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ABSTRACTThe present dissertation is dediated to the study of the stability and transportproperties of many miroinstabilities whih play an important role in ausinganomalous transport of energy and partiles in tokamaks using global, linear andnonlinear, gyrokineti formulations. In partiular, it highlights (1) e�ets of thenonadiabati passing eletrons on the ion temperature gradient (ITG) mode, trappedeletron oupled ion temperature gradient mode (ITG-TEM) and trapped eletronmode (TEM) by linear, global, gyrokineti numerial study; (2) the behaviour ofthe ion temperature gradient driven modes in the presene of highly steep densitypro�le typially observed in the transport barriers inside the tokamak; a linear andnonlinear gyrokineti study on the ourrene of the short wavelength ion tempera-ture gradient mode (SWITG); (3) a linear, global, gyrokineti stability analysis ofthe universal toroidal mode, whih although is thought to be ubiquitous, yet over-shadowed by the temperature gradient driven modes; (4) the stabilization of themiroinstabilities by the hot ions (those ions having temperature higher than thethermal ions), and �nally, the redistribution of the hot ions by miroturbulenewith the help of linear and nonlinear, global, gyrokineti simulations.The role of the nonadiabati passing eletrons on the ion temperature gradientand trapped eletron modes has been studied. Addressing the fully nonadiabatipassing eletrons in time dependent linear and nonlinear odes has been an uphilltask in the presene of full ion dynamis with true ion to eletron mass ratio interms of the omputational ost. These partiles are therefore onsidered eitheradiabati or nonadiabati with redued ion to eletron mass ratio. Thus, thee�et of these nonadiabati passing eletrons on the growth rate and global modestrutures of the ITG mode, ITG-TEM and TEM is often overlooked. With aglobal, spetral, gyrokineti model it is possible to inorporate the full dynamisof the passing nonadiabati eletrons in the linear limit without any assumptionregarding the ion to eletron mass ratio. Strong e�ets of these nonadiabatipassing eletrons near the mode rational surfaes where k‖ → 0 on the ITG mode,ITG-TEM and TEM have been observed.The veraity of a nonadiabati passing eletron model is established only if itan produe modes inherent to the nonadiabati passing eletrons, one of whih isthe eletron temperature gradient driven (ETG) mode. We have thus, extended12



our study from the ion sales of ITG mode, ITG-TEM and TEM to the eletronsales of the ETG mode and ompared it with the already known results on theETG mode. With the inlusion of the spae harge e�et in the form of Debyeshielding, the model enables one to study the pure ETG mode in the presene offully nonadiabati ions.The density gradient driven instability, known as the universal drift instability,is studied in the toroidal geometry and its linear properties have been disussedin both eletrostati and eletromagneti limit. The global mode struture andstability properties of the low-n (toroidal mode number) toroidal universal modealong with its oupling to the trapped eletrons have been studied perhaps for the�rst time to our knowledge.Although ions are onsidered adiabati at shorter wavelength or high wavenumber regime, they an behave nonadiabatially giving rise to a temperaturegradient driven mode even at the high wave number regime. This mode, hithertoknown to be slab like, is named as the short wavelength ion temperature gradient(SWITG) mode and studied only in the loal limit. We have presented a linear,global, gyrokineti study of the mode and shown that in the presene of trappedeletrons this mode an be further unstable and exhibit toroidal nature. A nonlin-ear, �ux tube, gyrokineti simulation of the SWITG mode also has been arriedout whih shows that in spite of the linear dominane of the mode ompared tothe standard ITG mode, the former has very low ontribution to the net thermalion transport.The behaviour of the energeti ions in tokamak plasmas is another issue thathas derived muh attention in the fusion ommunity. Presene of these partilesare inevitable in the fusion grade plasmas beause of the various auxiliary heat-ing shemes and fusion produed α partiles. The study of the in�uene of theseenergeti ions on the kineti ballooning mode (KBM), toroidal Alfven eigenmode(TAE), et., is very muh important. These partiles an give rise to the unsta-ble modes on their own, for example, energeti partile modes (EPM). We as a�rst step, have inorporated a seond speies of ions with higher energy than thethermal ions to a existing linear, global, gyrokineti model and studied its e�etson the ITG modes. It is observed that these energeti partiles stabilize the ITGmode strongly. The He ions are found to be more stabilizing. Conversely, thee�et of the miroturbulene driven by the ITG mode and TEM on the energeti13



ions is studied onsidering the energeti speies as passive traers using a global,nonlinear, gyrokineti simulation. Miroturbulene plays an important role in theredistribution of the energeti ions. The system size dependene and energy salingof the energeti ions have been disussed. The transport of passing and trappedenergeti ions is found to display di�erent energy salings.
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ηi(s0) = 2 for (a) pure ITG with adiabati eletrons, (b) ITG-TEM without nonadiabati passing eletrons, and () ITG-TEMwith nonadiabati passing eletron at ηe(s0) = 2.0. . . . . . . . . . 473.3 Closeup of two dimensional eigenmode struture for (a) pure ITGwith adiabati eletrons, (b) ITG-TEM without nonadiabati pass-ing eletrons, and () ITG-TEM with nonadiabati passing eletronsat ηe(s0) = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493.4 Poloidal Fourier omponents for eletrostati modes shown in Fig. 3.2(a) ITG with adiabati eletrons, (b) ITG-TEM without nonadia-bati passing eletrons, and () ITG-TEM with nonadiabati pass-ing eletrons at ηe(s0) = 2.0. Note that at eah radial loation,there are several poloidal harmonis oupled. A few loations where
k‖m,n = 0 (i.e., nq = m) are indiated on the top axis. Nonadiabatieletrons introdue sharp struture near these points. . . . . . . . 503.5 Upper panel: Radial Fourier harmonis for eah poloidal mode forthe eletrostati mode shown in Fig. 3.2 for (a) pure ITG with adi-abati eletron response and (b) ITG-TEM without nonadiabatipassing eletrons. Lower panel: Radial Fourier harmonis for eahpoloidal mode for the eletrostati mode shown in Fig. 3.2() forITG-TEM with nonadiabati passing eletrons at ηe(s0) = 2.0. . . 523.6 Eigenmode-averaged normalized mode numbers< kθρLi > (squares),
< krρLi > (diamonds), and < k⊥ρLi > (stars) at ηi(s0) = 2; (a)pure ITG with adiabati eletron response, (b) ITG-TEM withoutnonadiabati passing eletrons, and () ITG-TEM with nonadia-bati passing eletrons at ηe(s0) = 2.0. . . . . . . . . . . . . . . . . 533.7 Mixing length estimate for transport oe�ient DML = γ/ < k2⊥ >in gyro-Bohm units as a funtion of kθρLi for ηi(s0) = 2; (a) pureITG with adiabati eletron response (solid line with squares), (b)ITG-TEM without nonadiabati passing eletrons (divided by 8)(solid line with diamonds), and () ITG-TEM with nonadiabatipassing eletrons at ηe(s0) = 2 (dashed line with �lled irles). . . . 53
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3.8 Growth rate γ (dashed line) and real frequeny ωr (solid line) versus
ηi at ηe(s0) = 2 (i) for pure ITG with adiabati eletrons (squares),(ii) ITG-TEM without nonadiabati passing eletrons (diamonds),and (iii) ITG-TEM with nonadiabati passing eletrons (�lled ir-les). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.9 Growth rate γ (dashed line) and real frequeny ωr (solid line) for
ηi(s0) = 2; (i) for TEM without nonadiabati passing eletron model(squares) and (ii) for TEM with nonadiabati passing eletron modelat ηi(s0) = ηe(s0) = 2.0 (open irles). . . . . . . . . . . . . . . . . 553.10 Two dimensional eigenmode struture for (a) TEM without nona-diabati passing eletron response and (b) TEM with nonadiabatipassing eletron response at n = 7 and ηi(s0) = ηe(s0) = 2.0. . . . . 563.11 Closeup of two dimensional eigenmode struture of (a) TEM with-out nonadiabati eletron response and (b) TEM with nonadiabatipassing eletron response for n = 7 and ηi(s0) = ηe(s0) = 2.0. . . . 563.12 Poloidal Fourier omponents for eletrostati mode shown in Fig. 3.10.Note that at eah radial loation, there are several poloidal harmon-is oupled. A few loations where k‖m,n = 0 (i.e., nq = m) areindiated on the top axis. Nonadiabati eletrons introdue sharpstruture near these points. . . . . . . . . . . . . . . . . . . . . . . 573.13 Right panel: Radial Fourier harmonis for eah poloidal mode forthe eletrostati mode shown in Fig. 3.10(a) for TEM without nona-diabati passing eletron response. Left panel: Radial Fourier har-monis for eah poloidal mode for the eletrostati mode shown inFig. 3.10(b) for TEM with nonadiabati passing eletron response. . 583.14 Eigenmode-averaged normalized mode numbers< kθρLi > (squares),
< krρLi > (diamonds), and < k⊥ρLi > (stars) as a funtion of
kθρLi at ηi(s0) = 2: (a) TEM without nonadiabati passing ele-tron response and (b) TEM with nonadiabati passing eletrons at
ηe(s0) = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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3.15 Mixing length estimate for transport oe�ient DML = γ/ < k2⊥ >in gyro-Bohm units as a funtion of kθρLi with ηi(s0) = 2.0 for(a) TEM without nonadiabati passing eletron response (dashedline with squares) and (b) TEM with nonadiabati passing eletronresponse at ηe(s0) = 2.0 (dashed line with open irles). . . . . . . 604.1 The normalized real frequeny ωr (upper panel) and growth rate γ(lower panel) for the ETG mode as funtion of ηe for kθρe ≃ 0.5,
ǫn = Ln/R = 0.2, and τ = 1.0. The lines with squares representmanually extrated points from Horton et al. [21℄ whih uses loalkineti formulation. The lines with open irles depit the resultsfrom our global linear gyrokineti model. . . . . . . . . . . . . . . 664.2 Figures 3 and 4 from Horton et al. [21℄ . . . . . . . . . . . . . . . . 674.3 The normalized real frequeny ωr (upper panel) and growth rate
γ (lower panel) for the ETG with and without Debye shielding for
ηe(s0) = 2. Ions are onsidered adiabati. . . . . . . . . . . . . . . 684.4 ηe(s0) san for the growth rate of the ETG mode with and withoutDebye shielding for n = 250 and 380, respetively. . . . . . . . . . 694.5 Upper panel: The normalized real frequeny ωr for the ETG modewithout Debye shielding ηe(s0) = 2.0 with adiabati ions and nona-diabati ions. ηi(s0) takes values 2, 4, 6, 8 for nonadiabati ions.Lower panel: The orresponding growth rates γ. . . . . . . . . . . 704.6 Upper panel: the normalized frequeny ωr for the ETG mode withDebye shielding for ηe(s0) = 2.0 with adiabati ions and nonadia-bati ions. ηi(s0) takes values 2, 4, 6, 8 for nonadiabati ions. Lowerpanel: the orresponding growth rates γ. . . . . . . . . . . . . . . 714.7 Upper panel: the normalized frequeny ωr for the ITG mode for
ηi(s0) = 2.0 with adiabati and nonadiabati eletrons. ηe(s0) takesvalues 2, 4, 6, 8 for nonadiabati eletrons. Debye shielding is notinluded for these runs. Lower panel: the orresponding normalizedgrowth rates γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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4.8 Mode strutures for the ITG mode for ηi(s0) = 2.0 (left) and ETGmode for ηe(s0) = 2.0 with (middle) and without (right) Debyeshielding on the poloidal ross setion of a tokamak for the maximumgrowth rates. The other speies (eletron for ITG, ion for ETG) isonsidered adiabati. . . . . . . . . . . . . . . . . . . . . . . . . . 734.9 Closeup view of Fig. 4.8 . . . . . . . . . . . . . . . . . . . . . . . . 744.10 Poloidal Fourier harmonis for the modes shown in Fig. 4.8 . . . . 744.11 Top panel: mixing length estimate for transport oe�ient DML =

γ/ < k2⊥ > in eletron gyro-Bohm units as a funtion of kθρLi forthe ETG mode without Debye shielding at ηe(s0) = 2 with adiabatiions and nonadiabati ions for ηi(s0) = 2, 4, 6, 8; Middle panel: mix-ing length estimate for transport oe�ient DML = γ/ < k2⊥ > ineletron gyro-Bohm units as a funtion of kθρLi for the ETG modewith Debye shielding at ηe(s0) = 2 with adiabati ions and nonadi-abati ions for ηi(s0) = 2, 4, 6, 8; Bottom panel: mixing length esti-mate for transport oe�ient DML = γ/ < k2⊥ > in ion gyro-Bohmunits as a funtion of kθρLi; ηi(s0) = 2, with adiabati eletrons andnonadiabati eletrons forηe(s0) = 2, 4, 6, 8. . . . . . . . . . . . . . 774.12 Left panel: normalized perpendiular wave numbers kr, kθ, k⊥ vstoroidal mode number n for the ETG mode without Debye shielding.Right panel: normalized perpendiular wave numbers kr, kθ, k⊥ vstoroidal mode number n for the ETG mode with Debye shielding. . 784.13 Equilibrium pro�les to study the global toroidal universal drift in-stability mode (for parameters in Table I): (a) normalized density(dots), temperature (irle), ηi,e (triangle), (b) Safety fator q (ir-le) and magneti shear ŝ (dots) pro�les as funtions of normalizedradius s = r/a. Note that q(s0) = 2.0, ŝ(s0) = 0.40, ǫn(s0) = 0.1,and τ(s0) = 3.0 for s0 = 0.6. . . . . . . . . . . . . . . . . . . . . . 814.14 Real frequeny and growth rate for the eletrostati ase orrespond-ing to the parameters in the Table I and pro�les shown in Fig. 4.13. 82
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4.15 Upper panel: (Left) The eletrostati mode struture for toroidalmode number n = 10, kθρLi = 0.58, orresponding to the parame-ters in the Table I and pro�les shown in Fig. 4.13. (Right) poloidalomponent of φ̃ in (top) radial Fourier representation and (bottom)radial diret spae. Lower panel: A loseup view of the mode stru-ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844.16 The e�et of eletron and ion Landau resonane for the mode n =

10 orresponding to kθρLi = 0.58. This is done by weighting theLandau resonane term by α and running it from 0 to 1 for onespeies , and keeping α = 1.0 for the other speies and vie versa. . 854.17 E�et of ion and eletron magneti drift resonane for the moden=10 orresponding to kθρLi = 0.58. This is done by weighting themagneti drift term by α and running it from 0 to 1, and keeping
α = 1.0 for the other speies and vie versa. . . . . . . . . . . . . . 864.18 Shear san for the mode n = 10 orresponding to kθρLi = 0.58 atposition s = s0 = 0.6, where the density gradient peaks. For thesesans the safety fator at s = s0 is kept at the �xed value q = 2.0. . 874.19 Real frequeny and growth rate for ǫn = Ln/R for the parametersand pro�les as in the Table I and Fig. 4.13 in the ase of mode
n = 10 orresponding to kθρLi = 0.58. Note that a, Ln, Rq and nqare kept onstant in this san. . . . . . . . . . . . . . . . . . . . . 884.20 Real frequeny and growth rate for τ = Te/Ti and for the parametersand pro�les of Table I and Fig. 4.13 in the ase of the mode n = 10orresponding to kθρLi = 0.58. . . . . . . . . . . . . . . . . . . . . . 894.21 Real frequeny and growth rate in the ase of a temperature gradientsan for the parameters and pro�les of Table I and Fig. 4.13 for themode n = 10 orresponding to kθρLi = 0.58. The �at temperaturepro�le in Table I, has been replaed by one with δsT = 0.2 insteadof 0 for the previous ases. . . . . . . . . . . . . . . . . . . . . . . 904.22 Real frequeny and growth rate for the eletrostati (dashed urve)and eletromagneti ase (solid urve) for the parameters in TableI and pro�les as shown in Fig. 4.13. The value of β onsidered hereis 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91x



4.23 (Upper panel) The global mode struture for the φ̃ omponent inthe poloidal ross setion in the eletromagneti ase for n = 10,
kθρLi = 0.58, and β = 0.001. (Lower panel) Poloidal omponent of
φ̃ in (top) radial Fourier representation and (bottom) radial diretspae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934.24 (Upper panel) The global mode struture for the Ã|| omponent inthe poloidal ross setion in the eletromagneti ase for n = 10,
kθρLi = 0.58, and β = 0.001. (Lower panel) Poloidal omponent of
φ̃ in (top) radial Fourier representation and (bottom) radial diretspae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944.25 β san for the mode frequeny and growth rate for the parame-ters and pro�les as in Table I and Fig. 4.13 for the mode n = 10orresponding to kθρLi = 0.58 . . . . . . . . . . . . . . . . . . . . . 954.26 Eletromagneti ratio with inreasing funtion of β for the param-eters and pro�les as in Table I and Fig. 4.13 for the mode n = 10orresponding to kθρLi = 0.58 . . . . . . . . . . . . . . . . . . . . . 954.27 The real frequeny and growth rate vs temperature gradient fordi�erent unstable modes in the presene of trapped eletrons inthe same regime de�ned by the parameters and pro�les of TableI and Fig. 4.13 for the mode n = 10 orresponding to kθρLi = 0.58.The �at temperature pro�le in Table I, has been replaed by onewith δsT = 0.2 instead of 0 for the previous ases. The threedashed urves (irle, square, diamond) are for universal mode with-out trapped eletrons (same as Fig. 4.21), three solid lines (irle,square, diamond) are for universal mode in the presene of trappedeletrons (UNV-TE), the dashed urve with triangles is for ion tem-perature gradient mode with trapped eletrons (ITG-TE) and thesolid urve with stars is for pure trapped eletron mode (TEM). . . 97
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5.1 Equilibrium pro�les to study the global SWITG mode( for param-eters in Table I): (a) normalized density (square), temperature (ir-le), ηi,e (triangle), (b) Safety fator q (irle) and magneti shear ŝ(diamond) pro�les as funtions of normalized radius s = r/a. Notethat η peaks at s = ρ/a = s0 = 0.6 and is equal to 2.5. Also
q(s0 = 0.6) = 2.0, ŝ(s0 = 0.6) = 1.0, ǫn(s0 = 0.6) = 0.1, and
τ(s0 = 0.6) = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045.2 The normalized growth rate γ̃ of the ITG (�rst peak) and of theSWITG (seond peak) mode with (solid line+square) and without(solid line + irle) the trapped eletrons from the global as wellas loal formulation (dotted line + diamond, for the ase with thetrapped eletrons and dotted line + irle, for the ase without thetrapped eletrons.) ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0,and ǫn = 0.1. Upper axis shows the orresponding toroidal modenumbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055.3 The normalized real frequeny ω̃r of the ITG and of the SWITGmode with (solid line+square) and without (solid line+irle) thetrapped eletrons from the global as well as loal formulation (dottedline+diamond, for the ase with the trapped eletrons and dottedline + irle, for the ase without the trapped eletrons.) ηe,i(s0) =
2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. Upper axisshows the orresponding toroidal mode numbers. . . . . . . . . . . 1075.4 Two dimensional eigenmode strutures of (a) the ITG mode at
kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21without the trapped eletrons both orresponding to the maximumgrowth rate. The mode struture of the SWITG mode is �ner thanthe ITG mode but yet global enough. . . . . . . . . . . . . . . . . 1105.5 Two dimensional eigenmode strutures of (a) the ITG mode at
kθρLi ≈ 0.4, n = 7, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21with the trapped eletrons, both for the maximum growth rates re-spetively. The mode struture of the SWITG mode is �ner thanthe ITG mode but still global enough. . . . . . . . . . . . . . . . . 111
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5.6 A loseup view of the eigenmode strutures of (a) the ITG mode at
kθρLi ≈ 0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21without the trapped eletrons shown in Fig. 5.4. . . . . . . . . . . 1125.7 A loseup of the two dimensional eigenmode strutures of (a) theITG mode at kθρLi ≈ 0.4, n = 7, (b) the SWITG mode at kθρLi ≈
1.3, n = 21 with the trapped eletrons shown in Fig. 5.5. . . . . . . 1145.8 Poloidal Fourier omponents for eletrostati modes shown in Figs. 5.4and 5.5, (a) the ITG mode at kθρLi ≈ 0.5, n = 9, (b) the SWITGmode at kθρLi ≈ 1.3, n = 21, both without the trapped eletrons,() the ITG mode at kθρLi ≈ 0.4, n = 7, and (d) the SWITG modeat kθρLi ≈ 1.3, n = 21, both with the trapped eletrons. . . . . . . 1155.9 Radial Fourier omponents for eletrostati modes shown in Fig. 5.4and 5.5, (a) the ITG mode at kθρLi ≈ 0.5, n = 9, (b) the SWITGmode at kθρLi ≈ 1.3, n = 21, both without the trapped eletrons,() the ITG mode at kθρLi ≈ 0.4, n = 7, and (d) the SWITG modeat kθρLi ≈ 1.3, n = 21, both with the trapped eletrons. . . . . . . 1165.10 Normalized growth rates γ̃ vs. ǫn san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +irles) the trapped eletrons (from the global gyrokineti model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, Ln = 0.2, and
a = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.11 Normalized real frequeny ω̃r vs. ǫn san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +irles) the trapped eletrons (from the global gyrokineti model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, Ln = 0.2, and
a = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175.12 Normalized growth rates γ̃ vs. ηi san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +irles) the trapped eletrons (from the global gyrokineti model).
ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. . . . . 1185.13 Normalized real frequeny ω̃r vs. ηi san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +irles) the trapped eletrons (from the global gyrokineti model).
ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, τ = 1.0, and ǫn = 0.1. . . . . 119xiii



5.14 Normalized growth rates γ̃ vs. τ san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +irles) the trapped eletrons (from the global gyrokineti model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, and ǫn = 0.1. . . . . . . . . 1205.15 Normalized real frequeny ω̃r vs. τ san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line +irles) the trapped eletrons (from the global gyrokineti model).
ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0, and ǫn = 0.1. . . . . . . . . 1205.16 Mixing length estimate for transport oe�ient DML = γ/ < k2⊥ >of the ions in the ion gyro-Bohm units as a funtion of kθρLi; (a)the ITG and the SWITG mode without the trapped eletrons (solidline + irle) (b) the ITG and the SWITG mode with the trappedeletrons (solid line + square) (from the global gyrokineti model).Note that this urve is saled down by a fator of 8. The upper axispresents the orresponding toroidal mode numbers. . . . . . . . . . 1215.17 (a) Real frequeny ωr, and (b) growth rate γ versus wave number
kyρs of the linear short wavelength ion temperature gradient mode(SWITG) for di�erent values of R/Ln. Here ηi = 2.5, q = 2.0, ŝ =

1.0, τ = 1.0 in these simulations. . . . . . . . . . . . . . . . . . . . 1275.18 Time (in units of R/cs) evolution of ion heat �ux Q normalizedby Qnorm = prefcsρ
2
s/R

2 for SWITG simulation, with R/Ln =

5 and R/Ln = 10. The blak dashed lines represent the time av-erage of the heat �ux between t = 100 R/cs and t = 330 R/cs.For R/Ln = 5 the average Q = 195 Qnorm and for R/Ln = 10 theaverage Q = 302 Qnorm. . . . . . . . . . . . . . . . . . . . . . . . . . 1285.19 (a) Time averaged ion heat �ux versus normalized wavenumber kyfor R/Ln = 5 and R/Ln = 10 in lin-lin plot. (b) Time averaged ionheat �ux as a funtion of normalized wavenumber ky for R/Ln = 5and R/Ln = 10 in log-log plot. Q is normalized with respet to
Qnorm = prefcsρ

2
s/R

2. . . . . . . . . . . . . . . . . . . . . . . . . . . 1305.20 Cumulative sum of heat �ux for R/Ln = 10. The standard ITGontribution to the heat �ux is for kyρs ≤ 1 and SWITG ontribu-tion to the heat �ux is for kyρs ≥ 1. Qc.s. is normalized with respetto Qnorm = prefcsρ
2
s/R

2. . . . . . . . . . . . . . . . . . . . . . . . . 132xiv



5.21 Cumulative sum of heat �ux for R/Ln = 5. The standard ITG on-tribution to the heat �ux is for kyρs ≤ 1 and SWITG ontributionto the heat �ux is for kyρs ≥ 1. Qc.s. is normalized with respet to
Qnorm = prefcsρ

2
s/R

2. . . . . . . . . . . . . . . . . . . . . . . . . . . 1325.22 Snapshots of the potential (top) and perturbed density (bottom) ofthe SWITG mode for R/Ln = 5 taken at t = 330 R/cs. . . . . . . . 1345.23 Snapshots of the potential (top) and perturbed density (bottom) ofthe SWITG mode for R/Ln = 10 taken at t = 330 R/cs. . . . . . . 1355.24 Time traes of the zonal �ow shearing rate ωE = dvE,y/dx, in unitsof cs/R for the SWITG modes with (a) R/Ln = 5 and (b) R/Ln = 10.1376.1 Left panel: the equilibrium density and temperature pro�les alongwith the η pro�le of the thermal ions and eletrons. Right panel:the safety fator pro�le and shear pro�le. The η pro�le peaks at
s0 = 0.7 with the magnitude η = 2.0. The safety fator q and shearvalue ŝ at this point, respetively, are 2.0 and 1.0. . . . . . . . . . . 1446.2 The η pro�les onsidered for the energeti ions with respet to thebakground pro�les of the thermal ions and eletrons. While thethermal ion and eletron η pro�les are kept the same, energeti ionpro�les are onsidered for three di�erent ases, namely, �at η pro�le(green urve), peaked η pro�le (red urve) and same η pro�le (blueurve) as the thermal ions. . . . . . . . . . . . . . . . . . . . . . . 1456.3 The wavenumber san for the mode frequeny ωr (left panel) andgrowth rate γ (right panel) of the ITG mode is presented for theases, viz., (i) without energeti ions (magenta line), (ii) with singlyharged energeti ions with �at η pro�le (green line), steeper η pro-�le (red line), same η pro�le (blue line) as the thermal ions and (iii)with energeti He ions (brown line). . . . . . . . . . . . . . . . . . 1476.4 A typial eletrostati mode struture for n = 8, kθρLi = 0.4 or-responding to the maximum growth rate of the ITG mode withnonadiabati eletrons and energeti ions. . . . . . . . . . . . . . . 148
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Chapter 1Introdution
1.1 Magnetially Con�ned Fusion and Its ProspetsIn view of the muh speulated dearth of energy in near future leading to an imbal-ane between demand and supply, the fous of energy researh has largely shiftedto the nulear fusion of deuterium and tritium1 in the plasma state, whih is en-visaged to generate virtually limitless energy with minimal adverse environmentalimpat. Although, the phenomenon of nulear fusion is quite ommon in our uni-verse (for example, the sun in our solar system provides light and heat via fusionreation naturally), the natural ourrene of fusion on earth is inhibited by theneed of the very high temperature propitious for the fusion reation. One has toarrange, therefore, laboratory plasma experiments to harness energy from fusionon earth. And at the same time, one also has to look for ways that prevent di-ret ontat of this high temperature plasma with the ontainer wall. Sine fusionneeds high temperature and density, a material shielding therefore is inapable toontain the hot fuel, as the high heat load on the ontainer wall will apparentlymake the latter unable to withstand so muh of heat. For this reason, one has todevise ingenious on�nement methods to avert suh a situation.There are various speial on�nement shemes that have been able to allureresearhers in the �eld. Some of them are magnetially on�ned fusion (MCF) [1℄,inertial on�nement fusion (ICF) [2℄, et. Here we fous on MCF whih has beenable to garner signi�ant attention and resoures sine its ineption.1 2

1H + 3
1H = 4

2He+ 1
0n+ 17.4 Mev 1



Chapter 1: IntrodutionThe MCF method relies on using powerful magnets to on�ne plasma in adonought-shaped high-vauum vessel named as Tokamak. The onept of suha sheme is to heat deuterium tritium (D-T) ions to a very high temperature ofthe order of hundred million degrees of entigrade and then on�ne the systemusing urved and losed magneti �eld for long enough time suh that the twospeies of ions an fuse e�etively overoming the Coulomb barrier to release energyin the range of MeV, whih then an be extrated by proper arrangements (Forexample, Test Blanket Module (TBM) [3℄.), and made ommerially available forivil purposes. Sine its realization during 1960s, sientists have aquired muhexpertise on tokamak and have therefore moved one step ahead to build ITER [3℄to test fusion with gain fator more than one. As is apparent, e�ient heating andthen long on�nement are two key fators that determine the suess of suh anendeavor2.The heating proess starts with the ohmi heating mehanism and then in thelater phase where ohmi heating is no longer e�etive due to redued ollisions,heating is supported by various auxiliary methods. Among the various auxil-iary heating shemes, neutral beam injetion (NBI) and RF heating (For exam-ple, ion ylotron resonane heating (ICRH), eletron ylotron resonane heating(ECRH), et.), where the energy is �rst transferred to the thermal eletrons andthen to the ions, are very often used. These heating shemes thus inorporatelarge amount of hot ions into the system of thermal ions and eletrons. Moreover,one the fusion is aomplished, the tokamak itself beomes populated with fusionprodued Helium ions or α partiles of MeV energy. In the self ignition phase,these helium ions are required to transfer their energy to the thermal ions. Thusit is lear that for e�ient heating of the thermal ions and subsequent fusion, onerequires that the hot ions (along with the thermal ions and eletrons) be on�nedin the system for long enough time, and transfer their energy to the thermal ionswhih are eventually going to fuse.The major hurdle in maneuvering fusion in a plasma laboratory, however, ap-pears to be the poor on�nement of plasmas brought about by the exoti behaviorof these extremely hot and dense harged partiles in the presene of magneti �eld.Various physial mehanisms whih are self-generated in the plasma throw parti-2Lawson riterion requires nTτE > 3× 1021 keV se/m3, where, n, T and τE are, respetively,density, temperature of plasma and plasma on�nement time. 2



Chapter 1: Introdutionles and heat out of the system undermining the on�nement and hene blurringthe hope of realisti fusion mahines.These mehanisms, often referred to as instabilities, are broadly lassi�ed asmaroinstabilities and miroinstabilities [4, 5℄ depending upon their sale-lengthand frequeny ompared to the Larmor radius and gyrofrequeny of the onstituentharged partiles. Maroinstability generally refers to the large-sale magnetohy-drodynamis (MHD) instabilities. They an quenh the plasma in miroseondswhih otherwise would have been several seonds long lived [6℄. Though withproper �eld on�guration this lass of instabilities an be suppressed, the plasmais still subjet to �ne-sale instabilities, often referred to as miroinstabilities driv-ing loss of energy and partile. These instabilities are equally apable to in�uenethe dynamis of the energeti ions. Thus, in order to learn how to tame theseinstabilities, researhers, before onstruting real fusion reators, would want tounderstand the basi on�nement, stability and transport issues of harged par-tiles in a relatively simpler environment. To that end, many tokamaks3 havebeen built around the world whih exploit the magneti on�nement to lighterharge partiles, e.g., hydrogen in extreme onditions of temperature and densityto investigate the inherent stability and transport issues of toroidal plasma.The motion of the harged partiles in a magneti �eld, in the simplest ase, ison�ned to a helial path along the magneti �eld line [7℄. The maximum step sizeof any movement aross the magneti �eld, therefore, is equal to their Larmor radii.The ollisions among themselves, although infrequent (as the system is very hot),bring in random walks in the system. As a result of this, the harge partiles jumpfrom one position to another with the step size of Larmor radius resulting in whatis alled lassial di�usion. However, the magnitude of suh lassial di�usion ofpartiles and their thermal energy aross the magneti �eld lines is about thousandtimes lower than that observed in regular tokamak experiments [1℄.The lassial model of di�usion is nevertheless modi�ed and made omplex bythe presene of the urved magneti �eld in tokamaks. The urved magneti �eldan trap harge partiles leading to a larger step size of random walks, of theorder of radius of banana orbits [1℄ of the trapped partiles, enhaning the amountof transport. This modi�es the estimate of the lassial di�usion and termed as3For example, JET, DIII-D, ASDEX, JT60, et. 3



Chapter 1: Introdutionneolassial di�usion proess. However, the experimentally observed di�usion rateis still order of magnitude higher than that predited by the neolassial theory [1℄.This disrepany between the theoretial predition and experimental observationin di�usion rate of energy and partiles is termed as �anomalous" due to the lakof understanding of the physis issues imparting this anomaly.Even when plasmas are maintained free from MHD instabilities, they are farfrom being quiesent. As on�ned plasmas are invariably assoiated with inho-mogeneities in density and temperature, they are, therefore, always in the stateof tremulous movement indued by some �ne sale (of the order of Larmor radiusof the harge partiles) and low frequeny �utuations (smaller than the gyrofre-queny of the ions). These turbulent, �ne sale and low frequeny �utuations,generally de�ned as miroinstabilities, are apable to transport energy and hargedpartiles out of the system at a rate faster than the lassial and neolassial dif-fusion. Suh a transport, in general, is the onsequene of random walks of theonstituent harged partiles with an enhaned step size and redued orrelationtime in the presene of turbulene resulting from the miroinstabilities, and per-haps aounts for the observed anomaly in transport via ion and eletron hannels.Among the various miroinstabilities, ion temperature gradient (ITG) modes[4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18℄ are now �rmly believed to ause anomaloustransport of thermal ions, while, eletron temperature gradient driven (ETG) [19,20, 21, 23, 24℄ modes and trapped eletron modes (TEM) [11, 25, 26, 27, 28℄ areobserved to produe anomalous transport of eletrons. The ITG modes are drivenby the free energy available in the gradient of temperature pro�le of thermal ions,while ETG and TEM draw free energy from the gradient of temperature pro�leof eletrons. Universal toroidal modes whih live on the free energy available inthe inhomogeneity of eletron density, and hene seem to be ubiquitous, are alsoanother lass of miroinstabilities driving eletron transport.While eletron transport exhibits a multisale feature ranging from the eletronLarmor radius (k⊥ρLi >> 1) of the ETG mode to the ion Larmor radius (k⊥ρLi ≤
1) of the TEM, ion transport driven by the ITG mode, on the other hand, ishitherto known to be unstable only at one sale length on the order of the ionLarmor radius (k⊥ρLi ≤ 1). However, of late, a new mode [29℄ propagating inthe ion diamagneti diretion, on the intermediate sale between ITG and ETGmode with k⊥ρLi > 1 joins the group of miroinstabilities imparting multi-sale4



