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SYNOPSISThe main theme of this thesis is to understand the propagation of ele
tron 
urrentin an inhomogeneous plasma medium. A proper understanding of the transportof ele
tron 
urrent in plasma is of importan
e in a variety of frontline resear
ha
tivities. For instan
e in the area of inertial 
on�nement fusion studies [1℄ a re
entfast ignition te
hnique [2℄ whi
h separates the task of target 
ompression from the
reation of ignition spark, holds a lot of promise. In this te
hnique ele
trons havethe key role of absorbing energy from laser at the 
riti
al layer of the pre
ompressedtarget and transporting it to the overdense regime and depositing it for the 
reationof hot spark. Another area of frontline resear
h is related to parti
le a

eleration.The 
onventional high energy a

elerators [3℄ are be
oming too huge and expensiveto build. Plasma based a

elerators proposed by Dawson [4,5℄ on the other handis set to revolutionize and o�er an alternative whi
h redu
es the a

elerator lengthby a fa
tor of almost 1000. In these a

elerators, it is the ele
tron spe
ies againwhose dynami
al response in the plasma de�nes the a

eleration parameters.For these reasons the study of ele
tron transport takes a prominent stage inresear
h a
tivities worldwide. The experiments [6,7℄ 
on
erning the physi
s asso
i-ated with the ele
tron response in plasma medium have fo
used on issues pertainingto the 
oupling of laser energy to the plasma in whi
h ele
trons a
t as 
onduit.The measurements in these experiments involved time resolved re�e
tivity, X - rayemission and magneti
 �eld data whi
h provide information of ele
trons. For in-stan
e, the time evolution of the magneti
 �eld pro�le has provided good insightson ele
tron dynami
s in plasma medium. The de
ay of magneti
 �eld suggests thepresen
e of anomalous dissipation in the propagation of ele
trons through plasma.There have also been PIC simulations studies [8-11℄ in the 
ontext of fast ignitionwhi
h aim at the understanding of the 
reation of hot spark by fast energeti
 ele
-trons. Another area where interest lies is asso
iated with the possibility of guidingand 
ollimating ele
tron 
urrents in plasma medium in a desirable fashion. In this
ontext experiments [12℄ as well as theoreti
al stuides [13℄ on the design of novelstru
tured targets have been done.In some of these appli
ations , e.g. Fast Ignition (FI) [2℄ experiments theele
trons are required to propagate through an inhomogeneous plasma medium.Keeping this in view we seek to understand the in�uen
e of plasma density inho-8



mogeneity on ele
tron propagation in this thesis. For this purpose we adopt theframework of Ele
tron Magnetohydrodynami
 (EMHD) [14-16℄ �uid des
ription.This model represents the physi
s in the domain of fast ele
tron time s
ale at whi
hthe ions in plasma remain unresponsive. The EMHD model has been frequentlyused for the purpose of understanding a host of physi
al phenomena pertaining toastrophysi
al plasmas, earth's magnetosphere, and even laboratory plasma. TheEMHD model has been invoked for the basi
 understanding of the phenomenaof 
ollisionless magneti
 �eld line re
onne
tion [17-23℄, generation of large s
alemagneti
 �eld, and rapid dissipation of magneti
 �eld energy in the 
ontext ofastrophysi
al plasmas [24, 25℄ The des
ription of earth's plasma sheet and mag-netotail region are other areas where the EMHD has been applied [26, 27℄. Withthe availability of high power short pulse lasers and fast diagnosti
 tools, mu
hof the experimental observations on laser plasma [28℄ and laser solid intera
tionstudies [29℄ has been understood with EMHD des
ription . However, in all thesestudies EMHD model has been used in the 
ontext of homogeneous plasma density.Some authors have in
orporated the non uniformity of plasma density within thepurview of EMHD model [30, 31℄. However, their equations are fairly approximatein terms of the 
hoi
e of plasma inhomogeneity and/or negle
t of ele
tron inertia.As stated earlier our obje
tive here is to study the transport of ele
trons throughinhomogeneous plasma medium. We have, therefore, generalized the EMHD modelin its full glory to in
orporate e�e
ts arising due to any arbitrary plasma densityinhomogeneity. The new model is termed as the Generalized Ele
tronmagneto-hydrodynami
s ( G-EMHD ) [32℄. A 
omprehensive derivation of the G-EMHDmodel both in 3D as well as 2D has been presented in the thesis. The salient as-pe
ts (Integral invariants asso
iated with this model ) of the G-EMHD equationsare also dis
ussed. Furthermore, various limiting forms of the G-EMHD modelequations in redu
ed spatial dimension and simpli�ed ele
tron �ow 
on�gurationare also presented in the thesis. The equations of the G-EMHD model are thenemployed for the purpose of studying ele
tron 
urrent propagation. The G-EMHDevolution equations being nonlinear, a numeri
al 
ode has been developed to solvethe evolution equations in 2-D. The �ux 
orre
ted s
heme of Boris et al. [33℄ hasbeen adopted for this purpose. A detailed des
ription of the numeri
al pro
edurehas been provided in the thesis.The numeri
al study helps in identifying the role of density inhomogeneity9



on the propagation of ele
tron 
urrent pulses. For this purpose we 
hose exa
tnonlinear solutions [34℄ for a homogeneous plasma in the form of EMHD monopolesand dipoles. The monopoles are non-propagating rotating 
urrent stru
tures in ahomogeneous plasma whereas the dipoles are known to propagate along their axiswith uniform velo
ity. Our numeri
al studies show that (i) these 
urrent pulsestru
tures a
quire an additional drift velo
ity, ~vd = bẑ × ∇n/n2 (Here b is themagneti
 �eld along the symmetry dire
tion ẑ, asso
iated with the ele
tron 
urrentand n denotes plasma density) in the presen
e of density inhomogeneity. The driftis transverse to the magneti
 �eld (bẑ) and the density gradient (∇n). (ii) Thedipole 
an readily penetrate inside a high density plasma region but �nds it hardand is often unable to 
ome out from there. It thus often gets trapped within ahigh plasma density region. (iii) The dipole a
quires the size of the skin depthasso
iated with the lo
al plasma density.The phenomena of trapping has been investigated in detail to formulate athreshold 
riteria (the ratio of the density inhomogeneity s
ale length and thedistan
e traversed by the stru
ture) for trapping vs. transmission of the stru
tures[35℄. The trapping of the dipole 
urrent pulse stru
ture in high density regionindi
ates the violation of time reversal invarian
e and is suggestive of a dissipativeme
hanism at work. We indeed observe that as the dipolar 
urrent pulse stru
turepasses through the density inhomogeneity to penetrate the high density region, itforms magneti
 sho
ks and/or sharp 
urrent layers [36℄. A strong energy dissipationat the lo
ation of magneti
 sho
k region o

urs when the dipole stru
ture enters thehigh density region. Our numeri
al studies show that the total energy dissipation isindependent of the magnitude and the 
hara
ter of the dissipative pro
esses presentin the system. This explains the irreversible propagation of the ele
tron 
urrentpulse and also provides us with the possibility of a 
ollision - less s
heme of ele
tronenergy dissipation in a plasma. It 
an be used as a method for e�
ient lo
alizedheating of plasma by energeti
 ele
trons. The ele
trons 
an be easily a

elerated tohigh energies and hen
e are readily available as good sour
e of energy. Furthermore,ele
trons 
an be used to heat overdense plasma region as well, where lasers areunable to penetrate. The only drawba
k for using ele
trons for the purpose ofplasma heating so far has been due to the fa
t that higher the energy of ele
tronsmore di�
ult it be
omes to stop them, as their Rutherford 
ollision 
ross se
tionfalls o� drasti
ally with in
reasing energy. Against this ba
kdrop the possibility of10




ollision - less energy dissipation through sho
k formation at the inhomogeneouslayer observed and proposed by us is very attra
tive.A semi - analyti
 approximate estimate for the total energy dissipation hasalso been made whi
h 
on�rms the numeri
al observation of the independen
eof the total dissipated energy to the magnitude and 
hara
ter (resistivity and/orvis
osity) of the dissipative pro
esses at work. Furthermore the 
al
ulation showthat the energy dissipation depends on the ratio of the traversed distan
e by thestru
ture and the inhomogeneity s
ale length. This parameter is identi
al to whatde�nes the threshold for trapping vs. transmission in our numeri
al studies. This
learly shows that the energy dissipation o

urring at the sho
k layer is behind theirreversible propagation of the stru
tures.We apply our sho
k indu
ed anomalous energy dissipation s
heme to the prob-lem of Fast Ignition (FI) [2℄ whi
h relies on the stopping of energeti
 ele
trons forthe 
reation of hot spot . A re
ent experimental work by Yabuu
hi et al. [37℄ pro-vides 
on
lusive experimental eviden
e of the proposed dissipation s
heme at workin fast ignition related experiments. Furthermore, a number of PIC simulations[8-11℄ 
arried out through worldwide in the 
ontext of fast ignition using distin
t
odes show very 
learly plasma heating at the lo
ation of the target inhomogeneity.This provides another 
on
lusive eviden
e for our me
hanism at work.We also propose a new simpler s
heme to 
ollimate and guide the path ofenergeti
 ele
trons using a tailored plasma density inhomogeneity pro�le. We showthat the ele
trons path 
an be guided through plasma density inhomogeneity justas opti
al �bers guide the path of photons. The s
hemes suggested by other authorson ele
tron guiding adopt a 
ompli
ated pro
edure of spe
ially prepared stru
turedtargets of di�erent materials [12, 13℄. Su
h targets would neither be easy to preparenor 
an they be employed with ease in ea
h and every experiment. We o�er thepossibility of a
hieving this obje
tive through a properly tailored plasma densitypro�le. This has been illustrated in the thesis with numeri
al simulations. Theexperiment [38℄ at Institute for Laser Engineering ( ILE ), Osaka, Japan showsthat the energeti
 ele
trons generated at the 
riti
al density layer gets guidedalong the dire
tion de�ned by the orientation of a solid 
arbon wire. We feel thatinhomogeneous plasma density spontaneously 
reated by the ionization of the wireby the energeti
 ele
trons provides the requisite inhomogeneous plasma pro�le forthe guiding of the wire in this ILE experiment. 11
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3.1 This is the simulation spa
e in x − y plane. The 
ir
le representsthe grid points where the equilibrium value for the variables is tobe assigned in the simulation. The derivative of the �elds (b, ψ)inside of the boundary, for example at (i, j) are 
al
ulated by theneighbouring points using the 
entral di�eren
ing s
heme. As inthe simulation the periodi
 boundary 
ondition is 
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al
ulated by using the points (1, j) as is shown in the �gure. . . . . 233.2 This �gure represents the redu
tion of the 2D grid spa
e (i, j) inone dimensional spa
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ed by the Ny no. of grid points while along the ydire
tion they are separated only by a single grid point as is shownat the point l. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.1 This is the 
onstant 
ontour of the s
alar �eld (b) forming a monopole.The asso
iated parameters of the monopole are A = 5.5, x0 =

0.0, y0 = 3.0, σx = 1.0 and σy = 1.0. . . . . . . . . . . . . . . . . . 344.2 This is the 
onstant 
ontour of s
alar �eld b forming a dipole withinthe spatial extant of r0 ≈ 1 and having the axial velo
ity u = 0.1along the negative y -dire
tion. The left lobe of the dipole 
orre-sponds to positive value of amplitude while the right one 
orrespondsto negative value of amplitude. . . . . . . . . . . . . . . . . . . . . 35
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3.0, σy =

√
3.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.10 RGC density pro�le (h1 = 1.0, h2 = −0.9, x0 = 0.0, y0 = 0.0, σx =√

3.0, σy =
√
3.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.11 The propagation of the monopolar stru
ture (
olor 
ontours) in aninhomogeneous plasma density is depi
ted by showing the lo
ationof the stru
ture at various times in the di�erent subplots of the�gure. The thi
k bla
k lines represent the plasma density 
ontour.In this 
ase the plasma density is 
hosen to be a fun
tion of y only.The 
entral y region of width w = ±2.0 
orresponds to a highdensity (10 times of the density at the edge region) . . . . . . . . . 414.12 Various stages of the propagation of a dipolar stru
ture through aninhomogeneous density plasma has been shown. The inhomogeneityin plasma density is similar to that of Fig. (4.11) in this 
ase. The�gure 
learly shows the penetration of the dipole through the plasmadensity inhomogeneity to enter the high density region. The lobesof the dipole stru
ture are squeezed towards ea
h other as they passthrough the inhomogeneous region. However, on
e inside the highdensity homogeneous region they again a
quire a balan
ed form. . . 434.13 In this �gure the dipole is shown to approa
h a density 
avity (lowerdensity plasma region). It 
an be observed that the dipole is un-able to penetrate the lower density plasma. The two lobes of thedipole get separated transverse to the density gradient dire
tion andsubsequently they evolve as separate monopolar stru
tures. . . . . 46v



4.14 The trapping of the dipolar stru
ture in a high density plasma hasbeen illustrated in this �gure. A high density plasma with a 
ir
ularpro�le in the x−y plane represented by the thi
k bla
k 
ontour linesare depi
ted on the various subplots. A dipole stru
ture 
an be seento penetrate the high density region. However, on
e inside the highdensity region it 
ontinues to remain trapped in this region. . . . . 474.15 The propagation of the dipole through an inhomogeneous densitypro�le when it form a 
avity within the �nite region of the spa
eas is shown in the ea
h subplot of the �gure with the bla
k thi
k
ontours. In this 
ase the dipole stru
ture do not get to penetrateinside the 
avity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.16 This �gure represents the 
ollisional behavior of two dipoles in thepresen
e of density inhomogeneity when the RTH density pro�le is
onsidered in the simulation. . . . . . . . . . . . . . . . . . . . . . . 494.17 The four 
olumns of the subplots represent four di�erent 
ases ofpropagation of 
urrent pulse stru
ture past the plasma density in-homogeneity. The detailed 
on�guration of the density pro�le andthe 
urrent pulse stru
ture for ea
h of the four 
ases has been men-tioned in the text. The thi
k dark straight lines in the plot show the
onstant density 
ontour at the lo
ation of maximum gradient. The
ases 
orresponding to the (a) and (d) 
olumns show trapping (lobesget separated upon rea
hing the other end ) and those for (
) and(d) 
olumns show transmission. In ea
h subplots, the red and bluelobe of the stru
ture implies positive and negative amplitude of themagneti
 �eld dire
ted along the symmetry dire
tion ẑ, respe
tively. 515.1 This is the s
hemati
 diagram for 
urrent pulse asso
iated with the2-D nonlinear solutions of Ele
tron Magnetohydrodynami
s (EMHD)model equations. Subplots (a), (b) and (
) show the 
ontour plot ofthe asso
iated magneti
 �eld, the pro�le of magneti
 �eld and theele
tron �ow at the mid y = 0 se
tion of the stru
ture respe
tivelyfor the monopolar. Subplots (d), (e) and (f) 
orresponds to thesame features for the dipolar stru
ture. . . . . . . . . . . . . . . . 57vi



5.2 The 
ontour plots of the magneti
 �eld b in the x−y plane is shown insubplots [a,b℄ (inertialess 
ase) [d,e℄ (full G-EMHD) at two di�erenttimes. The numbers (-2,0,2) on the axis of these plots show lengthin units of ele
tron skin depth (
orresponding to the low densityplasma). The magneti
 �eld b pro�le in x at the mid plane of thestru
ture in y has been depi
ted at various times in subplot (
) and(f) for inertialess and the full G-EMHD simulations respe
tively.The subplot (g) and (h) show the inhomogeneous plasma densitypro�le through whi
h the dipolar stru
ture evolves. The 
ross ×and the arrow → mark on these subplots show the initial lo
ationof the dipole for inertialess (dipole has no axial velo
ity in this 
ase)and full G-EMHD simulations. . . . . . . . . . . . . . . . . . . . . 595.3 S
hemati
 diagram of the dynami
s of the dipole when it en
ountersthe density inhomogeneity (shown by a thi
k 
urved bla
k line thatis varying along the y- dire
tion having di�erent region of inhomo-geneity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605.4 Evolution of the total energy of the stru
ture for full G-EMHDsimulations, as it propagates through the inhomogeneous plasmadensity (a) for various grid resolutions (b) for simulations with �niteresistivity parameter η and (
) with �nite vis
osity parameter µ inG-EMHD equations. A thi
k dashed verti
al line shows the timewhen the dipole enters the inhomogeneous plasma density region. . 615.5 The propagation of 
urrent pulse stru
ture in
ident at angles of 30,
20, 10 and 5 degrees with respe
t to the density gradient dire
-tion have been shown in the plots of �rst, se
ond, third and fourth
olumns respe
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . 665.6 The evolution of the total energy has been shown when the 
urrentpulse is in
ident at (i) 5o ( 
urve with blue stars), (ii) 10o (
urvewith green + sign, (iii) 20o (
urve with magenta 
rosses) and (iv)
30o (
urve with red 
ir
les). . . . . . . . . . . . . . . . . . . . . . . 67
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6.1 The various stages of evolution as the 
urrent pulse propagates to-wards an elongated sharp density pro�le. The thi
k bla
k 
urverepresents the outline of the density pro�le. The 
ollimation of the
urrent pulse stru
ture as it enters the high density plasma region
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ollimating behavior of the dipole has been demon-strated. The 
urrent pulse passes through a high density pro�le thathas an elongated pro�le (shown in the �gure by the 
losed bla
kthi
k line) along the y− dire
tion. . . . . . . . . . . . . . . . . . . . 837.2 This �gure shows that a dipolar 
urrent pulse 
an be guided. Thesingle bla
k 
ontour in ea
h subplot represents the 
urved high den-sity pro�le 
hosen in the simulation. The inside region of the 
losedbla
k line is of the high density amplitude. The 
ir
ular region at-ta
hed at the left end of the half 
ir
ular region is of high amplitudein 
omparison to the half 
ir
ular region. . . . . . . . . . . . . . . . 847.3 This �gure show the bifur
ation of the 
urrent pulse. The thi
kbla
k lines show the plasma density pro�le that has been 
hosen forthese simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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Chapter 1Introdu
tionThis thesis is devoted to the study of the propagation and transport features ofele
tron 
urrent pulses through an inhomogeneous plasma medium. Interesting ob-servations of both fundamental and applied nature are made. This has been donewith the help of simulations of Ele
tron - Magnetohydrodynami
 model [1, 2, 3, 4℄whi
h has been generalized to treat an inhomogeneous plasma. A new 
ollisionlesss
heme to extra
t energy from fast ele
trons at the plasma inhomogeneity layerfor the purpose of plasma heating has been elu
idated. This is spe
ially usefulfor heating plasma in overdense regimes where lasers 
an not be employed. Thiss
heme of plasma heating by ele
trons is maneuverable, as the heating e�
ien
y,the spe
i�
 lo
ation for energy dissipation in plasma et
., 
an be de
ided by prop-erly tailoring the plasma density inhomogeneity pro�le. Another novel possibilityof guiding the path of the ele
tron 
urrent pulse with the help of appropriatelytailored plasma inhomogeneity pro�le has also been demonstrated in these studies.The dire
t relevan
e of both e�e
ts shown here, viz., (i) the possible guidingof the ele
tron path in the plasma and (ii) the deposition of its energy to heat theplasma, to the problem of Fast Ignition (FI) [5℄ has also been outlined.1.1 MotivationIn re
ent years there has been a phenomenal progress in the development of highpower of peta-watt (PW) range, short pulse (sub-pi
ose
onds) lasers. These highpower lasers have led to the exploration of hitherto unknown regime of plasma re-1



Chapter 1: Introdu
tionsponse. Furthermore, the availability of fast diagnosti
 tools has helped in wat
hingthe response of the plasma at these fast time s
ales in 
onsiderable detail. This hasopened up an entirely new area of resear
h. At these fast time s
ales ele
trons arethe main spe
ies whi
h parti
ipate in dynami
s and the heavier ion spe
ies have adormant role of merely providing a stati
 neutralizing ba
kground. Various plasmaphysi
s phenomena are now being explored from the fast ele
tron time s
ale evo-lution perspe
tive. For instan
e, the work 
arried out to investigate the physi
sof the fast magneti
 �eld line re
onne
tion events [6, 7, 8, 9, 10, 11℄, the fast Zpin
hes [12, 13℄ , fast plasma swit
hes [14, 15, 16, 17, 18, 19, 20℄, the generationof quasi - stati
 intense magneti
 �elds in laboratory experiments [21, 22, 23, 24℄et
., are explored on the basis of underlying ele
tron dynami
s. It thus appearsthat a proper theoreti
al understanding of ele
tron transport through plasma is of
onsiderable importan
e.1.2 Models for Des
riptionA variety of models and tools have been employed for the purpose of these studies.The use of ele
tron �uid model along with the Maxwell set of equations for thedes
ription of the evolution of ele
tromagneti
 �elds asso
iated with ele
tron mo-tion is a 
ommonly adopted approa
h towards the depi
tion of most phenomenain this parti
ular regime [1, 2, 3, 4, 25, 26℄. Both analyti
al and numeri
al studieshave been 
arried out with this des
ription. There are Parti
le - In - Cell (PIC)models [27, 28, 29, 30℄, whi
h treat kineti
 aspe
t of the plasma parti
les, and areused extensively numeri
ally. A 
ombination of �uid and parti
le des
ription invarious regimes have also been adopted in hybrid 
odes [31, 32, 33℄.For fast ele
tron propagation in a plasma, the 
urrent asso
iated with the sys-tem 
an be very high. The ele
trons in the presen
e of self 
onsistently generatedmagneti
 �eld in su
h a situation behaves like a magnetized �uid. A simpli�eddes
ription treating the �ow of magnetized ele
trons is the Ele
tron Magnetohy-drodynami
 (EMHD) �uid model [1, 2, 3, 4℄. The time s
ale asso
iated with thismodel are fast so as to ignore ion dynami
s, but it is slower than the ele
tronplasma period of the system. The model, thus, rules out the spa
e 
harge 
ontri-bution. The ele
tron density perturbations are therefore ignored in the 
ontext of2
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tionEMHD model. The EMHD model has led to the understanding and predi
tion ofa host of novel phenomena, e.g. the fast penetration of magneti
 �elds [34, 35℄,the phenomena of Ele
tron Magnetohydrodynami
 (EMH) resistan
e [1℄et
. Thesimulations of this parti
ular �uid model has also been 
arried out extensively, tounderstand the 
oherent as well as turbulent dynami
s asso
iated with ele
tron�uids in a plasma [36, 37, 38, 39℄.As mentioned earlier, the investigation of ele
tron dynami
s in plasmas 
analso be 
arried out with the help of Parti
le - in - Cell (PIC) 
omputations[27, 28, 29, 30℄. In these 
omputations a large assembly of ele
trons are evolved asfat parti
les under the a
tion of self 
onsistent ele
tromagneti
 �elds. These sim-ulations do 
ontain the spa
e 
harge �u
tuation asso
iated with the fast ele
tronplasma period. In this sense they are more 
omplete than the simpli�ed EMHDmodel. Furthermore, the kineti
 e�e
ts asso
iated with �nite temperature are alsopresent in this depi
tion. The PIC simulations, however, are often very 
omputa-tionally demanding. One therefore, typi
ally, restri
ts to lower spa
e dimensionsand/or 
ompromises with spatial resolution. These limitations exist even when thestate of the art 
omputational fa
ilities are employed. For instan
e, even now thespatial grid in some PIC studies [32℄ barely resolve the ele
tron skin depth, whi
his a 
ru
ial length s
ale asso
iated with ele
tron dynami
s. This, in a sense, istantamount to ignoring the physi
s of ele
tron inertia. In 
ontrast the simulationswith EMHD �uid model resolve the ele
tron skin depth s
ale, thereby retainingthe 
ontribution of ele
tron inertial e�e
ts. Clearly, there are always pros and 
onsof any tool and model that one adopts. The approa
h should be to gleam as mu
hphysi
s as possible from the judi
ious use of the available tools.We have 
hosen to investigate the problem of ele
tron transport with the helpof a �uid model in the EMHD domain. The spe
i�
 question asso
iated with thetransport of ele
trons in an inhomogeneous plasma 
onstitutes the main fo
us ofstudy in this thesis.
3
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tion1.3 Previous Work on Ele
tron Spe
ies Related Phe-nomena in PlasmasWe summarize here some earlier studies asso
iated with ele
tron spe
ies in theplasma whi
h underline the relevan
e of the spe
i�
 question that have been inves-tigated in this thesis. The theoreti
al and experimental work on studies asso
iatedwith the response of lighter ele
tron spe
ies have primarily addressed issues 
on-
erning (i) the generation of fast ele
trons (by lasers et
.,) in plasma medium (ii)the propagation, stopping and energy deposition of the energeti
 ele
trons in plas-mas and (iii) 
ertain fundamental issues asso
iated with ele
tron transport (e.g.evolution of the asso
iated magneti
 �elds, asso
iated instabilities and nonlinearfeatures in 
oherent and turbulent regimes et
.,).1.3.1 GenerationThe possibility to employ ele
trons as an energy sour
e for heating plasma medium(spe
ially in overdense regimes where lasers 
annot penetrate) has led to the questfor e�
ient generation of energeti
 ele
trons. The resonant [40℄ and the va
uumheating me
hanism proposed by Brunel [41℄ being some su
h s
hemes. The ex-perimental study by Sandhu et al. [42℄ have provided experimental eviden
e offast ele
tron generation by the pro
ess of resonant absorption. They have shownthat the wave breaking of nonlinear plasma wave leads to an e�
ient generationof energeti
 ele
trons.Studies to enhan
e hot ele
tron generation has led to various suggestions forimproved laser 
oupling to plasma. In this regard introdu
ing preplasma [43℄has been fruitful. However, major improvements have resulted by stru
turing thetarget surfa
e by nanoparti
les [44℄, nanowires [45℄ and other deposits [46, 47, 48℄.Periodi
 modulations su
h as grating stru
tures have also been tried and haveprodu
ed good enhan
ement on hot ele
tron generation whi
h has been attributedto the ex
itation of surfa
e plasmons [46, 47, 49℄. In a re
ent experimental study[50℄ with sub λ grating target almost 100% absorption was shown. Analyti
al andPIC studies were 
arried out for the experimental 
onditions to 
learly demonstratethe role of surfa
e plasmon in su
h an e�
ient absorption. These studies have thus4
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tiondemonstrated 
learly the possibility of e�
ient generation of energeti
 ele
trons.In order to use su
h energeti
 ele
trons for the purpose of plasma heating astudy of their propagation 
hara
teristi
s through the plasma medium is important.The next subse
tion summarizes the attempts that have been made in this regard.1.3.2 Propagation, Stopping and Heat DepositionThe energeti
 ele
trons typi
ally 
arries very high 
urrents along with it. The �owof ele
trons with huge 
urrents is known to get inhbited by its own self generatedmagneti
 �elds. In fa
t it has been shown that there exists a limit known asthe 'Alfven limit' on the magnitude of 
urrent, beyond whi
h the 
urrent 
annotpropagate [51℄. This is be
ause the asso
iated magneti
 �eld be
omes very high to
urve the ele
tron traje
tories ba
kwards. Inside a plasma, however, the 
urrent
arried by the energeti
 ele
trons 
an often ex
eed the Alfven limit. This is so asthe plasma provides for the return shielding 
urrent. The return 
urrent being inopposite dire
tion it neutralizes the magneti
 �eld and allows the forward 
urrentdue to the energeti
 ele
trons to be of a magnitude higher than the Alfven limit. Itis now well established by the 3-D PIC simulations of Sentoku et al. [29, 30℄ that the
ombination of the forward and return shielding 
urrents get spatially separated byWeibel instability [52℄. The Weibel separation of 
urrents leads to the formation ofalternating sheets of oppositely propagating 
urrents. These sheets tear and formseveral 
ylindri
al 
urrent �laments whose 
ore 
arries the forward 
urrent and theouter 
ylindri
al shell 
ontains the return shielding 
urrent. These �laments then
oales
e and form fewer 
ylindri
al 
urrent 
arrying �laments. Ea
h 
oales
ed�laments have 
urrents below the Alfven limit. Combination of su
h �laments
arry the total 
urrent asso
iated with the hot energeti
 ele
trons inside a plasma.The ele
trons 
arrying the forward 
urrent in these 
hannels are a good sour
eof energy. They 
an be employed for the purpose of plasma heating if they 
an bestopped at a desired lo
ation, where they dissipate their energy into heating theba
kground plasma. The 
ollisional stopping of the energeti
 ele
trons involvesRutherford's 
ross se
tion for ele
tron ion 
ollision. This 
ross se
tion however,de
reases with in
reasing ele
tron energy and hen
e is not an e�
ient pro
ess tostop high energy ele
trons. On the other hand, e�
ient heating would requirethat the energy 
ontent of the ele
trons be high. In this regard the presen
e of5
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tionanomalous stopping me
hanism would be of great use. There are debates on thepresen
e as well as the possible role of anomalous me
hanisms for stopping. In fa
ta simulation by Sentoku et al. [29, 30℄ in a 3-D homogeneous plasma shows thatafter 
oales
en
e the 
hannel shows bending and ultimately degenerates formingsmall s
ale turbulent stru
tures. This generation of ele
tromagneti
 turbulen
e
an explain the rapid ele
tron energy dissipation in those simulations. The me
h-anism behind the generation of this ele
tromagneti
 turbulen
e was identi�ed inthe studies by Jain et al. [53, 54, 55℄ based on the Kelvin Helmholtz (KH) desta-bilization of the sheared ele
tron �ow [56℄ amidst the spatially separated forwardand return shielding ele
tron 
urrents �owing in the 
hannel.The studies on ele
tron stopping and the possibility of heating the plasma byit have primarily been motivated by the problem of Fast Ignition (FI) [5℄. FI isa simple variant of the Inertial Con�nement Fusion (ICF) [57, 58℄, in the sensethat the two tasks of 
ompression and the 
reation of hot spark in the plasmaare separated. The 
ompression is a
hieved by a slow nanose
ond laser pulsethroughout whi
h the target remains 
old. The appearan
e of Rayleigh Taylor(RT) like hydrodynami
 instabilities [59℄ thus be
ome in
onsequential as there 
anbe no mixing between the hot and 
old fuels at this stage. This removes thestringent 
riteria of high uniformity of the drive pressure and on the spheri
alsymmetry of the target. To 
reate a hot spot in the target a separate sub -pi
ose
onds ultra intense laser (UIL) pulse is send. The target being 
ompressedthe UIL 
annot penetrate it but generates energeti
 ele
trons at the 
riti
al densitysurfa
e through the various me
hanism outlined earlier. The expe
tation thenis that these ele
trons would penetrate the high density 
ore of the 
ompressedtarget 
ore and deposit their energy at some lo
alized region. The 
al
ulationsbased on 
lassi
al estimates even after taking into a

