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Abstract

This thesis is devoted to the study of laser driven acceleration of charged particles

in vacuum. The following two schemes of particle acceleration namely:“the laser

driven auto-resonant acceleration” and “direct acceleration of particles by a fo-

cused laser field” have been theoretically investigated. It has been further shown

that these two schemes of particle acceleration can be easily combined together

to enhance the efficiency of the acceleration scheme.

The scheme of laser driven auto-resonant particle acceleration is of great in-

terest, as in this scheme the acceleration rate is higher and radiation losses are

lower as compared to other schemes of particle acceleration. In the laser driven

auto-resonant scheme, the particle is subjected to the combined field of laser and

a static axial magnetic field. The particle acceleration is achieved as a result of

self sustained initial resonance between the wave frequency and cyclotron fre-

quency of the particle. This resonance is maintained due to a precise cancellation

of the relativistic mass effect due to the motion along the transverse direction

which lowers the cyclotron frequency of the particle and a Doppler effect along

the longitudinal direction, as result of which the frequency of the wave as seen

by the particle is lower than the actual wave frequency. The renewed interest in

this scheme is due to the observation of ultra high magnetic fields in the simu-

lations as well as in the laboratory experiments pertaining to intense laser solid

interaction. The observed magnetic fields are typically of the order of hundreds of

mega-gauss and in general are found to be in turbulent state. However, in some of

the cases, the fields are found to be coherent for a longer duration time compared

to the time of interaction between the laser pulse and particle. Thus a detailed

analytical as well as numerical understanding of the scheme is required to opti-

mize the use of these magnetic field for experimental realization of the scheme. In

this thesis, the particle acceleration is analytically and numerically studied using

a “Gaussian” shaped temporal profile for the first time; this profile allows an un-

ambiguous comparison between the analytical and numerical results. It is shown

that particle with significant energy gain can be obtained for an optimum choice of

parameters in terms of axial magnetic field, pulse width and peak laser intensity.

In the other scheme, the particle is accelerated by subjecting it to a focused

laser field. For a focused laser, there is asymmetry in configuration of electric as

xi



well as the magnetic fields, which are found to be strongest near the focal point

and grows weaker while moving away from it. As a result of this asymmetry, the

weaker laser field far away from the focus is not able to extract back the energy

transfered to the particle by the laser closer to the focus and hence a net energy

is imparted to the particle along the direction of propagation of laser. For a range

of parameters the energy gain is obtained by numerically solving the equation of

motion. These numerical results are compared with the analytical results which

are obtained using a newly derived adiabatic formulation. The adiabatic formu-

lation is derived using canonical transformation and Lie-transform perturbation

method. It is shown that the analytical description provides good quantitative

estimates of the numerical results. From these estimates, the optimum conditions

for maximum energy gain of the particle are determined.

The theoretical understanding of the above two acceleration schemes is used

to describe a new scheme of particle acceleration. In this scheme the particle is

subjected to the combined field of focused finite duration laser and static axial

magnetic field. It is shown that for suitable choice of parameters, the scheme

results in efficient acceleration of particles.
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1
Introduction

This chapter contains the brief history and review of different schemes

of particle acceleration in vacuum. The motivation and methodology for

each of the works has been outlined in the respective chapters.

1.1 Brief History and Review of Earlier Works

The area of particle acceleration has been a topic of intense scientific research for

several decades. These accelerated charged particles have wide range of appli-

cations in diverse fields such as the study of fundamental constituents of matter,

high-resolution radiography for non destructive material inspection, radiotherapy,

ultrafast chemistry, radio-biology, material science, industrial applications, med-

ical field etc. In recent years, the area of laser driven particle acceleration has

received considerable attention due to a giant leap in laser technology caused by

the advent of Chirped Pulse Amplification [CPA][1, 2, 3] technique. The optical

beams produced using this technique have peak focused intensities of the order of

1021 − 1022Wcm−2. The corresponding electric fields produced by such high pow-

ered laser systems is of the order of 1012V cm−1, which surpass those produced in

the conventional RF linear accelerators by several orders of magnitude. Therefore,

these laser driven accelerators with such high intensities and large accelerating

gradients offers a compact, economical and efficient alternative to conventional

accelerators for accelerating particles to relativistic energies. In 1961, Shimoda

[4] first proposed the use of lasers as a clean and simple physical system to accel-

erate particles. Since then the laser driven acceleration of charged particles has

1



Chapter 1. Introduction

been studied in plasma, gases and vacuum[5, 6, 7, 8, 9, 10, 11, 12, 13].

The problem of relativistic interactions of free electron with continuous and

pulsed EM fields of laser has been a topic of great interest. In the past, the orbit

solutions have been investigated for the problem of a charged particle moving

under the influence of a laser pulse[14, 15, 16]. The force equation was integrated

by Krüger and Bovyn [14], for a particle driven by a plane wave of arbitrary

amplitude, in terms of the co-moving and inertial times. An exact solution was

found by Shebalin [15], as a function of the phase of the wave, for the position

and velocity of a particle interacting with an electromagnetic wave. Acharya and

Saxena[16], solved the problem of a particle embedded in an elliptically polarized

wave. Landau and Lifshitz [17], examined the problem in terms of an average

rest frame drifting at a particular velocity with respect to the laboratory frame.

Bardsley et al. [18], studied the nonlinear dynamics of electrons in intense laser

fields by numerically solving the relativistic equation of motion of single electron

in a pulse of very strong plane-wave interaction, taking account of space-charge

effects and spatial variations in laser intensity. The further works on this topic are

contained in the following references [20, 21, 22]. It is well known from these

studies, that in vacuum a particle oscillating in the field of either a continuous

plane monochromatic wave or a finite duration pulse is symmetrically accelerated

and decelerated by the laser field resulting in no net energy transfer. The lack of

energy transfer is a consequence of phase slippage of the particle from the laser

field.

A number of studies have been reported over the years to overcome the issue

of particle phase slippage from laser fields and thus accelerating charged particles

in vacuum. All these works have made the laser driven acceleration of charged

particle in vacuum as one of the intensely researched area of particle accelera-

tions. Some of the schemes of accelerating the charged particles in vacuum are

laser driven auto-resonant acceleration [23, 24, 25, 26, 27, 28, 29, 34, 35, 36,

37, 38, 39, 40, 41, 42, 33], direct laser acceleration by the focused laser field

[46, 58, 56, 59, 60, 61, 62, 65, 48, 49, 50, 51, 52, 53, 54, 55, 57], Vacuum Beat

Wave Acceleration(VBWA) [70, 71, 72, 73, 74], Inverse Free-Electron Laser (IFEL)

[75, 78, 79, 80, 81, 82, 83] and particle acceleration by chirped laser frequency

[84, 85, 86, 87, 88, 89, 90, 91]. The physical principles underlining these schemes

along with the brief description of the earlier works on the topics is given below.

2



Chapter 1. Introduction

The mechanism for auto resonance scheme which is of great interest was dis-

covered by KolomenskiÏ and Lebedev [23, 24] and, independently, by DavydovskiÏ

[25]. The laser driven auto-resonant scheme provides a high acceleration rate and

sufficiently low radiation losses [26]. In this scheme the charged particle is sub-

jected to the combined field of laser and homogeneous static axial magnetic field.

The particles are accelerated as a result of self-sustained resonance between the

particle and the laser field, as result the particle remains phase locked with the

laser pulse. The condition for the phase locking i.e ω − kvx = Ωc

Γ
, where ω is

the laser frequency and Ωc(=
eBo

mc
) is the cyclotron frequency, vx is the longitudinal

particle velocity, is a consequence of conservation of Ωc

ω∆
; ∆ = Γ−Px/mc, Γ and Px

respectively being the relativistic factor and x component of the momentum. The

mechanism of auto-resonant particle scheme can be described in a following way:

the particle initially at rest and satisfying the initial resonance condition (ω = Ωc)

is accelerated along the electric field of a wave. The gain in the energy along

the transverse direction leads to the relativistic mass effect which in turn lowers

the cyclotron frequency of the particle. As result of the transverse velocity gain,

the particle is acted upon by the magnetic field component of the wave, which

pushes the particle along the direction of the propagation of the wave. The rel-

ativistic velocity acquired by the particle along the longitudinal direction results

in a Doppler shift to a lower frequency of the wave as “seen” by the particle. In

this case, the Doppler shift in the wave frequency to the lower frequency equals

the reduction in the cyclotron frequency, and the particle remains “synchronously”

in cyclotron-resonance condition. Thus resulting in a continuous increase in par-

ticle energy and momentum along the direction of propagation of the wave. A

brief account of the studies based on this scheme has been given below. An exact

‘‘synchronous′′ solution to the equation of motion for the case of circular polar-

ization was obtained by Roberts and Buchsbaum [27]. From the solution it was

shown that when the index of refraction of the medium is not unity, the energy

of the particle is periodic in time, and when that index is unity, the effect of the

magnetic field compensates for the change in mass with energy and the energy

increases indefinitely at resonance. An exact expression for the particle energy

as a function of time was obtained. Bourdier and Gond [28, 29] studied the dy-

namics of a relativistic charged particle in both a linearly and circularly polarized

EM plane wave with and without a constant axial magnetic field using Hamilto-
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nian formalisms. For a particle initially at rest, they obtained a scaling law for

the energy gain at resonance condition. They also examined the case with an

external magnetic field gradient and some interesting results were obtained on

particle acceleration mechanisms. Qian [30], has reported exact solutions, for

certain initial conditions, for the motion of a charged particle driven by a circu-

larly polarized wave propagating along a constant magnetic field. Qian [31], also

considered the same problem with the superposition of circularly polarized waves

and showed that this increases the chance for resonance. Ondarza-Rovira [32],

solved the REM for an electron in an elliptically polarized wave along a constant

axial magnetic field using a potential representing a traveling wave with constant

amplitude. The method of solution allowed to integrate in exact form the Lorentz

equation yielding to analytical expressions for the electron trajectories and drift

velocities of the particles. These solutions exhibit resonance effects between the

wave frequency and the cyclotron frequency associated with the axial magnetic

field. Ondarza and Gomez [33], extended this work to include an elliptically

polarized wave with a Gaussian-like shape propagating along a constant axial

magnetic field. They used a sin2 representation for the pulse shape and reported

finding two new resonance conditions in the solution. The further works on the

topic can be found in the following references [34, 35, 36, 37, 38, 39, 40, 41, 42].

Alternatively, the charged particle can be accelerated in vacuum by subjecting

it directly to the field of focused laser, this scheme has been refereed to as the

direct laser acceleration (DLA) in the literature [46, 47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 65, 63]. The physical mechanism underlining this

scheme can be described in a following way; on focusing the strength of electric

field component of laser increases along the direction of propagation and reach-

ing maximum at the focal spot, this region is termed as the focused region. The

region beyond the focal point along the propagation direction is termed as the de-

focused region, the strength of electric field component decreases in this region.

Thus the focusing of a laser field causes the asymmetry in the acceleration and de-

celeration phase of the laser field. At the beginning of the interaction, considering

the particle to be positively charged and initially at rest is overtaken by the laser,

which accelerates it along the electric field component of the laser. The particle

acquires a relativistic velocity along the direction of electric field component of

laser. As result of this, the force due to the magnetic field component becomes
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significant and the particle is subjected to strong ~v × ~B force which pushes the

particle along direction of propagation of the laser into de-focused region. As

described above the electric field component of the laser is weaker in this region

and decays further while moving away from the focus, thus the laser is not able

to extract the energy back from the particle. This asymmetry in energy exchange

between the particle and laser field due to the focusing leads to the net transfer of

energy to it along the direction of propagation. The earlier works on this scheme

are briefly described below.

The particle dynamics in the focused laser field was earlier analytically studied

by Kaw et al. in ref.[46] using an one dimensional model. The slow spatial mod-

ulation along the direction of laser propagation was used to model the focused

laser field and optimum conditions for maximizing the energy gain by the particle

were obtained. In ref.[47], it was pointed out that the two and three dimensional

focused laser fields are associated with a longitudinal component of electric field

which play a significant role in the acceleration of particle acceleration. Thus an

improved description of fields is required for the detailed analysis of the direct par-

ticle acceleration in vacuum. Several theoretical studies on the vacuum electron

acceleration have been based on the quasi-geometrical optics (paraxial) approxi-

mation or on its higher-order generalization [48, 49, 50, 51, 52, 53, 54, 55, 56].

In ref.[57] a more realistic focal laser field that satisfies Maxwell’s equations has

been employed ; however, this work involved idealized boundary conditions for

a tightly focused laser beam. The further description of the works on the topic

can be found in the following references [58, 59, 60, 61, 62, 65, 66]. The other

aspects such as the effect of laser polarization of the laser pulse on the particle

energy gain was studied by Singh et al. in ref [63] and from the numerical studies

it was shown that the circularly polarized laser enhances the energy gain in com-

parison to the linearly polarized one. The particle dynamics in the overlapping

field of two focused linearly polarized finite duration laser pulses was studied in

[64] and based on numerical simulation it was concluded that energy gained by

the particle can be enhanced considerably by suitable choice of pulse lengths.

Esarey et.al [67] proposed the Vacuum Beat Wave Accelerator [VBWA] scheme

for accelerating charged particle by intense laser fields. This scheme does not re-

quire gas, plasma, or other proximate material medium to achieve a net energy

gain. The scheme relies on the ponderomotive acceleration resulting from the beat
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wave produced by the interaction of two laser beams. In the VBWA, two laser

beams of different frequencies are co-propagated in the presence of an injected

electron beam. The beat term in the ~v × ~B force results in an axial acceleration

of properly phased electrons, traveling essentially along the same axis as the two

laser beams. By suitable choice of the frequencies, focal spot sizes and/or the focal

points of the two beams, the phase velocity of the beat wave can be adjusted such

that vph ≤ c. Hence the phase velocity can be tuned to the electron velocity and

the problem of phase slippage can be reduced. The acceleration mechanism in the

VBWA is similar to that of the inverse free-electron laser (IFEL), wherein a propa-

gating electromagnetic wave interacts with an electron beam in the presence of a

periodic magneto-static field, and the resulting beat wave produces acceleration.

In this effect, the wiggler field in the IFEL is replaced by one of the lasers in the

VBWA. Hafizi et.al [68] extended the previously considered models [67, 69] of

the interaction to obtain improved estimates for the energy gain. It was demon-

strated through simulations that the energy gain can be improved significantly

by employing a converging particle beam that was focused at the same location

as the laser beams. Further progress on the topic can be found in the following

references [70, 71, 72, 73, 74].

The inverse free-electron laser (IFEL) is one of the schemes of laser accelera-

tion which has been studied over several years. The basic principles of the IFEL

accelerator, although that name was given later, were proposed by Palmer[75].

The scheme is result of successful experiments [76, 77] with the free-electron

laser which have shown that there is indeed a transfer of energy between the

laser and electron beams in the presence of the undulator magnetic field. In a

free-electron laser the energy is transferred from electrons to the laser beam. In

the IFEL accelerator the energy transfer is in the opposite direction, from the laser

beam to electrons. The IFEL can be used to accelerate electrons to energies of

the order of 100-GeV regime. In an IFEL, relativistic particles are moving through

an undulator magnet; a plane electromagnetic wave is propagating parallel to the

beam. The undulator magnet produces a small transverse velocity (wiggling mo-

tion) in a direction parallel to the electric vector of the wave, so that energy can

be transferred between the particle and the wave. In this scheme the magnetic

fields is tailored in a way so that the electron’s wiggling motion and the EM wave

are always in the same relative phase. The sign of transverse electron velocity is

6



Chapter 1. Introduction

changed synchronously with the laser field to compensate for the phase slippage

of the electron due to which it falls behind the wave. The following references

[78, 79, 80, 81, 82, 83] contains some of the detailed studies on the topic.

Several schemes have been described above for laser driven acceleration of

charged particles in vacuum. In most of these schemes the laser frequency has

been kept fixed, however particle can also be efficiently accelerated using the

chirped laser pulses, for which the instantaneous frequency varies with time. The

instantaneous variation of frequency of the laser with time forms the basis for the

collapse of symmetry between acceleration and deceleration of charged particle

by planer electromagnetic fields of the laser in vacuum. Several schemes [84,

85, 86, 87, 88, 89, 90, 91] have been proposed using chirped laser pulses for

acceleration of particles in vacuum and it is shown that the use of chirped laser

pulses could dramatically enhance the acceleration effect. In the chirped laser

acceleration scheme, an electron with a low initial energy is injected into the

high phase velocity region, but the variation in the instantaneous frequency of the

chirped laser pulses versus the space-time coordinates affects the phase variation

of the chirped laser. Due to the chirp effect, a region exists where the laser wave

phase experienced by the electron will vary slowly, as a result the electron can

be trapped in the acceleration phase for a long time. This leads to the violent

acceleration of the electrons to a very high energy in the main acceleration stage,

and when the electron enters the weak field region in the deceleration phase, the

lost energy of the electron is insignificant when compared to its gain in the main

acceleration stage.

From the above described various schemes for accelerating the charged par-

ticles in vacuum using high intensity laser field, the following two schemes of

particle acceleration are found to be very promising namely: “the laser driven

auto-resonant acceleration” and “direct acceleration of particle by a focused laser

field”. These schemes are analytically and numerically studied in this thesis and

it is shown that the these two schemes of particle acceleration can be easily com-

bined together to enhance the overall efficiency of the acceleration scheme.

The scheme of laser driven auto-resonant particle acceleration is of great in-

terest, as in this scheme the acceleration rate is higher and radiation [92] losses

are lower as compared to other schemes of particle acceleration. The renewed in-

terest in this scheme is due to the observation of ultra high magnetic fields in the
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simulations as well as in the laboratory experiments pertaining to intense laser

solid interaction[116, 117, 118, 119, 120, 121]. The observed magnetic fields

are typically of the order of hundreds of mega-gauss and in general are found to

be in the turbulent state. However in some cases, these fields are found to be

coherent for a time duration much greater than that of the time of interaction be-

tween the laser pulse and particle. Thus a detailed analytical as well as numerical

understanding of the scheme is required to optimize the use of these magnetic

field for its experimental realization. The auto-resonant acceleration scheme has

been previously studied by several authors in the past. The earlier studies on

the scheme were reported using a monochromatic plane electromagnetic wave

and it is found that even though these are good for academic interest as well as

for basic understanding of the phenomenon, but they lack experimental realiza-

tion due to the dual requirement of simultaneously maintaining the high intensity

lasers as well as static axial magnetic field for long durations. Also, the choice of

monochromatic wave is unphysical, as it has no-building or slowing down phase

which corresponds to infinite energy. A more realistic approach is thus the use of

finite duration laser pulse, which has a build-up as well as slowing-down phase

and hence contains a finite amount of energy. In this study, it is reasonably good

approximation to consider the particle to be at rest before the onset of interac-

tion. The earlier theoretical studies of the scheme with finite duration laser pulse

have used a Sin2 modulation to describe the temporal shape of the pulse envelope

[33, 41, 42]. In these studies, the analytical work has been carried using a period-

ically self repeating envelope pulse in an infinite modulated wave train. Such an

envelope pulse has a discrete frequency spectra in the Fourier space, comprising

two additional side band frequencies around the central frequency. Whereas a

single period Sin2 envelope has been used for the numerical study, which has a

continuum of frequencies in the Fourier space. This leads to inconsistency in some

of the numerical and analytical results such as continuous dependence of energy

spectra on the parameter “r(= Ωc

ω∆
)”, where Ωc is the cyclotron frequency, ω is the

wave frequency and ∆(= Γ− Px) is a constant of motion associated with the par-

ticle motion. Further, in the numerical study the modulation factor is chosen such

that an integral number of oscillations are present inside the envelope, which is

another restriction to obtain physically acceptable solutions. In the present study,

a Gaussian envelope has been used for analytical as well as numerical study of
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the scheme and it is shown that the choice of this profile circumvent the above

problems to give unambiguous comparison between these two results.

The direct particle acceleration by focused laser field is another promising

scheme of particle acceleration, which has been studied by many authors in the

past. In these studies, it has been shown that the electric and magnetic fields can

have a very complicated structure near the focus and lot of work has been done

in the description of these fields. The complicated structure of the fields near the

focus restricts the analytical description of particle orbits, which are of fundamen-

tal importance to understand the mechanism of particle acceleration. Earlier Kaw

et.al[46] have analytically studied the particle dynamics in the focused laser field

using a simplified one dimensional model for focused field. In their study the slow

spatial modulation in the laser intensity along the direction of propagation was

used to describe the focused laser field. In this thesis, the particle dynamics is nu-

merically studied using an one-dimensional model to determine the quantitative

limit of the earlier analytical work and to find the optimum conditions in terms of

peak laser intensity(A2
0), pulse length (1/δ)and (F) focal length for maximum en-

ergy gain by the particle. From the comparison of analytical and numerical results

it is found that the earlier analytical work is unable to account for the energy gain

in the tight focusing regime, in which the contribution due to fast motion becomes

important. Thus a higher order adiabatic theory is derived using Lie transforma-

tion perturbation method which suitably takes this into account and gives better

understanding of the mechanism.

The theoretical understanding of the above two acceleration schemes is used

to describe new scheme of particle acceleration. In this scheme the particle is

subjected to the combined field of a focused finite duration laser and static axial

magnetic field. It is shown that for the suitable choice of parameters, the scheme

leads to efficient acceleration of particles. The details of the work has been de-

scribed in the following chapters.
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1.2 Thesis outline

Chapter 2: Particle dynamics in the field of a relativistically intense laser field

This chapter is devoted to the comprehensive review of previous works in the

area encompassing the study of particle dynamics in a relativistically intense con-

tinuous and pulsed laser field in vacuum [14, 15, 16, 19, 20, 21, 22]. The outline

of the chapter is following: First, restricting to a case of continuous laser field, the

exact analytical expressions are derived for arbitrary initial conditions describing

the particle dynamics in the field of an elliptically polarized laser. The analytical

expressions for particle position, momentum and energy are expressed in terms of

constants of motion and laser vector potential which is a function of laser phase.

These exact analytical expressions have been used to validate the output of the

test particle code and to study the particle dynamics in the co-moving frame of

average rest and Lorentz boosted frame for different laser polarizations.

The highly non-linear particle dynamics has been segregated into a secular

phase averaged guiding center drift and fast oscillating motion. The removal of

secular guiding center motion from complete dynamics results in the particle mo-

tion in the average frame of rest. The particle dynamics in the co-moving average

rest frame has been thoroughly illustrated for different initial conditions. Next,

the particle dynamics in the Lorentz boosted frame is studied by deriving a Lorentz

transformations utilizing the phase averaged secular motion relating the particle

dynamics in the lab frame with proper frame of reference of a particle. A set of dif-

ferent initial conditions have been chosen for illustrating the particle orbits in the

proper frame of particle. The study of relativistic effects apart from being of great

academic interest also finds an application in the study of accelerator physics.

Alternatively, the particle dynamics has been derived solving the correspond-

ing Hamilton-Jacobi[17, 18, 43] equation for an elliptically polarized continuous

as well as pulsed laser field. All the three constants of motion derived above have

been obtained. The complete solution of the Hamilton-Jacobi equation makes

the problem integrable and provides the information of the spatial and temporal

symmetries associated with the system. The general expressions derived solv-

ing the Hamilton-Jacobi equation have been used for analytical and numerical

study of particle dynamics in a finite duration laser pulse with Gaussian and
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Sech temporal envelope profiles. These functions have been chosen for the the-

oretical study of the pulse particle interaction due to the following reasons. The

frequency spectrum of the pulse corresponding to these profiles has a continuum

in the Fourier space. The derivatives of these functions are continuous to all or-

ders and the functions together with their respective derivatives vanish identically

at the infinities(±∞) [93]. Moreover for these profiles, the choice of value of

modulation factor is not restricted to be an integer for representing the number of

oscillations inside a finite duration laser pulse. Thus these profiles suitably takes

care of the above specified anomalies associated with Sin2 temporal envelope for

the theoretical study of pulse particle interaction.

Chapter 3: Exact analysis of particle dynamics in the combined field of

finite duration laser pulse and static axial magnetic field

This chapter is devoted to the theoretical study of the laser driven auto-resonant

acceleration scheme using finite duration laser pulse. As mentioned above, in the

earlier work ref.[33, 41, 42] on the topic the analytical results were unable to ac-

count for some of the characteristics of the numerical work such as the continuous

dependence of the energy gain on the ratio “r(= Ωc/ω∆)”. It is to be point out

that the work presented in reference [33] and others references [41, 42] had used

a single period Sin2 envelope pulse for numerical calculation whereas the analyt-

ical work has been done with the envelope pulse repeating itself periodically in

an infinite train of modulated envelope pulses. Thus whereas the numerical work

has been done with a pulse which is made of a continuum spectrum of frequencies

in Fourier space, the analytical expressions are derived with a spectral pulse made

of three delta function frequencies, the central peak and the two side bands. In

this thesis the analytical and numerical work is carried out using a Gaussian tem-

poral modulation for pulse, which gives an unambiguous comparison between the

numerical and analytical results.

The major findings of the interaction are the following: the resonant time of

interaction between the particle and the pulse has been shown to be finite, un-

like for a monochromatic case, the particle in this case can resonate with the

laser pulse for a range of frequencies due to the finite width of the pulse, the fi-

nal energy gain of the particle saturate and the dependence of the gain on “r”, has
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been found to be consistent with the frequency spectrum of the temporally shaped

Gaussian laser pulse. In the later part of chapter, the particle dynamics has been

studied in the combined field of elliptically polarized finite duration laser pulse

and static axial magnetic field. The aim of study is to determine the effect of po-

larization on the energy gain by the particle. The energy gain of the positively

charged particle test particle has been found to be maximum for the right circular

polarization and no energy gain was observed for the left circularly polarized laser

field. The energy gain corresponding to the right circular polarization has been

found to be twice that of the linear polarization for the same parameters of laser

pulse viz. pulse length and power.

Chapter 4: Particle dynamics in a focused laser field

This chapter has been devoted to comprehensive numerical validation as well

as for determining the quantitative limit of the earlier reported analytical work

in ref.[46] describing the particle dynamics in a focused continuous and finite

duration pulsed laser field. The focused laser field has been described by a slow

spatial variation in the laser intensity along the direction of propagation of the

laser. The numerical study of the particle dynamics in a focused continuous laser

field has been used for verifying the earlier reported analytical condition of the

optimum initial position of the particle resulting in its maximum energy gain at

same peak power of the laser. The numerical study has been extended to a more

realistic case of focused finite duration laser pulse which is aimed at determining

the optimum initial conditions in terms of peak laser intensity, pulse length and

focal length for the maximizing the energy gain by the particle. From numeri-

cal observations it can be reasoned that, the energy gain by a particle results in

the increase of gyration length which can become comparable to the scale length

of intensity variation and thus cannot be explained by the analytical results re-

ported in ref.[46]. Thus an improved adiabatic theory is required for analytically

obtaining the energy estimates of the particle.

The knowledge of Lie-transformation perturbation method which is based upon

Hamiltonian dynamics and canonical transformation [94, 95, 96, 97, 98, 104] is

required for deriving the improved adiabatic theory. The details of the method

has been described in the following references [99, 100, 101, 102, 103, 104] and
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working methodology is given in the appendix of the thesis.

Chapter 5: Adiabatic formulation of charged particle dynamics in an in-

homogeneous electromagnetic field

This chapter has been devoted to the study of charged particle dynamics in the

relativistically intense inhomogeneous electromagnetic field of laser. It has been

shown that in an inhomogeneous laser field the particle dynamics is devoid of

the longitudinal constant of motion. As a result the total number of constants of

motion is reduced by one which in turn makes the problem non-integrable. Thus

the particle dynamics cannot be described in terms of constants of motion and

vector potential, as was possible previously. However, it has been shown that for

the slow variation in the laser intensity, the particle dynamics can be expressed

in terms of an adiabatic invariant. Slowness in the variation of laser intensity is

parameterized in terms of adiabaticity parameter “ǫ”, which is defined as the ratio

of gyration length of particle to scale length of variation in laser intensity. In the

adiabatic approximation (ǫ << 1), one can separate the particle dynamics in terms

of fast varying quiver motion and phase averaged slow motion. Particle dynamics

corresponding to the fast motion is associated with an adiabatic invariant, which

is evaluated up to 2nd order in the adiabaticity parameter using the Lie transform

perturbation method [99, 100, 101, 102, 103, 104].

As an application of above derived adiabatic theory the problem of acceleration

of a charged particle in vacuum by focused laser field(inhomogeneous laser field)

is revisited which was earlier analytically investigated by Kaw et.al. in ref.[46].

The previously considered analysis corresponds to first order of the present adia-

batic theory, however the first order contribution from the fast dynamics was no

taken into account. The energy estimates obtained by numerically solving the rel-

ativistic equation of motion for a focused light field are compared with the results

of adiabatic theory. It is shown that the energy estimates improve with the inclu-

sion of higher order terms of the series.
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Chapter 6: Particle acceleration by cyclotron auto-resonance with a fo-

cused finite duration laser pulse

In this chapter, a new scheme has been described based upon the cyclotron

auto-resonant technique for acceleration of the charged particle in vacuum. In

this mechanism a particle is subjected simultaneously to the combined field of a

static axial magnetic field and a focused linearly polarized finite duration pulse

whose temporal envelope shape is described by a Gaussian profile. The focused

laser field is described by a slow spatial variation in the laser intensity along the di-

rection of its propagation. In this mechanism the particle acceleration is achieved

in two stages, at first an initially non-resonant particle is accelerated by the fo-

cused field of a pulse which drives it to a cyclotron resonance and thus subjecting

it to a second stage resonant acceleration. It is shown that the use of static axial

magnetic field leads to significant increase in energy gain by the particle in com-

parison to the un-magnetized focused finite duration laser pulse [45, 46, 105]. It

is further shown that the initial energy gain of the particle by the focused field

significantly lowers the required strength of the static axial magnetic field as well

as of the laser intensity and hence making it an efficient scheme for particle accel-

eration.

Chapter 7: Summary and Conclusions

This chapter contains the summary of all the results described in the thesis and

outline of the future work in the area.
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2
Particle dynamics in the field of a

relativistically intense laser

In this chapter the problem of a charged particle interacting with a contin-

uous and pulsed electro-magnetic field of a laser has been reviewed from

a general point of view using the constants of motion. The study eluci-

date some important characteristics regarding the trajectory, momentum

and energy of a charged particle interacting with such high intensity laser

fields in vacuum. The methodology described in this chapter for deriving

the dynamics of a particle is to be used in the succeeding chapters. Fur-

ther, the exact analytical solutions are derived for the first time describing

the dynamics of a particle in a finite duration laser pulse, which give

unambiguous comparison of the numerical and analytical results. The

understanding of all these aspects lays foundation to the study of various

schemes of laser driven particle acceleration.

2.1 Introduction

The study of particle dynamics in the field of a relativistically intense electromag-

netic wave in vacuum has been one of the extensively investigated research topics

in plasma physics. The diversity of the topic has led to numerous studies in the

areas ranging from astrophysics to the generation of accelerated charged parti-

cles in the laboratory. To mention a few the wave-particle interaction forms the

basis for understanding the phenomenon such as particle motion in Van Allen ra-
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diation belts [106], wave particle resonances [107], particle scattering by waves

[108], Thomson scattering [18, 109, 110], free electron lasers[111], stochastic ac-

celeration [112, 113, 114], stochastic heating[115], microwave generation, laser-

matter interaction, particle acceleration, etc. In particular the topic of laser driven

particle acceleration has been of great interest for last so many years, which has

got further enhanced due to the experimental generation of accelerated charged

particles in the laboratories. The success of these laser driven particle accelera-

tors can be attributed to rapid advances in the optical technology such advent of

CPA technique[1, 2, 3], which has lead to the availability of the table top high

powered lasers in laboratories. The dynamics of a particle in such strong laser

fields becomes relativistic with in one laser field, which in turn makes its study

fundamental for the understanding of various acceleration schemes.