Chapter 1: Introdutionfeature to the thermal ion transport. This mode is generally referred to as the shortwavelength ion temperature gradient (SWITG) mode following its ourrene inthe shorter wavelength side of the dispersion spetrum of miroinstabilities.Conerted e�orts of theory, experiment and simulation to understand, bothqualitatively and quantitatively, the behavior of the plasmas in a tokamak are un-der way among the fusion ommunities. Attempt to ompose simulation modelsto make quantitative preditions of transport is very muh sought. As tokamakexperiments themselves are very muh expensive, a proper modeling of the meha-nisms ould prove very useful in identifying and separating the various underlyingphysis issues one by one without pursuing repeated experiments for that purpose.However, due to the disparate masses of the onstituting partiles suh as ions andeletrons, a onsistent numerial study of transport via ion and eletron hannelssimultaneously has proved to be a formidable task. When one attempts to model aphenomenon, where both eletrons and ions are nonadiabati, one has to take intoaount the larger spatial sales (i.e. Larmor radius) and slower time sales (i.e.gyro period) of ions on one hand, and the �ner spatial sales and faster time salesof eletrons on the other hand for a given temperature and magneti �eld, whihsometimes goes beyond the omputational resoures available, in partiular, in thease of nonlinear, time-evolving, numerial models using kineti theory. More-over, the instabilities are often found to be nonloal spreading over a substantialfration of the tokamak ross setion both in the linear and nonlinear phase, theomprehensive study of whih invariably demands global simulation aggravatingthe situation. A minimal nontrivial linear, global, gyrokineti numerial model anbe enormously useful to that e�et, at least, to identify and understand physialmehanisms in the simplest ase. However, one needs eventually to validate themwith respet to the nonlinear turbulent models.1.2 Brief Review of Earlier WorksAnomalous transport in ollisionless hot tokamak plasmas is believed to be dueto the drift waves driven by the density and temperature gradients [4, 5℄ of theharge partiles in a magnetially on�ned plasma. While the turbulent heat �uxof ions is believed to be driven by the ion temperature gradient (ITG) mode, the5



Chapter 1: Introdutioneletron heat and partile �ux, on the other hand, is expeted largely to be drivenby the trapped eletron mode (TEM) in the low magneti �eld side of a tokamakon ion sales (of the order of ion Larmor radius) and by the eletron temperaturegradient (ETG) mode on eletron sales (of the order of eletron Larmor radius).Enormous e�ort has been put to understand the underlying physis issues boththeoretially and omputationally and then to math the predited transport �uxwith that observed experimentally.The study of ion transport by the ITG mode has started with simple mod-els [30, 31℄, where eletrons are treated adiabati. The next step is then to inorpo-rate the nonadiabati eletrons. This has been ahieved in the the form of trappedeletrons inluded to the bakground model of nonadiabati ions and adiabatipassing eletrons. This has extended the study of this lass of miroinstabilities tothe trapped eletron oupled ITG mode (ITG-TEM) [11, 12, 13, 14, 15, 16, 17, 18℄mode and TEM [11, 25, 26, 28, 32℄. The new models with trapped eletrons givegrowth rate two to three times larger than that in the ase of simple adiabati ele-tron models. At the same time, the transport �ux is observed to rise substantially.A omparison of gyro�uid [33℄ and ontinuum gyrokineti [34℄ simulation of trans-port in realisti geometry with experiments has been arried out, and the eletronthermal di�usivity, ion thermal di�usivity and perturbed density �utuation levelare found to exeed the experimental value by fators more than two. The reasonof this deviation is speulated to be due to the non-loal behavior owing to thevariation of plasma gradients.Following this, sophistiated �ux ribbon odes have ome up with advanedfeatures [35, 36℄ to redue the disrepany between experiments and omputa-tional results [37℄. The kineti eletron simulation with trapped partiles usinggeneralized split weight sheme to δf gyrokineti partile method has been ar-ried out [38℄. The results show signi�ant inrease in the ion heat di�usivity inomparison with that in the ase of the adiabati eletron model in line with theinreased growth rate. However, the experimentally observed ion di�usivity [39℄ ismuh lower than that predited by the adiabati eletron models. Thus, more om-prehensive gyrokineti models that treat eletrons and ions on the same physisfooting with global pro�le e�ets are required to address suh anomaly.The major problem with the inorporation of full dynamis of eletrons inlud-ing even the passing fration nonadiabatially or kinetially in a time dependent6



Chapter 1: Introdutionmodel is their fast parallel motion. The high mobility of these eletrons needshigher resolution in their response time sale, and is a formidable task in the pres-ene of full ion dynamis, the issue of whih is disussed elaborately in Ref. [40℄.With advanes in the omputational failities signi�ant progress has been ahievedto this end to treat the eletrons fully kinetially [36, 157, 139℄. However, some-times simulations hoose redued mass ratios of ion and eletron to downsize theomputational ost [32, 40, 42℄.While ion transport an be brought down to neolassial level by the formationof internal transport barriers (ITBs) [67, 68℄, the eletron transport still remainsorders of magnitude above the neolassial level. The eletron anomalous transportis an issue of paramount onern in the fusion plasma beause of the fat that theeletrons will be heated dominantly by the ollisional relaxation of the highlyenergeti α partiles and the instabilities inherent to eletrons an deteriorate theproess of on�nement of the plasma.The experiments on eletron transport [69℄ observe sti�ness in the eletrontemperature pro�le and suggest a threshold in the eletron temperature gradi-ent ∇Te/Te above whih the turbulent transport takes plae. This supports twotheoretially proposed modes, namely, the TEM and ETG mode.The existene of suh a threshold has been established and its experimentaldetermination is ahieved by further experiments [70, 71, 72℄. Although, a om-plete radial pro�le of transport threshold has been evaluated in Ref. [73℄, whetherthe observed transport is beause of TEMs or ETG modes remains di�ult todetermine unambiguously, as both modes exhibit threshold in ∇Te/Te.The TEMs have their origin in the preession of trapped eletrons on the weakerside of the magneti �eld and been studied extensively, both experimentally [69,73, 74, 75, 76, 77℄ and theoretially [25, 26, 27, 28, 78, 79, 80, 81℄. The TEMs havewave number in the range of ITG modes; they have dependene on the gradientthreshold, fration of trapped eletrons, and ollisionality; they are ative when
τ(= Te/Ti) > 1.The other soure of eletron transport, the ETG mode was studied initially inthe sheared slab geometry [19, 20℄ and then in the toroidal geometry [21℄. Withthe advaned diagnostis, now a days, it has been possible to identify the ETGmode even in experiments [82, 83℄. The ETG mode beause of its small sale,initially was not expeted to ontribute signi�antly to the eletron transport. But7



Chapter 1: Introdutionthe eletron heat di�usivity is usually found to be of orders of magnitude higherthan the simple mixing length estimate. The works in Refs. [23, 24, 84, 85, 86, 87℄showed that in spite of its small sale length, the ETG mode an indeed ontributeto the eletron partile and heat losses omparable to the experimental level by theformation of radially elongated strutures or onvetive ells nonlinearly or througheletromagneti inverse asade proesses. While the ITG mode is suppressedby the E × B shear [88, 89℄ in ITBs, the eletron transport is still observed tobe anomalous as it is barely a�eted by the E × B shear [90℄. Under speialirumstanes, suh as reverse shear, one may be able to redue TEM induedtransport but ETG is nonetheless expeted to remain una�eted beause of itshigher growth rate than the E × B shearing rate.Earlier studies on miroinstabilities, in general, proeed with a tait assumptionthat the mode under onsideration is independent of other members of the lass.But, studies of the ITG mode in the presene of the trapped eletrons, i.e., ITG-TEM [11, 12, 13, 14, 15, 16, 17, 18℄ have shown that one mode an have strong e�eton the other. For example, often ions are onsidered adiabati while studying theETG mode. The ions, beause of their larger Larmor radius, an attain adiabatiityby moving aross the magneti �eld. However, reent works in Refs. [36, 37, 91, 92,93, 94℄ showed that the ion dynamis an play an important role in the ETG saletransport and help ahieving saturation of eletron �ux. Although ITG oupled tothe trapped eletrons has been studied in details, studies of ETG oupled to TEM(ETG-TEM) have been very few [91, 92℄.In the absene of temperature gradients, there an be another lass of insta-bilities, whih is driven even by the slightest density gradient of the eletrons inthe plasma and therefore alled the universal drift instability. In the late 1980s,there had been a large e�ort to understand the basi physis of the universal driftinstability. The motivation was that the universal drift mode was thought to bethe dominant miroinstability at that time and thus soure of plasma transport inthe various on�ning devies, suh as, tandem mirror, tokamak, spheromak, stel-larator, et. In situations where the density pro�le is steeper than the temperaturepro�le, one an indeed have �utuations and assoiated transport dominated bythe universal drift instability. Moreover, the universal instability is the simplestone in the lass of drift waves and a thorough understanding of the mode an helpget insight in the other modes of the family as well. 8



Chapter 1: IntrodutionThe study of the universal drift wave had started with a very simple model,the shearless slab model [95, 96℄, that revealed that the ollisionless universal driftinstability is always unstable in the presene of a density gradient and abseneof shear. The driving mehanism in this ase is the wave partile resonane bythe eletrons oupled with the density gradients. The mode remains unstable, inthe presene of weak but reasonable shear, when studied in the framework of theadiabati eletron model. Thus, up to that point, the speulation was that theuniversal mode without or with weak shear is always unstable. However, in on-tradition to all previous works, Ross et al. [97℄ and Tsang et al. [98℄ reported thatthe universal instability or ollisionless drift instability in the presene of magnetishear is always stable in the slab geometry, irrespetive of the strength of the shearor transverse wave number when one takes into aount the full eletron dispersionfuntion. The observed stability is attributed primarily to the stabilizing in�ueneof the nonresonant eletrons. These issues had further been addressed by Chenet al. [99℄ who onluded that the mode an be damped and marginally stabledepending upon the strength of the shear and magnitude of the transverse wavenumber ky. For example, in the ase of su�iently weak shear, i.e., with Ls/Lngreater than a ritial value (where Ls and Ln are, respetively, the measure ofshear and density gradient sale length) ollisionless drift waves are marginallystable at shorter wavelength or high wave number regime, where the eletron dy-namis usually play the pivotal role in determining the nature of an eigenmode. Inthe opposite limit, i.e., at longer wavelength or lower wave number regime whereion dynamis dominate, the eigenmode is damped. For strong shear, on the otherhand, the eigenmodes are always stable irrespetive of the wave number or wave-length. However, even in a sheared magneti �eld, an absolute instability anbe observed by the elimination of the stabilization produed by the o�-resonanteletrons by the turbulent di�usion near the mode rational surfaes [100℄.The investigation of the various properties of the universal drift instability in amore omplex situation suh as in the presene of �nite toroidiity was undertakenby Cheng et al. [101℄. Two eigenmodes were found to oexist that are broughtabout by the equilibrium variation along the �eld line. One mode is not loalizedin the ballooning oordinate and gets strongly stabilized due to the magneti shear,muh like the slab version of the mode. The other eigenmode is observed to haveno slab ounterpart. It was shown to be intrinsially driven by the toroidiity,9



Chapter 1: Introdutionpartly loalized, and weakly a�eted by the stabilization of the magneti shear.It was shown that while it is rendered as an absolute instability by the eletronLandau resonane, ion Landau damping on the other hand has a stabilizing ef-fet on the mode. It is important to note that the formulation in Ref. [101℄ usesthe ballooning formalism appliable only in the high n (toroidal mode number)limit, onsiders k⊥ρLi << 1 and keeps the toroidal oupling e�et only throughthe ion ∇B and urvature drift. The ion drift frequeny, however, is assumed verysmall ompared to the mode frequeny ω and ion drift resonane is thus ignored.Studies involving more omplex geometries, suh as in small aspet ratio tokamaksor spheromaks [102℄ were reported later. Modes are found to be less loalized atdi�erent positions of poloidal angle when one removes the large aspet ratio as-sumption. However, exept for the presene of more than one mode along thepoloidal diretion beause of the strong equilibrium variations along the �eld line,the results are qualitatively the same as for the ase of former large aspet ratio.The role of ion magneti drift resonane and eletron Landau resonane are dis-ussed by Chep et al. [103℄ using the ballooning formalism with gyrokineti theory.The onlusion is that along with magneti drift resonane, one requires eletronLandau resonane to make the mode unstable. However, this study preludes therole of the transit frequeny of the thermal ions by assuming the mode frequeniesto be higher than the transit frequeny of the thermal ions. Berk et al. [104℄ showedthat the universal drift instability is stabilized by the presene of �nite plasma β.This an be understood to result from the oupling of the universal drift wave tothe Alfven mode and from the e�et of ion Landau damping. Hastings et al. [105℄,onsidering a slab geometry with �nite ∇B and using gyrokineti theory, �nd twomehanisms of stabilization of the mode by �nite β: (1) for small values of β inthe range me/mi < β << 1, the stabilization is brought about by the oupling tothe Alfven wave and (2) for β ∼ O(1), the stabilization is due to the ompressionof the perturbed plasma motion.While eletron transport exhibits a multisale feature ranging from the eletronLarmor radius (k⊥ρLi >> 1) of the ETG mode to the ion Larmor radius (k⊥ρLi ≤
1) of the TEM, ion transport driven by the ITG mode, on the ontrary, is hithertoknown to be unstable only at one sale length on the order of the ion Larmorradius (k⊥ρLi ≤ 1). However, of late, a new mode, with mode frequeny in thediretion of the ion diamagneti drift frequeny, on the intermediate sale between10



Chapter 1: IntrodutionITG and ETG mode with k⊥ρLi > 1 has been identi�ed [29℄. This mode is foundto be driven by the temperature gradient of the ions in the presene of the Landauresonane/inverse resonane in a slab geometry and by the toroidal drift resonanein a toroidal geometry, in ombination with the nonmonotoni behavior of themode frequeny with respet to the perpendiular wave number. Beause of itsourrene in the short wavelength limit and due to the nonadiabatiity of ions,the mode is named as short wavelength ion temperature gradient (SWITG) modeto distinguish it from the onventional ITG mode at longer wavelength. It isgenerally speulated that in the limit (k⊥ρLi)
2 >> 1, there should be no modeintrinsi to the ion nonadiabatiity, sine ion dynamis in this limit is expeted tobe adiabati. However, if the sale length of the inhomogeneity is suh that ω∗i,the ion diamagneti drift frequeny beomes larger than the mode frequeny ω,there an be an instability related to the inhomogeneity in the ions even in thisshorter limit [106℄.Initially, the mode was thought to be of hybrid type [106, 107℄, requiring both

ηi and ηe (ratio of the density to temperature sale length of the ions and eletronsrespetively) to be above a threshold. Later parametri study by Gao et al. [108℄demonstrated that the eletron nonadiabatiity is not an essential ingredient forthe mode to develop. E�et of the nonadiabati eletrons is only to enhane thegrowth rate of the mode. The theoretial study of this mode started with thework of Smolyakov et al. [29℄ in a sheared slab and toroidal geometry using a loalformulation. The work was then extended by Hirose et al. [106℄ using a kinetiintegral ode based on ballooning formalism. This was followed by the study of themode in the sheared slab [107℄ and then in the toroidal geometry [108℄ by Gao et al.E�ets of shear �ows on this mode have been studied in the sheared slab geometryand found to have strong stabilizing impat on the mode [109℄. However, it isexpeted that the toroidal SWITG mode will need higher rate of EXB �ow shearfor stabilization than the onventional toroidal ITG mode as the former has higherfrequeny [108℄. The dependene of the ritial gradient on the various physialparameters suh as temperature ratio, toroidiity, magneti shear and safety fatorhas been studied for this mode [110℄. It is to be noted that suh a double humpbehavior was pointed out a long way bak by Pu et al. [111℄ while studying theion mixing mode. The main onlusions, from the past works are the following.(1) In the slab limit (small toroidiity ǫn = Ln/R), a strong temperature gradient11



Chapter 1: Introdutiondriven mode exists in the regime (k⊥ρLi)
2 >> 1. The instability requires both

ηi and ηe to be above a ritial value [106, 107℄. But later study [108℄ revealsthat it is inherently an ion mode and exists even if the eletrons are adiabati.The same is observed in the work of Smolyakov et al. [29℄. (2) Toroidiity hasstrong stabilizing e�et on the mode [106℄. Stabilization ours at ǫn ≥ 0.15. (3)The instability is driven by magneti shear and the growth rate is approximatelyproportional to √|s| [106℄ where s stands for the shear. But a broader parametersan [108℄ �nds that the growth rate initially inreases and then starts dereasingwith shear. (4) Similar to the onventional ITG, it is also stabilized by a modest α,the ballooning parameter. (5) Nonadiabati irulating eletron dynamis providedestabilization. (6) E × B �ow shear has strong stabilizing e�et on the mode.The miroinstabilities disussed above not only throw out the thermal ions andeletrons but also the energeti ions produed by the auxiliary heating shemesand α partiles of energy in the MeV range produed as the fusion produt. Theseenergeti partiles onstitute a onsiderable fration of the total plasma, and thus asound understanding of the role of these energeti ions on the plasma on�nementthrough the interation with the bakground instabilities is very muh required.The various magnetohydrodynamis (MHD) events are observed to transport andredistribute the energeti ion population via resonant and nonresonant phenom-ena [115, 116℄. For example, resonant MHD ativities suh as �shbone, toroidalAlfven mode (TAE), et., an ause large transport of the energeti ions. Similarly,high β sawteeth an also produe loss of the energeti ions. The low frequenyMHD modes suh as neolassial tearing modes (NTM) are equally apable todrive both passing and trapped energeti ion loss [117, 118℄. The toroidal �eldripples and stohasti magneti �eld are also among the other mehanism of fastion losses. The energeti ions an in turn also alter the stability of the plasma byexiting and sometimes suppressing the MHD events. One may, for example, notethe observed stabilization of sawteeth by perpendiular energeti ion population,the destabilization of internal kink mode, TAE, �shbone, et. The energeti ionsalso an give rise to modes on their own whih are generally named as energetipartile modes (EPM) [119℄.Though muh understanding and on�dene have been gained in the ase ofthe interplay between MHD and energeti ions via theory and experiments, littleattention is paid toward the interation of these energeti ions with the mirotur�12



Chapter 1: Introdutionbulene indued by the ITG mode, TEM, ETG mode, et. One partial reasonould perhaps be the observation of very weak di�usivities of the energeti ionsand α partiles in omparison with the thermal ions experimentally [115, 116, 120℄as well as theoretially [121℄. The reason for it, as speulated, is that the ener-geti ions do not stay in resonane with these miroturbulene driven �utuationsas their drift orbit radii are far higher than the radial orrelation length of these�utuations, and therefore average over the �utuation spetrum temporally andspatially. These phenomena are generally de�ned as drift averaging and gyroradiusaveraging [115℄. On the ontrary, reent numerial experiments [122℄ have shownthat α partile and energy loss ould be higher than the orresponding losses ofthermal ions and large orbit averaging is not strong enough to ignore the interationof the α partiles with ITG turbulene. However, it is a reent experiment [123℄reporting evidene of orrelation between miroturbulene and redistribution of en-ergeti ions that has spurred a fresh interest among the researhers in the subjet.Even in the absene of any MHD ativity, fast radial broadening of the urrentpro�le driven by the o� axis neutral beam injetion (NBI) has been observed sup-porting the fat that there must indeed be some orrelation between redistributionof energeti ions and bakground miroturbulene. This has been further stud-ied in Refs. [124, 125℄. Following this, numerial analysis [126℄ on the interationof energeti ions with ITG turbulene observes 1/E dependene for the passingenergeti ion di�usion, where, E is the energy of the energeti ions and 1/E2 de-pendene for the trapped energeti ion di�usion. Similar study [127℄ found 1/Edependene of di�usion for the beam energeti ions in the presene of eletrostati�utuation. In ontrast, the di�usion of the energeti ions in the presene of mag-neti �utuations [127℄ has been found to be independent of the partile energy,and therefore, may play more important role than the eletrostati �utuations inredistributing the energeti ions. The reiproal dependene of di�usivity on thepartile energy of the energeti ions ould be one of the reasons for the super�iale�et of miroturbulene on the energeti ions observed in the earlier experiments.The di�erene in the born energy of the energeti ions between the earlier andreent experiments an be a likely explanation of the di�erene in the observa-tions regarding the e�et of miroturbulene on these energeti ions. Note thatsuh phenomena of redistribution of hot ions by miroturbulene is not on�nedto only toroidal devies like tokamaks; experiments on linear system also on�rm13



Chapter 1: Introdutionthe interation of hot ions with density gradient driven turbulene [172℄. Astro-physial plasmas also enounter similar phenomena resulting from interation ofthe energeti ions with turbulent �eld [129℄.Coming bak to the bak reation of energeti ions on miroturbulene, onemay ite latest experiments [130℄ that has reported signature of internal transportbarrier (ITB) in the ion hannel even in the absene of reverse shear. The formationof the ITB has been observed to have orrelation with the transport suppressionmehanism by the injeted energeti ions with a lifetime of the order of slowingdown time of the beam ions. Similar observation of the ITG mode suppressionby the energeti ions produed by ion ylotron resonane heating (ICRH) andonurrent formation of the ITB triggered by these energeti ions in a plasma withmonotoni safety fator pro�le has been reported in Ref. [131℄.In the bakdrop of this wide, omplex and nonloal senario of plasma be-havior in MCF systems the present dissertation is dediated to the study of thestability properties of few miroinstabilities whih usually play the pivotal role inausing anomalous transport of energy and partiles in tokamaks. In partiular,it highlights (1) e�ets of the nonadiabati passing eletrons on the ion temper-ature gradient (ITG) mode, trapped eletron oupled ion temperature gradientmode (ITG-TEM) and trapped eletron mode (TEM) by linear, global, gyroki-neti numerial study; (2) the behaviour of the ion temperature gradient drivenmodes in the presene of highly steep density pro�le typially observed in thetransport barriers inside the tokamak; a linear and nonlinear gyrokineti study onthe ourrene of the short wavelength ion temperature gradient mode (SWITG);(3) a linear, global, gyrokineti stability analysis of the universal toroidal mode,whih although is thought to be ubiquitous, yet overshadowed by the temperaturegradient driven modes; (4) the stabilization of the miroinstabilities by the hotions (those ions having temperature higher than the thermal ions), and �nally,the redistribution of the hot ions by miroturbulene with the help of linear andnonlinear, global, gyrokineti simulations.
14



Chapter 1: Introdution1.3 Thesis OutlineAs the title says, the present dissertation studies the linear and nonlinear propertiesof the temperature and density gradient driven miroinstabilities using global,linear and nonlinear, gyrokineti models.Chapter 2 details the linear, global, gyrokineti model whih is the ore ofthe linear gyrokineti spetral ode EM-GLOGYSTO [11, 44℄. The nonadia-bati/kineti passing eletrons are introdued to the eletrostati model. Therest of the setions of Chapter 2 thus eluidates the observed e�et of the nonadi-abati/kineti eletrons on the various properties of the linear global ITG mode.In Chapter 3, the new nonadiabati/kineti model introdued in Chapter 2 forpassing eletrons is used to study the trapped eletron oupled ITG (ITG-TEM)mode and trapped eletron mode using the ode EM-GLOGYSTO. The e�eton the linear growth rate and real frequeny, global eletrostati mode struture,ritial temperature gradient, et., have been disussed for the ITG-TEM andTEM in separate setions.Chapter 4 disusses the modes inherent to nonadiabati passing eletrons,namely, the eletron temperature gradient mode (ETG) driven by the temperaturegradient of the passing eletrons and universal drift mode driven by the densitygradient of the passing eletrons. For ETG, the basi properties of the mode havebeen studied with and without the Debye shielding e�et. The results obtainedfor the linear ETG mode are well known [21, 22℄. We then move to use the nona-diabati eletron model to study the universal toroidal drift instability, whih isovershadowed by the temperature gradient driven modes. We have disussed thevarious linear properties of the mode and its presene amid the temperature gra-dient driven modes. It has been observed that this mode an oexist with the ITGand TEM, and an ontribute to the eletron transport whih is usually thoughtto be from the ETG and TEM only.A new branh of the ITG mode has been reported reently. This mode is un-stable at kyρi > 1, where, ky and ρi are, respetively, poloidal wavenumber andion Larmor radius, and therefore named as the short wavelength ion temperaturegradient (SWITG) mode. A linear global gyrokineti study has been arried outfor the �rst time, using the spetral ode EM-GLOGYSTO. The various linearproperties and global mode struture have been studied with and without the15



Chapter 1: Introdutionpresene of trapped eletrons. The results are presented in Chapter 5. Corre-sponding nonlinear study is arried out using the �ux tube version of the global,nonlinear, Eulerian, gyrokineti ode Gyrokineti Eletromagneti Numerial Ex-periment (GENE) [32, 84℄. It is observed that although linearly the SWITG modean be as strong as the standard ITG (with kyρi ≤ 1), nonlinearly the mode hasvery weak ontribution to the net thermal ion heat transport ompared to thestandard ITG mode.The study of the interation of the miroturbulene and energeti ions hasemerged as a very important area of researh following experiments in ASDEXand DIII-D. In Chapter 6, the interation between the energeti ions and miro-turbulene generated by the temperature gradient driven modes has been studied.The hapter omprises of three setions. In the �rst setion, the e�et of ener-geti ions on the linear ITG mode is studied nonperturbatively using the spetralode EM-GLOGYSTO. A third speies of ions has been added to the existing twospeies version nonperturbatively, and the e�et of the energeti ions on the linearproperties of the ITG mode has been studied. The seond setion deals with thenonlinear study on the e�et of the turbulent �eld generated by the ITG modeon the energeti ions. For the purpose we have used the global, nonlinear, gyroki-neti, �rst priniple based (PIC method) ode Gyrokineti Tokamak Simulation(GTS) [139, 140℄. The energeti ions are introdued to the ode as passive traersthat exhibit random walks in the presene of the equilibrium and turbulent �elds.The energy and system size dependene of the energeti ions have been evaluatedin the presene of the ITG mode turbulene. In the third setion of the hapter,the in�uene of the TEM turbulene is studied using the ode GTS and same pas-sive traer method. Three di�erent distributions for the energeti speies, namely,isotropi, passing and trapped distributions have been onsidered and the respe-tive transport properties have been investigated. The di�erent energy salings fordi�erent types of distribution mentioned above are estimated and the nature oftransport is studied.
16



Chapter 2Role of nonadiabati/kineti passingeletrons in global eletrostati iontemperature gradient driven modesin a tokamak
2.1 IntrodutionTokamak plasmas, whih are stable to ideal magnetohydrohynami (MHD) distur-banes, exhibit transport of partiles and energy aross magneti �ux surfaes. Onlonger time sales ompared to partile and energy on�nement times, suh trans-port phenomena, whih arise due to equilibrium inhomogeneities, are attributedto the low frequeny drift waves in the plasma.Among others, toroidal ion temperature gradient driven drift modes (ITG) [8℄,trapped eletron modes [25℄, high-n Alfvén ion temperature gradient driven modesor high-n kineti ballooning modes [43℄ (n is the toroidal mode number) have beenstudied extensively both in linear and nonlinear regimes. For large n, where it isexpeted that the mode struture would be loalized to a magneti �ux surfae,the ballooning formalism is a ommonly used tehnique. For global modes withsmall n values, the pro�le e�ets do play a role, and therefore, the usual ballooningformalism fails to retain these e�ets. The global linear and nonlinear gyrokinetimodels then beome neessary. 17



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakFor ITGs, suh global gyrokineti models show that the linear growth ratepeaks between n ≃ 3 and 15 suh that kθρLi ≈ 0.5. For example, for typial toka-mak parameters, the global eletrostati toroidal gyrokineti spetral model GLO-GYSTO [11, 44℄ and time-evolving gyrokineti odes [45℄ report typial toroidalmode numbers in the range 3 ≤ n ≤ 15 with eigenmode struture oupying agood fration of the minor radius a. These eigenmodes span several mode ratio-nal surfaes (MRS) r = rMRS de�ned as k||m,n(r = rMRS) = 0. In these models,the passing and trapped ions respond nonadiabatially while passing eletrons areassumed adiabati.An eletromagneti version of GLOGYSTO alled EM-GLOGYSTO has beendeveloped by inluding passing drift kineti eletrons oupled to A|| �utuations [46℄followed by fully gyrokineti eletron dynamis oupled to A|| �utuations and equi-librium �ows [47℄. The ode EM-GLOGYSTO was generalized by inluding fullygyrokineti nonadiabati passing ion and eletron dynamis whih ouple to A⊥�utuations, Shafranov shift e�ets [48℄, followed by trapped eletron dynamisoupled to A⊥ �utuations [11, 49℄. It has been shown that when passing driftkineti eletrons ouple only to A|| [46, 55℄, �nite-β e�ets have a benign e�eton ITGs with adiabati eletron response. Using the same model, unstable AlfvénITGs (AITGs) or Kineti Ballooning modes (KBMs) [43, 50, 51, 52, 53, 54℄ areshown to beome more unstable with inreasing β [46, 48℄. Subsequent studies [55℄with more aurate gyrokineti nonadiabati passing eletron dynamis oupled to
A|| �utuations have shown about 10 % hange in growth rates of AITGs. How-ever, in all the above-mentioned studies, the e�et of nonadiabati passing eletronswhen oupled to eletrostati �utuations φ̃ has not been explored.In time-evolving gyrokineti partile simulations where ions are pushed by solv-ing the �rst priniple laws, the di�erene in mass ratio of ions and eletrons imposesa stringent onstraint on the numerial time-stepping. The assumption of adiabatieletron response simpli�es the omputational demands enormously. However, ona given magneti �ux surfae, adiabati eletron model is known to introdue spu-rious harge aumulation and zonal �ows if eletron adiabatiity is not arefullyimposed [56℄. If one were to push eletrons with �nite mass in a numerially on-sistent fashion, then suh problems an be avoided. Beause of the ion to eletronmass ratio, the neessity of using small time-steps is seen as a di�ulty in time-evolving linear and nonlinear gyrokineti partile odes. It goes without saying18



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakthat the above mentioned mass-ratio related physis issues are equally relevant togyrokineti Vlasov odes as well. For trapped eletrons, more sophistiated mod-els [13, 14, 15℄ are being developed, whereas for passing nonadiabati eletronsvery few models exist.Coming bak to the global linear spetral models [11, 46, 48, 55℄ mentionedearlier, the above-said di�ulties enountered in time-evolving gyrokineti lin-ear/nonlinear odes are avoided as time-evolution is replaed by frequeny responseof the system. As a result, at least for the linear regime, both ions and eletronsan be handled on exatly the same physis footing. This situation provides astrong advantage in favor of the linear global gyrokineti spetral models bothphysis-wise and also as a stringent numerial test ase for time-evolving nonlineargyrokineti odes with nonadiabati eletrons. We bring out interesting qualita-tive and quantitative di�erenes between ITGs with the usual adiabati eletronresponse and with the nonadiabati passing eletrons response.To this end, we fous on the eletrostati version of the fully gyrokineti, fullyeletromagneti global linear stability model EM-GLOGYSTO extensively studiedand reported in [11, 46, 48, 55℄ as appliable to large aspet ratio tokamaks. For thepurposes of this study, Shafranov shift, equilibrium �ows, trapped eletron e�ets,
B⊥, and B|| �utuations are dropped, while partile nonadiabatiity for passingions and passing eletrons, Landau damping of passing speies, �nite Larmor radius(FLR) e�ets to all orders for all speies, trapped and transit resonanes, andpoloidal and radial oupling of modes due to partile drifts aross magneti �uxsurfaes are inluded.2.2 Model EquationsTo desribe tokamak plasmas, ollisionless Vlasov-Maxwell equations are used.In the following, we invoke the standard tehnique of gyrokineti hange of vari-ables as employed by Catto et al. [57℄ with an eikonal or spetral ansatz to ob-tain a gyrokineti Vlasov equation. Among others, a self-onsistent and energyonserving theoretial framework was given by Hahm [58℄ based on Hamiltonianand Lie transformations, and more reently a variational formulation for gyroki-neti Vlasov-Maxwell system was given by Brizard [59℄ resulting in gyrokineti19



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakequations and gyro-averaged Maxwell's equations for �nite−β plasmas. The the-oretial formulations used here are disussed in detail in Refs. [44℄ and [55℄. Forthe sake of ompleteness, we redo the formulation with one major hange, namely,the addition of the proper gyrokineti nonadiabati passing eletron response tothe eletrostati potential �utuation. As our interest is in the passing nonadi-abati eletron dynamis in eletrostati limit, in the following we are redoing adesription of only the eletrostati formulation [44℄.As appropriate for a linear stability study, the full distribution funtion fj(r,v, t)of speies j is linearized about a suitable equilibrium f0j = f0j(r,v) suh that
fj(r,v, t) = f0j(r,v) + f̃j(r,v, t) with the assumption that f̃j/f0j ≪ 1. Retainingterms up to the �rst order, we get ;
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Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakwhere f0jψ ≡ f0j(ψ0j = ψ) and êφ is the toroidal unit vetor. To obtain Eq. (2.3),
f0j is Taylor expanded to �rst order in {mjrvφ/qj} around ψ0j = ψ. Then, thefollowing gyrokineti ordering is used: ω/wcj ≪ 1, k⊥̺Lj ≃ O(1), k||̺Lj ≃
̺Lj/Leq << 1, where k−1

⊥ , k−1
|| , and ̺Lj are perpendiular perturbation sales,parallel perturbation sales and Larmor radius of the speies j, respetively, and

Leq is a typial equilibrium sale length. Rewriting f̃j in Eq. (2.2), using the hangeof variables de�ned by
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êφ · ∇
]

ϕ̃+O(ǫ). (2.5)In Eqs. (2.4) and (2.5), we have introdued the following de�nitions: Ωpj =

wcjBp/B, wcj = qjB/mj , ∇n = −rBp∂/∂ψ, Bp = |∇ψ|/r and h
(0)
j is the zerothorder term of the perturbative series in the �inverse gyro-frequeny expansion� ofthe nonadiabati part
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j ......Note that sine D/Dt ≃ O(wcj), only h(0)j is retained whih is independent of wcjand hene the gyroangle (de�ned below). In the rest of this hapter h(0)j is referredto simply as hj. Equation (2.5) is our starting equation. Now let us proeed withthe gyro-averaging proedure. In a large aspet ratio tokamak geometry, veloity

v of a partile gyrating around a �eld line is v = v⊥(ê̺cosα+ êθsinα)+v||ê||, whereunit vetors (ê̺, êθ, êφ) de�ne the toroidal oordinates and α is the gyroangle. We
21



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakde�ne the gyro-averaging of a quantity �Q� as
< Q >=

1

2π

∫ 2π

0

dαQ(α; ..).In Eq. (2.5), the terms in square brakets [..℄, on the right hand side, are all equi-librium quantities and are independent of α. Thus, only the eletrostati potentialis to be gyroaveraged. Similarly, on the left hand side, hj is independent of α,hene only D/Dt|u.t.p is to be gyro-averaged. Therefore,
D