ount e�e
ts due to 
orrelated
ollisions, dense plasma e�e
ts et
., predi
t that the ele
trons will traverse past the
ore without depositing their energy. On the other hand the sub - ignition smallexperiments have shown the su

ess of the FI s
heme [60, 61℄. This shows thatthe ele
trons do stop and deposit their energy in the target 
ore despite 
ontrarypredi
tions provided by the 
lassi
al 
ollisional estimates. It, therefore, appearsthat for this system an anomalous 
ollision - less me
hanism exists.In the FI s
enario the ele
trons have to propagate from the low density plasma
orona region of the 
riti
al layer (n = 1022/cc) towards the high density plasma6
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ore (n ∼ 1026/cc ). In this 
ase thus the energeti
 ele
trons would need topropagate inhomogeneous plasma region. The studies on ele
tron propagationthrough inhomogeneous plasma n the 
ontext of FI has been 
arried out by variousgroups primarily using PIC simulations. The PIC studies on ele
tron propagationthrough inhomogeneous plasma medium have been 
arried out by various authorsin 2-D [32, 33℄. An interesting aspe
t of all these simulation studies, whi
h employdi�erent PIC 
odes and have been 
ondu
ted by various groups is that the plasmagets heated at the lo
ation where the density gradient is maximum. This resulthave been reported in a number of publi
ation, however, with no 
omments on hepossible origin of this e�e
t.One of the prime motivation of our studies in this thesis has been to understandand physi
ally interpret this observation. For this purpose we study the propagationof ele
tron 
urrent pulse stru
tures through an inhomogeneous plasma medium. Asimpli�ed �uid des
ription of EMHD is used for this purposeA possible maneuvering of the path of energeti
 ele
trons is another issue ofinterest. In this 
ontext novel stru
tured targets having materials with di�erentresistivity have been designed and experimented upon [62, 63℄. Kar et al. [63℄ haveexperimentally shown the guiding of relativisti
 ele
tron beams in solid targetsby magneti
 �elds 
reated at the interfa
e of two metals of di�erent ele
tri
alresistivity. This experiment provided a proof of the theoreti
al study done byRobinson & Sherlo
k [62℄ on the guiding of the fast ele
trons at the interfa
e oftwo metals of the di�erent resistivity. The design of su
h targets and employing itin any given experiment, however, would be a 
omplex task.A re
ent experiment by Kodama et al. [64℄ shows an interesting simple methodto guide the ele
trons. They showed in their experiment that a metal wire atta
hedon the tip of the 
one (where the fast ele
tron generation o

urs by an ultra intenselaser pulse) guides the path of the ele
trons. By tilting the angle of the wire theywere able to show that the ele
trons followed the dire
tion de�ned by the wire.It is believed that the wire gets ionized by the front of the energeti
 ele
tronpulse and the plasma thus 
reated guides the ele
trons along a desired path. Theexperiment 
learly indi
ates that there exists a role of a sharp inhomogeneousplasma (transverse to the wire) in guiding the ele
tron 
urrent pulse path.Another motivation for investigating the role of plasma density inhomogeneityon ele
tron transport in this thesis is with the viewpoint of seeking a simpli�ed7
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tions
heme to maneuver and guide the path of energeti
 ele
trons.1.3.3 Fundamental IssuesThe ele
tron time s
ale regime dynami
s in plasma o�ers an interesting and simplenonlinear medium for exploring fundamental questions pertaining to the 
oherentand turbulent response of plasma medium. The EMHD model des
ription haveoften been used by various authors to theoreti
ally explore the 
oherent as well asthe turbulent behavior of the plasma medium [65, 66, 67, 68, 69, 70, 71℄ in thisregime. The presen
e of the inherent length s
ale viz., the ele
tron skin depths
ale and the whistler frequen
y (when external magneti
 �eld is also present )distinguishes this system from the neutral hydrodynami
 s
ale free �uid system.The ele
tron skin depth s
ale 
auses a 
hange in the spe
tral s
aling of de
ayingEMHD turbulen
e [38℄. Furthermore, the magnetized 
hara
ter of the ele
tron�uid also in�uen
es and produ
es novel features to hydrodynami
 �uid phenomena.These studies have attra
ted attention re
ently. For instan
e, the well known �uidinstabilities su
h as Kelvin - Helmholtz mode et
., in the 
ontext of EMHD hasbeen shown to get suitably altered [55, 72℄ in terms of growth rate and range ofunstable wavenumbers.Re
ently, some experiments have also been 
ondu
ted whi
h shed light on vari-ous fundamental pro
esses asso
iated with the propagation of ele
trons in a plasmamedium. A propagating ele
tron 
urrent pulse has an asso
iated magneti
 �eldwith it. Thus the generation, evolution and de
ay of magneti
 �eld in the plasmaoften provides information on the 
hara
teristi
 features of the ele
tron 
urrent.This has been employed in the papers by Sandhu et al. [21, 22℄ and Subhendu etal. [50℄ to infer the properties of the ele
tron �ow. The experiment a pump probesystem of lasers to study the magneti
 �eld evolution from Cotton Mouton e�e
t.The rapid de
ay of the magneti
 �eld observed in the experiment by Sandhu etal. [21℄ provided eviden
e for presen
e of anomalous dissipation and hen
e thepresen
e of turbulen
e in �ows.It would be interesting to study how plasma inhomogeneity would alter thepropagation behavior of the ele
tron 
urrent pulse stru
ture in the nonlinear regime.This is spe
ially important for the FI experiment related studies where the ele
tronshave to propagate through inhomogeneous plasma density and where anomalous8



Chapter 1: Introdu
tionme
hanisms for dissipation are being sought for.The nonlinear propagation of ele
tron 
urrent pulses through an inhomogeneousplasma density by a generalized EMHD des
ription in 2-D has been explored exten-sively in this thesis keeping the fundamental physi
s issues under 
onsideration.1.4 Earlier Studies on EMHD Phenomena with In-homogeneous Plasma DensityThe thesis fo
uses on the study of ele
tron transport through inhomogeneousplasma density for EMHD time s
ales. For these studies, therefore, a general-ization of the EMHD model to in
lude e�e
ts due to plasma inhomogeneity isessential. We brie�y review here previous studies where EMHD studies have been
arried out for an inhomogeneous plasma density.Kingsep et al. [1℄ have ignored the ele
tron inertia related terms and in
or-porated inhomogeneous density of a spe
i�
 simpli�ed form to arrive at a redu
edBurger's equation for the magneti
 �eld evolution. From this study it was inferredthat the magneti
 sho
ks 
an form at the inhomogeneous plasma density layer.Kingsep et al. [1℄ also derived an equation for magneti
 �eld evolution with ele
-tron inertia, however, again a spe
i�
 form viz., a linear weakly varying plasmadensity was assumed. This equation was later solved by Petvishvilli in a movingframe using he ansatz of stationarity to obtain solitons in 1-D, and monopolesand dipoles in 2-D [73℄. These solutions were later shown to be stable using theZakharov-Kuznetzov method [74℄.Fru
htman et al. [75℄ have also 
onsidered an inhomogeneous plasma, howeverthey ignore ele
tron inertia related terms in the EMHD equation. They have, how-ever, 
onsidered the evolution of energy in 
onjun
tion with the EMHD equation.Thus it forms a 
oupled set of magneti
 �eld and the energy evolution. This wasused to study the penetration of magneti
 �eld in Plasma Opening devi
es (POS).Kuvshinov et al. [76℄ have 
onsidered again an inhomogeneous plasma for theirstudies. However, they have gone beyond the EMHD des
ription by in
orporatinge�e
ts due to spa
e 
harge �u
tuation. Both, the spa
e 
harge �u
tuation (ñ/n0)and the equilibrium density variation (Ln = n0/n
′

0) in 
omparison to relevant s
aleof the phenomena (k) were 
onsidered to be very small and treated perturbatively.9



Chapter 1: Introdu
tionThe exa
t solutions for this set were obtained by Kuvshinov et al. [77℄ and theevolution of su
h stru
tures have also been investigated numeri
ally [77℄.We have obtained a generalization of Ele
tron Magnetohydrodynami
s (EMHD)equations in the presen
e of inertia related terms and have also made no approx-imation for any spe
i�
 form of the density inhomogeneity. No approximation asregards to slow variation of the inhomogeneity has been made in the derivation ofour equations. The 
omplete set has then been numeri
ally investigated for vari-ous forms of the plasma inhomogeneity pro�le as demonstrated in the subsequentChapters.1.5 S
ope of the ThesisAs stated earlier the understanding of ele
tron transport in an inhomogeneousplasma 
onstitutes the main theme of this thesis. For this purpose we employ the�uid des
ription in the EMHD domain. The EMHD model [1, 2, 3, 4℄ des
ribes theevolution of magnetized ele
tron �uid in a homogeneous plasma. We, therefore,�rst generalize the EMHD des
ription to inhomogeneous plasma density. The newmodel is termed as the Generalized EMHD (G-EMHD) [78℄.Chapter 2 of the thesis provides a detail derivation of the G-EMHD model [78℄.The salient aspe
ts of the G-EMHD equations are dis
ussed in detail. Furthermore,various limits of G-EMHD equations in redu
ed spatial dimension and simpli�edele
tron �ow 
on�guration are also dis
ussed in this 
hapter. In Chapter 3 wedes
ribe in detail the numeri
al pro
edure adopted for simulating the G-EMHDequations. The G-EMHD equations 
an be 
ast in the form of 
onve
tive equationwith appropriate sour
e term. We use the �ux 
orre
ted s
heme [79℄ to evolve theG-EMHD equations in time. The main 
hallenge appears when at ea
h step ofevolution one has to evaluate the magneti
 �eld/
onve
tive velo
ity. This involvessolving a Helmholtz kind of equation whose 
oe�
ient is a fun
tion of spa
e.In Chapter 4 we present our observations on 2-D G-EMHD simulations [78℄ forthe simpli�ed 
ase where the ele
tron 
urrent �ow is 
on�ned in the 2-D symmetryplane. Our obje
tive being to study the role of plasma density inhomogeneity onthe ele
tron 
urrent pulse propagation, we 
hose exa
t 
urrent pulse solutions ofthe homogeneous EMHD as initial 
ondition and made them evolve through in-10



Chapter 1: Introdu
tionhomogeneous plasma density. The nonlinear EMHD solutions are of two varieties[65℄. One has monopolar magneti
 �eld 
on�guration and represents rotating ele
-tron 
urrents. This is a stationary solution of EMHD. The EMHD also permitstraveling solutions with dipolar magneti
 �elds. These dipoles move with 
onstantaxial speed and have a 
urrent 
on�guration whi
h mo
ks up a spatially sepa-rated forward ele
tron 
urrent along the 
entral axis and return shielding 
urrentat the edges. A variety of inhomogeneous plasma density pro�les were 
hosen forstudying the propagation of these 
urrent pulses. The numeri
al studies show (i)that the stru
tures a
quire an additional drift in the presen
e of density inhomo-geneity whi
h is transverse to the magneti
 �eld and the density gradient (ii) Thedipole 
an penetrate inside a high density plasma region but is unable to 
omeout from there. It thus gets trapped within a high plasma density region. (iii)While the dipole stru
ture passes through the density inhomogeneity to penetratethe high density region, it forms magneti
 sho
ks and/or sharp 
urrent layers [80℄.A threshold 
riteria is formulated for trapping vs. transmission of the stru
tures[81℄. The trapping of the dipole 
urrent pulse stru
ture in high density regionindi
ates the violation of time reversal invarian
e and is suggestive of a dissipativeme
hanism at work. Indeed it is shown in Chapter 5 that a strong energy dis-sipation is asso
iated with the magneti
 sho
k whi
h form at the inhomogeneitylayer when the dipole stru
ture enters the high density region. It is shown thatthe energy dissipation is independent of the magnitude and the 
hara
ter of thedissipation present in the system. This provides a novel 
ollision - less s
hemefor the energy dissipation of ele
tron 
urrent pulse in plasma. The ele
trons area good sour
e of energy as they 
an be easily a

elerated to high energies. Ahigh energy ele
tron whose 
lassi
al Rutherford 
ollision 
ross se
tion is knownto fall drasti
ally with in
reasing energy. But with the help of this me
hanismof energy dissipation we 
an still deposit its energy e�
iently. Furthermore, theele
trons 
an be used to heat overdense plasma region where lasers are unable topenetrate. This is pre
isely the situation in the 
ontext of Fast Ignition (FI) laserfusion [5℄. This relevan
e of the density inhomogeneity based ele
tron stoppingme
hanism to the frontline 
on
ept of fast ignition laser fusion experiment is alsoshown in detail in Chapter 5. In the limit of small and/or negligible ele
tron -ion 
ollisions the Kelvin - Helmholtz destabilization of the sharp 
urrent layerswhi
h form at the density inhomogeneity would produ
e anomalous vis
osity and11
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tionwould be instrumental in energy dissipation. The generation of turbulen
e andanomalous vis
osity have been shown earlier in the 
ontext of homogeneous 3-DEMHD simulations for sharp ele
tron 
urrent layers [53℄. In Chapter 6 we showthe pro
ess of KH destabilization of sharp 
urrent layers in the presen
e of densityinhomogeneity in 2-D. The 2-D 
ase as expe
ted the KH destabilization leads tothe formation of 
oherent pattern in the 
ase of G-EMHD as well, whi
h 
an betra
ed to the existen
e of two integral square invariants supported by the system[81℄. In Chapter 7 we dis
uss another appli
ation where the density inhomogene-ity has an important role. Often one wants to 
ollimate and guide the ele
tron
urrent inside a plasma. There have been many proposals of espe
ially stru
turedtargets prepared of di�erent materials of di�erent resistivity [62, 63℄. Su
h targetswould neither be easy to prepare nor 
an they be employed with ease in ea
h andevery experiment. Again a proper tailoring of the plasma density o�ers an easiera

essible s
heme. We illustrate this by pla
ing arbitrary shaped wire like densityinhomogeneous stru
ture along the path of the ele
tron 
urrent pulse stru
ture. Itis observed that the 
urrent �ows along the path de�ned by the inhomogeneouspath. In an experiment [64℄ at ILE, Osaka, Japan the energeti
 ele
trons gener-ated at the 
riti
al density layer were guided with the help of solid 
arbon wire.The experiment showed that the ele
trons moved along the wire, as the wire wastilted the path of the ele
trons 
hanged a

ordingly. We feel that inhomogeneousplasma density spontaneously 
reated by the ionization of the wire by the ele
tronsis responsible for this.We summarize our work in Chapter 8 and provide dis
ussions for the futures
ope of the thesis.

12



Chapter 2The Generalized Ele
tronMagnetohydrodynami
 ( G-EMHD )ModelThe propagation of fast ele
tron 
urrent pulse stru
tures through an inhomoge-neous plasma medium is the prime 
on
ern of this thesis. For this purpose we seeka �uid des
ription of the plasma under the framework of EMHD domain. TheEMHD model [1, 2, 3, 4℄ des
ribes the evolution of magnetized ele
tron �uid in ahomogeneous plasma. We, therefore, present in this 
hapter the generalization ofthe EMHD des
ription to a plasma with inhomogeneous density. The new modelis termed as the Generalized EMHD (G-EMHD) model [78℄. The dis
ussion ofsalient aspe
ts of the G-EMHD model along with the integral 
onservations sup-ported by the set of G-EMHD model equations is provided. The simpli�
ation ofthe G-EMHD model in redu
ed spatial dimensions as well as that of simple 2-Dele
tron �ow 
on�gurations are also presented.2.1 Introdu
tionThe well known single �uid model known as Ele
tron - Magnetohydrodynami
s(EMHD) provides a suitable des
ription of the fast dynami
al response of ele
tronspe
ies in a homogeneous plasma. The EMHD model treats the positively 
hargedions as a stati
 neutralizing ba
kground. The 
oupled set of ele
tron �uid evolution13



Chapter 2: The Generalized Ele
tron Magnetohydrodynami
 ....along with the Maxwell's equation de�ne the EMHD model. The model ignoresthe displa
ement 
urrent 
ontribution in the Ampere's law. This is valid when thespa
e 
harge related e�e
ts 
an be 
onsidered to be negligible and/or the phasespeed asso
iated with the phenomena of interest is slower than that of the speedof light. The typi
al time s
ales are thus 
hosen to be slower than the ele
tronplasma period making the 
ontinuity equation for the ele
tron density �u
tuationirrelevant. The Ampere's law then dire
tly relates the 
urrent of the system tothe 
url of magneti
 �eld. Sin
e the ions are at rest, then the entire 
urrent inplasma is only due to the �ow of ele
tron spe
ies. Thus for a uniform plasma the
urrent is dire
tly proportional to the ele
tron velo
ity. The 
ombination of theele
tron �uid momentum and the Maxwell set of equations thus get simpli�ed andthe system 
an be represented entirely in terms of the magneti
 �eld evolutionequation.In a real s
enario the plasma 
an often be inhomogeneous. Thus the 
oe�
ientrelating the 
url of magneti
 �eld with the ele
tron velo
ity in the Ampere's Lawbe
omes spa
e dependent. This spa
e dependent part alters the evolution equationsigni�
antly. This is the genesis of the G-EMHD model whose derivation is illus-trated in the next se
tion. The 
onsequen
es of the density inhomogeneity termswill be explored in the subsequent 
hapters by simulating the G-EMHD modelequations [78, 80, 81℄.2.2 Derivation of G-EMHD Model EquationsThe G-EMHD model is a generalization of the Ele
tron Magnetohydrodynami
sfor the 
ase when the ba
kground plasma density is inhomogeneous. The G-EMHDmodel, therefore, also represents the same range of length and time s
ales for whi
hEMHD is typi
ally applied. Even though the ba
kground plasma density is takento be inhomogeneous, the density perturbations are ignored as in EMHD. Thusthe displa
ement 
urrent as well as the ele
tron 
ontinuity equations are ignoredin this 
ase too, under the approximation of
ω ≪ ωpe, ω

2
pe/ωce

14



Chapter 2: The Generalized Ele
tron Magnetohydrodynami
 ....Here ω represents the typi
al time period of the phenomena under 
onsideration.The ele
tron plasma frequen
y and the gyrofrequen
y is represented by ωpe =

4πne2/me and ωce = eB0/mec respe
tively. Here B0 represents the magnitude ofmagneti
 �eld and n is the ba
kground plasma density. When the ba
kgroundplasma density n is inhomogeneous, the plasma frequen
y is de�ned in a lo
alsense.2.2.1 G-EMHD Model EquationsThe ions being stati
 the equations asso
iated with ion motion, viz., 
ontinuityand momentum are irrelevant. Furthermore, sin
e 
harge density �u
tuation areignored within the EMHD domain of time s
ales, we 
onsider the ele
tron momen-tum equation alone for the evolution. A 
old plasma has been 
onsidered in ourderivation. Thus the pressure term is ignored in the ele
tron momentum equation.
me

[

∂ ~Ve
∂t

+
(

~Ve· ∇
)

~Ve

]

= −e
[

~E +
~Ve × ~B

c

]

−meν ~Ve (2.1)Here ν denotes the ele
tron - ion 
ollision frequen
y. Expressing the ele
tri
 �eld
~E and the magneti
 �eld ve
tor ~B in terms of s
alar and ve
tor potentials andthen taking the 
url of Eq. (2.1) one obtains the following equation :

∂
(

∇× ~P
)

∂t
= ∇×

(

~Ve × (∇× ~P )
)

− ν∇× ~Ve (2.2)Here ~P = ~Ve−e ~A/mec is the generalized momentum 
ontaining both ele
tron �owvelo
ity Ve as well as the ve
tor �eld ~A. Thus Eq. (2.2) provides an evolutionequation for ∇× ~P = ∇× ~Ve− e ~B/mec : a 
ombination of the 
url of the ele
tronvelo
ity and the magneti
 �eld. We seek another equation relating the ve
tors
~Ve and ~B from the approximate form (obtained after ignoring the displa
ement
urrent) of the Ampere's law. Thus from ∇× ~B = (4π/c) ~J we have

~Ve = −
(

c

4πnee

)

∇× ~B (2.3)
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Chapter 2: The Generalized Ele
tron Magnetohydrodynami
 ....Upto this stage the derivation of G-EMHD equations are identi
al with those ofthe EMHD model. The di�eren
e arises now when the 
url of the ele
tron velo
itygiven by Eq. (2.3) is taken for expressing ∇ × ~P entirely in terms of magneti
�eld ~B ve
tor. There is an extra term whi
h arises due to the nonuniformity ofthe plasma density (and hen
e ne as well) as plasma is quasineutral. De�ning
~G = (mec/e)∇× ~P we have

