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electrons in the fast ignition scheme.

This thesis introduces a unique new mechanism of electron dipole transmitting through a sharp density ramp by forming a
shock followed by the destabilization. The concept could be extendable to the case similar to the highly relativistic electron
stopping in very high density plasmas. In a near future a complicated integral experiment of fast ignition scheme is about
to be performed.

They have used EMHD calculation to show the electron dipole current ending up as a strong shock formation. The resultant
encrgy dissipation is basically a fraction of shock length divided by density scale length. They claim that hot electrons as high
as 10 MeV could be stopped and those energy can be dissipated in the plasmas. The proposal is fully consistent with the experi-
mental results obtained at Osaka University published in New Journal of Physics in 09.
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A fundamental issue in the interaction of high energy electrons with a plasma is the manner of energy
exchange under different conditions. The understanding of this has significant implications in many
problem areas such as fusion, particle accelerators, ion sources, etc. A lot of work and considerable effort
has been invested in a number of institutions worldwide to investigate beam-plasma systems and the
various phenomena that occur in them.

This thesis investigates electron transport withina plasma and associated interactions in two different
areas, which have some aspects in common. The first is in the context of Inertial Confinement Fusion,
where it has been observed that in the process of Fast Ignition (FI) the deposition of electron energy is
greatest in those regions where the density variation is maximum. The second is related to the guidance of
energetic electrons in a plasma near regions of steep variations in density. In both these areas, the role
played by spatial variation of density is significant, and its effect on electron motion needs to be
understood.

The Electron Magnetohydrodynamic (EMHD) model has been employed in investigating the systems
being studied. This is appropriate for the short time scales and small lengths in which the phenomena
typically occur. The approach used is computer simulation in two-dimensions by generalizing the model
to include an inhomogeneous plasma.

The thesis describes the procedure of generalization of the EMHD model, and the numerical method used
to solve it in two dimensions. A computer code based on this has been developed. It is stated that that this
code reproduces known results in the limit of uniform density. The validation of the cede for non-uniform
density is done by matching the inverse of the operator matrices with analytical cases.

The code has been used to investigate the propagation of monoploar and dipolar electron current pulses
through various types of plasma inhomogenieties. The behaviour of these pulses as they propagate
through the density variation has been characterized by varying different parameters. A criterion for
trapping and transmission of the current pulses have been obtained in terms of the scale lengths involved.

It is shown that the trapping of the current pulses in regions of high density results in significant energy
dissipation in those regions locally. The thesis studies the mechanism of energy dissipation and the
formation of magnetic shocks during the propagation of the current pulse through the inhomogenieties,
and its application to Fast Ignition.

The thesis presents simulations of the destabilization of the electron current via a Kelvin-Helmholtz like
instability introduced due to elongated density inhomogenieties, as well as the guiding of electron
currents by a high density plasma channel.

The thesis addresses its subject area competently and ini a coherent manner. It is reasonably complete and
the work has been published in reputed peer-reviewed international journals. The award of the degree of
PhD is recommended to the thesis.

During the viva-voce examination, the candidate may be asked to clarify the following queries:

1. What is the order of error in the numerical scheme employed for the solution of the GEMHD
equations?



2. Examples of the verification that the inverse of the operator matrices matches with known analytical
cases (while validating the code for non-uniform density) may be presented.

3. In studying the motion of an electron current pulse through an inhomogeneous plasma, the solution
assumed at time t=0 is that of a pulse existing in a homogeneous plasma system. This is then tracked
through the inhomogeniety. However, the self-consistency of a solution to Maxwell's equations also
demands that the electron current in the presence of an inhomogeniety will be different at time t=0 itself.
In what way is the assumed initial solution expected to change when this is taken into account?

4. How would one experimentally generate the monopolar and dipolar current pulses used in the
simulations presented in chapter 4 of the thesis?

5. The inhomogeneous plasma density profile is assumed to be unperturbed by the passage of the current
pulse in the simulations presented in chapter 4. Justify this.

6. Assuming that the current pulse perturbs the inhomogeniety, how will the criteria for transmission
versus trapping be affected?

7.1t is observed that the energy dissipation, during the shock formed while a dipolar current pulse
traverses an inhomogeniety, is essentially independent of grid resolution, resistivity and viscosity. What
could be the possible physical causes for energy exchange between the current pulse and the plasma?

8. If a dipolar current pulse is trapped in an inhomogeniety, will all the energy get eventually dissipated?
If so, what would be the effect on the current pulse and the inhomogeniety?

9. What is the variation in total energy in the simulations of the Kelvin-Helmholtz destabilization of
electron current presented in chapter 6?

10. With relation to question 9 above, what is the cause of the energy change, if any?

11. What is the variation in total energy during the restoration of the Isichenko form of the dipole in fig.
6.2? Does it increase or decrease, and why?

12. Is the arbitrary dipole of fig. 6.2 a physically valid configuration, in the sense of satisfying Maxwell's
equations at t=0?

13. In fig. 6.2, if the Isichenko form of the dipole had been assumed at t=0 itself, would it imply that there
would be no change in the current pulse and hence no energy change?

14. In a number of places, it has been pointed out that the results of simulations presented using the
GEMHD model have also been observed in simulations done elsewhere using the PIC model. Since the
motion of ions is explicitly included PIC simulations, and explicitly excluded in GEMHD, justify why the
results should be similar.
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SYNOPSIS

The main theme of this thesis is to understand the propagation of electron current
in an inhomogeneous plasma medium. A proper understanding of the transport
of electron current in plasma is of importance in a variety of frontline research
activities. For instance in the area of inertial confinement fusion studies [1] a recent
fast ignition technique [2]| which separates the task of target compression from the
creation of ignition spark, holds a lot of promise. In this technique electrons have
the key role of absorbing energy from laser at the critical layer of the precompressed
target and transporting it to the overdense regime and depositing it for the creation
of hot spark. Another area of frontline research is related to particle acceleration.
The conventional high energy accelerators [3] are becoming too huge and expensive
to build. Plasma based accelerators proposed by Dawson [4,5] on the other hand
is set to revolutionize and offer an alternative which reduces the accelerator length
by a factor of almost 1000. In these accelerators, it is the electron species again
whose dynamical response in the plasma defines the acceleration parameters.

For these reasons the study of electron transport takes a prominent stage in
research activities worldwide. The experiments [6,7| concerning the physics associ-
ated with the electron response in plasma medium have focused on issues pertaining
to the coupling of laser energy to the plasma in which electrons act as conduit.
The measurements in these experiments involved time resolved reflectivity, X - ray
emission and magnetic field data which provide information of electrons. For in-
stance, the time evolution of the magnetic field profile has provided good insights
on electron dynamics in plasma medium. The decay of magnetic field suggests the
presence of anomalous dissipation in the propagation of electrons through plasma.
There have also been PIC simulations studies [8-11] in the context of fast ignition
which aim at the understanding of the creation of hot spark by fast energetic elec-
trons. Another area where interest lies is associated with the possibility of guiding
and collimating electron currents in plasma medium in a desirable fashion. In this
context experiments [12] as well as theoretical stuides [13] on the design of novel
structured targets have been done.

In some of these applications , e.g. Fast Ignition (FI) [2] experiments the
electrons are required to propagate through an inhomogeneous plasma medium.

Keeping this in view we seek to understand the influence of plasma density inho-



mogeneity on electron propagation in this thesis. For this purpose we adopt the
framework of Electron Magnetohydrodynamic (EMHD) [14-16] fluid description.
This model represents the physics in the domain of fast electron time scale at which
the ions in plasma remain unresponsive. The EMHD model has been frequently
used for the purpose of understanding a host of physical phenomena pertaining to
astrophysical plasmas, earth’s magnetosphere, and even laboratory plasma. The
EMHD model has been invoked for the basic understanding of the phenomena
of collisionless magnetic field line reconnection [17-23], generation of large scale
magnetic field, and rapid dissipation of magnetic field energy in the context of
astrophysical plasmas [24, 25| The description of earth’s plasma sheet and mag-
netotail region are other areas where the EMHD has been applied |26, 27]. With
the availability of high power short pulse lasers and fast diagnostic tools, much
of the experimental observations on laser plasma [28] and laser solid interaction
studies [29] has been understood with EMHD description . However, in all these
studies EMHD model has been used in the context of homogeneous plasma density.
Some authors have incorporated the non uniformity of plasma density within the
purview of EMHD model [30, 31]. However, their equations are fairly approximate
in terms of the choice of plasma inhomogeneity and/or neglect of electron inertia.

As stated earlier our objective here is to study the transport of electrons through
inhomogeneous plasma medium. We have, therefore, generalized the EMHD model
in its full glory to incorporate effects arising due to any arbitrary plasma density
inhomogeneity. The new model is termed as the Generalized Electronmagneto-
hydrodynamics ( G-EMHD ) [32]. A comprehensive derivation of the G-EMHD
model both in 3D as well as 2D has been presented in the thesis. The salient as-
pects (Integral invariants associated with this model ) of the G-EMHD equations
are also discussed. Furthermore, various limiting forms of the G-EMHD model
equations in reduced spatial dimension and simplified electron flow configuration
are also presented in the thesis. The equations of the G-EMHD model are then
employed for the purpose of studying electron current propagation. The G-EMHD
evolution equations being nonlinear, a numerical code has been developed to solve
the evolution equations in 2-D. The flux corrected scheme of Boris et al. [33| has
been adopted for this purpose. A detailed description of the numerical procedure
has been provided in the thesis.

The numerical study helps in identifying the role of density inhomogeneity
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on the propagation of electron current pulses. For this purpose we chose exact
nonlinear solutions [34] for a homogeneous plasma in the form of EMHD monopoles
and dipoles. The monopoles are non-propagating rotating current structures in a
homogeneous plasma whereas the dipoles are known to propagate along their axis
with uniform velocity. Our numerical studies show that (i) these current pulse
structures acquire an additional drift velocity, vy = b2 x Vn/n? (Here b is the
magnetic field along the symmetry direction 2, associated with the electron current
and n denotes plasma density) in the presence of density inhomogeneity. The drift
is transverse to the magnetic field (bZ) and the density gradient (Vn). (ii) The
dipole can readily penetrate inside a high density plasma region but finds it hard
and is often unable to come out from there. It thus often gets trapped within a
high plasma density region. (iii) The dipole acquires the size of the skin depth
associated with the local plasma density.

The phenomena of trapping has been investigated in detail to formulate a
threshold criteria (the ratio of the density inhomogeneity scale length and the
distance traversed by the structure) for trapping vs. transmission of the structures
[35]. The trapping of the dipole current pulse structure in high density region
indicates the violation of time reversal invariance and is suggestive of a dissipative
mechanism at work. We indeed observe that as the dipolar current pulse structure
passes through the density inhomogeneity to penetrate the high density region, it
forms magnetic shocks and /or sharp current layers [36]. A strong energy dissipation
at the location of magnetic shock region occurs when the dipole structure enters the
high density region. Our numerical studies show that the total energy dissipation is
independent of the magnitude and the character of the dissipative processes present
in the system. This explains the irreversible propagation of the electron current
pulse and also provides us with the possibility of a collision - less scheme of electron
energy dissipation in a plasma. It can be used as a method for efficient localized
heating of plasma by energetic electrons. The electrons can be easily accelerated to
high energies and hence are readily available as good source of energy. Furthermore,
electrons can be used to heat overdense plasma region as well, where lasers are
unable to penetrate. The only drawback for using electrons for the purpose of
plasma heating so far has been due to the fact that higher the energy of electrons
more difficult it becomes to stop them, as their Rutherford collision cross section

falls off drastically with increasing energy. Against this backdrop the possibility of
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collision - less energy dissipation through shock formation at the inhomogeneous
layer observed and proposed by us is very attractive.

A semi - analytic approximate estimate for the total energy dissipation has
also been made which confirms the numerical observation of the independence
of the total dissipated energy to the magnitude and character (resistivity and/or
viscosity) of the dissipative processes at work. Furthermore the calculation show
that the energy dissipation depends on the ratio of the traversed distance by the
structure and the inhomogeneity scale length. This parameter is identical to what
defines the threshold for trapping vs. transmission in our numerical studies. This
clearly shows that the energy dissipation occurring at the shock layer is behind the
irreversible propagation of the structures.

We apply our shock induced anomalous energy dissipation scheme to the prob-
lem of Fast Ignition (FI) [2] which relies on the stopping of energetic electrons for
the creation of hot spot . A recent experimental work by Yabuuchi et al. [37] pro-
vides conclusive experimental evidence of the proposed dissipation scheme at work
in fast ignition related experiments. Furthermore, a number of PIC simulations
[8-11] carried out through worldwide in the context of fast ignition using distinct
codes show very clearly plasma heating at the location of the target inhomogeneity.
This provides another conclusive evidence for our mechanism at work.

We also propose a new simpler scheme to collimate and guide the path of
energetic electrons using a tailored plasma density inhomogeneity profile. We show
that the electrons path can be guided through plasma density inhomogeneity just
as optical fibers guide the path of photons. The schemes suggested by other authors
on electron guiding adopt a complicated procedure of specially prepared structured
targets of different materials [12, 13]. Such targets would neither be easy to prepare
nor can they be employed with ease in each and every experiment. We offer the
possibility of achieving this objective through a properly tailored plasma density
profile. This has been illustrated in the thesis with numerical simulations. The
experiment [38] at Institute for Laser Engineering ( ILE ), Osaka, Japan shows
that the energetic electrons generated at the critical density layer gets guided
along the direction defined by the orientation of a solid carbon wire. We feel that
inhomogeneous plasma density spontaneously created by the ionization of the wire
by the energetic electrons provides the requisite inhomogeneous plasma profile for

the guiding of the wire in this ILE experiment.
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In addition a number of fundamental observations, e.g. illustration of the
(Kelvin - Helmholtz) KH destabilization [39] of the sharp current pulses in the
presence of plasma density inhomogeneity and the formation of a novel coherent
nonlinear state in the form of vortex beads aligned along the density inhomogeneity

have also been made and form a part of the thesis.
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Chapter 1
Introduction

This thesis is devoted to the study of the propagation and transport features of
electron current pulses through an inhomogeneous plasma medium. Interesting ob-
servations of both fundamental and applied nature are made. This has been done
with the help of simulations of Electron - Magnetohydrodynamic model [1, 2, 3, 4]
which has been generalized to treat an inhomogeneous plasma. A new collisionless
scheme to extract energy from fast electrons at the plasma inhomogeneity layer
for the purpose of plasma heating has been elucidated. This is specially useful
for heating plasma in overdense regimes where lasers can not be employed. This
scheme of plasma heating by electrons is maneuverable, as the heating efficiency,
the specific location for energy dissipation in plasma etc., can be decided by prop-
erly tailoring the plasma density inhomogeneity profile. Another novel possibility
of guiding the path of the electron current pulse with the help of appropriately
tailored plasma inhomogeneity profile has also been demonstrated in these studies.

The direct relevance of both effects shown here, viz., (i) the possible guiding
of the electron path in the plasma and (ii) the deposition of its energy to heat the
plasma, to the problem of Fast Ignition (FI) [5] has also been outlined.

1.1 Motivation

In recent years there has been a phenomenal progress in the development of high
power of peta-watt (PW) range, short pulse (sub-picoseconds) lasers. These high

power lasers have led to the exploration of hitherto unknown regime of plasma re-



Chapter 1: Introduction

sponse. Furthermore, the availability of fast diagnostic tools has helped in watching
the response of the plasma at these fast time scales in considerable detail. This has
opened up an entirely new area of research. At these fast time scales electrons are
the main species which participate in dynamics and the heavier ion species have a
dormant role of merely providing a static neutralizing background. Various plasma
physics phenomena are now being explored from the fast electron time scale evo-
lution perspective. For instance, the work carried out to investigate the physics
of the fast magnetic field line reconnection events [6, 7, 8, 9, 10, 11|, the fast Z
pinches [12, 13] , fast plasma switches [14, 15, 16, 17, 18, 19, 20|, the generation
of quasi - static intense magnetic fields in laboratory experiments [21, 22, 23, 24|
etc., are explored on the basis of underlying electron dynamics. It thus appears
that a proper theoretical understanding of electron transport through plasma is of

considerable importance.

1.2 Models for Description

A variety of models and tools have been employed for the purpose of these studies.
The use of electron fluid model along with the Maxwell set of equations for the
description of the evolution of electromagnetic fields associated with electron mo-
tion is a commonly adopted approach towards the depiction of most phenomena
in this particular regime [1, 2, 3, 4, 25, 26]. Both analytical and numerical studies
have been carried out with this description. There are Particle - In - Cell (PIC)
models [27, 28, 29, 30|, which treat kinetic aspect of the plasma particles, and are
used extensively numerically. A combination of fluid and particle description in
various regimes have also been adopted in hybrid codes 31, 32, 33|.

For fast electron propagation in a plasma, the current associated with the sys-
tem can be very high. The electrons in the presence of self consistently generated
magnetic field in such a situation behaves like a magnetized fluid. A simplified
description treating the flow of magnetized electrons is the Electron Magnetohy-
drodynamic (EMHD) fluid model [1, 2, 3, 4]. The time scale associated with this
model are fast so as to ignore ion dynamics, but it is slower than the electron
plasma period of the system. The model, thus, rules out the space charge contri-

bution. The electron density perturbations are therefore ignored in the context of
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EMHD model. The EMHD model has led to the understanding and prediction of
a host of novel phenomena, e.g. the fast penetration of magnetic fields [34, 35],
the phenomena of Electron Magnetohydrodynamic (EMH) resistance [1|etc. The
simulations of this particular fluid model has also been carried out extensively, to
understand the coherent as well as turbulent dynamics associated with electron
fluids in a plasma [36, 37, 38, 39|.

As mentioned earlier, the investigation of electron dynamics in plasmas can
also be carried out with the help of Particle - in - Cell (PIC) computations
[27, 28, 29, 30]. In these computations a large assembly of electrons are evolved as
fat particles under the action of self consistent electromagnetic fields. These sim-
ulations do contain the space charge fluctuation associated with the fast electron
plasma period. In this sense they are more complete than the simplified EMHD
model. Furthermore, the kinetic effects associated with finite temperature are also
present in this depiction. The PIC simulations, however, are often very computa-
tionally demanding. One therefore, typically, restricts to lower space dimensions
and/or compromises with spatial resolution. These limitations exist even when the
state of the art computational facilities are employed. For instance, even now the
spatial grid in some PIC studies [32] barely resolve the electron skin depth, which
is a crucial length scale associated with electron dynamics. This, in a sense, is
tantamount to ignoring the physics of electron inertia. In contrast the simulations
with EMHD fluid model resolve the electron skin depth scale, thereby retaining
the contribution of electron inertial effects. Clearly, there are always pros and cons
of any tool and model that one adopts. The approach should be to gleam as much
physics as possible from the judicious use of the available tools.

We have chosen to investigate the problem of electron transport with the help
of a fluid model in the EMHD domain. The specific question associated with the
transport of electrons in an inhomogeneous plasma constitutes the main focus of

study in this thesis.
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1.3 Previous Work on Electron Species Related Phe-

nomena in Plasmas

We summarize here some earlier studies associated with electron species in the
plasma which underline the relevance of the specific question that have been inves-
tigated in this thesis. The theoretical and experimental work on studies associated
with the response of lighter electron species have primarily addressed issues con-
cerning (i) the generation of fast electrons (by lasers etc.,) in plasma medium (ii)
the propagation, stopping and energy deposition of the energetic electrons in plas-
mas and (iii) certain fundamental issues associated with electron transport (e.g.
evolution of the associated magnetic fields, associated instabilities and nonlinear

features in coherent and turbulent regimes etc.,).

1.3.1 Generation

The possibility to employ electrons as an energy source for heating plasma medium
(specially in overdense regimes where lasers cannot penetrate) has led to the quest
for efficient generation of energetic electrons. The resonant [40] and the vacuum
heating mechanism proposed by Brunel [41] being some such schemes. The ex-
perimental study by Sandhu et al. [42] have provided experimental evidence of
fast electron generation by the process of resonant absorption. They have shown
that the wave breaking of nonlinear plasma wave leads to an efficient generation
of energetic electrons.

Studies to enhance hot electron generation has led to various suggestions for
improved laser coupling to plasma. In this regard introducing preplasma [43]
has been fruitful. However, major improvements have resulted by structuring the
target surface by nanoparticles [44], nanowires [45] and other deposits [46, 47, 48|.
Periodic modulations such as grating structures have also been tried and have
produced good enhancement on hot electron generation which has been attributed
to the excitation of surface plasmons [46, 47, 49]. In a recent experimental study
[50] with sub A grating target almost 100% absorption was shown. Analytical and
PIC studies were carried out for the experimental conditions to clearly demonstrate

the role of surface plasmon in such an efficient absorption. These studies have thus
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demonstrated clearly the possibility of efficient generation of energetic electrons.
In order to use such energetic electrons for the purpose of plasma heating a
study of their propagation characteristics through the plasma medium is important.

The next subsection summarizes the attempts that have been made in this regard.

1.3.2 Propagation, Stopping and Heat Deposition

The energetic electrons typically carries very high currents along with it. The flow
of electrons with huge currents is known to get inhbited by its own self generated
magnetic fields. In fact it has been shown that there exists a limit known as
the ’Alfven limit’ on the magnitude of current, beyond which the current cannot
propagate [51]. This is because the associated magnetic field becomes very high to
curve the electron trajectories backwards. Inside a plasma, however, the current
carried by the energetic electrons can often exceed the Alfven limit. This is so as
the plasma provides for the return shielding current. The return current being in
opposite direction it neutralizes the magnetic field and allows the forward current
due to the energetic electrons to be of a magnitude higher than the Alfven limit. Tt
is now well established by the 3-D PIC simulations of Sentoku et al. [29, 30| that the
combination of the forward and return shielding currents get spatially separated by
Weibel instability [52]. The Weibel separation of currents leads to the formation of
alternating sheets of oppositely propagating currents. These sheets tear and form
several cylindrical current filaments whose core carries the forward current and the
outer cylindrical shell contains the return shielding current. These filaments then
coalesce and form fewer cylindrical current carrying filaments. Each coalesced
filaments have currents below the Alfven limit. Combination of such filaments
carry the total current associated with the hot energetic electrons inside a plasma.

