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SYNOPSISThe main theme of this thesis is to understand the propagation of eletron urrentin an inhomogeneous plasma medium. A proper understanding of the transportof eletron urrent in plasma is of importane in a variety of frontline researhativities. For instane in the area of inertial on�nement fusion studies [1℄ a reentfast ignition tehnique [2℄ whih separates the task of target ompression from thereation of ignition spark, holds a lot of promise. In this tehnique eletrons havethe key role of absorbing energy from laser at the ritial layer of the preompressedtarget and transporting it to the overdense regime and depositing it for the reationof hot spark. Another area of frontline researh is related to partile aeleration.The onventional high energy aelerators [3℄ are beoming too huge and expensiveto build. Plasma based aelerators proposed by Dawson [4,5℄ on the other handis set to revolutionize and o�er an alternative whih redues the aelerator lengthby a fator of almost 1000. In these aelerators, it is the eletron speies againwhose dynamial response in the plasma de�nes the aeleration parameters.For these reasons the study of eletron transport takes a prominent stage inresearh ativities worldwide. The experiments [6,7℄ onerning the physis assoi-ated with the eletron response in plasma medium have foused on issues pertainingto the oupling of laser energy to the plasma in whih eletrons at as onduit.The measurements in these experiments involved time resolved re�etivity, X - rayemission and magneti �eld data whih provide information of eletrons. For in-stane, the time evolution of the magneti �eld pro�le has provided good insightson eletron dynamis in plasma medium. The deay of magneti �eld suggests thepresene of anomalous dissipation in the propagation of eletrons through plasma.There have also been PIC simulations studies [8-11℄ in the ontext of fast ignitionwhih aim at the understanding of the reation of hot spark by fast energeti ele-trons. Another area where interest lies is assoiated with the possibility of guidingand ollimating eletron urrents in plasma medium in a desirable fashion. In thisontext experiments [12℄ as well as theoretial stuides [13℄ on the design of novelstrutured targets have been done.In some of these appliations , e.g. Fast Ignition (FI) [2℄ experiments theeletrons are required to propagate through an inhomogeneous plasma medium.Keeping this in view we seek to understand the in�uene of plasma density inho-8



mogeneity on eletron propagation in this thesis. For this purpose we adopt theframework of Eletron Magnetohydrodynami (EMHD) [14-16℄ �uid desription.This model represents the physis in the domain of fast eletron time sale at whihthe ions in plasma remain unresponsive. The EMHD model has been frequentlyused for the purpose of understanding a host of physial phenomena pertaining toastrophysial plasmas, earth's magnetosphere, and even laboratory plasma. TheEMHD model has been invoked for the basi understanding of the phenomenaof ollisionless magneti �eld line reonnetion [17-23℄, generation of large salemagneti �eld, and rapid dissipation of magneti �eld energy in the ontext ofastrophysial plasmas [24, 25℄ The desription of earth's plasma sheet and mag-netotail region are other areas where the EMHD has been applied [26, 27℄. Withthe availability of high power short pulse lasers and fast diagnosti tools, muhof the experimental observations on laser plasma [28℄ and laser solid interationstudies [29℄ has been understood with EMHD desription . However, in all thesestudies EMHD model has been used in the ontext of homogeneous plasma density.Some authors have inorporated the non uniformity of plasma density within thepurview of EMHD model [30, 31℄. However, their equations are fairly approximatein terms of the hoie of plasma inhomogeneity and/or neglet of eletron inertia.As stated earlier our objetive here is to study the transport of eletrons throughinhomogeneous plasma medium. We have, therefore, generalized the EMHD modelin its full glory to inorporate e�ets arising due to any arbitrary plasma densityinhomogeneity. The new model is termed as the Generalized Eletronmagneto-hydrodynamis ( G-EMHD ) [32℄. A omprehensive derivation of the G-EMHDmodel both in 3D as well as 2D has been presented in the thesis. The salient as-pets (Integral invariants assoiated with this model ) of the G-EMHD equationsare also disussed. Furthermore, various limiting forms of the G-EMHD modelequations in redued spatial dimension and simpli�ed eletron �ow on�gurationare also presented in the thesis. The equations of the G-EMHD model are thenemployed for the purpose of studying eletron urrent propagation. The G-EMHDevolution equations being nonlinear, a numerial ode has been developed to solvethe evolution equations in 2-D. The �ux orreted sheme of Boris et al. [33℄ hasbeen adopted for this purpose. A detailed desription of the numerial proedurehas been provided in the thesis.The numerial study helps in identifying the role of density inhomogeneity9



on the propagation of eletron urrent pulses. For this purpose we hose exatnonlinear solutions [34℄ for a homogeneous plasma in the form of EMHD monopolesand dipoles. The monopoles are non-propagating rotating urrent strutures in ahomogeneous plasma whereas the dipoles are known to propagate along their axiswith uniform veloity. Our numerial studies show that (i) these urrent pulsestrutures aquire an additional drift veloity, ~vd = bẑ × ∇n/n2 (Here b is themagneti �eld along the symmetry diretion ẑ, assoiated with the eletron urrentand n denotes plasma density) in the presene of density inhomogeneity. The driftis transverse to the magneti �eld (bẑ) and the density gradient (∇n). (ii) Thedipole an readily penetrate inside a high density plasma region but �nds it hardand is often unable to ome out from there. It thus often gets trapped within ahigh plasma density region. (iii) The dipole aquires the size of the skin depthassoiated with the loal plasma density.The phenomena of trapping has been investigated in detail to formulate athreshold riteria (the ratio of the density inhomogeneity sale length and thedistane traversed by the struture) for trapping vs. transmission of the strutures[35℄. The trapping of the dipole urrent pulse struture in high density regionindiates the violation of time reversal invariane and is suggestive of a dissipativemehanism at work. We indeed observe that as the dipolar urrent pulse struturepasses through the density inhomogeneity to penetrate the high density region, itforms magneti shoks and/or sharp urrent layers [36℄. A strong energy dissipationat the loation of magneti shok region ours when the dipole struture enters thehigh density region. Our numerial studies show that the total energy dissipation isindependent of the magnitude and the harater of the dissipative proesses presentin the system. This explains the irreversible propagation of the eletron urrentpulse and also provides us with the possibility of a ollision - less sheme of eletronenergy dissipation in a plasma. It an be used as a method for e�ient loalizedheating of plasma by energeti eletrons. The eletrons an be easily aelerated tohigh energies and hene are readily available as good soure of energy. Furthermore,eletrons an be used to heat overdense plasma region as well, where lasers areunable to penetrate. The only drawbak for using eletrons for the purpose ofplasma heating so far has been due to the fat that higher the energy of eletronsmore di�ult it beomes to stop them, as their Rutherford ollision ross setionfalls o� drastially with inreasing energy. Against this bakdrop the possibility of10



ollision - less energy dissipation through shok formation at the inhomogeneouslayer observed and proposed by us is very attrative.A semi - analyti approximate estimate for the total energy dissipation hasalso been made whih on�rms the numerial observation of the independeneof the total dissipated energy to the magnitude and harater (resistivity and/orvisosity) of the dissipative proesses at work. Furthermore the alulation showthat the energy dissipation depends on the ratio of the traversed distane by thestruture and the inhomogeneity sale length. This parameter is idential to whatde�nes the threshold for trapping vs. transmission in our numerial studies. Thislearly shows that the energy dissipation ourring at the shok layer is behind theirreversible propagation of the strutures.We apply our shok indued anomalous energy dissipation sheme to the prob-lem of Fast Ignition (FI) [2℄ whih relies on the stopping of energeti eletrons forthe reation of hot spot . A reent experimental work by Yabuuhi et al. [37℄ pro-vides onlusive experimental evidene of the proposed dissipation sheme at workin fast ignition related experiments. Furthermore, a number of PIC simulations[8-11℄ arried out through worldwide in the ontext of fast ignition using distintodes show very learly plasma heating at the loation of the target inhomogeneity.This provides another onlusive evidene for our mehanism at work.We also propose a new simpler sheme to ollimate and guide the path ofenergeti eletrons using a tailored plasma density inhomogeneity pro�le. We showthat the eletrons path an be guided through plasma density inhomogeneity justas optial �bers guide the path of photons. The shemes suggested by other authorson eletron guiding adopt a ompliated proedure of speially prepared struturedtargets of di�erent materials [12, 13℄. Suh targets would neither be easy to preparenor an they be employed with ease in eah and every experiment. We o�er thepossibility of ahieving this objetive through a properly tailored plasma densitypro�le. This has been illustrated in the thesis with numerial simulations. Theexperiment [38℄ at Institute for Laser Engineering ( ILE ), Osaka, Japan showsthat the energeti eletrons generated at the ritial density layer gets guidedalong the diretion de�ned by the orientation of a solid arbon wire. We feel thatinhomogeneous plasma density spontaneously reated by the ionization of the wireby the energeti eletrons provides the requisite inhomogeneous plasma pro�le forthe guiding of the wire in this ILE experiment. 11
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Chapter 1IntrodutionThis thesis is devoted to the study of the propagation and transport features ofeletron urrent pulses through an inhomogeneous plasma medium. Interesting ob-servations of both fundamental and applied nature are made. This has been donewith the help of simulations of Eletron - Magnetohydrodynami model [1, 2, 3, 4℄whih has been generalized to treat an inhomogeneous plasma. A new ollisionlesssheme to extrat energy from fast eletrons at the plasma inhomogeneity layerfor the purpose of plasma heating has been eluidated. This is speially usefulfor heating plasma in overdense regimes where lasers an not be employed. Thissheme of plasma heating by eletrons is maneuverable, as the heating e�ieny,the spei� loation for energy dissipation in plasma et., an be deided by prop-erly tailoring the plasma density inhomogeneity pro�le. Another novel possibilityof guiding the path of the eletron urrent pulse with the help of appropriatelytailored plasma inhomogeneity pro�le has also been demonstrated in these studies.The diret relevane of both e�ets shown here, viz., (i) the possible guidingof the eletron path in the plasma and (ii) the deposition of its energy to heat theplasma, to the problem of Fast Ignition (FI) [5℄ has also been outlined.1.1 MotivationIn reent years there has been a phenomenal progress in the development of highpower of peta-watt (PW) range, short pulse (sub-pioseonds) lasers. These highpower lasers have led to the exploration of hitherto unknown regime of plasma re-1



Chapter 1: Introdutionsponse. Furthermore, the availability of fast diagnosti tools has helped in wathingthe response of the plasma at these fast time sales in onsiderable detail. This hasopened up an entirely new area of researh. At these fast time sales eletrons arethe main speies whih partiipate in dynamis and the heavier ion speies have adormant role of merely providing a stati neutralizing bakground. Various plasmaphysis phenomena are now being explored from the fast eletron time sale evo-lution perspetive. For instane, the work arried out to investigate the physisof the fast magneti �eld line reonnetion events [6, 7, 8, 9, 10, 11℄, the fast Zpinhes [12, 13℄ , fast plasma swithes [14, 15, 16, 17, 18, 19, 20℄, the generationof quasi - stati intense magneti �elds in laboratory experiments [21, 22, 23, 24℄et., are explored on the basis of underlying eletron dynamis. It thus appearsthat a proper theoretial understanding of eletron transport through plasma is ofonsiderable importane.1.2 Models for DesriptionA variety of models and tools have been employed for the purpose of these studies.The use of eletron �uid model along with the Maxwell set of equations for thedesription of the evolution of eletromagneti �elds assoiated with eletron mo-tion is a ommonly adopted approah towards the depition of most phenomenain this partiular regime [1, 2, 3, 4, 25, 26℄. Both analytial and numerial studieshave been arried out with this desription. There are Partile - In - Cell (PIC)models [27, 28, 29, 30℄, whih treat kineti aspet of the plasma partiles, and areused extensively numerially. A ombination of �uid and partile desription invarious regimes have also been adopted in hybrid odes [31, 32, 33℄.For fast eletron propagation in a plasma, the urrent assoiated with the sys-tem an be very high. The eletrons in the presene of self onsistently generatedmagneti �eld in suh a situation behaves like a magnetized �uid. A simpli�eddesription treating the �ow of magnetized eletrons is the Eletron Magnetohy-drodynami (EMHD) �uid model [1, 2, 3, 4℄. The time sale assoiated with thismodel are fast so as to ignore ion dynamis, but it is slower than the eletronplasma period of the system. The model, thus, rules out the spae harge ontri-bution. The eletron density perturbations are therefore ignored in the ontext of2



Chapter 1: IntrodutionEMHD model. The EMHD model has led to the understanding and predition ofa host of novel phenomena, e.g. the fast penetration of magneti �elds [34, 35℄,the phenomena of Eletron Magnetohydrodynami (EMH) resistane [1℄et. Thesimulations of this partiular �uid model has also been arried out extensively, tounderstand the oherent as well as turbulent dynamis assoiated with eletron�uids in a plasma [36, 37, 38, 39℄.As mentioned earlier, the investigation of eletron dynamis in plasmas analso be arried out with the help of Partile - in - Cell (PIC) omputations[27, 28, 29, 30℄. In these omputations a large assembly of eletrons are evolved asfat partiles under the ation of self onsistent eletromagneti �elds. These sim-ulations do ontain the spae harge �utuation assoiated with the fast eletronplasma period. In this sense they are more omplete than the simpli�ed EMHDmodel. Furthermore, the kineti e�ets assoiated with �nite temperature are alsopresent in this depition. The PIC simulations, however, are often very omputa-tionally demanding. One therefore, typially, restrits to lower spae dimensionsand/or ompromises with spatial resolution. These limitations exist even when thestate of the art omputational failities are employed. For instane, even now thespatial grid in some PIC studies [32℄ barely resolve the eletron skin depth, whihis a ruial length sale assoiated with eletron dynamis. This, in a sense, istantamount to ignoring the physis of eletron inertia. In ontrast the simulationswith EMHD �uid model resolve the eletron skin depth sale, thereby retainingthe ontribution of eletron inertial e�ets. Clearly, there are always pros and onsof any tool and model that one adopts. The approah should be to gleam as muhphysis as possible from the judiious use of the available tools.We have hosen to investigate the problem of eletron transport with the helpof a �uid model in the EMHD domain. The spei� question assoiated with thetransport of eletrons in an inhomogeneous plasma onstitutes the main fous ofstudy in this thesis.
3



Chapter 1: Introdution1.3 Previous Work on Eletron Speies Related Phe-nomena in PlasmasWe summarize here some earlier studies assoiated with eletron speies in theplasma whih underline the relevane of the spei� question that have been inves-tigated in this thesis. The theoretial and experimental work on studies assoiatedwith the response of lighter eletron speies have primarily addressed issues on-erning (i) the generation of fast eletrons (by lasers et.,) in plasma medium (ii)the propagation, stopping and energy deposition of the energeti eletrons in plas-mas and (iii) ertain fundamental issues assoiated with eletron transport (e.g.evolution of the assoiated magneti �elds, assoiated instabilities and nonlinearfeatures in oherent and turbulent regimes et.,).1.3.1 GenerationThe possibility to employ eletrons as an energy soure for heating plasma medium(speially in overdense regimes where lasers annot penetrate) has led to the questfor e�ient generation of energeti eletrons. The resonant [40℄ and the vauumheating mehanism proposed by Brunel [41℄ being some suh shemes. The ex-perimental study by Sandhu et al. [42℄ have provided experimental evidene offast eletron generation by the proess of resonant absorption. They have shownthat the wave breaking of nonlinear plasma wave leads to an e�ient generationof energeti eletrons.Studies to enhane hot eletron generation has led to various suggestions forimproved laser oupling to plasma. In this regard introduing preplasma [43℄has been fruitful. However, major improvements have resulted by struturing thetarget surfae by nanopartiles [44℄, nanowires [45℄ and other deposits [46, 47, 48℄.Periodi modulations suh as grating strutures have also been tried and haveprodued good enhanement on hot eletron generation whih has been attributedto the exitation of surfae plasmons [46, 47, 49℄. In a reent experimental study[50℄ with sub λ grating target almost 100% absorption was shown. Analytial andPIC studies were arried out for the experimental onditions to learly demonstratethe role of surfae plasmon in suh an e�ient absorption. These studies have thus4



Chapter 1: Introdutiondemonstrated learly the possibility of e�ient generation of energeti eletrons.In order to use suh energeti eletrons for the purpose of plasma heating astudy of their propagation harateristis through the plasma medium is important.The next subsetion summarizes the attempts that have been made in this regard.1.3.2 Propagation, Stopping and Heat DepositionThe energeti eletrons typially arries very high urrents along with it. The �owof eletrons with huge urrents is known to get inhbited by its own self generatedmagneti �elds. In fat it has been shown that there exists a limit known asthe 'Alfven limit' on the magnitude of urrent, beyond whih the urrent annotpropagate [51℄. This is beause the assoiated magneti �eld beomes very high tourve the eletron trajetories bakwards. Inside a plasma, however, the urrentarried by the energeti eletrons an often exeed the Alfven limit. This is so asthe plasma provides for the return shielding urrent. The return urrent being inopposite diretion it neutralizes the magneti �eld and allows the forward urrentdue to the energeti eletrons to be of a magnitude higher than the Alfven limit. Itis now well established by the 3-D PIC simulations of Sentoku et al. [29, 30℄ that theombination of the forward and return shielding urrents get spatially separated byWeibel instability [52℄. The Weibel separation of urrents leads to the formation ofalternating sheets of oppositely propagating urrents. These sheets tear and formseveral ylindrial urrent �laments whose ore arries the forward urrent and theouter ylindrial shell ontains the return shielding urrent. These �laments thenoalese and form fewer ylindrial urrent arrying �laments. Eah oalesed�laments have urrents below the Alfven limit. Combination of suh �lamentsarry the total urrent assoiated with the hot energeti eletrons inside a plasma.The eletrons arrying the forward urrent in these hannels are a good soureof energy. They an be employed for the purpose of plasma heating if they an bestopped at a desired loation, where they dissipate their energy into heating thebakground plasma. The ollisional stopping of the energeti eletrons involvesRutherford's ross setion for eletron ion ollision. This ross setion however,dereases with inreasing eletron energy and hene is not an e�ient proess tostop high energy eletrons. On the other hand, e�ient heating would requirethat the energy ontent of the eletrons be high. In this regard the presene of5



Chapter 1: Introdutionanomalous stopping mehanism would be of great use. There are debates on thepresene as well as the possible role of anomalous mehanisms for stopping. In fata simulation by Sentoku et al. [29, 30℄ in a 3-D homogeneous plasma shows thatafter oalesene the hannel shows bending and ultimately degenerates formingsmall sale turbulent strutures. This generation of eletromagneti turbulenean explain the rapid eletron energy dissipation in those simulations. The meh-anism behind the generation of this eletromagneti turbulene was identi�ed inthe studies by Jain et al. [53, 54, 55℄ based on the Kelvin Helmholtz (KH) desta-bilization of the sheared eletron �ow [56℄ amidst the spatially separated forwardand return shielding eletron urrents �owing in the hannel.The studies on eletron stopping and the possibility of heating the plasma byit have primarily been motivated by the problem of Fast Ignition (FI) [5℄. FI isa simple variant of the Inertial Con�nement Fusion (ICF) [57, 58℄, in the sensethat the two tasks of ompression and the reation of hot spark in the plasmaare separated. The ompression is ahieved by a slow nanoseond laser pulsethroughout whih the target remains old. The appearane of Rayleigh Taylor(RT) like hydrodynami instabilities [59℄ thus beome inonsequential as there anbe no mixing between the hot and old fuels at this stage. This removes thestringent riteria of high uniformity of the drive pressure and on the spherialsymmetry of the target. To reate a hot spot in the target a separate sub -pioseonds ultra intense laser (UIL) pulse is send. The target being ompressedthe UIL annot penetrate it but generates energeti eletrons at the ritial densitysurfae through the various mehanism outlined earlier. The expetation thenis that these eletrons would penetrate the high density ore of the ompressedtarget ore and deposit their energy at some loalized region. The alulationsbased on lassial estimates even after taking into aount e�ets due to orrelatedollisions, dense plasma e�ets et., predit that the eletrons will traverse past theore without depositing their energy. On the other hand the sub - ignition smallexperiments have shown the suess of the FI sheme [60, 61℄. This shows thatthe eletrons do stop and deposit their energy in the target ore despite ontrarypreditions provided by the lassial ollisional estimates. It, therefore, appearsthat for this system an anomalous ollision - less mehanism exists.In the FI senario the eletrons have to propagate from the low density plasmaorona region of the ritial layer (n = 1022/cc) towards the high density plasma6