~G =
d2e0
n

∇2 ~B +
d2e0
n2

∇n× (∇× ~B)− ~B (2.4)Here n = ne/n0 (where n0 is a 
onstant typi
al value 
hosen to normalize thedensity), d2e0 = c2/ω2
pe0 is the ele
tron skin depth at n0, (where ω2

pe0 = 4πn0e
2/meis the square of ele
tron plasma frequen
y 
orresponding to the plasma density

(n0)). From Eq. (2.4) it is 
lear that in addition to the spa
e dependent 
oe�
ient
1/n of ∇2 ~B we have an extra density gradient dependent term appearing in theexpression of ~G. The impa
t of this term on the evolution of �elds would be seenin the subsequent Chapters.We 
hoose to normalize the magneti
 �eld ~B by a typi
al value B0, time by the
orresponding ele
tron gyro period ω−1

ce = (eB0/mec)
−1, length by de0 ( de�nedabove ) to obtain the following normalized evolution equation for the G-EMHDmodel [78℄:

∂~g

∂t
= ∇×

(

~V × ~g
)

− η

(

∇2 ~B

n
+

1

n2
∇n×∇× ~B

)

~g =
1

n
∇2 ~B +

1

n2
∇n× (∇× ~B)− ~B; ~V = −∇× ~B

n
(2.5)Here, ~g and ~V are normalized �elds ~G and ~Ve respe
tively. The �eld ~B in Eq.(2.5) though having the same symbol as before is the normalized magneti
 �eldand η = ν/ωce is normalized resistivity.2.2.2 G-EMHD Model in 2-DThe G-EMHD model Eq. (2.5) gets simpli�ed when the variation of the �eldsare assumed to be 
on�ned in a 2-D plane. We 
onsider êp, êq and ês as theright handed triad of unit ve
tors and take the symmetry axis to be along ês.16



Chapter 2: The Generalized Ele
tron Magnetohydrodynami
 ....The magneti
 �eld being divergen
eless 
an be expressed in terms of two s
alar�elds in 2-D as ~B = bês + ês × ∇ψ. The ele
tron velo
ity 
an be written as
~V = −(∇ × ~B)/n = (ês × ∇b)/n − ês∇2ψ/n ; the �rst term in the velo
ityexpression 
orresponds to the ele
tron �ow in the 2-D plane (de�ned by êp and
êq unit ve
tors) and the se
ond is asso
iated with the ele
tron �ow along thesymmetry dire
tion.The G-EMHD model in this 2-D 
ase redu
es to the following two 
oupled setof evolution equation for b and ψ.
∂

∂t

{

b−∇ ·
(∇b
n

)}

+ ês×∇b ·∇
[
1

n

{

b−∇ ·
(∇b
n

)}]

+ ês×∇ψ ·∇
(∇2ψ

n

)

= η∇ ·
(∇b
n

) (2.6)and
∂

∂t

{

ψ − ∇2ψ

n

}

+
ês ×∇b

n
· ∇
{

ψ − ∇2ψ

n

}

= η
∇2ψ

n
(2.7)A detailed derivation of Eqs. (2.6, 2.7) from the 3-D G-EMHD model (Eq. (2.5))has been given in Appendix A. For a 
onstant plasma density n the above equationsredu
es to the standard 2-D form of the EMHD model as expe
ted. We will mainly
on
entrate on the study of the 2-D form provided by Eqs. (2.6, 2.7) of the G-EMHD model. A further simpli�
ation of the model results when the ele
tron �owis 
on�ned in the 2-D plane. In this 
ase magneti
 �eld has only one 
omponentalong the symmetry dire
tion (ês). Thus only b �eld is �nite and ψ is zero for thisspe
i�
 
ase.2.3 Square Integral Invariants Supported by G-EMHD Model EquationsWe now seek 
onservation of integral quantities whi
h are supported by the G-EMHD equations. These 
onservation law provide 
ru
ial information on evolu-tion. They are also used to ben
hmark any numeri
al 
ode that one adopts/developsfor evolution studies.The G-EMHD model 
onserves total energy of the system in the non - dissipa-17



Chapter 2: The Generalized Ele
tron Magnetohydrodynami
 ....tive limit, η = 0. The total energy in this 
ase is the sum of ele
tron kineti
 andthe magneti
 �eld energy. Thus
1

2

d

dt

∫
{

b2 +
(∇b)2
n

+ (∇ψ)2 + ∇2ψ

n

}

d2 ~X =
dE

dt
= 0 (2.8)Where

E =
1

2

∫
{

b2 +
(∇b)2
n

+ (∇ψ)2 + (∇2ψ)2

n

}

d2 ~X (2.9)Here [b2+(∇ψ)2] represents the magneti
 energy and the remaining terms (1/n)[(∇b)2+
(∇2ψ)2] are the kineti
 energy asso
iated with the ele
tron motion of the G-EMHD�uid. The derivation for this 
onservation is given in Appendix A.In the simpli�ed limit when the ele
tron �ow is 
on�ned in the 2-D plane (the
ase of ψ = 0 dis
ussed in the previous se
tion) an additional square integralquantity shown below is 
onserved (see detailed derivation in Appendix A).

1

2

d

dt

∫
1

n

(

b−∇ ·
(∇b
n

))2

d2 ~X =
dH

dt
= 0 (2.10)The invariant H is like the enstrophy invariant of the 2-D hydrodynami
 �ow.Here, however, it has 
ontribution from the magneti
 �eld as well.2.4 G-EMHD Model in Various LimitsWe have seen that our G-EMHD model equations redu
e to the EMHD equationsin the limit of uniform plasma density. When the ele
tron �ow is 
on�ned tothe 2-D plane the model equations 
an be 
ast in terms of a single s
alar �eld

b 
orresponding to the magneti
 �eld in the dire
tion of symmetry and 
an bewritten as:
∂

∂t

(
b−∇2b

)
+ ês ×∇b · ∇

(
b−∇2b

)
= 0 (2.11)In this limit of uniform plasma density, this equation has the same form as theHasegawa - Mima (HM) equation [82℄ whi
h is obtained for the des
ription of lowfrequen
y plasma behavior.The hydrodynami
 2-D �uid evolution equation results when the typi
al s
ale18



Chapter 2: The Generalized Ele
tron Magnetohydrodynami
 ....lengths are shorter than the ele
tron skin depth, i.e. when b < ∇2b. In thislimit the ele
tron kineti
 energy dominates over the magneti
 �eld energy and theele
tron behaves like a neutral hydrodynami
 �uid.2.5 SummaryA generalized �uid model (G-EMHD) for the depi
tion of magnetized ele
tron �owin a non - uniform plasma has been obtained. In 2-D the G-EMHD model has beenshown to redu
e to a 
oupled set of evolution equation amidst two s
alar �elds rep-resenting magneti
 �eld and vetor potential 
omponent along symmetry dire
tion.For a simpli�ed 
ase when the ele
tron �ow is 
on�ned in 2-D plane the evolutionequation of G-EMHD model redu
es to a single equation of evolution of magneti
�eld 
omponent along symmetry dire
tion. The G-EMHD equations 
onserve totalenergy of the system in the non-dissipative limit. An additional square integralinvariant in 2-D (similar to enstrophy 
onservation in 2-D neutral hydrodynami
�uid) is also supported by G-EMHD for the spe
ial 
ase when ele
tron �ow is
on�ned in the 2-D plane.
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Chapter 3Des
ription of Numeri
al S
heme forthe Evolution of 2-D G-EMHDModel EquationsIn this Chapter we des
ribe in detail the numeri
al pro
edure adopted for sim-ulating the 2-D G-EMHD equations [78, 80, 81℄. The 2-D G-EMHD Eqs. (2.6)and (2.7) 
an be 
ast in the form of 
onve
tive equation for those �elds whi
hare essentially obtained by the a
tion of Helmholtz like operator (se
ond orderspatial derivative equation having spa
e dependent 
oe�
ients) on b and ψ �eldsintrodu
ed in Chapter 2 of the thesis. These 
onve
tive equations also have sour
eterms. A �ux 
orre
ted s
heme has been used to evolve the G-EMHD equations intime. The main 
hallenge appears when at ea
h time step of evolution one has toinvert the Helmholtz like operator (with spa
e dependent 
oe�
ients ) to evaluatethe magneti
 �eld and the 
orresponding 
onve
tive velo
ity.3.1 Introdu
tionThe G-EMHD model in 2-D is a 
oupled set of equations between two s
alar�elds b and ψ whi
h are the magneti
 �eld and the ve
tor potential 
omponentrespe
tively, along the symmetry dire
tion ês. The evolution equation for Ωb and
Ωψ given by

Ωb =

{

b−∇ ·
(∇b
n

)}

=|| A || b (3.1)20



Chapter 3: Des
ription of Numeri
al S
heme for the Evolution of 2D ....and
Ωψ =

{

ψ − ∇2ψ

n

}

=|| B || ψ (3.2)respe
tively are of the form of 
onve
tive equations.
∂Ωb
∂t

+∇ ·
(
ês ×∇b

n
Ωb

)

= ∇ · [(ês ×∇ψ)Ωψ] (3.3)and,
∂Ωψ
∂t

+
ês ×∇b

n
· ∇Ωψ = 0 (3.4)From Eqs. (3.3) and (3.4) it is 
lear that the quantities Ωb and Ωψ get 
onve
tedby the in - plane ele
tron velo
ity of ~V⊥ = (ês×∇b)/n. The evolution of Ωb (whi
h
an be looked upon as the 
omponent of generalized vorti
ity along the symmetrydire
tion) has a sour
e term in the right hand side. Unlike 2-D hydrodynami
�ow in this 
ase the generalized vorti
ity has a sour
e term in the presen
e of ψand ∇2ψ, i.e. in the presen
e of ele
tron �ow along ês. The generalized vortexstret
hing arises here from the 
url of ~J × ~B for
e. It should be noted that whenthe ele
tron �ow is 
on�ned in the 2-D symmetry plane, ψ is zero and there isno sour
e in the Ωb evolution. Eq. (3.4) shows the evolution of the 
omponent(along the symmetry axis ês) of 
onjugate momentum Ωψ (having 
ontributionboth from �eld as well as the ele
tron velo
ity part). It 
an be seen that Ωψ ismerely 
onve
ted in the 2-D plane and has no sour
e in its evolution. The symbols

|| A || and || B || are the short hand notations for the operators relating b with Ωband ψ with Ωψ in Eq. (3.1) and Eq. (3.2) respe
tively.3.2 Numeri
al S
heme for Nonlinear 2-D G-EMHDModelEqs. (3.3) and (3.4) are evolved using the �ux 
orre
ted s
heme of Boris et al. [79℄.A 
olle
tion of FORTRAN subroutines LCPFCT (Laboratory for ComputationalPhysi
s, Flux-Corre
ted Transport) implements "Flux-Corre
ted Transport"algorithm to solve one dimensional generalized 
onve
tive transport equation invarious geometries. We employ these suite of subroutines using time splittingte
hnique to evolve the 2-D system of Eqs. (3.3) and (3.4). In some earlier studies21
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heme for the Evolution of 2D ....[54, 72℄ related to EMHD model system, this pro
edure has been su

essfullyimplemented. In the EMHD system n being uniform b and ψ 
an be obtained byinverting the Helmholtz operator || O ||

|| O || b = b−∇2b = Ωb; || O || ψ = ψ −∇2ψ = Ωψat ea
h time step on
e Ωb and Ωψ are from the evolution of Eqs. (3.3) and (3.4).Standard Helmholtz Solvers [83℄ are available and were used for this purpose inthese earlier studies [54, 72℄. On
e b is known, the 
onve
tive velo
ity is evaluatedusing relation ~V⊥ = ês×∇b to evaluate the value Ωb and Ωψ at the next time step.Thus this 
ompletes the entire loop of evolution.In our G-EMHD 
ase [78℄, however, the operators (|| A || & || B ||) relating
b to Ωb and ψ to Ωψ respe
tively, have a 
ompli
ated form than that of a simpleHelmholtz system [83℄. The 
oe�
ients of b and ψ that form the operators (||
A || & || B ||) are spa
e dependent. This is so be
ause we are 
onsidering density
(n) to be inhomogeneous. Therefore, the standard routines for solving Helmholtzequation 
an not be used for this parti
ular 
ase. We have implemented a dire
tpro
edure wherein the spa
e dependent operator is expressed in the form of amatrix in the 2-D dis
retized spa
e. The inversion of the operator matrix and itsmultipli
ation with the ve
tor formed with the values of Ωb and Ωψ at all the gridpoints gives us the solution for b and ψ from their respe
tive equations. We providea detailed des
ription of the method below.The 2-D spa
e in the x−y plane (
hoosing ẑ as the symmetry axis) is dis
retizedas shown in Fig. (3.1). The �eld variables b(x, y), ψ(x, y), n(x, y), Ωb(x, y) and
Ωψ(x, y) being fun
tions of the x, y spa
e are de�ned at the grid points at the
enter of ea
h 
ell in Fig. (3.1). The x and y dimensions of the simulation box
Lx and Ly are dis
retized in Nx and Ny grid points as shown in Fig. (3.1). Ea
hgrid point 
an be represented by the 
ombination of running index i and j, whi
htake values from 1 to Nx and 1 to Ny respe
tively. Thus the �eld variables at anylo
ation are represented by p(x, y) = p(i, j). Where p stands for the �eld variables.The operators || A || and || B || 
orresponding to Ωb and Ωψ respe
tively, havese
ond order spatial derivatives. Using the 
entered di�eren
e s
heme for therepresentation of the se
ond order spatial derivative it 
an be shown that theseoperators 
onne
t the �eld variables at point (i, j) with those at 4 neighbouring22
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2 Nx

1

2

Ny

Nx−1

Ny−1

j
(1,j)

1

y

x

(i,j) (i+1,j)(i−1,j)

(i,j−1)

(i,j+1)

(Nx,j)

(Nx,j−1)

(Nx,j+1)

(Nx−1,j)

i =

j 
=Figure 3.1: This is the simulation spa
e in x − y plane. The 
ir
le represents thegrid points where the equilibrium value for the variables is to be assigned in thesimulation. The derivative of the �elds (b, ψ) inside of the boundary, for exampleat (i, j) are 
al
ulated by the neighbouring points using the 
entral di�eren
ings
heme. As in the simulation the periodi
 boundary 
ondition is 
onsidered. Sofor the boundary points (Nx, j) the derivative of the �elds 
an be 
al
ulated byusing the points (1, j) as is shown in the �gure.points (i− 1, j), (i+ 1, j) (for se
ond order derivative along x) and (i, j − 1) and

(i, j + 1) (for se
ond order derivative along y) as shown in the Fig. (3.1). Thusequations || A || b = Ωb and || B || ψ = Ωψ relates Ωb and Ωψ at ea
h of the spatialpoint (i, j) with 4 neighbouring distin
t points of the �eld b and ψ respe
tively.Su
h a relationship 
an be expressed in terms of a matrix representation for theoperators || A || and || B || where the �elds b and ψ in the 2-D spa
e are 
ast asve
tors [b] and [ψ] having single distin
t index l for ea
h spatial point of the 2-Dspa
e as shown in Fig. (3.2). The index l thus varies from 1 to Nx × Ny. Thematrix 
orresponding to operators || A || and || B || has a dimension of N2
x ×N2

y .We now illustrate how the two matri
es are de�ned. 23
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heme for the Evolution of 2D ....The equation || A || b = Ωb in an expanded form 
an be written as
b− 1

n

∂2b

∂x2
− 1

n

∂2b

∂y2
+

1

n2

∂n

∂x

∂b

∂x
+

1

n2

∂n

∂y

∂b

∂y
= Ωb (3.5)In the dis
rete 2-D spa
e the equation takes the form of

b(i,j) −
[
b(i+1,j) − 2b(i,j) + b(i−1,j)

n(i,j)∆2
x

]

−
[
b(i,j+1) − 2b(i,j) + b(i,j−1)

n(i,j)∆2
y

]

+

n
′

x(i,j)

n2
(i,j)

[
b(i+1,j) − b(i−1,j)

2∆x

]

+
n

′

y(i,j)

n2
(i,j)

[
b(i,j+1) − b(i,j−1)

2∆y

]

= Ωb(i,j)Or equivalently
(
1/2n2

(i,j)∆
2
x

) (

−2n(i,j) + n
′

x(i,j)
∆x

)

b(i+1,j)−
(
1/2n2

(i,j)∆
2
x

) (

2n(i,j) + n
′

x(i,j)
∆x

)

b(i−1,j)

+
(
1/2n2

(i,j)∆
2
x∆

2
y

) (
2n2

(i,j)∆x
2∆y2 + 4n(i,j)∆y

2 + 4n(i,j)∆x
2
)
b(i,j) +

(
1/2n2

(i,j)∆
2
y

)

(

2n(i,j) − n
′

y(i,j)
∆y

)

b(i,j+1) −
(
1/2n2

i,j∆
2
y

) (

2n(i,j) + n
′

y(i,j)
∆y

)

b(i,j−1) = Ωb(i,j)(3.6)The spatial index for the �elds has been written as a su�x within small bra
ketsand the su�x x and y denote the variable with respe
t to whi
h di�erentiation hasbeen taken. In the above expression ∆x & ∆y are grid size along x & y dire
tionrespe
tively. We now represent the �eld in 2-D spa
e as a one dimensional ve
tor.To a
hieve this we de�ne a running index
l = Ny (i− 1) + j for i = 1, 2, ..., Nx ;j = 1, 2, ..., NyThe value of l 
orresponding to ea
h grid point has been shown in Fig. (3.2).It is 
lear from the expanded dis
retized form of the Eq. (3.6) that the matrixrepresenting operator || A || will in general have �nite main diagonal elements(A(l, l) non zero), two diagonals in the immediate neighbourhood of the maindiagonal as �nite (A(l, l±1) non zero) and two more (displa
ed by ∆l = ±Ny ,i.e.

A(l, l±Ny)) as �nite. Furthermore, the elements 
onne
ting the boundary pointsof the �elds b need to be de�ned properly so as to be 
onsistent with periodi
boundary 
ondition that has been adopted for all the simulations presented inthis thesis work. The plasma density pro�le n(x, y) is known and 
hosen to have24
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heme for the Evolution of 2D ....di�erent spatial pro�les for various problems that have been investigated in thesubsequent Chapters. The spatial pro�le of Ωb is known at ea
h time step fromthe evolution equation and hen
e it is also a given fun
tion of spa
e. Therefore,the �eld b is determined from
A[b] = [Ωb] =⇒ [b] = A−1[Ωb] (3.7)The elements of the matrix A are as follows:

1

2

Ny

Ny−1 Ny−1

Ny 2Ny

1 2

1l =

i =

2Ny−1

Ny+1

Nx

y

x

l

l−1

l+1

l+Nyl−Ny

2 Ny+2

Nx−1

(Nx−2)Ny+2
(Nx−1)Ny+2

(Nx−2)Ny+1   (Nx−1)Ny+1

NxNy−1

NxNy

(Nx−2)Ny

(Nx−1)Ny

j

j

(Nx−11)Ny+j

j 
=

(Nx−2)Ny+j

(Nx−1)Ny+j−1

(Nx−1)Ny+j+1

Figure 3.2: This �gure represents the redu
tion of the 2D grid spa
e (i, j) in onedimensional spa
e (l). That is obtained by using the relation l = (i−1)Ny+j where
i = 1, 2, ..., Nx and j = 1, 2, ..., Ny. The index l is running along the y dire
tion asis shown in the �gure. Thus in this new representation the 
onse
utive two gridpoints along the x -dire
tion is displa
ed by the Ny no. of grid points while alongthe y dire
tion they are separated only by a single grid point as is shown at thepoint l.Main diagonal element A(l, l) 25
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A(l, l) =

(
1/2n2

(i,j)∆
2
x∆

2
y

) (
2n2

(i,j)∆
2
x∆

2
y + 4n(i,j)∆

2
y + 4n(i,j)∆

2
x

)

i = 1, 2, 3, ..., Nx; j = 1, 2, 3, ..., NyUpper diagonal elements A(l, l + 1)

A(l, l + 1) =
(
1/2n2

(i,j)∆
2
y

) (

2n(i,j) − n
′

y(i,j)
∆y

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

A(l, l + 1) =
(
1/2n2

(1,j)∆
2
y

) (

2n(1,j) − n
′

y(1,j)
∆y

)

j = 2, 3, ..., Ny − 1

A(l, l + 1) =
(
1/2n2

(Nx,j)∆
2
y

) (

2n(Nx,j) − n
′

y(Nx,j)
∆y

)

j = 2, 3, ..., Ny − 1

A(l, l + 1) =
(
1/2n2

(i,1)∆
2
y

) (

2n(i,1) − n
′

y(i,1)
∆y

)

i = 1, 2, 3, ..., Nx

A(l, l − (Ny − 1)) =
(

1/2n2
(i,Ny)∆

2
y

)(

2n(i,Ny) − n
′

y(i,Ny)
∆y

)

i = 1, 2, 3, ..., NxLower diagonal elements A(l, l − 1)

A(l, l− 1) = −
(
1/2n2

i,j∆
2
y

) (

2n(i,j) + n
′

y(i,j)
∆y

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

A(l, l − 1) = −
(
1/2n2

1,j∆
2
y

) (

2n(1,j) + n
′

y(1,j)
∆y

)

j = 2, 3, ..., Ny − 1

A(l, l − 1) = −
(
1/2n2

Nx,j∆
2
y

) (

2n(Nx,j) + n
′

y(Nx,j)
∆y

)

j = 2, 3, ..., Ny − 1

A(l, l +Ny − 1) = −
(
1/2n2

i,1∆
2
y

) (

2n(i,1) + n
′

y(i,1)
∆y

)

i = 1, 2, 3, ..., Nx 26
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A(l, l − 1) = −

(

1/2n2
i,Ny

∆2
y

)(

2n(i,Ny) + n
′

y(i,Ny)
∆y

)

i = 1, 2, 3, ..., NxDispla
ed diagonal elements A(l, l +Ny)

A(l, l +Ny) =
(
1/2n2

(i,j)∆
2
x

) (

−2n(i,j) + n
′

x(i,j)
∆x

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

A(l, l +Ny) =
(
1/2n2

(1,j)∆
2
x

) (

−2n(1,j) + n
′

x(1,j)
∆x

)

j = 1, 2, 3, ..., Ny

A(l, l− (Nx − 1)Ny) =
(
1/2n2

(Nx,j)∆
2
x

) (

−2n(Nx,j) + n
′

x(Nx,j)
∆x

)

j = 1, 2, 3, ..., Ny

A(l, l +Ny) =
(
1/2n2

(i,1)∆
2
x

) (

−2n(i,1) + n
′

x(i,1)
∆x

)

i = 2, 3, ..., Nx − 1

A(l, l +Ny) =
(

1/2n2
(i,Ny)∆

2
x

)(

−2n(i,Ny) + n
′

x(i,Ny)
∆x

)

i = 2, 3, ..., Nx − 1Displa
ed diagonal elements A(l, l −Ny)

A(l, l −Ny) = −
(
1/2n2

(i,j)∆
2
x

) (

2n(i,j) + n
′

x(i,j)
∆x

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

A(l, l + (Nx − 1)Ny) = −
(
1/2n2

(1,j)∆
2
x

) (

2n(1,j) + n
′

x(1,j)
∆x

)

j = 1, 2, 3, ..., Ny

A(l, l−Ny) = −
(
1/2n2

(Nx,j)∆
2
x

) (

2n(Nx,j) + n
′

x(Nx,j)
∆x

)

j = 1, 2, 3, ..., Ny

A(l, l −Ny) = −
(
1/2n2

(i,1)∆
2
x

) (

2n(i,1) + n
′

x(i,1)
∆x

)

i = 2, 3, ..., Nx − 1 27
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A(l, l −Ny) = −

(

1/2n2
(i,Ny)∆

2
x

)(

2n(i,Ny) + n
′

x(i,Ny)
∆x

)

i = 2, 3, ..., Nx − 1The matrix B relating ψ to Ωψ is also similarly de�ned by representing the operatorequation || B || ψ = Ωψ in dis
retized 2-D spa
e. The elements of this matrix are :Main diagonal element B(l, l)
B(l, l) = −

(
1 + 2/n(i,j)∆

2
x + 2/n(i,j)∆

2
y

)

i = 1, 2, 3, ..., Nx; j = 1, 2, 3, ..., NyUpper diagonal elements B(l, l + 1)

B(l, l + 1) =
(
−1/n(i,j)∆

2
y

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

B(l, l + 1) =
(
−1/n(1,j)∆

2
y

)

j = 2, 3, ..., Ny − 1

B(l, l + 1) =
(
−1/n(Nx,j)∆

2
y

)

j = 2, 3, ..., Ny − 1

B(l, l + 1) =
(
−1/n(i,1)∆

2
y

)

i = 1, 2, 3, ..., Nx

B(l, l − (Ny − 1)) =
(
−1/n(i,Ny)∆

2
y

)

i = 1, 2, 3, ..., NxLower diagonal elements B(l, l − 1)

B(l, l − 1) =
(
−1/n(i,j)∆

2
y

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

B(l, l − 1) =
(
−1/n(1,j)∆

2
y

)

j = 2, 3, ..., Ny − 1 28
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B(l, l − 1) =