The electrons carrying the forward current in these channels are a good source
of energy. They can be employed for the purpose of plasma heating if they can be
stopped at a desired location, where they dissipate their energy into heating the
background plasma. The collisional stopping of the energetic electrons involves
Rutherford’s cross section for electron ion collision. This cross section however,
decreases with increasing electron energy and hence is not an efficient process to
stop high energy electrons. On the other hand, efficient heating would require
that the energy content of the electrons be high. In this regard the presence of
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anomalous stopping mechanism would be of great use. There are debates on the
presence as well as the possible role of anomalous mechanisms for stopping. In fact
a simulation by Sentoku et al. [29, 30] in a 3-D homogeneous plasma shows that
after coalescence the channel shows bending and ultimately degenerates forming
small scale turbulent structures. This generation of electromagnetic turbulence
can explain the rapid electron energy dissipation in those simulations. The mech-
anism behind the generation of this electromagnetic turbulence was identified in
the studies by Jain et al. [53, 54, 55| based on the Kelvin Helmholtz (KH) desta-
bilization of the sheared electron flow [56] amidst the spatially separated forward
and return shielding electron currents flowing in the channel.

The studies on electron stopping and the possibility of heating the plasma by
it have primarily been motivated by the problem of Fast Ignition (FI) [5]. FT is
a simple variant of the Inertial Confinement Fusion (ICF) [57, 58|, in the sense
that the two tasks of compression and the creation of hot spark in the plasma
are separated. The compression is achieved by a slow nanosecond laser pulse
throughout which the target remains cold. The appearance of Rayleigh Taylor
(RT) like hydrodynamic instabilities [59] thus become inconsequential as there can
be no mixing between the hot and cold fuels at this stage. This removes the
stringent criteria of high uniformity of the drive pressure and on the spherical
symmetry of the target. To create a hot spot in the target a separate sub -
picoseconds ultra intense laser (UIL) pulse is send. The target being compressed
the UIL cannot penetrate it but generates energetic electrons at the critical density
surface through the various mechanism outlined earlier. The expectation then
is that these electrons would penetrate the high density core of the compressed
target core and deposit their energy at some localized region. The calculations
based on classical estimates even after taking into account effects due to correlated
collisions, dense plasma effects etc., predict that the electrons will traverse past the
core without depositing their energy. On the other hand the sub - ignition small
experiments have shown the success of the FI scheme [60, 61]. This shows that
the electrons do stop and deposit their energy in the target core despite contrary
predictions provided by the classical collisional estimates. It, therefore, appears
that for this system an anomalous collision - less mechanism exists.

In the FI scenario the electrons have to propagate from the low density plasma

corona region of the critical layer (n = 10*?/cc) towards the high density plasma
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core (n ~ 10%®/cc ). In this case thus the energetic electrons would need to
propagate inhomogeneous plasma region. The studies on electron propagation
through inhomogeneous plasma n the context of FI has been carried out by various
groups primarily using PIC simulations. The PIC studies on electron propagation
through inhomogeneous plasma medium have been carried out by various authors
in 2-D [32, 33|. An interesting aspect of all these simulation studies, which employ
different PIC codes and have been conducted by various groups is that the plasma
gets heated at the location where the density gradient is maximum. This result
have been reported in a number of publication, however, with no comments on he
possible origin of this effect.

One of the prime motivation of our studies in this thesis has been to understand
and physically interpret this observation. For this purpose we study the propagation
of electron current pulse structures through an inhomogeneous plasma medium. A
simplified fluid description of EMHD 1is used for this purpose

A possible maneuvering of the path of energetic electrons is another issue of
interest. In this context novel structured targets having materials with different
resistivity have been designed and experimented upon [62, 63]. Kar et al. [63] have
experimentally shown the guiding of relativistic electron beams in solid targets
by magnetic fields created at the interface of two metals of different electrical
resistivity. This experiment provided a proof of the theoretical study done by
Robinson & Sherlock [62] on the guiding of the fast electrons at the interface of
two metals of the different resistivity. The design of such targets and employing it
in any given experiment, however, would be a complex task.

A recent experiment by Kodama et al. [64] shows an interesting simple method
to guide the electrons. They showed in their experiment that a metal wire attached
on the tip of the cone (where the fast electron generation occurs by an ultra intense
laser pulse) guides the path of the electrons. By tilting the angle of the wire they
were able to show that the electrons followed the direction defined by the wire.
It is believed that the wire gets ionized by the front of the energetic electron
pulse and the plasma thus created guides the electrons along a desired path. The
experiment clearly indicates that there exists a role of a sharp inhomogeneous
plasma (transverse to the wire) in guiding the electron current pulse path.

Another motivation for investigating the role of plasma density inhomogeneity

on electron transport in this thesis is with the viewpoint of seeking a simplified
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scheme to maneuver and guide the path of energetic electrons.

1.3.3 Fundamental Issues

The electron time scale regime dynamics in plasma offers an interesting and simple
nonlinear medium for exploring fundamental questions pertaining to the coherent
and turbulent response of plasma medium. The EMHD model description have
often been used by various authors to theoretically explore the coherent as well as
the turbulent behavior of the plasma medium [65, 66, 67, 68, 69, 70, 71| in this
regime. The presence of the inherent length scale viz., the electron skin depth
scale and the whistler frequency (when external magnetic field is also present )
distinguishes this system from the neutral hydrodynamic scale free fluid system.
The electron skin depth scale causes a change in the spectral scaling of decaying
EMHD turbulence [38]. Furthermore, the magnetized character of the electron
fluid also influences and produces novel features to hydrodynamic fluid phenomena.
These studies have attracted attention recently. For instance, the well known fluid
instabilities such as Kelvin - Helmholtz mode etc., in the context of EMHD has
been shown to get suitably altered [55, 72| in terms of growth rate and range of
unstable wavenumbers.

Recently, some experiments have also been conducted which shed light on vari-
ous fundamental processes associated with the propagation of electrons in a plasma
medium. A propagating electron current pulse has an associated magnetic field
with it. Thus the generation, evolution and decay of magnetic field in the plasma
often provides information on the characteristic features of the electron current.
This has been employed in the papers by Sandhu et al. [21, 22| and Subhendu et
al. [50] to infer the properties of the electron flow. The experiment a pump probe
system of lasers to study the magnetic field evolution from Cotton Mouton effect.
The rapid decay of the magnetic field observed in the experiment by Sandhu et
al. [21] provided evidence for presence of anomalous dissipation and hence the
presence of turbulence in flows.

It would be interesting to study how plasma inhomogeneity would alter the
propagation behavior of the electron current pulse structure in the nonlinear regime.
This is specially important for the FI experiment related studies where the electrons

have to propagate through inhomogeneous plasma density and where anomalous
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mechanisms for dissipation are being sought for.
The nonlinear propagation of electron current pulses through an inhomogeneous
plasma density by a generalized EMHD description in 2-D has been explored exten-

sively in this thesis keeping the fundamental physics issues under consideration.

1.4 Earlier Studies on EMHD Phenomena with In-

homogeneous Plasma Density

The thesis focuses on the study of electron transport through inhomogeneous
plasma density for EMHD time scales. For these studies, therefore, a general-
ization of the EMHD model to include effects due to plasma inhomogeneity is
essential. We briefly review here previous studies where EMHD studies have been
carried out for an inhomogeneous plasma density.

Kingsep et al. [1] have ignored the electron inertia related terms and incor-
porated inhomogeneous density of a specific simplified form to arrive at a reduced
Burger’s equation for the magnetic field evolution. From this study it was inferred
that the magnetic shocks can form at the inhomogeneous plasma density layer.
Kingsep et al. [1]| also derived an equation for magnetic field evolution with elec-
tron inertia, however, again a specific form viz., a linear weakly varying plasma
density was assumed. This equation was later solved by Petvishvilli in a moving
frame using he ansatz of stationarity to obtain solitons in 1-D, and monopoles
and dipoles in 2-D [73]. These solutions were later shown to be stable using the
Zakharov-Kuznetzov method [74].

Fruchtman et al. [75] have also considered an inhomogeneous plasma, however
they ignore electron inertia related terms in the EMHD equation. They have, how-
ever, considered the evolution of energy in conjunction with the EMHD equation.
Thus it forms a coupled set of magnetic field and the energy evolution. This was
used to study the penetration of magnetic field in Plasma Opening devices (POS).

Kuvshinov et al. [76] have considered again an inhomogeneous plasma for their
studies. However, they have gone beyond the EMHD description by incorporating
effects due to space charge fluctuation. Both, the space charge fluctuation (n/ng)
and the equilibrium density variation (L,, = ng/n{) in comparison to relevant scale

of the phenomena (k) were considered to be very small and treated perturbatively.
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The exact solutions for this set were obtained by Kuvshinov et al. [77] and the
evolution of such structures have also been investigated numerically [77].

We have obtained a generalization of Electron Magnetohydrodynamics (EMHD)
equations in the presence of inertia related terms and have also made no approx-
imation for any specific form of the density inhomogeneity. No approximation as
regards to slow variation of the inhomogeneity has been made in the derivation of
our equations. The complete set has then been numerically investigated for vari-
ous forms of the plasma inhomogeneity profile as demonstrated in the subsequent

Chapters.

1.5 Scope of the Thesis

As stated earlier the understanding of electron transport in an inhomogeneous
plasma constitutes the main theme of this thesis. For this purpose we employ the
fluid description in the EMHD domain. The EMHD model [1, 2, 3, 4] describes the
evolution of magnetized electron fluid in a homogeneous plasma. We, therefore,
first generalize the EMHD description to inhomogeneous plasma density. The new
model is termed as the Generalized EMHD (G-EMHD) [78|.

Chapter 2 of the thesis provides a detail derivation of the G-EMHD model [78].
The salient aspects of the G-EMHD equations are discussed in detail. Furthermore,
various limits of G-EMHD equations in reduced spatial dimension and simplified
electron flow configuration are also discussed in this chapter. In Chapter 3 we
describe in detail the numerical procedure adopted for simulating the G-EMHD
equations. The G-EMHD equations can be cast in the form of convective equation
with appropriate source term. We use the flux corrected scheme [79] to evolve the
G-EMHD equations in time. The main challenge appears when at each step of
evolution one has to evaluate the magnetic field /convective velocity. This involves
solving a Helmholtz kind of equation whose coefficient is a function of space.

In Chapter 4 we present our observations on 2-D G-EMHD simulations [78| for
the simplified case where the electron current flow is confined in the 2-D symmetry
plane. Our objective being to study the role of plasma density inhomogeneity on
the electron current pulse propagation, we chose exact current pulse solutions of

the homogeneous EMHD as initial condition and made them evolve through in-
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homogeneous plasma density. The nonlinear EMHD solutions are of two varieties
[65]. One has monopolar magnetic field configuration and represents rotating elec-
tron currents. This is a stationary solution of EMHD. The EMHD also permits
traveling solutions with dipolar magnetic fields. These dipoles move with constant
axial speed and have a current configuration which mocks up a spatially sepa-
rated forward electron current along the central axis and return shielding current
at the edges. A variety of inhomogeneous plasma density profiles were chosen for
studying the propagation of these current pulses. The numerical studies show (i)
that the structures acquire an additional drift in the presence of density inhomo-
geneity which is transverse to the magnetic field and the density gradient (ii) The
dipole can penetrate inside a high density plasma region but is unable to come
out from there. It thus gets trapped within a high plasma density region. (iii)
While the dipole structure passes through the density inhomogeneity to penetrate
the high density region, it forms magnetic shocks and/or sharp current layers [80].
A threshold criteria is formulated for trapping vs. transmission of the structures
[81]. The trapping of the dipole current pulse structure in high density region
indicates the violation of time reversal invariance and is suggestive of a dissipative
mechanism at work. Indeed it is shown in Chapter 5 that a strong energy dis-
sipation is associated with the magnetic shock which form at the inhomogeneity
layer when the dipole structure enters the high density region. It is shown that
the energy dissipation is independent of the magnitude and the character of the
dissipation present in the system. This provides a novel collision - less scheme
for the energy dissipation of electron current pulse in plasma. The electrons are
a good source of energy as they can be easily accelerated to high energies. A
high energy electron whose classical Rutherford collision cross section is known
to fall drastically with increasing energy. But with the help of this mechanism
of energy dissipation we can still deposit its energy efficiently. Furthermore, the
electrons can be used to heat overdense plasma region where lasers are unable to
penetrate. This is precisely the situation in the context of Fast Ignition (FI) laser
fusion [5|. This relevance of the density inhomogeneity based electron stopping
mechanism to the frontline concept of fast ignition laser fusion experiment is also
shown in detail in Chapter 5. In the limit of small and/or negligible electron -
ion collisions the Kelvin - Helmholtz destabilization of the sharp current layers

which form at the density inhomogeneity would produce anomalous viscosity and
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would be instrumental in energy dissipation. The generation of turbulence and
anomalous viscosity have been shown earlier in the context of homogeneous 3-D
EMHD simulations for sharp electron current layers [53]. In Chapter 6 we show
the process of KH destabilization of sharp current layers in the presence of density
inhomogeneity in 2-D. The 2-D case as expected the KH destabilization leads to
the formation of coherent pattern in the case of G-EMHD as well, which can be
traced to the existence of two integral square invariants supported by the system
[81]. In Chapter 7 we discuss another application where the density inhomogene-
ity has an important role. Often one wants to collimate and guide the electron
current inside a plasma. There have been many proposals of especially structured
targets prepared of different materials of different resistivity [62, 63]. Such targets
would neither be easy to prepare nor can they be employed with ease in each and
every experiment. Again a proper tailoring of the plasma density offers an easier
accessible scheme. We illustrate this by placing arbitrary shaped wire like density
inhomogeneous structure along the path of the electron current pulse structure. It
is observed that the current flows along the path defined by the inhomogeneous
path. In an experiment [64] at ILE, Osaka, Japan the energetic electrons gener-
ated at the critical density layer were guided with the help of solid carbon wire.
The experiment showed that the electrons moved along the wire, as the wire was
tilted the path of the electrons changed accordingly. We feel that inhomogeneous
plasma density spontaneously created by the ionization of the wire by the electrons
is responsible for this.

We summarize our work in Chapter 8 and provide discussions for the future

scope of the thesis.
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Chapter 2

The Generalized Electron
Magnetohydrodynamic ( G-EMHD )
Model

The propagation of fast electron current pulse structures through an inhomoge-
neous plasma medium is the prime concern of this thesis. For this purpose we seek
a fluid description of the plasma under the framework of EMHD domain. The
EMHD model [1, 2, 3, 4| describes the evolution of magnetized electron fluid in a
homogeneous plasma. We, therefore, present in this chapter the generalization of
the EMHD description to a plasma with inhomogeneous density. The new model
is termed as the Generalized EMHD (G-EMHD) model [78]. The discussion of
salient aspects of the G-EMHD model along with the integral conservations sup-
ported by the set of G-EMHD model equations is provided. The simplification of
the G-EMHD model in reduced spatial dimensions as well as that of simple 2-D

electron flow configurations are also presented.

2.1 Introduction

The well known single fluid model known as Electron - Magnetohydrodynamics
(EMHD) provides a suitable description of the fast dynamical response of electron
species in a homogeneous plasma. The EMHD model treats the positively charged

ions as a static neutralizing background. The coupled set of electron fluid evolution
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along with the Maxwell’s equation define the EMHD model. The model ignores
the displacement current contribution in the Ampere’s law. This is valid when the
space charge related effects can be considered to be negligible and/or the phase
speed associated with the phenomena of interest is slower than that of the speed
of light. The typical time scales are thus chosen to be slower than the electron
plasma period making the continuity equation for the electron density fluctuation
irrelevant. The Ampere’s law then directly relates the current of the system to
the curl of magnetic field. Since the ions are at rest, then the entire current in
plasma, is only due to the flow of electron species. Thus for a uniform plasma the
current is directly proportional to the electron velocity. The combination of the
electron fluid momentum and the Maxwell set of equations thus get simplified and
the system can be represented entirely in terms of the magnetic field evolution
equation.

In a real scenario the plasma can often be inhomogeneous. Thus the coefficient
relating the curl of magnetic field with the electron velocity in the Ampere’s Law
becomes space dependent. This space dependent part alters the evolution equation
significantly. This is the genesis of the G-EMHD model whose derivation is illus-
trated in the next section. The consequences of the density inhomogeneity terms
will be explored in the subsequent chapters by simulating the G-EMHD model
equations [78, 80, 81].

2.2 Derivation of G-EMHD Model Equations

The G-EMHD model is a generalization of the Electron Magnetohydrodynamics
for the case when the background plasma density is inhomogeneous. The G-EMHD
model, therefore, also represents the same range of length and time scales for which
EMHD is typically applied. Even though the background plasma density is taken
to be inhomogeneous, the density perturbations are ignored as in EMHD. Thus
the displacement current as well as the electron continuity equations are ignored

in this case too, under the approximation of

2
W K Wpe, Wpe/Wee
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Here w represents the typical time period of the phenomena under consideration.
The electron plasma frequency and the gyrofrequency is represented by w,. =
Amrne? /me and we = eBy/mec respectively. Here By represents the magnitude of
magnetic field and n is the background plasma density. When the background
plasma density n is inhomogeneous, the plasma frequency is defined in a local

sense.

2.2.1 G-EMHD Model Equations

The ions being static the equations associated with ion motion, viz., continuity
and momentum are irrelevant. Furthermore, since charge density fluctuation are
ignored within the EMHD domain of time scales, we consider the electron momen-
tum equation alone for the evolution. A cold plasma has been considered in our
derivation. Thus the pressure term is ignored in the electron momentum equation.

. V.xB

Ve E+

ot

Me + (VZ V) 176 = —e — mV, (2.1)

Here v denotes the electron - ion collision frequency. Expressing the electric field
E and the magnetic field vector B in terms of scalar and vector potentials and

then taking the curl of Eq. (2.1) one obtains the following equation :

0 (v x P)

o :Vx(Vex(VxP)>—l/V><Ve (2.2)

Here P =V, — e/f/mec is the generalized momentum containing both electron flow
velocity V, as well as the vector field A. Thus Eq. (2.2) provides an evolution
equation for V x P =V x ‘76 — eg/mec : a combination of the curl of the electron
velocity and the magnetic field. We seek another equation relating the vectors
176 and B from the approximate form (obtained after ignoring the displacement

current) of the Ampere’s law. Thus from V x B = (47 /c)J we have

— C —
V,=— B 2.3
(47rnee) VX (2:3)
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Upto this stage the derivation of G-EMHD equations are identical with those of
the EMHD model. The difference arises now when the curl of the electron velocity
given by Eq. (2.3) is taken for expressing V X P entirely in terms of magnetic
field B vector. There is an extra term which arises due to the nonuniformity of

the plasma density (and hence n. as well) as plasma is quasineutral. Defining
G = (mec/e)V x P we have

G=-2V’B+-2Vnx(VxB)-B (2.4)
n n

Here n = n./ng (where ng is a constant typical value chosen to normalize the
density), dZy = ¢*/w?,, is the electron skin depth at ng, (where w?,, = 4wnge®/m.
is the square of electron plasma frequency corresponding to the plasma density
(ng)). From Eq. (2.4) it is clear that in addition to the space dependent coefficient
1/n of V2B we have an extra density gradient dependent term appearing in the
expression of G. The impact of this term on the evolution of fields would be seen
in the subsequent Chapters.

We choose to normalize the magnetic field B by a typical value By, time by the
corresponding electron gyro period w_' = (eBy/m.c)™!, length by d.o ( defined
above ) to obtain the following normalized evolution equation for the G-EMHD
model [78]:

7 . 251 ,
@:VX<VX§>—77<VH +ﬁVn><V><B>

V x B

n

1 — ]_ — — —
§g=—V’B+—=SVnx(VxB)-B; V=-— (2.5)
n n

Here, g and V are normalized fields G and 176 respectively. The field B in Eq.
(2.5) though having the same symbol as before is the normalized magnetic field

and 1 = v/w,. is normalized resistivity.

2.2.2 G-EMHD Model in 2-D

The G-EMHD model Eq. (2.5) gets simplified when the variation of the fields
are assumed to be confined in a 2-D plane. We consider é,,é, and é, as the

right handed triad of unit vectors and take the symmetry axis to be along é,.
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The magnetic field being divergenceless can be expressed in terms of two scalar
fields in 2-D as B = bés + e, x V. The electron velocity can be written as
V = —(V x B)/n = (& x Vb)/n — é,V%)/n ; the first term in the velocity
expression corresponds to the electron flow in the 2-D plane (defined by é, and
é, unit vectors) and the second is associated with the electron flow along the
symmetry direction.

The G-EMHD model in this 2-D case reduces to the following two coupled set

of evolution equation for b and .

%{b_v' (%)}*éswb-v[%{b—v. (%)}]+éswi.v(v;w)

=nV- (%) (2.6)

%{w_V%}JréSxVb.v{w_V%}:nVQw (2.7)
n

n n n

and

A detailed derivation of Egs. (2.6, 2.7) from the 3-D G-EMHD model (Eq. (2.5))
has been given in Appendix A. For a constant plasma density n the above equations
reduces to the standard 2-D form of the EMHD model as expected. We will mainly
concentrate on the study of the 2-D form provided by Eqgs. (2.6, 2.7) of the G-
EMHD model. A further simplification of the model results when the electron flow
is confined in the 2-D plane. In this case magnetic field has only one component
along the symmetry direction (é;). Thus only b field is finite and ) is zero for this

specific case.

2.3  Square Integral Invariants Supported by G-
EMHD Model Equations

We now seek conservation of integral quantities which are supported by the G-
EMHD equations. These conservation law provide crucial information on evolu-
tion. They are also used to benchmark any numerical code that one adopts/develops
for evolution studies.