In this chapter, the dynamics of a charged particle has been analytically and

numerically studied in the field of a relativistically intense continuous as well as

finite duration laser field[14, 15, 16, 19, 20, 21, 22]. The methodology described

here for obtaining the solutions encompasses the review of the earlier works on

the topic. At first, the particle dynamics in the field of a continuous elliptically

polarized laser is derived solving the relativistic equation of motion for a set of

arbitrary initial conditions. The exact analytical expressions describing the parti-

cle position, momentum as well as the energy are expressed in terms of constants

of motion and the vector potential only. These analytical expressions describing

the non-linear dynamics of the particle are used to study the particle dynamics in

the average rest frame and Lorentz boosted frame. The particle dynamics in the

average rest frame is derived by integrating the exact expressions for particle posi-

tion over fast varying oscillatory motion, which yields phase averaged expressions

for the guiding center co-ordinates of the particle position and then subsequently

subtracting them from the exact expressions. The phase averaged guiding center

velocity is obtained by differentiating the corresponding phase averaged particle

position. The Lorentz transformations are derived using phase averaged velocity

connecting the particle trajectories in the lab to the Lorentz boosted frame of ref-

erence. A set of different initial conditions as well as laser polarizations are used

to throughly illustrate the particle trajectories in all the three different frames viz.,

lab, average rest and Lorentz boost.

Alternatively, the general expressions describing the particle dynamics in a
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continuous as well finite duration laser have been derived by solving the cor-

responding Hamilton-Jacobi equation[17, 18, 43]. The method of solution of

Hamilton-Jacobi equation provides an insight into the various symmetries associ-

ated with dynamics and the corresponding constants of motion. The dynamical

variables viz. position, momentum and energy obtained are expressed in terms of

constants of motion and vector potential.

Further, a set of new exact analytical expressions has been reported describing

the particle dynamics in the field of a finite duration laser choosing Gaussian and

Sech shaped temporal profiles. The choice of these profiles provides the correct

analytical as well as numerical description of the particle dynamics. For the nu-

merical studies these profiles can accommodate arbitrary number of oscillations,

which is in contrast to the previously used Sin2 temporal envelope which can

only be used for the integral number of laser oscillations. For the non-integral

number of laser wave periods the higher order derivatives of the vector potential

for the Sin2 envelope do not vanish at the boundaries and results in finite con-

tribution, which can lead to unphysical results, whereas these profiles along with

their derivatives to all orders vanish smoothly at the infinity. In the analytical

description, the expressions describing the particle dynamics for Sin2 modulation

are derived representing it as a single pulse in the self repeating continuous wave

train of pulses, which can lead to anomalous results. This anomaly in the descrip-

tion of the particle dynamics is circumvented by the choice of these profiles.

The organization of the chapter is the following: Section (2.2), contains the

classical description of charged particle dynamics in a relativistically intense laser

field obtained by solving the equation of motion. Sub-sections (2.2.1) and (2.2.2),

contains the study of particle dynamics in the average rest frame and Lorentz

boosted frame of reference using the above derived exact analytical expressions.

Section (2.3), contains the methodology of solution of Hamilton-Jacobi equation

for deriving the dynamics of a charged particle in relativistically intense laser

field. The exact analytical expressions for the particle dynamics corresponding to

the Gaussian and Sech shaped temporal profiles are derived using the general

solutions obtained solving Hamilton-Jacobi equation. Section (2.4), contains the

summary and conclusions of the chapter.
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2.2 Classical relativistic dynamics of a charged par-

ticle in the field of an elliptically polarized

plane electromagnetic wave

In this section the particle dynamics is studied in the field of a relativistically

intense elliptically polarized continuous laser in vacuum. The vector potential

describing the monochromatic elliptically polarized electromagnetic wave is given

by,
~A = a1cos(ξ)ŷ + a2sin(ξ)ẑ (2.1)

here the symbols have the following meaning: ξ = (kx−ωt) is the invariant phase,

A0 is the maximum amplitude of the wave with a1 = κA0, a2 = (1 − κ2)1/2A0, κ

is the polarization factor, which for linear polarization has a value κ → 0,±1 and

for circular case takes value κ→ ± 1√
2
.

From here on the following normalization have been used in this chapter:

~r → k~r, t→ ωt, ~P → ~P
mc

,Γ→ Γ
mc2

, B → qB
mωc

, E → qE
mcω

, Â→ eA
mc2

.

The normalized Electric and Magnetic Field are defined as

~E = −∂ ~A
∂t
= a1sin(ξ)ŷ − a2cos(ξ)ẑ; ~B = ∇× ~A = a2cos(ξ)ŷ + a1sin(ξ)ẑ

The normalized momentum and energy equations are given by

d~P

dt
= [ ~E +

~P

Γ
× ~B)] (2.2)

dΓ

dt
=

~P . ~E

Γ
(2.3)

Writing equations in component form

dPx

dt
=
1

Γ
(PyBz − PzBy) (2.4)

dPy

dt
= Ey −

Py

Γ
Bz (2.5)

dPz

dt
= Ez +

Px

Γ
By (2.6)

dΓ

dt
=
1

Γ
(PyEy + PzEz) (2.7)
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Chapter 2. Particle dynamics in the field of a relativistically intense laser

Px, Py, Pz are four momentum components. The relativistic factor is given by

Γ = (1 + P 2
x + P 2

y + P 2
z )

1/2.

From the above definition of electric and magnetic field it can be seen that

Ey = Bz and Ez = −By, using this a constant of motion ∆(= Γ − Px) can be

obtained by subtracting the Eq.(2.4) from Eq.(2.7). The invariant phase is related

to the constant of motion as ξ̇ = ∆
Γ

, which can be used to express the momentum

and energy of a particle as

Px =
1−∆2

2∆
+

P 2
y + P 2

z

2∆
(2.8)

Py = α− a1cos(ξ) (2.9)

Pz = α1 − a2sin(ξ) (2.10)

Γ =
1 +∆2

2∆
+

P 2
y + P 2

z

2∆
(2.11)

In the above equations α and α1 are the exact constants of motion.

The particle position can be obtained as,

~r − ~r0 =
1

∆

ˆ ξ

ξ0

~Pdξ. (2.12)

In terms of co-ordinates the position of the particle is given by

x− x0 =
1

2∆2
[1−∆2 + α2 + α1

2 +
a21 + a22

2
](ξ − ξ0)− (2.13)

1

∆2
[a1α(sin(ξ)− sin(ξ0))− α1a2(cos(ξ)− cos(ξ0))]+

a1
2 − a2

2

8∆2
[sin(2ξ)− sin(2ξ0)]

y − y0 =
1

∆
[α(ξ − ξ0)− a1(sin(ξ)− sin(ξ0))] (2.14)

z − z0 =
1

∆
[α1(ξ − ξ0) + a2(cos(ξ)− cos(ξ0))] (2.15)

In the equations from Eq.(2.13) to Eq.(2.15), ξ0 is the initial phase of the wave

as seen by the particle. The above equations describe the momentum, energy

and position of a particle in an exact form. The dynamical variables for particle

dynamics in the field of relativistically intense, elliptically polarized continuous
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Chapter 2. Particle dynamics in the field of a relativistically intense laser

laser have been represented in terms of constants of motions and vector potential

only. These solutions provides insight into the dynamics of the particle and can

be used to understand its different physical aspects, some of which have been

described in the following subsections.

2.2.1 Particle dynamics in an average rest frame

The exact solutions derived above on solving the relativistic equation of motion

describes the dynamics of a particle in the lab frame for an arbitrary initial condi-

tions. From these solution it is evident that the dynamics of particle in a relativis-

tically intense laser fields is highly non-linear and results in a complicated particle

trajectories. Thus making it worthwhile to examine the particle dynamics in a

frame of reference in which there is no average displacement of the particle over

one period. In order to do this the expression describing the dynamics of the par-

ticle dynamics are separated into expressions for the phase averaged slow guiding

center motion and fast oscillatory motion. The position coordinates of the guiding

center are obtained by integrating the particle position over one oscillation (i.e

averaging over ξ and ξ̄ = (t− x̄)), which gives δx = x−x0 and ξ−ξ0 = t−δx. The

detailed methodology is described below and on averaging the exact co-ordinates

of the particle position over one laser period

δ̄x =
1−∆2 + α2 + α21 +

a21+a22
2

1 + ∆2 + α2 + α21 +
a21+a22
2

t− 2
(α1a2cos(ξ0)− αa1sin(ξ0))

1−∆2 + α2 + α21 +
a21+a22
2

(2.16)

− (a21 − a22)

4(1−∆2 + α2 + α21 +
a21+a22
2

)
sin(2ξ0).

δ̄y =
1

∆
[α(t− δ̄x) + a1sin(ξ0)] (2.17)

δ̄z =
1

∆
[α1(t− δ̄x)− a2cos(ξ0)]. (2.18)
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Chapter 2. Particle dynamics in the field of a relativistically intense laser

The corresponding guiding center velocity is given by,

vgx =
1−∆2 + α2 + α21 +

a21+a22
2

1 + ∆2 + α2 + α21 +
a21+a22
2

(2.19)

vgy =
2α∆

1 +∆2 + α2 + α21 +
a21+a22
2

(2.20)

vgz =
2α1∆

1 +∆2 + α2 + α21 +
a21+a22
2

(2.21)

The particle coordinates in the oscillation center frame can be derived by subtract-

ing the guiding center coordinates from lab frame co-ordinates of the particle.

Thus corresponding oscillation center particle position is given by,

xosc = δx− δ̄x (2.22)

yosc = δy − δ̄y (2.23)

zosc = δz − δ̄z (2.24)

The relativistic velocity factor (γ) is given by β = (v2gx + v2gy + v2gz)
1/2 and γ =

1/
√

(1 − β2). In this chapter, the relativistic factor corresponding to phase av-

eraged motion is given by ‘gamma’, to distinguish it from previously defined

‘Gamma’ factor. Thus the non-linear particle dynamics in the lab frame has

been be separated into a phase averaged slow ‘‘guiding′′ center and fast varying

‘‘oscillation′ ′ center motion. The motion in the fast varying ‘‘oscillation′ ′ center

corresponds to a reference frame, in which there is no net displacement of the

particle over gyration. In the following figures, the particle dynamics in the con-

figuration space is described by separating it in terms of lab, guiding center and

oscillation center co-ordinates for the linear, circular as well as elliptical polariza-

tions. A different sets of initial conditions are used for the thorough illustrations

of the particle dynamics.
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Linear Polarization
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Figure 2.1: Particle Displacement(Linear Polarization): Subplot(A-B-C), plot for
the evolution of components of particle position along the three co-ordinates in
the lab, guiding center and average rest frame. Subplot:(D-E): Particle trajectory
in the lab and average rest frame.

At first the particle dynamics is studied in the field of linearly polarized con-

tinuous electromagnetic wave for a particle starting initially at rest and subjected

to the laser at minimum of the wave is shown in Fig.(2.1). The evolution of the

particle in the configuration space along the co-ordinates is shown in the subplots

(A-B-C) and particle dynamics is divided into phase averaged slow ‘‘guiding′′ cen-

ter and fast varying ‘‘oscillation′ ′ center, which is compared to the exact evolution

in lab. It can be seen that the particle has slow secular drift along the direction

of propagation of the laser and there is no net displacement of the particle in the

transverse direction. It can be further inferred that the particle oscillates at twice

the frequency along the direction of propagation in comparison to the transverse

direction. The exact particle trajectory is shown in the subplots (D-E) which is

compared to that in the fast varying ‘‘oscillation′ ′ center. In this fast varying aver-

age rest frame the particle trajectory resembles the numeric number eight and is
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also know as the figure of eight motion.
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Figure 2.2: Particle Displacement(Linear Polarization): Subplot(A-B-C), plot for
the evolution of components of particle position along the three co-ordinates in
the lab, guiding center and average rest frame. Subplot:(D-E): Particle trajectory
in the lab and average rest frame.

In the above figure Fig.(2.2), the evolution of the position co-ordinates corre-

spond to the case, when it has initial velocity and interaction with the wave starts

at initial phase(π/4) different from the minimum. It can be seen that the particle

has non-zero secular displacement along all three co-ordinates, which is shown

in subplots (A-B-C) of the figure. The corresponding particle trajectory has been

shown in the sub-plot (D-E) of the figure. It can be seen that in the average rest

frame particle follows a figure of eight trajectory which is tilted at angle to the

direction of propagation of the wave.

Circular Polarization

In the subplots (A-B-C) of the following figure Fig.(2.3), the evolution of the par-

ticle position is described as a function of invariant phase (ξ) for a circularly po-

larized laser along the three co-ordinates of the configuration space. The particle
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Chapter 2. Particle dynamics in the field of a relativistically intense laser

is considered to be initially at rest and initial interaction begins at (ξ0 = 0) phase

of the wave. It can be seen that the particle is displaced in the longitudinal as

well as transverse directions. The corresponding trajectories of the particle in the

lab and average rest frame are shown in the subplots (D-E) of the figure. From

the figure it can be seen that the particle comes back to rest at the end of each

successive gyration and it traces out a circular trajectory in the average rest frame.
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Figure 2.3: Particle Displacement(Circular Polarization): Subplot(A-B-C), plot for
the evolution of components of particle position along the three co-ordinates in
the lab, guiding center and average rest frame. Subplot:(D-E): Particle trajectory
in the lab and average rest frame.
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Figure 2.4: Particle Displacement(Circular Polarization): Subplot(A-B-C), plot for
the evolution of components of particle position along the three co-ordinates in
the lab, guiding center and average rest frame. Subplot:(D-E): Particle trajectory
in the lab and average rest frame.

In the Fig.(2.4), the evolution of the particle position in the field of circularly

polarized laser is shown along the configuration space. The subplot(A-B-C) and

subplots(D-E), describes the particle trajectories in the lab and average rest frame

respectively. These correspond to initial conditions that the particle interacting

with the laser field has a finite initial velocity and at the onset of the interac-

tion with wave the initial phase is given by (ξ0 = π/4). The particle trajectory is

composed of fast oscillatory motion along with the finite displacement in the lon-

gitudinal and transverse directions. The finite secular drift corresponds to phase

averaged guiding center motion and in the average rest frame the particle follows

closed orbit, which signifies that it comes back to initial velocity at the end of each

successive gyration. The diameter of the circular particle trajectory in the average

rest frame is increased as a result of initial energy and is tilted at angle to the

horizontal(x-y)plane.
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Elliptical Polarization
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Figure 2.5: Particle Displacement(Elliptical Polarization): Subplot(A-B-C), plot
for the evolution of components of particle position along the three co-ordinates in
the lab, guiding center and average rest frame. Subplot:(D-E): Particle trajectory
in the lab and average rest frame.

In the subplots(A-B-C) of the figure Fig.(2.5), the evolution of the particle

position is described along the three co-ordinates in an elliptically polarized wave

and its corresponding trajectories in the lab as well as average rest frame are

shown in subplots(D-E). In this figure, the polarization of the wave is defined

by choosing κ = 1/
√
3 and the particle is considered to be at rest at the onset

of interaction, which begins at initial phase ξ0 = 0. The particle has a finite

displacement along the longitudinal as well as in transverse directions, which is

shown in the phase averaged motion described in the subplot(A-B). The particle

follows an elliptical trajectory in the average rest frame which is shown in the

subplot(E) of the figure.
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Figure 2.6: Particle Displacement(Elliptical Polarization): Subplot(A-B-C), plot
for the evolution of components of particle position along the three co-ordinates in
the lab, guiding center and average rest frame. Subplot:(D-E): Particle trajectory
in the lab and average rest frame.

In the subplot(A-B-C) of the following figure Fig(2.6), the evolution of the

particle position along the three co-ordinates is shown in the lab, average rest

frame as well as in guiding center for a continuous elliptically polarized wave.

These corresponds to the initial condition that the particle interacts with the wave

with an initial velocity and at an initial phase of (ξ0 = π/4). The lab motion

is divided into the phase averaged slow guiding center motion and fast varying

phased averaged motion. The guiding center of the particle has phase averaged

secular drift along the longitudinal as well as transverse directions. The particle

trajectory in the lab frame and average rest is shown in the subplots(D-E), where

it can be seen that the particle traces out a bigger ellipse and is at an angle to (xy)

plane in the frame of average rest. In this the figure similar to the previous the

figure Fig.(2.5) above, the polarization of the particle is given by κ = 1/
√
3.
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2.2.2 Particle dynamics in a Lorentz boost frame

In this section the above derived exact analytical results are used to study the

particle motion in the Lorentz boosted frame of reference. The Lorentz transfor-

mations have been derived relating the particle dynamics in the lab frame with

Lorentz boost frame. These studies are important in the study of the accelerated

charged particles. The methodology can be described in a following way, consider

two reference frames k and k
′

, whose axis are parallel to each other, but the ve-

locity ~v of the frame k
′

in the frame k is in arbitrary direction. If frame k
′

moves

parallel to the x− axis, then transformation equations are

x0
′

= γ(x0 − βx) (2.25)

x
′

= γ(x− βx0) (2.26)

y
′

= y (2.27)

z
′

= z (2.28)

For arbitrary direction of ~v

x0 = γ(x0 − ~β~x)

. As in the Lorenz transformation the perpendicular coordinates remain invariant

therefore

~x′ × ~β = ~x× ~β.

Relation for ~x′ , is obtained as

~β × (~x′ × ~β) = ~β × (~x× ~β).

On re-arranging:

~x′ = ~x+
~β(~x′ .~β)−~β(~x.~β)

β2 .

Using Eq.(2.26) and simplifying the above expression yields:

~x′ = ~x+
(γ − 1)(~β.~x)~β

β2
− γ~βx0. (2.29)

In the following figures the trajectories of the particle in the lab frame are

compared with that in the Lorentz boosted frame of reference using Eq.(2.29), for

different polarizations of the laser field.
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Linear Polarization

 Relativistic Particle Dynamics In A Linearly Polarized Plane Wave
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Figure 2.7: Particle motion in average rest frame and Lorentz boost frame for
different parameters

In the above figure Fig.(2.7), the trajectories of the particle in a linearly po-

larized wave in lab and corresponding Lorenz boosted frame are described in

subplot(1-2-3) and subplot(4-5-6) respectively. For a linearly polarized wave the

particle traces out a figure of eight trajectory in the Lorentz boosted frame. The

different trajectories corresponds to the different initial conditions to which the

particle is subjected to at the onset of the wave particle interaction. In sub-

plot(1,4), the particle is considered to be initially at rest at the onset of the in-

teraction with the wave, which begins at an initial phase (ξ0 = 0) of the wave.

Further in subplot (2,5), the particle has an initial velocity at the onset of the

interaction which results in the relativistic effect such as length contraction when

seen from the lab frame. In the last subplots (3,6), the particle has initial velocity

and the interaction with the wave starts at initial phase (ξ0 = π/4).
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Circular Polarization

 Relativistic Particle Dynamics In A Circularly Polarized Plane Wave

 0  20  40  60  80 100 120 140 160 0 10 20 30 40 50 60 70-4.5-4
-3.5-3
-2.5-2
-1.5-1
-0.5 0

z/λ

Fig-1: Lab Frame 

x/λ
y/λ

z/λ

 0  20  40  60  80 100 120 140 160 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0
 10
 20
 30
 40
 50
 60
 70

z/λ

Fig-2: Lab Frame

x/λ
y/λ

z/λ

 0  50  100  150  200  250 0 5
 10 15 20 25 30 35 0 10 20 30 40 50 60 70 80 90 100 110

z/λ

Fig-3: Lab Frame

x/λ
y/λ

z/λ

-2-1.5-1-0.5  0  0.5  1  1.5  2-1-0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1
-4.5-4
-3.5-3
-2.5-2
-1.5-1
-0.5 0

z/λ

Fig-4: Lorentz Boosted Frame

x/λ
y/λ

z/λ

-2-1.5-1-0.5  0  0.5  1  1.5  2 0 0.5 1
 1.5 2

 2.5 3
 3.5 4

 4.5
-1-0.8-0.6-0.4-0.2 0

 0.2 0.4 0.6 0.8 1

z/λ

Fig-5: Lorentz Boosted Frame

x/λ
y/λ

z/λ

-1.5-1-0.5 0 0.5 1 1.5 2 2.5 3-0.5 0
 0.5 1

 1.5 2
 2.5 3

 3.5 4

-1.4-1.2-1
-0.8-0.6-0.4-0.2 0
 0.2

z/λ

Fig-6: Lorentz Boosted Frame

x/λ y/λ

z/λ

Figure 2.8: Particle motion in average rest frame and Lorentz boost frame for
different parameters

In the above figure Fig.(2.8), the particle trajectories are shown in the circu-

larly polarized wave in lab as well as in the Lorentz boost frame of reference which

are described in subplots(1-2-3) and subplots (4-5-6) respectively. The trajectory

of the particle is circular for the circular polarization of the wave in the Lorentz

boost frame of reference. The different trajectories corresponds to the different

initial conditions such as in subplot(1,4) at the onset of interaction with pulse the

particle is initially at rest and the interaction begins at initial phase (ξ0 = 0) of the

wave. The relativistic effect such length contraction are shown by giving initial

velocity to the particle, which interacts with the wave at initial phase (ξ0 = 0) and

(ξ0 = π/4) described in subplots(2,5) and subplots(3,6) respectively.
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Elliptical Polarization

 Relativistic Particle Dynamics In A Elliptically Polarized Plane Wave
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Figure 2.9: Particle motion in average rest frame and Lorentz boost frame for
different parameters

In the above figure Fig.(2.9), the trajectories of the particle in the lab and

Lorentz boosted frame are shown in subplots(1-2-3) and subplots(4-5-6). The

electromagnetic wave is considered to be elliptically polarized and the polariza-

tion factor has a value (κ = 1/
√
3), in such a polarization the particle traces out

an elliptical trajectory in the Lorentz boosted frame of reference. The relativis-

tic effects have been demonstrated by choosing different set of initial conditions,

in the subplots(1,4) the particle is considered to be initially at rest with the ini-

tial phase of a wave having a value(ξ0 = 0). In the subsequent subplot(2,5) and

the subplot(3,6) the particle starts interacting with the wave with finite velocity

and the wave particle interaction starts at the initial phase of the wave given by

(ξ0 = 0) and (ξ0 = π/4).
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2.3 Hamilton-Jacobi equation for charged particle

in relativistically intense laser field

In the previous section, the exact analytical expressions have been derived solv-

ing the relativistic equation of motion. It is shown that the particle dynamics is

associated with three constants of motion and the dynamical variables viz. posi-

tion, momentum and energy are expressed in terms of these constants of motion

and vector potential only. Alternatively, the dynamics of the particle can also be

derived solving the Hamilton-Jacobi[17, 18, 43]equation of motion. The method

of solution provides deeper insight into the particle dynamics, such the under-

standing of the various symmetries associated with the particle dynamics and the

corresponding constants of motion. The methodology of the solution is the fol-

lowing,

Starting with the Lagrangian of the charged particle in the electromagnetic

field which is given by

L = −
√
1− u2 + ~u. ~A− φ (2.30)

where φ is the electrostatic potential and is equal to zero in vacuum.

The normalized canonical conjugate momentum is

~P =
∂L

∂u
= Γ~u+ ~A (2.31)

In Eq.(2.31) describing the canonical particle momentum which is composed

of kinetic momentum ~p = Γ~u and the field momentum ~A

Hence re-writing the conjugate momentum

~P = ~p + ~A (2.32)

The particle velocity is given by

~u =
~p

Γ
(2.33)

Using the above expression

Γ =
√

1 + p2 (2.34)
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and hence

~u =
(~P − ~A)

√

(~P − ~A)2 + 1
. (2.35)

The Hamiltonian is defined as

H = ~u. ~P − L. (2.36)

On substituting the values of Γ and ~u in the above expression results in

H =

√

(~P − ~A)2 + 1 (2.37)

Let us consider the equation of the motion of an electron, initially at rest at

the origin, under the action of a laser beam incident on it. The incident beam is

assumed to be transverse, plane, and arbitrarily elliptically polarized, and to be

characterized by a wave vector K with frequency ω = c | k |= ck.

On multiplying by a pulse shaping factor the vector potential becomes

~A(~r, t) = ~A0 × P (ξ)×Θ(ξ) (2.38)

where ~Ao is the amplitude ,P (ξ) is the oscillatory factor, Θ(ξ) is the envelope part

and ξ = t− ~r is the phase of the wave.

Neglecting the radiative reaction effects. The Hamilton-Jacobi equation for the

problem is

[∇s(~r, t)− ~A(ξ)]2 − [
∂s(~r, t)

∂t
]2 + 1 = 0 (2.39)

s(~r, t), is the Hamilton principal function.

The Hamiltonian has no explicit dependence upon the co-ordinates x, y, z, t

and it depends only upon the invariant phase of the laser, therefore corresponding

to the cyclic co-ordinates the four momenta’s are constants of motion. Thus the

above equation Eq.(2.4) has the solution of the form

s(~r, t) = ~α.~r + βt+ Φ(ξ) (2.40)

where ~α and β are constants to be determined by the boundary conditions and
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Φ(ξ) is a function determined from equation Eq.(2.39). On substituting Eq.(2.40)

in Eq.(2.39) and re-arranging gives

Φ(ξ) =
1

2
(~α.~k + βk)−1

ˆ ξ

ξo

[α2 − β2 + 1− 2~α. ~A(ξ) + A2
0P

2(ξ)Θ2(ξ)]. (2.41)

On substituting the value of Eq.(2.41) in Eq.(2.40) gives the principle function

s(~r, t) = ~α.~r + βct+
1

2
(~α.~k + βk)−1

ˆ ξ

ξo

[

α2 − β2 + 1 −2~α. ~A(ξ) + A2
0P

2(ξ)Θ2(ξ)
]

dξ. (2.42)

The equation of motion can be derived by differentiating the principal function

w.r.t new momenta i.e (α) and equating to the initial co-ordinates

~r(ξ) = ∇αs = ~ro −
ˆ ξ

ξo

~α− ~A

~α.~k + βk
dξ+

2~k

ˆ ξ

ξo

[α2 − β2 + 1− 2~α. ~A(ξ) + A2
0P

2(ξ)Θ2(ξ)]

~(2α.~k + 2βk)2
dξ (2.43)

t =
∂s

∂β
= t0 +

~k

2(~α.~k + kβ)2
ˆ ξ

ξ0

[α2 − β2 + 1− 2~α. ~A(ξ) + A2
0P

2(ξ)Θ2(ξ)]dξ

+
1

2(~α.~k + kβ)

ˆ ξ

ξ0

(2β)dξ (2.44)

Canonical momentum and energy are given by

~Pcan(= ~p+ ~A) = ∇s = ~α− ~k

[

α2 − β2 − 2~α. ~A+ A2
0P

2(ξ)Θ2(ξ) + 1

2(~α.~k + kβ)

]

(2.45)

Γ = −∂s

∂t
= −

[

β +
~k

k
.(~α− ~Pcan)

]

(2.46)

where initial momentum of the particle is given by ~α = p‖ + p⊥ and the constant

of motion is derived using relation described by Eq.(2.46).
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Γ− px = ∆ = −(p‖ + β) (2.47)

In terms of the constant of motion the dynamical variables can be written as

px = P
x(can) =

1−∆2

2∆
+

[

p2⊥ − 2p⊥A + A2
0P

2(ξ)Θ2(ξ)

2∆

]

(2.48)

py = αy −Ay (2.49)

pz = αz − Az (2.50)

Γ =
1 +∆2

2∆
+

[

p2⊥ − 2p⊥A+ A2
0P

2(ξ)Θ2(ξ)

2∆

]

(2.51)

The co-ordinates of the particle position can be obtained as,

x(ξ) = x0 +

ˆ ξ

ξo

1−∆2

2∆2
dξ +

ˆ ξ

ξo

[

p2⊥ − 2p⊥A+ A2
0P

2(ξ)Θ2(ξ)

2∆2

]

dξ (2.52)

y(ξ) =

ˆ ξ

ξo

αy −Ay

∆
dξ (2.53)

z(ξ) =

ˆ ξ

ξo

αz − Az

∆
dξ (2.54)

t = t0 +

ˆ ξ

ξo

1 + ∆2

2∆2
dξ +

ˆ ξ

ξo

[

p2⊥ − 2p⊥A+ A2
0P

2(ξ)Θ2(ξ)

2∆2

]

dξ (2.55)

2.3.1 Particle Dynamics in The Field Of Finite Duration Laser

Pulse

In this section, the dynamics of a charged particle is studied in the field of a finite

duration laser pulse. The exact analytical expressions of the particle position, mo-

mentum and energy as a function of invariant phase(ξ) for Sech and Gaussian

shaped temporal profiles are obtained using the general results derived by solv-

ing the corresponding Hamilton-Jacobi equation for a particle interacting with the

field of an elliptically polarized, arbitrarily long homogeneous laser pulse. These

exact expressions are reported for the first time, which gives the unambiguous

comparison for the analytical and numerical results. This serves as an consider-

able improvement to the earlier derived results in the literature using Sin2 shaped
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temporal envelope, in which the numerical study is restricted to the use of inte-

gral number of oscillations inside the pulse and the analytical work has been done

with the envelope pulse repeating itself periodically in an infinite train of modu-

lated envelope pulses. Such a description of the particle dynamics can lead to the

ambiguous results. The exact analytical expressions for the particle co-ordinates

in the Sech shaped envelope corresponding to the Θ(δξ) = Sech[δξ − φ] and

Gaussian shaped envelope corresponding to Θ(δξ) = Exp[− (δξ−φ)2
2

] have been

described below. These expressions are obtained by integrating the Eq-(2.52)-

Eq.(2.54) and the variable (φ) is used to be consistent with the initial conditions

that the particle interacts with the rising edge of the finite duration laser pulse.

The expressions Eq-(2.48)-Eq.(2.50) and Eq-(2.51) are used to obtain the corre-

sponding expression for the components of momentum and energy of the particle

respectively.