Chapter 1: Introdutionore (n ∼ 1026/cc ). In this ase thus the energeti eletrons would need topropagate inhomogeneous plasma region. The studies on eletron propagationthrough inhomogeneous plasma n the ontext of FI has been arried out by variousgroups primarily using PIC simulations. The PIC studies on eletron propagationthrough inhomogeneous plasma medium have been arried out by various authorsin 2-D [32, 33℄. An interesting aspet of all these simulation studies, whih employdi�erent PIC odes and have been onduted by various groups is that the plasmagets heated at the loation where the density gradient is maximum. This resulthave been reported in a number of publiation, however, with no omments on hepossible origin of this e�et.One of the prime motivation of our studies in this thesis has been to understandand physially interpret this observation. For this purpose we study the propagationof eletron urrent pulse strutures through an inhomogeneous plasma medium. Asimpli�ed �uid desription of EMHD is used for this purposeA possible maneuvering of the path of energeti eletrons is another issue ofinterest. In this ontext novel strutured targets having materials with di�erentresistivity have been designed and experimented upon [62, 63℄. Kar et al. [63℄ haveexperimentally shown the guiding of relativisti eletron beams in solid targetsby magneti �elds reated at the interfae of two metals of di�erent eletrialresistivity. This experiment provided a proof of the theoretial study done byRobinson & Sherlok [62℄ on the guiding of the fast eletrons at the interfae oftwo metals of the di�erent resistivity. The design of suh targets and employing itin any given experiment, however, would be a omplex task.A reent experiment by Kodama et al. [64℄ shows an interesting simple methodto guide the eletrons. They showed in their experiment that a metal wire attahedon the tip of the one (where the fast eletron generation ours by an ultra intenselaser pulse) guides the path of the eletrons. By tilting the angle of the wire theywere able to show that the eletrons followed the diretion de�ned by the wire.It is believed that the wire gets ionized by the front of the energeti eletronpulse and the plasma thus reated guides the eletrons along a desired path. Theexperiment learly indiates that there exists a role of a sharp inhomogeneousplasma (transverse to the wire) in guiding the eletron urrent pulse path.Another motivation for investigating the role of plasma density inhomogeneityon eletron transport in this thesis is with the viewpoint of seeking a simpli�ed7



Chapter 1: Introdutionsheme to maneuver and guide the path of energeti eletrons.1.3.3 Fundamental IssuesThe eletron time sale regime dynamis in plasma o�ers an interesting and simplenonlinear medium for exploring fundamental questions pertaining to the oherentand turbulent response of plasma medium. The EMHD model desription haveoften been used by various authors to theoretially explore the oherent as well asthe turbulent behavior of the plasma medium [65, 66, 67, 68, 69, 70, 71℄ in thisregime. The presene of the inherent length sale viz., the eletron skin depthsale and the whistler frequeny (when external magneti �eld is also present )distinguishes this system from the neutral hydrodynami sale free �uid system.The eletron skin depth sale auses a hange in the spetral saling of deayingEMHD turbulene [38℄. Furthermore, the magnetized harater of the eletron�uid also in�uenes and produes novel features to hydrodynami �uid phenomena.These studies have attrated attention reently. For instane, the well known �uidinstabilities suh as Kelvin - Helmholtz mode et., in the ontext of EMHD hasbeen shown to get suitably altered [55, 72℄ in terms of growth rate and range ofunstable wavenumbers.Reently, some experiments have also been onduted whih shed light on vari-ous fundamental proesses assoiated with the propagation of eletrons in a plasmamedium. A propagating eletron urrent pulse has an assoiated magneti �eldwith it. Thus the generation, evolution and deay of magneti �eld in the plasmaoften provides information on the harateristi features of the eletron urrent.This has been employed in the papers by Sandhu et al. [21, 22℄ and Subhendu etal. [50℄ to infer the properties of the eletron �ow. The experiment a pump probesystem of lasers to study the magneti �eld evolution from Cotton Mouton e�et.The rapid deay of the magneti �eld observed in the experiment by Sandhu etal. [21℄ provided evidene for presene of anomalous dissipation and hene thepresene of turbulene in �ows.It would be interesting to study how plasma inhomogeneity would alter thepropagation behavior of the eletron urrent pulse struture in the nonlinear regime.This is speially important for the FI experiment related studies where the eletronshave to propagate through inhomogeneous plasma density and where anomalous8



Chapter 1: Introdutionmehanisms for dissipation are being sought for.The nonlinear propagation of eletron urrent pulses through an inhomogeneousplasma density by a generalized EMHD desription in 2-D has been explored exten-sively in this thesis keeping the fundamental physis issues under onsideration.1.4 Earlier Studies on EMHD Phenomena with In-homogeneous Plasma DensityThe thesis fouses on the study of eletron transport through inhomogeneousplasma density for EMHD time sales. For these studies, therefore, a general-ization of the EMHD model to inlude e�ets due to plasma inhomogeneity isessential. We brie�y review here previous studies where EMHD studies have beenarried out for an inhomogeneous plasma density.Kingsep et al. [1℄ have ignored the eletron inertia related terms and inor-porated inhomogeneous density of a spei� simpli�ed form to arrive at a reduedBurger's equation for the magneti �eld evolution. From this study it was inferredthat the magneti shoks an form at the inhomogeneous plasma density layer.Kingsep et al. [1℄ also derived an equation for magneti �eld evolution with ele-tron inertia, however, again a spei� form viz., a linear weakly varying plasmadensity was assumed. This equation was later solved by Petvishvilli in a movingframe using he ansatz of stationarity to obtain solitons in 1-D, and monopolesand dipoles in 2-D [73℄. These solutions were later shown to be stable using theZakharov-Kuznetzov method [74℄.Fruhtman et al. [75℄ have also onsidered an inhomogeneous plasma, howeverthey ignore eletron inertia related terms in the EMHD equation. They have, how-ever, onsidered the evolution of energy in onjuntion with the EMHD equation.Thus it forms a oupled set of magneti �eld and the energy evolution. This wasused to study the penetration of magneti �eld in Plasma Opening devies (POS).Kuvshinov et al. [76℄ have onsidered again an inhomogeneous plasma for theirstudies. However, they have gone beyond the EMHD desription by inorporatinge�ets due to spae harge �utuation. Both, the spae harge �utuation (ñ/n0)and the equilibrium density variation (Ln = n0/n
′

0) in omparison to relevant saleof the phenomena (k) were onsidered to be very small and treated perturbatively.9



Chapter 1: IntrodutionThe exat solutions for this set were obtained by Kuvshinov et al. [77℄ and theevolution of suh strutures have also been investigated numerially [77℄.We have obtained a generalization of Eletron Magnetohydrodynamis (EMHD)equations in the presene of inertia related terms and have also made no approx-imation for any spei� form of the density inhomogeneity. No approximation asregards to slow variation of the inhomogeneity has been made in the derivation ofour equations. The omplete set has then been numerially investigated for vari-ous forms of the plasma inhomogeneity pro�le as demonstrated in the subsequentChapters.1.5 Sope of the ThesisAs stated earlier the understanding of eletron transport in an inhomogeneousplasma onstitutes the main theme of this thesis. For this purpose we employ the�uid desription in the EMHD domain. The EMHD model [1, 2, 3, 4℄ desribes theevolution of magnetized eletron �uid in a homogeneous plasma. We, therefore,�rst generalize the EMHD desription to inhomogeneous plasma density. The newmodel is termed as the Generalized EMHD (G-EMHD) [78℄.Chapter 2 of the thesis provides a detail derivation of the G-EMHD model [78℄.The salient aspets of the G-EMHD equations are disussed in detail. Furthermore,various limits of G-EMHD equations in redued spatial dimension and simpli�edeletron �ow on�guration are also disussed in this hapter. In Chapter 3 wedesribe in detail the numerial proedure adopted for simulating the G-EMHDequations. The G-EMHD equations an be ast in the form of onvetive equationwith appropriate soure term. We use the �ux orreted sheme [79℄ to evolve theG-EMHD equations in time. The main hallenge appears when at eah step ofevolution one has to evaluate the magneti �eld/onvetive veloity. This involvessolving a Helmholtz kind of equation whose oe�ient is a funtion of spae.In Chapter 4 we present our observations on 2-D G-EMHD simulations [78℄ forthe simpli�ed ase where the eletron urrent �ow is on�ned in the 2-D symmetryplane. Our objetive being to study the role of plasma density inhomogeneity onthe eletron urrent pulse propagation, we hose exat urrent pulse solutions ofthe homogeneous EMHD as initial ondition and made them evolve through in-10



Chapter 1: Introdutionhomogeneous plasma density. The nonlinear EMHD solutions are of two varieties[65℄. One has monopolar magneti �eld on�guration and represents rotating ele-tron urrents. This is a stationary solution of EMHD. The EMHD also permitstraveling solutions with dipolar magneti �elds. These dipoles move with onstantaxial speed and have a urrent on�guration whih moks up a spatially sepa-rated forward eletron urrent along the entral axis and return shielding urrentat the edges. A variety of inhomogeneous plasma density pro�les were hosen forstudying the propagation of these urrent pulses. The numerial studies show (i)that the strutures aquire an additional drift in the presene of density inhomo-geneity whih is transverse to the magneti �eld and the density gradient (ii) Thedipole an penetrate inside a high density plasma region but is unable to omeout from there. It thus gets trapped within a high plasma density region. (iii)While the dipole struture passes through the density inhomogeneity to penetratethe high density region, it forms magneti shoks and/or sharp urrent layers [80℄.A threshold riteria is formulated for trapping vs. transmission of the strutures[81℄. The trapping of the dipole urrent pulse struture in high density regionindiates the violation of time reversal invariane and is suggestive of a dissipativemehanism at work. Indeed it is shown in Chapter 5 that a strong energy dis-sipation is assoiated with the magneti shok whih form at the inhomogeneitylayer when the dipole struture enters the high density region. It is shown thatthe energy dissipation is independent of the magnitude and the harater of thedissipation present in the system. This provides a novel ollision - less shemefor the energy dissipation of eletron urrent pulse in plasma. The eletrons area good soure of energy as they an be easily aelerated to high energies. Ahigh energy eletron whose lassial Rutherford ollision ross setion is knownto fall drastially with inreasing energy. But with the help of this mehanismof energy dissipation we an still deposit its energy e�iently. Furthermore, theeletrons an be used to heat overdense plasma region where lasers are unable topenetrate. This is preisely the situation in the ontext of Fast Ignition (FI) laserfusion [5℄. This relevane of the density inhomogeneity based eletron stoppingmehanism to the frontline onept of fast ignition laser fusion experiment is alsoshown in detail in Chapter 5. In the limit of small and/or negligible eletron -ion ollisions the Kelvin - Helmholtz destabilization of the sharp urrent layerswhih form at the density inhomogeneity would produe anomalous visosity and11



Chapter 1: Introdutionwould be instrumental in energy dissipation. The generation of turbulene andanomalous visosity have been shown earlier in the ontext of homogeneous 3-DEMHD simulations for sharp eletron urrent layers [53℄. In Chapter 6 we showthe proess of KH destabilization of sharp urrent layers in the presene of densityinhomogeneity in 2-D. The 2-D ase as expeted the KH destabilization leads tothe formation of oherent pattern in the ase of G-EMHD as well, whih an betraed to the existene of two integral square invariants supported by the system[81℄. In Chapter 7 we disuss another appliation where the density inhomogene-ity has an important role. Often one wants to ollimate and guide the eletronurrent inside a plasma. There have been many proposals of espeially struturedtargets prepared of di�erent materials of di�erent resistivity [62, 63℄. Suh targetswould neither be easy to prepare nor an they be employed with ease in eah andevery experiment. Again a proper tailoring of the plasma density o�ers an easieraessible sheme. We illustrate this by plaing arbitrary shaped wire like densityinhomogeneous struture along the path of the eletron urrent pulse struture. Itis observed that the urrent �ows along the path de�ned by the inhomogeneouspath. In an experiment [64℄ at ILE, Osaka, Japan the energeti eletrons gener-ated at the ritial density layer were guided with the help of solid arbon wire.The experiment showed that the eletrons moved along the wire, as the wire wastilted the path of the eletrons hanged aordingly. We feel that inhomogeneousplasma density spontaneously reated by the ionization of the wire by the eletronsis responsible for this.We summarize our work in Chapter 8 and provide disussions for the futuresope of the thesis.
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Chapter 2The Generalized EletronMagnetohydrodynami ( G-EMHD )ModelThe propagation of fast eletron urrent pulse strutures through an inhomoge-neous plasma medium is the prime onern of this thesis. For this purpose we seeka �uid desription of the plasma under the framework of EMHD domain. TheEMHD model [1, 2, 3, 4℄ desribes the evolution of magnetized eletron �uid in ahomogeneous plasma. We, therefore, present in this hapter the generalization ofthe EMHD desription to a plasma with inhomogeneous density. The new modelis termed as the Generalized EMHD (G-EMHD) model [78℄. The disussion ofsalient aspets of the G-EMHD model along with the integral onservations sup-ported by the set of G-EMHD model equations is provided. The simpli�ation ofthe G-EMHD model in redued spatial dimensions as well as that of simple 2-Deletron �ow on�gurations are also presented.2.1 IntrodutionThe well known single �uid model known as Eletron - Magnetohydrodynamis(EMHD) provides a suitable desription of the fast dynamial response of eletronspeies in a homogeneous plasma. The EMHD model treats the positively hargedions as a stati neutralizing bakground. The oupled set of eletron �uid evolution13



Chapter 2: The Generalized Eletron Magnetohydrodynami ....along with the Maxwell's equation de�ne the EMHD model. The model ignoresthe displaement urrent ontribution in the Ampere's law. This is valid when thespae harge related e�ets an be onsidered to be negligible and/or the phasespeed assoiated with the phenomena of interest is slower than that of the speedof light. The typial time sales are thus hosen to be slower than the eletronplasma period making the ontinuity equation for the eletron density �utuationirrelevant. The Ampere's law then diretly relates the urrent of the system tothe url of magneti �eld. Sine the ions are at rest, then the entire urrent inplasma is only due to the �ow of eletron speies. Thus for a uniform plasma theurrent is diretly proportional to the eletron veloity. The ombination of theeletron �uid momentum and the Maxwell set of equations thus get simpli�ed andthe system an be represented entirely in terms of the magneti �eld evolutionequation.In a real senario the plasma an often be inhomogeneous. Thus the oe�ientrelating the url of magneti �eld with the eletron veloity in the Ampere's Lawbeomes spae dependent. This spae dependent part alters the evolution equationsigni�antly. This is the genesis of the G-EMHD model whose derivation is illus-trated in the next setion. The onsequenes of the density inhomogeneity termswill be explored in the subsequent hapters by simulating the G-EMHD modelequations [78, 80, 81℄.2.2 Derivation of G-EMHD Model EquationsThe G-EMHD model is a generalization of the Eletron Magnetohydrodynamisfor the ase when the bakground plasma density is inhomogeneous. The G-EMHDmodel, therefore, also represents the same range of length and time sales for whihEMHD is typially applied. Even though the bakground plasma density is takento be inhomogeneous, the density perturbations are ignored as in EMHD. Thusthe displaement urrent as well as the eletron ontinuity equations are ignoredin this ase too, under the approximation of
ω ≪ ωpe, ω

2
pe/ωce
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Chapter 2: The Generalized Eletron Magnetohydrodynami ....Here ω represents the typial time period of the phenomena under onsideration.The eletron plasma frequeny and the gyrofrequeny is represented by ωpe =

4πne2/me and ωce = eB0/mec respetively. Here B0 represents the magnitude ofmagneti �eld and n is the bakground plasma density. When the bakgroundplasma density n is inhomogeneous, the plasma frequeny is de�ned in a loalsense.2.2.1 G-EMHD Model EquationsThe ions being stati the equations assoiated with ion motion, viz., ontinuityand momentum are irrelevant. Furthermore, sine harge density �utuation areignored within the EMHD domain of time sales, we onsider the eletron momen-tum equation alone for the evolution. A old plasma has been onsidered in ourderivation. Thus the pressure term is ignored in the eletron momentum equation.
me
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−meν ~Ve (2.1)Here ν denotes the eletron - ion ollision frequeny. Expressing the eletri �eld
~E and the magneti �eld vetor ~B in terms of salar and vetor potentials andthen taking the url of Eq. (2.1) one obtains the following equation :
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− ν∇× ~Ve (2.2)Here ~P = ~Ve−e ~A/mec is the generalized momentum ontaining both eletron �owveloity Ve as well as the vetor �eld ~A. Thus Eq. (2.2) provides an evolutionequation for ∇× ~P = ∇× ~Ve− e ~B/mec : a ombination of the url of the eletronveloity and the magneti �eld. We seek another equation relating the vetors
~Ve and ~B from the approximate form (obtained after ignoring the displaementurrent) of the Ampere's law. Thus from ∇× ~B = (4π/c) ~J we have
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Chapter 2: The Generalized Eletron Magnetohydrodynami ....Upto this stage the derivation of G-EMHD equations are idential with those ofthe EMHD model. The di�erene arises now when the url of the eletron veloitygiven by Eq. (2.3) is taken for expressing ∇ × ~P entirely in terms of magneti�eld ~B vetor. There is an extra term whih arises due to the nonuniformity ofthe plasma density (and hene ne as well) as plasma is quasineutral. De�ning
~G = (mec/e)∇× ~P we have

~G =
d2e0
n

∇2 ~B +
d2e0
n2

∇n× (∇× ~B)− ~B (2.4)Here n = ne/n0 (where n0 is a onstant typial value hosen to normalize thedensity), d2e0 = c2/ω2
pe0 is the eletron skin depth at n0, (where ω2

pe0 = 4πn0e
2/meis the square of eletron plasma frequeny orresponding to the plasma density

(n0)). From Eq. (2.4) it is lear that in addition to the spae dependent oe�ient
1/n of ∇2 ~B we have an extra density gradient dependent term appearing in theexpression of ~G. The impat of this term on the evolution of �elds would be seenin the subsequent Chapters.We hoose to normalize the magneti �eld ~B by a typial value B0, time by theorresponding eletron gyro period ω−1

ce = (eB0/mec)
−1, length by de0 ( de�nedabove ) to obtain the following normalized evolution equation for the G-EMHDmodel [78℄:
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(2.5)Here, ~g and ~V are normalized �elds ~G and ~Ve respetively. The �eld ~B in Eq.(2.5) though having the same symbol as before is the normalized magneti �eldand η = ν/ωce is normalized resistivity.2.2.2 G-EMHD Model in 2-DThe G-EMHD model Eq. (2.5) gets simpli�ed when the variation of the �eldsare assumed to be on�ned in a 2-D plane. We onsider êp, êq and ês as theright handed triad of unit vetors and take the symmetry axis to be along ês.16



Chapter 2: The Generalized Eletron Magnetohydrodynami ....The magneti �eld being divergeneless an be expressed in terms of two salar�elds in 2-D as ~B = bês + ês × ∇ψ. The eletron veloity an be written as
~V = −(∇ × ~B)/n = (ês × ∇b)/n − ês∇2ψ/n ; the �rst term in the veloityexpression orresponds to the eletron �ow in the 2-D plane (de�ned by êp and
êq unit vetors) and the seond is assoiated with the eletron �ow along thesymmetry diretion.The G-EMHD model in this 2-D ase redues to the following two oupled setof evolution equation for b and ψ.
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(2.7)A detailed derivation of Eqs. (2.6, 2.7) from the 3-D G-EMHD model (Eq. (2.5))has been given in Appendix A. For a onstant plasma density n the above equationsredues to the standard 2-D form of the EMHD model as expeted. We will mainlyonentrate on the study of the 2-D form provided by Eqs. (2.6, 2.7) of the G-EMHD model. A further simpli�ation of the model results when the eletron �owis on�ned in the 2-D plane. In this ase magneti �eld has only one omponentalong the symmetry diretion (ês). Thus only b �eld is �nite and ψ is zero for thisspei� ase.2.3 Square Integral Invariants Supported by G-EMHD Model EquationsWe now seek onservation of integral quantities whih are supported by the G-EMHD equations. These onservation law provide ruial information on evolu-tion. They are also used to benhmark any numerial ode that one adopts/developsfor evolution studies.The G-EMHD model onserves total energy of the system in the non - dissipa-17



Chapter 2: The Generalized Eletron Magnetohydrodynami ....tive limit, η = 0. The total energy in this ase is the sum of eletron kineti andthe magneti �eld energy. Thus
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d2 ~X (2.9)Here [b2+(∇ψ)2] represents the magneti energy and the remaining terms (1/n)[(∇b)2+
(∇2ψ)2] are the kineti energy assoiated with the eletron motion of the G-EMHD�uid. The derivation for this onservation is given in Appendix A.In the simpli�ed limit when the eletron �ow is on�ned in the 2-D plane (thease of ψ = 0 disussed in the previous setion) an additional square integralquantity shown below is onserved (see detailed derivation in Appendix A).
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= 0 (2.10)The invariant H is like the enstrophy invariant of the 2-D hydrodynami �ow.Here, however, it has ontribution from the magneti �eld as well.2.4 G-EMHD Model in Various LimitsWe have seen that our G-EMHD model equations redue to the EMHD equationsin the limit of uniform plasma density. When the eletron �ow is on�ned tothe 2-D plane the model equations an be ast in terms of a single salar �eld

b orresponding to the magneti �eld in the diretion of symmetry and an bewritten as:
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+ ês ×∇b · ∇

(
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)
= 0 (2.11)In this limit of uniform plasma density, this equation has the same form as theHasegawa - Mima (HM) equation [82℄ whih is obtained for the desription of lowfrequeny plasma behavior.The hydrodynami 2-D �uid evolution equation results when the typial sale18