The G-EMHD model conserves total energy of the system in the non - dissipa-
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tive limit, n = 0. The total energy in this case is the sum of electron kinetic and

the magnetic field energy. Thus

1d (Vb)? 2 V| ,o dE
Where )
1 (Vb) 2 (V)P o
E_§/{b2+T+(Vzp) +T}d2X (2.9)

Here [b?+(V1))?] represents the magnetic energy and the remaining terms (1/n)[(Vb)?+
(V?1))?] are the kinetic energy associated with the electron motion of the G-EMHD
fluid. The derivation for this conservation is given in Appendix A.

In the simplified limit when the electron flow is confined in the 2-D plane (the
case of ¢» = 0 discussed in the previous section) an additional square integral

quantity shown below is conserved (see detailed derivation in Appendix A).

1d [1 Vo\\* . dH
2 2 p=vw. 2 X == 2.10

2dt ) n ( v ( n )) dt (2.10)
The invariant H is like the enstrophy invariant of the 2-D hydrodynamic flow.

Here, however, it has contribution from the magnetic field as well.

2.4 G-EMHD Model in Various Limits

We have seen that our G-EMHD model equations reduce to the EMHD equations
in the limit of uniform plasma density. When the electron flow is confined to
the 2-D plane the model equations can be cast in terms of a single scalar field
b corresponding to the magnetic field in the direction of symmetry and can be
written as:

%(b—v%) +é,x VbV (b—V?) =0 (2.11)
In this limit of uniform plasma density, this equation has the same form as the
Hasegawa - Mima (HM) equation [82| which is obtained for the description of low
frequency plasma behavior.

The hydrodynamic 2-D fluid evolution equation results when the typical scale
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lengths are shorter than the electron skin depth, i.e. when b < V2b. In this
limit the electron kinetic energy dominates over the magnetic field energy and the

electron behaves like a neutral hydrodynamic fluid.

2.5 Summary

A generalized fluid model (G-EMHD) for the depiction of magnetized electron flow
in a non - uniform plasma has been obtained. In 2-D the G-EMHD model has been
shown to reduce to a coupled set of evolution equation amidst two scalar fields rep-
resenting magnetic field and vetor potential component along symmetry direction.
For a simplified case when the electron flow is confined in 2-D plane the evolution
equation of G-EMHD model reduces to a single equation of evolution of magnetic
field component along symmetry direction. The G-EMHD equations conserve total
energy of the system in the non-dissipative limit. An additional square integral
invariant in 2-D (similar to enstrophy conservation in 2-D neutral hydrodynamic
fluid) is also supported by G-EMHD for the special case when electron flow is
confined in the 2-D plane.
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Chapter 3

Description of Numerical Scheme for
the Evolution of 2-D G-EMHD
Model Equations

In this Chapter we describe in detail the numerical procedure adopted for sim-
ulating the 2-D G-EMHD equations [78, 80, 81|. The 2-D G-EMHD Egs. (2.6)
and (2.7) can be cast in the form of convective equation for those fields which
are essentially obtained by the action of Helmholtz like operator (second order
spatial derivative equation having space dependent coefficients) on b and v fields
introduced in Chapter 2 of the thesis. These convective equations also have source
terms. A flux corrected scheme has been used to evolve the G-EMHD equations in
time. The main challenge appears when at each time step of evolution one has to
invert the Helmholtz like operator (with space dependent coefficients ) to evaluate

the magnetic field and the corresponding convective velocity.

3.1 Introduction

The G-EMHD model in 2-D is a coupled set of equations between two scalar
fields b and v which are the magnetic field and the vector potential component

respectively, along the symmetry direction é,. The evolution equation for €2, and

Qb:{b—v-(%)}znmw (3.1)
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and vy
o, ={v- T2 -1511v (32)
respectively are of the form of convective equations.
of) s X Vb .
—tiv. (6 . Qb) =V -[(é x Vi)Qy] (3.3)
ot n
and,
oy e, x Vb
-VQ, = 3.4
5 T, V=0 (3.4)

From Eqs. (3.3) and (3.4) it is clear that the quantities €, and €, get convected
by the in - plane electron velocity of V| = (& x Vb)/n. The evolution of {2 (which
can be looked upon as the component of generalized vorticity along the symmetry
direction) has a source term in the right hand side. Unlike 2-D hydrodynamic
flow in this case the generalized vorticity has a source term in the presence of 1
and V21, i.e. in the presence of electron flow along é,. The generalized vortex
stretching arises here from the curl of J x B force. It should be noted that when
the electron flow is confined in the 2-D symmetry plane, v is zero and there is
no source in the €, evolution. Eq. (3.4) shows the evolution of the component
(along the symmetry axis é5) of conjugate momentum €2, (having contribution
both from field as well as the electron velocity part). It can be seen that € is
merely convected in the 2-D plane and has no source in its evolution. The symbols
|| Al and || B || are the short hand notations for the operators relating b with €,
and ¢ with €, in Eq. (3.1) and Eq. (3.2) respectively.

3.2 Numerical Scheme for Nonlinear 2-D G-EMHD
Model

Egs. (3.3) and (3.4) are evolved using the flux corrected scheme of Boris et al. [79].
A collection of FORTRAN subroutines LCPFCT (Laboratory for Computational
Physics, Flux-Corrected Transport) implements "Flux-Corrected Transport"
algorithm to solve one dimensional generalized convective transport equation in
various geometries. We employ these suite of subroutines using time splitting

technique to evolve the 2-D system of Eqs. (3.3) and (3.4). In some earlier studies
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[54, 72| related to EMHD model system, this procedure has been successfully
implemented. In the EMHD system n being uniform b and ¢ can be obtained by
inverting the Helmholtz operator || O ||

10][b=b-V=0Q; [[O|lY=0-V=0

at each time step once ), and 2, are from the evolution of Egs. (3.3) and (3.4).
Standard Helmholtz Solvers [83] are available and were used for this purpose in
these earlier studies [54, 72]. Once b is known, the convective velocity is evaluated
using relation VL = ¢é; x Vb to evaluate the value (2, and €2, at the next time step.
Thus this completes the entire loop of evolution.

In our G-EMHD case [78|, however, the operators (|| A || & || B ||) relating
b to €, and ¥ to Q respectively, have a complicated form than that of a simple
Helmholtz system [83]. The coefficients of b and 1) that form the operators (||
A |l & || B ||) are space dependent. This is so because we are considering density
(n) to be inhomogeneous. Therefore, the standard routines for solving Helmholtz
equation can not be used for this particular case. We have implemented a direct
procedure wherein the space dependent operator is expressed in the form of a
matrix in the 2-D discretized space. The inversion of the operator matrix and its
multiplication with the vector formed with the values of €2, and €, at all the grid
points gives us the solution for b and 1 from their respective equations. We provide
a detailed description of the method below.

The 2-D space in the z—y plane (choosing Z as the symmetry axis) is discretized
as shown in Fig. (3.1). The field variables b(z,y), ¥(x,y), n(z,y), Q(z,y) and
Qy(x,y) being functions of the x,y space are defined at the grid points at the
center of each cell in Fig. (3.1). The x and y dimensions of the simulation box
L, and L, are discretized in N, and N, grid points as shown in Fig. (3.1). Each
grid point can be represented by the combination of running index 7 and j, which
take values from 1 to N, and 1 to N, respectively. Thus the field variables at any
location are represented by p(x,y) = p(i, j). Where p stands for the field variables.
The operators || A || and || B || corresponding to €2, and €2, respectively, have
second order spatial derivatives. Using the centered difference scheme for the
representation of the second order spatial derivative it can be shown that these

operators connect the field variables at point (7, j) with those at 4 neighbouring
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Figure 3.1: This is the simulation space in x — y plane. The circle represents the
grid points where the equilibrium value for the variables is to be assigned in the
simulation. The derivative of the fields (b, 1)) inside of the boundary, for example
at (i,7) are calculated by the neighbouring points using the central differencing
scheme. As in the simulation the periodic boundary condition is considered. So
for the boundary points (IV,,7) the derivative of the fields can be calculated by
using the points (1, 7) as is shown in the figure.

points (i — 1,7), (i + 1, j) (for second order derivative along x) and (i,j — 1) and
(1,7 + 1) (for second order derivative along y) as shown in the Fig. (3.1). Thus
equations || A || b= and || B || ¢ = €, relates €, and €2 at each of the spatial
point (4, 7) with 4 neighbouring distinct points of the field b and 1 respectively.
Such a relationship can be expressed in terms of a matrix representation for the
operators || A || and || B || where the fields b and % in the 2-D space are cast as
vectors [b] and [¢] having single distinct index [ for each spatial point of the 2-D
space as shown in Fig. (3.2). The index [ thus varies from 1 to N, x N,. The
matrix corresponding to operators || A || and || B || has a dimension of N7 x N7.

We now illustrate how the two matrices are defined.
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The equation || A || b = €2 in an expanded form can be written as

1% 1% 19ndb  1ondb

Ve nol T worar Tmiogoy

0 (3.5)

In the discrete 2-D space the equation takes the form of

b — | Rt = 2065 Fb6-1p | [bagen = 2bag + 00 |
) n(,j) A% NG, A
o) 019 = Vi1 | | Mes [Pairn —bes-n | _ ¢
2 2A 2 2A b9
(4.9) x (4.9) Y

Or equivalently

+ (1/2n8; ) AZAT) (20 5 Ax* Ay® + dng 5 Ay? + dng j Ax?) ba gy + (1/2n; 5 A)

/ 2 9 ’
(277/(27.]) - ny(i’j)Al/) b(i7j+1) - (1/2n27jAy) (2,”(@7.7) + ny(i,j) A?/) b(ivjfl) = Qb(i,j)
(3.6)

The spatial index for the fields has been written as a suffix within small brackets
and the suffix x and y denote the variable with respect to which differentiation has
been taken. In the above expression A, & A, are grid size along x & y direction
respectively. We now represent the field in 2-D space as a one dimensional vector.

To achieve this we define a running index
I=N,(i—1)+j fori=12 . N,:j=12 ., N,

The value of [ corresponding to each grid point has been shown in Fig. (3.2).
It is clear from the expanded discretized form of the Eq. (3.6) that the matrix
representing operator || A || will in general have finite main diagonal elements
(A(l,1) non zero), two diagonals in the immediate neighbourhood of the main
diagonal as finite (A(l,/+1) non zero) and two more (displaced by Al = £N,, ,i.e.
A(l,1+ N,)) as finite. Furthermore, the elements connecting the boundary points
of the fields b need to be defined properly so as to be consistent with periodic
boundary condition that has been adopted for all the simulations presented in

this thesis work. The plasma density profile n(x,y) is known and chosen to have
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different spatial profiles for various problems that have been investigated in the

subsequent Chapters. The spatial profile of €2, is known at each time step from

the evolution equation and hence it is also a given function of space. Therefore,

the field b is determined from

The elements of the matrix A are as follows:

Al =[] = [0] = A7'[C]

(3.7)

L N X
Ny Ny 2Ny (Nx—1)Ny| NxNy
1+1
Ny-1 Ny-1 2Ny-1 (Nx-2)Ny| NxNy-1
[ ) ° G ° [ )
1-Ny 1+Ny
(Nx—1D)Ny+j+1
\ ° ° o ®
Ly 1-1
(Nx—2)Ny+j
j O [ 9]
(Nx—{11)Ny+j J
° ° o O
(Nx—1)Ny+j—1
[ ] [ ] [ ] [ ]
2 2 Ny+2 NX=2)Ny$2 (Nx—D)Ny+2
. . Ny+1 Nx—2)Ny+] (Nx—1)Nly+1

Nx—1

Figure 3.2: This figure represents the reduction of the 2D grid space (i, j) in one
dimensional space ({). That is obtained by using the relation { = (i—1)N,+j where
i=1,2,..,Nyand j = 1,2,..., N,. The index [ is running along the y direction as
is shown in the figure. Thus in this new representation the consecutive two grid
points along the x -direction is displaced by the IV, no. of grid points while along
the y direction they are separated only by a single grid point as is shown at the

point /.

Main diagonal element, A(, 1)
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_ 2 2 A2 2 2 A2 2 2
A(lv l) - (1/2n(z,])AmAy) (2n(l,J)A:vAy + 4n(ivj)Ay + 4n(lv])AI)
i=1,23.,Nys; j=123 ..N,

Upper diagonal elements A(l,1 + 1)

A(LT+1) = (1/2n2 ) A2) (zn(i,j) —n Ay)

Y(i,9)
i=2,3,.,N,—1, j=23.,N,—1
A(LT+1) = (1/2nf, ;A2) (271(173‘) - ”y(l,j>Ay>
j=2,3,...,N,—1

2 2 !
Al 1+1) = (1/2nfy, 5A)) (2”(1\/1,]') - ”ymx,j)Ay)
j=23,.,N,—1
AT+ 1) = (1/208,1)A2) (2060 = i, Ay )
i=1,2,3,...,N,
A(la [ — (Ny - 1)) = (1/2n%lvNy)AZ> <2n(i’Ny) - ny(ivNy)Ay>
i=1,2,3,..,N,

Lower diagonal elements A(l,[ — 1)

.A(l, l— 1) = — (1/27%2,]'A§) <2n(i7j) + ny(i,j)Ay>
i=23,..,N,—1, j=23.,N,—1
A(l, [ — 1) = - (I/Qn%,]A?;) (2,”(171) + ny(l,j)Ay>
J=2,3,..,N,— 1
Al 1= 1) = = (1/2n}, ;A7) <2n(NwJ) * n;mx,j)Ay)
J=2,3,...,N,—1
A(l, l + Ny - ]-) = - (]_/277,@271A§) (277/(@71) + n:/'J(i,l)Ay>

i=1,2,3,...,N,
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.A(l, [ — 1) = - (1/2n?,NyA§> <2n(i7Ny) + n;J(i Ny)Ay>
1=1,2,3,..., N,

Displaced diagonal elements A(l, [ + N,)

A(L T+ N,) = (17208 ,A2) (=20, + e, )
i=23,.,N,—1 j=23..N,—1

A1+ Ny) = (1/2n, A7) (‘271(14) + n;u,nA:”)

Jj=1,2,3,..,N,
A= (N2 = D)N,) = (1208, 5 A2) (=200, + 7, B0 )

J=1,2,3,..,N,

AL+ N,) = (/28 A2) (=206 + 1, A
i:273’...,Nx_ 1

Al 1+ N,) = (1/2n%z,Ny)A§:> (_Qn(ivNy) T n/r(zzNy)Am)

i=23 .. N, —1

Displaced diagonal elements A(l,] — N,))

A= N,) = = (1/208,82) (2 + 1, )
i=23,..,Ny—1, j=23,..,N,—1
A(L L+ (N, = 1)N,) = — (1/2n{; A7) (2”(171‘) + ”;:u,nAﬂC)
j=1,2,3,...,N,
AL L= Ny) = = (1/2nf, ) A2) (20w, + Ml A )
j=1,2,3,...,N,
Al 1= Ny) = = (1203, 1)82) (200 + 1 A

i=2,3,..,N,—1
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Al L= Ny) = = (1/20 0,82 (2060, + 7, A
i=23 . N,—1

The matrix B relating 1 to €2y is also similarly defined by representing the operator
equation || B || ¢ = €y in discretized 2-D space. The elements of this matrix are :

Main diagonal element B(l, )

B(l, l) = — (1 —+ 2/n(,~7j)A§ —+ 2/n(,~7j)A§)
1=1,2,3,..., Ny; j:1,2,3,...,Ny

Upper diagonal elements B(l,[ + 1)

B(l,1+1) = (=1/ng;A2)
i=23,.,N,—1 j=23..N,—1
B(l.1+1) = (~1/nu A2)
=23, N, 1
B(l,1+1) = (—=1/nw, 5A2)
=23, N, — 1
B(l,1+1) = (—1/nu1)A%)
i=1,2,3,.., N,

B(l,1— (N, — 1)) = (=1/ngn,)A2)
i=1,2,3,.., N,

Lower diagonal elements B(l,l — 1)

i=23,. . N,—1; j=23..,N,—1
B(l,1—1) = (=1/nanA})

j=2,3,...,N,—1
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B(l,l-1)= (—1/n(Nz,j)Azz;)
j=2,3,..,N,—1
B(l,14+ N, —1) = (=1/ngnA2%)
i=1,2,3,..,N,
B(l,1—1) = (=1/nun,)A2)
i=1,2,3,..,N,

Displaced diagonal elements B(l,1 + N,)

B(l,1+ N,) = (=1/naA3)
i=23,..,No—1, j=23.,N,—1
B(l,1+ N,) = (=1/nq A7)
j=1,2,3,...N,

B(l,1 — (N, = 1)N,) = (=1/n(, A%)
j=1,2,3,..,N,

B(l,1+ N,) = (=1/na1)A7)
i=2,3,.. N, — 1
B(l,1+ N,) = (=1/nan,)A7)

i =23, N, — 1

Displaced diagonal elements B(l,l — N,)

i=2,3,...,N,—1;j=23 .. N,—1
B(l,1+ (N, — 1)N,) = (=1/nu;A2)
j=1,2,3,...N,

B(l,1 = N,) = (=1/n, »A})
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j=1,2,3,... N,
B(l,1— N,) = (=1/n¢A2)
i=2,3,..,N,— 1
B(,1 = N,) = (=1/ngx,)A2)
i=2,3,...,N,— 1

This process of direct evaluation of the b and 1 fields by the inversion of the
matrices A and B is very expensive in terms of memory as is evident from the size
of the matrices which depends on the square of the total number of grid points (viz.
N2 x N7). Thus at higher spatial resolutions and for the case of 3-D studies this
method would be prohibitively memory extensive and it cannot be implemented.
This is a major drawback of this particular scheme.

The development of an alternative scheme which uses the standard Helmholtz
solver [83] iteratively to solve for the spatially dependent part of the operator
needs to be developed. This is an important task and would be taken up as a

future extension of the work presented in this thesis.

3.3 Validation and Benchmarking of the Code

Our code for the G-EMHD evolution has been benchmarked by reproducing the
well known simulation results for the uniform density EMHD case. The simulation
cases for the evolution of the various configuration of the current pulse structures
in EMHD shown in the paper by Das et al. [36] by a pseudo spectral code has been
reproduced by our simulation method. For non uniform density the definition of
the two operator matrices and the evaluation of their inverse has been tested by
checking out known analytic cases. Furthermore, the energy integral is tracked in

time to ascertain the appropriate resolution necessary for the simulation.

3.4 Summary

A numerical scheme for solving the 2-D G-EMHD set of equations [78] has been

presented. The flux corrected scheme of Boris et al. [79] has been implemented
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for the time evolution of the 2-D G-EMHD set of equations. The 2-D G-EMHD
model equations are a set of two coupled equations, representing the evolution of
the generalized vorticity and generalized momentum along the symmetry direction.
At the end of each time step (in the evolution of the 2-D G-EMHD equations) we
obtain the values of the generalized vorticity and generalized momentum along
the symmetry direction. The evaluation of magnetic field and the vector poten-
tial component(along the symmetry direction) from these at each step requires
solving a second order differential equation in space with inhomogeneous coeffi-
cients. We have implemented a brute force scheme. Whereby this evaluation is
done by inverting the matrix representing the operator corresponding to this dif-
ferential equation. It should be noted that this procedure is prohibitively memory
expensive and has indeed restraint our simulations to low spatial resolution. A
development relaxation scheme in which the standard Helmholtz operator is used
for the evaluation of second order derivatives and the contribution from the space

dependent part is evaluated iteratively is desirable.
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Chapter 4

G-EMHD Simulation: Fundamental
Results on Current Pulse

Propagation through Inhomogeneity

This chapter of the thesis is devoted towards exploring various fundamental aspects
of the electron current transport through an inhomogeneous plasma medium. For
this purpose we have employed the 2-D G-EMHD model [78] equations in the
simulation. For simplicity the electron current flow is considered to be confined
in the 2-D plane only. The objective being to understand the role of plasma
density inhomogeneity on the electron current pulse propagation, exact current
pulse solutions of the homogeneous EMHD plasma [36, 65] were chosen as initial
conditions for study. Both varieties of nonlinear EMHD solutions (i) stationary
rotating electron currents with monopolar magnetic field configuration and (ii)
traveling solutions with dipolar magnetic fields were chosen as initial states. A
variety of inhomogeneous plasma density profiles were chosen for studying the
propagation of these current pulses. The studies have resulted in a wide variety
of fundamental observations which have been briefly listed out here. These results
are presented in detail in the various sections of this Chapter.

In short, our studies have shown that the current pulse structures acquire an
additional drift in the presence of density inhomogeneity. This drift is transverse
to both the magnetic field and the density gradient. Thus the stationary monopo-

lar structures, in the presence of inhomogeneity, drift along the constant density
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contours and are unable to move across the density gradient. The dipolar structure
which have a constant axial speed in a homogeneous plasma, on the other hand
can penetrate inside a high density plasma region but are unable to come out in
a region with lower plasma density. They thus often get trapped within a high
plasma density region. The criteria for trapping vs. transmission of the current

pulses have been clearly identified from simulations.

4.1 Preliminary Description

We focus here on novel fundamental features associated with the transport of
electron current pulse structure in an inhomogeneous plasma. For this purpose we
simulate the simplified form (electron current flow is confined in the 2-D plane) of
the 2-D G-EMHD model equations with specified plasma density inhomogeneity
[78]. The initial current pulse configuration is chosen as exact solutions of the 2-D
nonlinear EMHD equations for homogeneous plasma, so as to be able to clearly

identify the role of density inhomogeneity during evolution.

4.1.1 Choice of Initial Conditions

There are two varieties of exact nonlinear solutions of EMHD equations [65] which
are used as initial configuration. One of them corresponds to a stationary radially
symmetric rotating electron current with monopolar magnetic field (the magnetic
field essentially has the same sign, positive or negative depending on whether the
electron current rotates clockwise or counterclockwise respectively). The other
structure moves with an axial velocity and has a dipolar magnetic configuration.
Monopoles

The monopoles being radially symmetric solutions in the 2-D z — y plane (here 2
has been chosen as the symmetry axis) we have chosen them to have the following

form:

)2 )2
byt = 0) = Aexp(— 2:60) W 2yo) )
o o,

(4.1)

where A, 0, and o, are the constants deciding the strength as well as the spatial
extent of the structure respectively. The values of xy and g, fix the location of the

central point of monopole in the 2-D space.
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Figure 4.1: This is the constant contour of the scalar field (b) forming a monopole.
The associated parameters of the monopole are A = 5.5, x9 = 0.0,y = 3.0,0, =
1.0 and o, = 1.0.

