons, (b) ITG-TEM without nona-diabati
 passing ele
trons, and (
) ITG-TEM with nonadiabati
 passing ele
tronat ηe(s0) = 2.0. 47



Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsThe real frequen
y ωr and growth rates γ normalized by ωd0 = vT i(s = s0)̺Li/a
2for ITG-TEM are plotted in Fig. 3.1. Here we have shown (i) ITG-adiabEl (ITGmode with usual adiabati
 ele
tron response, i.e., ñ/n = eφ̃/Te), (dashed linefor γ̃ and solid line for ω̃r marked with squares), (ii) ITG-TEM without nona-diabati
 passing ele
trons (dashed line for γ̃ and solid line for ω̃r marked withdiamonds), and (iii) ITG-TEM with the 
ontribution from nonadiabati
 passingele
trons (dashed line for γ̃ and solid line for ω̃r marked with �lled 
ir
les). It is
lear that the ITG-adiabEl mode is destabilized by the trapped ele
trons. The in-
rease in the growth rate 
an be attributed to the following fa
ts: (i) the presen
eof nonideal e�e
ts su
h as magneti
 drift resonan
es [16℄, (ii) trapped ele
trons
annot respond adiabati
ally to the lo
al variation of the s
alar potential and 
on-sequently 
an not take part in 
harge 
an
ellation[17℄, and (iii) an in
rease in realfrequen
y redu
es the ion landau damping leading to an in
rease in the growthrate [18℄. As 
an be seen, the growth rate peaks at around kθρLi = 0.5 
orre-sponding to the toroidal mode number n = 8. The plot for ITG-TEM along witha nonadiabati
 
ontribution from passing ele
trons shows opposite e�e
t of redu
-ing the growth rate as 
ompared to the ITG-TEM without nonadiabati
 passingele
trons. However, the growth rate is still at higher value than the ITG-adiabElmode. Be
ause of the nonadiabati
 response of the passing ele
trons near the

k‖ = 0 surfa
es to a perturbation, the ele
trons simply 
an not respond and short
ir
uit the 
harge separation instantaneously be
ause of whi
h the mode gets �-nite amount of time to grow unstable. This sets the growth rate of ITG-TEM withnonadiabati
 passing ele
trons higher than the ITG-adiabEl mode. The fa
t thatit has growth rate lower than that of the ITG-TEM without nonadiabati
 passingele
trons 
an be explained as follows: the in
lusion of trapped ele
trons in
reasesthe real frequen
y of the ITG-adiabEl mode su
h that there is an upshift of phasevelo
ity ωr/k‖, making ion Landau resonan
e regime narrower and thus in
reasingthe growth rate. However, the in
lusion of nonadiabati
 passing ele
trons, in ad-dition, in
reases the real frequen
y further thereby upshifting the phase velo
itymore. This makes the mode Landau resonate dominantly with ele
trons leadingto the ele
tron Landau damping of the growth rate. However, this damping is notsu�
ient enough to 
ompensate for the in
rease in the growth rate produ
ed dueto weaker Landau resonan
e with ions. This 
an be attributed to the fa
t thatthe upshift of real frequen
y, when passing nonadiabati
 ele
trons are in
luded,48
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Figure 3.3: Closeup of two dimensional eigenmode stru
ture for (a) pure ITG withadiabati
 ele
trons, (b) ITG-TEM without nonadiabati
 passing ele
trons, and (
)ITG-TEM with nonadiabati
 passing ele
trons at ηe(s0) = 2.0.
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Figure 3.4: Poloidal Fourier 
omponents for ele
trostati
 modes shown in Fig. 3.2(a) ITG with adiabati
 ele
trons, (b) ITG-TEM without nonadiabati
 passingele
trons, and (
) ITG-TEM with nonadiabati
 passing ele
trons at ηe(s0) = 2.0.Note that at ea
h radial lo
ation, there are several poloidal harmoni
s 
oupled.A few lo
ations where k‖m,n = 0 (i.e., nq = m) are indi
ated on the top axis.Nonadiabati
 ele
trons introdu
e sharp stru
ture near these points.is not drasti
, and only a fra
tion of the ele
trons resonate with the upshiftedphase velo
ity of the mode. Hen
e stabilization due to Landau resonan
e of pass-ing nonadiabati
 ele
trons is weaker than the destabilization due to o�-resonan
eof ions. This sets the growth rate of ITG-TEM with nonadiabati
 passing ele
-trons in between the ITG-adiabEl and ITG-TEM without nonadiabati
 passingele
trons. The eigenmode stru
tures for the three 
ases of (i) the ITG-adiabElmode, (ii) ITG-TEM without nonadiabati
 passing ele
tron, and (iii) ITG-TEMwith nonadiabati
 passing ele
trons are presented in Fig. 3.2. The mode stru
tureis quite global so that it 
an pass through several mode rational surfa
es. It reit-erates our argument of pronoun
ed nonadiabati
ity of passing ele
trons near the
k‖ = 0 surfa
es. One 
an see the 
hanges in the eigenmode stru
ture as one looksfrom Fig. 3.2(a) to Fig. 3.2(
). The mode a
quires more and more global naturespreading toward good-
urvature region as one goes from 
ase (i) to 
ase (ii) and�nally to 
ase (iii). A 
loseup look of the eigenmode stru
tures on the poloidalplane is demonstrated in Fig. 3.3. As 
an be seen, the in
lusion of nonadiabati
passing ele
trons introdu
es shorter s
ales in the eigenmode stru
tures. 50
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tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsThese ele
trons near the k‖ = 0 surfa
es 
an not quen
h the 
harge separation, bymoving along the �eld lines. So at those surfa
es the 
harge separation leads tostronger E×B drift and pronoun
ed instability. This 
auses the linear eigenmodestru
ture to break to shorter s
ale lengths. The in
reased strength of the ele
tri
�eld near these surfa
es is apparent if one looks at Fig. 3.4, where amplitude of thepotential 
orresponding to ea
h poloidal harmoni
s is displayed along the minorradius for the three 
ases. The position of the mode rational surfa
es (where m =

nq) is shown in the upper axis. Spikes in the potential are visible at those pla
eswhere k‖ = 0, i.e., at the mode rational surfa
es. One 
an easily see the 
oupling ofpoloidal harmoni
s at ea
h radial lo
ation. The 
orresponding potential amplitudesin the Fourier spa
e is shown in Fig. 3.5 for (i) ITG-adiabEl mode, (ii) ITG-TEMwithout nonadiabati
 passing ele
trons and ITG-TEM with nonadiabati
 passingele
trons. Figure. 3.6 displays the mode-averaged measure of k⊥ along with its two
omponents kθ and kr for the three 
ases. The introdu
tion of trapped ele
tronsto the ITG-adiabEl mode and then nonadiabati
 passing ele
trons to ITG-TEMenhan
es the e�e
tive k⊥ by bringing multis
ale stru
tures. Be
ause of the in
reasein the mode-averaged perpendi
ular wave-number k⊥, one requires more radialmode numbers for good resolution as well as 
onvergen
e. Sin
e the e�e
t of thenonadiabati
 passing ele
trons is to introdu
e short multis
ale stru
tures into theglobal eigen mode, thereby in
reasing e�e
tive k⊥, one would like to see how it 
ana�e
t the transport. Here we use the simple mixing length estimation for transport
oe�
ient, where one requires 
al
ulating the parameter DML = γ/ < k2⊥ >, with
γ and < k2⊥ > being the growth rate and mode averaged square of perpendi
ularwave number, respe
tively. This DML is here plotted in gyro-Bohm units inFig. 3.7 against kθρLi. While the transport 
oe�
ient �rst in
reases with kθρLi andpeaks at kθρLi = 0.4 and then starts falling for ITG-adiabEl, it, on the other hand,de
reases monotoni
ally with kθρLi for ITG-TEM without nonadiabati
 passingele
tron response. To note that the parameter, DML = γ/ < k2⊥ >, in this 
ase, isdivided by 8 to show it in the same �gure. The in
lusion of nonadiabati
 passingele
tron physi
s into ITG-TEM redu
es the transport but keeps the dependen
e on
kθρLi same. Sin
e the radial s
ale length of perturbation is shortened as is apparentfrom Fig. 3.3, the step size over whi
h parti
les and energy 
an be thrown away isredu
ed. This leads to the de
rease in the transport 
oe�
ient for the ITG-TEMwith nonadiabati
 passing ele
tron response below the ITG-adiabEl level. 51
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Figure 3.5: Upper panel: Radial Fourier harmoni
s for ea
h poloidal mode forthe ele
trostati
 mode shown in Fig. 3.2 for (a) pure ITG with adiabati
 ele
tronresponse and (b) ITG-TEM without nonadiabati
 passing ele
trons. Lower panel:Radial Fourier harmoni
s for ea
h poloidal mode for the ele
trostati
 mode shownin Fig. 3.2(
) for ITG-TEM with nonadiabati
 passing ele
trons at ηe(s0) = 2.0.
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nFigure 3.6: Eigenmode-averaged normalized mode numbers < kθρLi > (squares),
< krρLi > (diamonds), and < k⊥ρLi > (stars) at ηi(s0) = 2; (a) pure ITG withadiabati
 ele
tron response, (b) ITG-TEM without nonadiabati
 passing ele
trons,and (
) ITG-TEM with nonadiabati
 passing ele
trons at ηe(s0) = 2.0.
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Figure 3.7: Mixing lengthestimate for transport 
oef-�
ient DML = γ/ < k2⊥ > ingyro-Bohm units as a fun
-tion of kθρLi for ηi(s0) = 2;(a) pure ITG with adiabati
ele
tron response (solid linewith squares), (b) ITG-TEM without nonadiabati
passing ele
trons (dividedby 8) (solid line with dia-monds), and (
) ITG-TEMwith nonadiabati
 passingele
trons at ηe(s0) = 2(dashed line with �lled 
ir-
les). 53
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Figure 3.8: Growth rate γ (dashed line) and real frequen
y ωr (solid line) versus
ηi at ηe(s0) = 2 (i) for pure ITG with adiabati
 ele
trons (squares), (ii) ITG-TEM without nonadiabati
 passing ele
trons (diamonds), and (iii) ITG-TEM withnonadiabati
 passing ele
trons (�lled 
ir
les).An ηi s
an for �xed ηe = 2.0 for the three 
ases is presented in Fig. 3.8.The ITG-adiabEl mode be
omes weaker and weaker as ηi is de
reased and �nallysubsides. ITG-TEM without nonadiabati
 passing ele
trons, on the other hand,transforms itself from dominantly ITG mode to dominantly TEM, as one redu
es
ηi. The reason is that with de
reasing ηi, the free energy that drives the ITG modebe
omes lesser and lesser, but the �nite ηe provides the free energy to the trappedele
trons so that mode inherent to trapped ele
trons starts be
oming unstable. Thetransition o

urs at ηi ∼ 1.6. Nonadiabati
 passing ele
trons resist the transitionof the mode from ITG to TEM 
hara
ter and retain the real frequen
y in the iondiamagneti
 dire
tion with no 
riti
al ηi.3.3.1 Trapped Ele
tron ModeTEMs are sustained by the trapped ele
tron population in the bad-
urvature re-gion of a tokamak. Similar to the passing parti
les, the trapped parti
les 
analso produ
e unstable modes in the presen
e of density or temperature inhomo-54
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Figure 3.9: Growth rate γ (dashed line) and real frequen
y ωr (solid line) for
ηi(s0) = 2; (i) for TEM without nonadiabati
 passing ele
tron model (squares) and(ii) for TEM with nonadiabati
 passing ele
tron model at ηi(s0) = ηe(s0) = 2.0(open 
ir
les).geneities. The TEM produ
ed due to the presen
e of ele
tron density gradient isdriven by 
harge separation, while that produ
ed due to the presen
e of ele
trontemperature gradient is driven by 
ompressibility. The passing fra
tion of ele
-trons, when 
onsidered to respond adiabati
ally, 
an maintain the growth rate ata lower value. Re
ently, TEM in the presen
e of passing ele
trons has been stud-ied nonlinearly in Ref. [32℄ whi
h shows the signature of the persisten
e of linearmode stru
ture in the non linear regime. We shall here show that nonadiabati
fra
tion of passing ele
trons signi�
antly alters the stability properties of TEM.We start with the kθρLi s
an of the real frequen
y and growth rate normalizedby ωd0 = vthi(s = s0)̺Li/a

2 for the TEM for two 
ases, namely, (i) TEM withoutnonadiabati
 passing ele
trons and (ii) TEM with nonadiabati
 passing ele
tronsin Fig. 3.9. The dashed line with squares represents the growth rate for 
ase (i),while the solid line with squares represents 
orresponding real frequen
y. Thedashed line with open 
ir
les is for growth rate for 
ase (ii), with solid lines withopen 
ir
les representing the 
orresponding real frequen
y. The s
an reveals thatnonadiabati
 passing ele
trons destabilize the TEM further. The TEM whether55
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Figure 3.10: Two dimensional eigenmode stru
ture for (a) TEM without nonadia-bati
 passing ele
tron response and (b) TEM with nonadiabati
 passing ele
tronresponse at n = 7 and ηi(s0) = ηe(s0) = 2.0.

Figure 3.11: Closeup of two dimensional eigenmode stru
ture of (a) TEM withoutnonadiabati
 ele
tron response and (b) TEM with nonadiabati
 passing ele
tronresponse for n = 7 and ηi(s0) = ηe(s0) = 2.0.
56



Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
trons

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

234 56 7 8

9

10

11

12

13

14

15

16
17

18

19
20

21

22

23

24
25
26

s

|Φ
|

(a)

9 10 11 121314151617181920212223242526n*q=

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

6 7 8
9

10

11

12

13

14

15

16

17
1819

20
21

22

23

24
25

26
27
282930

s

(b)

9 10 11 121314151617181920212223242526272829n*q=

Figure 3.12: Poloidal Fourier 
omponents for ele
trostati
 mode shown in Fig. 3.10.Note that at ea
h radial lo
ation, there are several poloidal harmoni
s 
oupled.A few lo
ations where k‖m,n = 0 (i.e., nq = m) are indi
ated on the top axis.Nonadiabati
 ele
trons introdu
e sharp stru
ture near these points.produ
ed due to density gradient or temperature gradient has E × B drift at itsroot. When one 
onsiders passing ele
trons to be adiabati
, the moment 
hargeseparation is produ
ed; these ele
trons move to the region of �nite 
harge sepa-ration and wipe out the spa
e 
harge, thus denying the possibility of building upof E × B adve
tion or redu
ing it. Nonadiabati
 passing ele
trons, on the otherhand, take �nite time, espe
ially near the k‖ = 0 surfa
es, to rea
h the region of
E×B adve
tion, thereby allowing �nite time for the mode to grow. The TEM thusgets enhan
ed when one 
onsiders the fra
tion of nonadiabati
 passing ele
trons.One 
an expe
t similar e�e
t of nonadiabati
ity of passing ele
trons on densitygradient driven trapped ele
tron mode also.Next we look at the 
hange in the mode stru
tures of TEM in the presen
e of theseele
trons. The global mode stru
tures for the two 
ases without and with nona-diabati
 passing ele
trons are shown in Fig. 3.10 with a 
loseup view presented inFig. 3.11.It is 
lear that the modes span through several mode rational surfa
es. Nona-57
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Figure 3.13: Right panel: Radial Fourier harmoni
s for ea
h poloidal mode for theele
trostati
 mode shown in Fig. 3.10(a) for TEM without nonadiabati
 passingele
tron response. Left panel: Radial Fourier harmoni
s for ea
h poloidal mode forthe ele
trostati
 mode shown in Fig. 3.10(b) for TEM with nonadiabati
 passingele
tron response.
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Figure 3.14: Eigenmode-averaged normalized mode numbers < kθρLi > (squares),
< krρLi > (diamonds), and < k⊥ρLi > (stars) as a fun
tion of kθρLi at ηi(s0) =
2: (a) TEM without nonadiabati
 passing ele
tron response and (b) TEM withnonadiabati
 passing ele
trons at ηe(s0) = 2.0. 58
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e Of Nonadiabati
 Passing Ele
tronsdiabati
 passing ele
trons have strong e�e
t near these surfa
es leading to a strongrise in the radial perturbed ele
tri
 �eld. This breaks up the mode stru
ture atthese surfa
es. Similar to the ITG-TEM 
ase, the mode rotates toward the good-
urvature region. The lo
al rise in the perturbed radial ele
tri
 �eld near moderational surfa
es be
omes 
lear when one looks at the potential amplitude a
rossminor radius, 
orresponding to di�erent poloidal harmoni
s in Fig. 3.12, withoutand with nonadiabati
 passing ele
trons. Strong poloidal 
oupling is well demon-strated in both 
ases where at ea
h radial position the mode has 
ontribution fromseveral neighboring 
omponents. Figure 3.13 delineates the potential in the Fourierspa
e for the two 
ases. Produ
tion of short s
ales in the eigenmode stru
ture risesthe e�e
tive averaged k⊥ from the adiabati
 passing ele
tron 
ase to nonadiabati
passing ele
tron 
ase, as 
an be seen in Fig. 3.14. Estimation of transport viaele
tron 
hannel for whi
h TEM is believed to be an obvious 
andidate is shownin Fig. 3.15 using simple mixing length estimation, where DML = γ/ < k2⊥ >is plotted in gyro-Bohm units versus kθρLi. The transport 
oe�
ient de
reasesmonotoni
ally with in
reasing kθρLi for both 
ases. However, DML is redu
edwhen one introdu
es a nonadiabati
 fra
tion of passing ele
trons to the adiabat-i
ally responding passing ele
tron TEM. The redu
tion in the transport similarto the ITG-TEM 
ase 
an be understood as due to de
reased transport step size
aused by the nonadiabati
ity of passing ele
trons.3.4 Con
lusionIn the present 
hapter, we have investigated the e�e
ts of nonadiabati
ity of passingele
trons on ITG-TEM and TEM using the global gyrokineti
 spe
tral 
ode EM-GLOGYSTO. The model in
ludes both passing and trapped parti
les, pro�le vari-ations, true ion to ele
tron mass ratio, arbitrary order FLR e�e
ts, transit/trappedparti
le resonan
es, and poloidal and radial 
oupling. A 
omprehensive des
rip-tion of ITG, ITG-TEM, and TEM in
luding all relevant spe
ies is presented. Themajor �ndings are as follows.[1℄ For the low n or global modes, nonadiabati
 passing ele
trons stabilize theITG-TEM. However, it has deleterious e�e
t on TEM leading to an in
rease59
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Figure 3.15: Mixing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ >in gyro-Bohm units as a fun
tion of kθρLi with ηi(s0) = 2.0 for (a) TEM withoutnonadiabati
 passing ele
tron response (dashed line with squares) and (b) TEMwith nonadiabati
 passing ele
tron response at ηe(s0) = 2.0 (dashed line with open
ir
les).
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Chapter 3: Trapped Ele
tron Coupled Ion Temperature Gradient Mode AndTrapped Ele
tron Mode In The Presen
e Of Nonadiabati
 Passing Ele
tronsin the growth rate.[2℄ For both ITG-TEM and TEM, spatial mode stru
tures exhibit multis
alefeature. Be
ause of the drasti
 rise in the phase velo
ity near the k‖ = 0surfa
es, passing ele
trons fail to respond adiabati
ally near these surfa
es,leaving open 
harge separation and pronoun
ed E ×B drift. This breaks upthe mode stru
ture near the k‖ = 0 surfa
es.[3℄ The existen
e of multis
ale features in the spatial mode stru
ture makes e�e
-tive k⊥ higher, whi
h eventually redu
es the mixing length based estimationof transport of the 
orresponding modes below the level predi
ted by theirrespe
tive adiabati
 ele
tron models.
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Chapter 4Modes inherent tononadiabati
/kineti
 passingele
trons
4.1 Introdu
tionHaving elu
idated the e�e
t of kineti
/nonadiabati
 ele
trons on temperature gra-dient driven modes of thermal ions and trapped ele
trons we now dis
uss the modesinherent to the nonadiabati
/kineti
 passing ele
trons. A 
orre
t kineti
/nonadiabati
passing ele
tron model should be able to produ
e modes that are inherent tothe nonadiabati
ity of passing ele
trons. Therefore, this 
hapter is dedi
ated tothe study of temperature and density gradient driven modes of kineti
 ele
trons,namely, the ele
tron temperature gradient (ETG) mode and universal drift mode.We will study the linear ETG mode in the presen
e of 
ompletely kineti
 ionsand Debye Shielding e�e
t. A 
omparison of the pure ion temperature gradient(ITG) mode with the pure ETG mode in the presen
e of fully gyro-kineti
 se
ondspe
ies (e.g., ele
trons for ITG and ions for ETG) will be 
arried out. One will seethe breaking of isomorphy of ITG and ETG modes even in the ele
trostati
 limitwithout in
orporating the trapped ele
trons. A 
omparison of the ele
tron �ux byETG mode in the presen
e of nonadiabati
 ions with ηi above the ITG thresholdand ion �ux by ITG mode in the presen
e of nonadiabati
 ele
trons with ηe abovethe ETG threshold reveals that these modes are not independent of ea
h other. In62
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/kineti
 passing ele
tronsfa
t, one mode tends to redu
e the transport by the other and vi
e versa.Regarding the other mode driven by the density gradient of nonadiabati
 pass-ing ele
tron, i.e., the universal drift mode: although the studies have evolved froma simple slab model to the toroidal geometry, most of them, however, are based onthe �uid or hybrid kineti
-�uid models. A few gyrokineti
 models either exploitedthe ballooning formulation or a simple geometry. In this 
hapter we will present aglobal, fully gyrokineti
 linear study of the toroidi
ity driven universal drift mode
onsidering both ions and ele
trons to be nonadiabati
. The formulation retainstoroidal 
oupling e�e
ts due to both ele
tron and ion ∇B and 
urvature drift withno assumption regarding the magneti
 drift frequen
y of the ions and ele
trons
ompared to the mode frequen
y, thereby allowing full magneti
 drift resonan
eby both spe
ies. The formulation also keeps the Landau damping term of bothele
trons and ions. The �nite Larmor radius e�e
ts are kept up to all orders.More importantly, the present study retains the transit frequen
y resonan
e termin the nonadiabati
 part of the density perturbation for both spe
ies as shown inEqs. (2.8) and (2.9). It is to be noted that, we use a large aspe
t ratio, 
ir
ulargeometry for the tokamak, with no Shafranov shift. Though the universal toroidalmode is inherently due to the passing nonadiabati
 ele
trons, e�e
ts of trappedele
trons and trapped ions are also retained in the formulation. Furthermore, no
ollisional e�e
t is 
onsidered in the formulation.With this model, various parametri
 studies of the toroidal bran
h of universalmode have been 
arried out. We observe �nite mode frequen
ies and growth ratesbeyond the 
riti
al η = Ln/LT for Ion Temperature Gradient (ITG) and Ele
tronTemperature Gradient (ETG) modes, where Ln and LT are, respe
tively, the den-sity and temperature s
ale lengths. A 
omparative study of the 
ontribution ofmagneti
 drift resonan
e as well as Landau resonan
e from both spe
ies towardthe stability properties of the mode is performed by a systemati
 parametri
 s
an.An ele
tromagneti
 study of the mode is also 
arried out that elu
idates the e�e
tof �nite β on the universal drift mode driven by toroidi
ity. The e�e
t of trappedele
trons on the universal mode is studied and growth rates and real frequen
iesare 
ompared with the ion temperature gradient mode and trapped ele
tron mode.
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/kineti
 passing ele
trons4.2 Ele
tron Temperature Gradient Driven ModeHaving unravelled the e�e
t of the nonadiabati
 passing ele
trons on the ITG mode[132℄ and trapped ele
tron 
oupled ITG mode (ITG-TEM) [133℄ in the previous
hapters, we now pro
eed to study the mode inherent to the nonadiabati
 passingele
trons, that is, the ETG mode.With the formulation dis
ussed in Chapters 2 and 3, the Poisson equation 
an bewritten as,
∇2ϕ̃ =

e

ǫo

∑

j=e,i

ñj(r;ω); (4.1)where, j stands for 
harge spe
ies, viz., ele
trons (e) and ions (i). For single 
hargedpassing ions and ele
trons we have
∑

k′

∑

j=i

M̂j
k,k′ ϕ̃k′ +

∑

k′

∑

j=e

M̂j
k,k′ ϕ̃k′ = 04.2.1 Pro�les and ParametersFor the purpose of our study, we 
onsider following pro�les and parameters.Table 4.1: Pro�les and parametersParameters: Equilibrium Pro�les:

• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.4 m, LT0 = 0.2 m −0.06 s4

• ηi,e(s0) = 2.0, ǫn = Ln0/R = 0.2 su
h that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.The 
hosen parameters lead to the value of ρ∗ ≡ ρLi(s = s0)/a ≃ 0.0175. Note64
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/kineti
 passing ele
tronsthat ρe = 2.065× 10−4m and ρi = 8.848× 10−3m. Any 
hange in the parameterswill be stated wherever ne
essary.4.2.2 Pure ETG ModeAt the outset, let us 
ompare the ETG mode results with respe
t to some knownworks. To that end we have 
hosen the lo
al, linear, ele
trostati
, and kineti
results of Horton et al. [21℄ for whi
h kθρe ≃ 0.5, ǫn = Ln/R = 0.2 and τ = 1.0.From Figs.3 and 4 of Horton et al. [21℄ we have extra
ted manually some pointsand replotted with the results of our global, linear, ele
trostati
, and gyrokineti
model for nonadiabati
 ele
trons in Fig. 4.1 for the same parameters. For theease of 
omparison for the readers, we have also 
opied and pasted Figs. 3 and4 of Horton et al. in Fig. 4.2. It is to be noted that rn and vei in the latter
ase 
orrespond to Ln and vthe in our 
ase. Note that the di�eren
es in the realfrequen
ies as well as growth rates in both 
ases 
an be as
ribed to the di�eren
esin the two models, namely, lo
al versus global and kineti
 versus gyrokineti
.E�e
t of Debye ShieldingNow a days, fast wave ele
tron heating (FWEH) experiments [69℄, to study spe
i�-
ally ele
tron 
hannel transport, use preferentially dominant ele
tron heating su
hthat Te 
an take very high values. Furthermore, experiments dedi
ated to the ETGmode study require separation between the ele
tron and ion 
hannel of transport.This is a
hieved by redu
ing the energy ex
hange between the two spe
ies. The
ondu
ive environment is a
hieved with plasma of low density that ensures lessamount of 
ollisionality. Thus, the Debye length, whi
h is proportional to√(Te/n)
an be expe
ted to violate the 
ondition kλde << 1. In su
h a situation, one re-quires to take in to a

ount the spa
e 
harge e�e
t, and the Debye shielding e�e
tinevitably 
omes into the pi
ture.The Debye shielding e�e
t was taken into a

ount in a number of previousworks in the slab and sheared slab [20, 134, 135℄ geometry and toroidal geometry[22, 136℄. In the present 
ase, we produ
e a toroidal mode number n and kθρes
an with and without the Debye shielding e�e
t for the ETG mode that 
ontainsno trapped parti
les and no e�e
t of nonadiabati
 ions. Figure. 4.3 presents thereal frequen
y and growth rate versus kθρe with and without the Debye shielding.65
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From our nonadiabatic electron model
From Horton  et al. paperFigure 4.1: The normalized real frequen
y ωr (upper panel) and growth rate γ(lower panel) for the ETG mode as fun
tion of ηe for kθρe ≃ 0.5, ǫn = Ln/R = 0.2,and τ = 1.0. The lines with squares represent manually extra
ted points fromHorton et al. [21℄ whi
h uses lo
al kineti
 formulation. The lines with open 
ir
lesdepi
t the results from our global linear gyrokineti
 model.
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Figure 4.2: Figures 3 and 4 from Horton et al. [21℄The 
orresponding toroidal mode numbers n are shown in the upper axis for bothfrequen
y and growth rate of the mode. From the �gure it is apparent that themode frequen
y for the 
ase without Debye shielding is being slightly higher thanthat in the 
ase with the Debye shielding. Also, one 
an infer that the Debyeshielding has strong stabilizing e�e
t on the mode. One important point to benoted is that the Debye shielding e�e
t removes the high k tail of the ETG mode.The observed e�e
t of the Debye shielding on the real frequen
y of the mode isweak as 
ompared to the e�e
t of the same on the growth rate. The other purpose,these �gures serve, is that they exhibit the dispersion diagram for the ETG modewith and without Debye shielding showing the dependen
e of the frequen
y andgrowth rate on kθρe. For the 
ase with Debye shielding the growth rate peaks at
kθρe = 0.34 and for the 
ase without Debye shielding the same peaks at kθρe =

