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Abstract

This thesis presents a computational study of large scale hydrodynamic flows

in strongly coupled liquids using “first principles” classical molecular dynam-

ics (MD) simulations. The prototype model used in the study is a Yukawa

liquid. As is well known, Yukawa liquids are ubiquitous in nature and well

known examples include complex or “dusty” plasmas, colloids and certain

astrophysical systems such as giant planetary interiors and cometary tails,

to mention a few. The components of a typical Yukawa liquid such as a

complex plasma are electrons, positive ions, neutrals and negatively charged

dust grains. Such a complex plasma can exist in a state of strong coupling

where the ratio of average interparticle potential energy per dust grain can

significantly exceed the average kinetic energy. It is important to note that

the mutual influence of the components determines the physical state of the

system, for eg. the grain-plasma interaction can lead to the charge on a

given dust grain to be a function of time i.e Q = Q(t). Hence, a complex

plasma cannot, in general, be described by thermodynamic potentials and

are as such thermodynamically open systems. As can be expected, an ideal

description of complex plasma amounts to modeling grain-grain interactions

including the dynamics of electrons, ions and neutrals. Such a description

is clearly a formidable challenge even with the availability of modern day

computers. One can, however, construct a near ideal “exact” description of

complex plasma by considering only one charged species, namely the dust

grains and assuming that both the grain charge and the background plasma

do not evolve in time. This allows the grain dynamics to be modeled by a

screened Coulomb or a Yukawa potential U(r) = (1/r)exp(−r/λD), where

λD is the Debye length of the background plasma. The resulting N body
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problem is numerically solved using a classical MD simulation.

Using “first principles” classical MD simulations, the present thesis re-

ports the onset, growth and nonlinear saturation of large scale hydrodynamic

instabilities in strongly coupled Yukawa liquids. To this end, a massively

parallel Multi Potential Molecular Dynamics (MPMD) code has been de-

veloped as part of this thesis. The code is extensively benchmarked against

known results. The thesis begins with a study of Kelvin Helmholtz instability

(KH) in parallel shear flows of a strongly coupled Yukawa liquid. At a given

coupling strength, a subsonic shear profile is superposed on an equilibrated

Yukawa liquid and an instability is observed. Linear growth rates directly

computed from MD simulations are seen to increase with strong coupling

and vortex roll formation in the non-linear regime is observed. The most

interesting feature noticed here is the increase of instability growth rate with

strong coupling. Interestingly, it is also observed that KH destabilized modes

undergo inverse cascade leading to formation of giant coherent vortices. The

emergence of such coherent vortices in the nonlinear regime of KH destabi-

lized flows motivates one to investigate the stability of an isolated coherent

vortex. The thesis also reports a comparison between growth rates directly

obtained from MD simulations and a phenomenological generalized hydro-

dynamics (GH) model.

Following the study on parallel shears flows, we undertake a study on the

evolution of axisymmetric flows in a 2D strongly coupled Yukawa liquid us-

ing MD simulations and report the emergence of coherent tripolar vortices in

the nonlinear regime. Our MD simulations reveal that the tripolar vortices

persist over several turn over times and hence may be observed in strongly

coupled liquids such as complex plasma, liquid metals and astrophysical sys-

tems like white dwarfs and giant planetary interiors, thereby making the

phenomenon universal. It is also seen that under certain conditions a tripo-

lar vortex can spontaneously decay into a pair of dipolar vortices propagating

in mutually opposite directions. Linear growth rates directly obtained from

MD simulations are compared with a generalized hydrodynamic model. It is

indeed very tempting to study if it is possible to excite such dipolar vortices

from generic initial conditions and study their interactions in a laboratory
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produced complex plasma. For this we undertake a study on evolution of

jets in a strongly coupled Yukawa liquid using MD simulations. The ini-

tial state for this study is a sub-sonic jet profile superposed on a thermally

equilibrated Yukawa liquid. A dipolar vortex is then seen to emerge from

the self-organization of this jet profile. This dipole is seen to be very robust

and, in general, shows a nonlinear relationship between vorticity and stream

function. Starting from two jets injecting linear momentum in mutually op-

posite directions, we report on the centered head-on collisions between two

dipolar vortices. It is seen that the inertial effects needed for the sustenance

of dipolar vortices are rapidly quenched by gas friction. Hence, such dipolar

vortices may be observed in a laboratory complex plasma at low gas friction.

In each of the foregoing flow studies, we noticed a significant heat genera-

tion close to the shear layers. This motivated us to perform a detailed study

of molecular heat generation in shear flows of Yukawa liquids. To this end,

we superposed a subsonic shear profile on an equilibrated Yukawa liquid and

observed a KH instability. Inverse cascade leads to formation of giant coher-

ent vortices. It is seen that while this inverse cascade leads to a continuous

transfer of flow energy towards the largest scales, at the smallest scale there

is also a simultaneous transfer of flow energy into the thermal velocities of

grains. The latter is an effect of velocity shear and thus leads to the gen-

eration of a nonlinear heat front. We notice that the heat front is seen to

propagate at speed much lesser than the adiabatic sound speed of the liquid

in the linear regime. Hence, the spatio-temporal growth of this heat front

occurs concurrently with the inverse cascade of KH modes.

The MD studies reported in the present thesis results are exact numerical

solutions to the N body problem and hence “first principles” in nature. The

results are “to scale”, for eg. in a typical laboratory dusty plasma, the

dust plasma frequency ωpd ∼ 100 Hz. A typical growth rate (normalized to

ω−1
pd ) in the studies presented so far, falls in the range ∼ 10−3 − 10−2 and

corresponds to [0.1−1] Hz’s in physical units. Typical system size used in our
studies, for eg. L = 640 (in units of Wigner Seitz radius a) corresponds to

26 cm approximately for a = 0.4mm. Hence the hydrodynamic phenomena

addressed in the thesis should be observable in laboratory experiments on
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complex “dusty” plasma.
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Chapter 1

Introduction

Ordinary matter can exist in either solid, liquid, gaseous or a plasma state.

The latter can exist either in a partially ionized state in the presence of

neutral particles or a fully ionized state- an ideal case encountered in “hot”

plasmas such as in fusion Tokamaks or in the interior of stars. There exists,

however, a new state of matter called “complex plasma” which is qualitatively

different from these ordinary states of matter (Morfill and Ivlev, 2009; Tsy-

tovich et al., 2008). A complex plasma contains mesoscopic charged grains,

positive ions, electrons and neutral gas atoms. Under most circumstances,

the grain-grain interaction can be well described by a Yukawa potential. As

it will be seen in this chapter, such a complex plasma can exist in a state of

strong coupling wherein the average potential energy per grain can signifi-

cantly exceed the average kinetic energy. The behavior of component grains

in this strongly coupled regime is very different from that in the weakly cou-

pled regime. In the former, where potential energy is dominant, particle

trajectories are less mobile as a “caging effect” takes place due to the neigh-

bors, whereas in the latter, thermal effects are dominant and the particle

trajectories are more mobile and hence disordered in nature. Such strong

coupling effects manifest themselves in solid like behavior, such as, possess-

ing long range crystalline order and ability to support transverse shear waves.

In the present chapter, we shall first discuss some important characteristics

of a strongly coupled Yukawa liquid and then present the development of



2 Introduction

Figure 1.1: A typical experimental setup for a ground based complex
plasma experiment [Figure adapted from (Donkó et al., 2009)]

a molecular dynamics code. Various diagnostics developed are discussed in

detail and a phase transition study is reported.

1.1 Brief overview of complex plasma

Complex dusty plasma can be created in laboratory experiments by dis-

persing micron-sized particles or dust grains into an inert gas discharge [see

Figure 1.1]. The discharge can be driven either by a direct current (dc) or

by a radio-frequency (rf) source, and serves primarily as a charging medium

for the dust grains. The grains are exposed to electron and ion currents from

the discharge plasma, and a dynamic equilibrium is rapidly reached. As the

impinging electrons have a much higher mobility compared to positive ions,

the dust grains eventually become negatively charged. Hence, the princi-

ple components of such a laboratory produced complex plasma are electrons,

positive ions, neutrals and negatively charged dust grains. These components
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interact strongly with each other in such a way that the mutual influence of

the components determines the physical state of the system. The two main

characteristics of complex plasma are: (1) the grain charges are very high

causing new phenomena in grain plasma as well as grain-grain interactions

and, (2) the grains strongly absorb plasma components (electrons and ions)

and hence their charges vary as a function of time. Thus complex plasmas

are non-Hamiltonian systems where the energy of the system varies not only

in the presence of external electric fields, but also due to mutual particle

collisions. This limits the description of a complex plasma in terms of ther-

modynamic potentials and leaves it with a high tendency to form various

types of structures often referred to as “self organized structures”. Even at

low grain densities, the huge charges (sometimes upto 104−105 of elementary
electron charges per grain) on the grain component in a complex plasma make

the grain-grain as well as grain-plasma interactions very strong (Tsytovich

et al., 2008). Complex plasma can thus exist in a state of strong coupling

where the average potential energy per grain can significantly exceed the av-

erage kinetic energy per grain. In such a strongly coupled complex plasma,

the coupling parameter Γ = Q2/(4πǫ0aTd) can be easily of the order 1 or

larger (Q, Td and a are the dust charge, temperature and the Wigner-Seitz

radius respectively). This coupling parameter Γ can be easily controlled in

experiments and a complex plasma can be made to undergo a phase tran-

sition from a liquid-like to a solid-like state, for eg., several experiments on

two-dimensional (2D) and three-dimensional (3D) (under microgravity condi-

tions) complex plasmas have been done exploring a wide variety of collective

phenomena (Barkan et al., 1995; Chu et al., 1994; Khrapak et al., 2003).

Interestingly, complex plasmas can also be used as a model system to

study generic strong coupling phenomena. This is mainly because the char-

acteristic length and dynamical time scales are vastly “stretched” in compari-

son to atomic systems - by typically a factor of a million (atomic systems have

interaction scale ∼ 0.1nm and complex plasma ∼ 100 µm; typical plasma fre-
quencies ∼ 108 Hz at 1012 cm−3 densities and complex plasma frequencies are

∼ 100 Hz at similar densities) (Fortov et al., 2005). The rate of momentum

exchange between dust grains can substantially exceed the damping rate due
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to neutral gas friction making complex plasmas behave essentially as single

phase systems (Khrapak et al., 2004). Thus complex plasma enables one to

study the physics of linear, nonlinear and critical phenomena at the smallest

possible length scale i.e at the “particle level”, experimentally (Morfill and

Ivlev, 2009; Fortov et al., 2005).

1.2 Exact description of complex plasma

An ideal description of complex plasma amounts to modeling grain-grain in-

teractions including the dynamics of electrons, ions and neutrals. Clearly,

such a description is improbable even in the advent of modern fast comput-

ers. One can, however, construct a near ideal “exact” description of complex

plasma by considering only one charged species, namely the dust grains and

assuming that both the grain charge and the background plasma do not

evolve in time. Such an assumption is valid as the typical charging times are

at least three orders of magnitude smaller than the inverse dust plasma fre-

quency (Morfill and Ivlev, 2009). This allows the grain dynamics to be mod-

eled by a screened Coulomb or a Yukawa potential U(r) = (1/r)exp(−κr),
where κ = a/λD and λD are the screening parameter and the Debye length

of the background plasma respectively. The resulting N body problem is

numerically solved using a classical molecular dynamics (MD) simulation.

Such an MD simulation has two distinct advantages over any conventional

continuum method: a.) microscopic fluctuations are included and, b.) more

realistic boundaries can be handled. Owing to its gridless nature, an MD

method is also unconditionally stable. Moreover, in a typical large scale MD

simulation, one can easily control the interaction between dust grains, for

example, making complex plasma behave as coulomb gas (κ → 0) or an ideal

gas (κ → ∞) at the flick of a switch (κ). In past, several authors have used
such MD simulations to study transport phenomena (Saigo and Hamaguchi,

2002; Liu and Goree, 2005, 2008), thermodynamics (Hamaguchi et al., 1996,

1997) and collective behavior (Ohta and Hamaguchi, 2000b) in strongly cou-

pled complex plasmas. It should be noted that these works were performed

with only a few thousands of particles and hence small scale in nature. There
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exists, however, a class of problems in complex plasmas where such a “first

principles” study has so far, remained elusive. These are the “hydrodynamic

instabilities”- a subject traditionally studied only through continuum meth-

ods. Recently, some of these hydrodynamic instabilities have been character-

ized at the most fundamental level of particle motion by MD simulations of

Lennard Jones fluids on the latest generation of supercomputers (Rapaport

and Clementi, 1986b; Puhl et al., 1989; Dzwinel et al., 2000; Hirshfeld and

Rapaport, 2000; Kadau et al., 2004). One then naturally wonders if it is pos-

sible to make quantitative investigations of large scale hydrodynamic flows in

a complex “dusty” plasma using a particle level description. The implications

of such a study are extremely important as one can take less than a million

dust grains and simulate realistic system sizes due to the vastly stretched

length scales (grain separation ∼ 100′s µm (Morfill and Ivlev, 2009)) typical

of a complex plasma. For example, if one takes 2.5 × 105 grains in a simu-
lation square box of size 640a, where a ≈ 0.4 mm, then this corresponds to

a region of size 26cm. Such a system size is comparable to the macroscopic

length scales usually seen in laboratory experiments. Thus, the present thesis

offers a unique possibility of comparing highly resolved experiments with par-

ticle level simulations on large scale hydrodynamic flows in strongly coupled

Yukawa liquids.

To summarize, the aim of the present thesis is to go beyond the limits

of continuous media and study the onset and growth of large scale hydro-

dynamic instabilities in complex plasmas using “first principles” classical

MD simulations. The prototype system used in the present studies is a 2D

strongly coupled Yukawa liquid. It should be noted that in reality, other ex-

ternal forces such as ion drag and thermophoretic forces do exist in addition

to grain-grain interactions. In the present thesis however, we exclude such

forces and provide a simple picture of complex plasma by keeping only the

grain-grain interactions via Yukawa potential. The role of gas friction on the

evolution of these large scale flows is also discussed in subsequent chapters.

The results reported here are exact numerical solutions to the N body prob-

lem and hence “first principles” in nature. Wherever possible, comparison

between MD results and a generalized hydrodynamic (GH) model is pre-
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sented. In the following, we give a content-wise break up of all the chapters

forming the present thesis.