Dipoles

The other solutions of 2-D EMHD equations are in the form of dipoles which are
known to translate at a constant axial speed. These solutions have been obtained
by Isichenko et al. [65] by seeking stationarity in a frame moving with a velocity u
along some direction (say y for definiteness) . The EMHD equation in the moving
frame can then be expressed in terms of a Poisson bracket [b — V2b,b — ux] = 0
whose solutions can be obtained by seeking b—V?b = f(b—ux). Here f can be any
function of its argument. Isichenko et al. [65] sought localized solutions by choosing
separate functional forms for f in two regions. For radii r = \ﬂxQ +y?) <o, f
was chosen as a linear function and for r > ry, f = 0. This leads to the following

form for the solution
bi(r,0,t =0) = [dyJ1(k1r) + da] cos(6) (4.2)

bo(r,0,t =0) = d3K,(r)cos(0) (4.3)
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The choice of ry typically defines the spatial extent of the dipole structure. The

6 ]

Figure 4.2: This is the constant contour of scalar field b forming a dipole within the
spatial extant of ry &~ 1 and having the axial velocity u = 0.1 along the negative y
-direction. The left lobe of the dipole corresponds to positive value of amplitude
while the right one corresponds to negative value of amplitude.

coefficients d;, d> and d3 of the solution are obtained by matching the solution and

its derivative at r = ry as described in the Appendix B.

4.1.2 Choice of Density Inhomogeneity Profile

We have chosen various kinds of density inhomogeneities. We provide a list below
of the density profiles that we have adopted in our studies. One of them are
essentially slab configuration for which the constant density contours are straight
lines along one axis. In this case the variation of density profile is considered to be
a function of only one of the cartesian coordinates, e.g. y in our case. In the other
variety we choose constant density contours in the shape of circles, i.e the density
is radially symmetric. These two slab and radially symmetric density profiles are

represented by the letter S and R respectively. The spatial variations for the slab
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and circular profiles are chosen to have either tangent hyperbolic dependence or a
gaussian form which are identified by letters T and G respectively. Furthermore,
when this spatial density profile has a higher density compared to that of the
background region in the simulation space it is called a density hump and denoted
by the letter H, and when it has a lower density than the background region we
call it a cavity C. Thus there are 8 possible combinations (STH, STC, SGH,
SGC, RTH, RTC, RGH, RGC) that have typically been considered in our
simulations. These profiles have been shown in the following Figures (4.3), (4.4),
(4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) respectively. The functional form of these

density profiles have also been given.

Profile : STH & STC

(y =) /0% —w
n(x,y) = hy — hy tanh ! (4.4)

g
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PNWRUION®©O©O
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P NWRUO~N®©OR

Figure 4.3: STH density profile (hy = 5.5,hy = 4.5,w = 2.0,y = 0.0,0, =
1.0,0 = 0.5)
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Figure 4.4: STC density profile (h; = 0.6,hy = —0.4,w = 2.0,y = 0.0,0, =
1.0,0 = 0.5)

Profile : SGH & SGC

n(x,y) = hy + hyexp (— (y — 90)2 /02) (4.5)
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Figure 4.5: SGH density profile (h; = 1.0, hy = 9.0,y = 0.0, 02 = 3.0)
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Figure 4.6: SGC density profile (h; = 1.0, hy = —0.9, 59 = 0.0, 02 = 3.0)

Profile : RTH & RTC

V@ =) o2+ (y = y0)? Jo2 —w

g

n(x,y) = hy — hy tanh (4.6)
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Figure 4.7: RTH density profile (hy = 5.5,hy = 4.5,w = 2.0,z = 0.0,yp =
0.0,0, =1.0,0, = 1.0,0 = 0.5)
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TT T T T T T

Figure 4.8: RTC density profile (hy = 0.6,hy = —0.4,w = 2.0,29 = 0.0,y =
0.0,0, =1.0,0, = 1.0,0 = 0.5)

Profile : RGH & RGC

n(z,y) = h1 + haexp {— (x — 20)" Jor — (y — y0)° /o, } (4.7)
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Figure 4.9: RGH density profile (h; = 1.0,hy = 9.0,29 = 0.0,y9 = 0.0,0, =
v3.0,0, = v3.0)
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Figure 4.10: RGC density profile (hy = 1.0,hy = —0.9,29 = 0.0,y = 0.0,0, =
v3.0,0, = v3.0)

4.2 Inhomogeneity Induced Drift Velocity

We place the monopolar current pulse structure in the inhomogeneous region of
the plasma for the various density profiles. We report the evolution here for the
specific density profile STH defined in the previous section. We observe that the
monopole which is otherwise stationary in a homogeneous plasma acquires a drift
velocity in the presence of density inhomogeneity. This drift is transverse to the
density gradient. The monopole is seen to be moving along the constant density
contours. In Fig. (4.11) the propagation of the monopole in the density profile
of STH has been shown at various times. For the case shown in Fig. (4.11) we
have chosen the simulation box of size L, = L, = 10 and = and y coordinates
range from —5.0 to 5.0. For the plasma density we have chosen h; = 5.5, hy = 4.5,
w = 2.5, yp=0.0, 0y, = 1.0 and o = 1.0 for the profile STH . The maximum and
minimum value of density is therefore n,,,, = 10 and n,,;, = 1 respectively. The
local electron skin depth therefore ranges from 0.3 < d. (= 1/4/n) < 1.0. The high
density plasma region here is confined within | y |< w for all z. The density falls
sharply within a length dy = o from 10 to unity beyond | y |~ w.

The additional drift caused by the density inhomogeneity can be understood
from the simplified form of the 2-D G-EMHD equation by ignoring electron inertia.
Therefore, by replacing €, — b in the Eq. (3.3) of the evolution of the generalized
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Figure 4.11: The propagation of the monopolar structure (color contours) in an
inhomogeneous plasma density is depicted by showing the location of the structure
at various times in the different subplots of the figure. The thick black lines
represent the plasma density contour. In this case the plasma density is chosen to
be a function of y only. The central y region of width w = +2.0 corresponds to a
high density (10 times of the density at the edge region)

vorticity (€2,) along the symmetry direction we obtain the reduced equation as

ob bzxVn
__ Vb= 4.
ot n? b=0 (4:8)

The equation suggests the presence of an additional drift velocity which is of the

form of be X ¥
g, = 2 vn (4.9)

n2

For the density profile of Eq. (4.4), n is a function of y alone and thus the monopole
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drift along z direction, and the magnitude of the drift velocity is given by

0 (1

From the subplots of the Fig. (4.11), the value of v, evaluated by observing the
distance propagated by the structure along x is 0.0307. This is obtained by the

expression
Tt=135 — Tt=60
Vg = — A (4.11)

where ;135 ~ 1.9 and z;_¢9 =~ 4.2 are the position of monopole at the time
t = 135 and t = 60 respectively, and is taken from the last two subplots of the Fig.
(4.11). This observed drift velocity of the monopole is close to that estimated from
the Eq. (4.10) for the electron drift velocity, as b typically ranges from 0.0233 to
0.1997 in the monopolar structure and 9(1/n)/dy ranges from 0.1131 to 0.448 over
the structure. This implies that the value of vy, from the expression can be about
0.0026 to 0.089. The observed value lies within this range. In fact the average of
vqz evaluated over the y extent of the structure (through which the structure would
translate) turns out to be very close 0.0369 to the observed velocity. This clearly
indicates that the monopole is essentially propagating with the drift velocity of
< vg; >. Thus the direction as well as the magnitude of the propagation velocity
is observed to match with the expression given by Eq. (4.9).

It should be noted that the other density gradient dependent terms arising
through the finite electron inertia related terms are typically smaller in magnitude
and they generally contribute as a source causing modification of the spatial profile
of the magnetic structure.

It should be noted that the dipole solutions translate even in a homogeneous
plasma. Thus in the presence of inhomogeneity their propagation will depend on
the superposition of their axial speed and the density gradient induced additional
drift velocity discussed above. Clearly, this would then lead to richer class of
phenomena. We have investigated this, and report it in the next section. One of
the main conclusion is that the dipole can penetrate inside a density hump but

avoids density cavities.
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4.3 Dipole Penetration in High Density Region

Since the dipoles can propagate by themselves in a homogeneous plasma we can
place it at any initial location, and observe as it propagates towards the region
where plasma density is inhomogeneous. We first report our simulations here for
the STH density profile. Initially the dipole is placed at a location away from
the density gradient region, i.e. where the plasma density is low and uniform with
n = 1. It is oriented in such a fashion that it propagates towards the higher density

plasma region. An interesting aspect of the evolution is that the dipolar structure
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Figure 4.12: Various stages of the propagation of a dipolar structure through an
inhomogeneous density plasma has been shown. The inhomogeneity in plasma
density is similar to that of Fig. (4.11) in this case. The figure clearly shows the
penetration of the dipole through the plasma density inhomogeneity to enter the
high density region. The lobes of the dipole structure are squeezed towards each
other as they pass through the inhomogeneous region. However, once inside the
high density homogeneous region they again acquire a balanced form.

is observed to cross past the inhomogeneous density and enters the high plasma

density region. The subplots of Fig. (4.12) clearly illustrate the penetration of the
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dipolar structure in the high density plasma region. (For the plots of Fig. (4.12) the
associated parameters of the density profile STH are hy = 5.5, hy = 4.5, w = 2.0,
o, = 1.0, yo = 0.0 and 0 = 0.4. The box length in this case is L, = L, = 47.) We
observe that at the inhomogeneous density region the axial translational velocity of
the dipole increases considerably. The two lobes get squeezed towards each other
forming a shock like structure in the direction transverse to the density gradient.
This behavior appears to be in stark contrast to the propagation characteristics
of the monopolar structures, which merely show a movement transverse to the
density gradient direction. This observation of dipole propagation can, however, be
understood readily. For the dipole structure approaching the high density plasma
region ( along decreasing y, in Fig. (4.12) ) the left lobe corresponds to positive
values of b whereas the right lobe has negative b values. Clearly, when the two lobes
of the dipole encounter the density inhomogeneity the left lobe has a drift velocity
due to the density inhomogeneity towards right (positive x direction) whereas the
right one drifts towards the negative x direction. This squeezes the two lobes of
the dipoles closer in x. As a result the size of the lobes as well as their separation
gets significantly reduced. This also causes an enhancement in the magnitude of
| b | of the two lobes. The axial propagation velocity of dipole is known to increase
with increasing | b | and reduced separation between its lobes. Thus, the reduced
distance between the lobes as well as the enhanced amplitude of | b | results in an
increased axial propagation velocity of the dipole. This accelerates the penetration
of the dipolar structure in the high density plasma region.

Let us now study in detail the behavior of the dipole as it enters the high
density plasma region. Though the shape of the dipole is considerably distorted
while it traverses the inhomogeneous plasma region, but once it is inside the high
density homogeneous plasma region it regains the familiar dipolar form. The scale
length of the dipole, in the high density region changes by the same factor as the
ratio of the skin depth of the high and low density regions. For instance , initially
the size of the dipole was chosen to have rp = 1.0 and at ¢ = 690 when it is
completely inside the high density region, a reduction by a factor of approximately
1/3 in the size is observed. We thus observe that the dipolar structures are fairly
robust. Even after encountering a strong density inhomogeneity, once in the region
of homogeneous plasma they adjust smoothly to the new value of the skin depth

that corresponds to the high density region. It should be noted that for the case
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when this new dipole approaches the decreasing plasma density at the other end,
the effect is entirely different. The sign of Vn being opposite, in this case the lobes
separate due to the density gradient induced drift. Thus, the dipole separates and
forms two monopoles at this end. These monopoles then drift along the constant
density contours. Thus the structure does not come out of the high density plasma
region.

Thus we see that the dipole penetrates the high density region but is unable
to come out of the other end where the density again decreases. In the above
case we had started from an exact solution of EMHD equations in a low density
plasma. We have then let the structure evolve towards high density region. It is
observed that once inside the high density region the structure does not come out
from it. We have also simulated the case with STC density profile. Here, the
dipole solution encounters a density cavity in its path. The evolution is shown in
the plot of Fig. (4.13). The central region | y |< w of the box corresponds to a low
density plasma region n = 0.2 and h; = 0.6, ho = —0.4 and other parameters are
same as that of Fig. (4.12). In this case as the structure encounters the density
inhomogeneity region with decreasing plasma density the lobes show a separation
due to the density gradient induced drift. The separation results in a reduced
axial velocity of the dipole, which ultimately diminishes to zero as the separation
distance between the two lobes exceeds the electron skin depth. The two lobes then
separately move as two monopolar structures, transverse to the density gradient.
Thus, this too illustrates that the dipole is unable to penetrate the region of lower
plasma density.

The same features are exhibited even when the dipole encounters a density
profile with a finite transverse extent. We demonstrate this here for the RTH and
RGC density profiles. The various stages of the simulation have been presented
in Figs. (4.14) and (4.15). The choice of parameters for simulation with the RTH
density profile are hy = 5.5;hy = 4.5;w = 2.0;29 = 0.0;y9 = 0.0;0, = 1.0;0, =
1.0;0 = 0.4. For this particular density profile a dipole is placed with its center
on the line x = 0 at the positive value of y = 4.0. The axis of the dipole is
parallel to the y axis as can be seen from the subplot at t = 0 of Fig. (4.14).
The dipole velocity is directed along the negative y axis so that it approaches the
high density plasma region. It can be seen from the subsequent subplots that

due to the density inhomogeneity related drift velocity of the individual lobes,
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Figure 4.13: In this figure the dipole is shown to approach a density cavity (lower
density plasma region). It can be observed that the dipole is unable to penetrate
the lower density plasma. The two lobes of the dipole get separated transverse to
the density gradient direction and subsequently they evolve as separate monopolar
structures.

the two lobes of the dipole approach each other. This enhances the axial dipolar
velocity and the dipole structure enters the high density region. Once inside the
homogeneous high density region it translates along its axis which is along the
diameter of the circular high density region. Upon reaching the other end the
dipole again encounters the inhomogeneous plasma density region. However, the
direction of the density gradient is now opposite to the one it encountered while
entering the high density region. Thus, in this region the two lobes of the dipole
separate from each other. As the separation between the lobes exceeds the skin
depth distance the lobes act like individual monopolar structures and move along
the constant density contours. In this case the density gradient being along the

radial direction, the two structures move along the perimeter of the circle. They
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Figure 4.14: The trapping of the dipolar structure in a high density plasma has
been illustrated in this figure. A high density plasma with a circular profile in the
x —y plane represented by the thick black contour lines are depicted on the various
subplots. A dipole structure can be seen to penetrate the high density region.
However, once inside the high density region it continues to remain trapped in this
region.

thus again come in close contact at the same point of the circle from where they had
entered the high density region. At this place they again form a dipolar structure
and translate along the diameter of the high density region. The simulations show
that this cycle keeps repeating.

We have also studied the case of Gaussian radial cavity ( RGC profile) placed
at the center of the simulation box. We show dipole propagation in the Fig. (4.15)
for this RGC profile. The choice of parameters for simulation with this density
profile are hy = 1.0;hy = —1.0;29 = 0.0;y590 = 0.0;0, = 1.0;0, = 1.0. For this
parameters the ratio of the maximum depth of density profile to the background

amplitude of the density is around = 0.2. In this case the dipole is placed initially

47



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....

at the position (0,4.086) and the sign of the each lobe of the dipole is chosen in
such a manner that it is propagating towards the cavity. When it passes through
the density inhomogeneity, each lobe of the dipole starts separating untill the axial
velocity of the dipole becomes zero. After that each lobe behave like a monopole
traversing around the outside periphery of the cavity as shown in the subplots at
t = 360.0,420,495.0 of Fig. (4.15). At later time it is observed that both lobes
meet, at other end of the cavity where they again form structure of the dipole and
propagate towards negative y axis. These studies have thus clearly demonstrated
that a dipole current pulse can penetrate and remain trapped inside a high density

plasma region.

t=150.0 =300.0

"

Figure 4.15: The propagation of the dipole through an inhomogeneous density
profile when it form a cavity within the finite region of the space as is shown in
the each subplot of the figure with the black thick contours. In this case the dipole
structure do not get to penetrate inside the cavity.

We now provide a conclusive evidence of the fact that the penetrated structure

in the high density exhibits the usual traits of the known dipole solutions of the
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EMHD equation. For instance, the dipoles upon head-on collisions are known to
exchange partners and propagate in a direction orthogonal to their initial prop-
agation [36]. We show this happens also for the dipolar structures which enter
the high density hump and collide within the high density region with the other
dipole. Choosing the RTH profile for density we place two dipoles initially at the
location of (0,4.08) and (0, —4.08) as shown in the subplot at t = 0 of the Fig.
(4.16). Both these dipoles enter the high density plasma region and after colli-
sion are seen to exchange their partners forming the new dipolar configuration and
propagate away from each other in a direction perpendicular to the original direc-
tion of propagation. This is evident in subplots at ¢ = 675.0,990.0, 1290.0. Once
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Figure 4.16: This figure represents the collisional behavior of two dipoles in the
presence of density inhomogeneity when the RTH density profile is considered in
the simulation.

they reach the high density edge the lobes of these newly formed dipole get sep-
arated and they move along the constant density contours as monopoles (subplot

at t = 2040.0). The monopolar lobes again meet (subplot at ¢ = 300.0 ) forming
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dipoles and propagate radially inward. This cycle also keeps getting repeated.

4.4 Trapping vs. Transmission through High Den-
sity Region

The propagation characteristics of the dipolar structure studied in various contexts
in the preceding section clearly demonstrates that EMHD magnetic structures of
dipolar form can enter a high density plasma region. However, once inside a
high density plasma region it remains trapped there. One would, however, expect
that a weaker inhomogeneity and/or a smaller density reduction may transmit
the current pulse. In this section we seek features which provide a quantitative
criteria for trapping vs. transmission. We carry out studies with the two profiles
STH and SGH by choosing various values of their parameters. These parameters
essentially decide the inhomogeneity scale, the total density change and the width
of the inhomogeneity region.

Our studies show that while the form of inhomogeneity does indeed determine
whether the structure is transmitted or remains trapped, the strength of current
pulse pattern has no role in this. In Fig. (4.17) we show the snapshots at various
times from some of our case studies for the profile SGH. We show the propagation
of a dipole with axial speed u = 0.01 (this velocity is the propagation speed of the
structure in a homogeneous plasma where the density ng = 1.0) for the subplots of
first, second and third column. The fourth column correspond to a dipole which
propagates at a faster speed of w = 0.1. The thick black line in the subplots
show the location where the density gradient is the maximum. The parameters
concerning the density profile SGH for the four different cases corresponding to
the four columns of Fig. (4.17) are (a) h; = 1.0, hy = 1.0, 0 = 0.0,0 = 0.7071, (b)
hi =1.0,hy = 1.0,y = 0.0,0 = 1.0,(c) hy = 1.0,hy = 1.0, = 0.0,0 = 1.414 and
(d) hy = 1.0,hy = 1.0,550 = 0.0,0 = 0.7071 respectively. It is observed that the
dipole is trapped for both the cases (a) and (d). This can be discerned from the
fact that for these two cases the two lobes get separated by a distance more than
the typical value of the electron skin depth as they try to come out from the other
end. The separation of the lobes with distances larger than the typical value of

skin depth essentially reduces the dipolar structure to a set of monopoles. On the
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Figure 4.17: The four columns of the subplots represent four different cases of
propagation of current pulse structure past the plasma density inhomogeneity.
The detailed configuration of the density profile and the current pulse structure
for each of the four cases has been mentioned in the text. The thick dark straight
lines in the plot show the constant density contour at the location of maximum
gradient. The cases corresponding to the (a) and (d) columns show trapping (lobes
get separated upon reaching the other end ) and those for (c) and (d) columns
show transmission. In each subplots, the red and blue lobe of the structure implies
positive and negative amplitude of the magnetic field directed along the symmetry
direction Z, respectively.

other hand for cases (b) and (c) the dipole is transmitted past the inhomogeneity.
It should be noted that for case (a) and case (d) the inhomogeneity profile is
similar, however, the chosen current pulse structure for (d) was moving 10 times
more rapidly and hence had a higher magnitude of the magnetic field associated
with itself. Even then we observe that for both cases the dipole gets trapped
within the high density region. Several detailed studies have been carried out
with different speeds of the incoming dipole and all of them reveal that the dipole
structure gets trapped irrespective of its speed and/or the maximum amplitude of
the magnetic field that it has. We also studied the prospect of trapping in cases

(b) and (c) by choosing different dipolar pulse structures. Here too no matter
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what the dipolar parameters were the structure always got transmitted past the
inhomogeneity. Such kind of studies have been carried out with profile STH also.
The studies, therefore, clearly illustrate that the trapping and/or transmission is
solely dependent on the density profile and is not dependent on the current pulse

pattern.

Table 4.1: Profile SGH

hy ho o? L,/o < L, > /o Status
1.0 1.0 0.9 1.8568 2.31 Untrap
1.0 1.0 1.0 1.8944 2.22 Untrap
1.0 1.0 1.5 1.8766 2.28 Untrap
1.0 1.0 2.0 1.8951 2.29 Untrap
1.0 1.1 3.0 1.7616 2.16 Trap

1.0 1.2 3.0 1.6733 2.02 Trap

To study the dependence of trapping and/or transmission characteristics on
the density profile we carried out a large number of studies with various choices of
the parameters associated with the inhomogeneity. Both kinds of density profiles
represented by Eqs. (4.4) and (4.5) are considered. The results for Profile SGH
and Profile STH have been summarized in Table (4.1) and Table (4.2) respectively.