Dt

∣

∣

∣

∣

∣

u.t.p

gyro−averaging
=⇒ D

Dt

∣

∣

∣

∣

∣

u.t.g

≡ ∂

∂t
+ (v||ê|| + vdj) ·

∂

∂R
,where vdj = (v2⊥/2 + v2||)êz/(rwcj), u.t.g. implies unperturbed trajetory of guidingenters, and R is de�ned by R = r+ v × ê||/wcj. Therefore,

< ϕ̃ >=
1

2π

∫ 2π

0

dα
[

ϕ̃(r[α], t)
]

∣

∣

∣

∣

∣

r=R−v×ê||/wcj

.Sine ϕ̃(r[α], t) is an unknown funtion, the gyro-averaging is performed by �rstFourier deomposing these funtions, then representing the partile oordinate rby gyro-enter R and remembering that
Jp(x) =

1

2π

∫ 2π

0

dα exp[ι(xsinα − pα)],With the above-mentioned proedure, one obtains the following gyrokineti equa-tion:
D

Dt

∣

∣

∣

∣

∣

u.t.g

hj(R,v, t) = −
(

qj
mj

)

[

∂f0jψ
∂ξ

∂

∂t
+
v||
B

∂f0jψ
∂µ

ê|| · ∇

+
1

Ωpj
∇nf0j

∣

∣

∣

∣

∣

ψ

êφ · ∇
]

(ϕ̃(k; )J0(k⊥̺Lj)) +O(ǫ). (2.6)The solution to Eq. (2.6) is obtained by the Green funtion tehnique (unit souresolution say P) [60℄. An expliit form of P is obtained analytially by the methodof harateristis of unperturbed trajetories of guiding enters (u.t.g) and followed22



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakby a perturbative tehnique for the guiding enter veloity [44℄. Moreover, theunit soure solution, P, to Eq. (2.6) is independent of the type of perturbation(eletrostati or eletromagneti) and solely depends on the onsidered equilibrium.We assume for equilibrium f0j a loal Maxwellian of the form
f0j(ξ, µ, ψ) = fMj(ξ, ψ) =

N(ψ)
(

2πTj(ψ)

mj

)3/2
exp

(

− ξ

Tj(ψ)/mj

)

,so that ∂f0j/∂µ ≡ 0 by hoie and density pro�le N(ψ) is independent of thespeies type j. Thus, for a �sinusoidal� time dependene, the solution to Eq. (2.6)in guiding enter oordinates R is
hj(R,v, ω) = −

(

qjFMj

Tj

)
∫

dk exp
(

ιk ·R
(

ω − ω∗
j

))

(ι Pj) ϕ̃(k; )J0(k⊥̺Lj) +O(ǫ).Here, k = κ êρ + kθ êθ + kφ êφ and κ = (2π/∆ρ) kρ, with ∆ρ = ρu − ρl whihde�nes the radial domain, kφ = n/r and kθ = m/ρ; ω is the eigenvalue and
ω∗
j = ωnj

[

1 +
ηj
2

(

v2||
v2thj

− 3

)

+
ηjv

2
⊥

2 v2thj

]

,with ωnj = (Tj∇n lnNkθ)/(qjB) is the diamagneti drift frequeny and ηj =

(d lnTj)/(d lnN). Note also that sine the large aspet ratio equilibria onsideredare axisymmetri, the toroidal mode number �n� an be �xed and the problem ise�etively two dimensional in (ρ, θ) (on�guration spae) or (κ, kθ) (Fourier spae).As our interest is in the nonadiabati passing eletrons, let us now proeed tothe onstrution of the propagator for passing gyrokineti speies. For trappedions one an see Ref. [44℄. Sine a gyroaveraged Vlasov equation an be solvedusing the method of integration along its u.t.g, for our speial lass of �sinusoidal�time dependene, the solution P for a given (k, ω) is simply
P(R,k, ǫ, µ, σ, ω) =

∫ t

−∞

dt′ exp (ι [k · (R′ −R)− ωt′])

=

∫ t

−∞

dt′ exp

(

ι

∫ t′

dt′′k · vg(t′′)− ιωt′

)

, (2.7)
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Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakwhere guiding enter veloity dR/dt = vg = v||+vd and R(t) is to be obtained bysolving for guiding enter trajetories as an �initial value problem� in equilibriumonsidered above. This is done by �rst assuming that the ross-�eld drift terms[vd℄ are small and drop them at the zeroth order and to inlude them iterativelyat the next order. This proedure gives us P,
ιP =

∑

p,p′

Jp(x
σ
tj)Jp′(x

σ
tj)

ω − σk||v|| − pωt
exp(ι(p− p′)(θ − θ̄σ)), (2.8)where xσtj = k⊥ξσ, ξσ = vd/ωt, vd =

(

v2⊥/2 + v2||

)

/(ωcR), ωt = σv||/(q(s)R), σ = ±1(sign of v||), k⊥ =
√

κ2 + k2θ , k|| = [nq(s)−m] /(q(s)R) and θ̄σ is de�ned as
tan θ̄σ = −κ/kθ and s = ρ/a, a−is the minor radius. A few points to be noted hereare as follows: (1) Note that the grad-B and urvature drift e�ets appear throughthe argument of Bessel funtions (xσtj = k⊥vd/ωt) of Eq. 2.8. Thus, for example,�radial and poloidal oupling� vanishes if xσtj = 0 in Eq. 2.8 and one would arrive at�ylindrial� results. Hene in our model, Bessel funtions in Eq. 2.8 bring aboutoupling between neighboring �ux surfaes and also ouple neighboring poloidalharmonis. (2) The argument of Bessel funtions Jp's in Eq. (2.8) i.e., xσtj = k⊥ξσ,also depends on transit frequeny ωt, xσtj an beome xtj ≃ O(1). Hene transitharmoni orders are to be hosen aordingly. (3) While performing the numerialalulations, we have approximated the partile speeds in ξσ by their loal thermalveloity values and hene use ξσ =< ξσ > where < ξσ >= 2σsign(qj)q(s)̺Lj . (4)The parallel veloity v‖ of the partiles are onsidered to be independent of time.That means that the passing partiles are modelled as deeply passing. In thisform, P ontains e�ets suh as transit harmoni and its oupling, parallel veloityresonanes and poloidal mode oupling.To obtain the partile density �utuation ñj(r;ω), one requires to go fromthe guiding enter (GC) oordinate R to the partile oordinate r using R =

r + v × ê||/wcj, by replaing hj using Eq. (2.4) followed by the integration over vkeeping in mind the gyroangle integration over α. This last integration on α yieldsan additional Bessel funtion �J0� for ϕ̃. Thus, in real spae r, for speies j, we
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Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamak�nally have
ñj(r;ω) = −

(

qjN

Tj

)

[

ϕ̃+

∫

dk exp (ιk · r) ×

∫

dv
fMj

N

(

ω − ω∗
j

)

(ιPj) ϕ̃(k; )J2
0 (xLj)

]

, (2.9)where xLj = k⊥̺Lj . It may be worthwhile to emphasize that the equilibriume�ets (inorporated in P) and perturbation e�ets are learly delineated in theformulation. Equations are �nally losed by invoking the quasineutrality ondition,
∑

j

ñj(r;ω) ≃ 0. (2.10)Equation (2.10) de�nes a generalized eigenvalue problem with eigenvalue ω andeigenvetor ϕ̃. This eigenvalue problem is onveniently solved in Fourier spae.By Fourier deomposing the potential in Eq. (2.10) and then taking Fourier trans-form,we obtain a onvolution matrix in Fourier spae. If we assume a hydrogen-likeplasma (i.e., single harged) with ions, eletrons, trapped ions, we have
∑

k′

∑

j=i,e,tr−i

M̂j
k,k′ ϕ̃k′ = 0, (2.11)where k = (κ,m) and k

′ = (κ′, m′). Note that we have three speies: Passing ions(i), passing eletrons (e), and trapped ions (tr-i).In the following, we disuss in detail the formulation for nonadiabati passingspeies. With the de�nitions, ∆ρ = ρu − ρl (upper and lower radial limits), ∆κ =

25



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamak
κ− κ′ and ∆m = m−m′ the matrix elements are given as follows.

M̂i
k,k′ =

1

∆ρ

∫ ρu

ρl

dρ exp(−ι∆κρ)

×
[

αpδmm′ + exp(ι∆mθ̄)
∑

p

Î0p,i

]

, (2.12)
M̂e

k,k′ =
1

∆ρ

∫ ρu

ρl

dρ exp(−ι∆κρ)

×
[

αp
τ(ρ)

δmm′ +
exp(ι∆mθ̄)

τ(ρ)

∑

p

Î0p,e

]

, (2.13)where
Î lp,j =

1√
2πv3th,j(ρ)

∫ vmaxj (ρ)

−vmaxj(ρ)

vl||dv|| exp

(

−
v2||

v2th,j(ρ)

)

×
{

N j
1I

σ
0,j −N j

2I
σ
1,j

Dσ,j
1

}

p′=p−(m−m′)

, (2.14)
Iσn,j =

∫ v⊥max,j(ρ)

0

v2n+1
⊥ dv⊥ exp

(

− v2⊥
2v2th,j(ρ)

)

×

J2
0 (xLj)Jp(x

′σ
tj )Jp′(x

′σ
tj ). (2.15)We have introdued the following de�nitions: v⊥max,j(ρ) = min(v||/

√
ǫ, vmax,j)whih is �trapped partile exlusion� from ω−independent perpendiular velo-ity integral Iσn,j; αp = 1 −

√

ǫ/(1 + ǫ) is the fration of passing partiles; Î lp,j, is
ω − dependent parallel integrals; xσtj = k⊥ξσ. Also,

N j
1 = ω − wn,j

[

1 + (ηj/2)(v
2
||/v

2
th,j)− 3)

]

,

N j
2 = wn,jηj/(2v

2
th,j), and

Dσ,j
1 = < wt,j(ρ) > (nqs −m′(1− p)(σv||/vth,j)− ω,where < wt,j(ρ) >= vth,j(ρ)/(rqs), is the average transit frequeny of the speies

j. As integrals Iσn,j are independent of ω and dependent only on v⊥, σ and otherequilibrium quantities, one may hoose to alulate and store them as interpolation26



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamaktables (memory intensive) or, alternatively, one may hoose to alulate them whenneeded (CPU-time intensive). In the next setion, we will speify some diagnostisand normalizations used in the ode.2.2.1 Diagnostis: Eigenmode-averaged quantitiesSimple diagnostis for various physial quantities are omputed as averages overthe eigenmode. For example, mode-averaged poloidal, radial and perpendiularomponents of the wave vetor ~k of the most unstable mode an be evaluated as
< kθ >

2=

∫

dρ
∑

m

|m
ρ
ϕ(k,m)|2

∫

dρ
∑

m

|ϕ(k,m)|2
,

< kρ >
2=

∑

(k,m)

|φ(k,m)(k2π/△ρ)|2

∑

(k,m)

|ϕ(k,m)|2
,and

< k⊥ >
2=< kρ >

2 + < kθ >
2where quantities with su�x �(k,m)� imply Fourier weights of the orrespondingperturbations.2.2.2 Normalization for full radius alulationDistanes are normalized to minor radius �a�; i.e., s = ρ/a. Radial position where

ηj peaks is represented as s = s0. Frequenies and growth rates are normalizedto ωd0 = vthi(s = s0)̺Li/a
2, k⊥ is normalized to its loal (ion/eletron) inverseLarmor radius ̺−1

Lj (s), k|| to L−1
n (inverse density gradient length sale), magneti�eld B to B(s = 0), density to N(s = s0), temperature T to T (s = s0), andveloities (v⊥, v||) to vthi(s) (i.e., to their radially loal thermal values).All input quantities to the ode EM-GLOGYSTO are in SI units, exept tem-perature of given speies whih is in eV . Hene, for example, vthi is omputedusing v2thi(in m/s) = Ti(in Joule)/mi(in Kg) = |e|Ti(in eV)/mi(in Kg), where |e| is27



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakabsolute value of eletroni harge. Thus, for example, for parameters throughoutthis hapter, we have ωd0 ≃ 3× 104 s−1.2.3 Eigenvalue �nding methodThe eigenvalue solver is devised by Brunner et al. [11℄ applying the method pro-posed by Davies [176℄ along with further optimization. For the sake of ompletenesswe eluidate the method again as follows.The method uses the advantage of the fat that D(ω) is analyti. Let us onsiderthat h(z) is an analyti funtion inside a losed positively oriented ontour C. Ifit is possible to determine the number N of the enlosed zeros ai, i = 1, ..., Nusing the priniple of argument, the method is then based on the evaluation of anequivalent number of integrals:
Sn =

1

2i

∫

C

zn
h(z)

h(z)
dz n = 1, ......, N,whih have the property

Sn =
N
∑

i=1

ani , n = 1, ..., N. (2.16)The set of equations (2.16) is then solved �nding the roots of the assoiated poly-nomial de�ned by
PN(z) =

N
∏

i=1

(z − ai) =
N
∑

i=1

Aiz
N−i.One an alulate the oe�ients An from Sn using a reursive relation as follows.

S1 + A1 = 0

S2 + A1S1 + 2A2 = 0

Sk + A1Sk−1 + A2Sk2 + ... + kAk = 0, k = 1, ..., N.The original numerial tehnique by Davies is developed for irular ontours. Thishas been generalized by Brunner et al. [11℄ to allow for more elongated urves in28



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakthe frequeny plane. This is ahieved by applying the above method along a unitirle to the funtion D(z) = D(ω(z)) with ω(z) being a onformal transformationof the unit dis at origin. By onsidering,
ω(z) = ω̃ + r z(Ez2 + 1)the unit irle in the z-plane is transformed to a more oval-shaped urve in the

ω-plane entered at ω̃ with average radius r. The elongation and orientation arede�ned by the omplex parameter E (|E| ≤ 0.1). In this method the determinantmust only be evaluated along a ontour. Furthermore, up to ten roots inside asingle urve an diretly be obtained without any further re�nement. To ahieveauray, the number of equidistant sampling points along the unit irle is in-reased until the maximum jump in the argument of D(ω(z)) is less than π/2.One an eigenfrequeny ωi is identi�ed, the orresponding eigenmode an be eval-uated by onsidering an inhomogeneous right hand side in (2.11) by putting ω = ωiand then solving the equation for φ. The initial right hand side is taken as a �rstguess of the eigenvetor struture whih is then repeated iteratively until onver-gene is attained.2.4 Results and DisussionWe hoose pro�les and parameters as presented in Table 2.1 to demonstrate thee�et of nonadiabati passing eletrons on global ITGs. For these parametersequilibrium pro�les are shown in Fig. 2.1. For the above-mentioned parameters,value of ρ∗ ≡ ρLi(s = s0)/a ≃ 0.0175.2.4.1 n-san: E�et of variation of ηe, multisale featuresand mixing length transportGrowth rates γ and real frequenies ωr of global ITG mode as funtions of kθρLiis shown in Fig. 2.2. E�et of adiabati and nonadiabati eletron responses forvarious values of ηe is presented in the �gure. Note that this kind of higher ηevalues are often seen in eletron internal transport barriers [63℄. The growth peaksaround n ≃ 9. This result shows that the eletron nonadiabatiity indeed a�ets29



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamak
Table 2.1: Pro�les and parametersParameters: Equilibrium Pro�les:

• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.4 m, LT0 = 0.2 m −0.06 s4

• ηi,e(s0) = 2.0, ǫn = Ln0/R = 0.2 suh that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.
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Figure 2.1: Equilibrium pro�les for global ITGs stability studies (parameters forTable 2.1: Normalized density, temperature, ηi,e (left), Safety fator q and magnetishear ŝ (right) pro�les as funtions of normalized radius s = r/a. Note that η peaksat s = ρ/a = s0 = 0.6
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Figure 2.4: The poloidal Fourier omponents for eletrostati mode shown inFig. 2.3. Note that at eah radial loation, there are several poloidal harmon-is oupled. A few loations where k‖m,n = 0 (i.e, nq = m) are indiated on thetop axis. Nonadiabati eletrons introdue sharp struture near these points.
33
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rFigure 2.5: Radial Fourier harmonis for eah poloidal mode for the eletrostatimode shown in Fig. 2.3. Here we have used 144 modes. For numerial onvergene,we have tested with larger number of radial harmonis and observe that the resultsare onverged.An alternate way of understanding this situation is as follows: Nonadiabatieletron response allows residual unneutralized E �eld, and introdues phase delaybetween density and potential �utuations and the onomitant growth. Multi-sale features seen in mode struture may remind one of nonlinear e�ets suhas zonal �ows, whih �break up� the modes resulting in slower rates of growthfor ITGs. However, here the exat opposite happens. The linear mode strutureis �broken up� due to linear nonadiabati response of eletrons introduing phasedelays and thus pronouned growth rates. In Fig. 2.7, we show a loseup of globaleigenmodes with adiabati and nonadiabati eletron responses.These �broken up� strutures, whih we all as multisale strutures, in turn, in-rease the e�etive or mode-averaged wavenumber as ompared to the adiabatieletron model. For example, eigenmode averaged krρLi, kθρLi and k⊥ρLi for adia-bati eletron model and nonadiabati eletron model with ηe = 2 and ηe = 8 areshown in Fig. 2.8 for various values of n. Note that due to the sharp radial stru-ture introdued by nonadiabati eletrons, the e�etive k⊥ρLi has been enhanedin both ases of ηe. It would then be interesting to onstrut the so-alled �mixinglength� transport for transport oe�ient, DML = γ/ < k2⊥ > from the lineargrowth rate γ and mode-averaged k⊥, i.e., < k⊥ >. In Fig. 2.9, we present themixing-length estimates in the usual gyro-Bohm units as a funtion of the toroidalmode number n. It is found that ompared to the adiabati eletron model, the34
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Figure 2.7: Closeup of two dimensional eigenmode struture of global ITG at n = 9,
ηi = 2 for (a) adiabati eletron response, (b) nonadiabati eletron response at
ηe(s0) = 2 and () same as (b) at ηe = 8(s0). 35
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Figure 2.8: Eigenmodeaveraged normalized modenumbers < kθρLi >(squares), < krρLi >(diamonds), < k⊥ρLi >(stars) as a funtion oftoroidal mode number n at
ηi(s0) = 2; (a) adiabatieletron response, (b) nona-diabati eletron responseat ηe(s0) = 2, and () sameas (b) at ηe(s0) = 8.
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Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakunstable. We have studied again three ases: Global ITGs (i) with adiabati ele-trons (ii) with nonadiabati eletrons at ηe = 2, and �nally (iii) with nonadiabatieletrons with ηe = 8. We �nd that the ritial ηi is redued ompared to the adia-bati eletron model. This result is perhaps not surprising. As we have seen in thepreeding setion, nonadiabati eletrons tend to further destabilize global ITGsas ompared to global ITGs with adiabati eletrons. Hene one may expet thata relatively weaker ion temperature gradient would destabilize global ITGs now asompared to the adiabati eletron model. This expetation is indeed shown tobe true in Fig. 2.10. Physis-wise this result implies that, for example, for similardensity pro�les, in tokamaks with steeper eletron temperature gradient than ions,global ITGs would beome unstable for smaller values of ηi than predited by adi-abati eletron models, thus down-shifting the ritial ηi. This linear phenomenonis in ontrast to up-shifting of ritial ηi when nonlinear zonal �ows are allowed toevolve simultaneously with ITGs [5, 114℄.2.5 ConlusionWe have presented a 2D global gyrokineti stability study as appliable to largeaspet ratio tokamaks. We have foused on the e�et of treating eletrons onthe same physis footing as ions, meaning fully nonadiabati eletrons. For thisstudy, we have inluded passing ions, trapped ions and passing eletrons. Themodel inludes arbitrary order FLR e�ets, kineti e�ets suh as Landau damping,transit/trapped partile resonanes, poloidal and radial oupling, and magnetiresonanes. With the above-mentioned model for eletrons, we have reported thestudy of global toroidal ITGs for low toroidal mode numbers in the range 3 < n <

15. There are several interesting new results:[1℄ For nearly the same values of ηi and ηe, the global mode struture is observedto hange dramatially. With inreasing ηe values, i.e., with more nonadia-batiity, growth rates also are seen to inrease. Thus, we onlude that, ingeneral, nonadiabati passing eletron dynamis destabilize global ITGs.[2℄ Important strutural hanges in the eigenmode struture appear near themode-rational surfaes where per-mode k‖m,n vanishes. On these surfaes,the loal phase veloity grows quikly. Beause the mode is global and38



Chapter 2: Role of nonadiabati/kineti passing eletrons in globaleletrostati ion temperature gradient driven modes in a tokamakspans aross several mode rational surfaes, generalizing eletron dynam-is, as done in the present study, introdues a multisale nature in globalITG eigenmodes. These e�ets in turn alter the e�etive k⊥. A ombinationof these e�ets appears to bring down the mixing length transport estimatesas ompared to global ITGs with adiabati eletron dynamis.[3℄ Finally, an important fall out is the down-shift of ritial ηi values as om-pared to the adiabati eletron model.
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Chapter 3Trapped Eletron Coupled IonTemperature Gradient Mode AndTrapped Eletron Mode In ThePresene Of Nonadiabati PassingEletrons
3.1 IntrodutionAnomalous transport in ollisionless hot tokamak plasmas is believed to be dueto the drift waves driven by the density and temperature gradients [4, 5℄ of thepartiles in a magnetially on�ned plasma. While the turbulent heat �ux of ionsis believed to be driven by the ion temperature gradient (ITG) mode, the eletronheat and partile �ux, on the other hand, is expeted largely to be driven by thetrapped eletron mode (TEM) in the low magneti �eld side of a tokamak on ionsales (of the order of ion Larmor radius) and by the eletron temperature gradient(ETG) mode on eletron sales (of the order of eletron Larmor radius). Enormouse�ort has been put to understand the underlying physis issues both theoretiallyand omputationally and then to math the predited transport �ux with thatobserved experimentally.The study of ion transport by the ITG mode has started with simple mod-40



Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing Eletronsels [30, 31℄, where eletrons are treated adiabati. The next step is then to inorpo-rate the nonadiabati eletrons. This has been ahieved in the the form of trappedeletrons inluded in the bakground model of nonadiabati ions and adiabatipassing eletrons. This has extended the study of this lass of miroinstabilities tothe trapped eletron oupled ITG mode (ITG-TEM) [11, 12, 13, 14, 15, 16, 17, 18℄mode and TEM [11, 25, 26, 28, 32℄. The new models with trapped eletrons givegrowth rate two to three times larger than that in the ase of simple adiabatieletron models. At the same time, the transport �ux is observed to rise substan-tially. A omparison of gyro�uid [33℄ and ontinuum gyrokineti [34℄ simulationof transport in realisti geometry with experiments has been arried out, and theeletron thermal di�usivity, ion thermal di�usivity, and perturbed density �utu-ation level are found to exeed the experimental value by fators of more thantwo. The reason of this deviation is speulated to be due to the non-loal behaviorowing to the variation of plasma gradients.Following this, sophistiated �ux ribbon odes have ome up with advanedfeatures [35, 36℄ to redue the disrepany between experiments and omputa-tional results [37℄. The kineti eletron simulation with trapped partiles usinga generalized split weight sheme to δf gyrokineti partile method is performedin Ref. [38℄. The result shows signi�ant inrease in the ion heat di�usivity inomparison to that in the ase of the adiabati eletron model in line with theinreased growth rate. However, the experimentally observed ion di�usivity [39℄ ismuh lower than that predited by the adiabati eletron models. Thus, a moreomplete gyrokineti model that treats eletrons and ions on the same physisfooting with global pro�le e�ets is very muh sought to address suh anomaly.The major problem with the inorporation of full dynamis of eletrons inlud-ing the passing fration nonadiabatially or kinetially in a time dependent modelis their fast parallel motion. The high mobility of these eletrons needs higherresolution in their response time sale, and is a formidable task in the presene offull ion dynamis, the issue of whih is disussed elaborately in Ref. [40℄. Withadvanes in omputational failities signi�ant progress has been ahieved to thisend to treat the eletrons fully kinetially [36, 157, 139℄. However, sometimes sim-ulations hoose redued ion to eletron mass ratio to downsize the omputationalost [32, 40, 42℄.In the present hapter, we take into aount the e�et of the trapped ele-41



Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing Eletronstrons [11℄ in the model. The spirit is to show the role of kineti eletrons, whihwe term as �nonadiabati� passing eletrons, on the trapped eletron oupled iontemperature gradient mode (ITG-TEM) and trapped eletron mode (TEM). It isobserved that inlusion of nonadiabati passing eletrons in�uenes strongly thegrowth rate of the ITG-TEM and TEM and brings �ne radial strutures of themode on the mode rational surfaes. A alulation of �ux is done based on themixing length estimation. It predits transport level below those obtained fromadiabati eletron models.To serve our purpose, we use the eletrostati version of the fully gyrokineti,fully eletromagneti global linear stability model EM-GLOGYSTO appliable tolarge aspet ratio tokamaks. We drop the parallel and perpendiular magneti �eldperturbation, i.e., B⊥ and B|| �utuations, Shafranov shift and equilibrium �ows.Thus, partile nonadiabatiity for passing ions and trapped ions, passing eletronsand trapped eletrons, FLR e�ets to all orders for all speies, kineti resonanes,viz., trapped and transit resonanes, poloidal and radial oupling of modes due topartile drifts aross magneti �ux surfaes are taken into aount.3.2 Model equationsIn real spae r, for speies j, the perturbed density an be expressed as due toadiabati and nonadiabati responses of the onstituting partiles. Thus, for ourase, the perturbation in density for speies j an be expressed as
ñj(r;ω) = −

(

qjN

Tj

)

[

ϕ̃+

∫

dk exp (ιk · r)

∫

dv
fMj

N

(

ω − ω∗
j

)

(ιPj) ϕ̃(k; )J2
0 (xLj)

]

, (3.1)where the �rst term on right hand side orresponds to the adiabati response,while the seond term represents the nonadiabati response of the partiles toa perturbation with all its kineti e�ets. Also, qj and Tj are the harge and
42



Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing Eletronstemperature for speies j, respetively, and N is the equilibrium density.
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j = ωnj
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+
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2
⊥

2 v2thj

]

,where ωnj = (Tj∇n lnNkθ)/(qjB) is the diamagneti drift frequeny; ηj = (d lnTj)/(d lnN),
v‖ and v⊥ represent parallel and perpendiular veloities, respetively, and vthjis the thermal veloity of speies j. J0(xLj) is the Bessel funtion of argument
xLj = k⊥ρLj, presenting the FLR e�et. We onsider a loal Maxwellian for eahspeies of mass mj as

fMj(ξ, ψ) =
N(ψ)

(

2πTj(ψ)
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(

− ξ

Tj(ψ)/mj

)

where ξ = v2/2. Also in Eq.(4.3) Pj represents the guiding enter propagator forpassing partiles of type j = i, e. For details of the propagator for trapped partilesthe reader is referred to Ref. [11℄.Introduing quasineutrality ondition
∑

j

ñj(r;ω) ≃ 0; , (3.2)one would �nally end up with a generalized eigenvalue problem where ω and ϕ̃respetively are the eigenvalue and eigenvetor, whih an then be onvenientlysolved in Fourier spae by Fourier deomposing the potential in Eq.(6.1) �rst andthen taking Fourier transform to eventually obtain a onvolution matrix in Fourierspae. With single harged passing ions (i), eletrons (e) along with trapped ions(tr-i) and eletrons (tr-e) we have
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′ = (κ′, m′).
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Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing EletronsThe trapped ion ontribution to the matrix is given by [11℄
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.Also,
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,For irulating partiles,
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< X < 1,where Bmax, min = B0(1 ± A−1) and B = B0(1 − A−1 cos θ) the magneti �eld at44



Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing Eletronsthe point of interest (ρ, θ). Furthermore, we use the following standard notations:
E = ε/v2th is normalized energy variable,
ε = v2/2 the kineti energy,
xL = k⊥

√
2ε/Ω,

Ω = qB/M the ylotron frequeny,
vth =

√

T/M the thermal veloity,
µ = v2⊥/2B the magneti moment,
λ = B0µ/ε the pith angle variable,
ωb =

√
A−1ε/Rqs the boune frequeny,

θb = 2
√
X the turning point angle of the trapped partiles,

ρb = 2qs
√
εX/Ω

√
A−1 the half banana width,and A−1 = ρ/R the inverse aspet ratio.The toroidal preessional drift < φ̇ >b for the large aspet ratio an be written as[177℄
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2

]}

, for 0 < X < 1,where K(X) and E(X), respetively, are omplete ellipti integrals of �rst andseond kind, and ŝ = d ln qs/d ln ρ stands for magneti shear. A singleX− averagedvalue < G >X for eah magneti surfae ρ is onsidered instead of onsidering thedeeply trapped limit X << 1 [11℄. Note that the adiabati term in Eq. (3.3) isweighted by the fration αb of the trapped partiles. For the eletrons, a bouneaveraged relation [178℄ is onsidered. Also the FLR and banana width e�ets anbe negleted. Thus the simpli�ed relation for trapped eletrons [11℄ an be writtenas
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Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing EletronsFigure 3.1: Growth rate
γ (dashed line) and realfrequeny ωr (solid line)for ηi(s0) = 2 (i) forpure ITG with adiabatieletron model (squares),(ii)ITG-TEM without nonadia-bati passing eletrons (dia-monds), and (iii) ITG-TEMwith nonadiabati passingeletrons at ηe(s0) = 2.0(�lled irles). 0.2 0.4 0.6 0.8
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dx, Im(z) > 0,is the plasma dispersion funtion [179℄. The other quantities are de�ned as follows.
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K(X).3.3 Results and DisussionThe e�ets of the nonadiabatiity of passing eletrons on ITG mode have beenexplored and disussed in the preeding hapter. In the present hapter, we shallinvestigate the e�ets of nonadiabatiity of the passing eletrons on ITG-TEM andTEM.For this purpose we onsider the same pro�les and parameters presented in Ta-ble 2.1 of the preeding hapter. The equilibrium pro�les orresponding to theseparameters are shown in Fig. 2.1. 46
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Figure 3.2: Two dimensional eigenmode struture of global ITG at n = 8 and
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Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing EletronsThe real frequeny ωr and growth rates γ normalized by ωd0 = vT i(s = s0)̺Li/a
2for ITG-TEM are plotted in Fig. 3.1. Here we have shown (i) ITG-adiabEl (ITGmode with usual adiabati eletron response, i.e., ñ/n = eφ̃/Te), (dashed linefor γ̃ and solid line for ω̃r marked with squares), (ii) ITG-TEM without nona-diabati passing eletrons (dashed line for γ̃ and solid line for ω̃r marked withdiamonds), and (iii) ITG-TEM with the ontribution from nonadiabati passingeletrons (dashed line for γ̃ and solid line for ω̃r marked with �lled irles). It islear that the ITG-adiabEl mode is destabilized by the trapped eletrons. The in-rease in the growth rate an be attributed to the following fats: (i) the preseneof nonideal e�ets suh as magneti drift resonanes [16℄, (ii) trapped eletronsannot respond adiabatially to the loal variation of the salar potential and on-sequently an not take part in harge anellation[17℄, and (iii) an inrease in realfrequeny redues the ion landau damping leading to an inrease in the growthrate [18℄. As an be seen, the growth rate peaks at around kθρLi = 0.5 orre-sponding to the toroidal mode number n = 8. The plot for ITG-TEM along witha nonadiabati ontribution from passing eletrons shows opposite e�et of redu-ing the growth rate as ompared to the ITG-TEM without nonadiabati passingeletrons. However, the growth rate is still at higher value than the ITG-adiabElmode. Beause of the nonadiabati response of the passing eletrons near the

k‖ = 0 surfaes to a perturbation, the eletrons simply an not respond and shortiruit the harge separation instantaneously beause of whih the mode gets �-nite amount of time to grow unstable. This sets the growth rate of ITG-TEM withnonadiabati passing eletrons higher than the ITG-adiabEl mode. The fat thatit has growth rate lower than that of the ITG-TEM without nonadiabati passingeletrons an be explained as follows: the inlusion of trapped eletrons inreasesthe real frequeny of the ITG-adiabEl mode suh that there is an upshift of phaseveloity ωr/k‖, making ion Landau resonane regime narrower and thus inreasingthe growth rate. However, the inlusion of nonadiabati passing eletrons, in ad-dition, inreases the real frequeny further thereby upshifting the phase veloitymore. This makes the mode Landau resonate dominantly with eletrons leadingto the eletron Landau damping of the growth rate. However, this damping is notsu�ient enough to ompensate for the inrease in the growth rate produed dueto weaker Landau resonane with ions. This an be attributed to the fat thatthe upshift of real frequeny, when passing nonadiabati eletrons are inluded,48
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Figure 3.3: Closeup of two dimensional eigenmode struture for (a) pure ITG withadiabati eletrons, (b) ITG-TEM without nonadiabati passing eletrons, and ()ITG-TEM with nonadiabati passing eletrons at ηe(s0) = 2.0.
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Figure 3.4: Poloidal Fourier omponents for eletrostati modes shown in Fig. 3.2(a) ITG with adiabati eletrons, (b) ITG-TEM without nonadiabati passingeletrons, and () ITG-TEM with nonadiabati passing eletrons at ηe(s0) = 2.0.Note that at eah radial loation, there are several poloidal harmonis oupled.A few loations where k‖m,n = 0 (i.e., nq = m) are indiated on the top axis.Nonadiabati eletrons introdue sharp struture near these points.is not drasti, and only a fration of the eletrons resonate with the upshiftedphase veloity of the mode. Hene stabilization due to Landau resonane of pass-ing nonadiabati eletrons is weaker than the destabilization due to o�-resonaneof ions. This sets the growth rate of ITG-TEM with nonadiabati passing ele-trons in between the ITG-adiabEl and ITG-TEM without nonadiabati passingeletrons. The eigenmode strutures for the three ases of (i) the ITG-adiabElmode, (ii) ITG-TEM without nonadiabati passing eletron, and (iii) ITG-TEMwith nonadiabati passing eletrons are presented in Fig. 3.2. The mode strutureis quite global so that it an pass through several mode rational surfaes. It reit-erates our argument of pronouned nonadiabatiity of passing eletrons near the
k‖ = 0 surfaes. One an see the hanges in the eigenmode struture as one looksfrom Fig. 3.2(a) to Fig. 3.2(). The mode aquires more and more global naturespreading toward good-urvature region as one goes from ase (i) to ase (ii) and�nally to ase (iii). A loseup look of the eigenmode strutures on the poloidalplane is demonstrated in Fig. 3.3. As an be seen, the inlusion of nonadiabatipassing eletrons introdues shorter sales in the eigenmode strutures. 50



Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing EletronsThese eletrons near the k‖ = 0 surfaes an not quenh the harge separation, bymoving along the �eld lines. So at those surfaes the harge separation leads tostronger E×B drift and pronouned instability. This auses the linear eigenmodestruture to break to shorter sale lengths. The inreased strength of the eletri�eld near these surfaes is apparent if one looks at Fig. 3.4, where amplitude of thepotential orresponding to eah poloidal harmonis is displayed along the minorradius for the three ases. The position of the mode rational surfaes (where m =

nq) is shown in the upper axis. Spikes in the potential are visible at those plaeswhere k‖ = 0, i.e., at the mode rational surfaes. One an easily see the oupling ofpoloidal harmonis at eah radial loation. The orresponding potential amplitudesin the Fourier spae is shown in Fig. 3.5 for (i) ITG-adiabEl mode, (ii) ITG-TEMwithout nonadiabati passing eletrons and ITG-TEM with nonadiabati passingeletrons. Figure. 3.6 displays the mode-averaged measure of k⊥ along with its twoomponents kθ and kr for the three ases. The introdution of trapped eletronsto the ITG-adiabEl mode and then nonadiabati passing eletrons to ITG-TEMenhanes the e�etive k⊥ by bringing multisale strutures. Beause of the inreasein the mode-averaged perpendiular wave-number k⊥, one requires more radialmode numbers for good resolution as well as onvergene. Sine the e�et of thenonadiabati passing eletrons is to introdue short multisale strutures into theglobal eigen mode, thereby inreasing e�etive k⊥, one would like to see how it ana�et the transport. Here we use the simple mixing length estimation for transportoe�ient, where one requires alulating the parameter DML = γ/ < k2⊥ >, with
γ and < k2⊥ > being the growth rate and mode averaged square of perpendiularwave number, respetively. This DML is here plotted in gyro-Bohm units inFig. 3.7 against kθρLi. While the transport oe�ient �rst inreases with kθρLi andpeaks at kθρLi = 0.4 and then starts falling for ITG-adiabEl, it, on the other hand,dereases monotonially with kθρLi for ITG-TEM without nonadiabati passingeletron response. To note that the parameter, DML = γ/ < k2⊥ >, in this ase, isdivided by 8 to show it in the same �gure. The inlusion of nonadiabati passingeletron physis into ITG-TEM redues the transport but keeps the dependene on
kθρLi same. Sine the radial sale length of perturbation is shortened as is apparentfrom Fig. 3.3, the step size over whih partiles and energy an be thrown away isredued. This leads to the derease in the transport oe�ient for the ITG-TEMwith nonadiabati passing eletron response below the ITG-adiabEl level. 51
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Figure 3.5: Upper panel: Radial Fourier harmonis for eah poloidal mode forthe eletrostati mode shown in Fig. 3.2 for (a) pure ITG with adiabati eletronresponse and (b) ITG-TEM without nonadiabati passing eletrons. Lower panel:Radial Fourier harmonis for eah poloidal mode for the eletrostati mode shownin Fig. 3.2() for ITG-TEM with nonadiabati passing eletrons at ηe(s0) = 2.0.
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Figure 3.8: Growth rate γ (dashed line) and real frequeny ωr (solid line) versus
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2 for the TEM for two ases, namely, (i) TEM withoutnonadiabati passing eletrons and (ii) TEM with nonadiabati passing eletronsin Fig. 3.9. The dashed line with squares represents the growth rate for ase (i),while the solid line with squares represents orresponding real frequeny. Thedashed line with open irles is for growth rate for ase (ii), with solid lines withopen irles representing the orresponding real frequeny. The san reveals thatnonadiabati passing eletrons destabilize the TEM further. The TEM whether55
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Figure 3.11: Closeup of two dimensional eigenmode struture of (a) TEM withoutnonadiabati eletron response and (b) TEM with nonadiabati passing eletronresponse for n = 7 and ηi(s0) = ηe(s0) = 2.0.
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Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing Eletronsdiabati passing eletrons have strong e�et near these surfaes leading to a strongrise in the radial perturbed eletri �eld. This breaks up the mode struture atthese surfaes. Similar to the ITG-TEM ase, the mode rotates toward the good-urvature region. The loal rise in the perturbed radial eletri �eld near moderational surfaes beomes lear when one looks at the potential amplitude arossminor radius, orresponding to di�erent poloidal harmonis in Fig. 3.12, withoutand with nonadiabati passing eletrons. Strong poloidal oupling is well demon-strated in both ases where at eah radial position the mode has ontribution fromseveral neighboring omponents. Figure 3.13 delineates the potential in the Fourierspae for the two ases. Prodution of short sales in the eigenmode struture risesthe e�etive averaged k⊥ from the adiabati passing eletron ase to nonadiabatipassing eletron ase, as an be seen in Fig. 3.14. Estimation of transport viaeletron hannel for whih TEM is believed to be an obvious andidate is shownin Fig. 3.15 using simple mixing length estimation, where DML = γ/ < k2⊥ >is plotted in gyro-Bohm units versus kθρLi. The transport oe�ient dereasesmonotonially with inreasing kθρLi for both ases. However, DML is reduedwhen one introdues a nonadiabati fration of passing eletrons to the adiabat-ially responding passing eletron TEM. The redution in the transport similarto the ITG-TEM ase an be understood as due to dereased transport step sizeaused by the nonadiabatiity of passing eletrons.3.4 ConlusionIn the present hapter, we have investigated the e�ets of nonadiabatiity of passingeletrons on ITG-TEM and TEM using the global gyrokineti spetral ode EM-GLOGYSTO. The model inludes both passing and trapped partiles, pro�le vari-ations, true ion to eletron mass ratio, arbitrary order FLR e�ets, transit/trappedpartile resonanes, and poloidal and radial oupling. A omprehensive desrip-tion of ITG, ITG-TEM, and TEM inluding all relevant speies is presented. Themajor �ndings are as follows.[1℄ For the low n or global modes, nonadiabati passing eletrons stabilize theITG-TEM. However, it has deleterious e�et on TEM leading to an inrease59
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Chapter 3: Trapped Eletron Coupled Ion Temperature Gradient Mode AndTrapped Eletron Mode In The Presene Of Nonadiabati Passing Eletronsin the growth rate.[2℄ For both ITG-TEM and TEM, spatial mode strutures exhibit multisalefeature. Beause of the drasti rise in the phase veloity near the k‖ = 0surfaes, passing eletrons fail to respond adiabatially near these surfaes,leaving open harge separation and pronouned E ×B drift. This breaks upthe mode struture near the k‖ = 0 surfaes.[3℄ The existene of multisale features in the spatial mode struture makes e�e-tive k⊥ higher, whih eventually redues the mixing length based estimationof transport of the orresponding modes below the level predited by theirrespetive adiabati eletron models.
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Chapter 4Modes inherent tononadiabati/kineti passingeletrons
4.1 IntrodutionHaving eluidated the e�et of kineti/nonadiabati eletrons on temperature gra-dient driven modes of thermal ions and trapped eletrons we now disuss the modesinherent to the nonadiabati/kineti passing eletrons. A orret kineti/nonadiabatipassing eletron model should be able to produe modes that are inherent tothe nonadiabatiity of passing eletrons. Therefore, this hapter is dediated tothe study of temperature and density gradient driven modes of kineti eletrons,namely, the eletron temperature gradient (ETG) mode and universal drift mode.We will study the linear ETG mode in the presene of ompletely kineti ionsand Debye Shielding e�et. A omparison of the pure ion temperature gradient(ITG) mode with the pure ETG mode in the presene of fully gyro-kineti seondspeies (e.g., eletrons for ITG and ions for ETG) will be arried out. One will seethe breaking of isomorphy of ITG and ETG modes even in the eletrostati limitwithout inorporating the trapped eletrons. A omparison of the eletron �ux byETG mode in the presene of nonadiabati ions with ηi above the ITG thresholdand ion �ux by ITG mode in the presene of nonadiabati eletrons with ηe abovethe ETG threshold reveals that these modes are not independent of eah other. In62



Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsfat, one mode tends to redue the transport by the other and vie versa.Regarding the other mode driven by the density gradient of nonadiabati pass-ing eletron, i.e., the universal drift mode: although the studies have evolved froma simple slab model to the toroidal geometry, most of them, however, are based onthe �uid or hybrid kineti-�uid models. A few gyrokineti models either exploitedthe ballooning formulation or a simple geometry. In this hapter we will present aglobal, fully gyrokineti linear study of the toroidiity driven universal drift modeonsidering both ions and eletrons to be nonadiabati. The formulation retainstoroidal oupling e�ets due to both eletron and ion ∇B and urvature drift withno assumption regarding the magneti drift frequeny of the ions and eletronsompared to the mode frequeny, thereby allowing full magneti drift resonaneby both speies. The formulation also keeps the Landau damping term of botheletrons and ions. The �nite Larmor radius e�ets are kept up to all orders.More importantly, the present study retains the transit frequeny resonane termin the nonadiabati part of the density perturbation for both speies as shown inEqs. (2.8) and (2.9). It is to be noted that, we use a large aspet ratio, irulargeometry for the tokamak, with no Shafranov shift. Though the universal toroidalmode is inherently due to the passing nonadiabati eletrons, e�ets of trappedeletrons and trapped ions are also retained in the formulation. Furthermore, noollisional e�et is onsidered in the formulation.With this model, various parametri studies of the toroidal branh of universalmode have been arried out. We observe �nite mode frequenies and growth ratesbeyond the ritial η = Ln/LT for Ion Temperature Gradient (ITG) and EletronTemperature Gradient (ETG) modes, where Ln and LT are, respetively, the den-sity and temperature sale lengths. A omparative study of the ontribution ofmagneti drift resonane as well as Landau resonane from both speies towardthe stability properties of the mode is performed by a systemati parametri san.An eletromagneti study of the mode is also arried out that eluidates the e�etof �nite β on the universal drift mode driven by toroidiity. The e�et of trappedeletrons on the universal mode is studied and growth rates and real frequeniesare ompared with the ion temperature gradient mode and trapped eletron mode.
63



Chapter 4: Modes inherent to nonadiabati/kineti passing eletrons4.2 Eletron Temperature Gradient Driven ModeHaving unravelled the e�et of the nonadiabati passing eletrons on the ITG mode[132℄ and trapped eletron oupled ITG mode (ITG-TEM) [133℄ in the previoushapters, we now proeed to study the mode inherent to the nonadiabati passingeletrons, that is, the ETG mode.With the formulation disussed in Chapters 2 and 3, the Poisson equation an bewritten as,
∇2ϕ̃ =

e

ǫo

∑

j=e,i

ñj(r;ω); (4.1)where, j stands for harge speies, viz., eletrons (e) and ions (i). For single hargedpassing ions and eletrons we have
∑

k′

∑

j=i

M̂j
k,k′ ϕ̃k′ +

∑

k′

∑

j=e

M̂j
k,k′ ϕ̃k′ = 04.2.1 Pro�les and ParametersFor the purpose of our study, we onsider following pro�les and parameters.Table 4.1: Pro�les and parametersParameters: Equilibrium Pro�les:

• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.4 m, LT0 = 0.2 m −0.06 s4

• ηi,e(s0) = 2.0, ǫn = Ln0/R = 0.2 suh that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.The hosen parameters lead to the value of ρ∗ ≡ ρLi(s = s0)/a ≃ 0.0175. Note64



Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsthat ρe = 2.065× 10−4m and ρi = 8.848× 10−3m. Any hange in the parameterswill be stated wherever neessary.4.2.2 Pure ETG ModeAt the outset, let us ompare the ETG mode results with respet to some knownworks. To that end we have hosen the loal, linear, eletrostati, and kinetiresults of Horton et al. [21℄ for whih kθρe ≃ 0.5, ǫn = Ln/R = 0.2 and τ = 1.0.From Figs.3 and 4 of Horton et al. [21℄ we have extrated manually some pointsand replotted with the results of our global, linear, eletrostati, and gyrokinetimodel for nonadiabati eletrons in Fig. 4.1 for the same parameters. For theease of omparison for the readers, we have also opied and pasted Figs. 3 and4 of Horton et al. in Fig. 4.2. It is to be noted that rn and vei in the latterase orrespond to Ln and vthe in our ase. Note that the di�erenes in the realfrequenies as well as growth rates in both ases an be asribed to the di�erenesin the two models, namely, loal versus global and kineti versus gyrokineti.E�et of Debye ShieldingNow a days, fast wave eletron heating (FWEH) experiments [69℄, to study spei�-ally eletron hannel transport, use preferentially dominant eletron heating suhthat Te an take very high values. Furthermore, experiments dediated to the ETGmode study require separation between the eletron and ion hannel of transport.This is ahieved by reduing the energy exhange between the two speies. Theonduive environment is ahieved with plasma of low density that ensures lessamount of ollisionality. Thus, the Debye length, whih is proportional to√(Te/n)an be expeted to violate the ondition kλde << 1. In suh a situation, one re-quires to take in to aount the spae harge e�et, and the Debye shielding e�etinevitably omes into the piture.The Debye shielding e�et was taken into aount in a number of previousworks in the slab and sheared slab [20, 134, 135℄ geometry and toroidal geometry[22, 136℄. In the present ase, we produe a toroidal mode number n and kθρesan with and without the Debye shielding e�et for the ETG mode that ontainsno trapped partiles and no e�et of nonadiabati ions. Figure. 4.3 presents thereal frequeny and growth rate versus kθρe with and without the Debye shielding.65
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Figure 4.2: Figures 3 and 4 from Horton et al. [21℄The orresponding toroidal mode numbers n are shown in the upper axis for bothfrequeny and growth rate of the mode. From the �gure it is apparent that themode frequeny for the ase without Debye shielding is being slightly higher thanthat in the ase with the Debye shielding. Also, one an infer that the Debyeshielding has strong stabilizing e�et on the mode. One important point to benoted is that the Debye shielding e�et removes the high k tail of the ETG mode.The observed e�et of the Debye shielding on the real frequeny of the mode isweak as ompared to the e�et of the same on the growth rate. The other purpose,these �gures serve, is that they exhibit the dispersion diagram for the ETG modewith and without Debye shielding showing the dependene of the frequeny andgrowth rate on kθρe. For the ase with Debye shielding the growth rate peaks at
kθρe = 0.34 and for the ase without Debye shielding the same peaks at kθρe =

0.5, and both derease by substantial fration as one goes both side from therespetive peaks. The toroidal mode numbers orresponding to both ases are
n = 250 and n = 360, respetively. Thus, the Debye shielding not only redues thegrowth rate of the mode but also shifts the maximum of the growth rate towardlower k, and wipes out the higher k tail. It is interesting to see whether Debyeshielding has any e�et on the threshold of the onset of the ETG mode; it maybe important to take into aount the Debye shielding e�et while alulatingpreisely the threshold. Figure 4.4 displays the growth rate of the ETG modeagainst ηe for the two ases with and without the Debye shielding e�et. The67
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsbatially, i.e., taking into aount all the kineti e�ets of ions from FLR to variousresonanes and keeping ηi above the threshold of the ITG drive. Figure 4.5 de-pits the mode frequeny and growth rate of the ETG mode against kθρi (Notethat kθ is normalized with ρi here.) with (i) adiabati ions and (ii) nonadiabatiions for inreasing ηi for the ase without Debye shielding. The orrespondingtoroidal mode numbers are displayed on the upper axis. It is observed that thenonadiabati ions have very weak e�et on the growth rates of the mode. In theseond ase, we have arried out same kind of san but with Debye Shielding e�etinluded. Figure 4.6 shows the real frequeny and growth rate for the ase of theETG mode when Debye shielding is taken in to aount. A omparison of thereal frequeny and growth rate with the ase without Debye shielding reveals thatthe ion dynamis have visible albeit weak e�et on the mode frequeny as well asgrowth rate of the mode. The nonadiabati ions tend to lower the growth rate ofthe ETG mode as one inreases the ITG drive by inreasing ηi of ions in the longwavelength side of the ETG mode orresponding to low k tail of the spetrum.For the purpose of omparison, we present a kθρi san for the ITG mode (fromChater 2) inluding the adiabati and nonadiabati eletrons, with ηe inreasingfor the latter ase. Figure 4.7 depits the real frequeny as well as orrespondinggrowth rates for the ITG mode. While the ITG mode is in�uened strongly bythe nonadiabati eletrons with substantial hange in the growth rate, the ETGmode, on the other hand, is weakly a�eted by the nonadiabati ions. Thus, onean draw a onlusion that even within the eletrostati limit, without taking intoaount the trapped speies, the isomorphism of the ITG and ETG mode breaks,when the other speies (eletrons for the ITG mode and ions for the ETG mode)is onsidered fully kinetially. The orresponding mode strutures of the ITG andETG mode with and without the Debye shielding e�et are ompared in the toppanel of Fig. 4.8 for the maximum growth rates of the respetive ases. The �guredelineates the vast di�erene in the sale-lengths of the two modes. While theITG mode prevails over a onsiderable fration, ETG mode, on the other hand, isrestrited to a small annular ring in the poloidal ross setion of the tokamak. Themiddle panel shows a loseup view of the ITG and ETG mode strutures. Thepoloidal Fourier omponents for the three ases are displayed in the bottom panel.
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletrons4.2.3 Mixing length estimate of �uxIt would be interesting to see, how one mode's sale-dynamis have e�et on thetransport of the other or in other words how the ITG sale an a�et the ETG saleand vie versa. For that purpose, simple mixing length estimate of transport hasbeen evaluated. Before going to the results, we would like to add a line of aveatregarding the mixing-length based estimation of transport. The earlier resultsshowed that the alulation of transport using mixing-length theory gives very lowlevel of transport of eletrons. Nonlinearly these modes generate streamers, bymeans of whih, the ETG mode an give rise to experimentally relevant level oftransport. Nonetheless, within our sope, we present a qualitative piture of thetransport with the mixing-length alulation.Pure ETG: a omparison with ITGFigure 4.11 presents the heat di�usivity in the eletron gyro-Bohm unit for thepure ETG mode without (top panel) and with (middle panel) the Debye shieldinge�et for the multiple ases of inreasing ηi of nonadiabati ions and with adiabatiions. It is apparent from the �gure that even though the nonadiabati ions havevery weak e�et on the growth rate of the ETG mode, they an hange the heatdi�usivity of the eletrons substantially. The di�usivity peaks toward the low kside of the spetrum but not at k where the growth rate peaks, and dereases asthe ηi inreases from 2 to 8, in steps of 2 whih are all above the ITG threshold.One an hene onlude that the ion sale drive in the low k regime redues thehigh k ETG drive, even if it has weaker e�et on the mode frequeny and growthrate of the ETG mode. The bottom panel displays the nonadiabati eletron e�eton the ITG mode, where ηe of the eletrons inreases gradually from 2 to 8. Thisleads to the redued ion di�usivity for the ITG ase in the presene of an eletrondrive with ηe being above the ETG threshold. Thus, the omparison of the threeases depited in Fig. 4.11, leads to the interesting onlusion that the ETG driveon the high k side tends to redue the ion transport on the low k side, whilethe ITG drive on the low k side tends to redue the eletron transport on thehigh k side of the spetrum. One other onlusion is that in spite of exhibitingdisparate sales, one mode an have e�et on the other mode, putting a aveatto the tait assumption that one mode is independent of the other beause of the76
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletrons4.3 Toroidal Universal Drift Instability: A GlobalGyrokineti StudyThe on�nement of eletrons is marred not only by the temperature gradient driveninstabilities suh as ETG modes desribed in the preeding setion but also by thedensity gradient driven instabilities. The density gradient also an equally be thesoure of free energy for instabilities in the ase of no temperature gradient or veryweak temperature gradient. These instabilities in tokamaks are alled the toroidaluniversal drift instabilities. A brief review of earlier works on this topi an befound in the setion 1.2 of Chapter 1.In the present setion, various parametri studies of the toroidal branh ofthe universal drift mode are arried out. We observe �nite mode frequenies andgrowth rates beyond the ritial η = Ln/LT for the Ion Temperature Gradient(ITG) and Eletron Temperature Gradient (ETG) modes, where Ln and LT arerespetively, the density and temperature sale lengths. A omparative study ofthe ontribution of the magneti drift resonane as well as of the Landau resonanefrom both speies towards the stability properties of the mode is performed by asystemati parametri san. An eletromagneti study of the mode is also arriedout that eluidates the e�et of �nite β on the universal drift mode driven bytoroidiity. The e�et of trapped eletrons on the universal mode is studied andgrowth rates and real frequenies are ompared with the ion temperature gradientand trapped eletron modes.4.3.1 Model equationsThe eletrostati formulation has been disussed in Chapters 2 and 3. Here wewill elaborate the eletromagneti formulation only. For the eletromagneti asethe perturbed density is modi�ed as [48℄
ñj(r;ω) = −

(

qjN

Tj

)

[

ϕ̃+

∫

dk exp (ιk · r) ×

∫

dv
fMj

N

(

ω − ω∗
j

)

(ιPj) [ϕ̃(k;ω)− v‖Ã‖(k;ω)]J
2
0 (xLj)

]

, (4.2)79



Chapter 4: Modes inherent to nonadiabati/kineti passing eletronswhere Ã‖ is the omponent parallel to the equilibrium magneti �eld of the vetorpotential assoiated with the perturbation. The other terms are de�ned in Chapter2 and 3. In addition to ñj, one has to onsider the �utuation of the parallel urrentdensity given by
j̃‖j(r;ω) = −

(

q2j
Tj

)

[

∫

dk exp (ιk · r) ×

∫

v‖dvfMj

(

ω − ω∗
j

)

(ιPj) [ϕ̃(k; )− v‖Ã‖(k; )]J
2
0 (xLj)

] (4.3)Along with the quasineutrality ondition Eq. (2.10), Ampere's law
1

µ0
∇2

⊥Ã‖ = −
∑

j

j̃‖jwill �nally lose the set of equations, to give a linear system of equations of theform
∑

k′

∑

j=i,e

M̂j
k,k′

(

ϕ̃k′

Ã|| k′

)

= 0Simple diagnostis for various physial quantities are omputed as averagesover the eigenmode. For example mode-averaged k2θ for the eletrostati ase isomputed as
< k2θ >=

∫

dρ
∑

m

|m
ρ
ϕ(ρ,m)|2

∫

dρ
∑

m

|ϕ(ρ,m)|2
. (4.4)The above shown averaging proedure is suitably extended to the eletromagnetiases by inluding Ã|| mode struture averaging as follows:
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ρ
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∫
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∑
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∫
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∑
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∫

dρ
∑

m

|A||(ρ,m)
|2
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletrons4.3.2 Results and DisussionIn the present setion, we will delineate the results from the global linear gyroki-neti numerial analysis. It is to be noted that the mode frequenies and growthrates are expressed in units of vthi/a throughout the paper.
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Figure 4.13: Equilibrium pro�les to study the global toroidal universal drift insta-bility mode (for parameters in Table I): (a) normalized density (dots), temperature(irle), ηi,e (triangle), (b) Safety fator q (irle) and magneti shear ŝ (dots) pro-�les as funtions of normalized radius s = r/a. Note that q(s0) = 2.0, ŝ(s0) = 0.40,
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletrons
Table 4.2: Pro�les and parametersParameters: Equilibrium Pro�les:

• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.691 + 0.603 s2

• Ln0 = 0.2 m +0.705 s4

• ηi,e(s0) = 0.0, ǫn = Ln0/R = 0.1 suh that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 3. shear s = s0, ŝ = 0.4.
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Figure 4.14: Real frequeny and growth rate for the eletrostati ase orrespond-ing to the parameters in the Table I and pro�les shown in Fig. 4.13.
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsnumbers. The real frequeny is in the eletron diamagneti drift diretion. Thereal frequeny at very low kθρLi inreases �rst and then peaks at the value of
kθρLi = 0.4 orresponding to n ≃ 6. After this point, it starts falling with kθρLiin a monotoni way. The growth rate, on the other hand, initially inreases untilthe point kθρLi ≃ 0.58 orresponding to the toroidal mode number n ≃ 10 and ispratially onstant at larger value of kθρLi. It is apparent from this observationthat the toroidal branh of the universal drift instability spans from the low wavenumber or longer wavelength regime, where ion dynamis are dominant, to higherwave number or shorter wavelength regime, where usually eletron dynamis playthe dominant role. This is in ontrast to the observation in the slab ase [99℄,whih is marginally stable at high wave number regime and damped in the lowwave number regime.Eletrostati mode strutureIn the present setion, we disuss the global eletrostati mode struture of thetoroidal branh of the universal drift mode. Figure 4.15 displays the potentialontours on a poloidal ross setion of the tokamak in the upper left panel for
kθρLi = 0.58 orresponding to the toroidal mode number n = 10. The variouspoloidal omponents of the potential with oupling brought about by the toroidi-ity, both in Fourier and real spae, are presented in the upper right panel for
kθρLi = 0.58 orresponding to the toroidal mode number n = 10. A few importantpoints to be noted in this ontext are: (1) The mode struture is quite globalpassing through many mode rational surfaes. (2) It exhibits a weak ballooningharater, with a �nite amplitude observed at the favourable urvature side (high�eld side). In the upper right panel, oupling of poloidal omponents has beenshown aross the minor radius, with a maximum amplitude at s=ρ/a=0.6, wherethe density gradient peaks. The points in the upper axis, labelled by the or-responding poloidal mode numbers m, display the position of the mode rationalsurfaes where k‖(m,n) = 0. Corresponding to eah of these points, one an seea dip in the potential orresponding to eah poloidal mode number. These dipsorrespond to k‖(m,n) = 0 surfaes where |ω/k‖| >> vthe, vthe being the eletronthermal veloity. Thus, the strong e�et of the o�-resonant eletrons is learlyvisible from this �gure. The onvergene in the Fourier spae for the onsidered83
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsmode is presented in the upper part of the upper right panel of Fig. 4.15. Lowerpanel presents a loseup view of the mode onsidered here.
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsmode. In this setion, we perform a kθρLi san for the growth rate and modefrequeny in the presene of transverse magneti perturbations with β = 0.001 inthe zero temperature gradient limit. The orresponding results are plotted inFig. 4.22, with the upper axis representing the respetive toroidal mode numbers
n. For the purpose of omparison, we also plot the purely eletrostati values forthe real frequeny and growth rate of the mode (same results as in Fig. 4.14).At very low kθρLi, the real frequeny inreases �rst and then peaks at a valueof kθρLi ≃ 0.4 orresponding to n = 6. Beyond this point, the frequeny startsfalling monotonially with kθρLi (or n). The growth rate however inreases until
kθρLi ≃ 0.58 (or n = 10) and then beomes pratially onstant. It is apparentfrom the �gure for the real frequeny that the e�et of �nite β is more pronounedat lower kθρLi, and the real frequeny is redued in this region. Going towardsthe higher kθρLi the e�et of β seems to be weaker on the mode frequeny. Thegrowth rate, on the other hand, is substantially redued by �nite plasma β. A βof value 0.001 brings almost 20% redution in the growth rate as ompared to theeletrostati ase. A omplete β san is presented in the following setion learlyillustrating the stabilizing e�et of β.A global mode struture for the eletromagneti ase for n = 10 and β = 0.001orresponding to kθρLi ≃ 0.58 is shown in Figs. 4.23 and 4.24. The eletrostatipart φ̃ (Fig. 4.23) is very similar to the purely eletrostati mode in Fig. 4.15.The Ã‖ omponent (Fig. 4.24), on the ontrary, apparently shows a weak anti-ballooning harater, being weaker at the outboard side than the inboard side.The onvergene in the radial and poloidal Fourier spae for the mode has beendepited in the upper part of the right panel in Fig. 4.24. The lower panel presentsthe radial dependene of various poloidal mode numbers m. It retains the e�etof nonresonant eletrons at k‖(m,n) = 0 surfaes. The antiballooning harater ofthe Ã‖ mode struture and the stabilization of the mode in the presene of �nite
β are all related to the inherent eletrostati nature of the toroidal universal driftinstability.
β SanA omplete β san for the mode with kθρLi = 0.58 (n = 10) is displayed inFig. 4.25. Both real frequeny and growth rate are redued with inreasing β.The omplete stabilization ours at β ≃ 1.1%. This is in ontrast to earlierinvestigations in slab geometry, where the value of ritial β was muh higher92
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsinreases almost linearly with inreasing plasma β.E�et of trapped eletron on the eletrostati mode:As learly demonstrated by the above results, the global toroidal universal driftinstability is triggered by purely passing eletron dynamis. However, as a toroidaldevie is bound to have some fration of trapped eletrons, it would be interestingto obtain the e�et of trapped eletrons on the purely universal drift mode stud-ied in the previous setions. To this end, an extensive η san is performed withand without trapped eletrons for the eletrostati ase. To identify the mostunstable mode, the other drift instabilities suh as ITG with trapped eletrons aswell as the TEM branhes are omputed together with the universal mode. Theombined data is plotted in Fig. 4.27. There are several interesting points to benoted: (1) The trapped eletron oupled universal drift mode and pure univer-sal drift mode have distint real frequenies and growth rates. (2) In ontrastto the pure universal drift mode studied in previous setions, whose growth ratewas shown to derease with inreasing η, the trapped eletron oupled universaldrift mode appears to be more unstable with inreasing η. This study indiatesthat in the presene of trapped eletrons, the nature of the universal drift mode ispredominantly �trapped eletron like�. (3) To make a better quantitative ompar-ison, growth rates and real frequenies of the pure trapped eletron mode (TEM),the ion temperature gradient mode with trapped eletrons (ITG-TE) for the sameequilibrium parameters are also plotted. For the parameters studied here, it ap-pears that the trapped eletron oupled universal drift modes in the presene of
η ≥ 1 have growth rates omparable to ITG-TE or TEMs and ould ontributesubstantially to the overall transport.4.4 ConlusionsIn the present work, we have presented some features of the eletron temperaturegradient driven (ETG) mode using a linear gyrokineti model in toroidal geometrythat treats both speies, namely, ions and eletrons fully gyro-kinetially, takinginto aount all the kineti e�ets. The e�et of Debye Shielding, breaking ofisomorphism of ITG and ETG modes even in the eletrostati limit when the96
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Figure 4.27: The real frequeny and growth rate vs temperature gradient for di�er-ent unstable modes in the presene of trapped eletrons in the same regime de�nedby the parameters and pro�les of Table I and Fig. 4.13 for the mode n = 10 orre-sponding to kθρLi = 0.58. The �at temperature pro�le in Table I, has been replaedby one with δsT = 0.2 instead of 0 for the previous ases. The three dashed urves(irle, square, diamond) are for universal mode without trapped eletrons (sameas Fig. 4.21), three solid lines (irle, square, diamond) are for universal mode inthe presene of trapped eletrons (UNV-TE), the dashed urve with triangles isfor ion temperature gradient mode with trapped eletrons (ITG-TE) and the solidurve with stars is for pure trapped eletron mode (TEM).
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Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsother speies is onsidered fully gyrokinetially are revealed one by one. In thefollowing we summarize the results obtained.
• Debye Shielding is stabilizing to the ETG mode, enhanes the threshold in
ηe, and wipes out the high k tail of the ETG spetrum.

