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ABSTRACT

The present dissertation is dedicated to the study of the stability and transport
properties of many microinstabilities which play an important role in causing
anomalous transport of energy and particles in tokamaks using global, linear and
nonlinear, gyrokinetic formulations. In particular, it highlights (1) effects of the
nonadiabatic passing electrons on the ion temperature gradient (ITG) mode, trapped
electron coupled ion temperature gradient mode (ITG-TEM) and trapped electron
mode (TEM) by linear, global, gyrokinetic numerical study; (2) the behaviour of
the ion temperature gradient driven modes in the presence of highly steep density
profile typically observed in the transport barriers inside the tokamak; a linear and
nonlinear gyrokinetic study on the occurrence of the short wavelength ion tempera-
ture gradient mode (SWITG); (3) a linear, global, gyrokinetic stability analysis of
the universal toroidal mode, which although is thought to be ubiquitous, yet over-
shadowed by the temperature gradient driven modes; (4) the stabilization of the
microinstabilities by the hot ions (those ions having temperature higher than the
thermal ions), and finally, the redistribution of the hot ions by microturbulence
with the help of linear and nonlinear, global, gyrokinetic simulations.

The role of the nonadiabatic passing electrons on the ion temperature gradient
and trapped electron modes has been studied. Addressing the fully nonadiabatic
passing electrons in time dependent linear and nonlinear codes has been an uphill
task in the presence of full ion dynamics with true ion to electron mass ratio in
terms of the computational cost. These particles are therefore considered either
adiabatic or nonadiabatic with reduced ion to electron mass ratio. Thus, the
effect of these nonadiabatic passing electrons on the growth rate and global mode
structures of the ITG mode, ITG-TEM and TEM is often overlooked. With a
global, spectral, gyrokinetic model it is possible to incorporate the full dynamics
of the passing nonadiabatic electrons in the linear limit without any assumption
regarding the ion to electron mass ratio. Strong effects of these nonadiabatic
passing electrons near the mode rational surfaces where & — 0 on the I'TG mode,
ITG-TEM and TEM have been observed.

The veracity of a nonadiabatic passing electron model is established only if it
can produce modes inherent to the nonadiabatic passing electrons, one of which is

the electron temperature gradient driven (ETG) mode. We have thus, extended
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our study from the ion scales of ITG mode, ITG-TEM and TEM to the electron
scales of the ETG mode and compared it with the already known results on the
ETG mode. With the inclusion of the space charge effect in the form of Debye
shielding, the model enables one to study the pure ETG mode in the presence of
fully nonadiabatic ions.

The density gradient driven instability, known as the universal drift instability,
is studied in the toroidal geometry and its linear properties have been discussed
in both electrostatic and electromagnetic limit. The global mode structure and
stability properties of the low-n (toroidal mode number) toroidal universal mode
along with its coupling to the trapped electrons have been studied perhaps for the
first time to our knowledge.

Although ions are considered adiabatic at shorter wavelength or high wave
number regime, they can behave nonadiabatically giving rise to a temperature
gradient driven mode even at the high wave number regime. This mode, hitherto
known to be slab like, is named as the short wavelength ion temperature gradient
(SWITG) mode and studied only in the local limit. We have presented a linear,
global, gyrokinetic study of the mode and shown that in the presence of trapped
electrons this mode can be further unstable and exhibit toroidal nature. A nonlin-
ear, flux tube, gyrokinetic simulation of the SWITG mode also has been carried
out which shows that in spite of the linear dominance of the mode compared to
the standard ITG mode, the former has very low contribution to the net thermal
ion transport.

The behaviour of the energetic ions in tokamak plasmas is another issue that
has derived much attention in the fusion community. Presence of these particles
are inevitable in the fusion grade plasmas because of the various auxiliary heat-
ing schemes and fusion produced « particles. The study of the influence of these
energetic ions on the kinetic ballooning mode (KBM), toroidal Alfven eigenmode
(TAE), etc., is very much important. These particles can give rise to the unsta-
ble modes on their own, for example, energetic particle modes (EPM). We as a
first step, have incorporated a second species of ions with higher energy than the
thermal ions to a existing linear, global, gyrokinetic model and studied its effects
on the ITG modes. It is observed that these energetic particles stabilize the ITG
mode strongly. The He ions are found to be more stabilizing. Conversely, the

effect of the microturbulence driven by the ITG mode and TEM on the energetic

13



ions is studied considering the energetic species as passive tracers using a global,
nonlinear, gyrokinetic simulation. Microturbulence plays an important role in the
redistribution of the energetic ions. The system size dependence and energy scaling
of the energetic ions have been discussed. The transport of passing and trapped

energetic ions is found to display different energy scalings.

14



Contents

List of Figures . . . . . . . . . . . . .. .. ... . iii

List of Tables . . . . . . . . . . .. ... ... ... . ... .. Xviii

1 Introduction 1
1.1 Magnetically Confined Fusion and Its Prospects . . . . . . .. ... 1
1.2 Brief Review of Earlier Works . . . . . . .. .. .. ... ...... 5
1.3 Thesis Outline . . . . . . . . . . . . ... 15

2 Role of nonadiabatic/kinetic passing electrons in global electro-

static ion temperature gradient driven modes in a tokamak 17
2.1 Introduction . . . . . . .. ... 17
2.2 Model Equations . . . ... ... .. ... ... 19

2.2.1 Diagnostics: Eigenmode-averaged quantities . . . . . . . .. 27

2.2.2  Normalization for full radius calculation . . . . .. ... .. 27
2.3 Eigenvalue finding method . . . . . . . ... ..o 28
2.4 Results and Discussion . . . . . . .. ... oL 29

2.4.1 n-scan: Effect of variation of 7., multiscale features and mix-
ing length transport . . . . ... ..o 29
2.4.2 n; scan: Nonadiabatic electrons cause down-shift of critical n; 37
2.5 Conclusion . . . . . .. L 38

3 Trapped Electron Coupled Ion Temperature Gradient Mode And
Trapped Electron Mode In The Presence Of Nonadiabatic Passing

Electrons 40
3.1 Introduction . . . . . . . . .. 40
3.2 Model equations . . . . . . .. ... 42

3.3 Results and Discussion . . . . . . . . . . . ... 46



3.3.1 Trapped Electron Mode . . . . ... .. ... ........ 54

3.4 Conclusion . . . . . . . ... 59
Modes inherent to nonadiabatic/kinetic passing electrons 62
4.1 Introduction . . . . . . . .. ... 62
4.2  Electron Temperature Gradient Driven Mode . . . . . . . . .. .. 64
4.2.1 Profiles and Parameters . . . . ... .. ... ... ... .. 64
4.2.2 Pure ETG Mode . . ... ... .. ... .. .. ....... 65
4.2.3 Mixing length estimate of lux . . . . . ... ... ... ... 76
4.3 Toroidal Universal Drift Instability: A Global Gyrokinetic Study . . 79
4.3.1 Model equations . . . . . .. ... ... L. 79
4.3.2 Results and Discussion . . . . . . ... ... . ... ... .. 81
4.4 Conclusions . . . . . . . . . . .. 96

Short wavelength ion temperature gradient mode and coupling

with trapped electrons 101
5.1 Imtroduction . . . . . . .. . ... 101
5.2 Linear SWITG . . . . . . . . . . . . . . . 103
5.2.1 Model Equations . . . . .. ... .. ... ... ....... 103
5.2.2 kgpr;Scan . ... 105
523 e, Scan ... e 113
D24 mpScan . ..o 118
5.25 T Scan . ... 121
5.2.6  Mixing Length Estimation . . . . .. .. .. ... ... ... 122
5.3 Nonlinear SWITG . . . . . . ... ... . . .. 123
5.3.1 The Model . . . . . . . . .. ... ... 123
53.2 Results. . . . . .. . .. 128
5.4 Conclusion . . . . . . . . .. e 136
Interaction of microturbulence with energetic ions 140
6.1 Introduction . . . . . . . . . .. .. 140
6.2 Effect of energetic ions on the stability of temperature gradient
driven mode of thermalions. . . . . . . . ... ... ... ...... 143
6.2.1 Model equations . . . . . .. ..o 144
6.2.2 Profiles and Parameters: . . . . . .. .. ... ... ... .. 145

ii



6.2.3 Wave number scan for the mode frequency and growth rate . 146

6.2.4 Effect of density fraction of energetic ions . . . . . . . . .. 148
6.2.5 Effect of temperature of the energetic ions . . . . . . . . .. 150
6.2.6 Mixing length estimate of transport . . . . . . . .. ... .. 152
6.3 Size and energy scaling of hot ion transport in the presence of ion
temperature gradient driven turbulence. . . . . ... ... ... .. 154
6.3.1 Simulation Model . . . . . . .. ... oL 157
6.3.2 Parameters and profiles. . . . . . ... ... ... 158
6.3.3 Heat flux of thermalions . . . . . . .. ... ... ... ... 158
6.3.4 Mean Squared Displacement of hot ions. . . . . .. ... .. 161
6.3.5 Nature of transport: Energy Scaling. . . . . ... ... ... 163
6.3.6 Nature of Transport: Size scaling . . .. ... ... ... .. 164

6.3.7 Check for quasisteady state and robustness of the results . . 171
6.3.8 Plausible explanation for subdiffusion . . . . . ... ... .. 178

6.4 Radial transport of energetic ions in the presence of trapped electron

mode turbulence. . . . ... ... L L 180
6.4.1 Simulation Model . . . . . . .. ... ... L L. 181
6.4.2 Parameters and Profiles . . . . ... ... ... .. ..... 181
6.4.3 Isotropic hotions . . . . . ... ... .. ... ........ 182
6.4.4 Passing Hot lons . . . . . ... ... .. ... ... .. 191
6.4.5 Trapped Hot Tons . . . . . . . . ... ... ... ... 192
6.4.6 Nature of Transport . . . . ... ... ... ... ...... 193
6.4.7  Energy Scaling of Hot Tons . . . . . . ... ... ... .... 196
6.5 Conclusion . . . . . . . . ... 199
Conclusion
and Future Direction 203
7.1 Conclusions . . . . . . . . . . .. 203
7.2 Future Work . . . . . . . . . . .. 207

Bibliography . . . . . . . . 209

iii



List of Figures

2.1

2.2

2.3

2.4

2.5

Equilibrium profiles for global ITGs stability studies (parameters for
Table 2.1: Normalized density, temperature, 7; . (left), Safety factor
q and magnetic shear § (right) profiles as functions of normalized
radius s = r/a. Note that n peaks at s =p/a=s50=06 . ... ..
Growth rates and frequencies for profiles in Fig. 2.1: Growth rate
and real frequency w, for n;(sg) = 2 with adiabatic electron model

and nonadiabatic electron model characterized by increasing 7.

Two-dimensional eigenmode structure of global ITG at n = 9, 7;(so) =

2 for adiabatic electron response (left panel) and nonadiabatic elec-
tron response (right panel) at 7.(so) = 2. Global nature of the mode
is clearly visible covering about 30% of the minor radius. . . . . .
The poloidal Fourier components for electrostatic mode shown in
Fig. 2.3. Note that at each radial location, there are several poloidal
harmonics coupled. A few locations where &y, = 0 (i.e, ng = m)
are indicated on the top axis. Nonadiabatic electrons introduce
sharp structure near these points. . . . .. .. ... ... ... ..
Radial Fourier harmonics for each poloidal mode for the electro-
static mode shown in Fig. 2.3. Here we have used 144 modes. For
numerical convergence, we have tested with larger number of radial

harmonics and observe that the results are converged. . . .. . ..

31

iv



2.6 Typical per-mode phase velocity w, /K|, versus normalized minor
radius s = r/a for equilibrium profile of ¢ shown in Fig. 2.1 with
Ne(s0) = 8, ni(so) = 2, n = 9. Locations of peaks (r = ryrs)
indicate mode rational surfaces. The horizontal dashed lines are the
electron thermal velocities v/ and v/ at radial locations at the
beginning (s=0.4) and end (s=0.7) of mode structure, respectively.
The horizontal dashed-dotted lines are ion thermal speeds at same
locations as the electrons. . . . . ... ..o

2.7 Closeup of two dimensional eigenmode structure of global ITG at
n =9, n;, = 2 for (a) adiabatic electron response, (b) nonadiabatic
electron response at 7.(sp) = 2 and (c) same as (b) at n. = 8(sg).

2.8 Eigenmode averaged normalized mode numbers < kgpy; > (squares),
< kypr; > (diamonds), < k, pr; > (stars) as a function of toroidal
mode number n at 7;(sg) = 2; (a) adiabatic electron response, (b)
nonadiabatic electron response at 7.(sg) = 2, and (c) same as (b)
at Me(S0) = 8. o o

2.9 Mixing length estimate for transport coefficient Dy = v/ < k? >
in gyro-Bohm units as a function of toroidal mode number n; 7;(sg) =
2 for (a) adiabatic electron response (solid line), (b) nonadiabatic
electron response at 7.(sg) = 2 (dashed line), and (c) same as (b)
at 1.(sp) = 8 (dot-dashed line). . . .. ... ...

2.10 For the highest growth rate mode toroidal mode number n = 9, »;
scan is performed for three cases of electron model: (a) Adiabatic
electron response (solid line), (b) nonadiabatic electron response at
Ne(s0) = 2 (dashed line), and (c) same as (b) at n.(sy) = 8 (dot-
dashed line). Results clearly show that 7; .., is downshifted.

3.1 Growth rate v (dashed line) and real frequency w, (solid line) for
n:(so) = 2 (i) for pure ITG with adiabatic electron model (squares), (ii)
ITG-TEM without nonadiabatic passing electrons (diamonds), and
(iii) ITG-TEM with nonadiabatic passing electrons at 7.(sq) = 2.0
(filled circles). . . . . ..

35

37



3.2

3.3

3.4

3.5

3.6

3.7

Two dimensional eigenmode structure of global ITG at n = 8 and
ni(sg) = 2 for (a) pure ITG with adiabatic electrons, (b) ITG-
TEM without nonadiabatic passing electrons, and (c¢) ITG-TEM
with nonadiabatic passing electron at 7.(sp) =2.0. . ... ... ..
Closeup of two dimensional eigenmode structure for (a) pure ITG
with adiabatic electrons, (b) ITG-TEM without nonadiabatic pass-
ing electrons, and (c) ITG-TEM with nonadiabatic passing electrons
at Me(s0) =2.0. . . . oL
Poloidal Fourier components for electrostatic modes shown in Fig. 3.2
(a) ITG with adiabatic electrons, (b) ITG-TEM without nonadia-
batic passing electrons, and (¢) ITG-TEM with nonadiabatic pass-
ing electrons at 7.(sg) = 2.0. Note that at each radial location,
there are several poloidal harmonics coupled. A few locations where
Ejjm.n = 0 (i.e., ng = m) are indicated on the top axis. Nonadiabatic
electrons introduce sharp structure near these points. . . . . . ..
Upper panel: Radial Fourier harmonics for each poloidal mode for
the electrostatic mode shown in Fig. 3.2 for (a) pure ITG with adi-
abatic electron response and (b) ITG-TEM without nonadiabatic
passing electrons. Lower panel: Radial Fourier harmonics for each
poloidal mode for the electrostatic mode shown in Fig. 3.2(c) for
ITG-TEM with nonadiabatic passing electrons at 7,(sg) = 2.0.
Eigenmode-averaged normalized mode numbers < kppr; > (squares),
< kypri > (diamonds), and < kjpr; > (stars) at n;(sg) = 2; (a)
pure ITG with adiabatic electron response, (b) ITG-TEM without
nonadiabatic passing electrons, and (¢) ITG-TEM with nonadia-
batic passing electrons at 7.(sp) =2.0. . .. ... ... ... ...
Mixing length estimate for transport coefficient Dy = v/ < k? >
in gyro-Bohm units as a function of kgpy,; for n;(sg) = 2; (a) pure
ITG with adiabatic electron response (solid line with squares), (b)
ITG-TEM without nonadiabatic passing electrons (divided by 8)
(solid line with diamonds), and (c) ITG-TEM with nonadiabatic
passing electrons at 7.(sg) = 2 (dashed line with filled circles). . . .

52

53

vi



3.8

3.9

3.10

3.11

3.12

3.13

3.14

Growth rate 7 (dashed line) and real frequency w, (solid line) versus
n; at Me(so) = 2 (i) for pure ITG with adiabatic electrons (squares),
(ii) ITG-TEM without nonadiabatic passing electrons (diamonds),
and (iii) ITG-TEM with nonadiabatic passing electrons (filled cir-
cles). ..o
Growth rate v (dashed line) and real frequency w, (solid line) for
ni(s0) = 2; (i) for TEM without nonadiabatic passing electron model
(squares) and (ii) for TEM with nonadiabatic passing electron model
at 7;(s0) = ne(so) = 2.0 (open circles). . . . . ... ... ... ...
Two dimensional eigenmode structure for (a) TEM without nona-
diabatic passing electron response and (b) TEM with nonadiabatic
passing electron response at n = 7 and 7;(so) = 1.(s¢) = 2.0.
Closeup of two dimensional eigenmode structure of (a) TEM with-
out nonadiabatic electron response and (b) TEM with nonadiabatic
passing electron response for n =7 and 7;(s¢) = n.(s¢) = 2.0.
Poloidal Fourier components for electrostatic mode shown in Fig. 3.10.
Note that at each radial location, there are several poloidal harmon-
ics coupled. A few locations where kj,,,, = 0 (i.e., ng = m) are
indicated on the top axis. Nonadiabatic electrons introduce sharp
structure near these points. . . . . . . ... ... ... ... ..
Right panel: Radial Fourier harmonics for each poloidal mode for
the electrostatic mode shown in Fig. 3.10(a) for TEM without nona-
diabatic passing electron response. Left panel: Radial Fourier har-
monics for each poloidal mode for the electrostatic mode shown in
Fig. 3.10(b) for TEM with nonadiabatic passing electron response. .
Eigenmode-averaged normalized mode numbers < kppr; > (squares),
< kypr; > (diamonds), and < k,pr; > (stars) as a function of
kopri at n;(sg) = 2: (a) TEM without nonadiabatic passing elec-
tron response and (b) TEM with nonadiabatic passing electrons at
Me(S0) =2.0. . o o oL

56

56

28

58

vii



3.15 Mixing length estimate for transport coefficient Dy =/ < k? >

4.1

4.2
4.3

4.4

4.5

4.6

4.7

in gyro-Bohm units as a function of kepr; with 7;(sg) = 2.0 for
(a) TEM without nonadiabatic passing electron response (dashed
line with squares) and (b) TEM with nonadiabatic passing electron

response at 7.(sg) = 2.0 (dashed line with open circles). . ... ..

The normalized real frequency w, (upper panel) and growth rate ~y
(lower panel) for the ETG mode as function of 7, for kgp. ~ 0.5,
€, = L,/R = 0.2, and 7 = 1.0. The lines with squares represent
manually extracted points from Horton et al. [21] which uses local
kinetic formulation. The lines with open circles depict the results
from our global linear gyrokinetic model. . . . . . ... ... ...
Figures 3 and 4 from Horton et al. [21] . . . . . .. ... ... ...
The normalized real frequency w, (upper panel) and growth rate
v (lower panel) for the ETG with and without Debye shielding for
Ne(so) = 2. Tons are considered adiabatic. . . . .. ... ... ...
Ne(s0) scan for the growth rate of the ETG mode with and without
Debye shielding for n = 250 and 380, respectively. . . . . ... ..
Upper panel: The normalized real frequency w, for the ETG mode
without Debye shielding 7.(sg) = 2.0 with adiabatic ions and nona-
diabatic ions. 7;(sg) takes values 2, 4, 6, 8 for nonadiabatic ions.
Lower panel: The corresponding growth rates~v. . . ... ... ..
Upper panel: the normalized frequency w, for the ETG mode with
Debye shielding for 7.(sg) = 2.0 with adiabatic ions and nonadia-
batic ions. 7;(sq) takes values 2, 4, 6, 8 for nonadiabatic ions. Lower
panel: the corresponding growth rates v. . . . .. ... ... ...
Upper panel: the normalized frequency w, for the ITG mode for
ni(sp) = 2.0 with adiabatic and nonadiabatic electrons. 7.(s¢) takes
values 2, 4, 6, 8 for nonadiabatic electrons. Debye shielding is not
included for these runs. Lower panel: the corresponding normalized

growth rates v. . . . . . . . ...

viii



4.8

4.9
4.10
411

4.12

4.13

4.14

Mode structures for the ITG mode for n;(sg) = 2.0 (left) and ETG
mode for 7.(sg) = 2.0 with (middle) and without (right) Debye
shielding on the poloidal cross section of a tokamak for the maximum
growth rates. The other species (electron for ITG, ion for ETG) is
considered adiabatic. . . . .. .. oo
Closeup view of Fig. 4.8 . . . . . . .. ... .. ... ... ... .
Poloidal Fourier harmonics for the modes shown in Fig. 4.8

Top panel: mixing length estimate for transport coefficient D, =
v/ < k* > in electron gyro-Bohm units as a function of kypy; for
the ETG mode without Debye shielding at 7.(so) = 2 with adiabatic
ions and nonadiabatic ions for 7;(sg) = 2,4, 6,8; Middle panel: mix-
ing length estimate for transport coefficient Dy, = v/ < k% > in
electron gyro-Bohm units as a function of kypy; for the ETG mode
with Debye shielding at 7.(s¢) = 2 with adiabatic ions and nonadi-
abatic ions for 7;(sg) = 2,4, 6,8; Bottom panel: mixing length esti-
mate for transport coefficient Dy;; = v/ < k% > in ion gyro-Bohm
units as a function of kgpr;; n;(so) = 2, with adiabatic electrons and
nonadiabatic electrons forn.(sg) =2,4,6,8. . . .. ... ... ...
Left panel: normalized perpendicular wave numbers k,., kg, k| vs
toroidal mode number n for the ETG mode without Debye shielding.
Right panel: normalized perpendicular wave numbers k., kg, k; vs
toroidal mode number n for the ETG mode with Debye shielding. .
Equilibrium profiles to study the global toroidal universal drift in-
stability mode (for parameters in Table I): (a) normalized density
(dots), temperature (circle), n; . (triangle), (b) Safety factor ¢ (cir-
cle) and magnetic shear § (dots) profiles as functions of normalized
radius s = r/a. Note that q(sg) = 2.0, 5(so) = 0.40, €,(s¢) = 0.1,
and 7(sg) =3.0for so=06. ... ... ...
Real frequency and growth rate for the electrostatic case correspond-

ing to the parameters in the Table I and profiles shown in Fig. 4.13.

78

ix



4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Upper panel: (Left) The electrostatic mode structure for toroidal
mode number n = 10, kypr; = 0.58, corresponding to the parame-
ters in the Table I and profiles shown in Fig. 4.13. (Right) poloidal
component of ¢ in (top) radial Fourier representation and (bottom)
radial direct space. Lower panel: A closeup view of the mode struc-
ture. . . ..o e e
The effect of electron and ion Landau resonance for the mode n =
10 corresponding to kgpr; = 0.58. This is done by weighting the
Landau resonance term by « and running it from 0 to 1 for one
species , and keeping a = 1.0 for the other species and vice versa.
Effect of ion and electron magnetic drift resonance for the mode
n=10 corresponding to kgpr; = 0.58. This is done by weighting the
magnetic drift term by a and running it from 0 to 1, and keeping
a = 1.0 for the other species and vice versa. . . .. . ... ... ..
Shear scan for the mode n = 10 corresponding to kgpr; = 0.58 at
position s = s0 = 0.6, where the density gradient peaks. For these
scans the safety factor at s = sqg is kept at the fixed value ¢ = 2.0. .
Real frequency and growth rate for ¢, = L, /R for the parameters
and profiles as in the Table I and Fig. 4.13 in the case of mode
n = 10 corresponding to kgpr; = 0.58. Note that a, L,,, Rq and ng
are kept constant in thisscan. . . . . . .. ... ... ... ...
Real frequency and growth rate for 7 = T, /T; and for the parameters
and profiles of Table I and Fig. 4.13 in the case of the mode n = 10
corresponding to kgpr; = 0.58. . . . . ..o Lo
Real frequency and growth rate in the case of a temperature gradient
scan for the parameters and profiles of Table I and Fig. 4.13 for the
mode n = 10 corresponding to kgpr; = 0.58. The flat temperature
profile in Table I, has been replaced by one with dsr = 0.2 instead
of 0 for the previous cases. . . . . . . . .. . ... .. .. .....
Real frequency and growth rate for the electrostatic (dashed curve)
and electromagnetic case (solid curve) for the parameters in Table
[ and profiles as shown in Fig. 4.13. The value of § considered here
is 0.001. . . . .

85

87



4.23

4.24

4.25

4.26

4.27

(Upper panel) The global mode structure for the ¢ component in
the poloidal cross section in the electromagnetic case for n = 10,
kopr; = 0.58, and 5 = 0.001. (Lower panel) Poloidal component of
¢ in (top) radial Fourier representation and (bottom) radial direct
SPACE.  « v v e e e e e e e e e
(Upper panel) The global mode structure for the /~1|| component in
the poloidal cross section in the electromagnetic case for n = 10,
kopr; = 0.58, and 8 = 0.001. (Lower panel) Poloidal component of
¢ in (top) radial Fourier representation and (bottom) radial direct
SPACE.  « + v e e e e e e e e e e e
[ scan for the mode frequency and growth rate for the parame-
ters and profiles as in Table I and Fig. 4.13 for the mode n = 10
corresponding to kgpr; = 0.58 . . . . ..o
Electromagnetic ratio with increasing function of g for the param-
eters and profiles as in Table I and Fig. 4.13 for the mode n = 10
corresponding to kgpr; = 0.58 . . . ..o
The real frequency and growth rate vs temperature gradient for
different unstable modes in the presence of trapped electrons in
the same regime defined by the parameters and profiles of Table
I and Fig. 4.13 for the mode n = 10 corresponding to kgpr; = 0.58.
The flat temperature profile in Table I, has been replaced by one
with sy = 0.2 instead of 0 for the previous cases. The three
dashed curves (circle, square, diamond) are for universal mode with-
out trapped electrons (same as Fig. 4.21), three solid lines (circle,
square, diamond) are for universal mode in the presence of trapped
electrons (UNV-TE), the dashed curve with triangles is for ion tem-
perature gradient mode with trapped electrons (ITG-TE) and the

solid curve with stars is for pure trapped electron mode (TEM).

97

xi



5.1

5.2

5.3

5.4

5.5

Equilibrium profiles to study the global SWITG mode( for param-
eters in Table I): (a) normalized density (square), temperature (cir-
cle), n; . (triangle), (b) Safety factor ¢ (circle) and magnetic shear §
(diamond) profiles as functions of normalized radius s = r/a. Note
that n peaks at s = p/a = so = 0.6 and is equal to 2.5. Also
q(so = 0.6) = 2.0, 5(sp = 0.6) = 1.0, €,(so = 0.6) = 0.1, and
T(so=0.6)=1.0. . . .. ..
The normalized growth rate 4 of the ITG (first peak) and of the
SWITG (second peak) mode with (solid line+square) and without
(solid line + circle) the trapped electrons from the global as well
as local formulation (dotted line + diamond, for the case with the
trapped electrons and dotted line -+ circle, for the case without the
trapped electrons.) 7.;(so) = 2.5, q(so) = 2.0, 5(s¢) = 1.0, 7 = 1.0,
and ¢, = 0.1. Upper axis shows the corresponding toroidal mode
numbers. ...
The normalized real frequency , of the ITG and of the SWITG
mode with (solid line+square) and without (solid line-+circle) the
trapped electrons from the global as well as local formulation (dotted
line+diamond, for the case with the trapped electrons and dotted
line + circle, for the case without the trapped electrons.) 7.;(so) =
2.5, q(so) = 2.0, 5(sg) = 1.0, 7 = 1.0, and ¢, = 0.1. Upper axis
shows the corresponding toroidal mode numbers. . . . . . ... ..
Two dimensional eigenmode structures of (a) the ITG mode at
kopr; =~ 0.5, n =9, (b) the SWITG mode at kgpr; ~ 1.3, n = 21
without the trapped electrons both corresponding to the maximum
growth rate. The mode structure of the SWITG mode is finer than
the ITG mode but yet global enough. . . . .. ... ... ... ..
Two dimensional eigenmode structures of (a) the ITG mode at
kopri =~ 0.4, n = 7, (b) the SWITG mode at kypr; ~ 1.3, n = 21
with the trapped electrons, both for the maximum growth rates re-
spectively. The mode structure of the SWITG mode is finer than
the I'TG mode but still global enough. . . . . . ... ... ... ..

xii



5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

A closeup view of the eigenmode structures of (a) the ITG mode at

kopr; ~ 0.5, n =9, (b) the SWITG mode at kygpr; ~ 1.3, n = 21
without the trapped electrons shown in Fig. 5.4. . . ... ... .. 112
A closeup of the two dimensional eigenmode structures of (a) the

ITG mode at kgpr; =~ 0.4, n =7, (b) the SWITG mode at kopr; ~

1.3, n = 21 with the trapped electrons shown in Fig. 5.5. . . . . .. 114
Poloidal Fourier components for electrostatic modes shown in Figs. 5.4

and 5.5, (a) the ITG mode at kgpr; = 0.5, n = 9, (b) the SWITG
mode at kygpr; = 1.3, n = 21, both without the trapped electrons,

(c) the ITG mode at kgpr; ~ 0.4, n =7, and (d) the SWITG mode

at kgpr; = 1.3, n = 21, both with the trapped electrons. . . . . .. 115
Radial Fourier components for electrostatic modes shown in Fig. 5.4

and 5.5, (a) the ITG mode at kgpr; =~ 0.5, n = 9, (b) the SWITG
mode at kgpr; =~ 1.3, n = 21, both without the trapped electrons,

(c) the ITG mode at kypr; =~ 0.4, n =7, and (d) the SWITG mode

at kgpr; = 1.3, n = 21, both with the trapped electrons. . . . . .. 116
Normalized growth rates ¥ vs. ¢, scan for the SWITG mode at
kopri ~ 1.3 with (solid line + square) and without (solid line -+
circles) the trapped electrons (from the global gyrokinetic model).
Nei(s0) = 2.5, q(so) = 2.0, §(sp) = 1.0, 7 = 1.0, L, = 0.2, and
a=0.0. . e 117
Normalized real frequency w, vs. €, scan for the SWITG mode at

kopr; ~ 1.3 with (solid line + square) and without (solid line -+
circles) the trapped electrons (from the global gyrokinetic model).
Nei(s0) = 2.5, q(s0) = 2.0, 5(sp) = 1.0, 7 = 1.0, L, = 0.2, and
a=0.0. . . e 117
Normalized growth rates 5 vs. 17; scan for the SWITG mode at
kopri ~ 1.3 with (solid line + square) and without (solid line -+
circles) the trapped electrons (from the global gyrokinetic model).
ne(s0) = 2.5, q(so) = 2.0, 5(sg) = 1.0, 7=1.0,and ¢, =0.1. . ... 118
Normalized real frequency @, vs. 7; scan for the SWITG mode at

kopri ~ 1.3 with (solid line + square) and without (solid line -+
circles) the trapped electrons (from the global gyrokinetic model).
ne(s0) = 2.5, q(so) = 2.0, 5(sg) = 1.0, 7=1.0,and ¢, =0.1. . ... 119

xiii



5.14

5.15

5.16

5.17

5.18

5.19

5.20

Normalized growth rates 4 vs. 7 scan for the SWITG mode at
kopri ~ 1.3 with (solid line + square) and without (solid line -+
circles) the trapped electrons (from the global gyrokinetic model).
Nei(s0) = 2.5, q(so) = 2.0, §(sp) = 1.0, and ¢, =0.1. . . . ... ..
Normalized real frequency @, vs. 7 scan for the SWITG mode at
kopri ~ 1.3 with (solid line + square) and without (solid line -+
circles) the trapped electrons (from the global gyrokinetic model).
Nei(s0) = 2.5, q(so) = 2.0, 5(sp) =1.0,and ¢, =0.1. . .. ... ..
Mixing length estimate for transport coefficient Dy = v/ < k3 >
of the ions in the ion gyro-Bohm units as a function of kgpr;; (a)
the ITG and the SWITG mode without the trapped electrons (solid
line + circle) (b) the ITG and the SWITG mode with the trapped
electrons (solid line + square) (from the global gyrokinetic model).
Note that this curve is scaled down by a factor of 8. The upper axis
presents the corresponding toroidal mode numbers. . . . . .. . ..
(a) Real frequency w,, and (b) growth rate ~ versus wave number
k,ps of the linear short wavelength ion temperature gradient mode
(SWITG) for different values of R/L,. Here n; = 2.5, ¢ = 2.0, § =
1.0, 7 = 1.0 in these simulations. . . . . . ... ... ... .....
Time (in units of R/c;) evolution of ion heat flux ) normalized
by Quorm = Drescsp2/R* for SWITG simulation, with R/L, =
5 and R/L, = 10. The black dashed lines represent the time av-
erage of the heat flux between ¢t = 100 R/c, and ¢ = 330 R/c.
For R/L, =5 the average Q = 195 Qopm and for R/L, = 10 the
average (Q = 302 Quorm- - + « « ¢ o e e e e e e e
(a) Time averaged ion heat flux versus normalized wavenumber k,
for R/L,, =5 and R/L, = 10 in lin-lin plot. (b) Time averaged ion
heat flux as a function of normalized wavenumber k, for R/L, =5
and R/L, = 10 in log-log plot. @ is normalized with respect to
Qnorm = PrefCsp2/R2. o o o
Cumulative sum of heat flux for R/L, = 10. The standard ITG
contribution to the heat flux is for kyp; <1 and SWITG contribu-

tion to the heat flux is for k,ps > 1. Q). is normalized with respect

t0 Quorm = DrefCsp2/R: o o

xiv



5.21 Cumulative sum of heat flux for R/L,, = 5. The standard ITG con-
tribution to the heat flux is for k,p, < 1 and SWITG contribution
to the heat flux is for k,p; > 1. Q). is normalized with respect to
Qnorm = PrefCsp2/R2. o o o

5.22 Snapshots of the potential (top) and perturbed density (bottom) of
the SWITG mode for R/L, =5 taken at t =330 R/cs. . . . . . ..

5.23 Snapshots of the potential (top) and perturbed density (bottom) of
the SWITG mode for R/L, = 10 taken at t =330 R/cs. . . . . ..

5.24 Time traces of the zonal flow shearing rate wg = dvg,/dz, in units

of ¢s/ R for the SWITG modes with (a) R/L, =5 and (b) R/L, = 10.137

6.1 Left panel: the equilibrium density and temperature profiles along
with the 7 profile of the thermal ions and electrons. Right panel:
the safety factor profile and shear profile. The 7 profile peaks at
so = 0.7 with the magnitude n = 2.0. The safety factor q and shear
value § at this point, respectively, are 2.0 and 1.0. . . . . . .. . ..

6.2 The n profiles considered for the energetic ions with respect to the
background profiles of the thermal ions and electrons. While the
thermal ion and electron 7 profiles are kept the same, energetic ion
profiles are considered for three different cases, namely, flat n profile
(green curve), peaked n profile (red curve) and same 7 profile (blue
curve) as the thermal ions. . . . . ... ... ...

6.3 The wavenumber scan for the mode frequency w, (left panel) and
growth rate « (right panel) of the ITG mode is presented for the
cases, viz., (i) without energetic ions (magenta line), (ii) with singly
charged energetic ions with flat 7 profile (green line), steeper 1 pro-
file (red line), same 7 profile (blue line) as the thermal ions and (iii)
with energetic He ions (brown line). . . . . ... ... ... ....

6.4 A typical electrostatic mode structure for n = 8, kgpr; = 0.4 cor-
responding to the maximum growth rate of the ITG mode with

nonadiabatic electrons and energetic ions. . . . . . . ... ... ..

144

XV



6.5

6.6

6.7

6.8

6.9

6.10

6.11

The mode frequency w, and growth rate v are plotted as a function
of density fraction of the energetic ions compared to background
density of electron for the mode with n = 8, kgpr; = 0.4 for the
cases, viz., (i) with singly charged energetic ions with flat n profile
(green line), steeper 7 profile (red line), same 7 profile (blue line) as
the thermal ions and (ii) with energetic He ions (brown line). . . . .
The mode frequency w, and growth rate v are plotted as a func-
tion of temperature fraction of the energetic ions compared to the
temperature of the thermal ions for the mode characterized by the
toroidal mode number n = 8, corresponding to kgpr; = 0.4 for the
cases, viz., (i) with singly charged energetic ions with flat n profile
(green line), steeper 7 profile (red line), same 7 profile (blue line) as
the thermal ions and (ii) with energetic He ions (brown line).

A mixing length based estimation of transport in gyroBohm units
is presented for the cases, viz., (i) without energetic ions (magenta
line), (ii) with singly charged energetic ions with flat 7 profile (green
line), steeper n profile (red line), same n profile (blue line) as the
thermal ions and (iii) with energetic He ions (brown line). . . . ..
Different domains of anomalous diffusion, defined through the mean

2 >= A t?, and parameterized by the

squared displacement < o
anomalous diffusion exponent p: (a) subdiffusion for 0 < p < 1, (b)
superdiffusion for 1 < p < 2. On the threshold between sub- and
superdiffusion is the normal Brownian diffusion located. Another
special case is ballistic motion p =2 [169]. . . . .. .. .. ... ..
Time evolution of heat flux, measured at » = 0.5a, for system size
(a) a/p; = 157, (b) a/p; = 315, and (¢) a/p; =500. . . .. ... ..
The typical snapshots of mode structure in the linear (left panel)
and nonlinear (right panel) regime of the ITG turbulence for the
system size a/p; = 157. . . . ..o
The typical snapshots of mode structure in the linear (left panel)
and nonlinear (right panel) regime of the ITG turbulence for the

system size a/p; =315. . . . .o

149

. 150

xXvi



6.12

6.13

6.14
6.15
6.16
6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30
6.31

The typical snapshots of mode structure in the linear (left panel)
and nonlinear (right panel) regime of the ITG turbulence for the
system size a/p; =500. . . ... 161
Mean squared displacement of the hot ions for system size a) a/p; =

157 (upper left panel), b) a/p; = 315 (upper right panel), ¢) a/p; =

500 (lower panel). . . . . . . ... 162
Dy, =6 < 0? > /6t versus energy of hotions. . . . ... .. ..... 164
Dy oversus a/p;. . ..o 165
Exponent p in < 02 >octP versus a/p;. . . . . ..o 166
Upper panel: PDF for hot ions for a/p; = 157. Lower panel: <

o? > [t as a function of t for a/p; =157.. . . . . . ... ... ... 168
Upper panel: PDF for hot ions for a/p; = 315. Lower panel: <

o? > [t as a function of t for a/p; =315.. . . . . . ... ... ... 169
Upper panel: PDF for hot ions for a/p; = 500. Lower panel: <

o? > /t? as a function of ¢ for a/p; =500.. . . . . . ... ... ... 170
Heat flux for a/p; =157 and 315 . . . . ... ... ... ... ... 172
Mean squared displacement for a/p; = 157 and 315 . . . . . . . .. 173
Probability distribution function for a/p; =157 . . . . .. ... .. 175
Probability distribution function for a/p; =315 . . .. .. ... .. 175
Upper panel: < o > /tP as a function of ¢ for a/p; = 157. Lower

panel: < o > /tP as a function of ¢ for a/p; =315. . . ... .. .. 177
Time history of electron particle lux . . . . . ... ... ... ... 183

The typical snapshots of mode structure in the linear (left panel)
and nonlinear (right panel) regime of the TEM turbulence for the
system size a/p; = 157. . . . . .o 183
The spatio-temporal evolution of turbulent field intensity due to
TEM turbulence . . . . . . .. . . 184
Hot ions are inserted at ¢ = 0L, /cs, (a) when there is no TEM
activity (left panel) and (b) when TEM turbulence is ON (right

Hot ions are inserted at ¢ = 70L, /¢, (a) without TEM turbulence
(left panel) and (b) in the presence of TEM turbulence (right panel). 186
Probability distribution function of hot ions for isotropic distribution 187

< 0? > /t? as a function of ¢ for isotropic hot ions.. . . . . ... .. 187

xvii



6.32

6.33

6.34

6.35

6.36

6.37
6.38

6.39

Dy, versus energy of the hot ions for isotropic distribution; (a) in
linear scale (upper panel) and (b) in log-log scale (lower panel).