Sech profile

Z =
1

2∆
e−iξ

(

2eiξ(zo∆+ α1ξ) + ia2

(

H2F1
[

1,− i

δ
,
−i+ δ

δ
,−ieδξ−φ

]

−

H2F1
[

1,− i

δ
,
−i+ δ

δ
, ieδξ−φ

]

+ eiξ
(

−H2F1
[

1,− i

δ
,
−i+ δ

δ
,−ie−φ

]

+

H2F1
[

1,− i

δ
,
−i+ δ

δ
, ie−φ

]

+ eiξ
(

H2F1
[

1,
i

δ
,
i+ δ

δ
,−ieδξ−φ

]

−

H2F1
[

1,
i

δ
,
i+ δ

δ
, ieδξ−φ

])

−H2F1
[

1,
i

δ
,
i+ δ

δ
,−ie−φ

]

+

H2F1
[

1,
i

δ
,
i+ δ

δ
, ie−φ

])))

(2.56)

Y =
1

(1 + δ2)∆
e−φ

(

−a1e(−i+δ)ξ(i+ δ)H2F1
[

1,
−i+ δ

2δ
,
3

2
− i

2δ
,−e2δξ−2φ

]

+

a1(i+ δ)H2F1
[

1,
−i+ δ

2δ
,
3

2
− i

2δ
,−e−2φ

]

+ (−i+ δ)

(

eφ(i+ δ)(yo∆+ αξ) + a1

(

−e(i+δ)ξH2F1
[

1,
i+ δ

2δ
,
3

2
+

i

2δ
,−e2δξ−2φ

]

+

H2F1
[

1,
i+ δ

2δ
,
3

2
+

i

2δ
,−e−2φ

])))

(2.57)
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X = − 1

8δ∆2

( −1
(e2δξ + e2φ)

4ia2e
−2φα1Cosh[φ] (A) +

1

(e2δξ + e2φ)
4a1e

−2φαCosh[φ] (B)−

a21 (C) + a22 (D)− a21 (E) + a22 (F )−
(

2e−3φ
(

−2
(

1 + e2φ
)

(a1α+ ia2α1)(−i+ δ)2

(

−1 + 4iδ + 3δ2
)

H2F1
[

1,
3

2
− i

2δ
,
5

2
− i

2δ
,−e−2φ

]

+ (−i+ 3δ)
(

−2
(

1 + e2φ
)

(a1α− ia2α1)(−i+ δ)(i+ δ)2H2F1
[

1,
3

2
+

i

2δ
,
5

2
+

i

2δ
,−e−2φ

]

+ eφ(i+ 3δ)

(

2eφ
(

1 + e2φ
)

(a1α + ia2α1i)(i+ δ)2H2F1
[

1,
−i+ δ

2δ
,
3

2
− i

2δ
,−e−2φ

]

+

(

a21 − a22
) (

1 + e2φ
)

(1− iδ)H2F1
[

1,
−i+ δ

δ
, 2− i

δ
,−e−2φ

]

+ (−i+ δ)

(

eφ(i+ δ)
(

a21e
φ
(

−3 + e2φ
)

+ 4a1
(

1 + e2φ
)

α + eφ
(

a22
(

1 + e2φ
)

+
(

−1 + e2φ
)

α2 − α21 + e2φα21 + 4xoδ∆
2 + 4e2φxoδ∆

2
))

+

2eφ
(

1 + e2φ
)

(a1α− ia2α1)(−i+ δ)H2F1
[

1,
i+ δ

2δ
,
3

2
+

i

2δ
,−e−2φ

]

+

i
(

a21 − a22
) (

1 + e2φ
)

H2F1
[

1,
i+ δ

δ
, 2 +

i

δ
,−e−2φ

])))))

/

((

1 + e2φ
)

(−i+ δ)(i+ δ)(−i+ 3δ)(i+ 3δ)
)

− 1

(e2δξ + e2φ)

4a1e
−2φα (G)Sinh[φ] +

1

(e2δξ + e2φ)
4ia2e

−2φα1 (H)Sinh[φ]+

2α2
(

1 + 2Cosh[φ]2Log[Cosh[δξ − φ]]− Cosh[δξ + φ]Sech[δξ − φ]+

4δξCosh[φ]Sinh[φ] + 2Log[Cosh[δξ − φ]]Sinh[φ]2
)

Sinh[2φ]+

2α21
(

1 + 2Cosh[φ]2Log[Cosh[δξ − φ]]− Cosh[δξ + φ]Sech[δξ − φ]+

4δξCosh[φ]Sinh[φ] + 2Log[Cosh[δξ − φ]]Sinh[φ]2
)

Sinh[2φ]−
(2a21 + 2a22 + 2α2 + 2α21)Tanh[δξ − φ] + α2Cosh[φ]2

(

2δξ − 4δξCosh[φ]2−
2Log[Cosh[δξ − φ]]Sinh[2φ] + Sech[δξ − φ]Sinh[δξ + φ] + Tanh[δξ − φ]) + α21Cosh[φ]2
(

2δξ − 4δξCosh[φ]2 − 2Log[Cosh[δξ − φ]]Sinh[2φ] + Sech[δξ − φ]Sinh[δξ + φ] + Tanh[δξ − φ]
)

+α2Sinh[φ]2
(

2δξ − 4δξCosh[φ]2 − 2Log[Cosh[δξ − φ]]Sinh[2φ] + Sech[δξ − φ]Sinh[δξ + φ]+

Tanh[δξ − φ]) + α21Sinh[φ]2
(

2δξ − 4δξCosh[φ]2 − 2Log[Cosh[δξ − φ]Sinh[2φ] + Sech[δξ − φ]

Sinh[δξ + φ] + Tanh[δξ − φ])− 2α2Cosh[2φ](δξCosh[2φ] + Log[Cosh[δξ − φ]]Sinh[2φ]

−Sech[δξ − φ]Sinh[δξ]Sinh[φ]Tanh[φ])− 2α21Cosh[2φ](δξCosh[2φ]+

Log[Cosh[δξ − φ]]Sinh[2φ]− Sech[δξ − φ]Sinh[δξ]Sinh[φ]Tanh[φ])) (2.58)
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In the above equations H2FC is a short hand notion used for the mathematical

function Hypergemetric2FC and the values of variables (A-H) used in the lon-

gitudinal component of position is given in the Annexure at the end of chapter.

Following are the components of the particle position in a finite duration laser

pulse with Gaussian shaped temporal envelope.

Gaussian Profile

Z =
1

4δ∆
e−

1+2iδφ

2δ2

(

4e
1+2iδφ

2δ2 δ(zo∆+ α1ξ) + a2
√
2π

(

ie
2iφ
δ

(

Erf
[−i+ δ2ξ − δφ√

2δ

]

+ Erf
[

i+ δφ√
2δ

])

+ Erfi
[

1− iδ(δξ − φ)√
2δ

]

− Erfi
[

1 + iδφ√
2δ

]))

(2.59)

Y =
1

4δ∆
e−

1+2iδφ

2δ2

(

4e
1+2iδφ

2δ2 δ(yo∆+ αξ) + a1
√
2π

(

Erf
[

i− δφ√
2δ

]

− Erf
[

i+ δ2ξ − δφ√
2δ

]

+

ie
2iφ
δ

(

Erfi
[

1 + iδ(δξ − φ)√
2δ

]

− Erfi
[

1− iδφ√
2δ

])))

(2.60)

X =
1

16δ∆2
e−

1+2iδφ

δ2

(

2e
1+2iδφ

δ2
(

8xoδ∆
2 + 4

(

α2 + α12
)

δξ +
(

a12 + a22
)√

π

(Erf[δξ − φ] + Erf[φ])) + 4e
1+2iδφ

2δ2
√
2π(a1α + ia2α1)

(

Erf
[

i− δφ√
2δ

]

− Erf
[

i+ δ2ξ − δφ√
2δ

])

+(a21 − a22)e
4iφ
δ

√
π

(

−Erfc
[

i

δ
+ φ

]

+ Erfc
[

i

δ
− δξ + φ

])

+

(a21 − a22)
√
π

(

Erf
[

i+ δ2ξ − δφ

δ

]

− iErfi
[

1

δ
+ iφ

])

+

4e
1+6iδφ

2δ2
√
2π(ia1α+ a2α1)

(

Erfi
[

1 + iδ(δξ − φ)√
2δ

]

− Erfi
[

1− iδφ√
2δ

]))

(2.61)

In the above expressions the function Erfi is imaginary error function which is

related to the error function as Erfi(z) = −iErf(iz). It is evident that the above

derived exact analytical expressions have a complicated mathematical structure.

Thus a comparative analytical and numerical results have been presented in the

following figures to gain insight into the dynamics described by these expressions.

38



Chapter 2. Particle dynamics in the field of a relativistically intense laser

 Particle Trajectory In An Elliptically Polarized Finite Duration Pulse (Sech)
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Figure 2.10: Description of evolution of particle position and momentum in the
field of a finite duration laser pulse as a function of invariant phase(ξ) for a
Sech(δξ) envelope. Subplot-(1)-(3) The numerically (N) and analytically (A) ob-
tained particle trajectory in the configuration space for different laser polariza-
tions. Subplot (d)-(f): the momentum space trajectory on the particle for different
laser polarizations.

In the subplots (1-2-3) of the figures Fig.(2.10) and Fig.(2.11), the trajec-

tory of the particle is shown in the configuration space for the circular, elliptical

and linear polarizations which are defined by the value of polarization factor[κ(=

1/
√
2; 1/

√
3; 0)]. The trajectory of the particle is resultant of oscillatory motion

along the longitudinal and transverse direction coupled with a secular drift along

the direction of propagation. The corresponding shape of particle orbit over one

laser cycle, depends upon the polarization state which can be circular, elliptical

and in figure of the number eight shapes when viewed in an average frame of

reference drifting with the particle for the above specified values of κ. It is further

shown that the gyration length and transverse excursion amplitude increases with
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each successive gyration. This corresponds to the accelerating phase of the laser

pulse reaching the maximum at the center of the pulse. Beyond this point, the

particle due to its finite mass is out run by the wave and goes into retarding phase

of the laser pulse. In the retarding phase of a laser pulse the particle decelerates

and comes back to rest while returning all its energy back to the laser pulse.

 Particle Trajectory In An Elliptically Polarized Finite Duration Pulse (Gauss)
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Figure 2.11: Description of evolution of particle position and momentum in the
field of a finite duration laser pulse as a function of invariant phase(ξ) for a
Gaussian(δξ)envelope. Subplot-(1)-(3) The numerically (N) and analytically (A)
obtained particle trajectory in the configuration space for different laser polar-
izations. Subplot (4)-(6): the momentum space trajectory on the particle for
different laser polarizations.

The momentum space trajectory of the particle is shown in subplots(4-5-6)

of the figures Fig.(2.10) and Fig.(2.11). It can be seen from the figure that for

a circular and elliptical polarizations the particle has non-zero net momentum

along the direction of propagation which increases and decreases symmetrically

in the build up and slowing down phases of the laser pulse in comparison to the
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linear polarization in which is parabolic in shape. Thus for a linearly polarization

the average longitudinal momentum is zero over each gyration. From the above

figures it is evident that there is a very good matching between the analytical and

numerical results describing the particle trajectories in the configuration as well

as momentum space. Thus the analytical results expressed here can be used for

the further study involving interaction of particle with finite duration laser pulse.

 Particle Energy In A Finite Duration Laser Pulse (Sech)
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Figure 2.12: Analytical(A) and Numerical (N) plot for the total energy of the
particle as function of invariant phase(ξ) for different polarization of the laser
using Sech profile for temporal shape. Subplot(a):Circular Polarization: Subplot
(b):Elliptical Polarization Subplot (c):Linear Polarization

The total particle energy for Sech and Gaussian profiles is shown in Fig.(2.12)

and Fig.(2.13). From these figure and momentum space trajectory it is evident

that the total energy of the particle over one gyration during the pulse-particle

interaction is non-zero for circular and elliptical polarization, whereas for linear

polarization the particle energy is zero over one gyration. Further the maximum

energy of the particle at the center of the pulse for linear polarization is twice
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that of circular polarization. At the end of pulse particle interaction the energy

of particle interaction is equal to its initial value and there is no net transfer of

energy to the particle.

 Particle Energy In A Finite Duration Laser Pulse (Gauss)
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Figure 2.13: Analytical(A) and Numerical (N) plot for the total energy of the par-
ticle as function of invariant phase(ξ) for different polarization of the laser using
Gaussian profile for temporal shape. Subplot(a):Circular Polarization: Subplot
(b):Elliptical Polarization Subplot (c):Linear Polarization

2.4 Summary

Using the above derived results, we summarize the physical aspects of particle

interaction with a continuous and pulsed laser. At first, the particle motion in a

monochromatic plane wave can be described in the following way. At the begin-

ning of the interaction, the particle, which is initially at rest is accelerated along

the electric field component of the laser field. It acquires a relativistic velocity

along the field direction in a time much shorter than the period of the wave and

42



Chapter 2. Particle dynamics in the field of a relativistically intense laser

is acted upon by the magnetic field component of the laser field. Under the effect

of ~v × ~B force, the particle drifts with a relativistic velocity along the direction of

laser propagation. But due to its finite mass the particle gets slowly phase lagged

from the laser field and eventually the direction of field is reversed which brings

the particle back to rest. At the end of each successive gyration the particle is

displaced along the direction of propagation without any net energy transfer from

the laser.

For a continuous laser pulse, it is shown that the particle motion can be divided

into secular guiding center motion and fast oscillation center motion. The study

of particle motion in the fast oscillation center provides better physical insight

of the particle trajectories. The secular guiding center motion is used to derive

the Lorenz transformation connecting the particle dynamics in the rest frame to

the lab frame. These transformations enhances the understanding of relativistic

effects, which is fundamental to the study of laser particle interaction.

The general solutions are derived describing the motion of the particle in the

field of an elliptically polarized and arbitrarily long finite duration laser pulse.

Using these general solutions the exact analytical expressions are derived using

Sech and Gaussian shaped temporal envelopes for the position, momentum and

energy of the particle. These solutions give unambiguous comparison of the an-

alytical and numerical results. On the basis of these results the analytical and

numerical the particle motion can be physically described in a following way: for

a finite duration laser pulse which includes the light pressure effects, at the onset

of pulse particle interaction, the particle is acted upon by a radiation pressure in

the rising front of pulse, which pushes the particle forward along the direction of

propagation. In the trailing part of the pulse, the direction of field is reversed, as

a result of this, the radiation pressure retards the motion of a particle. So, in this,

process there is no transfer of energy to the particle takes places as the pulse slips

past it.
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3
Exact analysis of particle dynamics in

the combined field of finite duration

laser pulse and static axial magnetic

field

This chapter is devoted to the theoretical study of relativistic dynamics of a

charged particle interacting with a combined field of finite duration laser

pulse and static axial magnetic field in vacuum. In this study the Gaussian

shaped envelope has been used for describing the temporal profile of finite

duration laser pulse. The understanding of the mechanism of interaction

is of fundamental importance as it forms the underlining principle for

laser driven Auto-Resonant acceleration scheme of particle acceleration in

vacuum. A significant part of this chapter have been published in the Ref.

Sagar et.al.[45]

3.1 Introduction

The relativistic equation of motion for a charged particle interacting with a con-

tinuous as well as pulsed laser and its methods of solution have been described

in the previous chapter. From the theoretical study, it has been concluded that

the interaction of charged particle with a continuous as well as pulsed laser does

not result in the net transfer of energy to the particle. This happens so because
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of the symmetrical acceleration and deceleration of the particle by laser field.

The scheme of laser driven auto-resonance acceleration is theoretically studied

in this chapter for accelerating the charged particle initially at rest to relativistic

velocities. The mechanism for this scheme was discovered in the study of particle

dynamics interacting simultaneously with continuous laser and static axial mag-

netic field [23, 24, 25]. The historical developments of the scheme can be traced

in the following references [26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 40, 41, 42, 33].

The scheme of laser driven auto-resonant acceleration is a consequence of

purely relativistic effect. In this scheme the particle moving in the combined field

of a laser and axial magnetic field ( ~B0) is associated with two relativistic effects

along the transverse and longitudinal directions; the relativistic mass effect along

the transverse direction which lowers the cyclotron frequency of the particle and a

Doppler effect along the longitudinal direction caused by the magnetic field of the

wave, as result of which the frequency of a wave as seen by the particle is lower

than the actual wave frequency. In this scheme, the initial resonance condition is

itself preserved due to the precise cancellation of these two effects, which leads to

the locking of the particle in the accelerating phase of the wave and thus resulting

in a continuous energy gain.

The physical picture of this interaction can be described in the following way:

a particle initially at rest is accelerated along the electric field component of the

wave and it begins to gyrate about the propagation direction with a cyclotron fre-

quency Ωc(= qB0/mc;m = m0Γ). The energy gain along the transverse direction

causes the relativistic mass effect which lowers the cyclotron frequency. The par-

ticle is simultaneously accelerated in the direction of ~B0 (and ~k) by the magnetic

field of the wave, and as the particle acquires some velocity in this direction it sees

the wave at a Doppler-shifted frequency which is lower than the wave frequency

ω. In the resonant case, the magnetic and mass effects just cancel one another,

and the condition Γ − Px − Ωc0(= qB0/m0c) = 0 is true throughout the particle’s

motion. Thus at the resonance, what happens is that as the particle gains energy

and the cyclotron frequency consequently decreases, the magnetic field of the

wave produces just the right velocity along ~B0 (and ~k) to Doppler-shift the wave

frequency to the value necessary to maintain resonance. This effect is similar to a

synchrotron which maintains its synchronism automatically.

However, the requirement of large input laser power together with genera-
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tion and sustaining of static magnetic fields of the order of laser magnetic field

makes the use of continuous laser very limited for experimental realization of the

auto-resonant particle acceleration scheme. Another principal objection is that a

monochromatic wave has no building-up or slowing-down phase, and is infinite

in time. Thus it contains an infinite amount of energy. A laser pulse is finite in

time and carries a finite energy. Thus it is reasonable to consider particles initially

at rest (at the origin), as there are no forces.

The scheme of laser driven auto-resonant particle acceleration was earlier the-

oretically studied in using a linearly polarized finite duration laser pulse with a

Sin2 temporal modulation[41, 42]. The position, momentum and energy of the

particle were analytically obtained as function of laser phase. Later, using the

same temporal modulation the problem was analytically and numerical studied

by Ondazara et.al[33] for an elliptically polarized laser pulse. In these studies, the

analytical work has been carried out using a periodically self repeating envelope

pulse in an infinite train of modulated envelope pulses. Such a pulse envelope

has a discreet frequency spectrum in the Fourier space, with an additional side

band frequencies on the either side of the central maxima. However, the numeri-

cal work was done using a single pulse considered over one period, the frequency

spectra for the pulse has a continuum in the Fourier space. Thus analytical results

are unable to account for some of the numerical results such as the continuous

dependence of energy spectra on the previously defined parameter ‘‘r(= Ωc

ω∆
)′
′
.

An improved mathematical description of the envelope is therefore required for

physical understanding the mechanism.

In this chapter, the interaction of the charged particle with the combined field

of a finite duration laser and static axial magnetic field is analytically and numeri-

cally studied by choosing the Gaussian profile for describing the temporal shape of

the pulse envelope. The exact analytical expressions are derived for the position,

momentum and energy of the particle. This study is motivated to gain insight into

mechanism of resonant interaction of the particle with the laser field. It is further

intended to determine the optimum conditions in terms for laser intensity, pulse

length, strength of axial magnetic field and laser polarization for maximizing the

energy gain by the particle.

The organization of the chapter is the following: In section (3.2), the rela-

tivistic equation of motion and its solutions are analytically derived for a particle
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interacting simultaneously with the finite duration laser pulse and static axial

magnetic field. Further, the results are first derived for the linear polarization in

subsection (3.2.1) and are generalized for the elliptical polarization in subsection

(3.2.2). The results of numerical study has been described in this section (3.3)

and are compared with the analytical results. In section (3.4), the results of ana-

lytical and numerical study are discussed in detail for optimizing the energy gain

of the particle in terms of various parameters.

3.2 Particle motion in the combined field of a finite

duration laser pulse and static axial magnetic

field

In this section, we present the method of solution of relativistic equation of motion

describing the particle dynamics in the combined field of finite duration laser

pulse and static axial magnetic field. The expression for the particle position,

momentum and energy are expressed in terms of constants of motion and vector

potential as function of laser phase. In this work vector potential description has

been used for specifying the finite duration laser pulse and corresponding electric

as well as magnetic fields are derived from it. Due to the complicated form, the

analytical expressions are first described explicitly for the linearly polarized finite

duration laser pulse and solutions corresponding to the elliptical polarization are

presented in the subsequent subsection.

3.2.1 Linear Polarization

The vector potential of a finite duration laser pulse traveling along x̂ direction in

the presence of a constant homogeneous axial magnetic field is given by,

~A = A0Θ(δξ)P (ξ)ŷ −
B0z

2
ŷ +

B0y

2
ẑ (3.1)

where the symbols represents the following: ξ = (ωt − kx) is the phase of the

laser, Θ(δξ) is pulse envelope, P1(ξ) is the oscillatory part, factor δ(= λ
L
) is ratio of

the laser wavelength to the pulse length, A0 is the peak laser amplitude, B0 is the
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magnitude of the external magnetic field.

The electric and magnetic fields corresponding to the above described vector

potential of the laser are defined as,

~E = −1
c

∂ ~A

∂t
~B = ∇× ~A (3.2)

. The variables can be expressed in the dimensionless form by using the following

normalizations: ~r → k~r, t → ωt, ~P → ~P
mc

,Γ → Γ
mc2

, B → qB
mωc

, E → qE
mcω

, Â →
eA
mc2

,Ωc → qB0

mcω
.

The normalized relativistic momentum and energy equation are given by

d~P

dt
= [ ~E +

~P

Γ
× ( ~B + ~Ωc)] (3.3)

dΓ

dt
=

~P . ~E

Γ
(3.4)

Here Γ is the relativistic factor defined as,

Γ = (1 + P 2
x + P 2

y + P 2
z )

1/2

and Px, Py, Pz are the four momentum components.

On re-writing the equations in component form

dPx

dt
= −Py

Γ

∂A

∂ξ
(3.5)

dPy

dt
= −(Γ− Px)

Γ

∂A

∂ξ
+

PzΩc

Γ
(3.6)

dPz

dt
= −PyΩc

Γ
(3.7)

dΓ

dt
= −Py

Γ

∂A

∂ξ
(3.8)

Subtracting equation Eq.(3.5) from Eq.(3.8) results in a constant of motion ∆

defined as,

∆ = Γ− Px (3.9)

.

The phase of the laser and the constant of motion ∆ are related as ξ̇ = ∆
Γ

.
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On expressing the above equations Eq.(3.5 to 3.7) in terms of null coordinates of

laser phase ξ and using Eq.(3.9) the components of particle momentum takes the

following form,

Px =
1−∆2

2∆
+

P 2
y + P 2

z

2∆
(3.10)

Py = α1 −A + ZΩc (3.11)

Pz = α2 − Y Ωc (3.12)

in the above expressions α1 and α2 are two exact constants of motion which corre-

sponds to the conservation of transverse canonical momentum. The total energy

of the particle given below is derived using Eq.(3.9) and Eq.(3.10),

Γ =
1 +∆2

2∆
+

P 2
y + P 2

z

2∆
(3.13)

The particle position is obtained by integrating particle momentum as

~R− ~R0 =
1

∆

ˆ ξ

ξ0

~Pdξ (3.14)

Transverse momentum as well as the position of a particle can be obtained

either by representing them as first order complex differential equation or by de-

coupling the equations and writing them as second order differential equations,

d2Y

dξ2
+ r2Y =

r

∆
α2 −

1

∆

dA

dξ
(3.15)

d2Z

dξ2
+ r2Z =

rA

∆
(3.16)

The equations Eq.(3.15) and Eq.(3.16) describe the cyclotron motion of the

particle in the combined field of laser and static axial magnetic field. As the

laser pulse has a continuous frequency spectra in the Fourier space, the tuning of

cyclotron frequency with the characteristic frequency in the spectrum can lead to

the resonant energy gain by the particle.

The explicit form of the temporal envelope and the oscillatory part describing
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the vector potential of a finite duration laser pulse is specified below,

Θ(ξ) = exp(−(δξ − φ)2

2
) (3.17)

P (ξ) = sin(ξ) (3.18)

.

Here φ, is the initial phase which corresponds to the assumption that the laser

pulse is at an infinite distance away from the particle before the onset of inter-

action and the particle is acted upon by the rising edge of the laser pulse. In

this work the particle is assumed to be initially at rest (and at the origin), which

corresponds to the following initial conditions: initial particle position is given by

X = Y = Z = 0, the components of canonical momenta are given by α1 = α2 = 0,

the constant of motion resulting from the spatio-temporal symmetry of the vec-

tor potential in variables x and t is given by ∆ = 1. The solution of equations

Eq.(3.15) and Eq.(3.16) describing the cyclotron motion gives the transverse co-

ordinates of the particle position. The position and momentum of the particle are

related to each other by the following relation

d~R

dξ
=

~P

∆
(3.19)

here as specified earlier ~P represents the normalized four momentum of the par-

ticle.

The co-ordinates for transverse particle position are given below.
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Particle position

Y =
1

8rδ
A0e

− 1+r(2+r+2iξδ2)+2i(1+r)δφ

2δ2

√

π

2
(2e2irξrErf[

i+ ir + ξδ2 − δφ√
2δ

] + e
2i(1+r)φ

δ

(−1 + iδφ+ e2irξ(1 + iδφ))Erf[
i(1 + r) + δφ√

2δ
] + e

2i(1+r)φ
δ Erf[

i+ ir + δ(−ξδ + φ)√
2δ

]

− ie
2i(1+r)φ

δ δφErf[
i+ ir + δ(−ξδ + φ)√

2δ
]− 2ie

2r(1+iδφ)

δ2 rErfi[
1− r − iδ(ξδ − φ)√

2δ
]

− ie
2i(1+r)φ

δ Erfi[
1 + r + iδ(ξδ − φ)√

2δ
]− 2ie

2i(1+r)φ
δ rErfi[

1 + r + iδ(ξδ − φ)√
2δ

]

− e
2i(1+r)φ

δ δφErfi[
1 + r + iδ(ξδ − φ)√

2δ
] + ie

2i(1+r)φ
δ Erfi[

1 + r − iδφ√
2δ

] + 2ie
2i(1+r)φ

δ r

Erfi[
1 + r − iδφ√

2δ
] + e

2i(1+r)φ
δ δφErfi[

1 + r − iδφ√
2δ

] + 2ie
2r(1+iδφ)

δ2 rErfi[
1− r + iδφ√

2δ
]+

e2irξ(e
2i(1+r)φ

δ (−i+ δφ)(−iErf[
i+ ir + δ(−ξδ + φ)√

2δ
]− Erfi[

1 + r + iδ(tδ − φ)√
2δ

]+

Erfi[
1 + r − iδφ√

2δ
]) + 2ir(e

2(r+iδφ)

δ2 (Erfi[
1− r + iδ(ξδ − φ)√

2δ
] + Erfi[

−1 + r + iδφ√
2δ

])

− Erfi[
1 + r + iδφ√

2δ
]))) (3.20)

Z =
1

8r2δ
A0e

− 1+r2+4iξδ2+2δφ(i+δφ)+r(2+2iδ(ξδ+φ))

2δ2 (−4e 1
2
(4iξ+

(1+r)2

δ2
+

2i(1+r)φ
δ

+φ2)(−1 + eirξ)2δ+

√
2π(−ie2i(1+r)ξ+φ2

r2Erf[
i+ ir + ξδ2 − δφ√

2δ
] + e2iξ(eφ(

2i(1+r)
δ

+φ)(δφErf[
i(1 + r) + δφ√

2δ
]−

δφErf[
i+ ir + δ(−ξδ + φ)√

2δ
] + (r2 + iδφ)(Erfi[

1 + r + iδ(ξδ − φ)√
2δ

]− Erfi[
1 + r − iδφ√

2δ
]))+

eφ
2+ 2r(1+iδφ)

δ2 r2(Erfi[
1− r − iδ(ξδ − φ)√

2δ
]− Erfi[

1− r + iδφ√
2δ

])) + e2i(1+r)ξ(−eφ( 2i(1+r)
δ

+φ)

δφErf[
i(1 + r) + δφ√

2δ
] + eφ(

2i(1+r)
δ

+φ)δφErf[
i+ ir + δ(−ξδ + φ)√

2δ
]− ieφ(

2i(1+r)
δ

+φ)

δφErfi[
1 + r + iδ(ξδ − φ)√

2δ
] + ieφ(

2i(1+r)
δ

+φ)δφErfi[
1 + r − iδφ√

2δ
] + e

2r+δφ(2i+δφ)

δ2 r2

(Erfi[
1− r + iδ(ξδ − φ)√

2δ
] + Erfi[

−1 + r + iδφ√
2δ

])− eφ
2

r2Erfi[
1 + r + iδφ√

2δ
])))

(3.21)
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The corresponding transverse momentum component using Eq.(3.19) takes

the following analytical form.

Particle Momentum

Py =
1

8δ
A0e

−i(1+r)ξ− (1+r)2+2i(1+r)δφ+δ2φ2

2δ2

√

π

2
(−2ei(1+2r)ξ+

4r+δφ(4i+δφ)

2δ2 r(Erfi[
1− r + iδ(ξδ − φ)√

2δ
]+

Erfi[
−1 + r + iδφ√

2δ
]) + 2eiξ+

φ2

2 r(e
2r(1+iδφ)

δ2 (−Erfi[
1− r − iδ(ξδ − φ)√

2δ
] + Erfi[

1− r + iδφ√
2δ

])+

e2irξ(iErf[
i+ ir + ξδ2 − δφ√

2δ
] + Erfi[

1 + r + iδφ√
2δ

])) + 2ei(1+r)ξ+ 2i(1+r)φ
δ

+φ2

2

(icos[rξ]Erf[
−i− ir + ξδ2 − δφ√

2δ
] + iδφErf[

i+ ir + δ(−ξδ + φ)√
2δ

]sin[rξ]+

iErf[
i(1 + r) + δφ√

2δ
](cos[rξ]− δφsin[rξ])− (Erfi[

1 + r + iδ(ξδ − φ)√
2δ

]− Erfi[
1 + r − iδφ√

2δ
])

((1 + r)cos[rξ]− (ir + δφ)sin[rξ]))) (3.22)

Pz =
1

8rδ
A0e

− 1+r2+4iξδ2+ξ2δ4+2δφ(i+δφ)+r(2+2iδ(ξδ+φ))

2δ2 (4ie
1+r(2+r)+2irδφ+δ2φ2+2iδ(ξδ+φ)

2δ2 (e
1
2
ξ(2i+ξδ2)

− e
1
2
ξ(2i+4ir+ξδ2) + eirξ+ξδφ(−1 + e2iξ)r)δ + e

ξ2δ2

2

√
2π(e2i(1+r)ξ+φ2

r2Erf[
i+ ir + ξδ2 − δφ√

2δ
]

+ e2iξ(eφ(
2i(1+r)

δ
+φ)(−iδφErf[

i(1 + r) + δφ√
2δ

] + iδφErf[
i+ ir + δ(−ξδ + φ)√

2δ
]+

(−ir2 + δφ)(Erfi[
1 + r + iδ(ξδ − φ)√

2δ
]−

Erfi[
1 + r − iδφ√

2δ
]))− ieφ

2+
2r(1+iδφ)

δ2 r2(Erfi[
1− r − iδ(ξδ − φ)√

2δ
]− Erfi[

1− r + iδφ√
2δ

]))

e2i(1+r)ξ(−ieφ(
2i(1+r)

δ
+φ)δφErf[

i(1 + r) + δφ√
2δ

] + ieφ(
2i(1+r)

δ
+φ)δφErf[

i+ ir + δ(−ξδ + φ)√
2δ

]+

eφ(
2i(1+r)

δ
+φ)δφErfi[

1 + r + iδ(ξδ − φ)√
2δ

]− eφ(
2i(1+r)

δ
+φ)δφErfi[

1 + r − iδφ√
2δ

] + ie
2r+δφ(2i+δφ)

δ2

r2(Erfi[
1− r + iδ(ξδ − φ)√

2δ
] + Erfi[

−1 + r + iδφ√
2δ

])− ieφ
2

r2Erfi[
1 + r + iδφ√

2δ
])))

(3.23)

54



Chapter 3. Exact analysis of particle dynamics in the combined field of finite
duration laser pulse and static axial magnetic field

Thus longitudinal component of the particle momentum as well as the en-

ergy can be simply obtained by substituting expressions Eq.(3.22) and Eq.(3.23)

in the expressions Eq.(3.10) and Eq.(3.13) respectively. The longitudinal parti-

cle position can be obtained by integrating the expression (3.10). In the above

expressions Erfi, is the imaginary error function which is related to the Erf, as

Erfi(z)=-iErf(iz). The above derived analytical solutions, describing the particle

dynamics in the combined field of a finite duration laser pulse and static axial

magnetic field are in parametric form and thus can be used to study different as-

pects of pulse-particle interaction. The understanding of these solution enables

us to explore the features of laser driven auto-resonant acceleration scheme of

charged particles in the vacuum for the finite duration laser pulse.