0.5, and both de
rease by substantial fra
tion as one goes both side from therespe
tive peaks. The toroidal mode numbers 
orresponding to both 
ases are
n = 250 and n = 360, respe
tively. Thus, the Debye shielding not only redu
es thegrowth rate of the mode but also shifts the maximum of the growth rate towardlower k, and wipes out the higher k tail. It is interesting to see whether Debyeshielding has any e�e
t on the threshold of the onset of the ETG mode; it maybe important to take into a

ount the Debye shielding e�e
t while 
al
ulatingpre
isely the threshold. Figure 4.4 displays the growth rate of the ETG modeagainst ηe for the two 
ases with and without the Debye shielding e�e
t. The67
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Figure 4.3: The normalized real frequen
y ωr (upper panel) and growth rate γ(lower panel) for the ETG with and without Debye shielding for ηe(s0) = 2. Ionsare 
onsidered adiabati
.
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Figure 4.4: ηe(s0) s
an for the growth rate of the ETG mode with and withoutDebye shielding for n = 250 and 380, respe
tively.Debye shielding enhan
es the threshold of the mode and the mode without theDebye shielding e�e
t is more sus
eptible to the instability, lowering the thresholdof the instability. Thus, one 
an 
on
lude that Debye shielding a�e
ts signi�
antlythe ETG mode; it has stabilizing e�e
t on the mode leading to enhan
ed threshold;shifts the maximum growth rate toward lower kθρe or n; wipes out the high wavenumber tail of the mode.E�e
t of Nonadiabati
 Ions: A Comparison With ITG ModeThe 
oupling of ITG mode with trapped ele
trons has been studied both theoreti-
ally, and also observed experimentally. Earlier studies of the ETG mode preferredto pro
eed with the adiabati
 ion model, upon the basis of the assumption thatthe ions are adiabati
 as their Larmor radii are larger than the s
ale-length of theETG/streamer/zonal �ow/geodesi
 a
ousti
 mode.The �nite mass e�e
t of ions, nonetheless, was studied earlier in Refs. [136, 137℄and was found to have very weak e�e
t on the mode. However, of late, nonlin-ear simulations [36, 37, 91, 92, 93, 94℄ have demonstrated the limitations of thisadiabati
 ion model. The nonadiabati
 ions are found to be important for thedevelopment of low k tail of the ETG mode. Furthermore, the nonadiabati
 ionshelp getting saturation in the simulation of the ele
tron heat di�usivity. Here, weinvestigate the impa
t of the ions on the ETG mode if 
onsidered fully nonadia-69
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y ωr for the ETG modewithout Debye shielding ηe(s0) = 2.0 with adiabati
 ions and nonadiabati
 ions.
ηi(s0) takes values 2, 4, 6, 8 for nonadiabati
 ions. Lower panel: The 
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/kineti
 passing ele
tronsbati
ally, i.e., taking into a

ount all the kineti
 e�e
ts of ions from FLR to variousresonan
es and keeping ηi above the threshold of the ITG drive. Figure 4.5 de-pi
ts the mode frequen
y and growth rate of the ETG mode against kθρi (Notethat kθ is normalized with ρi here.) with (i) adiabati
 ions and (ii) nonadiabati
ions for in
reasing ηi for the 
ase without Debye shielding. The 
orrespondingtoroidal mode numbers are displayed on the upper axis. It is observed that thenonadiabati
 ions have very weak e�e
t on the growth rates of the mode. In these
ond 
ase, we have 
arried out same kind of s
an but with Debye Shielding e�e
tin
luded. Figure 4.6 shows the real frequen
y and growth rate for the 
ase of theETG mode when Debye shielding is taken in to a

ount. A 
omparison of thereal frequen
y and growth rate with the 
ase without Debye shielding reveals thatthe ion dynami
s have visible albeit weak e�e
t on the mode frequen
y as well asgrowth rate of the mode. The nonadiabati
 ions tend to lower the growth rate ofthe ETG mode as one in
reases the ITG drive by in
reasing ηi of ions in the longwavelength side of the ETG mode 
orresponding to low k tail of the spe
trum.For the purpose of 
omparison, we present a kθρi s
an for the ITG mode (fromChater 2) in
luding the adiabati
 and nonadiabati
 ele
trons, with ηe in
reasingfor the latter 
ase. Figure 4.7 depi
ts the real frequen
y as well as 
orrespondinggrowth rates for the ITG mode. While the ITG mode is in�uen
ed strongly bythe nonadiabati
 ele
trons with substantial 
hange in the growth rate, the ETGmode, on the other hand, is weakly a�e
ted by the nonadiabati
 ions. Thus, one
an draw a 
on
lusion that even within the ele
trostati
 limit, without taking intoa

ount the trapped spe
ies, the isomorphism of the ITG and ETG mode breaks,when the other spe
ies (ele
trons for the ITG mode and ions for the ETG mode)is 
onsidered fully kineti
ally. The 
orresponding mode stru
tures of the ITG andETG mode with and without the Debye shielding e�e
t are 
ompared in the toppanel of Fig. 4.8 for the maximum growth rates of the respe
tive 
ases. The �guredelineates the vast di�eren
e in the s
ale-lengths of the two modes. While theITG mode prevails over a 
onsiderable fra
tion, ETG mode, on the other hand, isrestri
ted to a small annular ring in the poloidal 
ross se
tion of the tokamak. Themiddle panel shows a 
loseup view of the ITG and ETG mode stru
tures. Thepoloidal Fourier 
omponents for the three 
ases are displayed in the bottom panel.
75



Chapter 4: Modes inherent to nonadiabati
/kineti
 passing ele
trons4.2.3 Mixing length estimate of �uxIt would be interesting to see, how one mode's s
ale-dynami
s have e�e
t on thetransport of the other or in other words how the ITG s
ale 
an a�e
t the ETG s
aleand vi
e versa. For that purpose, simple mixing length estimate of transport hasbeen evaluated. Before going to the results, we would like to add a line of 
aveatregarding the mixing-length based estimation of transport. The earlier resultsshowed that the 
al
ulation of transport using mixing-length theory gives very lowlevel of transport of ele
trons. Nonlinearly these modes generate streamers, bymeans of whi
h, the ETG mode 
an give rise to experimentally relevant level oftransport. Nonetheless, within our s
ope, we present a qualitative pi
ture of thetransport with the mixing-length 
al
ulation.Pure ETG: a 
omparison with ITGFigure 4.11 presents the heat di�usivity in the ele
tron gyro-Bohm unit for thepure ETG mode without (top panel) and with (middle panel) the Debye shieldinge�e
t for the multiple 
ases of in
reasing ηi of nonadiabati
 ions and with adiabati
ions. It is apparent from the �gure that even though the nonadiabati
 ions havevery weak e�e
t on the growth rate of the ETG mode, they 
an 
hange the heatdi�usivity of the ele
trons substantially. The di�usivity peaks toward the low kside of the spe
trum but not at k where the growth rate peaks, and de
reases asthe ηi in
reases from 2 to 8, in steps of 2 whi
h are all above the ITG threshold.One 
an hen
e 
on
lude that the ion s
ale drive in the low k regime redu
es thehigh k ETG drive, even if it has weaker e�e
t on the mode frequen
y and growthrate of the ETG mode. The bottom panel displays the nonadiabati
 ele
tron e�e
ton the ITG mode, where ηe of the ele
trons in
reases gradually from 2 to 8. Thisleads to the redu
ed ion di�usivity for the ITG 
ase in the presen
e of an ele
trondrive with ηe being above the ETG threshold. Thus, the 
omparison of the three
ases depi
ted in Fig. 4.11, leads to the interesting 
on
lusion that the ETG driveon the high k side tends to redu
e the ion transport on the low k side, whilethe ITG drive on the low k side tends to redu
e the ele
tron transport on thehigh k side of the spe
trum. One other 
on
lusion is that in spite of exhibitingdisparate s
ales, one mode 
an have e�e
t on the other mode, putting a 
aveatto the ta
it assumption that one mode is independent of the other be
ause of the76
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Figure 4.11: Top panel: mixing length estimate for transport 
oe�
ient DML =
γ/ < k2⊥ > in ele
tron gyro-Bohm units as a fun
tion of kθρLi for the ETG modewithout Debye shielding at ηe(s0) = 2 with adiabati
 ions and nonadiabati
 ionsfor ηi(s0) = 2, 4, 6, 8; Middle panel: mixing length estimate for transport 
oe�
ient
DML = γ/ < k2⊥ > in ele
tron gyro-Bohm units as a fun
tion of kθρLi for the ETGmode with Debye shielding at ηe(s0) = 2 with adiabati
 ions and nonadiabati
ions for ηi(s0) = 2, 4, 6, 8; Bottom panel: mixing length estimate for transport
oe�
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Figure 4.12: Left panel: normalized perpendi
ular wave numbers kr, kθ, k⊥ vstoroidal mode number n for the ETG mode without Debye shielding. Right panel:normalized perpendi
ular wave numbers kr, kθ, k⊥ vs toroidal mode number n forthe ETG mode with Debye shielding.vast spatio-temporal di�eren
es in their respe
tive s
ales. The fa
t, in spite ofthe weak e�e
t on the mode frequen
y and growth rate of the ETG mode by thenonadiabati
 ions, that the mixing length estimates show a 
onsiderable redu
tionin the ele
tron heat di�usivity has its origin in the 
hange in the perpendi
ulars
ale lengths brought about by the nonadiabati
 ions. Figure 4.12 plots the krρe,
kθρe and k⊥ρe against toroidal mode number n. It is apparent that krρe of theETG mode rises in the presen
e of the nonadiabati
 ion dynami
s, so does k⊥ρe.This leads to the redu
tion in the mixing length estimates of ele
tron transport.
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/kineti
 passing ele
trons4.3 Toroidal Universal Drift Instability: A GlobalGyrokineti
 StudyThe 
on�nement of ele
trons is marred not only by the temperature gradient driveninstabilities su
h as ETG modes des
ribed in the pre
eding se
tion but also by thedensity gradient driven instabilities. The density gradient also 
an equally be thesour
e of free energy for instabilities in the 
ase of no temperature gradient or veryweak temperature gradient. These instabilities in tokamaks are 
alled the toroidaluniversal drift instabilities. A brief review of earlier works on this topi
 
an befound in the se
tion 1.2 of Chapter 1.In the present se
tion, various parametri
 studies of the toroidal bran
h ofthe universal drift mode are 
arried out. We observe �nite mode frequen
ies andgrowth rates beyond the 
riti
al η = Ln/LT for the Ion Temperature Gradient(ITG) and Ele
tron Temperature Gradient (ETG) modes, where Ln and LT arerespe
tively, the density and temperature s
ale lengths. A 
omparative study ofthe 
ontribution of the magneti
 drift resonan
e as well as of the Landau resonan
efrom both spe
ies towards the stability properties of the mode is performed by asystemati
 parametri
 s
an. An ele
tromagneti
 study of the mode is also 
arriedout that elu
idates the e�e
t of �nite β on the universal drift mode driven bytoroidi
ity. The e�e
t of trapped ele
trons on the universal mode is studied andgrowth rates and real frequen
ies are 
ompared with the ion temperature gradientand trapped ele
tron modes.4.3.1 Model equationsThe ele
trostati
 formulation has been dis
ussed in Chapters 2 and 3. Here wewill elaborate the ele
tromagneti
 formulation only. For the ele
tromagneti
 
asethe perturbed density is modi�ed as [48℄
ñj(r;ω) = −

(

qjN

Tj

)

[

ϕ̃+

∫

dk exp (ιk · r) ×

∫

dv
fMj

N

(

ω − ω∗
j

)

(ιPj) [ϕ̃(k;ω)− v‖Ã‖(k;ω)]J
2
0 (xLj)

]

, (4.2)79
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/kineti
 passing ele
tronswhere Ã‖ is the 
omponent parallel to the equilibrium magneti
 �eld of the ve
torpotential asso
iated with the perturbation. The other terms are de�ned in Chapter2 and 3. In addition to ñj, one has to 
onsider the �u
tuation of the parallel 
urrentdensity given by
j̃‖j(r;ω) = −

(

q2j
Tj

)

[

∫

dk exp (ιk · r) ×

∫

v‖dvfMj

(

ω − ω∗
j

)

(ιPj) [ϕ̃(k; )− v‖Ã‖(k; )]J
2
0 (xLj)

] (4.3)Along with the quasineutrality 
ondition Eq. (2.10), Ampere's law
1

µ0
∇2

⊥Ã‖ = −
∑

j

j̃‖jwill �nally 
lose the set of equations, to give a linear system of equations of theform
∑

k′

∑

j=i,e

M̂j
k,k′

(

ϕ̃k′

Ã|| k′

)

= 0Simple diagnosti
s for various physi
al quantities are 
omputed as averagesover the eigenmode. For example mode-averaged k2θ for the ele
trostati
 
ase is
omputed as
< k2θ >=

∫

dρ
∑

m

|m
ρ
ϕ(ρ,m)|2

∫

dρ
∑

m

|ϕ(ρ,m)|2
. (4.4)The above shown averaging pro
edure is suitably extended to the ele
tromagneti

ases by in
luding Ã|| mode stru
ture averaging as follows:

< k2θ >=

∫

dρ
∑

m

|m
ρ
ϕ(ρ,m)|2 +

∫

dρ
∑

m

|m
ρ
A||(ρ,m)

|2
∫

dρ
∑

m

|ϕ(ρ,m)|2 +
∫

dρ
∑

m

|A||(ρ,m)
|2

. (4.5)
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/kineti
 passing ele
trons4.3.2 Results and Dis
ussionIn the present se
tion, we will delineate the results from the global linear gyroki-neti
 numeri
al analysis. It is to be noted that the mode frequen
ies and growthrates are expressed in units of vthi/a throughout the paper.
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Figure 4.13: Equilibrium pro�les to study the global toroidal universal drift insta-bility mode (for parameters in Table I): (a) normalized density (dots), temperature(
ir
le), ηi,e (triangle), (b) Safety fa
tor q (
ir
le) and magneti
 shear ŝ (dots) pro-�les as fun
tions of normalized radius s = r/a. Note that q(s0) = 2.0, ŝ(s0) = 0.40,
ǫn(s0) = 0.1, and τ(s0) = 3.0 for s0 = 0.6.Pro�les and Parameters:Let us 
onsider the pro�les and parameters as displayed in Table 4.2 for a plasmawith single 
harged ions. The equilibrium pro�les 
orresponding to these parame-ters are shown in Fig. 4.13.Growth Rate γ and Real Frequen
y ωr vs kθρLiThe dispersion diagram for the toroidal universal drift instability with real fre-quen
y and growth rate plotted versus the normalized poloidal wave number kθρLi,is shown in Fig. 4.14. The upper axis presents the 
orresponding toroidal mode81
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Table 4.2: Pro�les and parametersParameters: Equilibrium Pro�les:

• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.691 + 0.603 s2

• Ln0 = 0.2 m +0.705 s4

• ηi,e(s0) = 0.0, ǫn = Ln0/R = 0.1 su
h that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 3. shear s = s0, ŝ = 0.4.
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Figure 4.14: Real frequen
y and growth rate for the ele
trostati
 
ase 
orrespond-ing to the parameters in the Table I and pro�les shown in Fig. 4.13.
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/kineti
 passing ele
tronsnumbers. The real frequen
y is in the ele
tron diamagneti
 drift dire
tion. Thereal frequen
y at very low kθρLi in
reases �rst and then peaks at the value of
kθρLi = 0.4 
orresponding to n ≃ 6. After this point, it starts falling with kθρLiin a monotoni
 way. The growth rate, on the other hand, initially in
reases untilthe point kθρLi ≃ 0.58 
orresponding to the toroidal mode number n ≃ 10 and ispra
ti
ally 
onstant at larger value of kθρLi. It is apparent from this observationthat the toroidal bran
h of the universal drift instability spans from the low wavenumber or longer wavelength regime, where ion dynami
s are dominant, to higherwave number or shorter wavelength regime, where usually ele
tron dynami
s playthe dominant role. This is in 
ontrast to the observation in the slab 
ase [99℄,whi
h is marginally stable at high wave number regime and damped in the lowwave number regime.Ele
trostati
 mode stru
tureIn the present se
tion, we dis
uss the global ele
trostati
 mode stru
ture of thetoroidal bran
h of the universal drift mode. Figure 4.15 displays the potential
ontours on a poloidal 
ross se
tion of the tokamak in the upper left panel for
kθρLi = 0.58 
orresponding to the toroidal mode number n = 10. The variouspoloidal 
omponents of the potential with 
oupling brought about by the toroidi
-ity, both in Fourier and real spa
e, are presented in the upper right panel for
kθρLi = 0.58 
orresponding to the toroidal mode number n = 10. A few importantpoints to be noted in this 
ontext are: (1) The mode stru
ture is quite globalpassing through many mode rational surfa
es. (2) It exhibits a weak ballooning
hara
ter, with a �nite amplitude observed at the favourable 
urvature side (high�eld side). In the upper right panel, 
oupling of poloidal 
omponents has beenshown a
ross the minor radius, with a maximum amplitude at s=ρ/a=0.6, wherethe density gradient peaks. The points in the upper axis, labelled by the 
or-responding poloidal mode numbers m, display the position of the mode rationalsurfa
es where k‖(m,n) = 0. Corresponding to ea
h of these points, one 
an seea dip in the potential 
orresponding to ea
h poloidal mode number. These dips
orrespond to k‖(m,n) = 0 surfa
es where |ω/k‖| >> vthe, vthe being the ele
tronthermal velo
ity. Thus, the strong e�e
t of the o�-resonant ele
trons is 
learlyvisible from this �gure. The 
onvergen
e in the Fourier spa
e for the 
onsidered83
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Figure 4.15: Upper panel: (Left) The ele
trostati
 mode stru
ture for toroidalmode number n = 10, kθρLi = 0.58, 
orresponding to the parameters in the TableI and pro�les shown in Fig. 4.13. (Right) poloidal 
omponent of φ̃ in (top) radialFourier representation and (bottom) radial dire
t spa
e. Lower panel: A 
loseupview of the mode stru
ture.
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/kineti
 passing ele
tronsmode is presented in the upper part of the upper right panel of Fig. 4.15. Lowerpanel presents a 
loseup view of the mode 
onsidered here.
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Figure 4.16: The e�e
t of ele
tron and ion Landau resonan
e for the mode n = 10
orresponding to kθρLi = 0.58. This is done by weighting the Landau resonan
eterm by α and running it from 0 to 1 for one spe
ies , and keeping α = 1.0 for theother spe
ies and vi
e versa.E�e
t of Landau Resonan
eTo investigate the e�e
t of the Landau resonan
e of ele
trons and ions on thetoroidal universal drift instability, one 
an arti�
ially put a multiplying fa
tor, say
α, in front of the k‖v‖ term in the denominator of the propagator for both spe
ies[see Eq. (2.8)℄ and de
rease it gradually from 1 to 0, on
e for ions, keeping fullele
tron Landau resonan
e e�e
t, and vi
e versa. It is to be noted that only thevalues 0 and 1 of the arti�
ial fa
tor α are physi
ally meaningful. The other valuesof α simply represent a fra
tional weight to the Landau resonan
e term in thepropagator so as to enable us to tra
k numeri
ally the Landau e�e
t 
ontinuously.Thus the value 1 will refer to the 
ase of full Landau resonan
e term taken intoa

ount and 0 the 
omplete omission of the Landau resonan
e term from the prop-agator. It is 
lear from Fig. 4.16 that the ion Landau resonan
e apparently has nosigni�
ant e�e
t on the growth rate as well as on the mode frequen
y 
ompared tothat of the ele
trons. For the ele
tron Landau resonan
e, the growth rate exhibits85
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ElectronsFigure 4.17: E�e
t of ion and ele
tron magneti
 drift resonan
e for the mode n=10
orresponding to kθρLi = 0.58. This is done by weighting the magneti
 drift termby α and running it from 0 to 1, and keeping α = 1.0 for the other spe
ies andvi
e versa.a nonmonotoni
 dependen
e on the ele
tron Landau resonan
e weighting parame-ter α. For example, at lower values of α the growth rate in
reases and again fallsat higher values. Regarding the mode frequen
y: in 
ontrast to the growth rate, itin
reases monotoni
ally with α for the ele
trons, while it has little variation in the
ase of ions. Thus, with the 
omplete omission of the ele
tron Landau resonan
e,the mode may be
ome nonexistent even if one keeps the other destabilizing fa
torsinta
t.E�e
t of Magneti
 Drift Resonan
eIn toroidal geometry, a mode will 
ertainly have magneti
 drift resonan
e if itsfrequen
y is of the same order as the magneti
 drift frequen
y. We have lookedat the e�e
t of magneti
 drift resonan
e for both spe
ies on the toroidal universalmode. This is done in a similar way as for the study of the previous se
tion, byputting a multiplying fa
tor α in front of the magneti
 drift resonan
e term, xtjappearing as arguments of the Bessel fun
tions in the numerator of the propagatorin Eq. (2.8). To be noted again that, while doing the s
an for one spe
ies, the fullweight α = 1 is kept for the other spe
ies. One notes a destabilizing e�e
t due tothe magneti
 drift resonan
e of ions when the multiplying fa
tor α in
reases. Asshown in Fig. 4.17, the real frequen
y de
reases with the in
reasing multiplying86
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Figure 4.18: Shear s
an for the mode n = 10 
orresponding to kθρLi = 0.58 atposition s = s0 = 0.6, where the density gradient peaks. For these s
ans the safetyfa
tor at s = s0 is kept at the �xed value q = 2.0.fa
tor α, while the growth rate in
reases and starts saturating as one approa
hes
α = 1, i.e., for the full magneti
 drift resonan
e term in the ion propagator.Ele
tron magneti
 drift resonan
e however does not play a signi�
ant role for theuniversal drift instability, as is 
lear from Fig. 4.17.Shear S
anThough magneti
 shear has a strong stabilizing in�uen
e on the universal driftmode, in a slab model, the toroidal resonan
e e�e
ts, intrinsi
 to toroidal geometry,
an redu
e the shear damping of the mode. The shear s
an is displayed in Fig. 4.18.It is 
lear that for the parameters 
hosen in this study, the 
riti
al value of shear,beyond whi
h the mode gets stabilized, is of the order of 1. The growth rateand real frequen
y, however, do not de
ay monotoni
ally with in
reasing shear.The growth rate rather in
reases weakly at low shear and then starts de
reasingwith in
reasing shear. Similarly the real frequen
y of the mode also de
ays within
reasing shear. The stabilization of the mode by shear in the presen
e of �nitetoroidi
ity 
an be understood as follows. The shear damping of the universaldrift mode in the slab geometry is basi
ally due to the 
onve
tion of energy awayfrom the mode rational surfa
es. In the presen
e of �nite toroidi
ity, the toroidal
oupling e�e
t inhibits this 
onve
tion of wave energy, and thus redu
es the sheardamping [101℄. Similar e�e
ts of toroidi
ity on shear indu
ed stabilization was also87
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Figure 4.19: Real frequen
y and growth rate for ǫn = Ln/R for the parameters andpro�les as in the Table I and Fig. 4.13 in the 
ase of mode n = 10 
orrespondingto kθρLi = 0.58. Note that a, Ln, Rq and nq are kept 
onstant in this s
an.observed for high-n toroidal universal drift instabilities.Toroidi
ity S
anThe real frequen
y and growth rate of the mode versus ǫn = Ln/R is presented inFig. 4.19. The toroidi
ity s
an is done by varying R, but keeping Rq, Ln, nq, and
a 
onstant. While the real frequen
y de
reases almost monotoni
ally, the growthrate, on the other hand in
reases �rst with toroidi
ity, peaks at around ǫn ≃ 0.1,and then starts falling for larger values of ǫn. Sin
e, ǫn → 0 implies R → ∞, i.e.,the 
ylindri
al limit, the toroidal driving term be
omes weak at low ǫn. Sin
e themode is basi
ally driven by the magneti
 drift resonan
e, the growth rate in
reaseswith ǫn for low values. However, for large enough values of ǫn the mode be
omeso�-resonant with respe
t to the magneti
 drift frequen
y, whi
h in
reases with ǫnand growth rate falls down. Also, in
reasing ǫn implies de
reasing R, whi
h meansredu
ed 
onne
tion length ∼ Rq between the favorable and unfavorable magneti
�eld. This nonmonotoni
 dependen
y of growth rate on ǫn for toroidal universaldrift modes has not been reported before.
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Figure 4.20: Real frequen
y and growth rate for τ = Te/Ti and for the parametersand pro�les of Table I and Fig. 4.13 in the 
ase of the mode n = 10 
orrespondingto kθρLi = 0.58.
τ = Te/Ti S
anThe dependen
e of the mode frequen
y and growth rate for the toroidal univer-sal drift instability on the temperature of the spe
ies is elu
idated in the presentse
tion. Figure 4.20 displays the plots of the mode frequen
y and growth rate
orresponding to kθρLi = 0.58 (n = 10) as a fun
tion of the ratio of temperaturesof ele
trons and ions, i.e., Te/Ti = τ . To be noted that in this s
an the ion temper-ature Ti is kept 
onstant, while varying only the ele
tron temperature Te. The realfrequen
y in
reases monotoni
ally with the magnitude of τ , i.e., with in
reasingele
tron temperature. The growth, on the other hand, exhibits a nonmonotoni

hara
ter: in
reases at �rst with τ , peaks at around τ = 5.0 and then starts de-
aying with in
reasing τ . One may 
orrelate this result with the role of ele
tronLandau resonan
e on the universal mode, as the ele
tron distribution in the vi
inityof parallel resonant velo
ity, whi
h is strongly dependent on the thermal velo
ityand so the temperature of the ele
trons, is the key fa
tor in determining Landaudamping or inverse Landau damping of the mode.E�e
t of Temperature GradientThus far, the entire analysis has been 
arried out 
onsidering �at temperaturepro�les, that is, zero temperature gradients by putting δsT = 0 in the pro�les89
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Figure 4.21: Real frequen
y and growth rate in the 
ase of a temperature gradients
an for the parameters and pro�les of Table I and Fig. 4.13 for the mode n = 10
orresponding to kθρLi = 0.58. The �at temperature pro�le in Table I, has beenrepla
ed by one with δsT = 0.2 instead of 0 for the previous 
ases.displayed in Table I. In the present se
tion, we in
orporate pro�le variation to thetemperatures of both ions and ele
trons. This is a
hieved by using a �nite value for
δsT , whi
h is 
hosen as 0.2 in this 
ase. Sin
e most tokamaks 
ontain temperaturegradients in the pressure pro�le, it is thus ne
essary to look at the e�e
t of thetemperature gradient on the toroidal universal drift instability. This is done byevaluating the real frequen
y and growth rate against ηi,e = Ln/LT , keeping Ln
onstant and varying LT . Three 
ases are 
onsidered here: (1) the temperaturegradient s
ale lengths for both ele
trons and ions are in
reased simultaneously, (2)the temperature gradient of only ions is in
reased, keeping that of the ele
tronszero, and (3) the temperature gradient of only ele
trons is in
reased, keeping thatof the ions zero. The last two options may be relevant to experimental situationswith preferential ion heating [e.g., ion 
y
lotron resonan
e heating (ICRH)℄ orele
tron heating [e.g., ele
tron 
y
lotron resonan
e heating (ECRH)℄, respe
tively.The results for all the 
ases are presented in Fig. 4.21. The real frequen
y is redu
edwith in
reasing temperature gradient for the 
ases 1 and 2, while it in
reases in the
ase 3. The growth rate, on the other hand, de
reases in all three 
ases. However,it de
ays more slowly when the ele
tron temperature pro�le is �at, as apparentfrom 
ase 2. It is 
lear from 
ase 3 that the mode exhibits a �nite growth ratefor values of ηe beyond the 
riti
al value for ETG instability (ηe ≃ 1.0). Thus,90
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ElectrostaticFigure 4.22: Real frequen
y and growth rate for the ele
trostati
 (dashed 
urve)and ele
tromagneti
 
ase (solid 
urve) for the parameters in Table I and pro�lesas shown in Fig. 4.13. The value of β 
onsidered here is 0.001.the point to be noted is that, even in the presen
e of �nite η above the 
riti
alvalue for the temperature gradient driven modes to get destabilized, the universaldrift instability preserves �nite growth rate. It is observed from 
ase 2 that theion temperature gradient has weaker e�e
t on the mode. It has �nite growth rateeven after the 
riti
al value of ηi for the ion temperature gradient driven mode(ηi ≃ 1.0). Thus, one may 
on
lude that, in some situations as delineated in thelast two 
ases, temperature gradient driven modes and universal drift mode drivenby the density gradient 
an 
oexist. One other important point to be noted here isthat the toroidal universal drift mode is unstable in the τ domain from 1 to morethan 10, as evident from Fig. 4.20, while ETG modes are stable at higher values of