Passing hot ions are inserted at t = 0L, /cs (a) without TEM turbu-
lence (left panel) and (b) in the presence of TEM turbulence (right

Trapped hot ions are inserted at t = 0L,,/c, (a) without TEM turbu-
lence (left panel) and (b) in the presence of TEM turbulence (right

(a) Upper panel: PDFs for hot ions with passing distribution, (b)
lower panel: PDFs for hot ions with trapped distribution . . . . . .
< 0?2 > /t? as a function of t for passing hot ions. . . . .. ... ..
< 0% > /tP as a function of t for trapped hot ions. . . . . . . .. ..
(a) Upper panel: Dy, versus energy of the hot ions for passing dis-
tribution, (b) Lower panel: D, versus energy of the hot ions for
trapped distribution in linear scale. . . . . . . . .. ... ... ...
(a) Upper panel: D, versus energy of the hot ions for passing dis-
tribution, (b) Lower panel: D, versus energy of the hot ions for

trapped distribution in log-log scale. . . . . . . .. ... ... ...

. 190

197

xviii



List of Tables

2.1

4.1
4.2

5.1
5.2
5.3

6.1
6.2

6.3

6.4

6.5

6.6

Profiles and parameters . . . . . . . .. ... ... ... ... .. .. 30
Profiles and parameters . . . . . . . .. ... .. ... .. .. 64
Profiles and parameters . . . . . . . . . . ... ... .. ... .. .. 82
Profiles and parameters . . . . . . . .. .. ... ... .. .. 104
Normalization of dependent variables. . . . . . . .. . ... ... .. 124
Normalization of independent variables. . . . . . .. ... ... ... 125
Profiles and parameters . . . . . . . . . ... ... ... ... ... 146

New values of mean p and values measured in Section 6.3.6 (see

Fig. 6.16) for a/p; = 157 . . . . . .. . .. 174
New values of mean p and values measured in Section 6.3.6 (see

Fig. 6.16) for a/p; =315 . . . . . .. .. 175
Energy, standard deviation, kurtosis, skewness, exponent p for isotropic
hotions . . . . . . . ... 188

Energy, standard deviation o, kurtosis k, skewness s and exponent,
pin < 0% >oc t? for the passing hot ions . . . . .. ... ... ... 193
Energy, standard deviation o, kurtosis k, skewness s and exponent,

pin < 0% >oc t? for the trapped hot ions . . . . .. ... ... ... 195

Xix



Chapter 1

Introduction

1.1 Magnetically Confined Fusion and Its Prospects

In view of the much speculated dearth of energy in near future leading to an imbal-
ance between demand and supply, the focus of energy research has largely shifted
to the nuclear fusion of deuterium and tritium' in the plasma state, which is en-
visaged to generate virtually limitless energy with minimal adverse environmental
impact. Although, the phenomenon of nuclear fusion is quite common in our uni-
verse (for example, the sun in our solar system provides light and heat via fusion
reaction naturally), the natural occurrence of fusion on earth is inhibited by the
need of the very high temperature propitious for the fusion reaction. One has to
arrange, therefore, laboratory plasma experiments to harness energy from fusion
on earth. And at the same time, one also has to look for ways that prevent di-
rect contact of this high temperature plasma with the container wall. Since fusion
needs high temperature and density, a material shielding therefore is incapable to
contain the hot fuel, as the high heat load on the container wall will apparently
make the latter unable to withstand so much of heat. For this reason, one has to
devise ingenious confinement methods to avert such a situation.

There are various special confinement schemes that have been able to allure
researchers in the field. Some of them are magnetically confined fusion (MCF) [1],
inertial confinement fusion (ICF) [2], etc. Here we focus on MCF which has been

able to garner significant attention and resources since its inception.

V' 2H+3H =%He+n+17.4 Mev



Chapter 1: Introduction

The MCF method relies on using powerful magnets to confine plasma in a
donought-shaped high-vacuum vessel named as Tokamak. The concept of such
a scheme is to heat deuterium tritium (D-T) ions to a very high temperature of
the order of hundred million degrees of centigrade and then confine the system
using curved and closed magnetic field for long enough time such that the two
species of ions can fuse effectively overcoming the Coulomb barrier to release energy
in the range of MeV, which then can be extracted by proper arrangements (For
example, Test Blanket Module (TBM) [3].), and made commercially available for
civil purposes. Since its realization during 1960s, scientists have acquired much
expertise on tokamak and have therefore moved one step ahead to build ITER [3]
to test fusion with gain factor more than one. As is apparent, efficient heating and
then long confinement are two key factors that determine the success of such an
endeavor?.

The heating process starts with the ohmic heating mechanism and then in the
later phase where ohmic heating is no longer effective due to reduced collisions,
heating is supported by various auxiliary methods. Among the various auxil-
iary heating schemes, neutral beam injection (NBI) and RF heating (For exam-
ple, ion cyclotron resonance heating (ICRH), electron cyclotron resonance heating
(ECRH), etc.), where the energy is first transferred to the thermal electrons and
then to the ions, are very often used. These heating schemes thus incorporate
large amount of hot ions into the system of thermal ions and electrons. Moreover,
once the fusion is accomplished, the tokamak itself becomes populated with fusion
produced Helium ions or « particles of MeV energy. In the self ignition phase,
these helium ions are required to transfer their energy to the thermal ions. Thus
it is clear that for efficient heating of the thermal ions and subsequent fusion, one
requires that the hot ions (along with the thermal ions and electrons) be confined
in the system for long enough time, and transfer their energy to the thermal ions
which are eventually going to fuse.

The major hurdle in maneuvering fusion in a plasma laboratory, however, ap-
pears to be the poor confinement of plasmas brought about by the exotic behavior
of these extremely hot and dense charged particles in the presence of magnetic field.

Various physical mechanisms which are self-generated in the plasma throw parti-

2Lawson criterion requires nT'7g > 3 x 102! kéV sec/m®, where, n, T and 75 are, respectively,
density, temperature of plasma and plasma confinement time.
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cles and heat out of the system undermining the confinement and hence blurring
the hope of realistic fusion machines.

These mechanisms, often referred to as instabilities, are broadly classified as
macroinstabilities and microinstabilities [4, 5] depending upon their scale-length
and frequency compared to the Larmor radius and gyrofrequency of the constituent
charged particles. Macroinstability generally refers to the large-scale magnetohy-
drodynamics (MHD) instabilities. They can quench the plasma in microseconds
which otherwise would have been several seconds long lived [6]. Though with
proper field configuration this class of instabilities can be suppressed, the plasma
is still subject to fine-scale instabilities, often referred to as microinstabilities driv-
ing loss of energy and particle. These instabilities are equally capable to influence
the dynamics of the energetic ions. Thus, in order to learn how to tame these
instabilities, researchers, before constructing real fusion reactors, would want to
understand the basic confinement, stability and transport issues of charged par-
ticles in a relatively simpler environment. To that end, many tokamaks® have
been built around the world which exploit the magnetic confinement to lighter
charge particles, e.g., hydrogen in extreme conditions of temperature and density
to investigate the inherent stability and transport issues of toroidal plasma.

The motion of the charged particles in a magnetic field, in the simplest case, is
confined to a helical path along the magnetic field line [7]. The maximum step size
of any movement across the magnetic field, therefore, is equal to their Larmor radii.
The collisions among themselves, although infrequent (as the system is very hot),
bring in random walks in the system. As a result of this, the charge particles jump
from one position to another with the step size of Larmor radius resulting in what
is called classical diffusion. However, the magnitude of such classical diffusion of
particles and their thermal energy across the magnetic field lines is about thousand
times lower than that observed in regular tokamak experiments [1].

The classical model of diffusion is nevertheless modified and made complex by
the presence of the curved magnetic field in tokamaks. The curved magnetic field
can trap charge particles leading to a larger step size of random walks, of the
order of radius of banana orbits [1] of the trapped particles, enhancing the amount

of transport. This modifies the estimate of the classical diffusion and termed as

3For example, JET, DIII-D, ASDEX, JT60, etc.
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neoclassical diffusion process. However, the experimentally observed diffusion rate
is still order of magnitude higher than that predicted by the neoclassical theory [1].
This discrepancy between the theoretical prediction and experimental observation
in diffusion rate of energy and particles is termed as “anomalous" due to the lack
of understanding of the physics issues imparting this anomaly.

Even when plasmas are maintained free from MHD instabilities, they are far
from being quiescent. As confined plasmas are invariably associated with inho-
mogeneities in density and temperature, they are, therefore, always in the state
of tremulous movement induced by some fine scale (of the order of Larmor radius
of the charge particles) and low frequency fluctuations (smaller than the gyrofre-
quency of the ions). These turbulent, fine scale and low frequency fluctuations,
generally defined as microinstabilities, are capable to transport energy and charged
particles out of the system at a rate faster than the classical and neoclassical dif-
fusion. Such a transport, in general, is the consequence of random walks of the
constituent charged particles with an enhanced step size and reduced correlation
time in the presence of turbulence resulting from the microinstabilities, and per-
haps accounts for the observed anomaly in transport via ion and electron channels.

Among the various microinstabilities, ion temperature gradient (ITG) modes
[4,8,9,10, 11,12, 13, 14, 15, 16, 17, 18] are now firmly believed to cause anomalous
transport of thermal ions, while, electron temperature gradient driven (ETG) [19,
20, 21, 23, 24] modes and trapped electron modes (TEM) [11, 25, 26, 27, 28] are
observed to produce anomalous transport of electrons. The ITG modes are driven
by the free energy available in the gradient of temperature profile of thermal ions,
while ETG and TEM draw free energy from the gradient of temperature profile
of electrons. Universal toroidal modes which live on the free energy available in
the inhomogeneity of electron density, and hence seem to be ubiquitous, are also
another class of microinstabilities driving electron transport.

While electron transport exhibits a multiscale feature ranging from the electron
Larmor radius (k,pr; >> 1) of the ETG mode to the ion Larmor radius (k, pr; <
1) of the TEM, ion transport driven by the ITG mode, on the other hand, is
hitherto known to be unstable only at one scale length on the order of the ion
Larmor radius (k,pr; < 1). However, of late, a new mode [29] propagating in
the ion diamagnetic direction, on the intermediate scale between ITG and ETG

mode with &, pr; > 1 joins the group of microinstabilities imparting multi-scale
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feature to the thermal ion transport. This mode is generally referred to as the short
wavelength ion temperature gradient (SWITG) mode following its occurrence in
the shorter wavelength side of the dispersion spectrum of microinstabilities.
Concerted efforts of theory, experiment and simulation to understand, both
qualitatively and quantitatively, the behavior of the plasmas in a tokamak are un-
der way among the fusion communities. Attempt to compose simulation models
to make quantitative predictions of transport is very much sought. As tokamak
experiments themselves are very much expensive, a proper modeling of the mecha-
nisms could prove very useful in identifying and separating the various underlying
physics issues one by one without pursuing repeated experiments for that purpose.
However, due to the disparate masses of the constituting particles such as ions and
electrons, a consistent numerical study of transport via ion and electron channels
simultaneously has proved to be a formidable task. When one attempts to model a
phenomenon, where both electrons and ions are nonadiabatic, one has to take into
account the larger spatial scales (i.e. Larmor radius) and slower time scales (i.e.
gyro period) of ions on one hand, and the finer spatial scales and faster time scales
of electrons on the other hand for a given temperature and magnetic field, which
sometimes goes beyond the computational resources available, in particular, in the
case of nonlinear, time-evolving, numerical models using kinetic theory. More-
over, the instabilities are often found to be nonlocal spreading over a substantial
fraction of the tokamak cross section both in the linear and nonlinear phase, the
comprehensive study of which invariably demands global simulation aggravating
the situation. A minimal nontrivial linear, global, gyrokinetic numerical model can
be enormously useful to that effect, at least, to identify and understand physical
mechanisms in the simplest case. However, one needs eventually to validate them

with respect to the nonlinear turbulent models.

1.2 Brief Review of Earlier Works

Anomalous transport in collisionless hot tokamak plasmas is believed to be due
to the drift waves driven by the density and temperature gradients [4, 5| of the
charge particles in a magnetically confined plasma. While the turbulent heat flux

of ions is believed to be driven by the ion temperature gradient (ITG) mode, the
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electron heat and particle flux, on the other hand, is expected largely to be driven
by the trapped electron mode (TEM) in the low magnetic field side of a tokamak
on ion scales (of the order of ion Larmor radius) and by the electron temperature
gradient (ETG) mode on electron scales (of the order of electron Larmor radius).
Enormous effort has been put to understand the underlying physics issues both
theoretically and computationally and then to match the predicted transport flux
with that observed experimentally.

The study of ion transport by the I'TG mode has started with simple mod-
els [30, 31|, where electrons are treated adiabatic. The next step is then to incorpo-
rate the nonadiabatic electrons. This has been achieved in the the form of trapped
electrons included to the background model of nonadiabatic ions and adiabatic
passing electrons. This has extended the study of this class of microinstabilities to
the trapped electron coupled ITG mode (ITG-TEM) [11, 12, 13, 14, 15, 16, 17, 18|
mode and TEM [11, 25, 26, 28, 32]. The new models with trapped electrons give
growth rate two to three times larger than that in the case of simple adiabatic elec-
tron models. At the same time, the transport flux is observed to rise substantially.
A comparison of gyrofluid [33] and continuum gyrokinetic [34] simulation of trans-
port in realistic geometry with experiments has been carried out, and the electron
thermal diffusivity, ion thermal diffusivity and perturbed density fluctuation level
are found to exceed the experimental value by factors more than two. The reason
of this deviation is speculated to be due to the non-local behavior owing to the
variation of plasma gradients.

Following this, sophisticated flux ribbon codes have come up with advanced
features [35, 36| to reduce the discrepancy between experiments and computa-
tional results [37]. The kinetic electron simulation with trapped particles using
generalized split weight scheme to 0f gyrokinetic particle method has been car-
ried out [38]. The results show significant increase in the ion heat diffusivity in
comparison with that in the case of the adiabatic electron model in line with the
increased growth rate. However, the experimentally observed ion diffusivity [39] is
much lower than that predicted by the adiabatic electron models. Thus, more com-
prehensive gyrokinetic models that treat electrons and ions on the same physics
footing with global profile effects are required to address such anomaly.

The major problem with the incorporation of full dynamics of electrons includ-

ing even the passing fraction nonadiabatically or kinetically in a time dependent
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model is their fast parallel motion. The high mobility of these electrons needs
higher resolution in their response time scale, and is a formidable task in the pres-
ence of full ion dynamics, the issue of which is discussed elaborately in Ref. [40].
With advances in the computational facilities significant progress has been achieved
to this end to treat the electrons fully kinetically [36, 157, 139]. However, some-
times simulations choose reduced mass ratios of ion and electron to downsize the
computational cost [32, 40, 42].

While ion transport can be brought down to neoclassical level by the formation
of internal transport barriers (ITBs) [67, 68|, the electron transport still remains
orders of magnitude above the neoclassical level. The electron anomalous transport
is an issue of paramount concern in the fusion plasma because of the fact that the
electrons will be heated dominantly by the collisional relaxation of the highly
energetic a particles and the instabilities inherent to electrons can deteriorate the
process of confinement of the plasma.

The experiments on electron transport [69] observe stiffness in the electron
temperature profile and suggest a threshold in the electron temperature gradi-
ent V1,/T, above which the turbulent transport takes place. This supports two
theoretically proposed modes, namely, the TEM and ETG mode.

The existence of such a threshold has been established and its experimental
determination is achieved by further experiments [70, 71, 72|. Although, a com-
plete radial profile of transport threshold has been evaluated in Ref. [73], whether
the observed transport is because of TEMs or ETG modes remains difficult to
determine unambiguously, as both modes exhibit threshold in VT,/T..

The TEMs have their origin in the precession of trapped electrons on the weaker
side of the magnetic field and been studied extensively, both experimentally [69,
73,74, 75, 76, 77| and theoretically [25, 26, 27, 28, 78, 79, 80, 81|. The TEMs have
wave number in the range of ITG modes; they have dependence on the gradient
threshold, fraction of trapped electrons, and collisionality; they are active when
T(=T./T;) > 1.

The other source of electron transport, the ETG mode was studied initially in
the sheared slab geometry [19, 20] and then in the toroidal geometry [21]. With
the advanced diagnostics, now a days, it has been possible to identify the ETG
mode even in experiments [82, 83|. The ETG mode because of its small scale,

initially was not expected to contribute significantly to the electron transport. But
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the electron heat diffusivity is usually found to be of orders of magnitude higher
than the simple mixing length estimate. The works in Refs. 23, 24, 84, 85, 86, 87|
showed that in spite of its small scale length, the ETG mode can indeed contribute
to the electron particle and heat losses comparable to the experimental level by the
formation of radially elongated structures or convective cells nonlinearly or through
electromagnetic inverse cascade processes. While the ITG mode is suppressed
by the E x B shear 88, 89| in ITBs, the electron transport is still observed to
be anomalous as it is barely affected by the E x B shear [90]. Under special
circumstances, such as reverse shear, one may be able to reduce TEM induced
transport but ETG is nonetheless expected to remain unaffected because of its
higher growth rate than the £ x B shearing rate.

Earlier studies on microinstabilities, in general, proceed with a tacit assumption
that the mode under consideration is independent of other members of the class.
But, studies of the ITG mode in the presence of the trapped electrons, i.e., ITG-
TEM [11, 12, 13, 14, 15, 16, 17, 18] have shown that one mode can have strong effect
on the other. For example, often ions are considered adiabatic while studying the
ETG mode. The ions, because of their larger Larmor radius, can attain adiabaticity
by moving across the magnetic field. However, recent works in Refs. [36, 37, 91, 92,
93, 94| showed that the ion dynamics can play an important role in the ETG scale
transport and help achieving saturation of electron flux. Although ITG coupled to
the trapped electrons has been studied in details, studies of ETG coupled to TEM
(ETG-TEM) have been very few [91, 92].

In the absence of temperature gradients, there can be another class of insta-
bilities, which is driven even by the slightest density gradient of the electrons in
the plasma and therefore called the universal drift instability. In the late 1980s,
there had been a large effort to understand the basic physics of the universal drift
instability. The motivation was that the universal drift mode was thought to be
the dominant microinstability at that time and thus source of plasma transport in
the various confining devices, such as, tandem mirror, tokamak, spheromak, stel-
larator, etc. In situations where the density profile is steeper than the temperature
profile, one can indeed have fluctuations and associated transport dominated by
the universal drift instability. Moreover, the universal instability is the simplest
one in the class of drift waves and a thorough understanding of the mode can help

get insight in the other modes of the family as well.
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The study of the universal drift wave had started with a very simple model,
the shearless slab model [95, 96|, that revealed that the collisionless universal drift
instability is always unstable in the presence of a density gradient and absence
of shear. The driving mechanism in this case is the wave particle resonance by
the electrons coupled with the density gradients. The mode remains unstable, in
the presence of weak but reasonable shear, when studied in the framework of the
adiabatic electron model. Thus, up to that point, the speculation was that the
universal mode without or with weak shear is always unstable. However, in con-
tradiction to all previous works, Ross et al. [97] and Tsang et al. [98] reported that
the universal instability or collisionless drift instability in the presence of magnetic
shear is always stable in the slab geometry, irrespective of the strength of the shear
or transverse wave number when one takes into account the full electron dispersion
function. The observed stability is attributed primarily to the stabilizing influence
of the nonresonant electrons. These issues had further been addressed by Chen
et al. [99] who concluded that the mode can be damped and marginally stable
depending upon the strength of the shear and magnitude of the transverse wave
number k,. For example, in the case of sufficiently weak shear, i.e., with L,/L,
greater than a critical value (where L, and L, are, respectively, the measure of
shear and density gradient scale length) collisionless drift waves are marginally
stable at shorter wavelength or high wave number regime, where the electron dy-
namics usually play the pivotal role in determining the nature of an eigenmode. In
the opposite limit, i.e., at longer wavelength or lower wave number regime where
ion dynamics dominate, the eigenmode is damped. For strong shear, on the other
hand, the eigenmodes are always stable irrespective of the wave number or wave-
length. However, even in a sheared magnetic field, an absolute instability can
be observed by the elimination of the stabilization produced by the off-resonant
electrons by the turbulent diffusion near the mode rational surfaces [100].

The investigation of the various properties of the universal drift instability in a
more complex situation such as in the presence of finite toroidicity was undertaken
by Cheng et al. [101]. Two eigenmodes were found to coexist that are brought
about by the equilibrium variation along the field line. One mode is not localized
in the ballooning coordinate and gets strongly stabilized due to the magnetic shear,
much like the slab version of the mode. The other eigenmode is observed to have

no slab counterpart. It was shown to be intrinsically driven by the toroidicity,
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partly localized, and weakly affected by the stabilization of the magnetic shear.
It was shown that while it is rendered as an absolute instability by the electron
Landau resonance, ion Landau damping on the other hand has a stabilizing ef-
fect on the mode. It is important to note that the formulation in Ref. [101] uses
the ballooning formalism applicable only in the high n (toroidal mode number)
limit, considers k, p;; << 1 and keeps the toroidal coupling effect only through
the ion VB and curvature drift. The ion drift frequency, however, is assumed very
small compared to the mode frequency w and ion drift resonance is thus ignored.
Studies involving more complex geometries, such as in small aspect ratio tokamaks
or spheromaks [102| were reported later. Modes are found to be less localized at
different positions of poloidal angle when one removes the large aspect ratio as-
sumption. However, except for the presence of more than one mode along the
poloidal direction because of the strong equilibrium variations along the field line,
the results are qualitatively the same as for the case of former large aspect ratio.
The role of ion magnetic drift resonance and electron Landau resonance are dis-
cussed by Chep et al. [103] using the ballooning formalism with gyrokinetic theory.
The conclusion is that along with magnetic drift resonance, one requires electron
Landau resonance to make the mode unstable. However, this study precludes the
role of the transit frequency of the thermal ions by assuming the mode frequencies
to be higher than the transit frequency of the thermal ions. Berk et al. [104] showed
that the universal drift instability is stabilized by the presence of finite plasma f.
This can be understood to result from the coupling of the universal drift wave to
the Alfven mode and from the effect of ion Landau damping. Hastings et al. [105],
considering a slab geometry with finite VB and using gyrokinetic theory, find two
mechanisms of stabilization of the mode by finite 5: (1) for small values of 5 in
the range m./m; < B << 1, the stabilization is brought about by the coupling to
the Alfven wave and (2) for 5 ~ O(1), the stabilization is due to the compression
of the perturbed plasma motion.

While electron transport exhibits a multiscale feature ranging from the electron
Larmor radius (k,pr; >> 1) of the ETG mode to the ion Larmor radius (k,pr; <
1) of the TEM, ion transport driven by the ITG mode, on the contrary, is hitherto
known to be unstable only at one scale length on the order of the ion Larmor
radius (k;pr; < 1). However, of late, a new mode, with mode frequency in the

direction of the ion diamagnetic drift frequency, on the intermediate scale between
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ITG and ETG mode with k; pr; > 1 has been identified [29]. This mode is found
to be driven by the temperature gradient of the ions in the presence of the Landau
resonance/inverse resonance in a slab geometry and by the toroidal drift resonance
in a toroidal geometry, in combination with the nonmonotonic behavior of the
mode frequency with respect to the perpendicular wave number. Because of its
occurrence in the short wavelength limit and due to the nonadiabaticity of ions,
the mode is named as short wavelength ion temperature gradient (SWITG) mode
to distinguish it from the conventional ITG mode at longer wavelength. It is

2 >> 1, there should be no mode

generally speculated that in the limit (k) pr;)
intrinsic to the ion nonadiabaticity, since ion dynamics in this limit is expected to
be adiabatic. However, if the scale length of the inhomogeneity is such that w,;,
the ion diamagnetic drift frequency becomes larger than the mode frequency w,
there can be an instability related to the inhomogeneity in the ions even in this
shorter limit [106].

Initially, the mode was thought to be of hybrid type [106, 107|, requiring both
n; and 7, (ratio of the density to temperature scale length of the ions and electrons
respectively) to be above a threshold. Later parametric study by Gao et al. [108]
demonstrated that the electron nonadiabaticity is not an essential ingredient for
the mode to develop. Effect of the nonadiabatic electrons is only to enhance the
growth rate of the mode. The theoretical study of this mode started with the
work of Smolyakov et al. [29] in a sheared slab and toroidal geometry using a local
formulation. The work was then extended by Hirose et al. [106| using a kinetic
integral code based on ballooning formalism. This was followed by the study of the
mode in the sheared slab [107] and then in the toroidal geometry [108] by Gao et al.
Effects of shear flows on this mode have been studied in the sheared slab geometry
and found to have strong stabilizing impact on the mode [109]. However, it is
expected that the toroidal SWITG mode will need higher rate of EXB flow shear
for stabilization than the conventional toroidal ITG mode as the former has higher
frequency [108]. The dependence of the critical gradient on the various physical
parameters such as temperature ratio, toroidicity, magnetic shear and safety factor
has been studied for this mode [110]. It is to be noted that such a double hump
behavior was pointed out a long way back by Pu et al. [111] while studying the
ion mixing mode. The main conclusions, from the past works are the following.

(1) In the slab limit (small toroidicity €, = L,,/R), a strong temperature gradient
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driven mode exists in the regime (k,pz;)> >> 1. The instability requires both
n; and 7, to be above a critical value [106, 107]. But later study [108] reveals
that it is inherently an ion mode and exists even if the electrons are adiabatic.
The same is observed in the work of Smolyakov et al. [29]. (2) Toroidicity has
strong stabilizing effect on the mode [106]. Stabilization occurs at €, > 0.15. (3)
The instability is driven by magnetic shear and the growth rate is approximately
proportional to /|s| [L06] where s stands for the shear. But a broader parameter
scan [108] finds that the growth rate initially increases and then starts decreasing
with shear. (4) Similar to the conventional ITG, it is also stabilized by a modest «,
the ballooning parameter. (5) Nonadiabatic circulating electron dynamics provide
destabilization. (6) E x B flow shear has strong stabilizing effect on the mode.

The microinstabilities discussed above not only throw out the thermal ions and
electrons but also the energetic ions produced by the auxiliary heating schemes
and « particles of energy in the MeV range produced as the fusion product. These
energetic particles constitute a considerable fraction of the total plasma, and thus a
sound understanding of the role of these energetic ions on the plasma confinement
through the interaction with the background instabilities is very much required.
The various magnetohydrodynamics (MHD) events are observed to transport and
redistribute the energetic ion population via resonant and nonresonant phenom-
ena [115, 116]. For example, resonant MHD activities such as fishbone, toroidal
Alfven mode (TAE), etc., can cause large transport of the energetic ions. Similarly,
high § sawteeth can also produce loss of the energetic ions. The low frequency
MHD modes such as neoclassical tearing modes (NTM) are equally capable to
drive both passing and trapped energetic ion loss [117, 118|. The toroidal field
ripples and stochastic magnetic field are also among the other mechanism of fast
ion losses. The energetic ions can in turn also alter the stability of the plasma by
exciting and sometimes suppressing the MHD events. One may, for example, note
the observed stabilization of sawteeth by perpendicular energetic ion population,
the destabilization of internal kink mode, TAE, fishbone, etc. The energetic ions
also can give rise to modes on their own which are generally named as energetic
particle modes (EPM) [119].

Though much understanding and confidence have been gained in the case of
the interplay between MHD and energetic ions via theory and experiments, little

attention is paid toward the interaction of these energetic ions with the microtur—
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bulence induced by the ITG mode, TEM, ETG mode, etc. One partial reason
could perhaps be the observation of very weak diffusivities of the energetic ions
and « particles in comparison with the thermal ions experimentally [115, 116, 120]
as well as theoretically [121]. The reason for it, as speculated, is that the ener-
getic ions do not stay in resonance with these microturbulence driven fluctuations
as their drift orbit radii are far higher than the radial correlation length of these
fluctuations, and therefore average over the fluctuation spectrum temporally and
spatially. These phenomena are generally defined as drift averaging and gyroradius
averaging [115]. On the contrary, recent numerical experiments [122] have shown
that o particle and energy loss could be higher than the corresponding losses of
thermal ions and large orbit averaging is not strong enough to ignore the interaction
of the « particles with ITG turbulence. However, it is a recent experiment [123]
reporting evidence of correlation between microturbulence and redistribution of en-
ergetic ions that has spurred a fresh interest among the researchers in the subject.
Even in the absence of any MHD activity, fast radial broadening of the current
profile driven by the off axis neutral beam injection (NBI) has been observed sup-
porting the fact that there must indeed be some correlation between redistribution
of energetic ions and background microturbulence. This has been further stud-
ied in Refs. [124, 125]. Following this, numerical analysis [126] on the interaction
of energetic ions with ITG turbulence observes 1/E dependence for the passing
energetic ion diffusion, where, E is the energy of the energetic ions and 1/E? de-
pendence for the trapped energetic ion diffusion. Similar study [127] found 1/F
dependence of diffusion for the beam energetic ions in the presence of electrostatic
fluctuation. In contrast, the diffusion of the energetic ions in the presence of mag-
netic fluctuations [127] has been found to be independent of the particle energy,
and therefore, may play more important role than the electrostatic fluctuations in
redistributing the energetic ions. The reciprocal dependence of diffusivity on the
particle energy of the energetic ions could be one of the reasons for the superficial
effect of microturbulence on the energetic ions observed in the earlier experiments.
The difference in the born energy of the energetic ions between the earlier and
recent experiments can be a likely explanation of the difference in the observa-
tions regarding the effect of microturbulence on these energetic ions. Note that
such phenomena of redistribution of hot ions by microturbulence is not confined

to only toroidal devices like tokamaks; experiments on linear system also confirm
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the interaction of hot ions with density gradient driven turbulence [172]. Astro-
physical plasmas also encounter similar phenomena resulting from interaction of
the energetic ions with turbulent field [129].

Coming back to the back reaction of energetic ions on microturbulence, one
may cite latest experiments [130] that has reported signature of internal transport
barrier (ITB) in the ion channel even in the absence of reverse shear. The formation
of the I'TB has been observed to have correlation with the transport suppression
mechanism by the injected energetic ions with a lifetime of the order of slowing
down time of the beam ions. Similar observation of the ITG mode suppression
by the energetic ions produced by ion cyclotron resonance heating (ICRH) and
concurrent formation of the I'TB triggered by these energetic ions in a plasma with
monotonic safety factor profile has been reported in Ref. [131].

In the backdrop of this wide, complex and nonlocal scenario of plasma be-
havior in MCF systems the present dissertation is dedicated to the study of the
stability properties of few microinstabilities which usually play the pivotal role in
causing anomalous transport of energy and particles in tokamaks. In particular,
it highlights (1) effects of the nonadiabatic passing electrons on the ion temper-
ature gradient (ITG) mode, trapped electron coupled ion temperature gradient
mode (ITG-TEM) and trapped electron mode (TEM) by linear, global, gyroki-
netic numerical study; (2) the behaviour of the ion temperature gradient driven
modes in the presence of highly steep density profile typically observed in the
transport barriers inside the tokamak; a linear and nonlinear gyrokinetic study on
the occurrence of the short wavelength ion temperature gradient mode (SWITG);
(3) a linear, global, gyrokinetic stability analysis of the universal toroidal mode,
which although is thought to be ubiquitous, yet overshadowed by the temperature
gradient driven modes; (4) the stabilization of the microinstabilities by the hot
ions (those ions having temperature higher than the thermal ions), and finally,
the redistribution of the hot ions by microturbulence with the help of linear and

nonlinear, global, gyrokinetic simulations.
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1.3 Thesis Outline

As the title says, the present dissertation studies the linear and nonlinear properties
of the temperature and density gradient driven microinstabilities using global,
linear and nonlinear, gyrokinetic models.

Chapter 2 details the linear, global, gyrokinetic model which is the core of
the linear gyrokinetic spectral code EM-GLOGYSTO [11, 44]. The nonadia-
batic/kinetic passing electrons are introduced to the electrostatic model. The
rest of the sections of Chapter 2 thus elucidates the observed effect of the nonadi-
abatic/kinetic electrons on the various properties of the linear global ITG mode.

In Chapter 3, the new nonadiabatic/kinetic model introduced in Chapter 2 for
passing electrons is used to study the trapped electron coupled ITG (ITG-TEM)
mode and trapped electron mode using the code EM-GLOGYSTO. The effect
on the linear growth rate and real frequency, global electrostatic mode structure,
critical temperature gradient, etc., have been discussed for the ITG-TEM and
TEM in separate sections.

Chapter 4 discusses the modes inherent to nonadiabatic passing electrons,
namely, the electron temperature gradient mode (ETG) driven by the temperature
gradient of the passing electrons and universal drift mode driven by the density
gradient of the passing electrons. For ETG, the basic properties of the mode have
been studied with and without the Debye shielding effect. The results obtained
for the linear ETG mode are well known [21, 22]. We then move to use the nona-
diabatic electron model to study the universal toroidal drift instability, which is
overshadowed by the temperature gradient driven modes. We have discussed the
various linear properties of the mode and its presence amid the temperature gra-
dient driven modes. It has been observed that this mode can coexist with the ITG
and TEM, and can contribute to the electron transport which is usually thought
to be from the ETG and TEM only.

A new branch of the ITG mode has been reported recently. This mode is un-
stable at kyp; > 1, where, k, and p; are, respectively, poloidal wavenumber and
ion Larmor radius, and therefore named as the short wavelength ion temperature
gradient (SWITG) mode. A linear global gyrokinetic study has been carried out
for the first time, using the spectral code EM-GLOGYSTO. The various linear

properties and global mode structure have been studied with and without the
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presence of trapped electrons. The results are presented in Chapter 5. Corre-
sponding nonlinear study is carried out using the flux tube version of the global,
nonlinear, Eulerian, gyrokinetic code Gyrokinetic Electromagnetic Numerical Ex-
periment (GENE) [32, 84|. It is observed that although linearly the SWITG mode
can be as strong as the standard ITG (with k,p; < 1), nonlinearly the mode has
very weak contribution to the net thermal ion heat transport compared to the
standard ITG mode.

The study of the interaction of the microturbulence and energetic ions has
emerged as a very important area of research following experiments in ASDEX
and DITI-D. In Chapter 6, the interaction between the energetic ions and micro-
turbulence generated by the temperature gradient driven modes has been studied.
The chapter comprises of three sections. In the first section, the effect of ener-
getic ions on the linear ITG mode is studied nonperturbatively using the spectral
code EM-GLOGYSTO. A third species of ions has been added to the existing two
species version nonperturbatively, and the effect of the energetic ions on the linear
properties of the ITG mode has been studied. The second section deals with the
nonlinear study on the effect of the turbulent field generated by the ITG mode
on the energetic ions. For the purpose we have used the global, nonlinear, gyroki-
netic, first principle based (PIC method) code Gyrokinetic Tokamak Simulation
(GTS) [139, 140]. The energetic ions are introduced to the code as passive tracers
that exhibit random walks in the presence of the equilibrium and turbulent fields.
The energy and system size dependence of the energetic ions have been evaluated
in the presence of the ITG mode turbulence. In the third section of the chapter,
the influence of the TEM turbulence is studied using the code GTS and same pas-
sive tracer method. Three different distributions for the energetic species, namely,
isotropic, passing and trapped distributions have been considered and the respec-
tive transport properties have been investigated. The different energy scalings for
different types of distribution mentioned above are estimated and the nature of

transport is studied.
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Chapter 2

Role of nonadiabatic/kinetic passing
electrons in global electrostatic ion
temperature gradient driven modes

1n a tokamak

2.1 Introduction

Tokamak plasmas, which are stable to ideal magnetohydrohynamic (MHD) distur-
bances, exhibit transport of particles and energy across magnetic flux surfaces. On
longer time scales compared to particle and energy confinement times, such trans-
port phenomena, which arise due to equilibrium inhomogeneities, are attributed
to the low frequency drift waves in the plasma.

Among others, toroidal ion temperature gradient driven drift modes (ITG) [§],
trapped electron modes [25], high-n Alfvén ion temperature gradient driven modes
or high-n kinetic ballooning modes [43] (n is the toroidal mode number) have been
studied extensively both in linear and nonlinear regimes. For large n, where it is
expected that the mode structure would be localized to a magnetic flux surface,
the ballooning formalism is a commonly used technique. For global modes with
small n values, the profile effects do play a role, and therefore, the usual ballooning
formalism fails to retain these effects. The global linear and nonlinear gyrokinetic

models then become necessary.
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For I'TGs, such global gyrokinetic models show that the linear growth rate
peaks between n ~ 3 and 15 such that kgpr; ~ 0.5. For example, for typical toka-
mak parameters, the global electrostatic toroidal gyrokinetic spectral model GLO-
GYSTO [11, 44] and time-evolving gyrokinetic codes [45] report typical toroidal
mode numbers in the range 3 < n < 15 with eigenmode structure occupying a
good fraction of the minor radius a. These eigenmodes span several mode ratio-
nal surfaces (MRS) 7 = rypg defined as kjj,,,(r = rars) = 0. In these models,
the passing and trapped ions respond nonadiabatically while passing electrons are
assumed adiabatic.

An electromagnetic version of GLOGYSTO called EM-GLOGYSTO has been
developed by including passing drift kinetic electrons coupled to A fluctuations [46]
followed by fully gyrokinetic electron dynamics coupled to A fluctuations and equi-
librium flows [47]. The code EM-GLOGYSTO was generalized by including fully
gyrokinetic nonadiabatic passing ion and electron dynamics which couple to A
fluctuations, Shafranov shift effects [48], followed by trapped electron dynamics
coupled to A, fluctuations [11, 49]. It has been shown that when passing drift
kinetic electrons couple only to A [46, 55|, finite-5 effects have a benign effect
on ITGs with adiabatic electron response. Using the same model, unstable Alfvén
ITGs (AITGs) or Kinetic Ballooning modes (KBMs) [43, 50, 51, 52, 53, 54| are
shown to become more unstable with increasing [ [46, 48|. Subsequent studies [55]
with more accurate gyrokinetic nonadiabatic passing electron dynamics coupled to
Ay fluctuations have shown about 10 % change in growth rates of AITGs. How-
ever, in all the above-mentioned studies, the effect of nonadiabatic passing electrons
when coupled to electrostatic fluctuations gzNS has not been explored.

In time-evolving gyrokinetic particle simulations where ions are pushed by solv-
ing the first principle laws, the difference in mass ratio of ions and electrons imposes
a stringent constraint on the numerical time-stepping. The assumption of adiabatic
electron response simplifies the computational demands enormously. However, on
a given magnetic flux surface, adiabatic electron model is known to introduce spu-
rious charge accumulation and zonal flows if electron adiabaticity is not carefully
imposed [56]. If one were to push electrons with finite mass in a numerically con-
sistent, fashion, then such problems can be avoided. Because of the ion to electron
mass ratio, the necessity of using small time-steps is seen as a difficulty in time-

evolving linear and nonlinear gyrokinetic particle codes. It goes without saying
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that the above mentioned mass-ratio related physics issues are equally relevant to
gyrokinetic Vlasov codes as well. For trapped electrons, more sophisticated mod-
els [13, 14, 15| are being developed, whereas for passing nonadiabatic electrons
very few models exist.

Coming back to the global linear spectral models [11, 46, 48, 55| mentioned
earlier, the above-said difficulties encountered in time-evolving gyrokinetic lin-
ear /nonlinear codes are avoided as time-evolution is replaced by frequency response
of the system. As a result, at least for the linear regime, both ions and electrons
can be handled on exactly the same physics footing. This situation provides a
strong advantage in favor of the linear global gyrokinetic spectral models both
physics-wise and also as a stringent numerical test case for time-evolving nonlinear
gyrokinetic codes with nonadiabatic electrons. We bring out interesting qualita-
tive and quantitative differences between I'TGs with the usual adiabatic electron
response and with the nonadiabatic passing electrons response.

To this end, we focus on the electrostatic version of the fully gyrokinetic, fully
electromagnetic global linear stability model EM-GLOGYSTO extensively studied
and reported in [11, 46, 48, 55| as applicable to large aspect ratio tokamaks. For the
purposes of this study, Shafranov shift, equilibrium flows, trapped electron effects,
B, and Bj fluctuations are dropped, while particle nonadiabaticity for passing
ions and passing electrons, Landau damping of passing species, finite Larmor radius
(FLR) effects to all orders for all species, trapped and transit resonances, and
poloidal and radial coupling of modes due to particle drifts across magnetic flux

surfaces are included.

2.2 Model Equations

To describe tokamak plasmas, collisionless Vlasov-Maxwell equations are used.
In the following, we invoke the standard technique of gyrokinetic change of vari-
ables as employed by Catto et al. [57] with an eikonal or spectral ansatz to ob-
tain a gyrokinetic Vlasov equation. Among others, a self-consistent and energy
conserving theoretical framework was given by Hahm [58] based on Hamiltonian
and Lie transformations, and more recently a variational formulation for gyroki-

netic Vlasov-Maxwell system was given by Brizard [59| resulting in gyrokinetic
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equations and gyro-averaged Maxwell’s equations for finite—( plasmas. The the-
oretical formulations used here are discussed in detail in Refs. [44] and [55]. For
the sake of completeness, we redo the formulation with one major change, namely,
the addition of the proper gyrokinetic nonadiabatic passing electron response to
the electrostatic potential fluctuation. As our interest is in the passing nonadi-
abatic electron dynamics in electrostatic limit, in the following we are redoing a
description of only the electrostatic formulation [44].