3.2.2 Elliptical Polarization

In this subsection, we present the description of the method of solution to the

relativistic equation of motion interacting simultaneously with the field of ellip-

tically polarized finite duration laser pulse and static axial magnetic field. The

methodology of the solution is similar to the one described above but have been

explicitly specified for the ease of reading. The vector potential of an elliptically

polarized finite duration laser pulse traveling along x̂ direction in the presence of

a constant homogeneous axial magnetic field is

~A = (A0Θ(δξ)(1− κ2)1/2P (ξ)− B0z

2
)ŷ + (A0Θ(δξ)κP1(ξ) +

B0y

2
)ẑ (3.24)

in the above expression κ defines the polarization state of the pulse and other

terms as specified above are: the phase of the laser is given by ξ = (ωt−kx), Θ(δξ)

is pulse envelope, P (ξ) and P1(ξ) are the oscillatory parts, factor δ(= λ
L
) is the ratio

of the laser wavelength to the pulse length, A0 is the peak laser amplitude, B0 is

the magnitude of the external magnetic field.

The corresponding electric and magnetic field corresponding to the above de-

scribed vector potential of the laser are defined as,

~E = −1
c

∂ ~A

∂t
~B = ∇× ~A (3.25)
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.

Using the above specified normalizations the relativistic momentum and en-

ergy equation are given by,

d~P

dt
= [ ~E +

~P

Γ
× ( ~B + ~Ωc)] (3.26)

dΓ

dt
=

~P . ~E

Γ
(3.27)

Here Γ as defined above is the relativistic factor given by,

Γ = (1 + P 2
x + P 2

y + P 2
z )

1/2

and Px, Py, Pz are the four momentum components.

On re-writing the equations in component form,

dPx

dt
= − 1

Γ

(

Py
∂Ay

∂ξ
− Pz

∂Az

∂ξ

)

(3.28)

dPy

dt
= −(Γ− Px)

Γ

∂Ay

∂ξ
+

PzΩc

Γ
(3.29)

dPz

dt
= −(Γ− Px)

Γ

∂Az

∂ξ
− PyΩc

Γ
(3.30)

dΓ

dt
= − 1

Γ

(

Py
∂Ay

∂ξ
− Pz

∂Az

∂ξ

)

(3.31)

From Eq.(3.28) and Eq.(3.31) as described above we get a constant of motion

∆ defined as,

∆ = Γ− Px (3.32)

.

The phase of the laser and the constant of motion ∆ are related as ξ̇ = ∆
Γ

.

On expressing the above equations Eq.(3.28) to Eq.(3.31) in terms of laser phase

ξ and using Eq.(3.9), the components of particle momentum takes the following

form,

56



Chapter 3. Exact analysis of particle dynamics in the combined field of finite
duration laser pulse and static axial magnetic field

Px =
1−∆2

2∆
+

P 2
y + P 2

z

2∆
(3.33)

Py = α1 −Ay + ZΩc (3.34)

Pz = α2 −Az − Y Ωc (3.35)

where as described above α1 and α2 are constants of motion which correspond to

the conservation of transverse canonical momentum.

Using Eq.(3.9) and Eq.(3.33) the total energy of a particle is given by,

Γ =
1 +∆2

2∆
+

P 2
y + P 2

z

2∆
(3.36)

As described above the particle position can be obtained by integrating particle

momentum as,

~R− ~R0 =
1

∆

ˆ ξ

ξ0

~Pdξ (3.37)

Similar to above case, the transverse momentum as well as the position of a

particle can be obtained either by representing them as first order complex differ-

ential equation or by decoupling the equations and writing them as second order

differential equations describing the cyclotron motion,

d2Y

dξ2
+ r2y = r(

α2
∆
− Az

∆
)− 1

∆

dAy

dξ
(3.38)

d2Z

dξ2
+ r2z = − 1

∆

dAz

dξ
− r(

α1
∆
− Ay

∆
) (3.39)

The temporal profile and the oscillatory part defining the vector potential of

the finite duration laser pulse are given below.

Θ(ξ) = exp(−(δξ − φ)2

2
) (3.40)

P (ξ) = sin(ξ) (3.41)

P1(ξ) = cos(ξ) (3.42)

As described above the position and momentum of the particle are related to
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each other as,
d~R

dξ
=

~P

∆
(3.43)

here as specified earlier ~P represents the normalized four momentum of the par-

ticle. The transverse co-ordinates of the particle position derived by solving the

equations of cyclotron motion given by Eq.(3.38) and Eq.(3.39) which are ex-

pressed symbolically in simplified form are given below. The various terms in the

expression have been specified in the appendix. Particle Position

Z =

1

δ∆r
e

k1
δ2
−iξ(−1+r)

(

ek5δ
(

−ek6+iξ(−1+r)
(

(−1 + CS)CS + Sn2
)

α1 + A0Sn
((

0.25e
k11
δ2 + 0.25ek18+iξ(−1+r)+

0.25ek19+iξ(−1+r) + 0.25ek21+iξ(−1+r) − 0.25e
k12
δ2
+iξ(−1+r) + 0.25e

k13
δ2
+iξ(−1+r)

)

κ−

A13eiξ(−1+r)
(

D1
(

ek14 − ek15 − ek16 + ek17
)

+
(

ek14 + ek15 + ek16 + ek17
)

κ
)))

+

A0A9ek5+iξ(−1+r)
(

CSe
k7
δ2 κ− ie

k20
δ2 Snκ− CSD2ek29+k30r

)

Erf[j1] + A0A9ek25+k5+iξ(−1+r)

(

iek27Snκ + CSek26(−κ + D1r)
)

Erf[j11] + A0eiξ(−1+r)
(

A9ek28+k5κ
(

−iek4Sn(1 + r)−

CSek3(1 + r + iδφ)
)

Erf[j12] + A9ek2κ
(

iek4Sn(1 + r) + CSek3(1 + r + iδφ)
)

Erf[j2]+

ek5
(

A9
((

e
k24
δ2 Snκ+ iCSD2ek26+k29r − D2ek27+k29Snr + CSe

k10
δ2 κ(−i+ δφ)

)

Erfi[j10]+
(

e
k22
δ2 Sn(D1r + κ(−1 + iδφ)) + e

k8
δ2 (−iCS(D1− κ)r − Snκ(−1 + r + iδφ))

)

Erfi[j3]+

iCSe
k7
δ2 κErfi[j4] + e

k20
δ2 SnκErfi[j4] + D1e

k20
δ2 SnrErfi[j4] + iCSe

k7
δ2 κrErfi[j4] + e

k20
δ2 SnκrErfi[j4]+

iCSD1e
k9
δ2 rErfi[j5] + D1e

k23
δ2 SnrErfi[j5]− iCSe

k9
δ2 κrErfi[j5]− e

k23
δ2 SnκrErfi[j5] + iCSe

k10
δ2 κErfi[j6]

−e k24
δ2 SnκErfi[j6]− iCSD1e

k10
δ2 rErfi[j6] + D1e

k24
δ2 SnrErfi[j6]− CSe

k10
δ2 δκφErfi[j6] + e

k22
δ2 Snκ

Erfi[j7]− e
k8
δ2 SnκErfi[j7] + iCSD2ek29+k34+ 2iφ

δ rErfi[j7]− D2ek29+k35+ 2iφ
δ SnrErfi[j7]

−iCSe
k8
δ2 κrErfi[j7] + e

k8
δ2 SnκrErfi[j7]− ie

k22
δ2 SnδκφErfi[j7] + ie

k8
δ2 SnδκφErfi[j7]− iCSe

k7
δ2 κErfi[j8]

−e k20
δ2 SnκErfi[j8]− D2ek29+k32SnrErfi[j8]− iCSe

k7
δ2 κrErfi[j8]− e

k20
δ2 SnκrErfi[j8]−

iCSD2ek29+k31rErfi[j9]− D2ek29+k33SnrErfi[j9] + iCSe
k9
δ2 κrErfi[j9] + e

k23
δ2 SnκrErfi[j9]

)

−

CSe
k11
δ2 δκCos[ξ]Sin[ξr]

)))
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Y =

1

δ∆r
ed31

(

0.25A0c1ed10aiSnδ − 0.25A0c1ed11iSnδ − 0.25A0c1ed6iSnδ + 0.25A0c1ed7iSnδ+

0.25A0c1ed8iSnδ − 0.25A0c1ed9iSnδ − CSed2α2δ + CS2ed2α2δ − 0.125ed2Sn2α2δ + 0.25A0ed10a

iSnδκ− 0.25A0ed11iSnδκ+ 0.25A0ed6iSnδκ− 0.25A0ed7iSnδκ+ iA0a8c1CSed1rErf[e1]−
A0a8c1ed12SnrErf[e1]− iA0a8c1CSed4Erf[e2]− A0a8c1ed13SnErf[e2]− A0a8CSed1κrErfi[e10]−
iA0a8ed12SnκrErfi[e10]− iA0a8c1ed14SnErfi[e3] + iA0a8c1ed3SnErfi[e3]− A0a8c1CSed3rErfi[e3]

−iA0a8c1ed3SnrErfi[e3]− A0a8CSed3κrErfi[e3]− iA0a8ed14SnκrErfi[e3]− A0a8c1ed14Snδ

φErfi[e3] + A0a8c1ed3SnδφErfi[e3] + A0a8CSed3κrErfi[e4] + iA0a8ed14SnκrErfi[e4]−
A0a8c1CSed4Erfi[e5] + iA0a8c1ed13SnErfi[e5]− A0a8c1CSed4rErfi[e5] + iA0a8c1ed13Sn

rErfi[e5] + A0a8CSed4κrErfi[e5]− iA0a8ed13SnκrErfi[e5]− A0a8CSed4κrErfi[e6]+

iA0a8ed13SnκrErfi[e6]− A0a8c1CSed5rErfi[e7] + iA0a8c1ed15SnrErfi[e7]− A0a8CSed5

κrErfi[e7] + iA0a8ed15SnκrErfi[e7] + A0a8CSed5κrErfi[e8]− iA0a8ed15SnκrErfi[e8]+

A0c2
(

ed16
(

−0.125ed17 + 0.125ed18 + e2iξr
(

0.125ed17 − 0.125ed18
))

δ + a8e−iξ
(

ed19
(

−iCSed20 + ed25Sn
)

rErf[e11] +
(

iCSed21 + ed22Sn
)

Erf[e12] + ed23
(

ed30
(

ed27Sn(i+ δφ)+

ed26(CSr + iSn(−1 + r + iδφ))
)

Erfi[e4] +
(

CSed28 − ied29Sn
)

(1 + r)Erfi[e6] + ed24

(

CSed26 − ied27Sn
)

rErfi[e8]
)))

+ A0a8CSed1κrErfi[e9] + iA0a8ed12SnκrErfi[e9]
)

In the following solutions symbol ‘Ξ’ and ‘r ’ represent the same. The other dynam-

ical variables viz. momentum, energy and longitudinal position of the particle can

be derived in the manner described above for the linear polarization. The analyt-

ical expression derived in this section have a complicated mathematical structure

and thus an exhaustive numerical work has been carried out in the following sec-

tion to gain comprehensive understanding of the particle dynamics.
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3.3 Numerical Results

In this section, we present numerical solution of the relativistic equation of motion

of the particle interacting with the linearly polarized finite duration laser pulse

using R.K. method with adaptive step size control. The analytical expressions

derived above are used to validate the numerical results. In the present analysis as

specified earlier the particle is assumed to be at rest before the onset of interaction

with the laser field. The initial conditions, ∆ = 1 and α1 = α2 = 0, correspond to

the particle which is initially at rest before the onset of pulse particle interaction.

Power Spectrum OF The Temporally Shaped Gaussian Profile Laser Pulse
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Fig (a): Pulse Length(1/δ)=1
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Fig (b): Pulse Length (1/δ)=5
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Fig (c):Pulse Length(1/δ)= 10
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Fig (d): Pulse Length (1/δ)=20

Figure 3.1: The power spectrum of a laser pulse corresponding to the different
pulse lengths (1

δ
).

In Fig.3.1, the frequency spectrum of a finite duration laser pulse which has

temporally shaped Gaussian envelope for different pulse lengths is plotted, it can

be seen that frequency spectrum of the laser pulse is continuous. It has a finite

width around the central frequency and the width of the spectrum decreases with
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increase in the length of the laser pulse.

The results of a single particle code are plotted in Fig.3.2 and Fig.3.3, along

with the analytical results representing all the three components of momentum

and position of a particle respectively. The results in these figure describe the

non-resonant as well as resonant interaction of the particle with the laser pulse.

 Particle Momentum In A Homogenous Laser Pulse: Amplitude(eA0/mc2)=7, Pulse Length(L=1/δ)=15
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Figure 3.2: Analytical (A) and Numerical(N) description of evolution of particle
momentum as a function of laser phase ξ for the amplitude eA0/mc2 = 7, δ =
1/15 and ∆ = 1. Figs.2(a)-(c):The three momentum components for the particle
corresponding to the non-resonant interaction with the pulse. In Figs.2(d)-(f):
Momentum components corresponding to the resonant interaction with the laser
pulse at frequency different for the central frequency. In Figs.2(g)-(i): Momentum
components corresponding to the r=1 resonant case.
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 Analytical and Numerical Plot Of Particle Postion: Amplitude(eA0/mc2)=7, Pulse Length(L=1/δ)=15
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Figure 3.3: Analytical (A) and Numerical(N) description of evolution of particle
position as a function of laser phase ξ for the amplitude eA0/mc2 = 7, δ = 1/15
and ∆ = 1. Figs.3(a)-(c):The three position co-ordinates for the particle corre-
sponding to the non-resonant interaction with the pulse. In Figs.3(d)-(f): Position
co-ordinates corresponding to the resonant interaction with the laser pulse at fre-
quency different for the central frequency. In Fig.-(g)-(i): Position coordinates
corresponding to the r=1 resonant case.

In Figs.3.2 subplots (a-b-c), the three components of particle four momentum

are plotted corresponding to the non-resonant interaction. It can be seen that for

the case of a non-resonant interaction of the particle with a laser pulse i.e, when

the cyclotron frequency of the particle does not correspond to any of the charac-

teristic frequencies in a laser spectrum, no net energy is transfered to the particle

and all the three components of momentum becomes zero after the interaction. In

subplots (d-e-f), the momentum components for the resonant case are plotted by

tuning the cyclotron frequency of the particle at a characteristic frequency in pulse

spectrum different from central frequency. From the results it can be seen that for

a resonant case, there is net energy transfer to the particle along the propagation
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direction of the laser pulse. In the transverse direction beyond the point of reso-

nance matching, the particle momentum exhibits finite amplitude oscillations. In

the subplots (g-h-i), momentum components correspond to resonant case for the

central frequency. There is increase in the net energy gain by the particle along

the direction of the laser propagation. The amplitude of the particle oscillations

along the transverse direction increases as a consequence of increase in the net

energy transfer to the particle.

In the Fig.3.3 subplots(a-b-c), the particle position is plotted for the non-

resonant interaction of the particle with a laser pulse. The particle is at rest after

the interaction with a laser pulse and is displaced along the direction of laser

propagation with no side-wise displacement. In the subplots (d-e-f), the particle

position for a resonant case are plotted at a frequency different from the central

frequency. The continuous shift in the longitudinal position is due to finite en-

ergy gain along the longitudinal direction. Along the transverse direction beyond

the point of resonance, the particle exhibits a finite amplitude oscillatory motion

corresponding to the energy gain by a particle. In subplots (g-h-i), the position co-

ordinates of particle corresponds to the resonant interaction of a particle with the

laser pulse at central frequency. The particle is displaced by large distance along

the direction of propagation of the laser pulse. At the onset of the pulse particle

interaction there is increase in the transverse amplitude of particle oscillations

that attains maximum value at the center of the laser pulse and corresponds to

a resonant energy transfer beyond, which the amplitude of oscillations remains

constant. From the position and momentum plots it can be seen that the results

of a single particle code are in good agreement with the above derived analytical

results.
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Particle Trajectory In Combined Homogenous Temporally Shaped Gaussian Profile Laser Pulse And Static Axial Magnetic Field 
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Figure 3.4: Analytical (A) and Numerical (N) 3-D particle trajectory along with
the transverse projection in Y-Z plane for following parameters eA0/mc2 = 7,
δ = 1/15 and ∆ = 1.

In Fig.3.4, the 3-D trajectories of particle dynamics along with its transverse

projection in the Y-Z plane are plotted for non-resonant and resonant interaction

of a particle with laser pulse. For a non-resonant interaction subplot (a), the

particle which is initially at rest is accelerated by the laser field in the rising edge

of the laser pulse, particle carries out a cyclotron motion while moving in a helical

path with increasing cyclotron radius along the direction of propagation. The

cyclotron radius is maximum at the center of the pulse. Beyond this point the

particle decelerates in the trailing part of the pulse and in the process it comes

back to rest returning all its energy to the pulse. This symmetry in the acceleration

and deceleration can be seen in the transverse projection of the particle trajectory,

which is in the form of closed loops. For the resonant interaction subplots (b-c),

the particle is at rest before the onset of the pulse particle interaction. It is initially

accelerated by the rising edge of the laser pulse and corresponding to matching of

64



Chapter 3. Exact analysis of particle dynamics in the combined field of finite
duration laser pulse and static axial magnetic field

cyclotron frequency of a particle with the characteristic frequency from the laser

spectrum, net energy is transfered to it. After resonant interaction transverse

radius of the particle gets fixed and particle moves in a helical path along the

propagation direction. The symmetry in acceleration and deceleration is lost, as

can be seen the 2-D transverse projection where the loops are no longer closed

ones. It can be inferred from the plot that the cyclotron radius of the particle

increases with an increase in the resonant frequency reaching maximum for the

central resonance.

Particle Energy Gain As A function Of r(Ωc/ω)
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Fig (a): Parameter Intensity(eA0/mc2)2=100, Pulse Length (1/δ)=5 ∆=1
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Fig (b): Parameter Intensity(eA0/mc2)2=100, Pulse Length (1/δ)=10 ∆=1
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Fig (c): Parameter Intensity(eA0/mc2)2=100, Pulse Length (1/δ)=15 ∆=1
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Fig (d): Parameter Intensity(eA0/mc2)2=100, Pulse Length (1/δ)=20 ∆=1
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Fig (e): Parameter Intensity(eA0/mc2)2=100, Pulse Length (1/δ)=30 ∆=1
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Fig (f): Parameter Intensity(eA0/mc2)2=100, Pulse Length (1/δ)=35 ∆=1

Figure 3.5: Resonant energy gained by a particle at the end of interaction with the
finite duration laser pulse as a function of the applied static axial magnetic field
keeping the laser amplitude constant at eA0/mc2 = 10.

In Fig.3.5, the final energy gain of a particle is plotted as a function of vari-

able r(= Ωc

(ω∆)
); In subplots (a-b-c-d-e-f), the final energy gain is plotted for laser

pulses with different pulse lengths and with the same peak amplitude. It can be

seen from the plots that final energy gain by the particle is continuous and is in

accordance with Fig.3.1, for the power spectrum of the laser pulse. The spectrum
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width of a final energy gain by the particle decreases with increase in the laser

pulse length, which corresponds to the fact that the maximum resonant energy

gain takes place when cyclotron frequency of the particle approaches the central

laser frequency.

Analytical and Numerical Plot For Particle Energy Gain As Function Of Peak Laser Intensity 
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Fig (b): Parameter δ=1/10   r(Ωc/(ω∆))=.85 ∆=1
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Fig (c): Parameter δ=1/10   r(Ωc/(ω∆))=.9 ∆=1
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Fig (d): Parameter δ=1/10   r(Ωc/(ω∆))=1 ∆=1
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Figure 3.6: Analytical (A) and Numerical (N) plot for final energy gain of the
particle as function of the peak laser intensity for the finite duration laser pulse
of length of ten cycles(1

δ
=10) corresponding to matching of different resonance

frequencies with the laser spectrum.

In Fig.3.6, the functional dependence of the resonant final energy gain of the

particle is parametrically studied using a fitting function as a function of the peak

laser intensity at different values of r(= Ωc

ω∆
). From the values of the parameters

(c1-c2-c3-c4) obtained by curve fitting, it can be inferred that the resonant energy

gain of the particle increases linearly with the increase in the peak laser intensity.

Further on comparing the subplots (a-b-c-d), it can be seen that the slope (b1-

b2-b3-b4) describing the ratio of final energy gain to the input laser energy as a

function of parameter r(= Ωc

ω∆
). Hence for a given laser intensity the final energy
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gain of the particle can be controlled by suitably adjusting this slope.
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Figure 3.7: Final energy gain of the particle corresponding to the condition r = 1
and eA0/mc2 = 10 as a function of length of the pulse.

In Fig.3.7, corresponding to the condition r(= Ωc

ω∆
) = 1, the final resonant

energy gain of the particle is studied as function of the laser pulse length (1
δ
),

keeping the laser intensity constant. The parametric dependence is studied using

fitting function from which it can be inferred that the final energy of the particle

increases quadratically with the laser pulse length. This is in accordance with the

above derived results for the particle energy gain.
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Resonant Energy Gain As Funtion of Polarisation
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Figure 3.8: Energy gain of the particle as function of polarization parameter κ.

In Fig.3.8, the resonant energy gained by the particle at the end of pulse par-

ticle interaction is shown as a function of the polarization parameter κ. From the

figure it can be inferred that the final energy gain by the particle depends upon

the polarization parameter. The energy gain is maximum for the right circularly

polarized pulse and minimum for left circularly polarization corresponding which

corresponds to κ = ±1/
√
2 respectively. The final resonant energy gain is obtained

for the same initial laser intensity and pulse duration, but correspond to different

values of cyclotron frequency. From subplots-(A-B-C-D), it is evident that for a

constant laser intensity and pulse length, the energy gain for each of the pulse

polarization increases with increase in the cyclotron frequency and is maximum

corresponding to the central frequency of pulse spectra. This gain is due to effi-

cient acceleration by circularly polarized laser, which is made up of two linearly

polarized laser pulses.
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Resonant Energy Gain As Function of Cyclotron Frequency
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Figure 3.9: Energy gain of the particle as a function of parameter r(= Ωc/(ω∆))
for different polarization states.

In Fig.3.9, the energy gain of the particle is plotted as function of the param-

eter r(= Ωc/(ω∆)), the energy spectra of the particle is continuous, which is in

accordance with the continuum in the frequency spectrum of a laser pulse. In this

plot the laser intensity as well its pulse duration are kept constant and the reso-

nant energy gain is studied for the different laser polarizations. It is evident from

subplot(A-B-C), that for the same laser intensity the width as well as the height of

the energy curve increases as the polarization of pulse is changed from linear to

right circular. This implies that the cyclotron resonance can be achieved at lower

axial magnetic fields and resultant energy gain improves for cyclotron frequency

matching with the central frequency. On comparing the subplots (D-E-F) with

(A-B-C) respectively of Fig.3.9, it can be seen that the for same laser intensity

and polarization state, the resonant energy gain by the particle depends upon the

length of the laser pulse. The increase in pulse length results in the decrease of the

width of the energy spectra and increase in its height, in other words the higher
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values of axial magnetic field are required for the achieving cyclotron resonance.

For a same laser intensity, the resonant energy gain corresponding to the matching

of cyclotron frequency with the central frequency is found to be more for a longer

pulse.

Particle energy gain as a function of laser intensity
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Figure 3.10: Energy gain of the particle as a function of peak laser intensity for
different polarization states.

The scaling of resonant energy gain as function of laser intensity is described in

Fig.3.10, corresponding to different laser polarizations and cyclotron frequencies.

From the value of the fitting parameter c=1 of the fitting function, it is clear

that the resonant energy gain by the particle scales linearly with the peak laser

intensity for different the polarization corresponding to values of κ → [0, 1]. It

can be further inferred for the same laser intensity the energy gain improves by

varying the polarization from linear to right circular and also with the cyclotron

matching frequency, which is maximum for when cyclotron frequency matches

with laser central frequency.
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3.4 Summary And Discussion

In this chapter, the non-resonant and resonant interaction of a particle with a laser

pulse propagating along a static magnetic field has been studied analytically as

well as numerically. The non-resonant interaction results in no net transfer of en-

ergy to the particle as a laser pulse slips past the particle. The particle is displaced

along the direction of the laser propagation with no sideways displacement. For

resonant interaction the cyclotron frequency of the particle should match with the

characteristic frequency of the laser pulse spectrum.

It is evident from the results that the resonant interaction between the particle

and a finite duration laser pulse differs significantly from the results of a continu-

ous wave train previously discussed in the literature [38, 39, 32, 43]. The marked

difference between the two phenomenon can be understood in terms of the fre-

quency spectrum, which for a finite duration laser pulse has a finite resonance

width about the central maximum as compared to that of a continuous wave for

which the frequency spectrum is in the form of a delta function. In comparison

to the particle interacting with the monochromatic continuous laser, the resonant

phase locking time is found to be limited for the finite duration laser pulse. This is

so because for a finite duration laser pulse, the particle interacts with spectrum of

frequencies which lies in the resonance width, as a result the particle can remain

phase locked with the laser only for a limited period of time. It is to be noted

here that the present calculation is fundamentally different from the earlier so-

lutions derived with temporally shaped sin2(δξ) profile in Refs.[41, 42, 33]. The

analytical results derived by the authors in Refs.[41, 42, 33] are actually valid

for an infinite homogeneous plane wave with sin2(δξ) modulation; and hence the

analytical method adopted by the authors in Refs.[41, 42, 33] is not suitable for

describing some characteristics of particle motion in the combined field of a fi-

nite duration laser pulse and static axial magnetic field, such as the continuous

dependence of energy gain on “r = Ωc/(ω∆) ”. In this work a temporally shaped

Gaussian profile has been used for calculations, which suitably takes into account

the effect of continuous spectrum of frequencies present in a finite duration laser

pulse.

It has been shown that the finite resonance width of the frequency spectrum

allows the generation of accelerated particles by suitable resonance matching of
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the particle cyclotron frequency with the laser spectrum. For a given finite du-

ration laser pulse, the resonant energy gain of the particle scales linearly with

the peak laser intensity. It is found that the slope of final energy gain with in-

put laser intensity increases with increase in the parameter “r”; finally reaching

a maximum for “r = 1 ”. From the Fig.3.6 subplot (d), it can be shown that for

a relativistically intense laser with a wavelength ∼ 1µm, the particle energy can

be simply calculated as Γ = 78.53 × (A0)
2 × .511Mev; thus for A0 = 100, 105 the

final energy gain lies in TeV range. From the scaling of the particle energy as

function of the laser pulse length obtained from Fig.3.7, for r( Ωc

ω∆
= 1), it can

be seen that the energy scales quadratically with the pulse length for the same

A0. For a laser wavelength of the order of ∼ 1µm one would require a mag-

netic field of the order of ∼ 100 MG for resonating with the central frequency

r(= Ωc/(ω∆) = 1). Magnetic fields of the order of ∼ 100 MG and higher surviv-

ing for several pico-seconds have already been reported in simulations [116, 117]

and experiments [118, 119, 120, 121] pertaining to intense laser solid interac-

tion. The experimental idea of using high quasi-static magnetic field produced in

the laser solid interaction for Auto-Resonant laser acceleration has been discussed

in Ref.[122]. Further it has been shown that the resonant energy gain by the par-

ticle for the same laser parameters viz. pulse length and amplitude along with

the same strength of static axial magnetic field depends upon the polarization of

the laser pulse. For a positively charged particle, the energy gain is shown to be

maximum for the right circularly polarized light.

Thus in conclusion interaction of the particle with the finite duration pulse in

the presence of static axial magnetic field acts as a very efficient way of particle

acceleration in the vacuum in MeV-TeV range. To accelerate the particle to the very

high energies for short duration laser pulse one needs to have very high intensity

in the range 1022Wcm−2 or long duration pulses can be used to accelerate the

particles at lower laser intensity of the order of 1020Wcm−2.