• Nonadiabati ions have very weak e�et on the growth rate and mode fre-queny of the pure ETG modes. In ontrast, nonadiabati eletrons a�etthe mode frequeny and growth rate of the ITG mode strongly. It breaks thesupposed isomorphy between the two modes even in the eletrostati limit.
• We have presented an estimation of the transport of ions and eletrons on thebasis of mixing length theory. Results reveal that, drive for the ion hanneltends to redue the transport via the eletron hannel and vie versa. Thismeans that a low k mode an have strong e�et on a high k mode and vieversa. The assumption of adiabati partiles fails to interpret this result.Also, we have performed a global linear gyrokineti study of the toroidal uni-versal drift mode driven by the density gradient in the presene of �nite toroidiityon the intermediate sale k⊥ρLi. The model onsiders both passing eletrons andions to be fully nonadiabati, inorporating toroidal oupling e�ets, magneti driftresonanes, Landau resonane e�ets, transit harmoni resonanes, �nite Larmorradius to all orders, and orbit width e�et for both speies. The e�et of �nite β isalso studied in the frame of an eletromagneti model that retains the transversemagneti perturbation. However, e�ets of ollisions and Shafranov shift have beendropped. Furthermore, the model onsiders large aspet ratio irular ross setionfor the tokamak plasma. The major results are as follows
• The growth rate inreases at lower kθρLi until kθρLi ≃ 0.58 and starts satu-rating thereafter. The real frequeny too inreases at lower kθρLi and thendeays monotonially with kθρLi at larger kθρLi.
• The eletrostati mode struture is global and exhibiting struture at moderational surfaes.
• Studying the e�et of Landau resonane for both eletrons and ions showsweak dependene of the frequeny and growth rate on ion Landau damp-98



Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsing and a strong dependene on eletron Landau damping preserving �nitegrowth rate in both ases.
• Both eletron and ion magneti drift resonane terms are onsidered in theformulation. The ion magneti drift resonane does play a signi�ant rolein making the toroidal branh of the universal drift mode unstable, whileeletron magneti drift resonane has a weak e�et on the stability propertyof the mode.
• As reported in earlier works for high n modes (kθρLi >> 1), the toroidiitydriven universal drift mode is found to be stable beyond a shear value ŝ ≃ 1,even for low n modes.
• The nonmonotoni dependeny of the growth rate on ǫn = Ln/R in a toroidi-ity san (varying R and keeping Ln, a, Rq and nq onstant) is demonstratedhere for the �rst time.
• The mode is unstable in a fairly large domain of τ = Te/Ti ranging from 1to more than 10, thus learly showing that in regions of τ where the eletrontemperature gradient (ETG) mode is believed to be stable, eletron transportan be due to this toroidal universal drift mode.
• The η san for both ions and eletrons shows that the universal drift modedriven by toroidiity an oexist with the temperature gradient driven modes.Therefore, eletron transport at low kθρLi may have ontributions from themode under investigation. Similarly at higher kθρLi, where ETG is thoughtto be the main driving mehanism for eletron transport, this mode may alsoontribute.
• The eletromagneti e�et is found to be strongly stabilizing in the presentase. The Ã‖ omponent of the mode struture exhibits anti-ballooning har-ater. The mode gets stabilized at β ≃ 1.1%. The relative magneti �utua-tion amplitude < Ã2

|| > / < φ̃2 > varies almost linearly with the magnitudeof β.
• Trapped eletrons enhane the growth rate of the universal mode. How-ever, the universal mode hanges its harater regarding its dependene on99



Chapter 4: Modes inherent to nonadiabati/kineti passing eletronsthe density and temperature gradients. While in the absene of trappedeletrons the universal mode deays with the temperature gradient, trappedeletrons, on the ontrary, enhanes the growth rate of the mode. The univer-sal mode with trapped eletrons exhibits, qualitatively, the same harateras the trapped eletron mode. Also, it has a omparable growth rate to thetrapped eletron oupled ion temperature gradient mode in the parameterrange onsidered in this study.
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Chapter 5Short wavelength ion temperaturegradient mode and oupling withtrapped eletrons
5.1 IntrodutionThe ion temperature gradient driven mode has hitherto been studied only in theregion kyρi ≤ 1.0. However, under steep density pro�les, the ions an behave nona-diabatially at sales kyρi > 1.0 giving rise to what is alled the short wavelengthion temperature gradient (SWITG) driven modes. In all the earlier studies onSWITG modes (see setion 1.2 of Chapter 1), the trapped eletrons were ignored.However, in a toroidal devie, the trapped eletrons are inevitable, and as demon-strated in the present work, an play a paramount role in de�ning the stabilityproperties of the mode. In the limit ωbe > ω, where ωbe is the boune frequeny ofthe trapped eletrons, the trapping of the eletrons prevents thermalization alongthe magneti �eld line and the wave �eld appears stationary during a boune pe-riod. The trapped eletrons, therefore, an alter the stability properties of themode signi�antly.The other launa of the earlier studies is that they were done either using a loalkineti theory or at the best kineti theory based on ballooning formalism in theslab as well as toroidal geometry. A ballooning formalism is essentially an onedimensional model in θb, the ballooning angle. Therefore, the estimation of the101



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsharateristi radial sale length of the mode is not possible unless one uses thehigher order ballooning theory. Thus, to understand the two dimensional modestruture in the presene of the trapped eletrons, a global model beomes nees-sary. Also, an estimation of the radial sale length of the mode is not only requiredfor ompleteness but help estimate the probable transport indued by the mode.In fat, for the �rst time, the two dimensional SWITG mode struture will beshown in the present work. For the parameters hosen, the SWITG mode is foundto be quite global.Thus, the purpose of the present work is twofold: �rst, to inorporate thetrapped eletrons to the SWITG mode and, seond, to use a global linear eletro-stati gyro-kineti model, whih enables one to evaluate the two dimensional modestruture of the SWITG mode.The inlusion of the trapped eletrons has drasti e�et on the growth rate as wellas real frequeny of the SWITG mode, in ontrast to the earlier speulation thatthe trapped eletrons may not be important for the mode. The trapped eletronsenhane the growth rate of the mode substantially beause of the nonideal e�etssuh as magneti drift resonane and redution in the adiabati fration of theeletrons. The trapped eletrons enhane the real frequeny whih may lead toweaker Landau damping of the wave by the ions. This perhaps is another reasonof the mode getting unstable in the presene of trapped eletrons. The parameterregime of existene of the mode, onsequently, gets widened introduing new do-main of instability. Also, the mode struture of the so-alled short wavelength iontemperature gradient mode has been observed to be quite global, even though itexists at short wavelength ompared to the ion Larmor radius. The mode struturespans over a substantial fration of the tokamak poloidal ross setion.In this work, we use the eletrostati version of the ode EM-GLOGYSTO. Aloal version of this gyro-kineti formulation is also used for the purpose of om-parison.
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletrons5.2 Linear SWITG5.2.1 Model EquationsThe global formulation has been eluidated in Chapter 2 and Chapter 3. Here weshall disuss the loal formulation only.Integrating the following loal gyrokineti equation, for whih k⊥ ≃ kθ and k‖ =

constant, to get the perturbed density
fj = −qjFMj

Tj
φ̃+

qjFMi

Tj
(ω − ω∗j)(iPj)J2

o (k⊥ρj)φ̃, (5.1)one an write ñj as
ñj(k) = −qjNj

Tj

[

[1− 1√
2πv3thj

∫

dv⊥dv‖v⊥e
− v2

2v2
thj (ω − ω∗j)(iPj)J2

0 (k⊥ρLj)]φ̃

]

,(5.2)where the propagator for the untrapped partiles is given by iPj= 1
ω−k‖v‖−ωdj

, whihfor trapped partiles is replaed by iTj= 1
ω−ωdj

. Using the quasineutrality onditionand onsidering the passing eletrons to be adiabati and adding the trappedeletrons, one would �nally get
1 + τ −

√

(2ǫ)I tr−e00 − τI i00 = 0. (5.3)The trapped eletron integral I tr−e00 is weighted by the trapped fration √
2ǫ, ǫ =

r/a, and τ = Te/Ti. Here we put
Ĩjl,p =

1√
2πv3thj

∫

dv⊥dv‖v⊥e
− v2

2v2
thj (ω − ω∗j)(iPj)(

v‖
vthj

)l(
v⊥
vthj

)pJ2
0 (k⊥ρLj).In the present setion, we will delineate the results from the global and loalgyrokineti formulation and ompare the ases of SWITG without the trappedeletrons and with the trapped eletrons. It is to be noted that the frequeniesare normalized with vthi/a throughout the hapter. Let us onsider the followingpro�les and parameters. 103
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Figure 5.1: Equilibrium pro�les to study the global SWITG mode( for parametersin Table I): (a) normalized density (square), temperature (irle), ηi,e (triangle),(b) Safety fator q (irle) and magneti shear ŝ (diamond) pro�les as funtionsof normalized radius s = r/a. Note that η peaks at s = ρ/a = s0 = 0.6 and isequal to 2.5. Also q(s0 = 0.6) = 2.0, ŝ(s0 = 0.6) = 1.0, ǫn(s0 = 0.6) = 0.1, and
τ(s0 = 0.6) = 1.0.

Table 5.1: Pro�les and parametersParameters: Equilibrium Pro�les:
• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.6 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.2 m, LT0 = 0.08 m −0.06 s4

• ηi,e(s0) = 2.5, ǫn = Ln0/R = 0.1 suh that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.The equilibrium pro�les orresponding to these parameters are shown in Fig. 5.1.The hosen parameters lead to the value of ρ∗ ≡ ρLi(s = s0)/a ≃ 0.0175. Notethat for the loal results all the input parameters are given at s = s0. 104



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletrons5.2.2 kθρLi SanFigure 5.2 shows the growth rates of the SWITG mode with respet to kθρLi forthe ases (1) without the trapped eletrons and (2) with the trapped eletrons asobtained with the global as well as loal gyrokineti model. The upper axis displaysthe orresponding toroidal mode numbers n. Let us �rst onsider the urve withsolid line and open irles. This presents the growth rate from the global modelversus kθρLi for the SWITG mode without the trapped eletrons. The growth rate
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Figure 5.2: The normalized growth rate γ̃ of the ITG (�rst peak) and of theSWITG (seond peak) mode with (solid line+square) and without (solid line +irle) the trapped eletrons from the global as well as loal formulation (dottedline + diamond, for the ase with the trapped eletrons and dotted line + irle,for the ase without the trapped eletrons.) ηe,i(s0) = 2.5, q(s0) = 2.0, ŝ(s0) = 1.0,
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsshifted toward higher kθρLi in omparison with the global results. The �rst peakappears at kθρLi ≈ 0.65 and the seond peak appears at kθρLi ≈ 1.5 orresponding,respetively, to the ITG and SWITG mode. The growth rates are slightly higherin the ase of the loal results than those obtained in the ase of the global results.The real frequeny as shown in Fig. 5.3 (solid line with open irle for the globalmodel and dotted line with open irle for the loal model), on the other hand,inreases with kθρLi upto the point kθρLi ≈ 0.8 and kθρLi ≈ 1.3, respetively, forthe global and loal models. Beyond this point, the frequeny starts to behavenonmonotonially with kθρLi. For both ases, the �rst hump orresponds to theonventional ITG mode. In this region, the mode frequeny being proportionalto the kθρLi inreases almost linearly with kθρLi. The ITG mode then smoothlyhanges to the high k SWITG mode. The nonmonotoni part an be onsideredas one of the harateristis of the SWITG mode. From Fig. 5.2, it is lear thatthe SWITG mode also su�ers FLR stabilization like the onventional ITG; themode growth rate inreases initially then peaks at kθρLi ≈ 1.3 (kθρLi ≈ 1.5) forthe global (loal) mode and then starts falling. Following the formulation of Gaoet al.[107, 108℄, the nonmonotoni behavior of the real frequeny and the doublehumped growth rate an be explained qualitatively using the loal gyrokinetimodel for whih k⊥ ≃ kθ. Let us rewrite the perturbed distribution funtion f̃i forthe ions as
fi = −qiFMi

Ti
φ̃+

qiFMi

Ti

(

ω − ω∗i

ω − ωdi − k‖v‖

)

J2
o (k⊥ρLi))φ̃. (5.4)The �rst part orresponds to the adiabati response while the seond part orre-sponds to the non-adiabati response of the ions. Integrating over veloity, to getthe perturbed density for the ions in the limit ωn > ω > (ωdi+k‖v‖), one an write

ñi = −qino
Ti

φ̃+
qi
Ti
φ̃
ωni(ηi/2− 1)

ω
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.5)where Io is the modi�ed Bessel funtion of order zero. Sine the SWITG modean exist even with the adiabati eletrons and retains its basi haraters, we forsimpliity drop the non-adiabati part of the eletrons and onsider them to beadiabati, i.e., ñe/no = qeφ̃/Te. The quasineutrality ondition will then give 106
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletrons
ω =

(

τ

τ + 1

)(

ηi
2
− 1

)

ωniIo(k
2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.6)where ωni = −(vthi/Ln)(k⊥ρLi). Thus, it is lear from the expression that the modefrequeny ω behaves as ωniIo(k2⊥ρ2Li)exp(−k2⊥ρ2Li) whih for small k2⊥ρ2Li sales as

k⊥ρLi and for larger k2⊥ρ2Li sales as almost a onstant. It is beause, from theproperty of the saled modi�ed Bessel funtion, one �nds that
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li) → 1/

√

2π(k2⊥ρ
2
Li)) = 1/

√
2π(k⊥ρLi),for large k2⊥ρ2Li and ωni ∝ k⊥ρLi. This explains the nonmonotoni part of the realfrequeny. Regarding the growth rate, in the toroidal geometry, it is the toroidalmagneti drift term ωdi of the ions, the resonane of whih with the mode frequenygives rise to the the double hump behavior. It is to be noted that ωdi ∼ (Ln/R)ωniand thus sales as k⊥ρLi. Therefore, the ratio ω/ωdi at �rst inreases for small

k⊥ρLi and then dereases as the numerator saturates but the denominator stillgrows as k⊥ρLi.The �nite Larmor stabilization (FLR) of the SWITG mode an be inferred fromthe nonadiabati part of ion density response. At very high k⊥ρLi, ωdi surpasses
ω and the nonadiabati part of the perturbed ion density an be redued to, for
ωdi >> ω

ñna

i =
qi
Ti
φ̃
ωni(ηi/2− 1)

ωdi
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.7)whih for large k⊥ρLi will derease aording to

ωni
ωdi

Io(k
2
⊥ρ

2
Li)exp(−k2⊥ρ2Li) ∼

R

Ln
Io(k

2
⊥ρ

2
Li)exp(−k2⊥ρ2Li), (5.8)as k2⊥ρ2Li inreases.Having eluidated the basi haraters of the SWITG mode, let us now see whathappens to the mode when trapped eletrons are inluded. In Fig. 5.2 the solidline with squares represents the growth rates from the global model and the dottedline with diamonds represents the growth rates from the loal model with trappedeletrons present in both ases. Similar urves in Fig. 5.3 represent the orre-108



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronssponding real frequenies. It is lear that for both ases, the growth rate risessubstantially in the presene of the trapped eletrons. The mode frequenies alsoinrease as ompared to their ounterparts with no trapped eletrons. The globalurve for growth rates peaks at kθρi ≈ 0.4, n = 7, while the loal urve peaksat kθρi ≈ 0.55 for the onventional ITG. For the SWITG mode, the growth ratepeaks at kθρi ≈ 1.3, n = 21, for the global result while it peaks at kθρi ≈ 1.7 forthe loal result. It is to be noted that the loal growth rates stay below the globalgrowth rates for most of the part of the k spetrum. Beyond kθρi ≈ 2.0, the globalgrowth rates fall faster than the loal growth rates.The strong rise in the the growth rate of the SWITG mode in the presene oftrapped eletrons an be explained, similar to the onventional ITG mode, as fol-lows. In a toroidal plasma with ion temperature gradient, a pressure perturbationin the outboard side reates hotter and older regions loally. The magneti driftveloity vd of the ions, whih depends on the temperature, is therefore di�erent inregions of di�erent temperatures. This produes variations in the loal onentra-tion of the ion density giving rise to a potential perturbation and onurrently apoloidal eletri �eld. The SWITG instability arises beause of the radial E × Bdrift produed by this eletri �eld in the presene of the applied magneti �eld.When one onsiders eletrons to be adiabati, the moment harge separation isprodued, these eletrons move to the regions of harge separation and wipe outthe spae harge, thus denying the possibility of building up of E × B advetionor reduing it. However, in a toroidal geometry, beause of 1/R dependene of themagneti �eld, some eletrons are �trapped" on the weaker magneti �eld regionand fail to behave adiabatially, in the sense that their motion is restrited to alimited region of the magneti �eld lines. Trapped eletrons, therefore, an notrespond adiabatially to reah the region of E × B advetion and partiipate inaneling the harge separations, thereby allowing �nite time for the mode to grow.The SWITG growth rate thus gets enhaned, when one onsiders the fration ofthe trapped eletrons.The presene of the trapped eletrons inreases the real frequeny and hene thephase veloity of the wave. This an perhaps make the wave o� resonant withthe ions and leads to weaker Landau damping of the wave by the ions with theonomitant enhanement in the growth rate. The SWITG growth rate, therefore,inreases with the inlusion of the trapped eletrons. 109
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0.5, n = 9, (b) the SWITG mode at kθρLi ≈ 1.3, n = 21 without the trappedeletrons both orresponding to the maximum growth rate. The mode strutureof the SWITG mode is �ner than the ITG mode but yet global enough.Figure 5.4 presents the mode strutures of (a) the onventional ITG at n = 9 and(b) the SWITG at n = 21, both orresponding to the maximum growth rate with-out the trapped eletrons. The eigenmode-averaged radial wave numbers for thetwo ases are < krρLi >= 0.687 and < krρLi >=0.702 respetively. These �guresshow learly that though the mode is termed as short wavelength ITG, its modestruture is quite global albeit lesser than the onventional ITG mode. The modestruture spans over a onsiderable fration of the poloidal ross setion of a toka-mak. It orroborates the neessity of a global model to study the SWITG mode.Figure 5.5 then displays the mode strutures, respetively, of the (a) onventionalITG mode with the trapped eletrons at n = 7 and (b) SWITG mode with thetrapped eletrons at n = 21, both orresponding to the maximum growth rate ofthe mode. It is to be noted that the orresponding eigenmode-averaged radial wavenumbers in these ases are < krρLi >=0.489 and < krρLi >= 1.132, respetively.For larity, we present a loseup view of the mode strutures in Fig. 5.6 for thease without the trapped eletrons for the onventional ITG mode and SWITGmode and in Fig. 5.7 for the ase with the trapped eletrons. 110
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsFigure 5.8 portrays the poloidal Fourier omponents for the ases of (a) the ITGmode at n = 9, (b) the SWITG mode at n = 21 without the trapped eletrons,() the ITG mode at n = 7, and (d) the SWITG mode at n = 21 with the trappedeletrons. The strong poloidal oupling of the mode brought about by the ross�eld drift of the partiles is quite apparent from these �gures. Figure 5.9 showsthe radial Fourier harmonis for the modes displayed in Figs. 5.4 and 5.5.5.2.3 ǫn SanThe Ln/R san is performed by varyingR but keeping Rq, n/R, a, and Ln onstant.Figure 5.10 presents the growth rates for the two ases: (a) without the trappedeletrons (irle) and (b) with the trapped eletrons (square) from the global gy-rokineti formulation. Loal results are not shown here. It is lear that the SWITGmode subsides more rapidly with ǫn and vanishes at around ǫn ∼ 1.7. It is argued,therefore, in the earlier literature that the SWITG mode is preferentially a slabmode whih deays with inreasing toroidiity. The derease in the growth ratewith Ln/R an again be attributed to the redution in the non-adiabati frationof the ion's perturbed density response with Ln/R, as it sales as inverse of Ln/Ras apparent from Eq. (5.7). Inlusion of the trapped eletrons, however, widen the
Ln/R window. The mode sustains to a higher value of Ln/R. Thus, one onludesthat the trapped eletrons have deleterious e�et on the SWITG mode enhaningnot only its growth rate but also widening its parameter regime of existene. Thefat is that, with inreasing toroidiity, the fration of the trapped partiles whihis proportional to√r/R also inreases. Therefore, in ontrast to the previous aseof the SWITG where toroidiity has strong stabilizing e�et, making the modevanish beyond Ln/R ∼ 0.15, the SWITG in the presene of trapped eletrons anexist above this limit, as the stabilizing e�et of the toroidiity is ompensated bythe destabilizing e�et of the trapped eletrons. In Fig. 5.11, the orrespondingreal frequenies are shown. Solid line with irles presents the ase without thetrapped eletrons and solid line with squares presents the ase with the trappedeletrons. While, with toroidiity the growth rates deay, real frequenies on theother hand inrease with the toroidiity. Thus, though earlier SWITG was thoughtto be stable beyond some spei� value of ǫn, the trapped eletrons an make it113
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ŝ(s0) = 1.0, τ = 1.0, Ln = 0.2, and a = 0.5.

117



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletrons

1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

η
i

γ 
a/

v th
i

 

 

γ, No trapped electron

γ, With trapped electron

Figure 5.12: Normalized growth rates γ̃ vs. ηi san for the SWITG mode at
kθρLi ≈ 1.3 with (solid line + square) and without (solid line + irles) the trappedeletrons (from the global gyrokineti model). ηe(s0) = 2.5, q(s0) = 2.0, ŝ(s0) =
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsrises initially with τ and then starts saturating in line with its orresponding growthrates.5.2.6 Mixing Length EstimationIt will be interesting to alulate the heat di�usivity of the ions in the presene ofthe SWITG mode, over and above the onventional ITG mode. Within our linearmodel, we do this by using the mixing length estimation where γ/ < k2⊥ >, with
k⊥ =

√

k2r + k2θ , kr and kθ being, respetively, the radial and poloidal wave numbersof the mode, is plotted with respet to kθρLi. Thus, the heat di�usivity γ/ < k2⊥ >of the ions in the gyro-Bohm unit is depited in Fig. 5.16 for the SWITG modewithout (irle) and with (square) the trapped eletrons. The di�usivity inreasesinitially with kθρLi, peaks at kθρLi ≈ 0.5, and then starts falling for the �rst ase,but dereases monotonially for the seond ase. The maximum di�usivity shiftstoward lower k for both ases with and without the trapped eletrons. It is to benoted that the values of the heat di�usivity for the ase with the trapped eletronshave been saled down, dividing the atual values by 8, to show both urves inthe same sale. Thus, one an onlude that the trapped eletrons enhane theheat di�usivity substantially. One important point to be noted is that there is nopeak spei� to the k⊥ρLi of the SWITG mode, the whole spetrum of the heatdi�usivity tends to peak at lower k⊥ρLi ≤ 0.5 despite the fat that the SWITGmode peaks at around k⊥ρLi ∼ 1.5.
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletrons5.3 Nonlinear SWITGAlthough detailed studies have been pursued in the linear behaviour, there are veryfew nonlinear studies available on the SWITG mode. It is therefore of interestto investigate how this mode behaves nonlinearly and if there is any signi�antontribution of this mode to the net ion transport in the ore of the system. Tothis end, we arry out a systemati nonlinear study of the mode using the �ux tubeversion of the well benhmarked, massively parallel, nonlinear, gyrokineti odeGENE [32, 84℄, however, without onsidering the trapped eletrons. Wehave found that although the k spetrum bears signature of the SWITG mode,there is pratially no ontribution to the net ion thermal transport from theSWITG mode.In the following we desribe the nonlinear simulation model and then the resultsand onlusions.5.3.1 The ModelCoordinate System: The set of equations for the eletrostati ase are ast in theClebsh-type �eld aligned oordinate system (x, y, z), suh that (x, y) representsthe plane perpendiular to the magneti �eld given by B = B0∇x×∇y, where xstands for the �ux surfae label, simply the radial oordinate in units of length, yis the binormal diretion in units of length that labels the �eld line on a given �uxsurfae and z is the straight �eld line poloidal angle that labels the position alonga �eld line and thus represents the parallel diretion. B0 is the referene magneti�eld on axis. The veloity spae is represented by (v‖, µ), where, v‖ is the veloityomponent parallel to ~B and µ = mv2⊥/2B stands for the magneti moment.As the present nonlinear simulation uses the �ux tube version of GENE, the systemonsidered is therefore a �ux tube, where system size is a box of dimension Lx ×
Ly × Lz in on�guration spae as well as Lv‖ × Lµ in veloity spae. In theperpendiular diretion i.e., radial x and binormal y diretions, periodi boundaryonditions are applied. The disretization sheme used is based on the so-alled�method of lines", that is, the phase spae operators are disretized �rst, and thenthe resulting ordinary di�erential equations are solved as an initial value problemusing the fourth order Runge-Kutta sheme. The di�erential operators related to123



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsthe �eld-line following oordinate z or the parallel veloity v‖ are disretized usingthe fourth-order �nite di�erene sheme. The periodi boundary onditions in theperpendiular x and y diretions allow one to treat x and y in the framework of apseudo-spetral approah, that is, all linear terms as well as spatial derivatives areevaluated in kx-ky spae, while the nonlinearities are omputed in real spae withthe help of Fourier transform and a proper dealiasing method. The veloity spaeintegrations are performed using Gauss and trapezoidal rules in µ and v‖ spae,respetively. For the time stepping, the fourth-order expliit Runge-Kutta methodis used.
δf splitting: In order to separate the marosopi evolution of the plasma fromthe miroturbulene, the full distribution funtion is onsidered to be omposed oftwo parts, namely, the stati bakground distribution funtion f0 and a perturbedpart f1 of the order of |f1/f0| ∼ ǫ = ρref/Lref , where ρref and Lref , respetively,stand for a referene Larmor radius and equilibrium sale length. We onsider

f0i(v‖, µ) =
n0

(2πTi/mi)3/2
exp[−

miv
2
‖/2 + µB

Ti
],to be a loal Maxwellian distribution funtion, n0 and Ti being the bakgrounddensity and temperature. The perturbed distribution funtion f1 is, on the otherhand, a funtion of 5 phase spae oordinates (x, y, z, v‖, µ) and time t.Normalization: The formal normalization of the various equilibrium and �utuat-ing quantities are displayed in the following tables, where vT i =

√

2Ti/mi and
cs =

√

ZiTe/mi stand, respetively, for the ion thermal veloity and sound speed,
ρs = cs/Ωi is the ion Larmor radius at the sound speed and Φ1 is the eletrostatipotential related to the �utuations. Also, Lref is a referene marosopi lengthsale.

f̂j0 f̂j1 Φ̂1

fj0v3Tj

n0
(
fj1v3Tj

n0
)(
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ρs
) eΦ1

Te
(
Lref

ρs
)Table 5.2: Normalization of dependent variables. 124



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsThe spirit behind the hoie of the normalization is to make eah normalizedquantity of order unity. Furthermore, all gradient sale lengths of the equilibriumquantities, viz., n0, Ti, B, are normalized to Lref .
t̂ x̂ ŷ ẑ v̂‖ µ̂

cst/Lref x/ρs y/ρs z v‖/vthi µB0/TiTable 5.3: Normalization of independent variables.Model Equations: With the above de�ned oordinate system and normalizations,and with the su�x de�ning partile type and the hat for normalized quantitiesbeing dropped to ease the notation, the gyrokineti equation for ions an formallybe written as
∂f1
∂t

+ [
1

Ln
+

1

LT
(v2‖ + µB − 3/2)]f0

∂Φ̄1

∂y
+ [

∂Φ̄1

∂x

∂f1
∂y

− ∂Φ̄1

∂y

∂f1
∂x

]+

1

B

µB + 2v2‖
σ

(KxGx +KyGy) +
v2‖β

σB

dp

dx
Gy + α

v‖
JB

Gz −
µα

2JB

∂f1
∂v‖

∂B

∂z
= 0, (5.9)where Gj = ∂jf1 − (σ/v‖)∂jΦ̄1∂f0/∂v‖ for j = x, y, z, αi = vT i/cs and σi =

ZiTe/Ti and Φ̄1 = J0(λ)Φ1 is the gyroaveraged potential with λ2 = k2⊥(2µ/B)and J0 being the Bessel funtion of order zero. Also, 1/LT = −d(lnT)/dx and
1/Ln = −d(ln n)/dx are the inverse gradient sale lengths of temperature anddensity, respetively. The seond term in Eq. (5.9) thus represents the equilibriumgradients that drive the instability. The third term is the nonlinear E × B driftterm. The fourth and �fth terms ontain the e�et of magneti urvature and ∇B,with

Kx = −g
xxgyz − gyxgxz

B2

∂B

∂z
,and

Ky =
∂B

∂x
− gxygyz − gyygxz

B2

∂B

∂z
,where g's are the metri tensor elements de�ned as gij = ∇ui.∇uj, ui, uj = x, y, z.125



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsThe total plasma pressure appearing with a radial derivative in the �fth term isnormalized to p̂ = p/pref = n0Te , and β = 2prefµ0/B
2, pref is the referenepressure (at the enter of the �ux tube) and µ0 is the permeability in vauum.Finally, the last two terms take into aount the e�et of partile trapping inthe low magneti �eld side of the tokamak and inlude the Jaobian J = Jxyz =

[(∇x×∇y).∇z]−1. Integrating over veloity the perturbed distribution f1, solutionto Eq. (5.9), provides the perturbed ion density, whih an be inserted in thequasineutrality ondition with adiabati eletrons, thus leading to the followingequation
Z2τ [1− Γ0(b)]Φ1 = πZB

∫

J0(λ)f1dv‖dµ− (Φ1− < Φ1 >), (5.10)whih an then be solved numerially, to get the self onsistent eletrostati po-tential. Note that in Eq. (5.10), one de�nes τ = Te/Ti, b = [1/(Z2
i τB

2)]k2⊥,
k2⊥ = gxxk2x + gyyk2y + gxykxky and Γ0(b) = exp(−b)I0(b) is the saled modi�edBessel funtion. The term < Φ1 > represents the �ux surfae averaged value of
Φ1. Note that in a �ux-tube simulations, the x-dependene of all equilibrium quan-tities aross the simulation domain is negleted. Thus, all oe�ients relative tothe magneti equilibrium (B(z), J(z), Kx(z), Ky(z), g

ij(z)) as well as equilibriumpro�les and their gradients (1/Ln, 1/LT ) are independent of x and represent valuesat the �ux tube enter de�ned by x = x0.Geometry: The GENE ode is apable to interfae with the general geometry MHDequilibrium obtained from the numerial solution of the Grad-Shafranov equation.It an, in addition, also be run using an ad ho analytial model whih is an ap-proximate solution of the Grad-Shafranov equation in the limit of axisymmetri,irular, onentri �ux surfaes. In the present investigation we use this ad hoequilibrium, whih is de�ned in the (r, θ, φ) (radial, poloidal and toroidal) oordi-nate system, related to the ylindrial oordinate system (R, z, φ) by the relations
R = R0 + r osθ = R0(1 + ǫ osθ) and Z = r sinθ with R0 being the major radiusof the toroidal oordinate system and ǫ = r/R0 being the inverse aspet ratio. Theaxisymmetri magneti �eld an in any ase be written as B = ∇φ×∇ψ+RBφ∇φ,where in the ad ho model Bφ = R0B0/R, Ψ = Ψ(r) and dΨ/dr = rB0/q̄. The
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Figure 5.17: (a) Real frequeny ωr, and (b) growth rate γ versus wave number
kyρs of the linear short wavelength ion temperature gradient mode (SWITG) fordi�erent values of R/Ln. Here ηi = 2.5, q = 2.0, ŝ = 1.0, τ = 1.0 in thesesimulations.funtion q̄(r) is related to the true safety fator q by the relation

q(r) =
1

2π

∫ 2π

0

B.∇φ
B.∇θ dθ =

q̄(r)√
1− ǫ2

.More details related to this ad ho model are found in Ref [65℄.Physial Parameters: Our main fous is to study the nonlinear short wavelengthion temperature gradient mode using the �ux tube version of GENE. Note thata detailed parametri study of the linear SWITG mode has been arried out inRef. [66℄ onsidering ρ∗ = ρs/a = 0.017, inverse aspet ratio a/R0 = 0.25 wheresteepest gradients are at s = r/a = 0.6. Inspired by that linear study we havehosen �ux tube aspet ratio r0/R0 = 0.15 in the present nonlinear �ux tubesimulations where ρ∗ → 0. Also in the present simulation we have onsidered
τ = Te/Ti = 1, q = 2.0, ŝ = 1.0 and ηi = Ln/LTi = 2.5 where Ln and LT iare, respetively, the density and temperature gradient sale lengths. Also, theparameters onsidered here are relevant to small size tokamaks and hene atypialfor ITER grade mahines. 127
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0 100 200 300
0

100

200

300

400

t (R/c
s
)

Q

 

 

R/L
n
=10

R/L
n
=5

Figure 5.18: Time (in units of R/cs) evolution of ion heat �ux Q normalized by
Qnorm = prefcsρ

2
s/R

2 for SWITG simulation, with R/Ln = 5 and R/Ln = 10. Theblak dashed lines represent the time average of the heat �ux between t = 100 R/csand t = 330 R/cs. For R/Ln = 5 the average Q = 195 Qnorm and for R/Ln = 10the average Q = 302 Qnorm.
133.3ρs×209.4ρs in the perpendiular diretion. One onnetion length of 2πRq isonsidered in the parallel diretion. This 3-dimensional spatial domain is resolvedby using 200×120×16 grid points, respetively, in the x, y, and z diretions. Theveloity spae, on the other hand, is resolved with 32×16 grid points, respetively,for v‖ and µ with the limit for v‖ from −3 to +3, and 0 to 9 for µ in normalizedunits (see Table 5.3 ). Also, throughout the paper we have hosen Lref = R, themajor radius.5.3.2 ResultsIn this setion we will delineate our results for linear and nonlinear runs for thephysial and numerial parameters introdued above using the �ux tube version of128



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsGENE. Note that sine higher resolution runs are omputationally very expensive,the nonlinear results presented in this setion are somewhat preliminary.Linear spetrumWe start with a linear simulation with parameters onsidered above. Figure 5.17(a)shows the real frequeny versus kyρs for di�erent values of R/Ln ranging from 5to 10. The real frequeny rises monotonially with kyρs for kyρs ≤ 1 and remainsvirtually onstant at higher kyρs. It is lear from the expression of the dispersionrelation, Eq. (5.6), that the mode frequeny ω behaves as ωniI0(k2⊥ρ2s) exp(−k2⊥ρ2s)whih for small k2⊥ρ2s sales as k⊥ρs and for larger k2⊥ρ2s sales almost as a onstantas I0(k2⊥ρ2s) exp(−k2⊥ρ2s) → 1/
√

2π(k2⊥ρ
2
s) = 1/(

√
2πk⊥ρs) for k⊥ρs >> 1 (reallthat ωni ∼ k⊥ρs). Figure 5.17(b) displays the growth rate for the same san. Itexhibits two peaks for all onsidered values of R/Ln in ontrast to the single peakaround kyρs ≃ 0.5 routinely observed in the linear analysis of the standard ITGmodes. The seond peak appears around kyρs ≃ 1.5 and is harateristi of theSWITG mode. Regarding the growth rate in toroidal geometry, it is the toroidalmagneti drift term ωdi of the ions, resonating with the mode frequeny ω, whihgives rise to the double hump behavior. It is to be noted that ωdi ∼ (Ln/R)ωniand thus sales as k⊥ρs. Therefore, both ω and ωdi, at �rst inrease for small k⊥ρsand then ω saturates while ωdi still grows as k⊥ρs inreases. It is important tonote that the SWITG mode is also subjet to �nite Larmor radius e�ets. The�nite Larmor radius stabilization (FLR) of the SWITG mode an be inferred fromthe nonadiabati part of the ion density response. At very high k⊥ρs, |ωdi| >> |ω|and the nonadiabati part of the perturbed ion density an be redued to
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,as k2⊥ρ2s inreases. It is apparent that the seond hump is equally strong as the �rsthump for higher value of R/Ln or even slightly more dominant for R/Ln ≥ 10. It129



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsalso is present for lower values of R/Ln albeit less pronouned and �nally vanishesat values of R/Ln typial of the standard ITG mode (R/Ln < 5).
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2.
Nonlinear SpetraTill date, there have been very few nonlinear studies of the SWITG mode. Thestudy of the SWITG mode turbulene and its ontribution to the net thermalion heat transport is thus of prime interest. Here we try to address this issue.We have adopted two ases in the present nonlinear study: ase (I) R/Ln =

10, where the peak in the linear growth rate orresponding to the SWITG (at
kyρs ∼ 1.5) mode is as pronouned as that at lower ky (kyρs ∼ 0.45) orrespondingto the standard ITG mode, ase (II) R/Ln = 5, where the linear growth rateof SWITG at kyρs > 1 is muh weaker than that of the standard ITG modeat kyρs < 1. The time evolution of the nonlinear ion heat �ux given by therelation Q =