As appropriate for a linear stability study, the full distribution function f;(r, v, )
of species j is linearized about a suitable equilibrium fy; = f;(r,v) such that
£i(r,v,t) = fo;(r,v) + f;(r,v,t) with the assumption that f;/fo; < 1. Retaining

terms up to the first order, we get ;

D D 0 ;
i foj(r,v) =0, where Di E§+r-v+%(va)-Vv, (2.1)
u.t.p. u.t.p. J
and
D . ¢ =
E fj(r7 v, t) - _m_]E : vvaj- (22)
J
u.t.p.

Here w.t.p implies unperturbed trajectories of particles. As the formulation is linear,
the trajectories of the particles remain unperturbed. Also, note that B=V xA =
B ¢ is the equilibrium toroidal magnetic field, E is the perturbed electrostatic
field, ¢; and m; are the electric charge and mass of the species j, respectively.
Expressing E in terms of ¢ and defining the following change of variables: (r,v) —
(r,& = v?/2,u = v?/2B) and using particle canonical angular momentum for
the species j, i.e., ¥g; = é4 - [t X (A +m;v/q;)] = ¥ + m;jrvs/q;, one can write
foi(r,v) = fo;(r, &, p,105). Here cylindrical coordinates r = (r, ¢, z) have been
introduced and ¢ = rA, is the poloidal flux function per unit radian. Such a
transformation would enable one to express fy; in terms of single particle constants
of motion. Thus, Vy fo; term on the right hand side of Eq. (2.2) becomes

j 9\ Ofo; O fn:
vaOj(ragauawOj) = V(l~|>trn],rv(;5 ) f01w+V_L fO]@b

q;  Ovo;) O B op
mjré¢ 8f0j (23)
4G O o=
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where fo;y = foj(10; = 1) and é, is the toroidal unit vector. To obtain Eq. (2.3),
fo; is Taylor expanded to first order in {m;rv,/q;} around vp; = 1. Then, the
following gyrokinetic ordering is used: w/wq; < 1, kior; ~ O(1),  kjor; ~
0r;/Leg << 1, where k:ll,k:[l, and pr; are perpendicular perturbation scales,
parallel perturbation scales and Larmor radius of the species j, respectively, and
L., is a typical equilibrium scale length. Rewriting f] in Eq. (2.2), using the change
of variables defined by

~ Qs dfo; 1 0fo;
= n | (1 Zey, ) P S0 2.4
and then invoking gyro-ordering followed by some standard vector algebra, we
arrive at
D G | Ofojue O v Ofoju
= WO, vt L | Wy D 2 Y
Di| (r,v.%) mj[ o¢ ot "B oy
w.t.p
1 . -
+—an0j €y - \Y @ + O(E) (25)
ij "

In Egs. (2.4) and (2.5), we have introduced the following definitions: €2,; =
we;By/B, w.; = ¢;B/m;, V,, = —rB,0/0y, B, = |V|/r and hgp) is the zeroth
order term of the perturbative series in the “inverse gyro-frequency expansion” of

the nonadiabatic part

Note that since D/Dt ~ O(w,;), only hgo) is retained which is independent of w;
and hence the gyroangle (defined below). In the rest of this chapter h§0) is referred
to simply as h;. Equation (2.5) is our starting equation. Now let us proceed with
the gyro-averaging procedure. In a large aspect ratio tokamak geometry, velocity
v of a particle gyrating around a field line is v = v (é,cosa+égsina) +v) €|, where

unit vectors (é,, €y, €,) define the toroidal coordinates and « is the gyroangle. We
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define the gyro-averaging of a quantity “Q” as

2

1 Y
< >= — d s
Q>5[ doQlas.)
In Eq. (2.5), the terms in square brackets [..|, on the right hand side, are all equi-
librium quantities and are independent of a.. Thus, only the electrostatic potential
is to be gyroaveraged. Similarly, on the left hand side, h; is independent of «a,

hence only D/Dt|, ., is to be gyro-averaged. Therefore,

D
Dt

o
IR’

gyro—averaging D

_ 0 X
il =g T Wién vy

u.t.p u.t.g

where vg; = (v} /2 + vﬁ)éz/(rwcj), w.t.g. implies unperturbed trajectory of guiding

centers, and R is defined by R = r + v x ¢, /w,;. Therefore,

1 2w

<P >= o . da [ ¢(r[a],t) ]

I‘:R—VXéH/’wcj

Since ¢(r[a],t) is an unknown function, the gyro-averaging is performed by first
Fourier decomposing these functions, then representing the particle coordinate r

by gyro-center R and remembering that

1
DY

Jp(2) /0 ' doexpli(xsina — pa)],

With the above-mentioned procedure, one obtains the following gyrokinetic equa-

tion:
D . (4 \ |9fojw O v Ofojy
Dt thf<R’V’t) B (mj) [ o¢ ot B op v
u.t.g
1 _
+q Vo é¢'V] (2(k; ) Jo(kLer;)) + O(e). (2.6)
pJ
¥

The solution to Eq. (2.6) is obtained by the Green function technique (unit source
solution say P) [60]. An explicit form of P is obtained analytically by the method

of characteristics of unperturbed trajectories of guiding centers (u.t.g) and followed
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by a perturbative technique for the guiding center velocity [44]. Moreover, the
unit source solution, P, to Eq. (2.6) is independent of the type of perturbation
(electrostatic or electromagnetic) and solely depends on the considered equilibrium.

We assume for equilibrium fy; a local Maxwellian of the form

m;

Joi (& 1, 0) = fari(§,0) =

so that 0fy;/0p = 0 by choice and density profile N(¢) is independent of the
species type j. Thus, for a “sinusoidal” time dependence, the solution to Eq. (2.6)

in guiding center coordinates R is

o
hj(R,V,W) = (%7””

J

) /dkexp (kR (w—w))) (2 P;)@(k; ) Jo(kror;) + O(e).

Here, k = k €, + kg ég + ky é4 and k = (2m/Ap) k,, with Ap = p, — p; which

defines the radial domain, ky = n/r and kg = m/p; w is the eigenvalue and

2
TTILN QNS I
2 \ vy 207,
with w,; = (T;V,InNky)/(¢;B) is the diamagnetic drift frequency and n; =
(dInT})/(dIn N). Note also that since the large aspect ratio equilibria considered

are axisymmetric, the toroidal mode number “n” can be fixed and the problem is
effectively two dimensional in (p, #) (configuration space) or (k, kg) (Fourier space).

As our interest is in the nonadiabatic passing electrons, let us now proceed to
the construction of the propagator for passing gyrokinetic species. For trapped
ions one can see Ref. [44]. Since a gyroaveraged Vlasov equation can be solved
using the method of integration along its w.t.g, for our special class of “sinusoidal”

time dependence, the solution P for a given (k,w) is simply

t
PR K, e 1,0,w) — / it exp (1 [k - (R — R) — wt')

(e 9]

t ¢
= / dt’ exp (L/ dt"k - vy (t") — Lwt’> : (2.7)
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where guiding center velocity dR/dt = v, = v +v4 and R(t) is to be obtained by
solving for guiding center trajectories as an “initial value problem” in equilibrium
considered above. This is done by first assuming that the cross-field drift terms
[vq] are small and drop them at the zeroth order and to include them iteratively

at the next order. This procedure gives us P,

P = Z D) — )0 - 8,), (2.8)

w — ak;HvH Pwy

where 27, = k1 &5, £ = va/wi, va = (vi/Q - vﬁ) [(weR),we = ovy/(q(s)R),0 = +1
(sign of vy), ki = /K2+kZ, k = [ng(s) —m] /(q(s)R) and 0, is defined as
tanf, = —k/kg and s = p/a, a—is the minor radius. A few points to be noted here
are as follows: (1) Note that the grad-B and curvature drift effects appear through
the argument of Bessel functions (vf; = k vg/w;) of Eq. 2.8. Thus, for example,
“radial and poloidal coupling” vanishes if z7; = 0 in Eq. 2.8 and one would arrive at
“cylindrical” results. Hence in our model, Bessel functions in Eq. 2.8 bring about
coupling between neighboring flux surfaces and also couple neighboring poloidal
harmonics. (2) The argument of Bessel functions J,’s in Eq. (2.8) i.e., xf; = k1 &,
also depends on transit frequency wy, xf; can become xy; ~ O(1). Hence transit
harmonic orders are to be chosen accordingly. (3) While performing the numerical
calculations, we have approximated the particle speeds in &, by their local thermal
velocity values and hence use §, =< &, > where < &, >= 20sign(q;)q(s)or;. (4)
The parallel velocity v, of the particles are considered to be independent of time.
That means that the passing particles are modelled as deeply passing. In this
form, P contains effects such as transit harmonic and its coupling, parallel velocity
resonances and poloidal mode coupling.

To obtain the particle density fluctuation 7n;(r;w), one requires to go from
the guiding center (GC') coordinate R to the particle coordinate r using R =
r + Vv X €/w,j, by replacing h; using Eq. (2.4) followed by the integration over v
keeping in mind the gyroangle integration over . This last integration on « yields

an additional Bessel function “Jy” for ¢. Thus, in real space r, for species j, we
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finally have

i) = - (%)

/dv% (w—wi) (Py) plk; )Jg(ij)] , (2.9)

g5+/dkexp(Lk-r) X

where xp; = kipo7;. It may be worthwhile to emphasize that the equilibrium
effects (incorporated in P) and perturbation effects are clearly delineated in the

formulation. Equations are finally closed by invoking the quasineutrality condition,
> i(rsw) ~ 0. (2.10)
J

Equation (2.10) defines a generalized eigenvalue problem with eigenvalue w and
eigenvector ¢. This eigenvalue problem is conveniently solved in Fourier space.
By Fourier decomposing the potential in Eq. (2.10) and then taking Fourier trans-
form,we obtain a convolution matrix in Fourier space. If we assume a hydrogen-like

plasma (i.e., single charged) with ions, electrons, trapped ions, we have

Y>> My ¢ =0, (2.11)

k! j=i.eitr—i

where k = (k,m) and k' = (x’,m’). Note that we have three species: Passing ions
(1), passing electrons (e), and trapped ions (tr-i).
In the following, we discuss in detail the formulation for nonadiabatic passing

species. With the definitions, Ap = p, — p; (upper and lower radial limits), A, =
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k — K and A,, = m —m' the matrix elements are given as follows.

~ 1 Pu
kK’ = A_p ; dp exp(—LARp)
X [ozpémm/ + exp(tA,,0) Z —f;?,@'] , (2.12)
P
. 1 Pu
kk A—p ; dp eXp(—LA,Qp)
a, exp(tA,0) -
X | P A+ M) N O (2.13)
[T(p) 7(p) ; "
where
il 1 /”mal‘j(ﬂ) L v
;= e vy dvjexp | — X
p] V 27T'U?h,j () J—vmaz; (o) ! Utthj (p)
{Nf[&] — Né[i] } (2 14)
o,J ’ '
Dy p'=p—(m—m’)
VLmaz,j(p) 02
Iy = / V" dyy exp | =52 | x
7 0 * 2Ut2h,j<p)
Ty () To(@ ) Iy (25)- (2.15)
We have introduced the following definitions: vimaa () = min(v)/VeE, Vmaz,;)

which is “trapped particle exclusion” from w—independent perpendicular veloc-
ity integral I7 ;s o, = 1 — y/€/(1 +¢) is the fraction of passing particles; fllm», is
w — dependent parallel integrals; zf; = k1 &,. Also,

N{ = w—w,;[1+ (n;/2)(vi{/v3 ;) = 3)]
Ny = wn;n;/(2v5,,), and

DY = <wilp) > (ngs —m'(1 = p)(ov)/viy) — w,

where < wy ;(p) >= vy ;(p)/(rqs), is the average transit frequency of the species

J- As integrals I7 ; are independent of w and dependent only on v, , o and other

equilibrium quantities, one may choose to calculate and store them as interpolation
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tables (memory intensive) or, alternatively, one may choose to calculate them when
needed (CPU-time intensive). In the next section, we will specify some diagnostics

and normalizations used in the code.

2.2.1 Diagnostics: Eigenmode-averaged quantities

Simple diagnostics for various physical quantities are computed as averages over
the eigenmode. For example, mode-averaged poloidal, radial and perpendicular

components of the wave vector k of the most unstable mode can be evaluated as

m 2
Jdp 32120 0m)]

< ky >2= —.
Jdp 3 1oeem))

(kZ) |Gy (K2 D p) |

<k, >*= > :
Z |90(k,m)‘

(k;m)

and

<k, >'=<k, >+ < ky >*

where quantities with suffix “(k,m)” imply Fourier weights of the corresponding

perturbations.

2.2.2 Normalization for full radius calculation

@, 0,

Distances are normalized to minor radius “a”; i.e., s = p/a. Radial position where
n; peaks is represented as s = sy. Frequencies and growth rates are normalized
to wao = V(s = so)ori/a?, ki is normalized to its local (ion/electron) inverse
Larmor radius QZ}(S), ki to L' (inverse density gradient length scale), magnetic
field B to B(s = 0), density to N(s = sp), temperature 7' to T'(s = sp), and
velocities (vy,v)) to vi(s) (i.e., to their radially local thermal values).

All input quantities to the code EM-GLOGYSTO are in S| units, except tem-
perature of given species which is in eV. Hence, for example, vy,; is computed

using v2 . (in m/s) = T;(in Joule) /m;(in Kg) = |e|T;(in €V)/m;(in Kg), where |e| is
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absolute value of electronic charge. Thus, for example, for parameters throughout

this chapter, we have wgy ~ 3 x 10* s71.

2.3 Eigenvalue finding method

The eigenvalue solver is devised by Brunner et al. [11] applying the method pro-
posed by Davies [176] along with further optimization. For the sake of completeness
we elucidate the method again as follows.

The method uses the advantage of the fact that D(w) is analytic. Let us consider
that h(z) is an analytic function inside a closed positively oriented contour C. If
it is possible to determine the number N of the enclosed zeros a;, i = 1,..., N
using the principle of argument, the method is then based on the evaluation of an

equivalent number of integrals:

1 h
= — z"ﬁdz n=1,.... , N,
2i Jo h(2)
which have the property
Sp=> a’, n=1..,N. (2.16)

=1

The set of equations (2.16) is then solved finding the roots of the associated poly-

nomial defined by
N

Py(z) =J(z = a) = Z AN

=1

One can calculate the coefficients A,, from S, using a recursive relation as follows.
Sl + A1 =0

SQ -+ A151 —+ 2142 = O
Sk—FAlSk,l—FAQSkQ—'——'—kAk:O, kzl,,N

The original numerical technique by Davies is developed for circular contours. This

has been generalized by Brunner et al. [11] to allow for more elongated curves in
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the frequency plane. This is achieved by applying the above method along a unit
circle to the function D(z) = D(w(z)) with w(z) being a conformal transformation

of the unit disc at origin. By considering,
wiz)=a+r2(E24+1)

the unit circle in the z-plane is transformed to a more oval-shaped curve in the
w-plane centered at w with average radius r. The elongation and orientation are
defined by the complex parameter F (|E| < 0.1). In this method the determinant
must only be evaluated along a contour. Furthermore, up to ten roots inside a
single curve can directly be obtained without any further refinement. To achieve
accuracy, the number of equidistant sampling points along the unit circle is in-
creased until the maximum jump in the argument of D(w(z)) is less than /2.
Once an eigenfrequency w; is identified, the corresponding eigenmode can be eval-
uated by considering an inhomogeneous right hand side in (2.11) by putting w = w;
and then solving the equation for ¢. The initial right hand side is taken as a first
guess of the eigenvector structure which is then repeated iteratively until conver-

gence is attained.

2.4 Results and Discussion

We choose profiles and parameters as presented in Table 2.1 to demonstrate the
effect of nonadiabatic passing electrons on global ITGs. For these parameters
equilibrium profiles are shown in Fig. 2.1. For the above-mentioned parameters,

value of p* = pri(s = s¢)/a ~ 0.0175.

2.4.1 n-scan: Effect of variation of 7., multiscale features

and mixing length transport

Growth rates v and real frequencies w, of global ITG mode as functions of kgpr;
is shown in Fig. 2.2. Effect of adiabatic and nonadiabatic electron responses for
various values of 7, is presented in the figure. Note that this kind of higher 7,
values are often seen in electron internal transport barriers [63]. The growth peaks

around n ~ 9. This result shows that the electron nonadiabaticity indeed affects
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Table 2.1: Profiles and parameters

Parameters:

e B-field : By = 1.0 Tesla

e Temperature : Ty = T'(sg) = 7.5 keV
e Major Radius : R =2.0m
e Minor Radius : a =0.5m

e radius : s =p/a, 0.01 <s<1.0, sg=0.6
(] LnO =04 m, LTO =0.2m

o 1ie(50) = 2.0, €4 = Lo/ R = 0.2

o 7(s) =T.(s)/Ti(s) = 1.

Equilibrium Profiles:

e N-profile and T-profile

%s) = exp ( a53" tanh < To )
Tie(s) aés s—s
i~ = exp < L22L tanh ( =0 )

08, = 0.35, dsp = O 2 at s = s
o q(s) = 1.25+0.67 s>+ 2.38 53
—0.06 s*

such that ¢(s
shear s = s,

7| s Temperature Y
02t e ) 4 05
]

Density

. -
- n
T

0.4 0.6

S

Figure 2.1: Equilibrium profiles for global ITGs stability studies (parameters for
Table 2.1: Normalized density, temperature, 7; . (left), Safety factor ¢ and magnetic
shear § (right) profiles as functions of normalized radius s = r/a. Note that n peaks

at s =p/a=s9=0.6
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Figure 2.2: Growth rates and frequencies for profiles in Fig. 2.1: Growth rate v and
real frequency w, for n;(sg) = 2 with adiabatic electron model and nonadiabatic
electron model characterized by increasing 7.

the growth rates, in general. For finite time taken by passing electrons to respond to
E-perturbations, especially in regions where the magnetic surface is mode-rational
(i.e., where K, , ~ 0), the nonadiabatic contribution is significant.

To elucidate this idea, for n; = 2.0, we have computed the global eigenmode
structures of ITG at n = 9, where the growth rate peaks. Again, for electrons we
have two cases: (i) Adiabatic electron response and (ii) nonadiabatic electron re-
sponse with increasing values for .. For example, in Fig. 2.3, eigenmode structures
for the adiabatic electron case are compared with that for the case of nonadiabatic
electron response with n, = 2.

The “ballooning” nature of the modes on the “bad curvature” region is also
clearly demonstrated. For example, unlike a “cylindrical” or “slab” ITG, here for
each value of n there are about 10 poloidal mode numbers m coupled. This is
again seen in Fig. 2.4, where at a radial location say s = r/a = 0.6, one can see
a predominant Fourier contribution from several m numbers. The global nature
of the mode is adequately demonstrated by projecting the eigenmode on to the
poloidal plane. The mode width indeed occupies about 30 % of the minor radius
a extending over several mode-rational surfaces r = ry/grs.

Note that at locations where kj,,, = 0, the mode structure is very sharp for
ITGs with nonadiabatic electrons, whereas no such effect is detectable for ITGs

with the usual adiabatic electrons. Consequently, the number of radial wavenum-
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Figure 2.3: Two-dimensional eigenmode structure of global ITG at n =9, n;(so) =
2 for adiabatic electron response (left panel) and nonadiabatic electron response
(right panel) at n.(sg) = 2. Global nature of the mode is clearly visible covering
about 30% of the minor radius.

bers k, needed to be resolved increases, as seen in Fig. 2.5.

To understand the structures, let us look at the mode-rational surfaces and
phase velocity vﬁ{fn across the entire minor radius for equilibrium ¢ profiles shown
in the above table (Fig. 2.1). In Fig. 2.6 for n = 9, w,/kjmn, the per-mode
phase velocity is plotted as function of normalized radius along with vy, and
vi- 1f one assumes adiabatic electron response, as is usually done, then in both
rapidly increasing regions of vﬁf’n (i.e., as r — ryrs) as well as in regular regions
(r # ryrs), electrons are “forced” to respond “instantaneously”. However, as
can be seen from Fig. 2.6, in regions close to r = r,.,,s electrons cannot respond
instantaneously, but take finite time to respond. Thus, if the correct nonadiabatic
response is incorporated then for all radial locations (i.e., for all per-mode phase
velocities), there would be appropriate electron response. For example, for regions
r # ryRrs, Where vﬁ{fn is small compared to vy, (r), automatically the response will
be adiabatic. In the same way, as r — 7/rs, the local phase velocity increases
and hence strong deviations from adiabaticity occur, which will be automatically
accounted for. Such nonadiabatic effects are indeed important for global ITGs as

they alter both growth rate and mode structures remarkably.
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|D|

Figure 2.4: The poloidal Fourier components for electrostatic mode shown in
Fig. 2.3. Note that at each radial location, there are several poloidal harmon-
ics coupled. A few locations where ki, , = 0 (i.e, ng = m) are indicated on the
top axis. Nonadiabatic electrons introduce sharp structure near these points.
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Figure 2.5: Radial Fourier harmonics for each poloidal mode for the electrostatic
mode shown in Fig. 2.3. Here we have used 144 modes. For numerical convergence,
we have tested with larger number of radial harmonics and observe that the results
are converged.

An alternate way of understanding this situation is as follows: Nonadiabatic
electron response allows residual unneutralized E field, and introduces phase delay
between density and potential fluctuations and the concomitant growth. Multi-
scale features seen in mode structure may remind one of nonlinear effects such
as zonal flows, which “break up” the modes resulting in slower rates of growth
for ITGs. However, here the exact opposite happens. The linear mode structure
is “broken up” due to linear nonadiabatic response of electrons introducing phase
delays and thus pronounced growth rates. In Fig. 2.7, we show a closeup of global
eigenmodes with adiabatic and nonadiabatic electron responses.

These “broken up” structures, which we call as multiscale structures, in turn, in-
crease the effective or mode-averaged wavenumber as compared to the adiabatic
electron model. For example, eigenmode averaged k,.pr;, kgpr; and k, pr; for adia-
batic electron model and nonadiabatic electron model with 7. = 2 and 7. = 8 are
shown in Fig. 2.8 for various values of n. Note that due to the sharp radial struc-
ture introduced by nonadiabatic electrons, the effective k| pr; has been enhanced
in both cases of 7.. It would then be interesting to construct the so-called “mixing
length” transport for transport coefficient, Dy;p = v/ < k? > from the linear
growth rate v and mode-averaged k,, i.e., < k; >. In Fig. 2.9, we present the
mixing-length estimates in the usual gyro-Bohm units as a function of the toroidal

mode number n. It is found that compared to the adiabatic electron model, the
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Figure 2.6: Typical per-mode phase velocity w; /kjm,, versus normalized minor ra-
dius s = r/a for equilibrium profile of ¢ shown in Fig. 2.1 with n.(s¢) = 8, 7;(s0) =
2, n = 9. Locations of peaks (r = rygs) indicate mode rational surfaces. The
horizontal dashed lines are the electron thermal velocities v/" and v/7%* at radial
locations at the beginning (s—0.4) and end (s=0.7) of mode structure, respectively.
The horizontal dashed-dotted lines are ion thermal speeds at same locations as the

electrons.
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Figure 2.7: Closeup of two dimensional eigenmode structure of global ITG at n = 9,
n; = 2 for (a) adiabatic electron response, (b) nonadiabatic electron response at

Ne(so) = 2 and (c) same as (b) at . = 8(sg).
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Figure 2.8: Eigenmode
averaged normalized mode
numbers < kopri >

(squares), <  ky.pr; > e ——
(diamonds), < kipp; > Cloe TR T =
(stars) as a function of ogynmnnt :j‘“"‘f:f- -‘!: -t""'

toroidal mode number n at s 4 5 s 71 8 s 10 u 12 1
ni(so) = 2; (a) adiabatic T

electron response, (b) nona- 2 . “*s
diabatic electron response v-«:::;*“'g‘.:\:t:\:‘:‘*t:t:*--*v-- -

at 1.(so) = 2, and (¢) same 5 N T

as (b) at n.(sg) = 8.

Figure 2.9:  Mixing length
estimate for transport coef-
ficient Dy =7/ < k% > in
gyro-Bohm units as a func-
tion of toroidal mode num-
ber n; n;(sp) = 2 for (a)
adiabatic electron response
(solid line), (b) nonadia-
batic electron response at
Ne(so) = 2 (dashed line), and
(c) same as (b) at 7.(sg) = 8
(dot-dashed line).
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Figure 2.10: For the highest growth rate mode toroidal mode number n = 9, n;
scan is performed for three cases of electron model: (a) Adiabatic electron response
(solid line), (b) nonadiabatic electron response at 7.(sg) = 2 (dashed line), and
(c) same as (b) at 7.(sg) = 8 (dot-dashed line). Results clearly show that 7; .. is
downshifted.

transport predicted from global ITGs for nonadiabatic electrons results in reduc-
tion in transport. It is important to note that the presence of nonadiabatic trapped
electrons [11] may alter the levels of transport observed here due to nonadiabatic
passing electrons.

It may be of interest to note that both nonlinearly generated zonal flows and
linear but non adiabatic passing electrons "breakup" the mode structures. While
the zonal flow breakup is not related to any particular surface (kj = 0 everywhere
for the m = 0,n = 0 zonal flow potential perturbation), the presently studied

effect occurs due to m # 0, n # 0 but k| = 0 mode-rational surfaces.

2.4.2 7; scan: Nonadiabatic electrons cause down-shift of
critical 7,

Next, we study the effect of nonadiabatic passing electrons on the critical ion tem-

perature gradient parameter 7;. For adiabatic electrons, global I'TGs are known to

be unstable at about 7; iy >~ 1.1. Here, we follow the highest growth rate mode,

namely, n = 9, and investigate the smallest value of n; at which this mode becomes
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unstable. We have studied again three cases: Global ITGs (i) with adiabatic elec-
trons (ii) with nonadiabatic electrons at 7. = 2, and finally (iii) with nonadiabatic
electrons with 7. = 8. We find that the critical 7; is reduced compared to the adia-
batic electron model. This result is perhaps not surprising. As we have seen in the
preceding section, nonadiabatic electrons tend to further destabilize global ITGs
as compared to global ITGs with adiabatic electrons. Hence one may expect that
a relatively weaker ion temperature gradient would destabilize global ITGs now as
compared to the adiabatic electron model. This expectation is indeed shown to
be true in Fig. 2.10. Physics-wise this result implies that, for example, for similar
density profiles, in tokamaks with steeper electron temperature gradient than ions,
global I'TGs would become unstable for smaller values of n; than predicted by adi-
abatic electron models, thus down-shifting the critical 7;. This linear phenomenon
is in contrast to up-shifting of critical n; when nonlinear zonal flows are allowed to

evolve simultaneously with ITGs [5, 114].

2.5 Conclusion

We have presented a 2D global gyrokinetic stability study as applicable to large
aspect ratio tokamaks. We have focused on the effect of treating electrons on
the same physics footing as ions, meaning fully nonadiabatic electrons. For this
study, we have included passing ions, trapped ions and passing electrons. The
model includes arbitrary order FLR effects, kinetic effects such as Landau damping,
transit/trapped particle resonances, poloidal and radial coupling, and magnetic
resonances. With the above-mentioned model for electrons, we have reported the
study of global toroidal ITGs for low toroidal mode numbers in the range 3 < n <

15. There are several interesting new results:

[1] For nearly the same values of n; and 7., the global mode structure is observed
to change dramatically. With increasing 7, values, i.e., with more nonadia-
baticity, growth rates also are seen to increase. Thus, we conclude that, in

general, nonadiabatic passing electron dynamics destabilize global ITGs.

[2] Important structural changes in the eigenmode structure appear near the
mode-rational surfaces where per-mode kj,, vanishes. On these surfaces,

the local phase velocity grows quickly. Because the mode is global and
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3]

spans across several mode rational surfaces, generalizing electron dynam-
ics, as done in the present study, introduces a multiscale nature in global
ITG eigenmodes. These effects in turn alter the effective k£,. A combination
of these effects appears to bring down the mixing length transport estimates

as compared to global I'TGs with adiabatic electron dynamics.

Finally, an important fall out is the down-shift of critical 7; values as com-

pared to the adiabatic electron model.
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Chapter 3

Trapped Electron Coupled Ion
Temperature Gradient Mode And
Trapped Electron Mode In The
Presence Of Nonadiabatic Passing

Electrons

3.1 Introduction

Anomalous transport in collisionless hot tokamak plasmas is believed to be due
to the drift waves driven by the density and temperature gradients [4, 5| of the
particles in a magnetically confined plasma. While the turbulent heat flux of ions
is believed to be driven by the ion temperature gradient (ITG) mode, the electron
heat and particle flux, on the other hand, is expected largely to be driven by the
trapped electron mode (TEM) in the low magnetic field side of a tokamak on ion
scales (of the order of ion Larmor radius) and by the electron temperature gradient
(ETG) mode on electron scales (of the order of electron Larmor radius). Enormous
effort has been put to understand the underlying physics issues both theoretically
and computationally and then to match the predicted transport flux with that
observed experimentally.

The study of ion transport by the I'TG mode has started with simple mod-
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els [30, 31|, where electrons are treated adiabatic. The next step is then to incorpo-
rate the nonadiabatic electrons. This has been achieved in the the form of trapped
electrons included in the background model of nonadiabatic ions and adiabatic
passing electrons. This has extended the study of this class of microinstabilities to
the trapped electron coupled ITG mode (ITG-TEM) [11, 12, 13, 14, 15, 16, 17, 18]
mode and TEM [11, 25, 26, 28, 32]. The new models with trapped electrons give
growth rate two to three times larger than that in the case of simple adiabatic
electron models. At the same time, the transport flux is observed to rise substan-
tially. A comparison of gyrofluid [33] and continuum gyrokinetic [34] simulation
of transport in realistic geometry with experiments has been carried out, and the
electron thermal diffusivity, ion thermal diffusivity, and perturbed density fluctu-
ation level are found to exceed the experimental value by factors of more than
two. The reason of this deviation is speculated to be due to the non-local behavior
owing to the variation of plasma gradients.

Following this, sophisticated flux ribbon codes have come up with advanced
features [35, 36| to reduce the discrepancy between experiments and computa-
tional results [37]. The kinetic electron simulation with trapped particles using
a generalized split weight scheme to df gyrokinetic particle method is performed
in Ref. [38]. The result shows significant increase in the ion heat diffusivity in
comparison to that in the case of the adiabatic electron model in line with the
increased growth rate. However, the experimentally observed ion diffusivity [39] is
much lower than that predicted by the adiabatic electron models. Thus, a more
complete gyrokinetic model that treats electrons and ions on the same physics
footing with global profile effects is very much sought to address such anomaly.

The major problem with the incorporation of full dynamics of electrons includ-
ing the passing fraction nonadiabatically or kinetically in a time dependent model
is their fast parallel motion. The high mobility of these electrons needs higher
resolution in their response time scale, and is a formidable task in the presence of
full ion dynamics, the issue of which is discussed elaborately in Ref. [40]. With
advances in computational facilities significant progress has been achieved to this
end to treat the electrons fully kinetically [36, 157, 139]. However, sometimes sim-
ulations choose reduced ion to electron mass ratio to downsize the computational
cost 32, 40, 42|.

In the present chapter, we take into account the effect of the trapped elec-
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trons [11] in the model. The spirit is to show the role of kinetic electrons, which
we term as “nonadiabatic” passing electrons, on the trapped electron coupled ion
temperature gradient mode (ITG-TEM) and trapped electron mode (TEM). It is
observed that inclusion of nonadiabatic passing electrons influences strongly the
growth rate of the ITG-TEM and TEM and brings fine radial structures of the
mode on the mode rational surfaces. A calculation of flux is done based on the
mixing length estimation. It predicts transport level below those obtained from
adiabatic electron models.

To serve our purpose, we use the electrostatic version of the fully gyrokinetic,
fully electromagnetic global linear stability model EM-GLOGYSTO applicable to
large aspect ratio tokamaks. We drop the parallel and perpendicular magnetic field
perturbation, i.e., By and Bj| fluctuations, Shafranov shift and equilibrium flows.
Thus, particle nonadiabaticity for passing ions and trapped ions, passing electrons
and trapped electrons, FLR effects to all orders for all species, kinetic resonances,
viz., trapped and transit resonances, poloidal and radial coupling of modes due to

particle drifts across magnetic flux surfaces are taken into account.

3.2 Model equations

In real space r, for species j, the perturbed density can be expressed as due to
adiabatic and nonadiabatic responses of the constituting particles. Thus, for our

case, the perturbation in density for species j can be expressed as

/dv% (w—w) (Py) p(k; )Jg(ij)] : (3.1)

g5+/dkexp (tk-r)

where the first term on right hand side corresponds to the adiabatic response,
while the second term represents the nonadiabatic response of the particles to

a perturbation with all its kinetic effects. Also, ¢; and T} are the charge and
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temperature for species j, respectively, and NN is the equilibrium density.
2 2
) Y
L+ h % - + L 2l )
2\ Vin, 2 v,

where w,,; = (1;V,, In Nky)/(q; B) is the diamagnetic drift frequency; n; = (dInT;)/(dIn N),

v and v, represent parallel and perpendicular velocities, respectively, and vy

* .
W; = Wn;

is the thermal velocity of species j. Jy(zp;) is the Bessel function of argument
xr; = kipr;, presenting the FLR effect. We consider a local Maxwellian for each

species of mass m; as

m;

fMj(£7w) =

where ¢ = v?/2. Also in Eq.(4.3) P, represents the guiding center propagator for
passing particles of type 7 = i, e. For details of the propagator for trapped particles
the reader is referred to Ref. [11].

Introducing quasineutrality condition
> A(rw) =0, (3.2)
J

one would finally end up with a generalized eigenvalue problem where w and ¢
respectively are the eigenvalue and eigenvector, which can then be conveniently
solved in Fourier space by Fourier decomposing the potential in Eq.(6.1) first and
then taking Fourier transform to eventually obtain a convolution matrix in Fourier
space. With single charged passing ions (i), electrons (e) along with trapped ions

(tr-i) and electrons (¢r-e) we have

ZZM{{,H @k""Z Z M{(,k’ ¢k/+ZZM{<,k/ @k""Z Z M{{,k/ (ﬁk/ :0,

K j=i K j=tr—i K j=e K j=tr—e

where k = (k,m) and k' = (k/,m’).
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The trapped ion contribution to the matrix is given by [11]

» 1 Pu TP —Rqgs N¢?
Mir—i— dpe~{Ke=ry)p s 4
ok Ap/ pe “\ "B, T

ol
~ / ~ / / 1) 5 kl,m *6 k/,m/i|
fx<xb<k,m>,xb<km>,p)e’{b( e

2A-1

7

ab<5 r+

m,m

X

/+OO dEVEe P (w - w*l)Jg(a:'L) ] (3.3)

n<q§>b—pwb—w

where
! 1 !
Ixlandpp) = [ dXJ()d()
0
1
_ / AX J,(VXy) I, (V).
0
sk 2
ijb(k7m; P, 8) = 2\/<m - nq8)2 =+ (qu> %7
- - 0 - k
cos By(k) = w, and sin 5, (k) = Wy
Tp Tp
Also,
1 — ABpin/ Bo
X= 20A-1 7
For circulating particles,
By
0< A< — 1< X < +oo,

min
and for trapped particles,

By By By
<A< =K<
Bmax B Bmin

0
= O<sin2§<X<1,

where B min = Bo(1 £ A7) and B = By(1 — A7 cosf) the magnetic field at
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the point of interest (p,#). Furthermore, we use the following standard notations:
FE = g/v} is normalized energy variable,

e = v?/2 the kinetic energy,

xrr = kl\/%/ Q,

) = ¢B/M the cyclotron frequency,

Vg, = \/W the thermal velocity,

p = v? /2B the magnetic moment,

A = Byu/e the pitch angle variable,

Wy = \/E/Rqs the bounce frequency,

0, = 2v/X the turning point angle of the trapped particles,

p» = 2q5V/eX /QV/A=T the half banana width,

and A~! = p/R the inverse aspect ratio.

The toroidal precessional drift < qb >, for the large aspect ratio can be written as
[177]

- £ (s
T
G(p,X):4>\{§[(X—1)+%]+%[%—%}}, for 0<X <1,

where K (X) and E(X), respectively, are complete elliptic integrals of first and
second kind, and § = dIn ¢,/d In p stands for magnetic shear. A single X — averaged
value < G >x for each magnetic surface p is considered instead of considering the
deeply trapped limit X << 1 [11]. Note that the adiabatic term in Eq. (3.3) is
weighted by the fraction a4 of the trapped particles. For the electrons, a bounce
averaged relation [178] is considered. Also the FLR and banana width effects can

be neglected. Thus the simplified relation for trapped electrons [11] can be written

u ! J— 2
(k,k7) Ap oL BO T

1 IPTERY Py
/dXA\FA oo
0 n < ¢ >p K(X)

as

2A-1

™

/+

ab5 X

m,m

{0 = wne1 = 20| W(2) = wete [-— W (2) + ] }] L (34)

n < Y >y 2
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where

2 -z

1 +o00 2
W(z) = —/ xx exp( 5 )d:p, Im(z) >0,

is the plasma dispersion function [179]. The other quantities are defined as follows.

Gb 9
o p, X) = coslm — ngs)
\/ — sin%(0/2))’
and
2R, % do ~ 4Rq

K(X).

" VerA-1 Jo /X —sin2(0/2) Rave

3.3 Results and Discussion

The effects of the nonadiabaticity of passing electrons on ITG mode have been
explored and discussed in the preceding chapter. In the present chapter, we shall
investigate the effects of nonadiabaticity of the passing electrons on ITG-TEM and
TEM.