τ even with �nite ηe. So ele
tron transport at high k⊥ρLi > 1 with larger values of
τ may have 
ontributions from the toroidal universal drift mode as well. Similarly,at low k⊥ρLi, where ITG is dominant, the ele
tron transport 
an be due to thismode, as it appears to be unstable in regions where ITG is pronoun
ed.Ele
tromagneti
 E�e
ts
kθρLi s
anThe ele
trostati
 assumption is justi�ed in a low β plasma. However, 
onsideringthe higher β environment in the present day devi
es, it is of interest to study thee�e
t of the ele
tromagneti
 �u
tuation on the toroidal bran
h of the universal91
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/kineti
 passing ele
tronsmode. In this se
tion, we perform a kθρLi s
an for the growth rate and modefrequen
y in the presen
e of transverse magneti
 perturbations with β = 0.001 inthe zero temperature gradient limit. The 
orresponding results are plotted inFig. 4.22, with the upper axis representing the respe
tive toroidal mode numbers
n. For the purpose of 
omparison, we also plot the purely ele
trostati
 values forthe real frequen
y and growth rate of the mode (same results as in Fig. 4.14).At very low kθρLi, the real frequen
y in
reases �rst and then peaks at a valueof kθρLi ≃ 0.4 
orresponding to n = 6. Beyond this point, the frequen
y startsfalling monotoni
ally with kθρLi (or n). The growth rate however in
reases until
kθρLi ≃ 0.58 (or n = 10) and then be
omes pra
ti
ally 
onstant. It is apparentfrom the �gure for the real frequen
y that the e�e
t of �nite β is more pronoun
edat lower kθρLi, and the real frequen
y is redu
ed in this region. Going towardsthe higher kθρLi the e�e
t of β seems to be weaker on the mode frequen
y. Thegrowth rate, on the other hand, is substantially redu
ed by �nite plasma β. A βof value 0.001 brings almost 20% redu
tion in the growth rate as 
ompared to theele
trostati
 
ase. A 
omplete β s
an is presented in the following se
tion 
learlyillustrating the stabilizing e�e
t of β.A global mode stru
ture for the ele
tromagneti
 
ase for n = 10 and β = 0.001
orresponding to kθρLi ≃ 0.58 is shown in Figs. 4.23 and 4.24. The ele
trostati
part φ̃ (Fig. 4.23) is very similar to the purely ele
trostati
 mode in Fig. 4.15.The Ã‖ 
omponent (Fig. 4.24), on the 
ontrary, apparently shows a weak anti-ballooning 
hara
ter, being weaker at the outboard side than the inboard side.The 
onvergen
e in the radial and poloidal Fourier spa
e for the mode has beendepi
ted in the upper part of the right panel in Fig. 4.24. The lower panel presentsthe radial dependen
e of various poloidal mode numbers m. It retains the e�e
tof nonresonant ele
trons at k‖(m,n) = 0 surfa
es. The antiballooning 
hara
ter ofthe Ã‖ mode stru
ture and the stabilization of the mode in the presen
e of �nite
β are all related to the inherent ele
trostati
 nature of the toroidal universal driftinstability.
β S
anA 
omplete β s
an for the mode with kθρLi = 0.58 (n = 10) is displayed inFig. 4.25. Both real frequen
y and growth rate are redu
ed with in
reasing β.The 
omplete stabilization o

urs at β ≃ 1.1%. This is in 
ontrast to earlierinvestigations in slab geometry, where the value of 
riti
al β was mu
h higher92
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Figure 4.23: (Upper panel) The global mode stru
ture for the φ̃ 
omponent inthe poloidal 
ross se
tion in the ele
tromagneti
 
ase for n = 10, kθρLi = 0.58,and β = 0.001. (Lower panel) Poloidal 
omponent of φ̃ in (top) radial Fourierrepresentation and (bottom) radial dire
t spa
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ross se
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Figure 4.25: β s
an for the mode frequen
y and growth rate for the parametersand pro�les as in Table I and Fig. 4.13 for the mode n = 10 
orresponding to
kθρLi = 0.58 .[105℄. The observed stabilization is perhaps due to the 
oupling of the wave withthe Alfven perturbation.The relative strength of the ele
tromagneti
 to the ele
trostati
 
hara
ter is shown
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Figure 4.26: Ele
tromagneti
 ratio with in
reasing fun
tion of β for the parametersand pro�les as in Table I and Fig. 4.13 for the mode n = 10 
orresponding to
kθρLi = 0.58 .in Fig. 4.26, measured as the ratio of �ux surfa
e averaged squared Ã‖ to φ̃ within
reasing value of β expressed in per
entage. It is 
lear from this plot that thestrength of the magneti
 �u
tuation in 
omparison to the ele
trostati
 �u
tuation95
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reases almost linearly with in
reasing plasma β.E�e
t of trapped ele
tron on the ele
trostati
 mode:As 
learly demonstrated by the above results, the global toroidal universal driftinstability is triggered by purely passing ele
tron dynami
s. However, as a toroidaldevi
e is bound to have some fra
tion of trapped ele
trons, it would be interestingto obtain the e�e
t of trapped ele
trons on the purely universal drift mode stud-ied in the previous se
tions. To this end, an extensive η s
an is performed withand without trapped ele
trons for the ele
trostati
 
ase. To identify the mostunstable mode, the other drift instabilities su
h as ITG with trapped ele
trons aswell as the TEM bran
hes are 
omputed together with the universal mode. The
ombined data is plotted in Fig. 4.27. There are several interesting points to benoted: (1) The trapped ele
tron 
oupled universal drift mode and pure univer-sal drift mode have distin
t real frequen
ies and growth rates. (2) In 
ontrastto the pure universal drift mode studied in previous se
tions, whose growth ratewas shown to de
rease with in
reasing η, the trapped ele
tron 
oupled universaldrift mode appears to be more unstable with in
reasing η. This study indi
atesthat in the presen
e of trapped ele
trons, the nature of the universal drift mode ispredominantly �trapped ele
tron like�. (3) To make a better quantitative 
ompar-ison, growth rates and real frequen
ies of the pure trapped ele
tron mode (TEM),the ion temperature gradient mode with trapped ele
trons (ITG-TE) for the sameequilibrium parameters are also plotted. For the parameters studied here, it ap-pears that the trapped ele
tron 
oupled universal drift modes in the presen
e of
η ≥ 1 have growth rates 
omparable to ITG-TE or TEMs and 
ould 
ontributesubstantially to the overall transport.4.4 Con
lusionsIn the present work, we have presented some features of the ele
tron temperaturegradient driven (ETG) mode using a linear gyrokineti
 model in toroidal geometrythat treats both spe
ies, namely, ions and ele
trons fully gyro-kineti
ally, takinginto a

ount all the kineti
 e�e
ts. The e�e
t of Debye Shielding, breaking ofisomorphism of ITG and ETG modes even in the ele
trostati
 limit when the96
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Figure 4.27: The real frequen
y and growth rate vs temperature gradient for di�er-ent unstable modes in the presen
e of trapped ele
trons in the same regime de�nedby the parameters and pro�les of Table I and Fig. 4.13 for the mode n = 10 
orre-sponding to kθρLi = 0.58. The �at temperature pro�le in Table I, has been repla
edby one with δsT = 0.2 instead of 0 for the previous 
ases. The three dashed 
urves(
ir
le, square, diamond) are for universal mode without trapped ele
trons (sameas Fig. 4.21), three solid lines (
ir
le, square, diamond) are for universal mode inthe presen
e of trapped ele
trons (UNV-TE), the dashed 
urve with triangles isfor ion temperature gradient mode with trapped ele
trons (ITG-TE) and the solid
urve with stars is for pure trapped ele
tron mode (TEM).
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/kineti
 passing ele
tronsother spe
ies is 
onsidered fully gyrokineti
ally are revealed one by one. In thefollowing we summarize the results obtained.
• Debye Shielding is stabilizing to the ETG mode, enhan
es the threshold in
ηe, and wipes out the high k tail of the ETG spe
trum.

• Nonadiabati
 ions have very weak e�e
t on the growth rate and mode fre-quen
y of the pure ETG modes. In 
ontrast, nonadiabati
 ele
trons a�e
tthe mode frequen
y and growth rate of the ITG mode strongly. It breaks thesupposed isomorphy between the two modes even in the ele
trostati
 limit.
• We have presented an estimation of the transport of ions and ele
trons on thebasis of mixing length theory. Results reveal that, drive for the ion 
hanneltends to redu
e the transport via the ele
tron 
hannel and vi
e versa. Thismeans that a low k mode 
an have strong e�e
t on a high k mode and vi
eversa. The assumption of adiabati
 parti
les fails to interpret this result.Also, we have performed a global linear gyrokineti
 study of the toroidal uni-versal drift mode driven by the density gradient in the presen
e of �nite toroidi
ityon the intermediate s
ale k⊥ρLi. The model 
onsiders both passing ele
trons andions to be fully nonadiabati
, in
orporating toroidal 
oupling e�e
ts, magneti
 driftresonan
es, Landau resonan
e e�e
ts, transit harmoni
 resonan
es, �nite Larmorradius to all orders, and orbit width e�e
t for both spe
ies. The e�e
t of �nite β isalso studied in the frame of an ele
tromagneti
 model that retains the transversemagneti
 perturbation. However, e�e
ts of 
ollisions and Shafranov shift have beendropped. Furthermore, the model 
onsiders large aspe
t ratio 
ir
ular 
ross se
tionfor the tokamak plasma. The major results are as follows
• The growth rate in
reases at lower kθρLi until kθρLi ≃ 0.58 and starts satu-rating thereafter. The real frequen
y too in
reases at lower kθρLi and thende
ays monotoni
ally with kθρLi at larger kθρLi.
• The ele
trostati
 mode stru
ture is global and exhibiting stru
ture at moderational surfa
es.
• Studying the e�e
t of Landau resonan
e for both ele
trons and ions showsweak dependen
e of the frequen
y and growth rate on ion Landau damp-98
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/kineti
 passing ele
tronsing and a strong dependen
e on ele
tron Landau damping preserving �nitegrowth rate in both 
ases.
• Both ele
tron and ion magneti
 drift resonan
e terms are 
onsidered in theformulation. The ion magneti
 drift resonan
e does play a signi�
ant rolein making the toroidal bran
h of the universal drift mode unstable, whileele
tron magneti
 drift resonan
e has a weak e�e
t on the stability propertyof the mode.
• As reported in earlier works for high n modes (kθρLi >> 1), the toroidi
itydriven universal drift mode is found to be stable beyond a shear value ŝ ≃ 1,even for low n modes.
• The nonmonotoni
 dependen
y of the growth rate on ǫn = Ln/R in a toroidi
-ity s
an (varying R and keeping Ln, a, Rq and nq 
onstant) is demonstratedhere for the �rst time.
• The mode is unstable in a fairly large domain of τ = Te/Ti ranging from 1to more than 10, thus 
learly showing that in regions of τ where the ele
trontemperature gradient (ETG) mode is believed to be stable, ele
tron transport
an be due to this toroidal universal drift mode.
• The η s
an for both ions and ele
trons shows that the universal drift modedriven by toroidi
ity 
an 
oexist with the temperature gradient driven modes.Therefore, ele
tron transport at low kθρLi may have 
ontributions from themode under investigation. Similarly at higher kθρLi, where ETG is thoughtto be the main driving me
hanism for ele
tron transport, this mode may also
ontribute.
• The ele
tromagneti
 e�e
t is found to be strongly stabilizing in the present
ase. The Ã‖ 
omponent of the mode stru
ture exhibits anti-ballooning 
har-a
ter. The mode gets stabilized at β ≃ 1.1%. The relative magneti
 �u
tua-tion amplitude < Ã2

|| > / < φ̃2 > varies almost linearly with the magnitudeof β.
• Trapped ele
trons enhan
e the growth rate of the universal mode. How-ever, the universal mode 
hanges its 
hara
ter regarding its dependen
e on99
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/kineti
 passing ele
tronsthe density and temperature gradients. While in the absen
e of trappedele
trons the universal mode de
ays with the temperature gradient, trappedele
trons, on the 
ontrary, enhan
es the growth rate of the mode. The univer-sal mode with trapped ele
trons exhibits, qualitatively, the same 
hara
teras the trapped ele
tron mode. Also, it has a 
omparable growth rate to thetrapped ele
tron 
oupled ion temperature gradient mode in the parameterrange 
onsidered in this study.
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Chapter 5Short wavelength ion temperaturegradient mode and 
oupling withtrapped ele
trons
5.1 Introdu
tionThe ion temperature gradient driven mode has hitherto been studied only in theregion kyρi ≤ 1.0. However, under steep density pro�les, the ions 
an behave nona-diabati
ally at s
ales kyρi > 1.0 giving rise to what is 
alled the short wavelengthion temperature gradient (SWITG) driven modes. In all the earlier studies onSWITG modes (see se
tion 1.2 of Chapter 1), the trapped ele
trons were ignored.However, in a toroidal devi
e, the trapped ele
trons are inevitable, and as demon-strated in the present work, 
an play a paramount role in de�ning the stabilityproperties of the mode. In the limit ωbe > ω, where ωbe is the boun
e frequen
y ofthe trapped ele
trons, the trapping of the ele
trons prevents thermalization alongthe magneti
 �eld line and the wave �eld appears stationary during a boun
e pe-riod. The trapped ele
trons, therefore, 
an alter the stability properties of themode signi�
antly.The other la
una of the earlier studies is that they were done either using a lo
alkineti
 theory or at the best kineti
 theory based on ballooning formalism in theslab as well as toroidal geometry. A ballooning formalism is essentially an onedimensional model in θb, the ballooning angle. Therefore, the estimation of the101
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ouplingwith trapped ele
trons
hara
teristi
 radial s
ale length of the mode is not possible unless one uses thehigher order ballooning theory. Thus, to understand the two dimensional modestru
ture in the presen
e of the trapped ele
trons, a global model be
omes ne
es-sary. Also, an estimation of the radial s
ale length of the mode is not only requiredfor 
ompleteness but help estimate the probable transport indu
ed by the mode.In fa
t, for the �rst time, the two dimensional SWITG mode stru
ture will beshown in the present work. For the parameters 
hosen, the SWITG mode is foundto be quite global.Thus, the purpose of the present work is twofold: �rst, to in
orporate thetrapped ele
trons to the SWITG mode and, se
ond, to use a global linear ele
tro-stati
 gyro-kineti
 model, whi
h enables one to evaluate the two dimensional modestru
ture of the SWITG mode.The in
lusion of the trapped ele
trons has drasti
 e�e
t on the growth rate as wellas real frequen
y of the SWITG mode, in 
ontrast to the earlier spe
ulation thatthe trapped ele
trons may not be important for the mode. The trapped ele
tronsenhan
e the growth rate of the mode substantially be
ause of the nonideal e�e
tssu
h as magneti
 drift resonan
e and redu
tion in the adiabati
 fra
tion of theele
trons. The trapped ele
trons enhan
e the real frequen
y whi
h may lead toweaker Landau damping of the wave by the ions. This perhaps is another reasonof the mode getting unstable in the presen
e of trapped ele
trons. The parameterregime of existen
e of the mode, 
onsequently, gets widened introdu
ing new do-main of instability. Also, the mode stru
ture of the so-
alled short wavelength iontemperature gradient mode has been observed to be quite global, even though itexists at short wavelength 
ompared to the ion Larmor radius. The mode stru
turespans over a substantial fra
tion of the tokamak poloidal 
ross se
tion.In this work, we use the ele
trostati
 version of the 
ode EM-GLOGYSTO. Alo
al version of this gyro-kineti
 formulation is also used for the purpose of 
om-parison.
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Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
trons5.2 Linear SWITG5.2.1 Model EquationsThe global formulation has been elu
idated in Chapter 2 and Chapter 3. Here weshall dis
uss the lo
al formulation only.Integrating the following lo
al gyrokineti
 equation, for whi
h k⊥ ≃ kθ and k‖ =

constant, to get the perturbed density
fj = −qjFMj

Tj
φ̃+

qjFMi

Tj
(ω − ω∗j)(iPj)J2

o (k⊥ρj)φ̃, (5.1)one 
an write ñj as
ñj(k) = −qjNj

Tj

[

[1− 1√
2πv3thj

∫

dv⊥dv‖v⊥e
− v2

2v2
thj (ω − ω∗j)(iPj)J2

0 (k⊥ρLj)]φ̃

]

,(5.2)where the propagator for the untrapped parti
les is given by iPj= 1
ω−k‖v‖−ωdj

, whi
hfor trapped parti
les is repla
ed by iTj= 1
ω−ωdj

. Using the quasineutrality 
onditionand 
onsidering the passing ele
trons to be adiabati
 and adding the trappedele
trons, one would �nally get
1 + τ −

√

(2ǫ)I tr−e00 − τI i00 = 0. (5.3)The trapped ele
tron integral I tr−e00 is weighted by the trapped fra
tion √
2ǫ, ǫ =

r/a, and τ = Te/Ti. Here we put
Ĩjl,p =

1√
2πv3thj

∫

dv⊥dv‖v⊥e
− v2

2v2
thj (ω − ω∗j)(iPj)(

v‖
vthj

)l(
v⊥
vthj

)pJ2
0 (k⊥ρLj).In the present se
tion, we will delineate the results from the global and lo
algyrokineti
 formulation and 
ompare the 
ases of SWITG without the trappedele
trons and with the trapped ele
trons. It is to be noted that the frequen
iesare normalized with vthi/a throughout the 
hapter. Let us 
onsider the followingpro�les and parameters. 103
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Figure 5.1: Equilibrium pro�les to study the global SWITG mode( for parametersin Table I): (a) normalized density (square), temperature (
ir
le), ηi,e (triangle),(b) Safety fa
tor q (
ir
le) and magneti
 shear ŝ (diamond) pro�les as fun
tionsof normalized radius s = r/a. Note that η peaks at s = ρ/a = s0 = 0.6 and isequal to 2.5. Also q(s0 = 0.6) = 2.0, ŝ(s0 = 0.6) = 1.0, ǫn(s0 = 0.6) = 0.1, and
τ(s0 = 0.6) = 1.0.

Table 5.1: Pro�les and parametersParameters: Equilibrium Pro�les:
• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.2 m, LT0 = 0.08 m −0.06 s4

• ηi,e(s0) = 2.5, ǫn = Ln0/R = 0.1 su
h that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.The equilibrium pro�les 
orresponding to these parameters are shown in Fig. 5.1.The 
hosen parameters lead to the value of ρ∗ ≡ ρLi(s = s0)/a ≃ 0.0175. Notethat for the lo
al results all the input parameters are given at s = s0. 104



Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
trons5.2.2 kθρLi S
anFigure 5.2 shows the growth rates of the SWITG mode with respe
t to kθρLi forthe 
ases (1) without the trapped ele
trons and (2) with the trapped ele
trons asobtained with the global as well as lo
al gyrokineti
 model. The upper axis displaysthe 
orresponding toroidal mode numbers n. Let us �rst 
onsider the 
urve withsolid line and open 
ir
les. This presents the growth rate from the global modelversus kθρLi for the SWITG mode without the trapped ele
trons. The growth rate
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Figure 5.2: The normalized growth rate γ̃ of the ITG (�rst peak) and of theSWITG (se
ond peak) mode with (solid line+square) and without (solid line +
ir
le) the trapped ele
trons from the global as well as lo
al formulation (dottedline + diamond, for the 
ase with the trapped ele
trons and dotted line + 
ir
le,for the 
ase without the trapped ele
trons.) ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0,
τ = 1.0, and ǫn = 0.1. Upper axis shows the 
orresponding toroidal mode numbers.in
reases at lower kθρLi, peaks at kθρLi ≈ 0.5, n = 9, and then starts falling again,with a minimum at kθρLi ≈ 0.8, n = 14. After this point, the growth rate exhibitsa similar trend as the �rst hump and peaks at kθρLi ≈ 1.3, n = 21. The dotted linewith open 
ir
les is the similar 
urve obtained from the lo
al model without thetrapped ele
trons. The peaks for both 
onventional ITG and SWITG modes are105



Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
tronsshifted toward higher kθρLi in 
omparison with the global results. The �rst peakappears at kθρLi ≈ 0.65 and the se
ond peak appears at kθρLi ≈ 1.5 
orresponding,respe
tively, to the ITG and SWITG mode. The growth rates are slightly higherin the 
ase of the lo
al results than those obtained in the 
ase of the global results.The real frequen
y as shown in Fig. 5.3 (solid line with open 
ir
le for the globalmodel and dotted line with open 
ir
le for the lo
al model), on the other hand,in
reases with kθρLi upto the point kθρLi ≈ 0.8 and kθρLi ≈ 1.3, respe
tively, forthe global and lo
al models. Beyond this point, the frequen
y starts to behavenonmonotoni
ally with kθρLi. For both 
ases, the �rst hump 
orresponds to the
onventional ITG mode. In this region, the mode frequen
y being proportionalto the kθρLi in
reases almost linearly with kθρLi. The ITG mode then smoothly
hanges to the high k SWITG mode. The nonmonotoni
 part 
an be 
onsideredas one of the 
hara
teristi
s of the SWITG mode. From Fig. 5.2, it is 
lear thatthe SWITG mode also su�ers FLR stabilization like the 
onventional ITG; themode growth rate in
reases initially then peaks at kθρLi ≈ 1.3 (kθρLi ≈ 1.5) forthe global (lo
al) mode and then starts falling. Following the formulation of Gaoet al.[107, 108℄, the nonmonotoni
 behavior of the real frequen
y and the doublehumped growth rate 
an be explained qualitatively using the lo
al gyrokineti
model for whi
h k⊥ ≃ kθ. Let us rewrite the perturbed distribution fun
tion f̃i forthe ions as
fi = −qiFMi

Ti
φ̃+

qiFMi

Ti

(

ω − ω∗i

ω − ωdi − k‖v‖

)

J2
o (k⊥ρLi))φ̃. (5.4)The �rst part 
orresponds to the adiabati
 response while the se
ond part 
orre-sponds to the non-adiabati
 response of the ions. Integrating over velo
ity, to getthe perturbed density for the ions in the limit ωn > ω > (ωdi+k‖v‖), one 
an write

ñi = −qino
Ti

φ̃+
qi
Ti
φ̃
ωni(ηi/2− 1)

ω
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.5)where Io is the modi�ed Bessel fun
tion of order zero. Sin
e the SWITG mode
an exist even with the adiabati
 ele
trons and retains its basi
 
hara
ters, we forsimpli
ity drop the non-adiabati
 part of the ele
trons and 
onsider them to beadiabati
, i.e., ñe/no = qeφ̃/Te. The quasineutrality 
ondition will then give 106
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Figure 5.3: The normalized real frequen
y ω̃r of the ITG and of the SWITG modewith (solid line+square) and without (solid line+
ir
le) the trapped ele
trons fromthe global as well as lo
al formulation (dotted line+diamond, for the 
ase withthe trapped ele
trons and dotted line + 
ir
le, for the 
ase without the trappedele
trons.) ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. Upperaxis shows the 
orresponding toroidal mode numbers.
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ω =

(

τ

τ + 1

)(

ηi
2
− 1

)

ωniIo(k
2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.6)where ωni = −(vthi/Ln)(k⊥ρLi). Thus, it is 
lear from the expression that the modefrequen
y ω behaves as ωniIo(k2⊥ρ2Li)exp(−k2⊥ρ2Li) whi
h for small k2⊥ρ2Li s
ales as

k⊥ρLi and for larger k2⊥ρ2Li s
ales as almost a 
onstant. It is be
ause, from theproperty of the s
aled modi�ed Bessel fun
tion, one �nds that
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li) → 1/

√

2π(k2⊥ρ
2
Li)) = 1/

√
2π(k⊥ρLi),for large k2⊥ρ2Li and ωni ∝ k⊥ρLi. This explains the nonmonotoni
 part of the realfrequen
y. Regarding the growth rate, in the toroidal geometry, it is the toroidalmagneti
 drift term ωdi of the ions, the resonan
e of whi
h with the mode frequen
ygives rise to the the double hump behavior. It is to be noted that ωdi ∼ (Ln/R)ωniand thus s
ales as k⊥ρLi. Therefore, the ratio ω/ωdi at �rst in
reases for small

k⊥ρLi and then de
reases as the numerator saturates but the denominator stillgrows as k⊥ρLi.The �nite Larmor stabilization (FLR) of the SWITG mode 
an be inferred fromthe nonadiabati
 part of ion density response. At very high k⊥ρLi, ωdi surpasses
ω and the nonadiabati
 part of the perturbed ion density 
an be redu
ed to, for
ωdi >> ω

ñna

i =
qi
Ti
φ̃
ωni(ηi/2− 1)

ωdi
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.7)whi
h for large k⊥ρLi will de
rease a

ording to

ωni
ωdi

Io(k
2
⊥ρ

2
Li)exp(−k2⊥ρ2Li) ∼

R

Ln
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.8)as k2⊥ρ2Li in
reases.Having elu
idated the basi
 
hara
ters of the SWITG mode, let us now see whathappens to the mode when trapped ele
trons are in
luded. In Fig. 5.2 the solidline with squares represents the growth rates from the global model and the dottedline with diamonds represents the growth rates from the lo
al model with trappedele
trons present in both 
ases. Similar 
urves in Fig. 5.3 represent the 
orre-108
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ouplingwith trapped ele
tronssponding real frequen
ies. It is 
lear that for both 
ases, the growth rate risessubstantially in the presen
e of the trapped ele
trons. The mode frequen
ies alsoin
rease as 
ompared to their 
ounterparts with no trapped ele
trons. The global
urve for growth rates peaks at kθρi ≈ 0.4, n = 7, while the lo
al 
urve peaksat kθρi ≈ 0.55 for the 
onventional ITG. For the SWITG mode, the growth ratepeaks at kθρi ≈ 1.3, n = 21, for the global result while it peaks at kθρi ≈ 1.7 forthe lo
al result. It is to be noted that the lo
al growth rates stay below the globalgrowth rates for most of the part of the k spe
trum. Beyond kθρi ≈ 2.0, the globalgrowth rates fall faster than the lo
al growth rates.The strong rise in the the growth rate of the SWITG mode in the presen
e oftrapped ele
trons 
an be explained, similar to the 
onventional ITG mode, as fol-lows. In a toroidal plasma with ion temperature gradient, a pressure perturbationin the outboard side 
reates hotter and 
older regions lo
ally. The magneti
 driftvelo
ity vd of the ions, whi
h depends on the temperature, is therefore di�erent inregions of di�erent temperatures. This produ
es variations in the lo
al 
on
entra-tion of the ion density giving rise to a potential perturbation and 
on
urrently apoloidal ele
tri
 �eld. The SWITG instability arises be
ause of the radial E × Bdrift produ
ed by this ele
tri
 �eld in the presen
e of the applied magneti
 �eld.When one 
onsiders ele
trons to be adiabati
, the moment 
harge separation isprodu
ed, these ele
trons move to the regions of 
harge separation and wipe outthe spa
e 
harge, thus denying the possibility of building up of E × B adve
tionor redu
ing it. However, in a toroidal geometry, be
ause of 1/R dependen
e of themagneti
 �eld, some ele
trons are �trapped" on the weaker magneti
 �eld regionand fail to behave adiabati
ally, in the sense that their motion is restri
ted to alimited region of the magneti
 �eld lines. Trapped ele
trons, therefore, 
an notrespond adiabati
ally to rea
h the region of E × B adve
tion and parti
ipate in
an
eling the 
harge separations, thereby allowing �nite time for the mode to grow.The SWITG growth rate thus gets enhan
ed, when one 
onsiders the fra
tion ofthe trapped ele
trons.The presen
e of the trapped ele
trons in
reases the real frequen
y and hen
e thephase velo
ity of the wave. This 
an perhaps make the wave o� resonant withthe ions and leads to weaker Landau damping of the wave by the ions with the
on
omitant enhan
ement in the growth rate. The SWITG growth rate, therefore,in
reases with the in
lusion of the trapped ele
trons. 109
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Figure 5.4: Two dimensional eigenmode stru
tures of (a) the ITG mode at kθρLi ≈
0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21 without the trappedele
trons both 
orresponding to the maximum growth rate. The mode stru
tureof the SWITG mode is �ner than the ITG mode but yet global enough.Figure 5.4 presents the mode stru
tures of (a) the 
onventional ITG at n = 9 and(b) the SWITG at n = 21, both 
orresponding to the maximum growth rate with-out the trapped ele
trons. The eigenmode-averaged radial wave numbers for thetwo 
ases are < krρLi >= 0.687 and < krρLi >=0.702 respe
tively. These �guresshow 
learly that though the mode is termed as short wavelength ITG, its modestru
ture is quite global albeit lesser than the 
onventional ITG mode. The modestru
ture spans over a 
onsiderable fra
tion of the poloidal 
ross se
tion of a toka-mak. It 
orroborates the ne
essity of a global model to study the SWITG mode.Figure 5.5 then displays the mode stru
tures, respe
tively, of the (a) 
onventionalITG mode with the trapped ele
trons at n = 7 and (b) SWITG mode with thetrapped ele
trons at n = 21, both 
orresponding to the maximum growth rate ofthe mode. It is to be noted that the 
orresponding eigenmode-averaged radial wavenumbers in these 
ases are < krρLi >=0.489 and < krρLi >= 1.132, respe
tively.For 
larity, we present a 
loseup view of the mode stru
tures in Fig. 5.6 for the
ase without the trapped ele
trons for the 
onventional ITG mode and SWITGmode and in Fig. 5.7 for the 
ase with the trapped ele
trons. 110
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Figure 5.5: Two dimensional eigenmode stru
tures of (a) the ITG mode at kθρLi ≈
0.4, n = 7, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21 with the trappedele
trons, both for the maximum growth rates respe
tively. The mode stru
tureof the SWITG mode is �ner than the ITG mode but still global enough.
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Figure 5.6: A 
loseup view of the eigenmode stru
tures of (a) the ITG mode at
kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21 without thetrapped ele
trons shown in Fig. 5.4.
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tronsFigure 5.8 portrays the poloidal Fourier 
omponents for the 
ases of (a) the ITGmode at n = 9, (b) the SWITG mode at n = 21 without the trapped ele
trons,(
) the ITG mode at n = 7, and (d) the SWITG mode at n = 21 with the trappedele
trons. The strong poloidal 
oupling of the mode brought about by the 
ross�eld drift of the parti
les is quite apparent from these �gures. Figure 5.9 showsthe radial Fourier harmoni
s for the modes displayed in Figs. 5.4 and 5.5.5.2.3 ǫn S
anThe Ln/R s
an is performed by varyingR but keeping Rq, n/R, a, and Ln 
onstant.Figure 5.10 presents the growth rates for the two 
ases: (a) without the trappedele
trons (
ir
le) and (b) with the trapped ele
trons (square) from the global gy-rokineti
 formulation. Lo
al results are not shown here. It is 
lear that the SWITGmode subsides more rapidly with ǫn and vanishes at around ǫn ∼ 1.7. It is argued,therefore, in the earlier literature that the SWITG mode is preferentially a slabmode whi
h de
ays with in
reasing toroidi
ity. The de
rease in the growth ratewith Ln/R 
an again be attributed to the redu
tion in the non-adiabati
 fra
tionof the ion's perturbed density response with Ln/R, as it s
ales as inverse of Ln/Ras apparent from Eq. (5.7). In
lusion of the trapped ele
trons, however, widen the
Ln/R window. The mode sustains to a higher value of Ln/R. Thus, one 
on
ludesthat the trapped ele
trons have deleterious e�e
t on the SWITG mode enhan
ingnot only its growth rate but also widening its parameter regime of existen
e. Thefa
t is that, with in
reasing toroidi
ity, the fra
tion of the trapped parti
les whi
his proportional to√r/R also in
reases. Therefore, in 
ontrast to the previous 
aseof the SWITG where toroidi
ity has strong stabilizing e�e
t, making the modevanish beyond Ln/R ∼ 0.15, the SWITG in the presen
e of trapped ele
trons 
anexist above this limit, as the stabilizing e�e
t of the toroidi
ity is 
ompensated bythe destabilizing e�e
t of the trapped ele
trons. In Fig. 5.11, the 
orrespondingreal frequen
ies are shown. Solid line with 
ir
les presents the 
ase without thetrapped ele
trons and solid line with squares presents the 
ase with the trappedele
trons. While, with toroidi
ity the growth rates de
ay, real frequen
ies on theother hand in
rease with the toroidi
ity. Thus, though earlier SWITG was thoughtto be stable beyond some spe
i�
 value of ǫn, the trapped ele
trons 
an make it113
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loseup of the two dimensional eigenmode stru
tures of (a) the ITGmode at kθρLi ≈ 0.4, n = 7, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21 with thetrapped ele
trons shown in Fig. 5.5.
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omponents for ele
trostati
 modes shown in Figs. 5.4and 5.5, (a) the ITG mode at kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at
kθρLi ≈ 1.3, n = 21, both without the trapped ele
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trons.
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omponents for ele
trostati
 modes shown in Fig. 5.4and 5.5, (a) the ITG mode at kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at
kθρLi ≈ 1.3, n = 21, both without the trapped ele
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116



Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
trons

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

1.2

ε
n

γ 
a/

v th
i

 

 

γ, No trapped electron

γ, With trapped electron

Figure 5.10: Normalized growth rates γ̃ vs. ǫn s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line + 
ir
les) the trappedele
trons (from the global gyrokineti
 model). ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) =
1.0, τ = 1.0, Ln = 0.2, and a = 0.5.
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Figure 5.11: Normalized real frequen
y ω̃r vs. ǫn s
an for the SWITG modeat kθρLi ≈ 1.3 with (solid line + square) and without (solid line + 
ir
les) thetrapped ele
trons (from the global gyrokineti
 model). ηe,i(s0) = 2.5, q(s0) = 2.0,
ŝ(s0) = 1.0, τ = 1.0, Ln = 0.2, and a = 0.5.
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Figure 5.12: Normalized growth rates γ̃ vs. ηi s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line + 
ir
les) the trappedele
trons (from the global gyrokineti
 model). ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) =
1.0, τ = 1.0, and ǫn = 0.1.unstable for a general set of parameters. Therefore, the theories for experimentallyobserved anomalous transport, explained with the 
onventional ITG mode 
oupledwith trapped ele
trons and trapped ele
tron mode as plausible 
andidates, shouldbe revisited. It is perhaps worth noting at this point that experimentally Wonget al. [112℄ reported the observation of su
h a short wavelength �u
tuation in the
ontext of ele
tron transport. The mode has frequen
y lower than the ion dia-magneti
 drift frequen
y and propagates in the ion diamagneti
 dire
tion as theSWITG mode studied here. However, k⊥ρLi measured is higher (∼ 5) than theone found in our simulation.5.2.4 ηi S
anTo demonstrate the temperature gradient dependen
e of the SWITG mode, an ηis
an for the maximum growth rates is shown in Fig. 5.12 without (
ir
les) andwith (squares) the trapped ele
trons using the global gyrokineti
 model. It is 
learfrom the �gure that the SWITG mode without the trapped ele
trons is inherentlyan ion mode, requiring no �nite ηe and solely depends on the temperature gradientof the ions. The dependen
e of the mode growth rate on ηi is quite similar to the
onventional ITG whi
h de
ays with de
reased ηi. The SWITG mode de
ays as118
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Figure 5.13: Normalized real frequen
y ω̃r vs. ηi s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line + 
ir
les) the trappedele
trons (from the global gyrokineti
 model). ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) =
1.0, τ = 1.0, and ǫn = 0.1.one redu
es ηi and vanishes 
ompletely around ηic ∼ 1.2. In
lusion of the trappedele
trons, on the other hand, restri
ts the mode to vanish, rather the mode trans-forms from the ion temperature gradient driven mode to the trapped ele
tronsdriven mode. When the ion drive is redu
ed by redu
ing ηi, the growth rate de-
reases, but sin
e the mode now in
ludes the trapped ele
trons with �nite ηe, modeinherent to the trapped ele
trons takes over the ion temperature gradient drivenmode. Thus, the SWITG mode transforms from dominantly ion temperature gra-dient driven mode to dominantly ele
tron temperature gradient driven mode asthe ηi of the ions is redu
ed keeping ηe �xed. The transition takes pla
e at around
ηi ∼ 1.6. The 
orresponding real frequen
ies without (
ir
le) and with (squares)the trapped ele
trons are shown in Fig. 5.13. Both redu
e almost linearly with ηi,but be
ause of the presen
e of the trapped ele
trons the later redu
es faster thanthe former and tend to move in the ele
tron diamagneti
 dire
tion. It is be
auseof the fa
t that the mode inherent to the trapped ele
trons with �nite ηe starts todominate over ion temperature gradient driven mode as one redu
es ηi.
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Figure 5.15: Normalized real frequen
y ω̃r vs. τ s
an for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line + 
ir
les) the trappedele
trons (from the global gyrokineti
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Figure 5.16: Mixing length estimate for transport 
oe�
ient DML = γ/ < k2⊥ >of the ions in the ion gyro-Bohm units as a fun
tion of kθρLi; (a) the ITG andthe SWITG mode without the trapped ele
trons (solid line + 
ir
le) (b) the ITGand the SWITG mode with the trapped ele
trons (solid line + square) (from theglobal gyrokineti
 model). Note that this 
urve is s
aled down by a fa
tor of 8.The upper axis presents the 
orresponding toroidal mode numbers.5.2.5 τ S
anTo look at the temperature dependen
e of the mode, a τ = Te/Ti s
an is shownin Figs. 5.14 and 5.15 for the growth rate and real frequen
y, respe
tively, usingthe global gyrokineti
 model. The growth rate in Fig. 5.14 for the SWITG modewithout the trapped ele
trons (
ir
les) in
reases gradually with τ and at highervalue of the latter it starts saturating. For the 
ase with the trapped ele
trons(square), on the other hand, it in
reases initially and be
omes maximum in theregion τ ≈ 1 − 2. It then falls and �nally saturates. This 
an be explained fromthe fa
t that in the �rst 
ase ele
trons are 
onsidered adiabati
, while the trappedele
trons are in
luded in the se
ond 
ase. So, at τ >> 1, Te >> Ti, the ele
trondrive appears to be stronger redu
ing the growth rate in the later 
ase. This isapparent from Fig. 5.15 where the real frequen
ies are plotted against τ . For the
ase with the trapped ele
trons, as τ in
reases the dominant ele
tron drive pullsthe real frequen
y toward the ele
tron diamagneti
 dire
tion. Therefore, the realfrequen
y de
reases with in
reasing τ going toward more positive value, and thensaturates. For the 
ase without the trapped ele
trons, however, the real frequen
y121
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ouplingwith trapped ele
tronsrises initially with τ and then starts saturating in line with its 
orresponding growthrates.5.2.6 Mixing Length EstimationIt will be interesting to 
al
ulate the heat di�usivity of the ions in the presen
e ofthe SWITG mode, over and above the 
onventional ITG mode. Within our linearmodel, we do this by using the mixing length estimation where γ/ < k2⊥ >, with
k⊥ =

√

k2r + k2θ , kr and kθ being, respe
tively, the radial and poloidal wave numbersof the mode, is plotted with respe
t to kθρLi. Thus, the heat di�usivity γ/ < k2⊥ >of the ions in the gyro-Bohm unit is depi
ted in Fig. 5.16 for the SWITG modewithout (
ir
le) and with (square) the trapped ele
trons. The di�usivity in
reasesinitially with kθρLi, peaks at kθρLi ≈ 0.5, and then starts falling for the �rst 
ase,but de
reases monotoni
ally for the se
ond 
ase. The maximum di�usivity shiftstoward lower k for both 
ases with and without the trapped ele
trons. It is to benoted that the values of the heat di�usivity for the 
ase with the trapped ele
tronshave been s
aled down, dividing the a
tual values by 8, to show both 
urves inthe same s
ale. Thus, one 
an 
on
lude that the trapped ele
trons enhan
e theheat di�usivity substantially. One important point to be noted is that there is nopeak spe
i�
 to the k⊥ρLi of the SWITG mode, the whole spe
trum of the heatdi�usivity tends to peak at lower k⊥ρLi ≤ 0.5 despite the fa
t that the SWITGmode peaks at around k⊥ρLi ∼ 1.5.
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ouplingwith trapped ele
trons5.3 Nonlinear SWITGAlthough detailed studies have been pursued in the linear behaviour, there are veryfew nonlinear studies available on the SWITG mode. It is therefore of interestto investigate how this mode behaves nonlinearly and if there is any signi�
ant
ontribution of this mode to the net ion transport in the 
ore of the system. Tothis end, we 
arry out a systemati
 nonlinear study of the mode using the �ux tubeversion of the well ben
hmarked, massively parallel, nonlinear, gyrokineti
 
odeGENE [32, 84℄, however, without 
onsidering the trapped ele
trons. Wehave found that although the k spe
trum bears signature of the SWITG mode,there is pra
ti
ally no 
ontribution to the net ion thermal transport from theSWITG mode.In the following we des
ribe the nonlinear simulation model and then the resultsand 
on
lusions.5.3.1 The ModelCoordinate System: The set of equations for the ele
trostati
 
ase are 
ast in theClebs
h-type �eld aligned 
oordinate system (x, y, z), su
h that (x, y) representsthe plane perpendi
ular to the magneti
 �eld given by B = B0∇x×∇y, where xstands for the �ux surfa
e label, simply the radial 
oordinate in units of length, yis the binormal dire
tion in units of length that labels the �eld line on a given �uxsurfa
e and z is the straight �eld line poloidal angle that labels the position alonga �eld line and thus represents the parallel dire
tion. B0 is the referen
e magneti
�eld on axis. The velo
ity spa
e is represented by (v‖, µ), where, v‖ is the velo
ity
omponent parallel to ~B and µ = mv2⊥/2B stands for the magneti
 moment.As the present nonlinear simulation uses the �ux tube version of GENE, the system
onsidered is therefore a �ux tube, where system size is a box of dimension Lx ×
Ly × Lz in 
on�guration spa
e as well as Lv‖ × Lµ in velo
ity spa
e. In theperpendi
ular dire
tion i.e., radial x and binormal y dire
tions, periodi
 boundary
onditions are applied. The dis
retization s
heme used is based on the so-
alled�method of lines", that is, the phase spa
e operators are dis
retized �rst, and thenthe resulting ordinary di�erential equations are solved as an initial value problemusing the fourth order Runge-Kutta s
heme. The di�erential operators related to123
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ouplingwith trapped ele
tronsthe �eld-line following 
oordinate z or the parallel velo
ity v‖ are dis
retized usingthe fourth-order �nite di�eren
e s
heme. The periodi
 boundary 
onditions in theperpendi
ular x and y dire
tions allow one to treat x and y in the framework of apseudo-spe
tral approa
h, that is, all linear terms as well as spatial derivatives areevaluated in kx-ky spa
e, while the nonlinearities are 
omputed in real spa
e withthe help of Fourier transform and a proper dealiasing method. The velo
ity spa
eintegrations are performed using Gauss and trapezoidal rules in µ and v‖ spa
e,respe
tively. For the time stepping, the fourth-order expli
it Runge-Kutta methodis used.
δf splitting: In order to separate the ma
ros
opi
 evolution of the plasma fromthe mi
roturbulen
e, the full distribution fun
tion is 
onsidered to be 
omposed oftwo parts, namely, the stati
 ba
kground distribution fun
tion f0 and a perturbedpart f1 of the order of |f1/f0| ∼ ǫ = ρref/Lref , where ρref and Lref , respe
tively,stand for a referen
e Larmor radius and equilibrium s
ale length. We 
onsider

f0i(v‖, µ) =
n0

(2πTi/mi)3/2
exp[−

miv
2
‖/2 + µB

Ti
],to be a lo
al Maxwellian distribution fun
tion, n0 and Ti being the ba
kgrounddensity and temperature. The perturbed distribution fun
tion f1 is, on the otherhand, a fun
tion of 5 phase spa
e 
oordinates (x, y, z, v‖, µ) and time t.Normalization: The formal normalization of the various equilibrium and �u
tuat-ing quantities are displayed in the following tables, where vT i =

√

2Ti/mi and
cs =

√

ZiTe/mi stand, respe
tively, for the ion thermal velo
ity and sound speed,
ρs = cs/Ωi is the ion Larmor radius at the sound speed and Φ1 is the ele
trostati
potential related to the �u
tuations. Also, Lref is a referen
e ma
ros
opi
 lengths
ale.

f̂j0 f̂j1 Φ̂1

fj0v3Tj

n0
(
fj1v3Tj

n0
)(
Lref

ρs
) eΦ1

Te
(
Lref

ρs
)Table 5.2: Normalization of dependent variables. 124



Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
tronsThe spirit behind the 
hoi
e of the normalization is to make ea
h normalizedquantity of order unity. Furthermore, all gradient s
ale lengths of the equilibriumquantities, viz., n0, Ti, B, are normalized to Lref .
t̂ x̂ ŷ ẑ v̂‖ µ̂

cst/Lref x/ρs y/ρs z v‖/vthi µB0/TiTable 5.3: Normalization of independent variables.Model Equations: With the above de�ned 
oordinate system and normalizations,and with the su�x de�ning parti
le type and the hat for normalized quantitiesbeing dropped to ease the notation, the gyrokineti
 equation for ions 
an formallybe written as
∂f1
∂t

+ [
1

Ln
+

1

LT
(v2‖ + µB − 3/2)]f0

∂Φ̄1

∂y
+ [

∂Φ̄1

∂x

∂f1
∂y

− ∂Φ̄1

∂y

∂f1
∂x

]+

1

B

µB + 2v2‖
σ

(KxGx +KyGy) +
v2‖β

σB

dp

dx
Gy + α

v‖
JB

Gz −
µα

2JB

∂f1
∂v‖

∂B

∂z
= 0, (5.9)where Gj = ∂jf1 − (σ/v‖)∂jΦ̄1∂f0/∂v‖ for j = x, y, z, αi = vT i/cs and σi =

ZiTe/Ti and Φ̄1 = J0(λ)Φ1 is the gyroaveraged potential with λ2 = k2⊥(2µ/B)and J0 being the Bessel fun
tion of order zero. Also, 1/LT = −d(lnT)/dx and
1/Ln = −d(ln n)/dx are the inverse gradient s
ale lengths of temperature anddensity, respe
tively. The se
ond term in Eq. (5.9) thus represents the equilibriumgradients that drive the instability. The third term is the nonlinear E × B driftterm. The fourth and �fth terms 
ontain the e�e
t of magneti
 
urvature and ∇B,with

Kx = −g
xxgyz − gyxgxz

B2

∂B

∂z
,and

Ky =
∂B

∂x
− gxygyz − gyygxz

B2

∂B

∂z
,where g's are the metri
 tensor elements de�ned as gij = ∇ui.∇uj, ui, uj = x, y, z.125



Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
tronsThe total plasma pressure appearing with a radial derivative in the �fth term isnormalized to p̂ = p/pref = n0Te , and β = 2prefµ0/B
2, pref is the referen
epressure (at the 
enter of the �ux tube) and µ0 is the permeability in va
uum.Finally, the last two terms take into a

ount the e�e
t of parti
le trapping inthe low magneti
 �eld side of the tokamak and in
lude the Ja
obian J = Jxyz =

[(∇x×∇y).∇z]−1. Integrating over velo
ity the perturbed distribution f1, solutionto Eq. (5.9), provides the perturbed ion density, whi
h 
an be inserted in thequasineutrality 
ondition with adiabati
 ele
trons, thus leading to the followingequation
Z2τ [1− Γ0(b)]Φ1 = πZB

∫

J0(λ)f1dv‖dµ− (Φ1− < Φ1 >), (5.10)whi
h 
an then be solved numeri
ally, to get the self 
onsistent ele
trostati
 po-tential. Note that in Eq. (5.10), one de�nes τ = Te/Ti, b = [1/(Z2
i τB

2)]k2⊥,
k2⊥ = gxxk2x + gyyk2y + gxykxky and Γ0(b) = exp(−b)I0(b) is the s
aled modi�edBessel fun
tion. The term < Φ1 > represents the �ux surfa
e averaged value of
Φ1. Note that in a �ux-tube simulations, the x-dependen
e of all equilibrium quan-tities a
ross the simulation domain is negle
ted. Thus, all 
oe�
ients relative tothe magneti
 equilibrium (B(z), J(z), Kx(z), Ky(z), g

ij(z)) as well as equilibriumpro�les and their gradients (1/Ln, 1/LT ) are independent of x and represent valuesat the �ux tube 
enter de�ned by x = x0.Geometry: The GENE 
ode is 
apable to interfa
e with the general geometry MHDequilibrium obtained from the numeri
al solution of the Grad-Shafranov equation.It 
an, in addition, also be run using an ad ho
 analyti
al model whi
h is an ap-proximate solution of the Grad-Shafranov equation in the limit of axisymmetri
,
ir
ular, 
on
entri
 �ux surfa
es. In the present investigation we use this ad ho
equilibrium, whi
h is de�ned in the (r, θ, φ) (radial, poloidal and toroidal) 
oordi-nate system, related to the 
ylindri
al 
oordinate system (R, z, φ) by the relations
R = R0 + r 
osθ = R0(1 + ǫ 
osθ) and Z = r sinθ with R0 being the major radiusof the toroidal 
oordinate system and ǫ = r/R0 being the inverse aspe
t ratio. Theaxisymmetri
 magneti
 �eld 
an in any 
ase be written as B = ∇φ×∇ψ+RBφ∇φ,where in the ad ho
 model Bφ = R0B0/R, Ψ = Ψ(r) and dΨ/dr = rB0/q̄. The
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Figure 5.17: (a) Real frequen
y ωr, and (b) growth rate γ versus wave number
kyρs of the linear short wavelength ion temperature gradient mode (SWITG) fordi�erent values of R/Ln. Here ηi = 2.5, q = 2.0, ŝ = 1.0, τ = 1.0 in thesesimulations.fun
tion q̄(r) is related to the true safety fa
tor q by the relation

q(r) =
1

2π

∫ 2π

0

B.∇φ
B.∇θ dθ =

q̄(r)√
1− ǫ2

.More details related to this ad ho
 model are found in Ref [65℄.Physi
al Parameters: Our main fo
us is to study the nonlinear short wavelengthion temperature gradient mode using the �ux tube version of GENE. Note thata detailed parametri
 study of the linear SWITG mode has been 
arried out inRef. [66℄ 
onsidering ρ∗ = ρs/a = 0.017, inverse aspe
t ratio a/R0 = 0.25 wheresteepest gradients are at s = r/a = 0.6. Inspired by that linear study we have
hosen �ux tube aspe
t ratio r0/R0 = 0.15 in the present nonlinear �ux tubesimulations where ρ∗ → 0. Also in the present simulation we have 
onsidered
τ = Te/Ti = 1, q = 2.0, ŝ = 1.0 and ηi = Ln/LTi = 2.5 where Ln and LT iare, respe
tively, the density and temperature gradient s
ale lengths. Also, theparameters 
onsidered here are relevant to small size tokamaks and hen
e atypi
alfor ITER grade ma
hines. 127
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al parameters: The simulation is 
arried out in a box of size Lx × Ly =
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Figure 5.18: Time (in units of R/cs) evolution of ion heat �ux Q normalized by
Qnorm = prefcsρ

2
s/R

2 for SWITG simulation, with R/Ln = 5 and R/Ln = 10. Thebla
k dashed lines represent the time average of the heat �ux between t = 100 R/csand t = 330 R/cs. For R/Ln = 5 the average Q = 195 Qnorm and for R/Ln = 10the average Q = 302 Qnorm.
133.3ρs×209.4ρs in the perpendi
ular dire
tion. One 
onne
tion length of 2πRq is
onsidered in the parallel dire
tion. This 3-dimensional spatial domain is resolvedby using 200×120×16 grid points, respe
tively, in the x, y, and z dire
tions. Thevelo
ity spa
e, on the other hand, is resolved with 32×16 grid points, respe
tively,for v‖ and µ with the limit for v‖ from −3 to +3, and 0 to 9 for µ in normalizedunits (see Table 5.3 ). Also, throughout the paper we have 
hosen Lref = R, themajor radius.5.3.2 ResultsIn this se
tion we will delineate our results for linear and nonlinear runs for thephysi
al and numeri
al parameters introdu
ed above using the �ux tube version of128
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ouplingwith trapped ele
tronsGENE. Note that sin
e higher resolution runs are 
omputationally very expensive,the nonlinear results presented in this se
tion are somewhat preliminary.Linear spe
trumWe start with a linear simulation with parameters 
onsidered above. Figure 5.17(a)shows the real frequen
y versus kyρs for di�erent values of R/Ln ranging from 5to 10. The real frequen
y rises monotoni
ally with kyρs for kyρs ≤ 1 and remainsvirtually 
onstant at higher kyρs. It is 
lear from the expression of the dispersionrelation, Eq. (5.6), that the mode frequen
y ω behaves as ωniI0(k2⊥ρ2s) exp(−k2⊥ρ2s)whi
h for small k2⊥ρ2s s
ales as k⊥ρs and for larger k2⊥ρ2s s
ales almost as a 
onstantas I0(k2⊥ρ2s) exp(−k2⊥ρ2s) → 1/
√

2π(k2⊥ρ
2
s) = 1/(

√
2πk⊥ρs) for k⊥ρs >> 1 (re
allthat ωni ∼ k⊥ρs). Figure 5.17(b) displays the growth rate for the same s
an. Itexhibits two peaks for all 
onsidered values of R/Ln in 
ontrast to the single peakaround kyρs ≃ 0.5 routinely observed in the linear analysis of the standard ITGmodes. The se
ond peak appears around kyρs ≃ 1.5 and is 
hara
teristi
 of theSWITG mode. Regarding the growth rate in toroidal geometry, it is the toroidalmagneti
 drift term ωdi of the ions, resonating with the mode frequen
y ω, whi
hgives rise to the double hump behavior. It is to be noted that ωdi ∼ (Ln/R)ωniand thus s
ales as k⊥ρs. Therefore, both ω and ωdi, at �rst in
rease for small k⊥ρsand then ω saturates while ωdi still grows as k⊥ρs in
reases. It is important tonote that the SWITG mode is also subje
t to �nite Larmor radius e�e
ts. The�nite Larmor radius stabilization (FLR) of the SWITG mode 
an be inferred fromthe nonadiabati
 part of the ion density response. At very high k⊥ρs, |ωdi| >> |ω|and the nonadiabati
 part of the perturbed ion density 
an be redu
ed to

ñna

i =
qi
Ti
φ̃
ωni(ηi/2− 1)

ωdi
I0(k

2
⊥ρ

2
s) exp(−k2⊥ρ2s),whi
h for large k⊥ρs will de
rease a

ording to

ωni
ωdi

I0(k
2
⊥ρ

2
s) exp(−k2⊥ρ2s) ∼

R

Ln
I0(k

2
⊥ρ

2
s) exp(−k2⊥ρ2s) ∼

R

Ln

1√
2πk⊥ρs

,as k2⊥ρ2s in
reases. It is apparent that the se
ond hump is equally strong as the �rsthump for higher value of R/Ln or even slightly more dominant for R/Ln ≥ 10. It129
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ouplingwith trapped ele
tronsalso is present for lower values of R/Ln albeit less pronoun
ed and �nally vanishesat values of R/Ln typi
al of the standard ITG mode (R/Ln < 5).
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Figure 5.19: (a) Time averaged ion heat �ux versus normalized wavenumber kyfor R/Ln = 5 and R/Ln = 10 in lin-lin plot. (b) Time averaged ion heat �ux asa fun
tion of normalized wavenumber ky for R/Ln = 5 and R/Ln = 10 in log-logplot. Q is normalized with respe
t to Qnorm = prefcsρ
2
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2.
Nonlinear Spe
traTill date, there have been very few nonlinear studies of the SWITG mode. Thestudy of the SWITG mode turbulen
e and its 
ontribution to the net thermalion heat transport is thus of prime interest. Here we try to address this issue.We have adopted two 
ases in the present nonlinear study: 
ase (I) R/Ln =

10, where the peak in the linear growth rate 
orresponding to the SWITG (at
kyρs ∼ 1.5) mode is as pronoun
ed as that at lower ky (kyρs ∼ 0.45) 
orrespondingto the standard ITG mode, 
ase (II) R/Ln = 5, where the linear growth rateof SWITG at kyρs > 1 is mu
h weaker than that of the standard ITG modeat kyρs < 1. The time evolution of the nonlinear ion heat �ux given by therelation Q =

〈

∫

(1/2)mv2vE .∇xf1d3v
〉, normalized with respe
t to Qnorm =

prefcsρ
2
s/R

2, where pref is the equilibrium pressure, is shown in Fig. 5.18 for theparameters des
ribed in the previous se
tion for the two 
ases of the parameter130
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R/Ln. Note that 〈A〉

z
=
∫

Jxyz(z)A(z)dz/
∫

Jxyz(z)dz is the de�nition of �ux-averaged quantity A, where Jxyz is the Ja
obian relative to the 
oordinate system
(x, y, z). Also, v and vE , respe
tively, are parti
le velo
ity and radial 
omponentof the gyroaveraged E × B drift velo
ity, and f1 is the perturbed distributionfun
tion. It is 
lear that the heat �ux in the 
ase of R/Ln = 10 is higher thanthat in the 
ase of R/Ln = 5. This is in 
onformity with the linear results wherethe SWITG mode with R/Ln = 10 exhibits the highest growth rate 
ompared to
R/Ln = 5 at both s
ales i.e., kyρs < 1 and kyρs > 1 
orresponding, respe
tively,to the standard ITG and SWITG mode. The ratio of growth rates for R/Ln = 5
ompared to R/Ln = 10 is even weaker for the SWITG s
ales than for the ITGs
ales. The time averaged heat �ux between t = 100 R/cs and t = 330 R/cs isestimated at 302 Qnorm and 195 Qnorm, respe
tively, for the nonlinear simulationswith R/Ln = 10 and R/Ln = 5. Figure 5.19(a) depi
ts the time averaged (from
t = 0 to t = 330 R/cs) spe
trum Q(ky) of the heat �ux for the R/Ln = 10 
ase,normalized with respe
t to Qnorm, over the entire kyρs spe
trum 
onsidered in thesimulation. For the purpose of 
omparison, we also plot in the same �gure thetime averaged (from t = 0 to t = 330 R/cs) spe
trum of the heat �ux Q(ky)measured from the simulation with R/Ln = 5. The 
orresponding log-log plotsfor both simulations are shown in Fig. 5.19(b). It is quite 
lear that the Q(ky)spe
trum exhibits a strong peak around kyρs ≃ 0.3 for both values of R/Ln.However, the peak 
orresponding to R/Ln = 5 is signi�
antly lower than the one
orresponding to R/Ln = 10, in 
onformity with the observed heat �ux displayedin Fig. 5.18. The �gure also implies that, on the higher side of the ky spe
trum
orresponding to the SWITG mode, the 
ontribution to the net ion heat �ux isvery low 
ompared to the 
ontribution from the standard ITG mode on the lowerside of the ky spe
trum. The 
hara
teristi
 of the SWITG mode, though weak,is nevertheless still visible from Fig. 5.19(b), whi
h is the 
orresponding log-logplot of Fig. 5.19(a). The hump 
orresponding to the SWITG mode (en
ir
led inFig. 5.19(b)) 
enters around kyρs = 1.5, re�e
ting that there is another sour
e ofinstability in this region of the spe
trum. For 
ompleteness, it is important to
omment here that the mixing length estimate of transport from the linear growthrate and wavenumber is expe
ted to be mu
h higher than that measured from thenonlinear simulation. In this 
ontext, the reader may be referred to Ref. [66℄.It is evident from Fig. 5.17 that the SWITG mode has growth rate 
omparable to131
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ouplingwith trapped ele
tronsthe standard ITG mode for R/Ln = 10 in the linear regime. On the other hand,for R/Ln = 5 both humps be
ome weaker, with the se
ond hump 
orrespondingto the SWITG mode being even weaker than the �rst hump 
orresponding to thestandard ITG mode. Therefore, it is interesting to nonetheless estimate from thenonlinear simulation results the (small) 
ontribution of the SWITG part of the kyspe
trum to the net thermal ion transport. To estimate the relative 
ontributionof the SWITG mode to the thermal ion heat �ux 
ompared to the standard ITGmode, we have 
al
ulated the 
umulative sum of the time averaged (from t = 0 to
t = 330 R/cs) heat �ux Q(ky) given by

Qc.s.(ky1) =

ky1
∑

ky=kymin

Q(ky).It has been plotted versus kyρs for the two 
ases R/Ln = 10 and R/Ln = 5in Figs. 5.20 and 5.21, respe
tively. It is apparent from the �gures that Qc.s.in
reases rapidly for kyρs ≤ and then tends to saturate for kyρs ≥ 1 in both 
ases.The 
umulative heat �ux in the 
ase of R/Ln = 10 appears to be higher than the
ase of R/Ln = 5. It is obvious from Figs. 5.18 and 5.19(a) that heat �ux in the
ase of R/Ln = 10 is mu
h higher than that of R/Ln = 5 leading to higher valueof Qc.s.. To evaluate the relative 
ontribution to the net ion heat transport, of thehigher ky tail, kyρs ≥ 1, 
orresponding to the SWITG mode 
ompared to the lower
ky part, kyρs ≤ 1, relevant to the standard ITG, one may 
ompute