1.3 Plan of the thesis

In chapter 2, the computational methods used in the thesis are explained

in full detail. The development of a Multi Potential Molecular Dynamics

(MPMD) code is discussed. The code has been exhaustively benchmarked

against known results (Donko et al., 2008). The modular design of the code

makes the addition of new force fields very easy. Presently, the code can

handle Yukawa and Lennard-Jones inter-atomic potentials. Boundaries can

be implemented in both periodic or hard walls fashion. MPMD can simu-

late various thermodynamic ensembles such as NVT, NVE, NPT by employ-

ing a Gaussian thermostat (Evans et al., 1983) and an Andersen barostat

(Andersen, 1980). To capture the underlying physics, several statistical me-

chanics and fluid dynamics diagnostics have been developed. Algorithms

implemented to achieve high performance or speed up are discussed in de-

tail. In realistic experiments, a strongly coupled complex plasma can exist

in a 2D (ground based laboratory) or 3D (microgravity) crystalline forms

(Morfill et al., 1999). It should be noted that the confinement of dust grains

in such experiments is achieved through the balance of gravity and external

electric fields. Hence, it is natural to expect that a complex plasma can form

different structures other than the regular fcc and bcc structures under the

effect of these confining forces. For eg., Totsuji (Totsuji, 2001; Totsuji et al.,

1997) studied the formation of layers in a dusty plasma due to an external

confining potential. This confining potential had a magnitude much larger

than the average inter-particle potential energy and the simulations were

done in equilibrium conditions. Melting of dusty plasma crystals in presence

of spatially random and time varying external fields have been studied by

Hoffman (Hoffmann and Lowen, 2000) using Fokker-Planck dynamics. In

contrast to that work, we investigate, as a test problem for MPMD code,

the effect of a small external drive on a Yukawa solid through nonequilib-
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rium MD simulations. It should be noted that the magnitude of this drive

is smaller compared to the average inter-particle potential energy Neglecting

any ion streaming effects due to external field (Kompaneets et al., 2009), a

3D Yukawa solid (bcc) near solid-liquid boundary (Hamaguchi et al., 1997)

is subjected to an external drive at the largest possible scale. The external

drive varies sinusoidally in space, and for a given mode kL, it is observed

that there exists a critical amplitude V c
o of the external drive, below which

the crystalline order is preserved and above which the transition from bcc

to strongly coupled Yukawa liquid is observed. This critical amplitude V c
o

is sensitive to the location of the Yukawa solid in (κ,Γ) phase space and

(Ashwin and Ganesh, 2009). The mechanism of heating in the transient

state is attributed to the local heating of the system where the forces are

maximum. It is shown that these local hot regions dissipate heat into sur-

rounding regions ultimately leading to a uniform temperature throughout

the system. Following this study, in subsequent chapters, we report “first

principles” simulations of large scale hydrodynamic flows of strongly coupled

Yukawa liquids.

In chapter 3, using “first principles” classical molecular dynamics simulations

Kelvin Helmholtz (KH) instability is reported for the first time at the par-

ticle level in two-dimensional strongly coupled Yukawa liquids (Ashwin and

Ganesh, 2010a). At a given coupling strength Γ, a subsonic shear profile is

superposed on an equilibrated Yukawa liquid and KH instability is observed.

Linear growth rates directly computed from MD simulations are seen to in-

crease with strong coupling and vortex roll formation in the non-linear regime

is observed. Instability growth rates are seen to increase with strong cou-

pling. Interestingly, KH destabilized modes undergo inverse cascading in the

strongly coupled regime as well. The work highlights several important ques-

tions such as the study of random perturbation (multiple modes with random

amplitudes), comparison to viscoelastic hydrodynamics, shock propagation

and the study of flows with resonantly unstable modes. Further, using a

generalized hydrodynamic (GH) model, the growth rate spectra of Kelvin

Helmholtz (KH) instability has been obtained analytically for a step shear
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profile in a strongly coupled Yukawa liquid (Ashwin and Ganesh, 2010b).

Within this GH model, the class of shear flows studied is assumed to be

incompressible in nature. The growth rate spectra calculated exhibit vis-

cous damping at high mode numbers, destabilization at stronger coupling

and in the limit τm (viscoelastic relaxation time) → 0, reduce to the regular

Navier-Stokes growth rate spectra. A direct comparison is made with pre-

vious molecular dynamics (MD) simulations of KH instability (Ashwin and

Ganesh, 2010a). It is found that for a given value of Reynolds number R

and coupling parameter 1 < Γ < 100, the GH and MD growth rates are in a

qualitative agreement. Inclusion of the effect of shear heating as an effective

coupling parameter Γe appears to improve the quantitative comparison as

well. However, it is observed that there is a general disagreement between

GH and MD growth rates at high mode numbers for all values of Γe. This

could be due to the limitations of the GH model, especially, the uncertainties

in the determination of shear viscosity η(Γ) and the viscoelastic relaxation

time τm. The emergence of coherent vortices in the nonlinear regime of KH

destabilized flows motivates one to think of the stability of an isolated co-

herent vortex. This is the subject matter of following chapter.

In chapter 4, we report on the emergence of coherent tripolar vortices from

the evolution of axisymmetric flows in a 2D strongly coupled Yukawa liquid

using “first principles” MD simulations (Ashwin and Ganesh, 2011b). MD

simulations reveal that the tripolar vortices persist over several turn over

times and hence may be observed in strongly coupled liquids such as complex

plasma, liquid metals and astrophysical systems like white dwarfs and giant

planetary interiors, thereby making the phenomenon universal. Further, lin-

ear growth rates directly obtained from MD simulations are compared with

a generalized hydrodynamic model. It is also seen that under certain condi-

tions, a tripolar vortex can spontaneously decay into a pair of dipolar vortices

propagating in mutually opposite directions. One then naturally wonders if

it is possible to excite such dipolar vortices from generic initial conditions

and study their interactions in a laboratory produced complex plasma, which

is the subject matter of following chapter.
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In chapter 5, we report on the formation and interaction of dipolar vortices in

a two-dimensional prototype strongly coupled liquid, namely the Yukawa liq-

uid (Ashwin and Ganesh, Under Review). As is well known, coherent dipolar

vortices are a universal outcome of injecting linear momentum into a liquid.

Once formed, these dipolar vortices can transport mass and momentum over

large length scales and are hence a subject matter of intense research work.

Using “first principles” classical molecular dynamics simulations, a dipolar

vortex is seen to emerge from the self-organization of a sub-sonic jet pro-

file. This dipole is seen to be very robust and, in general, shows a nonlinear

relationship between vorticity and stream function. Starting from two jets

injecting linear momentum in mutually opposite directions, we report on the

centered head-on collisions between two dipolar vortices. Our work high-

lights the possibility of observing such dipolar vortices and their interactions

in laboratory experiments on strongly coupled complex plasma. Role of gas

friction is also investigated.

In all the foregoing shear flow studies (chapters 3,4,5), generation of heat is

observed at the particle level close to shear layers. Such shear induced heat

front development and propagation in large scale shear flows of a strongly

coupled Yukawa liquid is the subject matter of the following chapter.

In chapter 6, we report on the coevolution of inverse cascade and nonlin-

ear heat front in shear flows of strongly coupled Yukawa liquids using MD

simulations (Ashwin and Ganesh, 2011a). At a given coupling strength, a

subsonic shear profile is superposed on an equilibrated Yukawa liquid and

Kelvin Helmholtz (KH) instability is observed. Coherent vortices are seen

to emerge towards the nonlinear regime of the instability. It is seen that

while inverse cascade leads to a continuous transfer of flow energy towards

the largest scales, at the smallest scale there is also a simultaneous transfer

of flow energy into the thermal velocities of grains. The latter is an effect of

velocity shear and thus leads to the generation of a nonlinear heat front. In

the linear regime, the heat front is seen to propagate at speed much lesser
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than the adiabatic sound speed of the liquid. Spatio-temporal growth of this

heat front occurs concurrently with the inverse cascade of KH modes.

Finally, in chapter 7, we present the conclusions of the work reported in the

present thesis. It should be noted that the simulations reported here required

large computing power and were carried out on a maximum of 32 nodes on

a parallel Linux cluster.



Chapter 2

Molecular Dynamics

In this chapter we present the methodology of classical molecular dynamics

algorithm for a Yukawa liquid. The simulation domain is a cubic region of

a three-dimensional (3D) strongly coupled Yukawa liquid. Periodic bound-

aries have been used along all directions and the Ewald sums (see appendix

A.3) are employed to handle the long range Yukawa forces. The develop-

ment of a parallel Multi Potential Molecular Dynamics (MPMD) code is

discussed. Various issues such as setting up of the initial state and perform-

ing simulations under constant temperature, pressure or energy conditions

are discussed. Algorithms implemented to achieve speed up are discussed

in detail. When studying phase transitions, the underlying physics is cap-

tured through important statistical mechanics tools. Finally, we undertake

a nonequilibrium test problem of driven Yukawa liquids to benchmark these

tools.

2.1 Yukawa model for complex plasma

An ideal description of complex plasma amounts to modeling grain-grain in-

teractions including the dynamics of electrons, ions and neutrals. Clearly,

such a description is unlikely even in the presence of modern fast comput-

ers. One can, however, construct a near ideal “exact” description of complex

plasma by considering only one charged species, namely the dust grains and
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assuming that both the grain charge and the background plasma do not

evolve in time. Such a deduction is possible because in realistic experiments,

the charging time of dust grains are typically three orders of magnitude

smaller than the inverse dust plasma frequency (Morfill and Ivlev, 2009; For-

tov et al., 2005). In reality, the dust grains in a complex plasma can have a

size (and hence charge) distribution (Verheest and Meuris, 1996), neverthe-

less, the size of grains are typically 2-3 orders smaller compared to Wigner

Seitz radius. Thus, in the present thesis, we drop such size distribution and

take point masses for grains forming the Yukawa liquid. Assuming a Boltz-

mann distribution of ions and electrons which provides a screening to the

massively charged dust grains, the grain dynamics can then be modeled by

a Yukawa (screened Coulomb) potential:

U(r) =
Q2

4πǫ0r
e−r/λD (2.1)

where r is the radial distance between any two dust grains and Q is the

charge on the dust grain. The Debye length of the background plasma is

given as

λD =

(

q2i ni

ǫ0kBTi

+
e2ne

ǫ0kBTe

)−1/2

(2.2)

where qi, ni and Ti are the charge, mean density and temperature of plasma

ions, and −e, ne and Te are the corresponding quantities for plasma electrons.

The force corresponding to U(r) is

f = −∇U(r) (2.3)

so the force that grain j exerts on grain i is

fij =
Q2

4πǫ0r2ij

(

1

rij
+
1

λD

)

e−rij/λDrij (2.4)

where rij = ri − rj and rij = |rij|. The equations of motion follow from
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Newton’s second law,

mr̈i = fi =
N
∑

j=1
(j �=i)

fij (2.5)

In presence of dust neutral collisions, the above equation becomes

mr̈i =
N
∑

j=1
(j �=i)

fij +mνdnṙi (2.6)

where νdn is the Epstein drag coefficient due to the neutral gas (Epstein,

1924). The sum is over all N dust grains in the liquid, excluding i itself,

and m is the grain mass. Such an N -body problem must be numerically

integrated in an MD simulation. It is easily seen from Equation 2.5 that

the amount of computational work is proportional to N(N − 1)/2, if one

wishes to solve the N -body problem by a brute force method. In order to

keep the computation to a reasonable level, the interaction is truncated at

a distance rc = 20 [in MD units, Section (2.2)]. At this cutoff distance the

ratio U(rc)/U(1) ≈ 10−6, hence, in the calculation of forces from Equation

2.4, it is reasonably justified to exclude all pairs having a separation greater

than rc. It should be noted that in order to use this cutoff distance rc, the

system size must be large enough i.e L/rc ≥ 4. Hence we do not use a cutoff

distance for the phase transition studies reported in this chapter and use it

only in subsequent chapters on large scale flows.

2.2 Dimensionless units

If n denotes the volume grain density, then in 3D, the mean intergrain sepa-

ration can be expressed in terms of the Wigner-Seitz radius a = [3/(4πn)]1/3.

Physical quantities can then be expressed in dimensionless units by making



14 Molecular Dynamics

the following replacements for distance, energy and time:

r → ra (2.7)

U → U
Q2

4πǫ0a
(2.8)

t → t
√
3Ω−1

pd (2.9)

where a, [Q2/(4πǫ0a)] and
√
3Ωpd

−1 are the MD units of length, energy and

time respectively. Thus, the Yukawa potential (Equation 2.1) can be written

in MD units as

U(r) =
e−κr

r
(2.10)

and the corresponding equation of motion (Equation 2.5) becomes

r̈i =
∑

j �=i

(

1

rij
+ κ

)

rij

r2ij
e−rijκ (2.11)

where κ = a/λD is the screening parameter. The parameter κ governs the

nature of interaction between the dust grains; i.e complex plasma can behave

like a Coulomb gas(κ → 0) or like an ideal gas(κ → ∞). The dimensionless
kinetic and potential energies per grain can thus be written as

Ek =
1

2N

N
∑

i=1

v2
i (2.12)

Epot =
1

N

∑

1≤i<j≤N

e−κrij

rij
(2.13)

where vi is the velocity. The functional form of Yukawa potential (Equation

2.10) for various values of screening parameter is shown in Figure 2.1. The

unit of temperature is Q2/(4πǫ0akB), and since each translational degree of

freedom contributes to kBT/2 to the kinetic energy, the temperature of a
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Figure 2.1: Yukawa potential in MD units for various values of screen-
ing parameter κ. As κ decreases, grain interaction becomes long ranged
and one can observe Coulomb gas behavior. At higher κ, one recovers
the short ranged ideal gas behavior.

d-dimensional (d = 2 or 3) system is

T =
1

d(N − 1)
N
∑

i

v2
i ≈ 1

dN

N
∑

i

v2
i (2.14)

Strictly speaking, of the total dN degrees of freedom, d are eliminated be-

cause of momentum conservation, but if N is large, this detail can be safely

ignored. The extent of strong coupling is quantified by the coupling param-

eter Γ = Q2/(4πǫ0kBT ). Hence, Γ >> 1 denotes the strong coupling regime

and Γ → 1 denotes the weak coupling regime. The thermodynamic state of

a Yukawa liquid can be fully described by the two dimensionless parameters:

κ and Γ. In the following section we discuss the boundary conditions used

in a typical MD simulation of the present thesis.
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Figure 2.2: A schematic diagram showing the implementation of peri-
odic boundary conditions (for clarity, the two-dimensional case is shown)

2.3 Boundary conditions

Finite and infinite systems can behave in a very different manner (Salacuse

et al., 1996). In a realistic experimental scenario, boundary effects such as

particle-wall collisions can play an important role in the overall dynamics.

Nevertheless, in systems of macroscopic size, only a very small fraction of the

particles is close to a wall to experience any deviation from the bulk in the

interior of the system. For example, in a 3D system with N particles, the

number of particles close to the walls is rough N 2/3. In a typical small scale

MD simulation, with N = 1000, roughly 500 atoms are immediately close

to the walls, leaving only a few in the interior. Thus the simulation fails to

capture the typical state of particles in the bulk and results obtained are no

longer valid.

One can construct a bounded system but free of physical walls by imple-

menting periodic boundary conditions (PBC) as shown in Figure 2.2. The
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introduction of PBC is equivalent to considering an infinite space-filling ar-

ray of identical copies of the bounded simulation region. The consequences

of implementing such PBC are twofold: (a) Any particle which leaves the

simulation region through a particular face immediately reenters the region

through the opposite face, and (b) Any particle in the simulation region in-

teracts only with the closest periodic images of the other N − 1 particles,

an effect called minimum image convention (MIC) (Rapaport, D. C., 1995;

Allen and Tildesley, 1999). Hence, by implementing PBC, one essentially

removes all physical boundaries and effectively simulates a spatially homo-

geneous system. A typical pseudo code for implementing PBC along x̂ on

any particle i is given below,

x[i] = x[i]− L ∗ rint(x[i]/L)

where rint is a “C” function which rounds the argument to an integer value

in floating-point format. The pseudo code for implementing MIC for an i, j

pair is given as follows

r = (x[i]− x[j])− L ∗ rint((x[i]− x[j])/L)

It should be noted that in presence of PBC, long range forces resulting from

the Yukawa potential need to be properly handled as the forces cannot be

truncated without incurring serious error; they continue to act between the

periodic replicas as well. The Ewald technique (see appendix A.3) eliminates

the discontinuity arising from truncated long-range forces in presence PBC

and is used in MPMD whenever necessary.