For this purpose we consider the same profiles and parameters presented in Ta-
ble 2.1 of the preceding chapter. The equilibrium profiles corresponding to these

parameters are shown in Fig. 2.1.
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Figure 3.2: Two dimensional eigenmode structure of global ITG at n = 8 and
n:i(sp) = 2 for (a) pure ITG with adiabatic electrons, (b) ITG-TEM without nona-
diabatic passing electrons, and (¢) ITG-TEM with nonadiabatic passing electron47?
at n.(sp) = 2.0.
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The real frequency w, and growth rates v normalized by wqy = vri(s = s¢)or:/a*
for ITG-TEM are plotted in Fig. 3.1. Here we have shown (i) ITG-adiabEl (ITG
mode with usual adiabatic electron response, i.e., /n = e¢/T,), (dashed line
for 4 and solid line for &, marked with squares), (ii) ITG-TEM without nona-
diabatic passing electrons (dashed line for 4 and solid line for «, marked with
diamonds), and (iii) ITG-TEM with the contribution from nonadiabatic passing
electrons (dashed line for 4 and solid line for &, marked with filled circles). It is
clear that the I'TG-adiabEl mode is destabilized by the trapped electrons. The in-
crease in the growth rate can be attributed to the following facts: (i) the presence
of nonideal effects such as magnetic drift resonances [16|, (ii) trapped electrons
cannot respond adiabatically to the local variation of the scalar potential and con-
sequently can not take part in charge cancellation|[17], and (iii) an increase in real
frequency reduces the ion landau damping leading to an increase in the growth
rate [18]. As can be seen, the growth rate peaks at around kypr; = 0.5 corre-
sponding to the toroidal mode number n = 8. The plot for ITG-TEM along with
a nonadiabatic contribution from passing electrons shows opposite effect of reduc-
ing the growth rate as compared to the ITG-TEM without nonadiabatic passing
electrons. However, the growth rate is still at higher value than the I'TG-adiabEl
mode. Because of the nonadiabatic response of the passing electrons near the
k| = 0 surfaces to a perturbation, the electrons simply can not respond and short
circuit the charge separation instantaneously because of which the mode gets fi-
nite amount of time to grow unstable. This sets the growth rate of ITG-TEM with
nonadiabatic passing electrons higher than the ITG-adiabEl mode. The fact that
it has growth rate lower than that of the ITG-TEM without nonadiabatic passing
electrons can be explained as follows: the inclusion of trapped electrons increases
the real frequency of the ITG-adiabEl mode such that there is an upshift of phase
velocity w,/kj, making ion Landau resonance regime narrower and thus increasing
the growth rate. However, the inclusion of nonadiabatic passing electrons, in ad-
dition, increases the real frequency further thereby upshifting the phase velocity
more. This makes the mode Landau resonate dominantly with electrons leading
to the electron Landau damping of the growth rate. However, this damping is not
sufficient enough to compensate for the increase in the growth rate produced due
to weaker Landau resonance with ions. This can be attributed to the fact that

the upshift of real frequency, when passing nonadiabatic electrons are included,
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Figure 3.3: Closeup of two dimensional eigenmode structure for (a) pure ITG with
adiabatic electrons, (b) ITG-TEM without nonadiabatic passing electrons, and (c)
ITG-TEM with nonadiabatic passing electrons at 7.(sg) = 2.0.
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Figure 3.4: Poloidal Fourier components for electrostatic modes shown in Fig. 3.2
(a) ITG with adiabatic electrons, (b) ITG-TEM without nonadiabatic passing
electrons, and (¢) ITG-TEM with nonadiabatic passing electrons at n.(sg) = 2.0.
Note that at each radial location, there are several poloidal harmonics coupled.
A few locations where kj,,,, = 0 (i.e., ng = m) are indicated on the top axis.
Nonadiabatic electrons introduce sharp structure near these points.

is not drastic, and only a fraction of the electrons resonate with the upshifted
phase velocity of the mode. Hence stabilization due to Landau resonance of pass-
ing nonadiabatic electrons is weaker than the destabilization due to off-resonance
of ions. This sets the growth rate of ITG-TEM with nonadiabatic passing elec-
trons in between the I'TG-adiabEl and ITG-TEM without nonadiabatic passing
electrons. The eigenmode structures for the three cases of (i) the ITG-adiabEl
mode, (ii) ITG-TEM without nonadiabatic passing electron, and (iii) ITG-TEM
with nonadiabatic passing electrons are presented in Fig. 3.2. The mode structure
is quite global so that it can pass through several mode rational surfaces. It reit-
erates our argument of pronounced nonadiabaticity of passing electrons near the
Ky = 0 surfaces. One can see the changes in the eigenmode structure as one looks
from Fig. 3.2(a) to Fig. 3.2(c). The mode acquires more and more global nature
spreading toward good-curvature region as one goes from case (i) to case (ii) and
finally to case (iii). A closeup look of the eigenmode structures on the poloidal
plane is demonstrated in Fig. 3.3. As can be seen, the inclusion of nonadiabatic

passing electrons introduces shorter scales in the eigenmode structures.
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These electrons near the & = 0 surfaces can not quench the charge separation, by
moving along the field lines. So at those surfaces the charge separation leads to
stronger £ x B drift and pronounced instability. This causes the linear eigenmode
structure to break to shorter scale lengths. The increased strength of the electric
field near these surfaces is apparent if one looks at Fig. 3.4, where amplitude of the
potential corresponding to each poloidal harmonics is displayed along the minor
radius for the three cases. The position of the mode rational surfaces (where m =
nq) is shown in the upper axis. Spikes in the potential are visible at those places
where k| = 0, i.e., at the mode rational surfaces. One can easily see the coupling of
poloidal harmonics at each radial location. The corresponding potential amplitudes
in the Fourier space is shown in Fig. 3.5 for (i) [TG-adiabEl mode, (ii) ITG-TEM
without nonadiabatic passing electrons and ITG-TEM with nonadiabatic passing
electrons. Figure. 3.6 displays the mode-averaged measure of k£, along with its two
components kg and k, for the three cases. The introduction of trapped electrons
to the ITG-adiabEl mode and then nonadiabatic passing electrons to ITG-TEM
enhances the effective k&, by bringing multiscale structures. Because of the increase
in the mode-averaged perpendicular wave-number k,, one requires more radial
mode numbers for good resolution as well as convergence. Since the effect of the
nonadiabatic passing electrons is to introduce short multiscale structures into the
global eigen mode, thereby increasing effective &k, , one would like to see how it can
affect the transport. Here we use the simple mixing length estimation for transport
coefficient, where one requires calculating the parameter Dy, = v/ < k% >, with
v and < k% > being the growth rate and mode averaged square of perpendicular
wave number, respectively.  This Dy, is here plotted in gyro-Bohm units in
Fig. 3.7 against kgpr;. While the transport coefficient first increases with kypr; and
peaks at kgpr; = 0.4 and then starts falling for ITG-adiabEl, it, on the other hand,
decreases monotonically with kypr; for ITG-TEM without nonadiabatic passing
electron response. To note that the parameter, Dy, =/ < k? >, in this case, is
divided by 8 to show it in the same figure. The inclusion of nonadiabatic passing
electron physics into [ITG-TEM reduces the transport but keeps the dependence on
kopr; same. Since the radial scale length of perturbation is shortened as is apparent
from Fig. 3.3, the step size over which particles and energy can be thrown away is
reduced. This leads to the decrease in the transport coefficient for the ITG-TEM

with nonadiabatic passing electron response below the I[TG-adiabEl level.

51



Chapter 3: Trapped Electron Coupled Ion Temperature Gradient Mode And
Trapped Electron Mode In The Presence Of Nonadiabatic Passing Electrons

0.8

0.6

0.4

0.2

||

Figure 3.5: Upper panel: Radial Fourier harmonics for each poloidal mode for
the electrostatic mode shown in Fig. 3.2 for (a) pure ITG with adiabatic electron
response and (b) ITG-TEM without nonadiabatic passing electrons. Lower panel:
Radial Fourier harmonics for each poloidal mode for the electrostatic mode shown
in Fig. 3.2(c) for ITG-TEM with nonadiabatic passing electrons at 7.(so) = 2.0.
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Figure 3.6: Eigenmode-averaged normalized mode numbers < kppr; > (squares),
< kypr; > (diamonds), and < kjpr; > (stars) at 7;(sg) = 2; (a) pure ITG with
adiabatic electron response, (b) ITG-TEM without nonadiabatic passing electrons,
and (c¢) ITG-TEM with nonadiabatic passing electrons at 7.(sg) = 2.0.

Figure 3.7:  Mixing length
estimate for transport coef-
ficient Dy =/ < k% > in
gyro-Bohm units as a func-
tion of kgpp; for n;(so) = 2;
(a) pure ITG with adiabatic
electron response (solid line
with squares), (b) ITG-
TEM without nonadiabatic
passing electrons (divided
by 8) (solid line with dia-
monds), and (¢) ITG-TEM
with nonadiabatic passing
electrons at 7.(so) = 2
(dashed line with filled cir-
cles).
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Figure 3.8: Growth rate v (dashed line) and real frequency w, (solid line) versus
n; at ne(sg) = 2 (i) for pure ITG with adiabatic electrons (squares), (i) ITG-
TEM without nonadiabatic passing electrons (diamonds), and (iii) ITG-TEM with
nonadiabatic passing electrons (filled circles).

An n; scan for fixed 1. = 2.0 for the three cases is presented in Fig. 3.8.
The ITG-adiabEl mode becomes weaker and weaker as 7, is decreased and finally
subsides. ITG-TEM without nonadiabatic passing electrons, on the other hand,
transforms itself from dominantly ITG mode to dominantly TEM, as one reduces
n;- The reason is that with decreasing 7;, the free energy that drives the I'TG mode
becomes lesser and lesser, but the finite 7, provides the free energy to the trapped
electrons so that mode inherent to trapped electrons starts becoming unstable. The
transition occurs at 7; ~ 1.6. Nonadiabatic passing electrons resist the transition
of the mode from ITG to TEM character and retain the real frequency in the ion

diamagnetic direction with no critical 7;.

3.3.1 Trapped Electron Mode

TEMs are sustained by the trapped electron population in the bad-curvature re-
gion of a tokamak. Similar to the passing particles, the trapped particles can

also produce unstable modes in the presence of density or temperature inhomo-
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Figure 3.9: Growth rate v (dashed line) and real frequency w, (solid line) for
n:i(so) = 2; (i) for TEM without nonadiabatic passing electron model (squares) and
(ii) for TEM with nonadiabatic passing electron model at 7;(sg) = n.(s9) = 2.0
(open circles).

geneities. The TEM produced due to the presence of electron density gradient is
driven by charge separation, while that produced due to the presence of electron
temperature gradient is driven by compressibility. The passing fraction of elec-
trons, when considered to respond adiabatically, can maintain the growth rate at
a lower value. Recently, TEM in the presence of passing electrons has been stud-
ied nonlinearly in Ref. [32] which shows the signature of the persistence of linear
mode structure in the non linear regime. We shall here show that nonadiabatic
fraction of passing electrons significantly alters the stability properties of TEM.
We start with the kgpr; scan of the real frequency and growth rate normalized
by wao = vini(s = so)ori/a? for the TEM for two cases, namely, (i) TEM without
nonadiabatic passing electrons and (ii) TEM with nonadiabatic passing electrons
in Fig. 3.9. The dashed line with squares represents the growth rate for case (i),
while the solid line with squares represents corresponding real frequency. The
dashed line with open circles is for growth rate for case (ii), with solid lines with
open circles representing the corresponding real frequency. The scan reveals that
nonadiabatic passing electrons destabilize the TEM further. The TEM whether
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Figure 3.10: Two dimensional eigenmode structure for (a) TEM without nonadia-
batic passing electron response and (b) TEM with nonadiabatic passing electron
response at n = 7 and 1;(sg) = n.(s0) = 2.0.
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Figure 3.11: Closeup of two dimensional eigenmode structure of (a) TEM without
nonadiabatic electron response and (b) TEM with nonadiabatic passing electron
response for n = 7 and 7;(s9) = 7.(s0) = 2.0.
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Figure 3.12: Poloidal Fourier components for electrostatic mode shown in Fig. 3.10.
Note that at each radial location, there are several poloidal harmonics coupled.
A few locations where kj,,,, = 0 (i.e., ng = m) are indicated on the top axis.
Nonadiabatic electrons introduce sharp structure near these points.

produced due to density gradient or temperature gradient has £ x B drift at its
root. When one considers passing electrons to be adiabatic, the moment charge
separation is produced; these electrons move to the region of finite charge sepa-
ration and wipe out the space charge, thus denying the possibility of building up
of £ x B advection or reducing it. Nonadiabatic passing electrons, on the other
hand, take finite time, especially near the kj = 0 surfaces, to reach the region of
E x B advection, thereby allowing finite time for the mode to grow. The TEM thus
gets enhanced when one considers the fraction of nonadiabatic passing electrons.
One can expect similar effect of nonadiabaticity of passing electrons on density
gradient driven trapped electron mode also.

Next we look at the change in the mode structures of TEM in the presence of these
electrons. The global mode structures for the two cases without and with nona-
diabatic passing electrons are shown in Fig. 3.10 with a closeup view presented in
Fig. 3.11.

It is clear that the modes span through several mode rational surfaces. Nona-
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Figure 3.13: Right panel: Radial Fourier harmonics for each poloidal mode for the
electrostatic mode shown in Fig. 3.10(a) for TEM without nonadiabatic passing
electron response. Left panel: Radial Fourier harmonics for each poloidal mode for
the electrostatic mode shown in Fig. 3.10(b) for TEM with nonadiabatic passing
electron response.
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Figure 3.14: Eigenmode-averaged normalized mode numbers < kgpr; > (squares),
< kypr; > (diamonds), and < k,pr; > (stars) as a function of kgpr; at n;(so) =

2: (a) TEM without nonadiabatic passing electron response and (b) TEM with
nonadiabatic passing electrons at 7.(sg) = 2.0.
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diabatic passing electrons have strong effect near these surfaces leading to a strong
rise in the radial perturbed electric field. This breaks up the mode structure at
these surfaces. Similar to the ITG-TEM case, the mode rotates toward the good-
curvature region. The local rise in the perturbed radial electric field near mode
rational surfaces becomes clear when one looks at the potential amplitude across
minor radius, corresponding to different poloidal harmonics in Fig. 3.12, without
and with nonadiabatic passing electrons. Strong poloidal coupling is well demon-
strated in both cases where at each radial position the mode has contribution from
several neighboring components. Figure 3.13 delineates the potential in the Fourier
space for the two cases. Production of short scales in the eigenmode structure rises
the effective averaged k, from the adiabatic passing electron case to nonadiabatic
passing electron case, as can be seen in Fig. 3.14. Estimation of transport via
electron channel for which TEM is believed to be an obvious candidate is shown
in Fig. 3.15 using simple mixing length estimation, where Dy, = v/ < k? >
is plotted in gyro-Bohm units versus kypr;. The transport coefficient decreases
monotonically with increasing kypr; for both cases. However, D, is reduced
when one introduces a nonadiabatic fraction of passing electrons to the adiabat-
ically responding passing electron TEM. The reduction in the transport similar
to the ITG-TEM case can be understood as due to decreased transport step size

caused by the nonadiabaticity of passing electrons.

3.4 Conclusion

In the present chapter, we have investigated the effects of nonadiabaticity of passing
electrons on I'TG-TEM and TEM using the global gyrokinetic spectral code EM-
GLOGYSTO. The model includes both passing and trapped particles, profile vari-
ations, true ion to electron mass ratio, arbitrary order FLR effects, transit/trapped
particle resonances, and poloidal and radial coupling. A comprehensive descrip-
tion of ITG, ITG-TEM, and TEM including all relevant species is presented. The

major findings are as follows.

[1] For the low n or global modes, nonadiabatic passing electrons stabilize the
ITG-TEM. However, it has deleterious effect on TEM leading to an increase
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Figure 3.15: Mixing length estimate for transport coefficient Dy = v/ < k? >
in gyro-Bohm units as a function of kgpr; with n;(sg) = 2.0 for (a) TEM without
nonadiabatic passing electron response (dashed line with squares) and (b) TEM
with nonadiabatic passing electron response at 7.(so) = 2.0 (dashed line with open
circles).
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in the growth rate.

For both ITG-TEM and TEM, spatial mode structures exhibit multiscale
feature. Because of the drastic rise in the phase velocity near the & = 0
surfaces, passing electrons fail to respond adiabatically near these surfaces,
leaving open charge separation and pronounced F x B drift. This breaks up

the mode structure near the k:” = 0 surfaces.

The existence of multiscale features in the spatial mode structure makes effec-
tive k£, higher, which eventually reduces the mixing length based estimation
of transport of the corresponding modes below the level predicted by their

respective adiabatic electron models.
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Modes inherent to
nonadiabatic/kinetic passing

electrons

4.1 Introduction

Having elucidated the effect of kinetic/nonadiabatic electrons on temperature gra-
dient driven modes of thermal ions and trapped electrons we now discuss the modes
inherent to the nonadiabatic/kinetic passing electrons. A correct kinetic/nonadiabatic
passing electron model should be able to produce modes that are inherent to
the nonadiabaticity of passing electrons. Therefore, this chapter is dedicated to
the study of temperature and density gradient driven modes of kinetic electrons,
namely, the electron temperature gradient (ETG) mode and universal drift mode.
We will study the linear ETG mode in the presence of completely kinetic ions
and Debye Shielding effect. A comparison of the pure ion temperature gradient
(ITG) mode with the pure ETG mode in the presence of fully gyro-kinetic second
species (e.g., electrons for ITG and ions for ETG) will be carried out. One will see
the breaking of isomorphy of I'TG and ETG modes even in the electrostatic limit
without incorporating the trapped electrons. A comparison of the electron flux by
ETG mode in the presence of nonadiabatic ions with 7; above the I'TG threshold
and ion flux by I'TG mode in the presence of nonadiabatic electrons with 7. above

the ETG threshold reveals that these modes are not independent of each other. In
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fact, one mode tends to reduce the transport by the other and vice versa.

Regarding the other mode driven by the density gradient of nonadiabatic pass-
ing electron, i.e., the universal drift mode: although the studies have evolved from
a simple slab model to the toroidal geometry, most of them, however, are based on
the fluid or hybrid kinetic-fluid models. A few gyrokinetic models either exploited
the ballooning formulation or a simple geometry. In this chapter we will present a
global, fully gyrokinetic linear study of the toroidicity driven universal drift mode
considering both ions and electrons to be nonadiabatic. The formulation retains
toroidal coupling effects due to both electron and ion VB and curvature drift with
no assumption regarding the magnetic drift frequency of the ions and electrons
compared to the mode frequency, thereby allowing full magnetic drift resonance
by both species. The formulation also keeps the Landau damping term of both
electrons and ions. The finite Larmor radius effects are kept up to all orders.
More importantly, the present study retains the transit frequency resonance term
in the nonadiabatic part of the density perturbation for both species as shown in
Egs. (2.8) and (2.9). It is to be noted that, we use a large aspect ratio, circular
geometry for the tokamak, with no Shafranov shift. Though the universal toroidal
mode is inherently due to the passing nonadiabatic electrons, effects of trapped
electrons and trapped ions are also retained in the formulation. Furthermore, no
collisional effect is considered in the formulation.

With this model, various parametric studies of the toroidal branch of universal
mode have been carried out. We observe finite mode frequencies and growth rates
beyond the critical n = L, /Ly for Ion Temperature Gradient (ITG) and Electron
Temperature Gradient (ETG) modes, where L,, and Ly are, respectively, the den-
sity and temperature scale lengths. A comparative study of the contribution of
magnetic drift resonance as well as Landau resonance from both species toward
the stability properties of the mode is performed by a systematic parametric scan.
An electromagnetic study of the mode is also carried out that elucidates the effect
of finite 8 on the universal drift mode driven by toroidicity. The effect of trapped
electrons on the universal mode is studied and growth rates and real frequencies

are compared with the ion temperature gradient mode and trapped electron mode.
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4.2 Electron Temperature Gradient Driven Mode

Having unravelled the effect of the nonadiabatic passing electrons on the ITG mode
[132] and trapped electron coupled ITG mode (ITG-TEM) [133] in the previous
chapters, we now proceed to study the mode inherent to the nonadiabatic passing
electrons, that is, the ETG mode.

With the formulation discussed in Chapters 2 and 3, the Poisson equation can be

written as,

:—anrw (4.1)

0 j=eyi

where, j stands for charge species, viz., electrons (e) and ions (i). For single charged

passing ions and electrons we have

SN My G+ D> My Ge=0

K =i K j=e

4.2.1 Profiles and Parameters

For the purpose of our study, we consider following profiles and parameters.

Table 4.1: Profiles and parameters

Parameters: Equilibrium Profiles:

e B-field : By = 1.0 Tesla e N-profile and T-profile

e Temperature : Ty = T'(sg) = 7.5 keV %s) = exp ( ‘“58” tanh < o )

e Major Radius : R =2.0m TZT;O(S) = exp ( a‘;ST tanh (s s )
e Minor Radius: ¢« = 0.5 m 08, = 0.35, dsp = 0.2 at s = s

e radius : s =p/a, 0.01 <s<1.0, sg=0.6 e q(s) =1.2540.67 s* +2.38 s
e L,,=04m, Lro=02m —0.06 s*

® 1ie(s0) =2.0, €, =Ly/R=0.2 such that g(s = s¢) = 2

o 7(s)="T.(s)/Ti(s) = 1. shear s =59, § =1

The chosen parameters lead to the value of p* = pri(s = s¢)/a ~ 0.0175. Note
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that p, = 2.065 x 107*m and p; = 8.848 x 10~®m. Any change in the parameters

will be stated wherever necessary.

4.2.2 Pure ETG Mode

At the outset, let us compare the ETG mode results with respect to some known
works. To that end we have chosen the local, linear, electrostatic, and kinetic
results of Horton et al. [21] for which kgp. ~ 0.5, ¢, = L,,/R = 0.2 and 7 = 1.0.
From Figs.3 and 4 of Horton et al. [21| we have extracted manually some points
and replotted with the results of our global, linear, electrostatic, and gyrokinetic
model for nonadiabatic electrons in Fig. 4.1 for the same parameters. For the
ease of comparison for the readers, we have also copied and pasted Figs. 3 and
4 of Horton et al. in Fig. 4.2. It is to be noted that r, and v.; in the latter
case correspond to L, and vy, in our case. Note that the differences in the real
frequencies as well as growth rates in both cases can be ascribed to the differences

in the two models, namely, local versus global and kinetic versus gyrokinetic.

Effect of Debye Shielding

Now a days, fast wave electron heating (FWEH) experiments [69], to study specifi-
cally electron channel transport, use preferentially dominant electron heating such
that T, can take very high values. Furthermore, experiments dedicated to the ETG
mode study require separation between the electron and ion channel of transport.
This is achieved by reducing the energy exchange between the two species. The
conducive environment is achieved with plasma of low density that ensures less
amount of collisionality. Thus, the Debye length, which is proportional to /(7. /n)
can be expected to violate the condition £A;e << 1. In such a situation, one re-
quires to take in to account the space charge effect, and the Debye shielding effect
inevitably comes into the picture.

The Debye shielding effect was taken into account in a number of previous
works in the slab and sheared slab [20, 134, 135] geometry and toroidal geometry
[22, 136]. In the present case, we produce a toroidal mode number n and kgp.
scan with and without the Debye shielding effect for the ETG mode that contains
no trapped particles and no effect of nonadiabatic ions. Figure. 4.3 presents the

real frequency and growth rate versus kyp. with and without the Debye shielding.
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Figure 4.1: The normalized real frequency w, (upper panel) and growth rate -y
(lower panel) for the ETG mode as function of 7, for kgp. ~ 0.5, ¢, = L,,/R = 0.2,
and 7 = 1.0. The lines with squares represent manually extracted points from
Horton et al. [21] which uses local kinetic formulation. The lines with open circles
depict the results from our global linear gyrokinetic model.
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Figure 4.2: Figures 3 and 4 from Horton et al. [21]

The corresponding toroidal mode numbers n are shown in the upper axis for both
frequency and growth rate of the mode. From the figure it is apparent that the
mode frequency for the case without Debye shielding is being slightly higher than
that in the case with the Debye shielding. Also, one can infer that the Debye
shielding has strong stabilizing effect on the mode. One important point to be
noted is that the Debye shielding effect removes the high k tail of the ETG mode.
The observed effect of the Debye shielding on the real frequency of the mode is
weak as compared to the effect of the same on the growth rate. The other purpose,
these figures serve, is that they exhibit the dispersion diagram for the ETG mode
with and without Debye shielding showing the dependence of the frequency and
growth rate on kyp.. For the case with Debye shielding the growth rate peaks at

kope = 0.34 and for the case without Debye shielding the same peaks at kyp.
0.5, and both decrease by substantial fraction as one goes both side from the
respective peaks. The toroidal mode numbers corresponding to both cases are
n = 250 and n = 360, respectively. Thus, the Debye shielding not only reduces the
growth rate of the mode but also shifts the maximum of the growth rate toward
lower k, and wipes out the higher k tail. It is interesting to see whether Debye
shielding has any effect on the threshold of the onset of the ETG mode; it may
be important to take into account the Debye shielding effect while calculating
precisely the threshold. Figure 4.4 displays the growth rate of the ETG mode

against 7, for the two cases with and without the Debye shielding effect. The
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Figure 4.3: The normalized real frequency w, (upper panel) and growth rate -y
(lower panel) for the ETG with and without Debye shielding for n.(so) = 2. Ions
are considered adiabatic.
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Figure 4.4: 1.(sg) scan for the growth rate of the ETG mode with and without
Debye shielding for n = 250 and 380, respectively.

Debye shielding enhances the threshold of the mode and the mode without the
Debye shielding effect is more susceptible to the instability, lowering the threshold
of the instability. Thus, one can conclude that Debye shielding affects significantly
the ETG mode; it has stabilizing effect on the mode leading to enhanced threshold;
shifts the maximum growth rate toward lower kyp. or n; wipes out the high wave

number tail of the mode.

Effect of Nonadiabatic Ions: A Comparison With ITG Mode

The coupling of I'TG mode with trapped electrons has been studied both theoreti-
cally, and also observed experimentally. Earlier studies of the ETG mode preferred
to proceed with the adiabatic ion model, upon the basis of the assumption that
the ions are adiabatic as their Larmor radii are larger than the scale-length of the
ETG /streamer/zonal flow/geodesic acoustic mode.

The finite mass effect of ions, nonetheless, was studied earlier in Refs. [136, 137]
and was found to have very weak effect on the mode. However, of late, nonlin-
ear simulations [36, 37, 91, 92, 93, 94| have demonstrated the limitations of this
adiabatic ion model. The nonadiabatic ions are found to be important for the
development of low £ tail of the ETG mode. Furthermore, the nonadiabatic ions
help getting saturation in the simulation of the electron heat diffusivity. Here, we

investigate the impact of the ions on the ETG mode if considered fully nonadia-
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Figure 4.5: Upper panel: The normalized real frequency w, for the ETG mode
without Debye shielding 7.(sg) = 2.0 with adiabatic ions and nonadiabatic ions.
n;(s0) takes values 2, 4, 6, 8 for nonadiabatic ions. Lower panel: The corresponding
growth rates ~.
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Debye shielding for 7.(so) = 2.0 with adiabatic ions and nonadiabatic ions. 7;(sg)
takes values 2, 4, 6, 8 for nonadiabatic ions. Lower panel: the corresponding
growth rates ~.
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Figure 4.7: Upper panel: the normalized frequency w, for the ITG mode for
ni(sp) = 2.0 with adiabatic and nonadiabatic electrons. n.(sg) takes values 2,
4, 6, 8 for nonadiabatic electrons. Debye shielding is not included for these runs.
Lower panel: the corresponding normalized growth rates ~.
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Figure 4.8: Mode structures for the ITG mode for 7;(sg) = 2.0 (left) and ETG
mode for 7.(sg) = 2.0 with (middle) and without (right) Debye shielding on the
poloidal cross section of a tokamak for the maximum growth rates. The otherrg
species (electron for ITG, ion for ETG) is considered adiabatic.
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Figure 4.10: Poloidal Fourier harmonics for the modes shown in Fig. 4.8
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batically, i.e., taking into account all the kinetic effects of ions from FLR to various
resonances and keeping 7; above the threshold of the ITG drive. Figure 4.5 de-
picts the mode frequency and growth rate of the ETG mode against kgp; (Note
that kg is normalized with p; here.) with (i) adiabatic ions and (ii) nonadiabatic
ions for increasing 7; for the case without Debye shielding. The corresponding
toroidal mode numbers are displayed on the upper axis. It is observed that the
nonadiabatic ions have very weak effect on the growth rates of the mode. In the
second case, we have carried out same kind of scan but with Debye Shielding effect
included. Figure 4.6 shows the real frequency and growth rate for the case of the
ETG mode when Debye shielding is taken in to account. A comparison of the
real frequency and growth rate with the case without Debye shielding reveals that
the ion dynamics have visible albeit weak effect on the mode frequency as well as
growth rate of the mode. The nonadiabatic ions tend to lower the growth rate of
the ETG mode as one increases the ITG drive by increasing 7); of ions in the long
wavelength side of the ETG mode corresponding to low £ tail of the spectrum.
For the purpose of comparison, we present a kgp; scan for the ITG mode (from
Chater 2) including the adiabatic and nonadiabatic electrons, with 7. increasing
for the latter case. Figure 4.7 depicts the real frequency as well as corresponding
growth rates for the ITG mode. While the ITG mode is influenced strongly by
the nonadiabatic electrons with substantial change in the growth rate, the ETG
mode, on the other hand, is weakly affected by the nonadiabatic ions. Thus, one
can draw a conclusion that even within the electrostatic limit, without taking into
account the trapped species, the isomorphism of the ITG and ETG mode breaks,
when the other species (electrons for the ITG mode and ions for the ETG mode)
is considered fully kinetically. The corresponding mode structures of the ITG and
ETG mode with and without the Debye shielding effect are compared in the top
panel of Fig. 4.8 for the maximum growth rates of the respective cases. The figure
delineates the vast difference in the scale-lengths of the two modes. While the
ITG mode prevails over a considerable fraction, ETG mode, on the other hand, is
restricted to a small annular ring in the poloidal cross section of the tokamak. The
middle panel shows a closeup view of the ITG and ETG mode structures. The

poloidal Fourier components for the three cases are displayed in the bottom panel.
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4.2.3 Mixing length estimate of flux

It would be interesting to see, how one mode’s scale-dynamics have effect on the
transport of the other or in other words how the I'TG scale can affect the ETG scale
and vice versa. For that purpose, simple mixing length estimate of transport has
been evaluated. Before going to the results, we would like to add a line of caveat
regarding the mixing-length based estimation of transport. The earlier results
showed that the calculation of transport using mixing-length theory gives very low
level of transport of electrons. Nonlinearly these modes generate streamers, by
means of which, the ETG mode can give rise to experimentally relevant level of
transport. Nonetheless, within our scope, we present a qualitative picture of the

transport with the mixing-length calculation.

Pure ETG: a comparison with ITG

Figure 4.11 presents the heat diffusivity in the electron gyro-Bohm unit for the
pure ETG mode without (top panel) and with (middle panel) the Debye shielding
effect for the multiple cases of increasing 7; of nonadiabatic ions and with adiabatic
ions. It is apparent from the figure that even though the nonadiabatic ions have
very weak effect on the growth rate of the ETG mode, they can change the heat
diffusivity of the electrons substantially. The diffusivity peaks toward the low k
side of the spectrum but not at k where the growth rate peaks, and decreases as
the 7; increases from 2 to 8, in steps of 2 which are all above the ITG threshold.
One can hence conclude that the ion scale drive in the low k regime reduces the
high £ ETG drive, even if it has weaker effect on the mode frequency and growth
rate of the ETG mode. The bottom panel displays the nonadiabatic electron effect
on the I'TG mode, where 7, of the electrons increases gradually from 2 to 8. This
leads to the reduced ion diffusivity for the ITG case in the presence of an electron
drive with 7, being above the ETG threshold. Thus, the comparison of the three
cases depicted in Fig. 4.11, leads to the interesting conclusion that the ETG drive
on the high £ side tends to reduce the ion transport on the low k side, while
the ITG drive on the low k side tends to reduce the electron transport on the
high k side of the spectrum. One other conclusion is that in spite of exhibiting
disparate scales, one mode can have effect on the other mode, putting a caveat

to the tacit assumption that one mode is independent of the other because of the
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Figure 4.11: Top panel: mixing length estimate for transport coefficient D, =
v/ < k% > in electron gyro-Bohm units as a function of kgpr; for the ETG mode
without Debye shielding at 7.(sp) = 2 with adiabatic ions and nonadiabatic ions
for n;(so) = 2,4, 6, 8; Middle panel: mixing length estimate for transport coefficient
Dy =7/ < k% > in electron gyro-Bohm units as a function of kgpz; for the ETG
mode with Debye shielding at 7.(sg) = 2 with adiabatic ions and nonadiabatic
ions for n;(sg) = 2,4,6,8; Bottom panel: mixing length estimate for transport
coefficient Dy, = v/ < k* > in ion gyro-Bohm units as a function of kgpr;;
n:(so) = 2, with adiabatic electrons and nonadiabatic electrons forn.(sy) = 2,4, 6, 8.
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Figure 4.12: Left panel: normalized perpendicular wave numbers k,, kg, k; vs
toroidal mode number n for the ETG mode without Debye shielding. Right panel:
normalized perpendicular wave numbers k,., kg, k| vs toroidal mode number n for
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vast spatio-temporal differences in their respective scales. The fact, in spite of

the weak effect on the mode frequency and growth rate of the ETG mode by the
nonadiabatic ions, that the mixing length estimates show a considerable reduction
in the electron heat diffusivity has its origin in the change in the perpendicular
scale lengths brought about by the nonadiabatic ions. Figure 4.12 plots the k,.p.,
kope and k, p. against toroidal mode number n. It is apparent that k,p. of the
ETG mode rises in the presence of the nonadiabatic ion dynamics, so does k; pe.

This leads to the reduction in the mixing length estimates of electron transport.
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4.3 Toroidal Universal Drift Instability: A Global
Gyrokinetic Study

The confinement of electrons is marred not only by the temperature gradient driven
instabilities such as ETG modes described in the preceding section but also by the
density gradient driven instabilities. The density gradient also can equally be the
source of free energy for instabilities in the case of no temperature gradient or very
weak temperature gradient. These instabilities in tokamaks are called the toroidal
universal drift instabilities. A brief review of earlier works on this topic can be
found in the section 1.2 of Chapter 1.

In the present section, various parametric studies of the toroidal branch of
the universal drift mode are carried out. We observe finite mode frequencies and
growth rates beyond the critical n = L,,/Ly for the Ion Temperature Gradient
(ITG) and Electron Temperature Gradient (ETG) modes, where L, and Ly are
respectively, the density and temperature scale lengths. A comparative study of
the contribution of the magnetic drift resonance as well as of the Landau resonance
from both species towards the stability properties of the mode is performed by a
systematic parametric scan. An electromagnetic study of the mode is also carried
out that elucidates the effect of finite 5 on the universal drift mode driven by
toroidicity. The effect of trapped electrons on the universal mode is studied and
growth rates and real frequencies are compared with the ion temperature gradient

and trapped electron modes.

4.3.1 Model equations

The electrostatic formulation has been discussed in Chapters 2 and 3. Here we
will elaborate the electromagnetic formulation only. For the electromagnetic case
the perturbed density is modified as [48]

/dv% (w—wh) (P [Pk w) — vy Ay (I )] 3 (wry) |, (4.2)

<ﬁ+/dkexp(ak-r) X
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where fl” is the component parallel to the equilibrium magnetic field of the vector
potential associated with the perturbation. The other terms are defined in Chapter
2 and 3. In addition to 72;, one has to consider the fluctuation of the parallel current

density given by

Ji(rw) = —(%—i)

/“ndeMj (w—w)) (Py) [B(k) — v Ay (k; )] Jg (xy) | (4.3)

/dk exp (tk-r) X

Along with the quasineutrality condition Eq. (2.10), Ampere’s law
L ViA ==Y i
- J

Ho ;

will finally close the set of equations, to give a linear system of equations of the

form
A~ . @kl
S 3wt ) <o
K j=ie I K’
Simple diagnostics for various physical quantities are computed as averages

over the eigenmode. For example mode-averaged k2 for the electrostatic case is

computed as

Jdo 3 1206 m’

[dp> leem|

< ki >= (4.4)

The above shown averaging procedure is suitably extended to the electromagnetic

cases by including le mode structure averaging as follows:

m 2 m 2
J dp 215 em| + J 4P 215 Al

Jdp S [’ + [ dp S 1Ay, )

< ki >=
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4.3.2 Results and Discussion

In the present section, we will delineate the results from the global linear gyroki-
netic numerical analysis. It is to be noted that the mode frequencies and growth

rates are expressed in units of vy,;/a throughout the paper.
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Figure 4.13: Equilibrium profiles to study the global toroidal universal drift insta-
bility mode (for parameters in Table I): (a) normalized density (dots), temperature
(circle), m; . (triangle), (b) Safety factor ¢ (circle) and magnetic shear § (dots) pro-
files as functions of normalized radius s = r/a. Note that ¢(sg) = 2.0, §(s¢) = 0.40,
€n(s0) = 0.1, and 7(s¢) = 3.0 for sy = 0.6.

Profiles and Parameters:

Let us consider the profiles and parameters as displayed in Table 4.2 for a plasma
with single charged ions. The equilibrium profiles corresponding to these parame-

ters are shown in Fig. 4.13.

Growth Rate 7 and Real Frequency w, vs kypr;

The dispersion diagram for the toroidal universal drift instability with real fre-
quency and growth rate plotted versus the normalized poloidal wave number kypy;,

is shown in Fig. 4.14. The upper axis presents the corresponding toroidal mode
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Table 4.2: Profiles and parameters

Parameters:

e B-field : By = 1.0 Tesla
e Temperature : Ty = T'(sg) = 7.5 keV

e Major Radius : R =2.0m

e Minor Radius : a =0.5m

e radius : s =p/a, 0.01 <s<1.0, sg=0.6
[} LnO =02m

® 7ic(s0) =0.0, €, = Ly/R=0.1

o 7(s) =T.(s)/Ti(s) = 3.
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Figure 4.14: Real frequency and growth rate for the electrostatic case correspond-
ing to the parameters in the Table I and profiles shown in Fig. 4.13.
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numbers. The real frequency is in the electron diamagnetic drift direction. The
real frequency at very low kgypr; increases first and then peaks at the value of
kopr; = 0.4 corresponding to n ~ 6. After this point, it starts falling with kgpp,
in a monotonic way. The growth rate, on the other hand, initially increases until
the point kgpr; ~ 0.58 corresponding to the toroidal mode number n ~ 10 and is
practically constant at larger value of kypr,;. It is apparent from this observation
that the toroidal branch of the universal drift instability spans from the low wave
number or longer wavelength regime, where ion dynamics are dominant, to higher
wave number or shorter wavelength regime, where usually electron dynamics play
the dominant role. This is in contrast to the observation in the slab case [99],
which is marginally stable at high wave number regime and damped in the low

wave number regime.

Electrostatic mode structure

In the present section, we discuss the global electrostatic mode structure of the
toroidal branch of the universal drift mode. Figure 4.15 displays the potential
contours on a poloidal cross section of the tokamak in the upper left panel for
kopr; = 0.58 corresponding to the toroidal mode number n = 10. The various
poloidal components of the potential with coupling brought about by the toroidic-
ity, both in Fourier and real space, are presented in the upper right panel for
kopr; = 0.58 corresponding to the toroidal mode number n = 10. A few important
points to be noted in this context are: (1) The mode structure is quite global
passing through many mode rational surfaces. (2) It exhibits a weak ballooning
character, with a finite amplitude observed at the favourable curvature side (high
field side). In the upper right panel, coupling of poloidal components has been
shown across the minor radius, with a maximum amplitude at s—p/a—=0.6, where
the density gradient peaks. The points in the upper axis, labelled by the cor-
responding poloidal mode numbers m, display the position of the mode rational
surfaces where kj(m,n) = 0. Corresponding to each of these points, one can see
a dip in the potential corresponding to each poloidal mode number. These dips
correspond to ky(m,n) = 0 surfaces where |w/kj| >> vie, vine being the electron
thermal velocity. Thus, the strong effect of the off-resonant electrons is clearly

visible from this figure. The convergence in the Fourier space for the considered
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Figure 4.15: Upper panel: (Left) The electrostatic mode structure for toroidal
mode number n = 10, kgpr; = 0.58, corresponding to the parameters in the Table
I and profiles shown in Fig. 4.13. (Right) poloidal component of ¢ in (top) radial
Fourier representation and (bottom) radial direct space. Lower panel: A closeup
view of the mode structure.
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mode is presented in the upper part of the upper right panel of Fig. 4.15. Lower

panel presents a closeup view of the mode considered here.
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Figure 4.16: The effect of electron and ion Landau resonance for the mode n = 10
corresponding to kgpr; = 0.58. This is done by weighting the Landau resonance
term by o and running it from 0 to 1 for one species , and keeping o = 1.0 for the
other species and vice versa.

Effect of Landau Resonance

To investigate the effect of the Landau resonance of electrons and ions on the
toroidal universal drift instability, one can artificially put a multiplying factor, say
a, in front of the kjv; term in the denominator of the propagator for both species
[see Eq. (2.8)] and decrease it gradually from 1 to 0, once for ions, keeping full
electron Landau resonance effect, and vice versa. It is to be noted that only the
values 0 and 1 of the artificial factor a are physically meaningful. The other values
of a simply represent a fractional weight to the Landau resonance term in the
propagator so as to enable us to track numerically the Landau effect continuously.
Thus the value 1 will refer to the case of full Landau resonance term taken into
account and 0 the complete omission of the Landau resonance term from the prop-
agator. It is clear from Fig. 4.16 that the ion Landau resonance apparently has no
significant effect on the growth rate as well as on the mode frequency compared to

that of the electrons. For the electron Landau resonance, the growth rate exhibits
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Figure 4.17: Effect of ion and electron magnetic drift resonance for the mode n=10
corresponding to kgpr; = 0.58. This is done by weighting the magnetic drift term
by a and running it from 0 to 1, and keeping a = 1.0 for the other species and
vice versa.

a nonmonotonic dependence on the electron Landau resonance weighting parame-
ter a. For example, at lower values of a the growth rate increases and again falls
at higher values. Regarding the mode frequency: in contrast to the growth rate, it
increases monotonically with « for the electrons, while it has little variation in the
case of ions. Thus, with the complete omission of the electron Landau resonance,
the mode may become nonexistent even if one keeps the other destabilizing factors

intact.

Effect of Magnetic Drift Resonance

In toroidal geometry, a mode will certainly have magnetic drift resonance if its
frequency is of the same order as the magnetic drift frequency. We have looked
at the effect of magnetic drift resonance for both species on the toroidal universal
mode. This is done in a similar way as for the study of the previous section, by
putting a multiplying factor o in front of the magnetic drift resonance term,
appearing as arguments of the Bessel functions in the numerator of the propagator
in Eq. (2.8). To be noted again that, while doing the scan for one species, the full
weight o = 1 is kept for the other species. One notes a destabilizing effect due to
the magnetic drift resonance of ions when the multiplying factor « increases. As

shown in Fig. 4.17, the real frequency decreases with the increasing multiplying
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Figure 4.18: Shear scan for the mode n = 10 corresponding to kgpr; = 0.58 at
position s = s0 = 0.6, where the density gradient peaks. For these scans the safety
factor at s = sq is kept at the fixed value ¢ = 2.0.

factor «, while the growth rate increases and starts saturating as one approaches
a = 1, i.e., for the full magnetic drift resonance term in the ion propagator.
Electron magnetic drift resonance however does not play a significant role for the

universal drift instability, as is clear from Fig. 4.17.