Chapter 2: The Generalized Eletron Magnetohydrodynami ....lengths are shorter than the eletron skin depth, i.e. when b < ∇2b. In thislimit the eletron kineti energy dominates over the magneti �eld energy and theeletron behaves like a neutral hydrodynami �uid.2.5 SummaryA generalized �uid model (G-EMHD) for the depition of magnetized eletron �owin a non - uniform plasma has been obtained. In 2-D the G-EMHD model has beenshown to redue to a oupled set of evolution equation amidst two salar �elds rep-resenting magneti �eld and vetor potential omponent along symmetry diretion.For a simpli�ed ase when the eletron �ow is on�ned in 2-D plane the evolutionequation of G-EMHD model redues to a single equation of evolution of magneti�eld omponent along symmetry diretion. The G-EMHD equations onserve totalenergy of the system in the non-dissipative limit. An additional square integralinvariant in 2-D (similar to enstrophy onservation in 2-D neutral hydrodynami�uid) is also supported by G-EMHD for the speial ase when eletron �ow ison�ned in the 2-D plane.
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Chapter 3Desription of Numerial Sheme forthe Evolution of 2-D G-EMHDModel EquationsIn this Chapter we desribe in detail the numerial proedure adopted for sim-ulating the 2-D G-EMHD equations [78, 80, 81℄. The 2-D G-EMHD Eqs. (2.6)and (2.7) an be ast in the form of onvetive equation for those �elds whihare essentially obtained by the ation of Helmholtz like operator (seond orderspatial derivative equation having spae dependent oe�ients) on b and ψ �eldsintrodued in Chapter 2 of the thesis. These onvetive equations also have soureterms. A �ux orreted sheme has been used to evolve the G-EMHD equations intime. The main hallenge appears when at eah time step of evolution one has toinvert the Helmholtz like operator (with spae dependent oe�ients ) to evaluatethe magneti �eld and the orresponding onvetive veloity.3.1 IntrodutionThe G-EMHD model in 2-D is a oupled set of equations between two salar�elds b and ψ whih are the magneti �eld and the vetor potential omponentrespetively, along the symmetry diretion ês. The evolution equation for Ωb and
Ωψ given by
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Chapter 3: Desription of Numerial Sheme for the Evolution of 2D ....and
Ωψ =

{

ψ − ∇2ψ

n

}

=|| B || ψ (3.2)respetively are of the form of onvetive equations.
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+
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· ∇Ωψ = 0 (3.4)From Eqs. (3.3) and (3.4) it is lear that the quantities Ωb and Ωψ get onvetedby the in - plane eletron veloity of ~V⊥ = (ês×∇b)/n. The evolution of Ωb (whihan be looked upon as the omponent of generalized vortiity along the symmetrydiretion) has a soure term in the right hand side. Unlike 2-D hydrodynami�ow in this ase the generalized vortiity has a soure term in the presene of ψand ∇2ψ, i.e. in the presene of eletron �ow along ês. The generalized vortexstrething arises here from the url of ~J × ~B fore. It should be noted that whenthe eletron �ow is on�ned in the 2-D symmetry plane, ψ is zero and there isno soure in the Ωb evolution. Eq. (3.4) shows the evolution of the omponent(along the symmetry axis ês) of onjugate momentum Ωψ (having ontributionboth from �eld as well as the eletron veloity part). It an be seen that Ωψ ismerely onveted in the 2-D plane and has no soure in its evolution. The symbols

|| A || and || B || are the short hand notations for the operators relating b with Ωband ψ with Ωψ in Eq. (3.1) and Eq. (3.2) respetively.3.2 Numerial Sheme for Nonlinear 2-D G-EMHDModelEqs. (3.3) and (3.4) are evolved using the �ux orreted sheme of Boris et al. [79℄.A olletion of FORTRAN subroutines LCPFCT (Laboratory for ComputationalPhysis, Flux-Correted Transport) implements "Flux-Correted Transport"algorithm to solve one dimensional generalized onvetive transport equation invarious geometries. We employ these suite of subroutines using time splittingtehnique to evolve the 2-D system of Eqs. (3.3) and (3.4). In some earlier studies21



Chapter 3: Desription of Numerial Sheme for the Evolution of 2D ....[54, 72℄ related to EMHD model system, this proedure has been suessfullyimplemented. In the EMHD system n being uniform b and ψ an be obtained byinverting the Helmholtz operator || O ||

|| O || b = b−∇2b = Ωb; || O || ψ = ψ −∇2ψ = Ωψat eah time step one Ωb and Ωψ are from the evolution of Eqs. (3.3) and (3.4).Standard Helmholtz Solvers [83℄ are available and were used for this purpose inthese earlier studies [54, 72℄. One b is known, the onvetive veloity is evaluatedusing relation ~V⊥ = ês×∇b to evaluate the value Ωb and Ωψ at the next time step.Thus this ompletes the entire loop of evolution.In our G-EMHD ase [78℄, however, the operators (|| A || & || B ||) relating
b to Ωb and ψ to Ωψ respetively, have a ompliated form than that of a simpleHelmholtz system [83℄. The oe�ients of b and ψ that form the operators (||
A || & || B ||) are spae dependent. This is so beause we are onsidering density
(n) to be inhomogeneous. Therefore, the standard routines for solving Helmholtzequation an not be used for this partiular ase. We have implemented a diretproedure wherein the spae dependent operator is expressed in the form of amatrix in the 2-D disretized spae. The inversion of the operator matrix and itsmultipliation with the vetor formed with the values of Ωb and Ωψ at all the gridpoints gives us the solution for b and ψ from their respetive equations. We providea detailed desription of the method below.The 2-D spae in the x−y plane (hoosing ẑ as the symmetry axis) is disretizedas shown in Fig. (3.1). The �eld variables b(x, y), ψ(x, y), n(x, y), Ωb(x, y) and
Ωψ(x, y) being funtions of the x, y spae are de�ned at the grid points at theenter of eah ell in Fig. (3.1). The x and y dimensions of the simulation box
Lx and Ly are disretized in Nx and Ny grid points as shown in Fig. (3.1). Eahgrid point an be represented by the ombination of running index i and j, whihtake values from 1 to Nx and 1 to Ny respetively. Thus the �eld variables at anyloation are represented by p(x, y) = p(i, j). Where p stands for the �eld variables.The operators || A || and || B || orresponding to Ωb and Ωψ respetively, haveseond order spatial derivatives. Using the entered di�erene sheme for therepresentation of the seond order spatial derivative it an be shown that theseoperators onnet the �eld variables at point (i, j) with those at 4 neighbouring22



Chapter 3: Desription of Numerial Sheme for the Evolution of 2D ....
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Chapter 3: Desription of Numerial Sheme for the Evolution of 2D ....The equation || A || b = Ωb in an expanded form an be written as
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b(i,j−1) = Ωb(i,j)(3.6)The spatial index for the �elds has been written as a su�x within small braketsand the su�x x and y denote the variable with respet to whih di�erentiation hasbeen taken. In the above expression ∆x & ∆y are grid size along x & y diretionrespetively. We now represent the �eld in 2-D spae as a one dimensional vetor.To ahieve this we de�ne a running index
l = Ny (i− 1) + j for i = 1, 2, ..., Nx ;j = 1, 2, ..., NyThe value of l orresponding to eah grid point has been shown in Fig. (3.2).It is lear from the expanded disretized form of the Eq. (3.6) that the matrixrepresenting operator || A || will in general have �nite main diagonal elements(A(l, l) non zero), two diagonals in the immediate neighbourhood of the maindiagonal as �nite (A(l, l±1) non zero) and two more (displaed by ∆l = ±Ny ,i.e.

A(l, l±Ny)) as �nite. Furthermore, the elements onneting the boundary pointsof the �elds b need to be de�ned properly so as to be onsistent with periodiboundary ondition that has been adopted for all the simulations presented inthis thesis work. The plasma density pro�le n(x, y) is known and hosen to have24



Chapter 3: Desription of Numerial Sheme for the Evolution of 2D ....di�erent spatial pro�les for various problems that have been investigated in thesubsequent Chapters. The spatial pro�le of Ωb is known at eah time step fromthe evolution equation and hene it is also a given funtion of spae. Therefore,the �eld b is determined from
A[b] = [Ωb] =⇒ [b] = A−1[Ωb] (3.7)The elements of the matrix A are as follows:
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Figure 3.2: This �gure represents the redution of the 2D grid spae (i, j) in onedimensional spae (l). That is obtained by using the relation l = (i−1)Ny+j where
i = 1, 2, ..., Nx and j = 1, 2, ..., Ny. The index l is running along the y diretion asis shown in the �gure. Thus in this new representation the onseutive two gridpoints along the x -diretion is displaed by the Ny no. of grid points while alongthe y diretion they are separated only by a single grid point as is shown at thepoint l.Main diagonal element A(l, l) 25
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i = 2, 3, ..., Nx − 1This proess of diret evaluation of the b and ψ �elds by the inversion of thematries A and B is very expensive in terms of memory as is evident from the sizeof the matries whih depends on the square of the total number of grid points (viz.
N2
x × N2

y ). Thus at higher spatial resolutions and for the ase of 3-D studies thismethod would be prohibitively memory extensive and it annot be implemented.This is a major drawbak of this partiular sheme.The development of an alternative sheme whih uses the standard Helmholtzsolver [83℄ iteratively to solve for the spatially dependent part of the operatorneeds to be developed. This is an important task and would be taken up as afuture extension of the work presented in this thesis.3.3 Validation and Benhmarking of the CodeOur ode for the G-EMHD evolution has been benhmarked by reproduing thewell known simulation results for the uniform density EMHD ase. The simulationases for the evolution of the various on�guration of the urrent pulse struturesin EMHD shown in the paper by Das et al. [36℄ by a pseudo spetral ode has beenreprodued by our simulation method. For non uniform density the de�nition ofthe two operator matries and the evaluation of their inverse has been tested byheking out known analyti ases. Furthermore, the energy integral is traked intime to asertain the appropriate resolution neessary for the simulation.3.4 SummaryA numerial sheme for solving the 2-D G-EMHD set of equations [78℄ has beenpresented. The �ux orreted sheme of Boris et al. [79℄ has been implemented30



Chapter 3: Desription of Numerial Sheme for the Evolution of 2D ....for the time evolution of the 2-D G-EMHD set of equations. The 2-D G-EMHDmodel equations are a set of two oupled equations, representing the evolution ofthe generalized vortiity and generalized momentum along the symmetry diretion.At the end of eah time step (in the evolution of the 2-D G-EMHD equations) weobtain the values of the generalized vortiity and generalized momentum alongthe symmetry diretion. The evaluation of magneti �eld and the vetor poten-tial omponent(along the symmetry diretion) from these at eah step requiressolving a seond order di�erential equation in spae with inhomogeneous oe�-ients. We have implemented a brute fore sheme. Whereby this evaluation isdone by inverting the matrix representing the operator orresponding to this dif-ferential equation. It should be noted that this proedure is prohibitively memoryexpensive and has indeed restraint our simulations to low spatial resolution. Adevelopment relaxation sheme in whih the standard Helmholtz operator is usedfor the evaluation of seond order derivatives and the ontribution from the spaedependent part is evaluated iteratively is desirable.

31



Chapter 4G-EMHD Simulation: FundamentalResults on Current PulsePropagation through InhomogeneityThis hapter of the thesis is devoted towards exploring various fundamental aspetsof the eletron urrent transport through an inhomogeneous plasma medium. Forthis purpose we have employed the 2-D G-EMHD model [78℄ equations in thesimulation. For simpliity the eletron urrent �ow is onsidered to be on�nedin the 2-D plane only. The objetive being to understand the role of plasmadensity inhomogeneity on the eletron urrent pulse propagation, exat urrentpulse solutions of the homogeneous EMHD plasma [36, 65℄ were hosen as initialonditions for study. Both varieties of nonlinear EMHD solutions (i) stationaryrotating eletron urrents with monopolar magneti �eld on�guration and (ii)traveling solutions with dipolar magneti �elds were hosen as initial states. Avariety of inhomogeneous plasma density pro�les were hosen for studying thepropagation of these urrent pulses. The studies have resulted in a wide varietyof fundamental observations whih have been brie�y listed out here. These resultsare presented in detail in the various setions of this Chapter.In short, our studies have shown that the urrent pulse strutures aquire anadditional drift in the presene of density inhomogeneity. This drift is transverseto both the magneti �eld and the density gradient. Thus the stationary monopo-lar strutures, in the presene of inhomogeneity, drift along the onstant density32



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....ontours and are unable to move aross the density gradient. The dipolar struturewhih have a onstant axial speed in a homogeneous plasma, on the other handan penetrate inside a high density plasma region but are unable to ome out ina region with lower plasma density. They thus often get trapped within a highplasma density region. The riteria for trapping vs. transmission of the urrentpulses have been learly identi�ed from simulations.4.1 Preliminary DesriptionWe fous here on novel fundamental features assoiated with the transport ofeletron urrent pulse struture in an inhomogeneous plasma. For this purpose wesimulate the simpli�ed form (eletron urrent �ow is on�ned in the 2-D plane) ofthe 2-D G-EMHD model equations with spei�ed plasma density inhomogeneity[78℄. The initial urrent pulse on�guration is hosen as exat solutions of the 2-Dnonlinear EMHD equations for homogeneous plasma, so as to be able to learlyidentify the role of density inhomogeneity during evolution.4.1.1 Choie of Initial ConditionsThere are two varieties of exat nonlinear solutions of EMHD equations [65℄ whihare used as initial on�guration. One of them orresponds to a stationary radiallysymmetri rotating eletron urrent with monopolar magneti �eld (the magneti�eld essentially has the same sign, positive or negative depending on whether theeletron urrent rotates lokwise or ounterlokwise respetively). The otherstruture moves with an axial veloity and has a dipolar magneti on�guration.MonopolesThe monopoles being radially symmetri solutions in the 2-D x− y plane (here ẑhas been hosen as the symmetry axis) we have hosen them to have the followingform:
b(x, y, t = 0) = A exp(−(x− x0)

2

σ2
x

− (y − y0)
2

σ2
y

) (4.1)where A, σx and σy are the onstants deiding the strength as well as the spatialextent of the struture respetively. The values of x0 and y0 �x the loation of theentral point of monopole in the 2-D spae. 33
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Figure 4.1: This is the onstant ontour of the salar �eld (b) forming a monopole.The assoiated parameters of the monopole are A = 5.5, x0 = 0.0, y0 = 3.0, σx =
1.0 and σy = 1.0.DipolesThe other solutions of 2-D EMHD equations are in the form of dipoles whih areknown to translate at a onstant axial speed. These solutions have been obtainedby Isihenko et al. [65℄ by seeking stationarity in a frame moving with a veloity ualong some diretion (say y for de�niteness) . The EMHD equation in the movingframe an then be expressed in terms of a Poisson braket [b − ∇2b, b − ux] = 0whose solutions an be obtained by seeking b−∇2b = f(b−ux). Here f an be anyfuntion of its argument. Isihenko et al. [65℄ sought loalized solutions by hoosingseparate funtional forms for f in two regions. For radii r =

√

(x2 + y2) ≤ r0, fwas hosen as a linear funtion and for r > r0, f = 0. This leads to the followingform for the solution
bi(r, θ, t = 0) = [d1J1(k1r) + d2] cos(θ) (4.2)

bo(r, θ, t = 0) = d3K1(r)cos(θ) (4.3)34



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....The hoie of r0 typially de�nes the spatial extent of the dipole struture. The
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Figure 4.2: This is the onstant ontour of salar �eld b forming a dipole within thespatial extant of r0 ≈ 1 and having the axial veloity u = 0.1 along the negative y-diretion. The left lobe of the dipole orresponds to positive value of amplitudewhile the right one orresponds to negative value of amplitude.oe�ients d1, d2 and d3 of the solution are obtained by mathing the solution andits derivative at r = r0 as desribed in the Appendix B.4.1.2 Choie of Density Inhomogeneity Pro�leWe have hosen various kinds of density inhomogeneities. We provide a list belowof the density pro�les that we have adopted in our studies. One of them areessentially slab on�guration for whih the onstant density ontours are straightlines along one axis. In this ase the variation of density pro�le is onsidered to bea funtion of only one of the artesian oordinates, e.g. y in our ase. In the othervariety we hoose onstant density ontours in the shape of irles, i.e the densityis radially symmetri. These two slab and radially symmetri density pro�les arerepresented by the letter S and R respetively. The spatial variations for the slab35



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....and irular pro�les are hosen to have either tangent hyperboli dependene or agaussian form whih are identi�ed by letters T and G respetively. Furthermore,when this spatial density pro�le has a higher density ompared to that of thebakground region in the simulation spae it is alled a density hump and denotedby the letter H, and when it has a lower density than the bakground region weall it a avity C. Thus there are 8 possible ombinations (STH, STC, SGH,SGC, RTH, RTC, RGH, RGC) that have typially been onsidered in oursimulations. These pro�les have been shown in the following Figures (4.3), (4.4),(4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) respetively. The funtional form of thesedensity pro�les have also been given.Pro�le : STH & STC
n(x, y) = h1 − h2 tanh
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Figure 4.3: STH density pro�le (h1 = 5.5, h2 = 4.5, w = 2.0, y0 = 0.0, σy =
1.0, σ = 0.5) 36
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Figure 4.4: STC density pro�le (h1 = 0.6, h2 = −0.4, w = 2.0, y0 = 0.0, σy =
1.0, σ = 0.5)

Pro�le : SGH & SGC
n(x, y) = h1 + h2 exp

(
− (y − y0)

2 /σ2
) (4.5)
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Figure 4.5: SGH density pro�le (h1 = 1.0, h2 = 9.0, y0 = 0.0, σ2 = 3.0) 37
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Figure 4.6: SGC density pro�le (h1 = 1.0, h2 = −0.9, y0 = 0.0, σ2 = 3.0)

Pro�le : RTH & RTC
n(x, y) = h1 − h2 tanh
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Figure 4.7: RTH density pro�le (h1 = 5.5, h2 = 4.5, w = 2.0, x0 = 0.0, y0 =
0.0, σx = 1.0, σy = 1.0, σ = 0.5) 38
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Figure 4.8: RTC density pro�le (h1 = 0.6, h2 = −0.4, w = 2.0, x0 = 0.0, y0 =
0.0, σx = 1.0, σy = 1.0, σ = 0.5)
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Figure 4.10: RGC density pro�le (h1 = 1.0, h2 = −0.9, x0 = 0.0, y0 = 0.0, σx =√
3.0, σy =

√
3.0)4.2 Inhomogeneity Indued Drift VeloityWe plae the monopolar urrent pulse struture in the inhomogeneous region ofthe plasma for the various density pro�les. We report the evolution here for thespei� density pro�le STH de�ned in the previous setion. We observe that themonopole whih is otherwise stationary in a homogeneous plasma aquires a driftveloity in the presene of density inhomogeneity. This drift is transverse to thedensity gradient. The monopole is seen to be moving along the onstant densityontours. In Fig. (4.11) the propagation of the monopole in the density pro�leof STH has been shown at various times. For the ase shown in Fig. (4.11) wehave hosen the simulation box of size Lx = Ly = 10 and x and y oordinatesrange from −5.0 to 5.0. For the plasma density we have hosen h1 = 5.5, h2 = 4.5,

w = 2.5, y0 = 0.0, σy = 1.0 and σ = 1.0 for the pro�le STH . The maximum andminimum value of density is therefore nmax = 10 and nmin = 1 respetively. Theloal eletron skin depth therefore ranges from 0.3 ≤ de (= 1/
√
n) ≤ 1.0. The highdensity plasma region here is on�ned within | y |≤ w for all x. The density fallssharply within a length δy = σ from 10 to unity beyond | y |∼ w.The additional drift aused by the density inhomogeneity an be understoodfrom the simpli�ed form of the 2-D G-EMHD equation by ignoring eletron inertia.Therefore, by replaing Ωb → b in the Eq. (3.3) of the evolution of the generalized40



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....