2.4 Initial state

A particularly simple choice for an initial state is to start with particles on

the sites of a regular lattice (face centered cubic fcc, body centered bcc or

simple cubic scc). The site spacing needs to be adjusted to generated the

desired density. The initial velocities are then assigned random directions
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with a fixed magnitude based on the initial temperature. Care needs to be

taken such that the center of mass of the whole system is at rest thereby

eliminating any overall flow (Rapaport, D. C., 1995). Once the initial state

is generated, the simulation can be performed under either “microcanonical”

(N,V,E ) or “canonical” (N,V,T ) conditions. The latter being the case when

the system is connected to a thermostat (see appendix A.1) throughout the

simulation.

2.5 Integration

Integration of the equations of motion can be achieved by various numerical

techniques. We have used a Leapfrog integrator which calculates positions

and velocities at interleaved time points, in such a way that they “leapfrog”

over each other. For example, the position is known at integer time steps

and the velocity is known at integer plus half time steps.

If h = ∆t denotes the size of the timestep used for numerical integration,

then the integration formulae applied to each components of a particle’s

position and velocity are:

vxi(t+ h/2) = vxi(t− h/2) + haxi(t) (2.15)

rxi(t+ h) = rxi(t) + hvxi(t+ h/2) (2.16)

It is clear from Equation 2.16 that if the velocity of a particle is required at

a time t when the positions are already known, then Equation 2.17 can be

used.

vxi(t) = vxi(t− h/2) + (h/2)axi(t) (2.17)

It should be noted that the local errors introduced at each timestep due to

the truncation of the infinite series are of order O(h4) for the coordinates and

O(h2) for the velocities. Having discussed the basic elements of a MD algo-

rithm, we now present a discussion on the MD code used in the present thesis.

Several diagnostics are developed and elucidated through a nonequilibrium
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test problem.

2.6 MPMD code

Multi Potential Molecular Dynamics (MPMD) code is a parallel MD code

capable of simulating both pair-wise and many body force fields. Presently

the modules available are Lennard Jones, Yukawa and Tersoff-Brenner po-

tentials. When the system size is small, Ewald sums (see appendix A.3) are

employed to handle long ranged forces in presence of periodic boundaries.

MPMD can simulate various thermodynamic ensembles such as NV T,NV E

and NPT by employing a Gaussian thermostat (see appendix A.1) and a An-

dersen barostat (see appendix A.2). Before we discuss the test problem, it is

worthwhile to discuss some algorithms implemented in MPMD for achieving

speed up.

2.6.1 Performance

It was seen from Equation 2.5 that the computation of force goes as N 2.

Thus it becomes extremely important to look for algorithmic improvements

over the traditional brute force method. The simplest way to speedup force

computation is to implement the Verlet neighbor list (Verlet, 1967), which

basically amounts to computing pair interactions only when the interparticle

separation is within a certain value rl( rl is little more than the “cut-off”

distance rc). This is done by generating, for each particle, a list of particles

that are within a spherical shell. The list is updated at frequent intervals

whenever sum of the magnitudes of the two largest displacements exceeds

rl − rc (Fincham and Ralston, 1981). Even with such a neighbor list, the

performance saturates once the system size increases towards 1000 particles

as the conventional neighbor list becomes too large to store easily, and the

logical testing of every pair in the system is inefficient. As an alternative, one

can consider the cell subdivision method for large systems. The cubic peri-

odic box is divided into a lattice of M1 ×M2 ×M3 cells. A two dimensional

analog of this is shown in Figure 2.3. The size of each cell is chosen such
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Figure 2.3: The parallel cell subdivision method. For simplicity, we
show the method in two dimensions (can be easily extended for three
dimensional case). Parallelism is achieved by first decomposing the sim-
ulation domain into M1 × M2 cells (M1 = 5,M2 = 3). After this, each
column (containing 3 cells) is then allocated to a single CPU. In the ex-
ample shown here, we thus require only 5 CPU to implement parallelism.

that (L/M1,2,3) is greater than the cut-off distance for the Yukawa forces.

For the two dimensional case as shown in Figure 2.3, the neighbors of any

particle in cell 8 are to be looked at the cells 2, 3, 4, 7, 8, 9, 12, 13 and 14.

For the two dimensional case shown in Figure 2.3, there are approximately

Nc = N/(M1M2) particles in each cell and thus we need to only examine

9NNc pairs. This contrasts with the brute force (N
2) approach shown in

Equation 2.5. Parallelization is easily achieved through a domain decom-

position technique. Here each column containing three cells is loaded onto

a separate CPU (processor) and the updated particle coordinates after the

trajectory integration are broadcasted to all the slave CPU’s at the end of a

given time step.

This cell structure can be used by the method of linked lists (Knuth,

1973; Hockney and Eastwood, 1992; Allen and Tildesley, 1999). The first

part of the method involves sorting all the molecules into their appropriate

cells at every timestep. One creates two arrays namely the “head-of-chain”
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Figure 2.4: A close up of cells 1 and 2, showing the molecules and the
linked list structure (Allen and Tildesley, 1999)

array HEAD and the “linked-list” array LIST. Each element of the array

HEAD corresponds to a specific cell. This element basically contains the

index number of one of the particles in that cell. This index number is then

used to address the element of the array LIST, which contains the index

number of the next molecule in that cell. Thus, the LIST array element

for that particle is the index of the next molecule in that cell, and so on.

Upon following the path of linked-list targets, one will eventually reach an

element of LIST which is zero. This indicates that there are no further

particles in that cell, and we move on to the head-of-chain particle for the

next cell. To illustrate this searching mechanism, we choose two cells namely

‘1’, containing particles: 1, 2, 5, 7, 8 and the cell ‘2’ containing particles: 10,

9, 6, 4, 3 (see Figure 2.4). The schematic allocation of the arraysHEAD and

LIST for referencing particles in cell ‘2’ is shown in Figure 2.5. The parallel

cell subdivision discussed here is incorporated in the MPMD code. In the

following subsection we undertake a test problem, namely, to study the effect

of a small external drive on a strongly coupled Yukawa solid (Ashwin and

Ganesh, 2009).
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Figure 2.5: For cell 2, HEAD(2) = 10, and the entire path through
the linked list is indicated with the help of arrows (Allen and Tildesley,
1999)

2.6.2 Driven Yukawa system

In a ground based laboratory experiment, a strongly coupled complex plasma

can exist in a two dimensional crystalline form (Morfill and Ivlev, 2009). It

should be noted that the confinement of dust grains in such an experiment is

achieved through the balance of gravity and external electric fields. Hence, it

is natural to expect that a complex plasma can form different structures other

than the regular fcc and bcc structures under the effect of these confining

forces. In the past, melting of dusty plasma crystals in presence of spatially

random and time varying external fields have been studied by (Hoffmann and

Lowen, 2000) using Fokker-Planck dynamics. In contrast to that work, we

investigate, as a test problem for MPMD code, the effect of a small external

drive on a Yukawa solid through nonequilibrium MD simulations. It will be

seen in the following sections that such a small perturbation on a physical

system near a solid-liquid phase boundary can lead to drastic changes in its

structure. Thus, neglecting ion streaming effects and dust neutral collisions

(νdn = 0), a 3D Yukawa solid (bcc) at κ = 1.0,Γ = 210 is subjected to a

small external drive at the largest possible scale (see Figure 2.6). This drive

has the general form

VE = V0cos(kLz)Θ(t− t0) (2.18)
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Figure 2.6: The external potential VE applied along ẑ direction, and the
corresponding force Fz = −dVE

dz
: The cubic simulation box is centered at

the origin with the edge length L = 12.8. The spatial profile of potential
drive is such that the force acting on any particle is always away from
the center. Left y-axis shows the potential drive and right y-axis shows
the force in reduced units. It should be noted that V0/Epot ≤ 0.25,
hence the external drive is much smaller compared to average intergrain
potential energy.

where Θ(t− t0) is a Heaviside step function in time at t = t0 and kL = 2π/L,

L being the size of the system; V0 is considered small compared to average

inter-particle potential energy. The resulting force from this drive acts along

ẑ and is given as

F = −dVE

dz
ẑ = V0kLsin(kLz)Θ(t− t0)ẑ (2.19)

For the present study, we have chosen the value of Γ = 210 as it is close to

the liquid-solid phase boundary [see Figure 2.7]. We recall that the length,

energy and time are normalized to a, [Q2/(4πǫ0a)] and
√
3Ωpd

−1 respectively.

The number of particles take in the 3D simulation is 432 and the cubic box

has an edge length L = 12.8. This gives us a mean number density n = 0.206.

The time step taken in the MD simulation ∆T = 0.001. As the system taken

is smaller compared to the typical cutoff distance rc ≈ 20 for a Yukawa
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Figure 2.7: Phase diagram of a Yukawa system (Hamaguchi et al.,
1997). It is clear that our chosen value of bcc solid at Γ0 = 210, κ = 1 is
close to the liquid-solid phase boundary.

potential at κ = 1, we avoid using the cutoff distance and calculate forces

between all pairs. Such a brute force method corresponds to evaluating forces

between N(N − 1)/2 pairs for an N particle system. Due to the small size

of the system, we have used the serial version of the MPMD code for the

present problem. The simulation is carried out in following steps (shown in

Figure 2.8):

(a.) Canonical Run (0 ≤ t < 350): First we perform canonical ensemble

M.D. for 3.5×105∆t to take the system to a thermal equilibrium at required
Γ = 210, by connecting it to a Gaussian thermostat (see appendix A.1).

(b.) Micro-canonical Run (350 ≤ t < 700): After step (a), we remove the

thermostat and do a micro-canonical M.D. for 3.5× 105∆t where the system
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Figure 2.8: The plot of Γ as a function of time for various values of V0.
It should be noted that the solid-liquid phase boundary line for κ = 1
is around Γ ∼ 185 (Hamaguchi et al., 1997). Timezones shown are, T1 :
Canonical Run, T2 : Micro-canonical Run, T3 : Transient Phase and T4

: Final Equilibrium.

finds a new thermal equilibrium very close to the Γ set in step (a). At this

stage measurements with V0 = 0 are taken.

(c.) Transient Phase (700 ≤ t < 1300): At the end of step (b) (and the

thermostat decoupled), the external drive is turned on and the system goes

through transient phase where the temperature of the system changes. Mea-

surements in non-equilibrium conditions is done during this phase.

(d.) Final Equilibrium (1300 ≤ t < 2200): We continue the simulations

after step (c) till the transients die and the final equilibrium is reached. At

this stage equilibrium measurements with V0 �= 0 are taken. In the following
subsections we will present some important diagnostics to reveal the phase

transition of Yukawa solid due to the external drive.

2.6.3 Radial distribution function

As is well known, fluid state is characterized by the lack of permanent struc-

ture. Structural correlations can be measured in laboratory experiments and
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such details can provide important information about the average molecu-

lar organization in a liquid (McQuarrie, D. A., 1976). One such structural

correlation is the pair-distribution function:

g(r1, r2) =
N(N − 1)

∫

exp[−U(r1, . . . , rN )/(kBT )]dr3 . . . drN
n2

∫

exp[−U(r1, . . . , rN )/(kBT )]dr1 . . . drN
(2.20)

where the integral in the denominator is just the partition function and the

integral in the numerator differs only in that the coordinates r1 and r2 are

excluded from the integration. For spatially homogeneous systems only the

relative separation between the particles is meaningful, which readily leads

to the sum over atom pairs:

g(r) =
2V

N2

〈

∑

i<j

δ(r − rij)

〉

(2.21)

For isotropic systems, Equation 2.21 can be averaged over all angles (radially)

without any loss of information. The result is the radial distribution function

(RDF) - a function which describes the spherically or radially averaged local

organization around any given particle. Hence ng(r)dr is proportional to

the probability of finding a particle in the volume element dr at a distance r

from a given particle. RDF plays a fundamental role in liquid state physics,

mainly in describing the observables depending only pair separation such as

potential energy and pressure. In the study of phase transitions, RDF plays

an additional important role as it can show the onset of solid state with the

introduction of additional peaks in its profile.

Following Equation 2.21, one can deduce a histogram representation of

g(r) using discrete pair separations (Rahman, 1964). If hk is the number of

pairs (i, j) for which (k − 1)∆r ≤ rij < k∆r and rk = (k − 1/2)∆r, then

assuming that ∆r is sufficiently small, we have

g(rk) =
V hk

2πN2r2k∆r
(2.22)
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Figure 2.9: RDF or g(r): The fall in the peaks of g(r) is clearly seen
with varying amplitudes of external drive V0. The oscillations in g(r)
even for larger values of V0 indicate that the transition is from solid state
to a strongly coupled liquid state.

where rk = (k − 1/2)∆r. The two dimensional version is

g(rk) =
Ahk

πN2rk∆r
(2.23)

The normalization factors ensure that g(r → ∞) = 1, even though in pres-
ence of periodic boundaries, one cannot measure g(r) beyond half the small-

est edge of the simulation box (Rapaport, D. C., 1995). Spherically averaged

g(r) for various values of external drive V0 is shown in Figure 2.9. For V0 = 0,

g(r) is measured after the system has reached equilibrium, and for V0 �= 0,

measurements are taken when the system has reached equilibrium in the

presence of the external drive. As V0 increases, the peaks in g(r) decrease

which shows the loss of long-range positional order as the system goes to-

wards the liquid state. For V0 = 0.125 the first peak in g(r) falls by about

18 %, and at V0 = 0.250 it falls by 25%. In the following we discuss this

solid-liquid phase transition from the viewpoint of lattice correlation.
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Figure 2.10: Lattice correlation (|n(k)|) as a function of time: The
drive is switched on at t = 700. The fall in lattice order is clearly
faster with increasing V0. The value of k chosen is (2π/lu)(1, 0, 1) which
corresponds to a bcc lattice

2.6.4 Lattice correlation

The RDF discussed so far gives us only a spherically averaged local organi-

zation around any particle. The drop in peak values of RDF as the external

drive is applied, indirectly indicates a phase transition to a liquid state. For

a direct extraction of crystalline order one needs to construct the lattice

correlation which can be measured through X-ray scattering in crystalline

materials (McQuarrie, D. A., 1976; Hansen and McDonald, 2006). For this,

we first express the local density at a point r as a sum over all atoms:

n(r) =
N
∑

j=1

δ(r − rj) (2.24)

and its Fourier transform

n(k) =
1

N

N
∑

j=1

exp(−ik · rj) (2.25)
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To calculate |n(k)|, we take the values of k as (2π/lu)(1,−1, 1), (2π/lu)(1, 0, 1)
and (2π/lu)(1, 0, 0) for fcc, bcc and simple cubic lattices respectively. Here,

lu is the unit cell edge. In the ideal or the fully ordered case, |n(k)| = 1, but
deviations O(N−1/2) can be expected in the disordered case. The melting of

the system and the loss of crystalline order with the application of external

drive is seen in Figure 2.10. In the following section, we discuss the trans-

port properties of Yukawa system in the presence of an external drive. As

the system undergoes a solid to liquid transition, important changes begin

to appear in transport characteristics.