〈

∫

(1/2)mv2vE .∇xf1d3v
〉, normalized with respet to Qnorm =

prefcsρ
2
s/R

2, where pref is the equilibrium pressure, is shown in Fig. 5.18 for theparameters desribed in the previous setion for the two ases of the parameter130
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R/Ln. Note that 〈A〉

z
=
∫

Jxyz(z)A(z)dz/
∫

Jxyz(z)dz is the de�nition of �ux-averaged quantity A, where Jxyz is the Jaobian relative to the oordinate system
(x, y, z). Also, v and vE , respetively, are partile veloity and radial omponentof the gyroaveraged E × B drift veloity, and f1 is the perturbed distributionfuntion. It is lear that the heat �ux in the ase of R/Ln = 10 is higher thanthat in the ase of R/Ln = 5. This is in onformity with the linear results wherethe SWITG mode with R/Ln = 10 exhibits the highest growth rate ompared to
R/Ln = 5 at both sales i.e., kyρs < 1 and kyρs > 1 orresponding, respetively,to the standard ITG and SWITG mode. The ratio of growth rates for R/Ln = 5ompared to R/Ln = 10 is even weaker for the SWITG sales than for the ITGsales. The time averaged heat �ux between t = 100 R/cs and t = 330 R/cs isestimated at 302 Qnorm and 195 Qnorm, respetively, for the nonlinear simulationswith R/Ln = 10 and R/Ln = 5. Figure 5.19(a) depits the time averaged (from
t = 0 to t = 330 R/cs) spetrum Q(ky) of the heat �ux for the R/Ln = 10 ase,normalized with respet to Qnorm, over the entire kyρs spetrum onsidered in thesimulation. For the purpose of omparison, we also plot in the same �gure thetime averaged (from t = 0 to t = 330 R/cs) spetrum of the heat �ux Q(ky)measured from the simulation with R/Ln = 5. The orresponding log-log plotsfor both simulations are shown in Fig. 5.19(b). It is quite lear that the Q(ky)spetrum exhibits a strong peak around kyρs ≃ 0.3 for both values of R/Ln.However, the peak orresponding to R/Ln = 5 is signi�antly lower than the oneorresponding to R/Ln = 10, in onformity with the observed heat �ux displayedin Fig. 5.18. The �gure also implies that, on the higher side of the ky spetrumorresponding to the SWITG mode, the ontribution to the net ion heat �ux isvery low ompared to the ontribution from the standard ITG mode on the lowerside of the ky spetrum. The harateristi of the SWITG mode, though weak,is nevertheless still visible from Fig. 5.19(b), whih is the orresponding log-logplot of Fig. 5.19(a). The hump orresponding to the SWITG mode (enirled inFig. 5.19(b)) enters around kyρs = 1.5, re�eting that there is another soure ofinstability in this region of the spetrum. For ompleteness, it is important toomment here that the mixing length estimate of transport from the linear growthrate and wavenumber is expeted to be muh higher than that measured from thenonlinear simulation. In this ontext, the reader may be referred to Ref. [66℄.It is evident from Fig. 5.17 that the SWITG mode has growth rate omparable to131
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsthe standard ITG mode for R/Ln = 10 in the linear regime. On the other hand,for R/Ln = 5 both humps beome weaker, with the seond hump orrespondingto the SWITG mode being even weaker than the �rst hump orresponding to thestandard ITG mode. Therefore, it is interesting to nonetheless estimate from thenonlinear simulation results the (small) ontribution of the SWITG part of the kyspetrum to the net thermal ion transport. To estimate the relative ontributionof the SWITG mode to the thermal ion heat �ux ompared to the standard ITGmode, we have alulated the umulative sum of the time averaged (from t = 0 to
t = 330 R/cs) heat �ux Q(ky) given by

Qc.s.(ky1) =

ky1
∑

ky=kymin

Q(ky).It has been plotted versus kyρs for the two ases R/Ln = 10 and R/Ln = 5in Figs. 5.20 and 5.21, respetively. It is apparent from the �gures that Qc.s.inreases rapidly for kyρs ≤ and then tends to saturate for kyρs ≥ 1 in both ases.The umulative heat �ux in the ase of R/Ln = 10 appears to be higher than thease of R/Ln = 5. It is obvious from Figs. 5.18 and 5.19(a) that heat �ux in thease of R/Ln = 10 is muh higher than that of R/Ln = 5 leading to higher valueof Qc.s.. To evaluate the relative ontribution to the net ion heat transport, of thehigher ky tail, kyρs ≥ 1, orresponding to the SWITG mode ompared to the lower
ky part, kyρs ≤ 1, relevant to the standard ITG, one may ompute

Qc.s.(kyρs)max −Qc.s.(kyρs = 1)

Qc.s.(kyρs = 1)
,where (kyρs)max is the maximum wavenumber. One thus obtains that the netontribution of the SWITG part of the ky spetrum to the total ion heat �ux isless than 4% in both ases in spite of the fat that linearly the SWITG mode with

R/Ln = 10 has growth rate more than double that with R/Ln = 5 and omparableto the ITG growth rate. Thus, even in the strongest ase of linear SWITG, forexample, R/Ln = 10 in the present ase, the thermal ion heat �ux is predominantlydetermined by the lower ky omponents of the �utuation relevant to the standardITG mode.Snapshots of the eletrostati potential Φ1(x, y) and n1(x, y) measured at133
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Figure 5.22: Snapshots of the potential (top) and perturbed density (bottom) ofthe SWITG mode for R/Ln = 5 taken at t = 330 R/cs.
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Figure 5.23: Snapshots of the potential (top) and perturbed density (bottom) ofthe SWITG mode for R/Ln = 10 taken at t = 330 R/cs.
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Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletrons
t = 330 R/cs on the low �eld side (z = 0) of the tokamak during the nonlinearsimulations with R/Ln = 5 and R/Ln = 10 are displayed in Figs. 5.22 and 5.23,respetively. It is lear from the �gures that in the ase of R/Ln = 5, whereSWITG is weak in the linear spetrum, the quantities Φ1(x, y) and n1(x, y) ex-hibit elongated strutures along the x diretion. The same quantities, in ontrast,exhibit �ne strutures in the ase of the nonlinear simulation with R/Ln = 10,whih has the highest growth rate in the linear phase. Given the elongated radialstrutures observed for R/Ln = 5, whih appear to be essentially broken up for
R/Ln = 10, one is motivated to investigate the zonal �ow [113, 114℄ shearing ratein both ases. For that purpose we have measured the zonal �ow shearing rate inboth simulations R/Ln = 5 and R/Ln = 10, respetively. The time evolution ofthe shearing rate is presented in Fig. 8 for the two nonlinear simulations. The timeaverage of the shearing rate ωE = dvEy/dx is estimated 2.4 cs/R for R/Ln = 5 and4.36 cs/R for R/Ln = 10, respetively. This means that the zonal �ow shearingrate for the SWITG mode with R/Ln = 10 is almost double that with R/Ln = 5.That is why the SWITG mode with R/Ln = 10 exhibits �ne strutures, while thatwith R/Ln = 5 bears elongated strutures in all perturbed quantities. In bothases, the shearing rate is muh higher than the linear growth rate implying thatzonal �ows are the dominant saturation mehanism for the SWITG mode turbu-lene. The higher shearing rate of zonal �ows in the ase of nonlinear SWITGmode with R/Ln = 10 ould be a reason for very low ontribution of the higher
kyρs part of the spetrum orresponding to the SWITG mode to the total thermalion heat �ux, in spite of being the mode with highest growth rate linearly. Thisontribution is almost omparable to the ontribution of the higher kyρs part ofthe spetrum in the ase of the nonlinear SWITG mode with R/Ln = 5, whihhas the weakest growth rate among all values of R/Ln onsidered in the linearsimulation.5.4 ConlusionIn the �rst part of the present work, we have presented the features of the shortwavelength ion temperature gradient (SWITG) mode in the presene of trappedeletrons using a linear, global, gyrokineti model in the toroidal geometry, that136
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Figure 5.24: Time traes of the zonal �ow shearing rate ωE = dvE,y/dx, in unitsof cs/R for the SWITG modes with (a) R/Ln = 5 and (b) R/Ln = 10.treats both speies, namely, ions and eletrons fully gyro-kinetially, taking intoaount all the kineti e�ets. A omparison of parametri dependenies for thetwo ases of SWITG mode with and without the trapped eletrons is presented.In line with the global model, we also ompare the results from a loal gyro-kinetimodel for the two ases, with and without the trapped eletrons. This is forthe �rst time where the SWITG mode is studied (1) in the presene of trappedeletrons and (2) in the frame of a global gyrokineti model. The major �ndingsof the present work are the following.
• The trapped eletrons have strong e�et on the SWITG modes, raising thegrowth rate substantially. This is in ontrast to the earlier onjeture thatthe trapped eletrons may not be important for the SWITG mode.
• Although de�ned as short wavelength ITG, the two dimensional mode stru-ture of the SWITG mode has been found to be quite global oupying aonsiderable fration of the tokamak ross-setion for the hosen set of pa-rameters. This establishes the neessity of a global model to study suh aphenomenon.
• The most important observation is that, in the presene of trapped ele-137



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronstrons, the Ln/R window for the existene of the SWITG mode gets widened.The toroidiity has strong stabilizing e�et on the SWITG mode in the ab-sene of trapped eletrons. Inlusion of the trapped eletrons, however, hasbeen found to make the mode stronger against the stabilizing e�et of thetoroidiity. Thus, the inferene from this result is that the mode aquirestoroidal-like nature in the presene of trapped eletrons in ontrast to theslab-like nature in the absene of trapped eletrons. The inreased frationof the trapped eletrons with inreased toroidiity is the main fator behindthis �ipping of the mode from slab nature to toroidal nature. The inreasedtrapped fration of the eletrons with toroidiity redues the adiabati re-sponse of the eletrons, whih in turn enhanes the formation of the spaeharge leading to a higher growth rate of the mode and hene the mode anwithstand the e�et of inreased toroidiity.
• The SWITG mode is an ion temperature gradient driven mode in the higher
k⊥ρLi regime exhibiting a threshold in ηi. The mode persists even if theeletrons are onsidered adiabati. In the absene of trapped eletrons themode vanishes below a ritial ηi. But, in the presene of trapped eletrons,with the dereasing value of ηi, the mode does not vanish, rather it transformsitself from the dominantly ion mode to the dominantly trapped eletronmode.

• The growth rate inreases for lower values of τ but starts saturating at highervalues of it. In the presene of trapped eletrons, the growth rate inreasesinitially, but at higher values of τ , where the eletrons beome hotter thanthe ions the growth rate falls and then saturates with the mode frequenytending to move toward the eletron diamagneti diretion.
• An estimation of the ion transport based on the mixing length theory isarried out. The trapped eletrons rise the heat di�usivity signi�antly. Itis found that the ion heat di�usivity peaks at lower k⊥ρLi. No signi�antdi�usivity is observed at higher kθρLi where the SWITG mode is strongestfor both ases with and without the trapped eletrons.In the seond part of the present work, the short wavelength ion temperaturegradient mode has been studied linearly and nonlinearly using the �ux tube version138



Chapter 5: Short wavelength ion temperature gradient mode and ouplingwith trapped eletronsof the massively parallel, gyrokineti ode GENE using only the adiabati eletrons.The trapped eletrons are ignored for the sake of ease in omputations as our sole fousis to study the nonlinear behaviour of the mode.Linearly the mode appears to be as dominant as the standard ITG mode forhigh R/Ln ∼ 10. However, the growth rate dereases with dereasing R/Ln, andbelow R/Ln = 5 the SWITG mode vanishes, i.e., only the standard ITG moderemains unstable. Nonlinear simulations show higher heat �ux for higher value of
R/Ln in onformity with the trend in the linear growth rate with respet to R/Ln.The nonlinear heat �ux spetrum is peaked at lower kyρs ≃ 0.3. The estimate ofrelative ontribution of the higher kyρs part of heat �ux spetrum orrespondingto the SWITG mode reveals that the ontribution of the SWITG mode to thetotal heat �ux is very low (less than 4%) ompared to the ontribution from thelower ky part of the spetrum typially belonging to the standard ITG mode. Thezonal �ow shearing rate has been found to be muh higher than the linear modefrequeny and growth rate of the SWITG mode suggesting that the zonal �owsare the main saturation mehanisms of the SWITG turbulene. Also, the zonal�ow shearing rate is found to be higher for the SWITG modes with higher R/Lnwhih also exhibit higher growth rate linearly ompared to the shearing rate forthose with lower R/Ln and lower growth rate linearly. The higher shearing rateappears to ompensate for the higher growth rate of the mode leading to a min-imal ontribution to the thermal ion heat �ux from the higher kyρs part of thespetrum relevant to the SWITG mode, irrespetive of the density sale lengthwhih determines the strength of the SWITG mode with respet to the standardITG linearly.

139



Chapter 6Interation of miroturbulene withenergeti ions
6.1 IntrodutionThus far, we have studied the various linear properties of the temperature and den-sity gradient driven modes in the ategory of miroinstabilities using the global,linear, gyrokineti ode EM-GLOGYSTO. In addition, the short wavelength iontemperature gradient driven mode is studied nonlinearly using the �ux tube versionof the nonlinear, gyrokineti, eletromagneti ode GENE. It is now well under-stood that these instabilities are the ause of anomalous transport of thermal ionsand eletrons.Reently, some experiments show that these miroinstabilities transport notonly the thermal ions and eletrons out of the system but also the energeti ionsprodued by the auxiliary heating shemes and α partiles of energy in the MeVrange produed as fusion produt. These energeti partiles onstitute a onsid-erable fration of the total plasma, and thus a sound understanding of the impatof these energeti ions on the plasma on�nement through the interation withthe bakground instabilities is very muh required. The various magnetohydro-dynamis (MHD) events are observed to transport and redistribute the energetiion population via resonant and nonresonant phenomena [115, 116℄. For example,resonant MHD ativities suh as �shbone, toroidal Alfven mode (TAE), et., anause large transport of the energeti ions. Similarly, high β sawteeth an also pro-140



Chapter 6: Interation of miroturbulene with energeti ionsdue loss of the energeti ions. The low frequeny MHD modes suh as neolassialtearing modes (NTM) are equally apable to drive both passing and trapped ener-geti ion loss [117, 118℄. The toroidal �eld ripples and stohasti magneti �eld arealso among the other mehanism of fast ion losses. The energeti ions an in turnalso alter the stability of the plasma by exiting and sometimes suppressing theMHD events. One may, for example, note the observed stabilization of sawteeth byperpendiular energeti ion population, the destabilization of internal kink mode,TAE, �shbone, et. The energeti ions also an give rise to modes on their ownwhih are generally named as energeti partile modes (EPM) [119℄.Though muh understanding and on�dene have been gained in the ase of theinterplay between the MHD events and energeti ions via theory and experiments,little attention is paid toward the interation of these energeti ions with miro-turbulene indued by the ITG mode, TEM, ETG mode, et. One partial reasonould perhaps be the observation of very weak di�usivities of the energeti ionsand α partiles in omparison with the thermal ions experimentally [115, 116, 120℄as well as theoretially [121℄. The reason for it, as speulated, is that the ener-geti ions do not stay in resonane with these miroturbulene driven �utuationsas their drift orbit radii are far higher than the radial orrelation length of these�utuations, and therefore average over the �utuation spetrum temporally andspatially. These phenomena are generally de�ned as the drift averaging and gyro-radius averaging [115℄. On the ontrary, reent numerial experiments [122℄ haveshown that α partile and energy loss ould be higher than the orrespondinglosses of thermal ions and large orbit averaging is not strong enough to ignore theinteration of the α partiles with ITG turbulene. However, it is a reent exper-iment [123℄ reporting evidene of orrelation between miroturbulene and redis-tribution of energeti ions that has spurred a fresh interest among the researhersin the subjet. Even in the absene of any MHD ativity, fast radial broadeningof the urrent pro�le driven by the o� axis neutral beam injetion (NBI) has beenobserved supporting the fat that there must indeed be some orrelation betweenredistribution of energeti ions and bakground miroturbulene. This has beenfurther studied in Refs. [124, 125℄. Following this, numerial analysis [126℄ on theinteration of energeti ions with ITG turbulene observes 1/E dependene forthe passing energeti ion di�usion, where, E is the energy of the energeti ionsand 1/E2 dependene for the trapped energeti ion di�usion. Similar study [127℄141



Chapter 6: Interation of miroturbulene with energeti ionsfound 1/E dependene of di�usion for the beam energeti ions in the preseneof eletrostati �utuation. In ontrast, the di�usion of the energeti ions in thepresene of magneti �utuations [127℄ has been found to be independent of thepartile energy, and therefore, may play more important role than the eletrostati�utuations in redistributing the energeti ions. The reiproal dependene of dif-fusivity on the partile energy of the energeti ions ould be one of the reasons forthe super�ial e�et of miroturbulene on the energeti ions observed in the ear-lier experiments. The di�erene in the born energy of the energeti ions betweenthe earlier and reent experiments an be a likely explanation of the di�erene inthe observations regarding the e�et of miroturbulene on these energeti ions.Note that suh phenomena of redistribution of hot ions by miroturbulene is noton�ned to only toroidal devies like tokamaks; experiments on linear system alsoon�rm the interation of hot ions with density gradient driven turbulene [172℄.Astrophysial plasmas also enounter similar phenomena resulting from interationof the energeti ions with turbulent �eld [129℄.Coming bak to the bak reation of energeti ions on miroturbulene, onemay ite latest experiments [130℄ that has reported signature of internal transportbarrier (ITB) in the ion hannel even in the absene of reverse shear. The formationof the ITB has been observed to have orrelation with the transport suppressionmehanism by the injeted energeti ions with a lifetime of the order of slowingdown time of the beam ions. Similar observation of the ITG mode suppressionby the energeti ions produed by ion ylotron resonane heating (ICRH) andonurrent formation of the ITB triggered by these energeti ions in a plasma withmonotoni safety fator pro�le has been reported in Ref. [131℄.Following the reent theoretial, numerial and experimental studies regardingthe prospetive interation of the energeti ions with the bakground miroturbu-lene, we, in the present hapter, present the results from (1) a linear study on thee�et of the energeti ions on the stability properties of the ITG mode using thelinear numerial ode EM-GLOGYSTO (2) a nonlinear passive traer study on thee�et of the ion temperature gradient (ITG) mode miroturbulene on energetiions using the nonlinear global gyrokineti ode Gyrokineti Tokamak Simulation(GTS) [139, 140℄ based on partile in ell simulation, and (3) a nonlinear passivetraer study on the e�et of the trapped eletron mode (TEM) miroturbuleneon energeti ions using the nonlinear global gyrokineti ode Gyrokineti Tokamak142



Chapter 6: Interation of miroturbulene with energeti ionsSimulation (GTS).The results are disussed in tandem in the following setions.6.2 E�et of energeti ions on the stability of tem-perature gradient driven mode of thermal ions.We inorporate the energeti ions in the model of EM-GLOGYSTO nonpertur-batively as an ative omponent that would modify the quasineutrality ondition.It is to be noted that, in the past, the e�et of the fast partile pressure on theMHD modes, for example, TAEs and its family of modes, kineti ballooning modeor Alfven ion temperature gradient mode, has been investigated extensively usingperturbative methods by onsidering the fast partile e�ets as orretions to theunderlying �equilibrium� in the limit βf/βp ≪ 1. Nonperturbative treatments [119℄wherein bulk eletrons, ions and fast partiles, all are treated on the same physisfooting have been very few. In all these studies, an unstable MHD equilibriumwith E|| = 0 is assumed. Either perturbative (βf/βp ≪ 1) or nonperturbativeordering (βf ≃ βpǫ, ǫ = a/R) is invoked; the fast partile distribution funtionis alulated drift-kinetially and �nally the instability problem is solved usingstandard δW method distinguishing the ��uid� part and �kineti part�. Closure isobtained by taking moments of the fast partile distribution funtion and usingMaxwell's equations. In suh formulations, the bulk eletrons/ions onstitutingthe MHD equilibrium naturally do not ontribute to any kineti e�ets suh asLandau damping, transit/trapped partile e�ets orbit width e�ets or �nite Lar-mor radius (FLR) orretions.With respet to these earlier studies, the present work treats eletrons, ions andfast partiles on equal footing; all the three �speies� are fully �gyrokineti�, fully�nonadiabati�, thus inluding the above said e�ets automatially. The formula-tion retains all the kineti e�ets, namely, the Landau resonane, transit resonane,magneti drift resonane and �nite Larmor radius e�et to all orders. However, wedo not inlude the e�et of the trapped partiles and magneti perturbation. Thusthe treatment is purely eletrostati in the present study. The energeti partilesenter the quasineutrality equation as a third speies in the plasma, but with higherenergy. To be noted that we onsider three di�erent η = Ln/LT (Ln and LT are143
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Figure 6.1: Left panel: the equilibrium density and temperature pro�les alongwith the η pro�le of the thermal ions and eletrons. Right panel: the safety fatorpro�le and shear pro�le. The η pro�le peaks at s0 = 0.7 with the magnitude
η = 2.0. The safety fator q and shear value ŝ at this point, respetively, are 2.0and 1.0.salelngths for density and temperature) pro�les for the energeti ions with respetto the thermal ions and eletrons to look if there is any e�et at all of the energetiions' η on the ITG mode. E�ets of energeti ions' density and temperature on theITG mode are disussed along with a mixing length estimate for the prospetivethermal ion transport by the ITG mode in the presene of energeti ions.
6.2.1 Model equationsStarting from Eq. (2.9) and reformulating it for the energeti ions, one an modifythe quasineutrality ondition to aommodate the energeti ions as a third ativespeies as follows.

ñi + Zf ñf = ñe (6.1)where, Zf and ñf , respetively, are harge and perturbed density of the energetiions. This equation an further be written following Eq. (2.13) as,
∑

k′

∑

j=i,e,f

M̂j
k,k′ ϕ̃k′ = 0 (6.2)

144



Chapter 6: Interation of miroturbulene with energeti ions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

s

η
f

Figure 6.2: The η pro�les onsidered for the energeti ions with respet to thebakground pro�les of the thermal ions and eletrons. While the thermal ion andeletron η pro�les are kept the same, energeti ion pro�les are onsidered for threedi�erent ases, namely, �at η pro�le (green urve), peaked η pro�le (red urve)and same η pro�le (blue urve) as the thermal ions.Note again that we have onsidered 3 speies here: passing ions (i), passing ele-trons (e) omprising the thermal bakground plasma and energeti ion speies (f)with harge Zfe.6.2.2 Pro�les and Parameters:In the following setions, we will eluidate the results regarding the e�et of theenergeti ions on the stability of the ITG mode using the global linear gyrokinetiode EM-GLOGYSTO.For the purpose we onsider pro�les and parameters as given in Table 6.1. Notethat all our results in the present setion are only for one a/ρi = 57. The equilib-rium pro�les for density, temperature, η, safety fator, and shear are displayed inFig. 6.1 aording to the parameters harted in Table 6.1. However, for the ase ofenergeti ions we onsider three di�erent η pro�les as presented in Fig. 6.2: (1) a�at η pro�le (green line), same throughout the minor radius of the tokamak, (2)a145



Chapter 6: Interation of miroturbulene with energeti ionsTable 6.1: Pro�les and parametersParameters: Equilibrium Pro�les:
• B-�eld : B0 = 1.0 Tesla • N-pro�le and T-pro�le
• Temperature : T0 = T (s0) = 7.5 keV N(s)

N0
= exp

(

−a δsn
Ln0

tanh
(

s−s0
δsn

))

• Major Radius : R = 2.0 m Ti,e(s)

T0
= exp

(

−a δsT
LT0

tanh
(

s−s0
δsT

))

• Minor Radius : a = 0.5 m δsn = 0.35, δsT = 0.2 at s = s0
• radius : s = ρ/a, 0.01 < s < 1.0, s0 = 0.7 • q(s) = 1.25 + 0.67 s2 + 2.38 s3

• Ln0 = 0.4 m, LT0 = 0.2 m −0.06 s4

• ηi,e(s0) = 2.0, ǫn = Ln0/R = 0.2 suh that q(s = s0) = 2.0;
• τ(s) = Te(s)/Ti(s) = 1. shear s = s0, ŝ = 1.
η pro�le (blue line) same as the bakground thermal ions and eletrons, and (3) asteeper η pro�le (red line) ompared to the bakground ions and eletrons. Theseare ahieved by onsidering δsT equal to 0.35, 0.2, 0.05, respetively, for the threeases keeping δsn = 0.35 same as that listed in Table 6.1 for the thermal ions andeletrons. Also note that mf/mi = 1.0, Zf = 1, where mi and mf are massesfor the thermal ions and fast ions. We also arry out similar studies onsideringHe ions as the energeti speies, with the η pro�le same as the thermal ions andeletrons. All the parameters are kept same exept onsidering mf/mi = 2.0 and
Zf = 2.0 for the He ions.6.2.3 Wave number san for the mode frequeny and growthrateIn the present setion, we arry out a kθρLi san for the ITG mode by varyingthe toroidal mode number n. Thus we display the mode frequeny ωr and growthrate γ of the ITG mode with respet to kθρLi for the ases with and withoutthe energeti speies in Fig. 6.3. We here onsider three ases, namely, (i) ITGmode without the energeti speies (the magenta line), (ii) ITG mode with singlyharged energeti ions, with �at η pro�le (green line), steeper η pro�le (red line)and η pro�le (blue line) same as the thermal ions and eletrons as shown in Fig. 6.2,all with mf/mi = 1, Zf = 1, and (iii) ITG mode with He ions for mf/mi = 2,146
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Figure 6.3: The wavenumber san for the mode frequeny ωr (left panel) andgrowth rate γ (right panel) of the ITG mode is presented for the ases, viz., (i)without energeti ions (magenta line), (ii) with singly harged energeti ions with�at η pro�le (green line), steeper η pro�le (red line), same η pro�le (blue line) asthe thermal ions and (iii) with energeti He ions (brown line).
Zf = 2. The other parameters, apart from tabulated in table 6.1, are nf/ne = 0.1for the singly harged energeti ions, and nf/ne = 0.06 for the He ions. Theratio Tf/Te = 20 and τ = Te/Ti = 1 are same for all the ases. It is lear from thepiture that the energeti ions strongly stabilize the ITG mode. For the parametersonsidered, the growth rate of the ITG mode is redued by about 30% when oneonsiders the energeti ions. It is apparent from Fig. 6.3 that the stabilization bythe energeti ions is almost independent of the energeti ions' η pro�le. For Heions the stabilization is far stronger than the singly harged ions for the parametershosen. A typial mode struture of the linear ITG in the presene of nonadiabatipassing eletrons and nonadiabati passing energeti ions is shown in Fig. 6.4Regarding the mode frequeny of the ITG mode (left panel of Fig. 6.3), thee�et of the energeti ions is not signi�ant. The e�et of these energeti ionson the mode frequeny of the ion temperature gradient driven mode is to redueit slightly as is apparent from Fig. 6.3. Similar to the growth rate, the modefrequeny also seems as well to be almost independent of the energeti partiles' ηpro�le.
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Figure 6.5: The mode frequeny ωr and growth rate γ are plotted as a funtion ofdensity fration of the energeti ions ompared to bakground density of eletronfor the mode with n = 8, kθρLi = 0.4 for the ases, viz., (i) with singly hargedenergeti ions with �at η pro�le (green line), steeper η pro�le (red line), same ηpro�le (blue line) as the thermal ions and (ii) with energeti He ions (brown line).population ITG mode beomes weaker gradually and at one stage it is suppressedompletely. In the ase of He ions, the stabilization is stronger than the asesdisussed earlier. The mode frequeny also falls faster than the ases of the singlyharged energeti ions. It apparently onforms to the experimental observation ofredution in the ITG mode intensity with the fast ion population. The explanationis based upon the dilution of the thermal ion population by the energeti ions,whih weakens the ion temperature gradient drive of the thermal ions, leading tostabilization of the mode. It also states the neessity of a nonperturbative modelthat treats the energeti ions on the same physis footing as the thermal ions andeletrons, and that they need to be onsidered as an ative element ontributingto the quasineutrality onstraint of the plasma. The inrease in the energetiion population dilutes the thermal ion population and thus the modes inherentto the thermal ions get stabilized. Looking at the urve for the He ions, one anunderstand that the He ions an ameliorate the on�nement by further reduing thethermal ion temperature gradient mode, the prime ause of energy and partile lossfrom the on�ning devie. Thus, over and above the ignition, He ions, espeiallythose with lower energy an provide a mean to suppress the ITG mode e�ientlythereby keeping the density and energy well preserved in the system, and at the149
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Figure 6.6: The mode frequeny ωr and growth rate γ are plotted as a funtionof temperature fration of the energeti ions ompared to the temperature of thethermal ions for the mode haraterized by the toroidal mode number n = 8,orresponding to kθρLi = 0.4 for the ases, viz., (i) with singly harged energetiions with �at η pro�le (green line), steeper η pro�le (red line), same η pro�le (blueline) as the thermal ions and (ii) with energeti He ions (brown line).same time, ontinuing the energy transfer yle, viz., from He ions to the eletronsand �nally to the ions. The argument for the observed stabilization of the ITGmode of the thermal ions by the energeti ions based upon thermal ion dilution,is further orroborated by the fat that the He ion (whih is doubly harged) ismore stabilizing than the singly harged energeti ions for the same parametersonsidered. The mode subsides ompletely at around nf/ne ≃ 0.15 for He ions inomparison to the nf/ne ≃ 0.35 of the singly harged energeti ions.6.2.5 E�et of temperature of the energeti ionsIn this setion, we study the e�et of the energeti ion temperature on the ITGmode of the thermal ions. This is performed by doing a temperature ratio san
Tf/Ti for the ITG mode keeping Ti intat and inreasing only the energeti iontemperature. The other parameters are kept same as given in Table 6.1. Thevalues of nf/ne are onsidered to be 0.1 for singly harged ions and 0.06 for Heions. The results are displayed in Fig. 6.6. It is lear from the san that theenergeti ion e�et on the stabilization of the ITG mode is e�etive mainly in thelow temperature region of the energeti ions. The variations in the the growth150



Chapter 6: Interation of miroturbulene with energeti ionsrate with the energeti ion temperature is more pronouned in the the region
Tf/Ti ≤ 10. This again onforms to the experimental observation where the e�etof energeti ions has been found to be signi�ant for Tf/Ti ≤ 10. The growth rateof the thermal ion ITG mode dereases with the temperature and hene energyof the energeti ions upto Tf ≃ 10Ti, and saturates thereafter. Thus, the dilutione�et is also related to the temperature of the energeti ions. When the energetiion veloity is around the thermal ion veloity, the dilution is the most e�etiveand so does the stabilization. Beyond Tf/Ti > 10 the growth rate is insensitiveto the temperature of the energeti ions. However, the overall stabilization bythese energeti ions is always there irrespetive of the energeti ion temperature.In the ase of the He ions the trend of the growth rate with the temperature ofthe energeti ions is di�erent than the singly harged energeti ions. It shows aweak inrease in the growth rate with temperature of the He ions in the region
Tf/Ti ≤ 10. Thus, one may onlude that the He ash in the fusion will play animportant role determining the stability properties of the ITG mode than the newlyborn He ions during the ourse of the fusion proess. Coming to the mode frequenyof the ITG mode, it inreases slightly with the temperature of the energeti ionsand at Tf/Ti ≃ 2 it turns around for the singly harged energeti ions. Similar tothe growth rate, the variation in the mode frequeny is also visible only at lowervalue of Tf/Ti. It remains unaltered by the energeti ions beyond Tf/Ti > 10.Until Tf/Ti ≤ 10 the mode frequeny ontinues deaying, and then onward, easesto vary with the energeti ion temperature. One may mention here the �ndings ofRef. [126, 127℄ on the in�uene of the ITG turbulene on the energeti ions, whihshow that the e�et of the ITG turbulene on the energeti ions is signi�ant onlyin the lower temperature regime of the energeti ions. The in�uene is the strongestat Tf ≃ 2Ti [126℄. Following the present results one may onlude that the vis-a-visinteration of the ITG mode and energeti ions, and onsequent redistribution ofthe energeti ions and stabilization of the ITG mode, all happen only in the lowerenergy regime of the energeti ions. Similar to the results in other setions, thestabilization is independent of the parameter η of the energeti ions.
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Figure 6.7: A mixing length based estimation of transport in gyroBohm units ispresented for the ases, viz., (i) without energeti ions (magenta line), (ii) withsingly harged energeti ions with �at η pro�le (green line), steeper η pro�le (redline), same η pro�le (blue line) as the thermal ions and (iii) with energeti He ions(brown line).6.2.6 Mixing length estimate of transportIn the frame of linear theory, the transport an be estimated at the best usingthe mixing length estimation, where the di�usivity is alulated from the highestgrowth rate divided by the orresponding averaged squared wave number. Thus, inthe present setion we disuss the mixing length estimated transport for the variousases onsidered in this analysis. In Fig. 6.7 the mixing length based di�usivityexpressed in gyro-Bohm unit is plotted as a funtion of the perpendiular wavenumber kθρLi. The magenta urve depits the di�usivity alulated for the pureITG mode without the energeti ions. The di�usivity initially inreases, then at
kθρLi ≃ 0.35 beomes maximum and starts dereasing monotonially thereafter.Suh a trend an be understood from Fig. 6.3 where growth rate variation is shownversus kθρLi. It is lear from Fig. 6.7 that the di�usivity is signi�antly dereasedin the presene of the energeti ions. The di�usivity, however, is not stronglydependent on the respetive η pro�les of the energeti ions. It remains same for152



Chapter 6: Interation of miroturbulene with energeti ionsall the three ases of di�erent η pro�les. In the ase of the He ions the e�et, asexpeted, is the strongest on the observed di�usivity.
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Chapter 6: Interation of miroturbulene with energeti ions6.3 Size and energy saling of hot ion transportin the presene of ion temperature gradientdriven turbulene.Motivated by the reent developments disussed in the Setion 6.1, a study onthe in�uene of the ITG mode turbulene on the hot/energeti ions is arried outin the present work with a passive traer method using the massively parallel,global nonlinear gyrokineti ode named Gyrokineti Tokamak Simulation (GTS)[139, 140℄, based on partile in ell method.The passive traer has proved to be a robust tool in the atmospheri andoeanographi turbulene studies [141, 142℄ and been fruitfully implemented inthe plasma turbulene studies. In reent years, it has garnered muh popularitybeause of its simpliity; a slew of studies on plasma turbulene are now based uponthis passive traer method [121, 143, 144, 145, 146, 147, 148℄, and sometimes thelatter an be used to predit the nature of turbulene muh like passive diagnostis[121℄. Thus, suh a tool an be quite useful to model hot speies in tokamak, forexample, α partiles, beam ions whih have very low onentration ompared tothe thermal ions and eletrons.We adopt the same method to study the dispersion and energy saling of thehot ions in the presene of turbulent �eld produed by the nonlinear ITG modeand predit their nature of transport. Note that the transport of the hot ions isa omplex proess; a whole lot of fators are there that an in�uene it. Amongthem poloidal drift, zonal �ows, �nite Larmor radius e�et, gyro-averaging, orbitaveraging an play ritial role [149℄.The purpose of the present work is to eluidate the system size e�et in the ratioof plasma minor radius (a) to the thermal ion Larmor radius (ρi) on the transportof the hot ions. It is to be noted that the size saling of hot ion transport is aruial issue in view of the future fusion devies of larger size, for example, ITER[3℄. In the present work, the hot ion transport has been observed to inrease initiallywith system size and then to remain virtually independent of system size at largersystem size; a behavior analogous to the Bohm to gyro-Bohm transition of thermal154