Figure 4.11: The propagation of the monopolar struture (olor ontours) in aninhomogeneous plasma density is depited by showing the loation of the strutureat various times in the di�erent subplots of the �gure. The thik blak linesrepresent the plasma density ontour. In this ase the plasma density is hosen tobe a funtion of y only. The entral y region of width w = ±2.0 orresponds to ahigh density (10 times of the density at the edge region)vortiity (Ωb) along the symmetry diretion we obtain the redued equation as
∂b

∂t
+
bẑ ×∇n

n2
· ∇b = 0 (4.8)The equation suggests the presene of an additional drift veloity whih is of theform of

~vd =
bẑ ×∇n

n2
(4.9)For the density pro�le of Eq. (4.4), n is a funtion of y alone and thus the monopole
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Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....drift along x diretion, and the magnitude of the drift veloity is given by
vdx = b

∂

∂y

(
1

n

) (4.10)From the subplots of the Fig. (4.11), the value of vdx evaluated by observing thedistane propagated by the struture along x is 0.0307. This is obtained by theexpression
vdx =

xt=135 − xt=60

∆t
(4.11)where xt=135 ≈ 1.9 and xt=60 ≈ 4.2 are the position of monopole at the time

t = 135 and t = 60 respetively, and is taken from the last two subplots of the Fig.(4.11). This observed drift veloity of the monopole is lose to that estimated fromthe Eq. (4.10) for the eletron drift veloity, as b typially ranges from 0.0233 to
0.1997 in the monopolar struture and ∂(1/n)/∂y ranges from 0.1131 to 0.448 overthe struture. This implies that the value of vdx from the expression an be about
0.0026 to 0.089. The observed value lies within this range. In fat the average of
vdx evaluated over the y extent of the struture (through whih the struture wouldtranslate) turns out to be very lose 0.0369 to the observed veloity. This learlyindiates that the monopole is essentially propagating with the drift veloity of
< vdx >. Thus the diretion as well as the magnitude of the propagation veloityis observed to math with the expression given by Eq. (4.9).It should be noted that the other density gradient dependent terms arisingthrough the �nite eletron inertia related terms are typially smaller in magnitudeand they generally ontribute as a soure ausing modi�ation of the spatial pro�leof the magneti struture.It should be noted that the dipole solutions translate even in a homogeneousplasma. Thus in the presene of inhomogeneity their propagation will depend onthe superposition of their axial speed and the density gradient indued additionaldrift veloity disussed above. Clearly, this would then lead to riher lass ofphenomena. We have investigated this, and report it in the next setion. One ofthe main onlusion is that the dipole an penetrate inside a density hump butavoids density avities.
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Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....4.3 Dipole Penetration in High Density RegionSine the dipoles an propagate by themselves in a homogeneous plasma we anplae it at any initial loation, and observe as it propagates towards the regionwhere plasma density is inhomogeneous. We �rst report our simulations here forthe STH density pro�le. Initially the dipole is plaed at a loation away fromthe density gradient region, i.e. where the plasma density is low and uniform with
n = 1. It is oriented in suh a fashion that it propagates towards the higher densityplasma region. An interesting aspet of the evolution is that the dipolar struture

Figure 4.12: Various stages of the propagation of a dipolar struture through aninhomogeneous density plasma has been shown. The inhomogeneity in plasmadensity is similar to that of Fig. (4.11) in this ase. The �gure learly shows thepenetration of the dipole through the plasma density inhomogeneity to enter thehigh density region. The lobes of the dipole struture are squeezed towards eahother as they pass through the inhomogeneous region. However, one inside thehigh density homogeneous region they again aquire a balaned form.is observed to ross past the inhomogeneous density and enters the high plasmadensity region. The subplots of Fig. (4.12) learly illustrate the penetration of the43



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....dipolar struture in the high density plasma region. (For the plots of Fig. (4.12) theassoiated parameters of the density pro�le STH are h1 = 5.5, h2 = 4.5, w = 2.0,
σy = 1.0, y0 = 0.0 and σ = 0.4. The box length in this ase is Lx = Ly = 4π.) Weobserve that at the inhomogeneous density region the axial translational veloity ofthe dipole inreases onsiderably. The two lobes get squeezed towards eah otherforming a shok like struture in the diretion transverse to the density gradient.This behavior appears to be in stark ontrast to the propagation harateristisof the monopolar strutures, whih merely show a movement transverse to thedensity gradient diretion. This observation of dipole propagation an, however, beunderstood readily. For the dipole struture approahing the high density plasmaregion ( along dereasing y, in Fig. (4.12) ) the left lobe orresponds to positivevalues of b whereas the right lobe has negative b values. Clearly, when the two lobesof the dipole enounter the density inhomogeneity the left lobe has a drift veloitydue to the density inhomogeneity towards right (positive x diretion) whereas theright one drifts towards the negative x diretion. This squeezes the two lobes ofthe dipoles loser in x. As a result the size of the lobes as well as their separationgets signi�antly redued. This also auses an enhanement in the magnitude of
| b | of the two lobes. The axial propagation veloity of dipole is known to inreasewith inreasing | b | and redued separation between its lobes. Thus, the redueddistane between the lobes as well as the enhaned amplitude of | b | results in aninreased axial propagation veloity of the dipole. This aelerates the penetrationof the dipolar struture in the high density plasma region.Let us now study in detail the behavior of the dipole as it enters the highdensity plasma region. Though the shape of the dipole is onsiderably distortedwhile it traverses the inhomogeneous plasma region, but one it is inside the highdensity homogeneous plasma region it regains the familiar dipolar form. The salelength of the dipole, in the high density region hanges by the same fator as theratio of the skin depth of the high and low density regions. For instane , initiallythe size of the dipole was hosen to have r0 = 1.0 and at t = 690 when it isompletely inside the high density region, a redution by a fator of approximately
1/3 in the size is observed. We thus observe that the dipolar strutures are fairlyrobust. Even after enountering a strong density inhomogeneity, one in the regionof homogeneous plasma they adjust smoothly to the new value of the skin depththat orresponds to the high density region. It should be noted that for the ase44



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....when this new dipole approahes the dereasing plasma density at the other end,the e�et is entirely di�erent. The sign of ∇n being opposite, in this ase the lobesseparate due to the density gradient indued drift. Thus, the dipole separates andforms two monopoles at this end. These monopoles then drift along the onstantdensity ontours. Thus the struture does not ome out of the high density plasmaregion.Thus we see that the dipole penetrates the high density region but is unableto ome out of the other end where the density again dereases. In the abovease we had started from an exat solution of EMHD equations in a low densityplasma. We have then let the struture evolve towards high density region. It isobserved that one inside the high density region the struture does not ome outfrom it. We have also simulated the ase with STC density pro�le. Here, thedipole solution enounters a density avity in its path. The evolution is shown inthe plot of Fig. (4.13). The entral region | y |≤ w of the box orresponds to a lowdensity plasma region n = 0.2 and h1 = 0.6, h2 = −0.4 and other parameters aresame as that of Fig. (4.12). In this ase as the struture enounters the densityinhomogeneity region with dereasing plasma density the lobes show a separationdue to the density gradient indued drift. The separation results in a reduedaxial veloity of the dipole, whih ultimately diminishes to zero as the separationdistane between the two lobes exeeds the eletron skin depth. The two lobes thenseparately move as two monopolar strutures, transverse to the density gradient.Thus, this too illustrates that the dipole is unable to penetrate the region of lowerplasma density.The same features are exhibited even when the dipole enounters a densitypro�le with a �nite transverse extent. We demonstrate this here for the RTH andRGC density pro�les. The various stages of the simulation have been presentedin Figs. (4.14) and (4.15). The hoie of parameters for simulation with the RTHdensity pro�le are h1 = 5.5; h2 = 4.5;w = 2.0; x0 = 0.0; y0 = 0.0; σx = 1.0; σy =

1.0; σ = 0.4. For this partiular density pro�le a dipole is plaed with its enteron the line x = 0 at the positive value of y = 4.0. The axis of the dipole isparallel to the y axis as an be seen from the subplot at t = 0 of Fig. (4.14).The dipole veloity is direted along the negative y axis so that it approahes thehigh density plasma region. It an be seen from the subsequent subplots thatdue to the density inhomogeneity related drift veloity of the individual lobes,45
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Figure 4.13: In this �gure the dipole is shown to approah a density avity (lowerdensity plasma region). It an be observed that the dipole is unable to penetratethe lower density plasma. The two lobes of the dipole get separated transverse tothe density gradient diretion and subsequently they evolve as separate monopolarstrutures.the two lobes of the dipole approah eah other. This enhanes the axial dipolarveloity and the dipole struture enters the high density region. One inside thehomogeneous high density region it translates along its axis whih is along thediameter of the irular high density region. Upon reahing the other end thedipole again enounters the inhomogeneous plasma density region. However, thediretion of the density gradient is now opposite to the one it enountered whileentering the high density region. Thus, in this region the two lobes of the dipoleseparate from eah other. As the separation between the lobes exeeds the skindepth distane the lobes at like individual monopolar strutures and move alongthe onstant density ontours. In this ase the density gradient being along theradial diretion, the two strutures move along the perimeter of the irle. They46
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Figure 4.14: The trapping of the dipolar struture in a high density plasma hasbeen illustrated in this �gure. A high density plasma with a irular pro�le in the
x−y plane represented by the thik blak ontour lines are depited on the varioussubplots. A dipole struture an be seen to penetrate the high density region.However, one inside the high density region it ontinues to remain trapped in thisregion.thus again ome in lose ontat at the same point of the irle from where they hadentered the high density region. At this plae they again form a dipolar strutureand translate along the diameter of the high density region. The simulations showthat this yle keeps repeating.We have also studied the ase of Gaussian radial avity ( RGC pro�le) plaedat the enter of the simulation box. We show dipole propagation in the Fig. (4.15)for this RGC pro�le. The hoie of parameters for simulation with this densitypro�le are h1 = 1.0; h2 = −1.0; x0 = 0.0; y0 = 0.0; σx = 1.0; σy = 1.0. For thisparameters the ratio of the maximum depth of density pro�le to the bakgroundamplitude of the density is around ≈ 0.2. In this ase the dipole is plaed initially47



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....at the position (0, 4.086) and the sign of the eah lobe of the dipole is hosen insuh a manner that it is propagating towards the avity. When it passes throughthe density inhomogeneity, eah lobe of the dipole starts separating untill the axialveloity of the dipole beomes zero. After that eah lobe behave like a monopoletraversing around the outside periphery of the avity as shown in the subplots at
t = 360.0, 420, 495.0 of Fig. (4.15). At later time it is observed that both lobesmeet at other end of the avity where they again form struture of the dipole andpropagate towards negative y axis. These studies have thus learly demonstratedthat a dipole urrent pulse an penetrate and remain trapped inside a high densityplasma region.

Figure 4.15: The propagation of the dipole through an inhomogeneous densitypro�le when it form a avity within the �nite region of the spae as is shown inthe eah subplot of the �gure with the blak thik ontours. In this ase the dipolestruture do not get to penetrate inside the avity.We now provide a onlusive evidene of the fat that the penetrated struturein the high density exhibits the usual traits of the known dipole solutions of the48



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....EMHD equation. For instane, the dipoles upon head-on ollisions are known toexhange partners and propagate in a diretion orthogonal to their initial prop-agation [36℄. We show this happens also for the dipolar strutures whih enterthe high density hump and ollide within the high density region with the otherdipole. Choosing the RTH pro�le for density we plae two dipoles initially at theloation of (0, 4.08) and (0,−4.08) as shown in the subplot at t = 0 of the Fig.(4.16). Both these dipoles enter the high density plasma region and after olli-sion are seen to exhange their partners forming the new dipolar on�guration andpropagate away from eah other in a diretion perpendiular to the original dire-tion of propagation. This is evident in subplots at t = 675.0, 990.0, 1290.0. One

Figure 4.16: This �gure represents the ollisional behavior of two dipoles in thepresene of density inhomogeneity when the RTH density pro�le is onsidered inthe simulation.they reah the high density edge the lobes of these newly formed dipole get sep-arated and they move along the onstant density ontours as monopoles (subplotat t = 2040.0). The monopolar lobes again meet (subplot at t = 300.0 ) forming49



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....dipoles and propagate radially inward. This yle also keeps getting repeated.4.4 Trapping vs. Transmission through High Den-sity RegionThe propagation harateristis of the dipolar struture studied in various ontextsin the preeding setion learly demonstrates that EMHD magneti strutures ofdipolar form an enter a high density plasma region. However, one inside ahigh density plasma region it remains trapped there. One would, however, expetthat a weaker inhomogeneity and/or a smaller density redution may transmitthe urrent pulse. In this setion we seek features whih provide a quantitativeriteria for trapping vs. transmission. We arry out studies with the two pro�lesSTH and SGH by hoosing various values of their parameters. These parametersessentially deide the inhomogeneity sale, the total density hange and the widthof the inhomogeneity region.Our studies show that while the form of inhomogeneity does indeed determinewhether the struture is transmitted or remains trapped, the strength of urrentpulse pattern has no role in this. In Fig. (4.17) we show the snapshots at varioustimes from some of our ase studies for the pro�le SGH. We show the propagationof a dipole with axial speed u = 0.01 (this veloity is the propagation speed of thestruture in a homogeneous plasma where the density n0 = 1.0) for the subplots of�rst, seond and third olumn. The fourth olumn orrespond to a dipole whihpropagates at a faster speed of u = 0.1. The thik blak line in the subplotsshow the loation where the density gradient is the maximum. The parametersonerning the density pro�le SGH for the four di�erent ases orresponding tothe four olumns of Fig. (4.17) are (a) h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 0.7071, (b)
h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 1.0,() h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 1.414 and(d) h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 0.7071 respetively. It is observed that thedipole is trapped for both the ases (a) and (d). This an be diserned from thefat that for these two ases the two lobes get separated by a distane more thanthe typial value of the eletron skin depth as they try to ome out from the otherend. The separation of the lobes with distanes larger than the typial value ofskin depth essentially redues the dipolar struture to a set of monopoles. On the50
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Figure 4.17: The four olumns of the subplots represent four di�erent ases ofpropagation of urrent pulse struture past the plasma density inhomogeneity.The detailed on�guration of the density pro�le and the urrent pulse struturefor eah of the four ases has been mentioned in the text. The thik dark straightlines in the plot show the onstant density ontour at the loation of maximumgradient. The ases orresponding to the (a) and (d) olumns show trapping (lobesget separated upon reahing the other end ) and those for () and (d) olumnsshow transmission. In eah subplots, the red and blue lobe of the struture impliespositive and negative amplitude of the magneti �eld direted along the symmetrydiretion ẑ, respetively.other hand for ases (b) and () the dipole is transmitted past the inhomogeneity.It should be noted that for ase (a) and ase (d) the inhomogeneity pro�le issimilar, however, the hosen urrent pulse struture for (d) was moving 10 timesmore rapidly and hene had a higher magnitude of the magneti �eld assoiatedwith itself. Even then we observe that for both ases the dipole gets trappedwithin the high density region. Several detailed studies have been arried outwith di�erent speeds of the inoming dipole and all of them reveal that the dipolestruture gets trapped irrespetive of its speed and/or the maximum amplitude ofthe magneti �eld that it has. We also studied the prospet of trapping in ases(b) and () by hoosing di�erent dipolar pulse strutures. Here too no matter51



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....what the dipolar parameters were the struture always got transmitted past theinhomogeneity. Suh kind of studies have been arried out with pro�le STH also.The studies, therefore, learly illustrate that the trapping and/or transmission issolely dependent on the density pro�le and is not dependent on the urrent pulsepattern. Table 4.1: Pro�le SGH
h1 h2 σ2 L̂n/σ < Ln > /σ Status
1.0 1.0 0.9 1.8568 2.31 Untrap
1.0 1.0 1.0 1.8944 2.22 Untrap
1.0 1.0 1.5 1.8766 2.28 Untrap
1.0 1.0 2.0 1.8951 2.29 Untrap
1.0 1.1 3.0 1.7616 2.16 Trap
1.0 1.2 3.0 1.6733 2.02 TrapTo study the dependene of trapping and/or transmission harateristis onthe density pro�le we arried out a large number of studies with various hoies ofthe parameters assoiated with the inhomogeneity. Both kinds of density pro�lesrepresented by Eqs. (4.4) and (4.5) are onsidered. The results for Pro�le SGHand Pro�le STH have been summarized in Table (4.1) and Table (4.2) respetively.Table 4.2: Pro�le STH

h1 h2 w σ L̂n/σ < Ln > /σ Status
2.5 1.5 2.0 0.4 1.666 2.13 Trap
2.5 1.5 1.0 0.4 1.666 2.19 Trap
1.5 0.5 2.0 0.4 3.0 4.02 Untrap
1.5 0.5 1.0 0.4 3.0 3.81 Untrap
2.5 1.5 1.0 0.6 1.666 2.19 Trap
2.5 1.5 1.0 0.8 1.666 2.18 Trap
3.5 2.5 2.0 0.4 1.40 1.81 Trap
5.5 4.5 2.0 0.4 1.20 1.63 Trap 52



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....For simulations shown in Table (4.2) we have hosen y0 = 0.0 and σy = 1.0.The value of other parameters for these studies have been mentioned in the tableitself. We introdue here a parameter Ln = n/∇n as the sale length for thedensity variation. It should be noted that for a linear density pro�le of the form
n0(y) = n00(1 + αy) , Ln = 1/α and is a onstant. For our hoie of density givenby pro�le SGH and STH , Ln would vary. The fastest rise in density wouldour at a loation where the value of Ln is minimum.The minimum value of density gradient sale length has been denoted by L̂n inour Tables (4.1) and (4.2). The typial measure for density sale length an also beobtained by evaluating the average Ln around its minimum value over a distane of
σ (As mentioned earlier the parameter σ, typially represents the total extent of theregion where the density is inhomogeneous). We denote the average sale length ofdensity variation by < Ln > in our tables. The outome of the studies in terms ofwhether the urrent pulse struture gets transmitted or remains trapped has alsobeen listed in these tables. The form of the urrent pulse used for arrying out thesimulations listed in the two tables were all idential. The interesting aspet worthnoting is that in all these studies, ases where trapping ours the ratio r = L̂n/σ(or r1 =< Ln > /σ), is smaller in omparison to those for whih transmission takesplae. Thus whether a struture will be trapped and/or transmitted is deided bythe ratio of Ln/σ, higher this ratio more are the hanes of transmission.From onsiderations of time reversal invariane of the ollision less G-EMHDequations, the urrent pulse struture whih enters a loal high density region,should invariably ome out of the region from the other end. However, this doesnot happen and we observe that the struture in some ases gets trapped withinthe high density region. The breaking of the time reversal invariane indiates thepresene of an underlying proess of energy dissipation. We will see in the nextChapter that this is assoiated with the urrent shok layer [80℄ that forms as thedipole enters the high density region.4.5 SummaryIn this Chapter the G-EMHD equations in 2-D were used to study numerially theevolution and propagation of nonlinear oherent solutions of the EMHD equations53



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....(whih depit eletron urrent pulses) in the presene of density inhomogeneity.The two varieties of oherent solutions (viz., the stationary monopolar solutionsand the traveling dipolar solutions) were hosen for the study. Interesting novelaspets of their propagation were observed and analyzed. Our studies learlyshow that density inhomogeneity leads to an additional drift of the urrent pulsesolutions. This drift is along the onstant density ontours. The monopoles whihare stationary strutures in a homogeneous plasma thus move along the onstantdensity ontours of plasma. The dipoles whih already have a translational speedalong their axis in a homogeneous plasma show interesting behavior in the preseneof inhomogeneity. Their propagation is now governed by the ombination of theiraxial drift and the drift due to the density inhomogeneity. The interplay betweenthese two drifts for dipole generates variety of possibilities. The dipole urrentpulses an move aross the density inhomogeneity to penetrate a high densityregion. However, one inside a high density region we observe that they remaintrapped there. The riteria for trapping vs. transmission was determined by usand was shown to be dependent on a parameter whih measures the ratio betweenthe typial density inhomogeneity sale length and the total distane traversed bythe struture in the inhomogeneity.An important point to ponder here is that this partiular observation of trap-ping violates the time reversal invariane of the dynamial equation. This suggeststhat there is some dissipative proess at work. In fat while the struture enters thehigh density plasma region it forms urrent shok strutures at the inhomogeneitylayer [ see Fig. (4.12)℄. The proess of energy dissipation through shok formationand its relevane to the fast ignition sheme will be disussed in the Chapter 5.
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Chapter 5Collision - less Energy Dissipation ofEletron Current Pulse: Appliationto Fast IgnitionIn the previous Chapter 4 it is shown that an eletron urrent pulse with dipolarmagneti �eld an penetrate a high density plasma region but often it is unableto ome out in the low density plasma region. It thus gets trapped inside a highdensity plasma region. This indiates a violation of time reversal invariane andis suggestive of the presene of a dissipative mehanism at work. In the presentChapter we show that indeed a strong energy dissipation ours as a result ofsharp urrent layer magneti shok formation while the pulse rosses the plasmadensity inhomogeneity layer to enter the high density region. This mehanism ofenergy dissipation from the eletron urrent pulse is shown to be independent ofthe magnitude and the harater of the dissipative proesses present in the system.Thus energy gets dissipated even from a ollision - less eletron urrent pulse viathis mehanism.Eletrons prove to be a good aessible soure of energy, they an be easilyaelerated to high energies beause of their low mass. However, sine the Ruther-ford ollision ross setion of eletrons diminishes rapidly with inreasing energy ofeletrons, they an not be e�iently employed for the task of energy deposition in aplasma. With this novel ollision - less mehanism at work, however, they an nowbe suitably used for e�ient heating of the plasma medium. Furthermore as the55



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....mehanism is dependent on the inhomogeneity of the plasma density, it providesa method by whih a loalized heating of the plasma at a desirable loation anbe maneuvered. The other advantage is that the eletrons an be used to heat anoverdense region of plasma as well, where lasers an not penetrate and hene annot be employed. This is preisely the situation in the ontext of hot spot reationin Fast Ignition (FI) [5℄ laser fusion sheme for ignition. The relevane of the pro-posed ollision - less mehanism of energy dissipation to the frontline FI oneptof laser fusion is shown in detail. The existing PIC simulations [29, 30, 32, 33℄ aswell as a reent experiment [84℄ onduted at ILE Osaka provides strong supportfor the proposed ollision - less heating sheme.5.1 IntrodutionThe propagation of a short duration eletron urrent pulse is pereived by plasmaas a propagating high frequeny eletromagneti disturbane. The plasma tries toshield itself from this disturbane by induing return urrents. This on�gurationof urrents in the plasma helps, as it ensures that eletron urrents exeedingthe Alfven limit [51℄ an also easily penetrate inside a plasma medium. Somesimulations have learly shown that the ombination of forward urrent (due toinoming urrent pulse) and return shielding urrent of plasma, is unstable tofast eletromagneti instabilities known as Weibel instability [29℄. This instabilityseparates the forward and return urrents spatially. This leads to the formationof ylindrial urrent hannel. The enter of ylindrial hannel arries forwardurrent whih is surrounded by a ylindrial shell of return plasma urrent. The�ow on�guration, thus varies along axial and radial diretion of the ylinder andan be taken as independent of θ̂, the poloidal angle of the ylinder. Thus thisis essentially a 2-D urrent on�guration. Suh a urrent on�guration produesonly poloidal θ̂ magneti �elds.There are typially two kinds of eletron urrent pulses whih are exat solu-tions of the 2-D nonlinear EMHD system for homogeneous plasma as disussed inChapter 4. These two varieties of solutions have been shown in the plot of Fig.(5.1). The top three subplots (a), (b) and () show the ontour plot of the assoi-ated magneti �eld, the pro�le of magneti �eld and the eletron �ow at the mid56



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....
y = 0 setion of the struture respetively for the monopolar eletron urrent pulse.These are radially symmetri rotating eletron urrent �ow patterns whih are non- propagating in a homogeneous plasma. The subplots (d), (e) and (f) orresponds

Figure 5.1: This is the shemati diagram for urrent pulse assoiated with the 2-Dnonlinear solutions of Eletron Magnetohydrodynamis (EMHD) model equations.Subplots (a), (b) and () show the ontour plot of the assoiated magneti �eld,the pro�le of magneti �eld and the eletron �ow at the mid y = 0 setion of thestruture respetively for the monopolar. Subplots (d), (e) and (f) orresponds tothe same features for the dipolar struture.to the same features for the dipolar solutions whih move with uniform axial speed
u in a homogeneous plasma. The speed u typially inreases with the maximumamplitude of | b | shown by the peak value in subplot (e) and it also inreaseswith the inreasing proximity of the two lobes. This dipolar solution an thusbe onsidered as a model for the �nite propagating eletron urrent pulse in theplasma for our studies. For these dipolar strutures the entral region (subplot(f))shows a forward (along the propagation diretion) urrent �ow whih bifuratesand returns along both sides as a return urrent. The poloidal symmetry axis (θ̂)of the ylindrial urrent hannel orresponds to the symmetry axis (ẑ) of slabgeometry of the 2-D EMHD system ( as onsidered for this thesis). The propagat-ing diretion (ŷ) of dipole orresponds to the axis of ylindrial urrent hannel.57



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....We would study here the evolution of dipole urrent pattern and its total energyontent as it moves through inhomogeneous plasma density. For this purpose wehave employed the simpli�ed form of G-EMHD model equation [78℄.5.2 Shok Formation: Current Pulse Propagationthrough InhomogeneityThe Generalized Eletron Magnetohydrodynami (G-EMHD) model has been dis-ussed in detail in Chapter 2. We employ the 2-D evolution equations assuming ẑbeing the symmetry axis. The eletron urrent �ow is on�ned in 2-D x− y planefor dipole as shown in subplot (f) of Fig. (5.1). Inorporating the e�et of ol-lisional dissipation through resistivity η and visosity in eletron �ow µ (this anbe either lassial and/or anomalous arising through turbulene) in the G-EMHDmodel we have:
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(5.1)Here plasma density (n) has been hosen to vary along ŷ, the diretion of urrentpulse propagation. The density has the STH pro�le desribed in Chapter 4 givenby.
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(5.2)Where h1, h2, y0, σy, w and σ are parameters whih de�ne this pro�le and havebeen hosen as 5.5, 4.5,−3.0, 1.0, 2.2 and 0.6 respetively. The pro�le thus hashomogeneous regions of both low (n = 1) as well as high densities (n = 10) inthe simulation domain separated by a spatial region in whih the density variessharply. As mentioned the diretion ŷ is also the propagation diretion of dipoleand it is plaed in a fashion suh that it moves towards inreasing plasma density.Fig. (5.2) shows the evolution of an initial 2-D dipolar on�guration of urrentpulse as it moves past an inreasing plasma density. The simulations show thatas dipole enounters an inreasing plasma density, a transverse drift veloity (dis-58



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....