2.6.5 Diffusion

In the continuum limit, mass flux is related to the density gradient by the

Fick’s law (McQuarrie, D. A., 1976)

nu = −D∇n (2.26)

where D is the diffusion coefficient, u(r, t) is the local velocity and n(r, t) is

the local density. One can then write the time evolution of the density as

∂n

∂t
= D∇

2n (2.27)

The self diffusion coefficient in the long time limit (longer than collision

intervals) is given by Einstein relation (McQuarrie, D. A., 1976)

D = lim
t→∞

1

6Nt

〈 N
∑

j=1

[rj(t)− rj(0)]
2

〉

(2.28)

For systems with periodic boundaries, one needs to compute true particle

displacements by removing the effects of periodic wraparound (Rapaport,

D. C., 1995). There exists another route to calculate D namely through

the Green-Kubo formalism (McQuarrie, D. A., 1976) which is based on the
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Figure 2.11: For V0 there is no diffusion, but higher values of V0 show
that the diffusion asymptotes to larger values.

integration of velocity auto-correlation function:

D =
1

3N

∫ ∞

0

〈 N
∑

j=1

vj(t) · vj(0)

〉

dt (2.29)

From Equation 2.28 we define mean-squared displacement (MSD) as

〈∆r2〉 = 1

N

〈 N
∑

j=1

[rj(t)− rj(0)]
2

〉

(2.30)

Then from 2.28 and 2.30, we get

〈∆r2〉 = 6Dt (2.31)

The angular brackets 〈. . . 〉 denote an ensemble average over 400 ensembles
at equilibrium. All the measurements were done after step (b.) for V0 = 0

and step (d.) for V0 �= 0 as mentioned in section 2.6.2. For liquids and gases
at long times, 〈∆r2〉 goes as t and hence D asymptotes to a constant value.

This constant value is called the diffusion coefficient of the system. In Figure
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Figure 2.12: As V0 increases the longitudinal peak at Ω ≈ 0.67Ωpd

(Donko et al., 2008) begins to fall. There is also a clear fall in the low
frequency transversal shear peak as V0 increases.

2.11 we show the plot of D for the Yukawa system at equilibrium. It is clear

from these figures that for smaller values of V0, D drops close to zero (there

is no diffusion). This is a characteristic of solid state. At higher values of

V0, D asymptotes to higher values. This asymptotic nature of D is a typical

characteristic of liquid state. In the following section we discuss the velocity

auto-correlation and its Fourier transforms.

2.6.6 Velocity autocorrelation

Information on collective behavior (Donko et al., 2008) is contained in the

velocity auto-correlation function, shown below:

Z(t) =

〈 N
∑

j=1

vj(t) · vj(0)

〉/〈 N
∑

j=1

vj(0) · vj(0)

〉

(2.32)

The behavior of Z(t) of 3D Yukawa liquids was studied at several values of

Γ and κ parameters by (Ohta and Hamaguchi, 2000a). At constant κ, they

found a transition from a monotonically decreasing Z(t) into an oscillating
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type when Γ was increased. The Fourier transform of Z(t) is given below:

Z(Ω) =
1

2π

∫ ∞

−∞

Z(t)exp(iΩt)dt (2.33)

The above integral is approximated as a discrete sum and calculated via fast

Fourier transform (FFT) of Z(t)

Z(Ω) =
N−1
∑

n=0

Z(tn)exp(iΩtn)∆t (2.34)

The power spectrum of Z(Ω) for various values of V0 are plotted in Figure

2.12. In the strong coupling regimes (Γ = 210), the power spectrum of Z(Ω)

shows a collective peak near plasmon frequency at Ω ≈ 0.67Ωpd as shown

in previous works (Donko et al., 2008). There is another prominent peak

near a low, non zero frequency. To explain this peak Hansen, Mc Donald

and Pollock attempted to give a unified description of the velocity auto-

correlation function in the liquid regime using the memory function formalism

(Hansen et al., 1975). A more general approach using a mode coupling model

was investigated by (Gould and Mazenko, 1975). It was shown for Coulomb

liquids (Schmidt et al., 1997) that this low frequency peak at strong coupling

is associated with the occurrence of transversal acoustic excitations (or shear

modes ) in the system. We notice two important trends here : First, the

collective peak near the plasmon frequency Ωpd starts to fall and second,

the broad peak at low frequency which corresponds to shear modes starts to

disappear. Both these observations confirm the approach to the liquid state

as the external drive V0 increases. In the following section we discuss the

melting mechanism of Yukawa solid in the presence of an external drive.

2.6.7 Mechanism of melting

The applied external drive results in a force along ẑ with a sinusoidally

varying magnitude. It is interesting to note that work done due to this

directed force is being converted into random kinetic energy of particles due

to collisions with nearest neighbors. Here, we attempt to give a qualitative
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Figure 2.13: Snapshots of Temperature along ẑ taken at different times
for V0 = 0.150. The z-component of force Fz (taken on right y-axis) is
plotted on top. The figure explains initial local heating in regions where
magnitude of Fz is maximum.

explanation for the melting mechanism. As the external force acts only along

ẑ (Equation 2.19), the distribution of temperature remains uniform along x̂

and ŷ directions and becomes a function of ẑ only. We thus define the

temperature profile along ẑ as follows

Tz =

〈

1

Nz

Nz
∑

i

1

2
v2i

〉

(2.35)

where Nz is the number of particles in one of the slabs along ẑ and 〈. . . 〉
denotes the time average. At the instant when the external drive is turned

on local hot zones are created where the magnitude of forces is maximum

(see Figure 2.13). These hot zones give heat to the neighboring region and

the system heats up. At the beginning of the transient phase the two humps

in the temperature are clearly seen. These humps vanish towards the end

of the transient phase. In Figure 2.13, we show the temperature profile

(Tz) along ẑ for the case V0 = 0.150. It was shown in the Figure 2.10 that

the fall of lattice correlation (|n(k)|) is rapid as we increase the value of
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Figure 2.14: The profile of temperature along ẑ (Tz) very early in the
run (t = 25) for various values of V0.

V0. We define the melting time tm as the time in which |n(k)| falls by an
efold (≈ 37%). In Figure 2.14, for a given initial temperature (Γ = 210)

we show the temperature profile along ẑ very early in the run (t = 25)

for different values of V0. The increased local heating is clearly seen with

increasing values of V0. This qualitatively explains the decrease in melting

times with increasing V0. In Figure 2.15, we show V0 versus melting times for

different values of initial temperatures (Γ = 210, and Γ = 240). At higher

Γ, the correlations in the Yukawa system get stronger and hence it may be

expected that the critical amplitude (V c
0 ) is larger. This feature is clearly

seen in Figure 2.15.

2.7 Summary

For the first time, through extensive equilibrium and non-equilibrium MD

simulations, we studied the effect of a small external drive on 3D Yukawa

systems near a solid-liquid phase boundary. Periodic boundary conditions are

used along x̂, ŷ and ẑ. The form of the drive chosen is VE = V0cos(kLz)Θ(t−
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Figure 2.15: The melting time (tm) versus V0 for two values of initial
Γ. tm is the time during which the lattice correlation |n(k)| fall by an
efold (≈ 37%). From this graph we compute V c

0 as the value at which
the Yukawa solid takes infinite time to melt into a liquid. Dashed lines
cut the x-axis at V c

0 . At higher Γ, value of V c
0 is higher (Ashwin and

Ganesh, 2009).

t0), where Θ(t − t0) is a Heaviside step function in time and kL = 2π/L,

L being the size of the system. The long-range nature of the force and the

periodic boundaries were properly handled by including Ewald sums (see ap-

pendix A.3). The initial state of the system of 432 particles is a regular bcc

state. We then apply a small external drive and observe the melting of the

system. After the initial transients die down we measure statistical proper-

ties like the self diffusion coefficient, mean square displacement and Fourier

transformed velocity auto-correlation functions. The solid to liquid melting

is discussed on the basis of these statistical properties and a mechanism for

melting is proposed based on local heating in the system in regions where

the magnitude of forces are maximum. We also qualitatively explain the de-

crease in melting times with the increase in magnitude of external drive V0.

For a given (Γ, κ) pair we have found a critical amplitude of external drive

V c
0 below which there is no transition. This critical amplitude (V

c
0 ) depends

on the location of the Yukawa system in the (κ,Γ) phase space. For larger
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Γ, the value of V c
0 is larger. There are several open questions such as, the

effect of the external drive at multiple kL, scaling of V
c
0 with the screening

parameter κ and characterizing the nature of solid to liquid transition of a

strongly coupled Yukawa system. As a comparison, more rigorous potential

models, such as the asymmetric Yukawa potential (Kompaneets et al., 2009;

Ivlev et al., 2008) can be employed to study similar phenomena.

Having studied the phase transition of a Yukawa solid into liquid state, we

now focus our attention to the study of some fundamental hydrodynamic phe-

nomena in the liquid complex plasmas. We begin our study on the fluid state

with a well known hydrodynamic instability, namely the Kelvin Helmholtz

instability. As, it will be seen in the following chapter, such an instability

occurs when there is a sufficient velocity shear between two layers of a liquid.



Chapter 3

Parallel Shear Flows

Using “first principles” molecular dynamics simulations Kelvin-Helmholtz

instability has been observed for the first time at the particle level in two-

dimensional (2D) strongly coupled Yukawa liquids. We employ periodic

boundary conditions as before but do not use Ewald sums as the system

size is kept sufficiently large. At a given coupling strength Γ, a subsonic

shear profile is superposed on an equilibrated Yukawa liquid and instability

is observed. Linear growth rates computed directly from MD simulations are

seen to increase with strong coupling. Vortex roll formation in the non-linear

regime is reported. It is seen that at higher values of neutral gas friction, KH

instability is rapidly quenched. Finally, we compare the results of “first prin-

ciples” MD simulations with a generalized hydrodynamic fluid model. We

now begin this chapter with a survey of fluid dynamics studies in complex

plasmas and discuss some open questions therein.

3.1 Introduction

Complex plasmas can behave as essentially single phase systems when the

interactions between dust grains dominate over interactions with the back-

ground medium (Khrapak et al., 2004). Thus they offer a perfect testbed for

numerous fluid dynamics studies (Morfill et al., 2004; Nosenko and Goree,

2004). Some of the earliest flow studies were done by (D’Angelo and Song,
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1990) who investigated the effect of static charged grains on the stability of

magnetized plasma flow. Recently (Birk and Wiechen, 2002) and (Wiechen,

2006) used the conventional two fluid model and investigated the stabilizing

effect of dust mass and charge on KH dust modes. As is well known, for

strongly coupled liquids, kinetic theories, let alone their conventional hydro-

dynamic derivatives suffer from convergence and closure problems (Mont-

gomery D.C. and Tidman D.A, 1964; Ichimaru S., 1973). As an alterna-

tive, memory dependent visco-elastic models (Berkovsky, 1992; Kaw and

Sen, 1998) have been proposed which attempts to describe strongly coupled

Yukawa liquids. However the validity of these models across a wide range

of screening parameter and coupling strength is still an open problem (Ga-

bor J. Kalman and Paul Carini (Eds.), 1977; G J. Kalman, M. P. Rommel

and K. B. Blagoev (Eds.), 1998). Hence in order to correctly describe these

systems it becomes imperative to invoke “first principles” MD simulations

which amounts to numerically solving the N-body problem. In past, such ex-

act MD simulations on short ranged Lennard-Jones systems have been carried

out to obtain crucial insights into the onset, growth, non-linear saturation

and transition to turbulence in Rayleigh-Taylor (Kadau et al., 2008) and

Rayleigh-Bennard (Rapaport, 1988) instabilities. To our knowledge, no such

“first principles” study has been undertaken in complex plasma to explore

such hydrodynamic phenomena, let alone the subject of shear flows.

In this chapter we present one such study of Kelvin Helmholtz (KH)

instability in a two-dimensional (2D) strongly coupled Yukawa liquid for a

step shear profile. The length, time and energy are normalized are follows

r → ra (3.1)

U → U
Q2

4πǫ0a
(3.2)

t → tΩ−1
pd (3.3)

where the a is 2D Wigner-Seitz radius given as a = 1/
√
nπ, Q is the dust

charge, Ωpd = [Q2n/(4ǫ0ma)]1/2 is dust plasma frequency, n and m are the

areal number density and mass of particles respectively. For a given step
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shear profile and coupling parameter ranging from Γ = 1 (weak coupling) to

Γ = 100 (strong coupling), we obtain linear growth rates directly from MD

simulations and observe non-linear saturation and vortex-roll formation. It

should be noted that for a un-driven (flow-less) Yukawa system crystallization

occurs around Γ ≈ 140 at κ = 0.5 (Hartmann et al., 2005).

3.2 Initial state

We performed large scale MD simulations on a 2D system of 2.5×105 particles
interacting via Yukawa potential. Periodic boundary conditions are employed

along x̂ and ŷ. The number density of system n is 0.61, which gives us a

square region of size L = 640. We take a cut off distance for force calculation

as rc = 20. Hence, we divide the 2D simulation region into (L/rc) × (L/rc)
cells. For the present study, we use the parallel version of the MPMD code

and parallel cell decomposition is implemented by loading (L/rc) cells onto

each CPU as shown in section 2.6.1. For an experimental value of a = 0.4 mm

(Nosenko and Goree, 2004), our system size corresponds to 26 cm × 26cm,

which is typical of laboratory experiments. Hence the flows studied in the

present thesis are large scale in nature. The value of screening parameter κ in

all our simulations is 0.5. The initial state is prepared by first connecting the

system to a Gaussian thermostat (see appendix A.1) and letting it evolve

canonically (NVT) for 250Ω−1
pd . After this we remove the thermostat and

let the system evolve for another 250Ω−1
pd micro-canonically (NVE) at the

end of which it attains a thermal equilibrium corresponding to the desired

Γ. A Leap-Frog integrator with a time step ∆t = 0.01 is used such that the

fluctuation in total energy without the thermostat is< 10−3% over an interval

of 1000Ω−1
pd . In Figure 3.1 we show the pair correlation function PCF or g(r)

obtained by MD simulations, which contains strong coupling information of

the system. At higher values of coupling parameter, amplitude of the peaks

increase, clearly indicating stronger coupling. The fluid limit (absence of

long range order) of the system is obtained as Γ → 1 i.e no peaks at all in

g(r). This increase in ordering with Γ is also confirmed by plotting particle

trajectories at various Γ. In Figure 3.2, we show trajectories of 4096 particles
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Figure 3.1: PCF vs r. Higher values of Γ show stronger coupling.

recorded over a period of 10 Ω−1
pd in a region of size 40 × 40. Here one can

clearly see that at the highest temperature (Γ=1), particle trajectories are

diffused and the typical disordered nature of a liquid state is observed. As

Γ is increased, trajectories become less diffused and the structure becomes

more and more ordered.

A shear flow U is superposed on particle velocities along x̂ which has the

following form

U =







+U0[1 + ∆cos(kxx)], |y| ≥ L/4

−U0[1 + ∆cos(kxx)], |y| < L/4
(3.4)

where x, y are the components of the position vector of any particle, L is the

size of the system centered at the origin (0, 0) and U0 is the magnitude of the

shear velocity. In our normalized units, U0 = 1, amplitude of perturbation

∆ is 0.1 and kx = 2πmn/L, where mn is the mode number of perturbation.