Table 4.2: Profile STH

hy hs w o L,/o < L, > /o Status
2.5 1.5 2.0 0.4 1.666 2.13 Trap
2.5 1.5 1.0 0.4 1.666 2.19 Trap
1.5 0.5 2.0 0.4 3.0 4.02 Untrap
1.5 0.5 1.0 0.4 3.0 3.81 Untrap
2.5 1.5 1.0 0.6 1.666 2.19 Trap
2.5 1.5 1.0 0.8 1.666 2.18 Trap
3.5 2.5 2.0 0.4 1.40 1.81 Trap
5.5 4.5 2.0 0.4 1.20 1.63 Trap
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For simulations shown in Table (4.2) we have chosen yo = 0.0 and o, = 1.0.
The value of other parameters for these studies have been mentioned in the table
itself. We introduce here a parameter L, = n/Vn as the scale length for the
density variation. It should be noted that for a linear density profile of the form
no(y) = neo(l + ay) , L, = 1/a and is a constant. For our choice of density given
by profile SGH and STH , L, would vary. The fastest rise in density would
occur at a location where the value of L,, is minimum.

The minimum value of density gradient scale length has been denoted by L, in
our Tables (4.1) and (4.2). The typical measure for density scale length can also be
obtained by evaluating the average L, around its minimum value over a distance of
o (As mentioned earlier the parameter o, typically represents the total extent of the
region where the density is inhomogeneous). We denote the average scale length of
density variation by < L,, > in our tables. The outcome of the studies in terms of
whether the current pulse structure gets transmitted or remains trapped has also
been listed in these tables. The form of the current pulse used for carrying out the
simulations listed in the two tables were all identical. The interesting aspect worth
noting is that in all these studies, cases where trapping occurs the ratio r = ﬁn/a
(or r; =< L,, > /o), is smaller in comparison to those for which transmission takes
place. Thus whether a structure will be trapped and/or transmitted is decided by
the ratio of L, /o, higher this ratio more are the chances of transmission.

From considerations of time reversal invariance of the collision less G-EMHD
equations, the current pulse structure which enters a local high density region,
should invariably come out of the region from the other end. However, this does
not happen and we observe that the structure in some cases gets trapped within
the high density region. The breaking of the time reversal invariance indicates the
presence of an underlying process of energy dissipation. We will see in the next
Chapter that this is associated with the current shock layer [80] that forms as the
dipole enters the high density region.

4.5 Summary

In this Chapter the G-EMHD equations in 2-D were used to study numerically the

evolution and propagation of nonlinear coherent solutions of the EMHD equations
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(which depict electron current pulses) in the presence of density inhomogeneity.
The two varieties of coherent solutions (viz., the stationary monopolar solutions
and the traveling dipolar solutions) were chosen for the study. Interesting novel
aspects of their propagation were observed and analyzed. Our studies clearly
show that density inhomogeneity leads to an additional drift of the current pulse
solutions. This drift is along the constant density contours. The monopoles which
are stationary structures in a homogeneous plasma thus move along the constant
density contours of plasma. The dipoles which already have a translational speed
along their axis in a homogeneous plasma show interesting behavior in the presence
of inhomogeneity. Their propagation is now governed by the combination of their
axial drift and the drift due to the density inhomogeneity. The interplay between
these two drifts for dipole generates variety of possibilities. The dipole current
pulses can move across the density inhomogeneity to penetrate a high density
region. However, once inside a high density region we observe that they remain
trapped there. The criteria for trapping vs. transmission was determined by us
and was shown to be dependent on a parameter which measures the ratio between
the typical density inhomogeneity scale length and the total distance traversed by
the structure in the inhomogeneity.

An important point to ponder here is that this particular observation of trap-
ping violates the time reversal invariance of the dynamical equation. This suggests
that there is some dissipative process at work. In fact while the structure enters the
high density plasma region it forms current shock structures at the inhomogeneity
layer | see Fig. (4.12)]. The process of energy dissipation through shock formation

and its relevance to the fast ignition scheme will be discussed in the Chapter 5.
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Chapter 5

Collision - less Energy Dissipation of
Electron Current Pulse: Application

to Fast Ignition

In the previous Chapter 4 it is shown that an electron current pulse with dipolar
magnetic field can penetrate a high density plasma region but often it is unable
to come out in the low density plasma region. It thus gets trapped inside a high
density plasma region. This indicates a violation of time reversal invariance and
is suggestive of the presence of a dissipative mechanism at work. In the present
Chapter we show that indeed a strong energy dissipation occurs as a result of
sharp current layer magnetic shock formation while the pulse crosses the plasma
density inhomogeneity layer to enter the high density region. This mechanism of
energy dissipation from the electron current pulse is shown to be independent of
the magnitude and the character of the dissipative processes present in the system.
Thus energy gets dissipated even from a collision - less electron current pulse via
this mechanism.

Electrons prove to be a good accessible source of energy, they can be easily
accelerated to high energies because of their low mass. However, since the Ruther-
ford collision cross section of electrons diminishes rapidly with increasing energy of
electrons, they can not be efficiently employed for the task of energy deposition in a
plasma. With this novel collision - less mechanism at work, however, they can now

be suitably used for efficient heating of the plasma medium. Furthermore as the
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mechanism is dependent on the inhomogeneity of the plasma density, it provides
a method by which a localized heating of the plasma at a desirable location can
be maneuvered. The other advantage is that the electrons can be used to heat an
overdense region of plasma as well, where lasers can not penetrate and hence can
not be employed. This is precisely the situation in the context of hot spot creation
in Fast Ignition (FI) [5] laser fusion scheme for ignition. The relevance of the pro-
posed collision - less mechanism of energy dissipation to the frontline FI concept
of laser fusion is shown in detail. The existing PIC simulations [29, 30, 32, 33| as
well as a recent experiment [84| conducted at ILE Osaka provides strong support

for the proposed collision - less heating scheme.

5.1 Introduction

The propagation of a short duration electron current pulse is perceived by plasma
as a propagating high frequency electromagnetic disturbance. The plasma tries to
shield itself from this disturbance by inducing return currents. This configuration
of currents in the plasma helps, as it ensures that electron currents exceeding
the Alfven limit [51] can also easily penetrate inside a plasma medium. Some
simulations have clearly shown that the combination of forward current (due to
incoming current pulse) and return shielding current of plasma, is unstable to
fast electromagnetic instabilities known as Weibel instability [29]. This instability
separates the forward and return currents spatially. This leads to the formation
of cylindrical current channel. The center of cylindrical channel carries forward
current which is surrounded by a cylindrical shell of return plasma current. The
flow configuration, thus varies along axial and radial direction of the cylinder and
can be taken as independent of é, the poloidal angle of the cylinder. Thus this
is essentially a 2-D current configuration. Such a current configuration produces
only poloidal 6 magnetic fields.

There are typically two kinds of electron current pulses which are exact solu-
tions of the 2-D nonlinear EMHD system for homogeneous plasma as discussed in
Chapter 4. These two varieties of solutions have been shown in the plot of Fig.
(5.1). The top three subplots (a), (b) and (c) show the contour plot of the associ-
ated magnetic field, the profile of magnetic field and the electron flow at the mid
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y = 0 section of the structure respectively for the monopolar electron current pulse.
These are radially symmetric rotating electron current flow patterns which are non

- propagating in a homogeneous plasma. The subplots (d), (e) and (f) corresponds
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Figure 5.1: This is the schematic diagram for current pulse associated with the 2-D
nonlinear solutions of Electron Magnetohydrodynamics (EMHD) model equations.
Subplots (a), (b) and (c) show the contour plot of the associated magnetic field,
the profile of magnetic field and the electron flow at the mid y = 0 section of the
structure respectively for the monopolar. Subplots (d), (e) and (f) corresponds to
the same features for the dipolar structure.

to the same features for the dipolar solutions which move with uniform axial speed
u in a homogeneous plasma. The speed u typically increases with the maximum
amplitude of | b | shown by the peak value in subplot (e) and it also increases
with the increasing proximity of the two lobes. This dipolar solution can thus
be considered as a model for the finite propagating electron current pulse in the
plasma for our studies. For these dipolar structures the central region (subplot(f))
shows a forward (along the propagation direction) current flow which bifurcates
and returns along both sides as a return current. The poloidal symmetry axis (é)
of the cylindrical current channel corresponds to the symmetry axis (2) of slab
geometry of the 2-D EMHD system ( as considered for this thesis). The propagat-

ing direction (g) of dipole corresponds to the axis of cylindrical current channel.
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We would study here the evolution of dipole current pattern and its total energy
content as it moves through inhomogeneous plasma density. For this purpose we
have employed the simplified form of G-EMHD model equation [78].

5.2 Shock Formation: Current Pulse Propagation

through Inhomogeneity

The Generalized Electron Magnetohydrodynamic (G-EMHD) model has been dis-
cussed in detail in Chapter 2. We employ the 2-D evolution equations assuming 2
being the symmetry axis. The electron current flow is confined in 2-D x — y plane
for dipole as shown in subplot (f) of Fig. (5.1). Incorporating the effect of col-
lisional dissipation through resistivity 7 and viscosity in electron flow p (this can
be either classical and/or anomalous arising through turbulence) in the G-EMHD

model we have:

a0 1 o (1
T h ZEX VLV = O — (= | + V% — V2V
ot n Ox 0y \ n
1, 1 On Ob
Qb = b—EV b+ﬁ6_y% (51)

Here plasma density (n) has been chosen to vary along g, the direction of current

pulse propagation. The density has the STH profile described in Chapter 4 given

by.
(x,y) = h1 — h2tanh { = W wloy (5.2)

g

n

Where h1,h2,yo, 0., w and o are parameters which define this profile and have
been chosen as 5.5,4.5,—3.0,1.0,2.2 and 0.6 respectively. The profile thus has
homogeneous regions of both low (n = 1) as well as high densities (n = 10) in
the simulation domain separated by a spatial region in which the density varies
sharply. As mentioned the direction ¢ is also the propagation direction of dipole
and it is placed in a fashion such that it moves towards increasing plasma density.
Fig. (5.2) shows the evolution of an initial 2-D dipolar configuration of current
pulse as it moves past an increasing plasma density. The simulations show that

as dipole encounters an increasing plasma density, a transverse drift velocity (dis-
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Figure 5.2: The contour plots of the magnetic field b in the z — y plane is shown
in subplots [a,b] (inertialess case) [d,e] (full G-EMHD) at two different times. The
numbers (-2,0,2) on the axis of these plots show length in units of electron skin
depth (corresponding to the low density plasma). The magnetic field b profile in
x at the mid plane of the structure in y has been depicted at various times in
subplot (c) and (f) for inertialess and the full G-EMHD simulations respectively.
The subplot (g) and (h) show the inhomogeneous plasma density profile through
which the dipolar structure evolves. The cross x and the arrow — mark on these
subplots show the initial location of the dipole for inertialess (dipole has no axial
velocity in this case) and full G-EMHD simulations.

cussed in Chapter 4) given by 0; = —b0(1/n)/0y is experienced by structure. The
sign of magnetic field (b) being opposite in both lobes, the lobes drift towards each
other while approaching a high density plasma region (see Fig. (5.3) for schematic
illustration ). This results in a collision between two lobes resulting into a cur-
rent shock formation. The shock formation can be clearly seen from the constant
contour plots of b in Fig. (5.2). The shock forms even when electron inertia is
neglected. To show this we have simulated the inertialess limit of Eq. (5.1). In the
inertialess case the shock structure is more prominent. The dipole has no axial ve-
locity for inertialess case. Thus for this case the structure has been placed initially

itself at a location where plasma density gradient is finite (the location is high-
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lighted by x symbol in the density profile as shown in subplots (g,h) of Fig. (5.2)).
For simulation with full G-EMHD equations including electron inertial terms the
dipole has an axial translational speed. In this case the lobes of dipole are pushed
closer to each other, their size diminishes and the associated maximum magnetic
field increases, as a result of which dipole translates faster through inhomogeneous
region. The structure, therefore, keeps penetrating towards higher density region
and it also keeps getting sharper. However, once it reaches the plateau of high
density side it again re-adjusts its shape to a dipolar form corresponding to local
skin depth.

y . I~de |,

Propagation direction of dipolel Homogeneous region (low amplitude )

vn Gradient region

Homogeneous region (high amplitude)

Gradient region

Homogeneous region (low amplitude )

X

Figure 5.3: Schematic diagram of the dynamics of the dipole when it encounters
the density inhomogeneity (shown by a thick curved black line that is varying along
the y- direction having different region of inhomogeneity).
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5.3  Evolution of Total Energy Associated with

Current Pulse

We now look at the evolution of total energy associated with current pulse as it
moves past inhomogeneity forming current shock structure. The energy associated
with dipole structure is sum of magnetic and electron kinetic energy and is given
by the expression E = [ [(b*+(Vb)?/n)dxdy, which is conserved in the absence of
any dissipation. The choice of n = 1 = 0 ensures that there is no energy dissipation
while structure (resolved well by spatial grid) moves through homogeneous region.
Our simulations indeed show that there is no change in £ while dipolar structure

is in the plateau region of low as well as high densities. The constancy of energy

w10° E ia) 0’ E ib) w0 & ic)
1
|
i

!
—x=dy=0.0872 = n=00001 | — u=0.00008
= dx=dy=0.0684 == rn=0.0003 ! ~Tru=0000
~ ™~ dx=dy=0.0555 ES ~ — = n=0.0006 ~ T Tu=0.0003

600 a ana 0 200 400 500 800

Time

Time

Figure 5.4: Evolution of the total energy of the structure for full G-EMHD simula-
tions, as it propagates through the inhomogeneous plasma density (a) for various
grid resolutions (b) for simulations with finite resistivity parameter 1 and (c¢) with
finite viscosity parameter p in G-EMHD equations. A thick dashed vertical line
shows the time when the dipole enters the inhomogeneous plasma density region.

has also been tested in inhomogeneous region for those magnetic configurations
which do not produce shock structures (e.g. monopoles). We, however, observe
that in this particular case when there is shock formation, as the dipolar magnetic
structures translate through inhomogeneous density region, the energy E exhibits
a sharp fall (AE) as shown in subplot (a) of Fig. (5.4). The timing of this drop in
energy content of dipole is observed to coincide with interval when dipolar structure
translates past inhomogeneous plasma density region. This sharp fall in energy is
due to the shock formation, which cannot be resolved adequately no matter how

fine one chooses the spatial resolution to be. The value of AE is typically same
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for different choices of grid resolution Az, as can be seen from subplot (a) of Fig.
(5.4) . The shock width essentially adjusts itself according to grid resolution for
the runs with n = p = 0. Since AFE is not sensitive to any change in the value
of Az it shows that total energy dissipation is independent of the value of grid
dissipation.

We have also carried out simulations with finite and various values of n and
p. The energy dissipation for these cases have been shown in subplots (b) and
(c) of Fig. (5.4). It can be seen that in these cases the energy also dissipates
while structure passes through homogeneous region of low as well as high plasma
densities. However, the drop in energy while the structure moves through the
inhomogeneous density region remains approximately same for different values of
n and p. Also this AE compares well with the case of n = u = 0 of subplot (a) of
the same figure, where only grid dissipation was operative. We thus find that the
energy dissipation is independent of the value as well as the form of dissipation.
This, as argued below is due to a suitable adjustment of shock width [, with
dissipation coefficient. So, even when the dissipation coefficient tends towards

zero the total energy dissipation is finite and of a constant value.

5.4  Emergy Dissipation through Shock Formation

We now analyze the process of shock formation and magnitude of energy dissipation
associated with it. As the two lobes of the dipole approach each other it leads to
the steepening of the electron current gradients. We have shown that the shocks
form even when one carries out the inertialess G-EMHD simulation. Thus, we
choose to analyze the simplified inertialess limit of the evolution equations for
which Q, = b and Eq. (5.1) gets simplified to 9b/0t — b(9b/0x)d(1/n)/dy = nV?2b.
For a simple density variation of the form 0/0y(1/n) = —K, (here K, the inverse of
the normalized density scale length, is assumed to be a positive constant with the
negative sign signifying an increasing plasma density with y) one obtains Burger’s
equation. The Burger’s equation is known to produce shock structures. Since
shock is along x , for small 7, we have nV2b ~ nd%b/0x?. The analytical form
of the shock structure can be obtained by seeking stationarity in a frame moving

with a speed u ( detailed derivation of shock structure has been given in Appendix
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C). Thus, upon replacing 9/0t by —ud/dz and integrating with respect to x we

get in the inertialess limit

bokk — bokK —
b(z) = % + OTutanh{OTu (% +K2)} (5.3)

We have used the condition b = by, and db/dx = 0 at the boundaries. The
parameter K5 is the second constant of integration to be determined from the
condition x = —o0, b = by. It is clear from the expression of b that the layer width

l. = 2n/(bo K — u) scales linearly with n . The rate of heat dissipation in this sharp

Q:/a /L /lw n(%)%xdydz (5.4)

The range of y = L (the shock length) and z (the third dimension) is the system

layer would be given by

length along this dimension = a. The z coordinate, however, has to be integrated
over the layer thickness [, ~ 1. Retaining only by K in comparison to u we obtain
the rate of energy dissipation in the shock structure as

biaL _ BBKLa  ba?

= 2 KLv, (5.5)

@=n=r 2 2

Here we have replaced one of the by by av, to obtain the last equality. Here v,
is the incoming electron velocity. The independence of energy dissipation () from
the magnitude of classical resistivity parameter n in the presence of sharp density
gradients is known as the EMHD resistance and has been considered in literature
earlier [1]. Here we have demonstrated it explicitly by numerical simulations.

We next evaluate the fraction of the incoming energy which gets dissipated in
the shock structure by this mechanism. The incoming rate of magnetic energy in-
flux is Enrag = (b3/2)vea?, provided one assumes that the typical incoming current
configuration has identical extent in the two transverse dimensions (typically, for
a structure of the size of electron skin depth, both kinetic and magnetic energies
are of similar order). From Eq. (5.5) we see that a fraction (K L) of the incom-
ing magnetic energy associated with the current pulse gets dissipated in the shock
structure of length L. Thus, if the shock length is of the order of the inhomogeneity

scale length K ~! then the entire incoming magnetic energy would get dissipated.
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The electron inertia related terms may play an interesting role of providing
anomalous viscosity for a collision-less case. As the density gradient induced drift
velocity brings the two lobes of the dipoles towards each other it generates a
sharp electron velocity shear layer in the central region. This sharp velocity shear
region is known to be susceptible to the Kelvin - Helmholtz (KH) like instability
[54, 56] in the presence of electron inertia related terms. This instability essentially
manifests through electron inertia dependent non-linearity 2 x Vb - VV?2b in the
evolution Eq. (5.1) for G. The instability converts the electron flow energy into
fine scale vortices. In 3-D the vortex flows cascade the energy towards finer scales
which would eventually dissipate into heat through electron Landau damping in
the direction parallel to the magnetic field. This effect can be modeled by an
anomalous electron viscosity coefficient p. In an earlier 3-D EMHD simulations [53]
it has been shown that the nonlinear stage of the velocity shear driven instability
exhibits electromagnetic turbulence and produces an effective viscosity p. In the
collisionless n = 0 case, this anomalous viscosity p, would play a crucial role and
define the shock width. Thus mocking up the electron inertia related effects by
an effective viscous dissipation ~ pV?V?2b we can write an approximate equation
in the collisionless limit as 9b/0t + Kbob/Ox = —pd*b/0x* The balance between
nonlinear and the dissipation term defines the shock width, which now scales as
l. ~ (u/Kb)'/3. A net energy dissipation rate @) over a length L in this case is
~ [lp(d?b/da?)?dz|2ral ~ p2rwalb?/13 ~ 2raK Lb®. Using, Ampere’s law we
have b ~ av, , which gives

Q ~ KLVa*v,

This leads to a similar conclusion as before about the effectiveness of the shock dis-
sipation mechanism and the independence of the magnitude of energy dissipation
in the shock region to the anomalous viscosity coefficient p.

It is interesting to note that the total dissipated energy () depends on the same
ratio, viz., KL = L/L, which defines the criteria for transmission vs. trapping in
Chapter 4. It thus clearly shows that whenever the energy dissipation is higher
than some threshold the structure remains trapped and is unable to get transmitted

from the other end.
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5.5 Oblique Incidence of Current Pulse on Plasma

Density Inhomogeneity

In our previous studies on the interaction of dipolar current pulse structure with
plasma density inhomogeneity we have considered the dipole axis (which is also
the propagation direction of the current pulse) to be oriented along the direction
of background plasma inhomogeneity gradient. In a realistic case it would not
be possible to orient the propagation exactly along the inhomogeneity gradient.
Here, we study the effect of oblique incidence, ( i.e. when the axis of the incident
dipole is chosen to be oriented at various angles with respect to the direction of
the inhomogeneity gradient) on the evolution.

The inhomogeneous density profile has the form of STH described by Eq. (5.2).
For these studies we have chosen the parameter values of hy = 5.5, hy = 4.5,yy =
—2.5,04 = 0.0,w = 2.0,0 = 0.4. The dipolar current pulse structures are placed
initially at the low density homogeneous region of the plasma as can be seen from
the subplots of the topmost row in Fig. (5.5). The axis of the dipole in these
subplots have been chosen to be inclined at various angles 6 with respect to the g
(the direction of plasma density gradient). Due to the inclination of the dipole axis
with respect to the density inhomogeneity, one of its lobes experiences the plasma
inhomogeneity earlier compared to the other lobe. Also the drift v; directed along
Z is no longer normal to the dipolar axis. This breaks the symmetry of earlier
simulations presented in Chapter 4. As a resultant of this the axis of the dipole
turns, which is evident from the subplots corresponding to subsequent times in
Fig. (5.5). The lobes ultimately even switch their location. The one in the left
side ends up on the right side. This would in principle even reverse the axial drift,
causing the dipole to reflect from the inhomogeneity. We, however, observe (in
most of the simulations that we have carried out so far ) that once the lobes switch
their sides, they also drift apart due to inhomogeneity (¥; being directed so as to
separate the switched lobes further apart ). Although not explicitly shown in Fig.
(5.5), a longer duration evolution explicitly demonstrates this. The separation of
the lobes due to v; once they switch sides automatically reduces the axial drift.
The dipole, therefore, never reflects off the inhomogeneity but separates forming

two monopoles.
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Figure 5.5: The propagation of current pulse structure incident at angles of 30, 20,
10 and 5 degrees with respect to the density gradient direction have been shown
in the plots of first, second, third and fourth columns respectively.