Figure 5.2: The ontour plots of the magneti �eld b in the x − y plane is shownin subplots [a,b℄ (inertialess ase) [d,e℄ (full G-EMHD) at two di�erent times. Thenumbers (-2,0,2) on the axis of these plots show length in units of eletron skindepth (orresponding to the low density plasma). The magneti �eld b pro�le in
x at the mid plane of the struture in y has been depited at various times insubplot () and (f) for inertialess and the full G-EMHD simulations respetively.The subplot (g) and (h) show the inhomogeneous plasma density pro�le throughwhih the dipolar struture evolves. The ross × and the arrow → mark on thesesubplots show the initial loation of the dipole for inertialess (dipole has no axialveloity in this ase) and full G-EMHD simulations.ussed in Chapter 4) given by ~vd = −b∂(1/n)/∂y is experiened by struture. Thesign of magneti �eld (b) being opposite in both lobes, the lobes drift towards eahother while approahing a high density plasma region (see Fig. (5.3) for shematiillustration ). This results in a ollision between two lobes resulting into a ur-rent shok formation. The shok formation an be learly seen from the onstantontour plots of b in Fig. (5.2). The shok forms even when eletron inertia isnegleted. To show this we have simulated the inertialess limit of Eq. (5.1). In theinertialess ase the shok struture is more prominent. The dipole has no axial ve-loity for inertialess ase. Thus for this ase the struture has been plaed initiallyitself at a loation where plasma density gradient is �nite (the loation is high-59



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....lighted by × symbol in the density pro�le as shown in subplots (g,h) of Fig. (5.2)).For simulation with full G-EMHD equations inluding eletron inertial terms thedipole has an axial translational speed. In this ase the lobes of dipole are pushedloser to eah other, their size diminishes and the assoiated maximum magneti�eld inreases, as a result of whih dipole translates faster through inhomogeneousregion. The struture, therefore, keeps penetrating towards higher density regionand it also keeps getting sharper. However, one it reahes the plateau of highdensity side it again re-adjusts its shape to a dipolar form orresponding to loalskin depth.
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Chapter 5: Collision-less Energy Dissipation of Eletron Current ....5.3 Evolution of Total Energy Assoiated withCurrent PulseWe now look at the evolution of total energy assoiated with urrent pulse as itmoves past inhomogeneity forming urrent shok struture. The energy assoiatedwith dipole struture is sum of magneti and eletron kineti energy and is givenby the expression E =
∫ ∫

(b2+(∇b)2/n)dxdy, whih is onserved in the absene ofany dissipation. The hoie of η = µ = 0 ensures that there is no energy dissipationwhile struture (resolved well by spatial grid) moves through homogeneous region.Our simulations indeed show that there is no hange in E while dipolar strutureis in the plateau region of low as well as high densities. The onstany of energy

Figure 5.4: Evolution of the total energy of the struture for full G-EMHD simula-tions, as it propagates through the inhomogeneous plasma density (a) for variousgrid resolutions (b) for simulations with �nite resistivity parameter η and () with�nite visosity parameter µ in G-EMHD equations. A thik dashed vertial lineshows the time when the dipole enters the inhomogeneous plasma density region.has also been tested in inhomogeneous region for those magneti on�gurationswhih do not produe shok strutures (e.g. monopoles). We, however, observethat in this partiular ase when there is shok formation, as the dipolar magnetistrutures translate through inhomogeneous density region, the energy E exhibitsa sharp fall (∆E) as shown in subplot (a) of Fig. (5.4). The timing of this drop inenergy ontent of dipole is observed to oinide with interval when dipolar struturetranslates past inhomogeneous plasma density region. This sharp fall in energy isdue to the shok formation, whih annot be resolved adequately no matter how�ne one hooses the spatial resolution to be. The value of ∆E is typially same61



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....for di�erent hoies of grid resolution ∆x, as an be seen from subplot (a) of Fig.(5.4) . The shok width essentially adjusts itself aording to grid resolution forthe runs with η = µ = 0. Sine ∆E is not sensitive to any hange in the valueof ∆x it shows that total energy dissipation is independent of the value of griddissipation.We have also arried out simulations with �nite and various values of η and
µ. The energy dissipation for these ases have been shown in subplots (b) and() of Fig. (5.4). It an be seen that in these ases the energy also dissipateswhile struture passes through homogeneous region of low as well as high plasmadensities. However, the drop in energy while the struture moves through theinhomogeneous density region remains approximately same for di�erent values of
η and µ. Also this ∆E ompares well with the ase of η = µ = 0 of subplot (a) ofthe same �gure, where only grid dissipation was operative. We thus �nd that theenergy dissipation is independent of the value as well as the form of dissipation.This, as argued below is due to a suitable adjustment of shok width lx withdissipation oe�ient. So, even when the dissipation oe�ient tends towardszero the total energy dissipation is �nite and of a onstant value.5.4 Energy Dissipation through Shok FormationWe now analyze the proess of shok formation and magnitude of energy dissipationassoiated with it. As the two lobes of the dipole approah eah other it leads tothe steepening of the eletron urrent gradients. We have shown that the shoksform even when one arries out the inertialess G-EMHD simulation. Thus, wehoose to analyze the simpli�ed inertialess limit of the evolution equations forwhih Ωb = b and Eq. (5.1) gets simpli�ed to ∂b/∂t− b(∂b/∂x)∂(1/n)/∂y = η∇2b.For a simple density variation of the form ∂/∂y(1/n) = −K, (here K, the inverse ofthe normalized density sale length, is assumed to be a positive onstant with thenegative sign signifying an inreasing plasma density with y) one obtains Burger'sequation. The Burger's equation is known to produe shok strutures. Sineshok is along x , for small η, we have η∇2b ∼ η∂2b/∂x2. The analytial formof the shok struture an be obtained by seeking stationarity in a frame movingwith a speed u ( detailed derivation of shok struture has been given in Appendix62



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....C). Thus, upon replaing ∂/∂t by −u∂/∂x and integrating with respet to x weget in the inertialess limit
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)} (5.3)We have used the ondition b = b0, and db/dx = 0 at the boundaries. Theparameter K2 is the seond onstant of integration to be determined from theondition x = −∞, b = b0. It is lear from the expression of b that the layer width
lx = 2η/(b0K−u) sales linearly with η . The rate of heat dissipation in this sharplayer would be given by
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KLve (5.5)Here we have replaed one of the b0 by ave to obtain the last equality. Here veis the inoming eletron veloity. The independene of energy dissipation Q fromthe magnitude of lassial resistivity parameter η in the presene of sharp densitygradients is known as the EMHD resistane and has been onsidered in literatureearlier [1℄. Here we have demonstrated it expliitly by numerial simulations.We next evaluate the fration of the inoming energy whih gets dissipated inthe shok struture by this mehanism. The inoming rate of magneti energy in-�ux is EMag = (b20/2)vea

2, provided one assumes that the typial inoming urrenton�guration has idential extent in the two transverse dimensions (typially, fora struture of the size of eletron skin depth, both kineti and magneti energiesare of similar order). From Eq. (5.5) we see that a fration (KL) of the inom-ing magneti energy assoiated with the urrent pulse gets dissipated in the shokstruture of length L. Thus, if the shok length is of the order of the inhomogeneitysale length K−1 then the entire inoming magneti energy would get dissipated. 63



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....The eletron inertia related terms may play an interesting role of providinganomalous visosity for a ollision-less ase. As the density gradient indued driftveloity brings the two lobes of the dipoles towards eah other it generates asharp eletron veloity shear layer in the entral region. This sharp veloity shearregion is known to be suseptible to the Kelvin - Helmholtz (KH) like instability[54, 56℄ in the presene of eletron inertia related terms. This instability essentiallymanifests through eletron inertia dependent non-linearity ẑ × ∇b · ∇∇2b in theevolution Eq. (5.1) for G. The instability onverts the eletron �ow energy into�ne sale vorties. In 3-D the vortex �ows asade the energy towards �ner saleswhih would eventually dissipate into heat through eletron Landau damping inthe diretion parallel to the magneti �eld. This e�et an be modeled by ananomalous eletron visosity oe�ient µ. In an earlier 3-D EMHD simulations [53℄it has been shown that the nonlinear stage of the veloity shear driven instabilityexhibits eletromagneti turbulene and produes an e�etive visosity µ. In theollisionless η = 0 ase, this anomalous visosity µ, would play a ruial role andde�ne the shok width. Thus moking up the eletron inertia related e�ets byan e�etive visous dissipation ∼ µ∇2∇2b we an write an approximate equationin the ollisionless limit as ∂b/∂t +Kb∂b/∂x = −µ∂4b/∂x4 The balane betweennonlinear and the dissipation term de�nes the shok width, whih now sales as
lx ∼ (µ/Kb)1/3. A net energy dissipation rate Q over a length L in this ase is
∼
∫
[µ(d2b/dx2)2dx]2πaL ∼ µ2πaLb2/l3x ∼ 2πaKLb3. Using, Ampere's law wehave b ∼ ave , whih gives

Q ∼ KLb2a2veThis leads to a similar onlusion as before about the e�etiveness of the shok dis-sipation mehanism and the independene of the magnitude of energy dissipationin the shok region to the anomalous visosity oe�ient µ.It is interesting to note that the total dissipated energy Q depends on the sameratio, viz., KL = L/Ln whih de�nes the riteria for transmission vs. trapping inChapter 4. It thus learly shows that whenever the energy dissipation is higherthan some threshold the struture remains trapped and is unable to get transmittedfrom the other end.
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Chapter 5: Collision-less Energy Dissipation of Eletron Current ....5.5 Oblique Inidene of Current Pulse on PlasmaDensity InhomogeneityIn our previous studies on the interation of dipolar urrent pulse struture withplasma density inhomogeneity we have onsidered the dipole axis (whih is alsothe propagation diretion of the urrent pulse) to be oriented along the diretionof bakground plasma inhomogeneity gradient. In a realisti ase it would notbe possible to orient the propagation exatly along the inhomogeneity gradient.Here, we study the e�et of oblique inidene, ( i.e. when the axis of the inidentdipole is hosen to be oriented at various angles with respet to the diretion ofthe inhomogeneity gradient) on the evolution.The inhomogeneous density pro�le has the form of STH desribed by Eq. (5.2).For these studies we have hosen the parameter values of h1 = 5.5, h2 = 4.5, y0 =

−2.5, σy = 0.0, w = 2.0, σ = 0.4. The dipolar urrent pulse strutures are plaedinitially at the low density homogeneous region of the plasma as an be seen fromthe subplots of the topmost row in Fig. (5.5). The axis of the dipole in thesesubplots have been hosen to be inlined at various angles θ with respet to the ŷ(the diretion of plasma density gradient). Due to the inlination of the dipole axiswith respet to the density inhomogeneity, one of its lobes experienes the plasmainhomogeneity earlier ompared to the other lobe. Also the drift ~vd direted along
x̂ is no longer normal to the dipolar axis. This breaks the symmetry of earliersimulations presented in Chapter 4. As a resultant of this the axis of the dipoleturns, whih is evident from the subplots orresponding to subsequent times inFig. (5.5). The lobes ultimately even swith their loation. The one in the leftside ends up on the right side. This would in priniple even reverse the axial drift,ausing the dipole to re�et from the inhomogeneity. We, however, observe (inmost of the simulations that we have arried out so far ) that one the lobes swiththeir sides, they also drift apart due to inhomogeneity (~vd being direted so as toseparate the swithed lobes further apart ). Although not expliitly shown in Fig.(5.5), a longer duration evolution expliitly demonstrates this. The separation ofthe lobes due to ~vd one they swith sides automatially redues the axial drift.The dipole, therefore, never re�ets o� the inhomogeneity but separates formingtwo monopoles. 65
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Figure 5.5: The propagation of urrent pulse struture inident at angles of 30, 20,
10 and 5 degrees with respet to the density gradient diretion have been shownin the plots of �rst, seond, third and fourth olumns respetively.It is lear that the evolution for the ase of oblique inidene of the strutureshows stark di�erenes from the ase of parallel inidene. It is therefore pertinentto investigate whether this has any impat on the mehanism of energy dissipation.In Fig. (5.6) we show the evolution of energy for these simulations. The variousurves in the �gure show the evolution of energy for ases with di�erent inideneangles of the dipole. For these simulations one observes again a rapid fall ofenergy during the period that the two lobes are entangled in intense interationwhen they experiene the plasma density inhomogeneity. This essentially ourswhen the lobes ross over eah other to swith their loations. At later time whenthe lobes have already swithed their loations and start drifting apart the energyremains onstant. It is interesting to note, however, that the magnitude of energydissipation that takes plae in these ases of oblique inidene is typially of thesame order as that observed when θ, the angle of inidene is zero. The energy66
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Figure 5.6: The evolution of the total energy has been shown when the urrentpulse is inident at (i) 5o ( urve with blue stars), (ii) 10o (urve with green + sign,(iii) 20o (urve with magenta rosses) and (iv) 30o (urve with red irles).dissipation does derease with inreasing inlination | θ |. However, even for aslarge an angle as θ = 30 degrees there is only around 20% di�erene in the totalenergy dissipation when ompared to the θ = 0 ase.We thus see that although a slight hange in inidene angle alters drastiallythe entire propagation ourse of the dipole urrent layer, it has little in�ueneon the magnitude of energy dissipation while passing through the inhomogeneousregion.5.6 Appliation : Fast IgnitionThe proess of ollision - less energy dissipation from energeti eletrons holds alot of promise and an have far reahing onsequenes in terms of appliations.We disuss the ase of Fast Ignition here to illustrate our point. The FI sheme[5℄ is essentially a variant of the Inertial on�nement sheme for whih the tasks67



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....of target ompression and ignition are arried out separately. This has severaladvantages. First of all it is easier to ompress a old target. Also the preseneof hydrodynami instabilities suh as Rayleigh Taylor et., during the aeleratingand deelerating phases of ompression beome inonsequential. The target beingool there is no mixing of hot and old regions whih seriously deteriorates thee�ieny of the proess in onventional Inertial Con�nement Fusion (ICF) [57, 58℄.In FI after ompression one needs to reate a hot spot in plasma for ignition.For that purpose a seond fast femtoseond laser pulse is employed. However,the target being overdense the laser annot propagate inside the overdense regionto reate a hot spot. One instead relies on the energeti eletrons generated atthe ritial density layer of the target for the reation of hot spot. The saleddown experiments have shown pretty impressive results for this sheme, wheretenfold inrease in fusion neutron yield has been observed [60℄. However, thereis skeptiism urrently on the aount that the one would require higher energyeletrons, e.g. 10 MeV or higher for the hot spot reation in full �edged ignitionexperiments. Sine the Rutherford's ollision ross setion of eletrons diminisheswith energy, the greatest onern is that the higher energy eletrons would simplypass through the target. After inorporating orretions due to dense targets ande�ets of orrelated ollisions the typial stopping distane estimate for a 1 MeVeletron is onsiderably longer than the target size of 50 miron. Thus, if thetarget is transparent for the high energy eletrons, the reation of hot spot in FIremains an outstanding issue. The proposed ollision - less dissipation mehanism,however, provides a means to overome this di�ulty as has been shown below.Let us now estimate the typial energy of the eletrons that an be stoppedthrough our proposed mehanism. We use the non dimensional expression for theenergy dissipation here. The urrent I in the hannel is related to the magnitudeof the magneti �eld B through Ampere's law as B = 2I/ac, where a is thedimension of the hannel. The rate of energy dissipation Q an then be expressedin dimensional variables as Q = (B2/4π)πa2ve = I2ve/c
2, ve being the eletronveloity. Sine the rate of energy dissipation is essentially I2R (R the resistane)heating of the system, for this ase the resistane would be R = ve/c

2 in CGSunits. The e�etive voltage drop an then be estimated from V = IR. Thetypial magnitude of the eletron urrents in FI experiments are in the range ofseveral hundreds of kAmps, and the eletrons typially have relativisti energy,68



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....their veloity ve ∼ c, the speed of light. Thus the resistane R ∼ 1/c ∼ 30Ω. (Weassume here that the expression for energy dissipation obtained in the previoussetion an be used even for the relativisti eletrons. This, however, needs to beensured and further studies on this are neessary). This helps in estimating theenergy of those eletrons whih an get stopped by this mehanism for a given valueof urrent in the hannel. Thus for a 300KAmps of urrent, eletrons with energyas high as 10MeV an be stopped by this proess. This estimate is ertainly verypromising as it supports the possibility of heating through eletron urrent pulsesfor ignition.We would now like to see whether the energy dissipation observed in our sim-ulations provides an estimate of R whih is onsistent with the derivation above.The urrent pulse struture propagates with a normalized veloity vN = 0.01.From Fig. (5.3) it is lear that within a time interval of ∆tN = 100, the to-tal dissipated energy is ∆EN = 5 × 10−3. The su�x N is used to indiatethe normalized values here. This provides us with the value of normalized re-sistivity as RN = 5 × 10−3/0.01 = 0.5. For the urrent pulse strutures ofthe typial dimension of eletron skin depth a relationship ωc ∼ ωpve/c an beobtained between the typial values of the magneti �elds and the eletron ve-loity ve. The value of RN provided above then translates to a resistane of
R ∼ 0.5/(cωc/ωp) ∼ 0.5/ve. In the ase of fast ignition senario ve ∼ c whihimplies that R ∼ 0.5/c = 0.5 × 30Ω = 15Ω, whih is in lose agreement with theanalytial estimate made above.5.7 SummaryWe have presented a new mehanism of rapid energy dissipation through shok for-mation for a urrent pulse moving past an inhomogeneous plasma medium. Themehanism was illustrated through G-EMHD �uid simulations and an analytialunderstanding was also provided. It is interesting to note that our proposed meh-anism is onsistent with some reent PIC simulations [29, 30, 32, 33℄ arried outin the ontext of propagation of energeti eletron urrent towards the dense tar-get ore for the fast ignition plasma. These PIC results show a predominane ofheating in the region where density gradient is high (the region where we observe69