The sound speed computed for our system for the entire range of Γ varies

between 1.5 to 1.6. Hence the flow speed U0 is sub-sonic and our shear flow

studies can be thought of as “incompressible” in nature. To understand the
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Figure 3.2: Trajectories of particles in a square region of size 40 × 40
(Length in units of a) at various values of Γ. At higher Γ, trajectories
become more localized and solid like features are seen [Figure 3.1]
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Figure 3.3: time evolution of perturbed kinetic energy along ŷ (Equa-
tion 3.5) on a log-linear scale for mn = 4 and Γ = 25. Dashed line shows
a fit to the initial linear growth regime.

growth characteristic of a particular mode mn we study the time evolution

of the perturbed kinetic energy along ŷ normalized to its initial value :

|δE2
k | =

∫ ∫

(vy(t)
2 − vy(0)

2)dxdy
∫ ∫

vy(0)2dxdy
(3.5)

Figure 3.3 shows the growth of this perturbed kinetic energy for mn = 4 for

an initial state Γ = 25 on a log-linear scale. It is clear that the logarithm

of the perturbed kinetic energy grows linearly in time leading to non-linear

saturation at late times. The dashed line shows a fit to this linear growth

regime. In Figure 3.4, we show the time evolution of x̂ independent flow

velocity defined by:

v̄x(y) =
1

L

∫ L/2

−L/2

vxdx (3.6)

At t = 20, v̄x(y) has a form close to a double step profile. We then see a

subsequent flattening of the step shear profile with time. The saturation of
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Figure 3.4: Time evolution of x̂ independent velocity shear profile. As
the mode grows [Figure 3.3], it backreacts on the shear profile thereby
flattening it. Thus the free energy source for the instability gets quenched
and the mode saturates. System size L = 640.

the instability shown in Figure (3.3 ) can be interpreted from this flattening

of the profile. As the mode grows, it draws energy from the free energy stored

in the shear profile thereby flattening it. Thus at late times (t ∼ 200) the

free energy source for the instability gets quenched and the mode saturates.

3.3 Comparison with hydrodynamics

Analytic solution for the viscous growth rate in KH instability for a step

shear profile is well known in hydrodynamics (Drazin, 1961). In our notation

it reads as :

γ =
kxU0

3

[√
3− 2 kx

RE

− 2
[(

kx
RE

)2

+ 2
√
3
kx
RE

]1/2]

(3.7)

where kx is the dimensionless wave-number and U0 is the dimensionless shear

velocity. The Reynolds number RE is defined as RE = U0dn/η, where d is

the shearing length scale and η is the shear viscosity. Using equilibrium
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Figure 3.5: Growth rate spectra of KH instability calculated from MD.
Each point on a given curve is obtained from the slope of the straight
line fit to linear growth of perturbed kinetic energy. For comparison, the
growth rates calculated from hydrodynamics (HD) (see Equation 3.7) at
RE = 1 is shown as the dashed line. Viscous stabilization is clearly seen
at higher modes for all Γ.

MD simulations (Saigo and Hamaguchi, 2002) we calculate η for our system

and find it to vary between 0.7 at Γ = 1 to 0.9 at Γ = 100 with a minimum

(η ≈ 0.2) close to Γ ≈ 30. Our results for η are qualitatively similar to earlier

works (Liu and Goree, 2005)(although with a different density n). Since the

shearing length scale d is of the order of the inter-particle distance i.e 1 and

n = 0.61, the conventional Reynolds number for our problem is RE ≈ 1.

In Figure 3.5, growth rates γ (normalized to Ωpd) calculated directly from

MD are plotted as a function of mn for various values of initial Γ. For

comparison, the hydrodynamic growth rates calculated from Equation 3.7 at

RE = 1 is shown as the dashed line. As can be expected, we observe viscous

stabilization at higher modes for all Γ. From Figure 3.5, it is clearly seen

that growth rates at higher modes are much higher than those predicted by

Equation 3.7. We believe this is due to the presence of strong correlation
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Figure 3.6: Blue colored fluid moves in the +x̂ and green one moves in
−x̂. The snapshots are shown for the full system (±L/2,±L/2) at times
t = 140, 180, 220 for four different values of Γ namely Γ = 1, 5, 25, 75
when a given mode (mn = 4) is excited. Horizontal and vertical rows
show snapshots at constant t and Γ respectively. At higher Γ′s, the
mode structures are more prominent. It is interesting to note that at
the highest temperature Γ = 1, mode structures are weak and look
diffusive due high thermal agitation.

effects which manifest themselves in not only viscosity, but also long range

order (oscillations in PCF as seen in Figure 3.1) and hence deviations from

viscous hydrodynamics (Equation 3.7) can be expected. We also see that

the maximum growth rates tend to saturate as Γ increases towards the solid

regime. It will be interesting to study KH instability close to and across

the liquid-solid regime (Γ ≈ 140) but is beyond the scope of present work.

It is interesting to note that at the weakest coupling studied i.e. Γ = 1,

MD growth rates are very small (≈ 10−3). This happens because the ratio

U0/vth ≈ 0.71 < 1. It should be noted that while U0 is “streaming” in nature,

the thermal velocity vth =
√

2/Γ is “random”. For growth rates to become
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Figure 3.7: Inverse cascading of mode mn = 6 starting from an initial
state of Γ = 50. At t = 140, mn = 6 appears eventually becoming mn =
3 at t = 460. Snapshot at t = 300 shows an intermediate state when
the initial mode mn = 6 has already collapsed. Finally at t = 620, the
definite features of mode structures are lost and the turbulent behavior
of the liquid is qualitatively seen.

significant U0/vth should be > 1. It is clearly seen from Figure 3.5 that the

strong coupling effects increase the instability growth rates. This is mainly

because at low temperatures (high Γ ) the “streaming” effects dominate

over “random” effects. It should be noted that a single run of time interval

1000Ω−1
pd takes about 28 hours on a 32 CPU parallel Linux cluster making

it computationally expensive and Figure 3.5 shows the linear growth rates

computed from 70 such runs.

The development of KH instability leads to the formation of vortices which

eventually leads to turbulent mixing of Yukawa liquid. Figure 3.6 shows the
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instantaneous snapshots of the particle coordinates to illustrate the formation

of vortices. The particles are colored according to the initial shear velocity

imposed on them (Equation 3.4). A particle at time t = 0 (when the shear is

imposed) is colored blue if |y| ≥ L/4, else colored green. A given mode mn =

4 is excited for four values of Γ = 1, 5, 25, 75 and instantaneous snapshots

at three different times are taken for each Γ. One can easily notice that

for higher values of Γ, the KH rolls at any given time are clearer and more

pronounced. It is interesting to note that for 1 < Γ < 10 (U0/vth ∼ 0.7 −
2.3) the collective effects are seen even at the particle level. The evolution

of nonlinear coherent structures ultimately results into formation of giant

vortices. Such a mechanism where energy is transferred from small scales

to large scale is known as inverse cascade, a process which is typical of 2D

turbulence.

In Figure 3.7 we show the inverse cascading of the mode mn = 6 in a

Yukawa liquid at Γ = 50. At t = 140, the mode mn = 6 (six rolls) appears

which collapses at t = 300 before re-emerging as mn = 3 at t = 460. The

snapshot at t = 300 shows the transition of mn from 6 −→ 3. By t = 620,

one can see that the well defined mode structures are lost and the transition

to turbulence is qualitatively seen. Using typical experimental parameters

(Nosenko and Goree, 2004) m ≈ 4 × 10−13 kg, Q ≈ 12000e where e is

electronic charge and a = 0.4 mm we get Ωpd ≈ 50s−1. A typical growth rate

in our study γ = 0.02Ωpd corresponds to approximately 1s
−1 in physical units

and hence should be observable in laboratory experiments. In the following

section we report the effect of neutral gas friction on the KH instability of

complex plasmas.

3.4 Role of gas friction

Laboratory dusty plasma exist under finite neutral gas friction. The conden-

sation of liquid “dusty” plasmas into a solid like state is routinely achieved by

increasing the neutral gas pressure in ground based laboratory experiments.

In Figure 3.8, we show the vorticity snapshot at time t = 400, starting from

an initial value of Γ0 = 120. The magnitude of local vorticity (ω = ∇× v)
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Figure 3.8: Vorticity snapshot at time t = 400 starting from an initial
Γ0 = 120 for different values of neutral gas drag: (a.) νdn = 0.001, (b.)
νdn = 0.005, (c.) νdn = 0.025, (d.) νdn = 0.125. It is easily seen that
at higher gas friction, the instability is rapidly quenched and the mode
structures are lost.

is indicated on a vertical color-map label. To construct ω, the local velocity

v in the region is obtained by “fluidizing” the grain velocities over a 45× 45
grid which amounts to averaging particle velocities locally to obtain fluid

velocity at a grid point. The superposed “white” arrows indicating the local

flow direction are obtained similarly from a 60× 60 grid. One can easily see
that gas friction has a quenching effect on the instability and hence there is

no roll formation at νdn = 0.125. This is confirmed from Figure 3.9, where

we plot the growth rates extracted from MD as a function of gas friction.

At higher values of gas friction the growth rates are negative and the insta-

bility is stabilized. A typical νdn = 0.025 where KH instability is observed

corresponds to 1.25 s−1 in physical units and hence the phenomena may be

observed in laboratory experiments on dusty plasma. It will be interesting
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Figure 3.9: Effect of gas friction on MD growth rates. It is easily seen
that the growth rates decrease with increasing values of gas friction.

to see if a lower dimensional fluid model can capture some of the underlying

physics of this KH instability atleast in the linear regime. In the following

section, we present a comparison of the frictionless (νdn = 0) MD results

obtained so far with a generalized hydrodynamics (GH) fluid model.

3.5 Generalized hydrodynamics

Conventional kinetic theories used to describe Yukawa liquids suffer from

Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy issues (Mont-

gomery D.C. and Tidman D.A, 1964; Ichimaru S., 1973) in the limit of strong

coupling. This hierarchy is a set of equations describing the dynamics of a

system of a large number of interacting particles. The equation for an s-

particle distribution function in the BBGKY hierarchy includes the (s +
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1)-particle distribution function thus forming a coupled chain of equations:

[

∂

∂t
+

s
∑

i

L(i)−
s

∑

i�=j

V(i, j)
]

Fs(1, · · · , s− 1, s)

=
s

∑

i

∫

dXs+1V(i, s+ 1)Fs+1(1, · · · , s, s+ 1) (3.8)

Here, the single particle operator L(i) acting upon the ith particle under the
influence of externally applied fields is given as

L(i) = vi ·
∂

∂ri

+
Q

m

[

Eext(ri, t) + vi ×Bext(ri, t)

]

· ∂

∂vi

(3.9)

and the two particle operator arising from the Yukawa interaction is given

as

V(i, j) = Q2

m

[

∂

∂ri

exp(−κ|ri − rj|)
|ri − rj|

]

· ∂

∂vi

(3.10)

The BBGKY hierarchy (Equation 3.8) has a structure that it does not close

in itself. The equation for a single-particle distribution depends on the two

particle distribution, the equation for two-particle in turn requires knowledge

of three-particle distribution, and so on. To proceed further, we must find

a method of truncating this infinite series of equations. Such a truncation

may be achieved if one approaches the fluid limit (Rostoker and Rosenbluth,

1960). Mathematically speaking, this implies, that the discreteness parame-

ter ∆ = 1/ND = (3Γ)3/2 ≪ 1, where, ND is the number of particles within

the Debye sphere. Thus, in this fluid limit, the BBGKY hierarchy may be

truncated through a power series expansion with respect to the the discrete-

ness parameter ∆. Such a truncation of hierarchy becomes very hard as the

coupling parameter Γ = [Q2/(4πǫ0akBT )] increases beyond 1. Thus, in the

limit of strong coupling (low temperature or high density), Yukawa liquids

are generally not amenable by kinetic theories (Ichimaru et al., 1987). As

an alternative, a memory dependent generalized hydrodynamic (GH) model

(Berkovsky, 1992; Ichimaru et al., 1987) has been proposed which attempts
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to describe strongly coupled Yukawa liquids. This phenomenological model

provides a simple picture of the effects of strong correlations through the

introduction of memory dependent viscoelastic coefficients. The GH model

is generally believed to be valid over a large range of the coupling param-

eter Γ, all the way from the weakly coupled fluid phase (Γ << 1) to the

strongly coupled liquid regime (1 < Γ < Γc), where Γc is the critical value

at which crystallization occurs in the dusty plasma. The model breaks down

in the crystalline state where formation of lattice structure can lead to both

long range and short range order in the system. Typically, these memory

dependent viscoelastic coefficients are functions of the coupling parameter Γ.

When Γ is small enough, i.e. in the weakly coupled regime, these coefficients

simply lead to viscous damping of collective modes. As Γ increases, these

coefficients provide a restoring force leading to elasticity effects. As is well

known, in the limit Γ→ 0, the GH model reduces to standard Navier-Stokes

(NS) hydrodynamics. Using this GH model, the existence of shear waves in

strongly coupled plasmas has been theoretically predicted (Berkovsky, 1992;

Kaw and Sen, 1998) and observed in both numerical simulations (Ohta and

Hamaguchi, 2000b) and lab experiments (Pramanik et al., 2002). The phe-

nomenological GH model also has several limitations, such as the absence of

a critical wave vector for transverse mode dispersion below which the modes

are damped, failure to capture the dynamical phenomena in the long wave-

number (kinetic) limit and uncertainties in the determination of viscosity

η(Γ) and viscoelastic relaxation time τm(Γ) (Murillo, 2000).

Here we report a linear stability analysis of parallel shear flows in strongly

coupled Yukawa fluids using the GH model and compare our results with the

MD simulations discussed so far. It will be shown later that the growth rate

spectrum computed from GH model shows similar qualitative behavior such

as viscous damping at higher modes and destabilization at strong coupling as

observed in MD simulations. It is seen that close to regions of flow reversal,

heat is generated which alters the local Γ. It will be shown that including this

shear heating effect (see section 3.10 and chapter 6) as an effective coupling

parameter Γe improves the quantitative comparison as well.
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Figure 3.10: Contour plot of density fluctuation

∣

∣

∣

∣

n(x,y,t)−n0

n0

∣

∣

∣

∣

× 100 at

time t = 40 (within the linear time scale) taken from MD simulations.
The initial state of the liquid is Γ = 25 at a mean density n0 = 0.61. The
peak value of density fluctuation (as seen from the color scale) is ≈ 5%.
Thus at the linear time scales the system remains “incompressible” to a
good approximation.

3.6 Basic assumptions

Recall that the basic equilibrium flow taken was a step shear velocity profile

(Equation 3.4). As the magnitude of normalized shear velocity U0 was smaller

than the sound speed of the system, thus the shear flows studied in MD

simulations can be thought of as “incompressible” in nature. In Figure 3.10,

we show a snapshot of density fluctuation contour taken from MD simulations

starting from an initial state of Γ = 25. The snapshot is taken at t =

40, which is within the linear time scale. One can easily notice that the

percentage fluctuations in the density

∣

∣

∣

∣

n(x,y,t)−n0

n0

∣

∣

∣

∣

× 100 <= 5%, which we
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assume to be small enough for the system to remain incompressible. It

should be noted in the MD simulations presented in (Ashwin and Ganesh,

2010a) did not include dust-neutral collisions. Following inputs from these

MD simulations, we proceed to carry out the linear stability analysis of the

GH model equations under the following assumptions: (a.) The dust fluid

remains incompressible. (b.) The dust-neutral collisions are absent. With

these assumptions we now proceed on to the next section to present the linear

stability analysis of the GH model equations.