Shear Scan

Though magnetic shear has a strong stabilizing influence on the universal drift
mode, in a slab model, the toroidal resonance effects, intrinsic to toroidal geometry,
can reduce the shear damping of the mode. The shear scan is displayed in Fig. 4.18.
It is clear that for the parameters chosen in this study, the critical value of shear,
beyond which the mode gets stabilized, is of the order of 1. The growth rate
and real frequency, however, do not decay monotonically with increasing shear.
The growth rate rather increases weakly at low shear and then starts decreasing
with increasing shear. Similarly the real frequency of the mode also decays with
increasing shear. The stabilization of the mode by shear in the presence of finite
toroidicity can be understood as follows. The shear damping of the universal
drift mode in the slab geometry is basically due to the convection of energy away
from the mode rational surfaces. In the presence of finite toroidicity, the toroidal
coupling effect inhibits this convection of wave energy, and thus reduces the shear

damping [101]. Similar effects of toroidicity on shear induced stabilization was also
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Figure 4.19: Real frequency and growth rate for ¢, = L, /R for the parameters and
profiles as in the Table I and Fig. 4.13 in the case of mode n = 10 corresponding
to kgpr; = 0.58. Note that a, L,,, Rq and nqg are kept constant in this scan.

observed for high-n toroidal universal drift instabilities.

Toroidicity Scan

The real frequency and growth rate of the mode versus €, = L,,/R is presented in
Fig. 4.19. The toroidicity scan is done by varying R, but keeping Rq, L,,, nq, and
a constant. While the real frequency decreases almost monotonically, the growth
rate, on the other hand increases first with toroidicity, peaks at around ¢, ~ 0.1,
and then starts falling for larger values of €,. Since, ¢, — 0 implies R — o0, i.e.,
the cylindrical limit, the toroidal driving term becomes weak at low ¢,. Since the
mode is basically driven by the magnetic drift resonance, the growth rate increases
with €, for low values. However, for large enough values of ¢, the mode becomes
off-resonant with respect to the magnetic drift frequency, which increases with e,
and growth rate falls down. Also, increasing ¢, implies decreasing R, which means
reduced connection length ~ Rq between the favorable and unfavorable magnetic
field. This nonmonotonic dependency of growth rate on ¢, for toroidal universal

drift modes has not been reported before.
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Figure 4.20: Real frequency and growth rate for 7 = T, /T; and for the parameters
and profiles of Table T and Fig. 4.13 in the case of the mode n = 10 corresponding
to k’gpLi = 0.58.

T =1T,/T; Scan

The dependence of the mode frequency and growth rate for the toroidal univer-
sal drift instability on the temperature of the species is elucidated in the present
section. Figure 4.20 displays the plots of the mode frequency and growth rate
corresponding to kgpr; = 0.58 (n = 10) as a function of the ratio of temperatures
of electrons and ions, i.e., T, /T; = 7. To be noted that in this scan the ion temper-
ature T; is kept constant, while varying only the electron temperature 7. The real
frequency increases monotonically with the magnitude of 7, i.e., with increasing
electron temperature. The growth, on the other hand, exhibits a nonmonotonic
character: increases at first with 7, peaks at around 7 = 5.0 and then starts de-
caying with increasing 7. One may correlate this result with the role of electron
Landau resonance on the universal mode, as the electron distribution in the vicinity
of parallel resonant velocity, which is strongly dependent on the thermal velocity
and so the temperature of the electrons, is the key factor in determining Landau

damping or inverse Landau damping of the mode.

Effect of Temperature Gradient

Thus far, the entire analysis has been carried out considering flat temperature

profiles, that is, zero temperature gradients by putting dsy = 0 in the profiles

12
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Figure 4.21: Real frequency and growth rate in the case of a temperature gradient
scan for the parameters and profiles of Table I and Fig. 4.13 for the mode n = 10
corresponding to kgpr; = 0.58. The flat temperature profile in Table I, has been
replaced by one with ds; = 0.2 instead of 0 for the previous cases.

displayed in Table I. In the present section, we incorporate profile variation to the
temperatures of both ions and electrons. This is achieved by using a finite value for
ds7, which is chosen as 0.2 in this case. Since most tokamaks contain temperature
gradients in the pressure profile, it is thus necessary to look at the effect of the
temperature gradient on the toroidal universal drift instability. This is done by
evaluating the real frequency and growth rate against 7;. = L, /Ly, keeping L,
constant and varying Lr. Three cases are considered here: (1) the temperature
gradient scale lengths for both electrons and ions are increased simultaneously, (2)
the temperature gradient of only ions is increased, keeping that of the electrons
zero, and (3) the temperature gradient of only electrons is increased, keeping that
of the ions zero. The last two options may be relevant to experimental situations
with preferential ion heating [e.g., ion cyclotron resonance heating (ICRH)| or
electron heating [e.g., electron cyclotron resonance heating (ECRH)]|, respectively.
The results for all the cases are presented in Fig. 4.21. The real frequency is reduced
with increasing temperature gradient for the cases 1 and 2, while it increases in the
case 3. The growth rate, on the other hand, decreases in all three cases. However,
it decays more slowly when the electron temperature profile is flat, as apparent
from case 2. It is clear from case 3 that the mode exhibits a finite growth rate

for values of 1. beyond the critical value for ETG instability (7. ~ 1.0). Thus,
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Figure 4.22: Real frequency and growth rate for the electrostatic (dashed curve)
and electromagnetic case (solid curve) for the parameters in Table I and profiles
as shown in Fig. 4.13. The value of 5 considered here is 0.001.

the point to be noted is that, even in the presence of finite 1 above the critical
value for the temperature gradient driven modes to get destabilized, the universal
drift instability preserves finite growth rate. It is observed from case 2 that the
ion temperature gradient has weaker effect on the mode. It has finite growth rate
even after the critical value of n; for the ion temperature gradient driven mode
(m; ~ 1.0). Thus, one may conclude that, in some situations as delineated in the
last two cases, temperature gradient driven modes and universal drift mode driven
by the density gradient can coexist. One other important point to be noted here is
that the toroidal universal drift mode is unstable in the 7 domain from 1 to more
than 10, as evident from Fig. 4.20, while ETG modes are stable at higher values of
T even with finite 7,.. So electron transport at high &k, p;; > 1 with larger values of
7 may have contributions from the toroidal universal drift mode as well. Similarly,
at low k. pr;, where ITG is dominant, the electron transport can be due to this

mode, as it appears to be unstable in regions where ITG is pronounced.

Electromagnetic Effects

kopr; scan
The electrostatic assumption is justified in a low 3 plasma. However, considering
the higher § environment in the present day devices, it is of interest to study the

effect of the electromagnetic fluctuation on the toroidal branch of the universal
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mode. In this section, we perform a kypr; scan for the growth rate and mode
frequency in the presence of transverse magnetic perturbations with 5 = 0.001 in
the zero temperature gradient limit. The corresponding results are plotted in
Fig. 4.22, with the upper axis representing the respective toroidal mode numbers
n. For the purpose of comparison, we also plot the purely electrostatic values for
the real frequency and growth rate of the mode (same results as in Fig. 4.14).

At very low kgpr;, the real frequency increases first and then peaks at a value
of kgpr; ~ 0.4 corresponding to n = 6. Beyond this point, the frequency starts
falling monotonically with kgpr; (or n). The growth rate however increases until
kgpr; ~ 0.58 (or n = 10) and then becomes practically constant. It is apparent
from the figure for the real frequency that the effect of finite 3 is more pronounced
at lower kgpr;, and the real frequency is reduced in this region. Going towards
the higher kypr; the effect of 5 seems to be weaker on the mode frequency. The
growth rate, on the other hand, is substantially reduced by finite plasma 5. A
of value 0.001 brings almost 20% reduction in the growth rate as compared to the
electrostatic case. A complete  scan is presented in the following section clearly
illustrating the stabilizing effect of .

A global mode structure for the electromagnetic case for n = 10 and 5 = 0.001
corresponding to kgpr; ~ 0.58 is shown in Figs. 4.23 and 4.24. The electrostatic
part gg (Fig. 4.23) is very similar to the purely electrostatic mode in Fig. 4.15.
The fl” component, (Fig. 4.24), on the contrary, apparently shows a weak anti-
ballooning character, being weaker at the outboard side than the inboard side.
The convergence in the radial and poloidal Fourier space for the mode has been
depicted in the upper part of the right panel in Fig. 4.24. The lower panel presents
the radial dependence of various poloidal mode numbers m. It retains the effect
of nonresonant electrons at kj(m,n) = 0 surfaces. The antiballooning character of
the /1” mode structure and the stabilization of the mode in the presence of finite
[ are all related to the inherent electrostatic nature of the toroidal universal drift
instability.
£ Scan
A complete 8 scan for the mode with kypr; = 0.58 (n = 10) is displayed in
Fig. 4.25. Both real frequency and growth rate are reduced with increasing f3.
The complete stabilization occurs at 5 ~ 1.1%. This is in contrast to earlier

investigations in slab geometry, where the value of critical § was much higher

92



Chapter 4: Modes inherent to nonadiabatic/kinetic passing electrons

z/a

Figure 4.23: (Upper panel) The global mode structure for the gz~5 component in
the poloidal cross section in the electromagnetic case for n = 10, kgpr; = 0.58,

and 8 = 0.001. (Lower panel) Poloidal component of ¢ in (top) radial Fourier
representation and (bottom) radial direct space.
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Figure 4.24: (Upper panel) The global mode structure for the le component in
the poloidal cross section in the electromagnetic case for n = 10, kgpr; = 0.58,
and 8 = 0.001. (Lower panel) Poloidal component of ¢ in (top) radial Fourier
representation and (bottom) radial direct space.

94



Chapter 4: Modes inherent to nonadiabatic/kinetic passing electrons

1.2 0.5
O .
1 .“ 04’.\
\.\ ‘\
0.8 o Q
£ o, o 203 %
> N = Ay
3 06 o, 3 °.
3 ° 02 LR
0.4 o,
0.2 0.1 % o,
. “o.
O~ © 0. o
I 0 I I
% 0.5 15 0 0.5 1 15
B(%) B(%)

Figure 4.25: (8 scan for the mode frequency and growth rate for the parameters
and profiles as in Table I and Fig. 4.13 for the mode n = 10 corresponding to
k’gpLi = 0.58 .

[105]. The observed stabilization is perhaps due to the coupling of the wave with
the Alfven perturbation.

The relative strength of the electromagnetic to the electrostatic character is shown
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Figure 4.26: Electromagnetic ratio with increasing function of 3 for the parameters
and profiles as in Table T and Fig. 4.13 for the mode n = 10 corresponding to
k’gpLi = 0.58 .

in Fig. 4.26, measured as the ratio of flux surface averaged squared fl” to gz~5 with
increasing value of 3 expressed in percentage. It is clear from this plot that the

strength of the magnetic fluctuation in comparison to the electrostatic fluctuation
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increases almost linearly with increasing plasma (.

Effect of trapped electron on the electrostatic mode:

As clearly demonstrated by the above results, the global toroidal universal drift
instability is triggered by purely passing electron dynamics. However, as a toroidal
device is bound to have some fraction of trapped electrons, it would be interesting
to obtain the effect of trapped electrons on the purely universal drift mode stud-
ied in the previous sections. To this end, an extensive 7 scan is performed with
and without trapped electrons for the electrostatic case. To identify the most
unstable mode, the other drift instabilities such as ITG with trapped electrons as
well as the TEM branches are computed together with the universal mode. The
combined data is plotted in Fig. 4.27. There are several interesting points to be
noted: (1) The trapped electron coupled universal drift mode and pure univer-
sal drift mode have distinct real frequencies and growth rates. (2) In contrast
to the pure universal drift mode studied in previous sections, whose growth rate
was shown to decrease with increasing 7, the trapped electron coupled universal
drift mode appears to be more unstable with increasing n. This study indicates
that in the presence of trapped electrons, the nature of the universal drift mode is
predominantly “trapped electron like”. (3) To make a better quantitative compar-
ison, growth rates and real frequencies of the pure trapped electron mode (TEM),
the ion temperature gradient mode with trapped electrons (ITG-TE) for the same
equilibrium parameters are also plotted. For the parameters studied here, it ap-
pears that the trapped electron coupled universal drift modes in the presence of
n > 1 have growth rates comparable to [TG-TE or TEMs and could contribute

substantially to the overall transport.

4.4 Conclusions

In the present work, we have presented some features of the electron temperature
gradient driven (ETG) mode using a linear gyrokinetic model in toroidal geometry
that treats both species, namely, ions and electrons fully gyro-kinetically, taking
into account all the kinetic effects. The effect of Debye Shielding, breaking of

isomorphism of ITG and ETG modes even in the electrostatic limit when the
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Figure 4.27: The real frequency and growth rate vs temperature gradient for differ-
ent unstable modes in the presence of trapped electrons in the same regime defined
by the parameters and profiles of Table I and Fig. 4.13 for the mode n = 10 corre-
sponding to kygpr; = 0.58. The flat temperature profile in Table I, has been replaced
by one with dsy = 0.2 instead of 0 for the previous cases. The three dashed curves97
(circle, square, diamond) are for universal mode without trapped electrons (same
as Fig. 4.21), three solid lines (circle, square, diamond) are for universal mode in
the presence of trapped electrons (UNV-TE), the dashed curve with triangles is
for ion temperature gradient mode with trapped electrons (ITG-TE) and the solid
curve with stars is for pure trapped electron mode (TEM).
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other species is considered fully gyrokinetically are revealed one by one. In the

following we summarize the results obtained.

e Debye Shielding is stabilizing to the ETG mode, enhances the threshold in
N, and wipes out the high k£ tail of the ETG spectrum.

e Nonadiabatic ions have very weak effect on the growth rate and mode fre-
quency of the pure ETG modes. In contrast, nonadiabatic electrons affect
the mode frequency and growth rate of the ITG mode strongly. It breaks the

supposed isomorphy between the two modes even in the electrostatic limit.

e We have presented an estimation of the transport of ions and electrons on the
basis of mixing length theory. Results reveal that, drive for the ion channel
tends to reduce the transport via the electron channel and vice versa. This
means that a low £ mode can have strong effect on a high k£ mode and vice

versa. The assumption of adiabatic particles fails to interpret this result.

Also, we have performed a global linear gyrokinetic study of the toroidal uni-
versal drift mode driven by the density gradient in the presence of finite toroidicity
on the intermediate scale k, p;;. The model considers both passing electrons and
ions to be fully nonadiabatic, incorporating toroidal coupling effects, magnetic drift
resonances, Landau resonance effects, transit harmonic resonances, finite Larmor
radius to all orders, and orbit width effect for both species. The effect of finite [ is
also studied in the frame of an electromagnetic model that retains the transverse
magnetic perturbation. However, effects of collisions and Shafranov shift have been
dropped. Furthermore, the model considers large aspect ratio circular cross section

for the tokamak plasma. The major results are as follows

e The growth rate increases at lower kgpr; until kgpr; ~ 0.58 and starts satu-
rating thereafter. The real frequency too increases at lower kypr; and then

decays monotonically with kypr; at larger kgpp;.

e The electrostatic mode structure is global and exhibiting structure at mode

rational surfaces.

e Studying the effect of Landau resonance for both electrons and ions shows

weak dependence of the frequency and growth rate on ion Landau damp-
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ing and a strong dependence on electron Landau damping preserving finite

growth rate in both cases.

Both electron and ion magnetic drift resonance terms are considered in the
formulation. The ion magnetic drift resonance does play a significant role
in making the toroidal branch of the universal drift mode unstable, while
electron magnetic drift resonance has a weak effect on the stability property
of the mode.

As reported in earlier works for high n modes (kgpr; >> 1), the toroidicity
driven universal drift mode is found to be stable beyond a shear value § ~ 1,

even for low n modes.

The nonmonotonic dependency of the growth rate on €, = L, /R in a toroidic-
ity scan (varying R and keeping L,,, a, Rq and nq constant) is demonstrated

here for the first time.

The mode is unstable in a fairly large domain of 7 = T, /T; ranging from 1
to more than 10, thus clearly showing that in regions of 7 where the electron
temperature gradient (ETG) mode is believed to be stable, electron transport

can be due to this toroidal universal drift mode.

The 7 scan for both ions and electrons shows that the universal drift mode
driven by toroidicity can coexist with the temperature gradient driven modes.
Therefore, electron transport at low kypr; may have contributions from the
mode under investigation. Similarly at higher kgpr;, where ETG is thought
to be the main driving mechanism for electron transport, this mode may also

contribute.

The electromagnetic effect is found to be strongly stabilizing in the present
case. The fl” component of the mode structure exhibits anti-ballooning char-
acter. The mode gets stabilized at 8 ~ 1.1%. The relative magnetic fluctua-
tion amplitude < flﬁ > / < ¢* > varies almost linearly with the magnitude

of 5.

Trapped electrons enhance the growth rate of the universal mode. How-

ever, the universal mode changes its character regarding its dependence on
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the density and temperature gradients. While in the absence of trapped
electrons the universal mode decays with the temperature gradient, trapped
electrons, on the contrary, enhances the growth rate of the mode. The univer-
sal mode with trapped electrons exhibits, qualitatively, the same character
as the trapped electron mode. Also, it has a comparable growth rate to the
trapped electron coupled ion temperature gradient mode in the parameter

range considered in this study.
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Short wavelength ion temperature
gradient mode and coupling with

trapped electrons

5.1 Introduction

The ion temperature gradient driven mode has hitherto been studied only in the
region k,p; < 1.0. However, under steep density profiles, the ions can behave nona-
diabatically at scales k,p; > 1.0 giving rise to what is called the short wavelength
ion temperature gradient (SWITG) driven modes. In all the earlier studies on
SWITG modes (see section 1.2 of Chapter 1), the trapped electrons were ignored.
However, in a toroidal device, the trapped electrons are inevitable, and as demon-
strated in the present work, can play a paramount role in defining the stability
properties of the mode. In the limit wy. > w, where wy, is the bounce frequency of
the trapped electrons, the trapping of the electrons prevents thermalization along
the magnetic field line and the wave field appears stationary during a bounce pe-
riod. The trapped electrons, therefore, can alter the stability properties of the
mode significantly.

The other lacuna of the earlier studies is that they were done either using a local
kinetic theory or at the best kinetic theory based on ballooning formalism in the
slab as well as toroidal geometry. A ballooning formalism is essentially an one

dimensional model in 6,, the ballooning angle. Therefore, the estimation of the
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characteristic radial scale length of the mode is not possible unless one uses the
higher order ballooning theory. Thus, to understand the two dimensional mode
structure in the presence of the trapped electrons, a global model becomes neces-
sary. Also, an estimation of the radial scale length of the mode is not only required
for completeness but help estimate the probable transport induced by the mode.
In fact, for the first time, the two dimensional SWITG mode structure will be
shown in the present work. For the parameters chosen, the SWITG mode is found
to be quite global.

Thus, the purpose of the present work is twofold: first, to incorporate the

trapped electrons to the SWITG mode and, second, to use a global linear electro-
static gyro-kinetic model, which enables one to evaluate the two dimensional mode
structure of the SWITG mode.
The inclusion of the trapped electrons has drastic effect on the growth rate as well
as real frequency of the SWITG mode, in contrast to the earlier speculation that
the trapped electrons may not be important for the mode. The trapped electrons
enhance the growth rate of the mode substantially because of the nonideal effects
such as magnetic drift resonance and reduction in the adiabatic fraction of the
electrons. The trapped electrons enhance the real frequency which may lead to
weaker Landau damping of the wave by the ions. This perhaps is another reason
of the mode getting unstable in the presence of trapped electrons. The parameter
regime of existence of the mode, consequently, gets widened introducing new do-
main of instability. Also, the mode structure of the so-called short wavelength ion
temperature gradient mode has been observed to be quite global, even though it
exists at short wavelength compared to the ion Larmor radius. The mode structure
spans over a substantial fraction of the tokamak poloidal cross section.

In this work, we use the electrostatic version of the code EM-GLOGYSTO. A
local version of this gyro-kinetic formulation is also used for the purpose of com-

parison.
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5.2 Linear SWITG

5.2.1 Model Equations

The global formulation has been elucidated in Chapter 2 and Chapter 3. Here we
shall discuss the local formulation only.
Integrating the following local gyrokinetic equation, for which k; ~ kg and k| =

constant, to get the perturbed density

B Fvr . e
fi = =E2 6 4 Bt o — ) () 2 (k). (5.1)
J J

one can write n; as

2

1 72;2 ] . 7
1 g [ dustenae 50— )P ap )6 | 52

_ q;N;
(k) = ===

J

where the propagator for the untrapped particles is given by iﬂ-zé which

w—kjv)—wdj ’
1

for trapped particles is replaced by zﬁ:m Using the quasineutrality condition
)
and considering the passing electrons to be adiabatic and adding the trapped

electrons, one would finally get
1+7 -/~ —1Ii, = 0. (5.3)

The trapped electron integral I/~ is weighted by the trapped fraction V2, € =
r/a, and T = T, /T;. Here we put

v2

~ 1 5.2 . U|| V1

b= o, e 0 = )P ) (P R k)

In the present section, we will delineate the results from the global and local
gyrokinetic formulation and compare the cases of SWITG without the trapped
electrons and with the trapped electrons. It is to be noted that the frequencies
are normalized with v;,;/a throughout the chapter. Let us consider the following

profiles and parameters.
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Figure 5.1: Equilibrium profiles to study the global SWITG mode( for parameters
in Table I): (a) normalized density (square), temperature (circle), n; . (triangle),
(b) Safety factor ¢ (circle) and magnetic shear s (diamond) profiles as functions
of normalized radius s = r/a. Note that n peaks at s = p/a = sp = 0.6 and is
equal to 2.5. Also ¢(sp = 0.6) = 2.0, 5(sp = 0.6) = 1.0, €,(sp = 0.6) = 0.1, and
7(so = 0.6) = 1.0.

Table 5.1: Profiles and parameters

Parameters: Equilibrium Profiles:

e B-field : By = 1.0 Tesla e N-profile and T-profile

e Temperature : To = T'(sg) = 7.5 keV NLS) = exp ( a5s" tanh < ™ )

e Major Radius : R =2.0m TZT;O(S) = exp < a‘;sT tanh ( )
e Minor Radius: ¢« = 0.5 m 08, = 0.35, dsp = O 2 at s = s

e radius : s =p/a, 0.01 <s<1.0, sg=0.6 e g(s) =125+ 0.67 s* +2.38 s
e L,,=02m, Lrg=0.08m —0.06 s*

® 1ie(s0) =2.5, €, = Ly/R=0.1 such that ¢(s = s¢) = 2.0;

o 7(s) =T.(s)/Ti(s) = 1. shear s = 59, § =1

The equilibrium profiles corresponding to these parameters are shown in Fig. 5.1.
The chosen parameters lead to the value of p* = pri(s = s¢)/a ~ 0.0175. Note

that for the local results all the input parameters are given at s = s.
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5.2.2 ]CgpLi Scan

Figure 5.2 shows the growth rates of the SWITG mode with respect to kgpr,; for
the cases (1) without the trapped electrons and (2) with the trapped electrons as
obtained with the global as well as local gyrokinetic model. The upper axis displays
the corresponding toroidal mode numbers n. Let us first consider the curve with
solid line and open circles. This presents the growth rate from the global model

versus kgpr; for the SWITG mode without the trapped electrons. The growth rate

n= 4140 4 8 12 16 20 24 28 32 36 40

T I T
—O—y, No trapped electron, Global result
—8—y, With trapped electron, Global result
1 2 L Oy, No trapped electron, Local result
' B &y, With trapped electron, Local Result
£0.8r
3
> 0.6F

Figure 5.2: The normalized growth rate 4 of the ITG (first peak) and of the
SWITG (second peak) mode with (solid line-+square) and without (solid line +
circle) the trapped electrons from the global as well as local formulation (dotted
line + diamond, for the case with the trapped electrons and dotted line + circle,
for the case without the trapped electrons.) 7.:(s0) = 2.5, q(s0) = 2.0, 5(so) = 1.0,
7 =1.0, and ¢, = 0.1. Upper axis shows the corresponding toroidal mode numbers.

increases at lower kgpr;, peaks at kygpr; = 0.5, n =9, and then starts falling again,
with a minimum at kgpy; = 0.8, n = 14. After this point, the growth rate exhibits
a similar trend as the first hump and peaks at kgpr; = 1.3, n = 21. The dotted line
with open circles is the similar curve obtained from the local model without the

trapped electrons. The peaks for both conventional ITG and SWITG modes are
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shifted toward higher kypr; in comparison with the global results. The first peak
appears at kgpr; ~ 0.65 and the second peak appears at kypr; ~ 1.5 corresponding,
respectively, to the ITG and SWITG mode. The growth rates are slightly higher
in the case of the local results than those obtained in the case of the global results.
The real frequency as shown in Fig. 5.3 (solid line with open circle for the global
model and dotted line with open circle for the local model), on the other hand,
increases with kypr; upto the point kgpr; ~ 0.8 and kgpr; ~ 1.3, respectively, for
the global and local models. Beyond this point, the frequency starts to behave
nonmonotonically with kgpr;. For both cases, the first hump corresponds to the
conventional ITG mode. In this region, the mode frequency being proportional
to the kypr; increases almost linearly with kgpr;. The I'TG mode then smoothly
changes to the high £k SWITG mode. The nonmonotonic part can be considered
as one of the characteristics of the SWITG mode. From Fig. 5.2, it is clear that
the SWITG mode also suffers FLR stabilization like the conventional ITG; the
mode growth rate increases initially then peaks at kypp; ~ 1.3 (kgpr; ~ 1.5) for
the global (local) mode and then starts falling. Following the formulation of Gao
et al.[107, 108], the nonmonotonic behavior of the real frequency and the double
humped growth rate can be explained qualitatively using the local gyrokinetic
model for which k&, ~ ky. Let us rewrite the perturbed distribution function fz for

the ions as

= Qi GiFr ( W — Wy

1; Pt T; W — We; — k”U”) Jg(klpu))(b' (54)

The first part corresponds to the adiabatic response while the second part corre-
sponds to the non-adiabatic response of the ions. Integrating over velocity, to get
the perturbed density for the ions in the limit w,, > w > (wa; + kjjv) ), one can write

- _qmoé Qi ~wni(Ni/2 — 1)[o(k

=0+ Lptexp(—k1pt,), (5.5)

where I, is the modified Bessel function of order zero. Since the SWITG mode
can exist even with the adiabatic electrons and retains its basic characters, we for
simplicity drop the non-adiabatic part of the electrons and consider them to be

adiabatic, i.e., 7. /n, = q.¢/T.. The quasineutrality condition will then give
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Figure 5.3: The normalized real frequency w, of the ITG and of the SWITG mode
with (solid line+square) and without (solid line-+circle) the trapped electrons from
the global as well as local formulation (dotted line+diamond, for the case with
the trapped electrons and dotted line + circle, for the case without the trapped
electrons.) n.,(so) = 2.5, q(so) = 2.0, 5(s¢) = 1.0, 7 = 1.0, and ¢, = 0.1. Upper
axis shows the corresponding toroidal mode numbers.
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T+ 1

T i
w = < ) <§ - 1) wailo (K2 pi;)exp(—k2 pLs), (5.6)

where wy,; = —(vni/Ln)(kLpri). Thus, it is clear from the expression that the mode
frequency w behaves as w1, (k% p2,)exp(—k? p3,) which for small k% p2. scales as
kipr; and for larger k2 p?. scales as almost a constant. It is because, from the

property of the scaled modified Bessel function, one finds that
L (k1 pL)exp(=kipL;) — 1/y/2m(k1p2,)) = 1/vV2r(kopri),

for large k2 p?, and w,; oc ky pr;. This explains the nonmonotonic part of the real
frequency. Regarding the growth rate, in the toroidal geometry, it is the toroidal
magnetic drift term wy; of the ions, the resonance of which with the mode frequency
gives rise to the the double hump behavior. It is to be noted that wg; ~ (L, /R)wy;
and thus scales as k,pr;. Therefore, the ratio w/wy; at first increases for small
kipri and then decreases as the numerator saturates but the denominator still
grows as k., pr;.

The finite Larmor stabilization (FLR) of the SWITG mode can be inferred from
the nonadiabatic part of ion density response. At very high k, pr;, wg; surpasses
w and the nonadiabatic part of the perturbed ion density can be reduced to, for

Wy >> W

- na ¢ ~wWni(Mi/2 — 1
e = B 22 103 2 deap( 1 ), 5.7)

which for large &k, py; will decrease according to

L0 Jeap(—E ) ~ 7L e~ ) 59
as k% p2. increases.

Having elucidated the basic characters of the SWITG mode, let us now see what
happens to the mode when trapped electrons are included. In Fig. 5.2 the solid
line with squares represents the growth rates from the global model and the dotted
line with diamonds represents the growth rates from the local model with trapped

electrons present in both cases. Similar curves in Fig. 5.3 represent the corre-
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sponding real frequencies. It is clear that for both cases, the growth rate rises
substantially in the presence of the trapped electrons. The mode frequencies also
increase as compared to their counterparts with no trapped electrons. The global
curve for growth rates peaks at kyp; =~ 0.4, n = 7, while the local curve peaks
at kgp; =~ 0.55 for the conventional ITG. For the SWITG mode, the growth rate
peaks at kgp; =~ 1.3, n = 21, for the global result while it peaks at kgp; ~ 1.7 for
the local result. It is to be noted that the local growth rates stay below the global
growth rates for most of the part of the k spectrum. Beyond kyp; = 2.0, the global
growth rates fall faster than the local growth rates.

The strong rise in the the growth rate of the SWITG mode in the presence of
trapped electrons can be explained, similar to the conventional I'TG mode, as fol-
lows. In a toroidal plasma with ion temperature gradient, a pressure perturbation
in the outboard side creates hotter and colder regions locally. The magnetic drift
velocity vy of the ions, which depends on the temperature, is therefore different in
regions of different temperatures. This produces variations in the local concentra-
tion of the ion density giving rise to a potential perturbation and concurrently a
poloidal electric field. The SWITG instability arises because of the radial £ x B
drift produced by this electric field in the presence of the applied magnetic field.
When one considers electrons to be adiabatic, the moment charge separation is
produced, these electrons move to the regions of charge separation and wipe out
the space charge, thus denying the possibility of building up of £ x B advection
or reducing it. However, in a toroidal geometry, because of 1/R dependence of the
magnetic field, some electrons are “trapped" on the weaker magnetic field region
and fail to behave adiabatically, in the sense that their motion is restricted to a
limited region of the magnetic field lines. Trapped electrons, therefore, can not
respond adiabatically to reach the region of £ x B advection and participate in
canceling the charge separations, thereby allowing finite time for the mode to grow.
The SWITG growth rate thus gets enhanced, when one considers the fraction of
the trapped electrons.

The presence of the trapped electrons increases the real frequency and hence the
phase velocity of the wave. This can perhaps make the wave off resonant with
the ions and leads to weaker Landau damping of the wave by the ions with the
concomitant enhancement in the growth rate. The SWITG growth rate, therefore,

increases with the inclusion of the trapped electrons.
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Figure 5.4: Two dimensional eigenmode structures of (a) the ITG mode at kgpr; ~
0.5, n = 9, (b) the SWITG mode at kgpr; ~ 1.3, n = 21 without the trapped
electrons both corresponding to the maximum growth rate. The mode structure
of the SWITG mode is finer than the ITG mode but yet global enough.

Figure 5.4 presents the mode structures of (a) the conventional ITG at n =9 and
(b) the SWITG at n = 21, both corresponding to the maximum growth rate with-
out the trapped electrons. The eigenmode-averaged radial wave numbers for the
two cases are < k,.pr; >= 0.687 and < k,pr; >=0.702 respectively. These figures
show clearly that though the mode is termed as short wavelength ITG, its mode
structure is quite global albeit lesser than the conventional ITG mode. The mode
structure spans over a considerable fraction of the poloidal cross section of a toka-
mak. It corroborates the necessity of a global model to study the SWITG mode.
Figure 5.5 then displays the mode structures, respectively, of the (a) conventional
ITG mode with the trapped electrons at n = 7 and (b) SWITG mode with the
trapped electrons at n = 21, both corresponding to the maximum growth rate of
the mode. It is to be noted that the corresponding eigenmode-averaged radial wave
numbers in these cases are < k,.pr; >=0.489 and < k,pr; >= 1.132, respectively.
For clarity, we present a closeup view of the mode structures in Fig. 5.6 for the
case without the trapped electrons for the conventional ITG mode and SWITG
mode and in Fig. 5.7 for the case with the trapped electrons.
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zla

Figure 5.5: Two dimensional eigenmode structures of (a) the ITG mode at kypp; ~
0.4, n = 7, (b) the SWITG mode at kgpr; ~ 1.3, n = 21 with the trapped
electrons, both for the maximum growth rates respectively. The mode structure
of the SWITG mode is finer than the I'TG mode but still global enough.
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Figure 5.6: A closeup view of the eigenmode structures of (a) the ITG mode at
kgpri =~ 0.5, n = 9, (b) the SWITG mode at kypr; =~ 1.3, n = 21 without the
trapped electrons shown in Fig. 5.4.
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Figure 5.8 portrays the poloidal Fourier components for the cases of (a) the ITG
mode at n = 9, (b) the SWITG mode at n = 21 without the trapped electrons,
(c) the ITG mode at n = 7, and (d) the SWITG mode at n = 21 with the trapped
electrons. The strong poloidal coupling of the mode brought about by the cross
field drift of the particles is quite apparent from these figures. Figure 5.9 shows

the radial Fourier harmonics for the modes displayed in Figs. 5.4 and 5.5.

5.2.3 ¢, Scan

The L,,/R scan is performed by varying R but keeping Rq, n/R, a, and L,, constant.
Figure 5.10 presents the growth rates for the two cases: (a) without the trapped
electrons (circle) and (b) with the trapped electrons (square) from the global gy-
rokinetic formulation. Local results are not shown here. It is clear that the SWITG
mode subsides more rapidly with ¢, and vanishes at around ¢, ~ 1.7. It is argued,
therefore, in the earlier literature that the SWITG mode is preferentially a slab
mode which decays with increasing toroidicity. The decrease in the growth rate
with L,,/R can again be attributed to the reduction in the non-adiabatic fraction
of the ion’s perturbed density response with L, /R, as it scales as inverse of L,,/R
as apparent from Eq. (5.7). Inclusion of the trapped electrons, however, widen the
L,,/R window. The mode sustains to a higher value of L, /R. Thus, one concludes
that the trapped electrons have deleterious effect on the SWITG mode enhancing
not only its growth rate but also widening its parameter regime of existence. The
fact is that, with increasing toroidicity, the fraction of the trapped particles which
is proportional to W also increases. Therefore, in contrast to the previous case
of the SWITG where toroidicity has strong stabilizing effect, making the mode
vanish beyond L, /R ~ 0.15, the SWITG in the presence of trapped electrons can
exist above this limit, as the stabilizing effect of the toroidicity is compensated by
the destabilizing effect of the trapped electrons. In Fig. 5.11, the corresponding
real frequencies are shown. Solid line with circles presents the case without the
trapped electrons and solid line with squares presents the case with the trapped
electrons. While, with toroidicity the growth rates decay, real frequencies on the
other hand increase with the toroidicity. Thus, though earlier SWITG was thought

to be stable beyond some specific value of ¢,, the trapped electrons can make it
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Figure 5.7: A closeup of the two dimensional eigenmode structures of (a) the ITG
mode at kgpr; = 0.4, n =7, (b) the SWITG mode at kgpr; ~ 1.3, n = 21 with the
trapped electrons shown in Fig. 5.5.
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Figure 5.8: Poloidal Fourier components for electrostatic modes shown in Figs. 5.4
and 5.5, (a) the ITG mode at kgpr; ~ 0.5, n = 9, (b) the SWITG mode at
kopri =~ 1.3, n = 21, both without the trapped electrons, (c¢) the ITG mode at
kopri = 0.4, n = 7, and (d) the SWITG mode at kgpr; ~ 1.3, n = 21, both with
the trapped electrons.
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Figure 5.9: Radial Fourier components for electrostatic modes shown in Fig. 5.4
and 5.5, (a) the ITG mode at kgpr; ~ 0.5, n = 9, (b) the SWITG mode at
kopri =~ 1.3, n = 21, both without the trapped electrons, (c¢) the ITG mode at
kopri = 0.4, n = 7, and (d) the SWITG mode at kgpr; ~ 1.3, n = 21, both with
the trapped electrons.
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Figure 5.10: Normalized growth rates ¥ vs. ¢, scan for the SWITG mode at
kgpr; ~ 1.3 with (solid line + square) and without (solid line -+ circles) the trapped
electrons (from the global gyrokinetic model). 7.,(so) = 2.5, q(s0) = 2.0, §(so) =
1.0, 7=1.0, L, = 0.2, and a = 0.5.
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Figure 5.11: Normalized real frequency @, vs. ¢, scan for the SWITG mode
at kgpr; ~ 1.3 with (solid line + square) and without (solid line + circles) the
trapped electrons (from the global gyrokinetic model). 7. ,;(so) = 2.5, q(so) = 2.0,
5(sg) = 1.0, 7=1.0, L, = 0.2, and a = 0.5.
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Figure 5.12: Normalized growth rates 7 vs. n; scan for the SWITG mode at
kopr; ~ 1.3 with (solid line + square) and without (solid line + circles) the trapped
electrons (from the global gyrokinetic model). 7.(so) = 2.5, q(so) = 2.0, 8(s¢) =
1.0, 7=1.0, and ¢, = 0.1.

unstable for a general set of parameters. Therefore, the theories for experimentally
observed anomalous transport, explained with the conventional ITG mode coupled
with trapped electrons and trapped electron mode as plausible candidates, should
be revisited. It is perhaps worth noting at this point that experimentally Wong
et al. [112] reported the observation of such a short wavelength fluctuation in the
context of electron transport. The mode has frequency lower than the ion dia-
magnetic drift frequency and propagates in the ion diamagnetic direction as the
SWITG mode studied here. However, k, p;; measured is higher (~ 5) than the

one found in our simulation.

5.2.4 1n; Scan

To demonstrate the temperature gradient dependence of the SWITG mode, an »;
scan for the maximum growth rates is shown in Fig. 5.12 without (circles) and
with (squares) the trapped electrons using the global gyrokinetic model. It is clear
from the figure that the SWITG mode without the trapped electrons is inherently
an ion mode, requiring no finite 7, and solely depends on the temperature gradient
of the ions. The dependence of the mode growth rate on 7; is quite similar to the

conventional ITG which decays with decreased n;. The SWITG mode decays as
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Figure 5.13: Normalized real frequency @, vs. 7; scan for the SWITG mode at
kgpr; ~ 1.3 with (solid line + square) and without (solid line -+ circles) the trapped
electrons (from the global gyrokinetic model). 7.(so) = 2.5, q(so) = 2.0, 5(sg) =
1.0, 7 =1.0, and ¢, = 0.1.

one reduces 7; and vanishes completely around 7;. ~ 1.2. Inclusion of the trapped
electrons, on the other hand, restricts the mode to vanish, rather the mode trans-
forms from the ion temperature gradient driven mode to the trapped electrons
driven mode. When the ion drive is reduced by reducing 7;, the growth rate de-
creases, but since the mode now includes the trapped electrons with finite 7., mode
inherent to the trapped electrons takes over the ion temperature gradient driven
mode. Thus, the SWITG mode transforms from dominantly ion temperature gra-
dient driven mode to dominantly electron temperature gradient driven mode as
the n; of the ions is reduced keeping 7. fixed. The transition takes place at around
n; ~ 1.6. The corresponding real frequencies without (circle) and with (squares)
the trapped electrons are shown in Fig. 5.13. Both reduce almost linearly with »;,
but because of the presence of the trapped electrons the later reduces faster than
the former and tend to move in the electron diamagnetic direction. It is because
of the fact that the mode inherent to the trapped electrons with finite 7, starts to

dominate over ion temperature gradient driven mode as one reduces 7.
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Figure 5.14: Normalized growth rates 4 vs. 7 scan for the SWITG mode at
kgpr; ~ 1.3 with (solid line + square) and without (solid line -+ circles) the trapped
electrons (from the global gyrokinetic model). 7. ,(so) = 2.5, q(s0) = 2.0, 5(s0) =
1.0, and ¢, = 0.1.
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Figure 5.15: Normalized real frequency w, vs. 7 scan for the SWITG mode at
kopri; ~ 1.3 with (solid line + square) and without (solid line + circles) the trapped
electrons (from the global gyrokinetic model). 7.,(so) = 2.5, q(s0) = 2.0, §(so) =
1.0, and ¢, = 0.1.