Chapter 6: Interation of miroturbulene with energeti ionsion transport [151, 152, 153℄. Also, the nature of transport has been found toexhibit subdi�usive harater for smaller system size, whih ontinuously hangestoward di�usive proess as the system size inreases.Before disussing the details of the simulation model and results, we brie�yexplain, in the following, the anomalous transport and its importane in a omplexmedium suh as tokamak plasmas.It is obvious that omplex systems are all pervading from exat to life sienes,embraing a variety of systems suh as plasmas, glasses, liquid rystals, polymers,proteins, biopolymers, organisms or even eosystems [169℄. The mean physialquantities, in suh systems have been known to be anomalous. With inreas-ing sophistiation in experimental and numerial tehniques these anomalies havebeen brought out with more on�dene. A partiularly interesting and yet sim-ple to measure physial proess is partile di�usion and orresponding di�usionoe�ient. Di�usion proesses in various omplex systems are found to exhibitnon-Gaussian statistis. In suh ases, the Fik's law of di�usion an not be ap-plied to desribe the transport behaviour. The mean squared displaement in theseases is no longer linear with respet to time, i.e., lim
t→large

< σ2 >= A tp, A being aonstant, with p 6= 1. This is alled anomalous di�usion and present in wide varietyof systems. The main harateristis of suh systems is the nonlinear growth of themean squared displaement with respet to time whih is, in general, aused bybroad distributions and long range orrelations [169℄. These anomalous di�usionomprises of di�erent domains, de�ned through the MSD equation < σ2 >= A tpand parameterized by the anomalous di�usion exponent p. These domains are (a)subdi�usion, (b) superdi�usion and () normal di�usion on the threshold betweensub and super di�usion [167, 168, 169℄. Another speial ase is ballisti motionwith p = 2. These are shown in Fig. 6.8. The generalized di�usion oe�ient Ain the above equation has the dimension [A] = L2T−p.Complex systems suh as plasmas have been studied extensively for suh anoma-lous behaviour. Nondi�usive transport has been observed [171℄ in numerial studiesof three-dimensional, resistive pressure-gradient-driven plasma turbulene. It hasbeen found that the probability density funtion of traer partiles' radial displae-ments is strongly non-Gaussian and exhibits algebrai deaying tails inorporatingin a uni�ed way spae-time non loality (non-Fikian transport), non-Gaussianity,155
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Figure 6.8: Di�erent domains of anomalous di�usion, de�ned through the meansquared displaement< σ2 >= A tp, and parameterized by the anomalous di�usionexponent p: (a) subdi�usion for 0 < p < 1, (b) superdi�usion for 1 < p < 2. Onthe threshold between sub- and superdi�usion is the normal Brownian di�usionloated. Another speial ase is ballisti motion p = 2 [169℄.and nondi�usive saling. [171℄Some examples from experiments indiating nondi�usive transport are [173℄:the dependene of transport on the system size in low on�nement mode plas-mas [159℄, the observation of rapid propagation of an indued perturbation [160,161℄, the measurement of long range temporal and radial orrelations in the plasmaedge [162, 163, 164℄, et.Nondi�usive transport in on�ned plasma is not only relevant to tokamaks [158℄.Partile transport in a reversed �eld pinh (RFP) devie is shown to be nondif-fusive when magneti haos is present. A phenomenologial �t to density pro�lesgives a di�usion onstant and also a pinh veloity direted up the density gradi-ent [158℄. It has been shown in Ref. [158℄ that the ombination of di�usion andpinh is atually an expression of the nonloal, subdi�usive nature of the trans-port. Nondi�usive transport is also observed in the Large Plasma Devie [172℄ indensity gradients driven turbulene in the ase of energeti ions. The energetiion transport dereases rapidly with inreasing gyroradius of the energeti ions.The turbulent transport is found to be nondi�usive in ontrast to the di�usivetransport aused by the Coulomb ollisions. 156



Chapter 6: Interation of miroturbulene with energeti ionsComing bak to tokamak, by means of toroidal gyrokineti simulations of ele-trostati, ollisionless ion-temperature-gradient turbulene [154℄, it is shown thatthe nature of the transport is antiorrelated and subdi�usive. Additionally, when-ever the �ows are self-onsistently driven by turbulene, the transport gains anadditional non-Gaussian harater. Similarly, several traer partile studies inHasegawa-Mima and Hasegawa-Wakatani models show nondi�usive harater forthe traer partiles. This kind of subdi�usive nature of transport, in partiular, forradial transport in the presene of drift wave turbulene is sometimes referred toas strange kinetis [147℄. Zonal �ows are found to play ritial role in determiningthe nature of transport [147, 121, 143, 144, 145, 146, 173℄ for the traer partiles.6.3.1 Simulation ModelThe partile dynamis is determined on the basis of the gyrokineti formalism,where we follow the time evolution of the perturbed part δf of the partile distri-bution funtion f expressed as the sum of an equilibrium part f0 and a perturbedpart δf . Thus, for the ollisionless ase, the gyrokineti equation for ions an bewritten as [150℄
∂δfi
∂t

+ (v‖b̂+ vE0 + vE + vd).∇δfi − b̂⋆.∇(µB +
e

mi

Φ0 +
e

mi

φ̄)
∂δfi
∂v‖

=

−vE .∇f0 + b̂∗.∇(
e

mi

φ̄)
∂f0
∂v‖

. (6.3)Here ~vE0 , ~vE are E×B drifts resulting, respetively, from the equilibrium potential
Φ0 and turbulent potential φ̄, ~vd is the∇B drift, b̂⋆ = b̂+ρ‖b̂×(b̂.∇b̂), with b̂ = B/Band ρ‖ = v‖/B. This equation along with the equation for adiabati eletrons aresolved numerially in the ode GTS with partile in simulation method.In ontrast, the hot ion (hi) speies is pushed aording to the equation

∂fhi
∂t

+ (v‖b̂+ vE0 + vE + vd).∇fhi − b̂⋆.∇(µB +
e

mi
Φ0 +

e

mi
φ̄)
∂fhi
∂v‖

= 0. (6.4)This equation has been added additionally to govern the evolution of the passivetraers inorporated as energeti ions. Note again that these passive traers do nota�et the turbulent �eld, and hene do not enter the gyrokineti Poisson equation.157



Chapter 6: Interation of miroturbulene with energeti ionsAlthough, the ode GTS is equipped with the apability to treat general geometrytokamak, for simpliity, we onsider irular geometry for the plasma ross-setion.6.3.2 Parameters and pro�lesFor the study of size saling of hot ion transport we onsider the following pro�lesand parameters. The average aspet ratio is R0/a = 2.86, while three di�erentvalues of system size are onsidered; (1) average a/ρi = 157, (2) average a/ρi = 315,and (3) average a/ρi = 500. Note that here ρi = vthi/ωci is the thermal iongyroradius, cs =√Te/mi is the sound speed and ωci = eB/mi is the gyrofrequeny.The parameters e, B, mi, Te are eletri harge, magneti �eld, mass of thermalion, and eletron temperature, respetively. The thermal ion temperature pro�le,density pro�le and safety fator pro�le onsidered are R0/LT = 8.0 exp{−[(r/a−
0.5)/0.28]6}, R0/Ln = 2.0 exp{−[(r/a − 0.5)/0.28]6} and q = 0.854 + 2.184(r/a)2respetively, with eletron to ion temperature ratio Te/Ti = 1. This implies thatat r = 0.5a, q = 1.4, shear ŝ = (r/q)dq/dr = 0.78, R0/LT = 8.0, R0/Ln = 2.0.We onsider thermal ions and eletrons both being equal to 1.2 × 108 in number.The radial simulation domain hosen spans from r = 0.1a to r = 0.9a. Regardingthe inorporation of hot ions, we onsider monoenergeti ions with temperature
Th = nTi, n being an integer, with uniform distribution in pith angle, de�ned asthe angle between the partile veloity and magneti �eld applied. The mass andharge of these hot ions are kept the same as the bakground thermal hydrogen-like ions. With these spei�ations, they are inserted on a single �ux surfae at
Ψ0 = 0.5a, where the gradients peak, and distributed uniformly in the poloidaland toroidal diretion.6.3.3 Heat �ux of thermal ionsFigure 6.9 depits the time history of thermal ion heat �ux, measured at r = 0.5a,arising from the ITG turbulene for three values of system size, namely, a/ρi = 157,
a/ρi = 315 and a/ρi = 500. The heat �ux is alulated using the relation Qi =
∫

d3v 1
2
v2vEδf , where v is the partile veloity, vE is the radial omponent of gyro-averaged E ×B drift and δf is the perturbed distribution funtion, and reordedat r = 0.5a at every time step. The typial snapshots of perturbed potential are158
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Chapter 6: Interation of miroturbulene with energeti ionsshown in the following �gures for the three di�erent system sizes onsidered here.

Figure 6.10: The typial snapshots of mode struture in the linear (left panel) andnonlinear (right panel) regime of the ITG turbulene for the system size a/ρi = 157.

Figure 6.11: The typial snapshots of mode struture in the linear (left panel) andnonlinear (right panel) regime of the ITG turbulene for the system size a/ρi = 315.
160
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Figure 6.12: The typial snapshots of mode struture in the linear (left panel) andnonlinear (right panel) regime of the ITG turbulene for the system size a/ρi = 500.6.3.4 Mean Squared Displaement of hot ionsThe hot ions are inorporated at time t = 0, that is, before the turbulene sets in,on a single �ux surfae at Ψ0 = 0.5a and are distributed uniformly in the poloidaland toroidal diretion. The spirit of inserting the hot ions on Ψ0 = 0.5a surfaefollows from the fat that the density and temperature gradients of the thermal ionspeak on this surfae and hene is the most unstable region. As desribed earlier,the hot ions in di�erent energy groups are pushed aording to the gyrokinetiEq. (6.4) and the resulting mean squared displaement (MSD) is reorded at everyinstant of time using the following relation
< σ2(ε, t) >=

1

N

i=N
∑

i=1

(ri(ε, t)− ri(ε, 0))
2where, N is the total number of partiles of hot ions with energy ε, ri(ε, t) and

ri(ε, 0) are, respetively, the radial positions of the ith hot ion with energy ε attime t and t = 0. Note that the number of hot ions inserted from eah energygroup is roughly 6.7 × 105. Figure 6.13 displays the time evolution of runningMSD de�ned above for the hot ions with energy Th = Ti, 2Ti, 4Ti, 8Ti, 16Ti forthe three values of system size onsidered in the simulation. One an observe that161
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Figure 6.13: Mean squared displaement of the hot ions for system size a) a/ρi =
157 (upper left panel), b) a/ρi = 315 (upper right panel), ) a/ρi = 500 (lowerpanel). 162



Chapter 6: Interation of miroturbulene with energeti ionstill t = 200LT/vthi the hot ions undergo drift motion as the mode amplitude of theITG mode during this time interval is too weak (see Fig. 6.9) to produe any e�eton the hot ions. Their motion is thus governed by the equilibrium gradient andurvature of the magneti �eld and therefore, the magnitude of the mean squareddisplaement is determined merely by the energy assoiated with the hot ions. Theboune period being inversely proportional to the partile veloity, hot ions withhigher energy undergo more boune yles than the hot ions with lower energyfor a given interval of time as depited in the �gure. It is lear from Fig. 6.9that from time t = 200LT/vthi the ITG turbulene starts showing its signaturewith its exponential linear phase. Consequently, the hot ions also ome under thein�uene of the eletri �eld of the ITG mode and MSD rises abruptly at thispoint. Note that the MSD is maximum for Th = 2Ti and gradually dereases withinrease in the hot ion energy. There are important di�erenes in the measuredMSD for the three ases of di�erent system size: �rst, the MSD for a given group ofhot ions haraterized by a given temperature inreases with the inrement in thesystem size; seond, the MSD for all groups of energy of hot ions shows signatureof saturation for a/ρi = 157, inreases linearly at �rst, then weak tendeny tosaturate for a/ρi = 315 and inreases almost linearly for a/ρi = 500 after theinitial abrupt rise for all the three ases with respet to time; third, the MSDs ofthe hot ions with temperature Th = 2Ti and Th = 4Ti tend to be almost the sameas the system size inreases.6.3.5 Nature of transport: Energy SalingIn order to evaluate the dependene of the energeti ion transport on their energyand system size, one an alulate the net displaement in the interval, from time
t1 = 160LT/vthi, where the MSD in the presene and absene (not shown here)of ITG turbulene remains the same, to time t2 = 1200LT/vthi, the end point ofsimulation and de�ne a quantity, Dh = δ < σ2 > /δt = (< σ2(t2) > − < σ2(t1) >

)/(t2 − t1). In the present ase, the hot ions are introdued at r = 0.5a initially,and therefore, it an be shown that MSD and standard deviation remain almostthe same. For a di�usive proess, the parameter Dh an therefore represent thedi�usion oe�ient at late time when the system is in steady state. (A disussion onthe issue regarding steady state and the di�usion oe�ient is introdued in Setion163
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σ2 =

1

N
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∑
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(xi − x̄)2,
s =

√
N
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i=1(xi − x̄)3

{
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i=1(xi − x̄)2

}3/2and
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i=1(xi − x̄)4

{
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i=1(xi − x̄)2

}2 − 3from the simulation data. One may note that for a distribution kurtosis estimatesthe relative peakedness or �atness ompared to the normal distribution, while166



Chapter 6: Interation of miroturbulene with energeti ionsskewness is a measure of symmetry about the mean. In the ase of Gaussian dis-tribution, both kurtosis and skewness as de�ned above beome zero and infer anormal di�usion. Divergene of these quantities from zero, therefore, an be on-sidered as the signature of a non-Gaussian distribution. A positive kurtosis har-aterizes a relatively peaked distribution while a negative kurtosis haraterizes arelatively �at distribution. On the other hand, a positive skewness (right-skewed)represents a distribution with longer tail on the right side, while a negative skew-ness (left-skewed) represents a distribution with longer tail on the left side of thedistribution. Creating 200 bins in the radial diretion between 0.1a and 0.9a theprobability density funtion for the test partiles has been evaluated. The upperpanel of Fig. 6.17 depits plots of the PDFs for system size a/ρi = 157. Corre-sponding values of σ, s and k are also displayed in the legend of the �gure. Notethat σ is normalized to orresponding ρi/a. It is lear from the �gure that thePDFs are substantially deviated from the normal distribution. The lower panelof the same �gure displays the plot of < σ2 > /tp versus t. It remains virtuallyonstant for the measured values of p in the given temporal window evining therobustness of the quantity pThe upper panel of Fig. 6.18 presents plots of the PDFs for system size a/ρi = 315.The legend shows the values of σ, s and k extrated from the simulation data. Thelower panel of the same �gure displays the plot of < σ2 > /tp versus t. It is learthat the quantity < σ2 > /tp remains virtually onstant for the measured valuesof p in the given temporal window. That means that though weak, the transportof the hot ions is still subdi�usive.The upper panel of Fig. 6.19 presents plots of the PDFs for system size a/ρi = 500.In the legend the values of σ, s and k are displayed. The lower panel of the same�gure displays the plot of < σ2 > /tp versus t. Both �gures demonstrate that thetransport of the hot ions in a bigger system exhibits di�usive nature.Thus, from the Figs. 6.17, 6.18 and 6.19, one an onlude that for lower systemsize, hot ions' PDF exhibits deviation from Gaussian implying anomalous di�usion.As system size inreases, the subdi�usion beomes weaker and at a/ρi = 500 itgives qualitatively similar results of Zhang et al. [126℄ whih has system dimension
500ρi. Using �rst priniple simulation in our work, we have shown, for the �rsttime, a ontinuous transition of transport from subdi�usion for smaller devie sizeto normal di�usion for larger devie size. 167
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Chapter 6: Interation of miroturbulene with energeti ionsIt is interesting to point out here that similar subdi�usive nature of transportfor thermal ions has also been reported by R. Sánhez et al. [154, 155℄ for smallerdevie size a/ρi = 200 for ion temperature gradient driven turbulene. Exhibitionof subdi�usive behavior of radial transport in smaller devie is further orroboratedby the results reported by Dewhurst et al. [143℄ whih uses a modi�ed Hasegawa-Wakatani model for drift wave turbulene, for system size L = 40ρi. Note thatthe partiles with Th = Ti onsidered in our work are similar to the thermal ions,onsidered passively and orrespond to those in the aforementioned works.The present work thus brings two di�erent opinion (whether subdi�usive ordi�usive) regarding radial transport of ions into the same frame. While on onehand, it observes subdi�usion like that of Sánhez et al. [154, 155℄ for lower systemsize, on the other hand, observes di�usion like Z. Lin et al. and Zhang et al. forlarger system size [126, 151℄.We, therefore, believe that the present �rst priniple based simulation resolvesa fundamental issue of whether the radial transport of thermal and hot ions issubdi�usive or otherwise. It has been demonstrated that the radial transportof thermal and hot ions is subdi�usive for lower system size, whih eventuallybeomes di�usive for larger system size, exhibiting a segue from subdi�usion tonormal di�usion with inreasing system size.6.3.7 Chek for quasisteady state and robustness of the re-sultsIn the following we perform several reruns for longer duration to study the ro-bustness of the exponent p and to demonstrate that di�usion remains anomalousin the quasisteady state. It is well known that the �nite size e�ets and non-stationary state of numerial simulation may a�et the onlusions as di�usion ismeaningful only at steady state onditions. Interpretation in terms of standardversus anomalous di�usion ould be di�ult when simulations do not attain steadystate. Therefore, we have rerun the ases of ITG mode and energeti partiles forsystem sizes a/ρi = 157 and 315 and doubled the simulation time, i.e, the totalsimulation time has been inreased from 1200 to 2500LT/vthi. It is lear fromFig. 6.20 that quasi-steady state is attained at late time for both system sizes.The global mean squared displaement as a funtion of time is alulated and171
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Chapter 6: Interation of miroturbulene with energeti ionsdepited in Fig. 6.21. Similarly, the PDFs are measured during the quasi-steadystate for a/ρi = 157 and 315 and displayed in Figs. 6.22 and 6.23. We �nd that theresults remain the same qualitatively. Two ases are shown; one for earlier ase of
t = 1200LT/vthi and other, for t = 2500LT/vthi. It is lear from the �gures thatlate time PDFs do not hange muh between these two times. If one onsidersourrene of subdi�usion as merely a manifestation of the �nite (small) size ofthe system (as the partiles will �ll up the system quikly), the p values in thease of a/ρi = 315 should have redued or in other words the transport shouldhave been more subdi�usive (marked by smaller values of p) when the simulationtime is doubled. The PDFs in the ase of a/ρi = 315 learly show that PDFs donot hange muh between t = 1200LT/vthi and t = 2500LT/vthi and are far awayfrom the boundary throughout the simulation period. A omparison of p values

Th/Ti Mean p standard deviation p from Setion 6.3.61 0.3461 0.0032 0.32912 0.2675 0.0052 0.26484 0.2865 0.0031 0.30528 0.5153 0.0043 0.468716 0.7994 0.0099 0.4232Table 6.2: New values of mean p and values measured in Setion 6.3.6 (see Fig. 6.16)for a/ρi = 157from old (small time) simulation and new (long time simulation) for both systemsreveals (please see Tables 6.2 and 6.3) that the p values do not hange muh exeptfor Th/Ti = 16 whih anyway is least a�eted by the turbulent �eld.In the new runs, the mean value of p is evaluated taking the average of severaltemporal windows spanning from t = 2000LT/vthi to t = 2500LT/vthi. The robust-ness is re�eted in the small values of standard deviation in the measurements ofmean p. Note that the spirit behind taking the various temporal window is to ruleout any doubt regarding the dependene of the value of p on the time span hosenfor determining p. It is a standard proedure to determine the nature of transportfrom the alulated value of p [167, 168, 169℄. A number of studies on nondi�usivetransport, for example, Refs. [143, 147℄ rely upon the determination of the expo-nent p and is onsidered to be a robust method. As disussed earlier, for p = 1the transport is haraterized by the di�usive proess and said to be normal, while174
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Th/Ti Mean p standard deviation p from Setion 6.3.61 0.6499 0.0350 0.63222 0.5390 0.0296 0.53154 0.5661 0.0331 0.53908 0.8785 0.0562 0.765316 1.0347 0.0748 0.6674Table 6.3: New values of mean p and values measured in Setion 6.3.6 (see Fig. 6.16)for a/ρi = 315
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Chapter 6: Interation of miroturbulene with energeti ionsfor values 0 < p < 1 and 1 < p < 2 the transport is haraterized, respetively, bysubdi�usive and superdi�usive proess and de�ned as anomalous [167, 168, 169℄.The value p = 2 implies a ballisti motion where the veloity remains onstant.The generalized di�usion oe�ient de�ned by, A = lim
t→large

< σ2 >

tp
, should beindependent of time in the time window using whih mean p is determined. The�at nature of < σ2 > /tp with respet to time indeed demonstrates the robustnessof the alulated values of mean p. This proedure has been extensively adopted inthe past literature, for example, [143, 147℄. Some authors determine mean squareddisplaement �rst and then ompute < σ2 > /tp with p hosen in suh a way thatit gives best �t to a onstant urve < σ2 > /tp at late time [143, 147℄. In ourwork, to hek the robustness and orretness of p we have performed the reverseproedure, i.e., �rst, the mean p values have been evaluated from the mean squareddisplaement versus time measurements at late time followed by the determinationof mean p and then < σ2 > /tp has been plotted to see whether it is onstant ornot with respet to time at late time. It is lear from the �gures of < σ2 > /tpversus t that the predited values are indeed robust and aurate. The preditionover the nature of transport by the alulated values of p, is further orroboratedby the evaluation of probability density funtion for the radial displaement ofthe energeti partiles [Figs. 6.22 and 6.23℄. We have plotted < σ2 > /tp for thenew values of p again as shown in Fig. 6.24. At late time, the urves remainvirtually onstant with respet to time showing the orretness of the values p.It an be expeted that the e�et of initial strong burst of turbulene, if any, onthe energeti partiles may not be onsidered to be responsible for the late timeexhibition of subdi�usion. As mentioned above we have doubled the simulationtime for the ases a/ρi = 157 and 315. However the nature of the test energetipartile transport yet remains the same.A related important issue is the inward partile pinh of energeti and thermalpartiles observed in several tokamaks and other systems suh as RFP. For exam-ple, for eletrostati turbulene in a tokamak geometry, using nonlinear gyrokinetiformulation in GENE �ux tube ode, Jenko et al. [157℄ have addressed the partilepinh e�et for thermal partiles. A similar study was also performed in Ref. [156℄.Both studies demonstrate that in the ase of eletrostati ITG turbulene, the dy-namis of nonadiabati passing eletrons (kineti eletrons) is neessary for pinh176
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Chapter 6: Interation of miroturbulene with energeti ionse�et. In the ase of TEM turbulene, a partile pinh an exist if and only ifthe inward �ux of passing eletrons is able to overompensate the outward �ux oftrapped eletrons [157℄.For magneti turbulene in an RFP, Spizzo et al. [158℄ show that one may splitthe partile �ux in a di�usive and a pinh (onvetive) term
Γ = −D∇n+ v.n,where D and v are �t to the observed transport in tokamaks or reversed �eldpinhes. A phenomenologial �t to density pro�les gives a di�usion onstant andalso a pinh veloity direted up the density gradient. It is shown [158℄ thatthe ombination of di�usion and pinh is atually an expression of the nonloal,subdi�usive nature of the transport.As disussed earlier, our ITG model has adiabati eletrons. Moreover, ourmain fous is to eluidate the nature of redistribution of energeti passive partilesin global eletrostati ITG/TEM turbulene by means of a global di�usion oef-�ient. Thus we believe that although of fundamental interest, a study relatingthe loal di�usion oe�ient and loal pinh veloity of energeti test partiles isbeyond the sope of the present work. This has been indiated in the Setion 7.2for future work. In the following, we give a plausible explanation for the transitionin nature of transport from subdi�usion to di�usion with inreasing system size intokamaks.6.3.8 Plausible explanation for subdi�usionIt is now widely aepted that the orrelation funtion for ITG perturbation isself-similar irrespetive of the system size whih suggests that the turbulent eddiesdue to ITG turbulene have the same size independent of the size of the tokamaks.The typial size is ∼ 7ρi, where ρi is the ion Larmor radius [151℄. So in a largerdevie of size like 500ρi one would expet far larger number of eddies ompared tothat in a smaller devie like 157ρi as is apparent from Figs. 6.10, 6.11 and 6.12.Test partiles are trapped in these eddies and move along them. They beomedetrapped when two suh eddies interat strongly. Sine in a smaller devie, thereare fewer eddies, probability of eddy-eddy interation and detrapping a partile is178



Chapter 6: Interation of miroturbulene with energeti ionssmall. In ontrast, in a larger devie with larger number of eddies, though parti-les are trapped, they are frequently detrapped beause of the higher probabilityof eddy-eddy interation giving the partiles' transport a di�usive harater. If oneonsiders this trapping and subsequent detrapping as sattering or ollision, for asmaller devie, say 157ρi, the aggregate number of sattering or ollisions that atest partile su�ers in the ourse of its radial exursion will be muh less than thatin a larger devie, say 500ρi. In other words, one an say that the test partiles inthe system with 500ρi undergo more frequent random walks than in the system ofsize 157ρi. Thus, for a test partile, randomization is muh higher in the systemwith size 500ρi than that with size 157ρi. This explains qualitatively why hot ions'transport attains di�usive harater in a larger devie in ontrast to subdi�usivityin a smaller devie. Note that the Larmor radii of the hot ions in terms of thermalion Larmor radius are ρi, 1.4ρi, 2ρi, 2.8ρi, 4ρi, and the typial size of a eddy is
7ρi. So there is always a de�nite probability of the hot ions even with the highestenergy in our simulation to interat strongly with the turbulent eddies. However,a mathematial model to atually verify the above said idea is beyond the sopeof the present thesis.
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Chapter 6: Interation of miroturbulene with energeti ions6.4 Radial transport of energeti ions in the pres-ene of trapped eletron mode turbulene.Inspired by reent results on interation between the ITG mode turbulene andhot ions, a study on the in�uene of the trapped eletron mode turbulene on thehot ions is arried out in the present setion with the same passive traer methodusing the massively parallel, global nonlinear gyrokineti ode named GyrokinetiTokamak Simulation (GTS) [139, 140℄, with the kineti eletrons inluded thistime.In the present study, we have onsidered three di�erent types of hot ions,namely isotropi (in pith angle), purely passing and purely trapped hot ions. Wehave observed that the nature of transport exhibits nondi�usive harater, demon-strating subdi�usion for all the types of hot ions mentioned above. Correspondingenergy saling has also been estimated. It has been observed that isotropi andpassing hot ions obey inverse energy saling while purely trapped hot ions deayas inverse square of energy.The trapped eletron mode has di�erent origin and saturation mehanism prop-agating in the eletron diamagneti diretion in ontrast to the ion diamagnetidiretion of propagation for ITG modes. The mode is generated by the densityor temperature gradient of the trapped eletrons. In the present work, we studythe nature of transport of hot ions in the presene of TEM turbulene. We re-port results for three di�erent distributions of hot ions. Firstly, we onsider hotions having isotropi distribution in pith angle (angle between partile veloityand magneti �eld applied); thus, it ontains e�et of both passing and trappedpopulation of hot ions. Seondly, we onsider hot ions entirely in the loss one,thus ontaining purely passing partiles and �nally, purely trapped hot ions. Weinvestigate if there is any di�erene at all by inorporating hot ions before theturbulene sets in, and when the turbulene is well developed and attains the sat-uration phase. Energy saling of the radial transport of the hot ions of di�erentdistributions is also studied. It is found that the transport dereases rapidly withenergy for the hot ions with lower energy, and slowly as the energy of the hot ionsinreases further. 180



Chapter 6: Interation of miroturbulene with energeti ions6.4.1 Simulation ModelThe partile dynamis is determined on the basis of the gyrokineti formalism,where we follow the time evolution of the perturbed part δf of the partile distri-bution funtion f expressed as the sum of an equilibrium part f0 and a perturbedpart δf . Thus, for the ollisionless ase, the gyrokineti equation for ions an bewritten as [150℄
∂δfi
∂t

+ (v‖b̂+ vE0 + vE + vd).∇δfi − b̂⋆.∇(µB +
e

mi
Φ0 +

e

mi
φ̄)
∂δfi
∂v‖

=

−vE .∇f0 + b̂∗.∇(
e

mi

φ̄)
∂f0
∂v‖

(6.5)Here ~vE0 , ~vE are E×B drifts resulting, respetively, from the equilibrium potential
Φ0 and turbulent potential φ̄, ~vd is the∇B drift, b̂⋆ = b̂+ρ‖b̂×(b̂.∇b̂), with b̂ = B/Band ρ‖ = v‖/B.The drift kineti equation is used for the eletrons, thereby eliminating the�nite Larmor radius e�et. Thus the eletron δfe equation for ollisionless ase isgiven by [150℄
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(6.6)In ontrast, the hot ion speies is pushed aording to Eq. (6.4).6.4.2 Parameters and Pro�lesWith the set of equations desribed in the earlier setion, the numerial experimentis arried out using the PIC based, massively parallel global nonlinear gyrokinetiode Gyrokineti Tokamak Simulation (GTS). Although the ode is equipped withthe apability to treat general geometry tokamak, however, irular geometry isonsidered for the plasma ross-setion. The average aspet ratio R0/a = 2.86 andaverage a/ρi = 157. The pro�les onsidered for the thermal ions and eletronsare R0/LTe = 6.0{−[(r/a− 0.5)/0.28]6}, R0/LT i = 1.0exp{−[(r/a− 0.5)/0.28]6},
R0/Ln = 6.0exp{−[(r/a − 0.5)/0.28]6}, Te/Ti = 3, q = 0.854 + 2.184(r/a)2. This181



Chapter 6: Interation of miroturbulene with energeti ionsimplies that at r = 0.5a: R0/LTe = 6.0, R0/LT i = 1.0, R0/Ln = 6.0, Te/Ti = 3.0,
q = 1.4, and ŝ = (r/q)dq/dr = 0.78. The total number of marker ions and eletronsis 1.9×108. The radial simulation domain hosen spans from r = 0.1a to r = 0.9a.Regarding the inorporation of the hot ions, we onsider monoenergeti ions withenergy in integral multiples of the thermal ions' energy, with a areful hoie ofthe distribution in pith angle, in order to assure isotropi, passing and trappedpopulation, respetively, for the three ases undertaken. The mass and harge ofthese hot ions are kept the same as the bakground thermal ions. With thesespei�ation, they are inserted on a single �ux surfae at Ψ0 = 0.5a, where thedensity gradient peaks, distributed uniformly in the poloidal and toroidal diretion.It may be noted that the NBI generated hot ions are passing, rf heated ions aremostly trapped, and the α partiles are isotropi in the pith angle. Thus, thepresent study is relevant to all the types of hot ions prevalent in the fusion gradeplasma in a tokamak.6.4.3 Isotropi hot ionsFigure 6.25 depits the time history of the partiles �ux for eletrons arisingfrom the TEM turbulene. The partile �ux is alulated using the relation
Γe =

∫

d3vvEδfe and reorded at r = 0.5a at every time step. The various on-vergene tests for suh a simulation with the same parameters mentioned aboveis disussed elaborately in Ref. [140℄. It is lear from the �gure that initially themode amplitude of TEM remains very weak. Then, after the exponential growthof the linear phase of TEM instability around t = 20Ln/cs, the partile �ux (andassoiated �utuations) starts saturating. We alulate the spatio-temporal evolu-tion of the turbulent �eld intensity over the entire radial domain of simulation asshown in Fig. 6.27. This is important beause it is the turbulent �eld, that inursthe radial transport under study over and above the usual drift motion of the hotions in the presene of equilibrium drifts suh as ∇B and urvature drift, typialof a urved magneti �eld geometry. The typial mode strutures in the linearand nonlinear regime of TEM is depited in Fig. 6.26. Groups of monoenergetihot ions with energy given by Th = Ti, 2Ti, 4Ti, 8Ti, 16Ti, 32Ti, 64Ti, 128Ti areloaded on the �ux surfae Ψ0 = 0.5a where the gradients are maximum, with aisotropi pith angle distribution. The poloidal and toroidal angles, namely, θ and182
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ζ are hosen uniformly on the entire �ux surfae. With the gyrokineti equationEq. (6.4) desribed in the previous subsetion we push the hot ions of various ener-gies and evaluate their positions and veloities at every instant. We alulate themean squared displaement (MSD) for all the energy groups of hot ions, de�nedas

< σ2(ε, t) >=
1

N

i=N
∑

i=1

(ri(ε, t)− ri(ε, 0))
2where, N is the total number of hot ions with energy ε, ri(ε, t) and ri(ε, 0) are,respetively, the radial positions of the ith hot ion with energy ε at time t and

t = 0. Note that the number of hot ions loaded from eah energy group is roughly
6.7 × 105. We arry out the simulation for two situations. First, we infuse thehot ions to the system when there is no TEM instability present and alulate theMSD for eah group of hot ions with di�erent energy. In the seond ase, the sameexperiment is performed but in the presene of TEM turbulene. In Fig. 6.28,left panel depits the evolution of MSD of hot ions of di�erent energy groups inthe absene of TEM turbulene. It is lear from that �gure that the hot ionsundergo regular drift motion; their motion is governed by the equilibrium gradient184
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Figure 6.28: Hot ions are inserted at t = 0Ln/cs, (a) when there is no TEM ativity(left panel) and (b) when TEM turbulene is ON (right panel).and urvature in the magneti �eld and therefore the magnitude of displaementis determined merely by the energy assoiated with the hot ions. The bouneperiod being inversely proportional to the partile veloity, higher energy hot ionsundergo more boune yles than the lower energy hot ions for a given span oftime. The MSD of the hot ions, eventually, beomes onstant with respet to timeas there is no transport in the absene of turbulene and ollisions. The rightpanel of Fig. 6.28 , on the other hand, displays the time evolution of MSD for thehot ions when they are inserted into the system with environment onduive forTEM turbulene set by the above hosen parameters and pro�les. To be notedthat the moment of insertion of hot ions in both ases is t = 0. It is implied fromthe right panel of the �gure that the hot ions undergo equilibrium drift motion till
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Chapter 6: Interation of miroturbulene with energeti ionsleast energeti hot ions are appeared to be the worst a�eted leading to highervalue of MSD. The value of MSD dereases monotonially as the energy of the hotions inreases. This is in ontrast with the ase of the hot ions in the presene ofITG turbulene where the hot ions with Th = 2Ti are observed to su�er maximumdisplaement among all energy groups. It is also apparent from Fig. 6.28 thathighly energeti groups of hot ions suh as Th = 64Ti and Th = 128Ti respond tothe turbulent �eld later than the hot ions with omparatively lower energy andare least a�eted by the turbulent �eld. One may ompare these results with
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Figure 6.29: Hot ions are inserted at t = 70Ln/cs (a) without TEM turbulene(left panel) and (b) in the presene of TEM turbulene (right panel).that where hot ions are inorporated in the nonlinear saturation phase when theTEM turbulene is fully developed. Suh a ase is relevant to a situation whereone has to pump hot ions in a later phase to maintain the plasma temperaturepropitious for fusion. The left panel of Fig. 6.29 displays the measured MSD atevery instant of time for the hot ions without the presene of TEM turbulene,while, the right panel of same, presents the evolution of MSD for hot ions in thepresene of TEM turbulene when inserted at an instant t = 70Ln/cs where theturbulene attains statistial steady state re�eted in Fig. 6.25. Regarding the leftpanel displaying MSD of hot ions in the absene of TEM, the MSD su�ers only ad shift of t = 70Ln/cs ompared to that in Fig. 6.28 without TEM turbulene. Aomparison lari�es that the evolution of MSD in the present ase resembles that186