It is clear that the evolution for the case of oblique incidence of the structure
shows stark differences from the case of parallel incidence. It is therefore pertinent
to investigate whether this has any impact on the mechanism of energy dissipation.
In Fig. (5.6) we show the evolution of energy for these simulations. The various
curves in the figure show the evolution of energy for cases with different incidence
angles of the dipole. For these simulations one observes again a rapid fall of
energy during the period that the two lobes are entangled in intense interaction
when they experience the plasma density inhomogeneity. This essentially occurs
when the lobes cross over each other to switch their locations. At later time when
the lobes have already switched their locations and start drifting apart the energy
remains constant. It is interesting to note, however, that the magnitude of energy
dissipation that takes place in these cases of oblique incidence is typically of the

same order as that observed when 6, the angle of incidence is zero. The energy
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Figure 5.6: The evolution of the total energy has been shown when the current
pulse is incident at (i) 5° ( curve with blue stars), (ii) 10° (curve with green + sign,
(iii) 20° (curve with magenta crosses) and (iv) 30° (curve with red circles).

dissipation does decrease with increasing inclination | 6 |. However, even for as
large an angle as § = 30 degrees there is only around 20% difference in the total
energy dissipation when compared to the 6§ = 0 case.

We thus see that although a slight change in incidence angle alters drastically
the entire propagation course of the dipole current layer, it has little influence
on the magnitude of energy dissipation while passing through the inhomogeneous

region.

5.6 Application : Fast Ignition

The process of collision - less energy dissipation from energetic electrons holds a
lot of promise and can have far reaching consequences in terms of applications.
We discuss the case of Fast Ignition here to illustrate our point. The FI scheme

[5] is essentially a variant of the Inertial confinement scheme for which the tasks
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of target compression and ignition are carried out separately. This has several
advantages. First of all it is easier to compress a cold target. Also the presence
of hydrodynamic instabilities such as Rayleigh Taylor etc., during the accelerating
and decelerating phases of compression become inconsequential. The target being
cool there is no mixing of hot and cold regions which seriously deteriorates the
efficiency of the process in conventional Inertial Confinement Fusion (ICF) [57, 58].
In FI after compression one needs to create a hot spot in plasma for ignition.
For that purpose a second fast femtosecond laser pulse is employed. However,
the target being overdense the laser cannot propagate inside the overdense region
to create a hot spot. One instead relies on the energetic electrons generated at
the critical density layer of the target for the creation of hot spot. The scaled
down experiments have shown pretty impressive results for this scheme, where
tenfold increase in fusion neutron yield has been observed [60]. However, there
is skepticism currently on the account that the one would require higher energy
electrons, e.g. 10 MeV or higher for the hot spot creation in full fledged ignition
experiments. Since the Rutherford’s collision cross section of electrons diminishes
with energy, the greatest concern is that the higher energy electrons would simply
pass through the target. After incorporating corrections due to dense targets and
effects of correlated collisions the typical stopping distance estimate for a 1 MeV
electron is considerably longer than the target size of 50 micron. Thus, if the
target is transparent for the high energy electrons, the creation of hot spot in FI
remains an outstanding issue. The proposed collision - less dissipation mechanism,
however, provides a means to overcome this difficulty as has been shown below.
Let us now estimate the typical energy of the electrons that can be stopped
through our proposed mechanism. We use the non dimensional expression for the
energy dissipation here. The current [ in the channel is related to the magnitude
of the magnetic field B through Ampere’s law as B = 2[/ac, where a is the
dimension of the channel. The rate of energy dissipation () can then be expressed
in dimensional variables as Q = (B?/4m)ma*v. = I*v./c?, v, being the electron
velocity. Since the rate of energy dissipation is essentially IR (R the resistance)
heating of the system, for this case the resistance would be R = v,/c* in CGS
units. The effective voltage drop can then be estimated from V = [R. The
typical magnitude of the electron currents in FI experiments are in the range of

several hundreds of kAmps, and the electrons typically have relativistic energy,
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their velocity v, ~ ¢, the speed of light. Thus the resistance R ~ 1/c ~ 308. (We
assume here that the expression for energy dissipation obtained in the previous
section can be used even for the relativistic electrons. This, however, needs to be
ensured and further studies on this are necessary). This helps in estimating the
energy of those electrons which can get stopped by this mechanism for a given value
of current in the channel. Thus for a 300 K Amps of current, electrons with energy
as high as 10MeV can be stopped by this process. This estimate is certainly very
promising as it supports the possibility of heating through electron current pulses
for ignition.

We would now like to see whether the energy dissipation observed in our sim-
ulations provides an estimate of R which is consistent with the derivation above.
The current pulse structure propagates with a normalized velocity vy = 0.01.
From Fig. (5.3) it is clear that within a time interval of Aty = 100, the to-
tal dissipated energy is AEy = 5 x 1073. The suffix N is used to indicate
the normalized values here. This provides us with the value of normalized re-
sistivity as Ry = 5 x 1073/0.01 = 0.5. For the current pulse structures of
the typical dimension of electron skin depth a relationship w, ~ wyv./c can be
obtained between the typical values of the magnetic fields and the electron ve-
locity v.. The value of Ry provided above then translates to a resistance of
R ~ 0.5/(cw./wp) ~ 0.5/v.. In the case of fast ignition scenario v. ~ ¢ which
implies that R ~ 0.5/c = 0.5 x 3082 = 152, which is in close agreement with the

analytical estimate made above.

5.7  Summary

We have presented a new mechanism of rapid energy dissipation through shock for-
mation for a current pulse moving past an inhomogeneous plasma medium. The
mechanism was illustrated through G-EMHD fluid simulations and an analytical
understanding was also provided. It is interesting to note that our proposed mech-
anism is consistent with some recent PIC simulations [29, 30, 32, 33| carried out
in the context of propagation of energetic electron current towards the dense tar-
get core for the fast ignition plasma. These PIC results show a predominance of

heating in the region where density gradient is high (the region where we observe
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shock formation). A recent experiment carried out at ILE Osaka [84] also clearly
illustrates that electrons with as high as about 15 MeV energy passing through
the inhomogeneous region of the target get stopped, showing the relevance of our
proposed scheme. The role of additional effects arising due to dense plasma, un-
compensated charge, relativistic electrons for true fast ignition parameters on this
particular mechanism needs to be studied. Thus, a detailed investigation on com-
parision of PIC simulations, G-EMHD fluid simulations and the proposed heating
mechanism, promises to be quite rewarding.

We have also shown in this chapter that even when the the current pulse propa-
gates at an angle oblique to the density gradient, the associated energy dissipation
gets effected only weakly with respect to the orientation angle. Though the sub-

sequent evolution of the pulse is strongly altered.
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Chapter 6

Kelvin Helmholtz Destabilization of
Short Current Pulse in an

Inhomogeneous Plasma

Kelvin Helmholtz (KH) [59, 85| is an important fluid instability that develops when
the fluid flow is sheared. It has been shown in some recent studies [54, 56, 72|
that for a sheared electron flow configuration, this particular instability has a
somewhat different manifestation than the hydrodynamic fluid case. This is due
to the presence of self consistent magnetic fields associated with the electron flow.
The previous studies on sheared electron flow have been carried out for spatially
infinite extent of the flow and for a homogeneous plasma. In this Chapter we
present our study showing the KH destabilization of a short current pulse when
the background plasma density is inhomogeneous. These studies have been carried
out in 2-D where the evolution is constrained due to the presence of an additional
non dissipative square integral invariant other than energy. For the case of 2-D
simulations, therefore, the nonlinear regime of the instability produces a coherent
state. In this particular case of short current pulse in an inhomogeneous density
plasma, we observe an emergence of a novel coherent state as an aftermath of KH
destabilization. This is in the form of a collection of vortices aligned as beads
along the direction where the higher density region of the plasma has an elongated
extent.

In Chapter 5 the presence of anomalous viscosity due to turbulence induced
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by the KH destabilization of sharp current layers was conjectured for the colli-
sion - less electron fluid case. The demonstration of KH destabilization for short
electron pulses in an inhomogeneous plasma here, shows that such a conjecture
is well founded. The turbulence generation can only be seen by carrying out the

simulation in 3-D, which is a topic of future study.

6.1 Introduction

The Kelvin Helmholtz (KH) instability [59, 85| is a classic fluid instability arising
due to a sheared fluid flow configuration. This instability has been studied exten-
sively in the context of hydrodynamic fluid in the past 100 years or so. It has also
been studied for conducting fluid such as plasmas, but primarily when the shear
is in the flow of heavier ion species [86]. Lately, the case of sheared electron flow
against a background neutralizing ions has been investigated. The flow of electron
produces current and an associated self consistent magnetic field. As a result of
which the KH mode in this context has a distinct character for sheared electron
current flows. This has been discussed in several recent publications [54, 56, 72.

The nonlinear studies of the instability has also been conducted. These studies
have shown that in 2-D the nonlinear phase of instability produces a coherent state
[54], but in 3-D it leads to turbulence [53]. The anomalous viscosity of the electron
fluid in the presence of turbulence has also been evaluated in those studies. This
is due to KH destabilized excitations cascading directly, towards short scales in
3-D and causing anomalous viscous damping of the electron flow. These studies
on sheared electron current flow , however, has been conducted for infinite flow
configuration and for chosen sheared flow profiles in space for a homogeneous
density plasma.

Chernkov et al. [12] were the first to investigate the electron velocity shear in
the context of the low density pinches. In their study they ignored the electron
inertia and found that this mode is stable. Jain et al. [54] have shown that in
the presence of the inertia this particular mode is unstable. The growth rate
for the instability for these sheared electron flows is strongly dependent on the
sharpness of the shear layer in comparison to the local electron skin depth. Jain
et al. [53, 54] have simulated the EMHD model equation for studying the linear
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and nonlinear aspects of the velocity shear modes in electron current channels in
the 2-D as well as 3-D geometry. Gaur et al. [72] studied extensively the role
of the skin depth and the existence of the whistler waves on the velocity shear
driven instability in the context of the 2-D EMHD model. They also investigated
the effect of the whistler waves on the KH instability. The presence of whistler
wave had a stabilizing influence on KH mode. J. F. Drake et al. [87] have shown
that the instability broadens the current layer. As the current shear layer width
becomes comparable to the ion skin depth the instability weakens.

Our studies on the propagation of current pulse structure through plasma den-
sity inhomogeneity in the previous Chapters have clearly shown that very sharp
elongated shear layers get formed as the structure propagates through the inhomo-
geneous density region. Here we investigate the possibility of KH destabilization

of such sharp current layers in the presence of density inhomogeneity.

6.2 Destabilization of Current Layers

In the context of our G-EMHD simulations [78, 80| (where the shear flow gets self
consistently generated at the location of density gradient region) we have so far
not observed the appearance of the unstable KH mode. The reason for this can
be readily understood by realizing that in the G-EMHD simulations presented so
far the time spent by the structures in the inhomogeneous density region (where
it forms sharp layers), is not sufficient to observe the development of the unstable
KH mode from numerical noise. Once the structure moves past the inhomogeneous
region the flow no longer remains sharply sheared to get destabilized. The length
of the inhomogeneous region could not be increased to fit in several growth periods
due to numerical constraints.

We hereby devise a novel scheme to sustain the sharp shear layer for a significant
duration without increasing the length of the inhomogeneous region. We choose
an elongated (many electron skin depths along ¢ ) region of high plasma density
having RTH profile (described in Chapter 4) which has the form of

V(@ = 202/02 + (v = yo)?/o3 —w

g

n(z,y) = hy — he tanh (6.1)
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The values of the various parameters were chosen as, h; = 5.5,hy = 4.5,02 =
0.2, as =2.0,w = 2.0,29 = 0.0,y9p = —2.0,0 = 0.4. The width of the high density
region along Z has been chosen to be smaller than the typical value of electron skin
depth. This has been deliberately done so as to have a sharper shear width (smaller
than the electron skin depth for the KH instability) along & in the current flow
when trapped inside this density structure. The length of the structure along ¥ is
typically v/10 times longer than the width. This particular density profile has been
chosen here solely for illustrating the destabilization of sharper current shear layers
when they persist for a sufficiently long times. However, this particular choice may
also have practical relevance. With the advent of wires having dimension of the
order of nano meters, an elongated plasma can be created by ionizing them. Such a
plasma can easily have a width sharper than the electron skin depth, corresponding

to the density profile that we have chosen here for our study.
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Figure 6.1: The various stages of evolution as the current pulse propagates towards
an elongated sharp density profile. The thick black curve represents the outline of
the density profile. The collimation of the current pulse structure as it enters the
high density plasma region can be clearly seen. The KH destabilization is clearly
evident from the plots at t = 2820.

In Fig. (6.1) we show the evolution of a dipolar current pulse structure as
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it encounters the inhomogeneity profile. The thick black line drawn in the figure
shows a constant density to illustrate the form of the density profile with respect to
the current pulse location. The density profile has Vn directed inwards everywhere.
The dipole axis has been placed in such a fashion that it enters this elongated high
density plasma region of the shape of a wire through its top sharp edge. At the
entry location the drift velocity (vy) associated with density gradient (discussed in
Chapter 4) brings the lobes closer and the axial speed increases. Once the dipole
reaches the central location of the wire (see subplot for ¢ = 450) the Vn experienced
by left /right (corresponding to positive/negative b) lobe is in positive/negative &
direction respectively. This results in a drift velocity (vg) [78] which is directed
along positive ¢ for both lobes. The axial drift of the dipole (the lobes are separated
by a distance less than electron skin depth and hence they still behave as dipoles)
is along negative y. The two drifts cancel and the dipole is able to propagate
no more. This is the basis of extending the residence time of the dipole in an
inhomogeneous region. Since the dipole is squeezed by the density profile in the
transverse direction, it extends axially and acquires the shape of the elongated
density profile at around ¢ = 1500. This elongated structure with rotating electron
currents in two lobes forming a sharp shear flow at the axis, persists for a very
long time (from ¢ = 1500 to even at ¢ = 2250). It is only around ¢ = 2625 that
a certain distortion in the structure becomes apparent. These, we believe, are the
initial disturbances in the flow arising from KH instability.

The KH destabilization [54, 72| can occur provided the system permits modes
having wavelength longer than the shear width along the flow direction. The
exact dipolar solution of the homogeneous plasma typically has identical extent in
the two directions. The shear scales associated with flow in both the directions
are, therefore, also identical. The structure size of a typical EMHD dipole does
not permit longer scales along any of the directions. Thus the dipolar structure
propagates in a homogeneous plasma as a very robust stable pattern, even though
the current flow in it is significantly sheared. In fact when EMHD simulations are
carried out for an arbitrary dipolar form (not exact solutions derived by Kingsep
et al. [1]) with magnetic field contours deliberately chosen to be considerably
elongated along one of the directions, the structure adjusts itself to a circular form
during the initial phase of evolution, and then it propagates as a stable pattern.

This can be seen in the subplots of Fig. (6.2) where we show the plots of one such
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simulation.
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Figure 6.2: In this figure the robustness of the dipole solution is shown. Initially
the dipole structure is taken elongated along the y— axis. During the evolution it
is observed that dipole ,finally ,form the Isichenko et al. solution [65] propagating
along the negative ¢ direction with some constant axial velocity.

However, when we constrained the dipole to remain forcefully elongated while
residing in the elongated high density region in our G-EMHD simulation, the KH
destabilization was observed clearly [see Fig. (6.1)]. Let us now quantitatively
assess the condition for KH destabilization for various studies conducted in the
past (Sharad et al. [78, 80]) where KH was not observed and the simulations
reported here. The destabilization can occur provided the residence time of the
structure in the inhomogeneous region (the location where the flow shear remains
sharper than the skin depth) is longer than the growth periods for the perturbations
to amplify from the numerical noise level.

In the studies reported earlier (Sharad et al. |78, 80]) the shear width of

the dipolar structure at the location of the inhomogeneity was around ¢ = 0.2.
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The maximum growth rate will occur for a wavenumber k ~ 0.5/ = 2.5. (The
growth rate for KH mode vanishes for ke ~ 1 and is maximum for ke ~ 0.5)
Thus the maximum growth rate of the KH mode would be less than, i.e. v <
EVo/(1 +4k2)/(3 + 4k2) = 2.4091V; (the growth rate of a step velocity shear
profile) [56]. On the other hand the residence time of the structure in the in-
homogeneous region is merely ¢, = L;,/Vy = 1.414/Vy. Thus the number of e

- foldings during the time the structure moves past the inhomogeneous region is
vt = 2.4091 x 1.414 = 3.4065, which is quite low for the instability to manifest
from the numerical noise of typical order of magnitude O(107%) in single preci-
sion and O(107'%) in double precision in the simulations reported in our papers
[78, 80]. Let us now analyze the simulations shown in Fig. (6.1) with this per-
spective. Here, the shear width can be taken to be around half the width of
the density inhomogeneity i.e. ~ w/2 = 1.0. The typical distance between the
extreme b values measured from the subplot at ¢ = 1500 of Fig. (6.1) yields
a better estimate of ¢ = 0.8. The perturbation scale length that shows up in
the instability can be again estimated from appearance of the mode observed at
t = 2625 and subsequent times. The confining high density region typically sup-
ports two wavelengths. Thus A ~ 8/2 = 4 from the figure. This gives a value
of k = 2m/A = 1.57. The residence time can be taken either anything between
t,1 = 2625 — 1500 = 1125 or t,., = 2625 — 450 = 2175. The axial drift of the
dipole can provide a crude second estimate of the electron flow velocity in the
central region as Vp; = 0.01. A better and correct estimate can be obtained by
directly measuring 0b/0x at the central region at t = 1500. This gives the typical
estimate for the electron velocity as Vpo = 0b/0x = Ab/e = 0.08/0.8 = 0.1. This
is about 10 times higher than the original axial drift of the dipole. The growth
rate obtained from kVy+/(1 4 4k2)/(3 + 4k?2) ranges from v = 0.0133 to 0.133 for
Vo = 0.1 and Vi = 0.01 respectively. By taking the conservative estimate of the
growth rate of 0.0133 the number of e- foldings ~¢, is around 14.9625 and 28.9275

for t,1 and ¢, respectively. While the former is sufficient to increase the amplitude

from a noise at single precision level to a value of the order unity the latter can
raise it even from a double precision level. This explains the observation of the

KH destabilization in the present case and its absence in the previous simulations
[78, 80].
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6.3 Formation of Stationary Vortex Beads

The simulation plots at later times show the nonlinear development of the mode.
The b field structure is subsequently seen to break up and form smaller vortices
having identical scale in both the directions. The instability thus saturates in the
nonlinear regime by forming a novel coherent stable structure of the collection of
these vortices. For the simulation shown in Fig. (6.1) this constitutes a collection
of four alternating sign vortices arranged along the elongated high density region
of the plasma which looks like beads tied to a string. This is an extremely stable
pattern and persists for the entire duration of our simulations.

It is interesting to note that in this case also the plasma system maneuvers
through the process of KH destabilization to acquire a structure having an aspect
ratio of unity for each individual vortices. An elongated structure in a homogeneous
plasma medium has been observed to adjust itself to a symmetric shape by merely
extending/shrinking in appropriate directions. This was not possible here, as the
structure was squeezed inside an inhomogeneity with an elongated shape. In this
case of constrained simulations the system uses a novel approach of breaking into
smaller vortices through KH destabilization process to achieve its final goal, where
each of the vortices again has a symmetric shape. It, therefore, appears that the

system always prefers a symmetric form for individual vortices.

6.4 Summary

In this Chapter we have shown that the sharp current layer structure formed at
the inhomogeneity layer is indeed unstable to the Kelvin - Helmholtz like velocity
shear driven mode. In our present 2-D simulations it forms a coherent pattern
of a collection of vortices aligned along the elongated direction of the density
inhomogeneity. This is so because the G-EMHD system also preserves two non -
dissipative square integral invariant in 2-D as has been shown in Chapter 2. In 3-D
the KH destabilization in the context of infinite flows has been seen to generate
turbulence and leads to anomalous viscosity effects [53]. We expect the same would
happen for the finite current shear flow structures in an inhomogeneous plasma

medium in 3-D. This would then appear as the relevant dissipative mechanism for
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the energetic collision-less electrons as has been conjectured in Chapter 5.

We also observe that the system typically tries to achieve an isotropic flow
configuration. The exact dipole solutions of EMHD [65] also have a sheared elec-
tron flow configuration, but still the structure is stable. A distorted dipole which,
however, is not an exact solution adjusts itself suitably to a form for which the
typical scale lengths in the two dimensions are identical. We observe that the
elongated shear flow purposely constrained in the high density region destabilizes
through KH instability and finally forms vortices having equal scale length in the
2-D space.
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Chapter 7

Guiding and Collimation of Fast

Electron Current Pulse in a Plasma

In this Chapter we discuss another application of electron flow through an inho-
mogeneous plasma. One often wishes to collimate and guide the electron current
inside a plasma. There have been proposals to use specially structured targets
prepared of different materials for this purpose [62, 63]. Such targets would nei-
ther be easy to prepare nor can they be employed with ease in each and every
experiment. Here we offer a mechanism whereby a proper tailoring of the plasma
density offers an easier accessible scheme. We illustrate this by placing arbitrary
shaped wire like high density plasma along the path of the electron current pulse
structure. It is observed that the current flows along the path defined by the high
plasma density region. In an experiment [64] at ILE Osaka the energetic electrons
generated at the critical density layer were guided with the help of solid wire. The
experiment showed that the electrons moved along the wire, as the wire was tilted
the path of the electrons changed accordingly. We feel that the high plasma density
spontaneously created by the ionization of the wire by the electrons is responsible
for this.