120



Chapter 5: Short wavelength ion temperature gradient mode and coupling
with trapped electrons

n= 0 4 8‘ 12 l§ 20 24 : 28 32 : 36 40
0.7 —6— No trapped electron
—8— With trapped electron (divided by 8)

0.61
0.5r

)

o0

~_on 0.4

0 0.5 1 K 1.5 2 2.5
oPLi

Figure 5.16: Mixing length estimate for transport coefficient Dy, = v/ < k? >
of the ions in the ion gyro-Bohm units as a function of kgpr;; (a) the ITG and
the SWITG mode without the trapped electrons (solid line + circle) (b) the ITG
and the SWITG mode with the trapped electrons (solid line + square) (from the
global gyrokinetic model). Note that this curve is scaled down by a factor of 8.
The upper axis presents the corresponding toroidal mode numbers.

5.2.5 7 Scan

To look at the temperature dependence of the mode, a 7 = T,/T; scan is shown
in Figs. 5.14 and 5.15 for the growth rate and real frequency, respectively, using
the global gyrokinetic model. The growth rate in Fig. 5.14 for the SWITG mode
without the trapped electrons (circles) increases gradually with 7 and at higher
value of the latter it starts saturating. For the case with the trapped electrons
(square), on the other hand, it increases initially and becomes maximum in the
region 7 &~ 1 — 2. It then falls and finally saturates. This can be explained from
the fact that in the first case electrons are considered adiabatic, while the trapped
electrons are included in the second case. So, at 7 >> 1, T, >> T;, the electron
drive appears to be stronger reducing the growth rate in the later case. This is
apparent from Fig. 5.15 where the real frequencies are plotted against 7. For the
case with the trapped electrons, as 7 increases the dominant electron drive pulls
the real frequency toward the electron diamagnetic direction. Therefore, the real
frequency decreases with increasing 7 going toward more positive value, and then

saturates. For the case without the trapped electrons, however, the real frequency

121



Chapter 5: Short wavelength ion temperature gradient mode and coupling
with trapped electrons

rises initially with 7 and then starts saturating in line with its corresponding growth

rates.

5.2.6 Mixing Length Estimation

It will be interesting to calculate the heat diffusivity of the ions in the presence of
the SWITG mode, over and above the conventional ITG mode. Within our linear
model, we do this by using the mixing length estimation where v/ < k% >, with
ki = \/m , k. and ky being, respectively, the radial and poloidal wave numbers
of the mode, is plotted with respect to kgpr;. Thus, the heat diffusivity v/ < k% >
of the ions in the gyro-Bohm unit is depicted in Fig. 5.16 for the SWITG mode
without (circle) and with (square) the trapped electrons. The diffusivity increases
initially with kgpr;, peaks at kgpr; ~ 0.5, and then starts falling for the first case,
but decreases monotonically for the second case. The maximum diffusivity shifts
toward lower k for both cases with and without the trapped electrons. It is to be
noted that the values of the heat diffusivity for the case with the trapped electrons
have been scaled down, dividing the actual values by 8, to show both curves in
the same scale. Thus, one can conclude that the trapped electrons enhance the
heat diffusivity substantially. One important point to be noted is that there is no
peak specific to the k, pr; of the SWITG mode, the whole spectrum of the heat
diffusivity tends to peak at lower k), pr; < 0.5 despite the fact that the SWITG

mode peaks at around £k, pp; ~ 1.5.
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5.3 Nonlinear SWITG

Although detailed studies have been pursued in the linear behaviour, there are very
few nonlinear studies available on the SWITG mode. It is therefore of interest
to investigate how this mode behaves nonlinearly and if there is any significant
contribution of this mode to the net ion transport in the core of the system. To
this end, we carry out a systematic nonlinear study of the mode using the flux tube
version of the well benchmarked, massively parallel, nonlinear, gyrokinetic code
GENE [32, 84|, however, without considering the trapped electrons. We
have found that although the k spectrum bears signature of the SWITG mode,
there is practically no contribution to the net ion thermal transport from the
SWITG mode.

In the following we describe the nonlinear simulation model and then the results

and conclusions.

5.3.1 The Model

Coordinate System: The set of equations for the electrostatic case are cast in the
Clebsch-type field aligned coordinate system (x,y, z), such that (z,y) represents
the plane perpendicular to the magnetic field given by B = ByVz x Vy, where x
stands for the flux surface label, simply the radial coordinate in units of length, y
is the binormal direction in units of length that labels the field line on a given flux
surface and z is the straight field line poloidal angle that labels the position along
a field line and thus represents the parallel direction. By is the reference magnetic
field on axis. The velocity space is represented by (v, 1), where, v is the velocity
component parallel to B and p = muv? /2B stands for the magnetic moment.

As the present nonlinear simulation uses the flux tube version of GENE, the system
considered is therefore a flux tube, where system size is a box of dimension L, X
L, x L, in configuration space as well as L, X L, in velocity space. In the
perpendicular direction i.e., radial  and binormal y directions, periodic boundary
conditions are applied. The discretization scheme used is based on the so-called
“method of lines", that is, the phase space operators are discretized first, and then
the resulting ordinary differential equations are solved as an initial value problem

using the fourth order Runge-Kutta scheme. The differential operators related to
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the field-line following coordinate z or the parallel velocity v are discretized using
the fourth-order finite difference scheme. The periodic boundary conditions in the
perpendicular z and y directions allow one to treat x and y in the framework of a
pseudo-spectral approach, that is, all linear terms as well as spatial derivatives are
evaluated in k,-k, space, while the nonlinearities are computed in real space with
the help of Fourier transform and a proper dealiasing method. The velocity space
integrations are performed using Gauss and trapezoidal rules in p and v space,
respectively. For the time stepping, the fourth-order explicit Runge-Kutta method
is used.

0 f splitting: In order to separate the macroscopic evolution of the plasma from
the microturbulence, the full distribution function is considered to be composed of
two parts, namely, the static background distribution function f; and a perturbed
part fi of the order of |fi/fo| ~ € = pref/Lyes, where p,.y and L,.y, respectively,

stand for a reference Larmor radius and equilibrium scale length. We consider

folwr ) = O /2B
02 ||7IU/ (2ﬂﬂ/m2)3/2 E Y

to be a local Maxwellian distribution function, ny and 7; being the background
density and temperature. The perturbed distribution function f; is, on the other
hand, a function of 5 phase space coordinates (xz,y, z, v, 1) and time ¢.

Normalization: The formal normalization of the various equilibrium and fluctuat-
ing quantities are displayed in the following tables, where vp; = \/m and
Cs = \/m stand, respectively, for the ion thermal velocity and sound speed,
ps = ¢5/€); is the ion Larmor radius at the sound speed and @, is the electrostatic
potential related to the fluctuations. Also, L,.s is a reference macroscopic length

scale.

‘ fjo ‘ fjl ‘ (i)l ‘
Fiovd; | Fivg;\ L L
P [ s [ 50

Table 5.2: Normalization of dependent variables.
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The spirit behind the choice of the normalization is to make each normalized
quantity of order unity. Furthermore, all gradient scale lengths of the equilibrium

quantities, viz., ng, 1;, B, are normalized to L,.;.

o | i ]
‘ U||/Uthz‘ ‘ ,uBo/Tz‘ ‘

Lt [ & [9 [2
Cst/Lyey x/ps‘y/ps 2

Table 5.3: Normalization of independent variables.

Model Equations: With the above defined coordinate system and normalizations,
and with the suffix defining particle type and the hat for normalized quantities

being dropped to ease the notation, the gyrokinetic equation for ions can formally

be written as
R R RN, S I 1
oL +[Ln+LT(v”+,uB 3/2)]fo oy + 1 ]+

g, - #0 OhOB 0 (5

1 uB + 2vﬁ vﬁﬁ dp
— K,G, + K,G - =
( * Y y) + JB 2JB 81)” 82’

B o oB v
where G; = 0;f1 — (a/v”)ﬁj@l@fo/@v” for j = x,y,2, oy = vpi/cs and o; =
ZT,/T; and ®; = Jy(A\)®; is the gyroaveraged potential with \? = k% (2u/B)
and Jy being the Bessel function of order zero. Also, 1/Ly = —d(InT)/dz and
1/L, = —d(Inn)/dx are the inverse gradient scale lengths of temperature and
density, respectively. The second term in Eq. (5.9) thus represents the equilibrium
gradients that drive the instability. The third term is the nonlinear £ x B drift
term. The fourth and fifth terms contain the effect of magnetic curvature and VB,
with

_gmmgyz — g¥rgrr OB

Kx - a0
B2 0z

and
Ko 0B g™g¥* — g"g** OB

Y7 o B2 0z’

where ¢’s are the metric tensor elements defined as ¢” = Vu'.Vu/, u', v/ = z,, 2.

125



Chapter 5: Short wavelength ion temperature gradient mode and coupling
with trapped electrons

The total plasma pressure appearing with a radial derivative in the fifth term is
normalized to p = p/prey = nole , and B = 2p,eppio/B?, pres is the reference
pressure (at the center of the flux tube) and pq is the permeability in vacuum.
Finally, the last two terms take into account the effect of particle trapping in
the low magnetic field side of the tokamak and include the Jacobian J = J*¥* =
(Vo x Vy).Vz]~L. Integrating over velocity the perturbed distribution f, solution
to Eq. (5.9), provides the perturbed ion density, which can be inserted in the
quasineutrality condition with adiabatic electrons, thus leading to the following

equation
Z27[1 — Po(b)](Dl = WZB/Jo()\)fld’U”du — ((I)l— < P, >), (510)

which can then be solved numerically, to get the self consistent electrostatic po-
tential. Note that in Eq. (5.10), one defines 7 = T,/T;, b = [1/(Z27B?)|k?%,
ki = g"k2 + "k, + g"k.k, and To(b) = exp(—b)Io(b) is the scaled modified
Bessel function. The term < ®; > represents the flux surface averaged value of
®,. Note that in a flux-tube simulations, the z-dependence of all equilibrium quan-
tities across the simulation domain is neglected. Thus, all coefficients relative to
the magnetic equilibrium (B(z), J(2), K.(2), K,(2),¢"(z)) as well as equilibrium
profiles and their gradients (1/L,, 1/Ly) are independent of z and represent values
at the flux tube center defined by x = x.

Geometry: The GENE code is capable to interface with the general geometry MHD
equilibrium obtained from the numerical solution of the Grad-Shafranov equation.
It can, in addition, also be run using an ad hoc analytical model which is an ap-
proximate solution of the Grad-Shafranov equation in the limit of axisymmetric,
circular, concentric flux surfaces. In the present investigation we use this ad hoc
equilibrium, which is defined in the (7,0, ¢) (radial, poloidal and toroidal) coordi-
nate system, related to the cylindrical coordinate system (R, z, ¢) by the relations
R = Ry + r cost = Ry(1+ € cosf) and Z = r sinf with Ry being the major radius
of the toroidal coordinate system and € = r/ Ry being the inverse aspect ratio. The
axisymmetric magnetic field can in any case be written as B = V¢ x Vio+RB; V¢,
where in the ad hoc model By = RyBy/R, ¥ = ¥(r) and d¥/dr = rBy/q. The
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Figure 5.17: (a) Real frequency w,, and (b) growth rate - versus wave number
kyps of the linear short wavelength ion temperature gradient mode (SWITG) for
different values of R/L,. Here n; = 2.5, ¢ = 2.0, § = 1.0, 7 = 1.0 in these
simulations.

function g(r) is related to the true safety factor ¢ by the relation

) 1/0ﬂ3.v¢d0_ a(r)

T on A N

More details related to this ad hoc model are found in Ref [65].

Physical Parameters: Our main focus is to study the nonlinear short wavelength
ion temperature gradient mode using the flux tube version of GENE. Note that
a detailed parametric study of the linear SWITG mode has been carried out in
Ref. [66] considering p* = ps/a = 0.017, inverse aspect ratio a/Ry = 0.25 where
steepest gradients are at s = r/a = 0.6. Inspired by that linear study we have
chosen flux tube aspect ratio r9/Ry = 0.15 in the present nonlinear flux tube
simulations where p* — 0. Also in the present simulation we have considered
T=1T)T, =1, ¢ =20,5 =10 and n, = L,/Ly, = 2.5 where L,, and Ly,
are, respectively, the density and temperature gradient scale lengths. Also, the
parameters considered here are relevant to small size tokamaks and hence atypical

for ITER grade machines.
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Numerical parameters: The simulation is carried out in a box of size L, x L, =

400
300 R LR T
O 200| 0k At h A A

100

0 100 200 300
t(RIC)

Figure 5.18: Time (in units of R/c;) evolution of ion heat flux @) normalized by
Qnorm = PregCsps/R? for SWITG simulation, with R/L,, =5 and R/L,, = 10. The
black dashed lines represent the time average of the heat flux between ¢ = 100 R/c,
and t = 330 R/cs. For R/L, =5 the average Q = 195 Q,orm and for R/L,, = 10
the average Q) = 302 Q,orm-

133.3ps x 209.4p, in the perpendicular direction. One connection length of 27 Rq is
considered in the parallel direction. This 3-dimensional spatial domain is resolved
by using 200 x 120 x 16 grid points, respectively, in the x, y, and z directions. The
velocity space, on the other hand, is resolved with 32 x 16 grid points, respectively,
for v and g with the limit for v from —3 to +3, and 0 to 9 for x in normalized
units (see Table 5.3 ). Also, throughout the paper we have chosen L,.; = R, the

major radius.

5.3.2 Results

In this section we will delineate our results for linear and nonlinear runs for the

physical and numerical parameters introduced above using the flux tube version of
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GENE. Note that since higher resolution runs are computationally very expensive,

the nonlinear results presented in this section are somewhat preliminary.

Linear spectrum

We start with a linear simulation with parameters considered above. Figure 5.17(a)
shows the real frequency versus k,p, for different values of R/L,, ranging from 5
to 10. The real frequency rises monotonically with k,p, for kyp, < 1 and remains
virtually constant at higher k,p,. It is clear from the expression of the dispersion
relation, Eq. (5.6), that the mode frequency w behaves as w,,;Io(k? p?) exp(—k? p?)
which for small k2 p? scales as k| p, and for larger k2 p? scales almost as a constant
as Io(k2 p?) exp(—k2 p?) — 1//2n(k%p2) = 1/(\ 27k, p,) for ki p, >> 1 (recall
that w,; ~ kips). Figure 5.17(b) displays the growth rate for the same scan. It
exhibits two peaks for all considered values of R/L,, in contrast to the single peak
around ky,ps ~ 0.5 routinely observed in the linear analysis of the standard ITG
modes. The second peak appears around k,p, ~ 1.5 and is characteristic of the
SWITG mode. Regarding the growth rate in toroidal geometry, it is the toroidal
magnetic drift term wy; of the ions, resonating with the mode frequency w, which
gives rise to the double hump behavior. It is to be noted that wg ~ (L,/R)wn;
and thus scales as k| ps. Therefore, both w and wy;, at first increase for small k| p,
and then w saturates while wy; still grows as k, ps increases. It is important to
note that the SWITG mode is also subject to finite Larmor radius effects. The
finite Larmor radius stabilization (FLR) of the SWITG mode can be inferred from
the nonadiabatic part of the ion density response. At very high &, ps, |wai| >> |w]
and the nonadiabatic part of the perturbed ion density can be reduced to

na T wni(mi/2 =1
g = B g2 = L) g 2 (-2 ),
i Wi

which for large &, ps will decrease according to

W ) 5 209 ﬁ 9 9 72 2 ﬁ#
Wdilo(kJ_ps)eXp< k105) Lnfo(/{;Lps)eXM kLpy) Ly, \/27T]€J_ps’

as k2 p? increases. It is apparent that the second hump is equally strong as the first

hump for higher value of R/L, or even slightly more dominant for R/L, > 10. It
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also is present for lower values of R/L,, albeit less pronounced and finally vanishes
at values of R/L,, typical of the standard ITG mode (R/L, < 5).

2
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Figure 5.19: (a) Time averaged ion heat flux versus normalized wavenumber £k,
for R/L, =5 and R/L, = 10 in lin-lin plot. (b) Time averaged ion heat flux as
a function of normalized wavenumber k, for R/L, =5 and R/L, = 10 in log-log
plot. @ is normalized with respect t0 Quorm = Drefcsp?/R%.

Nonlinear Spectra

Till date, there have been very few nonlinear studies of the SWITG mode. The
study of the SWITG mode turbulence and its contribution to the net thermal
ion heat transport is thus of prime interest. Here we try to address this issue.
We have adopted two cases in the present nonlinear study: case (I) R/L, =
10, where the peak in the linear growth rate corresponding to the SWITG (at
kyps ~ 1.5) mode is as pronounced as that at lower k, (k,ps ~ 0.45) corresponding
to the standard ITG mode, case (II) R/L, = 5, where the linear growth rate
of SWITG at k,ps > 1 is much weaker than that of the standard ITG mode

at kyps < 1. The time evolution of the nonlinear ion heat flux given by the
relation Q = f(1/2)mv2vE.V:L’f1d3v>, normalized with respect to Qnorm =

PresCsp>/R?, where p,.; is the equilibrium pressure, is shown in Fig. 5.18 for the

parameters described in the previous section for the two cases of the parameter
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R/L,. Note that (A) = [J™*(2)A(z)dz/ [ J**(z)dz is the definition of flux-
averaged quantity A, where J*¥* is the Jacobian relative to the coordinate system
(x,y,z). Also, v and vg, respectively, are particle velocity and radial component
of the gyroaveraged F x B drift velocity, and f; is the perturbed distribution
function. It is clear that the heat flux in the case of R/L, = 10 is higher than
that in the case of R/L, = 5. This is in conformity with the linear results where
the SWITG mode with R/L,, = 10 exhibits the highest growth rate compared to
R/L, =5 at both scales i.e., k,p, < 1 and k,p, > 1 corresponding, respectively,
to the standard ITG and SWITG mode. The ratio of growth rates for R/L, =5
compared to R/L, = 10 is even weaker for the SWITG scales than for the ITG
scales. The time averaged heat flux between ¢ = 100 R/cs and t = 330 R/c; is
estimated at 302 Q,orm and 195 Q,.orm, respectively, for the nonlinear simulations
with R/L, = 10 and R/L, = 5. Figure 5.19(a) depicts the time averaged (from
t =0 tot =330 R/cs) spectrum Q(k,) of the heat flux for the R/L,, = 10 case,
normalized with respect to Qorm, Over the entire k,p, spectrum considered in the
simulation. For the purpose of comparison, we also plot in the same figure the
time averaged (from ¢ = 0 to t = 330 R/c,) spectrum of the heat flux Q(k,)
measured from the simulation with R/L,, = 5. The corresponding log-log plots
for both simulations are shown in Fig. 5.19(b). It is quite clear that the Q(k,)
spectrum exhibits a strong peak around ky,ps, =~ 0.3 for both values of R/L,.
However, the peak corresponding to R/L, = 5 is significantly lower than the one
corresponding to R/L, = 10, in conformity with the observed heat flux displayed
in Fig. 5.18. The figure also implies that, on the higher side of the k, spectrum
corresponding to the SWITG mode, the contribution to the net ion heat flux is
very low compared to the contribution from the standard ITG mode on the lower
side of the k, spectrum. The characteristic of the SWITG mode, though weak,
is nevertheless still visible from Fig. 5.19(b), which is the corresponding log-log
plot of Fig. 5.19(a). The hump corresponding to the SWITG mode (encircled in
Fig. 5.19(b)) centers around k,p, = 1.5, reflecting that there is another source of
instability in this region of the spectrum. For completeness, it is important to
comment here that the mixing length estimate of transport from the linear growth
rate and wavenumber is expected to be much higher than that measured from the
nonlinear simulation. In this context, the reader may be referred to Ref. [66].

It is evident from Fig. 5.17 that the SWITG mode has growth rate comparable to
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Figure 5.20: Cumulative sum of heat flux for R/L, = 10. The standard ITG
contribution to the heat flux is for kyp, <1 and SWITG contribution to the heat
flux is for k,ps > 1. Q. is normalized with respect t0 Quomm = Prescsp?/R2.
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Figure 5.21: Cumulative sum of heat flux for R/L, = 5. The standard ITG
contribution to the heat flux is for kyp; <1 and SWITG contribution to the heat
flux is for k,ps > 1. Q. is normalized with respect t0 Quomm = Prescsp?/R2.
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the standard ITG mode for R/L,, = 10 in the linear regime. On the other hand,
for R/L, = 5 both humps become weaker, with the second hump corresponding
to the SWITG mode being even weaker than the first hump corresponding to the
standard ITG mode. Therefore, it is interesting to nonetheless estimate from the
nonlinear simulation results the (small) contribution of the SWITG part of the k,
spectrum to the net thermal ion transport. To estimate the relative contribution
of the SWITG mode to the thermal ion heat flux compared to the standard ITG
mode, we have calculated the cumulative sum of the time averaged (from ¢ = 0 to
t =330 R/c,) heat flux Q(k,) given by

ky1

Qc.s-(kyl) = Z Q(ky)

ky:k'ymin

It has been plotted versus k,p; for the two cases R/L, = 10 and R/L, = 5
in Figs. 5.20 and 5.21, respectively. It is apparent from the figures that Q...
increases rapidly for k,ps < and then tends to saturate for k,ps > 1 in both cases.
The cumulative heat flux in the case of R/L, = 10 appears to be higher than the
case of R/L, = 5. It is obvious from Figs. 5.18 and 5.19(a) that heat flux in the
case of R/L, = 10 is much higher than that of R/L, = 5 leading to higher value
of Q... To evaluate the relative contribution to the net ion heat transport, of the
higher k,, tail, k,p, > 1, corresponding to the SWITG mode compared to the lower
k, part, k,ps <1, relevant to the standard ITG, one may compute

Q&S-(kyps)maz - Qc.s.(kyps = 1)
Qc.s.(kyps - 1) ’

where (kyps)mas is the maximum wavenumber. One thus obtains that the net
contribution of the SWITG part of the k, spectrum to the total ion heat flux is
less than 4% in both cases in spite of the fact that linearly the SWITG mode with
R/L, = 10 has growth rate more than double that with R/L,, = 5 and comparable
to the ITG growth rate. Thus, even in the strongest case of linear SWITG, for
example, R/L,, = 10 in the present case, the thermal ion heat flux is predominantly
determined by the lower £, components of the fluctuation relevant to the standard
ITG mode.

Snapshots of the electrostatic potential ®;(z, y) and ni(z, y) measured at
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Figure 5.22: Snapshots of the potential (top) and perturbed density (bottom) of
the SWITG mode for R/L, =5 taken at t = 330 R/c,.
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Figure 5.23: Snapshots of the potential (top) and perturbed density (bottom) of
the SWITG mode for R/L,, = 10 taken at ¢ = 330 R/cs.
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t = 330 R/cs on the low field side (z = 0) of the tokamak during the nonlinear
simulations with R/L, = 5 and R/L, = 10 are displayed in Figs. 5.22 and 5.23,
respectively. It is clear from the figures that in the case of R/L, = 5, where
SWITG is weak in the linear spectrum, the quantities ®;(x, y) and ny(z, y) ex-
hibit elongated structures along the x direction. The same quantities, in contrast,
exhibit fine structures in the case of the nonlinear simulation with R/L, = 10,
which has the highest growth rate in the linear phase. Given the elongated radial
structures observed for R/L, = 5, which appear to be essentially broken up for
R/L, = 10, one is motivated to investigate the zonal flow [113, 114| shearing rate
in both cases. For that purpose we have measured the zonal flow shearing rate in
both simulations R/L,, = 5 and R/L, = 10, respectively. The time evolution of
the shearing rate is presented in Fig. 8 for the two nonlinear simulations. The time
average of the shearing rate wp = dvg,/dx is estimated 2.4 ¢, /R for R/L,, = 5 and
4.36 c¢s/R for R/L, = 10, respectively. This means that the zonal flow shearing
rate for the SWITG mode with R/L,, = 10 is almost double that with R/L,, = 5.
That is why the SWITG mode with R/L,, = 10 exhibits fine structures, while that
with R/L, = 5 bears elongated structures in all perturbed quantities. In both
cases, the shearing rate is much higher than the linear growth rate implying that
zonal flows are the dominant saturation mechanism for the SWITG mode turbu-
lence. The higher shearing rate of zonal flows in the case of nonlinear SWITG
mode with R/L, = 10 could be a reason for very low contribution of the higher
kyps part of the spectrum corresponding to the SWITG mode to the total thermal
ion heat flux, in spite of being the mode with highest growth rate linearly. This
contribution is almost comparable to the contribution of the higher k,p, part of
the spectrum in the case of the nonlinear SWITG mode with R/L, = 5, which
has the weakest growth rate among all values of R/L,, considered in the linear

simulation.

5.4 Conclusion

In the first part of the present work, we have presented the features of the short
wavelength ion temperature gradient (SWITG) mode in the presence of trapped

electrons using a linear, global, gyrokinetic model in the toroidal geometry, that
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Figure 5.24: Time traces of the zonal flow shearing rate wp = dvg,/dz, in units
of ¢s/R for the SWITG modes with (a) R/L, =5 and (b) R/L, = 10.

treats both species, namely, ions and electrons fully gyro-kinetically, taking into
account all the kinetic effects. A comparison of parametric dependencies for the
two cases of SWITG mode with and without the trapped electrons is presented.
In line with the global model, we also compare the results from a local gyro-kinetic
model for the two cases, with and without the trapped electrons. This is for
the first time where the SWITG mode is studied (1) in the presence of trapped
electrons and (2) in the frame of a global gyrokinetic model. The major findings

of the present work are the following.

e The trapped electrons have strong effect on the SWITG modes, raising the
growth rate substantially. This is in contrast to the earlier conjecture that

the trapped electrons may not be important for the SWITG mode.

e Although defined as short wavelength I'TG, the two dimensional mode struc-
ture of the SWITG mode has been found to be quite global occupying a
considerable fraction of the tokamak cross-section for the chosen set of pa-
rameters. This establishes the necessity of a global model to study such a

phenomenon.

e The most important observation is that, in the presence of trapped elec-
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trons, the L, /R window for the existence of the SWITG mode gets widened.
The toroidicity has strong stabilizing effect on the SWITG mode in the ab-
sence of trapped electrons. Inclusion of the trapped electrons, however, has
been found to make the mode stronger against the stabilizing effect of the
toroidicity. Thus, the inference from this result is that the mode acquires
toroidal-like nature in the presence of trapped electrons in contrast to the
slab-like nature in the absence of trapped electrons. The increased fraction
of the trapped electrons with increased toroidicity is the main factor behind
this flipping of the mode from slab nature to toroidal nature. The increased
trapped fraction of the electrons with toroidicity reduces the adiabatic re-
sponse of the electrons, which in turn enhances the formation of the space
charge leading to a higher growth rate of the mode and hence the mode can

withstand the effect of increased toroidicity.

e The SWITG mode is an ion temperature gradient driven mode in the higher
k., pr; regime exhibiting a threshold in 7;. The mode persists even if the
electrons are considered adiabatic. In the absence of trapped electrons the
mode vanishes below a critical n;. But, in the presence of trapped electrons,
with the decreasing value of 7;, the mode does not vanish, rather it transforms
itself from the dominantly ion mode to the dominantly trapped electron

mode.

e The growth rate increases for lower values of 7 but starts saturating at higher
values of it. In the presence of trapped electrons, the growth rate increases
initially, but at higher values of 7, where the electrons become hotter than
the ions the growth rate falls and then saturates with the mode frequency

tending to move toward the electron diamagnetic direction.

e An estimation of the ion transport based on the mixing length theory is
carried out. The trapped electrons rise the heat diffusivity significantly. It
is found that the ion heat diffusivity peaks at lower k) pr;. No significant
diffusivity is observed at higher kypr; where the SWITG mode is strongest

for both cases with and without the trapped electrons.

In the second part of the present work, the short wavelength ion temperature

gradient mode has been studied linearly and nonlinearly using the flux tube version
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of the massively parallel, gyrokinetic code GENE using only the adiabatic electrons.
The trapped electrons are ignored for the sake of ease in computations as our sole focus
is to study the nonlinear behaviour of the mode.

Linearly the mode appears to be as dominant as the standard ITG mode for
high R/L, ~ 10. However, the growth rate decreases with decreasing R/L,, and
below R/L, = 5 the SWITG mode vanishes, i.e., only the standard ITG mode
remains unstable. Nonlinear simulations show higher heat flux for higher value of
R/L, in conformity with the trend in the linear growth rate with respect to R/L,,.
The nonlinear heat flux spectrum is peaked at lower k,p; ~ 0.3. The estimate of
relative contribution of the higher k,p, part of heat flux spectrum corresponding
to the SWITG mode reveals that the contribution of the SWITG mode to the
total heat flux is very low (less than 4%) compared to the contribution from the
lower k, part of the spectrum typically belonging to the standard ITG mode. The
zonal flow shearing rate has been found to be much higher than the linear mode
frequency and growth rate of the SWITG mode suggesting that the zonal flows
are the main saturation mechanisms of the SWITG turbulence. Also, the zonal
flow shearing rate is found to be higher for the SWITG modes with higher R/L,
which also exhibit higher growth rate linearly compared to the shearing rate for
those with lower R/L, and lower growth rate linearly. The higher shearing rate
appears to compensate for the higher growth rate of the mode leading to a min-
imal contribution to the thermal ion heat flux from the higher k,ps part of the
spectrum relevant to the SWITG mode, irrespective of the density scale length
which determines the strength of the SWITG mode with respect to the standard
ITG linearly.
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Interaction of microturbulence with

energetic 10ns

6.1 Introduction

Thus far, we have studied the various linear properties of the temperature and den-
sity gradient driven modes in the category of microinstabilities using the global,
linear, gyrokinetic code EM-GLOGYSTO. In addition, the short wavelength ion
temperature gradient driven mode is studied nonlinearly using the flux tube version
of the nonlinear, gyrokinetic, electromagnetic code GENE. It is now well under-
stood that these instabilities are the cause of anomalous transport of thermal ions
and electrons.

Recently, some experiments show that these microinstabilities transport not
only the thermal ions and electrons out of the system but also the energetic ions
produced by the auxiliary heating schemes and « particles of energy in the MeV
range produced as fusion product. These energetic particles constitute a consid-
erable fraction of the total plasma, and thus a sound understanding of the impact
of these energetic ions on the plasma confinement through the interaction with
the background instabilities is very much required. The various magnetohydro-
dynamics (MHD) events are observed to transport and redistribute the energetic
ion population via resonant and nonresonant phenomena [115, 116]. For example,
resonant MHD activities such as fishbone, toroidal Alfven mode (TAE), etc., can

cause large transport of the energetic ions. Similarly, high 5 sawteeth can also pro-

140



Chapter 6: Interaction of microturbulence with energetic ions

duce loss of the energetic ions. The low frequency MHD modes such as neoclassical
tearing modes (NTM) are equally capable to drive both passing and trapped ener-
getic ion loss [117, 118]. The toroidal field ripples and stochastic magnetic field are
also among the other mechanism of fast ion losses. The energetic ions can in turn
also alter the stability of the plasma by exciting and sometimes suppressing the
MHD events. One may, for example, note the observed stabilization of sawteeth by
perpendicular energetic ion population, the destabilization of internal kink mode,
TAE, fishbone, etc. The energetic ions also can give rise to modes on their own
which are generally named as energetic particle modes (EPM) [119].

Though much understanding and confidence have been gained in the case of the
interplay between the MHD events and energetic ions via theory and experiments,
little attention is paid toward the interaction of these energetic ions with micro-
turbulence induced by the ITG mode, TEM, ETG mode, etc. One partial reason
could perhaps be the observation of very weak diffusivities of the energetic ions
and « particles in comparison with the thermal ions experimentally [115, 116, 120]
as well as theoretically [121]. The reason for it, as speculated, is that the ener-
getic ions do not stay in resonance with these microturbulence driven fluctuations
as their drift orbit radii are far higher than the radial correlation length of these
fluctuations, and therefore average over the fluctuation spectrum temporally and
spatially. These phenomena are generally defined as the drift averaging and gyro-
radius averaging [115]. On the contrary, recent numerical experiments [122] have
shown that « particle and energy loss could be higher than the corresponding
losses of thermal ions and large orbit averaging is not strong enough to ignore the
interaction of the « particles with ITG turbulence. However, it is a recent exper-
iment [123] reporting evidence of correlation between microturbulence and redis-
tribution of energetic ions that has spurred a fresh interest among the researchers
in the subject. Even in the absence of any MHD activity, fast radial broadening
of the current profile driven by the off axis neutral beam injection (NBI) has been
observed supporting the fact that there must indeed be some correlation between
redistribution of energetic ions and background microturbulence. This has been
further studied in Refs. [124, 125]. Following this, numerical analysis [126] on the
interaction of energetic ions with ITG turbulence observes 1/E dependence for
the passing energetic ion diffusion, where, E is the energy of the energetic ions

and 1/E? dependence for the trapped energetic ion diffusion. Similar study [127]
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found 1/FE dependence of diffusion for the beam energetic ions in the presence
of electrostatic fluctuation. In contrast, the diffusion of the energetic ions in the
presence of magnetic fluctuations [127| has been found to be independent of the
particle energy, and therefore, may play more important role than the electrostatic
fluctuations in redistributing the energetic ions. The reciprocal dependence of dif-
fusivity on the particle energy of the energetic ions could be one of the reasons for
the superficial effect of microturbulence on the energetic ions observed in the ear-
lier experiments. The difference in the born energy of the energetic ions between
the earlier and recent experiments can be a likely explanation of the difference in
the observations regarding the effect of microturbulence on these energetic ions.
Note that such phenomena of redistribution of hot ions by microturbulence is not
confined to only toroidal devices like tokamaks; experiments on linear system also
confirm the interaction of hot ions with density gradient driven turbulence [172].

Astrophysical plasmas also encounter similar phenomena resulting from interaction
of the energetic ions with turbulent field [129].

Coming back to the back reaction of energetic ions on microturbulence, one
may cite latest experiments [130] that has reported signature of internal transport
barrier (ITB) in the ion channel even in the absence of reverse shear. The formation
of the ITB has been observed to have correlation with the transport suppression
mechanism by the injected energetic ions with a lifetime of the order of slowing
down time of the beam ions. Similar observation of the I'TG mode suppression
by the energetic ions produced by ion cyclotron resonance heating (ICRH) and
concurrent formation of the ITB triggered by these energetic ions in a plasma with
monotonic safety factor profile has been reported in Ref. [131].

Following the recent theoretical, numerical and experimental studies regarding
the prospective interaction of the energetic ions with the background microturbu-
lence, we, in the present chapter, present the results from (1) a linear study on the
effect of the energetic ions on the stability properties of the ITG mode using the
linear numerical code EM-GLOGYSTO (2) a nonlinear passive tracer study on the
effect of the ion temperature gradient (ITG) mode microturbulence on energetic
ions using the nonlinear global gyrokinetic code Gyrokinetic Tokamak Simulation
(GTS) [139, 140] based on particle in cell simulation, and (3) a nonlinear passive
tracer study on the effect of the trapped electron mode (TEM) microturbulence

on energetic ions using the nonlinear global gyrokinetic code Gyrokinetic Tokamak
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Simulation (GTS).

The results are discussed in tandem in the following sections.

6.2 Effect of energetic ions on the stability of tem-

perature gradient driven mode of thermal ions.

We incorporate the energetic ions in the model of EM-GLOGYSTO nonpertur-
batively as an active component that would modify the quasineutrality condition.
It is to be noted that, in the past, the effect of the fast particle pressure on the
MHD modes, for example, TAEs and its family of modes, kinetic ballooning mode
or Alfven ion temperature gradient mode, has been investigated extensively using
perturbative methods by considering the fast particle effects as corrections to the
underlying “equilibrium” in the limit 8;/8, < 1. Nonperturbative treatments [119]
wherein bulk electrons, ions and fast particles, all are treated on the same physics
footing have been very few. In all these studies, an unstable MHD equilibrium
with £ = 0 is assumed. Either perturbative (5;/8, < 1) or nonperturbative
ordering (8 ~ fpe, € = a/R) is invoked; the fast particle distribution function
is calculated drift-kinetically and finally the instability problem is solved using
standard §W method distinguishing the “fluid” part and “kinetic part”. Closure is
obtained by taking moments of the fast particle distribution function and using
Maxwell’s equations. In such formulations, the bulk electrons/ions constituting
the MHD equilibrium naturally do not contribute to any kinetic effects such as
Landau damping, transit/trapped particle effects orbit width effects or finite Lar-

mor radius (FLR) corrections.

With respect to these earlier studies, the present work treats electrons, ions and
fast particles on equal footing; all the three “species” are fully “gyrokinetic”, fully
“nonadiabatic”, thus including the above said effects automatically. The formula-
tion retains all the kinetic effects, namely, the Landau resonance, transit resonance,
magnetic drift resonance and finite Larmor radius effect to all orders. However, we
do not include the effect of the trapped particles and magnetic perturbation. Thus
the treatment is purely electrostatic in the present study. The energetic particles
enter the quasineutrality equation as a third species in the plasma, but with higher

energy. To be noted that we consider three different n = L,,/Ly (L, and Ly are
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Figure 6.1: Left panel: the equilibrium density and temperature profiles along
with the 7 profile of the thermal ions and electrons. Right panel: the safety factor
profile and shear profile. The n profile peaks at so = 0.7 with the magnitude
n = 2.0. The safety factor q and shear value § at this point, respectively, are 2.0
and 1.0.

scalelngths for density and temperature) profiles for the energetic ions with respect
to the thermal ions and electrons to look if there is any effect at all of the energetic
ions’ 7 on the ITG mode. Effects of energetic ions’ density and temperature on the
ITG mode are discussed along with a mixing length estimate for the prospective

thermal ion transport by the ITG mode in the presence of energetic ions.

6.2.1 Model equations

Starting from Eq. (2.9) and reformulating it for the energetic ions, one can modify
the quasineutrality condition to accommodate the energetic ions as a third active

species as follows.
fi + 2y = i (6.1)

where, Zy and 7y, respectively, are charge and perturbed density of the energetic

ions. This equation can further be written following Eq. (2.13) as,

YN My Hu=0 (6.2)

k, j:27e7f
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Figure 6.2: The n profiles considered for the energetic ions with respect to the
background profiles of the thermal ions and electrons. While the thermal ion and
electron n profiles are kept the same, energetic ion profiles are considered for three
different cases, namely, flat n profile (green curve), peaked 7 profile (red curve)
and same 7 profile (blue curve) as the thermal ions.

Note again that we have considered 3 species here: passing ions (i), passing elec-
trons (e) comprising the thermal background plasma and energetic ion species (f)

with charge Zye.

6.2.2 Profiles and Parameters:

In the following sections, we will elucidate the results regarding the effect of the
energetic ions on the stability of the ITG mode using the global linear gyrokinetic
code EM-GLOGYSTO.

For the purpose we consider profiles and parameters as given in Table 6.1. Note
that all our results in the present section are only for one a/p; = 57. The equilib-
rium profiles for density, temperature, n, safety factor, and shear are displayed in
Fig. 6.1 according to the parameters charted in Table 6.1. However, for the case of
energetic ions we consider three different 7 profiles as presented in Fig. 6.2: (1) a

flat ) profile (green line), same throughout the minor radius of the tokamak, (2)a
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Table 6.1: Profiles and parameters

)

Parameters: Equilibrium Profiles:

e B-field : By = 1.0 Tesla e N-profile and T-profile

e Temperature : To = T'(so) = 7.5 keV %s) = exp (—% tanh (%)
: : . _ Tie(s) ads s—s

e Major Radius: R=2.0m —5 = exp <_?0T tanh (FTO

e Minor Radius : ¢ = 0.5 m 0s, = 0.35, ds7 = 0.2 at s = sy

e radius : s =p/a, 0.01 <s<1.0, s9=0.7 e q(s) =1.25+0.67 s* +2.38 3

L, o=04m, Lyy=02m —0.06 s*

® 1ic(s0) =2.0, €, =Lyy/R=0.2 such that ¢(s = s) = 2.0;

o 7(s) =T.(s)/Ti(s) = 1. shear s = sp, § = 1.

n profile (blue line) same as the background thermal ions and electrons, and (3) a
steeper 7 profile (red line) compared to the background ions and electrons. These
are achieved by considering dsr equal to 0.35, 0.2, 0.05, respectively, for the three
cases keeping ds,, = 0.35 same as that listed in Table 6.1 for the thermal ions and
electrons. Also note that ms/m; = 1.0, Zy = 1, where m; and my are masses
for the thermal ions and fast ions. We also carry out similar studies considering
He ions as the energetic species, with the n profile same as the thermal ions and
electrons. All the parameters are kept same except considering m¢/m; = 2.0 and
Z = 2.0 for the He ions.