Qc.s.(kyρs)max −Qc.s.(kyρs = 1)

Qc.s.(kyρs = 1)
,where (kyρs)max is the maximum wavenumber. One thus obtains that the net
ontribution of the SWITG part of the ky spe
trum to the total ion heat �ux isless than 4% in both 
ases in spite of the fa
t that linearly the SWITG mode with

R/Ln = 10 has growth rate more than double that with R/Ln = 5 and 
omparableto the ITG growth rate. Thus, even in the strongest 
ase of linear SWITG, forexample, R/Ln = 10 in the present 
ase, the thermal ion heat �ux is predominantlydetermined by the lower ky 
omponents of the �u
tuation relevant to the standardITG mode.Snapshots of the ele
trostati
 potential Φ1(x, y) and n1(x, y) measured at133
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Figure 5.22: Snapshots of the potential (top) and perturbed density (bottom) ofthe SWITG mode for R/Ln = 5 taken at t = 330 R/cs.
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Figure 5.23: Snapshots of the potential (top) and perturbed density (bottom) ofthe SWITG mode for R/Ln = 10 taken at t = 330 R/cs.
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t = 330 R/cs on the low �eld side (z = 0) of the tokamak during the nonlinearsimulations with R/Ln = 5 and R/Ln = 10 are displayed in Figs. 5.22 and 5.23,respe
tively. It is 
lear from the �gures that in the 
ase of R/Ln = 5, whereSWITG is weak in the linear spe
trum, the quantities Φ1(x, y) and n1(x, y) ex-hibit elongated stru
tures along the x dire
tion. The same quantities, in 
ontrast,exhibit �ne stru
tures in the 
ase of the nonlinear simulation with R/Ln = 10,whi
h has the highest growth rate in the linear phase. Given the elongated radialstru
tures observed for R/Ln = 5, whi
h appear to be essentially broken up for
R/Ln = 10, one is motivated to investigate the zonal �ow [113, 114℄ shearing ratein both 
ases. For that purpose we have measured the zonal �ow shearing rate inboth simulations R/Ln = 5 and R/Ln = 10, respe
tively. The time evolution ofthe shearing rate is presented in Fig. 8 for the two nonlinear simulations. The timeaverage of the shearing rate ωE = dvEy/dx is estimated 2.4 cs/R for R/Ln = 5 and4.36 cs/R for R/Ln = 10, respe
tively. This means that the zonal �ow shearingrate for the SWITG mode with R/Ln = 10 is almost double that with R/Ln = 5.That is why the SWITG mode with R/Ln = 10 exhibits �ne stru
tures, while thatwith R/Ln = 5 bears elongated stru
tures in all perturbed quantities. In both
ases, the shearing rate is mu
h higher than the linear growth rate implying thatzonal �ows are the dominant saturation me
hanism for the SWITG mode turbu-len
e. The higher shearing rate of zonal �ows in the 
ase of nonlinear SWITGmode with R/Ln = 10 
ould be a reason for very low 
ontribution of the higher
kyρs part of the spe
trum 
orresponding to the SWITG mode to the total thermalion heat �ux, in spite of being the mode with highest growth rate linearly. This
ontribution is almost 
omparable to the 
ontribution of the higher kyρs part ofthe spe
trum in the 
ase of the nonlinear SWITG mode with R/Ln = 5, whi
hhas the weakest growth rate among all values of R/Ln 
onsidered in the linearsimulation.5.4 Con
lusionIn the �rst part of the present work, we have presented the features of the shortwavelength ion temperature gradient (SWITG) mode in the presen
e of trappedele
trons using a linear, global, gyrokineti
 model in the toroidal geometry, that136



Chapter 5: Short wavelength ion temperature gradient mode and 
ouplingwith trapped ele
trons

0 100 200 300
0

1

2

3

4

t (R/c
s
)

<
|ω

E
|2 >

1/
2

x

 

 

R/L
n
=5

0 100 200 300
0

2

4

6

t (R/c
s
)

<
|ω

E
|2 >

1/
2

x

 

 

R/L
n
=10

<<|ω
E
|2>1/2

x
>

t
 = 2.40 c

s
/R

(a) (b)

<<|ω
E
|2>1/2

x
>

t
 = 4.36 c

s
/R

Figure 5.24: Time tra
es of the zonal �ow shearing rate ωE = dvE,y/dx, in unitsof cs/R for the SWITG modes with (a) R/Ln = 5 and (b) R/Ln = 10.treats both spe
ies, namely, ions and ele
trons fully gyro-kineti
ally, taking intoa

ount all the kineti
 e�e
ts. A 
omparison of parametri
 dependen
ies for thetwo 
ases of SWITG mode with and without the trapped ele
trons is presented.In line with the global model, we also 
ompare the results from a lo
al gyro-kineti
model for the two 
ases, with and without the trapped ele
trons. This is forthe �rst time where the SWITG mode is studied (1) in the presen
e of trappedele
trons and (2) in the frame of a global gyrokineti
 model. The major �ndingsof the present work are the following.
• The trapped ele
trons have strong e�e
t on the SWITG modes, raising thegrowth rate substantially. This is in 
ontrast to the earlier 
onje
ture thatthe trapped ele
trons may not be important for the SWITG mode.
• Although de�ned as short wavelength ITG, the two dimensional mode stru
-ture of the SWITG mode has been found to be quite global o

upying a
onsiderable fra
tion of the tokamak 
ross-se
tion for the 
hosen set of pa-rameters. This establishes the ne
essity of a global model to study su
h aphenomenon.
• The most important observation is that, in the presen
e of trapped ele
-137
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ouplingwith trapped ele
tronstrons, the Ln/R window for the existen
e of the SWITG mode gets widened.The toroidi
ity has strong stabilizing e�e
t on the SWITG mode in the ab-sen
e of trapped ele
trons. In
lusion of the trapped ele
trons, however, hasbeen found to make the mode stronger against the stabilizing e�e
t of thetoroidi
ity. Thus, the inferen
e from this result is that the mode a
quirestoroidal-like nature in the presen
e of trapped ele
trons in 
ontrast to theslab-like nature in the absen
e of trapped ele
trons. The in
reased fra
tionof the trapped ele
trons with in
reased toroidi
ity is the main fa
tor behindthis �ipping of the mode from slab nature to toroidal nature. The in
reasedtrapped fra
tion of the ele
trons with toroidi
ity redu
es the adiabati
 re-sponse of the ele
trons, whi
h in turn enhan
es the formation of the spa
e
harge leading to a higher growth rate of the mode and hen
e the mode 
anwithstand the e�e
t of in
reased toroidi
ity.
• The SWITG mode is an ion temperature gradient driven mode in the higher
k⊥ρLi regime exhibiting a threshold in ηi. The mode persists even if theele
trons are 
onsidered adiabati
. In the absen
e of trapped ele
trons themode vanishes below a 
riti
al ηi. But, in the presen
e of trapped ele
trons,with the de
reasing value of ηi, the mode does not vanish, rather it transformsitself from the dominantly ion mode to the dominantly trapped ele
tronmode.

• The growth rate in
reases for lower values of τ but starts saturating at highervalues of it. In the presen
e of trapped ele
trons, the growth rate in
reasesinitially, but at higher values of τ , where the ele
trons be
ome hotter thanthe ions the growth rate falls and then saturates with the mode frequen
ytending to move toward the ele
tron diamagneti
 dire
tion.
• An estimation of the ion transport based on the mixing length theory is
arried out. The trapped ele
trons rise the heat di�usivity signi�
antly. Itis found that the ion heat di�usivity peaks at lower k⊥ρLi. No signi�
antdi�usivity is observed at higher kθρLi where the SWITG mode is strongestfor both 
ases with and without the trapped ele
trons.In the se
ond part of the present work, the short wavelength ion temperaturegradient mode has been studied linearly and nonlinearly using the �ux tube version138
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ouplingwith trapped ele
tronsof the massively parallel, gyrokineti
 
ode GENE using only the adiabati
 ele
trons.The trapped ele
trons are ignored for the sake of ease in 
omputations as our sole fo
usis to study the nonlinear behaviour of the mode.Linearly the mode appears to be as dominant as the standard ITG mode forhigh R/Ln ∼ 10. However, the growth rate de
reases with de
reasing R/Ln, andbelow R/Ln = 5 the SWITG mode vanishes, i.e., only the standard ITG moderemains unstable. Nonlinear simulations show higher heat �ux for higher value of
R/Ln in 
onformity with the trend in the linear growth rate with respe
t to R/Ln.The nonlinear heat �ux spe
trum is peaked at lower kyρs ≃ 0.3. The estimate ofrelative 
ontribution of the higher kyρs part of heat �ux spe
trum 
orrespondingto the SWITG mode reveals that the 
ontribution of the SWITG mode to thetotal heat �ux is very low (less than 4%) 
ompared to the 
ontribution from thelower ky part of the spe
trum typi
ally belonging to the standard ITG mode. Thezonal �ow shearing rate has been found to be mu
h higher than the linear modefrequen
y and growth rate of the SWITG mode suggesting that the zonal �owsare the main saturation me
hanisms of the SWITG turbulen
e. Also, the zonal�ow shearing rate is found to be higher for the SWITG modes with higher R/Lnwhi
h also exhibit higher growth rate linearly 
ompared to the shearing rate forthose with lower R/Ln and lower growth rate linearly. The higher shearing rateappears to 
ompensate for the higher growth rate of the mode leading to a min-imal 
ontribution to the thermal ion heat �ux from the higher kyρs part of thespe
trum relevant to the SWITG mode, irrespe
tive of the density s
ale lengthwhi
h determines the strength of the SWITG mode with respe
t to the standardITG linearly.
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Chapter 6Intera
tion of mi
roturbulen
e withenergeti
 ions
6.1 Introdu
tionThus far, we have studied the various linear properties of the temperature and den-sity gradient driven modes in the 
ategory of mi
roinstabilities using the global,linear, gyrokineti
 
ode EM-GLOGYSTO. In addition, the short wavelength iontemperature gradient driven mode is studied nonlinearly using the �ux tube versionof the nonlinear, gyrokineti
, ele
tromagneti
 
ode GENE. It is now well under-stood that these instabilities are the 
ause of anomalous transport of thermal ionsand ele
trons.Re
ently, some experiments show that these mi
roinstabilities transport notonly the thermal ions and ele
trons out of the system but also the energeti
 ionsprodu
ed by the auxiliary heating s
hemes and α parti
les of energy in the MeVrange produ
ed as fusion produ
t. These energeti
 parti
les 
onstitute a 
onsid-erable fra
tion of the total plasma, and thus a sound understanding of the impa
tof these energeti
 ions on the plasma 
on�nement through the intera
tion withthe ba
kground instabilities is very mu
h required. The various magnetohydro-dynami
s (MHD) events are observed to transport and redistribute the energeti
ion population via resonant and nonresonant phenomena [115, 116℄. For example,resonant MHD a
tivities su
h as �shbone, toroidal Alfven mode (TAE), et
., 
an
ause large transport of the energeti
 ions. Similarly, high β sawteeth 
an also pro-140
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tion of mi
roturbulen
e with energeti
 ionsdu
e loss of the energeti
 ions. The low frequen
y MHD modes su
h as neo
lassi
altearing modes (NTM) are equally 
apable to drive both passing and trapped ener-geti
 ion loss [117, 118℄. The toroidal �eld ripples and sto
hasti
 magneti
 �eld arealso among the other me
hanism of fast ion losses. The energeti
 ions 
an in turnalso alter the stability of the plasma by ex
iting and sometimes suppressing theMHD events. One may, for example, note the observed stabilization of sawteeth byperpendi
ular energeti
 ion population, the destabilization of internal kink mode,TAE, �shbone, et
. The energeti
 ions also 
an give rise to modes on their ownwhi
h are generally named as energeti
 parti
le modes (EPM) [119℄.Though mu
h understanding and 
on�den
e have been gained in the 
ase of theinterplay between the MHD events and energeti
 ions via theory and experiments,little attention is paid toward the intera
tion of these energeti
 ions with mi
ro-turbulen
e indu
ed by the ITG mode, TEM, ETG mode, et
. One partial reason
ould perhaps be the observation of very weak di�usivities of the energeti
 ionsand α parti
les in 
omparison with the thermal ions experimentally [115, 116, 120℄as well as theoreti
ally [121℄. The reason for it, as spe
ulated, is that the ener-geti
 ions do not stay in resonan
e with these mi
roturbulen
e driven �u
tuationsas their drift orbit radii are far higher than the radial 
orrelation length of these�u
tuations, and therefore average over the �u
tuation spe
trum temporally andspatially. These phenomena are generally de�ned as the drift averaging and gyro-radius averaging [115℄. On the 
ontrary, re
ent numeri
al experiments [122℄ haveshown that α parti
le and energy loss 
ould be higher than the 
orrespondinglosses of thermal ions and large orbit averaging is not strong enough to ignore theintera
tion of the α parti
les with ITG turbulen
e. However, it is a re
ent exper-iment [123℄ reporting eviden
e of 
orrelation between mi
roturbulen
e and redis-tribution of energeti
 ions that has spurred a fresh interest among the resear
hersin the subje
t. Even in the absen
e of any MHD a
tivity, fast radial broadeningof the 
urrent pro�le driven by the o� axis neutral beam inje
tion (NBI) has beenobserved supporting the fa
t that there must indeed be some 
orrelation betweenredistribution of energeti
 ions and ba
kground mi
roturbulen
e. This has beenfurther studied in Refs. [124, 125℄. Following this, numeri
al analysis [126℄ on theintera
tion of energeti
 ions with ITG turbulen
e observes 1/E dependen
e forthe passing energeti
 ion di�usion, where, E is the energy of the energeti
 ionsand 1/E2 dependen
e for the trapped energeti
 ion di�usion. Similar study [127℄141
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roturbulen
e with energeti
 ionsfound 1/E dependen
e of di�usion for the beam energeti
 ions in the presen
eof ele
trostati
 �u
tuation. In 
ontrast, the di�usion of the energeti
 ions in thepresen
e of magneti
 �u
tuations [127℄ has been found to be independent of theparti
le energy, and therefore, may play more important role than the ele
trostati
�u
tuations in redistributing the energeti
 ions. The re
ipro
al dependen
e of dif-fusivity on the parti
le energy of the energeti
 ions 
ould be one of the reasons forthe super�
ial e�e
t of mi
roturbulen
e on the energeti
 ions observed in the ear-lier experiments. The di�eren
e in the born energy of the energeti
 ions betweenthe earlier and re
ent experiments 
an be a likely explanation of the di�eren
e inthe observations regarding the e�e
t of mi
roturbulen
e on these energeti
 ions.Note that su
h phenomena of redistribution of hot ions by mi
roturbulen
e is not
on�ned to only toroidal devi
es like tokamaks; experiments on linear system also
on�rm the intera
tion of hot ions with density gradient driven turbulen
e [172℄.Astrophysi
al plasmas also en
ounter similar phenomena resulting from intera
tionof the energeti
 ions with turbulent �eld [129℄.Coming ba
k to the ba
k rea
tion of energeti
 ions on mi
roturbulen
e, onemay 
ite latest experiments [130℄ that has reported signature of internal transportbarrier (ITB) in the ion 
hannel even in the absen
e of reverse shear. The formationof the ITB has been observed to have 
orrelation with the transport suppressionme
hanism by the inje
ted energeti
 ions with a lifetime of the order of slowingdown time of the beam ions. Similar observation of the ITG mode suppressionby the energeti
 ions produ
ed by ion 
y
lotron resonan
e heating (ICRH) and
on
urrent formation of the ITB triggered by these energeti
 ions in a plasma withmonotoni
 safety fa
tor pro�le has been reported in Ref. [131℄.Following the re
ent theoreti
al, numeri
al and experimental studies regardingthe prospe
tive intera
tion of the energeti
 ions with the ba
kground mi
roturbu-len
e, we, in the present 
hapter, present the results from (1) a linear study on thee�e
t of the energeti
 ions on the stability properties of the ITG mode using thelinear numeri
al 
ode EM-GLOGYSTO (2) a nonlinear passive tra
er study on thee�e
t of the ion temperature gradient (ITG) mode mi
roturbulen
e on energeti
ions using the nonlinear global gyrokineti
 
ode Gyrokineti
 Tokamak Simulation(GTS) [139, 140℄ based on parti
le in 
ell simulation, and (3) a nonlinear passivetra
er study on the e�e
t of the trapped ele
tron mode (TEM) mi
roturbulen
eon energeti
 ions using the nonlinear global gyrokineti
 
ode Gyrokineti
 Tokamak142
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 ionsSimulation (GTS).The results are dis
ussed in tandem in the following se
tions.6.2 E�e
t of energeti
 ions on the stability of tem-perature gradient driven mode of thermal ions.We in
orporate the energeti
 ions in the model of EM-GLOGYSTO nonpertur-batively as an a
tive 
omponent that would modify the quasineutrality 
ondition.It is to be noted that, in the past, the e�e
t of the fast parti
le pressure on theMHD modes, for example, TAEs and its family of modes, kineti
 ballooning modeor Alfven ion temperature gradient mode, has been investigated extensively usingperturbative methods by 
onsidering the fast parti
le e�e
ts as 
orre
tions to theunderlying �equilibrium� in the limit βf/βp ≪ 1. Nonperturbative treatments [119℄wherein bulk ele
trons, ions and fast parti
les, all are treated on the same physi
sfooting have been very few. In all these studies, an unstable MHD equilibriumwith E|| = 0 is assumed. Either perturbative (βf/βp ≪ 1) or nonperturbativeordering (βf ≃ βpǫ, ǫ = a/R) is invoked; the fast parti
le distribution fun
tionis 
al
ulated drift-kineti
ally and �nally the instability problem is solved usingstandard δW method distinguishing the ��uid� part and �kineti
 part�. Closure isobtained by taking moments of the fast parti
le distribution fun
tion and usingMaxwell's equations. In su
h formulations, the bulk ele
trons/ions 
onstitutingthe MHD equilibrium naturally do not 
ontribute to any kineti
 e�e
ts su
h asLandau damping, transit/trapped parti
le e�e
ts orbit width e�e
ts or �nite Lar-mor radius (FLR) 
orre
tions.With respe
t to these earlier studies, the present work treats ele
trons, ions andfast parti
les on equal footing; all the three �spe
ies� are fully �gyrokineti
�, fully�nonadiabati
�, thus in
luding the above said e�e
ts automati
ally. The formula-tion retains all the kineti
 e�e
ts, namely, the Landau resonan
e, transit resonan
e,magneti
 drift resonan
e and �nite Larmor radius e�e
t to all orders. However, wedo not in
lude the e�e
t of the trapped parti
les and magneti
 perturbation. Thusthe treatment is purely ele
trostati
 in the present study. The energeti
 parti
lesenter the quasineutrality equation as a third spe
ies in the plasma, but with higherenergy. To be noted that we 
onsider three di�erent η = Ln/LT (Ln and LT are143
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Figure 6.1: Left panel: the equilibrium density and temperature pro�les alongwith the η pro�le of the thermal ions and ele
trons. Right panel: the safety fa
torpro�le and shear pro�le. The η pro�le peaks at s0 = 0.7 with the magnitude
η = 2.0. The safety fa
tor q and shear value ŝ at this point, respe
tively, are 2.0and 1.0.s
alelngths for density and temperature) pro�les for the energeti
 ions with respe
tto the thermal ions and ele
trons to look if there is any e�e
t at all of the energeti
ions' η on the ITG mode. E�e
ts of energeti
 ions' density and temperature on theITG mode are dis
ussed along with a mixing length estimate for the prospe
tivethermal ion transport by the ITG mode in the presen
e of energeti
 ions.
6.2.1 Model equationsStarting from Eq. (2.9) and reformulating it for the energeti
 ions, one 
an modifythe quasineutrality 
ondition to a

ommodate the energeti
 ions as a third a
tivespe
ies as follows.

ñi + Zf ñf = ñe (6.1)where, Zf and ñf , respe
tively, are 
harge and perturbed density of the energeti
ions. This equation 
an further be written following Eq. (2.13) as,
∑

k′

∑

j=i,e,f

M̂j
k,k′ ϕ̃k′ = 0 (6.2)
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Figure 6.2: The η pro�les 
onsidered for the energeti
 ions with respe
t to theba
kground pro�les of the thermal ions and ele
trons. While the thermal ion andele
tron η pro�les are kept the same, energeti
 ion pro�les are 
onsidered for threedi�erent 
ases, namely, �at η pro�le (green 
urve), peaked η pro�le (red 
urve)and same η pro�le (blue 
urve) as the thermal ions.Note again that we have 
onsidered 3 spe
ies here: passing ions (i), passing ele
-trons (e) 
omprising the thermal ba
kground plasma and energeti
 ion spe
ies (f)with 
harge Zfe.6.2.2 Pro�les and Parameters:In the following se
tions, we will elu
idate the results regarding the e�e
t of theenergeti
 ions on the stability of the ITG mode using the global linear gyrokineti

ode EM-GLOGYSTO.For the purpose we 
onsider pro�les and parameters as given in Table 6.1. Notethat all our results in the present se
tion are only for one a/ρi = 57. The equilib-rium pro�les for density, temperature, η, safety fa
tor, and shear are displayed inFig. 6.1 a

ording to the parameters 
harted in Table 6.1. However, for the 
ase ofenergeti
 ions we 
onsider three di�erent η pro�les as presented in Fig. 6.2: (1) a�at η pro�le (green line), same throughout the minor radius of the tokamak, (2)a145
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roturbulen
e with energeti
 ionsTable 6.1: Pro�les and parametersParameters: Equilibrium Pro�les:
• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.7 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.4 m, LT0 = 0.2 m −0.06 s4

• ηi,e(s0) = 2.0, ǫn = Ln0/R = 0.2 su
h that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.
η pro�le (blue line) same as the ba
kground thermal ions and ele
trons, and (3) asteeper η pro�le (red line) 
ompared to the ba
kground ions and ele
trons. Theseare a
hieved by 
onsidering δsT equal to 0.35, 0.2, 0.05, respe
tively, for the three
ases keeping δsn = 0.35 same as that listed in Table 6.1 for the thermal ions andele
trons. Also note that mf/mi = 1.0, Zf = 1, where mi and mf are massesfor the thermal ions and fast ions. We also 
arry out similar studies 
onsideringHe ions as the energeti
 spe
ies, with the η pro�le same as the thermal ions andele
trons. All the parameters are kept same ex
ept 
onsidering mf/mi = 2.0 and
Zf = 2.0 for the He ions.6.2.3 Wave number s
an for the mode frequen
y and growthrateIn the present se
tion, we 
arry out a kθρLi s
an for the ITG mode by varyingthe toroidal mode number n. Thus we display the mode frequen
y ωr and growthrate γ of the ITG mode with respe
t to kθρLi for the 
ases with and withoutthe energeti
 spe
ies in Fig. 6.3. We here 
onsider three 
ases, namely, (i) ITGmode without the energeti
 spe
ies (the magenta line), (ii) ITG mode with singly
harged energeti
 ions, with �at η pro�le (green line), steeper η pro�le (red line)and η pro�le (blue line) same as the thermal ions and ele
trons as shown in Fig. 6.2,all with mf/mi = 1, Zf = 1, and (iii) ITG mode with He ions for mf/mi = 2,146



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ions

0 0.2 0.4 0.6 0.8
−30

−20

−10

0

kθρ
Li

ω
r (

3X
10

4 ) 
[r

ad
/s

ec
] 

0 0.2 0.4 0.6 0.8
0

2

4

6

8

kθρ
Li

γ 
(3

X
10

4 ) 
[r

ad
/s

ec
] 

Figure 6.3: The wavenumber s
an for the mode frequen
y ωr (left panel) andgrowth rate γ (right panel) of the ITG mode is presented for the 
ases, viz., (i)without energeti
 ions (magenta line), (ii) with singly 
harged energeti
 ions with�at η pro�le (green line), steeper η pro�le (red line), same η pro�le (blue line) asthe thermal ions and (iii) with energeti
 He ions (brown line).
Zf = 2. The other parameters, apart from tabulated in table 6.1, are nf/ne = 0.1for the singly 
harged energeti
 ions, and nf/ne = 0.06 for the He ions. Theratio Tf/Te = 20 and τ = Te/Ti = 1 are same for all the 
ases. It is 
lear from thepi
ture that the energeti
 ions strongly stabilize the ITG mode. For the parameters
onsidered, the growth rate of the ITG mode is redu
ed by about 30% when one
onsiders the energeti
 ions. It is apparent from Fig. 6.3 that the stabilization bythe energeti
 ions is almost independent of the energeti
 ions' η pro�le. For Heions the stabilization is far stronger than the singly 
harged ions for the parameters
hosen. A typi
al mode stru
ture of the linear ITG in the presen
e of nonadiabati
passing ele
trons and nonadiabati
 passing energeti
 ions is shown in Fig. 6.4Regarding the mode frequen
y of the ITG mode (left panel of Fig. 6.3), thee�e
t of the energeti
 ions is not signi�
ant. The e�e
t of these energeti
 ionson the mode frequen
y of the ion temperature gradient driven mode is to redu
eit slightly as is apparent from Fig. 6.3. Similar to the growth rate, the modefrequen
y also seems as well to be almost independent of the energeti
 parti
les' ηpro�le.
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Figure 6.4: A typi
al ele
trostati
 mode stru
ture for n = 8, kθρLi = 0.4 
orre-sponding to the maximum growth rate of the ITG mode with nonadiabati
 ele
-trons and energeti
 ions.6.2.4 E�e
t of density fra
tion of energeti
 ionsNext, we 
onsider the e�e
t of the population of the energeti
 ions on the ITGmode. The real frequen
y ωr (left panel) and growth rate γ (right panel) areplotted in Fig. 6.5 for the various 
ases des
ribed in the above se
tion. The toroidalmode number n and kθρLi in the present se
tion 
orrespond to the mode with thehighest growth rate in the toroidal mode number or kθρLi s
an in the above se
tion,that is, we 
hoose n = 8 
orresponding to kθρLi ≃ 0.43. The s
an is performedby in
reasing the ratio nf/ne gradually and �nding out the 
orresponding modefrequen
y and growth rate of the n = 8 or kθρLi ≃ 0.43mode. The other parameterthat is kept �xed is the ratio Tf/Te, whi
h is set 20 in the s
an. It is 
lear fromthe �gure that the growth rate de
reases almost linearly with the in
rease in theparameter nf/ne. For all the three 
ases of di�erent η for the singly 
hargedenergeti
 ions, the growth rate �nally subsides 
ompletely at around nf/ne ≃ 0.35.The mode frequen
y in 
ontrast to the growth rate, de
reases weakly with thein
reasing fra
tion of nf/ne. Thus, with the enhan
ement in the energeti
 ion148
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Figure 6.5: The mode frequen
y ωr and growth rate γ are plotted as a fun
tion ofdensity fra
tion of the energeti
 ions 
ompared to ba
kground density of ele
tronfor the mode with n = 8, kθρLi = 0.4 for the 
ases, viz., (i) with singly 
hargedenergeti
 ions with �at η pro�le (green line), steeper η pro�le (red line), same ηpro�le (blue line) as the thermal ions and (ii) with energeti
 He ions (brown line).population ITG mode be
omes weaker gradually and at one stage it is suppressed
ompletely. In the 
ase of He ions, the stabilization is stronger than the 
asesdis
ussed earlier. The mode frequen
y also falls faster than the 
ases of the singly
harged energeti
 ions. It apparently 
onforms to the experimental observation ofredu
tion in the ITG mode intensity with the fast ion population. The explanationis based upon the dilution of the thermal ion population by the energeti
 ions,whi
h weakens the ion temperature gradient drive of the thermal ions, leading tostabilization of the mode. It also states the ne
essity of a nonperturbative modelthat treats the energeti
 ions on the same physi
s footing as the thermal ions andele
trons, and that they need to be 
onsidered as an a
tive element 
ontributingto the quasineutrality 
onstraint of the plasma. The in
rease in the energeti
ion population dilutes the thermal ion population and thus the modes inherentto the thermal ions get stabilized. Looking at the 
urve for the He ions, one 
anunderstand that the He ions 
an ameliorate the 
on�nement by further redu
ing thethermal ion temperature gradient mode, the prime 
ause of energy and parti
le lossfrom the 
on�ning devi
e. Thus, over and above the ignition, He ions, espe
iallythose with lower energy 
an provide a mean to suppress the ITG mode e�
ientlythereby keeping the density and energy well preserved in the system, and at the149
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Figure 6.6: The mode frequen
y ωr and growth rate γ are plotted as a fun
tionof temperature fra
tion of the energeti
 ions 
ompared to the temperature of thethermal ions for the mode 
hara
terized by the toroidal mode number n = 8,
orresponding to kθρLi = 0.4 for the 
ases, viz., (i) with singly 
harged energeti
ions with �at η pro�le (green line), steeper η pro�le (red line), same η pro�le (blueline) as the thermal ions and (ii) with energeti
 He ions (brown line).same time, 
ontinuing the energy transfer 
y
le, viz., from He ions to the ele
tronsand �nally to the ions. The argument for the observed stabilization of the ITGmode of the thermal ions by the energeti
 ions based upon thermal ion dilution,is further 
orroborated by the fa
t that the He ion (whi
h is doubly 
harged) ismore stabilizing than the singly 
harged energeti
 ions for the same parameters
onsidered. The mode subsides 
ompletely at around nf/ne ≃ 0.15 for He ions in
omparison to the nf/ne ≃ 0.35 of the singly 
harged energeti
 ions.6.2.5 E�e
t of temperature of the energeti
 ionsIn this se
tion, we study the e�e
t of the energeti
 ion temperature on the ITGmode of the thermal ions. This is performed by doing a temperature ratio s
an
Tf/Ti for the ITG mode keeping Ti inta
t and in
reasing only the energeti
 iontemperature. The other parameters are kept same as given in Table 6.1. Thevalues of nf/ne are 
onsidered to be 0.1 for singly 
harged ions and 0.06 for Heions. The results are displayed in Fig. 6.6. It is 
lear from the s
an that theenergeti
 ion e�e
t on the stabilization of the ITG mode is e�e
tive mainly in thelow temperature region of the energeti
 ions. The variations in the the growth150