72



Chapter 3. Exact analysis of particle dynamics in the combined field of finite
duration laser pulse and static axial magnetic field

3.5 Appendix

Values for different variables for y coordinate

Cos[ξΞ] = CS; Sin[ξΞ] = Sn;Erfi = Ei;Erf = E;Cos[ξΞ] = CS; Sin[ξΞ] = Sn;Erfi = Ei;Erf = E;Cos[ξΞ] = CS; Sin[ξΞ] = Sn;Erfi = Ei;Erf = E;

a1 = 1.0000004641733926; a2 = 1.0000006188980002;a1 = 1.0000004641733926; a2 = 1.0000006188980002;a1 = 1.0000004641733926; a2 = 1.0000006188980002;

a3 = “1.”; a4 = 0.5000009283470006;a3 = “1.”; a4 = 0.5000009283470006;a3 = “1.”; a4 = 0.5000009283470006;

a5 = 1.000001856694001; a6 = 6.188980001819999̀*∧-7;a5 = 1.000001856694001; a6 = 6.188980001819999̀*∧ -7;a5 = 1.000001856694001; a6 = 6.188980001819999̀*∧ -7;

a7 = “0.707107”; a8 = “0.313329”; a9 = “2.”;a7 = “0.707107”; a8 = “0.313329”; a9 = “2.”;a7 = “0.707107”; a8 = “0.313329”; a9 = “2.”;

a10 = “3.”; a11 = “1.”;a10 = “3.”; a11 = “1.”;a10 = “3.”; a11 = “1.”;

a12 = “1.”; a13 = “1.”;a12 = “1.”; a13 = “1.”;a12 = “1.”; a13 = “1.”;

a14 = “2.”; a15 = “1.”;a14 = “2.”; a15 = “1.”;a14 = “2.”; a15 = “1.”;

a16 = “0.5”; a17 = “0.707107”;a16 = “0.5”; a17 = “0.707107”;a16 = “0.5”; a17 = “0.707107”;

a18 = “0.500001”; a19 = “3.”;a18 = “0.500001”; a19 = “3.”;a18 = “0.500001”; a19 = “3.”;

c1 =
√

“1.”@− “1.”κ2; c2 =
(

1− κ2
)0.5

;c1 =
√

“1.”@− “1.”κ2; c2 =
(

1− κ2
)0.5

;c1 =
√

“1.”@− “1.”κ2; c2 =
(

1− κ2
)0.5

;

d1 = 1
δ2

(

a4 + 0.5δ4ξ2 + Ξ(a5+ a4Ξ) + ia6δ(1 + Ξ)φ+ a3δ2φ2
)

;d1 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a5+ a4Ξ) + ia6δ(1 + Ξ)φ+ a3δ2φ2
)

;d1 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a5+ a4Ξ) + ia6δ(1 + Ξ)φ+ a3δ2φ2
)

;

d2 = 0.5δ2ξ2 + (a1+a1Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a3φ2;d2 = 0.5δ2ξ2 + (a1+a1Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a3φ2;d2 = 0.5δ2ξ2 + (a1+a1Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a3φ2;

d3 = 1
δ2

(

a4 + 0.5δ4ξ2 + Ξ(a10+ a4Ξ) + iδ(a9+ a6Ξ)φ+ a3δ2φ2
)

;d3 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a10+ a4Ξ) + iδ(a9+ a6Ξ)φ+ a3δ2φ2
)

;d3 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a10+ a4Ξ) + iδ(a9 + a6Ξ)φ+ a3δ2φ2
)

;

d4 = 1
δ2

(

a4 + 0.5δ4ξ2 + Ξ(a5+ a4Ξ) + ia9δ(1 + Ξ)φ+ a3δ2φ2
)

;d4 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a5+ a4Ξ) + ia9δ(1 + Ξ)φ+ a3δ2φ2
)

;d4 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a5+ a4Ξ) + ia9δ(1 + Ξ)φ+ a3δ2φ2
)

;

d5 = 1
δ2

(

a4 + 0.5δ4ξ2 + Ξ(a10+ a4Ξ) + iδ(a6+ a9Ξ)φ+ a3δ2φ2
)

;d5 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a10+ a4Ξ) + iδ(a6+ a9Ξ)φ+ a3δ2φ2
)

;d5 = 1
δ2

(

a4+ 0.5δ4ξ2 + Ξ(a10+ a4Ξ) + iδ(a6 + a9Ξ)φ+ a3δ2φ2
)

;

d6 = 0.5δ2ξ2 + (a11+a11Ξ)2

δ2
+ i(1+Ξ)φ

δ
+ 0.5φ2;d6 = 0.5δ2ξ2 + (a11+a11Ξ)2

δ2
+ i(1+Ξ)φ

δ
+ 0.5φ2;d6 = 0.5δ2ξ2 + (a11+a11Ξ)2

δ2
+ i(1+Ξ)φ

δ
+ 0.5φ2;

d7 = 0.5δ2ξ2 + (a11+a11Ξ)2

δ2
+ ia12(1+Ξ)φ

δ
+ 0.5φ2;d7 = 0.5δ2ξ2 + (a11+a11Ξ)2

δ2
+ ia12(1+Ξ)φ

δ
+ 0.5φ2;d7 = 0.5δ2ξ2 + (a11+a11Ξ)2

δ2
+ ia12(1+Ξ)φ

δ
+ 0.5φ2;

d8 = 0.5δ2ξ2 + (a15+a15Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a16φ2;d8 = 0.5δ2ξ2 + (a15+a15Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a16φ2;d8 = 0.5δ2ξ2 + (a15+a15Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a16φ2;

d9 = 0.5δ2ξ2 + (a1+a1Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a16φ2;d9 = 0.5δ2ξ2 + (a1+a1Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a16φ2;d9 = 0.5δ2ξ2 + (a1+a1Ξ)2

δ2
+ ia2(1+Ξ)φ

δ
+ a16φ2;

d10 = a13 + 0.5δ4ξ2 + Ξ(a14+ a13Ξ) + iδ(a12+ Ξ)φ+ 0.5δ2φ2;d10 = a13+ 0.5δ4ξ2 + Ξ(a14+ a13Ξ) + iδ(a12+ Ξ)φ+ 0.5δ2φ2;d10 = a13+ 0.5δ4ξ2 + Ξ(a14 + a13Ξ) + iδ(a12 + Ξ)φ+ 0.5δ2φ2;

d10a = d10
δ2
; d11 = 1

δ2

(

a13+ 0.5δ4ξ2 + Ξ(a14 + a13Ξ) + iδ(1 + a12Ξ)φ+ 0.5δ2φ2
)

;d10a = d10
δ2
; d11 = 1

δ2

(

a13+ 0.5δ4ξ2 + Ξ(a14 + a13Ξ) + iδ(1 + a12Ξ)φ+ 0.5δ2φ2
)

;d10a = d10
δ2
; d11 = 1

δ2

(

a13 + 0.5δ4ξ2 + Ξ(a14+ a13Ξ) + iδ(1 + a12Ξ)φ+ 0.5δ2φ2
)

;
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d12 = 0.5δ2ξ2 + (a17+a17Ξ)2

δ2
+ ia6(1+Ξ)φ

δ
+ a3φ2;d12 = 0.5δ2ξ2 + (a17+a17Ξ)2

δ2
+ ia6(1+Ξ)φ

δ
+ a3φ2;d12 = 0.5δ2ξ2 + (a17+a17Ξ)2

δ2
+ ia6(1+Ξ)φ

δ
+ a3φ2;

d13 = 0.5δ2ξ2 + (a17+a17Ξ)2

δ2
+ ia9(1+Ξ)φ

δ
+ a3φ2;d13 = 0.5δ2ξ2 + (a17+a17Ξ)2

δ2
+ ia9(1+Ξ)φ

δ
+ a3φ2;d13 = 0.5δ2ξ2 + (a17+a17Ξ)2

δ2
+ ia9(1+Ξ)φ

δ
+ a3φ2;

d14 = 1
δ2

(

a18+ 0.5δ4ξ2 + Ξ(a19 + a18Ξ) + iδ(a9+ a6Ξ)φ+ a3δ2φ2
)

;d14 = 1
δ2

(

a18 + 0.5δ4ξ2 + Ξ(a19+ a18Ξ) + iδ(a9 + a6Ξ)φ+ a3δ2φ2
)

;d14 = 1
δ2

(

a18 + 0.5δ4ξ2 + Ξ(a19+ a18Ξ) + iδ(a9+ a6Ξ)φ+ a3δ2φ2
)

;

d15 = 1
δ2

(

a18+ 0.5δ4ξ2 + Ξ(a19 + a18Ξ) + iδ(a6+ a9Ξ)φ+ a3δ2φ2
)

;d15 = 1
δ2

(

a18 + 0.5δ4ξ2 + Ξ(a19+ a18Ξ) + iδ(a6 + a9Ξ)φ+ a3δ2φ2
)

;d15 = 1
δ2

(

a18 + 0.5δ4ξ2 + Ξ(a19+ a18Ξ) + iδ(a6+ a9Ξ)φ+ a3δ2φ2
)

;

d16 = ξ(@− i+ δφ) + φ(ia2(1+Ξ)+a16δφ)
δ

;d16 = ξ(@− i+ δφ) + φ(ia2(1+Ξ)+a16δφ)
δ

;d16 = ξ(@− i+ δφ) + φ(ia2(1+Ξ)+a16δφ)
δ

;

d17 = (a1+a1Ξ)2

δ2
; d18 = (a15+a15Ξ)2

δ2
; d19 = ξ

(

i+ 0.5δ2ξ
)

+ φ(ia6(1+Ξ)+a3δφ)
δ

;d17 = (a1+a1Ξ)2

δ2
; d18 = (a15+a15Ξ)2

δ2
; d19 = ξ

(

i+ 0.5δ2ξ
)

+ φ(ia6(1+Ξ)+a3δφ)
δ

;d17 = (a1+a1Ξ)2

δ2
; d18 = (a15+a15Ξ)2

δ2
; d19 = ξ

(

i+ 0.5δ2ξ
)

+ φ(ia6(1+Ξ)+a3δφ)
δ

;

d20 = a4+a5Ξ+a4Ξ2

δ2
; d21 = 1

δ2

(

a4+ Ξ(a5+ a4Ξ) + δ
(

0.5δ3ξ2 + ia9(1 + Ξ)φ+ δ
(

iξ + a3φ2
)))

;d20 = a4+a5Ξ+a4Ξ2

δ2
; d21 = 1

δ2

(

a4+ Ξ(a5+ a4Ξ) + δ
(

0.5δ3ξ2 + ia9(1 + Ξ)φ+ δ
(

iξ + a3φ2
)))

;d20 = a4+a5Ξ+a4Ξ2

δ2
; d21 = 1

δ2

(

a4 + Ξ(a5+ a4Ξ) + δ
(

0.5δ3ξ2 + ia9(1 + Ξ)φ+ δ
(

iξ + a3φ2
)))

;

d22 = ξ
(

i+ 0.5δ2ξ
)

+ (a17+a17Ξ)2

δ2
+ φ(ia9(1+Ξ)+a3δφ)

δ
;d22 = ξ

(

i+ 0.5δ2ξ
)

+ (a17+a17Ξ)2

δ2
+ φ(ia9(1+Ξ)+a3δφ)

δ
;d22 = ξ

(

i+ 0.5δ2ξ
)

+ (a17+a17Ξ)2

δ2
+ φ(ia9(1+Ξ)+a3δφ)

δ
;

d23 = ξ
(

i+ 0.5δ2ξ
)

+ a3φ2; d24 = i(a6+a9Ξ)φ
δ

;d23 = ξ
(

i+ 0.5δ2ξ
)

+ a3φ2; d24 = i(a6+a9Ξ)φ
δ

;d23 = ξ
(

i+ 0.5δ2ξ
)

+ a3φ2; d24 = i(a6+a9Ξ)φ
δ

;

d25 = a172(1+Ξ)2

δ2
; d26 = a4+Ξ(a10+a4Ξ)

δ2
; d27 = a18+Ξ(a19+a18Ξ)

δ2
;d25 = a172(1+Ξ)2

δ2
; d26 = a4+Ξ(a10+a4Ξ)

δ2
; d27 = a18+Ξ(a19+a18Ξ)

δ2
;d25 = a172(1+Ξ)2

δ2
; d26 = a4+Ξ(a10+a4Ξ)

δ2
; d27 = a18+Ξ(a19+a18Ξ)

δ2
;

d28 =
a5Ξ+a4(1+Ξ2)+ia9δ(1+Ξ)φ

δ2
; d29 =

(1+Ξ)(a172(1+Ξ)+ia9δφ)
δ2

;d28 =
a5Ξ+a4(1+Ξ2)+ia9δ(1+Ξ)φ

δ2
; d29 =

(1+Ξ)(a172(1+Ξ)+ia9δφ)
δ2

;d28 =
a5Ξ+a4(1+Ξ2)+ia9δ(1+Ξ)φ

δ2
; d29 =

(1+Ξ)(a172(1+Ξ)+ia9δφ)
δ2

;

d30 = i(a9+a6Ξ)φ
δ

; d31 = −d17 − 0.5δ2ξ2 − ia2(1+Ξ)φ
δ

− a3φ2;d30 = i(a9+a6Ξ)φ
δ

; d31 = −d17 − 0.5δ2ξ2 − ia2(1+Ξ)φ
δ

− a3φ2;d30 = i(a9+a6Ξ)φ
δ

; d31 = −d17− 0.5δ2ξ2 − ia2(1+Ξ)φ
δ

− a3φ2;

e1 = a7i+a7iΞ−a7δφ
δ

; e2 = a7i+a7iΞ+a7δφ
δ

; e3 = a7@−a7Ξ−a7iδφ
δ

;e1 = a7i+a7iΞ−a7δφ
δ

; e2 = a7i+a7iΞ+a7δφ
δ

; e3 = a7@−a7Ξ−a7iδφ
δ

;e1 = a7i+a7iΞ−a7δφ
δ

; e2 = a7i+a7iΞ+a7δφ
δ

; e3 = a7@−a7Ξ−a7iδφ
δ

;

e4 = a7@+a7iδ2ξ−a7Ξ−a7iδφ
δ

; e5 = a7@+a7Ξ−a7iδφ
δ

;e4 = a7@+a7iδ2ξ−a7Ξ−a7iδφ
δ

; e5 = a7@+a7Ξ−a7iδφ
δ

;e4 = a7@+a7iδ2ξ−a7Ξ−a7iδφ
δ

; e5 = a7@+a7Ξ−a7iδφ
δ

;

e6 = a7@+a7iδ2ξ+a7Ξ−a7iδφ
δ

; e7 = a7@−a7Ξ+a7iδφ
δ

;e6 = a7@+a7iδ2ξ+a7Ξ−a7iδφ
δ

; e7 = a7@−a7Ξ+a7iδφ
δ

;e6 = a7@+a7iδ2ξ+a7Ξ−a7iδφ
δ

; e7 = a7@−a7Ξ+a7iδφ
δ

;

e8 = a7@−a7iδ2ξ−a7Ξ+a7iδφ
δ

; e9 = a7@+a7Ξ+a7iδφ
δ

;e8 = a7@−a7iδ2ξ−a7Ξ+a7iδφ
δ

; e9 = a7@+a7Ξ+a7iδφ
δ

;e8 = a7@−a7iδ2ξ−a7Ξ+a7iδφ
δ

; e9 = a7@+a7Ξ+a7iδφ
δ

;

e10 = a7@−a7iδ2ξ+a7Ξ+a7iδφ
δ

; e11 = a7i+a7δ2ξ+a7iΞ−a7δφ
δ

;e10 = a7@−a7iδ2ξ+a7Ξ+a7iδφ
δ

; e11 = a7i+a7δ2ξ+a7iΞ−a7δφ
δ

;e10 = a7@−a7iδ2ξ+a7Ξ+a7iδφ
δ

; e11 = a7i+a7δ2ξ+a7iΞ−a7δφ
δ

;

e12 =
a7(−δ2ξ+i(1+Ξ)+δφ)

δ
e12 =

a7(−δ2ξ+i(1+Ξ)+δφ)
δe12 =

a7(−δ2ξ+i(1+Ξ)+δφ)
δ

Values for different variables for z coordinate

Cos[ξΞ] = CS; Sin[ξΞ] = Sn;Cos[ξΞ] = CS; Sin[ξΞ] = Sn;Cos[ξΞ] = CS; Sin[ξΞ] = Sn;

A1 = “1.”;A2 =A1 = “1.”;A2 =A1 = “1.”;A2 =

2.220446049250313∧− 16;A3 = 4.440892098500626∧− 16;2.220446049250313∧− 16;A3 = 4.440892098500626∧− 16;2.220446049250313∧− 16;A3 = 4.440892098500626∧− 16;

A4 = 1.9999999999999996;A5 = 0.9999999999999996;A4 = 1.9999999999999996;A5 = 0.9999999999999996;A4 = 1.9999999999999996;A5 = 0.9999999999999996;
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A6 = 0.7071067811865475;A7 = 0.9999999999999998;A6 = 0.7071067811865475;A7 = 0.9999999999999998;A6 = 0.7071067811865475;A7 = 0.9999999999999998;

A8 = “0.5”;A9 = “0.313329”;A8 = “0.5”;A9 = “0.313329”;A8 = “0.5”;A9 = “0.313329”;

A10 = “0.5”;A11 = “0.5”;A10 = “0.5”;A11 = “0.5”;A10 = “0.5”;A11 = “0.5”;

A12 = 0.7071067811865474;A12 = 0.7071067811865474;A12 = 0.7071067811865474;

A13 = “0.25”;A13 = “0.25”;A13 = “0.25”;

D1 =
√

“1.”@− “1.”κ2;D2 =
(

1@− 1κ2
)0.5

;D1 =
√

“1.”@− “1.”κ2;D2 =
(

1@− 1κ2
)0.5

;D1 =
√

“1.”@− “1.”κ2;D2 =
(

1@− 1κ2
)0.5

;

j1 = 1
δ

(

A6i− A6δ2ξ + A6iΞ + A6δφ
)

; j2 = 1
δ

(

A6i+ A6δ2ξ + A6iΞ− A6δφ
)

;j1 = 1
δ

(

A6i− A6δ2ξ + A6iΞ + A6δφ
)

; j2 = 1
δ

(

A6i+ A6δ2ξ + A6iΞ− A6δφ
)

;j1 = 1
δ

(

A6i− A6δ2ξ + A6iΞ + A6δφ
)

; j2 = 1
δ

(

A6i+ A6δ2ξ + A6iΞ− A6δφ
)

;

j3 = 1
δ
(A12@− A12Ξ− A12iδφ); j4 = 1

δ
(A12@+ A12Ξ− A12iδφ);j3 = 1

δ
(A12@− A12Ξ− A12iδφ); j4 = 1

δ
(A12@+ A12Ξ− A12iδφ);j3 = 1

δ
(A12@− A12Ξ− A12iδφ); j4 = 1

δ
(A12@+ A12Ξ− A12iδφ);

j5 = 1
δ
(A12@− A12Ξ + A12iδφ); j6 = 1

δ
(A12@+ A12Ξ + A12iδφ);j5 = 1

δ
(A12@− A12Ξ + A12iδφ); j6 = 1

δ
(A12@+ A12Ξ + A12iδφ);j5 = 1

δ
(A12@− A12Ξ + A12iδφ); j6 = 1

δ
(A12@+ A12Ξ + A12iδφ);

j7 = 1
δ

(

A6@+ A6iδ2ξ − A6Ξ− A6iδφ
)

; j8 = 1
δ

(

A6@+ A6iδ2ξ + A6Ξ− A6iδφ
)

;j7 = 1
δ

(

A6@+ A6iδ2ξ − A6Ξ− A6iδφ
)

; j8 = 1
δ

(

A6@+ A6iδ2ξ + A6Ξ− A6iδφ
)

;j7 = 1
δ

(

A6@+ A6iδ2ξ − A6Ξ− A6iδφ
)

; j8 = 1
δ

(

A6@+ A6iδ2ξ + A6Ξ− A6iδφ
)

;

j9 = 1
δ

(

A6@− A6iδ2ξ − A6Ξ + A6iδφ
)

; j10 = 1
δ

(

A6@− A6iδ2ξ + A6Ξ + A6iδφ
)

;j9 = 1
δ

(

A6@− A6iδ2ξ − A6Ξ + A6iδφ
)

; j10 = 1
δ

(

A6@− A6iδ2ξ + A6Ξ + A6iδφ
)

;j9 = 1
δ

(

A6@− A6iδ2ξ − A6Ξ + A6iδφ
)

; j10 = 1
δ

(

A6@− A6iδ2ξ + A6Ξ + A6iδφ
)

;

j11 = 1
δ
(A12i+ A12iΞ + A12δφ); j12 = 1

δ
(A12i+ A12iΞ− A12δφ);j11 = 1

δ
(A12i+ A12iΞ + A12δφ); j12 = 1

δ
(A12i+ A12iΞ− A12δφ);j11 = 1

δ
(A12i+ A12iΞ + A12δφ); j12 = 1

δ
(A12i+ A12iΞ− A12δφ);

k1 = −A1− 0.5δ4ξ2 − A2Ξ2 + δ((“0.”@− 1i)− (“0.”@+ A3i)Ξ)φ− 0.5δ2φ2;k1 = −A1− 0.5δ4ξ2 − A2Ξ2 + δ((“0.”@− 1i)− (“0.”@+ A3i)Ξ)φ− 0.5δ2φ2;k1 = −A1− 0.5δ4ξ2 − A2Ξ2 + δ((“0.”@− 1i)− (“0.”@+ A3i)Ξ)φ− 0.5δ2φ2;

k2 = 0.5δ2ξ2 + (−A4−A7Ξ)Ξ
δ2

− A5iΞφ
δ

+ 0.5φ2;k2 = 0.5δ2ξ2 + (−A4−A7Ξ)Ξ
δ2

− A5iΞφ
δ

+ 0.5φ2;k2 = 0.5δ2ξ2 + (−A4−A7Ξ)Ξ
δ2

− A5iΞφ
δ

+ 0.5φ2;

k3 = A8@+(1@+0.5Ξ)Ξ
δ2

; k4 = A10@+(A5@+A11Ξ)Ξ
δ2

;k3 = A8@+(1@+0.5Ξ)Ξ
δ2

; k4 = A10@+(A5@+A11Ξ)Ξ
δ2

;k3 = A8@+(1@+0.5Ξ)Ξ
δ2

; k4 = A10@+(A5@+A11Ξ)Ξ
δ2

;

k5 = −A5iΞφ
δ

; k6 = A1@+0.5δ4ξ2+A2Ξ2+δ(i+iΞ)φ+0.5δ2φ2

δ2
;k5 = −A5iΞφ

δ
; k6 = A1@+0.5δ4ξ2+A2Ξ2+δ(i+iΞ)φ+0.5δ2φ2

δ2
;k5 = −A5iΞφ

δ
; k6 = A1@+0.5δ4ξ2+A2Ξ2+δ(i+iΞ)φ+0.5δ2φ2

δ2
;

k7 = A8@+ 0.5δ4ξ2 + (−A5− A11Ξ)Ξ + δ(2i+ 2iΞ)φ+ 0.5δ2φ2;k7 = A8@+ 0.5δ4ξ2 + (−A5− A11Ξ)Ξ + δ(2i+ 2iΞ)φ+ 0.5δ2φ2;k7 = A8@+ 0.5δ4ξ2 + (−A5− A11Ξ)Ξ + δ(2i+ 2iΞ)φ+ 0.5δ2φ2;

k8 = A8@+ 0.5δ4ξ2 + (A5@− A11Ξ)Ξ + 2iδφ+ 0.5δ2φ2;k8 = A8@+ 0.5δ4ξ2 + (A5@− A11Ξ)Ξ + 2iδφ+ 0.5δ2φ2;k8 = A8@+ 0.5δ4ξ2 + (A5@− A11Ξ)Ξ + 2iδφ+ 0.5δ2φ2;

k9 = A8@+ 0.5δ4ξ2 + (A5@− A11Ξ)Ξ + 2iδΞφ+ 0.5δ2φ2;k9 = A8@+ 0.5δ4ξ2 + (A5@− A11Ξ)Ξ + 2iδΞφ+ 0.5δ2φ2;k9 = A8@+ 0.5δ4ξ2 + (A5@− A11Ξ)Ξ + 2iδΞφ+ 0.5δ2φ2;

k10 = A8@+ 0.5δ4ξ2 + (−A5− A11Ξ)Ξ + 0.5δ2φ2;k10 = A8@+ 0.5δ4ξ2 + (−A5− A11Ξ)Ξ + 0.5δ2φ2;k10 = A8@+ 0.5δ4ξ2 + (−A5− A11Ξ)Ξ + 0.5δ2φ2;
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k11 = A1@+ A2Ξ2 + δ
(

i+ 1δ2ξ + iΞ
)

φ; k12 = A1@+ 0.5δ4ξ2 + δ(i+ iΞ)φ;k11 = A1@+ A2Ξ2 + δ
(

i+ 1δ2ξ + iΞ
)

φ; k12 = A1@+ 0.5δ4ξ2 + δ(i+ iΞ)φ;k11 = A1@+ A2Ξ2 + δ
(

i+ 1δ2ξ + iΞ
)

φ; k12 = A1@+ 0.5δ4ξ2 + δ(i+ iΞ)φ;

k13 = A1@+ 0.5δ4ξ2 + A2Ξ2 + δ(i+ iΞ)φ; k14 = A1
δ2
+ 0.5δ2ξ2 + (A5i+A5iΞ)φ

δ
+ A2φ2;k13 = A1@+ 0.5δ4ξ2 + A2Ξ2 + δ(i+ iΞ)φ; k14 = A1

δ2
+ 0.5δ2ξ2 + (A5i+A5iΞ)φ

δ
+ A2φ2;k13 = A1@+ 0.5δ4ξ2 + A2Ξ2 + δ(i+ iΞ)φ; k14 = A1

δ2
+ 0.5δ2ξ2 + (A5i+A5iΞ)φ

δ
+ A2φ2;

k15 = A1
δ2
+ 0.5δ2ξ2 + (A1i+A5iΞ)φ

δ
+ A2φ2;k15 = A1

δ2
+ 0.5δ2ξ2 + (A1i+A5iΞ)φ

δ
+ A2φ2;k15 = A1

δ2
+ 0.5δ2ξ2 + (A1i+A5iΞ)φ

δ
+ A2φ2;

k16 = A1
δ2
+ 0.5δ2ξ2 + (A5i+A1iΞ)φ

δ
+ A2φ2;k16 = A1

δ2
+ 0.5δ2ξ2 + (A5i+A1iΞ)φ

δ
+ A2φ2;k16 = A1

δ2
+ 0.5δ2ξ2 + (A5i+A1iΞ)φ

δ
+ A2φ2;

k17 = A1
δ2
+ 0.5δ2ξ2 + (A1i+A1iΞ)φ

δ
+ A2φ2;k17 = A1

δ2
+ 0.5δ2ξ2 + (A1i+A1iΞ)φ

δ
+ A2φ2;k17 = A1

δ2
+ 0.5δ2ξ2 + (A1i+A1iΞ)φ

δ
+ A2φ2;

k18 = ξ((“0.”@− 1i)− iΞ) +
A1@+δ(i+1δ2ξ+iΞ)φ

δ2
;k18 = ξ((“0.”@− 1i)− iΞ) +

A1@+δ(i+1δ2ξ+iΞ)φ
δ2

;k18 = ξ((“0.”@− 1i)− iΞ) +
A1@+δ(i+1δ2ξ+iΞ)φ

δ2
;

k19 = ξ((“0.”@− 1i) + iΞ) +
A1@+δ(i+1δ2ξ+iΞ)φ

δ2
;k19 = ξ((“0.”@− 1i) + iΞ) +

A1@+δ(i+1δ2ξ+iΞ)φ
δ2

;k19 = ξ((“0.”@− 1i) + iΞ) +
A1@+δ(i+1δ2ξ+iΞ)φ

δ2
;

k20 = A10@+ 0.5δ4ξ2 + (−1− 0.5Ξ)Ξ + δ(2i+ 2iΞ)φ+ 0.5δ2φ2;k20 = A10@+ 0.5δ4ξ2 + (−1 − 0.5Ξ)Ξ + δ(2i+ 2iΞ)φ+ 0.5δ2φ2;k20 = A10@+ 0.5δ4ξ2 + (−1 − 0.5Ξ)Ξ + δ(2i+ 2iΞ)φ+ 0.5δ2φ2;

k21 = ξ(i+ iΞ) +
A1@+δ(i+1δ2ξ+iΞ)φ

δ2
;k21 = ξ(i+ iΞ) +

A1@+δ(i+1δ2ξ+iΞ)φ
δ2

;k21 = ξ(i+ iΞ) +
A1@+δ(i+1δ2ξ+iΞ)φ

δ2
;

k22 = A10@+ 0.5δ4ξ2 + (A5@− 0.5Ξ)Ξ + 2iδφ+ 0.5δ2φ2;k22 = A10@+ 0.5δ4ξ2 + (A5@− 0.5Ξ)Ξ + 2iδφ+ 0.5δ2φ2;k22 = A10@+ 0.5δ4ξ2 + (A5@− 0.5Ξ)Ξ + 2iδφ+ 0.5δ2φ2;

k23 = A10@+ 0.5δ4ξ2 + (A5@− 0.5Ξ)Ξ + 2iδΞφ+ 0.5δ2φ2;k23 = A10@+ 0.5δ4ξ2 + (A5@− 0.5Ξ)Ξ + 2iδΞφ+ 0.5δ2φ2;k23 = A10@+ 0.5δ4ξ2 + (A5@− 0.5Ξ)Ξ + 2iδΞφ+ 0.5δ2φ2;

k24 = A10@+ 0.5δ4ξ2 + (−1− 0.5Ξ)Ξ + 0.5δ2φ2;k24 = A10@+ 0.5δ4ξ2 + (−1 − 0.5Ξ)Ξ + 0.5δ2φ2;k24 = A10@+ 0.5δ4ξ2 + (−1 − 0.5Ξ)Ξ + 0.5δ2φ2;

k25 = 0.5δ2ξ2 + (2i+2iΞ)φ
δ

+ 0.5φ2; k26 = A8@+(−A5−A11Ξ)Ξ
δ2

;k25 = 0.5δ2ξ2 + (2i+2iΞ)φ
δ

+ 0.5φ2; k26 = A8@+(−A5−A11Ξ)Ξ
δ2

;k25 = 0.5δ2ξ2 + (2i+2iΞ)φ
δ

+ 0.5φ2; k26 = A8@+(−A5−A11Ξ)Ξ
δ2

;

k27 = A10@+(−1−0.5Ξ)Ξ
δ2

; k28 = 0.5δ2ξ2 + (−A4−A7Ξ)Ξ
δ2

+ 0.5φ2;k27 = A10@+(−1−0.5Ξ)Ξ
δ2

; k28 = 0.5δ2ξ2 + (−A4−A7Ξ)Ξ
δ2

+ 0.5φ2;k27 = A10@+(−1−0.5Ξ)Ξ
δ2

; k28 = 0.5δ2ξ2 + (−A4−A7Ξ)Ξ
δ2

+ 0.5φ2;

k29 = 0.5δ2ξ2 + 0.5φ2; k30 = A8@+2iδφ+Ξ(−A5−A11Ξ+2iδφ)
δ2

;k29 = 0.5δ2ξ2 + 0.5φ2; k30 = A8@+2iδφ+Ξ(−A5−A11Ξ+2iδφ)
δ2

;k29 = 0.5δ2ξ2 + 0.5φ2; k30 = A8@+2iδφ+Ξ(−A5−A11Ξ+2iδφ)
δ2

;

k31 = A8@+Ξ(A5@−A11Ξ+2iδφ)
δ2

; k32 = A10@+2iδφ+Ξ(−1−0.5Ξ+2iδφ)
δ2

;k31 = A8@+Ξ(A5@−A11Ξ+2iδφ)
δ2

; k32 = A10@+2iδφ+Ξ(−1−0.5Ξ+2iδφ)
δ2

;k31 = A8@+Ξ(A5@−A11Ξ+2iδφ)
δ2

; k32 = A10@+2iδφ+Ξ(−1−0.5Ξ+2iδφ)
δ2

;

k33 = A10@+Ξ(A5@−0.5Ξ+2iδφ)
δ2

; k34 = A8@+(A5@−A11Ξ)Ξ
δ2

;k33 = A10@+Ξ(A5@−0.5Ξ+2iδφ)
δ2

; k34 = A8@+(A5@−A11Ξ)Ξ
δ2

;k33 = A10@+Ξ(A5@−0.5Ξ+2iδφ)
δ2

; k34 = A8@+(A5@−A11Ξ)Ξ
δ2

;

k35 = A10@+(A5@−0.5Ξ)Ξ
δ2

;k35 = A10@+(A5@−0.5Ξ)Ξ
δ2

;k35 = A10@+(A5@−0.5Ξ)Ξ
δ2

;
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4
Particle dynamics in a focused laser

field

The particle dynamics is numerically studied in the field of a focused con-

tinuous and finite duration laser. The slow spatial modulation in the laser

intensity has been used to model the focused laser field. The aim of the

study is to determine the optimum initial position for maximum energy

gain by the particle in a focused laser field as well as to determine the

quantitative limit for earlier reported analytical work by Kaw et.al[46].

A significant part of this work has been published ref.Sagar et.al[105].

4.1 Introduction

In chapter-2 and chapter-3, the particle dynamics has been studied in the homo-

geneous relativistically intense laser field. It has been shown in chapter-2, that

a particle interacting with homogeneous laser field is symmetrically accelerated

and decelerated by the laser field, resulting in no net transfer of energy. A scheme

of laser driven auto-resonant particle acceleration has been described in chapter-3

for accelerating the particle from rest to relativistic energies. In this scheme the

particle acceleration is achieved by subjecting it to the combined field of a laser

and static axial magnetic field. The appropriate tuning of cyclotron frequency

with the characteristic frequency results in the resonant acceleration of particle.

In this chapter, an alternate scheme of direct laser acceleration of particle in

vacuum is described, in which the particle is accelerated by subjecting it to the
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Chapter 4. Particle dynamics in a focused laser field

focused field of a laser. The focusing causes an asymmetry in the acceleration

and deceleration phase of the particle by a laser, which results in net transfer of

energy to the particle. This asymmetry is a resultant of the configuration of the

electric and magnetic field describing the focused laser field. The main difficulty

in the theoretical study of this scheme is the correct mathematical description of

the complex configuration of the fields arising due to the focusing of laser, which

in turn hinder’s the analytical study of the particle orbits. Thus considerable work

has been done in this area[47], for the description of the fields, which has been

subsequently used in the theoretical studies of the schemes of particle accelera-

tion.

In general, the focusing of a laser results in the focused and de-focused regions,

which are separated at a focal point. In the focused region, the strength of the

fields increases reaching maximum at the focal point, beyond which the region

is termed as de-focused region and the field strength decreases in moving away

from the focal point. The mechanism of particle acceleration by this scheme can

physically be described in a following way: at the beginning of the interaction the

particle is assumed be at rest in the focused region and gets accelerated along the

transverse direction by the electric field component of the laser. The transverse

velocity gain results in simultaneous action by the magnetic field component of

the laser and the ~v × ~B force pushes the particle along the propagation direction

of laser. This cycle is repeated and the particle propagates into the focused region

along the direction of the propagation of the laser. The particle moving in the

focused region is subjected to ascending gradient in electric field, which in turn

retards its forward motion and depending upon the initial conditions the particle

might get reflected back in focused region or can enter the de-focused region. This

makes the choice of initial position very important for the forward acceleration of

the particle. The particle entering into the de-focused region is subjected to the

descending gradient in the electric field, as a result the laser field is not able to

extract the energy back from the particle. This results in the net transfer of energy

to the particle along the direction of propagation of the field.