Chapter 5: Collision-less Energy Dissipation of Eletron Current ....shok formation). A reent experiment arried out at ILE Osaka [84℄ also learlyillustrates that eletrons with as high as about 15 MeV energy passing throughthe inhomogeneous region of the target get stopped, showing the relevane of ourproposed sheme. The role of additional e�ets arising due to dense plasma, un-ompensated harge, relativisti eletrons for true fast ignition parameters on thispartiular mehanism needs to be studied. Thus, a detailed investigation on om-parision of PIC simulations, G-EMHD �uid simulations and the proposed heatingmehanism, promises to be quite rewarding.We have also shown in this hapter that even when the the urrent pulse propa-gates at an angle oblique to the density gradient, the assoiated energy dissipationgets e�eted only weakly with respet to the orientation angle. Though the sub-sequent evolution of the pulse is strongly altered.
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Chapter 6Kelvin Helmholtz Destabilization ofShort Current Pulse in anInhomogeneous PlasmaKelvin Helmholtz (KH) [59, 85℄ is an important �uid instability that develops whenthe �uid �ow is sheared. It has been shown in some reent studies [54, 56, 72℄that for a sheared eletron �ow on�guration, this partiular instability has asomewhat di�erent manifestation than the hydrodynami �uid ase. This is dueto the presene of self onsistent magneti �elds assoiated with the eletron �ow.The previous studies on sheared eletron �ow have been arried out for spatiallyin�nite extent of the �ow and for a homogeneous plasma. In this Chapter wepresent our study showing the KH destabilization of a short urrent pulse whenthe bakground plasma density is inhomogeneous. These studies have been arriedout in 2-D where the evolution is onstrained due to the presene of an additionalnon dissipative square integral invariant other than energy. For the ase of 2-Dsimulations, therefore, the nonlinear regime of the instability produes a oherentstate. In this partiular ase of short urrent pulse in an inhomogeneous densityplasma, we observe an emergene of a novel oherent state as an aftermath of KHdestabilization. This is in the form of a olletion of vorties aligned as beadsalong the diretion where the higher density region of the plasma has an elongatedextent.In Chapter 5 the presene of anomalous visosity due to turbulene indued71



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....by the KH destabilization of sharp urrent layers was onjetured for the olli-sion - less eletron �uid ase. The demonstration of KH destabilization for shorteletron pulses in an inhomogeneous plasma here, shows that suh a onjetureis well founded. The turbulene generation an only be seen by arrying out thesimulation in 3-D, whih is a topi of future study.6.1 IntrodutionThe Kelvin Helmholtz (KH) instability [59, 85℄ is a lassi �uid instability arisingdue to a sheared �uid �ow on�guration. This instability has been studied exten-sively in the ontext of hydrodynami �uid in the past 100 years or so. It has alsobeen studied for onduting �uid suh as plasmas, but primarily when the shearis in the �ow of heavier ion speies [86℄. Lately, the ase of sheared eletron �owagainst a bakground neutralizing ions has been investigated. The �ow of eletronprodues urrent and an assoiated self onsistent magneti �eld. As a result ofwhih the KH mode in this ontext has a distint harater for sheared eletronurrent �ows. This has been disussed in several reent publiations [54, 56, 72℄.The nonlinear studies of the instability has also been onduted. These studieshave shown that in 2-D the nonlinear phase of instability produes a oherent state[54℄, but in 3-D it leads to turbulene [53℄. The anomalous visosity of the eletron�uid in the presene of turbulene has also been evaluated in those studies. Thisis due to KH destabilized exitations asading diretly, towards short sales in3-D and ausing anomalous visous damping of the eletron �ow. These studieson sheared eletron urrent �ow , however, has been onduted for in�nite �owon�guration and for hosen sheared �ow pro�les in spae for a homogeneousdensity plasma.Chernkov et al. [12℄ were the �rst to investigate the eletron veloity shear inthe ontext of the low density pinhes. In their study they ignored the eletroninertia and found that this mode is stable. Jain et al. [54℄ have shown that inthe presene of the inertia this partiular mode is unstable. The growth ratefor the instability for these sheared eletron �ows is strongly dependent on thesharpness of the shear layer in omparison to the loal eletron skin depth. Jainet al. [53, 54℄ have simulated the EMHD model equation for studying the linear72



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....and nonlinear aspets of the veloity shear modes in eletron urrent hannels inthe 2-D as well as 3-D geometry. Gaur et al. [72℄ studied extensively the roleof the skin depth and the existene of the whistler waves on the veloity sheardriven instability in the ontext of the 2-D EMHD model. They also investigatedthe e�et of the whistler waves on the KH instability. The presene of whistlerwave had a stabilizing in�uene on KH mode. J. F. Drake et al. [87℄ have shownthat the instability broadens the urrent layer. As the urrent shear layer widthbeomes omparable to the ion skin depth the instability weakens.Our studies on the propagation of urrent pulse struture through plasma den-sity inhomogeneity in the previous Chapters have learly shown that very sharpelongated shear layers get formed as the struture propagates through the inhomo-geneous density region. Here we investigate the possibility of KH destabilizationof suh sharp urrent layers in the presene of density inhomogeneity.6.2 Destabilization of Current LayersIn the ontext of our G-EMHD simulations [78, 80℄ (where the shear �ow gets selfonsistently generated at the loation of density gradient region) we have so farnot observed the appearane of the unstable KH mode. The reason for this anbe readily understood by realizing that in the G-EMHD simulations presented sofar the time spent by the strutures in the inhomogeneous density region (whereit forms sharp layers), is not su�ient to observe the development of the unstableKH mode from numerial noise. One the struture moves past the inhomogeneousregion the �ow no longer remains sharply sheared to get destabilized. The lengthof the inhomogeneous region ould not be inreased to �t in several growth periodsdue to numerial onstraints.We hereby devise a novel sheme to sustain the sharp shear layer for a signi�antduration without inreasing the length of the inhomogeneous region. We hoosean elongated (many eletron skin depths along ŷ ) region of high plasma densityhaving RTH pro�le (desribed in Chapter 4) whih has the form of
n(x, y) = h1 − h2 tanh





√

(x− x0)2/σ2
x + (y − y0)2/σ2

y − w

σ



 (6.1)73



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....The values of the various parameters were hosen as, h1 = 5.5, h2 = 4.5, σ2
x =

0.2, σ2
y = 2.0, w = 2.0, x0 = 0.0, y0 = −2.0, σ = 0.4. The width of the high densityregion along x̂ has been hosen to be smaller than the typial value of eletron skindepth. This has been deliberately done so as to have a sharper shear width (smallerthan the eletron skin depth for the KH instability) along x̂ in the urrent �owwhen trapped inside this density struture. The length of the struture along ŷ istypially √

10 times longer than the width. This partiular density pro�le has beenhosen here solely for illustrating the destabilization of sharper urrent shear layerswhen they persist for a su�iently long times. However, this partiular hoie mayalso have pratial relevane. With the advent of wires having dimension of theorder of nano meters, an elongated plasma an be reated by ionizing them. Suh aplasma an easily have a width sharper than the eletron skin depth, orrespondingto the density pro�le that we have hosen here for our study.

Figure 6.1: The various stages of evolution as the urrent pulse propagates towardsan elongated sharp density pro�le. The thik blak urve represents the outline ofthe density pro�le. The ollimation of the urrent pulse struture as it enters thehigh density plasma region an be learly seen. The KH destabilization is learlyevident from the plots at t = 2820.In Fig. (6.1) we show the evolution of a dipolar urrent pulse struture as74



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....it enounters the inhomogeneity pro�le. The thik blak line drawn in the �gureshows a onstant density to illustrate the form of the density pro�le with respet tothe urrent pulse loation. The density pro�le has∇n direted inwards everywhere.The dipole axis has been plaed in suh a fashion that it enters this elongated highdensity plasma region of the shape of a wire through its top sharp edge. At theentry loation the drift veloity (~vd) assoiated with density gradient (disussed inChapter 4) brings the lobes loser and the axial speed inreases. One the dipolereahes the entral loation of the wire (see subplot for t = 450) the∇n experienedby left/right (orresponding to positive/negative b) lobe is in positive/negative x̂diretion respetively. This results in a drift veloity (~vd) [78℄ whih is diretedalong positive ŷ for both lobes. The axial drift of the dipole (the lobes are separatedby a distane less than eletron skin depth and hene they still behave as dipoles)is along negative ŷ. The two drifts anel and the dipole is able to propagateno more. This is the basis of extending the residene time of the dipole in aninhomogeneous region. Sine the dipole is squeezed by the density pro�le in thetransverse diretion, it extends axially and aquires the shape of the elongateddensity pro�le at around t = 1500. This elongated struture with rotating eletronurrents in two lobes forming a sharp shear �ow at the axis, persists for a verylong time (from t = 1500 to even at t = 2250). It is only around t = 2625 thata ertain distortion in the struture beomes apparent. These, we believe, are theinitial disturbanes in the �ow arising from KH instability.The KH destabilization [54, 72℄ an our provided the system permits modeshaving wavelength longer than the shear width along the �ow diretion. Theexat dipolar solution of the homogeneous plasma typially has idential extent inthe two diretions. The shear sales assoiated with �ow in both the diretionsare, therefore, also idential. The struture size of a typial EMHD dipole doesnot permit longer sales along any of the diretions. Thus the dipolar struturepropagates in a homogeneous plasma as a very robust stable pattern, even thoughthe urrent �ow in it is signi�antly sheared. In fat when EMHD simulations arearried out for an arbitrary dipolar form (not exat solutions derived by Kingsepet al. [1℄) with magneti �eld ontours deliberately hosen to be onsiderablyelongated along one of the diretions, the struture adjusts itself to a irular formduring the initial phase of evolution, and then it propagates as a stable pattern.This an be seen in the subplots of Fig. (6.2) where we show the plots of one suh75



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....simulation.

Figure 6.2: In this �gure the robustness of the dipole solution is shown. Initiallythe dipole struture is taken elongated along the y− axis. During the evolution itis observed that dipole ,�nally ,form the Isihenko et al. solution [65℄ propagatingalong the negative ŷ diretion with some onstant axial veloity.However, when we onstrained the dipole to remain forefully elongated whileresiding in the elongated high density region in our G-EMHD simulation, the KHdestabilization was observed learly [see Fig. (6.1)℄. Let us now quantitativelyassess the ondition for KH destabilization for various studies onduted in thepast (Sharad et al. [78, 80℄) where KH was not observed and the simulationsreported here. The destabilization an our provided the residene time of thestruture in the inhomogeneous region (the loation where the �ow shear remainssharper than the skin depth) is longer than the growth periods for the perturbationsto amplify from the numerial noise level.In the studies reported earlier (Sharad et al. [78, 80℄) the shear width ofthe dipolar struture at the loation of the inhomogeneity was around ǫ = 0.2.76



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....The maximum growth rate will our for a wavenumber k ∼ 0.5/ǫ ≈ 2.5. (Thegrowth rate for KH mode vanishes for kǫ ≈ 1 and is maximum for kǫ ≈ 0.5)Thus the maximum growth rate of the KH mode would be less than, i.e. γ ≤
kV0
√

(1 + 4k2)/(3 + 4k2) = 2.4091V0 (the growth rate of a step veloity shearpro�le) [56℄. On the other hand the residene time of the struture in the in-homogeneous region is merely tr = Lin/V0 = 1.414/V0. Thus the number of e- foldings during the time the struture moves past the inhomogeneous region is
γtr = 2.4091 × 1.414 = 3.4065, whih is quite low for the instability to manifestfrom the numerial noise of typial order of magnitude O(10−6) in single prei-sion and O(10−12) in double preision in the simulations reported in our papers[78, 80℄. Let us now analyze the simulations shown in Fig. (6.1) with this per-spetive. Here, the shear width an be taken to be around half the width ofthe density inhomogeneity i.e. ≈ w/2 = 1.0. The typial distane between theextreme b values measured from the subplot at t = 1500 of Fig. (6.1) yieldsa better estimate of ǫ = 0.8. The perturbation sale length that shows up inthe instability an be again estimated from appearane of the mode observed at
t = 2625 and subsequent times. The on�ning high density region typially sup-ports two wavelengths. Thus λ ≈ 8/2 = 4 from the �gure. This gives a valueof k = 2π/λ = 1.57. The residene time an be taken either anything between
tr1 = 2625 − 1500 = 1125 or tr2 = 2625 − 450 = 2175. The axial drift of thedipole an provide a rude seond estimate of the eletron �ow veloity in theentral region as V01 = 0.01. A better and orret estimate an be obtained bydiretly measuring ∂b/∂x at the entral region at t = 1500. This gives the typialestimate for the eletron veloity as V02 = ∂b/∂x = ∆b/ǫ = 0.08/0.8 = 0.1. Thisis about 10 times higher than the original axial drift of the dipole. The growthrate obtained from kV0

√

(1 + 4k2)/(3 + 4k2) ranges from γ = 0.0133 to 0.133 for
V0 = 0.1 and V0 = 0.01 respetively. By taking the onservative estimate of thegrowth rate of 0.0133 the number of e- foldings γtr is around 14.9625 and 28.9275for tr1 and tr2 respetively. While the former is su�ient to inrease the amplitudefrom a noise at single preision level to a value of the order unity the latter anraise it even from a double preision level. This explains the observation of theKH destabilization in the present ase and its absene in the previous simulations[78, 80℄. 77



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....6.3 Formation of Stationary Vortex BeadsThe simulation plots at later times show the nonlinear development of the mode.The b �eld struture is subsequently seen to break up and form smaller vortieshaving idential sale in both the diretions. The instability thus saturates in thenonlinear regime by forming a novel oherent stable struture of the olletion ofthese vorties. For the simulation shown in Fig. (6.1) this onstitutes a olletionof four alternating sign vorties arranged along the elongated high density regionof the plasma whih looks like beads tied to a string. This is an extremely stablepattern and persists for the entire duration of our simulations.It is interesting to note that in this ase also the plasma system maneuversthrough the proess of KH destabilization to aquire a struture having an aspetratio of unity for eah individual vorties. An elongated struture in a homogeneousplasma medium has been observed to adjust itself to a symmetri shape by merelyextending/shrinking in appropriate diretions. This was not possible here, as thestruture was squeezed inside an inhomogeneity with an elongated shape. In thisase of onstrained simulations the system uses a novel approah of breaking intosmaller vorties through KH destabilization proess to ahieve its �nal goal, whereeah of the vorties again has a symmetri shape. It, therefore, appears that thesystem always prefers a symmetri form for individual vorties.6.4 SummaryIn this Chapter we have shown that the sharp urrent layer struture formed atthe inhomogeneity layer is indeed unstable to the Kelvin - Helmholtz like veloityshear driven mode. In our present 2-D simulations it forms a oherent patternof a olletion of vorties aligned along the elongated diretion of the densityinhomogeneity. This is so beause the G-EMHD system also preserves two non -dissipative square integral invariant in 2-D as has been shown in Chapter 2. In 3-Dthe KH destabilization in the ontext of in�nite �ows has been seen to generateturbulene and leads to anomalous visosity e�ets [53℄. We expet the same wouldhappen for the �nite urrent shear �ow strutures in an inhomogeneous plasmamedium in 3-D. This would then appear as the relevant dissipative mehanism for78



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....the energeti ollision-less eletrons as has been onjetured in Chapter 5.We also observe that the system typially tries to ahieve an isotropi �owon�guration. The exat dipole solutions of EMHD [65℄ also have a sheared ele-tron �ow on�guration, but still the struture is stable. A distorted dipole whih,however, is not an exat solution adjusts itself suitably to a form for whih thetypial sale lengths in the two dimensions are idential. We observe that theelongated shear �ow purposely onstrained in the high density region destabilizesthrough KH instability and �nally forms vorties having equal sale length in the2-D spae.
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Chapter 7Guiding and Collimation of FastEletron Current Pulse in a PlasmaIn this Chapter we disuss another appliation of eletron �ow through an inho-mogeneous plasma. One often wishes to ollimate and guide the eletron urrentinside a plasma. There have been proposals to use speially strutured targetsprepared of di�erent materials for this purpose [62, 63℄. Suh targets would nei-ther be easy to prepare nor an they be employed with ease in eah and everyexperiment. Here we o�er a mehanism whereby a proper tailoring of the plasmadensity o�ers an easier aessible sheme. We illustrate this by plaing arbitraryshaped wire like high density plasma along the path of the eletron urrent pulsestruture. It is observed that the urrent �ows along the path de�ned by the highplasma density region. In an experiment [64℄ at ILE Osaka the energeti eletronsgenerated at the ritial density layer were guided with the help of solid wire. Theexperiment showed that the eletrons moved along the wire, as the wire was tiltedthe path of the eletrons hanged aordingly. We feel that the high plasma densityspontaneously reated by the ionization of the wire by the eletrons is responsiblefor this.7.1 IntrodutionWe provide here a mehanism whereby the eletron urrent pulse strutures anbe guided in a plasma. We have shown with the help of G-EMHD simulations that80



Chapter 7: Guiding and Collimation of Fast Eletron Current Pulse ....a tailored plasma density inhomogeneity an guide an eletron urrent pulse atwill. A physial understanding of the guiding proess has also been provided. Theproposed mehanism �nds support in reent experiments reported by Kodama etal. [64℄, where it is learly shown that the urrent path in the plasma an be alteredat will by plaing an appropriately oriented wire. In the experiment the eletronurrent was seen to propagate along the diretion of the solid wire. The wiregets ionized by the front of the energeti eletron urrent pulse, thereby reatingan appropriate high density plasma along the path of the wire through whihlater portion of the pulse gets guided. An alternative mehanism has also beenproposed reently by Robinson et al. [62℄ for arti�ially guiding the urrent pulse.They use strutured target whose resistivity varies transverse to the propagationdiretion. The strong magneti �eld generated at the interfae of materials havingdi�erent resistivity was important for the guiding of urrent pulse. Later thismehanism was experimentally veri�ed in the work by Kar et al. [63℄. However,the preparation of suh speially tailored targets for use in experiments may notoften be pratial. The mehanism that we propose here o�ers a simpler solution,whereby a path de�ned by higher plasma density reated by a simple sheme ofionizing an oriented wire provides for urrent pulse guiding. The experimentalwork of Kodama et al. [64℄ demonstrates this learly. The PIC simulations havealso been arried out whih support the experimental observations of the guidingexperiment onduted by Kodama et al. [64℄ . However, sine the PIC simulationsontain all the details, the essene of underlying physial mehanism of guidingis not apparent from these simulation. Here, we reprodue the observations ofeletron urrent pulse guiding by the �uid simulation of G-EMHD model [78℄. Wealso provide a physial interpretation of the phenomena.We use the simpli�ed 2-D G-EMHD equations with magneti �eld along thesymmetry diretion to illustrate the phenomena of guiding. The study has beenonduted for both urrent pulses with monopolar and dipolar magneti strutures.7.2 Guiding of MonopolesMonopoles are the stationary solutions of the EMHD equations [65℄ whih arelike eletron urrent vorties having single signed magneti �elds as shown in the81



Chapter 7: Guiding and Collimation of Fast Eletron Current Pulse ....�rst row of Fig. (5.1). We hoose these solutions as initial on�gurations forour simulations. In the presene of a density inhomogeneity the magneti �eldpatterns assoiated with these urrent pulses aquire an additional drift veloity
~vd = ~B ×∇n/n2 disussed in Chapter 4, whih is learly transverse to the densitygradient as well as the diretion of magneti �eld ~B. Thus a proper hoie ofdensity pro�le, e.g., with onstant density along the desired guiding path anda steep variation of density everywhere in the orthogonal diretion, monopolarstrutures an then move due to ~vd along the ontours of onstant plasma density.The maneuverability for guiding these monopolar solutions are, however, quiterestritive as they annot penetrate aross the plasma density gradient. We willshow in the next setion that the dipolar urrent pulse strutures whih movesaross the plasma density gradient shows a greater maneuverability in this regard.We would show that the inhomogeneous density an be used to ollimate, guideand even bifurate the urrent pulse in subsequent Setions of this Chapter.7.3 Collimation of the Current PulseIn this setion we show that the drift veloity assoiated with the density gra-dient in onjuntion with the axial veloity of the dipoles allows a far superiormaneuverability. The axial veloity helps dipole propagate aross the onstantdensity ontours, thereby making regions of di�ering plasma density aessible forthe eletron path.We show here that a broad urrent pulse an be suitably ollimated by hoosinga narrow high plasma density region. In Fig. (7.1) a dipole is shown to enountera narrow high density plasma region. The form of the narrow high density regionhas been depited by blak solid lines in the �gure. This is formed using the RTHdensity pro�le desribed by the expression

n(x, y) = h1 − h2 tanh
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 (7.1)with the following values of the parameters h1 = 5.5, h2 = 4.5, σ2
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3.5, w = 2.0, x0 = 0.0, y0 = −2.0, σ = 0.4. 82



Chapter 7: Guiding and Collimation of Fast Eletron Current Pulse ....