3.7 Model equations

We use the standard fluid description of dusty plasmas for studying the low

frequency phenomena, where only the dust dynamics is important (ω <<

kvTe, kvT i) where ω is the wave frequency, k is the wave-number and vTe, vT i

are the electron and ion thermal speeds respectively. We will take electrons

and ions as a light fluid which can be modeled by a Boltzmann distribution

and take the full set of hydrodynamic equations to describe the dynamics of

dust fluid. We will also assume that electrons and ions are in the weak cou-

pling regime and only the dust fluid is in the strongly coupled regime. Thus,

we write, using the GH model (Berkovsky, 1992; Kaw and Sen, 1998), the

linear momentum equation for the incompressible dust fluid in the absence

of dust-neutral collisions

(1+τm∂t)

[

(∂t + v.∇)v + Ze

M
∇φ+

1

ρ
∇P

]

= ν∇2v +
1

ρ

(

ζ +
η

3

)

∇(∇ · v) (3.11)

the equation of state, in terms of compressibility µd

µd =
1

Td

(

∂P

∂n

)

T

= 1 +
u(Γ)

3
+
Γ

9

∂u(Γ)

∂Γ
(3.12)
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with the excess internal energy of system given as (Rosenberg and Kalman,

1997; Hamaguchi et al., 1996)

u(Γ) = a(κ)Γ + b(κ)Γ1/3 + c(κ) + d(κ)Γ−1/3 (3.13)

where the values of the coefficients are

a(κ) = −0.89 + 0.5κ− 0.103κ2 + 0.003κ4,

b(κ) = +0.565− 0.026κ2 − 0.003κ4,

c(κ) = −0.207− 0.086κ2 + 0.018κ4,

d(κ) = −0.031 + 0.042κ2 − 0.008κ4 (3.14)

and the equation of continuity (for an incompressible dust fluid)

∇ · v = 0 (3.15)

where ρ, v and Ze are the dust mass density, dust fluid velocity and dust

charge, P is the dust pressure and η and ζ are the coefficients of shear

and bulk viscosity respectively. Kinematic viscosity ν = η/ρ and φ is the

electrostatic potential . The viscoelastic relaxation time τm is a measure of

how memory effects due to strong coupling will influence the growth of shear

instability in the medium. Td is the dust temperature. The above momentum

equation in the xy-plane can be perturbed by assuming the velocities in the

x̂ and ŷ directions to be

U0(y) + u(x, y, t), v(x, y, t) (3.16)

respectively, and the pressure and electric field perturbations to be

P + p(x, y, t), ∇φ (3.17)

where the lower-case symbols indicate perturbed quantities. The introduc-

tion of (3.16) and (3.17) into the GH equation (4.4) and linearization leads
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to the following two partial differential equations

(1+τm∂t)

[

∂tu+ U0∂xu+ v
dU0

dy
+
1

ρ
∂xp+

Ze

M
∂xφ

]

= ν∇2u+
1

ρ

(

ζ +
η

3

)

∂x(∂xu+ ∂yv) (3.18)

(1+τm∂t)

[

∂tv + U0∂xv +
1

ρ
∂yp+

Ze

M
∂yφ

]

= ν∇2v +
1

ρ

(

ζ +
η

3

)

∂y(∂xu+ ∂yv) (3.19)

Linearization of the continuity equation (3.15) leads to

∂xu+ ∂yv = 0 (3.20)

Differentiating (3.18) with respect to y, and (3.19) with respect to x and

subtracting the resulting equations yields the following vorticity equation

(1 + τm∂t)

[

(∂t + U0∂x)(∂yu− ∂xv) + v
d2U0

dy2

]

= ν∇2(∂yu− ∂xv) (3.21)

From (3.20), we define the stream function ψ as,

u = ∂yψ, v = −∂xψ (3.22)

Putting (3.22) in (3.21), we get the vorticity equation in the stream function

formulation within the GH model.

(1 + τm∂t)

[

(∂t + U0∂x)∇2ψ − ∂xψ
d2U0

dy2

]

= ν∇4ψ (3.23)

Taking normal mode ansatz :

ψ(x, y, t) = ξ(y)eik(x−ct) (3.24)
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and using it in Equation 3.23, we obtain

(

d2

dy2
−k2

)2

ξ(y) =
ik

ν
(1−iτmkc)

[

(U0−c)
(

d2

dy2
−k2

)

ξ(y)−d
2U0

dy2
ξ(y)

]

(3.25)

Equation 3.25 is the GH Orr-Sommerfeld equation. If the basic flow is char-

acterized by some equilibrium shear length scale l and velocity scale U0, then

the Reynolds number may be defined as

R = U0l/ν (3.26)

and Equation 3.25 can be written in the dimensionless form as

(

d2

dy2
−k2

)2

ξ(y) = ikR(1−iτmkc)

[

(U0−c)×
(

d2

dy2
−k2

)

ξ(y)− d
2U0

dy2
ξ(y)

]

(3.27)

The GH Orr-Sommerfeld equation (3.27) has exponential solutions given by

ξ(y) = e±ky, e±βy (3.28)

where

β =

[

k2 − ikR(1− iτmkc)(c− U0)

]1/2

(3.29)

For a basic step shear profile with the interface at y = 0, we have

U0 = y/|y| (−∞ < y < ∞) (3.30)
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and using the following boundary conditions for ξ(y) and its derivatives fol-

lowing (Drazin, 1961),

[ξ] = 0
[

dξ

dy

]

= 0

[(

d2

dy2
+ β2

)

ξ

]

= 0

[(

d2

dy2
− β2

)

dξ

dy

]

= 0 (3.31)

where the brackets are used to denote the jump or difference across the

discontinuity, of their contents. The most general solution of the GH Orr-

Sommerfeld equation satisfying the boundary conditions at infinity has the

following form

ξ =







Ae−ky + Be−β1y (y > 0),

Ceky +Deβ2y (y < 0)
(3.32)

where A,B,C,D are some constants and

β1 =

[

k2 − ikR(1− iτmkc)(c− 1)
]1/2

β2 =

[

k2 − ikR(1− iτmkc)(c+ 1)

]1/2

(3.33)

Using the boundary conditions (Equation 3.31) at y = 0, we get four homo-

geneous linear equations in A,B,C,D. A non-zero solution exists if and only

if their discriminant is zero; thus the eigen value relation is

0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

−k −β1 k β2

β2
1 + k2 2β2

1 β2
2 + k2 2β2

2

k(β2
1 − k2) 0 −k(β2

2 − k2) 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.34)
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Figure 3.11: Growth rate spectra of GH model obtained from Equation
3.36 are numerically plotted (solid lines) for τm = 1, 5 and 15 at R = 1.
For comparison, NS growth rates from Equation 3.39 are also plotted
(line-symbols) at the same value of R = 1. It is clearly seen that the GH
growth rate spectra obtained from solutions of Equation 3.36 converges
to NS growth rates in the limit τm → 0.

Following (Drazin, 1961), we evaluate the above determinant and obtain the

following dispersion relation

R(1− iτmkc)

k
=

−4i(c−
√
3i)

3c2 − 1− 2
√
3ci

(3.35)

Equation 3.35 is similar to Drazin’s result except for the viscoelastic cor-

rection term (1 − iτmkc). We write down Equation 3.35 as a polynomial

equation in c as follows:

p0c
3 + p1c

2 + p2c+ p3 = 0 (3.36)

with the coefficients of the polynomial given as
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Figure 3.12: Plot of normalized shear viscosity and Reynold number
R = U0nl/η vs coupling parameter Γ taken from MD simulations (Ash-
win and Ganesh, 2010a). Physical parameters are : l = 1, U0 = 1 and
n = 0.61. It is clearly seen that η and hence R have a non-monotonic
nature in the interval 1 < Γ < 100. The average value of viscosity in the
entire range of Γ is ηavg ≈ 0.42.

p0 = 3Riτmk

p1 = (2
√
3τmk − 3)R

p2 = (2
√
3R− 4k −Rτmk)i

p3 = R− 4k
√
3 (3.37)

The appropriate root from of Equation 3.36 is one which converges to the

NS growth rate in the limit τm → 0, i.e

lim
τm→0

c = cNS (3.38)

where the NS growth rate is given by (Drazin, 1961)

cNS =
i

3

{√
3− 2 k

R
− 2

[(

k

R

)2

+ 2
√
3

(

k

R

)]1/2}

(3.39)
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Figure 3.13: Viscoelastic relaxation time τm plotted as a function
of Γ using Equation 3.40. We take the one component plasma (OCP)
approximation for bulk viscosity: ζ = 0. The rise in τm is clearly evident
towards higher values of Γ. As is well known, for Γ → 0, it follows that
τm → 0 (no memory effects) and the GH model reduces to the standard
Navier-Stokes hydrodynamics. Dashed lines show τm obtained by taking
an average value: ηavg = 0.42 and a higher value ηhigh = 1.3 as shown
in (Ashwin and Ganesh, 2010b).

The condition (Equation 3.38) is satisfied by only one of the roots of Equation

3.36 which is shown in Figure 3.11, where we plot the GH growth rate spectra

for various values of τm. The NS growth rate spectra obtained from Equation

3.39 is also plotted with line-symbols. It is clearly seen that in the limit

τm → 0, GH spectra converges to the standard NS spectrum. We now

proceed to the next section to present the effect of coupling parameter Γ on

shear viscosity η and viscoelastic relaxation time τm.

3.8 Effect of coupling parameter on shear vis-

cosity and relaxation time

As it is evident now from the preceding section, the growth rates calcu-

lated analytically from GH model (Equation 3.36) and NS hydrodynamics
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(Equation 3.39) depend crucially on Reynolds number R. Hence it becomes

imperative to estimate R for the Yukawa liquid under consideration before

any comparison can be made. In Figure 3.12, we plot the values of shear

viscosity as a function of coupling parameter Γ from previous MD simula-

tions (Ashwin and Ganesh, 2010a). Equation 3.36 contains strong coupling

corrections to Equation 3.39 which are manifested in the viscoelastic relax-

ation time τm. Typically τm depends on coupling parameter Γ and is given

as (Berkovsky, 1992)

τm =
(4η/3 + ζ)Γ

(3−Υµd)n+ 4u/15
(3.40)

where Υ is the adiabatic index, which for a 2D system is taken as 2, n is the

number density ≈ 0.61 in MD simulations (Ashwin and Ganesh, 2010a) and

µd is the compressibility given by Equation 3.12. Using Equation 3.12, 3.13,

3.14 and 3.40, the viscoelastic relaxation time τm is computed for values of Γ

in the range 1 < Γ < 100 and plotted in Figure 3.13. It should be noted that

the estimation of τm within the GH model is prone to uncertainties (Murillo,

2000) due to the presence of various thermodynamic parameters (Equation

3.40). We now move on to the next section to discuss the effect of Γ on GH

growth rates.

3.9 Effect of coupling parameter on GH growth

rates

To obtain growth rate spectra of KH instability at a given Γ under the GH

model one needs to first extract the corresponding value of τm from Figure

3.13 (line-symbols). Using this value of τm, the growth rate spectra under

the GH model can then be obtained from Equation 3.36. In Figure 3.14,

we plot the GH growth rates by individually picking the values of R from

Figure 3.12. Here we find that the growth rates do not match everywhere

for a given value of R, and find that the comparison between GH model and

MD simulations is at best only qualitative. In the next section, we discuss



62 Parallel Shear Flows

���� ���� ����
�

���

���

���

���

���

���

���

���

���

���
�
�
�
��

��
�

�� �

���� ������� �
�

�����

����� ������� �
�

�����

����� ������� �
�

�����

���

���

���

���

���

���

���

���

���

���

�

�� �

���

����

����

Figure 3.14: Comparison of growth rate spectra calculated from GH
model [Equation 3.36 and solid lines] and MD simulations (Ashwin and
Ganesh, 2010a) (line-symbols). The value of R and τm at each Γ are
picked up from Figures 3.12 and 3.13 respectively. It is clearly seen that
MD growth rates do not match with the GH growth rates for all values
of Γ and that there is only qualitative agreement at best.

the shear heating effects on the GH growth rates.

3.10 Effect of shear induced heating on growth

rates

Shear flows also lead to “particle heat generation” (Rapaport, D. C., 1995).

Such shear induced heat generation has been known to cause solid to liquid

phase transition in soft materials (Ackerson and Clark, 1981; Delhommelle,

2004) and complex plasmas (Nosenko and Goree, 2004). Shear induced heat-

ing in viscous flows has been studied analytically (Landau and Lifschitz,

2007) and observed in laboratory experiments on dusty plasmas (Nosenko

et al., 2008). We observe similar heating effect in MD simulations of strongly

coupled Yukawa liquids (Ashwin and Ganesh, 2010a) (shown in Figure 3.15),

where close to regions of flow reversal, heat is generated and local Γ is al-
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Figure 3.15: Snapshot showing contour plot of Γ at t = 40 taken from
MD simulations (Ashwin and Ganesh, 2010a) starting from an initial
uniform background coupling parameter Γ = 75. The sheared flow leads
to heat generation close to the regions of flow reversal at y = ±L/4,
where L = 640. As a result two strips parallel to x̂ are formed at lower
effective coupling parameter Γe.

tered. To illustrate this, in Figure 3.15, a snapshot of temperature contour

at time t = 40 is presented starting from an initial thermal equilibrium of

Γ = 75. Shear induced Γ profile develops at much faster time scales than the

linear growth time scales as shown in Figure 3.16, where we have plotted Γ

as a function of y (x = 0) at different times within the linear regime. Hence

we can think of a quasi-static local thermal equilibrium within the shear

layer in the form of an effective coupling parameter Γe. Using this value

of Γe within the shear layer one can then compute the value of local relax-

ation time τm and local Reynolds number R. In Figure 3.17, we plot the MD

growth rate spectra at various values of Γe and the corresponding GH growth
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Figure 3.16: Profiles of coupling parameter Γ as a function of y at
x = 0 taken from MD simulations. The initial state is a uniform Γ =
75. These profiles are plotted at various times during the linear regime.
Vertical dashed lines represent the location of shear layers. We clearly
see that the shear induced Γ profile develops at t <= 20, which is much
smaller than the linear growth time scales (t ∼ 100) and appears to
remain almost stationary. Hence we can think of quasi-static thermal
equilibrium within the shear layer in the form of an effective coupling
parameter Γe. For the initial state of Γ = 75 (shown by the horizontal
dashed line), the effective Γe ≈ 8.0.

rates computed from local values of R and (a.) τm using values of Γe, (b.)

τm(ηavg) and (c.) τm(ηhigh). Inclusion of shear induced heating in the form

of Γe appears to improve comparison between GH and MD growth rates. It

should be noted that the quasi-static temperature gradient formed due to

shear heating effects does not alter the stability analysis of the GH model

carried out in Section(3.7). At lower values of effective coupling parameter

i.e Γe < 8.0, the agreement is again only qualitative.

3.11 Summary

Using “first principles” MD simulations, we observed Kelvin Helmholtz in-

stability in strongly coupled Yukawa liquids at the particle level for the first
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Figure 3.17: (a.) Comparison of growth rate spectra directly obtained
from MD simulations (Ashwin and Ganesh, 2010a) (line-symbols) and
GH model [Equation 3.36]. The GH growth rates are calculated using
the values of local τm and R. It is clearly seen that the MD and GH
growth rates agree both qualitatively and quantitatively at Γe = 8.0. At
lower value of coupling parameter, the growth rates again do not match
because the random motion of particles dominate over streaming motion
and hence the KH instability is stabilized. This molecular effect is not
captured by the GH model and growth rate spectra for GH and MD do
not agree at low Γe.

time. A double step velocity shear profile is used to study this instabil-

ity. The linear growth rates (γ) are directly computed from MD simulations

and vortex roll formation in the non-linear regime is reported. The most

interesting feature we notice here is the increase of instability growth rate

with strong coupling. We also observe inverse cascading of the modes in

time. For a comparison, we performed a linear stability analysis of the GH

model equations using the assumption of incompressibility. We find that the

growth rates calculated from GH model match only qualitatively with the

MD results. Inclusion of the effect of shear heating as an effective coupling

parameter Γe appears to improve the quantitative comparison. However, we

find a general disagreement between GH and MD growth rates at high mode

numbers for all values of Γe. This could be due to the limitations of the
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Figure 3.17: (b.) The values of τm are calculated using an average
value of η, i.e ηavg = 0.42 (see Figure 3.13).
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Figure 3.17: (c.) The values of τm are calculated using a high value of
η, i.e ηhigh = 1.30 (see Figure 3.13) (Ashwin and Ganesh, 2010b). From
(a.), (b.) and (c.), one can clearly see that the agreement between MD
and GH growth rates are at best only qualitative.
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GH model especially the uncertainties in the determination of viscosity η(Γ)

and viscoelastic relaxation time τm. Some open questions can be addressed

in the context of the present work such as shock propagation (super sonic

U0), stability analysis of nonlinear GH model (Frenkel, 1946), detailed study

of transition to turbulence, instability across liquid-solid regime (Γ ≈ 140)

and study of flows with resonantly unstable modes (S. Chandrasekhar, 1998).