(
−1/n(Nx,j)∆

2
y

)

j = 2, 3, ..., Ny − 1

B(l, l +Ny − 1) =
(
−1/n(i,1)∆

2
y

)

i = 1, 2, 3, ..., Nx

B(l, l − 1) =
(
−1/n(i,Ny)∆

2
y

)

i = 1, 2, 3, ..., NxDispla
ed diagonal elements B(l, l +Ny)

B(l, l +Ny) =
(
−1/n(i,j)∆

2
x

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

B(l, l +Ny) =
(
−1/n(1,j)∆

2
x

)

j = 1, 2, 3, ..., Ny

B(l, l − (Nx − 1)Ny) =
(
−1/n(Nx,j)∆

2
x

)

j = 1, 2, 3, ..., Ny

B(l, l +Ny) =
(
−1/n(i,1)∆

2
x

)

i = 2, 3, ..., Nx − 1

B(l, l +Ny) =
(
−1/n(i,Ny)∆

2
x

)

i = 2, 3, ..., Nx − 1Displa
ed diagonal elements B(l, l −Ny)

B(l, l −Ny) =
(
−1/n(i,j)∆

2
y

)

i = 2, 3, ..., Nx − 1; j = 2, 3, ..., Ny − 1

B(l, l + (Nx − 1)Ny) =
(
−1/n(1,j)∆

2
y

)

j = 1, 2, 3, ..., Ny

B(l, l −Ny) =
(
−1/n(Nx,j)∆

2
y
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j = 1, 2, 3, ..., Ny

B(l, l −Ny) =
(
−1/n(i,1)∆

2
y

)

i = 2, 3, ..., Nx − 1

B(l, l −Ny) =
(
−1/n(i,Ny)∆

2
y

)

i = 2, 3, ..., Nx − 1This pro
ess of dire
t evaluation of the b and ψ �elds by the inversion of thematri
es A and B is very expensive in terms of memory as is evident from the sizeof the matri
es whi
h depends on the square of the total number of grid points (viz.
N2
x × N2

y ). Thus at higher spatial resolutions and for the 
ase of 3-D studies thismethod would be prohibitively memory extensive and it 
annot be implemented.This is a major drawba
k of this parti
ular s
heme.The development of an alternative s
heme whi
h uses the standard Helmholtzsolver [83℄ iteratively to solve for the spatially dependent part of the operatorneeds to be developed. This is an important task and would be taken up as afuture extension of the work presented in this thesis.3.3 Validation and Ben
hmarking of the CodeOur 
ode for the G-EMHD evolution has been ben
hmarked by reprodu
ing thewell known simulation results for the uniform density EMHD 
ase. The simulation
ases for the evolution of the various 
on�guration of the 
urrent pulse stru
turesin EMHD shown in the paper by Das et al. [36℄ by a pseudo spe
tral 
ode has beenreprodu
ed by our simulation method. For non uniform density the de�nition ofthe two operator matri
es and the evaluation of their inverse has been tested by
he
king out known analyti
 
ases. Furthermore, the energy integral is tra
ked intime to as
ertain the appropriate resolution ne
essary for the simulation.3.4 SummaryA numeri
al s
heme for solving the 2-D G-EMHD set of equations [78℄ has beenpresented. The �ux 
orre
ted s
heme of Boris et al. [79℄ has been implemented30
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heme for the Evolution of 2D ....for the time evolution of the 2-D G-EMHD set of equations. The 2-D G-EMHDmodel equations are a set of two 
oupled equations, representing the evolution ofthe generalized vorti
ity and generalized momentum along the symmetry dire
tion.At the end of ea
h time step (in the evolution of the 2-D G-EMHD equations) weobtain the values of the generalized vorti
ity and generalized momentum alongthe symmetry dire
tion. The evaluation of magneti
 �eld and the ve
tor poten-tial 
omponent(along the symmetry dire
tion) from these at ea
h step requiressolving a se
ond order di�erential equation in spa
e with inhomogeneous 
oe�-
ients. We have implemented a brute for
e s
heme. Whereby this evaluation isdone by inverting the matrix representing the operator 
orresponding to this dif-ferential equation. It should be noted that this pro
edure is prohibitively memoryexpensive and has indeed restraint our simulations to low spatial resolution. Adevelopment relaxation s
heme in whi
h the standard Helmholtz operator is usedfor the evaluation of se
ond order derivatives and the 
ontribution from the spa
edependent part is evaluated iteratively is desirable.

31



Chapter 4G-EMHD Simulation: FundamentalResults on Current PulsePropagation through InhomogeneityThis 
hapter of the thesis is devoted towards exploring various fundamental aspe
tsof the ele
tron 
urrent transport through an inhomogeneous plasma medium. Forthis purpose we have employed the 2-D G-EMHD model [78℄ equations in thesimulation. For simpli
ity the ele
tron 
urrent �ow is 
onsidered to be 
on�nedin the 2-D plane only. The obje
tive being to understand the role of plasmadensity inhomogeneity on the ele
tron 
urrent pulse propagation, exa
t 
urrentpulse solutions of the homogeneous EMHD plasma [36, 65℄ were 
hosen as initial
onditions for study. Both varieties of nonlinear EMHD solutions (i) stationaryrotating ele
tron 
urrents with monopolar magneti
 �eld 
on�guration and (ii)traveling solutions with dipolar magneti
 �elds were 
hosen as initial states. Avariety of inhomogeneous plasma density pro�les were 
hosen for studying thepropagation of these 
urrent pulses. The studies have resulted in a wide varietyof fundamental observations whi
h have been brie�y listed out here. These resultsare presented in detail in the various se
tions of this Chapter.In short, our studies have shown that the 
urrent pulse stru
tures a
quire anadditional drift in the presen
e of density inhomogeneity. This drift is transverseto both the magneti
 �eld and the density gradient. Thus the stationary monopo-lar stru
tures, in the presen
e of inhomogeneity, drift along the 
onstant density32
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ontours and are unable to move a
ross the density gradient. The dipolar stru
turewhi
h have a 
onstant axial speed in a homogeneous plasma, on the other hand
an penetrate inside a high density plasma region but are unable to 
ome out ina region with lower plasma density. They thus often get trapped within a highplasma density region. The 
riteria for trapping vs. transmission of the 
urrentpulses have been 
learly identi�ed from simulations.4.1 Preliminary Des
riptionWe fo
us here on novel fundamental features asso
iated with the transport ofele
tron 
urrent pulse stru
ture in an inhomogeneous plasma. For this purpose wesimulate the simpli�ed form (ele
tron 
urrent �ow is 
on�ned in the 2-D plane) ofthe 2-D G-EMHD model equations with spe
i�ed plasma density inhomogeneity[78℄. The initial 
urrent pulse 
on�guration is 
hosen as exa
t solutions of the 2-Dnonlinear EMHD equations for homogeneous plasma, so as to be able to 
learlyidentify the role of density inhomogeneity during evolution.4.1.1 Choi
e of Initial ConditionsThere are two varieties of exa
t nonlinear solutions of EMHD equations [65℄ whi
hare used as initial 
on�guration. One of them 
orresponds to a stationary radiallysymmetri
 rotating ele
tron 
urrent with monopolar magneti
 �eld (the magneti
�eld essentially has the same sign, positive or negative depending on whether theele
tron 
urrent rotates 
lo
kwise or 
ounter
lo
kwise respe
tively). The otherstru
ture moves with an axial velo
ity and has a dipolar magneti
 
on�guration.MonopolesThe monopoles being radially symmetri
 solutions in the 2-D x− y plane (here ẑhas been 
hosen as the symmetry axis) we have 
hosen them to have the followingform:
b(x, y, t = 0) = A exp(−(x− x0)

2

σ2
x

− (y − y0)
2

σ2
y

) (4.1)where A, σx and σy are the 
onstants de
iding the strength as well as the spatialextent of the stru
ture respe
tively. The values of x0 and y0 �x the lo
ation of the
entral point of monopole in the 2-D spa
e. 33



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Figure 4.1: This is the 
onstant 
ontour of the s
alar �eld (b) forming a monopole.The asso
iated parameters of the monopole are A = 5.5, x0 = 0.0, y0 = 3.0, σx =
1.0 and σy = 1.0.DipolesThe other solutions of 2-D EMHD equations are in the form of dipoles whi
h areknown to translate at a 
onstant axial speed. These solutions have been obtainedby Isi
henko et al. [65℄ by seeking stationarity in a frame moving with a velo
ity ualong some dire
tion (say y for de�niteness) . The EMHD equation in the movingframe 
an then be expressed in terms of a Poisson bra
ket [b − ∇2b, b − ux] = 0whose solutions 
an be obtained by seeking b−∇2b = f(b−ux). Here f 
an be anyfun
tion of its argument. Isi
henko et al. [65℄ sought lo
alized solutions by 
hoosingseparate fun
tional forms for f in two regions. For radii r =

√

(x2 + y2) ≤ r0, fwas 
hosen as a linear fun
tion and for r > r0, f = 0. This leads to the followingform for the solution
bi(r, θ, t = 0) = [d1J1(k1r) + d2] cos(θ) (4.2)

bo(r, θ, t = 0) = d3K1(r)cos(θ) (4.3)34
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hoi
e of r0 typi
ally de�nes the spatial extent of the dipole stru
ture. The
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Figure 4.2: This is the 
onstant 
ontour of s
alar �eld b forming a dipole within thespatial extant of r0 ≈ 1 and having the axial velo
ity u = 0.1 along the negative y-dire
tion. The left lobe of the dipole 
orresponds to positive value of amplitudewhile the right one 
orresponds to negative value of amplitude.
oe�
ients d1, d2 and d3 of the solution are obtained by mat
hing the solution andits derivative at r = r0 as des
ribed in the Appendix B.4.1.2 Choi
e of Density Inhomogeneity Pro�leWe have 
hosen various kinds of density inhomogeneities. We provide a list belowof the density pro�les that we have adopted in our studies. One of them areessentially slab 
on�guration for whi
h the 
onstant density 
ontours are straightlines along one axis. In this 
ase the variation of density pro�le is 
onsidered to bea fun
tion of only one of the 
artesian 
oordinates, e.g. y in our 
ase. In the othervariety we 
hoose 
onstant density 
ontours in the shape of 
ir
les, i.e the densityis radially symmetri
. These two slab and radially symmetri
 density pro�les arerepresented by the letter S and R respe
tively. The spatial variations for the slab35
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ir
ular pro�les are 
hosen to have either tangent hyperboli
 dependen
e or agaussian form whi
h are identi�ed by letters T and G respe
tively. Furthermore,when this spatial density pro�le has a higher density 
ompared to that of theba
kground region in the simulation spa
e it is 
alled a density hump and denotedby the letter H, and when it has a lower density than the ba
kground region we
all it a 
avity C. Thus there are 8 possible 
ombinations (STH, STC, SGH,SGC, RTH, RTC, RGH, RGC) that have typi
ally been 
onsidered in oursimulations. These pro�les have been shown in the following Figures (4.3), (4.4),(4.5), (4.6), (4.7), (4.8), (4.9) and (4.10) respe
tively. The fun
tional form of thesedensity pro�les have also been given.Pro�le : STH & STC
n(x, y) = h1 − h2 tanh







√

(y − y0)
2 /σ2

y − w

σ




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Figure 4.3: STH density pro�le (h1 = 5.5, h2 = 4.5, w = 2.0, y0 = 0.0, σy =
1.0, σ = 0.5) 36
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Figure 4.4: STC density pro�le (h1 = 0.6, h2 = −0.4, w = 2.0, y0 = 0.0, σy =
1.0, σ = 0.5)

Pro�le : SGH & SGC
n(x, y) = h1 + h2 exp

(
− (y − y0)

2 /σ2
) (4.5)
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Figure 4.5: SGH density pro�le (h1 = 1.0, h2 = 9.0, y0 = 0.0, σ2 = 3.0) 37
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Figure 4.6: SGC density pro�le (h1 = 1.0, h2 = −0.9, y0 = 0.0, σ2 = 3.0)

Pro�le : RTH & RTC
n(x, y) = h1 − h2 tanh
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Figure 4.7: RTH density pro�le (h1 = 5.5, h2 = 4.5, w = 2.0, x0 = 0.0, y0 =
0.0, σx = 1.0, σy = 1.0, σ = 0.5) 38
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Figure 4.8: RTC density pro�le (h1 = 0.6, h2 = −0.4, w = 2.0, x0 = 0.0, y0 =
0.0, σx = 1.0, σy = 1.0, σ = 0.5)

Pro�le : RGH & RGC
n(x, y) = h1 + h2 exp

{
− (x− x0)

2 /σ2
x − (y − y0)

2 /σ2
y

} (4.7)
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Figure 4.9: RGH density pro�le (h1 = 1.0, h2 = 9.0, x0 = 0.0, y0 = 0.0, σx =√
3.0, σy =

√
3.0) 39
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Figure 4.10: RGC density pro�le (h1 = 1.0, h2 = −0.9, x0 = 0.0, y0 = 0.0, σx =√
3.0, σy =

√
3.0)4.2 Inhomogeneity Indu
ed Drift Velo
ityWe pla
e the monopolar 
urrent pulse stru
ture in the inhomogeneous region ofthe plasma for the various density pro�les. We report the evolution here for thespe
i�
 density pro�le STH de�ned in the previous se
tion. We observe that themonopole whi
h is otherwise stationary in a homogeneous plasma a
quires a driftvelo
ity in the presen
e of density inhomogeneity. This drift is transverse to thedensity gradient. The monopole is seen to be moving along the 
onstant density
ontours. In Fig. (4.11) the propagation of the monopole in the density pro�leof STH has been shown at various times. For the 
ase shown in Fig. (4.11) wehave 
hosen the simulation box of size Lx = Ly = 10 and x and y 
oordinatesrange from −5.0 to 5.0. For the plasma density we have 
hosen h1 = 5.5, h2 = 4.5,

w = 2.5, y0 = 0.0, σy = 1.0 and σ = 1.0 for the pro�le STH . The maximum andminimum value of density is therefore nmax = 10 and nmin = 1 respe
tively. Thelo
al ele
tron skin depth therefore ranges from 0.3 ≤ de (= 1/
√
n) ≤ 1.0. The highdensity plasma region here is 
on�ned within | y |≤ w for all x. The density fallssharply within a length δy = σ from 10 to unity beyond | y |∼ w.The additional drift 
aused by the density inhomogeneity 
an be understoodfrom the simpli�ed form of the 2-D G-EMHD equation by ignoring ele
tron inertia.Therefore, by repla
ing Ωb → b in the Eq. (3.3) of the evolution of the generalized40
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Figure 4.11: The propagation of the monopolar stru
ture (
olor 
ontours) in aninhomogeneous plasma density is depi
ted by showing the lo
ation of the stru
tureat various times in the di�erent subplots of the �gure. The thi
k bla
k linesrepresent the plasma density 
ontour. In this 
ase the plasma density is 
hosen tobe a fun
tion of y only. The 
entral y region of width w = ±2.0 
orresponds to ahigh density (10 times of the density at the edge region)vorti
ity (Ωb) along the symmetry dire
tion we obtain the redu
ed equation as
∂b

∂t
+
bẑ ×∇n

n2
· ∇b = 0 (4.8)The equation suggests the presen
e of an additional drift velo
ity whi
h is of theform of

~vd =
bẑ ×∇n

n2
(4.9)For the density pro�le of Eq. (4.4), n is a fun
tion of y alone and thus the monopole

41
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tion, and the magnitude of the drift velo
ity is given by
vdx = b

∂

∂y

(
1

n

) (4.10)From the subplots of the Fig. (4.11), the value of vdx evaluated by observing thedistan
e propagated by the stru
ture along x is 0.0307. This is obtained by theexpression
vdx =

xt=135 − xt=60

∆t
(4.11)where xt=135 ≈ 1.9 and xt=60 ≈ 4.2 are the position of monopole at the time

t = 135 and t = 60 respe
tively, and is taken from the last two subplots of the Fig.(4.11). This observed drift velo
ity of the monopole is 
lose to that estimated fromthe Eq. (4.10) for the ele
tron drift velo
ity, as b typi
ally ranges from 0.0233 to
0.1997 in the monopolar stru
ture and ∂(1/n)/∂y ranges from 0.1131 to 0.448 overthe stru
ture. This implies that the value of vdx from the expression 
an be about
0.0026 to 0.089. The observed value lies within this range. In fa
t the average of
vdx evaluated over the y extent of the stru
ture (through whi
h the stru
ture wouldtranslate) turns out to be very 
lose 0.0369 to the observed velo
ity. This 
learlyindi
ates that the monopole is essentially propagating with the drift velo
ity of
< vdx >. Thus the dire
tion as well as the magnitude of the propagation velo
ityis observed to mat
h with the expression given by Eq. (4.9).It should be noted that the other density gradient dependent terms arisingthrough the �nite ele
tron inertia related terms are typi
ally smaller in magnitudeand they generally 
ontribute as a sour
e 
ausing modi�
ation of the spatial pro�leof the magneti
 stru
ture.It should be noted that the dipole solutions translate even in a homogeneousplasma. Thus in the presen
e of inhomogeneity their propagation will depend onthe superposition of their axial speed and the density gradient indu
ed additionaldrift velo
ity dis
ussed above. Clearly, this would then lead to ri
her 
lass ofphenomena. We have investigated this, and report it in the next se
tion. One ofthe main 
on
lusion is that the dipole 
an penetrate inside a density hump butavoids density 
avities.

42
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e the dipoles 
an propagate by themselves in a homogeneous plasma we 
anpla
e it at any initial lo
ation, and observe as it propagates towards the regionwhere plasma density is inhomogeneous. We �rst report our simulations here forthe STH density pro�le. Initially the dipole is pla
ed at a lo
ation away fromthe density gradient region, i.e. where the plasma density is low and uniform with
n = 1. It is oriented in su
h a fashion that it propagates towards the higher densityplasma region. An interesting aspe
t of the evolution is that the dipolar stru
ture

Figure 4.12: Various stages of the propagation of a dipolar stru
ture through aninhomogeneous density plasma has been shown. The inhomogeneity in plasmadensity is similar to that of Fig. (4.11) in this 
ase. The �gure 
learly shows thepenetration of the dipole through the plasma density inhomogeneity to enter thehigh density region. The lobes of the dipole stru
ture are squeezed towards ea
hother as they pass through the inhomogeneous region. However, on
e inside thehigh density homogeneous region they again a
quire a balan
ed form.is observed to 
ross past the inhomogeneous density and enters the high plasmadensity region. The subplots of Fig. (4.12) 
learly illustrate the penetration of the43
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ture in the high density plasma region. (For the plots of Fig. (4.12) theasso
iated parameters of the density pro�le STH are h1 = 5.5, h2 = 4.5, w = 2.0,
σy = 1.0, y0 = 0.0 and σ = 0.4. The box length in this 
ase is Lx = Ly = 4π.) Weobserve that at the inhomogeneous density region the axial translational velo
ity ofthe dipole in
reases 
onsiderably. The two lobes get squeezed towards ea
h otherforming a sho
k like stru
ture in the dire
tion transverse to the density gradient.This behavior appears to be in stark 
ontrast to the propagation 
hara
teristi
sof the monopolar stru
tures, whi
h merely show a movement transverse to thedensity gradient dire
tion. This observation of dipole propagation 
an, however, beunderstood readily. For the dipole stru
ture approa
hing the high density plasmaregion ( along de
reasing y, in Fig. (4.12) ) the left lobe 
orresponds to positivevalues of b whereas the right lobe has negative b values. Clearly, when the two lobesof the dipole en
ounter the density inhomogeneity the left lobe has a drift velo
itydue to the density inhomogeneity towards right (positive x dire
tion) whereas theright one drifts towards the negative x dire
tion. This squeezes the two lobes ofthe dipoles 
loser in x. As a result the size of the lobes as well as their separationgets signi�
antly redu
ed. This also 
auses an enhan
ement in the magnitude of
| b | of the two lobes. The axial propagation velo
ity of dipole is known to in
reasewith in
reasing | b | and redu
ed separation between its lobes. Thus, the redu
eddistan
e between the lobes as well as the enhan
ed amplitude of | b | results in anin
reased axial propagation velo
ity of the dipole. This a

elerates the penetrationof the dipolar stru
ture in the high density plasma region.Let us now study in detail the behavior of the dipole as it enters the highdensity plasma region. Though the shape of the dipole is 
onsiderably distortedwhile it traverses the inhomogeneous plasma region, but on
e it is inside the highdensity homogeneous plasma region it regains the familiar dipolar form. The s
alelength of the dipole, in the high density region 
hanges by the same fa
tor as theratio of the skin depth of the high and low density regions. For instan
e , initiallythe size of the dipole was 
hosen to have r0 = 1.0 and at t = 690 when it is
ompletely inside the high density region, a redu
tion by a fa
tor of approximately
1/3 in the size is observed. We thus observe that the dipolar stru
tures are fairlyrobust. Even after en
ountering a strong density inhomogeneity, on
e in the regionof homogeneous plasma they adjust smoothly to the new value of the skin depththat 
orresponds to the high density region. It should be noted that for the 
ase44
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hes the de
reasing plasma density at the other end,the e�e
t is entirely di�erent. The sign of ∇n being opposite, in this 
ase the lobesseparate due to the density gradient indu
ed drift. Thus, the dipole separates andforms two monopoles at this end. These monopoles then drift along the 
onstantdensity 
ontours. Thus the stru
ture does not 
ome out of the high density plasmaregion.Thus we see that the dipole penetrates the high density region but is unableto 
ome out of the other end where the density again de
reases. In the above
ase we had started from an exa
t solution of EMHD equations in a low densityplasma. We have then let the stru
ture evolve towards high density region. It isobserved that on
e inside the high density region the stru
ture does not 
ome outfrom it. We have also simulated the 
ase with STC density pro�le. Here, thedipole solution en
ounters a density 
avity in its path. The evolution is shown inthe plot of Fig. (4.13). The 
entral region | y |≤ w of the box 
orresponds to a lowdensity plasma region n = 0.2 and h1 = 0.6, h2 = −0.4 and other parameters aresame as that of Fig. (4.12). In this 
ase as the stru
ture en
ounters the densityinhomogeneity region with de
reasing plasma density the lobes show a separationdue to the density gradient indu
ed drift. The separation results in a redu
edaxial velo
ity of the dipole, whi
h ultimately diminishes to zero as the separationdistan
e between the two lobes ex
eeds the ele
tron skin depth. The two lobes thenseparately move as two monopolar stru
tures, transverse to the density gradient.Thus, this too illustrates that the dipole is unable to penetrate the region of lowerplasma density.The same features are exhibited even when the dipole en
ounters a densitypro�le with a �nite transverse extent. We demonstrate this here for the RTH andRGC density pro�les. The various stages of the simulation have been presentedin Figs. (4.14) and (4.15). The 
hoi
e of parameters for simulation with the RTHdensity pro�le are h1 = 5.5; h2 = 4.5;w = 2.0; x0 = 0.0; y0 = 0.0; σx = 1.0; σy =

1.0; σ = 0.4. For this parti
ular density pro�le a dipole is pla
ed with its 
enteron the line x = 0 at the positive value of y = 4.0. The axis of the dipole isparallel to the y axis as 
an be seen from the subplot at t = 0 of Fig. (4.14).The dipole velo
ity is dire
ted along the negative y axis so that it approa
hes thehigh density plasma region. It 
an be seen from the subsequent subplots thatdue to the density inhomogeneity related drift velo
ity of the individual lobes,45
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Figure 4.13: In this �gure the dipole is shown to approa
h a density 
avity (lowerdensity plasma region). It 
an be observed that the dipole is unable to penetratethe lower density plasma. The two lobes of the dipole get separated transverse tothe density gradient dire
tion and subsequently they evolve as separate monopolarstru
tures.the two lobes of the dipole approa
h ea
h other. This enhan
es the axial dipolarvelo
ity and the dipole stru
ture enters the high density region. On
e inside thehomogeneous high density region it translates along its axis whi
h is along thediameter of the 
ir
ular high density region. Upon rea
hing the other end thedipole again en
ounters the inhomogeneous plasma density region. However, thedire
tion of the density gradient is now opposite to the one it en
ountered whileentering the high density region. Thus, in this region the two lobes of the dipoleseparate from ea
h other. As the separation between the lobes ex
eeds the skindepth distan
e the lobes a
t like individual monopolar stru
tures and move alongthe 
onstant density 
ontours. In this 
ase the density gradient being along theradial dire
tion, the two stru
tures move along the perimeter of the 
ir
le. They46
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Figure 4.14: The trapping of the dipolar stru
ture in a high density plasma hasbeen illustrated in this �gure. A high density plasma with a 
ir
ular pro�le in the
x−y plane represented by the thi
k bla
k 
ontour lines are depi
ted on the varioussubplots. A dipole stru
ture 
an be seen to penetrate the high density region.However, on
e inside the high density region it 
ontinues to remain trapped in thisregion.thus again 
ome in 
lose 
onta
t at the same point of the 
ir
le from where they hadentered the high density region. At this pla
e they again form a dipolar stru
tureand translate along the diameter of the high density region. The simulations showthat this 
y
le keeps repeating.We have also studied the 
ase of Gaussian radial 
avity ( RGC pro�le) pla
edat the 
enter of the simulation box. We show dipole propagation in the Fig. (4.15)for this RGC pro�le. The 
hoi
e of parameters for simulation with this densitypro�le are h1 = 1.0; h2 = −1.0; x0 = 0.0; y0 = 0.0; σx = 1.0; σy = 1.0. For thisparameters the ratio of the maximum depth of density pro�le to the ba
kgroundamplitude of the density is around ≈ 0.2. In this 
ase the dipole is pla
ed initially47
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h lobe of the dipole is 
hosen insu
h a manner that it is propagating towards the 
avity. When it passes throughthe density inhomogeneity, ea
h lobe of the dipole starts separating untill the axialvelo
ity of the dipole be
omes zero. After that ea
h lobe behave like a monopoletraversing around the outside periphery of the 
avity as shown in the subplots at
t = 360.0, 420, 495.0 of Fig. (4.15). At later time it is observed that both lobesmeet at other end of the 
avity where they again form stru
ture of the dipole andpropagate towards negative y axis. These studies have thus 
learly demonstratedthat a dipole 
urrent pulse 
an penetrate and remain trapped inside a high densityplasma region.