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionsrate with the energeti
 ion temperature is more pronoun
ed in the the region
Tf/Ti ≤ 10. This again 
onforms to the experimental observation where the e�e
tof energeti
 ions has been found to be signi�
ant for Tf/Ti ≤ 10. The growth rateof the thermal ion ITG mode de
reases with the temperature and hen
e energyof the energeti
 ions upto Tf ≃ 10Ti, and saturates thereafter. Thus, the dilutione�e
t is also related to the temperature of the energeti
 ions. When the energeti
ion velo
ity is around the thermal ion velo
ity, the dilution is the most e�e
tiveand so does the stabilization. Beyond Tf/Ti > 10 the growth rate is insensitiveto the temperature of the energeti
 ions. However, the overall stabilization bythese energeti
 ions is always there irrespe
tive of the energeti
 ion temperature.In the 
ase of the He ions the trend of the growth rate with the temperature ofthe energeti
 ions is di�erent than the singly 
harged energeti
 ions. It shows aweak in
rease in the growth rate with temperature of the He ions in the region
Tf/Ti ≤ 10. Thus, one may 
on
lude that the He ash in the fusion will play animportant role determining the stability properties of the ITG mode than the newlyborn He ions during the 
ourse of the fusion pro
ess. Coming to the mode frequen
yof the ITG mode, it in
reases slightly with the temperature of the energeti
 ionsand at Tf/Ti ≃ 2 it turns around for the singly 
harged energeti
 ions. Similar tothe growth rate, the variation in the mode frequen
y is also visible only at lowervalue of Tf/Ti. It remains unaltered by the energeti
 ions beyond Tf/Ti > 10.Until Tf/Ti ≤ 10 the mode frequen
y 
ontinues de
aying, and then onward, 
easesto vary with the energeti
 ion temperature. One may mention here the �ndings ofRef. [126, 127℄ on the in�uen
e of the ITG turbulen
e on the energeti
 ions, whi
hshow that the e�e
t of the ITG turbulen
e on the energeti
 ions is signi�
ant onlyin the lower temperature regime of the energeti
 ions. The in�uen
e is the strongestat Tf ≃ 2Ti [126℄. Following the present results one may 
on
lude that the vis-a-visintera
tion of the ITG mode and energeti
 ions, and 
onsequent redistribution ofthe energeti
 ions and stabilization of the ITG mode, all happen only in the lowerenergy regime of the energeti
 ions. Similar to the results in other se
tions, thestabilization is independent of the parameter η of the energeti
 ions.
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Figure 6.7: A mixing length based estimation of transport in gyroBohm units ispresented for the 
ases, viz., (i) without energeti
 ions (magenta line), (ii) withsingly 
harged energeti
 ions with �at η pro�le (green line), steeper η pro�le (redline), same η pro�le (blue line) as the thermal ions and (iii) with energeti
 He ions(brown line).6.2.6 Mixing length estimate of transportIn the frame of linear theory, the transport 
an be estimated at the best usingthe mixing length estimation, where the di�usivity is 
al
ulated from the highestgrowth rate divided by the 
orresponding averaged squared wave number. Thus, inthe present se
tion we dis
uss the mixing length estimated transport for the various
ases 
onsidered in this analysis. In Fig. 6.7 the mixing length based di�usivityexpressed in gyro-Bohm unit is plotted as a fun
tion of the perpendi
ular wavenumber kθρLi. The magenta 
urve depi
ts the di�usivity 
al
ulated for the pureITG mode without the energeti
 ions. The di�usivity initially in
reases, then at
kθρLi ≃ 0.35 be
omes maximum and starts de
reasing monotoni
ally thereafter.Su
h a trend 
an be understood from Fig. 6.3 where growth rate variation is shownversus kθρLi. It is 
lear from Fig. 6.7 that the di�usivity is signi�
antly de
reasedin the presen
e of the energeti
 ions. The di�usivity, however, is not stronglydependent on the respe
tive η pro�les of the energeti
 ions. It remains same for152
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 ionsall the three 
ases of di�erent η pro�les. In the 
ase of the He ions the e�e
t, asexpe
ted, is the strongest on the observed di�usivity.
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 ions6.3 Size and energy s
aling of hot ion transportin the presen
e of ion temperature gradientdriven turbulen
e.Motivated by the re
ent developments dis
ussed in the Se
tion 6.1, a study onthe in�uen
e of the ITG mode turbulen
e on the hot/energeti
 ions is 
arried outin the present work with a passive tra
er method using the massively parallel,global nonlinear gyrokineti
 
ode named Gyrokineti
 Tokamak Simulation (GTS)[139, 140℄, based on parti
le in 
ell method.The passive tra
er has proved to be a robust tool in the atmospheri
 ando
eanographi
 turbulen
e studies [141, 142℄ and been fruitfully implemented inthe plasma turbulen
e studies. In re
ent years, it has garnered mu
h popularitybe
ause of its simpli
ity; a slew of studies on plasma turbulen
e are now based uponthis passive tra
er method [121, 143, 144, 145, 146, 147, 148℄, and sometimes thelatter 
an be used to predi
t the nature of turbulen
e mu
h like passive diagnosti
s[121℄. Thus, su
h a tool 
an be quite useful to model hot spe
ies in tokamak, forexample, α parti
les, beam ions whi
h have very low 
on
entration 
ompared tothe thermal ions and ele
trons.We adopt the same method to study the dispersion and energy s
aling of thehot ions in the presen
e of turbulent �eld produ
ed by the nonlinear ITG modeand predi
t their nature of transport. Note that the transport of the hot ions isa 
omplex pro
ess; a whole lot of fa
tors are there that 
an in�uen
e it. Amongthem poloidal drift, zonal �ows, �nite Larmor radius e�e
t, gyro-averaging, orbitaveraging 
an play 
riti
al role [149℄.The purpose of the present work is to elu
idate the system size e�e
t in the ratioof plasma minor radius (a) to the thermal ion Larmor radius (ρi) on the transportof the hot ions. It is to be noted that the size s
aling of hot ion transport is a
ru
ial issue in view of the future fusion devi
es of larger size, for example, ITER[3℄. In the present work, the hot ion transport has been observed to in
rease initiallywith system size and then to remain virtually independent of system size at largersystem size; a behavior analogous to the Bohm to gyro-Bohm transition of thermal154
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roturbulen
e with energeti
 ionsion transport [151, 152, 153℄. Also, the nature of transport has been found toexhibit subdi�usive 
hara
ter for smaller system size, whi
h 
ontinuously 
hangestoward di�usive pro
ess as the system size in
reases.Before dis
ussing the details of the simulation model and results, we brie�yexplain, in the following, the anomalous transport and its importan
e in a 
omplexmedium su
h as tokamak plasmas.It is obvious that 
omplex systems are all pervading from exa
t to life s
ien
es,embra
ing a variety of systems su
h as plasmas, glasses, liquid 
rystals, polymers,proteins, biopolymers, organisms or even e
osystems [169℄. The mean physi
alquantities, in su
h systems have been known to be anomalous. With in
reas-ing sophisti
ation in experimental and numeri
al te
hniques these anomalies havebeen brought out with more 
on�den
e. A parti
ularly interesting and yet sim-ple to measure physi
al pro
ess is parti
le di�usion and 
orresponding di�usion
oe�
ient. Di�usion pro
esses in various 
omplex systems are found to exhibitnon-Gaussian statisti
s. In su
h 
ases, the Fi
k's law of di�usion 
an not be ap-plied to des
ribe the transport behaviour. The mean squared displa
ement in these
ases is no longer linear with respe
t to time, i.e., lim
t→large

< σ2 >= A tp, A being a
onstant, with p 6= 1. This is 
alled anomalous di�usion and present in wide varietyof systems. The main 
hara
teristi
s of su
h systems is the nonlinear growth of themean squared displa
ement with respe
t to time whi
h is, in general, 
aused bybroad distributions and long range 
orrelations [169℄. These anomalous di�usion
omprises of di�erent domains, de�ned through the MSD equation < σ2 >= A tpand parameterized by the anomalous di�usion exponent p. These domains are (a)subdi�usion, (b) superdi�usion and (
) normal di�usion on the threshold betweensub and super di�usion [167, 168, 169℄. Another spe
ial 
ase is ballisti
 motionwith p = 2. These are shown in Fig. 6.8. The generalized di�usion 
oe�
ient Ain the above equation has the dimension [A] = L2T−p.Complex systems su
h as plasmas have been studied extensively for su
h anoma-lous behaviour. Nondi�usive transport has been observed [171℄ in numeri
al studiesof three-dimensional, resistive pressure-gradient-driven plasma turbulen
e. It hasbeen found that the probability density fun
tion of tra
er parti
les' radial displa
e-ments is strongly non-Gaussian and exhibits algebrai
 de
aying tails in
orporatingin a uni�ed way spa
e-time non lo
ality (non-Fi
kian transport), non-Gaussianity,155
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Figure 6.8: Di�erent domains of anomalous di�usion, de�ned through the meansquared displa
ement< σ2 >= A tp, and parameterized by the anomalous di�usionexponent p: (a) subdi�usion for 0 < p < 1, (b) superdi�usion for 1 < p < 2. Onthe threshold between sub- and superdi�usion is the normal Brownian di�usionlo
ated. Another spe
ial 
ase is ballisti
 motion p = 2 [169℄.and nondi�usive s
aling. [171℄Some examples from experiments indi
ating nondi�usive transport are [173℄:the dependen
e of transport on the system size in low 
on�nement mode plas-mas [159℄, the observation of rapid propagation of an indu
ed perturbation [160,161℄, the measurement of long range temporal and radial 
orrelations in the plasmaedge [162, 163, 164℄, et
.Nondi�usive transport in 
on�ned plasma is not only relevant to tokamaks [158℄.Parti
le transport in a reversed �eld pin
h (RFP) devi
e is shown to be nondif-fusive when magneti
 
haos is present. A phenomenologi
al �t to density pro�lesgives a di�usion 
onstant and also a pin
h velo
ity dire
ted up the density gradi-ent [158℄. It has been shown in Ref. [158℄ that the 
ombination of di�usion andpin
h is a
tually an expression of the nonlo
al, subdi�usive nature of the trans-port. Nondi�usive transport is also observed in the Large Plasma Devi
e [172℄ indensity gradients driven turbulen
e in the 
ase of energeti
 ions. The energeti
ion transport de
reases rapidly with in
reasing gyroradius of the energeti
 ions.The turbulent transport is found to be nondi�usive in 
ontrast to the di�usivetransport 
aused by the Coulomb 
ollisions. 156
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 ionsComing ba
k to tokamak, by means of toroidal gyrokineti
 simulations of ele
-trostati
, 
ollisionless ion-temperature-gradient turbulen
e [154℄, it is shown thatthe nature of the transport is anti
orrelated and subdi�usive. Additionally, when-ever the �ows are self-
onsistently driven by turbulen
e, the transport gains anadditional non-Gaussian 
hara
ter. Similarly, several tra
er parti
le studies inHasegawa-Mima and Hasegawa-Wakatani models show nondi�usive 
hara
ter forthe tra
er parti
les. This kind of subdi�usive nature of transport, in parti
ular, forradial transport in the presen
e of drift wave turbulen
e is sometimes referred toas strange kineti
s [147℄. Zonal �ows are found to play 
riti
al role in determiningthe nature of transport [147, 121, 143, 144, 145, 146, 173℄ for the tra
er parti
les.6.3.1 Simulation ModelThe parti
le dynami
s is determined on the basis of the gyrokineti
 formalism,where we follow the time evolution of the perturbed part δf of the parti
le distri-bution fun
tion f expressed as the sum of an equilibrium part f0 and a perturbedpart δf . Thus, for the 
ollisionless 
ase, the gyrokineti
 equation for ions 
an bewritten as [150℄
∂δfi
∂t

+ (v‖b̂+ vE0 + vE + vd).∇δfi − b̂⋆.∇(µB +
e

mi

Φ0 +
e

mi

φ̄)
∂δfi
∂v‖

=

−vE .∇f0 + b̂∗.∇(
e

mi

φ̄)
∂f0
∂v‖

. (6.3)Here ~vE0 , ~vE are E×B drifts resulting, respe
tively, from the equilibrium potential
Φ0 and turbulent potential φ̄, ~vd is the∇B drift, b̂⋆ = b̂+ρ‖b̂×(b̂.∇b̂), with b̂ = B/Band ρ‖ = v‖/B. This equation along with the equation for adiabati
 ele
trons aresolved numeri
ally in the 
ode GTS with parti
le in simulation method.In 
ontrast, the hot ion (hi) spe
ies is pushed a

ording to the equation

∂fhi
∂t

+ (v‖b̂+ vE0 + vE + vd).∇fhi − b̂⋆.∇(µB +
e

mi
Φ0 +

e

mi
φ̄)
∂fhi
∂v‖

= 0. (6.4)This equation has been added additionally to govern the evolution of the passivetra
ers in
orporated as energeti
 ions. Note again that these passive tra
ers do nota�e
t the turbulent �eld, and hen
e do not enter the gyrokineti
 Poisson equation.157
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roturbulen
e with energeti
 ionsAlthough, the 
ode GTS is equipped with the 
apability to treat general geometrytokamak, for simpli
ity, we 
onsider 
ir
ular geometry for the plasma 
ross-se
tion.6.3.2 Parameters and pro�lesFor the study of size s
aling of hot ion transport we 
onsider the following pro�lesand parameters. The average aspe
t ratio is R0/a = 2.86, while three di�erentvalues of system size are 
onsidered; (1) average a/ρi = 157, (2) average a/ρi = 315,and (3) average a/ρi = 500. Note that here ρi = vthi/ωci is the thermal iongyroradius, cs =√Te/mi is the sound speed and ωci = eB/mi is the gyrofrequen
y.The parameters e, B, mi, Te are ele
tri
 
harge, magneti
 �eld, mass of thermalion, and ele
tron temperature, respe
tively. The thermal ion temperature pro�le,density pro�le and safety fa
tor pro�le 
onsidered are R0/LT = 8.0 exp{−[(r/a−
0.5)/0.28]6}, R0/Ln = 2.0 exp{−[(r/a − 0.5)/0.28]6} and q = 0.854 + 2.184(r/a)2respe
tively, with ele
tron to ion temperature ratio Te/Ti = 1. This implies thatat r = 0.5a, q = 1.4, shear ŝ = (r/q)dq/dr = 0.78, R0/LT = 8.0, R0/Ln = 2.0.We 
onsider thermal ions and ele
trons both being equal to 1.2 × 108 in number.The radial simulation domain 
hosen spans from r = 0.1a to r = 0.9a. Regardingthe in
orporation of hot ions, we 
onsider monoenergeti
 ions with temperature
Th = nTi, n being an integer, with uniform distribution in pit
h angle, de�ned asthe angle between the parti
le velo
ity and magneti
 �eld applied. The mass and
harge of these hot ions are kept the same as the ba
kground thermal hydrogen-like ions. With these spe
i�
ations, they are inserted on a single �ux surfa
e at
Ψ0 = 0.5a, where the gradients peak, and distributed uniformly in the poloidaland toroidal dire
tion.6.3.3 Heat �ux of thermal ionsFigure 6.9 depi
ts the time history of thermal ion heat �ux, measured at r = 0.5a,arising from the ITG turbulen
e for three values of system size, namely, a/ρi = 157,
a/ρi = 315 and a/ρi = 500. The heat �ux is 
al
ulated using the relation Qi =
∫

d3v 1
2
v2vEδf , where v is the parti
le velo
ity, vE is the radial 
omponent of gyro-averaged E ×B drift and δf is the perturbed distribution fun
tion, and re
ordedat r = 0.5a at every time step. The typi
al snapshots of perturbed potential are158
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Figure 6.9: Time evolution of heat �ux, measured at r = 0.5a, for system size (a)
a/ρi = 157, (b) a/ρi = 315, and (
) a/ρi = 500. 159
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 ionsshown in the following �gures for the three di�erent system sizes 
onsidered here.

Figure 6.10: The typi
al snapshots of mode stru
ture in the linear (left panel) andnonlinear (right panel) regime of the ITG turbulen
e for the system size a/ρi = 157.

Figure 6.11: The typi
al snapshots of mode stru
ture in the linear (left panel) andnonlinear (right panel) regime of the ITG turbulen
e for the system size a/ρi = 315.
160
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Figure 6.12: The typi
al snapshots of mode stru
ture in the linear (left panel) andnonlinear (right panel) regime of the ITG turbulen
e for the system size a/ρi = 500.6.3.4 Mean Squared Displa
ement of hot ionsThe hot ions are in
orporated at time t = 0, that is, before the turbulen
e sets in,on a single �ux surfa
e at Ψ0 = 0.5a and are distributed uniformly in the poloidaland toroidal dire
tion. The spirit of inserting the hot ions on Ψ0 = 0.5a surfa
efollows from the fa
t that the density and temperature gradients of the thermal ionspeak on this surfa
e and hen
e is the most unstable region. As des
ribed earlier,the hot ions in di�erent energy groups are pushed a

ording to the gyrokineti
Eq. (6.4) and the resulting mean squared displa
ement (MSD) is re
orded at everyinstant of time using the following relation
< σ2(ε, t) >=

1

N

i=N
∑

i=1

(ri(ε, t)− ri(ε, 0))
2where, N is the total number of parti
les of hot ions with energy ε, ri(ε, t) and

ri(ε, 0) are, respe
tively, the radial positions of the ith hot ion with energy ε attime t and t = 0. Note that the number of hot ions inserted from ea
h energygroup is roughly 6.7 × 105. Figure 6.13 displays the time evolution of runningMSD de�ned above for the hot ions with energy Th = Ti, 2Ti, 4Ti, 8Ti, 16Ti forthe three values of system size 
onsidered in the simulation. One 
an observe that161
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Figure 6.13: Mean squared displa
ement of the hot ions for system size a) a/ρi =
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 ionstill t = 200LT/vthi the hot ions undergo drift motion as the mode amplitude of theITG mode during this time interval is too weak (see Fig. 6.9) to produ
e any e�e
ton the hot ions. Their motion is thus governed by the equilibrium gradient and
urvature of the magneti
 �eld and therefore, the magnitude of the mean squareddispla
ement is determined merely by the energy asso
iated with the hot ions. Theboun
e period being inversely proportional to the parti
le velo
ity, hot ions withhigher energy undergo more boun
e 
y
les than the hot ions with lower energyfor a given interval of time as depi
ted in the �gure. It is 
lear from Fig. 6.9that from time t = 200LT/vthi the ITG turbulen
e starts showing its signaturewith its exponential linear phase. Consequently, the hot ions also 
ome under thein�uen
e of the ele
tri
 �eld of the ITG mode and MSD rises abruptly at thispoint. Note that the MSD is maximum for Th = 2Ti and gradually de
reases within
rease in the hot ion energy. There are important di�eren
es in the measuredMSD for the three 
ases of di�erent system size: �rst, the MSD for a given group ofhot ions 
hara
terized by a given temperature in
reases with the in
rement in thesystem size; se
ond, the MSD for all groups of energy of hot ions shows signatureof saturation for a/ρi = 157, in
reases linearly at �rst, then weak tenden
y tosaturate for a/ρi = 315 and in
reases almost linearly for a/ρi = 500 after theinitial abrupt rise for all the three 
ases with respe
t to time; third, the MSDs ofthe hot ions with temperature Th = 2Ti and Th = 4Ti tend to be almost the sameas the system size in
reases.6.3.5 Nature of transport: Energy S
alingIn order to evaluate the dependen
e of the energeti
 ion transport on their energyand system size, one 
an 
al
ulate the net displa
ement in the interval, from time
t1 = 160LT/vthi, where the MSD in the presen
e and absen
e (not shown here)of ITG turbulen
e remains the same, to time t2 = 1200LT/vthi, the end point ofsimulation and de�ne a quantity, Dh = δ < σ2 > /δt = (< σ2(t2) > − < σ2(t1) >

)/(t2 − t1). In the present 
ase, the hot ions are introdu
ed at r = 0.5a initially,and therefore, it 
an be shown that MSD and standard deviation remain almostthe same. For a di�usive pro
ess, the parameter Dh 
an therefore represent thedi�usion 
oe�
ient at late time when the system is in steady state. (A dis
ussion onthe issue regarding steady state and the di�usion 
oe�
ient is introdu
ed in Se
tion163
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Figure 6.14: Dh = δ < σ2 > /δt versus energy of hot ions.6.3.7.) The parameter Dh is plotted versus energy of the hot ions in Fig. 6.14 fordi�erent values of system size, namely, a/ρi = 157, 315, 500. It is 
lear thatfor all the 
ases Dh is maximum for Th = 2Ti and de
reases monotoni
ally within
reasing energy with a tenden
y of saturation at higher value of hot ion energyfor the 
hosen parameters. For energy below Th = 16Ti, the quantity Dh exhibitssigni�
ant dependen
e on the system size; it is maximum for a/ρi = 500 andde
reases with de
reasing system size. However, at Th = 16Ti the value of Dhis nearly the same for all the three values of system size. One expe
ts that it
onverges to the same value for the hot ions with energy beyond Th = 16Ti. Thus,it implies that while transport of hot ions with lower energy depends strongly onthe system size, for hot ions with higher energy, in 
ontrast, transport remainspra
ti
ally independent of the system size.6.3.6 Nature of Transport: Size s
alingNext, we look at the dependen
e of hot ion transport on system size. Figure 6.15presents the plot of Dh versus system size expressed in terms of the ratio a/ρi. It isevident that as the system size in
reases till a/ρi = 315, Dh in
reases linearly, whilethe in
rement is very minor beyond that point showing a tenden
y of saturation athigher value of the system size. Thus, with in
reasing system size, the transportof hot ions for all groups of energy starts in
reasing initially and shows trend of164
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Figure 6.15: Dh versus a/ρi.saturation for larger system size. The trend reminds one the 
ase of Bohm togyro-Bohm transition of thermal ion transport [151, 152, 153℄.Con
erning the nature of transport let us 
onsider the relation between MSDand time, given by < σ2 >= Atp, where A is an arbitrary 
onstant and t istime. The value of the exponent parameter p determines whether the transportpro
ess undergoes a normal di�usion or anomalous di�usion. When p = 1, thetransport is 
hara
terized by the di�usive pro
ess and said to be normal, whilefor values 0 < p < 1 and 1 < p < 2 the transport is 
hara
terized, respe
tively,by subdi�usive and superdi�usive pro
esses and de�ned as anomalous. The value
p = 2 implies a ballisti
 motion where the velo
ity remains 
onstant. The valueof p, 
al
ulated from the slope of log < σ2 > versus log t between time t =

900LT/vthi to t = 1200LT/vthi is plotted in Fig. 6.16 versus system size a/ρi forthe MSDs of hot ions delineated in Fig. 6.13 for various groups of energy. The�gure shows that for smaller system size the hot ion transport is 
hara
terizedby a subdi�usive pro
ess as p < 1. Due to this nature, one observes a trend ofsaturation in the measured MSD for a/ρi = 157 as displayed in the �rst panelof Fig. 6.13. The exponent parameter p in
reases further for a/ρi = 315 and thesubdi�usivity be
omes weaker. At even larger system size a/ρi = 500, p approa
hesunity, thus showing the 
hara
teristi
s of a di�usive pro
ess. This means that165
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Figure 6.16: Exponent p in < σ2 >∝ tp versus a/ρi.the hot ions exhibit subdi�usive transport for lower system size, whi
h however,gradually be
omes weaker and �nally appears to be di�usive for larger systemsize. An extensive dis
ussion on robustness of the exponent p 
an be found inSe
tion 6.3.7. In that se
tion, the simulation time is doubled and the 
al
ulation isrepeated. This e�ort demonstrates that the transport is subdi�usive for a/ρi = 157and 315.In the following, we have measured the probability density fun
tion (PDF) ofradial displa
ement for the hot ions for all the devi
e sizes 
onsidered here. Wehave also measured the standard deviation σ, skewness s and kurtosis k de�ned,respe
tively, as
σ2 =

1

N

N
∑

i=1

(xi − x̄)2,
s =

√
N

∑N
i=1(xi − x̄)3

{

∑N
i=1(xi − x̄)2

}3/2and
k = N

∑N
i=1(xi − x̄)4

{

∑N
i=1(xi − x̄)2

}2 − 3from the simulation data. One may note that for a distribution kurtosis estimatesthe relative peakedness or �atness 
ompared to the normal distribution, while166
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e with energeti
 ionsskewness is a measure of symmetry about the mean. In the 
ase of Gaussian dis-tribution, both kurtosis and skewness as de�ned above be
ome zero and infer anormal di�usion. Divergen
e of these quantities from zero, therefore, 
an be 
on-sidered as the signature of a non-Gaussian distribution. A positive kurtosis 
har-a
terizes a relatively peaked distribution while a negative kurtosis 
hara
terizes arelatively �at distribution. On the other hand, a positive skewness (right-skewed)represents a distribution with longer tail on the right side, while a negative skew-ness (left-skewed) represents a distribution with longer tail on the left side of thedistribution. Creating 200 bins in the radial dire
tion between 0.1a and 0.9a theprobability density fun
tion for the test parti
les has been evaluated. The upperpanel of Fig. 6.17 depi
ts plots of the PDFs for system size a/ρi = 157. Corre-sponding values of σ, s and k are also displayed in the legend of the �gure. Notethat σ is normalized to 
orresponding ρi/a. It is 
lear from the �gure that thePDFs are substantially deviated from the normal distribution. The lower panelof the same �gure displays the plot of < σ2 > /tp versus t. It remains virtually
onstant for the measured values of p in the given temporal window evin
ing therobustness of the quantity pThe upper panel of Fig. 6.18 presents plots of the PDFs for system size a/ρi = 315.The legend shows the values of σ, s and k extra
ted from the simulation data. Thelower panel of the same �gure displays the plot of < σ2 > /tp versus t. It is 
learthat the quantity < σ2 > /tp remains virtually 
onstant for the measured valuesof p in the given temporal window. That means that though weak, the transportof the hot ions is still subdi�usive.The upper panel of Fig. 6.19 presents plots of the PDFs for system size a/ρi = 500.In the legend the values of σ, s and k are displayed. The lower panel of the same�gure displays the plot of < σ2 > /tp versus t. Both �gures demonstrate that thetransport of the hot ions in a bigger system exhibits di�usive nature.Thus, from the Figs. 6.17, 6.18 and 6.19, one 
an 
on
lude that for lower systemsize, hot ions' PDF exhibits deviation from Gaussian implying anomalous di�usion.As system size in
reases, the subdi�usion be
omes weaker and at a/ρi = 500 itgives qualitatively similar results of Zhang et al. [126℄ whi
h has system dimension
500ρi. Using �rst prin
iple simulation in our work, we have shown, for the �rsttime, a 
ontinuous transition of transport from subdi�usion for smaller devi
e sizeto normal di�usion for larger devi
e size. 167
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roturbulen
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 ionsIt is interesting to point out here that similar subdi�usive nature of transportfor thermal ions has also been reported by R. Sán
hez et al. [154, 155℄ for smallerdevi
e size a/ρi = 200 for ion temperature gradient driven turbulen
e. Exhibitionof subdi�usive behavior of radial transport in smaller devi
e is further 
orroboratedby the results reported by Dewhurst et al. [143℄ whi
h uses a modi�ed Hasegawa-Wakatani model for drift wave turbulen
e, for system size L = 40ρi. Note thatthe parti
les with Th = Ti 
onsidered in our work are similar to the thermal ions,
onsidered passively and 
orrespond to those in the aforementioned works.The present work thus brings two di�erent opinion (whether subdi�usive ordi�usive) regarding radial transport of ions into the same frame. While on onehand, it observes subdi�usion like that of Sán
hez et al. [154, 155℄ for lower systemsize, on the other hand, observes di�usion like Z. Lin et al. and Zhang et al. forlarger system size [126, 151℄.We, therefore, believe that the present �rst prin
iple based simulation resolvesa fundamental issue of whether the radial transport of thermal and hot ions issubdi�usive or otherwise. It has been demonstrated that the radial transportof thermal and hot ions is subdi�usive for lower system size, whi
h eventuallybe
omes di�usive for larger system size, exhibiting a segue from subdi�usion tonormal di�usion with in
reasing system size.6.3.7 Che
k for quasisteady state and robustness of the re-sultsIn the following we perform several reruns for longer duration to study the ro-bustness of the exponent p and to demonstrate that di�usion remains anomalousin the quasisteady state. It is well known that the �nite size e�e
ts and non-stationary state of numeri
al simulation may a�e
t the 
on
lusions as di�usion ismeaningful only at steady state 
onditions. Interpretation in terms of standardversus anomalous di�usion 
ould be di�
ult when simulations do not attain steadystate. Therefore, we have rerun the 
ases of ITG mode and energeti
 parti
les forsystem sizes a/ρi = 157 and 315 and doubled the simulation time, i.e, the totalsimulation time has been in
reased from 1200 to 2500LT/vthi. It is 
lear fromFig. 6.20 that quasi-steady state is attained at late time for both system sizes.The global mean squared displa
ement as a fun
tion of time is 
al
ulated and171
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 ionsdepi
ted in Fig. 6.21. Similarly, the PDFs are measured during the quasi-steadystate for a/ρi = 157 and 315 and displayed in Figs. 6.22 and 6.23. We �nd that theresults remain the same qualitatively. Two 
ases are shown; one for earlier 
ase of
t = 1200LT/vthi and other, for t = 2500LT/vthi. It is 
lear from the �gures thatlate time PDFs do not 
hange mu
h between these two times. If one 
onsiderso

urren
e of subdi�usion as merely a manifestation of the �nite (small) size ofthe system (as the parti
les will �ll up the system qui
kly), the p values in the
ase of a/ρi = 315 should have redu
ed or in other words the transport shouldhave been more subdi�usive (marked by smaller values of p) when the simulationtime is doubled. The PDFs in the 
ase of a/ρi = 315 
learly show that PDFs donot 
hange mu
h between t = 1200LT/vthi and t = 2500LT/vthi and are far awayfrom the boundary throughout the simulation period. A 
omparison of p values