7.1 Introduction

We provide here a mechanism whereby the electron current pulse structures can
be guided in a plasma. We have shown with the help of G-EMHD simulations that
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a tailored plasma density inhomogeneity can guide an electron current pulse at
will. A physical understanding of the guiding process has also been provided. The
proposed mechanism finds support in recent experiments reported by Kodama et
al. [64], where it is clearly shown that the current path in the plasma can be altered
at will by placing an appropriately oriented wire. In the experiment the electron
current was seen to propagate along the direction of the solid wire. The wire
gets ionized by the front of the energetic electron current pulse, thereby creating
an appropriate high density plasma along the path of the wire through which
later portion of the pulse gets guided. An alternative mechanism has also been
proposed recently by Robinson et al. [62] for artificially guiding the current pulse.
They use structured target whose resistivity varies transverse to the propagation
direction. The strong magnetic field generated at the interface of materials having
different resistivity was important for the guiding of current pulse. Later this
mechanism was experimentally verified in the work by Kar et al. [63]. However,
the preparation of such specially tailored targets for use in experiments may not
often be practical. The mechanism that we propose here offers a simpler solution,
whereby a path defined by higher plasma density created by a simple scheme of
ionizing an oriented wire provides for current pulse guiding. The experimental
work of Kodama et al. [64] demonstrates this clearly. The PIC simulations have
also been carried out which support the experimental observations of the guiding
experiment conducted by Kodama et al. [64] . However, since the PIC simulations
contain all the details, the essence of underlying physical mechanism of guiding
is not apparent from these simulation. Here, we reproduce the observations of
electron current pulse guiding by the fluid simulation of G-EMHD model [78]. We
also provide a physical interpretation of the phenomena.

We use the simplified 2-D G-EMHD equations with magnetic field along the
symmetry direction to illustrate the phenomena of guiding. The study has been

conducted for both current pulses with monopolar and dipolar magnetic structures.

7.2 Guiding of Monopoles

Monopoles are the stationary solutions of the EMHD equations [65] which are

like electron current vortices having single signed magnetic fields as shown in the
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first row of Fig. (5.1). We choose these solutions as initial configurations for
our simulations. In the presence of a density inhomogeneity the magnetic field
patterns associated with these current pulses acquire an additional drift velocity
U, = B x Vn/n? discussed in Chapter 4, which is clearly transverse to the density
gradient as well as the direction of magnetic field B. Thus a proper choice of
density profile, e.g., with constant density along the desired guiding path and
a steep variation of density everywhere in the orthogonal direction, monopolar
structures can then move due to v; along the contours of constant plasma density.

The maneuverability for guiding these monopolar solutions are, however, quite
restrictive as they cannot penetrate across the plasma density gradient. We will
show in the next section that the dipolar current pulse structures which moves
across the plasma density gradient shows a greater maneuverability in this regard.
We would show that the inhomogeneous density can be used to collimate, guide

and even bifurcate the current pulse in subsequent Sections of this Chapter.

7.3 Collimation of the Current Pulse

In this section we show that the drift velocity associated with the density gra-
dient in conjunction with the axial velocity of the dipoles allows a far superior
maneuverability. The axial velocity helps dipole propagate across the constant
density contours, thereby making regions of differing plasma density accessible for
the electron path.

We show here that a broad current pulse can be suitably collimated by choosing
a narrow high plasma density region. In Fig. (7.1) a dipole is shown to encounter
a narrow high density plasma region. The form of the narrow high density region
has been depicted by black solid lines in the figure. This is formed using the RTH
density profile described by the expression

V(@ = 202/02 + (y = yo)?/o} —w

n(z,y) = hy — hy tanh -

with the following values of the parameters hy = 5.5,hy = 4.5,02 = 0.2,02 =
3.5,w=2.0,20 = 0.0,y = —2.0,0 = 0.4.
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Figure 7.1: In this figure the collimating behavior of the dipole has been demon-
strated. The current pulse passes through a high density profile that has an elon-
gated profile (shown in the figure by the closed black thick line) along the y—
direction.

As the dipole approaches the high density region it can be seen that it gets
collimated, enters the higher density side and propagates along it, reaching the
target destination at the other end. The broad initial pulse remains collimated as
can be seen from the Fig. (7.1) This is a very attractive proposition as a simple
choice of plasma inhomogeneity can suitably focus a divergent flow of electrons,
an attribute often desirable for various applications. The observed features can
be easily interpreted in terms of an interplay of the two velocity associated with
the dipolar current pulse. The drift associated with the density gradient brings
the two lobes with opposite polarity of the magnetic field together as the dipole
approaches the high density region. This results in the collimation of the current
pulse structure. The collimated structure moves with greater axial speed and
penetrates the high density region of the plasma. Once inside the high density
region the current pulse propagates along it to reach the other end through the

axial dipolar velocity which overwhelms the v, drift acting in the opposite direction
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(at the central region of the elongated high density plasma).

7.4 Guiding Behavior of the Current Pulse

We now show that one can even reverse the propagation direction of the dipole
current pulse by a suitably tailored plasma density inhomogeneity. A curved high
density profile shown by the thick lines in Fig. (7.2) is chosen. The current pulse
trajectory has been shown in the snapshots of Fig. (7.2). We have seen that by
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Figure 7.2: This figure shows that a dipolar current pulse can be guided. The single
black contour in each subplot represents the curved high density profile chosen in
the simulation. The inside region of the closed black line is of the high density
amplitude. The circular region attached at the left end of the half circular region
is of high amplitude in comparison to the half circular region.

choosing appropriate different forms of the high density plasma region the dipole
current pulse can be guided and sent to any particular destination where it can

get absorbed. It can be seen from Fig. (7.2) that it is even possible to reverse the
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propagation direction. The current pulse follows the contours of the high density
narrow region of plasma.

This happens because if the dipole structure separates into monopoles as shown
in subplots ¢ = 21.36,33.9 of Fig. (7.2) upon entering the high density region the
structure can move only along the constant contours of the plasma density profile.
If, however, it remains intact as dipole as in Fig. (7.1), it can in any case cannot
come out in a lower density plasma region. The observed propagation of current
pulse through G-EMHD simulations along the direction defined by the contours
of the high density narrow plasma region finds support in certain experimental
observations. In a recent experiment Kodama et al. [64] have generated fast
electrons by impinging ultra intense laser pulse on a target in the shape of a gold
cone. By attaching a solid wire on the cone tip was shown by Kodama et. al.
[64] that the electrons followed the path defined by the solid wire. When the
wire was tilted with respect to the cone axis the electrons hit the target at an off
axis location defined by the tilted wire. The experiment can be understood on the
basis of our mechanism. The wire gets ionized by the front of the energetic electron
pulse, creating a narrow high density plasma region of the shape of the wire. The
subsequent part of the electron pulse then gets guided along this inhomogeneous

plasma as proposed by us.

7.5 Bifurcation of the Current Pulse Structure

We now provide another example of maneuvering the current pulse. We show that
one can also bifurcate a current pulse arising from the same source and let the
two parts propagate and reach altogether different destinations. In the simulation
again we have chosen a curved form of high density profile as shown by the thick
lines in the subplots. The bifurcation of the current pulse can be seen from the
snapshots of Fig. (7.3). As the pulse enters the high density region, it can be seen

to get separated in two parts which then propagate along different directions.
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Figure 7.3: This figure show the bifurcation of the current pulse. The thick black
lines show the plasma density profile that has been chosen for these simulation.

7.6 Summary

We have proposed a novel scheme based on a suitably tailored plasma density inho-
mogeneity to control the propagation of electron current pulses in plasma medium.
Our studies have shown the possibility of collimating the current pulses, guiding
them along a desired path and towards a desired destination. We have also shown
that electron current pulses arising from the same source can be suitably bifurcated

and made to propagate along distinct trajectories towards different destinations.
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Chapter 8

Conclusion and Scope for Further

Research

In this Chapter we summarize the main results obtained in the thesis. We also

outline the directions for further research here.

8.1 Summary and Conclusions

The main focus of this thesis has been on the study of electron transport through
inhomogeneous plasma medium. We present here a brief overview of work carried
out and the significant novel results obtained in this area by us which have been

presented in the various Chapters of this thesis.

e Development of a fluid model for electron propagation in an inho-

mogeneous plasma

The Electron - Magnetohydrodynamics (EMHD) [1, 2, 3, 4] provides a de-
scription of fast electron dynamics against the background neutralizing ions.
The Electron - Magnetohydrodynamic (EMHD) fluid model was generalized
by us for the case when the plasma has an inhomogeneous density. The
new model is termed as the Generalized EMHD (G-EMHD) [78]. A de-
tailed derivation of the G-EMHD model has been given in Chapter 2 of this
thesis. Various limits of G-EMHD equations in reduced spatial dimension

and simplified electron flow configuration have been obtained and have been
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presented in Chapter 2. In 2-D the model takes a simplified form in which
the equations can be cast in terms of a coupled set of equations between
two scalar fields corresponding to the magnetic field and the vector potential

component respectively along the symmetry axis.

The model was shown to preserve the total energy integral in the non -
dissipative limit. In the simplified 2-D case and when the electron current was
also confined in 2-D an additional square integral invariant is also supported
by the model.

e Development of a finite difference numerical code for studying elec-

tron propagation through G-EMHD equations in 2-D

A finite difference code was developed to study the electron dynamics us-
ing G-EMHD equations. Chapter 3 contains the detailed description of the
numerical algorithm adopted for simulating the G-EMHD equations. The
G-EMHD equations has been cast in the form of convective equations with
appropriate source terms. A flux corrected scheme [79] was employed for the
evolution of G-EMHD equations. Unlike EMHD equations where one needs
to solve Helmholtz equations in conjunction with the evolution equation at
each time step for the evaluation of magnetic field, (and by taking its curl,
the convective velocity) in the case of G-EMHD we have a Helmholtz like
operator whose coefficients are functions of space (as they depend on the
plasma density). This poses some challenge. At the moment we have rep-
resented the operator in the form of a matrix whose inversion provides us
with the requisite magnetic field. The memory requirements are huge for the
description of such a matrix and increases as a square of the total spatial
grid points, i.e. as (Nx x Ny)? where Nz and Ny are the number of grid
points chosen along the z and y directions respectively. It is therefore im-
perative that an alternative scheme be developed which reduces the RAM

requirements.

The code was validated against the known EMHD results for the homoge-
neous plasma [36]. Furthermore, the preservation of the square integral in-
variants supported by the G-EMHD equations in the non - dissipative limit

was also verified numerically. The rate of their decay in the presence of
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dissipative coefficients was compared by the theoretical expression.

Fundamental Observations on current pulse propagation through

inhomogeneity

An electron current pulse shows a wide variety of novel behavior in the pres-
ence of plasma inhomogeneity. This was studied by us using the numerical
simulations of G-EMHD equations with the code developed by us. The objec-
tive was to specifically understand the role of plasma density inhomogeneity
on the electron current pulse propagation. For this purpose we chose exact
current pulse solutions of the homogeneous EMHD as our initial conditions
[65]. This ensured that the the changes observed were entirely due to the den-
sity inhomogeneity. Both varieties of nonlinear solutions were used, namely
one having monopolar magnetic field configuration and representing rotat-
ing electron currents, which is a stationary solution of EMHD equations.
The EMHD equations also permits traveling solutions with dipolar magnetic
fields. These dipoles move with constant axial speed and have a current
configuration which mocks up a spatially separated forward electron current

along the central axis and return shielding current at the edges.

A variety of inhomogeneous plasma density profiles were chosen for study-
ing the propagation of these current pulses. The numerical studies |78, 81]
show (i) that the current pulse structures acquire an additional drift in the
presence of density inhomogeneity which is transverse to the magnetic field
and the density gradient. (ii) The stationary monopolar solutions of EMHD
equations therefore drift along the constant plasma density contours and
they cannot move in regions with differing plasma density. (iii) The dipole
is seen to penetrate inside a high density plasma region but it has difficulty
coming out from there towards a lower density region of the plasma. It thus
typically gets trapped within a high plasma density region. (iv) A detailed
characterization of the trapping vs. transmission from a high density plasma
region of the dipole has been carried out which clearly identifies the trapping
condition in terms of a threshold criteria. (v) As the dipole structure passes
through the density inhomogeneity to penetrate the high density region, it
forms magnetic shocks and/or sharp current layers. These observations have

been elucidated in Chapter 4.
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e Collisionless electron energy dissipation

The trapping of the dipole current pulse structure in high density region
indicates the violation of time reversal invariance and is suggestive of a dis-
sipative mechanism at work [80, 81]. Indeed it is shown in Chapter 5 that a
strong energy dissipation is associated with the magnetic shock which form
at the inhomogeneity layer when the dipole structure enters the high density
region. It is shown that the energy dissipation is independent of the magni-
tude and the character of the dissipation present in the system. The physics
of current shock formation and the associated energy dissipation has been
understood theoretically. The analysis shows that the total dissipated energy
depends on the ratio of typical distance traversed by the current pulse in an

inhomogeneous plasma and the density inhomogeneity scale length.

The energy dissipation via current shock formation at the density inhomo-
geneity layer offers an excellent mechanism of collision - less energy dissipa-
tion from electrons. Electrons are a good source of energy as they can be
easily accelerated to high energies. Furthermore, the electrons can be used
to heat overdense plasma region where lasers are unable to penetrate. Only
difficulty in using them as a source for heating so far has been that their was
that classical Rutherford collision cross section gets considerably weakened
with increasing energy. Thus, the efficiency of the classical collisional mech-
anism for heat deposition by energetic electrons in a plasma has not been
impressive. However, the use of the proposed collision -less scheme in con-
junction with a tailored plasma density inhomogeneity promises to efficiently

heat a particular localized spot in the plasma by highly energetic electrons.

The success of a frontline concept of inertial confinement fusion scheme, viz.,
the Fast Ignition (FI) concept [5] relies on electron energy deposition for the
creation of hot spot in a precompressed target. Though the scaled down FI
experiments [60, 61| have shown impressive results, it is still being viewed
with skepticism mainly because the full scale experiments would require very
high energy electrons which are essentially collision - less within the target
size. We feel that in this context the proposed density inhomogeneity based
electron stopping mechanism would be of great relevance. A recent exper-

iment [84] at ILE Osaka in fact has provided sufficient evidence in favor of
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our proposed mechanism. Furthermore, the existing data from various PIC
codes [29, 30, 32, 33| studies conducted by various groups, on electron trans-
port through inhomogeneous plasma targets, invariably show heating at the
location of density inhomogeneity. This provides another evidence in favor

of our proposed mechanism at work.

e KH destabilization of finite electron current pulses and formation

of novel coherent nonlinear structure in an inhomogeneous plasma

The energy dissipation in the shock layer is independent of the magnitude
and the type of the underlying dissipation in the system [80]. While the low
energy electrons stop due to the usual electron - ion collisions, the energetic
electrons would stop due to anomalous viscosity arising from the turbulence
generated by the KH destabilization of the sharp current layer. The KH
destabilization of sharp electron current flows have been shown in a series of
publications |54, 72| where unbounded electron flows have been considered.
The KH destabilization of these unbounded flows has led to coherent non-
linear state in 2-D [54] and turbulence with associated anomalous viscosity
in 3-D [53]. This is because the 2-D system supports an additional second

integral square invariant, which constrains the evolution.

We present in Chapter 6 the KH destabilization of a finite extent sharply
sheared electron current pulse which forms at the inhomogeneous plasma
density layer. Since for our 2-D G-EMHD system also conserve two integral
square invariants in the non-dissipative limit, our simulations show that the
nonlinear stage of KH destabilization produces a coherent pattern of rotating
circular vortices confined within the high density plasma region. The collec-
tion of vortices are seen to align along the contours of the density profile to
form a novel coherent state with alternating sign vortices arranged like beads

in a wire [81]. These studies have been represented in Chapter 6.

e Electron current pulse guiding through density inhomogeneity

In Chapter 7 we discuss another application where the density inhomogeneity
has an important role. Often one wants to collimate and guide the electron
currents. There have been proposals to use specially structured targets pre-

pared of different materials [62, 63]. Such targets would neither be easy to
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8.2

prepare nor can they be employed with ease in each and every experiment.
Again a proper tailoring of the plasma density offers an scheme which can
be implemented easily. We illustrate this by placing arbitrary shaped elon-
gated high density plasma structure of the shape of a wire along the path
of the electron current pulse structure. It is observed that the current flows
along the path defined by the high density plasma. In an experiment [64]
at ILE Osaka the energetic electrons generated at the critical density layer
by an ultraintense laser pulse were guided with the help of solid wire. The
experiment showed that the electrons moved along the wire, as the wire was
tilted the path of the electrons changed accordingly. We feel that inhomo-
geneous plasma density spontaneously created by the ionization of the wire
by the electrons is responsible for this. We have also shown that a divergent
electron flow can be suitably collimated by a proper choice of plasma density
inhomogeneity. Furthermore, our studies also demonstrate that electron cur-
rent, from an identical source can be suitably bifurcated and sent to distinct

locations. These studies have been presented in Chapter 7.

Future Directions for Research

We now list specific issues which needs to be studied further in this area:

1]

One of the issue that has put severe constraint on the studies conducted
in this thesis pertains to the use of direct inversion of a matrix for solving
the Helmholtz like equation with space dependent coefficients. This has re-
stricted the resolution severely and we could only resolve electron skin depth
for a maximum to minimum density ratio of the order of 10. The experi-
ments on Fast Ignition (FI) [5] would require at least three orders of density
variations to be depicted properly. (The variation from the critical density
surface where n = 10??/cc to the target core where n = 10%/cc ). To be
able to study this one needs to employ a recursive relaxation scheme using
standard Helmholtz solvers [83| for the solution of Helmholtz like equation
with space dependent coefficients, that we have to deal with for studying

electron transport through inhomogeneous plasma medium.
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2]

3]

[4]

[5]

The 3-D G-EMHD studies are another important area for investigation.
These studies can clearly demonstrate that the KH destabilization of the
sharp current layer formed at the plasma inhomogeneity layer can ultimately
degenerate into turbulence, giving rise to anomalous viscosity in the elec-
tron fluid system. The 3-D G-EMHD system also provides a simple realistic

system to study turbulence in an inhomogeneous media.

The propagation of the current pulse structures in a cylindrical geometry
poses a more realistic scenario for the FI experiments [60, 61]. From funda-
mental point of view also, the cylindrical case would be interesting. In the
slab case the magnetic field lines for both monopoles as well as dipoles were
extending to infinity along the symmetry direction. In the case of cylindrical
geometry the magnetic fields are closed along the 6 direction. This may have

novel consequences.

A further generalization of the G-EMHD model to incorporate relativistic ef-
fects is necessary. This will provide a better description for energetic electron

dynamics in the context of FI experiments.

A two fluid description for electrons constituting the forward energetic cur-
rent and the reverse background shielding current in the model would be

closer to reality and needs to be pursued.
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Appendix A

Derivation of the G-EMHD Model

Equations

We start with the normalized 3-D G-EMHD model equation.

%szX(VXﬁ)—anV

where V,V x V and g are defined as:

Vxé
n
VQB+Vn><V><§

n n?

V=

VxV=

and

V2B VnxVxB -
+ - B

g’:
n n?

Eq. (A.1) can be expanded as:

99 _

o =V (V- 9)~G(V-V)+ (5 V)V = (V- V)§ =V x V
N——

or,
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This represents the simplified form of the 3-D G-EMHD model equation.
Two Dimensional G-EMHD model

For the reduction of the G-EMHD model in two dimension we assume the

general coordinate system like é,, €, and é; as the right handed triad of unit vectors.
We take the symmetry axis to be along é;. The magnetic field being divergenceless
it can be expressed in terms of two scalar fields in 2-D as B = bés +és x Vib. The

—

electron velocity (V')and the generalized vorticity (¢) can be written as:

. B
Vo VX
n
b 2
_ o x Db _ V¥
n n

VxV = és(V-<V—b))—ésxV<V2w>
n n

<v2§ é_vnxvxz?)

and

Q)
I

n n?

C e (T (v () o)
n n

Substituting the expression for ‘7, V x V and g in Eq. (A.3), and on separating the

components along €; (symmetry direction) as well as in the perpendicular plane of

the €, direction (poloidal plane) we get the following two equations.

%{b_v' (%)}*éswb-v[%{b—v. (%)}]+éswi.v(v;w)

=nV- (%) (A.4)

and

2 5 b 2 2
%{w_vw}_i_esxv ~V{w—v¢}=nvw (A.5)

n n n n

Integral invariants of the G-EMHD:
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In order to get the integral invariants of 2-D G-EMHD we are using the Eq. (A.4)
& (A.5) in the limit of inviscid fluid, » — 0. Here the derivation of integral
invariant is carried out when current associated with magnetic field (é) is along
both symmetry direction (€) as well as in the perpendicular plane of €;. It means
both scalar quantities b and 1) are finite.

On multiplying Eq. (A.4) by b and integrating over 2-D volume d’X Eq. (A.4)

can be written as:

o 12 (o () forsoef2 (- ()]

d*X + /be; x V (w - v%/;) v (v_%/;) d*X =0 (A.6)

n

The first and second term can be combined in the form of (1/2) [ %«{ZJQJr(VZ))2 /n}d*X
using by part integration and the condition that the field vanishes on the boundary.
The third term can be written as (1/2) [ V-(é; x Vb?/n) (b—V - (Vb/n)) d>X and

it vanishes over whole space. Thus, we get

1/86;{()2 (Vs)z}dQXﬂL/bés (w—v%) V(V:D) X = 0(A.7)

Again on multiplying Eq. (A.5) by V29 and integrating over the 2-D space,

o o (V) €s X Vb V2 B
/V%Ed?)(—/ v%a ( - ) d2X+/V = (w — ) d’X =0
(A.8)

The first and second term can be merged into (1/2) [ % {(V@/})Q + (V2)° /n} d*X
by applying by part integration over the first term followed by the condition that

fields vanishes on the boundary.