Figure 4.15: The propagation of the dipole through an inhomogeneous densitypro�le when it form a 
avity within the �nite region of the spa
e as is shown inthe ea
h subplot of the �gure with the bla
k thi
k 
ontours. In this 
ase the dipolestru
ture do not get to penetrate inside the 
avity.We now provide a 
on
lusive eviden
e of the fa
t that the penetrated stru
turein the high density exhibits the usual traits of the known dipole solutions of the48
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e, the dipoles upon head-on 
ollisions are known toex
hange partners and propagate in a dire
tion orthogonal to their initial prop-agation [36℄. We show this happens also for the dipolar stru
tures whi
h enterthe high density hump and 
ollide within the high density region with the otherdipole. Choosing the RTH pro�le for density we pla
e two dipoles initially at thelo
ation of (0, 4.08) and (0,−4.08) as shown in the subplot at t = 0 of the Fig.(4.16). Both these dipoles enter the high density plasma region and after 
olli-sion are seen to ex
hange their partners forming the new dipolar 
on�guration andpropagate away from ea
h other in a dire
tion perpendi
ular to the original dire
-tion of propagation. This is evident in subplots at t = 675.0, 990.0, 1290.0. On
e

Figure 4.16: This �gure represents the 
ollisional behavior of two dipoles in thepresen
e of density inhomogeneity when the RTH density pro�le is 
onsidered inthe simulation.they rea
h the high density edge the lobes of these newly formed dipole get sep-arated and they move along the 
onstant density 
ontours as monopoles (subplotat t = 2040.0). The monopolar lobes again meet (subplot at t = 300.0 ) forming49



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....dipoles and propagate radially inward. This 
y
le also keeps getting repeated.4.4 Trapping vs. Transmission through High Den-sity RegionThe propagation 
hara
teristi
s of the dipolar stru
ture studied in various 
ontextsin the pre
eding se
tion 
learly demonstrates that EMHD magneti
 stru
tures ofdipolar form 
an enter a high density plasma region. However, on
e inside ahigh density plasma region it remains trapped there. One would, however, expe
tthat a weaker inhomogeneity and/or a smaller density redu
tion may transmitthe 
urrent pulse. In this se
tion we seek features whi
h provide a quantitative
riteria for trapping vs. transmission. We 
arry out studies with the two pro�lesSTH and SGH by 
hoosing various values of their parameters. These parametersessentially de
ide the inhomogeneity s
ale, the total density 
hange and the widthof the inhomogeneity region.Our studies show that while the form of inhomogeneity does indeed determinewhether the stru
ture is transmitted or remains trapped, the strength of 
urrentpulse pattern has no role in this. In Fig. (4.17) we show the snapshots at varioustimes from some of our 
ase studies for the pro�le SGH. We show the propagationof a dipole with axial speed u = 0.01 (this velo
ity is the propagation speed of thestru
ture in a homogeneous plasma where the density n0 = 1.0) for the subplots of�rst, se
ond and third 
olumn. The fourth 
olumn 
orrespond to a dipole whi
hpropagates at a faster speed of u = 0.1. The thi
k bla
k line in the subplotsshow the lo
ation where the density gradient is the maximum. The parameters
on
erning the density pro�le SGH for the four di�erent 
ases 
orresponding tothe four 
olumns of Fig. (4.17) are (a) h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 0.7071, (b)
h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 1.0,(
) h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 1.414 and(d) h1 = 1.0, h2 = 1.0, y0 = 0.0, σ = 0.7071 respe
tively. It is observed that thedipole is trapped for both the 
ases (a) and (d). This 
an be dis
erned from thefa
t that for these two 
ases the two lobes get separated by a distan
e more thanthe typi
al value of the ele
tron skin depth as they try to 
ome out from the otherend. The separation of the lobes with distan
es larger than the typi
al value ofskin depth essentially redu
es the dipolar stru
ture to a set of monopoles. On the50
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Figure 4.17: The four 
olumns of the subplots represent four di�erent 
ases ofpropagation of 
urrent pulse stru
ture past the plasma density inhomogeneity.The detailed 
on�guration of the density pro�le and the 
urrent pulse stru
turefor ea
h of the four 
ases has been mentioned in the text. The thi
k dark straightlines in the plot show the 
onstant density 
ontour at the lo
ation of maximumgradient. The 
ases 
orresponding to the (a) and (d) 
olumns show trapping (lobesget separated upon rea
hing the other end ) and those for (
) and (d) 
olumnsshow transmission. In ea
h subplots, the red and blue lobe of the stru
ture impliespositive and negative amplitude of the magneti
 �eld dire
ted along the symmetrydire
tion ẑ, respe
tively.other hand for 
ases (b) and (
) the dipole is transmitted past the inhomogeneity.It should be noted that for 
ase (a) and 
ase (d) the inhomogeneity pro�le issimilar, however, the 
hosen 
urrent pulse stru
ture for (d) was moving 10 timesmore rapidly and hen
e had a higher magnitude of the magneti
 �eld asso
iatedwith itself. Even then we observe that for both 
ases the dipole gets trappedwithin the high density region. Several detailed studies have been 
arried outwith di�erent speeds of the in
oming dipole and all of them reveal that the dipolestru
ture gets trapped irrespe
tive of its speed and/or the maximum amplitude ofthe magneti
 �eld that it has. We also studied the prospe
t of trapping in 
ases(b) and (
) by 
hoosing di�erent dipolar pulse stru
tures. Here too no matter51



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....what the dipolar parameters were the stru
ture always got transmitted past theinhomogeneity. Su
h kind of studies have been 
arried out with pro�le STH also.The studies, therefore, 
learly illustrate that the trapping and/or transmission issolely dependent on the density pro�le and is not dependent on the 
urrent pulsepattern. Table 4.1: Pro�le SGH
h1 h2 σ2 L̂n/σ < Ln > /σ Status
1.0 1.0 0.9 1.8568 2.31 Untrap
1.0 1.0 1.0 1.8944 2.22 Untrap
1.0 1.0 1.5 1.8766 2.28 Untrap
1.0 1.0 2.0 1.8951 2.29 Untrap
1.0 1.1 3.0 1.7616 2.16 Trap
1.0 1.2 3.0 1.6733 2.02 TrapTo study the dependen
e of trapping and/or transmission 
hara
teristi
s onthe density pro�le we 
arried out a large number of studies with various 
hoi
es ofthe parameters asso
iated with the inhomogeneity. Both kinds of density pro�lesrepresented by Eqs. (4.4) and (4.5) are 
onsidered. The results for Pro�le SGHand Pro�le STH have been summarized in Table (4.1) and Table (4.2) respe
tively.Table 4.2: Pro�le STH

h1 h2 w σ L̂n/σ < Ln > /σ Status
2.5 1.5 2.0 0.4 1.666 2.13 Trap
2.5 1.5 1.0 0.4 1.666 2.19 Trap
1.5 0.5 2.0 0.4 3.0 4.02 Untrap
1.5 0.5 1.0 0.4 3.0 3.81 Untrap
2.5 1.5 1.0 0.6 1.666 2.19 Trap
2.5 1.5 1.0 0.8 1.666 2.18 Trap
3.5 2.5 2.0 0.4 1.40 1.81 Trap
5.5 4.5 2.0 0.4 1.20 1.63 Trap 52



Chapter 4: G-EMHD Simulation : Fundamental Results on Current ....For simulations shown in Table (4.2) we have 
hosen y0 = 0.0 and σy = 1.0.The value of other parameters for these studies have been mentioned in the tableitself. We introdu
e here a parameter Ln = n/∇n as the s
ale length for thedensity variation. It should be noted that for a linear density pro�le of the form
n0(y) = n00(1 + αy) , Ln = 1/α and is a 
onstant. For our 
hoi
e of density givenby pro�le SGH and STH , Ln would vary. The fastest rise in density wouldo

ur at a lo
ation where the value of Ln is minimum.The minimum value of density gradient s
ale length has been denoted by L̂n inour Tables (4.1) and (4.2). The typi
al measure for density s
ale length 
an also beobtained by evaluating the average Ln around its minimum value over a distan
e of
σ (As mentioned earlier the parameter σ, typi
ally represents the total extent of theregion where the density is inhomogeneous). We denote the average s
ale length ofdensity variation by < Ln > in our tables. The out
ome of the studies in terms ofwhether the 
urrent pulse stru
ture gets transmitted or remains trapped has alsobeen listed in these tables. The form of the 
urrent pulse used for 
arrying out thesimulations listed in the two tables were all identi
al. The interesting aspe
t worthnoting is that in all these studies, 
ases where trapping o

urs the ratio r = L̂n/σ(or r1 =< Ln > /σ), is smaller in 
omparison to those for whi
h transmission takespla
e. Thus whether a stru
ture will be trapped and/or transmitted is de
ided bythe ratio of Ln/σ, higher this ratio more are the 
han
es of transmission.From 
onsiderations of time reversal invarian
e of the 
ollision less G-EMHDequations, the 
urrent pulse stru
ture whi
h enters a lo
al high density region,should invariably 
ome out of the region from the other end. However, this doesnot happen and we observe that the stru
ture in some 
ases gets trapped withinthe high density region. The breaking of the time reversal invarian
e indi
ates thepresen
e of an underlying pro
ess of energy dissipation. We will see in the nextChapter that this is asso
iated with the 
urrent sho
k layer [80℄ that forms as thedipole enters the high density region.4.5 SummaryIn this Chapter the G-EMHD equations in 2-D were used to study numeri
ally theevolution and propagation of nonlinear 
oherent solutions of the EMHD equations53
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h depi
t ele
tron 
urrent pulses) in the presen
e of density inhomogeneity.The two varieties of 
oherent solutions (viz., the stationary monopolar solutionsand the traveling dipolar solutions) were 
hosen for the study. Interesting novelaspe
ts of their propagation were observed and analyzed. Our studies 
learlyshow that density inhomogeneity leads to an additional drift of the 
urrent pulsesolutions. This drift is along the 
onstant density 
ontours. The monopoles whi
hare stationary stru
tures in a homogeneous plasma thus move along the 
onstantdensity 
ontours of plasma. The dipoles whi
h already have a translational speedalong their axis in a homogeneous plasma show interesting behavior in the presen
eof inhomogeneity. Their propagation is now governed by the 
ombination of theiraxial drift and the drift due to the density inhomogeneity. The interplay betweenthese two drifts for dipole generates variety of possibilities. The dipole 
urrentpulses 
an move a
ross the density inhomogeneity to penetrate a high densityregion. However, on
e inside a high density region we observe that they remaintrapped there. The 
riteria for trapping vs. transmission was determined by usand was shown to be dependent on a parameter whi
h measures the ratio betweenthe typi
al density inhomogeneity s
ale length and the total distan
e traversed bythe stru
ture in the inhomogeneity.An important point to ponder here is that this parti
ular observation of trap-ping violates the time reversal invarian
e of the dynami
al equation. This suggeststhat there is some dissipative pro
ess at work. In fa
t while the stru
ture enters thehigh density plasma region it forms 
urrent sho
k stru
tures at the inhomogeneitylayer [ see Fig. (4.12)℄. The pro
ess of energy dissipation through sho
k formationand its relevan
e to the fast ignition s
heme will be dis
ussed in the Chapter 5.
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Chapter 5Collision - less Energy Dissipation ofEle
tron Current Pulse: Appli
ationto Fast IgnitionIn the previous Chapter 4 it is shown that an ele
tron 
urrent pulse with dipolarmagneti
 �eld 
an penetrate a high density plasma region but often it is unableto 
ome out in the low density plasma region. It thus gets trapped inside a highdensity plasma region. This indi
ates a violation of time reversal invarian
e andis suggestive of the presen
e of a dissipative me
hanism at work. In the presentChapter we show that indeed a strong energy dissipation o

urs as a result ofsharp 
urrent layer magneti
 sho
k formation while the pulse 
rosses the plasmadensity inhomogeneity layer to enter the high density region. This me
hanism ofenergy dissipation from the ele
tron 
urrent pulse is shown to be independent ofthe magnitude and the 
hara
ter of the dissipative pro
esses present in the system.Thus energy gets dissipated even from a 
ollision - less ele
tron 
urrent pulse viathis me
hanism.Ele
trons prove to be a good a

essible sour
e of energy, they 
an be easilya

elerated to high energies be
ause of their low mass. However, sin
e the Ruther-ford 
ollision 
ross se
tion of ele
trons diminishes rapidly with in
reasing energy ofele
trons, they 
an not be e�
iently employed for the task of energy deposition in aplasma. With this novel 
ollision - less me
hanism at work, however, they 
an nowbe suitably used for e�
ient heating of the plasma medium. Furthermore as the55



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....me
hanism is dependent on the inhomogeneity of the plasma density, it providesa method by whi
h a lo
alized heating of the plasma at a desirable lo
ation 
anbe maneuvered. The other advantage is that the ele
trons 
an be used to heat anoverdense region of plasma as well, where lasers 
an not penetrate and hen
e 
annot be employed. This is pre
isely the situation in the 
ontext of hot spot 
reationin Fast Ignition (FI) [5℄ laser fusion s
heme for ignition. The relevan
e of the pro-posed 
ollision - less me
hanism of energy dissipation to the frontline FI 
on
eptof laser fusion is shown in detail. The existing PIC simulations [29, 30, 32, 33℄ aswell as a re
ent experiment [84℄ 
ondu
ted at ILE Osaka provides strong supportfor the proposed 
ollision - less heating s
heme.5.1 Introdu
tionThe propagation of a short duration ele
tron 
urrent pulse is per
eived by plasmaas a propagating high frequen
y ele
tromagneti
 disturban
e. The plasma tries toshield itself from this disturban
e by indu
ing return 
urrents. This 
on�gurationof 
urrents in the plasma helps, as it ensures that ele
tron 
urrents ex
eedingthe Alfven limit [51℄ 
an also easily penetrate inside a plasma medium. Somesimulations have 
learly shown that the 
ombination of forward 
urrent (due toin
oming 
urrent pulse) and return shielding 
urrent of plasma, is unstable tofast ele
tromagneti
 instabilities known as Weibel instability [29℄. This instabilityseparates the forward and return 
urrents spatially. This leads to the formationof 
ylindri
al 
urrent 
hannel. The 
enter of 
ylindri
al 
hannel 
arries forward
urrent whi
h is surrounded by a 
ylindri
al shell of return plasma 
urrent. The�ow 
on�guration, thus varies along axial and radial dire
tion of the 
ylinder and
an be taken as independent of θ̂, the poloidal angle of the 
ylinder. Thus thisis essentially a 2-D 
urrent 
on�guration. Su
h a 
urrent 
on�guration produ
esonly poloidal θ̂ magneti
 �elds.There are typi
ally two kinds of ele
tron 
urrent pulses whi
h are exa
t solu-tions of the 2-D nonlinear EMHD system for homogeneous plasma as dis
ussed inChapter 4. These two varieties of solutions have been shown in the plot of Fig.(5.1). The top three subplots (a), (b) and (
) show the 
ontour plot of the asso
i-ated magneti
 �eld, the pro�le of magneti
 �eld and the ele
tron �ow at the mid56
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y = 0 se
tion of the stru
ture respe
tively for the monopolar ele
tron 
urrent pulse.These are radially symmetri
 rotating ele
tron 
urrent �ow patterns whi
h are non- propagating in a homogeneous plasma. The subplots (d), (e) and (f) 
orresponds

Figure 5.1: This is the s
hemati
 diagram for 
urrent pulse asso
iated with the 2-Dnonlinear solutions of Ele
tron Magnetohydrodynami
s (EMHD) model equations.Subplots (a), (b) and (
) show the 
ontour plot of the asso
iated magneti
 �eld,the pro�le of magneti
 �eld and the ele
tron �ow at the mid y = 0 se
tion of thestru
ture respe
tively for the monopolar. Subplots (d), (e) and (f) 
orresponds tothe same features for the dipolar stru
ture.to the same features for the dipolar solutions whi
h move with uniform axial speed
u in a homogeneous plasma. The speed u typi
ally in
reases with the maximumamplitude of | b | shown by the peak value in subplot (e) and it also in
reaseswith the in
reasing proximity of the two lobes. This dipolar solution 
an thusbe 
onsidered as a model for the �nite propagating ele
tron 
urrent pulse in theplasma for our studies. For these dipolar stru
tures the 
entral region (subplot(f))shows a forward (along the propagation dire
tion) 
urrent �ow whi
h bifur
atesand returns along both sides as a return 
urrent. The poloidal symmetry axis (θ̂)of the 
ylindri
al 
urrent 
hannel 
orresponds to the symmetry axis (ẑ) of slabgeometry of the 2-D EMHD system ( as 
onsidered for this thesis). The propagat-ing dire
tion (ŷ) of dipole 
orresponds to the axis of 
ylindri
al 
urrent 
hannel.57



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....We would study here the evolution of dipole 
urrent pattern and its total energy
ontent as it moves through inhomogeneous plasma density. For this purpose wehave employed the simpli�ed form of G-EMHD model equation [78℄.5.2 Sho
k Formation: Current Pulse Propagationthrough InhomogeneityThe Generalized Ele
tron Magnetohydrodynami
 (G-EMHD) model has been dis-
ussed in detail in Chapter 2. We employ the 2-D evolution equations assuming ẑbeing the symmetry axis. The ele
tron 
urrent �ow is 
on�ned in 2-D x− y planefor dipole as shown in subplot (f) of Fig. (5.1). In
orporating the e�e
t of 
ol-lisional dissipation through resistivity η and vis
osity in ele
tron �ow µ (this 
anbe either 
lassi
al and/or anomalous arising through turbulen
e) in the G-EMHDmodel we have:
∂Ωb
∂t

+
1

n
ẑ ×∇b · ∇Ωb = Ωb

∂b

∂x

∂

∂y

(
1

n

)

+ η∇2b− µ∇2∇2b
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n
∇2b+

1

n2

∂n

∂y

∂b

∂x
(5.1)Here plasma density (n) has been 
hosen to vary along ŷ, the dire
tion of 
urrentpulse propagation. The density has the STH pro�le des
ribed in Chapter 4 givenby.

n(x, y) = h1− h2 tanh
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


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


(5.2)Where h1, h2, y0, σy, w and σ are parameters whi
h de�ne this pro�le and havebeen 
hosen as 5.5, 4.5,−3.0, 1.0, 2.2 and 0.6 respe
tively. The pro�le thus hashomogeneous regions of both low (n = 1) as well as high densities (n = 10) inthe simulation domain separated by a spatial region in whi
h the density variessharply. As mentioned the dire
tion ŷ is also the propagation dire
tion of dipoleand it is pla
ed in a fashion su
h that it moves towards in
reasing plasma density.Fig. (5.2) shows the evolution of an initial 2-D dipolar 
on�guration of 
urrentpulse as it moves past an in
reasing plasma density. The simulations show thatas dipole en
ounters an in
reasing plasma density, a transverse drift velo
ity (dis-58
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Figure 5.2: The 
ontour plots of the magneti
 �eld b in the x − y plane is shownin subplots [a,b℄ (inertialess 
ase) [d,e℄ (full G-EMHD) at two di�erent times. Thenumbers (-2,0,2) on the axis of these plots show length in units of ele
tron skindepth (
orresponding to the low density plasma). The magneti
 �eld b pro�le in
x at the mid plane of the stru
ture in y has been depi
ted at various times insubplot (
) and (f) for inertialess and the full G-EMHD simulations respe
tively.The subplot (g) and (h) show the inhomogeneous plasma density pro�le throughwhi
h the dipolar stru
ture evolves. The 
ross × and the arrow → mark on thesesubplots show the initial lo
ation of the dipole for inertialess (dipole has no axialvelo
ity in this 
ase) and full G-EMHD simulations.
ussed in Chapter 4) given by ~vd = −b∂(1/n)/∂y is experien
ed by stru
ture. Thesign of magneti
 �eld (b) being opposite in both lobes, the lobes drift towards ea
hother while approa
hing a high density plasma region (see Fig. (5.3) for s
hemati
illustration ). This results in a 
ollision between two lobes resulting into a 
ur-rent sho
k formation. The sho
k formation 
an be 
learly seen from the 
onstant
ontour plots of b in Fig. (5.2). The sho
k forms even when ele
tron inertia isnegle
ted. To show this we have simulated the inertialess limit of Eq. (5.1). In theinertialess 
ase the sho
k stru
ture is more prominent. The dipole has no axial ve-lo
ity for inertialess 
ase. Thus for this 
ase the stru
ture has been pla
ed initiallyitself at a lo
ation where plasma density gradient is �nite (the lo
ation is high-59



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....lighted by × symbol in the density pro�le as shown in subplots (g,h) of Fig. (5.2)).For simulation with full G-EMHD equations in
luding ele
tron inertial terms thedipole has an axial translational speed. In this 
ase the lobes of dipole are pushed
loser to ea
h other, their size diminishes and the asso
iated maximum magneti
�eld in
reases, as a result of whi
h dipole translates faster through inhomogeneousregion. The stru
ture, therefore, keeps penetrating towards higher density regionand it also keeps getting sharper. However, on
e it rea
hes the plateau of highdensity side it again re-adjusts its shape to a dipolar form 
orresponding to lo
alskin depth.
dv vd

vd vd
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n∆

x

y l ~ de 

Gradient region

Gradient region

Homogeneous region (low amplitude )

Homogeneous region (low amplitude )

Homogeneous region (high amplitude)
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Figure 5.3: S
hemati
 diagram of the dynami
s of the dipole when it en
ountersthe density inhomogeneity (shown by a thi
k 
urved bla
k line that is varying alongthe y- dire
tion having di�erent region of inhomogeneity).
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Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....5.3 Evolution of Total Energy Asso
iated withCurrent PulseWe now look at the evolution of total energy asso
iated with 
urrent pulse as itmoves past inhomogeneity forming 
urrent sho
k stru
ture. The energy asso
iatedwith dipole stru
ture is sum of magneti
 and ele
tron kineti
 energy and is givenby the expression E =
∫ ∫

(b2+(∇b)2/n)dxdy, whi
h is 
onserved in the absen
e ofany dissipation. The 
hoi
e of η = µ = 0 ensures that there is no energy dissipationwhile stru
ture (resolved well by spatial grid) moves through homogeneous region.Our simulations indeed show that there is no 
hange in E while dipolar stru
tureis in the plateau region of low as well as high densities. The 
onstan
y of energy

Figure 5.4: Evolution of the total energy of the stru
ture for full G-EMHD simula-tions, as it propagates through the inhomogeneous plasma density (a) for variousgrid resolutions (b) for simulations with �nite resistivity parameter η and (
) with�nite vis
osity parameter µ in G-EMHD equations. A thi
k dashed verti
al lineshows the time when the dipole enters the inhomogeneous plasma density region.has also been tested in inhomogeneous region for those magneti
 
on�gurationswhi
h do not produ
e sho
k stru
tures (e.g. monopoles). We, however, observethat in this parti
ular 
ase when there is sho
k formation, as the dipolar magneti
stru
tures translate through inhomogeneous density region, the energy E exhibitsa sharp fall (∆E) as shown in subplot (a) of Fig. (5.4). The timing of this drop inenergy 
ontent of dipole is observed to 
oin
ide with interval when dipolar stru
turetranslates past inhomogeneous plasma density region. This sharp fall in energy isdue to the sho
k formation, whi
h 
annot be resolved adequately no matter how�ne one 
hooses the spatial resolution to be. The value of ∆E is typi
ally same61



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....for di�erent 
hoi
es of grid resolution ∆x, as 
an be seen from subplot (a) of Fig.(5.4) . The sho
k width essentially adjusts itself a

ording to grid resolution forthe runs with η = µ = 0. Sin
e ∆E is not sensitive to any 
hange in the valueof ∆x it shows that total energy dissipation is independent of the value of griddissipation.We have also 
arried out simulations with �nite and various values of η and
µ. The energy dissipation for these 
ases have been shown in subplots (b) and(
) of Fig. (5.4). It 
an be seen that in these 
ases the energy also dissipateswhile stru
ture passes through homogeneous region of low as well as high plasmadensities. However, the drop in energy while the stru
ture moves through theinhomogeneous density region remains approximately same for di�erent values of
η and µ. Also this ∆E 
ompares well with the 
ase of η = µ = 0 of subplot (a) ofthe same �gure, where only grid dissipation was operative. We thus �nd that theenergy dissipation is independent of the value as well as the form of dissipation.This, as argued below is due to a suitable adjustment of sho
k width lx withdissipation 
oe�
ient. So, even when the dissipation 
oe�
ient tends towardszero the total energy dissipation is �nite and of a 
onstant value.5.4 Energy Dissipation through Sho
k FormationWe now analyze the pro
ess of sho
k formation and magnitude of energy dissipationasso
iated with it. As the two lobes of the dipole approa
h ea
h other it leads tothe steepening of the ele
tron 
urrent gradients. We have shown that the sho
ksform even when one 
arries out the inertialess G-EMHD simulation. Thus, we
hoose to analyze the simpli�ed inertialess limit of the evolution equations forwhi
h Ωb = b and Eq. (5.1) gets simpli�ed to ∂b/∂t− b(∂b/∂x)∂(1/n)/∂y = η∇2b.For a simple density variation of the form ∂/∂y(1/n) = −K, (here K, the inverse ofthe normalized density s
ale length, is assumed to be a positive 
onstant with thenegative sign signifying an in
reasing plasma density with y) one obtains Burger'sequation. The Burger's equation is known to produ
e sho
k stru
tures. Sin
esho
k is along x , for small η, we have η∇2b ∼ η∂2b/∂x2. The analyti
al formof the sho
k stru
ture 
an be obtained by seeking stationarity in a frame movingwith a speed u ( detailed derivation of sho
k stru
ture has been given in Appendix62