As mentioned above that the complex configuration of fields in the focused

laser field limits the analytical study of the particle dynamics. Earlier Kawet.al[46],

have analytically studied the particle dynamics in the focused laser field using one

dimensional focusing model. The slow spatial modulation of the laser intensity
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along the direction of propagation of the laser was chosen to the describe the

focused laser field and hence one dimensional model. The analytical work was

carried out in the limit that the adiabaticity parameter ǫ(= lg/ln << 1) is very

small, here lg, is the particle gyration length and ln(=| 1
a2

da2

d(ǫx)
|−1), is the scale

length of variation in intensity. In their study, optimum initial conditions have

been derived in terms of initial position, peak intensity and laser pulse length for

maximum energy gain by the particle. In this chapter the exact relativistic equa-

tion of motion is numerically solved to understand the dynamics of a particle in

the field of focused continuous as well as finite duration laser field. At first the

dynamics of the particle is studied in the field of a focused continuous laser, the

study is further sub-divided into a focused and de-focused regions. As described

earlier in the focused region, the laser intensity increases along the direction of

propagation and becomes maximum at the focal point, the region beyond the fo-

cal point is termed as de-focused region in which the laser intensity decreases

along the direction of propagation.

In the focused region, the particle moves along the increasing intensity gradi-

ent which retards the forward motion of the particle and as a result its gyration

length is reduced. Earlier Kaw et.al[46] had derived an analytical expression,

which describes the variation of adiabatic invariant as function of laser intensity,

which implicitly depends upon the initial position. Using the analytical expression

it was discussed that the particle dynamics depends upon the choice of initial posi-

tion of the particle in the focused laser field. Depending upon the choice of initial

conditions the particle can be reflected back into the focused region or it can stop

at the focal point with no net longitudinal energy and lastly, it might get pushed

into the de-focused region. It was further stated that the adiabaticity conditions

are very well satisfied in this region. The present numerical work is used to verify

the above specified predictions of the analytical work and hence to determine the

optimum initial position of the particle for maximum energy gain.

Next, the particle motion is examined in the de-focused region, in this region

the particle is subjected to the decreasing intensity gradient as a result the laser

field is not able to extract energy out of the particle and it gets accelerated along

the direction of laser propagation. The energy gain of the particle is expressed

in terms of the adiabatic invariant, which is studied for different values of initial

slowness parameters. The aim of the study is to determine the quantitative limit
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in terms of adiabaticity parameter ‘ǫ’ for the analytical energy estimate of the

particle.

Further, the particle energy gain is studied in the field of a focused finite du-

ration laser field. The numerical results are compared with the earlier derived

analytical results by Kawet.al[46]. In this study the particle energy gain is studied

as a function of the parameter “f ” and optimum initial conditions are determined

in terms of laser intensity, pulse length and focal length for maximum energy gain

by the particle.

The chapter has a following organization: In section (4.2), the exact relativis-

tic equation of motion describing the particle dynamics in the field of continuous

focused laser is numerically solved. The study is divided further into following

two subsections. In subsection (4.2.1), the dynamics of the particle is examined

in the focused region and results are compared with the earlier reported analytical

work, which is aimed to determine the optimum initial position of the particle for

maximum energy gain. In subsection (4.2.2), the particle dynamics is considered

in the de-focused region and the energy gain of the particle is studied for different

initial values of adiabaticity parameter (‘ǫ’). This study determines the quantita-

tive limit for the analytical adiabatic energy gain by the particle and corresponding

changes in the adiabatic invariant. In section(4.3), the particle dynamics is nu-

merically studied in the field of a focused finite duration laser field. The results

of this parametric study provides the quantitative limit of the earlier analytical

work carried out using adiabatic approximation and to optimize the particle en-

ergy gain in terms of peak laser intensity, pulse length and focal length. In section

(4.4), the summary of the work and conclusions of the work are presented.

4.2 Charged particle dynamics in the field of rela-

tivistically intense inhomogeneous linearly po-

larized plane wave

In this section, the equations of motion describing the particle dynamics in the

field of an adiabatically focused laser field which were earlier derived by Kawet.al[46]

have been re-derived. The vector potential describing the linearly polarized laser
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travelling along the x̂ is given by:

~A = aΘ(δξ)P1(ξ)ŷ (4.1)

where the symbols represent the following: ξ = (ωt−kx) is the phase of the laser,

Θ(δξ) is pulse envelope, P1(ξ) is the oscillatory part, factor δ(= λ
L
) is ratio of the

laser wavelength to the pulse length, a(ǫx) is slowly modulated amplitude of the

pulse. From here on the following normalization have been used in this chapter:

~r → k~r, t → ωt, ~P → ~P
mc

,Γ → Γ
mc2

, B → qB
mωc

, E → qE
mcω

, Â → eA
mc2

. For the focused

field electric and magnetic fields are given by:

~E = −∂A
∂t
ŷ = −∂A

∂ξ
ŷ ~B = ∇× ~A = ∂A

∂x
ẑ = (−∂A

∂ξ
+ ǫ ∂A

∂(ǫx)
)ẑ

.

The normalized relativistic momentum and energy equation are given by,

d~P

dt
= [ ~E +

~P

Γ
× ~B] (4.2)

dΓ

dt
=

~P . ~E

Γ
(4.3)

Here Γ is the relativistic factor defined as,

Γ = (1 + P 2
x + P 2

y + P 2
z )

1/2

and Px, Py, Pz are the four momentum components.

In the component form the equation of motion is given by,

dPx

dt
=

Py

Γ
(−∂A

∂ξ
+ ǫ

∂A

∂(ǫx)
) (4.4)

dPy

dt
= −(Γ− Px)

Γ

∂A

∂ξ
(4.5)

dPz

dt
= 0 (4.6)

dΓ

dt
= −Py

Γ

∂A

∂ξ
(4.7)

Subtracting Eq.(4.4) from Eq.(4.7) and changing the variables using ξ̇ = ∆
Γ

,(where

∆ = Γ − Px) results in the evolution equation for adiabatic invariant and trans-
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verse particle momentum,

d∆

dξ
= − ǫ

∆
Py

da(ǫx)

d(ǫx)
Θ(δξ)P1(ξ) (4.8)

Py = α− A (4.9)

Pz = C1 (4.10)

where α and C1 are exact constant of motion, corresponds to canonical momen-

tum. In this study the constant of motion C1 = 0, which represents that there is

no motion along this direction and hence it is dropped from further calculations.

Thus the longitudinal momentum and energy of the particle can be repre-

sented as,

Px =
1−∆2

2∆
+
(α−A)2

2∆
(4.11)

Γ =
1 + ∆2

2∆
+
(α− A)2

2∆
(4.12)

The particle position can be obtained by solving Eq.(4.5) and Eq.(4.6),

dx

dξ
=
1−∆2

2∆2
+
(α− A)2

2∆2
(4.13)

dy

dξ
=
(α− A)

∆
(4.14)

The phase averaged slow set of equations describing the particle position as

well as the evolution of adiabatic invariant are required to study particle dynam-

ics. They can be derived by substituting for Py from Eq.(4.9) in Eq.(4.8) and

averaging the resultant equation along with Eq.(4.13) over the fast motion. The

temporal envelope of the pulse Θ(δξ) is assumed to be constant over one gyration.

d∆2

dξc
= − ǫ

2

da2

d(ǫx)
Θ2(δξ) (4.15)

d < x >

dξc
=
1−∆2

2∆2
+

α2 + a2Θ2(δξ)2

2

2∆2
(4.16)

where ξc = t̂− < x̂ >.

82



Chapter 4. Particle dynamics in a focused laser field

The Eq.(4.15) and Eq.(4.16) represent a general set of equations which are

valid for different pulse profile as well various intensity profiles representing the

focused field of a laser. The particle dynamics is first analyzed in the field of a

continuous linearly polarized focused laser.

For the continuous laser Θ(δξ) = 1 and dividing Eq.(4.15) by Eq.(4.16) results

in an equation describing the variation in adiabatic constant in terms of laser

intensity,
d∆2

da2
= − ∆2

[∆2 − 1− α2 − a2/2]
(4.17)

The general solution of the above equation for an arbitrary initial conditions is

given by:

∆ = 1 +
α2

2
+

a2

4
− [

α2

4
(α2 + a2) +

a4

16
+
1

2
(a2 −A2

0)]
1/2 (4.18)

In the following subsection (4.2.1) and (4.2.2), the focused laser field is rep-

resented the following intensity modulation given by

a2 = A2
0(1± ǫx), x ≶ 0 and

1

ǫ
= F = N × A2

0. (4.19)

to study the particle motion in focused and de-focused region of the focused laser

field respectively. In the above expression, F is the focal length of the focused

region, it is normalized to the wavelength of the laser and defines a distance in

which the intensity drops from maximum to zero on either side of the focal point;

A0 is the peak laser amplitude at the focal point of the laser. The proportional-

ity between the laser intensity and focal length for the adiabatic description of

the focusing model is a resultant of the fact that the particle displacement for

a homogeneous case is proportional to intensity. Thus choosing large value of

proportionality factor ‘N ’ could represent the adiabatic focusing of laser.

4.2.1 Particle dynamics in a focused laser field

In this subsection, the particle dynamics is studied in the focused region of a con-

tinuous laser, in which the laser intensity (or the electric field) increases along the

direction of propagation and reaching maximum at the focal point. The gradient

in the laser intensity in this region retards the forward propagation of the parti-
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cle and as a result the dynamics depends upon the choice of initial position. The

Eq.(4.18) describes the variation of adiabatic invariant with the laser intensity

which in turn depends upon the initial particle position and in this equation ‘a’

is the initial laser amplitude seen by the particle. Earlier interesting observation

were made by Kaw et.al[46] using the expression (α2

4
(α2+a2)+ a4

16
+ 1

2
(a2−A2

0)) in

the bracket of the Eq.(4.18). For the case when the value of terms in the bracket

is greater than zero, the particle propagates along the direction of the laser into

the de-focused region. The details of particle dynamics in the de-focused region

are described in the following subsection. For the second case, when the value

of the terms in the expression is equal to zero, all the energy of the particle gets

converted into the transverse motion. As a result, the particle stops at the focal

point and keeps gyrating there, leading to no net energy transfer to the particle.

For the case when the value of the expression is less than zero, the value of adi-

abatic invariant becomes complex, which signifies that particle cannot go further

in space and gets reflected back into the focused region.

In this work, the relativistic equation of motion Eq.(4.2), is numerically solved

using the linear intensity modulation described by the Eq.(4.19) and the above

conditions have been verified. In the following figures, the results corresponding

to the third case are illustrated for different initial conditions.

The particle trajectory and the evolution of the adiabatic invariant are shown

in Fig.(4.1), which corresponds to the initial condition that particle is initially at

rest and injected into the laser at the zero of vector potential such that the constant

of motion corresponding to the transverse motion takes the value α = 0. It can be

seen from the figure, that for a choice of particular parameters the particle gets

reflected from the focal point and the numerical value of adiabatic invariant is as

per the analytical relation.
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Figure 4.1: Particle is at initially at rest and starts interacting with the wave when
its vector potential is zero.
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Figure 4.2: Particle is at initially at rest and starts interacting with the wave when
its vector potential is maximum.
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The Fig.(4.2), describes the particle trajectory and the evolution of the adia-

batic invariant. The particle dynamics corresponds to the initial condition that

the particle is at rest before the onset of the interaction and is injected into the

laser at phase corresponding to the maximum of the vector potential. For this

initial condition, the constant of motion associated with the transverse particle

motion is given by α = a. It can be seen from the figure that for a choice of the

parameter, the particle gets reflected from the focal point of the laser. The numer-

ically obtained value of the adiabatic invariant is in accordance with the analytical

results.

The above numerical results verifies the earlier predictions reported in the

analytical work by Kawet.al[46] and gives a range of initial particle positions cor-

responding to different parameters for the forward acceleration of a particle. In

this region, it can be seen the gyration length of the particle decreases as the

particle moves into a region of higher intensity and the corresponding change in

laser intensity over a gyration is very small as a result the adiabatic conditions are

very well satisfied in this region. It has been further argued in ref.[46], that for

a particle to have a maximum energy gain, it should be placed at a point which

corresponds to maximum of the intensity and has minimum initial value of the

adiabatic invariant. From the expression (4.18) it is evident that the focal point is

the optimum initial position for a particle initially at rest and subjected to the zero

of laser vector potential. The initial conditions a = A0 and α = 0, corresponds to

the minimum initial value of the adiabatic invariant given by ∆ = 1.

4.2.2 Adiabatic acceleration of charged particle

In this subsection, the particle dynamics is studied in the de-focused region of the

laser. This work is aimed to quantitatively study the effect of change in adiabatic-

ity (or slowness) parameter on the particle dynamics in an adiabatically focused

laser field, which in turn can be used to determine the limit of the analytical

work. In this problem slowness parameter “ǫ(= lg/ln)” is defined in terms of ratio

of particle gyration length (lg), to scale length of variation in the laser intensity

(ln(=| 1
a2

da(ǫx)2

d(ǫx)
|−1)) over one gyration. In the following figures, the results ob-

tained by numerically solving the exact relativistic equation of motion Eq.(4.2)

are plotted, which describes the particle trajectory, momentum, final energy and
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the variation in the adiabatic invariant. The numerically obtained exact evolution

of the adiabatic invariant is compared with the phase averaged adiabatic invariant

obtained by solving average set of equations given by Eq.(4.15) and Eq.(4.16).

In figure(4.3), the particle dynamics is described in the de-focused region of

the focused laser. From the subplots, it can be seen that the particle gains net

forward energy along the direction of propagation of the laser in the de-focused

region. This energy gain is result of the descending(or negative) gradient in the

laser intensity (or electric field) seen by the particle, due to which the laser is

not able to extract all the energy back from the particle. The energy gain along

the direction of propagation leads to the increase in the gyration length of the

particle, which in turn causes an increase in the value of adiabaticity parameter

“ǫ”. The increase in the value of “ǫ” causes the deviation between the exact and

averaged values of the adiabatic invariant.
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Figure 4.3: Plot for particle trajectory in configuration space, momentum space,
total energy and adiabatic invariant for a focused laser pulse for N=20

It can be seen from the figure(4.4), that the rate of variation of the adiabaticity

88



Chapter 4. Particle dynamics in a focused laser field

parameter “ǫ(= lg/ln)” depends upon its initial value. The increase in initial value

of the adiabaticity parameter enhances its rate of evolution by increasing the gyra-

tion length and decreasing the scale length of intensity variation. As result there

is greater deviation between the exact numerical and phase averaged values of

the adiabatic invariant. It is further to be noticed from the figure that the pulse

particle interaction can terminate at any point between the gyration and hence

would in principle would require the information of the fast phase for improving

the adiabatic description of the particle dynamics.
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Figure 4.4: Plot for particle trajectory in configuration space, momentum space,
total energy and adiabatic invariant for a focused laser pulse for N=10

From figure(4.5), it can been seen that the further increase in the initial value

can make the adiabaticity parameter approach unity. At this stage the gyration

length of the particle becomes greater than the scale length of the intensity varia-

tion, which in turn causes a vast difference in the numerical and phase averaged

values of the adiabatic invariant. As the adiabaticity parameter attains a value of
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unity there is a complete breakdown of the adiabatic equations and the process

can be termed as non-adiabatic.
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Figure 4.5: Plot for particle trajectory in configuration space, momentum space,
total energy and adiabatic invariant for a focused laser pulse for N=7

In figure(4.6), the numerical and analytical energy gain by the particle is plot-

ted along with corresponding adiabatic invariant as function of the focal length

(or intensity F = N × a2) for the same initial slowness parameter. The value of

final energy gain by the particle is given by Eq.(4.11), which depends upon the

adiabatic invariant and laser vector potential only. The final numerical and phase

averaged value of adiabatic invariant is determined at a point where the intensity

drops to zero and marks the end of laser particle interaction. From the figure it

can be seen that for an initially slow process, there is very good match between

the numerical and phase averaged adiabatic energy gain by the particle. It is to be

noted that even though the difference in the exact numerical and phase averaged

value of adiabatic invariant is small, the corresponding variation in the energy

gain is very large.
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Particle Energy Gain In Adiabaticaly Focused Laser Field
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Figure 4.6: Particle energy gain Γ/mc2 and adiabatic invariant in an adiabatically
focused laser field as function of focal length F.

4.3 Particle acceleration in focused finite duration

laser pulse

The study of particle dynamics in a focused field of a continuous laser in the last

section gave a considerable physical insight into the mechanism of direct laser

acceleration. However the study of particle motion in a continuous focused laser

is an ideal case, a more realistic case is thus considered as per the previous ana-

lytical work by Kaw et.al[46] using a finite duration laser pulse. The linear spatial

modulation in the laser intensity is used to describe the focused laser field, which

is similar to the one used in the last section by Eq.(4.19). The variation in the

laser intensity is defined by a2 = δf(F ±x), for x ≶ 0, where A2
0 = δfF is the peak

laser intensity, f is an external parameter and F is the focal length in which the

intensity drops to zero in distance of F/λ wavelengths on either side of the focus.
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In the earlier analytically work Kaw et al.[46] have studied the final energy gain

by analytically solving the phase averaged equations Eq.(4.15) and Eq.(4.16). In

their work, the authors have used Θ(δξ) = sech(δξ) to define the temporal en-

velope of the pulse, the particle was assumed to be at rest before the arrival of

laser pulse and placed very close to focus. The final energy gain of the particle

is measured at the point where the laser intensity drops to zero and is given by

Γ ≃ 1/(2∆m) where ∆m refers to the minimum value of ∆ at that point. In the

present work, the exact relativistic equation of motion given Eq.(4.2) is solved

using the same set of assumptions and temporal profile for the pulse as described

above.
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Figure 4.7: Plot for energy gain by the particle in the laser field as function of
parameter f at different laser intensities A2

0 and 1/δ.

In the Fig(4.7), the resultant final energy gain by the particle is plotted as

a function of parameter “f(= A2
0

δF
)”. These results are obtained by solving the

exact equation of motion numerically using Runge-Kutta method. In this study

the length of the laser pulse (1/δ) and peak laser intensity (A2
0) are kept constant.
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Figure 4.8: Plot for particle energy gain as function of 1/δ at different laser inten-
sities A2

0 for fixed value of parameter f .

In Fig(4.8), the exact numerical results described in Fig(4.7), are compared

with the resultant energy gain corresponding the phase average equations given

by Eq.(4.15) and Eq.(4.16). These results corresponds to the same peak laser

intensity (A2
0) and different pulse lengths (1/δ). On comparing the results in the

different subplots it can be seen that, the numerical and analytical results have

a very good matching the in the region f < 1 and f ≈ 1, however the results

diverge significantly in the region f > 1. It can further be seen from the figure,

that the disagreement starts early with decrease in the length of the pulse. As per

the earlier analytical work, the results of numerical study can be divided in the

following three different parameter regimes, f < 1, f ≈ 1 and f > 1, which gives

further physical insight into the mechanism of particle acceleration described.
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Figure 4.9: Plot for particle energy gain as function of f for the region f < 1.

In region 1, corresponding f < 1, the resultant final energy gain by the particle

obtained on solving the exact equation of motion for different peak laser intensi-

ties is presented in Fig(4.9). It can be seen from the subplots, that the resultant

final energy gain by a particle depends only upon parameter f and is independent

of the laser intensity. The parametric dependence of the final energy gain by the

particle on parameter f is established and is specified by the value of variable

“c” shown in the figure. The results are in accordance with the analytical pre-

dictions given in the Kaw et al. ref.[46] and shown in Fig(4.8). In this regime,

even though the adiabatic condition is very well satisfied and described by earlier

analytical adiabatic approximations specified in ref.[46], yet it is not suitable for

forward energy gain.
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Figure 4.10: Plot of particle energy gain as a function of laser intensity A2
0, in the

region f ≈ 1 for fixed value of 1/δ.

For region 2, corresponding to f ≈ 1, the results of simulation are given in

Fig(4.10). These results are aimed to study the dependence of resultant energy

gain by a particle on peak laser intensity (A2
0) and laser pulse length (1/δ) keeping

the value of parameter f(= A2
0

δF
) constant. From the figure, it can be seen that the

resultant final energy gain by the particle depends upon the peak laser intensity

(A2
0) and is independent of pulse length (1/δ). Using a fitting function the depen-

dence of energy gain on laser amplitude is established and shown along with the

values of the fitting parameters. From the value of parameter “c”, it can be seen

that final energy of the particle in this regime increases approximately as A
2/3
0 of

the laser amplitude. Thus it can be concluded that in the regime f ≈ 1, the resul-

tant particle energy gain improves with the laser intensity and is independent of

pulse length. These results are in good qualitative as well as quantitative match

with the previous predictions of the analytical work ref.[46].
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Figure 4.11: Plot for particle energy gain as function of 1/δ at different laser
intensities A0 for fixed value of parameter f .

For region 3, corresponding to f > 1, a parametric study is carried out to

establish the dependence of resultant final energy gain by the particle on the peak

laser intensity (A2
0), pulse length (1/δ) and parameter f(= A2

0

δF
). In Fig.(4.11), the

dependence of the particle energy gain on laser the pulse length (1/δ) is described

for different laser intensities (A2
0), by keeping the value of parameter f constant.

From the results it is evident that the regime can be further sub-divided into a

region A0 ≤ 8 and A0 ≥ 8. In region A0 ≤ 8, the energy gain by particle is nearly

independent of pulse length (1/δ), but depends only upon the laser intensity. For

A0 ≥ 8, the energy gain particle depends upon the pulse length (1/δ) as well as

on the peak laser intensity A2
0.
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4.4 Summary

The major findings of the study of particle dynamics in the focused laser field are

summarized in this section. In this chapter, the particle dynamics is studied in

the focused field of a continuous and finite duration laser to gain insight into the

physical mechanism of direct laser acceleration. A slow linear spatial modulation

in the laser intensity along the direction of propagation is used to describe the

focused laser field. The exact relativistic equation of motion is numerically solved

describing the particle dynamics in the focused continuous laser and results are

used to study the particle motion in the focused and de-focused region. The nu-

merical results are compared with the earlier analytical work by Kaw et.al[46]

and it is shown that in the focused region, the particle dynamics depends upon

the choice of the initial position which can subsequently result in reflection, stop-

ping and acceleration of the particle. For a particle initially at rest and subjected

to the zero of the laser vector potential, it shown that focal point is the optimum

initial position for maximum energy gain. In this study, the parameter for the adia-

batic (or slowness) process is given by “ǫ” and is defined as the ratio of the particle

gyration length to the scale length of variation in the laser intensity over one gyra-

tion. It is further shown that in the focused region, the particle is subjected to the

ascending acceleration gradient as a result its forward motion is retarded which in

turn decreases its gyration length. Thus the adiabaticity parameter remains very

small and the adiabatic conditions are very well satisfied in this region.

Next, the particle dynamics is studied in the de-focused region and the results

the of the numerical study are used to determine the quantitative limit of the

earlier analytical adiabatic work. In this region the particle gains energy along

the direction of propagation of the particle and hence the gyration length of the

particle increases in each subsequent gyration which leads to the evolution of the

adiabaticity parameter. It is shown that the particle dynamics depends upon the

initial choice of slowness parameter and increases rapidly when the initial value

is large. The increase in the value of adiabaticity parameter causes the deviation

between the exact numerical and phase averaged analytical estimates of the par-

ticle energy gain which is expressed in terms of adiabatic invariant. It is further

shown that the for larger initial adiabaticity parameter the laser particle interac-

tion can terminate at an arbitrary laser phase and thus making the information of
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the phase important for final energy estimation.

This study is extended to a more realistic case of finite duration laser pulse. A

detailed numerical work is carried out to determine the optimum initial condition

in terms of peak laser intensity (A2
0), pulse length (1/δ) and focal length (F ) for

maximum energy gain by the particle. The findings of the numerical work are

compared with the earlier analytical work. In this work the resultant final energy

gain of the particle is studied as a function of parameter “f(= A2
0

δF
)”, which is de-

fined as the ratio of the product of peak laser intensity and the pulse length to

the focal length of the focused laser field. It is shown that the numerical and an-

alytical results agree in the parametric region f ≤ 1. However there is significant

difference in the numerical and analytical results in the parametric region f > 1.

These results can not be described by the earlier analytical work and thus a higher

order adiabatic theory is required for understanding the deviation in the resultant

energy gain as well as for analytical estimation of the numerical results.
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5
Adiabatic formulation for charged

particle dynamics in an

inhomogeneous electromagnetic field

In this chapter a higher ordered adiabatic theory is derived using the

Lie-transform perturbation method for studying the particle dynamics in

an inhomogeneous field of relativistically intense laser field. The newly

derived theory is used for the analytical estimation of the numerically

obtained particle energy gain. The contents of this chapter have been

published in ref. Sagar et.al[105].

5.1 Introduction

In chapter-2, the particle dynamics has been studied in the field of a homogeneous

laser field. It has been shown that for a particle interacting with a homogeneous

laser field, the dynamics is associated with the three constants of motion. These

constants of motion correspond to symmetries associated with the independence

of the Hamiltonian with respect to the two transverse coordinates and to the lon-

gitudinal coordinate ‘x’ and the time ‘t’ except through the combination t−x. From

Hamiltonian dynamics and Livouville’s integrability theorem [43, 96, 97, 98, 104]

it is known that a Hamiltonian describing a system with ′n′ degrees of freedom is

completely integrable if, ′n′ invariants are present to characterize a solution of its
′2n′ equations of motion. Thus it is an integrable problem with dynamical vari-
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ables expressed in terms of constants of motion and laser vector potential only.

However no net energy is transfered to the particle at the end of laser particle

interaction.

In the previous chapter, a scheme of direct particle acceleration in vacuum has

been studied in which the particle is subjected to the focused laser field. The slow

spatial modulation in the laser intensity along the direction of propagation of the

laser has been used to model the focused laser field. It has been shown that the

focusing causes an inhomogeneity in the laser field, which results in the loss of

one of the above specified three constants of motion. This makes the problem non-

integrable and the dynamical variables cannot be described in terms of constants

of motion and vector potential only as was possible previously.

In the earlier analytical work, Kaw et.al[46] have shown that for a slow spatial

variation, the particle energy gain can be determined adiabatically. The slowness

has been defined as, a ratio of the particle gyration length (lg) to the scale length

of inhomogeneity (ln(=| 1
a2

da2

d(ǫx)
|−1)) and is given by ‘ǫ(= lg/ln)’. Thus for a par-

ticle dynamics to remain adiabatic, the value of adiabatic parameter should be

much smaller than one (ǫ << 1). However from the results of comprehensive

numerical study carried out in the previous chapter, it has been found that the

earlier theory is unable to account for energy gain by the particle in the param-

eter regime f(=
A2

0

δF
) > 1, which corresponds to the tight focusing of laser and

the symbols have following meaning, A2
0 is the peak laser intensity, (δ = (λ/L))

ratio of the fundamental laser wavelength to length of pulse, F is the focal length.

Thus an improved adiabatic theory is required for physical understanding of the

mechanism and to analytically account for the numerical results.

In this chapter, a higher order adiabatic theory is derived using the Lie trans-

formation perturbation method which is based upon the Hamiltonian dynam-

ics and canonical transformations. In this method a canonical transformation

[94, 95, 97, 98, 104]from the lab variables to new phase averaged variables is

carried out which simplifies the form of Hamiltonian. The new phase averaged

variables are expressed in terms of lab variables as an asymptotic series in the

powers of adiabaticity parameter. In this method carrying out a transformation

from lab variables to phase averaged variables is equivalent to averaging over

fast motion. The generators for such a transformation are derived and expressed

in terms of Poisson brackets which are invariant under canonical transformation
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and this makes the whole formalism canonically invariant. The problem is sim-

plified on transforming from lab variables to phase averaged variables. Finally

the problem is solved by evolving the new phase averaged variables and subse-

quently carrying out an inverse transformation from the phase averaged variables

to the lab variables. The variables as previously stated are expressed in the form

of an asymptotic series in the powers of the adiabaticity parameter. In this work

the adiabatic invariant has been derived up to second order of the adiabaticity pa-

rameter, which suitably takes into account the contribution of the fast dynamics to

second order of adiabaticity parameter. It has been shown that the earlier work by

Kawet.al[46], corresponds to the first order of the present work. However it is to

be pointed out that in the earlier work there was no inverse transformation from

phase averaged variables to lab variables i.e, contribution from the fast dynamics

was not taken into account.

The newly derived higher order adiabatic theory has been used for the analyti-

cal estimation of the numerically obtained energy gain by particle. The numerical

results have been obtained using one-dimensional focusing model in which the

laser intensity has a linear spatial modulation along the direction of propagation

of the laser.

The chapter is organized in the following way: in section (5.2), particle dy-

namics is studied in the homogeneous field of finite duration laser using using

Hamiltonian dynamics and canonical transformations. In section (5.3), particle

dynamics is studied in the field of an inhomogeneous laser field using Hamiltonian

dynamics and canonical transformations. In subsection (5.3.1), higher orders of

adiabatic invariance are derived using method of Lie-transformation perturbation

method. In section (5.4), the analytical estimates of the particle energy gain in

the focused laser field are compared with the numerical results. In section (5.5),

contains a brief summary of the topic.
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5.2 Hamiltonian approach to charged particle dy-

namics

5.2.1 Homogeneous laser field:

The dimensionless Hamiltonian describing the motion of a charged particle placed

in a linearly polarized finite duration laser pulse is given by,

H(~r, ~P ) =
√

1 + P 2
x + (Py − A(t− x))2 + P 2

z (5.1)

with the following normalizations H → H/mc2, Px,y,z → Px,y,z/mc, and A0 →
eA0/mc2, t → ωt, r → kr. The vector potential of the laser pulse is chosen to be
~A(~r, t) = A0φ(ωt − kx)ŷ, where φ(ωt − kx) = Θ(δ(ωt − kx))P (ωt − kx), P is the

oscillatory part, Θ is the pulse shaping factor with δ = λ
L
<< 1. As coordinates

′y′ and ′z′ are cyclic, therefore the corresponding conjugate canonical momentum

components (α) and Pz are constants. This gives the ′y′ component of particle

momentum as

py = α− A(t− x) (5.2)

In the present geometry the particle dynamics is confined in x− y plane only and

there is no motion along z direction, hence it is removed from the calculations

hereinafter. On canonically transforming the old Hamiltonian to the new Hamil-

tonian using a type II generating function [43, 98] defined as,

F2 = (t− x)P
′

x. (5.3)

The transformation equation for the Hamiltonian is,

H
′

= H +
∂F2
∂t

= H + P
′

x (5.4)

with the transformed Hamiltonian H
′

given by,

H
′

=
√

1 + (P ′

x)
2 + (P ′

y − A(ξ))2 + P
′

x (5.5)

102



Chapter 5. Adiabatic formulation for charged particle dynamics in an
inhomogeneous electromagnetic field

and under canonical transformation the variables transform as,

Px =
∂F2
∂x

= −P ′

x; ξ =
∂F2
∂Px

= (t− x). (5.6)

Since H
′

does not explicitly depend upon time, it is a third constant of motion and

is denoted by ∆. In terms of old coordinates, it can be written

∆ = Γ− Px (∵ Px = px) (5.7)

where Px is the canonical momentum, px is the particle momentum and Γ (the

total energy of the particle) is the value of the Hamiltonian given by Eq.(5.1).