Chapter 6: Interation of miroturbulene with energeti ionsof the left panel of Fig. 6.28 during �rst t = 70Ln/cs. Regarding the right panelof Fig. 6.29, few important points to be noted here are: �rst, the measured MSD
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Figure 6.31: < σ2 > /tp as a funtion of t for isotropi hot ions.is quite smaller ompared to the earlier ase of Fig. 6.28 (right panel); seond,the usual equilibrium drift motion of the hot ions with lower energy is absent andthird, the higher energy hot ions, for example, Th = 64Ti and Th = 128Ti ontinuedrift motion as they are weakly a�eted by the turbulent �eld. The lower energyhot ions are redistributed the very moment they fall into the turbulent �eld andtherefore do not �nd time to undergo the equilibrium drift motion. 187



Chapter 6: Interation of miroturbulene with energeti ionsThe nature of the radial transport an be understood from the probability den-sity funtion (PDF) of radial displaement of the hot ions in various energy groupsunder onsideration. We have reated 200 bins aross the minor radius between
0.1a and 0.9a and onstruted the PDF by alulating the number of hot ions ineah bin for the ase depited in the right panel of Fig. 6.28, i.e., where the hot ionsare inserted to the system at t = 0. The PDFs of the hot ions of various energygroups with a isotropi distribution in their pith angle are plotted in Fig. 6.30 forradial displaements measured at t = 140Ln/cs. At the same instant, we have alsoalulated the standard deviation σ, skewness s and kurtosis k from the simula-tion data using the relations σ2 = 1

N

∑N
i=1(xi − x̄)2, s =

√
N

∑N
i=1(xi−x̄)

3

{∑N
i=1(xi−x̄)

2}3/2 and
k = N

∑N
i=1(xi−x̄)

4

{∑N
i=1(xi−x̄)

2}2 − 3, where standard deviation σ is normalized to a/ρi = 157.One may note that for a distribution kurtosis estimates the relative peakednessor �atness ompared to the normal distribution, while skewness is a measure ofsymmetry about the mean. In the ase of Gaussian distribution, both kurtosis and
Th/Ti σ k s p1 26.6832 -0.7498 -0.1004 0.60032 26.0714 -0.6994 -0.0802 0.62384 25.1284 -0.6167 -0.0353 0.68138 24.0545 -0.5205 -0.0221 0.773416 23.1709 -0.4419 -0.0099 0.741432 22.1611 -0.3423 0.0353 0.6766Table 6.4: Energy, standard deviation, kurtosis, skewness, exponent p for isotropihot ionsskewness as de�ned above beome zero and infer a normal di�usion. Divergeneof these quantities from zero, therefore, an be onsidered as the signature of anon-Gaussian distribution. A positive kurtosis haraterizes a relatively peakeddistribution while a negative kurtosis haraterizes a relatively �at distribution.On the other hand, a positive skewness (right-skewed) represents a distributionwith longer tail on the right side, while a negative skewness (left-skewed) rep-resents a distribution with longer tail on the left side of the distribution. Thestandard deviation, kurtosis and skewness extrated from the simulation data at

t = 140Ln/cs are also displayed in Fig. 6.30 and separately in Table 6.4. It is ap-parent that the measured distributions for hot ions in all energy groups exhibit non188



Chapter 6: Interation of miroturbulene with energeti ionsGaussian harater implying an anomalous di�usion. Then question remains overwhether the transport as presribed by the non Gaussian harater of distributionis subdi�usive or superdi�usive or ballisti one. This an be onluded by mea-suring the exponent p in the relation < σ2 >= const.tp. For subdi�usion one has
0 < p < 1, while for superdi�usion, 1 < p < 2. The value p = 2 implies a ballistimotion where the veloity remains onstant. To evaluate p we have onsideredthe portion of MSD between t = 70Ln/cs and t = 140Ln/cs where the simulationattains statistial steady state (Fig. 6.25) and determined p from log-log relationbetween < σ2 > and tp. The values of p so alulated are also inluded in Table 6.4.It is apparent that the values of p ome out to be less than 1 for all the energygroups of hot ions suggesting a subdi�usive radial transport for the hot ions underonsideration. Figure 6.31 displays the plots for < σ2 > /tp as a funtion of time tfor the hot ions, with p determined in a way as delineated above. The values of pare displayed in the legend along with the orresponding energies of hot ions. It islear from the �gure that for the values of p extrated, < σ2 > /tp remains virtu-ally onstant within the temporal window between t = 70Ln/cs and t = 140Ln/cs.This exhibition of subdi�usion ould perhaps be asribed to the presene of zonal�ows. The hot ions in their radial exursion might beome trapped in the vortiesgenerated by the interplay between turbulene and zonal �ows. Poloidal drift ouldbe another plausible reason for this subdi�usive harater. This kind of subdi�u-sive nature of transport, in partiular, for radial transport in the presene of driftwave turbulene is sometimes referred to as strange kinetis [147℄. Note that thevalues for various parameters listed in Table 6.4 are not universal.The energy dependene of the observed transport of the hot ions an be esti-mated by alulating the quantity Dh = δ < σ2 > /δt = (< σ2

TEM(t = 140) > − <

σ2
noTEM(t = 140) >)/(t2 − t1), with t2 = 140 and t1 = 0. The signi�ane of thisparameter is that it haraterizes the di�usion oe�ient for a di�usive proess.Though the di�usion oe�ient is de�ned in terms of the standard deviation in-stead of MSD, it an be shown here that the result is same with standard deviationreplaed by MSD. As we start from a single �ux surfae Ψ0 = 0.5a, the middle ofthe simulation domain, the mean value of partiles' position required to determinestandard deviation always remains lose to the the initial position whih is ri(ε, 0)and therefore the MSD and standard deviation give nearly the same result. Fig-ure 6.32 plots Dh for the two ases disussed above, i.e., for hot ions inserted at189
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Chapter 6: Interation of miroturbulene with energeti ions
t = 0 and at t = 70Ln/cs in linear as well as log-log plots. It is lear from the�gure that in both ases Dh varies in the same way with respet to the energy ofthe hot ions in units of the thermal ion energy. The quantity Dh falls o� fasterwith the energy of hot ions for lower energy but a bit slower for the hot ions withhigher energy. The energy dependene, as shown in the log-log plot, appears to beinverse of the energy of the hot ions i.e. (Th/Ti)−1 in the higher energy tail.
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Figure 6.33: Passing hot ions are inserted at t = 0Ln/cs (a) without TEM turbu-lene (left panel) and (b) in the presene of TEM turbulene (right panel).
6.4.4 Passing Hot IonsNext we look at the passing hot ions. Hot ions with their pith angle satisfyingthe loss one ondition v‖/v > √

(1 − Bmin/Bmax) [174℄ where, Bmax and Bmin,respetively, are the maximum and minimum values of the magneti �eld, areinvoked in the �ux surfae Ψ0 at t = 0, and similar to the ase of isotropi hotions we note the MSD at every instant of time for the hot ions with energy Th =

Ti, 2Ti, 4Ti, 8Ti, 16Ti, 32Ti, 64Ti, 128Ti. We follow the same proedure as forthe isotropi hot ions; one push them in the absene of TEM turbulene andmeasure MSD and then do the same in the presene of TEM turbulene. The leftpanel of Fig. 6.33 plots MSD in the absene of TEM turbulene, while the right191



Chapter 6: Interation of miroturbulene with energeti ionspanel plots the same in the presene of TEM turbulene. It is lear that when themode amplitude of TEM is very low, the partiles simply move in the equilibrium�elds in the same way they do in the absene of TEM turbulene. Comparisonwith Fig. 6.28 reveals that the amplitudes of the average squared displaement inequilibrium is less than those in Fig. 6.28. It is beause of the fat that the passingpartiles' perpendiular veloity is very low ompared to those with isotropi pithdistribution arrying a mixture of both passing and trapped partiles.
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Figure 6.34: Trapped hot ions are inserted at t = 0Ln/cs (a) without TEM turbu-lene (left panel) and (b) in the presene of TEM turbulene (right panel).
6.4.5 Trapped Hot IonsThe same experiment has been arried out for the trapped hot ions also. We inor-porate hot ions into the system at t = 0 with pith angle hosen in suh a way thatthey are in the trapped one ditated by the ondition v‖/v <√(1−Bmin/Bmax)[174℄. The energies of the hot ions hosen are Th = Ti, 2Ti, 4Ti, 8Ti, 16Ti, 32Ti,
64Ti, 128Ti. This set of partiles are having a large perpendiular veloity andhene stronger �nite Larmor radius e�et. Figure 6.34 depits the motion of thesepurely trapped hot ions in the absene (left panel) and presene (right panel) ofTEM turbulene. Compared to the earlier ases of hot ions with isotropi and192



Chapter 6: Interation of miroturbulene with energeti ionspassing distribution, the amplitude of the trapped hot ions' MSD during the equi-librium drift motion is the highest. This is beause of the large perpendiularveloity of the trapped hot ions; their mobility is restrited along the �eld dire-tion and most of the movement is only in the poloidal and radial diretions. Thatis why, we reord the highest MSD in the ase of trapped partiles when there isno TEM turbulene or mode amplitude is very weak. Like the other two ases dis-ussed above, these trapped hot ions also exhibit similar motion during the initialperiod when either the system is free of TEM turbulene or amplitude of the modeis very low.6.4.6 Nature of TransportTo haraterize the nature of radial transport of the passing and trapped hot ionswe have again evaluated the PDFs for the two ases independently, following thesame proedure elaborated in the earlier ase of isotropi hot ions. These PDFsfor all energy groups of hot ions under disussion, are portrayed in Fig. 6.35 forthe passing (upper panel) and trapped (lower panel) hot ions. The orrespondingvalues of the standard deviation σ, kurtosis k and skewness s, as extrated from thesimulation data at t = 140Ln/cs are also displayed in the legend for eah groupof hot ions. It is lear that the PDFs are substantially deviated from Gaussianimplying non-di�usive transport again. We have estimated the exponent p fromthe relation < σ2 >= const.tp in a similar fashion as in the ase of isotropi
Th/Ti σ k s p1 26.2631 -0.7460 -0.1456 0.56382 25.5805 -0.7043 -0.1165 0.70484 25.4547 -0.6699 -0.0809 0.64538 24.8399 -0.5989 -0.0492 0.728516 24.3184 -0.5637 -0.0240 0.754332 22.1076 -0.4623 -0.0100 0.7517Table 6.5: Energy, standard deviation σ, kurtosis k, skewness s and exponent p in

< σ2 >∝ tp for the passing hot ionshot ions. All the values of p are found to be well below 1 evining subdi�usiveradial transport. We plot < σ2 > /tp as a funtion of t, for di�erent values of p in193
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Figure 6.36: < σ2 > /tp as a funtion of t for passing hot ions.
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Th/Ti σ k s p1 27.0994 -0.7722 0.0099 0.46832 26.3276 -0.7070 0.0429 0.47314 25.0192 -0.5861 0.0796 0.52968 22.7906 -0.4143 0.0764 0.734016 21.6391 -0.2775 0.0798 0.547832 22.1823 -0.2101 0.1160 0.4659Table 6.6: Energy, standard deviation σ, kurtosis k, skewness s and exponent p in

< σ2 >∝ tp for the trapped hot ions 195



Chapter 6: Interation of miroturbulene with energeti ionsFigs. 6.36 and 6.37 for the passing and trapped hot ions respetively. It is evidentfrom both �gures that < σ2 > /tp remains roughly onstant for the extratedvalues of the exponent p orroborating the fat that the hot ions, whether passingor trapped exhibit subdi�usive nature. The values of standard deviation, kurtosis,skewness, and exponent p, extrated from the simulation data are displayed inTables 6.5 and 6.6 for the passing and trapped partiles respetively. Again, wewant to omment that these values are not universal.6.4.7 Energy Saling of Hot IonsNext we evaluate the energy dependene for the radial transport of passing andtrapped hot ions. The energy dependene of net MSD, normalized by the timeinterval from t = 0 to t = 140Ln/cs is presented in Fig. 6.38 for the passing (upperpanel) and trapped partile (lower panel), respetively, in linear plot. The orre-sponding log-log plots are displayed in Fig. 6.39. The quantity Dh = δ < σ2 >

/δt = (< σ2
TEM(t = 140) > − < σ2

noTEM(t = 140) >)/(t2 − t1), with t2 = 140and t1 = 0 is plotted as a funtion of Th/Ti in the �gures. It is lear that Dh fallsvery rapidly in the lower energy range of the hot ions, while deays slowly for thehigher energy of the hot ions (Fig. 6.38). This implies that TEM turbulene is moredominant on the hot ions with lower energy but weakly a�ets those with higher en-ergy. From the power law Dh = const.(Th/Ti)
a, it appears that transport sales as

(Th/Ti)
−1 for purely passing hot ions, while it falls as (Th/Ti)−2 for purely trappedhot ions in the higher energy limit of the hot ions (Fig. 6.39). The gyroaveragingand orbit averaging along with wave partile resonane are the fators aountingfor this type of power law for the hot ions transport. For passing hot ions only or-bit averaging (∼ (Th/Ti)

−1/2) and wave partile resonane in the parallel diretion(∼ (Th/Ti)
−1/2) ontribute to the energy saling giving it a (Th/Ti)

−1 dependene.In ontrast, gyroaveraging is the extra parameter that ontributes to the trappedhot ions' energy saling. Thus, gyroaveraging (∼ (Th/Ti)
−1/2), drift orbit averag-ing (∼ (Th/Ti)

−1/2) and drift boune resonane [175℄ (∼ (Th/Ti)
−1) altogether givea ((Th/Ti)−2) saling for the trapped hot ions. The observed (Th/Ti)

−1 saling ofthe isotropi hot ions suggests (Fig. 6.32) that the transport of these hot ions isperhaps dominated by the passing hot ions.It is to be noted that very long time simulations are omputationally very expen-196



Chapter 6: Interation of miroturbulene with energeti ions

0 50 100
0

1

2

3

4

5

6

T
h
/T

i

D
h(a

/ρ
i)2

 

 

Passing Particles

0 50 100
0

1

2

3

4

5

6

T
h
/T

i

D
h(a

/ρ
i)2

 

 

Trapped Particles

Figure 6.38: (a) Upper panel: Dh versus energy of the hot ions for passing distri-bution, (b) Lower panel: Dh versus energy of the hot ions for trapped distributionin linear sale.
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Chapter 6: Interation of miroturbulene with energeti ionssive in the ase of TEM turbulene as one has to resolve the eletron time salesalong with that of the ions. However, on the basis of the ross heks arried outin ITG mode simulation of the previous setion by doubling the simulation time,we believe that the results of the present setion will remain qualitatively sameeven if we wait for our simulation to attain strit quasisteady state by lengtheningthe simulation time.6.5 ConlusionIn the �rst part of the present work we have eluidated the e�et of the energetiions on the thermal ion temperature gradient mode. For the purpose we use aglobal linear gyrokineti ode EM-GLOGYSTO, where the energeti partiles areadded nonpurterbatively. We onsider all the three speies namely, thermal ions,eletrons and energeti ions nonadiabatially, where the density perturbation ofthe respetive speies ontains all the kineti e�ets, suh as, Landau resonane,magneti drift resonane, transit resonane, �nite Larmor radius e�et, et. How-ever, for simpliity we neglet the trapped partiles and magneti �utuation inthe present analysis. We believe that the inlusion of these would not hange thee�et of energeti ions on the ion temperature gradient mode of the thermal ionsqualitatively. We onsider di�erent η pro�les for the energeti ions ompared tothe bakground thermal ions, to see if at all there is any e�et of the energetiions' η pro�le on the ion temperature gradient mode. However, all the three asesof di�erent η pro�les show the same result qualitatively and quantitatively. Thus,we �nd that the energeti ions irrespetive of the η pro�le are stabilizing for theion temperature gradient driven mode. In the ase of He ions the stabilization isfurther enhaned. The stabilization is thought to be brought about by the dilu-tion of the bakground thermal ions that drive the ion temperature gradient mode.Usually, the ion temperate gradient mode is observed to be stabilized by varietyof fators, e.g., inreasing fration of Ti/Te, impurity, eletromagneti e�et, iontransit term, k‖v‖, et. Thus, one may add another stabilizing fator to the list,that is, the presene of the energeti ions in the system. This kind of stabilization isexperimentally observed [130, 131℄. The stabilization is strongly dependent on theenergeti ion population with respet to the thermal ions. The growth rate of the199



Chapter 6: Interation of miroturbulene with energeti ionsITG mode dereases almost linearly with the inreasing fration of the energetiions' population. The omplete stabilization ours at nf/ne ≥ 0.35 for the singlyharged energeti ions. He ions on the other hand, have stronger e�et on the ITGmode. The stabilization shows the same trend as the singly harged ions but fallsmore rapidly and one observes omplete stabilization at nf/ne ≥ 0.15. The stabi-lization inurred by these energeti ions however is pronouned only at the lowerenergy region of the energeti ions. The strong hange in the growth rate as wellas the mode frequeny of the ITG mode is observed only in the region Tf/Te ≤ 10beyond whih, the mode frequeny and growth rate, both remain insensitive tothe temperature variation of the energeti ions. This an be understood as thatonly in the low energy region of these energeti ions, the ion temperature gradientmode and energeti ions an interat e�iently and therefore the e�et of eahother on their respetive properties is reasonable only in this regime of lower tem-perature or lower energy of the energeti ions. Thus, one may antiipate that theHe ash in the fusion plasma an play a signi�ant role in the stabilization of theITG mode and thus in the redution of ion energy and partile loss from the oreof the tokamak. An estimation of the transport is arried out by alulating thethermal di�usivity on the basis of mixing length theory. The di�usivity is foundto be redued signi�antly in the presene of the energeti ions. The He ions arefound to have stronger e�et on the thermal ion di�usivity.In the seond part, the transport of hot ions indued by the ion temperaturegradient driven turbulene is studied using the global nonlinear gyrokineti odeGTS, and with the aid of passive traer method. The hot ions, treated as passivepartiles are pushed in the turbulent �eld using the gyrokineti equations. At everyinstant of time the mean squared displaement and standard deviation for the hotions are reorded. The probability distribution funtion for radial displaementis also estimated along with orresponding kurtosis and skewness. The nature oftransport is determined by evaluating the exponent p from the relation< σ2 >∝ tp.The major results an be itemized as follows.
• The MSD for a given group of hot ions haraterized by a given energyinreases with the inrement in the system size.
• The MSD for all groups of energy of hot ions shows signature of saturationfor a/ρi = 157, inreases linearly at �rst, then shows a weak tendeny to200



Chapter 6: Interation of miroturbulene with energeti ionssaturate for a/ρi = 315 and inreases almost linearly for a/ρi = 500 after theinitial abrupt rise for all the three ases with respet to time.
• For all the ases of system size under onsideration, hot ions transport ismaximum for Th = 2Ti and dereases monotonially with inreasing energy,with a tendeny of saturation at higher value of hot ion energy for the hosenparameters.
• For energy below Th = 16Ti, the transport of hot ions exhibits signi�antdependene on the system size; it is maximum for a/ρi = 500 and dereaseswith the dereasing system size. However, at Th = 16Ti transport is nearlythe same for all the three values of system size. One expets that it onvergesto the same value for the hot ions with energy beyond Th = 16Ti. Thus, onean onlude that while transport of hot ions with lower energy dependsstrongly on the system size, for hot ions with higher energy, in ontrast, itremains pratially independent of the system size.
• It is evident that as the system size inreases till a/ρi = 315, Dh inreaseslinearly, while the inrement is very minor beyond this point showing a ten-deny of saturation at higher value of the system size. Thus, with inreasingsystem size, transport of hot ions for all groups of energy starts inreasinginitially and shows trend of saturation for larger system size.
• The exponent p in < σ2 >∝ tp is found to be smaller than 1 for smallerdevie size, whih gradually inreases with inreasing system size and �nallyapproahes unity for larger system size. This indiates that the transportproess, in the smaller mahine size is subdi�usive for thermal as well as hotions, whih however beomes di�usive for larger devie size. The measure-ment of PDF, kurtosis and skewness orroborate the onlusion derived fromthe values of p
• The hek for quasisteady state and robustness of p reveals that the re-sults remain qualitatively the same. For the purpose, we have doubled thesimulation time (t = 2500LT/vthi) suh that the simulations are well in aquasisteady state. We have evaluated the mean p again and observed that201



Chapter 6: Interation of miroturbulene with energeti ionsthe values of p remain nearly same as the old p values evaluated in the shorttime simulations (t = 1200LT/vthi).The e�et of TEM turbulene on the hot ion radial transport in tokamaks isstudied in the last part of the present work. Results are demonstrated for threeases, di�ering in the pith angle distribution; ase (1) isotropi hot ions, ase(2) purely passing hot ions, and ase (3) purely trapped hot ions. For isotropidistribution, we have illustrated the results for two ases. In the �rst ase, hotions are inserted at t = 0 before the trapped eletron mode turbulene omesinto existene, while in the seond ase, hot ions are introdued at a later time at
t = 70Ln/cs, that is, in the nonlinear saturation phase when TEM turbulene isfully developed. The probability density funtion (PDF) of radial displaement isonstruted for eah ase for all the energy groups of hot ions. Also the energydependene of hot ions' radial transport is evaluated in the present study. Themajor �ndings are given in the following.

• The mean squared displaement is the highest for the hot ion speies withenergy equal to the thermal ions' energy and dereases monotonially withthe energy of the hot ions for all the ases enapsulated in the present study.
• The transport proess exhibits anomalous harater. The PDFs of the hotions show deviation from Gaussian irrespetive of energy and pith angledistribution. Evaluation of kurtosis, skewness and the exponent p in thepower law < σ2 >∝ tp suggests subdi�usion for radial transport in small tomedium size mahines.
• Radial transport of the isotropi and purely passing hot ions manifests aninverse dependene on their energy, while that of the purely trapped hotions demonstrates an inverse square dependene on energy. This means thatthe higher energy trapped hot ions are less likely to be redistributed by theturbulent �eld than the passing and isotropi hot ions.
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Chapter 7Conlusionand Future Diretion
7.1 ConlusionsIn Chapters 2 and 3, we have foused on the e�et of treating the eletrons on thesame physis footing as the ions, i.e., fully nonadiabati/kineti eletrons usingEM-GLOGYSTO based on a 2-D linear, global, gyrokineti model. The modelinludes both passing and trapped partiles, pro�le variations, true ion to ele-tron mass ratio, arbitrary order FLR e�ets, transit/trapped partile resonanes,poloidal and radial oupling. A omprehensive desription of ion temperaturegradient (ITG) mode, trapped eletron oupled ion temperature gradient drivenmode (ITG-TEM), and trapped eletron mode (TEM) in the presene of the pass-ing nonadiabati eletrons has been provided.We have observed rise in the linear growth rate of the ITG mode, ITG-TEM,and TEM in the presene of kineti/nonadiabati eletrons. The linear, globalmode strutures are broken apart near the mode rational surfaes where the par-allel wave vetor (k‖) is zero. The phase lag between potential and density pertur-bations introdued by the kineti eletrons near the mode rational surfaes makesthese modes further unstable. The perpendiular wave vetors rise beause of theprodution of the short sales near the mode rational surfaes. This, eventually,results in the redution of the mixing length estimate of the transport of thermalions below the adiabati eletron model. However, nonlinear global simulations203



Chapter 7:Conlusion and Future Diretionwill be neessary to on�rm this fat, onsidering that there are situations wherenonlinear e�ets tend to introdue larger sales, e.g., in the ase of inverse as-ades, and where mixing length estimates have proven wrong. It is perhaps worthnoting that a �ux-tube model with orret implementation of magneti shear andboundary onditions along the magneti �eld line should also be able to reproduethe �ne radial strutures at the mode rational surfaes resulting from nonadia-bati passing eletron dynamis. Although, to our knowledge, suh features havenot been learly and omprehensively pointed out in the past literature, one mayite Ref. [62℄ whih has reported the breaking of global mode struture near moderational surfaes in the presene of the kineti eletrons.We have presented some features of the eletron temperature gradient (ETG)driven mode using the linear, global, gyrokineti model in toroidal geometry thattreats both speies, namely, ions and eletrons fully gyrokinetially, taking intoaount all the kineti e�ets. The e�et of Debye Shielding, breaking of isomor-phism of ITG and ETG modes even in the eletrostati limit when the other speiesis onsidered fully gyrokinetially are revealed one by one. Also, the global modestruture and stability properties of the low-n (toroidal mode number) toroidaluniversal mode driven by the density gradient in the presene of �nite toroidiityon the intermediate sale in k⊥ρLi, along with its oupling to the trapped ele-trons have been studied perhaps for the �rst time to our knowledge using theglobal, linear, gyrokineti model. The model onsiders both passing eletrons andions to be fully nonadiabati inorporating toroidal oupling e�ets, magneti driftresonanes, Landau resonane e�ets, transit harmoni resonanes, �nite Larmorradius to all orders, and orbit width e�et for both speies. The e�et of �nite β isalso studied in the frame of an eletromagneti model that retains the transversemagneti perturbation.The steep density pro�les are observed to a�et the ITG modes dramatiallymaking the latter unstable even at higher wave number regime. At this higherwave number regime the ITG mode, in general, remains stable. However, if thedensity gradient is strong enough, the ions an at nonadiabatially at the higherwave number regime giving rise to what is alled the short wavelength ion tem-perature gradient (SWITG) mode. We have presented the features of the SWITGmode in the presene of trapped eletrons using EM-GLOGYSTO. A ompari-son of parametri dependenies for the two ases of the SWITG mode with and204



Chapter 7:Conlusion and Future Diretionwithout the trapped eletrons is presented. In line with the global model, we alsoompare the results from a loal gyrokineti model for the two ases, with andwithout the trapped eletrons. The trapped eletrons have strong e�et on theSWITG modes raising the growth rate substantially. The two dimensional modestruture of the SWITG mode has been found to be quite global oupying a on-siderable fration of the tokamak ross setion for the hosen set of parametersestablishing the neessity of a global model to study suh a phenomenon. It a-quires toroidal like nature in the presene of the trapped eletrons. The inreasedfration of the trapped eletrons with inreased toroidiity is the main fator be-hind this �ipping of the mode from the slab nature to toroidal nature. The modevanishes below a ritial ηi; it transforms itself from the dominantly ion mode tothe dominantly trapped eletron mode when e�ets of trapped eletrons are takeninto aount. No signi�ant di�usivity (mixing length estimate) is observed athigher kθρLi where the SWITG mode is strongest for both ases with and with-out the trapped eletrons. This fat is orroborated by the nonlinear simulationusing the ode Gyrokineti Eletromagneti Numerial Experiment (GENE). Theestimate of relative ontribution of the higher kyρs part of the heat �ux spetrumorresponding to the SWITG mode reveals that the ontribution of the SWITGmode to the total heat �ux is very low ompared to the ontribution from thelower ky part of the spetrum typially belonging to the standard ITG mode. Thezonal �ow shearing rate has been found to be muh higher than the linear modefrequeny and growth rate of the SWITG mode suggesting that the zonal �owsare the main saturation mehanisms of the SWITG turbulene. The higher zonal�ow shearing rate appears to ompensate for the higher growth rate of the modeleading to a minimal ontribution to the thermal ion heat �ux from the higher
kyρs part of the spetrum relevant to the SWITG mode irrespetive of the densitysale length whih determines the strength of the SWITG mode with respet tothe standard ITG linearly. One may note that in real experiments steep densitypro�les are often observed during the formation of transport barriers. However,suh steep pro�les happen to our in the presene of reverse shear. Therefore,it ould be interesting to see how the properties of SWITG mode hange in thepresene of the nonmonotoni q pro�le. It also is equally possible that suh steeppro�les an a�et the TEM and eletron temperature gradient (ETG) modes. Suhissues remain to be addressed. 205



Chapter 7:Conlusion and Future DiretionThe physis of energeti ions in the burning plasma is now a topi of immenseinterest. Their population has been observed to have tremendous impat on theMHD and non-MHD ativities in the tokamak plasma. A omputationally e�ientmeans to study the e�et of these energeti ions on the ITG mode is to inorporatethem linearly into the existing global gyrokineti model of EM-GLOGYSTO. Weonsider all the three speies namely, thermal ions, eletrons and energeti ionsnonadiabatially, where the density perturbation of the respetive speies ontainsall the kineti e�ets, suh as, Landau resonane, magneti drift resonane, transitresonane, �nite Larmor radius e�et, �nite orbit width e�et, et. We observethat the energeti ions irrespetive of the η pro�le are stabilizing for the ion tem-perature gradient driven mode. In the ase of He ions the stabilization is furtherenhaned. The stabilization is thought to be brought about by the dilution of thebakground thermal ions that drive the ion temperature gradient mode. The sta-bilization is strongly dependent on the energeti ion population with respet to thethermal ions. The growth rate of the ITG mode dereases almost linearly with theinreasing fration of the energeti ions. He ions on the other hand, have strongere�et on the ITG mode. The stabilization inurred by these energeti ions howeveris pronouned only at the lower energy region of the energeti ions. Thus, one mayantiipate that the He ash in the fusion plasma an play a signi�ant role in thestabilization of the ITG mode and thus in the redution of ion energy and partileloss from the ore of the tokamak. The mixing length estimate of di�usivity isobserved to be redued signi�antly in the presene of the energeti ions. TheHe ions are found to have stronger e�et on the thermal ion di�usivity. However,nonlinear simulation, although seems to be very expensive omputationally, wouldbe required to see the nonlinear evolution of the ITG mode in the presene ofenergeti ions along with onomitant impat on thermal ion heat �ux.The e�et of the miroturbulene on the energeti ions, on the other hand, isanother issue of great onern. The reent experiments on the redistribution ofthe energeti ions have given impetus to the investigation of prospetive e�et ofturbulent �eld on the energeti ions. Inspired by it, the transport of energetiions indued by the ITG mode and TEM turbulene is studied using the global,nonlinear, gyrokineti ode Gyrokineti Tokamak Simulation (GTS), and with theaid of the passive traer method. The energeti ions, treated as passive partilesare pushed in the turbulent �eld using the gyrokineti equations. The observed206



Chapter 7:Conlusion and Future Diretiontransport of energeti ions is found to have strong dependene on the size of thesystem and their energy. The transport redues as the energy of the energeti ionsinreases. Also, the subdi�usive nature of transport for small system size trans-forms into the di�usive one for bigger system size. The magnitude of transportinitially inreases with system size and then saturates at larger system size. Radialtransport of the isotropi and purely passing hot ions manifests an inverse depen-dene on their energy, while that of the purely trapped hot ions demonstrates aninverse square dependene on energy in the presene of the TEM turbulene. Thismeans that the higher energy trapped hot ions are less likely to be redistributedby the turbulent �eld than the passing and isotropi hot ions.7.2 Future WorkIn most of the studies using the global, linear, gyrokineti ode EM-GLOGYSTO,we have simpli�ed the model by ignoring many other interesting physis issues.The equilibrium �ows as well as eletromagneti and Shafranov shift e�ets an, inertain ases, be important for the instabilities that were studied in these hapters.One would therefore be urious to see how these fators an hange the existingresults.It is also to be pointed out here that the trapped partiles model onsidersdeeply trapped partiles only. The barely trapped partiles or those near thepassing trapped boundary have been exluded. Also, the passing partiles areonsidered as fully or deeply passing keeping v‖ onstant with respet to time.In the linear model, the numerial solution exists for only the unstable modes,i.e., modes with positive growth rate. This model an be upgraded to be able to�nd the damped modes also as that of the work detailed in Ref. [22℄. It will helpto predit the thresholds of the instabilities more orretly.Chapters 4 and 5 deal with the universal toroidal drift instability and shortwavelength ion temperature gradient modes whih are unstable in the the preseneof steep density pro�les, i.e, strong density gradient. However, suh steep pro�leshappen to our in the presene of reverse shear during the formation of transportbarriers. Therefore, it ould be interesting to see how the properties of these modeshange in the presene of the nonmonotoni q pro�le. It also is equally possible207



Chapter 7:Conlusion and Future Diretionthat suh steep pro�les an a�et the TEM and eletron temperature gradient(ETG) modes. Suh issues remain to be addressed. The nonlinear results on theSWITG mode are given in the presene of adiabati eletrons. However, additionof trapped eletrons in the nonlinear simulation will allow one a broader study onthe nonlinear SWITG mode and nonlinear TEM in the presene of steep densitypro�le.The present linear model equipped with the energeti ions is valid only for theeletrostati ase. This an be extended to inorporate eletromagneti pertur-bations. This would enable one to study the kineti ballooning mode, energetipartile modes, toroidal Alfven mode, et. Also, we have shown the results foronly one value of a/ρi. A omplete a/ρi san would help one to projet the resultsto ITER like sales.The role of miroturbulene in the transport of the energeti ions is studied us-ing the nonlinear, global, gyrokineti ode GTS. In the present work, the energetiions have been onsidered as passive partiles, i.e., they do not ontribute to the neteletri �eld and hene do not enter the gyrokineti Poisson equation. This modelan be made more onsistent and hene more e�etive by inorporating these en-ergeti ions as a third ative speies that would ontribute to the net �eld. Thiswill allow one to investigate the e�et of the energeti ions on the miroinstabili-ties suh as ITG mode, TEM, et., in the nonlinear phase. Moreover, it would beinteresting to setup a lower dimensional mathematial model and ompare it withthe results of our simulations. The partile pinh e�et has emerged as an areaof intense researh in tokamak plasmas. It may be interesting to investigate thee�et of energeti partile pinh in the presene of miroturbulene while studyingnondi�usive transport. Inlusion of nonadiabati eletrons in the ITG turbulenestudies will make the investigation more omprehensive.
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