6.2.3 Wave number scan for the mode frequency and growth

rate

In the present section, we carry out a kgpr; scan for the ITG mode by varying
the toroidal mode number n. Thus we display the mode frequency w, and growth
rate v of the ITG mode with respect to kypr; for the cases with and without
the energetic species in Fig. 6.3. We here consider three cases, namely, (i) ITG
mode without the energetic species (the magenta line), (ii) ITG mode with singly
charged energetic ions, with flat 7 profile (green line), steeper n profile (red line)
and 7 profile (blue line) same as the thermal ions and electrons as shown in Fig. 6.2,
all with ms/m; = 1, Zy = 1, and (iii) ITG mode with He ions for ms/m; = 2,
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Figure 6.3: The wavenumber scan for the mode frequency w, (left panel) and
growth rate ~ (right panel) of the ITG mode is presented for the cases, viz., (i)
without energetic ions (magenta line), (ii) with singly charged energetic ions with
flat n profile (green line), steeper n profile (red line), same 7 profile (blue line) as
the thermal ions and (iii) with energetic He ions (brown line).

Z; = 2. The other parameters, apart from tabulated in table 6.1, are ny/n. = 0.1
for the singly charged energetic ions, and ny/n. = 0.06 for the He ions. The
ratio Ty /T, = 20 and 7 = T, /T; = 1 are same for all the cases. It is clear from the
picture that the energetic ions strongly stabilize the ITG mode. For the parameters
considered, the growth rate of the ITG mode is reduced by about 30% when one
considers the energetic ions. It is apparent from Fig. 6.3 that the stabilization by
the energetic ions is almost independent of the energetic ions’ n profile. For He
ions the stabilization is far stronger than the singly charged ions for the parameters
chosen. A typical mode structure of the linear ITG in the presence of nonadiabatic
passing electrons and nonadiabatic passing energetic ions is shown in Fig. 6.4
Regarding the mode frequency of the ITG mode (left panel of Fig. 6.3), the
effect of the energetic ions is not significant. The effect of these energetic ions
on the mode frequency of the ion temperature gradient driven mode is to reduce
it slightly as is apparent from Fig. 6.3. Similar to the growth rate, the mode
frequency also seems as well to be almost independent of the energetic particles’ 7

profile.
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Figure 6.4: A typical electrostatic mode structure for n = 8, kgpr; = 0.4 corre-
sponding to the maximum growth rate of the ITG mode with nonadiabatic elec-
trons and energetic ions.

6.2.4 Effect of density fraction of energetic ions

Next, we consider the effect of the population of the energetic ions on the ITG
mode. The real frequency w, (left panel) and growth rate v (right panel) are
plotted in Fig. 6.5 for the various cases described in the above section. The toroidal
mode number n and kypy; in the present section correspond to the mode with the
highest growth rate in the toroidal mode number or kypr; scan in the above section,
that is, we choose n = 8 corresponding to kgpr; ~ 0.43. The scan is performed
by increasing the ratio ns/n. gradually and finding out the corresponding mode
frequency and growth rate of the n = 8 or kypr; ~ 0.43 mode. The other parameter
that is kept fixed is the ratio T /7., which is set 20 in the scan. It is clear from
the figure that the growth rate decreases almost linearly with the increase in the
parameter ny/n.. For all the three cases of different n for the singly charged
energetic ions, the growth rate finally subsides completely at around ny/n. ~ 0.35.
The mode frequency in contrast to the growth rate, decreases weakly with the

increasing fraction of ny/n.. Thus, with the enhancement in the energetic ion
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Figure 6.5: The mode frequency w, and growth rate ~ are plotted as a function of
density fraction of the energetic ions compared to background density of electron
for the mode with n = 8, kgpr; = 0.4 for the cases, viz., (i) with singly charged
energetic ions with flat n profile (green line), steeper n profile (red line), same 7
profile (blue line) as the thermal ions and (ii) with energetic He ions (brown line).

population ITG mode becomes weaker gradually and at one stage it is suppressed
completely. In the case of He ions, the stabilization is stronger than the cases
discussed earlier. The mode frequency also falls faster than the cases of the singly
charged energetic ions. It apparently conforms to the experimental observation of
reduction in the ITG mode intensity with the fast ion population. The explanation
is based upon the dilution of the thermal ion population by the energetic ions,
which weakens the ion temperature gradient drive of the thermal ions, leading to
stabilization of the mode. It also states the necessity of a nonperturbative model
that treats the energetic ions on the same physics footing as the thermal ions and
electrons, and that they need to be considered as an active element contributing
to the quasineutrality constraint of the plasma. The increase in the energetic
ion population dilutes the thermal ion population and thus the modes inherent
to the thermal ions get stabilized. Looking at the curve for the He ions, one can
understand that the He ions can ameliorate the confinement by further reducing the
thermal ion temperature gradient mode, the prime cause of energy and particle loss
from the confining device. Thus, over and above the ignition, He ions, especially
those with lower energy can provide a mean to suppress the ITG mode efficiently

thereby keeping the density and energy well preserved in the system, and at the

149



Chapter 6: Interaction of microturbulence with energetic ions

-11.5 5
> "
g —1245 'S 504
3 ‘ G | Mg~ o rrr s oo oo L3
-g Q}}’Q .--=-—-=‘—'—g -%47
= s*‘é """""" * =,
<« —12.5§f =
: 3° -0
& g 2 7 geee -0 gaamn -
S -1 8,8
3 =<0
-13.5 ‘ L | | |
0 20 40 60 0 10 20__30 40 50
TIT TIT.

fi foi

Figure 6.6: The mode frequency w, and growth rate ~ are plotted as a function
of temperature fraction of the energetic ions compared to the temperature of the
thermal ions for the mode characterized by the toroidal mode number n = §,
corresponding to kgpr; = 0.4 for the cases, viz., (i) with singly charged energetic
ions with flat n profile (green line), steeper n profile (red line), same 7 profile (blue
line) as the thermal ions and (ii) with energetic He ions (brown line).

same time, continuing the energy transfer cycle, viz., from He ions to the electrons
and finally to the ions. The argument for the observed stabilization of the ITG
mode of the thermal ions by the energetic ions based upon thermal ion dilution,
is further corroborated by the fact that the He ion (which is doubly charged) is
more stabilizing than the singly charged energetic ions for the same parameters
considered. The mode subsides completely at around ns/n. >~ 0.15 for He ions in

comparison to the ns/n. >~ 0.35 of the singly charged energetic ions.

6.2.5 Effect of temperature of the energetic ions

In this section, we study the effect of the energetic ion temperature on the ITG
mode of the thermal ions. This is performed by doing a temperature ratio scan
Ty /T; for the ITG mode keeping 7; intact and increasing only the energetic ion
temperature. The other parameters are kept same as given in Table 6.1. The
values of ny/n. are considered to be 0.1 for singly charged ions and 0.06 for He
ions. The results are displayed in Fig. 6.6. It is clear from the scan that the
energetic ion effect on the stabilization of the ITG mode is effective mainly in the

low temperature region of the energetic ions. The variations in the the growth
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rate with the energetic ion temperature is more pronounced in the the region
Ty/T; < 10. This again conforms to the experimental observation where the effect
of energetic ions has been found to be significant for 7;/7; < 10. The growth rate
of the thermal ion I'TG mode decreases with the temperature and hence energy
of the energetic ions upto Ty ~ 107}, and saturates thereafter. Thus, the dilution
effect is also related to the temperature of the energetic ions. When the energetic
ion velocity is around the thermal ion velocity, the dilution is the most effective
and so does the stabilization. Beyond 7}/T; > 10 the growth rate is insensitive
to the temperature of the energetic ions. However, the overall stabilization by
these energetic ions is always there irrespective of the energetic ion temperature.
In the case of the He ions the trend of the growth rate with the temperature of
the energetic ions is different than the singly charged energetic ions. It shows a
weak increase in the growth rate with temperature of the He ions in the region
Ty¢/T; < 10. Thus, one may conclude that the He ash in the fusion will play an
important role determining the stability properties of the I'TG mode than the newly
born He ions during the course of the fusion process. Coming to the mode frequency
of the I'TG mode, it increases slightly with the temperature of the energetic ions
and at T/T; ~ 2 it turns around for the singly charged energetic ions. Similar to
the growth rate, the variation in the mode frequency is also visible only at lower
value of T/T;. It remains unaltered by the energetic ions beyond T/T; > 10.
Until 77 /T; < 10 the mode frequency continues decaying, and then onward, ceases
to vary with the energetic ion temperature. One may mention here the findings of
Ref. [126, 127] on the influence of the ITG turbulence on the energetic ions, which
show that the effect of the [TG turbulence on the energetic ions is significant only
in the lower temperature regime of the energetic ions. The influence is the strongest
at Ty o~ 2T; [126]. Following the present results one may conclude that the vis-a-vis
interaction of the ITG mode and energetic ions, and consequent redistribution of
the energetic ions and stabilization of the ITG mode, all happen only in the lower
energy regime of the energetic ions. Similar to the results in other sections, the

stabilization is independent of the parameter n of the energetic ions.
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Figure 6.7: A mixing length based estimation of transport in gyroBohm units is
presented for the cases, viz., (i) without energetic ions (magenta line), (ii) with
singly charged energetic ions with flat n profile (green line), steeper n profile (red
line), same 7 profile (blue line) as the thermal ions and (iii) with energetic He ions
(brown line).

6.2.6 Mixing length estimate of transport

In the frame of linear theory, the transport can be estimated at the best using
the mixing length estimation, where the diffusivity is calculated from the highest
growth rate divided by the corresponding averaged squared wave number. Thus, in
the present section we discuss the mixing length estimated transport for the various
cases considered in this analysis. In Fig. 6.7 the mixing length based diffusivity
expressed in gyro-Bohm unit is plotted as a function of the perpendicular wave
number kypr;. The magenta curve depicts the diffusivity calculated for the pure
ITG mode without the energetic ions. The diffusivity initially increases, then at
kopr; ~ 0.35 becomes maximum and starts decreasing monotonically thereafter.
Such a trend can be understood from Fig. 6.3 where growth rate variation is shown
versus kgpr;. It is clear from Fig. 6.7 that the diffusivity is significantly decreased
in the presence of the energetic ions. The diffusivity, however, is not strongly

dependent on the respective n profiles of the energetic ions. It remains same for
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all the three cases of different 7 profiles. In the case of the He ions the effect, as

expected, is the strongest on the observed diffusivity.
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6.3 Size and energy scaling of hot ion transport
in the presence of ion temperature gradient

driven turbulence.

Motivated by the recent developments discussed in the Section 6.1, a study on
the influence of the ITG mode turbulence on the hot/energetic ions is carried out
in the present work with a passive tracer method using the massively parallel,
global nonlinear gyrokinetic code named Gyrokinetic Tokamak Simulation (GTS)
[139, 140], based on particle in cell method.

The passive tracer has proved to be a robust tool in the atmospheric and
oceanographic turbulence studies [141, 142] and been fruitfully implemented in
the plasma turbulence studies. In recent years, it has garnered much popularity
because of its simplicity; a slew of studies on plasma turbulence are now based upon
this passive tracer method [121, 143, 144, 145, 146, 147, 148|, and sometimes the
latter can be used to predict the nature of turbulence much like passive diagnostics
[121]. Thus, such a tool can be quite useful to model hot species in tokamak, for
example, o particles, beam ions which have very low concentration compared to
the thermal ions and electrons.

We adopt the same method to study the dispersion and energy scaling of the
hot ions in the presence of turbulent field produced by the nonlinear ITG mode
and predict their nature of transport. Note that the transport of the hot ions is
a complex process; a whole lot of factors are there that can influence it. Among
them poloidal drift, zonal flows, finite Larmor radius effect, gyro-averaging, orbit
averaging can play critical role [149].

The purpose of the present work is to elucidate the system size effect in the ratio
of plasma minor radius (a) to the thermal ion Larmor radius (p;) on the transport
of the hot ions. It is to be noted that the size scaling of hot ion transport is a
crucial issue in view of the future fusion devices of larger size, for example, ITER
[3].

In the present work, the hot ion transport has been observed to increase initially
with system size and then to remain virtually independent of system size at larger

system size; a behavior analogous to the Bohm to gyro-Bohm transition of thermal
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ion transport [151, 152, 153]. Also, the nature of transport has been found to
exhibit subdiffusive character for smaller system size, which continuously changes
toward diffusive process as the system size increases.

Before discussing the details of the simulation model and results, we briefly
explain, in the following, the anomalous transport and its importance in a complex
medium such as tokamak plasmas.

It is obvious that complex systems are all pervading from exact to life sciences,
embracing a variety of systems such as plasmas, glasses, liquid crystals, polymers,
proteins, biopolymers, organisms or even ecosystems [169]. The mean physical
quantities, in such systems have been known to be anomalous. With increas-
ing sophistication in experimental and numerical techniques these anomalies have
been brought out with more confidence. A particularly interesting and yet sim-
ple to measure physical process is particle diffusion and corresponding diffusion
coefficient. Diffusion processes in various complex systems are found to exhibit
non-Gaussian statistics. In such cases, the Fick’s law of diffusion can not be ap-
plied to describe the transport behaviour. The mean squared displacement in these

cases is no longer linear with respect to time, i.e., lilm <0?>=AtP, Abeing a
t—large

constant, with p # 1. This is called anomalous diffusion and present in wide variety
of systems. The main characteristics of such systems is the nonlinear growth of the
mean squared displacement with respect to time which is, in general, caused by
broad distributions and long range correlations [169]. These anomalous diffusion
comprises of different domains, defined through the MSD equation < 02 >= A t?
and parameterized by the anomalous diffusion exponent p. These domains are (a)
subdiffusion, (b) superdiffusion and (c) normal diffusion on the threshold between
sub and super diffusion [167, 168, 169]. Another special case is ballistic motion
with p = 2. These are shown in Fig. 6.8. The generalized diffusion coefficient A
in the above equation has the dimension [A] = L2*T~P.

Complex systems such as plasmas have been studied extensively for such anoma-
lous behaviour. Nondiffusive transport has been observed [171] in numerical studies
of three-dimensional, resistive pressure-gradient-driven plasma turbulence. It has
been found that the probability density function of tracer particles’ radial displace-
ments is strongly non-Gaussian and exhibits algebraic decaying tails incorporating

in a unified way space-time non locality (non-Fickian transport), non-Gaussianity,

155



Chapter 6: Interaction of microturbulence with energetic ions

Normal|diffusion Ballistic|diffusior

Subdiffusion |Superdiffusion

Figure 6.8: Different domains of anomalous diffusion, defined through the mean
squared displacement < 02 >= A t*, and parameterized by the anomalous diffusion
exponent p: (a) subdiffusion for 0 < p < 1, (b) superdiffusion for 1 < p < 2. On
the threshold between sub- and superdiffusion is the normal Brownian diffusion
located. Another special case is ballistic motion p = 2 [169].

and nondiffusive scaling. [171]

Some examples from experiments indicating nondiffusive transport are [173]:
the dependence of transport on the system size in low confinement mode plas-
mas [159], the observation of rapid propagation of an induced perturbation [160,
161], the measurement of long range temporal and radial correlations in the plasma
edge [162, 163, 164], etc.

Nondiffusive transport in confined plasma is not only relevant to tokamaks [158].
Particle transport in a reversed field pinch (RFP) device is shown to be nondif-
fusive when magnetic chaos is present. A phenomenological fit to density profiles
gives a diffusion constant and also a pinch velocity directed up the density gradi-
ent [158]. It has been shown in Ref. [158| that the combination of diffusion and
pinch is actually an expression of the nonlocal, subdiffusive nature of the trans-
port. Nondiffusive transport is also observed in the Large Plasma Device [172] in
density gradients driven turbulence in the case of energetic ions. The energetic
ion transport decreases rapidly with increasing gyroradius of the energetic ions.
The turbulent transport is found to be nondiffusive in contrast to the diffusive

transport, caused by the Coulomb collisions.
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Coming back to tokamak, by means of toroidal gyrokinetic simulations of elec-
trostatic, collisionless ion-temperature-gradient turbulence [154], it is shown that
the nature of the transport is anticorrelated and subdiffusive. Additionally, when-
ever the flows are self-consistently driven by turbulence, the transport gains an
additional non-Gaussian character. Similarly, several tracer particle studies in
Hasegawa-Mima and Hasegawa-Wakatani models show nondiffusive character for
the tracer particles. This kind of subdiffusive nature of transport, in particular, for
radial transport in the presence of drift wave turbulence is sometimes referred to
as strange kinetics [147|. Zonal flows are found to play critical role in determining
the nature of transport [147, 121, 143, 144, 145, 146, 173| for the tracer particles.

6.3.1 Simulation Model

The particle dynamics is determined on the basis of the gyrokinetic formalism,
where we follow the time evolution of the perturbed part ¢ f of the particle distri-
bution function f expressed as the sum of an equilibrium part f, and a perturbed
part 0 f. Thus, for the collisionless case, the gyrokinetic equation for ions can be
written as [150]

el b v 9o fi
81{ + (b + vg, +vE +va). V3 f; — b (MB+—¢o+m ) %J'T —
A e 1.0Jo
—vp. bV (S g) 20, .
ve.Vfo+ V(migb)avﬂ (6.3)

Here vg,, U are E x B drifts resulting, respectively, from the equilibrium potential
®, and turbulent potential ¢, v is the VB drift, b* = lA)+leA)>< (Z)AV(A)), with b = B/B
and p| = v|/B. This equation along with the equation for adiabatic electrons are
solved numerically in the code GTS with particle in simulation method.

In contrast, the hot ion (hi) species is pushed according to the equation

afhz
ot

8fhz
aUH

+ (v)b + vig, + v + 0a).V frs — bV (uB + —@0 + —<;5) =0. (6.4)
This equation has been added additionally to govern the evolution of the passive
tracers incorporated as energetic ions. Note again that these passive tracers do not

affect the turbulent field, and hence do not enter the gyrokinetic Poisson equation.
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Although, the code GTS is equipped with the capability to treat general geometry

tokamak, for simplicity, we consider circular geometry for the plasma cross-section.

6.3.2 Parameters and profiles

For the study of size scaling of hot ion transport we consider the following profiles
and parameters. The average aspect ratio is Ry/a = 2.86, while three different
values of system size are considered; (1) average a/p; = 157, (2) average a/p; = 315,
and (3) average a/p; = 500. Note that here p; = vu;/w is the thermal ion
gyroradius, ¢, = \/m is the sound speed and w,.; = eB/m; is the gyrofrequency.
The parameters e, B, m;, T, are electric charge, magnetic field, mass of thermal
ion, and electron temperature, respectively. The thermal ion temperature profile,
density profile and safety factor profile considered are Ry/Ly = 8.0 exp{—[(r/a —
0.5)/0.28]°}, Ry/L, = 2.0 exp{—[(r/a — 0.5)/0.28]°} and ¢ = 0.854 + 2.184(r/a)*
respectively, with electron to ion temperature ratio 7,/7; = 1. This implies that
at r = 0.5a, ¢ = 1.4, shear § = (r/q)dq/dr = 0.78, Ry/Lr = 8.0, Ry/L,, = 2.0.
We consider thermal ions and electrons both being equal to 1.2 x 10% in number.
The radial simulation domain chosen spans from r = 0.1a to r = 0.9a. Regarding
the incorporation of hot ions, we consider monoenergetic ions with temperature
T, = nT;, n being an integer, with uniform distribution in pitch angle, defined as
the angle between the particle velocity and magnetic field applied. The mass and
charge of these hot ions are kept the same as the background thermal hydrogen-
like ions. With these specifications, they are inserted on a single flux surface at
Vo = 0.5a, where the gradients peak, and distributed uniformly in the poloidal

and toroidal direction.

6.3.3 Heat flux of thermal ions

Figure 6.9 depicts the time history of thermal ion heat flux, measured at » = 0.5a,
arising from the ITG turbulence for three values of system size, namely, a/p; = 157,
a/p; = 315 and a/p; = 500. The heat flux is calculated using the relation @; =
[ d*viviugd f, where v is the particle velocity, vg is the radial component of gyro-
averaged E x B drift and 0 f is the perturbed distribution function, and recorded
at r = 0.5a at every time step. The typical snapshots of perturbed potential are
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Figure 6.9: Time evolution of heat flux, measured at r = 0.5a, for system size (a)
a/p; = 157, (b) a/p; = 315, and (c) a/p; = 500.
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shown in the following figures for the three different system sizes considered here.
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Figure 6.10: The typical snapshots of mode structure in the linear (left panel) and
nonlinear (right panel) regime of the ITG turbulence for the system size a/p; = 157.
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Figure 6.11: The typical snapshots of mode structure in the linear (left panel) and
nonlinear (right panel) regime of the ITG turbulence for the system size a/p; = 315.

160



Chapter 6: Interaction of microturbulence with energetic ions

phi(r,theta) phi(r,theta)

Figure 6.12: The typical snapshots of mode structure in the linear (left panel) and
nonlinear (right panel) regime of the ITG turbulence for the system size a/p; = 500.

6.3.4 Mean Squared Displacement of hot ions

The hot ions are incorporated at time ¢ = 0, that is, before the turbulence sets in,
on a single flux surface at ¥y = 0.5a and are distributed uniformly in the poloidal
and toroidal direction. The spirit of inserting the hot ions on ¥y = 0.5a surface
follows from the fact that the density and temperature gradients of the thermal ions
peak on this surface and hence is the most unstable region. As described earlier,
the hot ions in different energy groups are pushed according to the gyrokinetic
Eq. (6.4) and the resulting mean squared displacement (MSD) is recorded at every

instant of time using the following relation

=N

1
< a?( Zfr‘zst ri(e,0))?

z:l

where, N is the total number of particles of hot ions with energy e, 7;(e,t) and
7;(g,0) are, respectively, the radial positions of the i hot ion with energy ¢ at
time ¢t and ¢ = 0. Note that the number of hot ions inserted from each energy
group is roughly 6.7 x 10°. Figure 6.13 displays the time evolution of running
MSD defined above for the hot ions with energy 1), = T;, 2T;, 4T;, 8T;, 16T; for

the three values of system size considered in the simulation. One can observe that
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till t = 200L7 /vy, the hot ions undergo drift motion as the mode amplitude of the
ITG mode during this time interval is too weak (see Fig. 6.9) to produce any effect
on the hot ions. Their motion is thus governed by the equilibrium gradient and
curvature of the magnetic field and therefore, the magnitude of the mean squared
displacement is determined merely by the energy associated with the hot ions. The
bounce period being inversely proportional to the particle velocity, hot ions with
higher energy undergo more bounce cycles than the hot ions with lower energy
for a given interval of time as depicted in the figure. It is clear from Fig. 6.9
that from time ¢t = 200Ly /vy, the ITG turbulence starts showing its signature
with its exponential linear phase. Consequently, the hot ions also come under the
influence of the electric field of the I'TG mode and MSD rises abruptly at this
point. Note that the MSD is maximum for 7}, = 27; and gradually decreases with
increase in the hot ion energy. There are important differences in the measured
MSD for the three cases of different system size: first, the MSD for a given group of
hot ions characterized by a given temperature increases with the increment in the
system size; second, the MSD for all groups of energy of hot ions shows signature
of saturation for a/p; = 157, increases linearly at first, then weak tendency to
saturate for a/p; = 315 and increases almost linearly for a/p; = 500 after the
initial abrupt rise for all the three cases with respect to time; third, the MSDs of
the hot ions with temperature 7, = 27; and 1), = 47T; tend to be almost the same

as the system size increases.

6.3.5 Nature of transport: Energy Scaling

In order to evaluate the dependence of the energetic ion transport on their energy
and system size, one can calculate the net displacement in the interval, from time
t1 = 160Ly /vy, where the MSD in the presence and absence (not shown here)
of ITG turbulence remains the same, to time ty = 1200L7/vy;, the end point of
simulation and define a quantity, D, = ¢ < 0 > /0t = (< 02(ty) > — < o%(t1) >
)/(ta — t1). In the present case, the hot ions are introduced at r = 0.5a initially,
and therefore, it can be shown that MSD and standard deviation remain almost
the same. For a diffusive process, the parameter D; can therefore represent the
diffusion coefficient at late time when the system is in steady state. (A discussion on

the issue regarding steady state and the diffusion coefficient is introduced in Section
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Figure 6.14: D;, = 6 < 0 > /4t versus energy of hot ions.

6.3.7.) The parameter D), is plotted versus energy of the hot ions in Fig. 6.14 for
different values of system size, namely, a/p; = 157, 315, 500. It is clear that
for all the cases D), is maximum for 7;, = 27T; and decreases monotonically with
increasing energy with a tendency of saturation at higher value of hot ion energy
for the chosen parameters. For energy below T, = 167}, the quantity D), exhibits
significant dependence on the system size; it is maximum for a/p; = 500 and
decreases with decreasing system size. However, at 1), = 167} the value of D,
is nearly the same for all the three values of system size. One expects that it
converges to the same value for the hot ions with energy beyond T}, = 167;. Thus,
it implies that while transport of hot ions with lower energy depends strongly on
the system size, for hot ions with higher energy, in contrast, transport remains

practically independent of the system size.

6.3.6 Nature of Transport: Size scaling

Next, we look at the dependence of hot ion transport on system size. Figure 6.15
presents the plot of D), versus system size expressed in terms of the ratio a/p;. It is
evident that as the system size increases till a/p; = 315, Dy, increases linearly, while
the increment is very minor beyond that point showing a tendency of saturation at
higher value of the system size. Thus, with increasing system size, the transport

of hot ions for all groups of energy starts increasing initially and shows trend of
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Figure 6.15: Dy, versus a/p;.

saturation for larger system size. The trend reminds one the case of Bohm to
gyro-Bohm transition of thermal ion transport [151, 152, 153|.
Concerning the nature of transport let us consider the relation between MSD

2 >= AtP, where A is an arbitrary constant and ¢ is

and time, given by < o
time. The value of the exponent parameter p determines whether the transport
process undergoes a normal diffusion or anomalous diffusion. When p = 1, the
transport is characterized by the diffusive process and said to be normal, while
for values 0 < p < 1 and 1 < p < 2 the transport is characterized, respectively,
by subdiffusive and superdiffusive processes and defined as anomalous. The value
p = 2 implies a ballistic motion where the velocity remains constant. The value

of p, calculated from the slope of log < o?

> versus log t between time t =
900L1/vp; to t = 1200L7y /vy is plotted in Fig. 6.16 versus system size a/p; for
the MSDs of hot ions delineated in Fig. 6.13 for various groups of energy. The
figure shows that for smaller system size the hot ion transport is characterized
by a subdiffusive process as p < 1. Due to this nature, one observes a trend of
saturation in the measured MSD for a/p; = 157 as displayed in the first panel
of Fig. 6.13. The exponent parameter p increases further for a/p; = 315 and the
subdiffusivity becomes weaker. At even larger system size a/p; = 500, p approaches

unity, thus showing the characteristics of a diffusive process. This means that
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Figure 6.16: Exponent p in < 02 >oc 1P versus a/p;.

the hot ions exhibit subdiffusive transport for lower system size, which however,
gradually becomes weaker and finally appears to be diffusive for larger system
size. An extensive discussion on robustness of the exponent p can be found in
Section 6.3.7. In that section, the simulation time is doubled and the calculation is
repeated. This effort demonstrates that the transport is subdiffusive for a/p; = 157
and 315.

In the following, we have measured the probability density function (PDF) of
radial displacement for the hot ions for all the device sizes considered here. We
have also measured the standard deviation o, skewness s and kurtosis k defined,

respectively, as

and

from the simulation data. One may note that for a distribution kurtosis estimates

the relative peakedness or flatness compared to the normal distribution, while
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skewness is a measure of symmetry about the mean. In the case of Gaussian dis-
tribution, both kurtosis and skewness as defined above become zero and infer a
normal diffusion. Divergence of these quantities from zero, therefore, can be con-
sidered as the signature of a non-Gaussian distribution. A positive kurtosis char-
acterizes a relatively peaked distribution while a negative kurtosis characterizes a
relatively flat distribution. On the other hand, a positive skewness (right-skewed)
represents a distribution with longer tail on the right side, while a negative skew-
ness (left-skewed) represents a distribution with longer tail on the left side of the
distribution. Creating 200 bins in the radial direction between 0.1a and 0.9a the
probability density function for the test particles has been evaluated. The upper
panel of Fig. 6.17 depicts plots of the PDFs for system size a/p; = 157. Corre-
sponding values of o, s and k are also displayed in the legend of the figure. Note
that o is normalized to corresponding p;/a. It is clear from the figure that the
PDEFs are substantially deviated from the normal distribution. The lower panel
of the same figure displays the plot of < ¢ > /t? versus t. It remains virtually
constant for the measured values of p in the given temporal window evincing the
robustness of the quantity p

The upper panel of Fig. 6.18 presents plots of the PDFs for system size a/p; = 315.
The legend shows the values of 0, s and k extracted from the simulation data. The
lower panel of the same figure displays the plot of < 0? > /t? versus t. It is clear
that the quantity < ¢ > /t? remains virtually constant for the measured values
of p in the given temporal window. That means that though weak, the transport
of the hot ions is still subdiffusive.

The upper panel of Fig. 6.19 presents plots of the PDFs for system size a/p; = 500.
In the legend the values of o, s and k are displayed. The lower panel of the same
figure displays the plot of < 0? > /t? versus t. Both figures demonstrate that the
transport of the hot ions in a bigger system exhibits diffusive nature.

Thus, from the Figs. 6.17, 6.18 and 6.19, one can conclude that for lower system
size, hot ions’ PDF exhibits deviation from Gaussian implying anomalous diffusion.
As system size increases, the subdiffusion becomes weaker and at a/p; = 500 it
gives qualitatively similar results of Zhang et al. [126] which has system dimension
500p;. Using first principle simulation in our work, we have shown, for the first
time, a continuous transition of transport from subdiffusion for smaller device size

to normal diffusion for larger device size.
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It is interesting to point out here that similar subdiffusive nature of transport
for thermal ions has also been reported by R. Sanchez et al. [154, 155| for smaller
device size a/p; = 200 for ion temperature gradient driven turbulence. Exhibition
of subdiffusive behavior of radial transport in smaller device is further corroborated
by the results reported by Dewhurst et al. [143] which uses a modified Hasegawa-
Wakatani model for drift wave turbulence, for system size L = 40p;. Note that
the particles with T), = T} considered in our work are similar to the thermal ions,
considered passively and correspond to those in the aforementioned works.

The present work thus brings two different opinion (whether subdiffusive or
diffusive) regarding radial transport of ions into the same frame. While on one
hand, it observes subdiffusion like that of Sanchez et al. [154, 155] for lower system
size, on the other hand, observes diffusion like Z. Lin et al. and Zhang et al. for
larger system size [126, 151].

We, therefore, believe that the present first principle based simulation resolves
a fundamental issue of whether the radial transport of thermal and hot ions is
subdiffusive or otherwise. It has been demonstrated that the radial transport
of thermal and hot ions is subdiffusive for lower system size, which eventually
becomes diffusive for larger system size, exhibiting a segue from subdiffusion to

normal diffusion with increasing system size.

6.3.7 Check for quasisteady state and robustness of the re-

sults

In the following we perform several reruns for longer duration to study the ro-
bustness of the exponent p and to demonstrate that diffusion remains anomalous
in the quasisteady state. It is well known that the finite size effects and non-
stationary state of numerical simulation may affect the conclusions as diffusion is
meaningful only at steady state conditions. Interpretation in terms of standard
versus anomalous diffusion could be difficult when simulations do not attain steady
state. Therefore, we have rerun the cases of I'TG mode and energetic particles for
system sizes a/p; = 157 and 315 and doubled the simulation time, i.e, the total
simulation time has been increased from 1200 to 2500Ly /vy;. It is clear from
Fig. 6.20 that quasi-steady state is attained at late time for both system sizes.

The global mean squared displacement as a function of time is calculated and
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depicted in Fig. 6.21. Similarly, the PDFs are measured during the quasi-steady
state for a/p; = 157 and 315 and displayed in Figs. 6.22 and 6.23. We find that the
results remain the same qualitatively. Two cases are shown; one for earlier case of
t = 1200L7 /vy and other, for ¢ = 2500L7/vy;. It is clear from the figures that
late time PDFs do not change much between these two times. If one considers
occurrence of subdiffusion as merely a manifestation of the finite (small) size of
the system (as the particles will fill up the system quickly), the p values in the
case of a/p; = 315 should have reduced or in other words the transport should
have been more subdiffusive (marked by smaller values of p) when the simulation
time is doubled. The PDFs in the case of a/p; = 315 clearly show that PDFs do
not change much between ¢ = 1200Ly /vy, and t = 2500 L7 /vy,; and are far away

from the boundary throughout the simulation period. A comparison of p values

Ty/T; Mean p standard deviation p from Section 6.3.6

1 0.3461 0.0032 0.3291
2 0.2675 0.0052 0.2648
4 0.2865 0.0031 0.3052
8 0.5153 0.0043 0.4687
16 0.7994 0.0099 0.4232

Table 6.2: New values of mean p and values measured in Section 6.3.6 (see Fig. 6.16)
for a/p; = 157

from old (small time) simulation and new (long time simulation) for both systems
reveals (please see Tables 6.2 and 6.3) that the p values do not change much except
for T}, /T; = 16 which anyway is least affected by the turbulent field.

In the new runs, the mean value of p is evaluated taking the average of several
temporal windows spanning from ¢ = 2000Ly /vy, to t = 2500 L1 /vys;. The robust-
ness is reflected in the small values of standard deviation in the measurements of
mean p. Note that the spirit behind taking the various temporal window is to rule
out any doubt regarding the dependence of the value of p on the time span chosen
for determining p. It is a standard procedure to determine the nature of transport
from the calculated value of p [167, 168, 169]. A number of studies on nondiffusive
transport, for example, Refs. [143, 147] rely upon the determination of the expo-
nent p and is considered to be a robust method. As discussed earlier, for p = 1

the transport is characterized by the diffusive process and said to be normal, while
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Table 6.3: New values of mean p and values measured in Section 6.3.6 (see Fig. 6.16)

Ty/T; Mean p

standard deviation p from Section 6.3.6

1 0.6499 0.0350
2 0.5390 0.0296
4 0.5661 0.0331
8 0.8785 0.0562
16 1.0347 0.0748
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for values 0 < p < 1 and 1 < p < 2 the transport is characterized, respectively, by
subdiffusive and superdiffusive process and defined as anomalous [167, 168, 169).
The value p = 2 implies a ballistic motion where the velocity remaiQns constant.

The generalized diffusion coefficient defined by, A = ti%gge %, should be
independent of time in the time window using which mean p is determined. The
flat nature of < o2 > /# with respect to time indeed demonstrates the robustness
of the calculated values of mean p. This procedure has been extensively adopted in
the past literature, for example, [143, 147]. Some authors determine mean squared
displacement first and then compute < o > /t? with p chosen in such a way that
it gives best fit to a constant curve < o2 > /t? at late time [143, 147]. In our
work, to check the robustness and correctness of p we have performed the reverse
procedure, i.e., first, the mean p values have been evaluated from the mean squared
displacement versus time measurements at late time followed by the determination
of mean p and then < % > /t? has been plotted to see whether it is constant or
not with respect to time at late time. It is clear from the figures of < o2 > /tP
versus t that the predicted values are indeed robust and accurate. The prediction
over the nature of transport by the calculated values of p, is further corroborated
by the evaluation of probability density function for the radial displacement of
the energetic particles [Figs. 6.22 and 6.23]. We have plotted < 0% > /tP for the
new values of p again as shown in Fig. 6.24. At late time, the curves remain
virtually constant with respect to time showing the correctness of the values p.
It can be expected that the effect of initial strong burst of turbulence, if any, on
the energetic particles may not be considered to be responsible for the late time
exhibition of subdiffusion. As mentioned above we have doubled the simulation
time for the cases a/p; = 157 and 315. However the nature of the test energetic
particle transport yet remains the same.

A related important issue is the inward particle pinch of energetic and thermal
particles observed in several tokamaks and other systems such as RFP. For exam-
ple, for electrostatic turbulence in a tokamak geometry, using nonlinear gyrokinetic
formulation in GENE flux tube code, Jenko et al. [157] have addressed the particle
pinch effect for thermal particles. A similar study was also performed in Ref. [156].
Both studies demonstrate that in the case of electrostatic ITG turbulence, the dy-

namics of nonadiabatic passing electrons (kinetic electrons) is necessary for pinch
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effect. In the case of TEM turbulence, a particle pinch can exist if and only if
the inward flux of passing electrons is able to overcompensate the outward flux of
trapped electrons [157].

For magnetic turbulence in an RFP, Spizzo et al. [158| show that one may split

the particle flux in a diffusive and a pinch (convective) term
I'=—-DVn+wv.n,

where D and v are fit to the observed transport in tokamaks or reversed field
pinches. A phenomenological fit to density profiles gives a diffusion constant and
also a pinch velocity directed up the density gradient. It is shown [158] that
the combination of diffusion and pinch is actually an expression of the nonlocal,
subdiffusive nature of the transport.

As discussed earlier, our ITG model has adiabatic electrons. Moreover, our
main focus is to elucidate the nature of redistribution of energetic passive particles
in global electrostatic ITG/TEM turbulence by means of a global diffusion coef-
ficient. Thus we believe that although of fundamental interest, a study relating
the local diffusion coefficient and local pinch velocity of energetic test particles is
beyond the scope of the present work. This has been indicated in the Section 7.2
for future work. In the following, we give a plausible explanation for the transition
in nature of transport from subdiffusion to diffusion with increasing system size in

tokamaks.

6.3.8 Plausible explanation for subdiffusion

It is now widely accepted that the correlation function for ITG perturbation is
self-similar irrespective of the system size which suggests that the turbulent eddies
due to ITG turbulence have the same size independent of the size of the tokamaks.
The typical size is ~ 7p;, where p; is the ion Larmor radius [151]. So in a larger
device of size like 500p; one would expect far larger number of eddies compared to
that in a smaller device like 157p; as is apparent from Figs. 6.10, 6.11 and 6.12.
Test particles are trapped in these eddies and move along them. They become
detrapped when two such eddies interact strongly. Since in a smaller device, there

are fewer eddies, probability of eddy-eddy interaction and detrapping a particle is
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small. In contrast, in a larger device with larger number of eddies, though parti-
cles are trapped, they are frequently detrapped because of the higher probability
of eddy-eddy interaction giving the particles’ transport a diffusive character. If one
considers this trapping and subsequent detrapping as scattering or collision, for a
smaller device, say 157p;, the aggregate number of scattering or collisions that a
test particle suffers in the course of its radial excursion will be much less than that
in a larger device, say 500p;. In other words, one can say that the test particles in
the system with 500p; undergo more frequent random walks than in the system of
size 157p;. Thus, for a test particle, randomization is much higher in the system
with size 500p; than that with size 157p;. This explains qualitatively why hot ions’
transport attains diffusive character in a larger device in contrast to subdiffusivity
in a smaller device. Note that the Larmor radii of the hot ions in terms of thermal
ion Larmor radius are p;, 1.4p;, 2p;, 2.8p;, 4p;, and the typical size of a eddy is
Tp;. So there is always a definite probability of the hot ions even with the highest
energy in our simulation to interact strongly with the turbulent eddies. However,
a mathematical model to actually verify the above said idea is beyond the scope

of the present thesis.
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6.4 Radial transport of energetic ions in the pres-

ence of trapped electron mode turbulence.

Inspired by recent results on interaction between the ITG mode turbulence and
hot ions, a study on the influence of the trapped electron mode turbulence on the
hot ions is carried out in the present section with the same passive tracer method
using the massively parallel, global nonlinear gyrokinetic code named Gyrokinetic
Tokamak Simulation (GTS) [139, 140|, with the kinetic electrons included this
time.

In the present study, we have considered three different types of hot ions,
namely isotropic (in pitch angle), purely passing and purely trapped hot ions. We
have observed that the nature of transport exhibits nondiffusive character, demon-
strating subdiffusion for all the types of hot ions mentioned above. Corresponding
energy scaling has also been estimated. It has been observed that isotropic and
passing hot ions obey inverse energy scaling while purely trapped hot ions decay
as inverse square of energy.