Using Eq.(5.1), Eq.(5.2) and Eq.(5.7), particle momentum and position can now

be written in terms of constants of motion and vector potential as

Px =
1−∆2

2∆
+
(α−A(ξ))2

2∆
x = x0 +

ˆ ξ

ξ0

Px

∆
dξ (5.8)

py = (α− A(ξ)) y = y0 +

ˆ ξ

ξ0

(α−A(ξ))

∆
dξ (5.9)

The above set of expressions, Eq.(5.8) and Eq.(5.9) describes the particle dynam-

ics in the field of homogeneous laser. The position and momentum of the particle

has been expressed in terms of constants of motion and vector potential only.

5.3 Inhomogeneous laser field:

In this section, the particle dynamics is studied in an inhomogeneous laser field

which is due to slow spatial variation of laser intensity along the direction of prop-

agation of laser pulse. In the presence of inhomogeneity, the vector potential of

the laser pulse is given by ~A(~r, t, ǫx) = a(ǫx)P (δ(t−x))Θ(t−x)ŷ, where as defined

earlier, the slowness parameter ǫ is the ratio of particle gyration length to the scale

length of intensity variation. For the sake of generality the functional form of laser

amplitude a(ǫx), has been kept arbitrary. The dimensionless Hamiltonian is given

by,

H(~r, ~P ) =
√

1 + P 2
x + (Py − A(ǫx, (t− x))2. (5.10)
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The Hamiltonian is cyclic in ′y′ co-ordinate, hence the conjugate canonical mo-

mentum is conserved and is expressed as,

py + A(ǫx, (t− x)) = α. (5.11)

Using the type II generating function[104] for canonical transformation, which is

defined by

F2 = (t− x)Jξ + xJη (5.12)

the transformed Hamiltonian is given by

H
′

(ξ, y, Jξ, Py; ǫη, Jη) =
√

1 + (−Jξ + Jη)2 + (Py − A(ǫη, ξ))2 + Jξ. (5.13)

Hamiltonian H
′

is cyclic in ′t′ and thus is a constant of motion given by ∆
′

.

Under canonical transformation the variables transform as

Px =
∂F2
∂x

= −Jξ + Jη; ξ =
∂F2
∂Jξ

= (t− x); η =
∂F2
∂Jη

= x. (5.14)

The corresponding Hamilton’s equations may be expressed as

dJξ

dt
= −∂H

′

∂ξ
= − 1

2Γ

∂(α− A(ǫη, ξ))2

∂ξ
(5.15)

dJη

dt
= −∂H

′

∂η
= − 1

2Γ

∂(α− A(ǫη, ξ))2

∂η
(5.16)

dξ

dt
=

∂H
′

∂Jξ
=
−(−Jξ + Jη) + Γ

Γ
=
∆

′ − Jη

Γ
(5.17)

dη

dt
=

∂H
′

∂Jη
=
−Jξ + Jη

Γ
(5.18)

On expressing the new Hamiltonian in terms of old coordinates by substituting the

value of Jξ from Eq.(5.14), Jη is obtained from Eq.(5.16), Eq.(5.17) and Eq.(5.18)

as,

Jη = −
ˆ

[
∂(α −A(ǫη, ξ))2

2(∆′ − Jη)∂η
]dξ (5.19)
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In terms of the old coordinates, the Hamiltonian is expressed as,

H
′

= ∆− ǫ

ˆ

[
∂(α − A(ǫx, ξ))2

2∆∂(ǫx)
]dξ (5.20)

Thus in the presence of an inhomogeneity the previously defined∆ is no longer

an exact constant of motion. However in the adiabatic approximation i.e, ǫ << 1,

∆ is an adiabatic invariant and the particle dynamics can be studied adiabatically.

The particle position and momentum can be described in terms of the laser vec-

tor potential, the constant of motion α and the adiabatic invariant as was done

previously for the homogeneous case. In the present problem, the adiabatic in-

variant evolves and its evolution is obtained by solving the following Hamilton’s

equations,

∆̇ = −∂H ′

∂ξ
= ǫ

1

2∆

∂(α− A)2

∂(ǫx)
(5.21)

ξ̇ =
∂H ′

∂∆
= 1 + ǫ

ˆ

1

2∆2

∂(α − A)2

∂(ǫx)
dξ (5.22)

corresponding to the Hamiltonian given by Eq.(5.20) and along with the particle

position. In the present form, the above equation cannot be solved due to the pres-

ence of both slow and fast variables. The solution can be obtained by transforming

the Hamiltonian given by Eq.(5.20) into a simpler form and solving the problem

in terms of the new coordinates and carrying out an inverse transformations.

5.3.1 Lie transformation perturbation method

In this subsection, the use of Lie transformation perturbation method is described

which utilizes the Deprit perturbation series [99, 100, 101, 102, 103, 104] for

solving the Eq.(5.21) and Eq.(5.22) describing the evolution of the adiabatic in-

variant. To begin with the Hamiltonian given by Eq.(5.20) is transformed from

the present set of lab variables into phase averaged slow variables, in terms of

which the new Hamiltonian is simplified. The derivation of such a generators of

the transformation from lab variables to phase averaged variables and vice-versa

is described below. These phase averaged variables are evolved using the phase

averaged Hamiltonian and the solutions in terms of lab variables are obtained by
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carrying out an inverse transformation. The transformations derived are in the

orders of adiabaticity parameter ǫ and in the present work are derived till second

order of adiabaticity parameter. The method described here is general and can

be extended to higher orders. The summary of basic aspects of Lie-transforms

essential for the present work along with Deprit perturbation series is given in

Appendix.

As per the theory of Lie transform, the evolution operator T can be represented

by T = exp(−L), where Lf = [w, f ] represents its operation upon any function

f(X, t) with [, ] denoting the Poisson brackets and function w(X) is the Lie gener-

ator. The inverse evolution operator T−1 is given by T−1 = exp(L). For the second

order adiabatic theory the Lie generators to second order are expressed as,

w = w10 + ǫw11 + ǫw2 (5.23)

where w1 and w2 are first and second order Lie generators.

The explicit calculations are presented for deriving the generator of canoni-

cal transformation to second order. As a starting point for the calculations we

consider the Hamiltonian derived in section II (5.20) for driving these generators,

H
′

= ∆− ǫ

ˆ

[
∂(α − A(ǫx, ξ)2

2∆∂(ǫx)
]dξ (5.24)

In the present case Θ(δξ) = sech(δξ), P (ξ) = sin(ξ) and for simplicity set

α = 0.

Zeroth− order: In zeroth order the perturbation equation is given by

H̄0 = H0 = ∆̄ (5.25)

FirstOrder: First order correction to second order in adiabaticity parameter

(ǫ2): The Hamiltonian corresponding to fast motion is given by,

w1 = w10 + ǫw11 (5.26)
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Using the first order perturbation equation,

∂w1

∂t
+ L1Ho = (H̄1 −H1) (5.27)

As there is no explicit dependence on time the first term on the left hand side

is zero. Hence re-writing the equation with H0 = ∆ = Γ − px . Substituting the

value of transformed unperturbed Hamiltonian H0 from Eq.(5.7) in the following

equation and solving with ∆ and (t− x) as independent variables,

(
∂w10

∂ξ

∂H0

∂∆
−∂w10

∂∆

∂H0

∂ξ
)+ǫ(

∂w11

∂ξ

∂H0

∂∆
−∂w11

∂∆

∂H0

∂ξ
)+ǫ(

∂w10

∂(ǫx)

∂H0

∂px
−∂w10

∂px

∂H0

∂(ǫx)
) = (H̄10+ǫH̄11−H1)

(5.28)

Separating in the powers of ǫ as

∂w10

∂ξ
= H̄10 +

ˆ

a
′

aΘ(δξ)2

2∆
dξ −

ˆ

a
′

aΘ(δξ)2cos(2ξ)dξ

2∆
∂w11

∂ξ
= H̄11 +

∂w10

∂(ǫx)

These equations can be solved by removing the secular part by equating it

to arbitrary constant H̄10 and setting it to zero. In the absence of second order

secular term in the Hamiltonian the arbitrary constant H̄11 = 0 is set equal to

zero. While considering fast motion for δ << 1 one can write

´ a
′

aΘ(δξ)2cos(2ξ)dξ
2∆

≈ a
′

aΘ(δξ)2

2∆
sin(2ξ)

2

, this results in,

w1 =
a

′

aΘ(δξ)2

2∆

cos(2ξ)

4
+ ǫ

(a
′2 + a

′′

a)Θ(δξ)2

2∆

sin(2ξ)

8
(5.29)

H̄ = H̄0 + ǫH̄1 (5.30)

H̄ = ∆̄−
ˆ

a
′

aΘ(δξ)2dξ

2∆̄
(5.31)
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Second−Order: For second order in the ǫ for the fast Hamiltonian w2 the

perturbation equation is given by,

∂w2

∂t
+ L2Ho = 2(H̄2 −H2)− L1[H̄1 +H1] (5.32)

second order require only w2 = w20 , for the present case H2 = 0. Re-writing the

above equation,

[w20, H0] = 2H̄2 − [w10, (H̄1 +H1)]

re-writing it we have,

(∂w20

∂ξ
∂H0

∂∆
− ∂w20

∂∆
∂H0)
∂ξ

) = 2H̄20 − (∂w10

∂ξ
∂(H̄1+H1)

∂∆
− ∂w10

∂∆
∂(H̄1+H1)

∂ξ
)

on calculating various terms of the Poisson of the brackets gives,

∂(2H̄1 + {H1})
∂ξ

=
a

′

aΘ2(δξ)

2∆
cos(2ξ)

∂(2H̄1 + {H1})
∂∆

=

ˆ

a
′

aΘ(δξ)2dξ

∆2
− a

′

aΘ(δξ)2

4∆2
sin(2ξ)

Here the terms inside the curly bracket signify fast terms and on substituting the

various terms,

∂w20

∂ξ
= 2H̄20 − (a

′

a)2Θ(δξ)4

16∆3 + a
′

aΘ2(δξ)
4∆

sin(2ξ)
´ a

′

aΘ2(δξ)dξ
∆2

The secular term can be removed by equating it to arbitrary constant

2H̄20 −
(a

′

a)2Θ(δξ)4

16∆3
= 0

Thus second order generator is given as,

w20 = −a
′

aΘ2(δξ)
8∆

cos(2ξ)
´ a

′

aΘ(δξ)2dξ
∆2 + (a

′

a)2Θ4(δξ)
16∆3 sin(2ξ)

The generators of the canonical transformation to second order are given by,

w10 =
a

′

aΘ2(δξ)

8∆
cos(2ξ) w11 = ǫ

(a
′2 + a

′′

a)Θ2(δξ)

16∆
sin(2ξ)

w2 = −ǫ
a

′

aΘ2(δξ)

8∆
cos2ξ

ˆ

a
′

aΘ2(δξ)dξ

∆2
+
(a

′

a)2Θ4(δξ)

16∆3
sin(2ξ) (5.33)
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On substituting the various terms, the Lie generator to second order in the adia-

baticity parameter takes the following form

w =
a

′

aΘ2(δξ)

8∆
cos(2ξ) + ǫ

(a
′2 + a

′′

a)Θ2(δξ)

16∆
sin(2ξ)− ǫ

a
′

aΘ2(δξ)

8∆
cos2ξ

ˆ

a
′

aΘ2(δξ)dξ

∆2
+
(a

′

a)2Θ4(δξ))

16∆3
sin(2ξ) (5.34)

The transformation of the lab variables to the slow phase averaged variables is

obtained by the operation of the evolution operator T, which to second order in ǫ

is given by

∆̄ = T∆

∆̄ = T0∆+ T1∆+ T2∆

∆̄ = ∆− L1∆+
1

2
L21∆−

1

2
L2∆

∆̄ = ∆− ǫ[w10,∆]− ǫ2[w11,∆] +
ǫ2

2
[w10, [w10,∆]]−

ǫ2

2
[w20,∆] (5.35)

By computing and substituting the values of Poisson brackets, it is expressed as

∆̄ = ∆+ ǫ
a

′

aΘ2(δξ)

4∆
sin(2ξ)− ǫ2

(a
′2 + a

′′

a)Θ2(δξ)2

8∆
cos(2ξ)− ǫ2

(a
′

a)2Θ4(δξ)

32∆3
− ǫ2

a
′

aΘ2(δξ)

8∆
sin(2ξ)

ˆ

a
′

aΘ2(δξ)dξ

∆2
(5.36)

Similarly the phase ξ is transformed as

ξ̄ = ξ − ǫ[w10, ξ]− ǫ2[w11, ξ] +
ǫ2

2
[w10, [w10, ξ]]−

ǫ2

2
[w20, ξ] (5.37)

By computing the various Poisson brackets and substituting them gives the

required series for averaged phase,
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ξ̄ = ξ − ǫ
a

′

aΘ2(δξ)

8∆2
cos(2ξ)− ǫ2

(a
′2 + a

′′

a)Θ2(δξ)

16∆2
sin(2ξ) + ǫ2

(a
′

a)2Θ4(δξ)

128∆4
sin(4ξ)

+ ǫ2(
a

′

aΘ2(δξ)

16∆2
cos(2ξ)

ˆ

a
′

aΘ2(δξ)dξ

∆2
+
3(a

′

a)2Θ4(δξ)

32∆3
sin(2ξ)) (5.38)

Thus the lab variables are canonically transformed to new phase averaged vari-

ables which is equivalent to performing average over fast variables up to second

order in ǫ. The above derived asymptotic series are not convergent and are valid

in the limit ǫ << 1. With the increase in the value of adiabaticity parameter ǫ,

the adiabatic condition becomes harder to satisfy and hence requires higher order

terms of the series to improve it. The series becomes fully divergent when the adi-

abaticity parameter approaches the limit ǫ ≈ 1. These calculations are accurate

up to an order of (ǫn), where n is the order of invariance calculation and for the

present study restricted up to n = 2.

The transformed phase averaged Hamiltonian to the second order in adiabatic-

ity parameter in terms of phase averaged variables is given by,

H̄ = H̄0 + ǫH̄10 + ǫ2H̄11 + ǫ2H̄2 (5.39)

where H0, H1 and H2 are unperturbed Hamiltonians, all computed till second

order in ǫ. The various terms have been derived above and are given by,

H̄0 = ∆̄ H̄10 = ǫ

ˆ

a
′

aΘ2(δξ̄)

2∆̄
dξ̄

H̄11 = 0 H̄2 =
(a

′

a)2Θ4(δξ̄)

32∆̄3
.

On substituting various terms the new transformed phase averaged Hamilto-

nian is expressed as,

H̄ = ∆̄− ǫ

ˆ

a
′

aΘ2(δξ̄)

2∆̄
dξ̄ + ǫ2

(a
′

a)2Θ4(δξ̄)

32∆̄3
(5.40)

The variables (∆̄, ξ̄) are evolved using the Hamilton’s equations correspond-

ing to the averaged Hamiltonian given by Eq.(5.40). The particle position for

the averaged case is obtained from ∆̄, as described earlier for the homogeneous
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case. The inverse transformation from the phase averaged variables to lab vari-

ables is carried out using inverse evolution operator T−1. The inverse evolution

operator T−1 is expressed in terms of the Lie operator as asymptotic series in ǫ.

It is important to mention that, the Lie-transformation involves an operation on

the functions, rather than the variables. The arguments of the functions are just

dummy variables and hence variables in the Lie generator can be simply replaced

by averaged variables. The operation of the inverse evolution operator T−1 is

given by

∆ = T−1∆̄

∆ = T−10 ∆̄ + T−11 ∆̄ + T−12 ∆̄

∆ = ∆̄ + L1∆̄ +
1

2
L21∆̄ +

1

2
L2∆̄

∆ = ∆̄ + ǫ[w10, ∆̄] + ǫ2[w11, ∆̄] +
ǫ2

2
[w10, [w10, ∆̄]] +

ǫ2

2
[w20, ∆̄] (5.41)

This leads to

∆ = ∆̄− ǫ
a

′

aΘ2(δξ̄)

4∆̄
sin(2ξ̄) + ǫ2

(a
′2 + a

′′

a)Θ2(δξ̄)

8∆̄
cos(2ξ̄)− ǫ2

(a
′

a)2Θ4(δξ̄)

32∆̄3
+

ǫ2
a

′

aΘ2(δξ̄)

8∆̄
sin(2ξ̄)

ˆ

a
′

aΘ2(δξ̄)dξ̄

∆̄2
(5.42)

Similarly the expression for inversion of variable ξ̄ is given by

ξ = ξ̄ + ǫ[w10, ξ̄] + ǫ2[w11, ξ̄] +
ǫ2

2
[w10, [w10, ξ̄]] +

ǫ2

2
[w20, ξ̄] (5.43)

By substituting the value of the Poisson brackets, one obtains

ξ = ξ̄ + ǫ
a

′

aΘ2(δξ̄)

8∆̄2
cos(2ξ̄)− ǫ2

(a
′2 + a

′′

a)Θ2(δξ̄)

16∆̄2
sin(2ξ̄) + ǫ2

(a
′

a)2Θ4(δξ̄)

128∆̄4
sin(4ξ̄)

− ǫ2(
a

′

aΘ2(δξ̄)

16∆̄2
cos(2ξ̄)

ˆ

a
′

aΘ2(δξ̄)dξ̄

∆̄2
+
3(a

′

a)2Θ4(δξ̄)

32∆̄3
sin(2ξ̄)) (5.44)
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The above derived expressions lab variables obtained carrying inverse transforma-

tion expressing lab variables in terms of the slow variables. This is equivalent to

Hamilton’s equations of motion corresponding to Hamiltonian given by Eq.(5.21)

and Eq.(5.22) to an accuracy of ǫ2. Thus the adiabatic theory takes into account

the effect of fast variation on particle motion in the presence of an inhomogeneity

in the laser field.

5.4 Acceleration of charged particle in vacuum by

relativistically intense finite duration laser pulse

In this section, the above derived adiabatic theory is used to compare the analyt-

ical estimate of the particle energy gain with numerical results described in the

previous chapter for a focused laser field. The numerical results have been ob-

tained by solving the exact equation of motion for particle subjected to a focused

laser field. A linear spatial intensity modulation along the direction of propaga-

tion of laser has been used to describe the focused laser. The energy gain has

been studied as a function of parameter f(= A2
0

δF
), which as previously defined, is

a ratio of product of peak laser intensity(A2
0) and pulse length (1/δ) to the focal

length (F). The final energy gain of the particle is measured at the point where

the intensity of the laser drops to zero, which corresponds to the minimum value

of variable ∆ and thus the energy gain can be given by Γ ≈ (1 + ∆2)/2∆. It has

been shown in the previous chapter that earlier analytical work by Kaw et.al is

unable to account for numerically obtained particle energy gain in the parameter

region f > 1 and f − 1 > 0.

In this work, the effect of fast variations has been taken into account in describ-

ing the lab variables (∆, ξ) to first order, by retaining the corresponding terms in

the expression Eq.(5.42) and Eq.(5.44). The evolution of the phase averaged vari-

ables (∆̄, ξ̄) in terms of which the lab variables have been described in Eq.(5.42)

and Eq.(5.44) are governed by Hamilton
′

s equation corresponding to the phase

averaged Hamiltonian given by Eq.(5.40). The earlier analytical work does not

take into the account contribution from the fast dynamics and hence corresponds

to the zeroth order of the present work. In the following figures Fig.(5.1) and

Fig.(5.2) the final numerical energy gain by the particle has been compared with
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analytical results as a function of parameter “f” for fixed laser pulse lengths at dif-

ferent intensities and vice-versa. The final energy gain by the particle as function

of the laser intensity in the region f > 1 and f − 1 > 0 has been described in the

Fig.(5.3). The aim of this parametric study is to determine the optimum values of

pulse length and laser intensity for adiabatic estimation of particle energy.

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0.6  0.7  0.8  0.9  1  1.1

Γ
/m

c2

f

Parameters A0=11 1/δ=120

Fig d)

0thorder1storderExact

 0
 2
 4
 6
 8

 10
 12
 14

 0.6  0.7  0.8  0.9  1  1.1

Γ
/m

c2

f

Parameters A0=10 1/δ=120

Fig c)

0thorder1storderExact

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12

 0.6  0.7  0.8  0.9  1  1.1

Γ
/m

c2

f

Parameters A0=9 1/δ=120

Fig b)

0thorder1storderExact

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0.6  0.7  0.8  0.9  1  1.1

Γ
/m

c2

f

Parameters A0=8 1/δ=120

Fig a)

0thorder1storderExact

Figure 5.1: Numerically obtained final energy gain of the particle is compared
with analytical results. The parametric study is for the final energy gain of the
particle as function of variable “f”, at different peak laser intensities A2

0 for a fixed
pulse length of laser(1/δ).

In Fig(5.1), the numerical results of the parametric study are plotted to depict

the dependence of final energy gain by the particle on parameter “f” for different

laser intensities and at same values of parameter delta (δ(= λ/L)). On comparing

the analytical and numerical results it can be seen that, their is smooth depen-

dence of final particle energy gain on parameter “f” at lower intensities and for

f ≤ 1, which is as per the predictions of zeroth order theory. However comparing

the analytical results with the numerical results in the subplots (a-b-c-d) of above

113



Chapter 5. Adiabatic formulation for charged particle dynamics in an
inhomogeneous electromagnetic field

figure, it can be seen that, their is difference in the zeroth order analytical and

numerical results in the regime f > 1, which increases further with the laser in-

tensity. The difference in the numerical and zeroth order adiabatic results can be

attributed to the fast quiver motion, which becomes significant in the forward en-

ergy gain due to the increase in gyration length of the particle. The results of first

order in terms of parameter “ǫ” are found to give better estimates to the numeri-

cal results. Thus it can be inferred that the inclusion of the fast dynamics which

suitably takes into account the information of phase results in improved analytical

energy estimates by providing information about the point of termination of pulse

particle interaction.
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Figure 5.2: Numerically obtained final energy gain of the particle is compared
with analytical results. The parametric study is for the final energy gain of the
particle as function of variable f , for different pulse lengths 1/δ, keeping the peak
laser intensity fixed.

In Fig(5.2), the dependence on energy gain on parameter “f” has been plotted

for different delta (1/δ) values by keeping the laser intensity A2
0 constant. The
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following observations can be made from the above figure; on comparing the nu-

merical and analytical results, it is evident that for a given laser intensity, their

is no significant improvement in the final energy gain of particle by changing the

pulse length (1/δ). In (f − 1) > 0 and f > 1 regime, the zeroth order analyti-

cal results are unable to give the numerical estimate of the particle energy gain

for different pulse lengths. The matching between the analytical and numerical

results improve on taking the first order corrections into account. The analytical

estimation for first order adiabatic theory is better for the longer pulse(1/δ»1) as

compared to shorter pulse. Thus it can be summarized that the results improve

on taking the first order corrections into account and the analytical results have

better agreement with the numerics for longer pulses, which have smaller initial

value of adiabaticity parameter (ǫ).
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Figure 5.3: Parametric study for particle energy gain as a function of peak laser
intensity A2

0, at different values of f and fixed value pulse length(1/δ).

In Fig.(5.3), the final energy gain of the particle is studied as function of laser

intensity A2
0 for a given value of the parameters f and δ. It is evident from the
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results that the energy gain depends upon the laser intensity and there is a regime

in which the energy gain increases linearly with laser intensity. For the linear

regime the energy gain for a given laser intensity is higher for larger values of

parameter f . In subplot (5.3b), the initial energy gain scales as ∼ (f − 1)A2
0/f

2

which is in close agreement with the previous results Kaw et al. [46]. On further

increasing the laser intensity the gain no longer remains linear. By comparing the

subplots(a,b,c,d) in Fig.(5.3), it is evident that for higher values of f , the disagree-

ment between the analytical prediction and exact numerical results begins at the

lower values of intensity A2
0. This is so because with increase in the value of f , the

scale length of intensity variation reduces as result ǫ ∼ 1. Thus the adiabatic con-

dition becomes harder to satisfy and the gain cannot be predicted using adiabatic

theory.

5.5 Summary And Conclusions

Particle motion has been studied in the inhomogeneous laser field utilizing the

canonical transformation and the method of Lie transform. An adiabatic formal-

ism is developed for studying the effect of slow and gradual perturbation of the

particle motion in the laser field. It is used to construct and calculate higher order

approximations of adiabatic invariants for the near-integrable Hamiltonian sys-

tem. For a slow variation in the laser intensity which corresponds to ǫ << 1, the

particle dynamics is associated with an adiabatic invariant. The dynamical vari-

ables i.e, particle position and momentum, are described by one of the constants

of motion and the adiabatic invariant. It is found that for the present problem the

adiabatic invariant evolves and the Hamilton’s equation describing its evolution

cannot be solved exactly in the given form. The evolution is obtained by trans-

forming the old variables to the new variables in terms of which the Hamiltonian

takes a simple form. By solving the corresponding Hamilton’s equations and car-

rying out an inverse transformation, the evolution of the adiabatic invariant is

found.

The transformations are carried out by using the Lie-generator which are de-

rived and represented in the form of an asymptotic series of Poisson brackets in

the powers of adiabaticity parameter ǫ. The representation in terms of the Poisson

116



Chapter 5. Adiabatic formulation for charged particle dynamics in an
inhomogeneous electromagnetic field

brackets makes the transformations generated by these operators canonical. The

method described here is general and can be extended for the calculation of higher

orders. The new set of phase averaged slow variables are derived by the operation

of forward Lie-operator T and are in the form an asymptotic series in powers of

the adiabatic parameter in terms of old co-ordinates. These series describing the

transformed variables are non-convergent, requires higher orders of ǫ, which fully

diverge in the limit ǫ ≈ 1. In terms of these phase averaged variables the form

of the Hamiltonian is simplified and thus the Hamilton’s equations are simpler to

solve. The inverse transformation are derived using the inverse Lie-operator T−1

transforming the phase average variables to the lab variables. The evolution of

the new phase averaged variable and the application of inverse transformation

gives the desired solution.

Further, the adiabatic theory is used to estimate the energy gain of the particle

in the field of focused finite duration pulse. It is shown that such an acceleration

scheme can be used to generate electrons in the MeV range. The theoretical pre-

dictions on the basis of newly formulated adiabatic theory are in good agreement

with the results obtained by solving the exact equation of motion. It is shown

that in a process of continuous energy gain the gyration length can become of the

order of scale length of intensity variation. This corresponds to a non-adiabatic

limit (i.e lg ∼ ln is ǫ ≈ 1), beyond which the energy gain is non-adiabatic and can

not be estimated by adiabatic theory.
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6
Particle acceleration by cyclotron

Auto-Resonance with a focused finite

duration laser pulse

In this chapter a new scheme is described for accelerating the charged

particle in vacuum. In this scheme the particle is subjected to the combined

field of a focused finite duration laser pulse and static axial magnetic

field.

6.1 Introduction

The previous chapters from (3-5) of the thesis have been devoted to the compre-

hensive theoretical study of different schemes of particle acceleration in vacuum.

These studies provide deeper physical insight into the underlying mechanisms of

the corresponding schemes, which in turn helps in further improving the existing

schemes as well as in devising the newer schemes for particle acceleration.

In this context chapter-3, has been devoted to the theoretical study of auto-

resonant scheme of particle acceleration in vacuum using a homogeneous finite

duration laser pulse. In the auto-resonant acceleration scheme the particle is sub-

jected simultaneously to the combined field of laser as well as static axial mag-

netic field and the particle acceleration is achieved as a result of self sustained

resonance between laser frequency and cyclotron frequency. The condition for

the self sustained resonance is given by ω − ~k.~v = Ωc

Γ
, where Ωc is the cyclotron
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frequency, Γ is the relativistic factor and “ω” is the laser frequency. For a finite

duration laser pulse, it is well known that the frequency spectrum has a contin-

uum in the Fourier space and the width of the spectra is inversely proportional

to the length of the laser pulse. Thus for a given finite duration laser pulse with

a fixed amplitude, particle with variable energies can be generated by tuning the

cyclotron frequency of the particle with a characteristic frequency in the spectrum

of the pulse. The energy spectra of the particle has a finite width and is shown to

be continuous in parameter “r(= Ωc

ω∆
)”, where ∆(= Γ− Px) is one of the constant

of motion associated with particle dynamics in homogeneous laser field. The res-

onant time of interaction between the particle and laser is found to be finite. It

has been shown from the study[45], that the resonant energy gain by the particle

can be optimized in terms of laser intensity (A2
0), length of the laser pulse (1/δ)

and cyclotron frequency (Ωc) of the particle. The optimization can be done in a

following way: In order for a particle to gain desired amount of energy it has to

be accelerated which can be done by using an ultra intense very short duration

laser pulse of large spectral width; this reduces the requirement of the static axial

magnetic field. Alternatively, same energy gain can be achieved using a less in-

tense but a long duration laser pulse which has the cyclotron resonant frequency

of the order of central frequency. This increases the requirement of the static axial

magnetic field which needs to be of the order of laser field.

An alternate scheme of direct particle acceleration has been described in chapter-

4[46] and chapter-5[105], in this scheme the particle is subjected directly to the

focused field of a laser. A slow spatial modulation in the laser intensity along the

direction of its propagation is used to model the focused laser field. The particle

is accelerated as a result of asymmetry in the electro-magnetic fields of a laser

caused due to its focusing. In the focused laser field the intensity (or the fields)

is strongest near the focus and decreases in moving away from it on the either

side. The particle acceleration takes place in the de-focused region, in which the

particle is initially accelerated along the electric field component of the laser near

the focus and as result of ~v × ~B force, it is pushed away from the focus; far from

the focus, the electric field of laser is weak and thus is not able to extract the

energy back from the particle. As result the net energy is transfered to the par-

ticle along the direction of propagation of the laser. In this study, the optimum

conditions resulting in the maximum energy gain are obtained in terms of initial

119



Chapter 6. Particle acceleration by cyclotron Auto-Resonance with a focused
finite duration laser pulse

position and parameter “f(= A2
0

δF
)”, defined in terms of peak laser intensity(A2

0),

pulse length (1/δ)and focal length of the particle(F ). It has been shown that in

order to maximize the energy gain the particle should initially be placed at the

focus and the parameter “f” should be given by “f ≥ 1”.

In this chapter a new scheme is described for accelerating the charged particle

in vacuum, this scheme is based upon the above described schemes of particle

acceleration. In this scheme the particle is subjected to the combined field of a

focused finite duration laser pulse and homogeneous static axial magnetic field.

The focused field of a laser pulse is described by a slow spatial variation in laser

intensity along the direction of pulse propagation. The study is intended to un-

derstand the dynamics of a particle in such an arrangement and to determine its

effect on the resultant energy gain by the particle. It is further to be explored

that whether the new schemes can be optimized in terms of various parameters

such as pulse length(1/δ), peak laser intensity(A2
0), parameter “f” and static axial

magnetic field (or initial cyclotron frequency) to maximize the energy gain by the

particle.

The organization of the chapter is the following: In section(6.2), the relativis-

tic equation of motion is described which governs the motion of the particle in

the combined field of a focused laser field and static axial magnetic field. The

constants of motion associated with the particle dynamics are derived from the

equation of motion. Section(6.3), contains the results obtained by numerically

solving the equation of motion. Section(6.4) contains the summary of the work

and conclusions of the work.

6.2 Particle Dynamics In Combined Field Of Focused

Laser Pulse And Static Axial Magnetic Field

A linearly polarized focused finite duration laser pulse traveling along x̂ direction

in the presence of a constant homogeneous axial magnetic field can be described

by following vector potential,

~A =

(

A(ǫx)Θ(δ(ξ))P1(ξ)−
B0z

2

)

ŷ +
B0y

2
ẑ (6.1)
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where the symbols represents the following: ξ = (ωt − kx) is the phase of the

laser, Θ(δξ) = exp(− (δξ)2

2
) is pulse envelope, P1(ξ) is the oscillatory part, factor

δ(= λ
L
) is ratio of the laser wavelength to the pulse length, B0 is the magnitude of

the external magnetic field.The focused field of the laser can be described by slow

spatial variation in the laser intensity which is given by,

A2(ǫx) = Ffδ(1± x
F
) for x ≶ 0;

The peak laser intensity is given by A2
0 = Ffδ at the focal point.