Figure 7.1: In this �gure the ollimating behavior of the dipole has been demon-strated. The urrent pulse passes through a high density pro�le that has an elon-gated pro�le (shown in the �gure by the losed blak thik line) along the y−diretion.As the dipole approahes the high density region it an be seen that it getsollimated, enters the higher density side and propagates along it, reahing thetarget destination at the other end. The broad initial pulse remains ollimated asan be seen from the Fig. (7.1) This is a very attrative proposition as a simplehoie of plasma inhomogeneity an suitably fous a divergent �ow of eletrons,an attribute often desirable for various appliations. The observed features anbe easily interpreted in terms of an interplay of the two veloity assoiated withthe dipolar urrent pulse. The drift assoiated with the density gradient bringsthe two lobes with opposite polarity of the magneti �eld together as the dipoleapproahes the high density region. This results in the ollimation of the urrentpulse struture. The ollimated struture moves with greater axial speed andpenetrates the high density region of the plasma. One inside the high densityregion the urrent pulse propagates along it to reah the other end through theaxial dipolar veloity whih overwhelms the ~vd drift ating in the opposite diretion83



Chapter 7: Guiding and Collimation of Fast Eletron Current Pulse ....(at the entral region of the elongated high density plasma).7.4 Guiding Behavior of the Current PulseWe now show that one an even reverse the propagation diretion of the dipoleurrent pulse by a suitably tailored plasma density inhomogeneity. A urved highdensity pro�le shown by the thik lines in Fig. (7.2) is hosen. The urrent pulsetrajetory has been shown in the snapshots of Fig. (7.2). We have seen that by

Figure 7.2: This �gure shows that a dipolar urrent pulse an be guided. The singleblak ontour in eah subplot represents the urved high density pro�le hosen inthe simulation. The inside region of the losed blak line is of the high densityamplitude. The irular region attahed at the left end of the half irular regionis of high amplitude in omparison to the half irular region.hoosing appropriate di�erent forms of the high density plasma region the dipoleurrent pulse an be guided and sent to any partiular destination where it anget absorbed. It an be seen from Fig. (7.2) that it is even possible to reverse the84



Chapter 7: Guiding and Collimation of Fast Eletron Current Pulse ....propagation diretion. The urrent pulse follows the ontours of the high densitynarrow region of plasma.This happens beause if the dipole struture separates into monopoles as shownin subplots t = 21.36, 33.9 of Fig. (7.2) upon entering the high density region thestruture an move only along the onstant ontours of the plasma density pro�le.If, however, it remains intat as dipole as in Fig. (7.1), it an in any ase annotome out in a lower density plasma region. The observed propagation of urrentpulse through G-EMHD simulations along the diretion de�ned by the ontoursof the high density narrow plasma region �nds support in ertain experimentalobservations. In a reent experiment Kodama et al. [64℄ have generated fasteletrons by impinging ultra intense laser pulse on a target in the shape of a goldone. By attahing a solid wire on the one tip was shown by Kodama et. al.[64℄ that the eletrons followed the path de�ned by the solid wire. When thewire was tilted with respet to the one axis the eletrons hit the target at an o�axis loation de�ned by the tilted wire. The experiment an be understood on thebasis of our mehanism. The wire gets ionized by the front of the energeti eletronpulse, reating a narrow high density plasma region of the shape of the wire. Thesubsequent part of the eletron pulse then gets guided along this inhomogeneousplasma as proposed by us.7.5 Bifuration of the Current Pulse StrutureWe now provide another example of maneuvering the urrent pulse. We show thatone an also bifurate a urrent pulse arising from the same soure and let thetwo parts propagate and reah altogether di�erent destinations. In the simulationagain we have hosen a urved form of high density pro�le as shown by the thiklines in the subplots. The bifuration of the urrent pulse an be seen from thesnapshots of Fig. (7.3). As the pulse enters the high density region, it an be seento get separated in two parts whih then propagate along di�erent diretions.
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Chapter 7: Guiding and Collimation of Fast Eletron Current Pulse ....

Figure 7.3: This �gure show the bifuration of the urrent pulse. The thik blaklines show the plasma density pro�le that has been hosen for these simulation.7.6 SummaryWe have proposed a novel sheme based on a suitably tailored plasma density inho-mogeneity to ontrol the propagation of eletron urrent pulses in plasma medium.Our studies have shown the possibility of ollimating the urrent pulses, guidingthem along a desired path and towards a desired destination. We have also shownthat eletron urrent pulses arising from the same soure an be suitably bifuratedand made to propagate along distint trajetories towards di�erent destinations.
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Chapter 8Conlusion and Sope for FurtherResearhIn this Chapter we summarize the main results obtained in the thesis. We alsooutline the diretions for further researh here.8.1 Summary and ConlusionsThe main fous of this thesis has been on the study of eletron transport throughinhomogeneous plasma medium. We present here a brief overview of work arriedout and the signi�ant novel results obtained in this area by us whih have beenpresented in the various Chapters of this thesis.
• Development of a �uid model for eletron propagation in an inho-mogeneous plasmaThe Eletron - Magnetohydrodynamis (EMHD) [1, 2, 3, 4℄ provides a de-sription of fast eletron dynamis against the bakground neutralizing ions.The Eletron - Magnetohydrodynami (EMHD) �uid model was generalizedby us for the ase when the plasma has an inhomogeneous density. Thenew model is termed as the Generalized EMHD (G-EMHD) [78℄. A de-tailed derivation of the G-EMHD model has been given in Chapter 2 of thisthesis. Various limits of G-EMHD equations in redued spatial dimensionand simpli�ed eletron �ow on�guration have been obtained and have been87



Chapter 8: Conlusion and Sope for Further Researhpresented in Chapter 2. In 2-D the model takes a simpli�ed form in whihthe equations an be ast in terms of a oupled set of equations betweentwo salar �elds orresponding to the magneti �eld and the vetor potentialomponent respetively along the symmetry axis.The model was shown to preserve the total energy integral in the non -dissipative limit. In the simpli�ed 2-D ase and when the eletron urrent wasalso on�ned in 2-D an additional square integral invariant is also supportedby the model.
• Development of a �nite di�erene numerial ode for studying ele-tron propagation through G-EMHD equations in 2-DA �nite di�erene ode was developed to study the eletron dynamis us-ing G-EMHD equations. Chapter 3 ontains the detailed desription of thenumerial algorithm adopted for simulating the G-EMHD equations. TheG-EMHD equations has been ast in the form of onvetive equations withappropriate soure terms. A �ux orreted sheme [79℄ was employed for theevolution of G-EMHD equations. Unlike EMHD equations where one needsto solve Helmholtz equations in onjuntion with the evolution equation ateah time step for the evaluation of magneti �eld, (and by taking its url,the onvetive veloity) in the ase of G-EMHD we have a Helmholtz likeoperator whose oe�ients are funtions of spae (as they depend on theplasma density). This poses some hallenge. At the moment we have rep-resented the operator in the form of a matrix whose inversion provides uswith the requisite magneti �eld. The memory requirements are huge for thedesription of suh a matrix and inreases as a square of the total spatialgrid points, i.e. as (Nx × Ny)2 where Nx and Ny are the number of gridpoints hosen along the x and y diretions respetively. It is therefore im-perative that an alternative sheme be developed whih redues the RAMrequirements.The ode was validated against the known EMHD results for the homoge-neous plasma [36℄. Furthermore, the preservation of the square integral in-variants supported by the G-EMHD equations in the non - dissipative limitwas also veri�ed numerially. The rate of their deay in the presene of88



Chapter 8: Conlusion and Sope for Further Researhdissipative oe�ients was ompared by the theoretial expression.
• Fundamental Observations on urrent pulse propagation throughinhomogeneityAn eletron urrent pulse shows a wide variety of novel behavior in the pres-ene of plasma inhomogeneity. This was studied by us using the numerialsimulations of G-EMHD equations with the ode developed by us. The obje-tive was to spei�ally understand the role of plasma density inhomogeneityon the eletron urrent pulse propagation. For this purpose we hose exaturrent pulse solutions of the homogeneous EMHD as our initial onditions[65℄. This ensured that the the hanges observed were entirely due to the den-sity inhomogeneity. Both varieties of nonlinear solutions were used, namelyone having monopolar magneti �eld on�guration and representing rotat-ing eletron urrents, whih is a stationary solution of EMHD equations.The EMHD equations also permits traveling solutions with dipolar magneti�elds. These dipoles move with onstant axial speed and have a urrenton�guration whih moks up a spatially separated forward eletron urrentalong the entral axis and return shielding urrent at the edges.A variety of inhomogeneous plasma density pro�les were hosen for study-ing the propagation of these urrent pulses. The numerial studies [78, 81℄show (i) that the urrent pulse strutures aquire an additional drift in thepresene of density inhomogeneity whih is transverse to the magneti �eldand the density gradient. (ii) The stationary monopolar solutions of EMHDequations therefore drift along the onstant plasma density ontours andthey annot move in regions with di�ering plasma density. (iii) The dipoleis seen to penetrate inside a high density plasma region but it has di�ultyoming out from there towards a lower density region of the plasma. It thustypially gets trapped within a high plasma density region. (iv) A detailedharaterization of the trapping vs. transmission from a high density plasmaregion of the dipole has been arried out whih learly identi�es the trappingondition in terms of a threshold riteria. (v) As the dipole struture passesthrough the density inhomogeneity to penetrate the high density region, itforms magneti shoks and/or sharp urrent layers. These observations havebeen eluidated in Chapter 4. 89



Chapter 8: Conlusion and Sope for Further Researh
• Collisionless eletron energy dissipationThe trapping of the dipole urrent pulse struture in high density regionindiates the violation of time reversal invariane and is suggestive of a dis-sipative mehanism at work [80, 81℄. Indeed it is shown in Chapter 5 that astrong energy dissipation is assoiated with the magneti shok whih format the inhomogeneity layer when the dipole struture enters the high densityregion. It is shown that the energy dissipation is independent of the magni-tude and the harater of the dissipation present in the system. The physisof urrent shok formation and the assoiated energy dissipation has beenunderstood theoretially. The analysis shows that the total dissipated energydepends on the ratio of typial distane traversed by the urrent pulse in aninhomogeneous plasma and the density inhomogeneity sale length.The energy dissipation via urrent shok formation at the density inhomo-geneity layer o�ers an exellent mehanism of ollision - less energy dissipa-tion from eletrons. Eletrons are a good soure of energy as they an beeasily aelerated to high energies. Furthermore, the eletrons an be usedto heat overdense plasma region where lasers are unable to penetrate. Onlydi�ulty in using them as a soure for heating so far has been that their wasthat lassial Rutherford ollision ross setion gets onsiderably weakenedwith inreasing energy. Thus, the e�ieny of the lassial ollisional meh-anism for heat deposition by energeti eletrons in a plasma has not beenimpressive. However, the use of the proposed ollision -less sheme in on-juntion with a tailored plasma density inhomogeneity promises to e�ientlyheat a partiular loalized spot in the plasma by highly energeti eletrons.The suess of a frontline onept of inertial on�nement fusion sheme, viz.,the Fast Ignition (FI) onept [5℄ relies on eletron energy deposition for thereation of hot spot in a preompressed target. Though the saled down FIexperiments [60, 61℄ have shown impressive results, it is still being viewedwith skeptiism mainly beause the full sale experiments would require veryhigh energy eletrons whih are essentially ollision - less within the targetsize. We feel that in this ontext the proposed density inhomogeneity basedeletron stopping mehanism would be of great relevane. A reent exper-iment [84℄ at ILE Osaka in fat has provided su�ient evidene in favor of90



Chapter 8: Conlusion and Sope for Further Researhour proposed mehanism. Furthermore, the existing data from various PICodes [29, 30, 32, 33℄ studies onduted by various groups, on eletron trans-port through inhomogeneous plasma targets, invariably show heating at theloation of density inhomogeneity. This provides another evidene in favorof our proposed mehanism at work.
• KH destabilization of �nite eletron urrent pulses and formationof novel oherent nonlinear struture in an inhomogeneous plasmaThe energy dissipation in the shok layer is independent of the magnitudeand the type of the underlying dissipation in the system [80℄. While the lowenergy eletrons stop due to the usual eletron - ion ollisions, the energetieletrons would stop due to anomalous visosity arising from the turbulenegenerated by the KH destabilization of the sharp urrent layer. The KHdestabilization of sharp eletron urrent �ows have been shown in a series ofpubliations [54, 72℄ where unbounded eletron �ows have been onsidered.The KH destabilization of these unbounded �ows has led to oherent non-linear state in 2-D [54℄ and turbulene with assoiated anomalous visosityin 3-D [53℄. This is beause the 2-D system supports an additional seondintegral square invariant, whih onstrains the evolution.We present in Chapter 6 the KH destabilization of a �nite extent sharplysheared eletron urrent pulse whih forms at the inhomogeneous plasmadensity layer. Sine for our 2-D G-EMHD system also onserve two integralsquare invariants in the non-dissipative limit, our simulations show that thenonlinear stage of KH destabilization produes a oherent pattern of rotatingirular vorties on�ned within the high density plasma region. The olle-tion of vorties are seen to align along the ontours of the density pro�le toform a novel oherent state with alternating sign vorties arranged like beadsin a wire [81℄. These studies have been represented in Chapter 6.
• Eletron urrent pulse guiding through density inhomogeneityIn Chapter 7 we disuss another appliation where the density inhomogeneityhas an important role. Often one wants to ollimate and guide the eletronurrents. There have been proposals to use speially strutured targets pre-pared of di�erent materials [62, 63℄. Suh targets would neither be easy to91



Chapter 8: Conlusion and Sope for Further Researhprepare nor an they be employed with ease in eah and every experiment.Again a proper tailoring of the plasma density o�ers an sheme whih anbe implemented easily. We illustrate this by plaing arbitrary shaped elon-gated high density plasma struture of the shape of a wire along the pathof the eletron urrent pulse struture. It is observed that the urrent �owsalong the path de�ned by the high density plasma. In an experiment [64℄at ILE Osaka the energeti eletrons generated at the ritial density layerby an ultraintense laser pulse were guided with the help of solid wire. Theexperiment showed that the eletrons moved along the wire, as the wire wastilted the path of the eletrons hanged aordingly. We feel that inhomo-geneous plasma density spontaneously reated by the ionization of the wireby the eletrons is responsible for this. We have also shown that a divergenteletron �ow an be suitably ollimated by a proper hoie of plasma densityinhomogeneity. Furthermore, our studies also demonstrate that eletron ur-rent from an idential soure an be suitably bifurated and sent to distintloations. These studies have been presented in Chapter 7.8.2 Future Diretions for ResearhWe now list spei� issues whih needs to be studied further in this area:[1℄ One of the issue that has put severe onstraint on the studies ondutedin this thesis pertains to the use of diret inversion of a matrix for solvingthe Helmholtz like equation with spae dependent oe�ients. This has re-strited the resolution severely and we ould only resolve eletron skin depthfor a maximum to minimum density ratio of the order of 10. The experi-ments on Fast Ignition (FI) [5℄ would require at least three orders of densityvariations to be depited properly. (The variation from the ritial densitysurfae where n = 1022/cc to the target ore where n = 1025/cc ). To beable to study this one needs to employ a reursive relaxation sheme usingstandard Helmholtz solvers [83℄ for the solution of Helmholtz like equationwith spae dependent oe�ients, that we have to deal with for studyingeletron transport through inhomogeneous plasma medium. 92



Chapter 8: Conlusion and Sope for Further Researh[2℄ The 3-D G-EMHD studies are another important area for investigation.These studies an learly demonstrate that the KH destabilization of thesharp urrent layer formed at the plasma inhomogeneity layer an ultimatelydegenerate into turbulene, giving rise to anomalous visosity in the ele-tron �uid system. The 3-D G-EMHD system also provides a simple realistisystem to study turbulene in an inhomogeneous media.[3℄ The propagation of the urrent pulse strutures in a ylindrial geometryposes a more realisti senario for the FI experiments [60, 61℄. From funda-mental point of view also, the ylindrial ase would be interesting. In theslab ase the magneti �eld lines for both monopoles as well as dipoles wereextending to in�nity along the symmetry diretion. In the ase of ylindrialgeometry the magneti �elds are losed along the θ diretion. This may havenovel onsequenes.[4℄ A further generalization of the G-EMHD model to inorporate relativisti ef-fets is neessary. This will provide a better desription for energeti eletrondynamis in the ontext of FI experiments.[5℄ A two �uid desription for eletrons onstituting the forward energeti ur-rent and the reverse bakground shielding urrent in the model would beloser to reality and needs to be pursued.
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Appendix ADerivation of the G-EMHD ModelEquationsWe start with the normalized 3-D G-EMHD model equation.
∂~g

∂t
= ∇×

(

~V × ~g
)

− η∇× ~V (A.1)where ~V ,∇× ~V and ~g are de�ned as:
~V = −∇× ~B

n

∇× ~V =
∇2 ~B

n
+

∇n×∇× ~B

n2and
~g =

∇2 ~B

n
+

∇n×∇× ~B

n2
− ~BEq. (A.1) an be expanded as:

∂~g

∂t
= ~V (∇ · ~g)

︸ ︷︷ ︸0 −~g(∇ · ~V ) + (~g · ∇)~V − (~V · ∇)~g − η∇× ~V (A.2)or,
∂~g

∂t
= ~g(

~V · ∇n
n

) + (~g · ∇)~V − (~V · ∇)~g − η∇× ~V (A.3)94



Appendix A: Derivation of the G-EMHD Model EquationsThis represents the simpli�ed form of the 3-D G-EMHD model equation.Two Dimensional G-EMHD modelFor the redution of the G-EMHD model in two dimension we assume thegeneral oordinate system like êp, êq and ês as the right handed triad of unit vetors.We take the symmetry axis to be along ês. The magneti �eld being divergenelessit an be expressed in terms of two salar �elds in 2-D as ~B = bês + ês×∇ψ. Theeletron veloity (~V )and the generalized vortiity (~g) an be written as:
~V = −∇× ~B

n

= ês ×
∇b
n

− ês
∇2ψ

n

∇× ~V = ês

(

∇ ·
(∇b
n
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− ês ×∇
(∇2ψ
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n
− ~B − ∇n×∇× ~B

n2
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= ês ×∇
(∇2ψ

n
− ψ

)

+

(

∇ ·
(∇b
n

)

− b

)

êsSubstituting the expression for ~V , ∇× ~V and ~g in Eq. (A.3), and on separating theomponents along ês (symmetry diretion) as well as in the perpendiular plane ofthe ês diretion (poloidal plane) we get the following two equations.
∂

∂t

{

b−∇ ·
(∇b
n

)}

+ ês×∇b ·∇
[
1

n

{

b−∇ ·
(∇b
n

)}]

+ ês×∇ψ ·∇
(∇2ψ
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= η∇ ·
(∇b
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) (A.4)and
∂

∂t

{

ψ − ∇2ψ

n

}

+
ês ×∇b

n
· ∇
{

ψ − ∇2ψ

n

}

= η
∇2ψ

n
(A.5)Integral invariants of the G-EMHD: 95



Appendix A: Derivation of the G-EMHD Model EquationsIn order to get the integral invariants of 2-D G-EMHD we are using the Eq. (A.4)
& (A.5) in the limit of invisid �uid, η → 0. Here the derivation of integralinvariant is arried out when urrent assoiated with magneti �eld ( ~B) is alongboth symmetry diretion (ês) as well as in the perpendiular plane of ês. It meansboth salar quantities b and ψ are �nite.On multiplying Eq. (A.4) by b and integrating over 2-D volume d2X Eq. (A.4)an be written as:
∫

b
∂b

∂t
d2X −

∫

b
∂

∂t

(

∇ ·
(∇b
n

))

d2X +

∫

bês×∇b ·∇
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1
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(

b−∇ ·
(∇b
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))}

d2X +

∫

bês ×∇
(

ψ − ∇2ψ

n

)

· ∇
(∇2ψ

n

)

d2X = 0 (A.6)The �rst and seond term an be ombined in the form of (1/2) ∫ ∂
∂t

{b2+(∇b)2 /n}d2Xusing by part integration and the ondition that the �eld vanishes on the boundary.The third term an be written as (1/2) ∫ ∇·(ês ×∇b2/n) (b−∇ · (∇b/n)) d2X andit vanishes over whole spae. Thus, we get
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∫
∂

∂t
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(∇b)2
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d2X +

∫

bês ×∇
(

ψ − ∇2ψ
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· ∇
(∇2ψ
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)

d2X = 0(A.7)Again on multiplying Eq. (A.5) by ∇2ψ and integrating over the 2-D spae,
∫

∇2ψ
∂ψ

∂t
d2X−

∫

∇2ψ
∂

∂t

(∇2ψ

n

)

d2X+

∫

∇2ψ
ês ×∇b

n
·∇
(

ψ − ∇2ψ

n

)

d2X = 0(A.8)The �rst and seond term an be merged into (1/2) ∫ ∂
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(∇ψ)2 + (∇2ψ)
2
/n
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d2Xby applying by part integration over the �rst term followed by the ondition that�elds vanishes on the boundary.
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Appendix A: Derivation of the G-EMHD Model EquationsNow on adding Eq. (A.7) and Eq. (A.9), then
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d2X = 0or,
dE
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= 0 (A.10)This equation implies that the quantity E is onstant where E is the total en-ergy, i.e. summation of the magneti energy (b2 + (∇ψ)2

) and kineti energy
(1/n)

(
(∇b)2 +∇2ψ

). At this stage energy is the only invariant for this ase.Now, let us derive invariants for the ase when urrent assoiated with themagneti �eld is on�ned only in perpendiular plane of ês, i.e. ψ = 0. Thus, inthis ase 2-D G-EMHD model redues to the following equation.
∂
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(∇b
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b−∇ ·
(∇b
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= 0 (A.11)Here, apart from the energy (b2 + (∇b)2 /n
) one more invariant is assoiated withthis equation. That an be obtained by multiplying Eq. (A.11) with
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Appendix A: Derivation of the G-EMHD Model Equations
(1/n) (b−∇ · (∇b/n)) and integrating over 2-D volume spae d2X . Therefore,
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b−∇ ·
(∇b
n

))2

d2X = 0or
dH
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= 0 (A.12)where H (= ∫ (1/n) (b−∇ · (∇b/n))2 d2X
) is the additional invariant apart fromenergy for this ase when ψ = 0.
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Appendix BSolution of the Nonlinear EMHDEquationLet us start with the simpli�ed form of the 2-D EMHD equation with the as-sumption that only the symmetry omponent (b) of the total magneti �eld ( ~B =

bẑ + ẑ ×∇ψ) exist, i.e. ψ = 0. So,
∂Ωb
∂t

+ [b,Ωb] = 0 (B.1)Here, the symbols [ , ℄ and Ωb used in the above equation orresponds to Poissonbraket and (b−∇2b) respetively. The solution of this equation an be obtained bygoing to the moving frame with the oordinate transformation ξ = y−ut assumingthat the translational veloity (u) of the solution is along ŷ diretion. Therefore,Eq. (B.1) an be redued as,
[Ωb, b− ux] = 0 (B.2)This suggests that Ωb = fb(b − ux), where fb is funtion of (b − ux). Thus, atraveling solution an be obtained by seeking solution of the following equation:

b−∇2b = fb(b− ux) (B.3)
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Appendix B: Solution of the Nonlinear EMHD Equationor,
∇2b− b = −fb(b− ux) (B.4)The general solution would orrespond to any hoie of the funtion fb . Isihnekoet al. [65℄ has obtained the analytial form of the solution that is loalized withinthe �nite spatial extent of r0. Here the solution is obtained by the transformationof this equation in the ylindrial o-ordinate system with the assumption that