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....C). Thus, upon repla
ing ∂/∂t by −u∂/∂x and integrating with respe
t to x weget in the inertialess limit
b(x) =

u

K
+
b0K − u

K
tanh

{
b0K − u

2

(
x

η
+K2

)} (5.3)We have used the 
ondition b = b0, and db/dx = 0 at the boundaries. Theparameter K2 is the se
ond 
onstant of integration to be determined from the
ondition x = −∞, b = b0. It is 
lear from the expression of b that the layer width
lx = 2η/(b0K−u) s
ales linearly with η . The rate of heat dissipation in this sharplayer would be given by

Q =

∫ a ∫ L ∫ lx

η(
∂b

∂x
)2dxdydz (5.4)The range of y = L (the sho
k length) and z (the third dimension) is the systemlength along this dimension = a. The x 
oordinate, however, has to be integratedover the layer thi
kness lx ∼ η. Retaining only b0K in 
omparison to u we obtainthe rate of energy dissipation in the sho
k stru
ture as

Q = η
b20aL

lx
=
b30KLa

2
=
b20a

2

2
KLve (5.5)Here we have repla
ed one of the b0 by ave to obtain the last equality. Here veis the in
oming ele
tron velo
ity. The independen
e of energy dissipation Q fromthe magnitude of 
lassi
al resistivity parameter η in the presen
e of sharp densitygradients is known as the EMHD resistan
e and has been 
onsidered in literatureearlier [1℄. Here we have demonstrated it expli
itly by numeri
al simulations.We next evaluate the fra
tion of the in
oming energy whi
h gets dissipated inthe sho
k stru
ture by this me
hanism. The in
oming rate of magneti
 energy in-�ux is EMag = (b20/2)vea

2, provided one assumes that the typi
al in
oming 
urrent
on�guration has identi
al extent in the two transverse dimensions (typi
ally, fora stru
ture of the size of ele
tron skin depth, both kineti
 and magneti
 energiesare of similar order). From Eq. (5.5) we see that a fra
tion (KL) of the in
om-ing magneti
 energy asso
iated with the 
urrent pulse gets dissipated in the sho
kstru
ture of length L. Thus, if the sho
k length is of the order of the inhomogeneitys
ale length K−1 then the entire in
oming magneti
 energy would get dissipated. 63



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....The ele
tron inertia related terms may play an interesting role of providinganomalous vis
osity for a 
ollision-less 
ase. As the density gradient indu
ed driftvelo
ity brings the two lobes of the dipoles towards ea
h other it generates asharp ele
tron velo
ity shear layer in the 
entral region. This sharp velo
ity shearregion is known to be sus
eptible to the Kelvin - Helmholtz (KH) like instability[54, 56℄ in the presen
e of ele
tron inertia related terms. This instability essentiallymanifests through ele
tron inertia dependent non-linearity ẑ × ∇b · ∇∇2b in theevolution Eq. (5.1) for G. The instability 
onverts the ele
tron �ow energy into�ne s
ale vorti
es. In 3-D the vortex �ows 
as
ade the energy towards �ner s
aleswhi
h would eventually dissipate into heat through ele
tron Landau damping inthe dire
tion parallel to the magneti
 �eld. This e�e
t 
an be modeled by ananomalous ele
tron vis
osity 
oe�
ient µ. In an earlier 3-D EMHD simulations [53℄it has been shown that the nonlinear stage of the velo
ity shear driven instabilityexhibits ele
tromagneti
 turbulen
e and produ
es an e�e
tive vis
osity µ. In the
ollisionless η = 0 
ase, this anomalous vis
osity µ, would play a 
ru
ial role andde�ne the sho
k width. Thus mo
king up the ele
tron inertia related e�e
ts byan e�e
tive vis
ous dissipation ∼ µ∇2∇2b we 
an write an approximate equationin the 
ollisionless limit as ∂b/∂t +Kb∂b/∂x = −µ∂4b/∂x4 The balan
e betweennonlinear and the dissipation term de�nes the sho
k width, whi
h now s
ales as
lx ∼ (µ/Kb)1/3. A net energy dissipation rate Q over a length L in this 
ase is
∼
∫
[µ(d2b/dx2)2dx]2πaL ∼ µ2πaLb2/l3x ∼ 2πaKLb3. Using, Ampere's law wehave b ∼ ave , whi
h gives

Q ∼ KLb2a2veThis leads to a similar 
on
lusion as before about the e�e
tiveness of the sho
k dis-sipation me
hanism and the independen
e of the magnitude of energy dissipationin the sho
k region to the anomalous vis
osity 
oe�
ient µ.It is interesting to note that the total dissipated energy Q depends on the sameratio, viz., KL = L/Ln whi
h de�nes the 
riteria for transmission vs. trapping inChapter 4. It thus 
learly shows that whenever the energy dissipation is higherthan some threshold the stru
ture remains trapped and is unable to get transmittedfrom the other end.
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Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....5.5 Oblique In
iden
e of Current Pulse on PlasmaDensity InhomogeneityIn our previous studies on the intera
tion of dipolar 
urrent pulse stru
ture withplasma density inhomogeneity we have 
onsidered the dipole axis (whi
h is alsothe propagation dire
tion of the 
urrent pulse) to be oriented along the dire
tionof ba
kground plasma inhomogeneity gradient. In a realisti
 
ase it would notbe possible to orient the propagation exa
tly along the inhomogeneity gradient.Here, we study the e�e
t of oblique in
iden
e, ( i.e. when the axis of the in
identdipole is 
hosen to be oriented at various angles with respe
t to the dire
tion ofthe inhomogeneity gradient) on the evolution.The inhomogeneous density pro�le has the form of STH des
ribed by Eq. (5.2).For these studies we have 
hosen the parameter values of h1 = 5.5, h2 = 4.5, y0 =

−2.5, σy = 0.0, w = 2.0, σ = 0.4. The dipolar 
urrent pulse stru
tures are pla
edinitially at the low density homogeneous region of the plasma as 
an be seen fromthe subplots of the topmost row in Fig. (5.5). The axis of the dipole in thesesubplots have been 
hosen to be in
lined at various angles θ with respe
t to the ŷ(the dire
tion of plasma density gradient). Due to the in
lination of the dipole axiswith respe
t to the density inhomogeneity, one of its lobes experien
es the plasmainhomogeneity earlier 
ompared to the other lobe. Also the drift ~vd dire
ted along
x̂ is no longer normal to the dipolar axis. This breaks the symmetry of earliersimulations presented in Chapter 4. As a resultant of this the axis of the dipoleturns, whi
h is evident from the subplots 
orresponding to subsequent times inFig. (5.5). The lobes ultimately even swit
h their lo
ation. The one in the leftside ends up on the right side. This would in prin
iple even reverse the axial drift,
ausing the dipole to re�e
t from the inhomogeneity. We, however, observe (inmost of the simulations that we have 
arried out so far ) that on
e the lobes swit
htheir sides, they also drift apart due to inhomogeneity (~vd being dire
ted so as toseparate the swit
hed lobes further apart ). Although not expli
itly shown in Fig.(5.5), a longer duration evolution expli
itly demonstrates this. The separation ofthe lobes due to ~vd on
e they swit
h sides automati
ally redu
es the axial drift.The dipole, therefore, never re�e
ts o� the inhomogeneity but separates formingtwo monopoles. 65



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....

Figure 5.5: The propagation of 
urrent pulse stru
ture in
ident at angles of 30, 20,
10 and 5 degrees with respe
t to the density gradient dire
tion have been shownin the plots of �rst, se
ond, third and fourth 
olumns respe
tively.It is 
lear that the evolution for the 
ase of oblique in
iden
e of the stru
tureshows stark di�eren
es from the 
ase of parallel in
iden
e. It is therefore pertinentto investigate whether this has any impa
t on the me
hanism of energy dissipation.In Fig. (5.6) we show the evolution of energy for these simulations. The various
urves in the �gure show the evolution of energy for 
ases with di�erent in
iden
eangles of the dipole. For these simulations one observes again a rapid fall ofenergy during the period that the two lobes are entangled in intense intera
tionwhen they experien
e the plasma density inhomogeneity. This essentially o

urswhen the lobes 
ross over ea
h other to swit
h their lo
ations. At later time whenthe lobes have already swit
hed their lo
ations and start drifting apart the energyremains 
onstant. It is interesting to note, however, that the magnitude of energydissipation that takes pla
e in these 
ases of oblique in
iden
e is typi
ally of thesame order as that observed when θ, the angle of in
iden
e is zero. The energy66
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tron Current ....

Figure 5.6: The evolution of the total energy has been shown when the 
urrentpulse is in
ident at (i) 5o ( 
urve with blue stars), (ii) 10o (
urve with green + sign,(iii) 20o (
urve with magenta 
rosses) and (iv) 30o (
urve with red 
ir
les).dissipation does de
rease with in
reasing in
lination | θ |. However, even for aslarge an angle as θ = 30 degrees there is only around 20% di�eren
e in the totalenergy dissipation when 
ompared to the θ = 0 
ase.We thus see that although a slight 
hange in in
iden
e angle alters drasti
allythe entire propagation 
ourse of the dipole 
urrent layer, it has little in�uen
eon the magnitude of energy dissipation while passing through the inhomogeneousregion.5.6 Appli
ation : Fast IgnitionThe pro
ess of 
ollision - less energy dissipation from energeti
 ele
trons holds alot of promise and 
an have far rea
hing 
onsequen
es in terms of appli
ations.We dis
uss the 
ase of Fast Ignition here to illustrate our point. The FI s
heme[5℄ is essentially a variant of the Inertial 
on�nement s
heme for whi
h the tasks67



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....of target 
ompression and ignition are 
arried out separately. This has severaladvantages. First of all it is easier to 
ompress a 
old target. Also the presen
eof hydrodynami
 instabilities su
h as Rayleigh Taylor et
., during the a

eleratingand de
elerating phases of 
ompression be
ome in
onsequential. The target being
ool there is no mixing of hot and 
old regions whi
h seriously deteriorates thee�
ien
y of the pro
ess in 
onventional Inertial Con�nement Fusion (ICF) [57, 58℄.In FI after 
ompression one needs to 
reate a hot spot in plasma for ignition.For that purpose a se
ond fast femtose
ond laser pulse is employed. However,the target being overdense the laser 
annot propagate inside the overdense regionto 
reate a hot spot. One instead relies on the energeti
 ele
trons generated atthe 
riti
al density layer of the target for the 
reation of hot spot. The s
aleddown experiments have shown pretty impressive results for this s
heme, wheretenfold in
rease in fusion neutron yield has been observed [60℄. However, thereis skepti
ism 
urrently on the a

ount that the one would require higher energyele
trons, e.g. 10 MeV or higher for the hot spot 
reation in full �edged ignitionexperiments. Sin
e the Rutherford's 
ollision 
ross se
tion of ele
trons diminisheswith energy, the greatest 
on
ern is that the higher energy ele
trons would simplypass through the target. After in
orporating 
orre
tions due to dense targets ande�e
ts of 
orrelated 
ollisions the typi
al stopping distan
e estimate for a 1 MeVele
tron is 
onsiderably longer than the target size of 50 mi
ron. Thus, if thetarget is transparent for the high energy ele
trons, the 
reation of hot spot in FIremains an outstanding issue. The proposed 
ollision - less dissipation me
hanism,however, provides a means to over
ome this di�
ulty as has been shown below.Let us now estimate the typi
al energy of the ele
trons that 
an be stoppedthrough our proposed me
hanism. We use the non dimensional expression for theenergy dissipation here. The 
urrent I in the 
hannel is related to the magnitudeof the magneti
 �eld B through Ampere's law as B = 2I/ac, where a is thedimension of the 
hannel. The rate of energy dissipation Q 
an then be expressedin dimensional variables as Q = (B2/4π)πa2ve = I2ve/c
2, ve being the ele
tronvelo
ity. Sin
e the rate of energy dissipation is essentially I2R (R the resistan
e)heating of the system, for this 
ase the resistan
e would be R = ve/c

2 in CGSunits. The e�e
tive voltage drop 
an then be estimated from V = IR. Thetypi
al magnitude of the ele
tron 
urrents in FI experiments are in the range ofseveral hundreds of kAmps, and the ele
trons typi
ally have relativisti
 energy,68



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....their velo
ity ve ∼ c, the speed of light. Thus the resistan
e R ∼ 1/c ∼ 30Ω. (Weassume here that the expression for energy dissipation obtained in the previousse
tion 
an be used even for the relativisti
 ele
trons. This, however, needs to beensured and further studies on this are ne
essary). This helps in estimating theenergy of those ele
trons whi
h 
an get stopped by this me
hanism for a given valueof 
urrent in the 
hannel. Thus for a 300KAmps of 
urrent, ele
trons with energyas high as 10MeV 
an be stopped by this pro
ess. This estimate is 
ertainly verypromising as it supports the possibility of heating through ele
tron 
urrent pulsesfor ignition.We would now like to see whether the energy dissipation observed in our sim-ulations provides an estimate of R whi
h is 
onsistent with the derivation above.The 
urrent pulse stru
ture propagates with a normalized velo
ity vN = 0.01.From Fig. (5.3) it is 
lear that within a time interval of ∆tN = 100, the to-tal dissipated energy is ∆EN = 5 × 10−3. The su�x N is used to indi
atethe normalized values here. This provides us with the value of normalized re-sistivity as RN = 5 × 10−3/0.01 = 0.5. For the 
urrent pulse stru
tures ofthe typi
al dimension of ele
tron skin depth a relationship ωc ∼ ωpve/c 
an beobtained between the typi
al values of the magneti
 �elds and the ele
tron ve-lo
ity ve. The value of RN provided above then translates to a resistan
e of
R ∼ 0.5/(cωc/ωp) ∼ 0.5/ve. In the 
ase of fast ignition s
enario ve ∼ c whi
himplies that R ∼ 0.5/c = 0.5 × 30Ω = 15Ω, whi
h is in 
lose agreement with theanalyti
al estimate made above.5.7 SummaryWe have presented a new me
hanism of rapid energy dissipation through sho
k for-mation for a 
urrent pulse moving past an inhomogeneous plasma medium. Theme
hanism was illustrated through G-EMHD �uid simulations and an analyti
alunderstanding was also provided. It is interesting to note that our proposed me
h-anism is 
onsistent with some re
ent PIC simulations [29, 30, 32, 33℄ 
arried outin the 
ontext of propagation of energeti
 ele
tron 
urrent towards the dense tar-get 
ore for the fast ignition plasma. These PIC results show a predominan
e ofheating in the region where density gradient is high (the region where we observe69



Chapter 5: Collision-less Energy Dissipation of Ele
tron Current ....sho
k formation). A re
ent experiment 
arried out at ILE Osaka [84℄ also 
learlyillustrates that ele
trons with as high as about 15 MeV energy passing throughthe inhomogeneous region of the target get stopped, showing the relevan
e of ourproposed s
heme. The role of additional e�e
ts arising due to dense plasma, un-
ompensated 
harge, relativisti
 ele
trons for true fast ignition parameters on thisparti
ular me
hanism needs to be studied. Thus, a detailed investigation on 
om-parision of PIC simulations, G-EMHD �uid simulations and the proposed heatingme
hanism, promises to be quite rewarding.We have also shown in this 
hapter that even when the the 
urrent pulse propa-gates at an angle oblique to the density gradient, the asso
iated energy dissipationgets e�e
ted only weakly with respe
t to the orientation angle. Though the sub-sequent evolution of the pulse is strongly altered.
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Chapter 6Kelvin Helmholtz Destabilization ofShort Current Pulse in anInhomogeneous PlasmaKelvin Helmholtz (KH) [59, 85℄ is an important �uid instability that develops whenthe �uid �ow is sheared. It has been shown in some re
ent studies [54, 56, 72℄that for a sheared ele
tron �ow 
on�guration, this parti
ular instability has asomewhat di�erent manifestation than the hydrodynami
 �uid 
ase. This is dueto the presen
e of self 
onsistent magneti
 �elds asso
iated with the ele
tron �ow.The previous studies on sheared ele
tron �ow have been 
arried out for spatiallyin�nite extent of the �ow and for a homogeneous plasma. In this Chapter wepresent our study showing the KH destabilization of a short 
urrent pulse whenthe ba
kground plasma density is inhomogeneous. These studies have been 
arriedout in 2-D where the evolution is 
onstrained due to the presen
e of an additionalnon dissipative square integral invariant other than energy. For the 
ase of 2-Dsimulations, therefore, the nonlinear regime of the instability produ
es a 
oherentstate. In this parti
ular 
ase of short 
urrent pulse in an inhomogeneous densityplasma, we observe an emergen
e of a novel 
oherent state as an aftermath of KHdestabilization. This is in the form of a 
olle
tion of vorti
es aligned as beadsalong the dire
tion where the higher density region of the plasma has an elongatedextent.In Chapter 5 the presen
e of anomalous vis
osity due to turbulen
e indu
ed71



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....by the KH destabilization of sharp 
urrent layers was 
onje
tured for the 
olli-sion - less ele
tron �uid 
ase. The demonstration of KH destabilization for shortele
tron pulses in an inhomogeneous plasma here, shows that su
h a 
onje
tureis well founded. The turbulen
e generation 
an only be seen by 
arrying out thesimulation in 3-D, whi
h is a topi
 of future study.6.1 Introdu
tionThe Kelvin Helmholtz (KH) instability [59, 85℄ is a 
lassi
 �uid instability arisingdue to a sheared �uid �ow 
on�guration. This instability has been studied exten-sively in the 
ontext of hydrodynami
 �uid in the past 100 years or so. It has alsobeen studied for 
ondu
ting �uid su
h as plasmas, but primarily when the shearis in the �ow of heavier ion spe
ies [86℄. Lately, the 
ase of sheared ele
tron �owagainst a ba
kground neutralizing ions has been investigated. The �ow of ele
tronprodu
es 
urrent and an asso
iated self 
onsistent magneti
 �eld. As a result ofwhi
h the KH mode in this 
ontext has a distin
t 
hara
ter for sheared ele
tron
urrent �ows. This has been dis
ussed in several re
ent publi
ations [54, 56, 72℄.The nonlinear studies of the instability has also been 
ondu
ted. These studieshave shown that in 2-D the nonlinear phase of instability produ
es a 
oherent state[54℄, but in 3-D it leads to turbulen
e [53℄. The anomalous vis
osity of the ele
tron�uid in the presen
e of turbulen
e has also been evaluated in those studies. Thisis due to KH destabilized ex
itations 
as
ading dire
tly, towards short s
ales in3-D and 
ausing anomalous vis
ous damping of the ele
tron �ow. These studieson sheared ele
tron 
urrent �ow , however, has been 
ondu
ted for in�nite �ow
on�guration and for 
hosen sheared �ow pro�les in spa
e for a homogeneousdensity plasma.Chernkov et al. [12℄ were the �rst to investigate the ele
tron velo
ity shear inthe 
ontext of the low density pin
hes. In their study they ignored the ele
troninertia and found that this mode is stable. Jain et al. [54℄ have shown that inthe presen
e of the inertia this parti
ular mode is unstable. The growth ratefor the instability for these sheared ele
tron �ows is strongly dependent on thesharpness of the shear layer in 
omparison to the lo
al ele
tron skin depth. Jainet al. [53, 54℄ have simulated the EMHD model equation for studying the linear72



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....and nonlinear aspe
ts of the velo
ity shear modes in ele
tron 
urrent 
hannels inthe 2-D as well as 3-D geometry. Gaur et al. [72℄ studied extensively the roleof the skin depth and the existen
e of the whistler waves on the velo
ity sheardriven instability in the 
ontext of the 2-D EMHD model. They also investigatedthe e�e
t of the whistler waves on the KH instability. The presen
e of whistlerwave had a stabilizing in�uen
e on KH mode. J. F. Drake et al. [87℄ have shownthat the instability broadens the 
urrent layer. As the 
urrent shear layer widthbe
omes 
omparable to the ion skin depth the instability weakens.Our studies on the propagation of 
urrent pulse stru
ture through plasma den-sity inhomogeneity in the previous Chapters have 
learly shown that very sharpelongated shear layers get formed as the stru
ture propagates through the inhomo-geneous density region. Here we investigate the possibility of KH destabilizationof su
h sharp 
urrent layers in the presen
e of density inhomogeneity.6.2 Destabilization of Current LayersIn the 
ontext of our G-EMHD simulations [78, 80℄ (where the shear �ow gets self
onsistently generated at the lo
ation of density gradient region) we have so farnot observed the appearan
e of the unstable KH mode. The reason for this 
anbe readily understood by realizing that in the G-EMHD simulations presented sofar the time spent by the stru
tures in the inhomogeneous density region (whereit forms sharp layers), is not su�
ient to observe the development of the unstableKH mode from numeri
al noise. On
e the stru
ture moves past the inhomogeneousregion the �ow no longer remains sharply sheared to get destabilized. The lengthof the inhomogeneous region 
ould not be in
reased to �t in several growth periodsdue to numeri
al 
onstraints.We hereby devise a novel s
heme to sustain the sharp shear layer for a signi�
antduration without in
reasing the length of the inhomogeneous region. We 
hoosean elongated (many ele
tron skin depths along ŷ ) region of high plasma densityhaving RTH pro�le (des
ribed in Chapter 4) whi
h has the form of
n(x, y) = h1 − h2 tanh





√

(x− x0)2/σ2
x + (y − y0)2/σ2

y − w

σ



 (6.1)73



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....The values of the various parameters were 
hosen as, h1 = 5.5, h2 = 4.5, σ2
x =

0.2, σ2
y = 2.0, w = 2.0, x0 = 0.0, y0 = −2.0, σ = 0.4. The width of the high densityregion along x̂ has been 
hosen to be smaller than the typi
al value of ele
tron skindepth. This has been deliberately done so as to have a sharper shear width (smallerthan the ele
tron skin depth for the KH instability) along x̂ in the 
urrent �owwhen trapped inside this density stru
ture. The length of the stru
ture along ŷ istypi
ally √

10 times longer than the width. This parti
ular density pro�le has been
hosen here solely for illustrating the destabilization of sharper 
urrent shear layerswhen they persist for a su�
iently long times. However, this parti
ular 
hoi
e mayalso have pra
ti
al relevan
e. With the advent of wires having dimension of theorder of nano meters, an elongated plasma 
an be 
reated by ionizing them. Su
h aplasma 
an easily have a width sharper than the ele
tron skin depth, 
orrespondingto the density pro�le that we have 
hosen here for our study.