Th/Ti Mean p standard deviation p from Se
tion 6.3.61 0.3461 0.0032 0.32912 0.2675 0.0052 0.26484 0.2865 0.0031 0.30528 0.5153 0.0043 0.468716 0.7994 0.0099 0.4232Table 6.2: New values of mean p and values measured in Se
tion 6.3.6 (see Fig. 6.16)for a/ρi = 157from old (small time) simulation and new (long time simulation) for both systemsreveals (please see Tables 6.2 and 6.3) that the p values do not 
hange mu
h ex
eptfor Th/Ti = 16 whi
h anyway is least a�e
ted by the turbulent �eld.In the new runs, the mean value of p is evaluated taking the average of severaltemporal windows spanning from t = 2000LT/vthi to t = 2500LT/vthi. The robust-ness is re�e
ted in the small values of standard deviation in the measurements ofmean p. Note that the spirit behind taking the various temporal window is to ruleout any doubt regarding the dependen
e of the value of p on the time span 
hosenfor determining p. It is a standard pro
edure to determine the nature of transportfrom the 
al
ulated value of p [167, 168, 169℄. A number of studies on nondi�usivetransport, for example, Refs. [143, 147℄ rely upon the determination of the expo-nent p and is 
onsidered to be a robust method. As dis
ussed earlier, for p = 1the transport is 
hara
terized by the di�usive pro
ess and said to be normal, while174
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Th/Ti Mean p standard deviation p from Se
tion 6.3.61 0.6499 0.0350 0.63222 0.5390 0.0296 0.53154 0.5661 0.0331 0.53908 0.8785 0.0562 0.765316 1.0347 0.0748 0.6674Table 6.3: New values of mean p and values measured in Se
tion 6.3.6 (see Fig. 6.16)for a/ρi = 315
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Figure 6.22: Probability distribution fun
tion for a/ρi = 157
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Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionsfor values 0 < p < 1 and 1 < p < 2 the transport is 
hara
terized, respe
tively, bysubdi�usive and superdi�usive pro
ess and de�ned as anomalous [167, 168, 169℄.The value p = 2 implies a ballisti
 motion where the velo
ity remains 
onstant.The generalized di�usion 
oe�
ient de�ned by, A = lim
t→large

< σ2 >

tp
, should beindependent of time in the time window using whi
h mean p is determined. The�at nature of < σ2 > /tp with respe
t to time indeed demonstrates the robustnessof the 
al
ulated values of mean p. This pro
edure has been extensively adopted inthe past literature, for example, [143, 147℄. Some authors determine mean squareddispla
ement �rst and then 
ompute < σ2 > /tp with p 
hosen in su
h a way thatit gives best �t to a 
onstant 
urve < σ2 > /tp at late time [143, 147℄. In ourwork, to 
he
k the robustness and 
orre
tness of p we have performed the reversepro
edure, i.e., �rst, the mean p values have been evaluated from the mean squareddispla
ement versus time measurements at late time followed by the determinationof mean p and then < σ2 > /tp has been plotted to see whether it is 
onstant ornot with respe
t to time at late time. It is 
lear from the �gures of < σ2 > /tpversus t that the predi
ted values are indeed robust and a

urate. The predi
tionover the nature of transport by the 
al
ulated values of p, is further 
orroboratedby the evaluation of probability density fun
tion for the radial displa
ement ofthe energeti
 parti
les [Figs. 6.22 and 6.23℄. We have plotted < σ2 > /tp for thenew values of p again as shown in Fig. 6.24. At late time, the 
urves remainvirtually 
onstant with respe
t to time showing the 
orre
tness of the values p.It 
an be expe
ted that the e�e
t of initial strong burst of turbulen
e, if any, onthe energeti
 parti
les may not be 
onsidered to be responsible for the late timeexhibition of subdi�usion. As mentioned above we have doubled the simulationtime for the 
ases a/ρi = 157 and 315. However the nature of the test energeti
parti
le transport yet remains the same.A related important issue is the inward parti
le pin
h of energeti
 and thermalparti
les observed in several tokamaks and other systems su
h as RFP. For exam-ple, for ele
trostati
 turbulen
e in a tokamak geometry, using nonlinear gyrokineti
formulation in GENE �ux tube 
ode, Jenko et al. [157℄ have addressed the parti
lepin
h e�e
t for thermal parti
les. A similar study was also performed in Ref. [156℄.Both studies demonstrate that in the 
ase of ele
trostati
 ITG turbulen
e, the dy-nami
s of nonadiabati
 passing ele
trons (kineti
 ele
trons) is ne
essary for pin
h176
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 ionse�e
t. In the 
ase of TEM turbulen
e, a parti
le pin
h 
an exist if and only ifthe inward �ux of passing ele
trons is able to over
ompensate the outward �ux oftrapped ele
trons [157℄.For magneti
 turbulen
e in an RFP, Spizzo et al. [158℄ show that one may splitthe parti
le �ux in a di�usive and a pin
h (
onve
tive) term
Γ = −D∇n+ v.n,where D and v are �t to the observed transport in tokamaks or reversed �eldpin
hes. A phenomenologi
al �t to density pro�les gives a di�usion 
onstant andalso a pin
h velo
ity dire
ted up the density gradient. It is shown [158℄ thatthe 
ombination of di�usion and pin
h is a
tually an expression of the nonlo
al,subdi�usive nature of the transport.As dis
ussed earlier, our ITG model has adiabati
 ele
trons. Moreover, ourmain fo
us is to elu
idate the nature of redistribution of energeti
 passive parti
lesin global ele
trostati
 ITG/TEM turbulen
e by means of a global di�usion 
oef-�
ient. Thus we believe that although of fundamental interest, a study relatingthe lo
al di�usion 
oe�
ient and lo
al pin
h velo
ity of energeti
 test parti
les isbeyond the s
ope of the present work. This has been indi
ated in the Se
tion 7.2for future work. In the following, we give a plausible explanation for the transitionin nature of transport from subdi�usion to di�usion with in
reasing system size intokamaks.6.3.8 Plausible explanation for subdi�usionIt is now widely a

epted that the 
orrelation fun
tion for ITG perturbation isself-similar irrespe
tive of the system size whi
h suggests that the turbulent eddiesdue to ITG turbulen
e have the same size independent of the size of the tokamaks.The typi
al size is ∼ 7ρi, where ρi is the ion Larmor radius [151℄. So in a largerdevi
e of size like 500ρi one would expe
t far larger number of eddies 
ompared tothat in a smaller devi
e like 157ρi as is apparent from Figs. 6.10, 6.11 and 6.12.Test parti
les are trapped in these eddies and move along them. They be
omedetrapped when two su
h eddies intera
t strongly. Sin
e in a smaller devi
e, thereare fewer eddies, probability of eddy-eddy intera
tion and detrapping a parti
le is178
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 ionssmall. In 
ontrast, in a larger devi
e with larger number of eddies, though parti-
les are trapped, they are frequently detrapped be
ause of the higher probabilityof eddy-eddy intera
tion giving the parti
les' transport a di�usive 
hara
ter. If one
onsiders this trapping and subsequent detrapping as s
attering or 
ollision, for asmaller devi
e, say 157ρi, the aggregate number of s
attering or 
ollisions that atest parti
le su�ers in the 
ourse of its radial ex
ursion will be mu
h less than thatin a larger devi
e, say 500ρi. In other words, one 
an say that the test parti
les inthe system with 500ρi undergo more frequent random walks than in the system ofsize 157ρi. Thus, for a test parti
le, randomization is mu
h higher in the systemwith size 500ρi than that with size 157ρi. This explains qualitatively why hot ions'transport attains di�usive 
hara
ter in a larger devi
e in 
ontrast to subdi�usivityin a smaller devi
e. Note that the Larmor radii of the hot ions in terms of thermalion Larmor radius are ρi, 1.4ρi, 2ρi, 2.8ρi, 4ρi, and the typi
al size of a eddy is
7ρi. So there is always a de�nite probability of the hot ions even with the highestenergy in our simulation to intera
t strongly with the turbulent eddies. However,a mathemati
al model to a
tually verify the above said idea is beyond the s
opeof the present thesis.
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tion of mi
roturbulen
e with energeti
 ions6.4 Radial transport of energeti
 ions in the pres-en
e of trapped ele
tron mode turbulen
e.Inspired by re
ent results on intera
tion between the ITG mode turbulen
e andhot ions, a study on the in�uen
e of the trapped ele
tron mode turbulen
e on thehot ions is 
arried out in the present se
tion with the same passive tra
er methodusing the massively parallel, global nonlinear gyrokineti
 
ode named Gyrokineti
Tokamak Simulation (GTS) [139, 140℄, with the kineti
 ele
trons in
luded thistime.In the present study, we have 
onsidered three di�erent types of hot ions,namely isotropi
 (in pit
h angle), purely passing and purely trapped hot ions. Wehave observed that the nature of transport exhibits nondi�usive 
hara
ter, demon-strating subdi�usion for all the types of hot ions mentioned above. Correspondingenergy s
aling has also been estimated. It has been observed that isotropi
 andpassing hot ions obey inverse energy s
aling while purely trapped hot ions de
ayas inverse square of energy.The trapped ele
tron mode has di�erent origin and saturation me
hanism prop-agating in the ele
tron diamagneti
 dire
tion in 
ontrast to the ion diamagneti
dire
tion of propagation for ITG modes. The mode is generated by the densityor temperature gradient of the trapped ele
trons. In the present work, we studythe nature of transport of hot ions in the presen
e of TEM turbulen
e. We re-port results for three di�erent distributions of hot ions. Firstly, we 
onsider hotions having isotropi
 distribution in pit
h angle (angle between parti
le velo
ityand magneti
 �eld applied); thus, it 
ontains e�e
t of both passing and trappedpopulation of hot ions. Se
ondly, we 
onsider hot ions entirely in the loss 
one,thus 
ontaining purely passing parti
les and �nally, purely trapped hot ions. Weinvestigate if there is any di�eren
e at all by in
orporating hot ions before theturbulen
e sets in, and when the turbulen
e is well developed and attains the sat-uration phase. Energy s
aling of the radial transport of the hot ions of di�erentdistributions is also studied. It is found that the transport de
reases rapidly withenergy for the hot ions with lower energy, and slowly as the energy of the hot ionsin
reases further. 180
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tion of mi
roturbulen
e with energeti
 ions6.4.1 Simulation ModelThe parti
le dynami
s is determined on the basis of the gyrokineti
 formalism,where we follow the time evolution of the perturbed part δf of the parti
le distri-bution fun
tion f expressed as the sum of an equilibrium part f0 and a perturbedpart δf . Thus, for the 
ollisionless 
ase, the gyrokineti
 equation for ions 
an bewritten as [150℄
∂δfi
∂t

+ (v‖b̂+ vE0 + vE + vd).∇δfi − b̂⋆.∇(µB +
e

mi
Φ0 +

e

mi
φ̄)
∂δfi
∂v‖

=

−vE .∇f0 + b̂∗.∇(
e

mi

φ̄)
∂f0
∂v‖

(6.5)Here ~vE0 , ~vE are E×B drifts resulting, respe
tively, from the equilibrium potential
Φ0 and turbulent potential φ̄, ~vd is the∇B drift, b̂⋆ = b̂+ρ‖b̂×(b̂.∇b̂), with b̂ = B/Band ρ‖ = v‖/B.The drift kineti
 equation is used for the ele
trons, thereby eliminating the�nite Larmor radius e�e
t. Thus the ele
tron δfe equation for 
ollisionless 
ase isgiven by [150℄

∂δfe
∂t

+ (v‖b̂+ vE0 + vE + vd).∇δfe − b̂⋆.∇(µB +
e

me
Φ0 +

e

me
φ̄)
∂δfe
∂v‖

=

−vE .∇fe0 + b̂∗.∇(
e

me

φ̄)
∂fe0
∂v‖

(6.6)In 
ontrast, the hot ion spe
ies is pushed a

ording to Eq. (6.4).6.4.2 Parameters and Pro�lesWith the set of equations des
ribed in the earlier se
tion, the numeri
al experimentis 
arried out using the PIC based, massively parallel global nonlinear gyrokineti

ode Gyrokineti
 Tokamak Simulation (GTS). Although the 
ode is equipped withthe 
apability to treat general geometry tokamak, however, 
ir
ular geometry is
onsidered for the plasma 
ross-se
tion. The average aspe
t ratio R0/a = 2.86 andaverage a/ρi = 157. The pro�les 
onsidered for the thermal ions and ele
tronsare R0/LTe = 6.0{−[(r/a− 0.5)/0.28]6}, R0/LT i = 1.0exp{−[(r/a− 0.5)/0.28]6},
R0/Ln = 6.0exp{−[(r/a − 0.5)/0.28]6}, Te/Ti = 3, q = 0.854 + 2.184(r/a)2. This181
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tion of mi
roturbulen
e with energeti
 ionsimplies that at r = 0.5a: R0/LTe = 6.0, R0/LT i = 1.0, R0/Ln = 6.0, Te/Ti = 3.0,
q = 1.4, and ŝ = (r/q)dq/dr = 0.78. The total number of marker ions and ele
tronsis 1.9×108. The radial simulation domain 
hosen spans from r = 0.1a to r = 0.9a.Regarding the in
orporation of the hot ions, we 
onsider monoenergeti
 ions withenergy in integral multiples of the thermal ions' energy, with a 
areful 
hoi
e ofthe distribution in pit
h angle, in order to assure isotropi
, passing and trappedpopulation, respe
tively, for the three 
ases undertaken. The mass and 
harge ofthese hot ions are kept the same as the ba
kground thermal ions. With thesespe
i�
ation, they are inserted on a single �ux surfa
e at Ψ0 = 0.5a, where thedensity gradient peaks, distributed uniformly in the poloidal and toroidal dire
tion.It may be noted that the NBI generated hot ions are passing, rf heated ions aremostly trapped, and the α parti
les are isotropi
 in the pit
h angle. Thus, thepresent study is relevant to all the types of hot ions prevalent in the fusion gradeplasma in a tokamak.6.4.3 Isotropi
 hot ionsFigure 6.25 depi
ts the time history of the parti
les �ux for ele
trons arisingfrom the TEM turbulen
e. The parti
le �ux is 
al
ulated using the relation
Γe =

∫

d3vvEδfe and re
orded at r = 0.5a at every time step. The various 
on-vergen
e tests for su
h a simulation with the same parameters mentioned aboveis dis
ussed elaborately in Ref. [140℄. It is 
lear from the �gure that initially themode amplitude of TEM remains very weak. Then, after the exponential growthof the linear phase of TEM instability around t = 20Ln/cs, the parti
le �ux (andasso
iated �u
tuations) starts saturating. We 
al
ulate the spatio-temporal evolu-tion of the turbulent �eld intensity over the entire radial domain of simulation asshown in Fig. 6.27. This is important be
ause it is the turbulent �eld, that in
ursthe radial transport under study over and above the usual drift motion of the hotions in the presen
e of equilibrium drifts su
h as ∇B and 
urvature drift, typi
alof a 
urved magneti
 �eld geometry. The typi
al mode stru
tures in the linearand nonlinear regime of TEM is depi
ted in Fig. 6.26. Groups of monoenergeti
hot ions with energy given by Th = Ti, 2Ti, 4Ti, 8Ti, 16Ti, 32Ti, 64Ti, 128Ti areloaded on the �ux surfa
e Ψ0 = 0.5a where the gradients are maximum, with aisotropi
 pit
h angle distribution. The poloidal and toroidal angles, namely, θ and182
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Figure 6.26: The typi
al snapshots of mode stru
ture in the linear (left panel)and nonlinear (right panel) regime of the TEM turbulen
e for the system size
a/ρi = 157. 183
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Figure 6.27: The spatio-temporal evolution of turbulent �eld intensity due to TEMturbulen
e
ζ are 
hosen uniformly on the entire �ux surfa
e. With the gyrokineti
 equationEq. (6.4) des
ribed in the previous subse
tion we push the hot ions of various ener-gies and evaluate their positions and velo
ities at every instant. We 
al
ulate themean squared displa
ement (MSD) for all the energy groups of hot ions, de�nedas

< σ2(ε, t) >=
1

N

i=N
∑

i=1

(ri(ε, t)− ri(ε, 0))
2where, N is the total number of hot ions with energy ε, ri(ε, t) and ri(ε, 0) are,respe
tively, the radial positions of the ith hot ion with energy ε at time t and

t = 0. Note that the number of hot ions loaded from ea
h energy group is roughly
6.7 × 105. We 
arry out the simulation for two situations. First, we infuse thehot ions to the system when there is no TEM instability present and 
al
ulate theMSD for ea
h group of hot ions with di�erent energy. In the se
ond 
ase, the sameexperiment is performed but in the presen
e of TEM turbulen
e. In Fig. 6.28,left panel depi
ts the evolution of MSD of hot ions of di�erent energy groups inthe absen
e of TEM turbulen
e. It is 
lear from that �gure that the hot ionsundergo regular drift motion; their motion is governed by the equilibrium gradient184



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ions

0 50 100 140
0

1

2

3

4

5

6

7

8

Time (L
n
/c

s
)

<
σ2 >

/ρ
i2  [1

02 ]

 

 

T
test

=T
i
, T

test
=2T

i
, T

test
=4T

i
, T

test
=8T

i
, T

test
=16T

i
, T

test
=32T

i
, T

test
=64T

i
, T

test
=128T

i
, 

50 100 140
0

1

2

3

4

5

6

7

8

Time (L
n
/c

s
)

<
σ2 >

/ρ
i2  [1

02 ]

Figure 6.28: Hot ions are inserted at t = 0Ln/cs, (a) when there is no TEM a
tivity(left panel) and (b) when TEM turbulen
e is ON (right panel).and 
urvature in the magneti
 �eld and therefore the magnitude of displa
ementis determined merely by the energy asso
iated with the hot ions. The boun
eperiod being inversely proportional to the parti
le velo
ity, higher energy hot ionsundergo more boun
e 
y
les than the lower energy hot ions for a given span oftime. The MSD of the hot ions, eventually, be
omes 
onstant with respe
t to timeas there is no transport in the absen
e of turbulen
e and 
ollisions. The rightpanel of Fig. 6.28 , on the other hand, displays the time evolution of MSD for thehot ions when they are inserted into the system with environment 
ondu
ive forTEM turbulen
e set by the above 
hosen parameters and pro�les. To be notedthat the moment of insertion of hot ions in both 
ases is t = 0. It is implied fromthe right panel of the �gure that the hot ions undergo equilibrium drift motion till
t = 20Ln/cs, as the mode amplitude is too weak to in�uen
e the hot ion dynami
sduring this time interval (see Fig. 6.25). Their motion is simply governed bythe equilibrium gradient and 
urvature in the magneti
 �eld and therefore, themagnitude of displa
ement is determined by the energy asso
iated with the hotions. Their motion thus appears to be exa
tly similar to those in the absen
e ofTEM turbulen
e shown in the left panel, till the moment t = 20Ln/cs. From time
t = 20Ln/cs the energeti
 ions start to get a�e
ted by the ele
tri
 �eld of TEM
orresponding to the exponential growth of the linear phase of the mode. The185



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionsleast energeti
 hot ions are appeared to be the worst a�e
ted leading to highervalue of MSD. The value of MSD de
reases monotoni
ally as the energy of the hotions in
reases. This is in 
ontrast with the 
ase of the hot ions in the presen
e ofITG turbulen
e where the hot ions with Th = 2Ti are observed to su�er maximumdispla
ement among all energy groups. It is also apparent from Fig. 6.28 thathighly energeti
 groups of hot ions su
h as Th = 64Ti and Th = 128Ti respond tothe turbulent �eld later than the hot ions with 
omparatively lower energy andare least a�e
ted by the turbulent �eld. One may 
ompare these results with
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Figure 6.29: Hot ions are inserted at t = 70Ln/cs (a) without TEM turbulen
e(left panel) and (b) in the presen
e of TEM turbulen
e (right panel).that where hot ions are in
orporated in the nonlinear saturation phase when theTEM turbulen
e is fully developed. Su
h a 
ase is relevant to a situation whereone has to pump hot ions in a later phase to maintain the plasma temperaturepropitious for fusion. The left panel of Fig. 6.29 displays the measured MSD atevery instant of time for the hot ions without the presen
e of TEM turbulen
e,while, the right panel of same, presents the evolution of MSD for hot ions in thepresen
e of TEM turbulen
e when inserted at an instant t = 70Ln/cs where theturbulen
e attains statisti
al steady state re�e
ted in Fig. 6.25. Regarding the leftpanel displaying MSD of hot ions in the absen
e of TEM, the MSD su�ers only ad
 shift of t = 70Ln/cs 
ompared to that in Fig. 6.28 without TEM turbulen
e. A
omparison 
lari�es that the evolution of MSD in the present 
ase resembles that186



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionsof the left panel of Fig. 6.28 during �rst t = 70Ln/cs. Regarding the right panelof Fig. 6.29, few important points to be noted here are: �rst, the measured MSD
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Figure 6.31: < σ2 > /tp as a fun
tion of t for isotropi
 hot ions.is quite smaller 
ompared to the earlier 
ase of Fig. 6.28 (right panel); se
ond,the usual equilibrium drift motion of the hot ions with lower energy is absent andthird, the higher energy hot ions, for example, Th = 64Ti and Th = 128Ti 
ontinuedrift motion as they are weakly a�e
ted by the turbulent �eld. The lower energyhot ions are redistributed the very moment they fall into the turbulent �eld andtherefore do not �nd time to undergo the equilibrium drift motion. 187
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tion of mi
roturbulen
e with energeti
 ionsThe nature of the radial transport 
an be understood from the probability den-sity fun
tion (PDF) of radial displa
ement of the hot ions in various energy groupsunder 
onsideration. We have 
reated 200 bins a
ross the minor radius between
0.1a and 0.9a and 
onstru
ted the PDF by 
al
ulating the number of hot ions inea
h bin for the 
ase depi
ted in the right panel of Fig. 6.28, i.e., where the hot ionsare inserted to the system at t = 0. The PDFs of the hot ions of various energygroups with a isotropi
 distribution in their pit
h angle are plotted in Fig. 6.30 forradial displa
ements measured at t = 140Ln/cs. At the same instant, we have also
al
ulated the standard deviation σ, skewness s and kurtosis k from the simula-tion data using the relations σ2 = 1

N

∑N
i=1(xi − x̄)2, s =

√
N

∑N
i=1(xi−x̄)

3

{∑N
i=1(xi−x̄)

2}3/2 and
k = N

∑N
i=1(xi−x̄)

4

{∑N
i=1(xi−x̄)

2}2 − 3, where standard deviation σ is normalized to a/ρi = 157.One may note that for a distribution kurtosis estimates the relative peakednessor �atness 
ompared to the normal distribution, while skewness is a measure ofsymmetry about the mean. In the 
ase of Gaussian distribution, both kurtosis and
Th/Ti σ k s p1 26.6832 -0.7498 -0.1004 0.60032 26.0714 -0.6994 -0.0802 0.62384 25.1284 -0.6167 -0.0353 0.68138 24.0545 -0.5205 -0.0221 0.773416 23.1709 -0.4419 -0.0099 0.741432 22.1611 -0.3423 0.0353 0.6766Table 6.4: Energy, standard deviation, kurtosis, skewness, exponent p for isotropi
hot ionsskewness as de�ned above be
ome zero and infer a normal di�usion. Divergen
eof these quantities from zero, therefore, 
an be 
onsidered as the signature of anon-Gaussian distribution. A positive kurtosis 
hara
terizes a relatively peakeddistribution while a negative kurtosis 
hara
terizes a relatively �at distribution.On the other hand, a positive skewness (right-skewed) represents a distributionwith longer tail on the right side, while a negative skewness (left-skewed) rep-resents a distribution with longer tail on the left side of the distribution. Thestandard deviation, kurtosis and skewness extra
ted from the simulation data at

t = 140Ln/cs are also displayed in Fig. 6.30 and separately in Table 6.4. It is ap-parent that the measured distributions for hot ions in all energy groups exhibit non188
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tion of mi
roturbulen
e with energeti
 ionsGaussian 
hara
ter implying an anomalous di�usion. Then question remains overwhether the transport as pres
ribed by the non Gaussian 
hara
ter of distributionis subdi�usive or superdi�usive or ballisti
 one. This 
an be 
on
luded by mea-suring the exponent p in the relation < σ2 >= const.tp. For subdi�usion one has
0 < p < 1, while for superdi�usion, 1 < p < 2. The value p = 2 implies a ballisti
motion where the velo
ity remains 
onstant. To evaluate p we have 
onsideredthe portion of MSD between t = 70Ln/cs and t = 140Ln/cs where the simulationattains statisti
al steady state (Fig. 6.25) and determined p from log-log relationbetween < σ2 > and tp. The values of p so 
al
ulated are also in
luded in Table 6.4.It is apparent that the values of p 
ome out to be less than 1 for all the energygroups of hot ions suggesting a subdi�usive radial transport for the hot ions under
onsideration. Figure 6.31 displays the plots for < σ2 > /tp as a fun
tion of time tfor the hot ions, with p determined in a way as delineated above. The values of pare displayed in the legend along with the 
orresponding energies of hot ions. It is
lear from the �gure that for the values of p extra
ted, < σ2 > /tp remains virtu-ally 
onstant within the temporal window between t = 70Ln/cs and t = 140Ln/cs.This exhibition of subdi�usion 
ould perhaps be as
ribed to the presen
e of zonal�ows. The hot ions in their radial ex
ursion might be
ome trapped in the vorti
esgenerated by the interplay between turbulen
e and zonal �ows. Poloidal drift 
ouldbe another plausible reason for this subdi�usive 
hara
ter. This kind of subdi�u-sive nature of transport, in parti
ular, for radial transport in the presen
e of driftwave turbulen
e is sometimes referred to as strange kineti
s [147℄. Note that thevalues for various parameters listed in Table 6.4 are not universal.The energy dependen
e of the observed transport of the hot ions 
an be esti-mated by 
al
ulating the quantity Dh = δ < σ2 > /δt = (< σ2

TEM(t = 140) > − <

σ2
noTEM(t = 140) >)/(t2 − t1), with t2 = 140 and t1 = 0. The signi�
an
e of thisparameter is that it 
hara
terizes the di�usion 
oe�
ient for a di�usive pro
ess.Though the di�usion 
oe�
ient is de�ned in terms of the standard deviation in-stead of MSD, it 
an be shown here that the result is same with standard deviationrepla
ed by MSD. As we start from a single �ux surfa
e Ψ0 = 0.5a, the middle ofthe simulation domain, the mean value of parti
les' position required to determinestandard deviation always remains 
lose to the the initial position whi
h is ri(ε, 0)and therefore the MSD and standard deviation give nearly the same result. Fig-ure 6.32 plots Dh for the two 
ases dis
ussed above, i.e., for hot ions inserted at189
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t = 0 and at t = 70Ln/cs in linear as well as log-log plots. It is 
lear from the�gure that in both 
ases Dh varies in the same way with respe
t to the energy ofthe hot ions in units of the thermal ion energy. The quantity Dh falls o� fasterwith the energy of hot ions for lower energy but a bit slower for the hot ions withhigher energy. The energy dependen
e, as shown in the log-log plot, appears to beinverse of the energy of the hot ions i.e. (Th/Ti)−1 in the higher energy tail.
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Figure 6.33: Passing hot ions are inserted at t = 0Ln/cs (a) without TEM turbu-len
e (left panel) and (b) in the presen
e of TEM turbulen
e (right panel).
6.4.4 Passing Hot IonsNext we look at the passing hot ions. Hot ions with their pit
h angle satisfyingthe loss 
one 
ondition v‖/v > √

(1 − Bmin/Bmax) [174℄ where, Bmax and Bmin,respe
tively, are the maximum and minimum values of the magneti
 �eld, areinvoked in the �ux surfa
e Ψ0 at t = 0, and similar to the 
ase of isotropi
 hotions we note the MSD at every instant of time for the hot ions with energy Th =