∂/∂z = 0 and x = r cos (θ). Thus,
1

r

∂

∂r

(

r
∂b

∂r

)

+
1

r2
∂2b

∂θ2
− b = −fb(b− ur cos(θ)) (B.5)In order to get the solution of Eq. (B.5), Isihenko et al. [65℄ onsidered the linearvariation of vortiity funtions fb(= α(b−ur cos(θ))) inside of ro, and zero outsideof ro (it means α should be zero). Hene,Governing equation inside of ro ( r < ro)
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∂

∂r

(

r
∂b

∂r

)

+
1

r2
∂2b

∂θ2
− b = −α(b− ur cos θ) (B.6)Governing equation outside of r0 (r ≥ r0)

1

r

∂

∂r

(

r
∂b

∂r

)

+
1

r2
∂2b

∂θ2
− b = 0 (B.7)The governing Eq. (B.6) gives the solution of the salar �eld, b, in the form of the�rst kind of Bessel funtion. Here, let me write the form of the solution for �eld

b inside of r0 : b = [d1J1(k1r) + d2r] cos θ. Eq. (B.7) forms the simple Poissonequation and allows the solution for the quantity b in the form of the seond kindof Bessel funtion, b = d3K1(r) cos θ. The onstants d1, d2 and d3 an be obtainedby using the boundary onditions that the �elds and its derivative are ontinuousat the boundary of r0. Thus the ontinuity of the �eld at the boundary will givethe relation
d1J1(k1r0) + d2r0 = d3K1(r0) (B.8)
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Appendix B: Solution of the Nonlinear EMHD Equationand the other ondition on its derivative (b
′

i(r = r0) = b
′

o(r = r0)) will give therelation
d1J

′

1(k1r0) + d2 = d3K
′

1(r0) (B.9)Using these equations we get the relations
d1
d2
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K1(r0)− r0K

′

1(r0)

J1(k1r0)K
′

1 − J
′

1(k1r0)K1(r0)
(B.10)and,

d3
d2

=
J1(k1r0)− J

′

1(k1r0)r0
J1(k1r0)K

′

1 − J
′

1(k1r0)K1(r0)
(B.11)Thus, the value of the onstants d1 and d3 an be alulated by knowing theonstant d2. So, on substituting the inside solution for b in Eq. (B.6) we get theequation:

d1

[

r2
d2J1(k1r)

dr2
+ r

dJ1(k1r)

dr
+
(
k21r

2 − 1
)
J1(k1r)

]

= (d2 − αd2 + αu) r3 (B.12)where k21 = α− 1. From this equation it is lear that the inside solution will onlybe satis�ed when
d2 − αd2 + αu = 0or,
d2 = − αu

1− α
(B.13)Now we an obtain the onstants d1 and d3 using this form of d2. Here we arewriting the solution of the �eld b expliitly.

bi(r, θ) = (d1J1(k1r) + d2)cos(θ), r < r0

bo(r, θ) = d3K1(r)cos(θ), r > r0This solution of b form the dipolar struture for a set of free parameters (u, α, r0)[see Fig. (4.2) of the Chapter 4℄.
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Appendix CSolution of the Inertialess G-EMHDModelWe begin with the Eq. (2.2) of the Chapter 2.
∂
(

∇× ~P
)

∂t
= ∇× ( ~Ve ×∇× ~P )− ν∇× ~Ve (C.1)where ~P = ~Ve− (e ~A)/(mec) is the generalized momentum ontaining both eletron�ow veloity ( ~Ve) as well as vetor �eld ( ~A). The eletron �ow veloity is de�nedas ~Ve = −(c/4πnee)∇× ~B (obtained by negleting the displaement urrent in theAmpere's law). Expansion of the generalized vortiity ∇× ~P :

∇× ~P = ∇× ~Ve −
e

mec
∇× ~A (C.2)
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Appendix C: Solution of the Inertialess G-EMHD ModelUpon substituting the expression for veloity ~Ve = −(c/4πene)∇ × ~B and therelation ~B = ∇× ~A in Eq. (C.2) we get.
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mecComparing the magnitude of the �rst and seond term of RHS in Eq. (C.3).
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= d2ek
2where de = c/ωpe, in whih ωpe = 4πnee

2/me is the plasma frequeny. The �rstterm of RHS in the Eq. (C.3) is negleted if d2ek2 ≪ 1. This is the inertialessondition. Under this ondition the form of the generalized vortiity would be.
∇× ~P = − e ~B

mec
(C.4)Now on substituting this new form of ∇× ~P in Eq. (C.1) we obtain.

∂ ~B

∂t
= ∇× ( ~Ve × ~B) +

ν

mec
∇× Ve (C.5)
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Appendix C: Solution of the Inertialess G-EMHD Modelor,
∂ ~B

∂t
= −1

e
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− c∇× ( ~J/σ) (C.6)where σ = nee
2/meν is a onstant quantity and is de�ned as ondutivity. AgainEq. (C.6) is simpli�ed using the relation for urrent ~J = (c/4π)∇× ~B. Thus weobtain.
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∂x2
+
∂2b

∂y2

) (C.8)or,
∂b

∂t
+

(

− c

4πe

1

n2
e

∂ne
∂y

)

︸ ︷︷ ︸K b
∂b

∂x
=

c2

4πσ
︸︷︷︸

η

(
∂2b

∂x2
+
∂2b

∂y2

) (C.9)or,
∂b

∂t
+K

∂

∂x
(b2/2) = η

(
∂2b

∂x2
+
∂2b

∂y2

) (C.10)where K = −c/4πneeLn, in whih Ln = (1/ne)∂ne/∂y is interpreted as the inverseof density sale length. The solution of this equation an be obtained by going tothe moving frame with the oordinate transformation; ξ = x+ βy−ut, where β isa onstant parameter and u represents the veloity of moving frame. Thus, in thisnew oordinate system the operators assoiated with the Eq. (C.10) are de�ned104



Appendix C: Solution of the Inertialess G-EMHD Modelas:
∂

∂y
= β

∂

∂ξ
;
∂

∂x
=

∂

∂ξ
;
∂

∂t
= −u ∂

∂ξTherefore, Eq. (C.10) beomes,
−u∂b

∂ξ
+K

∂b2/2

∂ξ
= η(1 + β2)

∂2b

∂ξ2or,
∂(Kb2/2− bu)

∂ξ
= η(1 + β2)

∂2b

∂ξ2On integration,
∫
∂(Kb2/2− bu)

∂ξ
dξ =

∫

η(1 + β2)
∂

∂ξ

(
∂b

∂ξ

)

dξ +K1or,
Kb2

2
− bu = η(1 + β2)

∂b

∂ξ
+K1where K1 is the integration onstant and an be obtained by applying the bound-ary ondition that b = b0 and ∂b/∂ξ = 0. Thus K1 = b0(b0K/2− u),

η(1 + β2)
∂b

∂ξ
= b(bK/2− u)− b0(b0K/2− u)Integrating again,

∫
db

b(bK/2− u)− b0(b0K/2− u)
=

∫
dξ

η(1 + β2)
+K2

2 tan−1
[

(bK − u)/
√

(− 2KK1 − u2)
]

√

(− 2KK1 − u2)
=

ξ

η(1 + β2)
+ k2Using the identity tan(ix) = i tanh(x) the above relation an be written in thesimpli�ed manner.

b =
u

K
+

(b0K − u)

K
tanh

[
(b0K − u)

2

(
ξ

η(1 + β2)
+K2

)] (C.11)105



Appendix C: Solution of the Inertialess G-EMHD Modelwhere K2 is the integration onstant.

106



Bibliography[1℄ A. S. Kingsep, K. V. Chukbar and V. V. Yankov, Reviews of Plasma Physis,(Consultant Bureau, New York), vol. 16 (1990).[2℄ F. Califano, R. Prandi, F. Pegoraro and S. V. Bulanov, Phys. Plasmas 6,2332 (1999).[3℄ A. Das and P. H. Diamond, Phys. Plasmas 7, 170 (2000).[4℄ A. Das, Phys. Plasmas 15, 022308 (2008).[5℄ M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Wood-worth, E. M. Campbell, M. D.Perry and R. J. Mason, Phys. Plasmas 1, 1626(1994).[6℄ N. Attio, F. Califano and F. Pegoraro, Phys. Plasmas 7, 2381 (2000).[7℄ N. Attio, F. Califano and F. Pegoraro, Phys. Plasmas 9, 458 (2002).[8℄ S. V. Bulanov, F. Pegoraro and A. S. Sakharov, Phys. Fluids B 4, 2499 (1992).[9℄ F. Califano, N. Attio, F. Pegoraro, G. Bertin and S. V. Bulanov, Phys. Rev.Lett. 86, 5293 (2001).[10℄ L. Chaon, A. N. Simakov and A. Zoo, Phys. Rev. Lett. 99, 235001 (2007).[11℄ J. C. Dorelli and J. Brin, Phys. Plasmas 8, 4010 (2001).[12℄ A. A. Chernkov and V. V. Yankov, Sov. J. Plasma Phys. 8, 522 (1982).[13℄ D. D. Ryutov, M. S. Derzon and M. K. Matzen, Rev. Mod. Phys. 72, 000167(2000). 107



Bibliography[14℄ M. Sarfaty, R. Shpitalnik, R. Arad, A. Weingarten, Ya. E. Karasik, A. Fruht-man and Y. Maron, Phys. Plasmas 2, 2583 (1995).[15℄ R. Shpitalnik, A. Weingarten, K. Gombero�, Ya. Krasik and Y. Maron, Phys.Plasmas 5, 792 (1998).[16℄ A. V. Gordeev, A. V. Grehikha, A. V. Gulin and O. M. Drozdova, Sov. J.Plasma Phys. 17, 381 (1991).[17℄ C. W. Mendel, Jr. and S. A. Goldstein, J. Appl. Phys. 48, 1004 (1977).[18℄ P. F. Ottinger, S. A. Goldstein and R. A. Meger, J. Appl. Phys. 56, 774(1984).[19℄ B. V. Weber, R. J. Commisso, R. A. Merger, J. M. Neri, W. F. Oliphant andP. F. Ottinger, Appl. Phys. Lett. 45, 1043 (1984).[20℄ A. S. Kingsep, Yu. V. Mokhov and K. V. Chukbar, Sov. J. Plasma Phys. 10,495 (1984).[21℄ A. S. Sandhu, A. K. Dharmadhikari, P. P. Rajeev, G. R. Kumar, S. Sengupta,A. Das and P. K. Kaw, Phys. Rev. Lett. 89, 225002 (2002).[22℄ A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das and P. K. Kaw, Phys. Rev.E 73, 036409 (2006).[23℄ S. Kahaly, S. Mondal and G. R. Kumar, Journal of Physis: ConfereneSeries 112, 022103 (2008).[24℄ J. Sinha, S. Mohan, S. S. Banerjee, S. Kahaly and G. R. Kumar, Phys. Rev.E 77, 046118 (2008).[25℄ S. Poornakala, A. Das, A. Sen and P. K. Kaw, Phys. Plasmas 9, 1820 (2002).[26℄ V. Saxena, A. Das, A. Sen and P. K. Kaw, Phys. Plasmas 13, 032309 (2006).[27℄ M. Honda, J. Meyer-ter-Vehn and A. Pukhov, Phys. Plasmas 7, 1302 (2000).[28℄ M. Honda, J. Meyer-ter-Vehn and A. Pukhov, Phys. Rev. Lett. 85, 2128(2000). 108



Bibliography[29℄ Y. Sentoku, K. Mima, Z. M. Sheng, P. Kaw, K. Nishihara and K. Nishikawa,Phys. Rev. E 65, 046408 (2002).[30℄ Y. Sentoku, K. Mima, P. Kaw, and K. Nishikawa, Phys. Rev. Lett. 90, 155001(2003).[31℄ J. J. Honrubia and J. Meyer-ter-Vehn, Nul. Fusion 46, L25 (2006).[32℄ R. B. Campbell, R. Kodama, T. A. Melhorn, K. A. Tanaka and D. R. Welh,Phys. Rev. Lett. 94, 055001 (2005).[33℄ R. J. Mason, Phys. Rev. Lett. 96, 035001 (2006).[34℄ A. Fruhtman, A. A. Ivanov and A. S. Kingsep, Phys. Plasmas 5, 1133 (1998).[35℄ A. Fruhtman and L. I. Rudakov, Phys. Rev. Lett. 69, 2070 (1992).[36℄ A. Das, Plasma Phys. Control. Fusion 41, A531 (1999).[37℄ D. Biskamp, E. Shwarz, A. Zeiler, A. Celani and J. F. Drake, Phys. Plasmas6, 751 (1999).[38℄ D. Biskamp, E. Shwarz and J. F. Drake, Phys. Rev. Lett. 76, 1264 (1996).[39℄ D. Biskamp, E. Shwarz and A. Celani, Phys. Rev. Lett. 81, 4855 (1998).[40℄ W. L. Kruer, The Physis of Laser-Plasma Interations, (Addison-Wesley,New York, 1988).[41℄ F. Brunel, Phys. Rev. Lett. 59, 52 (1987).[42℄ A. S. Sandhu, G. R. Kumar, S. Sengupta, A. Das and P. K. Kaw, Phys. Rev.Lett. 95, 025005 (2005).[43℄ C. Gahn, G. Pretzler, A. Saemann, G. D. Tsakiris, K. J. Witte, D. Gaussmann,T. Shatz, U. Shramm, P. Thiro� and D. Habs, Appl. Phys. Lett. 73, 3662(1998).[44℄ P. P. Rajeev, P. Taneja, P. Ayyub, A. S. Sandhu and G. R. Kumar, Phys.Rev. Lett. 90, 115002 (2003). 109



Bibliography[45℄ G. Kulsar, D. Almawlawi, F. W. Budnik, P. R. Herman, M. Moskovits, L.Zhao and R. S. Marjoribanks, Phys. Rev. Lett. 84, 5149 (2000).[46℄ S. P. Gordon, T. Donnelly, A. Sullivan, H. Hamster and R. W. Falone, Opt.Lett. 19, 484 (1994).[47℄ M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis andR. W. Falone, Appl. Phys. Lett. 62, 1068 (1993).[48℄ A. L. Lei, K. A. Tanaka, K. Mima, G. R. Kumar, K. Nagai, T. Norimatsu, T.Yabuuhi and K. Mima , Phys. Rev. Lett. 96, 255006 (2006).[49℄ J. C. Gauthier et al., Pro. SPIE Int. So. Opt. Eng. 2523, 242 (1995).[50℄ S. Kahaly, S. K. Yadav, W. M. Wang, S. Sengupta, Z. M. Sheng, A. Das, P.K. Kaw and G. R. Kumar, Phys. Rev. Lett. 101, 145001 (2008).[51℄ H. Alfven, Phys. Rev. 55, 425 (1939).[52℄ E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).[53℄ N. Jain, A. Das, P. Kaw and S. Sengupta, Physis Letters A 363, 125 (2007).[54℄ N. Jain, A. Das, P. Kaw and S. Sengupta, Phys. Plasmas 10, 29 (2003).[55℄ N. Jain, A. Das and P. Kaw, Phys. Plasmas 11 4390 (2004).[56℄ A. Das and P. Kaw, Phys. Plasmas 8, 4518 (2001).[57℄ J. D. Lindl, Inertial Con�nement Fusion: The Quest for Ignition and EnergyGain using Indiret Drive, Springer-Verlag, New York (1998).[58℄ J. D. Lindl et al., Phys. Plasmas 11, 339 (2004).[59℄ P. G. Drazin and W. H. Reid, Hydrodynami Stability, Cambridge UniversityPress, Cambridge, London (1981).[60℄ R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evanes, H. Fujita,Y. Kitagawa, K. Krushelnik, T. Miyakoshi, N. Miyanaga, T. Norimatsu,S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka,Y. Toyama, T. Yamanaka and Nature M. Zepf, Nature 412, 798 (2001). 110



Bibliography[61℄ R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azehi,H. Fujita, H. Habarat, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. M.Krushelnik, K. L. Lanaster, K. Mima, K. Nagai, M. Naki, H. Nishimura,T. Norimats u, P. A. Norreys, S. Sakabe, K. A. Tanaka, A. Youssef, andM. Zepf an d T. Yamanka, Nature 418, 933 (2002).[62℄ A. P. L. Robinson and M. Sherlok, Phys. Plasmas 14, 083105 (2007).[63℄ S. Kar, A. P. L. Robinson, D. C. Carroll, O. Lundh, K. Markey, P. Mkenna,P. Norreys and M. Zepf, Phys. Rev. Lett. 102, 055001 (2009).[64℄ R. Kodama, Y. Sentoku, Z. L. Chen, G. R. Kumar, S. P. Hathett, Y. Toyama,T. E. Cowan, R. R. Freeman, J. Fuhs, Y. Izawa, M. H. Key, Y. Kita-gawa, K. Kondo, T.Matsuoka, H. Nakamura, M. Nakatsutsumi, P. A. Norreys,T. Norimatsu, R. A. Snavely, R. B. Stephens, M. Tampo, K. A. Tanaka andT. Yabuuhi, Nature 432, 1005 (2004).[65℄ M. B. Isihenko and A. M. Marnahev, Sov. Phys. JETP 66, 702 (1987).[66℄ D. V. Flippov and V. V. Yan'kov, Sov. J. Plasma Phys. 12, 548 (1986).[67℄ S. Dastgeer, A. Das, P. Kaw and P. H. Diamond, Phys. Plasmas 7, 571 (2000).[68℄ S. Dastgeer and G. P. Zank, The Astrophysial Journal 599, 715 (2003).[69℄ A. Celani, R. Pandit and G. Bo�etta, Physia Sripta T75, 191-193 (1998).[70℄ J. Cho and A. Lazarian, The Astrophysial Journal 615, L41-L44 (2004).[71℄ J. Cho and A. Lazarian, The Astrophysial Journal 701, 236-252 (2009).[72℄ G. Gaur, S. Sundar, S. K. Yadav, A. Das, P. Kaw and S. Sharma, Phys.Plasmas 16, 072310 (2009).[73℄ V. I. Petviashvili, Pis'ma Zh. Eksp. Teor. Fiz. 32, 632 (1980).[74℄ V. I. Petviashvili and V. V. Yan'kov, Dokl. Akad. Nauk SSSR 267, 825 (1982).[75℄ A. Fruhtman and K. Gombero�, Phys. Fluids B 4, 117 (1992). 111



Bibliography[76℄ B. N. Kuvshinov, E. Westerhof, T. J. Shep and M. Berning, Physis LettersA 241, 287 (1998).[77℄ B. N. Kuvshinov, J. Rem, T. J. Shep and E. Westerhof, Phys. Plasmas 8,3232 (2001).[78℄ S. K. Yadav, A. Das and P. Kaw, Phys. Plasmas 15, 062308 (2008).[79℄ J. P. Boris, Flux Correted Transport Modules for Generalized ContinuityEquations, (NRL Memorandom Report 3237, Naval Researh Laboratory,Washington DC ), 1976.[80℄ S. K. Yadav, A. Das, P. Kaw and S. Sengupta, Phys. Plasmas 16, 040456(2009).[81℄ S. K. Yadav and A. Das, Phys. Plasmas 17, 052306 (2010).[82℄ A. Hasegawa and K. Mima, Phys. Fluids 21(1), 87 (1978).[83℄ P. Swarztrauber and R. Sweet, E�ient Fortran Subprograms for the Solu-tion of Ellipti Equations, (NCAR TN/IA - 109, The National Center forAtmospheri Researh, Colorado, USA ), 1975.[84℄ T. Yabuuhi, A. Das, G. R. Kumar, H. Habara, P. K. Kaw, R. Kodama,K. Mima, P. A. Norreys, S. Sengupta and K. A. Tanaka, New Journal ofPhysis 11, 093031 (2009).[85℄ S. Chandrasekhar, Hydrodynami and Hydromagneti Stability, Dover Publi-ations, In. Newyork (1981).[86℄ J. P. Freidberg, Ideal Magnetohydrodynamis, Plenum Press, New York(1987).[87℄ J. F. Drake, R. G. Kleva and M. E. Mandt, Phys. Rev. Lett. 73, 1251 (1994).
112


	hbni_recommendation.pdf
	hbni_recommendation_first_sheet
	Page 1

	hbni_recommendation_second_sheet
	Page 1


	guide_certification.pdf
	Page 1

	refree1_report.pdf
	refree1_first_sheet
	Page 1

	refree1_second_sheet
	Page 1


	refree2_report.pdf
	refree2_first_sheet
	Page 1

	refree2_second_sheet
	Page 1

	refree2_third_sheet
	Page 1


	attested_declaration_of_author.pdf
	Page 1

	attested_statement_of_author.pdf
	Page 1

	attested_acknowledgement.pdf
	Page 1

	recommendation_by_viva_voce.pdf
	Page 1