Figure 6.1: The various stages of evolution as the 
urrent pulse propagates towardsan elongated sharp density pro�le. The thi
k bla
k 
urve represents the outline ofthe density pro�le. The 
ollimation of the 
urrent pulse stru
ture as it enters thehigh density plasma region 
an be 
learly seen. The KH destabilization is 
learlyevident from the plots at t = 2820.In Fig. (6.1) we show the evolution of a dipolar 
urrent pulse stru
ture as74



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....it en
ounters the inhomogeneity pro�le. The thi
k bla
k line drawn in the �gureshows a 
onstant density to illustrate the form of the density pro�le with respe
t tothe 
urrent pulse lo
ation. The density pro�le has∇n dire
ted inwards everywhere.The dipole axis has been pla
ed in su
h a fashion that it enters this elongated highdensity plasma region of the shape of a wire through its top sharp edge. At theentry lo
ation the drift velo
ity (~vd) asso
iated with density gradient (dis
ussed inChapter 4) brings the lobes 
loser and the axial speed in
reases. On
e the dipolerea
hes the 
entral lo
ation of the wire (see subplot for t = 450) the∇n experien
edby left/right (
orresponding to positive/negative b) lobe is in positive/negative x̂dire
tion respe
tively. This results in a drift velo
ity (~vd) [78℄ whi
h is dire
tedalong positive ŷ for both lobes. The axial drift of the dipole (the lobes are separatedby a distan
e less than ele
tron skin depth and hen
e they still behave as dipoles)is along negative ŷ. The two drifts 
an
el and the dipole is able to propagateno more. This is the basis of extending the residen
e time of the dipole in aninhomogeneous region. Sin
e the dipole is squeezed by the density pro�le in thetransverse dire
tion, it extends axially and a
quires the shape of the elongateddensity pro�le at around t = 1500. This elongated stru
ture with rotating ele
tron
urrents in two lobes forming a sharp shear �ow at the axis, persists for a verylong time (from t = 1500 to even at t = 2250). It is only around t = 2625 thata 
ertain distortion in the stru
ture be
omes apparent. These, we believe, are theinitial disturban
es in the �ow arising from KH instability.The KH destabilization [54, 72℄ 
an o

ur provided the system permits modeshaving wavelength longer than the shear width along the �ow dire
tion. Theexa
t dipolar solution of the homogeneous plasma typi
ally has identi
al extent inthe two dire
tions. The shear s
ales asso
iated with �ow in both the dire
tionsare, therefore, also identi
al. The stru
ture size of a typi
al EMHD dipole doesnot permit longer s
ales along any of the dire
tions. Thus the dipolar stru
turepropagates in a homogeneous plasma as a very robust stable pattern, even thoughthe 
urrent �ow in it is signi�
antly sheared. In fa
t when EMHD simulations are
arried out for an arbitrary dipolar form (not exa
t solutions derived by Kingsepet al. [1℄) with magneti
 �eld 
ontours deliberately 
hosen to be 
onsiderablyelongated along one of the dire
tions, the stru
ture adjusts itself to a 
ir
ular formduring the initial phase of evolution, and then it propagates as a stable pattern.This 
an be seen in the subplots of Fig. (6.2) where we show the plots of one su
h75
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Figure 6.2: In this �gure the robustness of the dipole solution is shown. Initiallythe dipole stru
ture is taken elongated along the y− axis. During the evolution itis observed that dipole ,�nally ,form the Isi
henko et al. solution [65℄ propagatingalong the negative ŷ dire
tion with some 
onstant axial velo
ity.However, when we 
onstrained the dipole to remain for
efully elongated whileresiding in the elongated high density region in our G-EMHD simulation, the KHdestabilization was observed 
learly [see Fig. (6.1)℄. Let us now quantitativelyassess the 
ondition for KH destabilization for various studies 
ondu
ted in thepast (Sharad et al. [78, 80℄) where KH was not observed and the simulationsreported here. The destabilization 
an o

ur provided the residen
e time of thestru
ture in the inhomogeneous region (the lo
ation where the �ow shear remainssharper than the skin depth) is longer than the growth periods for the perturbationsto amplify from the numeri
al noise level.In the studies reported earlier (Sharad et al. [78, 80℄) the shear width ofthe dipolar stru
ture at the lo
ation of the inhomogeneity was around ǫ = 0.2.76



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....The maximum growth rate will o

ur for a wavenumber k ∼ 0.5/ǫ ≈ 2.5. (Thegrowth rate for KH mode vanishes for kǫ ≈ 1 and is maximum for kǫ ≈ 0.5)Thus the maximum growth rate of the KH mode would be less than, i.e. γ ≤
kV0
√

(1 + 4k2)/(3 + 4k2) = 2.4091V0 (the growth rate of a step velo
ity shearpro�le) [56℄. On the other hand the residen
e time of the stru
ture in the in-homogeneous region is merely tr = Lin/V0 = 1.414/V0. Thus the number of e- foldings during the time the stru
ture moves past the inhomogeneous region is
γtr = 2.4091 × 1.414 = 3.4065, whi
h is quite low for the instability to manifestfrom the numeri
al noise of typi
al order of magnitude O(10−6) in single pre
i-sion and O(10−12) in double pre
ision in the simulations reported in our papers[78, 80℄. Let us now analyze the simulations shown in Fig. (6.1) with this per-spe
tive. Here, the shear width 
an be taken to be around half the width ofthe density inhomogeneity i.e. ≈ w/2 = 1.0. The typi
al distan
e between theextreme b values measured from the subplot at t = 1500 of Fig. (6.1) yieldsa better estimate of ǫ = 0.8. The perturbation s
ale length that shows up inthe instability 
an be again estimated from appearan
e of the mode observed at
t = 2625 and subsequent times. The 
on�ning high density region typi
ally sup-ports two wavelengths. Thus λ ≈ 8/2 = 4 from the �gure. This gives a valueof k = 2π/λ = 1.57. The residen
e time 
an be taken either anything between
tr1 = 2625 − 1500 = 1125 or tr2 = 2625 − 450 = 2175. The axial drift of thedipole 
an provide a 
rude se
ond estimate of the ele
tron �ow velo
ity in the
entral region as V01 = 0.01. A better and 
orre
t estimate 
an be obtained bydire
tly measuring ∂b/∂x at the 
entral region at t = 1500. This gives the typi
alestimate for the ele
tron velo
ity as V02 = ∂b/∂x = ∆b/ǫ = 0.08/0.8 = 0.1. Thisis about 10 times higher than the original axial drift of the dipole. The growthrate obtained from kV0

√

(1 + 4k2)/(3 + 4k2) ranges from γ = 0.0133 to 0.133 for
V0 = 0.1 and V0 = 0.01 respe
tively. By taking the 
onservative estimate of thegrowth rate of 0.0133 the number of e- foldings γtr is around 14.9625 and 28.9275for tr1 and tr2 respe
tively. While the former is su�
ient to in
rease the amplitudefrom a noise at single pre
ision level to a value of the order unity the latter 
anraise it even from a double pre
ision level. This explains the observation of theKH destabilization in the present 
ase and its absen
e in the previous simulations[78, 80℄. 77



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....6.3 Formation of Stationary Vortex BeadsThe simulation plots at later times show the nonlinear development of the mode.The b �eld stru
ture is subsequently seen to break up and form smaller vorti
eshaving identi
al s
ale in both the dire
tions. The instability thus saturates in thenonlinear regime by forming a novel 
oherent stable stru
ture of the 
olle
tion ofthese vorti
es. For the simulation shown in Fig. (6.1) this 
onstitutes a 
olle
tionof four alternating sign vorti
es arranged along the elongated high density regionof the plasma whi
h looks like beads tied to a string. This is an extremely stablepattern and persists for the entire duration of our simulations.It is interesting to note that in this 
ase also the plasma system maneuversthrough the pro
ess of KH destabilization to a
quire a stru
ture having an aspe
tratio of unity for ea
h individual vorti
es. An elongated stru
ture in a homogeneousplasma medium has been observed to adjust itself to a symmetri
 shape by merelyextending/shrinking in appropriate dire
tions. This was not possible here, as thestru
ture was squeezed inside an inhomogeneity with an elongated shape. In this
ase of 
onstrained simulations the system uses a novel approa
h of breaking intosmaller vorti
es through KH destabilization pro
ess to a
hieve its �nal goal, whereea
h of the vorti
es again has a symmetri
 shape. It, therefore, appears that thesystem always prefers a symmetri
 form for individual vorti
es.6.4 SummaryIn this Chapter we have shown that the sharp 
urrent layer stru
ture formed atthe inhomogeneity layer is indeed unstable to the Kelvin - Helmholtz like velo
ityshear driven mode. In our present 2-D simulations it forms a 
oherent patternof a 
olle
tion of vorti
es aligned along the elongated dire
tion of the densityinhomogeneity. This is so be
ause the G-EMHD system also preserves two non -dissipative square integral invariant in 2-D as has been shown in Chapter 2. In 3-Dthe KH destabilization in the 
ontext of in�nite �ows has been seen to generateturbulen
e and leads to anomalous vis
osity e�e
ts [53℄. We expe
t the same wouldhappen for the �nite 
urrent shear �ow stru
tures in an inhomogeneous plasmamedium in 3-D. This would then appear as the relevant dissipative me
hanism for78



Chapter 6: Kelvin Helmholtz Destabilization of Short Current ....the energeti
 
ollision-less ele
trons as has been 
onje
tured in Chapter 5.We also observe that the system typi
ally tries to a
hieve an isotropi
 �ow
on�guration. The exa
t dipole solutions of EMHD [65℄ also have a sheared ele
-tron �ow 
on�guration, but still the stru
ture is stable. A distorted dipole whi
h,however, is not an exa
t solution adjusts itself suitably to a form for whi
h thetypi
al s
ale lengths in the two dimensions are identi
al. We observe that theelongated shear �ow purposely 
onstrained in the high density region destabilizesthrough KH instability and �nally forms vorti
es having equal s
ale length in the2-D spa
e.
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Chapter 7Guiding and Collimation of FastEle
tron Current Pulse in a PlasmaIn this Chapter we dis
uss another appli
ation of ele
tron �ow through an inho-mogeneous plasma. One often wishes to 
ollimate and guide the ele
tron 
urrentinside a plasma. There have been proposals to use spe
ially stru
tured targetsprepared of di�erent materials for this purpose [62, 63℄. Su
h targets would nei-ther be easy to prepare nor 
an they be employed with ease in ea
h and everyexperiment. Here we o�er a me
hanism whereby a proper tailoring of the plasmadensity o�ers an easier a

essible s
heme. We illustrate this by pla
ing arbitraryshaped wire like high density plasma along the path of the ele
tron 
urrent pulsestru
ture. It is observed that the 
urrent �ows along the path de�ned by the highplasma density region. In an experiment [64℄ at ILE Osaka the energeti
 ele
tronsgenerated at the 
riti
al density layer were guided with the help of solid wire. Theexperiment showed that the ele
trons moved along the wire, as the wire was tiltedthe path of the ele
trons 
hanged a

ordingly. We feel that the high plasma densityspontaneously 
reated by the ionization of the wire by the ele
trons is responsiblefor this.7.1 Introdu
tionWe provide here a me
hanism whereby the ele
tron 
urrent pulse stru
tures 
anbe guided in a plasma. We have shown with the help of G-EMHD simulations that80



Chapter 7: Guiding and Collimation of Fast Ele
tron Current Pulse ....a tailored plasma density inhomogeneity 
an guide an ele
tron 
urrent pulse atwill. A physi
al understanding of the guiding pro
ess has also been provided. Theproposed me
hanism �nds support in re
ent experiments reported by Kodama etal. [64℄, where it is 
learly shown that the 
urrent path in the plasma 
an be alteredat will by pla
ing an appropriately oriented wire. In the experiment the ele
tron
urrent was seen to propagate along the dire
tion of the solid wire. The wiregets ionized by the front of the energeti
 ele
tron 
urrent pulse, thereby 
reatingan appropriate high density plasma along the path of the wire through whi
hlater portion of the pulse gets guided. An alternative me
hanism has also beenproposed re
ently by Robinson et al. [62℄ for arti�
ially guiding the 
urrent pulse.They use stru
tured target whose resistivity varies transverse to the propagationdire
tion. The strong magneti
 �eld generated at the interfa
e of materials havingdi�erent resistivity was important for the guiding of 
urrent pulse. Later thisme
hanism was experimentally veri�ed in the work by Kar et al. [63℄. However,the preparation of su
h spe
ially tailored targets for use in experiments may notoften be pra
ti
al. The me
hanism that we propose here o�ers a simpler solution,whereby a path de�ned by higher plasma density 
reated by a simple s
heme ofionizing an oriented wire provides for 
urrent pulse guiding. The experimentalwork of Kodama et al. [64℄ demonstrates this 
learly. The PIC simulations havealso been 
arried out whi
h support the experimental observations of the guidingexperiment 
ondu
ted by Kodama et al. [64℄ . However, sin
e the PIC simulations
ontain all the details, the essen
e of underlying physi
al me
hanism of guidingis not apparent from these simulation. Here, we reprodu
e the observations ofele
tron 
urrent pulse guiding by the �uid simulation of G-EMHD model [78℄. Wealso provide a physi
al interpretation of the phenomena.We use the simpli�ed 2-D G-EMHD equations with magneti
 �eld along thesymmetry dire
tion to illustrate the phenomena of guiding. The study has been
ondu
ted for both 
urrent pulses with monopolar and dipolar magneti
 stru
tures.7.2 Guiding of MonopolesMonopoles are the stationary solutions of the EMHD equations [65℄ whi
h arelike ele
tron 
urrent vorti
es having single signed magneti
 �elds as shown in the81



Chapter 7: Guiding and Collimation of Fast Ele
tron Current Pulse ....�rst row of Fig. (5.1). We 
hoose these solutions as initial 
on�gurations forour simulations. In the presen
e of a density inhomogeneity the magneti
 �eldpatterns asso
iated with these 
urrent pulses a
quire an additional drift velo
ity
~vd = ~B ×∇n/n2 dis
ussed in Chapter 4, whi
h is 
learly transverse to the densitygradient as well as the dire
tion of magneti
 �eld ~B. Thus a proper 
hoi
e ofdensity pro�le, e.g., with 
onstant density along the desired guiding path anda steep variation of density everywhere in the orthogonal dire
tion, monopolarstru
tures 
an then move due to ~vd along the 
ontours of 
onstant plasma density.The maneuverability for guiding these monopolar solutions are, however, quiterestri
tive as they 
annot penetrate a
ross the plasma density gradient. We willshow in the next se
tion that the dipolar 
urrent pulse stru
tures whi
h movesa
ross the plasma density gradient shows a greater maneuverability in this regard.We would show that the inhomogeneous density 
an be used to 
ollimate, guideand even bifur
ate the 
urrent pulse in subsequent Se
tions of this Chapter.7.3 Collimation of the Current PulseIn this se
tion we show that the drift velo
ity asso
iated with the density gra-dient in 
onjun
tion with the axial velo
ity of the dipoles allows a far superiormaneuverability. The axial velo
ity helps dipole propagate a
ross the 
onstantdensity 
ontours, thereby making regions of di�ering plasma density a

essible forthe ele
tron path.We show here that a broad 
urrent pulse 
an be suitably 
ollimated by 
hoosinga narrow high plasma density region. In Fig. (7.1) a dipole is shown to en
ountera narrow high density plasma region. The form of the narrow high density regionhas been depi
ted by bla
k solid lines in the �gure. This is formed using the RTHdensity pro�le des
ribed by the expression

n(x, y) = h1 − h2 tanh





√

(x− x0)2/σ2
x + (y − y0)2/σ2

y − w

σ



 (7.1)with the following values of the parameters h1 = 5.5, h2 = 4.5, σ2
x = 0.2, σ2

y =

3.5, w = 2.0, x0 = 0.0, y0 = −2.0, σ = 0.4. 82
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tron Current Pulse ....

Figure 7.1: In this �gure the 
ollimating behavior of the dipole has been demon-strated. The 
urrent pulse passes through a high density pro�le that has an elon-gated pro�le (shown in the �gure by the 
losed bla
k thi
k line) along the y−dire
tion.As the dipole approa
hes the high density region it 
an be seen that it gets
ollimated, enters the higher density side and propagates along it, rea
hing thetarget destination at the other end. The broad initial pulse remains 
ollimated as
an be seen from the Fig. (7.1) This is a very attra
tive proposition as a simple
hoi
e of plasma inhomogeneity 
an suitably fo
us a divergent �ow of ele
trons,an attribute often desirable for various appli
ations. The observed features 
anbe easily interpreted in terms of an interplay of the two velo
ity asso
iated withthe dipolar 
urrent pulse. The drift asso
iated with the density gradient bringsthe two lobes with opposite polarity of the magneti
 �eld together as the dipoleapproa
hes the high density region. This results in the 
ollimation of the 
urrentpulse stru
ture. The 
ollimated stru
ture moves with greater axial speed andpenetrates the high density region of the plasma. On
e inside the high densityregion the 
urrent pulse propagates along it to rea
h the other end through theaxial dipolar velo
ity whi
h overwhelms the ~vd drift a
ting in the opposite dire
tion83



Chapter 7: Guiding and Collimation of Fast Ele
tron Current Pulse ....(at the 
entral region of the elongated high density plasma).7.4 Guiding Behavior of the Current PulseWe now show that one 
an even reverse the propagation dire
tion of the dipole
urrent pulse by a suitably tailored plasma density inhomogeneity. A 
urved highdensity pro�le shown by the thi
k lines in Fig. (7.2) is 
hosen. The 
urrent pulsetraje
tory has been shown in the snapshots of Fig. (7.2). We have seen that by

Figure 7.2: This �gure shows that a dipolar 
urrent pulse 
an be guided. The singlebla
k 
ontour in ea
h subplot represents the 
urved high density pro�le 
hosen inthe simulation. The inside region of the 
losed bla
k line is of the high densityamplitude. The 
ir
ular region atta
hed at the left end of the half 
ir
ular regionis of high amplitude in 
omparison to the half 
ir
ular region.
hoosing appropriate di�erent forms of the high density plasma region the dipole
urrent pulse 
an be guided and sent to any parti
ular destination where it 
anget absorbed. It 
an be seen from Fig. (7.2) that it is even possible to reverse the84



Chapter 7: Guiding and Collimation of Fast Ele
tron Current Pulse ....propagation dire
tion. The 
urrent pulse follows the 
ontours of the high densitynarrow region of plasma.This happens be
ause if the dipole stru
ture separates into monopoles as shownin subplots t = 21.36, 33.9 of Fig. (7.2) upon entering the high density region thestru
ture 
an move only along the 
onstant 
ontours of the plasma density pro�le.If, however, it remains inta
t as dipole as in Fig. (7.1), it 
an in any 
ase 
annot
ome out in a lower density plasma region. The observed propagation of 
urrentpulse through G-EMHD simulations along the dire
tion de�ned by the 
ontoursof the high density narrow plasma region �nds support in 
ertain experimentalobservations. In a re
ent experiment Kodama et al. [64℄ have generated fastele
trons by impinging ultra intense laser pulse on a target in the shape of a gold
one. By atta
hing a solid wire on the 
one tip was shown by Kodama et. al.[64℄ that the ele
trons followed the path de�ned by the solid wire. When thewire was tilted with respe
t to the 
one axis the ele
trons hit the target at an o�axis lo
ation de�ned by the tilted wire. The experiment 
an be understood on thebasis of our me
hanism. The wire gets ionized by the front of the energeti
 ele
tronpulse, 
reating a narrow high density plasma region of the shape of the wire. Thesubsequent part of the ele
tron pulse then gets guided along this inhomogeneousplasma as proposed by us.7.5 Bifur
ation of the Current Pulse Stru
tureWe now provide another example of maneuvering the 
urrent pulse. We show thatone 
an also bifur
ate a 
urrent pulse arising from the same sour
e and let thetwo parts propagate and rea
h altogether di�erent destinations. In the simulationagain we have 
hosen a 
urved form of high density pro�le as shown by the thi
klines in the subplots. The bifur
ation of the 
urrent pulse 
an be seen from thesnapshots of Fig. (7.3). As the pulse enters the high density region, it 
an be seento get separated in two parts whi
h then propagate along di�erent dire
tions.
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tron Current Pulse ....

Figure 7.3: This �gure show the bifur
ation of the 
urrent pulse. The thi
k bla
klines show the plasma density pro�le that has been 
hosen for these simulation.7.6 SummaryWe have proposed a novel s
heme based on a suitably tailored plasma density inho-mogeneity to 
ontrol the propagation of ele
tron 
urrent pulses in plasma medium.Our studies have shown the possibility of 
ollimating the 
urrent pulses, guidingthem along a desired path and towards a desired destination. We have also shownthat ele
tron 
urrent pulses arising from the same sour
e 
an be suitably bifur
atedand made to propagate along distin
t traje
tories towards di�erent destinations.
86



Chapter 8Con
lusion and S
ope for FurtherResear
hIn this Chapter we summarize the main results obtained in the thesis. We alsooutline the dire
tions for further resear
h here.8.1 Summary and Con
lusionsThe main fo
us of this thesis has been on the study of ele
tron transport throughinhomogeneous plasma medium. We present here a brief overview of work 
arriedout and the signi�
ant novel results obtained in this area by us whi
h have beenpresented in the various Chapters of this thesis.
• Development of a �uid model for ele
tron propagation in an inho-mogeneous plasmaThe Ele
tron - Magnetohydrodynami
s (EMHD) [1, 2, 3, 4℄ provides a de-s
ription of fast ele
tron dynami
s against the ba
kground neutralizing ions.The Ele
tron - Magnetohydrodynami
 (EMHD) �uid model was generalizedby us for the 
ase when the plasma has an inhomogeneous density. Thenew model is termed as the Generalized EMHD (G-EMHD) [78℄. A de-tailed derivation of the G-EMHD model has been given in Chapter 2 of thisthesis. Various limits of G-EMHD equations in redu
ed spatial dimensionand simpli�ed ele
tron �ow 
on�guration have been obtained and have been87



Chapter 8: Con
lusion and S
ope for Further Resear
hpresented in Chapter 2. In 2-D the model takes a simpli�ed form in whi
hthe equations 
an be 
ast in terms of a 
oupled set of equations betweentwo s
alar �elds 
orresponding to the magneti
 �eld and the ve
tor potential
omponent respe
tively along the symmetry axis.The model was shown to preserve the total energy integral in the non -dissipative limit. In the simpli�ed 2-D 
ase and when the ele
tron 
urrent wasalso 
on�ned in 2-D an additional square integral invariant is also supportedby the model.
• Development of a �nite di�eren
e numeri
al 
ode for studying ele
-tron propagation through G-EMHD equations in 2-DA �nite di�eren
e 
ode was developed to study the ele
tron dynami
s us-ing G-EMHD equations. Chapter 3 
ontains the detailed des
ription of thenumeri
al algorithm adopted for simulating the G-EMHD equations. TheG-EMHD equations has been 
ast in the form of 
onve
tive equations withappropriate sour
e terms. A �ux 
orre
ted s
heme [79℄ was employed for theevolution of G-EMHD equations. Unlike EMHD equations where one needsto solve Helmholtz equations in 
onjun
tion with the evolution equation atea
h time step for the evaluation of magneti
 �eld, (and by taking its 
url,the 
onve
tive velo
ity) in the 
ase of G-EMHD we have a Helmholtz likeoperator whose 
oe�
ients are fun
tions of spa
e (as they depend on theplasma density). This poses some 
hallenge. At the moment we have rep-resented the operator in the form of a matrix whose inversion provides uswith the requisite magneti
 �eld. The memory requirements are huge for thedes
ription of su
h a matrix and in
reases as a square of the total spatialgrid points, i.e. as (Nx × Ny)2 where Nx and Ny are the number of gridpoints 
hosen along the x and y dire
tions respe
tively. It is therefore im-perative that an alternative s
heme be developed whi
h redu
es the RAMrequirements.The 
ode was validated against the known EMHD results for the homoge-neous plasma [36℄. Furthermore, the preservation of the square integral in-variants supported by the G-EMHD equations in the non - dissipative limitwas also veri�ed numeri
ally. The rate of their de
ay in the presen
e of88
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lusion and S
ope for Further Resear
hdissipative 
oe�
ients was 
ompared by the theoreti
al expression.
• Fundamental Observations on 
urrent pulse propagation throughinhomogeneityAn ele
tron 
urrent pulse shows a wide variety of novel behavior in the pres-en
e of plasma inhomogeneity. This was studied by us using the numeri
alsimulations of G-EMHD equations with the 
ode developed by us. The obje
-tive was to spe
i�
ally understand the role of plasma density inhomogeneityon the ele
tron 
urrent pulse propagation. For this purpose we 
hose exa
t
urrent pulse solutions of the homogeneous EMHD as our initial 
onditions[65℄. This ensured that the the 
hanges observed were entirely due to the den-sity inhomogeneity. Both varieties of nonlinear solutions were used, namelyone having monopolar magneti
 �eld 
on�guration and representing rotat-ing ele
tron 
urrents, whi
h is a stationary solution of EMHD equations.The EMHD equations also permits traveling solutions with dipolar magneti
�elds. These dipoles move with 
onstant axial speed and have a 
urrent
on�guration whi
h mo
ks up a spatially separated forward ele
tron 
urrentalong the 
entral axis and return shielding 
urrent at the edges.A variety of inhomogeneous plasma density pro�les were 
hosen for study-ing the propagation of these 
urrent pulses. The numeri
al studies [78, 81℄show (i) that the 
urrent pulse stru
tures a
quire an additional drift in thepresen
e of density inhomogeneity whi
h is transverse to the magneti
 �eldand the density gradient. (ii) The stationary monopolar solutions of EMHDequations therefore drift along the 
onstant plasma density 
ontours andthey 
annot move in regions with di�ering plasma density. (iii) The dipoleis seen to penetrate inside a high density plasma region but it has di�
ulty
oming out from there towards a lower density region of the plasma. It thustypi
ally gets trapped within a high plasma density region. (iv) A detailed
hara
terization of the trapping vs. transmission from a high density plasmaregion of the dipole has been 
arried out whi
h 
learly identi�es the trapping
ondition in terms of a threshold 
riteria. (v) As the dipole stru
ture passesthrough the density inhomogeneity to penetrate the high density region, itforms magneti
 sho
ks and/or sharp 
urrent layers. These observations havebeen elu
idated in Chapter 4. 89
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lusion and S
ope for Further Resear
h
• Collisionless ele
tron energy dissipationThe trapping of the dipole 
urrent pulse stru
ture in high density regionindi
ates the violation of time reversal invarian
e and is suggestive of a dis-sipative me
hanism at work [80, 81℄. Indeed it is shown in Chapter 5 that astrong energy dissipation is asso
iated with the magneti
 sho
k whi
h format the inhomogeneity layer when the dipole stru
ture enters the high densityregion. It is shown that the energy dissipation is independent of the magni-tude and the 
hara
ter of the dissipation present in the system. The physi
sof 
urrent sho
k formation and the asso
iated energy dissipation has beenunderstood theoreti
ally. The analysis shows that the total dissipated energydepends on the ratio of typi
al distan
e traversed by the 
urrent pulse in aninhomogeneous plasma and the density inhomogeneity s
ale length.The energy dissipation via 
urrent sho
k formation at the density inhomo-geneity layer o�ers an ex
ellent me
hanism of 
ollision - less energy dissipa-tion from ele
trons. Ele
trons are a good sour
e of energy as they 
an beeasily a

elerated to high energies. Furthermore, the ele
trons 
an be usedto heat overdense plasma region where lasers are unable to penetrate. Onlydi�
ulty in using them as a sour
e for heating so far has been that their wasthat 
lassi
al Rutherford 
ollision 
ross se
tion gets 
onsiderably weakenedwith in
reasing energy. Thus, the e�
ien
y of the 
lassi
al 
ollisional me
h-anism for heat deposition by energeti
 ele
trons in a plasma has not beenimpressive. However, the use of the proposed 
ollision -less s
heme in 
on-jun
tion with a tailored plasma density inhomogeneity promises to e�
ientlyheat a parti
ular lo
alized spot in the plasma by highly energeti
 ele
trons.The su