The emergence of coherent vortices in the nonlinear regime of KH destabi-

lized flows motivates one to think of the stability of an isolated coherent

vortex. In the following chapter, the emergence and stability of an isolated

axisymmetric vortex is studied through classical MD simulations.



Chapter 4

Centrifugal Flows

In the present chapter, using “first principles” molecular dynamics (MD)

simulations, we report for the first time, the emergence of isolated coherent

tripolar vortices from the evolution of axisymmetric or centrifugal flows in a

prototype two-dimensional (2D) strongly coupled liquid, namely the Yukawa

liquid. It is shown through MD simulations that the tripolar vortices persist

over several turn over times and hence may be observed in strongly coupled

liquids such as complex plasma, liquid metals and astrophysical systems like

white dwarfs and giant planetary interiors, thereby making the phenomenon

universal. Linear growth rates directly obtained from MD simulations are

compared with a generalized hydrodynamic model.

4.1 Introduction

Emergence of coherent structures is a preeminent feature of both freely de-

caying and forced two-dimensional (2D) Navier-Stokes turbulence - a sub-

ject that has been of great interest to the physics community for the past

three decades (McWilliams, 1984; Legras et al., 1988; Kukharkin, 1995). For

decades, physicists have been fascinated by two main characteristics of these

isolated coherent vortices, first, they are long-lived, which implies that they

can last for several eddy turnover times and second, their ability to remark-

ably enhance transport length scales. A thorough understanding of the evo-
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lution and dynamics of these coherent structures is extremely important be-

cause of their relevance to large scale planetary fluid dynamics (Pedlosky,

1987), astrophysical flows (Balbus and Hawley, 1998) and turbulent trans-

port in fusion plasmas (Lin et al., 1998), to mention a few. In their seminal

experimental work, Van Heijst and Kloosterziel showed the emergence of a

coherent structure, the tripole, from an unstable cyclonic vortex in a homoge-

neously rotating fluid (Van Heijst and Kloosterziel, 1989). They found that

the tripole was a very stable structure which could persist even in a highly

sheared environment. Later (Carton et al., 1989) studied the generation of

tripoles from the instability of axisymmetric monopoles through numerical

simulations of barotropic equations. Since then, a great amount of work

has been done to show the emergence of coherent vortices in the decay of

an unstable axisymmetric vortex (Orlandi and van Heijst, 1992; Barba and

Leonard, 2007). However, their emergence in such weakly coupled systems

raise a few very important questions : Can coherent structures like tripoles

emerge in strongly coupled liquids like complex plasmas, condensed matter

systems and astrophysical systems such as white dwarfs, thereby making

this phenomenon universal ? Can we study the growth and saturation of

these structures in laboratory experiments ? What determines the lifetime

of these vortices in such strongly coupled liquids ? In chapter 3, a study of

Kelvin-Helmholtz (KH) instability in strongly coupled Yukawa liquids was

reported using large scale molecular dynamics (MD) simulations (Ashwin

and Ganesh, 2010a), wherein, coherent vortices were seen to evolve in the

non-linear regime. An important question which immediately follows is the

emergence and stability of isolated coherent vortices in strongly coupled liq-

uids, which is the subject matter of the present work.

4.2 Molecular dynamics

We have performed large scale MD simulations to study the emergence and

evolution of coherent structures in a 2D strongly coupled Yukawa liquid. As

before, the Yukawa liquid can be fully characterized by two dimensionless

numbers: (i) the coupling parameter Γ, and (ii) the screening parameter κ =



70 Centrifugal Flows

a/λD. The length, time and energy are normalized to a, Ω
−1
pd and Q

2/(4πǫ0a),

respectively. The plasma frequency is given by Ωpd = [Q2n/(2ǫ0ma)]1/2,

where n and m are the 2D dust number density and mass of the dust grain,

respectively. We take a total of 2.304× 105 grains for the 2D Yukawa liquid
and periodic boundary conditions are employed along x̂ and ŷ. The number

density n of the Yukawa liquid is taken to be 1, which gives us a square region

of size L = 480, centered at origin (0,0). The value of screening parameter

κ in all our simulations is taken to be 0.5. The initial state is prepared by

first connecting the 2D system to a Gaussian thermostat (Evans et al., 1983)

and letting it evolve canonically for 200Ω−1
pd . We then remove the thermostat

and let the system evolve for another 50Ω−1
pd micro-canonically. A standard

leapfrog integrator with a time-step ∆T = 0.01Ω−1
pd is employed such that

the fluctuation in total energy is less than 10−4% (shown in Figure 4.1) over

a typical run duration of 1000Ω−1
pd . The initial equilibrium is a thermally

equilibrated Yukawa liquid at a desired Γ along with the following azimuthal

velocity profile superposed on grain velocities (only once at time t = 0).

Thus, we have, in polar coordinates (r, θ):

Vr = 0, Vθ = V0(1 + ∆cos(mnθ)) (4.1)

where V0 is the basic azimuthal velocity profile given by

V0 = 2.25

(

r

l

)

exp

(

−
(

r

l

)5)

(4.2)

mn is the mode number excited, ∆ is the perturbation amplitude taken

as 0.1 and l is the scale length of vorticity variation which is taken to be

50. The corresponding basic vorticity profile is given as ω0 = ∇ × V0 =

−(4.5/l)[2.5(r/l)5 − 1]exp(−(r/l)5). Clearly this basic vorticity profile ex-
hibits two regions of oppositely signed vorticity from the center to the pe-

riphery. This profile has a zero net circulation (
∫∞

0
ω0rdr = 0) and such

vortices are also known as “shielded vortices”. Our choice of velocity pro-

file as seen in Equation 4.1 is physically motivated by extensive laboratory

experiments (Van Heijst and Kloosterziel, 1989) and numerical simulations
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Figure 4.1: Energy conservation: Fluctuation in total energy is less
than 10−4% over a typical run duration of 1000Ω−1

pd without the ther-
mostat.

(Carton et al., 1989) in fluid dynamics. We define an eddy turnover time

for the vortex as T = 2πrm/V0(r=rm), where rm is the distance at which V0

becomes maximum. Setting (dV0/dr)|r=rm= 0, we get rm = (1/5)1/5l and

hence the turnover time T ≈ 170Ω−1
pd . In the following section, we report the

results obtained from our MD simulations.

4.3 Evolution of a tripole

At a time t ≈ 2.82 T into the simulation, with initial Γ = 50 and mn = 2

excited, a tripole vortex has emerged from the centrifugal instability as seen

in Figure 4.2. It will be shown later in Figure 4.5 that mn = 2 is the fastest

growing mode, thus leading to the formation of a tripole. The snapshot

shows the vorticity profile for the partial system (±175,±175) and one can
clearly see the compact region having three aligned patches (a central core

and the two accompanying satellites containing cyclonic and anti-cyclonic

vorticity respectively). The total circulation within the satellites is equal and

opposite to the circulation within the central core. The tripole also exhibits
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Figure 4.2: Tripole emerging at time t = 2.82 T , starting from an
initial Γ = 50. The snapshot shows vorticity (ω = ∇×v) plot for only a
partial system (±175,±175). Grain velocities in the region are fluidized
through a 45× 45 grid to construct local vorticity. Blue and red regions
correspond to negative and positive vorticity respectively and the color-
map label shows the magnitude of local vorticity. Arrows indicating
direction of local velocity are obtained by fluidizing the grain velocities
over a 60× 60 grid.

a cyclonic rotation around the central core and is seen to be a very stable

structure, sometimes persisting up to several turnover times. The magnitude

of local vorticity (ω = ∇×v) is indicated on a vertical color-map label. The

local velocity v in the region is obtained by “fluidizing” the grain velocities

over a 45 × 45 grid which amounts to averaging particle velocities locally

to obtain fluid velocity at a grid point. At Γ = 50, the thermal velocity

vth =
√

2/Γ = 0.2 and the ratio vth/V0(r=rm) ≈ 0.15. It should be noted that

the value of Γ close to the vortex boundaries decreases gradually in time

due to shear induced heating (see chapters 3 and 6). The superposed arrows

indicating the local flow direction are obtained similarly from a 60× 60 grid.
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Figure 4.3: Time evolution of the vorticity profile for different val-
ues of initial Γ. The individual snapshots are shown for the full system
(±240,±240) at times t = 0, 2.94 T , 5.88 T and 11.76 T for three values
of initial Γ, namely Γ = 1, 50 and 100 when a given mode (mn = 2) is
excited. Rows and columns show snapshots at constant Γ and t respec-
tively. Blue and red regions correspond to negative and positive vorticity
respectively. At higher Γ’s, the mode structures are more prominent and
at the lowest Γ (highest temperature), the mode structures are weak and
look diffused due to random thermal collisions between grains. It is in-
teresting to note that for Γ = 50, a tripole persists (though rotating)
throughout the total run duration, whereas, at Γ = 100, the tripole
breaks into two propagating dipoles moving in opposite directions until
t = 11.76 when the periodic boundaries come into play [see bottom-
right].

4.4 Effect of strong coupling

We have performed 2D MD simulations for the centrifugal instability of the

profile given by Equation 4.1 at three different values of initial coupling

parameter Γ, namely Γ = 1, 50, 100. A given mode mn = 2 is excited and

coherent tripolar vortices are seen to emerge close to the end of the linear

regime (Figure 4.3). It is interesting to note the following facts: At strongest

coupling (Γ = 100), the tripole vortex decays into two dipoles propagating in

opposite directions, whereas, at Γ = 50, the tripole vortex is very stable and

persists up to the entire duration of MD simulation (11.76 T ). Such stable
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tripolar structures have been reported in early fluid simulations of barotropic

equations (Carton et al., 1989; Orlandi and van Heijst, 1992). Those fluids,

however, were uncorrelated and without any strong coupling effects. At the

highest temperature (Γ = 1), the mode structures are weak and look diffused

due to random thermal collisions between grains. At higher Γ, the collective

effects are more pronounced and can be seen even at the particle level.

To understand the growth characteristic of a particular mode mn, we

study the time evolution of the perturbed kinetic energy along radial direction

(r̂) normalized to its initial value:

|δEr| =
∫ ∫

(r̂ · v(t))2dxdy
∫ ∫

(r̂ · v(0))2dxdy (4.3)

Starting from an initial state of mn = 2 and Γ = 50, we plot this perturbed

kinetic energy as a function of time and observe a linear growth eventually

leading to a nonlinear saturation at late times (Figure 4.4). The dashed line

shows a fit to the initial linear growth regime. The slope (2γ) of this fit gives

the growth rate of the centrifugal instability (γ). One clearly sees the onset

of nonlinear saturation close to t ≈ 2.82T as shown by the vertical dashed

line.

4.5 Comparison with viscoelastic model

Although MD simulation results presented so far are an exact numerical

solution to the N body problem and hence “first principles” in nature, it will

be interesting to see if a lower dimensional fluid model can capture some of

the underlying physics of the centrifugal instability as described in chapter

3. A well known phenomenological fluid model for complex plasmas is the

generalized hydrodynamic (GH) model (Ichimaru et al., 1987; Berkovsky,

1992; Kaw and Sen, 1998) which attempts to describe strong coupling effects

through the introduction of memory dependent viscoelastic coefficients. The

GH model also has several limitations (Murillo, 2000) and in the case of

parallel shear flows, the comparison between MD simulations and GH model

is at best only qualitative (Ashwin and Ganesh, 2010b). However, in light
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Figure 4.4: Time evolution of perturbed kinetic energy along r̂ on a
log-linear scale for mn = 2 and Γ = 50. The red dashed line shows a fit
to the initial linear growth regime having slope 2γ. The vertical dashed
line shows the onset of nonlinear saturation regime at t = 2.82T which
also coincides with the emergence of the fully developed tripole (Figure
4.2).

of the foregoing discussion, we obtain an analytical estimate of the linear

growth rate of the centrifugal instability using the GH model. Thus, we

write, the linear momentum equation for the incompressible dust fluid in the

absence of dust-neutral collisions as

(1+τm∂t)

[

(∂t+v.∇)v+Ze

M
∇φ+

1

ρ
∇P

]

= ν∇2v+
1

ρ

(

ζ+
η

3

)

∇(∇·v) (4.4)

where ρ, v, Ze and P are the mass density, fluid velocity, charge and pressure

of the dust grains respectively. Coefficients of shear and bulk viscosity are

η and ζ respectively. Kinematic viscosity is given by ν = η/ρ and φ is

the electrostatic potential. The viscoelastic relaxation time τm is a measure

of how memory effects due to strong coupling will influence the growth of

instability in the medium. Taking curl of Equation 4.4, we get the generalized
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hydrodynamic vorticity equation

(1 + τm∂t)(∂tω + (v · ∇)ω) = ν∇2ω (4.5)

Equation 4.5 can be perturbed by writing velocity and the vorticity in (r̂, θ̂)

as

v = (v′r, V0 + v′θ), ω = ω0 + ω′ (4.6)

where the quantities with primes are perturbed quantities. Using Equation

4.6, the linearized z-component of Equation 4.5 becomes,

(1 + τm∂t)

[(

∂t +
V0

r
∂θ

)

ω′ + v′r
dω0

dr

]

= ν∇2ω′ (4.7)

Assuming continuity of mass (∇ · v = 0), we introduce the stream-function
Ψ′ = (0, 0,Ψ′) and write the perturbed velocities as v′r = (1/r)∂θΨ

′ and

v′θ = −∂rΨ′. Using Equation 4.7 and along with the fact that ω′ = −∇2Ψ′,

we get

(1 + τm∂t)

[(

∂t +
V0

r
∂θ

)

∇2Ψ′ − 1

r
∂θΨ

′dω0

dr

]

= ν∇4Ψ′ (4.8)

Taking normal mode ansatz: Ψ′ = Φ′exp(γt + imnθ), it is easily seen that

Equation 4.8 becomes

(1+τmγ)

[(

γ+
imnV0

r

)(

D∗D−m2
n

r2

)

− imn

r

dω0

dr

]

Φ′ = ν

(

D∗D−m2
n

r2

)2

Φ′

(4.9)

where D = d/dr and D∗ = d/dr + 1/r. Equation 4.9 is an eigen value

equation and can be numerically solved for the eigen value γ. Typically, the

viscoelastic relaxation time τm (Berkovsky, 1992) depends on Γ and is given

as

τm =
(4η/3 + ζ)Γ

(3−Υµd)n+ 4u/15
(4.10)
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Figure 4.5: Growth rate spectrum (solid circles) of centrifugal insta-
bility calculated from MD simulations at Γ = 50. Each point on the
curve is obtained from the slope of the straight line fit to linear growth
of the perturbed radial kinetic energy (Figure 4.4). For comparison, the
growth rates calculated from GH model (Equation 4.9) at ν(Γ) = 0.56
and τm = 2.56 (see Figures 3.12 and 3.13 line-symbols).

where, Υ is the adiabatic index, which for a 2D system is taken as 2 and µd

is the compressibility. Thus, we find the value of τm ≈ 2.56 at Γ = 50 (see

Figures 3.12 and 3.13 line-symbols). In Figure 4.5, we show a comparison

between the linear growth rate spectrum of the centrifugal instability directly

obtained from MD simulations at Γ = 50 (solid circles) and the spectrum

obtained from GH model (Equation 4.9 and solid triangles). We find that

for the profile given by Equation 4.2, the GH model (solid triangles) predicts

only two unstable modes namely mn = 2, 3. The GH growth rates though

larger in magnitude appear to be in qualitative agreement with MD growth

rates. It will be interesting to extend the present GH model by including

a convective term (τmv · ∇) in the viscoelastic memory operator (1 + τm∂t)

as proposed by (Frenkel, 1946) and compare with MD results. This will be

described in the future work section.
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4.6 Summary

In summary, we have demonstrated for the first time, through large scale

MD simulations, the emergence of isolated coherent tripolar vortices from

the decay of unstable axisymmetric flows in strongly coupled Yukawa liq-

uids. Linear growth rates of the instability are directly obtained from “first

principles” MD simulations and emergence of coherent tripolar vortices in

the non-linear regime is reported. The tripoles formed are very robust and

persist for several eddy turnover times. An attempt is made to compare the

growth rates obtained from MD simulations with the GH fluid model. Sev-

eral important questions can be addressed in the context of the present work

such as the enhancement of transport length scales due to these coherent

tripolar vortices, inertial power laws and inverse cascade phenomena in 2D

turbulent strongly coupled liquids. Our work expands the possibility of ob-

serving such tripolar vortices in laboratory experiments on complex plasmas,

condensed matter systems and astrophysical systems such as white dwarfs

thereby vastly extending the generality of the phenomenon.