Ti, 2Ti, 4Ti, 8Ti, 16Ti, 32Ti, 64Ti, 128Ti. We follow the same pro
edure as forthe isotropi
 hot ions; on
e push them in the absen
e of TEM turbulen
e andmeasure MSD and then do the same in the presen
e of TEM turbulen
e. The leftpanel of Fig. 6.33 plots MSD in the absen
e of TEM turbulen
e, while the right191
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tion of mi
roturbulen
e with energeti
 ionspanel plots the same in the presen
e of TEM turbulen
e. It is 
lear that when themode amplitude of TEM is very low, the parti
les simply move in the equilibrium�elds in the same way they do in the absen
e of TEM turbulen
e. Comparisonwith Fig. 6.28 reveals that the amplitudes of the average squared displa
ement inequilibrium is less than those in Fig. 6.28. It is be
ause of the fa
t that the passingparti
les' perpendi
ular velo
ity is very low 
ompared to those with isotropi
 pit
hdistribution 
arrying a mixture of both passing and trapped parti
les.
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Figure 6.34: Trapped hot ions are inserted at t = 0Ln/cs (a) without TEM turbu-len
e (left panel) and (b) in the presen
e of TEM turbulen
e (right panel).
6.4.5 Trapped Hot IonsThe same experiment has been 
arried out for the trapped hot ions also. We in
or-porate hot ions into the system at t = 0 with pit
h angle 
hosen in su
h a way thatthey are in the trapped 
one di
tated by the 
ondition v‖/v <√(1−Bmin/Bmax)[174℄. The energies of the hot ions 
hosen are Th = Ti, 2Ti, 4Ti, 8Ti, 16Ti, 32Ti,
64Ti, 128Ti. This set of parti
les are having a large perpendi
ular velo
ity andhen
e stronger �nite Larmor radius e�e
t. Figure 6.34 depi
ts the motion of thesepurely trapped hot ions in the absen
e (left panel) and presen
e (right panel) ofTEM turbulen
e. Compared to the earlier 
ases of hot ions with isotropi
 and192
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e with energeti
 ionspassing distribution, the amplitude of the trapped hot ions' MSD during the equi-librium drift motion is the highest. This is be
ause of the large perpendi
ularvelo
ity of the trapped hot ions; their mobility is restri
ted along the �eld dire
-tion and most of the movement is only in the poloidal and radial dire
tions. Thatis why, we re
ord the highest MSD in the 
ase of trapped parti
les when there isno TEM turbulen
e or mode amplitude is very weak. Like the other two 
ases dis-
ussed above, these trapped hot ions also exhibit similar motion during the initialperiod when either the system is free of TEM turbulen
e or amplitude of the modeis very low.6.4.6 Nature of TransportTo 
hara
terize the nature of radial transport of the passing and trapped hot ionswe have again evaluated the PDFs for the two 
ases independently, following thesame pro
edure elaborated in the earlier 
ase of isotropi
 hot ions. These PDFsfor all energy groups of hot ions under dis
ussion, are portrayed in Fig. 6.35 forthe passing (upper panel) and trapped (lower panel) hot ions. The 
orrespondingvalues of the standard deviation σ, kurtosis k and skewness s, as extra
ted from thesimulation data at t = 140Ln/cs are also displayed in the legend for ea
h groupof hot ions. It is 
lear that the PDFs are substantially deviated from Gaussianimplying non-di�usive transport again. We have estimated the exponent p fromthe relation < σ2 >= const.tp in a similar fashion as in the 
ase of isotropi

Th/Ti σ k s p1 26.2631 -0.7460 -0.1456 0.56382 25.5805 -0.7043 -0.1165 0.70484 25.4547 -0.6699 -0.0809 0.64538 24.8399 -0.5989 -0.0492 0.728516 24.3184 -0.5637 -0.0240 0.754332 22.1076 -0.4623 -0.0100 0.7517Table 6.5: Energy, standard deviation σ, kurtosis k, skewness s and exponent p in

< σ2 >∝ tp for the passing hot ionshot ions. All the values of p are found to be well below 1 evin
ing subdi�usiveradial transport. We plot < σ2 > /tp as a fun
tion of t, for di�erent values of p in193
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Th/Ti σ k s p1 27.0994 -0.7722 0.0099 0.46832 26.3276 -0.7070 0.0429 0.47314 25.0192 -0.5861 0.0796 0.52968 22.7906 -0.4143 0.0764 0.734016 21.6391 -0.2775 0.0798 0.547832 22.1823 -0.2101 0.1160 0.4659Table 6.6: Energy, standard deviation σ, kurtosis k, skewness s and exponent p in

< σ2 >∝ tp for the trapped hot ions 195
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tion of mi
roturbulen
e with energeti
 ionsFigs. 6.36 and 6.37 for the passing and trapped hot ions respe
tively. It is evidentfrom both �gures that < σ2 > /tp remains roughly 
onstant for the extra
tedvalues of the exponent p 
orroborating the fa
t that the hot ions, whether passingor trapped exhibit subdi�usive nature. The values of standard deviation, kurtosis,skewness, and exponent p, extra
ted from the simulation data are displayed inTables 6.5 and 6.6 for the passing and trapped parti
les respe
tively. Again, wewant to 
omment that these values are not universal.6.4.7 Energy S
aling of Hot IonsNext we evaluate the energy dependen
e for the radial transport of passing andtrapped hot ions. The energy dependen
e of net MSD, normalized by the timeinterval from t = 0 to t = 140Ln/cs is presented in Fig. 6.38 for the passing (upperpanel) and trapped parti
le (lower panel), respe
tively, in linear plot. The 
orre-sponding log-log plots are displayed in Fig. 6.39. The quantity Dh = δ < σ2 >

/δt = (< σ2
TEM(t = 140) > − < σ2

noTEM(t = 140) >)/(t2 − t1), with t2 = 140and t1 = 0 is plotted as a fun
tion of Th/Ti in the �gures. It is 
lear that Dh fallsvery rapidly in the lower energy range of the hot ions, while de
ays slowly for thehigher energy of the hot ions (Fig. 6.38). This implies that TEM turbulen
e is moredominant on the hot ions with lower energy but weakly a�e
ts those with higher en-ergy. From the power law Dh = const.(Th/Ti)
a, it appears that transport s
ales as

(Th/Ti)
−1 for purely passing hot ions, while it falls as (Th/Ti)−2 for purely trappedhot ions in the higher energy limit of the hot ions (Fig. 6.39). The gyroaveragingand orbit averaging along with wave parti
le resonan
e are the fa
tors a

ountingfor this type of power law for the hot ions transport. For passing hot ions only or-bit averaging (∼ (Th/Ti)

−1/2) and wave parti
le resonan
e in the parallel dire
tion(∼ (Th/Ti)
−1/2) 
ontribute to the energy s
aling giving it a (Th/Ti)

−1 dependen
e.In 
ontrast, gyroaveraging is the extra parameter that 
ontributes to the trappedhot ions' energy s
aling. Thus, gyroaveraging (∼ (Th/Ti)
−1/2), drift orbit averag-ing (∼ (Th/Ti)

−1/2) and drift boun
e resonan
e [175℄ (∼ (Th/Ti)
−1) altogether givea ((Th/Ti)−2) s
aling for the trapped hot ions. The observed (Th/Ti)

−1 s
aling ofthe isotropi
 hot ions suggests (Fig. 6.32) that the transport of these hot ions isperhaps dominated by the passing hot ions.It is to be noted that very long time simulations are 
omputationally very expen-196
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ale.
197



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ions

10
0

10
1

10
2

10
0

10
1

T
h
/T

i

D
h(a

/ρ
i)2

 

 

Passing Particles

(T
h
/T

i
)−1

10
0

10
1

10
2

10
0

10
1

T
h
/T

i

D
h(a

/ρ
i)2

 

 

Trapped Particles

(T
h
/T

i
)−2

Figure 6.39: (a) Upper panel: Dh versus energy of the hot ions for passing distri-bution, (b) Lower panel: Dh versus energy of the hot ions for trapped distributionin log-log s
ale.
198



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionssive in the 
ase of TEM turbulen
e as one has to resolve the ele
tron time s
alesalong with that of the ions. However, on the basis of the 
ross 
he
ks 
arried outin ITG mode simulation of the previous se
tion by doubling the simulation time,we believe that the results of the present se
tion will remain qualitatively sameeven if we wait for our simulation to attain stri
t quasisteady state by lengtheningthe simulation time.6.5 Con
lusionIn the �rst part of the present work we have elu
idated the e�e
t of the energeti
ions on the thermal ion temperature gradient mode. For the purpose we use aglobal linear gyrokineti
 
ode EM-GLOGYSTO, where the energeti
 parti
les areadded nonpurterbatively. We 
onsider all the three spe
ies namely, thermal ions,ele
trons and energeti
 ions nonadiabati
ally, where the density perturbation ofthe respe
tive spe
ies 
ontains all the kineti
 e�e
ts, su
h as, Landau resonan
e,magneti
 drift resonan
e, transit resonan
e, �nite Larmor radius e�e
t, et
. How-ever, for simpli
ity we negle
t the trapped parti
les and magneti
 �u
tuation inthe present analysis. We believe that the in
lusion of these would not 
hange thee�e
t of energeti
 ions on the ion temperature gradient mode of the thermal ionsqualitatively. We 
onsider di�erent η pro�les for the energeti
 ions 
ompared tothe ba
kground thermal ions, to see if at all there is any e�e
t of the energeti
ions' η pro�le on the ion temperature gradient mode. However, all the three 
asesof di�erent η pro�les show the same result qualitatively and quantitatively. Thus,we �nd that the energeti
 ions irrespe
tive of the η pro�le are stabilizing for theion temperature gradient driven mode. In the 
ase of He ions the stabilization isfurther enhan
ed. The stabilization is thought to be brought about by the dilu-tion of the ba
kground thermal ions that drive the ion temperature gradient mode.Usually, the ion temperate gradient mode is observed to be stabilized by varietyof fa
tors, e.g., in
reasing fra
tion of Ti/Te, impurity, ele
tromagneti
 e�e
t, iontransit term, k‖v‖, et
. Thus, one may add another stabilizing fa
tor to the list,that is, the presen
e of the energeti
 ions in the system. This kind of stabilization isexperimentally observed [130, 131℄. The stabilization is strongly dependent on theenergeti
 ion population with respe
t to the thermal ions. The growth rate of the199



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionsITG mode de
reases almost linearly with the in
reasing fra
tion of the energeti
ions' population. The 
omplete stabilization o

urs at nf/ne ≥ 0.35 for the singly
harged energeti
 ions. He ions on the other hand, have stronger e�e
t on the ITGmode. The stabilization shows the same trend as the singly 
harged ions but fallsmore rapidly and one observes 
omplete stabilization at nf/ne ≥ 0.15. The stabi-lization in
urred by these energeti
 ions however is pronoun
ed only at the lowerenergy region of the energeti
 ions. The strong 
hange in the growth rate as wellas the mode frequen
y of the ITG mode is observed only in the region Tf/Te ≤ 10beyond whi
h, the mode frequen
y and growth rate, both remain insensitive tothe temperature variation of the energeti
 ions. This 
an be understood as thatonly in the low energy region of these energeti
 ions, the ion temperature gradientmode and energeti
 ions 
an intera
t e�
iently and therefore the e�e
t of ea
hother on their respe
tive properties is reasonable only in this regime of lower tem-perature or lower energy of the energeti
 ions. Thus, one may anti
ipate that theHe ash in the fusion plasma 
an play a signi�
ant role in the stabilization of theITG mode and thus in the redu
tion of ion energy and parti
le loss from the 
oreof the tokamak. An estimation of the transport is 
arried out by 
al
ulating thethermal di�usivity on the basis of mixing length theory. The di�usivity is foundto be redu
ed signi�
antly in the presen
e of the energeti
 ions. The He ions arefound to have stronger e�e
t on the thermal ion di�usivity.In the se
ond part, the transport of hot ions indu
ed by the ion temperaturegradient driven turbulen
e is studied using the global nonlinear gyrokineti
 
odeGTS, and with the aid of passive tra
er method. The hot ions, treated as passiveparti
les are pushed in the turbulent �eld using the gyrokineti
 equations. At everyinstant of time the mean squared displa
ement and standard deviation for the hotions are re
orded. The probability distribution fun
tion for radial displa
ementis also estimated along with 
orresponding kurtosis and skewness. The nature oftransport is determined by evaluating the exponent p from the relation< σ2 >∝ tp.The major results 
an be itemized as follows.
• The MSD for a given group of hot ions 
hara
terized by a given energyin
reases with the in
rement in the system size.
• The MSD for all groups of energy of hot ions shows signature of saturationfor a/ρi = 157, in
reases linearly at �rst, then shows a weak tenden
y to200



Chapter 6: Intera
tion of mi
roturbulen
e with energeti
 ionssaturate for a/ρi = 315 and in
reases almost linearly for a/ρi = 500 after theinitial abrupt rise for all the three 
ases with respe
t to time.
• For all the 
ases of system size under 
onsideration, hot ions transport ismaximum for Th = 2Ti and de
reases monotoni
ally with in
reasing energy,with a tenden
y of saturation at higher value of hot ion energy for the 
hosenparameters.
• For energy below Th = 16Ti, the transport of hot ions exhibits signi�
antdependen
e on the system size; it is maximum for a/ρi = 500 and de
reaseswith the de
reasing system size. However, at Th = 16Ti transport is nearlythe same for all the three values of system size. One expe
ts that it 
onvergesto the same value for the hot ions with energy beyond Th = 16Ti. Thus, one
an 
on
lude that while transport of hot ions with lower energy dependsstrongly on the system size, for hot ions with higher energy, in 
ontrast, itremains pra
ti
ally independent of the system size.
• It is evident that as the system size in
reases till a/ρi = 315, Dh in
reaseslinearly, while the in
rement is very minor beyond this point showing a ten-den
y of saturation at higher value of the system size. Thus, with in
reasingsystem size, transport of hot ions for all groups of energy starts in
reasinginitially and shows trend of saturation for larger system size.
• The exponent p in < σ2 >∝ tp is found to be smaller than 1 for smallerdevi
e size, whi
h gradually in
reases with in
reasing system size and �nallyapproa
hes unity for larger system size. This indi
ates that the transportpro
ess, in the smaller ma
hine size is subdi�usive for thermal as well as hotions, whi
h however be
omes di�usive for larger devi
e size. The measure-ment of PDF, kurtosis and skewness 
orroborate the 
on
lusion derived fromthe values of p
• The 
he
k for quasisteady state and robustness of p reveals that the re-sults remain qualitatively the same. For the purpose, we have doubled thesimulation time (t = 2500LT/vthi) su
h that the simulations are well in aquasisteady state. We have evaluated the mean p again and observed that201
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tion of mi
roturbulen
e with energeti
 ionsthe values of p remain nearly same as the old p values evaluated in the shorttime simulations (t = 1200LT/vthi).The e�e
t of TEM turbulen
e on the hot ion radial transport in tokamaks isstudied in the last part of the present work. Results are demonstrated for three
ases, di�ering in the pit
h angle distribution; 
ase (1) isotropi
 hot ions, 
ase(2) purely passing hot ions, and 
ase (3) purely trapped hot ions. For isotropi
distribution, we have illustrated the results for two 
ases. In the �rst 
ase, hotions are inserted at t = 0 before the trapped ele
tron mode turbulen
e 
omesinto existen
e, while in the se
ond 
ase, hot ions are introdu
ed at a later time at
t = 70Ln/cs, that is, in the nonlinear saturation phase when TEM turbulen
e isfully developed. The probability density fun
tion (PDF) of radial displa
ement is
onstru
ted for ea
h 
ase for all the energy groups of hot ions. Also the energydependen
e of hot ions' radial transport is evaluated in the present study. Themajor �ndings are given in the following.

• The mean squared displa
ement is the highest for the hot ion spe
ies withenergy equal to the thermal ions' energy and de
reases monotoni
ally withthe energy of the hot ions for all the 
ases en
apsulated in the present study.
• The transport pro
ess exhibits anomalous 
hara
ter. The PDFs of the hotions show deviation from Gaussian irrespe
tive of energy and pit
h angledistribution. Evaluation of kurtosis, skewness and the exponent p in thepower law < σ2 >∝ tp suggests subdi�usion for radial transport in small tomedium size ma
hines.
• Radial transport of the isotropi
 and purely passing hot ions manifests aninverse dependen
e on their energy, while that of the purely trapped hotions demonstrates an inverse square dependen
e on energy. This means thatthe higher energy trapped hot ions are less likely to be redistributed by theturbulent �eld than the passing and isotropi
 hot ions.
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Chapter 7Con
lusionand Future Dire
tion
7.1 Con
lusionsIn Chapters 2 and 3, we have fo
used on the e�e
t of treating the ele
trons on thesame physi
s footing as the ions, i.e., fully nonadiabati
/kineti
 ele
trons usingEM-GLOGYSTO based on a 2-D linear, global, gyrokineti
 model. The modelin
ludes both passing and trapped parti
les, pro�le variations, true ion to ele
-tron mass ratio, arbitrary order FLR e�e
ts, transit/trapped parti
le resonan
es,poloidal and radial 
oupling. A 
omprehensive des
ription of ion temperaturegradient (ITG) mode, trapped ele
tron 
oupled ion temperature gradient drivenmode (ITG-TEM), and trapped ele
tron mode (TEM) in the presen
e of the pass-ing nonadiabati
 ele
trons has been provided.We have observed rise in the linear growth rate of the ITG mode, ITG-TEM,and TEM in the presen
e of kineti
/nonadiabati
 ele
trons. The linear, globalmode stru
tures are broken apart near the mode rational surfa
es where the par-allel wave ve
tor (k‖) is zero. The phase lag between potential and density pertur-bations introdu
ed by the kineti
 ele
trons near the mode rational surfa
es makesthese modes further unstable. The perpendi
ular wave ve
tors rise be
ause of theprodu
tion of the short s
ales near the mode rational surfa
es. This, eventually,results in the redu
tion of the mixing length estimate of the transport of thermalions below the adiabati
 ele
tron model. However, nonlinear global simulations203



Chapter 7:Con
lusion and Future Dire
tionwill be ne
essary to 
on�rm this fa
t, 
onsidering that there are situations wherenonlinear e�e
ts tend to introdu
e larger s
ales, e.g., in the 
ase of inverse 
as-
ades, and where mixing length estimates have proven wrong. It is perhaps worthnoting that a �ux-tube model with 
orre
t implementation of magneti
 shear andboundary 
onditions along the magneti
 �eld line should also be able to reprodu
ethe �ne radial stru
tures at the mode rational surfa
es resulting from nonadia-bati
 passing ele
tron dynami
s. Although, to our knowledge, su
h features havenot been 
learly and 
omprehensively pointed out in the past literature, one may
ite Ref. [62℄ whi
h has reported the breaking of global mode stru
ture near moderational surfa
es in the presen
e of the kineti
 ele
trons.We have presented some features of the ele
tron temperature gradient (ETG)driven mode using the linear, global, gyrokineti
 model in toroidal geometry thattreats both spe
ies, namely, ions and ele
trons fully gyrokineti
ally, taking intoa

ount all the kineti
 e�e
ts. The e�e
t of Debye Shielding, breaking of isomor-phism of ITG and ETG modes even in the ele
trostati
 limit when the other spe
iesis 
onsidered fully gyrokineti
ally are revealed one by one. Also, the global modestru
ture and stability properties of the low-n (toroidal mode number) toroidaluniversal mode driven by the density gradient in the presen
e of �nite toroidi
ityon the intermediate s
ale in k⊥ρLi, along with its 
oupling to the trapped ele
-trons have been studied perhaps for the �rst time to our knowledge using theglobal, linear, gyrokineti
 model. The model 
onsiders both passing ele
trons andions to be fully nonadiabati
 in
orporating toroidal 
oupling e�e
ts, magneti
 driftresonan
es, Landau resonan
e e�e
ts, transit harmoni
 resonan
es, �nite Larmorradius to all orders, and orbit width e�e
t for both spe
ies. The e�e
t of �nite β isalso studied in the frame of an ele
tromagneti
 model that retains the transversemagneti
 perturbation.The steep density pro�les are observed to a�e
t the ITG modes dramati
allymaking the latter unstable even at higher wave number regime. At this higherwave number regime the ITG mode, in general, remains stable. However, if thedensity gradient is strong enough, the ions 
an a
t nonadiabati
ally at the higherwave number regime giving rise to what is 
alled the short wavelength ion tem-perature gradient (SWITG) mode. We have presented the features of the SWITGmode in the presen
e of trapped ele
trons using EM-GLOGYSTO. A 
ompari-son of parametri
 dependen
ies for the two 
ases of the SWITG mode with and204



Chapter 7:Con
lusion and Future Dire
tionwithout the trapped ele
trons is presented. In line with the global model, we also
ompare the results from a lo
al gyrokineti
 model for the two 
ases, with andwithout the trapped ele
trons. The trapped ele
trons have strong e�e
t on theSWITG modes raising the growth rate substantially. The two dimensional modestru
ture of the SWITG mode has been found to be quite global o

upying a 
on-siderable fra
tion of the tokamak 
ross se
tion for the 
hosen set of parametersestablishing the ne
essity of a global model to study su
h a phenomenon. It a
-quires toroidal like nature in the presen
e of the trapped ele
trons. The in
reasedfra
tion of the trapped ele
trons with in
reased toroidi
ity is the main fa
tor be-hind this �ipping of the mode from the slab nature to toroidal nature. The modevanishes below a 
riti
al ηi; it transforms itself from the dominantly ion mode tothe dominantly trapped ele
tron mode when e�e
ts of trapped ele
trons are takeninto a

ount. No signi�
ant di�usivity (mixing length estimate) is observed athigher kθρLi where the SWITG mode is strongest for both 
ases with and with-out the trapped ele
trons. This fa
t is 
orroborated by the nonlinear simulationusing the 
ode Gyrokineti
 Ele
tromagneti
 Numeri
al Experiment (GENE). Theestimate of relative 
ontribution of the higher kyρs part of the heat �ux spe
trum
orresponding to the SWITG mode reveals that the 
ontribution of the SWITGmode to the total heat �ux is very low 
ompared to the 
ontribution from thelower ky part of the spe
trum typi
ally belonging to the standard ITG mode. Thezonal �ow shearing rate has been found to be mu
h higher than the linear modefrequen
y and growth rate of the SWITG mode suggesting that the zonal �owsare the main saturation me
hanisms of the SWITG turbulen
e. The higher zonal�ow shearing rate appears to 
ompensate for the higher growth rate of the modeleading to a minimal 
ontribution to the thermal ion heat �ux from the higher
kyρs part of the spe
trum relevant to the SWITG mode irrespe
tive of the densitys
ale length whi
h determines the strength of the SWITG mode with respe
t tothe standard ITG linearly. One may note that in real experiments steep densitypro�les are often observed during the formation of transport barriers. However,su
h steep pro�les happen to o

ur in the presen
e of reverse shear. Therefore,it 
ould be interesting to see how the properties of SWITG mode 
hange in thepresen
e of the nonmonotoni
 q pro�le. It also is equally possible that su
h steeppro�les 
an a�e
t the TEM and ele
tron temperature gradient (ETG) modes. Su
hissues remain to be addressed. 205



Chapter 7:Con
lusion and Future Dire
tionThe physi
s of energeti
 ions in the burning plasma is now a topi
 of immenseinterest. Their population has been observed to have tremendous impa
t on theMHD and non-MHD a
tivities in the tokamak plasma. A 
omputationally e�
ientmeans to study the e�e
t of these energeti
 ions on the ITG mode is to in
orporatethem linearly into the existing global gyrokineti
 model of EM-GLOGYSTO. We
onsider all the three spe
ies namely, thermal ions, ele
trons and energeti
 ionsnonadiabati
ally, where the density perturbation of the respe
tive spe
ies 
ontainsall the kineti
 e�e
ts, su
h as, Landau resonan
e, magneti
 drift resonan
e, transitresonan
e, �nite Larmor radius e�e
t, �nite orbit width e�e
t, et
. We observethat the energeti
 ions irrespe
tive of the η pro�le are stabilizing for the ion tem-perature gradient driven mode. In the 
ase of He ions the stabilization is furtherenhan
ed. The stabilization is thought to be brought about by the dilution of theba
kground thermal ions that drive the ion temperature gradient mode. The sta-bilization is strongly dependent on the energeti
 ion population with respe
t to thethermal ions. The growth rate of the ITG mode de
reases almost linearly with thein
reasing fra
tion of the energeti
 ions. He ions on the other hand, have strongere�e
t on the ITG mode. The stabilization in
urred by these energeti
 ions howeveris pronoun
ed only at the lower energy region of the energeti
 ions. Thus, one mayanti
ipate that the He ash in the fusion plasma 
an play a signi�
ant role in thestabilization of the ITG mode and thus in the redu
tion of ion energy and parti
leloss from the 
ore of the tokamak. The mixing length estimate of di�usivity isobserved to be redu
ed signi�
antly in the presen
e of the energeti
 ions. TheHe ions are found to have stronger e�e
t on the thermal ion di�usivity. However,nonlinear simulation, although seems to be very expensive 
omputationally, wouldbe required to see the nonlinear evolution of the ITG mode in the presen
e ofenergeti
 ions along with 
on
omitant impa
t on thermal ion heat �ux.The e�e
t of the mi
roturbulen
e on the energeti
 ions, on the other hand, isanother issue of great 
on
ern. The re
ent experiments on the redistribution ofthe energeti
 ions have given impetus to the investigation of prospe
tive e�e
t ofturbulent �eld on the energeti
 ions. Inspired by it, the transport of energeti
ions indu
ed by the ITG mode and TEM turbulen
e is studied using the global,nonlinear, gyrokineti
 
ode Gyrokineti
 Tokamak Simulation (GTS), and with theaid of the passive tra
er method. The energeti
 ions, treated as passive parti
lesare pushed in the turbulent �eld using the gyrokineti
 equations. The observed206



Chapter 7:Con
lusion and Future Dire
tiontransport of energeti
 ions is found to have strong dependen
e on the size of thesystem and their energy. The transport redu
es as the energy of the energeti
 ionsin
reases. Also, the subdi�usive nature of transport for small system size trans-forms into the di�usive one for bigger system size. The magnitude of transportinitially in
reases with system size and then saturates at larger system size. Radialtransport of the isotropi
 and purely passing hot ions manifests an inverse depen-den
e on their energy, while that of the purely trapped hot ions demonstrates aninverse square dependen
e on energy in the presen
e of the TEM turbulen
e. Thismeans that the higher energy trapped hot ions are less likely to be redistributedby the turbulent �eld than the passing and isotropi
 hot ions.7.2 Future WorkIn most of the studies using the global, linear, gyrokineti
 
ode EM-GLOGYSTO,we have simpli�ed the model by ignoring many other interesting physi
s issues.The equilibrium �ows as well as ele
tromagneti
 and Shafranov shift e�e
ts 
an, in
ertain 
ases, be important for the instabilities that were studied in these 
hapters.One would therefore be 
urious to see how these fa
tors 
an 
hange the existingresults.It is also to be pointed out here that the trapped parti
les model 
onsidersdeeply trapped parti
les only. The barely trapped parti
les or those near thepassing trapped boundary have been ex
luded. Also, the passing parti
les are
onsidered as fully or deeply passing keeping v‖ 
onstant with respe
t to time.In the linear model, the numeri
al solution exists for only the unstable modes,i.e., modes with positive growth rate. This model 
an be upgraded to be able to�nd the damped modes also as that of the work detailed in Ref. [22℄. It will helpto predi
t the thresholds of the instabilities more 
orre
tly.Chapters 4 and 5 deal with the universal toroidal drift instability and shortwavelength ion temperature gradient modes whi
h are unstable in the the presen
eof steep density pro�les, i.e, strong density gradient. However, su
h steep pro�leshappen to o

ur in the presen
e of reverse shear during the formation of transportbarriers. Therefore, it 
ould be interesting to see how the properties of these modes
hange in the presen
e of the nonmonotoni
 q pro�le. It also is equally possible207



Chapter 7:Con
lusion and Future Dire
tionthat su
h steep pro�les 
an a�e
t the TEM and ele
tron temperature gradient(ETG) modes. Su
h issues remain to be addressed. The nonlinear results on theSWITG mode are given in the presen
e of adiabati
 ele
trons. However, additionof trapped ele
trons in the nonlinear simulation will allow one a broader study onthe nonlinear SWITG mode and nonlinear TEM in the presen
e of steep densitypro�le.The present linear model equipped with the energeti
 ions is valid only for theele
trostati
 
ase. This 
an be extended to in
orporate ele
tromagneti
 pertur-bations. This would enable one to study the kineti
 ballooning mode, energeti
parti
le modes, toroidal Alfven mode, et
. Also, we have shown the results foronly one value of a/ρi. A 
omplete a/ρi s
an would help one to proje
t the resultsto ITER like s
ales.The role of mi
roturbulen
e in the transport of the energeti
 ions is studied us-ing the nonlinear, global, gyrokineti
 
ode GTS. In the present work, the energeti
ions have been 
onsidered as passive parti
les, i.e., they do not 
ontribute to the netele
tri
 �eld and hen
e do not enter the gyrokineti
 Poisson equation. This model
an be made more 
onsistent and hen
e more e�e
tive by in
orporating these en-ergeti
 ions as a third a
tive spe
ies that would 
ontribute to the net �eld. Thiswill allow one to investigate the e�e
t of the energeti
 ions on the mi
roinstabili-ties su
h as ITG mode, TEM, et
., in the nonlinear phase. Moreover, it would beinteresting to setup a lower dimensional mathemati
al model and 
ompare it withthe results of our simulations. The parti
le pin
h e�e
t has emerged as an areaof intense resear
h in tokamak plasmas. It may be interesting to investigate thee�e
t of energeti
 parti
le pin
h in the presen
e of mi
roturbulen
e while studyingnondi�usive transport. In
lusion of nonadiabati
 ele
trons in the ITG turbulen
estudies will make the investigation more 
omprehensive.
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