ess of a frontline 
on
ept of inertial 
on�nement fusion s
heme, viz.,the Fast Ignition (FI) 
on
ept [5℄ relies on ele
tron energy deposition for the
reation of hot spot in a pre
ompressed target. Though the s
aled down FIexperiments [60, 61℄ have shown impressive results, it is still being viewedwith skepti
ism mainly be
ause the full s
ale experiments would require veryhigh energy ele
trons whi
h are essentially 
ollision - less within the targetsize. We feel that in this 
ontext the proposed density inhomogeneity basedele
tron stopping me
hanism would be of great relevan
e. A re
ent exper-iment [84℄ at ILE Osaka in fa
t has provided su�
ient eviden
e in favor of90
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lusion and S
ope for Further Resear
hour proposed me
hanism. Furthermore, the existing data from various PIC
odes [29, 30, 32, 33℄ studies 
ondu
ted by various groups, on ele
tron trans-port through inhomogeneous plasma targets, invariably show heating at thelo
ation of density inhomogeneity. This provides another eviden
e in favorof our proposed me
hanism at work.
• KH destabilization of �nite ele
tron 
urrent pulses and formationof novel 
oherent nonlinear stru
ture in an inhomogeneous plasmaThe energy dissipation in the sho
k layer is independent of the magnitudeand the type of the underlying dissipation in the system [80℄. While the lowenergy ele
trons stop due to the usual ele
tron - ion 
ollisions, the energeti
ele
trons would stop due to anomalous vis
osity arising from the turbulen
egenerated by the KH destabilization of the sharp 
urrent layer. The KHdestabilization of sharp ele
tron 
urrent �ows have been shown in a series ofpubli
ations [54, 72℄ where unbounded ele
tron �ows have been 
onsidered.The KH destabilization of these unbounded �ows has led to 
oherent non-linear state in 2-D [54℄ and turbulen
e with asso
iated anomalous vis
osityin 3-D [53℄. This is be
ause the 2-D system supports an additional se
ondintegral square invariant, whi
h 
onstrains the evolution.We present in Chapter 6 the KH destabilization of a �nite extent sharplysheared ele
tron 
urrent pulse whi
h forms at the inhomogeneous plasmadensity layer. Sin
e for our 2-D G-EMHD system also 
onserve two integralsquare invariants in the non-dissipative limit, our simulations show that thenonlinear stage of KH destabilization produ
es a 
oherent pattern of rotating
ir
ular vorti
es 
on�ned within the high density plasma region. The 
olle
-tion of vorti
es are seen to align along the 
ontours of the density pro�le toform a novel 
oherent state with alternating sign vorti
es arranged like beadsin a wire [81℄. These studies have been represented in Chapter 6.
• Ele
tron 
urrent pulse guiding through density inhomogeneityIn Chapter 7 we dis
uss another appli
ation where the density inhomogeneityhas an important role. Often one wants to 
ollimate and guide the ele
tron
urrents. There have been proposals to use spe
ially stru
tured targets pre-pared of di�erent materials [62, 63℄. Su
h targets would neither be easy to91
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lusion and S
ope for Further Resear
hprepare nor 
an they be employed with ease in ea
h and every experiment.Again a proper tailoring of the plasma density o�ers an s
heme whi
h 
anbe implemented easily. We illustrate this by pla
ing arbitrary shaped elon-gated high density plasma stru
ture of the shape of a wire along the pathof the ele
tron 
urrent pulse stru
ture. It is observed that the 
urrent �owsalong the path de�ned by the high density plasma. In an experiment [64℄at ILE Osaka the energeti
 ele
trons generated at the 
riti
al density layerby an ultraintense laser pulse were guided with the help of solid wire. Theexperiment showed that the ele
trons moved along the wire, as the wire wastilted the path of the ele
trons 
hanged a

ordingly. We feel that inhomo-geneous plasma density spontaneously 
reated by the ionization of the wireby the ele
trons is responsible for this. We have also shown that a divergentele
tron �ow 
an be suitably 
ollimated by a proper 
hoi
e of plasma densityinhomogeneity. Furthermore, our studies also demonstrate that ele
tron 
ur-rent from an identi
al sour
e 
an be suitably bifur
ated and sent to distin
tlo
ations. These studies have been presented in Chapter 7.8.2 Future Dire
tions for Resear
hWe now list spe
i�
 issues whi
h needs to be studied further in this area:[1℄ One of the issue that has put severe 
onstraint on the studies 
ondu
tedin this thesis pertains to the use of dire
t inversion of a matrix for solvingthe Helmholtz like equation with spa
e dependent 
oe�
ients. This has re-stri
ted the resolution severely and we 
ould only resolve ele
tron skin depthfor a maximum to minimum density ratio of the order of 10. The experi-ments on Fast Ignition (FI) [5℄ would require at least three orders of densityvariations to be depi
ted properly. (The variation from the 
riti
al densitysurfa
e where n = 1022/cc to the target 
ore where n = 1025/cc ). To beable to study this one needs to employ a re
ursive relaxation s
heme usingstandard Helmholtz solvers [83℄ for the solution of Helmholtz like equationwith spa
e dependent 
oe�
ients, that we have to deal with for studyingele
tron transport through inhomogeneous plasma medium. 92



Chapter 8: Con
lusion and S
ope for Further Resear
h[2℄ The 3-D G-EMHD studies are another important area for investigation.These studies 
an 
learly demonstrate that the KH destabilization of thesharp 
urrent layer formed at the plasma inhomogeneity layer 
an ultimatelydegenerate into turbulen
e, giving rise to anomalous vis
osity in the ele
-tron �uid system. The 3-D G-EMHD system also provides a simple realisti
system to study turbulen
e in an inhomogeneous media.[3℄ The propagation of the 
urrent pulse stru
tures in a 
ylindri
al geometryposes a more realisti
 s
enario for the FI experiments [60, 61℄. From funda-mental point of view also, the 
ylindri
al 
ase would be interesting. In theslab 
ase the magneti
 �eld lines for both monopoles as well as dipoles wereextending to in�nity along the symmetry dire
tion. In the 
ase of 
ylindri
algeometry the magneti
 �elds are 
losed along the θ dire
tion. This may havenovel 
onsequen
es.[4℄ A further generalization of the G-EMHD model to in
orporate relativisti
 ef-fe
ts is ne
essary. This will provide a better des
ription for energeti
 ele
trondynami
s in the 
ontext of FI experiments.[5℄ A two �uid des
ription for ele
trons 
onstituting the forward energeti
 
ur-rent and the reverse ba
kground shielding 
urrent in the model would be
loser to reality and needs to be pursued.
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Appendix ADerivation of the G-EMHD ModelEquationsWe start with the normalized 3-D G-EMHD model equation.
∂~g

∂t
= ∇×

(

~V × ~g
)

− η∇× ~V (A.1)where ~V ,∇× ~V and ~g are de�ned as:
~V = −∇× ~B

n

∇× ~V =
∇2 ~B

n
+

∇n×∇× ~B

n2and
~g =

∇2 ~B

n
+

∇n×∇× ~B

n2
− ~BEq. (A.1) 
an be expanded as:

∂~g

∂t
= ~V (∇ · ~g)

︸ ︷︷ ︸0 −~g(∇ · ~V ) + (~g · ∇)~V − (~V · ∇)~g − η∇× ~V (A.2)or,
∂~g

∂t
= ~g(

~V · ∇n
n

) + (~g · ∇)~V − (~V · ∇)~g − η∇× ~V (A.3)94



Appendix A: Derivation of the G-EMHD Model EquationsThis represents the simpli�ed form of the 3-D G-EMHD model equation.Two Dimensional G-EMHD modelFor the redu
tion of the G-EMHD model in two dimension we assume thegeneral 
oordinate system like êp, êq and ês as the right handed triad of unit ve
tors.We take the symmetry axis to be along ês. The magneti
 �eld being divergen
elessit 
an be expressed in terms of two s
alar �elds in 2-D as ~B = bês + ês×∇ψ. Theele
tron velo
ity (~V )and the generalized vorti
ity (~g) 
an be written as:
~V = −∇× ~B

n

= ês ×
∇b
n

− ês
∇2ψ

n

∇× ~V = ês

(

∇ ·
(∇b
n

))

− ês ×∇
(∇2ψ

n

)and
~g =

(

∇2 ~B

n
− ~B − ∇n×∇× ~B

n2

)

= ês ×∇
(∇2ψ

n
− ψ

)

+

(

∇ ·
(∇b
n

)

− b

)

êsSubstituting the expression for ~V , ∇× ~V and ~g in Eq. (A.3), and on separating the
omponents along ês (symmetry dire
tion) as well as in the perpendi
ular plane ofthe ês dire
tion (poloidal plane) we get the following two equations.
∂

∂t

{

b−∇ ·
(∇b
n

)}

+ ês×∇b ·∇
[
1

n

{

b−∇ ·
(∇b
n

)}]

+ ês×∇ψ ·∇
(∇2ψ

n

)

= η∇ ·
(∇b
n

) (A.4)and
∂

∂t

{

ψ − ∇2ψ

n

}

+
ês ×∇b

n
· ∇
{

ψ − ∇2ψ

n

}

= η
∇2ψ

n
(A.5)Integral invariants of the G-EMHD: 95



Appendix A: Derivation of the G-EMHD Model EquationsIn order to get the integral invariants of 2-D G-EMHD we are using the Eq. (A.4)
& (A.5) in the limit of invis
id �uid, η → 0. Here the derivation of integralinvariant is 
arried out when 
urrent asso
iated with magneti
 �eld ( ~B) is alongboth symmetry dire
tion (ês) as well as in the perpendi
ular plane of ês. It meansboth s
alar quantities b and ψ are �nite.On multiplying Eq. (A.4) by b and integrating over 2-D volume d2X Eq. (A.4)
an be written as:
∫

b
∂b

∂t
d2X −

∫

b
∂

∂t

(

∇ ·
(∇b
n

))

d2X +

∫

bês×∇b ·∇
{
1

n

(

b−∇ ·
(∇b
n

))}

d2X +

∫

bês ×∇
(

ψ − ∇2ψ

n

)

· ∇
(∇2ψ

n

)

d2X = 0 (A.6)The �rst and se
ond term 
an be 
ombined in the form of (1/2) ∫ ∂
∂t

{b2+(∇b)2 /n}d2Xusing by part integration and the 
ondition that the �eld vanishes on the boundary.The third term 
an be written as (1/2) ∫ ∇·(ês ×∇b2/n) (b−∇ · (∇b/n)) d2X andit vanishes over whole spa
e. Thus, we get
1

2

∫
∂

∂t

{

b2 +
(∇b)2
n

}

d2X +

∫

bês ×∇
(

ψ − ∇2ψ

n

)

· ∇
(∇2ψ

n

)

d2X = 0(A.7)Again on multiplying Eq. (A.5) by ∇2ψ and integrating over the 2-D spa
e,
∫

∇2ψ
∂ψ

∂t
d2X−

∫

∇2ψ
∂

∂t

(∇2ψ

n

)

d2X+

∫

∇2ψ
ês ×∇b

n
·∇
(

ψ − ∇2ψ

n

)

d2X = 0(A.8)The �rst and se
ond term 
an be merged into (1/2) ∫ ∂
∂t

{

(∇ψ)2 + (∇2ψ)
2
/n
}

d2Xby applying by part integration over the �rst term followed by the 
ondition that�elds vanishes on the boundary.
1

2

∫
∂

∂t

{

(∇ψ)2 + (∇2ψ)
2

n

}

d2X −
∫

∇2ψ
ês ×∇b

n
· ∇
(

ψ − ∇2ψ

n

)

d2X = 0(A.9)
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Appendix A: Derivation of the G-EMHD Model EquationsNow on adding Eq. (A.7) and Eq. (A.9), then
1

2

∫
∂

∂t

{

b2 +
(∇b)2
n

+ (∇ψ)2 + ∇2ψ

n

}

d2X+

∫ {

bês ×∇
(

ψ − ∇2ψ

n

)

· ∇
(∇2ψ

n

)

−∇2ψ
ês ×∇b

n
· ∇
(

ψ − ∇2ψ

n

)}

d2X = 0or,
1

2

∫
∂

∂t

{

b2 +
(∇b)2
n

+ (∇ψ)2 + ∇2ψ

n

}

d2X+

∫

∇ · ês ×∇
(

ψ − ∇2ψ

n

)

b
∇2ψ

n
d2X

︸ ︷︷ ︸0 = 0or
1

2

d

dt

∫
{

b2 +
(∇b)2
n

+ (∇ψ)2 + ∇2ψ

n

}

d2X = 0or,
dE

dt
= 0 (A.10)This equation implies that the quantity E is 
onstant where E is the total en-ergy, i.e. summation of the magneti
 energy (b2 + (∇ψ)2

) and kineti
 energy
(1/n)

(
(∇b)2 +∇2ψ

). At this stage energy is the only invariant for this 
ase.Now, let us derive invariants for the 
ase when 
urrent asso
iated with themagneti
 �eld is 
on�ned only in perpendi
ular plane of ês, i.e. ψ = 0. Thus, inthis 
ase 2-D G-EMHD model redu
es to the following equation.
∂

∂t

{

b−∇ ·
(∇b
n

)}

+ ês × ∇b · ∇
[
1

n

{

b−∇ ·
(∇b
n

)}]

= 0 (A.11)Here, apart from the energy (b2 + (∇b)2 /n
) one more invariant is asso
iated withthis equation. That 
an be obtained by multiplying Eq. (A.11) with
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Appendix A: Derivation of the G-EMHD Model Equations
(1/n) (b−∇ · (∇b/n)) and integrating over 2-D volume spa
e d2X . Therefore,
∫

1

n

(

b−∇ ·
(∇b
n

))
∂

∂t

(

b−∇ ·
(∇b
n

))

d2X+

∫
1

n

(

b−∇ ·
(∇b
n

))

ês ×∇b · ∇
(
1

n

(

b−∇ ·
(∇b
n

)))

d2X = 0or,
1

2

∫
1

n

∂

∂t

(

b−∇ ·
(∇b
n

))2

d2X+
1

2

∫

ês×∇b·∇
(
1

n

(

b−∇ ·
(∇b
n

)))2

d2X = 0or,
1

2

∫
1

n

∂

∂t

(

b−∇ ·
(∇b
n

))2

d2X+

1

2

∫

∇ ·
{

ês ×∇b
(
1

n

(

b−∇ ·
(∇b
n

)))2
}

d2X

︸ ︷︷ ︸0 = 0Thus,
1

2

d

dt

∫
1

n

(

b−∇ ·
(∇b
n

))2

d2X = 0or
dH

dt
= 0 (A.12)where H (= ∫ (1/n) (b−∇ · (∇b/n))2 d2X
) is the additional invariant apart fromenergy for this 
ase when ψ = 0.
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Appendix BSolution of the Nonlinear EMHDEquationLet us start with the simpli�ed form of the 2-D EMHD equation with the as-sumption that only the symmetry 
omponent (b) of the total magneti
 �eld ( ~B =

bẑ + ẑ ×∇ψ) exist, i.e. ψ = 0. So,
∂Ωb
∂t

+ [b,Ωb] = 0 (B.1)Here, the symbols [ , ℄ and Ωb used in the above equation 
orresponds to Poissonbra
ket and (b−∇2b) respe
tively. The solution of this equation 
an be obtained bygoing to the moving frame with the 
oordinate transformation ξ = y−ut assumingthat the translational velo
ity (u) of the solution is along ŷ dire
tion. Therefore,Eq. (B.1) 
an be redu
ed as,
[Ωb, b− ux] = 0 (B.2)This suggests that Ωb = fb(b − ux), where fb is fun
tion of (b − ux). Thus, atraveling solution 
an be obtained by seeking solution of the following equation:

b−∇2b = fb(b− ux) (B.3)
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Appendix B: Solution of the Nonlinear EMHD Equationor,
∇2b− b = −fb(b− ux) (B.4)The general solution would 
orrespond to any 
hoi
e of the fun
tion fb . Isi
hnekoet al. [65℄ has obtained the analyti
al form of the solution that is lo
alized withinthe �nite spatial extent of r0. Here the solution is obtained by the transformationof this equation in the 
ylindri
al 
o-ordinate system with the assumption that

∂/∂z = 0 and x = r cos (θ). Thus,
1

r

∂

∂r

(

r
∂b

∂r

)

+
1

r2
∂2b

∂θ2
− b = −fb(b− ur cos(θ)) (B.5)In order to get the solution of Eq. (B.5), Isi
henko et al. [65℄ 
onsidered the linearvariation of vorti
ity fun
tions fb(= α(b−ur cos(θ))) inside of ro, and zero outsideof ro (it means α should be zero). Hen
e,Governing equation inside of ro ( r < ro)

1

r

∂

∂r

(

r
∂b

∂r

)

+
1

r2
∂2b

∂θ2
− b = −α(b− ur cos θ) (B.6)Governing equation outside of r0 (r ≥ r0)

1

r

∂

∂r

(

r
∂b

∂r

)

+
1

r2
∂2b

∂θ2
− b = 0 (B.7)The governing Eq. (B.6) gives the solution of the s
alar �eld, b, in the form of the�rst kind of Bessel fun
tion. Here, let me write the form of the solution for �eld

b inside of r0 : b = [d1J1(k1r) + d2r] cos θ. Eq. (B.7) forms the simple Poissonequation and allows the solution for the quantity b in the form of the se
ond kindof Bessel fun
tion, b = d3K1(r) cos θ. The 
onstants d1, d2 and d3 
an be obtainedby using the boundary 
onditions that the �elds and its derivative are 
ontinuousat the boundary of r0. Thus the 
ontinuity of the �eld at the boundary will givethe relation
d1J1(k1r0) + d2r0 = d3K1(r0) (B.8)
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Appendix B: Solution of the Nonlinear EMHD Equationand the other 
ondition on its derivative (b
′

i(r = r0) = b
′

o(r = r0)) will give therelation
d1J

′

1(k1r0) + d2 = d3K
′

1(r0) (B.9)Using these equations we get the relations
d1
d2

=
K1(r0)− r0K

′

1(r0)

J1(k1r0)K
′

1 − J
′

1(k1r0)K1(r0)
(B.10)and,

d3
d2

=
J1(k1r0)− J

′

1(k1r0)r0
J1(k1r0)K

′

1 − J
′

1(k1r0)K1(r0)
(B.11)Thus, the value of the 
onstants d1 and d3 
an be 
al
ulated by knowing the
onstant d2. So, on substituting the inside solution for b in Eq. (B.6) we get theequation:

d1

[

r2
d2J1(k1r)

dr2
+ r

dJ1(k1r)

dr
+
(
k21r

2 − 1
)
J1(k1r)

]

= (d2 − αd2 + αu) r3 (B.12)where k21 = α− 1. From this equation it is 
lear that the inside solution will onlybe satis�ed when
d2 − αd2 + αu = 0or,
d2 = − αu

1− α
(B.13)Now we 
an obtain the 
onstants d1 and d3 using this form of d2. Here we arewriting the solution of the �eld b expli
itly.

bi(r, θ) = (d1J1(k1r) + d2)cos(θ), r < r0

bo(r, θ) = d3K1(r)cos(θ), r > r0This solution of b form the dipolar stru
ture for a set of free parameters (u, α, r0)[see Fig. (4.2) of the Chapter 4℄.
101



Appendix CSolution of the Inertialess G-EMHDModelWe begin with the Eq. (2.2) of the Chapter 2.
∂
(

∇× ~P
)

∂t
= ∇× ( ~Ve ×∇× ~P )− ν∇× ~Ve (C.1)where ~P = ~Ve− (e ~A)/(mec) is the generalized momentum 
ontaining both ele
tron�ow velo
ity ( ~Ve) as well as ve
tor �eld ( ~A). The ele
tron �ow velo
ity is de�nedas ~Ve = −(c/4πnee)∇× ~B (obtained by negle
ting the displa
ement 
urrent in theAmpere's law). Expansion of the generalized vorti
ity ∇× ~P :

∇× ~P = ∇× ~Ve −
e

mec
∇× ~A (C.2)
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Appendix C: Solution of the Inertialess G-EMHD ModelUpon substituting the expression for velo
ity ~Ve = −(c/4πene)∇ × ~B and therelation ~B = ∇× ~A in Eq. (C.2) we get.
∇× ~P = − c

4πe
∇×

(

∇× ~B

ne

)

− e ~B

mec
(C.3)

= − c

4πe

[
1

ne
∇×∇× ~B +∇

(
1

ne

)

×∇× ~B

]

− e ~B

mec

= − c

4πe

[

1

ne
∇
(

∇ · ~B
)

− ∇2 ~B

ne
− ∇ne ×∇× ~B

n2
e

]

− e ~B

mec

=
c

4πene

[

∇2 ~B +
∇ne ×∇× ~B

ne

]

− e ~B

mecComparing the magnitude of the �rst and se
ond term of RHS in Eq. (C.3).
| c
4πe

∇×
(

∇× ~B/ne

)

|

| e ~B/mec |
=

ck2B/4πene
eB/mec

=
c2

ω2
pe

k2

= d2ek
2where de = c/ωpe, in whi
h ωpe = 4πnee

2/me is the plasma frequen
y. The �rstterm of RHS in the Eq. (C.3) is negle
ted if d2ek2 ≪ 1. This is the inertialess
ondition. Under this 
ondition the form of the generalized vorti
ity would be.
∇× ~P = − e ~B

mec
(C.4)Now on substituting this new form of ∇× ~P in Eq. (C.1) we obtain.

∂ ~B

∂t
= ∇× ( ~Ve × ~B) +

ν

mec
∇× Ve (C.5)
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Appendix C: Solution of the Inertialess G-EMHD Modelor,
∂ ~B

∂t
= −1

e
∇×

(
~J × ~B

ne

)

− c∇× ( ~J/σ) (C.6)where σ = nee
2/meν is a 
onstant quantity and is de�ned as 
ondu
tivity. AgainEq. (C.6) is simpli�ed using the relation for 
urrent ~J = (c/4π)∇× ~B. Thus weobtain.

∂ ~B

∂t
= − c

8πe
∇
(

1

ne

)

×∇(B2) +
c2

4πσ
∇2 ~Bor,

∂ ~B

∂t
+

c

4πene

∇ne
ne

×∇(B2/2)− c2

4πσ
∇2 ~B = 0 (C.7)Let the density gradient is along ŷ dire
tion (i.e. ∇ne = (∂ne/∂y)ŷ) and perpen-di
ular to the magneti
 �eld ( ~B = b(x, y)ẑ). Then,

∂b

∂t
+

c

4πe

bẑ ×∇ne
n2
e

︸ ︷︷ ︸Drift Velo
ity ·∇b = c2

4πσ

(
∂2b

∂x2
+
∂2b

∂y2

) (C.8)or,
∂b

∂t
+

(

− c

4πe

1

n2
e

∂ne
∂y

)

︸ ︷︷ ︸K b
∂b

∂x
=

c2

4πσ
︸︷︷︸

η

(
∂2b

∂x2
+
∂2b

∂y2

) (C.9)or,
∂b

∂t
+K

∂

∂x
(b2/2) = η

(
∂2b

∂x2
+
∂2b

∂y2

) (C.10)where K = −c/4πneeLn, in whi
h Ln = (1/ne)∂ne/∂y is interpreted as the inverseof density s
ale length. The solution of this equation 
an be obtained by going tothe moving frame with the 
oordinate transformation; ξ = x+ βy−ut, where β isa 
onstant parameter and u represents the velo
ity of moving frame. Thus, in thisnew 
oordinate system the operators asso
iated with the Eq. (C.10) are de�ned104



Appendix C: Solution of the Inertialess G-EMHD Modelas:
∂

∂y
= β

∂

∂ξ
;
∂

∂x
=

∂

∂ξ
;
∂

∂t
= −u ∂

∂ξTherefore, Eq. (C.10) be
omes,
−u∂b

∂ξ
+K

∂b2/2

∂ξ
= η(1 + β2)

∂2b

∂ξ2or,
∂(Kb2/2− bu)

∂ξ
= η(1 + β2)

∂2b

∂ξ2On integration,
∫
∂(Kb2/2− bu)

∂ξ
dξ =

∫

η(1 + β2)
∂

∂ξ

(
∂b

∂ξ

)

dξ +K1or,
Kb2

2
− bu = η(1 + β2)

∂b

∂ξ
+K1where K1 is the integration 
onstant and 
an be obtained by applying the bound-ary 
ondition that b = b0 and ∂b/∂ξ = 0. Thus K1 = b0(b0K/2− u),

η(1 + β2)
∂b

∂ξ
= b(bK/2− u)− b0(b0K/2− u)Integrating again,

∫
db

b(bK/2− u)− b0(b0K/2− u)
=

∫
dξ

η(1 + β2)
+K2

2 tan−1
[

(bK − u)/
√

(− 2KK1 − u2)
]

√

(− 2KK1 − u2)
=

ξ

η(1 + β2)
+ k2Using the identity tan(ix) = i tanh(x) the above relation 
an be written in thesimpli�ed manner.

b =
u

K
+

(b0K − u)

K
tanh

[
(b0K − u)

2

(
ξ

η(1 + β2)
+K2

)] (C.11)105



Appendix C: Solution of the Inertialess G-EMHD Modelwhere K2 is the integration 
onstant.
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