T
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Now on adding Eq. (A.7) and Eq. (A.9), then
! / 0 Ly (OO, (V) + 2¢ °X+
ot n

f (@b-w’)V(V%)-V%M-V@-V—%)}dwﬂ
n n n

or,

2 2 2 2
1/2{52+ﬂ+(v¢)2+w}d2){+/v.és <w—v,¢)) vwdQX:O
2/ ot n n n

0
or
1d ,  (Vb)? 2 VL oy
2dt/{b+ - + (Vo) + - X =0
or,
dF
%_0 (A.10)

This equation implies that the quantity E is constant where F is the total en-
ergy, i.e. summation of the magnetic energy (62 + (VQ/J)Q) and kinetic energy
(1/n) ((Vb)2 + V2¢). At this stage energy is the only invariant for this case.

Now, let us derive invariants for the case when current associated with the
magnetic field is confined only in perpendicular plane of ég, i.e. ¥» = 0. Thus, in
this case 2-D G-EMHD model reduces to the following equation.

R RO R )

Here, apart from the energy (b% + (Vb)*/ n) one more invariant is associated with

this equation. That can be obtained by multiplying Eq. (A.11) with
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1/n) (b—V -(Vb/n)) and integrating over 2-D volume space d?X. Therefore,
(1/n)( grating

Jis )8 6w (e
6w e (oo () or-

1 /1 2 1 1 2
(e () e feomnw (L (oow () i -
2] not n 2 n n

(3 s () e

J/

Thus,

or

dH
=0 (A.12)

where H (= [ (1/n) (b— V- (Vb/n))*d>X) is the additional invariant apart from

energy for this case when ¢ = 0.
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Solution of the Nonlinear EMHD
Equation
Let us start with the simplified form of the 2-D EMHD equation with the as-

sumption that only the symmetry component (b) of the total magnetic field (é =
bz 4 2 x V) exist, i.e. 1» = 0. So,

of,

— 4+ 16, =0 B.1

ot +[ ) b] ( )
Here, the symbols | , | and €2, used in the above equation corresponds to Poisson

bracket and (b—V?2b) respectively. The solution of this equation can be obtained by
going to the moving frame with the coordinate transformation £ = y — ut assuming
that the translational velocity (u) of the solution is along ¢ direction. Therefore,
Eq. (B.1) can be reduced as,

[Qp,b— ux] =0 (B.2)

This suggests that €, = f,(b — ux), where f, is function of (b — ux). Thus, a

traveling solution can be obtained by seeking solution of the following equation:

b— Vb= fy(b—ux) (B.3)
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or,
V2b — b= —fy(b — ux) (B.4)

The general solution would correspond to any choice of the function f; . Isichneko
et al. [65] has obtained the analytical form of the solution that is localized within
the finite spatial extent of rq. Here the solution is obtained by the transformation
of this equation in the cylindrical co-ordinate system with the assumption that
0/0z =0 and = = rcos (¢). Thus,

10 ([ 0b 1 9%
T (7’5) + S b= —fu(b— urcos(f)) (B.5)
In order to get the solution of Eq. (B.5), Isichenko et al. [65] considered the linear
variation of vorticity functions f,(= a(b— ur cos(#))) inside of r,, and zero outside
of r, (it means « should be zero). Hence,

Governing equation inside of r, ( r < r,)

10 [ 0b 1 0%
o (TE) + S b= —a(b—urcosb) (B.6)
Governing equation outside of ry (r > )

10 ob 1 9%
"o (a_> tiage =0 (B

The governing Eq. (B.6) gives the solution of the scalar field, b, in the form of the
first kind of Bessel function. Here, let me write the form of the solution for field
b inside of ro : b = [diJ1(kir) + dar]cosf. Eq. (B.7) forms the simple Poisson
equation and allows the solution for the quantity b in the form of the second kind
of Bessel function, b = d3K;(r) cos. The constants dy, dy and d3 can be obtained
by using the boundary conditions that the fields and its derivative are continuous
at the boundary of r5. Thus the continuity of the field at the boundary will give
the relation

dy J1(kiro) + dorg = d3 K4 (10) (B.8)
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and the other condition on its derivative (b;(r = ro) = b,(r = ro)) will give the
relation

dlji(kﬂ“o) +dy = d3K1(7’0) (B.9)

Using these equations we get the relations

é _ Kl(TO) - TOKi(TO) (B 10)
d2 Jl(leo)Ki — J{(klro)Kl(TO)

and,
d3 . Jl(kl'f’(]) — J1<]€1T0)7’0 (B 11)

dy Ji(karo) Ky — Jy (kiro) Ky (ro)
Thus, the value of the constants d; and d3 can be calculated by knowing the
constant dy. So, on substituting the inside solution for b in Eq. (B.6) we get the

equation:

d*Jy(kyr) dJy(kir)
9 @”J1 (K1 1(k1
" dr? tr dr

d; + (kir? = 1) Ji(kar) | = (d2 — ads + au) r® (B.12)
where k? = o — 1. From this equation it is clear that the inside solution will only
be satisfied when

dy — ady + au =0

or,
au

dy = — (B.13)

11—«
Now we can obtain the constants d; and d3 using this form of dy;. Here we are

writing the solution of the field b explicitly.

bi(r,0) = (diJi(kir) + da)cos(8), r<To
bo(r,0) = dsKy(r)cos(0), r >

This solution of b form the dipolar structure for a set of free parameters (u, «, rg)
[see Fig. (4.2) of the Chapter 4].
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Solution of the Inertialess G-EMHD
Model

We begin with the Eq. (2.2) of the Chapter 2.

o (v x P)

T —Vx(V.xVxP)—vVxV. (C.1)

where P =V, — (eA)/(mec) is the generalized momentum containing both electron
flow velocity (V,) as well as vector field (A). The electron flow velocity is defined
as V., = —(¢/4mn.e)V x B (obtained by neglecting the displacement current in the

Ampere’s law). Expansion of the generalized vorticity V x P

e

VxP = VxV.——VxA (C.2)

MeC
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Upon substituting the expression for velocity V, = —(c/4men.)V x B and the
relation B =V x A in Eq. (C.2) we get.
. B B
VxP = —LVX<VX )-e (C.3)
47T€ ne mec
1 5 1 S]  eB
= - = [—vxvx3+v(—) xva] _ L
4me | n, Ne meC
_ iv<v_§>_v2§_VnexVx§ _eé
4me | ne Te n? mecC
_ c v2§+VnexVx§ _eé
dren, Ne meC

Comparing the magnitude of the first and second term of RHS in Eq. (C.3).

| eV X (V X B/ne> | _ ck?B/4men,
| eB/mec | eB/mec
- C_sz
il
pe
= d’K?

where d. = ¢/wpe, in which w,. = Arn.e? /me is the plasma frequency. The first
term of RHS in the Eq. (C.3) is neglected if d?k* < 1. This is the inertialess

condition. Under this condition the form of the generalized vorticity would be.

—

- B
VxP = L (C.4)

MeC

Now on substituting this new form of V x P in Eq. (C.1) we obtain.

—

8B d —
E_VX(WXB)+meC

v

V xV, (C.5)
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or,

a_éz_EVx (jxj?) — ¢V x (J/o) (C.6)

where 0 = n.e?/m.v is a constant quantity and is defined as conductivity. Again
Eq. (C.6) is simplified using the relation for current J = (¢/47)V x B. Thus we

obtain.

0B c 1 c? -
= _ _ = i B2 - 2B
ot 87Tev (ne> X V(B + 47T<7V
or,
OB c Vn c? —
— = B?/2) — —V?B = )
ot  4men, ne x V(B'/2) 47T<7v 0 (C.7)

Let the density gradient is along gy direction (i.e. Vn, = (9n./dy)y) and perpen-

dicular to the magnetic field (B = b(x,y)z). Then,

ob c bz x Vn, 2 (0% 0%
Gt = (Ga + 53 (©3)
Drift Velocity
or,
Ob ¢ 10n.\ . 0ob 2 (0% 0%
A L A .
ot *\( ime 2 Oy )J or  dro (8:1:2 * 0y2) (C9)
K n
or,
@+K3(b2/2) = @+@ (C.10)
ot ox 1\ 922 Oy? '

where K = —c/4mn.eL,, in which L, = (1/n.)0n./dy is interpreted as the inverse
of density scale length. The solution of this equation can be obtained by going to
the moving frame with the coordinate transformation; & = x + Sy — ut, where (3 is
a constant parameter and u represents the velocity of moving frame. Thus, in this

new coordinate system the operators associated with the Eq. (C.10) are defined
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as:

0 0
oy~ oe’

9o_90__ 9
or 06 Ot

o¢’ 73
Therefore, Eq. (C.10) becomes,

2 2
b Kab /2 g0
35 23

or,

KB /2—bu) P
o€ —

On integration,

DKV /2 — bu) o (0
[ [ (2o

Kb? b
— —bu=n(1 K
where K is the integration constant and can be obtained by applying the bound-

ary condition that b = by and 9b/9¢ = 0. Thus K = by(boK/2 — u),

or,

ab

(1+6) 5~

b(bK /2 — u) — bo(boK /2 — )

Integrating again,

db
/ b(bK /2 — u) — bo(boK /2 — u) / n(1 + 5 " Ko

2 tan! [(bK—u )/ = 2K K, — u?) ] ¢
V(- 2K K, —u?) n(1+6?)

Using the identity tan(iz) = itanh(x) the above relation can be written in the

+ ko

simplified manner.

b= %qutanh {(boKQ_ v) (n(lf—ﬁ) +K2)} (C.11)
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where K is the integration constant.

106



Bibliography

[1] A.S. Kingsep, K. V. Chukbar and V. V. Yankov, Reviews of Plasma Physics,
(Consultant Bureau, New York), vol. 16 (1990).

[2] F. Califano, R. Prandi, F. Pegoraro and S. V. Bulanov, Phys. Plasmas 6,
2332 (1999).

[3] A. Das and P. H. Diamond, Phys. Plasmas 7, 170 (2000).
[4] A. Das, Phys. Plasmas 15, 022308 (2008).

[5] M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Wood-
worth, E. M. Campbell, M. D.Perry and R. J. Mason, Phys. Plasmas 1, 1626
(1994).

[6] N. Attico, F. Califano and F. Pegoraro, Phys. Plasmas 7, 2381 (2000).
[7] N. Attico, F. Califano and F. Pegoraro, Phys. Plasmas 9, 458 (2002).
[8] S. V. Bulanov, F. Pegoraro and A. S. Sakharov, Phys. Fluids B 4, 2499 (1992).

[9] F. Califano, N. Attico, F. Pegoraro, G. Bertin and S. V. Bulanov, Phys. Rev.
Lett. 86, 5293 (2001).

[10] L. Chacon, A. N. Simakov and A. Zocco, Phys. Rev. Lett. 99, 235001 (2007).
[11] J. C. Dorelli and J. Brin, Phys. Plasmas 8, 4010 (2001).
[12] A. A. Chernkov and V. V. Yankov, Sov. J. Plasma Phys. 8, 522 (1982).

[13] D. D. Ryutov, M. S. Derzon and M. K. Matzen, Rev. Mod. Phys. 72, 000167
(2000).

107



Bibliography
[14] M. Sarfaty, R. Shpitalnik, R. Arad, A. Weingarten, Ya. E. Karasik, A. Frucht-

man and Y. Maron, Phys. Plasmas 2, 2583 (1995).

[15] R. Shpitalnik, A. Weingarten, K. Gomberoff, Ya. Krasik and Y. Maron, Phys.
Plasmas 5, 792 (1998).

[16] A. V. Gordeev, A. V. Grechikha, A. V. Gulin and O. M. Drozdova, Sov. J.
Plasma Phys. 17, 381 (1991).

[17] C. W. Mendel, Jr. and S. A. Goldstein, J. Appl. Phys. 48, 1004 (1977).

[18] P. F. Ottinger, S. A. Goldstein and R. A. Meger, J. Appl. Phys. 56, 774
(1984).

[19] B. V. Weber, R. J. Commisso, R. A. Merger, J. M. Neri, W. F. Oliphant and
P. F. Ottinger, Appl. Phys. Lett. 45, 1043 (1984).

[20] A.S. Kingsep, Yu. V. Mokhov and K. V. Chukbar, Sov. J. Plasma Phys. 10,
495 (1984).

[21] A.S. Sandhu, A. K. Dharmadhikari, P. P. Rajeev, G. R. Kumar, S. Sengupta,
A. Das and P. K. Kaw, Phys. Rev. Lett. 89, 225002 (2002).

[22] A.S. Sandhu, G. R. Kumar, S. Sengupta, A. Das and P. K. Kaw, Phys. Rev.
E 73, 036409 (2006).

[23] S. Kahaly, S. Mondal and G. R. Kumar, Journal of Physics: Conference
Series 112, 022103 (2008).

[24] J. Sinha, S. Mohan, S. S. Banerjee, S. Kahaly and G. R. Kumar, Phys. Rev.
E 77, 046118 (2008).

[25] S. Poornakala, A. Das, A. Sen and P. K. Kaw, Phys. Plasmas 9, 1820 (2002).
[26] V. Saxena, A. Das, A. Sen and P. K. Kaw, Phys. Plasmas 13, 032309 (2006).
[27] M. Honda, J. Meyer-ter-Vehn and A. Pukhov, Phys. Plasmas 7, 1302 (2000).

[28] M. Honda, J. Meyer-ter-Vehn and A. Pukhov, Phys. Rev. Lett. 85, 2128
(2000).

108



Bibliography
[29] Y. Sentoku, K. Mima, Z. M. Sheng, P. Kaw, K. Nishihara and K. Nishikawa,
Phys. Rev. E 65, 046408 (2002).

[30] Y. Sentoku, K. Mima, P. Kaw, and K. Nishikawa, Phys. Rev. Lett. 90, 155001
(2003).

[31] J. J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006).

[32] R. B. Campbell, R. Kodama, T. A. Melhorn, K. A. Tanaka and D. R. Welch,
Phys. Rev. Lett. 94, 055001 (2005).

[33] R. J. Mason, Phys. Rev. Lett. 96, 035001 (2006).

[34] A. Fruchtman, A. A. Tvanov and A. S. Kingsep, Phys. Plasmas 5, 1133 (1998).
[35] A. Fruchtman and L. I. Rudakov, Phys. Rev. Lett. 69, 2070 (1992).

[36] A. Das, Plasma Phys. Control. Fusion 41, A531 (1999).

[37] D. Biskamp, E. Schwarz, A. Zeiler, A. Celani and J. F. Drake, Phys. Plasmas
6, 751 (1999).

[38] D. Biskamp, E. Schwarz and J. F. Drake, Phys. Rev. Lett. 76, 1264 (1996).
[39] D. Biskamp, E. Schwarz and A. Celani, Phys. Rev. Lett. 81, 4855 (1998).

[40] W. L. Kruer, The Physics of Laser-Plasma Interactions, (Addison-Wesley,
New York, 1988).

[41] F. Brunel, Phys. Rev. Lett. 59, 52 (1987).

[42] A.S. Sandhu, G. R. Kumar, S. Sengupta, A. Das and P. K. Kaw, Phys. Reuv.
Lett. 95, 025005 (2005).

[43] C. Gahn, G. Pretzler, A. Saemann, G. D. Tsakiris, K. J. Witte, D. Gaussmann,
T. Schatz, U. Schramm, P. Thiroff and D. Habs, Appl. Phys. Lett. 73, 3662
(1998).

[44] P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu and G. R. Kumar, Phys.
Rev. Lett. 90, 115002 (2003).

109



Bibliography

[45] G. Kulcsar, D. Almawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L.
Zhao and R. S. Marjoribanks, Phys. Rev. Lett. 84, 5149 (2000).

[46] S. P. Gordon, T. Donnelly, A. Sullivan, H. Hamster and R. W. Falcone, Opt.
Lett. 19, 484 (1994).

[47] M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis and
R. W. Falcone, Appl. Phys. Lett. 62, 1068 (1993).

[48] A. L. Lei, K. A. Tanaka, K. Mima, G. R. Kumar, K. Nagai, T. Norimatsu, T.
Yabuuchi and K. Mima , Phys. Rev. Lett. 96, 255006 (2006).

[49] J. C. Gauthier et al., Proc. SPIE Int. Soc. Opt. Eng. 2523, 242 (1995).

[50] S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P.
K. Kaw and G. R. Kumar, Phys. Rev. Lett. 101, 145001 (2008).

[51] H. Alfven, Phys. Rev. 55, 425 (1939).

[52] E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).

[53] N. Jain, A. Das, P. Kaw and S. Sengupta, Physics Letters A 363, 125 (2007).
[54] N. Jain, A. Das, P. Kaw and S. Sengupta, Phys. Plasmas 10, 29 (2003).

[55] N. Jain, A. Das and P. Kaw, Phys. Plasmas 11 4390 (2004).

[56] A. Das and P. Kaw, Phys. Plasmas 8, 4518 (2001).

[57] J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy
Gain using Indirect Drive, Springer-Verlag, New York (1998).

[58] J. D. Lindl et al., Phys. Plasmas 11, 339 (2004).

[59] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge University
Press, Cambridge, London (1981).

[60] R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evanes, H. Fujita,
Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu,
S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka,
Y. Toyama, T. Yamanaka and Nature M. Zepf, Nature 412, 798 (2001).

110



Bibliography

[61] R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi,
H. Fujita, H. Habarat, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. M.
Krushelnick, K. L. Lancaster, K. Mima, K. Nagai, M. Naki, H. Nishimura,
T. Norimats u, P. A. Norreys, S. Sakabe, K. A. Tanaka, A. Youssef, and
M. Zepf an d T. Yamanka, Nature 418, 933 (2002).

[62] A. P. L. Robinson and M. Sherlock, Phys. Plasmas 14, 083105 (2007).

[63] S. Kar, A. P. L. Robinson, D. C. Carroll, O. Lundh, K. Markey, P. Mckenna,
P. Norreys and M. Zepf, Phys. Rev. Lett. 102, 055001 (2009).

[64] R. Kodama, Y. Sentoku, Z. L. Chen, G. R. Kumar, S. P. Hatchett, Y. Toyama,
T. E. Cowan, R. R. Freeman, J. Fuchs, Y. Izawa, M. H. Key, Y. Kita-
gawa, K. Kondo, T.Matsuoka, H. Nakamura, M. Nakatsutsumi, P. A. Norreys,
T. Norimatsu, R. A. Snavely, R. B. Stephens, M. Tampo, K. A. Tanaka and
T. Yabuuchi, Nature 432, 1005 (2004).

[65] M. B. Isichenko and A. M. Marnachev, Sov. Phys. JETP 66, 702 (1987).
[66] D. V. Flippov and V. V. Yan’kov, Sov. J. Plasma Phys. 12, 548 (1986).

[67] S. Dastgeer, A. Das, P. Kaw and P. H. Diamond, Phys. Plasmas 7, 571 (2000).
[68] S. Dastgeer and G. P. Zank, The Astrophysical Journal 599, 715 (2003).
[69] A. Celani, R. Pandit and G. Boffetta, Physica Scripta T75, 191-193 (1998).
[70] J. Cho and A. Lazarian, The Astrophysical Journal 615, 1.41-1.44 (2004).
[71] J. Cho and A. Lazarian, The Astrophysical Journal 701, 236-252 (2009).

[72] G. Gaur, S. Sundar, S. K. Yadav, A. Das, P. Kaw and S. Sharma, Phys.
Plasmas 16, 072310 (2009).

[73] V. 1. Petviashvili, Pis’'ma Zh. Eksp. Teor. Fiz. 32, 632 (1980).
[74] V.I. Petviashvili and V. V. Yan’kov, Dokl. Akad. Nauk SSSR 267, 825 (1982).

[75] A. Fruchtman and K. Gomberoff, Phys. Fluids B 4, 117 (1992).

111



Bibliography
[76] B. N. Kuvshinov, E. Westerhof, T. J. Schep and M. Berning, Physics Letters
A 241, 287 (1998).

[77] B. N. Kuvshinov, J. Rem, T. J. Schep and E. Westerhof, Phys. Plasmas 8,
3232 (2001).

[78] S. K. Yadav, A. Das and P. Kaw, Phys. Plasmas 15, 062308 (2008).

[79] J. P. Boris, Fluz Corrected Transport Modules for Generalized Continuity
Fquations, (NRL Memorandom Report 3237, Naval Research Laboratory,
Washington DC ), 1976.

[80] S. K. Yadav, A. Das, P. Kaw and S. Sengupta, Phys. Plasmas 16, 040456
(2000).

[81] S. K. Yadav and A. Das, Phys. Plasmas 17, 052306 (2010).
[82] A. Hasegawa and K. Mima, Phys. Fluids 21(1), 87 (1978).

[83] P. Swarztrauber and R. Sweet, Effcient Fortran Subprograms for the Solu-
tion of Elliptic Equations, (NCAR TN/IA - 109, The National Center for
Atmospheric Research, Colorado, USA ), 1975.

[84] T. Yabuuchi, A. Das, G. R. Kumar, H. Habara, P. K. Kaw, R. Kodama,
K. Mima, P. A. Norreys, S. Sengupta and K. A. Tanaka, New Journal of
Physics 11, 093031 (2009).

[85] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publi-
cations, Inc. Newyork (1981).

[86] J. P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press, New York
(1987).

[87] J. F. Drake, R. G. Kleva and M. E. Mandt, Phys. Rev. Lett. 73, 1251 (1994).

112



	hbni_recommendation.pdf
	hbni_recommendation_first_sheet
	Page 1

	hbni_recommendation_second_sheet
	Page 1


	guide_certification.pdf
	Page 1

	refree1_report.pdf
	refree1_first_sheet
	Page 1

	refree1_second_sheet
	Page 1


	refree2_report.pdf
	refree2_first_sheet
	Page 1

	refree2_second_sheet
	Page 1

	refree2_third_sheet
	Page 1


	attested_declaration_of_author.pdf
	Page 1

	attested_statement_of_author.pdf
	Page 1

	attested_acknowledgement.pdf
	Page 1

	recommendation_by_viva_voce.pdf
	Page 1