The electric and magnetic fields corresponding to the above described vector

potential of the laser are defined as,

~E = −1
c

∂ ~A

∂t
~B = ∇× ~A. (6.2)

The variables can be expressed in the dimensionless form by using the following

normalizations: ~r → k~r, t → ωt, ~P → ~P
mc

,Γ → Γ
mc2

, B → qB
mωc

, E → qE
mcω

, Â →
eA
mc2

,Ωc → qB0

mcω
.

The normalized relativistic momentum and energy equation are given by,

d~P

dt
= [ ~E +

~P

Γ
× ( ~B + ~Ωc)] (6.3)

dΓ

dt
=

~P . ~E

Γ
(6.4)

Here Γ is the relativistic factor defined as,

Γ = (1 + P 2
x + P 2

y + P 2
z )

1/2

and Px, Py, Pz are the four momentum components. On re-writing the equations

in component form,
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dPx

dt
= −Py

Γ

(

∂Ay

∂ξ
+ ǫ

∂A(ǫx)

∂(ǫx)
Θ(δ(ξ)P1(ξ))

)

(6.5)

dPy

dt
= −(Γ− Px)

Γ

∂Ay

∂ξ
+

PzΩc

Γ
(6.6)

dPz

dt
= −PyΩc

Γ
(6.7)

dΓ

dt
= −Py

Γ

∂Ay

∂ξ
(6.8)

On expressing the above equations Eq.(6.5) to Eq.(6.8) in terms of laser phase ξ

and using ξ̇ = ∆(= Γ−Px), components of particle momentum takes the following

form,

Py = α1 −Ay + zΩc (6.9)

Pz = α2 − yΩc (6.10)

where α1 and α2 are constants of motion which correspond to the conservation of

transverse canonical momenta. It is shown above, that in the presence of a slow

spatial variation in laser intensity along the direction of propagation, the particle

dynamics is associated with two constants of motion.

The longitudinal component of the particle
′

s momentum and its energy are

given by,

Px =
1−∆2

2∆
+

P 2
y + P 2

z

2∆
(6.11)

Γ =
1 +∆2

2∆
+

P 2
y + P 2

z

2∆
(6.12)

The position of the particle can be obtained solving the following equations,

dx

dξ
=

Px

∆
(6.13)

dy

dξ
=

Py

∆
(6.14)

dz

dξ
=

Pz

∆
(6.15)
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On subtracting the Eq-(6.5) and Eq-(6.8), it can be seen that in the presence of

an inhomogeneity in a laser field, the variable “∆” is no longer an exact constant

of motion. However, it has been shown earlier in chapters ‘4’ and ‘5’ of the thesis,

that for a slow spatial variation the variable “∆” acts as an adiabatic invariant and

its evolution is described by the following equation,

d∆

dt
= −ǫPy

Γ

∂A(ǫx)

∂(ǫx)
Θ(δ(ξ))P1(ξ). (6.16)

The above derived equation (6.16) for an adiabatic invariant depends upon

the longitudinal position of a particle. The expression for the longitudinal par-

ticle position can be derived using Eq-(6.11) and Eq-(6.13). The coupled set of

differential equations describing the evolution of an adiabatic invariant and cor-

responding the longitudinal particle position expressed in terms of variable ‘ξ’ are

given by,

d∆2

dξ
= −2ǫPy

∂A(ǫx)

∂(ǫx)
Θ(δ(ξ))P1(ξ) (6.17)

dx

dξ
=
1−∆2

2∆2
+

y
′

+ z
′

2∆2
(6.18)

In the above expression y
′

and z
′

, are the derivatives of the particle position

w.r.t to variable ‘ξ’ and it is evident from these expressions, that the longitudinal

particle position depends upon the transverse co-ordinates. The evolution of the

particle along the transverse co-ordinates can be derived by using Eq-(6.9) and Eq-

(6.10) representing the transverse particle position. As result of the axial magnetic

field, the particle carries out a cyclotron motion in the transverse plane and is

described by a set following coupled differential equations,

d2y

dξ2
+ r2y = r

α2
∆
− 1

∆

dAy

dξ
(6.19)

d2z

dξ2
+ r2z = −r(α1

∆
− Ay

∆
) (6.20)

where r(ǫx) = Ωc

ω∆
.

The above described equations Eq-(6.19) and Eq-(6.20) for the cyclotron mo-

tion of a particle in turn depends upon the adiabatic invariant. Therefore solution
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of Eq-(6.17 to 6.20) is required to determine the complete particle dynamics in the

combined field of a focused finite duration laser pulse and static axial magnetic

field. The unmagnetized motion of the particle described earlier in chapter four

of thesis, corresponds to setting variable “r = 0”, which reduces the set of four

differential equations to a set of two differential equations for particle position

and adiabatic invariant.

It is evident from the above equations, that the analytical work described in

chapter ‘4’ for the evolution of an adiabatic invariant using a slow set of equa-

tions can not be carried out for the present set of equations. This difficulty arises

because of the complicated expressions resulting from the solutions of equations

Eq-(6.19) and Eq-(6.20) which cannot be simply segregated into the slow and

fast motion. However, it is worthwhile to examine these equations closely, as the

equations Eq-(6.17 to 6.20) provides a physical insight into the mechanism of par-

ticle acceleration. It can be seen that in the typical case of forward acceleration

i.e particle moving the de-focused laser field, the value of adiabatic invariant “∆”

decreases. The decrease in the value of variable “∆” results in the initial energy

gain by the particle from the focused laser field which in turn changes the ratio “r

”. This increase in the value of variable “r ” leads to the matching of the particle

cyclotron frequency with a characteristic frequency in the laser spectra. Thus the

initial energy gain by the particle drives the non-resonant particle to resonance

with the laser field and the combined action of laser focusing and axial magnetic

field increases the efficiency of this scheme for accelerating the particles.

As pointed out above the complicated structure of the transverse co-ordinates

limits the adiabatic analytical analysis of the problem. Thus in the present work

the exact relativistic equation of motion given by Eq-(6.3) is numerically solved

and results of the parametric study has been presented in the next section.

6.3 Numerical Results

This section contains the results of the parametric study obtained by numerically

solving the exact equation of motion using R-K(Runge-Kutta) method for a particle

subjected to the combined field of a focused finite duration laser pulse and static

axial magnetic field.The study is intended to determine the simultaneous effect
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of focusing and axial magnetic field on the particle dynamics, which can be used

for optimizing the parameters to maximize the energy gain. In this work a slow

linear spatial modulation in the laser intensity along the direction of propagation

is used to describe the focused laser field. In this numerical study the particle is

initially placed at the focal point which corresponds to the optimized position for

maximum energy gain by the particle. The particle is assumed to be at rest before

the onset of the interaction and it interacts with rising edge of the laser pulse. In

this study the laser intensity as well as pulse length are kept constant.

In order to understand the simultaneous effect of the laser focusing and axial

magnetic field, the study has been carried out in two parts. In the first part the

particle energy gain is studied as a function of the focusing parameter “f(= A2
0

δF
)”

for different cyclotron frequencies of the particle. The aim of study is to determine

the effect of the axial magnetic field on the energy gain by the particle in a focused

laser field. The results of this study provides a detailed information of the focusing

parameters for maximum energy gain by the particle.

In the second part the optimum values of the focusing parameter ‘f ’ obtained

in the first part are used for studying the particle energy gain as function of the

cyclotron frequency of the particle. This study is aimed to determine the effect

of laser focusing on the energy gain by the particle in the lower cyclotron fre-

quency (or low axial magnetic field) range, which lies outside the characteristic

frequency spectrum of the laser pulse. In this study the final energy gain by the

particle is studied as the function of cyclotron frequency for different values of

focusing parameter. The results of above two studies are combined to determine

the optimum parameters in terms of focused laser field (“f”) and static axial mag-

netic field (Ωc). These results have been used further to optimize the conditions

for maximum energy gain by the particle.

The results of numerical study, describing the resonant energy gained by the

particle as function of parameter “f” are described in Fig(6.1). These results are

obtained by keeping laser parameters (viz. peak laser intensity and pulse length)

constant and varying the strength of static axial magnetic field. The resultant en-

ergy gain by the particle in the field of a focused laser pulse are compared with

an un-magnetized case described in subplot-a of the figure, in which the energy

gain begins at the values of parameter f ≥ 1. The results of energy gain by

the particle by focused laser field in the presence of an axial magnetic field are

125



Chapter 6. Particle acceleration by cyclotron Auto-Resonance with a focused
finite duration laser pulse

subplots-(b-c-d-e-f) and in these subplots the strength of axial magnetic field in-

creases in going from subplot(b-f). From the results, it is evident that the particle

energy gain improves on increasing the strength of axial magnetic field(or initial

cyclotron frequency). The other important observation can be made from these

results are that the energy gain of the particle can be significantly increased for

a given value of parameter “f” by increasing the applied axial magnetic field and

the energy gain starts at lower values of parameter “f”.

Effect of magnetic Field On the Final Energy Gain
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Fig:(b) Parameters: Ωc/ω=0.05  A0=10 1/δ=90
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Fig:(c) Parameters: Ω/ω=0.15  A0=10 1/δ=90
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Fig:(d) Parameters: Ωc/ω=0.20  A0=10 1/δ=90
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Fig:(e) Parameters: Ωc/ω=0.25  A0=10 1/δ=90
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Figure 6.1: Resonant energy gain by the particle as a function of focusing param-
eter “f”

The next part of the study given in Fig(6.2), it is aimed at exploring the de-

pendence of particle energy gain as function of the cyclotron frequency for fixed

focusing parameters. In this study the laser parameters i.e, the intensity as well as

pulse length are again kept constant. The energy gain by the particle is obtained

as function of cyclotron frequency at different values of parameter ‘f ’. It is evident

from the plot, that as a result of focusing the energy gain by the particle starts at

the lower cyclotron frequencies. On comparing the results, it is further shown
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that the resonant energy gain by the particle depends upon the parameter ‘f ’ and

for higher values of variable ‘f ’, the energy gain extends for very low cyclotron

frequencies. Thus it can be inferred that initial energy gained by the particle as a

result of tight focusing improves the energy gain as well as leads to the significant

lowering the value of applied axial magnetic field.
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Figure 6.2: Resonant energy gain by the particle as a function of the initial cy-
clotron frequency of the particle Ωc for fixed value of focusing parameter

From the above results, it can be concluded that the particle gains energy in the

parameter limit f ≥ 1 of the focused laser pulse which can be further improved

to one order higher and using static axial magnetic field one order lower than the

magnetic field of the laser. In the last part of the simulation, the scaling of particle

energy gain with the laser intensity is shown in the Fig(6.3). The energy gain

is obtained for the cyclotron frequency much smaller than the central frequency

and by varying the values of parameter “f”. The fitting function along with the

parameters is shown in the figure. It is evident from the values of fitting parameter

(c1-c2-c3-c4) in the figure, that the energy gain by the particle scales linearly with
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the peak laser intensity of the laser pulse.

Particle Energy Gain As Function Of Peak Laser Intensity 
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Figure 6.3: The resonant energy gain by the particle as function of laser intensity
at different values of the focusing parameter “f”

6.4 Summary and Discussion

A new scheme based upon the auto-resonant acceleration scheme and direct laser

scheme is presented in this chapter. In this scheme the particle is subjected to the

combined field of a focused finite duration laser pulse. The dynamics of the par-

ticle in this configuration is studied by solving the relativistic equation of motion

numerically. The parametric study is aimed to determine the optimum conditions

for maximum energy gain by the particle. The study is carried in two steps at

first the effect of magnetic field is studied on the particle dynamics in the focused

laser pulse. It has been shown that the energy gain by the particle improves sig-

nificantly with the increase in the value of axial magnetic field. On increasing
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the value of the axial magnetic field the energy gain begins at lower values of

the parameter “f”. These results provide the optimum focusing conditions in the

presence of the magnetic field for the maximum energy gain of the particle. This

study is used to determine the dependence of the resonant energy gain by the par-

ticle as function of cyclotron frequency. It has been shown that the for the value

of parameter f ≥ 1, the energy spectra of the particle as function of the initial

cyclotron frequency is significantly broadened and as a result the energy gain is

significantly improved at the lower values of the initial cyclotron frequency. These

results are used to further optimize the energy gain by the particle.

The above numerical results can be understood by analyzing the equations

describing the cyclotron motion of the particle together with equation of the evo-

lution of the adiabatic invariant. It can be seen from these equations that this

mechanism acts as a two step process in which the initially non-resonant particles

i.e whose cyclotron frequency lies outside the characteristic frequency spectrum

of the laser pulse, are accelerated by the focused laser field. The initial energy

gain by the particle in the focused laser field drives the particle to the cyclotron

resonance with the laser pulse. The combined effect of the two step results in

large acceleration of particles.

In this process, as stated above the initial energy gained by the particle re-

duces the magnitude of laser intensity and axial magnetic field value required for

particle acceleration as compared to un-focused case. This overall reduction in

required laser intensity and axial magnetic field makes this scheme an efficient

mechanism for accelerating the charged particle to large energies.
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7
Conclusions and Future Work

This chapter contains the summary and major conclusions of the work

reported in the various chapters. The outline of the future works has also

been described at the end of the chapter.

7.1 Summary and Conclusions

The laser driven acceleration of a charged particle in vacuum has been a topic of

great interest, which provides a compact as well as cheaper alternative to con-

ventional accelerators. A number of theoretical studies on the topic have been

reported spanning over several decades and the recent impetus to the topic is due

to the advent of CPA technique, which has led to the availability of high powered

table top lasers for the experimental realization of these schemes. The motion

of a particle in these lasers become relativistic within one laser period and thus

requires a deeper insight into the mechanism of fundamental interaction between

the laser and particle in vacuum. This understanding of the interaction forms the

basis for devising various schemes of particle acceleration in vacuum. This thesis

is devoted to the theoretical study of laser driven acceleration of charged particle

in vacuum. In this thesis, following two schemes of particle acceleration namely:

“Laser Driven Auto Resonant Acceleration” and “Direct acceleration of particle by

focused laser fields” have been studied both analytically as well as numerically.

From different studies, it is found that these schemes have relatively higher rates

of acceleration compared to other the schemes. It has been further shown that,

these two schemes can be easily combined to enhance the efficiency of acceler-
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ation process. The chapter wise summary of the work and main conclusions are

given below.

In chapter two, the physical aspects of particle dynamics in the field of a rel-

ativistically intense homogeneous, continuous as well as pulsed laser are stud-

ied by solving the exact relativistic equation of motion and also the correspond-

ing Hamilton-Jacobi equation, which encompasses the review of several previous

works on the topic. The motion of charged particle in a relativistically intense laser

field is a fully integrable problem due to the presence of three exact constants of

motion corresponding to its three degrees of freedom. The exact analytical ex-

pressions for the dynamical variables viz. position, momentum as well as energy

are expressed in terms of constants of motion and vector potential only. Further, a

set of exact expressions for the dynamical variables in the field of a finite duration

laser pulse has been reported for the first time corresponding to the Gaussian

and Sech shaped temporal envelopes, which gives unambiguous comparison be-

tween numerical and analytical results.The exact analytical expressions derived

for a continuous laser have been used to study the particle dynamics in the ‘av-

erage rest’ and ‘Lorentz boosted’ frame of reference, which further improves the

understanding of the particle dynamics. From the analytical and numerical study

it has been shown that, in the continuous laser, the interaction of charged particle

with a relativistically intense laser does not result in the net transfer of energy

from the laser to the particle. The particle gets displaced along the direction of

propagation of laser and the displacement of a particle found to be proportional

to the laser intensity. The results are even valid for a finite duration laser pulse

which includes the light pressure effects, due to which the particle is symmetri-

cally accelerated in the rising front of the pulse and symmetrically decelerated in

the trailing edge in a process getting displaced along the direction of propagation.

In chapter three, the particle dynamics has been analytically and numerically

studied for the first time using a Gaussian shaped temporal envelope in the com-

bined field of a finite duration laser and static axial magnetic field. This interaction

forms the basis for laser driven auto-resonant scheme of charged particle accel-

eration in vacuum. The renewed interest in this scheme is due to the availability

of high powered lasers as well as experimental generation of ultra high quasi-

static magnetic fields of the order of hundreds of mega-gauss, some of which

survives for duration much longer than the laser pulse particle interaction time.
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In this scheme, the initial laser particle resonance is itself sustained due to the pre-

cise cancellation of two relativistic effects associated with the particle dynamics

namely:“relativistic mass effect ” and “relativistic Doppler effect”. The “relativistic

mass effect” is caused due to the particle acceleration along the electric field com-

ponent of the laser, which results in the lowering of its cyclotron frequency and

the “relativistic Doppler effect” caused by the magnetic field of the laser along the

direction of its propagation, as result of which the wave frequency as seen by the

particle is lower than the actual frequency. Due to the cancellation of these two

relativistic effects, the particle gets phase locked in the quasi-electrostatic field of

a laser, which causes its continuous acceleration.

In contrast to the mechanism described above using a continuous monochro-

matic laser which has single frequency, the particle in the field of a finite duration

laser pulse interacts with spectrum of frequencies and can be accelerated by the

tuning its cyclotron frequency with the characteristic laser frequency in the spec-

tra. It has been shown that the choice of Gaussian envelope gives unambiguous

comparison between the analytical and numerical work in contrast to the earlier

used Sin2 envelope. From the study it has been shown that, the energy gain by

the particle typically using a laser with wavelength 1 ∼ µm is given by Γ = 78.58×
A2
0 × .511Mev which can be optimized to lies in Mev-Tev range for an input peak

laser amplitude in the range (A0 ∼ 1, 102), pulse duration(1/δ ∼ 5, 90) and applied

magnetic field in the range(∼ 100MG). In the optimization process, the particles

of given energy can either be generated using short duration(1/δ ∼ 5, 10), higher

powered lasers(1022Wcm−2) with lesser axial magnetic fields(∼ 70, 80MG) than

that of laser or using lesser intense(1020Wcm−2), longer laser pulses(1/δ ∼ 80, 90)

with higher axial magnetic field(∼ 100MG) of the order of laser field. It has been

further shown that for a given laser parameter viz, intensity, pulse length along

with external axial magnetic field, the energy gain for a positively charged parti-

cle can be enhanced by changing the polarization of the laser. The energy gain

is found to be maximum for the right circularly polarized laser field, which is ap-

proximately double than that for a plane polarized laser field and minimum for

the left circularly polarized laser.

In chapter four, an another scheme has been described for accelerating the

charged particle in vacuum by subjecting it directly to the focused laser field. The

net transfer of energy from the laser to the particle in this scheme is due to an
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asymmetry in the acceleration and deceleration phase of the focused laser field.

The electric as well as magnetic fields describing the focused laser grows stronger

as one approaches the focus and grows weaker in moving away from the focal

point. A considerable work has been done in this area, for the description of the

fields, which has been subsequently used in the theoretical studies of the particle

acceleration in the focused laser field. The main difficulty in the theoretical study

of this scheme is the correct mathematical description of the complex configura-

tion of the fields arising due to the focusing of laser, which in turn hinder’s the an-

alytical study of the particle orbits. Thus a simplified one dimensional model has

been used to theoretically i.e. numerically as well as analytically study the particle

dynamics in the focused laser field. In this study, optimum initial conditions for

maximum energy gain by the particle are determined in terms of initial position,

intensity and focal length using both continuous as well as finite duration laser

field. From the results obtained by numerically solving the exact relativistic equa-

tion of motion and comparing them with the analytical results, it has been shown

that the focal point is the optimum initial position for maximum energy gain. It

has been further shown, that the energy gain by a particle increases linearly with

the peak laser intensity, which can be analytically estimated in the adiabatic limit

(ǫ(= lg
ln
) << 1), where lg, is the particle gyration length and ln, is the scale length

of variation of inhomogeneity. For a finite duration laser, the particle energy gain

has been studied as a function of parameter f(=
a20
δF
) and it has been found that

such an acceleration scheme using a laser with wavelength of the order of approx.

(∼ 1µm) and having corresponding peak intensity in the range 1018− 1020Wcm−2

of duration 1/δ ∼ [30, 120] cycles can be used to generate electrons in the MeV

range. On comparing the numerical results with the analytical results, it has been

found that in the region corresponding to (f > 1), the earlier derived adiabatic

calculations does not provide the correct estimates of the energy gained by a par-

ticle. Hence an improved analytical theory is required to account for the energy

gain by a particle.

In chapter five, a higher ordered adiabatic theory has been derived to study

the motion of a charged particle in an inhomogeneous field of a relativistically

intense laser field. The inhomogeneity in the laser field is due to slow spatial

variation in laser intensity along the direction of propagation of the laser, which

is a characteristic of focused and de-focused laser field. It has been shown that
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in the presence of such an inhomogeneity, the particle dynamics is devoid of one

of the constants of motion associated with the symmetry of the particle dynamics

in the one of the co-ordinates along the direction of propagation of laser(x̂) and

time(t̂). As a result, the dynamical variables viz. position, momentum and energy

cannot be expressed in terms of constants of motion as was possible for homoge-

neous case. In the thesis, it has been shown that for a slow perturbation which

corresponds to (ǫ(= lg
ln
) << 1), the particle dynamics can be studied adiabatically

by expressing the dynamical variables in terms of an adiabatic invariant and con-

stants of motion. The higher orders of the invariance have been calculated using

the method of Lie-transformation perturbation and canonical transformations in

the powers of adiabaticity parameter(ǫ). Further, the adiabatic theory has been

used to estimate the energy gain of the particle in the field of a focused finite

duration pulse. The theoretical predictions on the basis of newly formulated adi-

abatic theory are shown to be in good agreement with the results obtained by

solving the exact equation of motion numerically. It has been found that in a

process of continuous energy gain the gyration length can become of the order

of scale length of intensity variation. This corresponds to a non-adiabatic limit

(i.e ǫ(= lg
ln
) ∼ 1), beyond which the energy gain is non-adiabatic and can not be

estimated by adiabatic theory.

In chapter six, a new scheme has been described for accelerating the charged

particle in vacuum, this scheme is based upon the earlier described “laser driven

auto resonant acceleration” and “acceleration by focused laser field” schemes of

particle acceleration. From the study of above mentioned schemes it has been

concluded that a particle with a desired final energy using a laser driven auto-

resonant acceleration scheme can be obtained in the following two ways: a) us-

ing lesser intense, long duration laser pulse with an axial magnetic field of the

order of laser magnetic field or b)using short duration, ultra intense laser pulse

with lower axial magnetic field. In the second acceleration scheme, in which the

particle is subjected directly to a focused laser field, it has been shown that, the

energy gain is maximum for a particle initially placed close to the focus and in

the parameter regime (f(= a20
δF
)) > 1) and (f − 1) significantly greater than zero.

These results have motivated for devising a scheme to further increase the effi-

ciency of acceleration process and simultaneous reduction in the requirement of

laser power as well as the axial magnetic field.
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Thus in this scheme, the particle is subjected to a combined field of a focused

finite duration laser pulse and homogeneous static axial magnetic field by assum-

ing the particle to be initially at rest and placed closed to focal point. As earlier,

a slow linear spatial modulation in the laser intensity along the direction of prop-

agation has been chosen to describe the focused field. To understand as well as

to optimize the acceleration scheme the study has been carried out in two steps

at first, the effect of magnetic field has been studied on the particle dynamics

in the focused field of laser pulse. It has been shown that the energy gain im-

proves significantly with the increase in the value of axial magnetic field. Further,

the energy gain begins at lower values of “f” with the increase in the value of

the axial magnetic field. These results provide the optimum focusing conditions

in the presence of the magnetic field for the maximum energy gain of the parti-

cle. In the second step, the energy gain of the particle is studied as a function

of initial cyclotron frequency for values of “f > 1” and it has been shown that

for fixed laser intensity, the energy gain for the magnetized case is greater than

that of the un-magnetized case, which further improves with increase in the value

of parameter “f”. Thus from these studies, it has been concluded that the com-

bined effect focusing and magnetic field improves the efficiency of the scheme by

increasing the energy gain as well as simultaneously reducing the requirement

of peak laser intensity and axial magnetic field. The improved efficiency of the

scheme is caused due to the initial energy gained by the particle from the focused

field, which drives the initially non-resonant particle to the cyclotron resonance

as a result, it gets further accelerated and thus improving the overall energy gain.

7.2 Future Directions

The results presented in this thesis illustrate several interesting physical phenom-

ena and provide a basis for further investigations as direct extensions to this work.

In this regard, some open problems are suggested below which can be addressed

in the future.

1. From the study of particle acceleration schemes described in the thesis, it

has been shown that in these schemes the resultant energy gain by the par-

ticle can be very large. The velocity of the particle corresponding to such
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a large energy gain lies very close to the speed of light and at such a large

velocities, the effect of self-force arising due to the radiation reaction can

become important, which has been neglected in the present studies. How-

ever it is well known from the studies ref.[123, 124, 125] that, the correct

mathematical description of the self-force at such a large velocities has been

a topic of intense research in the classical electrodynamics. Thus it would be

interesting to understand structure of the self-force arising due to radiation

reaction and study its effect on the dynamics of a particle.

2. In the thesis, the study has been carried out using a single particle ap-

proach which represents an ideal situation corresponding to physical con-

dition ωp

ω
<< 1, where ωp is the plasma frequency and ω is the laser fre-

quency. It would be interesting to determine the limit of such an analysis for

application to multi-particle systems in which the inter particle interactions

can become significant and has its effect on the dynamics of the particle.

Also one would like to study the particle dynamics taking into account the

background effects arising due to the medium.

3. In this thesis, the particle acceleration in a focused laser field has been ana-

lytically studied using a simplified one dimensional focusing model. To this,

an improvement can be carried out in the following two ways: Firstly, one

would like to explore the feasibility of extending these analytical calculations

to determine the energy gain of the particle with an improved model of fo-

cusing. Secondly, the another area of investigation as mentioned previously,

in the thesis is the understanding and determining of the exact structure of

electric and magnetic fields near the focus. This description is important for

improving the understanding of the dynamics as well as in optimizing the

conditions of maximum energy gain by the particle.

4. The other interesting area which can be looked upon, is analytical study of

particle acceleration with chirped laser fields. In this scheme the frequency

of the laser is varied in such a way that the particle remains in the acceler-

ating phase of the laser and thus resulting in large energy gain.
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Lie transform Perturbation Method

A.1 Lie Transformation Perturbation Method

The time evolution of any function f(X, t) from t0 → t is given by

f(X, t) = PH(t0 → t) ◦ f(X0, t0)

where X0 = X(t0) are the initial conditions and PH(t0 → t) is the time evolu-

tion operator. The evaluation of PH(t0 → t), which is equivalent to solving the

equations of motion, may not be possible for the original choice of variables. The

Lie transforms theory is used to map the phase space in X onto the phase space

spanned by the new set of variables Y . The canonical transformation T (X, t) for

this mapping is such that Y = T (X, T ).X, where T (X, t) = exp[−L(X, t)] with

L(X, t) being the lie operator. L(X, t) is obtained from the generating rating func-

tion w(X, t) such that L.f = [w, f ]PB where [, ] denotes the Poisson brackets in X

phase space. The transformation is chosen in such a way that the new Hamilto-

nian H̄(Y, t) with the corresponding time evolution operator PH̄(t0 → t)is easier

to evaluate. An important and basic property of Lie transform operator is that it

generates canonical transformations and that it commutes with any function of

the space variables. The latter property implies that the evolution of f(X0, t0) can

be obtained by transforming to new variables set Y0, applying the time evolution

operator PH̄(t0 → t) to the transformed function back to the original variables X,

f(X, t) = T (X0, t0) ◦ PH̄(t0 → t) ◦ T−1(X0, t0) ◦ f(X0, t0)

137



Appendix A. Lie transform Perturbation Method

The above described procedure apart from being applicable to integrable sys-

tems, also serves as perturbation method for solving approximately near inte-

grable systems in which the Hamiltonian has a small non-integrable part of the or-

der of ǫ. In such cases the canonical transformation can be constructed as a power

series of ǫ by utilizing the method of the Deprit [99, 100, 101, 102, 103, 104].

According to this method , the old Hamiltonian H, the new Hamiltonian H̄ and

the transformation generator T along with the Lie generator expanded in power

series of ǫ and may be presented by

H =
∞
∑

n=0

ǫnHn (A.1)

H̄ =
∞
∑

n=0

ǫnH̄n (A.2)

T =

∞
∑

n=0

ǫnTn (A.3)

w =

∞
∑

n=0

ǫnwn+1 (A.4)

Where the expansion of w has been appropriately chosen in orders to generate

the identity transformation To = I to the lowest order.The nth order forward and

backward transformation generators are given by

Tn = −
1

n

∞
∑

n=0

TmLn−m (A.5)

T−1n =
1

n

n−1
∑

m=0

Ln−mT
−1
m (A.6)
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up to fourth order are given below

To = I (A.7)

T1 = −L1 (A.8)

T2 = −
1

2
L2 +

1

2
L21 (A.9)

T3 = −
1

3
L3 +

1

6
L2L1 +

1

3
L1L2 −

1

6
L31 (A.10)

The inverse operator is given by

T−1o = I (A.11)

T−11 = L1 (A.12)

T−12 =
1

2
L2 +

1

2
L21 (A.13)

T−13 =
1

3
L3 +

1

6
L1L2 +

1

3
L2L1 +

1

6
L31 (A.14)

The equations providing the Lie generator w and the new Hamiltonian H̄, to

third order can derived from the general perturbation equation

∂w1

∂t
+ L1Ho = (H̄1 −H1) (A.15)

∂w2

∂t
+ L2Ho = 2(H̄2 −H2)− L1[H̄1 +H1] (A.16)

∂w3

∂t
+ L3Ho = 3(H̄3 −H3)− L1[H̄2 + 2H2]− L2[H̄1 +

1

2
H1]−

1

2
L21H1 e (A.17)

the general nth order perturbation equation can be written as

∂wn

∂t
+ LnHo = n(H̄n −Hn)−

n−1
∑

m=1

[Ln−mH̄m +mT−1n−mHm] (A.18)

By selecting the arbitrary function H̄m so that the angle independent part of the

r.h.s is eliminated. Further for the case of adiabatic perturbation the Lie operator

is separated in the form of fast and slow component. That is expressed in the

following manner
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L = Lf + ǫLs (A.19)

Lf = (
∂wn

∂ξ

∂

∂∆
− ∂wn

∂∆

∂

∂ξ
) (A.20)

Ls =
∑

i

[
∂wn

∂(ǫqi)

∂

∂(ǫpi)
− ∂wn

∂(ǫpi)

∂

∂(ǫqi)
] (A.21)

here w = w(ξ,∆, ǫp, ǫq, ǫt). As can be seen from the above expressions T−1n is given

in terms of the coefficients of power series expansion of Lf and Ls as an nth order

polynomial in ǫ. The term ∂wn

∂t
in the nth-order perturbation equation is itself of

the order ǫ : ∂wn

∂t
→ ǫ ∂wn

∂(ǫt)
. One of the procedures for solving this equation is to

expand wn and H̄n as power series in ǫ.

wn =

∞
∑

k=0

ǫkwnk (A.22)

and equate the like powers of ǫ. This gives a chain of equations which can

be solved successively for wn0,wn1....... At each step in the chain, a corresponding

H̄nk is chosen to eliminate the secular term in the fast variable ξ. The method is

equivalent to other methods of carrying out the averaging. It is systematic in that

it automatically separates the fast and slow variables by order ǫ, thus allowing an

average over the fast variable in any order to eliminate the secular terms.
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