The trapped electron mode has different origin and saturation mechanism prop-
agating in the electron diamagnetic direction in contrast to the ion diamagnetic
direction of propagation for ITG modes. The mode is generated by the density
or temperature gradient of the trapped electrons. In the present work, we study
the nature of transport of hot ions in the presence of TEM turbulence. We re-
port results for three different distributions of hot ions. Firstly, we consider hot
ions having isotropic distribution in pitch angle (angle between particle velocity
and magnetic field applied); thus, it contains effect of both passing and trapped
population of hot ions. Secondly, we consider hot ions entirely in the loss cone,
thus containing purely passing particles and finally, purely trapped hot ions. We
investigate if there is any difference at all by incorporating hot ions before the
turbulence sets in, and when the turbulence is well developed and attains the sat-
uration phase. Energy scaling of the radial transport of the hot ions of different
distributions is also studied. It is found that the transport decreases rapidly with
energy for the hot ions with lower energy, and slowly as the energy of the hot ions

increases further.
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6.4.1 Simulation Model

The particle dynamics is determined on the basis of the gyrokinetic formalism,
where we follow the time evolution of the perturbed part ¢ f of the particle distri-
bution function f expressed as the sum of an equilibrium part fy and a perturbed
part 0 f. Thus, for the collisionless case, the gyrokinetic equation for ions can be
written as [150]

a5 o of
ot + (v + vg, + vE + vq). VI f; — b*. (/,LB+m Py + (;5) gy
dfo

—0p.Vfo+bV V(- ¢) (6.5)

v
Here g, U are E x B drifts resulting, respectively, from the equilibrium potential
®, and turbulent potential ¢, v is the VB drift, b* = B+p||13x (5Vl;), with b = B/B
and p = v /B.

The drift kinetic equation is used for the electrons, thereby eliminating the
finite Larmor radius effect. Thus the electron ¢ f, equation for collisionless case is
given by [150]

DOJe | (b ; 5 f,

f + (UHb + Vg, + Vg + Ud).V5fe — b*.v</,LB + _(I)O + _(b) f _
ot o,
afeO

0.V foo + b*. V( ¢)

oo (6.6)

In contrast, the hot ion species is pushed according to Eq. (6.4).

6.4.2 Parameters and Profiles

With the set of equations described in the earlier section, the numerical experiment
is carried out using the PIC based, massively parallel global nonlinear gyrokinetic
code Gyrokinetic Tokamak Simulation (GTS). Although the code is equipped with
the capability to treat general geometry tokamak, however, circular geometry is
considered for the plasma cross-section. The average aspect ratio Ry/a = 2.86 and
average a/p; = 157. The profiles considered for the thermal ions and electrons
are Ry/Lr. = 6.0{—[(r/a — 0.5)/0.28]%}, Ro/Lz; = 1.0exp{—[(r/a — 0.5)/0.28]°},
Ro/L,, = 6.0exp{—[(r/a — 0.5)/0.28]%}, T./T; = 3, ¢ = 0.854 + 2.184(r/a)?. This
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implies that at r = 0.5a: Ry/L7. = 6.0, Ry/Ly; = 1.0, Ry/L,, = 6.0, T./T; = 3.0,
qg=14,and § = (r/q)dq/dr = 0.78. The total number of marker ions and electrons
is 1.9 x 10%. The radial simulation domain chosen spans from r = 0.1a to r = 0.9a.
Regarding the incorporation of the hot ions, we consider monoenergetic ions with
energy in integral multiples of the thermal ions’ energy, with a careful choice of
the distribution in pitch angle, in order to assure isotropic, passing and trapped
population, respectively, for the three cases undertaken. The mass and charge of
these hot ions are kept the same as the background thermal ions. With these
specification, they are inserted on a single flux surface at Wy = 0.5a, where the
density gradient peaks, distributed uniformly in the poloidal and toroidal direction.
It may be noted that the NBI generated hot ions are passing, rf heated ions are
mostly trapped, and the « particles are isotropic in the pitch angle. Thus, the
present study is relevant to all the types of hot ions prevalent in the fusion grade

plasma in a tokamak.

6.4.3 Isotropic hot ions

Figure 6.25 depicts the time history of the particles flux for electrons arising
from the TEM turbulence. The particle flux is calculated using the relation
I = [d*vvgdf. and recorded at r = 0.5a at every time step. The various con-
vergence tests for such a simulation with the same parameters mentioned above
is discussed elaborately in Ref. [140]. It is clear from the figure that initially the
mode amplitude of TEM remains very weak. Then, after the exponential growth
of the linear phase of TEM instability around ¢ = 20L,,/c;, the particle flux (and
associated fluctuations) starts saturating. We calculate the spatio-temporal evolu-
tion of the turbulent field intensity over the entire radial domain of simulation as
shown in Fig. 6.27. This is important because it is the turbulent field, that incurs
the radial transport under study over and above the usual drift motion of the hot
ions in the presence of equilibrium drifts such as VB and curvature drift, typical
of a curved magnetic field geometry. The typical mode structures in the linear
and nonlinear regime of TEM is depicted in Fig. 6.26. Groups of monoenergetic
hot ions with energy given by T}, = T;, 2T;, 4T;, 8T;, 16T;, 32T;, 64T;, 128T; are
loaded on the flux surface ¥y = 0.5a where the gradients are maximum, with a

isotropic pitch angle distribution. The poloidal and toroidal angles, namely, 6 and
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Figure 6.25: Time history of electron particle flux
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Figure 6.26: The typical snapshots of mode structure in the linear (left panel)
and nonlinear (right panel) regime of the TEM turbulence for the system size
a/p; = 157.
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Figure 6.27: The spatio-temporal evolution of turbulent field intensity due to TEM
turbulence

¢ are chosen uniformly on the entire flux surface. With the gyrokinetic equation
Eq. (6.4) described in the previous subsection we push the hot ions of various ener-
gies and evaluate their positions and velocities at every instant. We calculate the
mean squared displacement (MSD) for all the energy groups of hot ions, defined

as
=N

< (e, t) >= %Z(n(&t) —1;(£,0))°

where, N is the total number of hot ions with energy e, r;(¢,t) and r;(g,0) are,
respectively, the radial positions of the i** hot ion with energy e at time ¢ and
t = 0. Note that the number of hot ions loaded from each energy group is roughly
6.7 x 10°. We carry out the simulation for two situations. First, we infuse the
hot ions to the system when there is no TEM instability present and calculate the
MSD for each group of hot ions with different energy. In the second case, the same
experiment is performed but in the presence of TEM turbulence. In Fig. 6.28,
left panel depicts the evolution of MSD of hot ions of different energy groups in
the absence of TEM turbulence. It is clear from that figure that the hot ions

undergo regular drift motion; their motion is governed by the equilibrium gradient
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Figure 6.28: Hot ions are inserted at ¢t = 0L,, /¢, (a) when there is no TEM activity
(left panel) and (b) when TEM turbulence is ON (right panel).

and curvature in the magnetic field and therefore the magnitude of displacement
is determined merely by the energy associated with the hot ions. The bounce
period being inversely proportional to the particle velocity, higher energy hot ions
undergo more bounce cycles than the lower energy hot ions for a given span of
time. The MSD of the hot ions, eventually, becomes constant with respect to time
as there is no transport in the absence of turbulence and collisions. The right
panel of Fig. 6.28 | on the other hand, displays the time evolution of MSD for the
hot ions when they are inserted into the system with environment conducive for
TEM turbulence set by the above chosen parameters and profiles. To be noted
that the moment of insertion of hot ions in both cases is t = 0. It is implied from
the right panel of the figure that the hot ions undergo equilibrium drift motion till
t = 20L,/cs, as the mode amplitude is too weak to influence the hot ion dynamics
during this time interval (see Fig. 6.25). Their motion is simply governed by
the equilibrium gradient and curvature in the magnetic field and therefore, the
magnitude of displacement is determined by the energy associated with the hot
ions. Their motion thus appears to be exactly similar to those in the absence of
TEM turbulence shown in the left panel, till the moment ¢t = 20L,,/cs. From time
t = 20L, /cs the energetic ions start to get affected by the electric field of TEM

corresponding to the exponential growth of the linear phase of the mode. The

185



Chapter 6: Interaction of microturbulence with energetic ions

least energetic hot ions are appeared to be the worst affected leading to higher
value of MSD. The value of MSD decreases monotonically as the energy of the hot
ions increases. This is in contrast with the case of the hot ions in the presence of
ITG turbulence where the hot ions with 7}, = 27} are observed to suffer maximum
displacement among all energy groups. It is also apparent from Fig. 6.28 that
highly energetic groups of hot ions such as T}, = 647; and T} = 1287; respond to
the turbulent field later than the hot ions with comparatively lower energy and

are least affected by the turbulent field. One may compare these results with
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Figure 6.29: Hot ions are inserted at ¢ = 70L,/cs (a) without TEM turbulence
(left panel) and (b) in the presence of TEM turbulence (right panel).

that where hot ions are incorporated in the nonlinear saturation phase when the
TEM turbulence is fully developed. Such a case is relevant to a situation where
one has to pump hot ions in a later phase to maintain the plasma temperature
propitious for fusion. The left panel of Fig. 6.29 displays the measured MSD at
every instant of time for the hot ions without the presence of TEM turbulence,
while, the right panel of same, presents the evolution of MSD for hot ions in the
presence of TEM turbulence when inserted at an instant ¢ = 70L,,/c; where the
turbulence attains statistical steady state reflected in Fig. 6.25. Regarding the left
panel displaying MSD of hot ions in the absence of TEM, the MSD suffers only a
de shift of t = 70L,,/cs compared to that in Fig. 6.28 without TEM turbulence. A

comparison clarifies that the evolution of MSD in the present case resembles that
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of the left panel of Fig. 6.28 during first ¢t = 70L,,/cs. Regarding the right panel
of Fig. 6.29, few important points to be noted here are: first, the measured MSD

Figure 6.30:
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Figure 6.31: < 0% > /t? as a function of ¢ for isotropic hot ions.

is quite smaller compared to the earlier case of Fig. 6.28 (right panel); second,

the usual equilibrium drift motion of the hot ions with lower energy is absent and

third, the higher energy hot ions, for example, T}, = 647; and T}, = 128T; continue

drift motion as they are weakly affected by the turbulent field. The lower energy

hot ions are

therefore do

redistributed the very moment they fall into the turbulent field and

not find time to undergo the equilibrium drift motion.
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The nature of the radial transport can be understood from the probability den-
sity function (PDF) of radial displacement of the hot ions in various energy groups
under consideration. We have created 200 bins across the minor radius between
0.1a and 0.9a and constructed the PDF by calculating the number of hot ions in
each bin for the case depicted in the right panel of Fig. 6.28, i.e., where the hot ions
are inserted to the system at ¢t = 0. The PDFs of the hot ions of various energy
groups with a isotropic distribution in their pitch angle are plotted in Fig. 6.30 for
radial displacements measured at ¢t = 140L,,/c;. At the same instant, we have also
calculated the standard deviation o, skewness s and kurtosis k& from the simula-
tion data using the relations 0® = & SN (2, — 7)%, s = VN Zﬁil(mi—j)?'w and

N N {ZX, @i—2)2}
k= NM — 3, where standard deviation o is normalized to a/p; = 157.
{ZEi@-22}

One may note that for a distribution kurtosis estimates the relative peakedness

or flatness compared to the normal distribution, while skewness is a measure of

symmetry about the mean. In the case of Gaussian distribution, both kurtosis and

Ty T; o k s p
1 26.6832 -0.7498 -0.1004 0.6003
2 26.0714 -0.6994 -0.0802 0.6238
4 25.1284 -0.6167 -0.0353 0.6813
8 24.0545 -0.5205 -0.0221 0.7734
16 23.1709 -0.4419 -0.0099 0.7414
32 22.1611 -0.3423 0.0353 0.6766

Table 6.4: Energy, standard deviation, kurtosis, skewness, exponent p for isotropic
hot ions

skewness as defined above become zero and infer a normal diffusion. Divergence
of these quantities from zero, therefore, can be considered as the signature of a
non-Gaussian distribution. A positive kurtosis characterizes a relatively peaked
distribution while a negative kurtosis characterizes a relatively flat distribution.
On the other hand, a positive skewness (right-skewed) represents a distribution
with longer tail on the right side, while a negative skewness (left-skewed) rep-
resents a distribution with longer tail on the left side of the distribution. The
standard deviation, kurtosis and skewness extracted from the simulation data at
t = 140L,,/cs are also displayed in Fig. 6.30 and separately in Table 6.4. It is ap-

parent that the measured distributions for hot ions in all energy groups exhibit non
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Gaussian character implying an anomalous diffusion. Then question remains over
whether the transport as prescribed by the non Gaussian character of distribution
is subdiffusive or superdiffusive or ballistic one. This can be concluded by mea-
suring the exponent p in the relation < 0 >= const.t?. For subdiffusion one has
0 < p < 1, while for superdiffusion, 1 < p < 2. The value p = 2 implies a ballistic
motion where the velocity remains constant. To evaluate p we have considered
the portion of MSD between ¢t = 70L,,/cs and ¢t = 140L,,/cs where the simulation
attains statistical steady state (Fig. 6.25) and determined p from log-log relation
between < o2 > and t?. The values of p so calculated are also included in Table 6.4.
It is apparent that the values of p come out to be less than 1 for all the energy
groups of hot ions suggesting a subdiffusive radial transport for the hot ions under
consideration. Figure 6.31 displays the plots for < o2 > /t* as a function of time ¢
for the hot ions, with p determined in a way as delineated above. The values of p
are displayed in the legend along with the corresponding energies of hot ions. It is
clear from the figure that for the values of p extracted, < o > /tP remains virtu-
ally constant within the temporal window between ¢ = 70L,,/c; and ¢t = 140L,,/c;.
This exhibition of subdiffusion could perhaps be ascribed to the presence of zonal
flows. The hot ions in their radial excursion might become trapped in the vortices
generated by the interplay between turbulence and zonal flows. Poloidal drift could
be another plausible reason for this subdiffusive character. This kind of subdiffu-
sive nature of transport, in particular, for radial transport in the presence of drift
wave turbulence is sometimes referred to as strange kinetics [147]. Note that the
values for various parameters listed in Table 6.4 are not universal.

The energy dependence of the observed transport of the hot ions can be esti-
mated by calculating the quantity D), = § < 0% > /6t = (< 025, (t = 140) > — <
02 gy (t = 140) >)/(ty — t1), with t5 = 140 and t; = 0. The significance of this
parameter is that it characterizes the diffusion coefficient for a diffusive process.
Though the diffusion coefficient is defined in terms of the standard deviation in-
stead of MSD, it can be shown here that the result is same with standard deviation
replaced by MSD. As we start from a single flux surface ¥y = 0.5a, the middle of
the simulation domain, the mean value of particles’ position required to determine
standard deviation always remains close to the the initial position which is r;(e, 0)
and therefore the MSD and standard deviation give nearly the same result. Fig-

ure 6.32 plots D, for the two cases discussed above, i.e., for hot ions inserted at
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Figure 6.32: D), versus energy of the hot ions for isotropic distribution; (a) in linear
scale (upper panel) and (b) in log-log scale (lower panel).
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t =0 and at t = 7T0L, /c, in linear as well as log-log plots. It is clear from the
figure that in both cases D), varies in the same way with respect to the energy of
the hot ions in units of the thermal ion energy. The quantity D, falls off faster
with the energy of hot ions for lower energy but a bit slower for the hot ions with
higher energy. The energy dependence, as shown in the log-log plot, appears to be
inverse of the energy of the hot ions i.e. (T},/T;)~" in the higher energy tail.
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Figure 6.33: Passing hot ions are inserted at t = 0L, /cs (a) without TEM turbu-
lence (left panel) and (b) in the presence of TEM turbulence (right panel).

6.4.4 Passing Hot Ions

Next we look at the passing hot ions. Hot ions with their pitch angle satisfying
the loss cone condition v /v > \/(1 — Buin/Bmaz) |174] where, By.. and By,
respectively, are the maximum and minimum values of the magnetic field, are
invoked in the flux surface W, at ¢ = 0, and similar to the case of isotropic hot
ions we note the MSD at every instant of time for the hot ions with energy 7}, =
T;, 2T;, AT;, 8T;, 16T;, 32T;, 647T;, 128T1;. We follow the same procedure as for
the isotropic hot ions; once push them in the absence of TEM turbulence and
measure MSD and then do the same in the presence of TEM turbulence. The left
panel of Fig. 6.33 plots MSD in the absence of TEM turbulence, while the right
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panel plots the same in the presence of TEM turbulence. It is clear that when the
mode amplitude of TEM is very low, the particles simply move in the equilibrium
fields in the same way they do in the absence of TEM turbulence. Comparison
with Fig. 6.28 reveals that the amplitudes of the average squared displacement in
equilibrium is less than those in Fig. 6.28. It is because of the fact that the passing
particles’ perpendicular velocity is very low compared to those with isotropic pitch

distribution carrying a mixture of both passing and trapped particles.
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Figure 6.34: Trapped hot ions are inserted at ¢t = 0L,,/cs (a) without TEM turbu-
lence (left panel) and (b) in the presence of TEM turbulence (right panel).

6.4.5 Trapped Hot Ions

The same experiment has been carried out for the trapped hot ions also. We incor-
porate hot ions into the system at ¢t = 0 with pitch angle chosen in such a way that
they are in the trapped cone dictated by the condition v /v < \/(1 — Buin/Bmaz)
[174]. The energies of the hot ions chosen are T), = T;, 2T;, 4T;, 8T;, 16T;, 32T;,
64T;, 128T;. This set of particles are having a large perpendicular velocity and
hence stronger finite Larmor radius effect. Figure 6.34 depicts the motion of these
purely trapped hot ions in the absence (left panel) and presence (right panel) of
TEM turbulence. Compared to the earlier cases of hot ions with isotropic and
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passing distribution, the amplitude of the trapped hot ions’ MSD during the equi-
librium drift motion is the highest. This is because of the large perpendicular
velocity of the trapped hot ions; their mobility is restricted along the field direc-
tion and most of the movement is only in the poloidal and radial directions. That
is why, we record the highest MSD in the case of trapped particles when there is
no TEM turbulence or mode amplitude is very weak. Like the other two cases dis-
cussed above, these trapped hot ions also exhibit similar motion during the initial
period when either the system is free of TEM turbulence or amplitude of the mode

is very low.

6.4.6 Nature of Transport

To characterize the nature of radial transport of the passing and trapped hot ions
we have again evaluated the PDFs for the two cases independently, following the
same procedure elaborated in the earlier case of isotropic hot ions. These PDFs
for all energy groups of hot ions under discussion, are portrayed in Fig. 6.35 for
the passing (upper panel) and trapped (lower panel) hot ions. The corresponding
values of the standard deviation o, kurtosis k£ and skewness s, as extracted from the
simulation data at ¢ = 140L, /c,s are also displayed in the legend for each group
of hot ions. It is clear that the PDFs are substantially deviated from Gaussian
implying non-diffusive transport again. We have estimated the exponent p from

2

the relation < o° >= const.t? in a similar fashion as in the case of isotropic

T/ T; o k s p
1 26.2631 -0.7460 -0.1456 0.5638
2 25.5805 -0.7043 -0.1165 0.7048
4 25.4547 -0.6699 -0.0809 0.6453
8 24.8399 -0.5989 -0.0492 0.7285
16 24.3184 -0.5637 -0.0240 0.7543
32 22.1076 -0.4623 -0.0100 0.7517

Table 6.5: Energy, standard deviation o, kurtosis k, skewness s and exponent p in
< 0% > t? for the passing hot ions

hot ions. All the values of p are found to be well below 1 evincing subdiffusive

radial transport. We plot < 02 > /t? as a function of ¢, for different values of p in
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Figure 6.35: (a) Upper panel: PDFs for hot ions with passing distribution, (b)

lower panel: PDFs for hot ions with trapped distribution
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Figure 6.36: < 0% > /t? as a function of t for passing hot ions.
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Figure 6.37: < 0 > /1P as a function of t for trapped hot ions.

T,/ T; o k s p
1 27.0994 -0.7722 0.0099 0.4683
2 26.3276 -0.7070 0.0429 0.4731
4 25.0192 -0.5861 0.0796 0.5296
8 22.7906 -0.4143 0.0764 0.7340
16 21.6391 -0.2775 0.0798 0.5478
32 22.1823 -0.2101 0.1160 0.4659

Table 6.6: Energy, standard deviation o, kurtosis k, skewness s and exponent p in
< 02 >oc tP for the trapped hot ions
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Figs. 6.36 and 6.37 for the passing and trapped hot ions respectively. It is evident

from both figures that < o?

> /tP remains roughly constant for the extracted
values of the exponent p corroborating the fact that the hot ions, whether passing
or trapped exhibit subdiffusive nature. The values of standard deviation, kurtosis,
skewness, and exponent p, extracted from the simulation data are displayed in
Tables 6.5 and 6.6 for the passing and trapped particles respectively. Again, we

want to comment that these values are not universal.

6.4.7 Energy Scaling of Hot Tons

Next we evaluate the energy dependence for the radial transport of passing and
trapped hot ions. The energy dependence of net MSD, normalized by the time
interval from ¢t = 0 to t = 140L,, /¢, is presented in Fig. 6.38 for the passing (upper
panel) and trapped particle (lower panel), respectively, in linear plot. The corre-
sponding log-log plots are displayed in Fig. 6.39. The quantity D), = § < o2 >
[0t = (< 02y, (t = 140) > — < 02 ;5 (t = 140) >)/(ta — t1), with t5 = 140
and t; = 0 is plotted as a function of 7},/T; in the figures. It is clear that Dj, falls
very rapidly in the lower energy range of the hot ions, while decays slowly for the
higher energy of the hot ions (Fig. 6.38). This implies that TEM turbulence is more
dominant on the hot ions with lower energy but weakly affects those with higher en-
ergy. From the power law D, = const.(T},/T;), it appears that transport scales as
(T}, /T;)~* for purely passing hot ions, while it falls as (T},/T;) =2 for purely trapped
hot ions in the higher energy limit of the hot ions (Fig. 6.39). The gyroaveraging
and orbit averaging along with wave particle resonance are the factors accounting
for this type of power law for the hot ions transport. For passing hot ions only or-
bit, averaging (~ (13, /T;)~"/?) and wave particle resonance in the parallel direction
(~ (T}, /T;)~'/?) contribute to the energy scaling giving it a (7},/7;) "' dependence.
In contrast, gyroaveraging is the extra parameter that contributes to the trapped
hot ions’ energy scaling. Thus, gyroaveraging (~ (T},/T;)~/?), drift orbit averag-
ing (~ (T,,/T;)~"/?) and drift bounce resonance [175] (~ (T},/T;)~") altogether give
a ((T,/T;)~2) scaling for the trapped hot ions. The observed (T},/T;)~! scaling of
the isotropic hot ions suggests (Fig. 6.32) that the transport of these hot ions is
perhaps dominated by the passing hot ions.

It is to be noted that very long time simulations are computationally very expen-
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Figure 6.38: (a) Upper panel: D), versus energy of the hot ions for passing distri-
bution, (b) Lower panel: D}, versus energy of the hot ions for trapped distribution
in linear scale.
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sive in the case of TEM turbulence as one has to resolve the electron time scales
along with that of the ions. However, on the basis of the cross checks carried out
in ITG mode simulation of the previous section by doubling the simulation time,
we believe that the results of the present section will remain qualitatively same
even if we wait for our simulation to attain strict quasisteady state by lengthening

the simulation time.

6.5 Conclusion

In the first part of the present work we have elucidated the effect of the energetic
ions on the thermal ion temperature gradient mode. For the purpose we use a
global linear gyrokinetic code EM-GLOGYSTO, where the energetic particles are
added nonpurterbatively. We consider all the three species namely, thermal ions,
electrons and energetic ions nonadiabatically, where the density perturbation of
the respective species contains all the kinetic effects, such as, Landau resonance,
magnetic drift resonance, transit resonance, finite Larmor radius effect, etc. How-
ever, for simplicity we neglect the trapped particles and magnetic fluctuation in
the present analysis. We believe that the inclusion of these would not change the
effect of energetic ions on the ion temperature gradient mode of the thermal ions
qualitatively. We consider different 1 profiles for the energetic ions compared to
the background thermal ions, to see if at all there is any effect of the energetic
ions’ 1 profile on the ion temperature gradient mode. However, all the three cases
of different 7 profiles show the same result qualitatively and quantitatively. Thus,
we find that the energetic ions irrespective of the 7 profile are stabilizing for the
ion temperature gradient driven mode. In the case of He ions the stabilization is
further enhanced. The stabilization is thought to be brought about by the dilu-
tion of the background thermal ions that drive the ion temperature gradient mode.
Usually, the ion temperate gradient mode is observed to be stabilized by variety
of factors, e.g., increasing fraction of 7;/7,, impurity, electromagnetic effect, ion
transit term, kv, etc. Thus, one may add another stabilizing factor to the list,
that is, the presence of the energetic ions in the system. This kind of stabilization is
experimentally observed [130, 131]. The stabilization is strongly dependent on the

energetic ion population with respect to the thermal ions. The growth rate of the
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ITG mode decreases almost linearly with the increasing fraction of the energetic
ions” population. The complete stabilization occurs at ny/n. > 0.35 for the singly
charged energetic ions. He ions on the other hand, have stronger effect on the ITG
mode. The stabilization shows the same trend as the singly charged ions but falls
more rapidly and one observes complete stabilization at ns/n. > 0.15. The stabi-
lization incurred by these energetic ions however is pronounced only at the lower
energy region of the energetic ions. The strong change in the growth rate as well
as the mode frequency of the ITG mode is observed only in the region 7% /7, < 10
beyond which, the mode frequency and growth rate, both remain insensitive to
the temperature variation of the energetic ions. This can be understood as that
only in the low energy region of these energetic ions, the ion temperature gradient
mode and energetic ions can interact efficiently and therefore the effect of each
other on their respective properties is reasonable only in this regime of lower tem-
perature or lower energy of the energetic ions. Thus, one may anticipate that the
He ash in the fusion plasma can play a significant role in the stabilization of the
ITG mode and thus in the reduction of ion energy and particle loss from the core
of the tokamak. An estimation of the transport is carried out by calculating the
thermal diffusivity on the basis of mixing length theory. The diffusivity is found
to be reduced significantly in the presence of the energetic ions. The He ions are
found to have stronger effect on the thermal ion diffusivity.

In the second part, the transport of hot ions induced by the ion temperature
gradient driven turbulence is studied using the global nonlinear gyrokinetic code
GTS, and with the aid of passive tracer method. The hot ions, treated as passive
particles are pushed in the turbulent field using the gyrokinetic equations. At every
instant of time the mean squared displacement and standard deviation for the hot
ions are recorded. The probability distribution function for radial displacement
is also estimated along with corresponding kurtosis and skewness. The nature of
transport is determined by evaluating the exponent p from the relation < o2 >ox tP.

The major results can be itemized as follows.

e The MSD for a given group of hot ions characterized by a given energy

increases with the increment in the system size.

e The MSD for all groups of energy of hot ions shows signature of saturation

for a/p; = 157, increases linearly at first, then shows a weak tendency to
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saturate for a/p; = 315 and increases almost linearly for a/p; = 500 after the

initial abrupt rise for all the three cases with respect to time.

e For all the cases of system size under consideration, hot ions transport is
maximum for 7}, = 27} and decreases monotonically with increasing energy,
with a tendency of saturation at higher value of hot ion energy for the chosen

parameters.

e For energy below T}, = 167}, the transport of hot ions exhibits significant
dependence on the system size; it is maximum for a/p; = 500 and decreases
with the decreasing system size. However, at Tj, = 167; transport is nearly
the same for all the three values of system size. One expects that it converges
to the same value for the hot ions with energy beyond 7}, = 167;. Thus, one
can conclude that while transport of hot ions with lower energy depends
strongly on the system size, for hot ions with higher energy, in contrast, it

remains practically independent of the system size.

e It is evident that as the system size increases till a/p; = 315, D), increases
linearly, while the increment is very minor beyond this point showing a ten-
dency of saturation at higher value of the system size. Thus, with increasing
system size, transport of hot ions for all groups of energy starts increasing

initially and shows trend of saturation for larger system size.

2 > tP is found to be smaller than 1 for smaller

e The exponent p in < o
device size, which gradually increases with increasing system size and finally
approaches unity for larger system size. This indicates that the transport
process, in the smaller machine size is subdiffusive for thermal as well as hot
ions, which however becomes diffusive for larger device size. The measure-
ment of PDF, kurtosis and skewness corroborate the conclusion derived from

the values of p

e The check for quasisteady state and robustness of p reveals that the re-
sults remain qualitatively the same. For the purpose, we have doubled the
simulation time (¢ = 2500Lr/vy,;) such that the simulations are well in a

quasisteady state. We have evaluated the mean p again and observed that
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the values of p remain nearly same as the old p values evaluated in the short

time simulations (¢ = 1200Ly /vy;).

The effect of TEM turbulence on the hot ion radial transport in tokamaks is
studied in the last part of the present work. Results are demonstrated for three
cases, differing in the pitch angle distribution; case (1) isotropic hot ions, case
(2) purely passing hot ions, and case (3) purely trapped hot ions. For isotropic
distribution, we have illustrated the results for two cases. In the first case, hot
ions are inserted at t = 0 before the trapped electron mode turbulence comes
into existence, while in the second case, hot ions are introduced at a later time at
t = 70L,/cs, that is, in the nonlinear saturation phase when TEM turbulence is
fully developed. The probability density function (PDF) of radial displacement is
constructed for each case for all the energy groups of hot ions. Also the energy
dependence of hot ions’ radial transport is evaluated in the present study. The

major findings are given in the following.

e The mean squared displacement is the highest for the hot ion species with
energy equal to the thermal ions’ energy and decreases monotonically with

the energy of the hot ions for all the cases encapsulated in the present study.

e The transport process exhibits anomalous character. The PDFs of the hot
ions show deviation from Gaussian irrespective of energy and pitch angle
distribution. Evaluation of kurtosis, skewness and the exponent p in the
power law < 02 >o< tP suggests subdiffusion for radial transport in small to

medium size machines.

e Radial transport of the isotropic and purely passing hot ions manifests an
inverse dependence on their energy, while that of the purely trapped hot
ions demonstrates an inverse square dependence on energy. This means that
the higher energy trapped hot ions are less likely to be redistributed by the

turbulent field than the passing and isotropic hot ions.
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Conclusion

and Future Direction

7.1 Conclusions

In Chapters 2 and 3, we have focused on the effect of treating the electrons on the
same physics footing as the ions, i.e., fully nonadiabatic/kinetic electrons using
EM-GLOGYSTO based on a 2-D linear, global, gyrokinetic model. The model
includes both passing and trapped particles, profile variations, true ion to elec-
tron mass ratio, arbitrary order FLR effects, transit/trapped particle resonances,
poloidal and radial coupling. A comprehensive description of ion temperature
gradient (ITG) mode, trapped electron coupled ion temperature gradient driven
mode (ITG-TEM), and trapped electron mode (TEM) in the presence of the pass-
ing nonadiabatic electrons has been provided.

We have observed rise in the linear growth rate of the ITG mode, ITG-TEM,
and TEM in the presence of kinetic/nonadiabatic electrons. The linear, global
mode structures are broken apart near the mode rational surfaces where the par-
allel wave vector (k) is zero. The phase lag between potential and density pertur-
bations introduced by the kinetic electrons near the mode rational surfaces makes
these modes further unstable. The perpendicular wave vectors rise because of the
production of the short scales near the mode rational surfaces. This, eventually,
results in the reduction of the mixing length estimate of the transport of thermal

ions below the adiabatic electron model. However, nonlinear global simulations
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will be necessary to confirm this fact, considering that there are situations where
nonlinear effects tend to introduce larger scales, e.g., in the case of inverse cas-
cades, and where mixing length estimates have proven wrong. It is perhaps worth
noting that a flux-tube model with correct implementation of magnetic shear and
boundary conditions along the magnetic field line should also be able to reproduce
the fine radial structures at the mode rational surfaces resulting from nonadia-
batic passing electron dynamics. Although, to our knowledge, such features have
not been clearly and comprehensively pointed out in the past literature, one may
cite Ref. [62] which has reported the breaking of global mode structure near mode
rational surfaces in the presence of the kinetic electrons.

We have presented some features of the electron temperature gradient (ETG)
driven mode using the linear, global, gyrokinetic model in toroidal geometry that
treats both species, namely, ions and electrons fully gyrokinetically, taking into
account all the kinetic effects. The effect of Debye Shielding, breaking of isomor-
phism of ITG and ETG modes even in the electrostatic limit when the other species
is considered fully gyrokinetically are revealed one by one. Also, the global mode
structure and stability properties of the low-n (toroidal mode number) toroidal
universal mode driven by the density gradient in the presence of finite toroidicity
on the intermediate scale in kjpy;, along with its coupling to the trapped elec-
trons have been studied perhaps for the first time to our knowledge using the
global, linear, gyrokinetic model. The model considers both passing electrons and
ions to be fully nonadiabatic incorporating toroidal coupling effects, magnetic drift
resonances, Landau resonance effects, transit harmonic resonances, finite Larmor
radius to all orders, and orbit width effect for both species. The effect of finite [ is
also studied in the frame of an electromagnetic model that retains the transverse
magnetic perturbation.

The steep density profiles are observed to affect the I'TG modes dramatically
making the latter unstable even at higher wave number regime. At this higher
wave number regime the ITG mode, in general, remains stable. However, if the
density gradient is strong enough, the ions can act nonadiabatically at the higher
wave number regime giving rise to what is called the short wavelength ion tem-
perature gradient (SWITG) mode. We have presented the features of the SWITG
mode in the presence of trapped electrons using EM-GLOGYSTO. A compari-

son of parametric dependencies for the two cases of the SWITG mode with and
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without the trapped electrons is presented. In line with the global model, we also
compare the results from a local gyrokinetic model for the two cases, with and
without the trapped electrons. The trapped electrons have strong effect on the
SWITG modes raising the growth rate substantially. The two dimensional mode
structure of the SWITG mode has been found to be quite global occupying a con-
siderable fraction of the tokamak cross section for the chosen set of parameters
establishing the necessity of a global model to study such a phenomenon. It ac-
quires toroidal like nature in the presence of the trapped electrons. The increased
fraction of the trapped electrons with increased toroidicity is the main factor be-
hind this flipping of the mode from the slab nature to toroidal nature. The mode
vanishes below a critical n;; it transforms itself from the dominantly ion mode to
the dominantly trapped electron mode when effects of trapped electrons are taken
into account. No significant diffusivity (mixing length estimate) is observed at
higher kypr; where the SWITG mode is strongest for both cases with and with-
out the trapped electrons. This fact is corroborated by the nonlinear simulation
using the code Gyrokinetic Electromagnetic Numerical Experiment (GENE). The
estimate of relative contribution of the higher k,p, part of the heat flux spectrum
corresponding to the SWITG mode reveals that the contribution of the SWITG
mode to the total heat flux is very low compared to the contribution from the
lower k, part of the spectrum typically belonging to the standard ITG mode. The
zonal flow shearing rate has been found to be much higher than the linear mode
frequency and growth rate of the SWITG mode suggesting that the zonal flows
are the main saturation mechanisms of the SWITG turbulence. The higher zonal
flow shearing rate appears to compensate for the higher growth rate of the mode
leading to a minimal contribution to the thermal ion heat flux from the higher
kyps part of the spectrum relevant to the SWITG mode irrespective of the density
scale length which determines the strength of the SWITG mode with respect to
the standard ITG linearly. One may note that in real experiments steep density
profiles are often observed during the formation of transport barriers. However,
such steep profiles happen to occur in the presence of reverse shear. Therefore,
it could be interesting to see how the properties of SWITG mode change in the
presence of the nonmonotonic ¢ profile. It also is equally possible that such steep
profiles can affect the TEM and electron temperature gradient (ETG) modes. Such

issues remain to be addressed.
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The physics of energetic ions in the burning plasma is now a topic of immense
interest. Their population has been observed to have tremendous impact on the
MHD and non-MHD activities in the tokamak plasma. A computationally efficient
means to study the effect of these energetic ions on the ITG mode is to incorporate
them linearly into the existing global gyrokinetic model of EM-GLOGYSTO. We
consider all the three species namely, thermal ions, electrons and energetic ions
nonadiabatically, where the density perturbation of the respective species contains
all the kinetic effects, such as, Landau resonance, magnetic drift resonance, transit
resonance, finite Larmor radius effect, finite orbit width effect, etc. We observe
that the energetic ions irrespective of the 7 profile are stabilizing for the ion tem-
perature gradient driven mode. In the case of He ions the stabilization is further
enhanced. The stabilization is thought to be brought about by the dilution of the
background thermal ions that drive the ion temperature gradient mode. The sta-
bilization is strongly dependent on the energetic ion population with respect to the
thermal ions. The growth rate of the ITG mode decreases almost linearly with the
increasing fraction of the energetic ions. He ions on the other hand, have stronger
effect on the ITG mode. The stabilization incurred by these energetic ions however
is pronounced only at the lower energy region of the energetic ions. Thus, one may
anticipate that the He ash in the fusion plasma can play a significant role in the
stabilization of the ITG mode and thus in the reduction of ion energy and particle
loss from the core of the tokamak. The mixing length estimate of diffusivity is
observed to be reduced significantly in the presence of the energetic ions. The
He ions are found to have stronger effect on the thermal ion diffusivity. However,
nonlinear simulation, although seems to be very expensive computationally, would
be required to see the nonlinear evolution of the ITG mode in the presence of
energetic ions along with concomitant impact on thermal ion heat flux.

The effect of the microturbulence on the energetic ions, on the other hand, is
another issue of great concern. The recent experiments on the redistribution of
the energetic ions have given impetus to the investigation of prospective effect of
turbulent field on the energetic ions. Inspired by it, the transport of energetic
ions induced by the ITG mode and TEM turbulence is studied using the global,
nonlinear, gyrokinetic code Gyrokinetic Tokamak Simulation (GTS), and with the
aid of the passive tracer method. The energetic ions, treated as passive particles

are pushed in the turbulent field using the gyrokinetic equations. The observed
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transport of energetic ions is found to have strong dependence on the size of the
system and their energy. The transport reduces as the energy of the energetic ions
increases. Also, the subdiffusive nature of transport for small system size trans-
forms into the diffusive one for bigger system size. The magnitude of transport
initially increases with system size and then saturates at larger system size. Radial
transport of the isotropic and purely passing hot ions manifests an inverse depen-
dence on their energy, while that of the purely trapped hot ions demonstrates an
inverse square dependence on energy in the presence of the TEM turbulence. This
means that the higher energy trapped hot ions are less likely to be redistributed
by the turbulent field than the passing and isotropic hot ions.

7.2 Future Work

In most of the studies using the global, linear, gyrokinetic code EM-GLOGYSTO,
we have simplified the model by ignoring many other interesting physics issues.
The equilibrium flows as well as electromagnetic and Shafranov shift effects can, in
certain cases, be important for the instabilities that were studied in these chapters.
One would therefore be curious to see how these factors can change the existing
results.

It is also to be pointed out here that the trapped particles model considers
deeply trapped particles only. The barely trapped particles or those near the
passing trapped boundary have been excluded. Also, the passing particles are
considered as fully or deeply passing keeping v constant with respect to time.

In the linear model, the numerical solution exists for only the unstable modes,
i.e., modes with positive growth rate. This model can be upgraded to be able to
find the damped modes also as that of the work detailed in Ref. [22]. It will help
to predict the thresholds of the instabilities more correctly.

Chapters 4 and 5 deal with the universal toroidal drift instability and short
wavelength ion temperature gradient modes which are unstable in the the presence
of steep density profiles, i.e, strong density gradient. However, such steep profiles
happen to occur in the presence of reverse shear during the formation of transport
barriers. Therefore, it could be interesting to see how the properties of these modes

change in the presence of the nonmonotonic ¢ profile. It also is equally possible
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that such steep profiles can affect the TEM and electron temperature gradient
(ETG) modes. Such issues remain to be addressed. The nonlinear results on the
SWITG mode are given in the presence of adiabatic electrons. However, addition
of trapped electrons in the nonlinear simulation will allow one a broader study on
the nonlinear SWITG mode and nonlinear TEM in the presence of steep density
profile.

The present linear model equipped with the energetic ions is valid only for the
electrostatic case. This can be extended to incorporate electromagnetic pertur-
bations. This would enable one to study the kinetic ballooning mode, energetic
particle modes, toroidal Alfven mode, etc. Also, we have shown the results for
only one value of a/p;. A complete a/p; scan would help one to project the results
to ITER like scales.

The role of microturbulence in the transport of the energetic ions is studied us-
ing the nonlinear, global, gyrokinetic code GTS. In the present work, the energetic
ions have been considered as passive particles, i.e., they do not contribute to the net
electric field and hence do not enter the gyrokinetic Poisson equation. This model
can be made more consistent and hence more effective by incorporating these en-
ergetic ions as a third active species that would contribute to the net field. This
will allow one to investigate the effect of the energetic ions on the microinstabili-
ties such as I'TG mode, TEM, etc., in the nonlinear phase. Moreover, it would be
interesting to setup a lower dimensional mathematical model and compare it with
the results of our simulations. The particle pinch effect has emerged as an area
of intense research in tokamak plasmas. It may be interesting to investigate the
effect of energetic particle pinch in the presence of microturbulence while studying
nondiffusive transport. Inclusion of nonadiabatic electrons in the I'TG turbulence

studies will make the investigation more comprehensive.
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