In the foregoing chapter it was seen that a tripolar vortex under certain

conditions can spontaneously decay into a pair of dipolar vortices propagating

in mutually opposite directions (see Figure 4.3, bottom-right). One naturally

wonders if it is possible to excite such dipolar vortices from generic initial

conditions and study their interactions in a laboratory produced complex

plasma. In the following chapter, the emergence of dipolar vortices from the

self organization of an initial jet profile in a 2D strongly coupled Yukawa

liquid is discussed in detail.



Chapter 5

Formation and Interaction of

Dipoles

Coherent dipolar vortices are a universal outcome of injecting linear momen-

tum into a liquid. Once formed, these dipolar vortices can transport mass

and momentum over large length scales and are hence a subject matter of

intense research work. In the present chapter, using “first principles” classi-

cal molecular dynamics simulations, we report for the first time, formation

and collision of dipolar vortices in a two-dimensional prototype strongly cou-

pled liquid, namely the Yukawa liquid. A dipolar vortex is seen to emerge

from the self-organization of a sub-sonic jet profile. This dipole is seen to be

very robust and, in general, shows a nonlinear relationship between vorticity

and stream function. Starting from two jets injecting linear momentum in

mutually opposite directions, we report on the centered head-on collisions

between two dipolar vortices. Effect of neutral gas friction on the evolution

of dipole is also investigated.

5.1 Introduction

Dipolar vortices are well known steady state solutions of the two-dimensional

(2D) Euler equation (Lamb, 1932). They are one of the most fundamental

vortical structures of 2D flows and display a remarkable ability to trans-
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port both mass and momentum (Couder and Basdevant, 1986). A typical

dipolar vortex consists of two closely packed monopolar vortices of opposite

circulation and can be excited in laboratory experiments and numerical sim-

ulations of 2D flows of ordinary liquids (Van Heijst and Flor, 1989; Nielsen

and Rasmussen, 1997). In turbulent conditions, dipolar vortices are generally

seen to be less stable than monopolar vortices observed in the sub-mesoscale

studies of oceans (McWilliams, 1985) and numerical simulations of 2D tur-

bulence (McWilliams, 1984). Dipolar vortices generated by a short fluid

impulse were first studied by (Duc and Sommeria, 1988), who showed that

a dipole once formed, can travel the entire system length and, in general,

has a nonlinear relation between vorticity ω and stream function ψ. Sub-

sequent experiments on dipole formation and collisions in a stratified liquid

confirmed this fact (Van Heijst and Flor, 1989). Interestingly, a sinh relation

[i.e ω = A sinh(Bψ)] has also been observed in the temporal evolution of

Lamb dipoles (Van Geffen and Van Heijst, 1998). This has led to a great

amount of research on the formation and evolution of the dipolar structures

in ordinary liquids (Kramer et al., 2007).

To the best of our knowledge, the emergence of coherent dipolar vortices

in such strongly coupled liquids is a new paradigm and as such poses several

fundamental questions: Is it possible to form dipolar vortices by injecting

momentum ? Once formed, how do these dipolar vortices interact ? Do they

exchange mass ? What is the typical lifetime of a dipolar vortex in such

strongly coupled liquids ? In chapter 4, we studied the evolution of axisym-

metric flows in strongly coupled Yukawa liquids through classical molecular

dynamics (MD) simulations. Coherent tripolar vortices were seen to emerge

in the nonlinear regime. It was also shown that under certain conditions, a

tripole can spontaneously decay into a pair of dipolar vortices propagating

in mutually opposite directions. One naturally wonders if it is then possible

to excite such dipolar vortices from generic initial conditions and study their

interactions in a laboratory produced complex plasma. Using “first princi-

ples” classical MD simulations, the present paper reports on the emergence

of such dipolar vortices from the self organization of a jet velocity profile in

a prototype 2D strongly coupled liquid, namely, the Yukawa liquid. In the
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following section we present a discussion on the MD simulations used in the

present study.

5.2 Molecular dynamics

As is well known, a typical Yukawa liquid or a laboratory produced com-

plex plasma consists of weakly ionized gas and charged dust grains and can

be efficiently modeled by the Yukawa potential (Equation 2.1). In such a

strongly coupled complex plasma, the coupling parameter Γ = Q2/(4πǫ0aTd)

can be easily of the order 1 or larger (Td and a are the dust temperature

and the Wigner-Seitz radius respectively). Complex plasma offer a natural

testbed for several fluid dynamics studies and various authors have investi-

gated the flows in complex plasma by theoretical (Ashwin and Ganesh, 2010a,

2011b; D’Angelo and Song, 1990) and experimental methods (Nosenko and

Goree, 2004). The state of strong coupling in complex plasma is manifested

through the introduction of memory dependent viscoelastic coefficients - a

generalized hydrodynamic approach followed by some authors (Kaw and Sen,

1998). However, the validity of these models across a wide range of coupling

parameter remains unclear (Ashwin and Ganesh, 2010b; G J. Kalman, M. P.

Rommel and K. B. Blagoev (Eds.), 1998). Hence, for an “exact” description

of these strongly coupled liquids, one should invoke “first principles” classical

MD simulations and numerically solve the N body problem.

In the present paper, we report on the emergence, evolution and interac-

tion of coherent dipolar vortices in a 2D strongly coupled Yukawa liquid. As

defined in chapter 2, when dust-neutral collisions are included, the particle

motion is modeled by the following coupled equations:

mr̈i = fi +mνdnṙi (5.1)

where νdn is the friction coefficient arising due to neutral gas and fi is the
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Yukawa force,

fi = − Q2

4πǫ0

N
∑

j �=i

∇
(

exp(−rij/λD)

rij

)

(5.2)

The length, time, velocity and energy are normalized to a, Ω−1
pd , aΩpd and

Q2/(4πǫ0a), respectively. The 2D plasma frequency is given by

Ωpd = [Q
2n/(4ǫ0ma)]1/2 (5.3)

where n and m are the 2D dust number density and mass of the dust grain,

respectively. We take a total of 2.304× 105 grains for the 2D Yukawa liquid
and periodic boundary conditions along x̂ and ŷ. The number density n of

the Yukawa liquid is taken to be 1, which gives us a square region of size

L = 480, centered at origin (0,0). This corresponds to a system of size of

19.2 cm ×19.2cm in physical units for a typical a = 0.4mm. The value of

screening parameter κ = a/λD = 0.5 in all our simulations. The initial state

is prepared by connecting the 2D system to a Gaussian thermostat (Evans

et al., 1983) and letting it evolve canonically for 200Ω−1
pd . Onto this thermally

equilibrated Yukawa liquid, the following jet velocity profile is superposed on

grain velocities (only once at time t = 0):

Vx = 0.5V0exp(−(y/y0)M)[1− tanh(α(x− x0))] (5.4)

where, V0 is the magnitude of the maximum velocity of the dust grains in the

jet, x0 is the parameter which controls the length the jet. The parameters

y0 and M control the fall of Vx along ŷ direction. The fall of Vx at x = x0

is controlled by the parameter α. Parameter values are listed as follows:

V0 = 1.3, M = 2, y0 = 30, x0 = 150 and α = 0.25. In normalized units,

the adiabatic sound speed measured for the system cs ≈ 2.4 and the typical

thermal speed vth =
√

(2/Γ) ≈ 0.13, at Γ = 120. Hence, one may think

of the present study as “incompressible” in nature. Our choice of the jet

velocity profile is physically motivated by extensive laboratory experiments

on ordinary fluids (Van Heijst and Flor, 1989; Duc and Sommeria, 1988).
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Figure 5.1: Sequence of images showing the evolution of a jet profile
(Equation 5.4) when νdn = 0. Grains inside the jet are colored red
if the local vorticity is positive and colored blue if the local vorticity
is negative. Grains in the background fluid are colored pale green. It
should be noted here that only grains with horizontal velocity greater
than 20%Vx are considered to be inside the jet, remaining contribute to
the background fluid [L = 480].

Such a jet profile given by Equation 5.4 may also be produced in a strongly

coupled complex plasma by driving a laser beam under controlled laboratory

conditions (Nosenko and Goree, 2004).

In Figure 5.1, we provide a sequence of images showing the evolution of the

jet profile [Equation 5.4] in the absence of dust neutral collisions (νdn = 0).

Each snapshot in Figure 5.1 is shown for the full system (±240,±240). Grains
forming the jet and the background are appropriately color coded (see caption

for details). At a time t = 220 into the simulation, with initial Γ = 120, a

dipole is seen to emerge from the self organization of an initial jet profile.
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Figure 5.2: Snapshots showing evolution of a dipole with νdn = 0
starting from an initial Γ = 120. Grain velocities in the region are
fluidized through a 45 × 45 grid to construct local velocity (shown as
white arrows) and local vorticity ω (see color-bar).

Once formed, it propagates horizontally through the entire system, with only

minor changes in its shape.

In Figure 5.2, we show the corresponding vorticity contour plot at var-

ious times in the absence of gas friction. The snapshots are shown for the

full system and one can clearly see a compact region having two patches of

oppositely signed vorticities. The net circulation of the dipole is zero and

it is seen to be a very robust structure, persisting long enough to travel the

entire length of the system. The magnitude of local vorticity ω = ∇ × v

(see vertical color-bar) is obtained by “fluidizing” the grain velocities over a

45× 45 grid. This amounts to a local averaging of grain velocities to obtain
fluid velocity at a grid point. The superposed arrows indicating the local flow

direction are obtained similarly from a 60×60 grid. For the case νdn = 0, the
peak density fluctuation in the system δn = |[(n(x, y)−n0)/n0]× 100| ≈ 7%
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Figure 5.3: Contour plot of density fluctuation δn = |[(n(x, y) −
n0)/n0] × 100| ≈ 7% at t = 220. Here n0 = 1.

at t = 220 [see Figure 5.3]. Neglecting density variation (assuming “incom-

pressibility”), we then calculate the stream function ψ from the following line

integral : ψ(r) =
∫

(vxdy− vydx). In Figure 5.4, we present a typical scatter

plot at t = 220 for the flow field in the entire system for the case νdn = 0.

The nonlinear relationship between ω and ψ is clearly evident from the poly-

nomial fit (solid line). Similar nonlinear relationship has been observed in

past experimental studies on dipolar structures in ordinary liquids (Duc and

Sommeria, 1988; Van Heijst and Flor, 1989). In the following section, we ob-

serve the viscous decay of the dipole through time evolution of peak vorticity

and kinetic energy of the dipole.
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Figure 5.4: Scatter plot of vorticity ω and stream function ψ in the
flow field associated with the dipolar vortex at t = 220, starting from an
initial Γ = 120 and νdn = 0.0. Each point on the scatter plot represents a
pair of (ω, ψ) values obtained after fluidizing grain velocities on a 45×45
grid. The band of zero vorticity represents the region outside the dipole,
whereas the branches of positive and negative vorticity correspond to
the dipolar vortex. The nonlinear (ω, ψ) relation within the dipole is
evident from the fitted polynomial (solid line).

5.3 Viscous decay

To further understand the time evolution of a dipole, we obtain the dipole

kinetic energy

Ēk = (0.5/Nd)

Nd
∑

i

vx
2
i (5.5)

directly fromMD simulations. HereNd stands for the number of grains within

the dipole. In Figure 5.5, we show the plots showing temporal variation of

peak vorticity ω̄x and kinetic energy Ēk of the evolving dipole as a function

of time, normalized to unity at t = tF , where tF = 220 is the time at which

the dipole is formed. The fall in dipole kinetic energy along with decay

of peak vorticity ωm is due to high fluid viscosity (Nielsen and Rasmussen,
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Figure 5.5: Peak vorticity ω̄m and kinetic energy Ēk of the evolving
dipole as a function of time, normalized to unity at t = tF (tF = 220, is
the time at which the dipole is formed). The dust neutral collisions are
absent or νdn = 0. It is clear seen that the dipole slows down, along with
the fall in ωm. This is due to viscous effects (Nielsen and Rasmussen,
1997; Van Geffen and Van Heijst, 1998) dominant in a typical strongly
coupled liquid. It should be noted that both peak vorticity and kinetic
energy is faster at higher values of gas friction.

1997; Van Geffen and Van Heijst, 1998), which is a typical characteristic of

a strongly coupled Yukawa liquid. In the following section, we present a

discussion on the head on collision between two dipoles in such a frictionless

limit.

5.4 Dipole interactions

The persistent behavior of dipolar vortex structures is observed in following

simulations on frontally colliding dipoles (Figure 5.6a,b). We present the

following dipole interaction study in the limit of vanishing gas friction or

νdn = 0. Starting from a thermally equilibrated liquid at Γ = 120, two jets

[Equation 5.4] were excited at opposite locations (±240, 0) at time t = 0. The
colliding dipoles are symmetric and they exchange partners which results into
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Figure 5.6: (a.) Snapshots showing stages of centered head-on collision
between two dipoles of equal strength with νdn = 0. Grains inside a jet
are colored red if the local vorticity is positive and colored blue if the
local vorticity is negative. Grains in the background fluid are colored
pale green. It should be noted here that only grains with horizontal
velocity greater than 20%Vx (Equation 5.4) are considered to be inside
a jet, the remaining contribute to the background fluid. Parameters
V0 = 1.3, y0 = 30.0 for both the jets. (b.) Same as in (a.), but with
dipoles of unequal strength. (V0 = 1.3, y0 = 30.0) for the left dipole and
(V0 = 1.0, y0 = 26.25) for the right dipole.
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the formation of two new dipoles moving along a straight line away from the

collision area. This new axis of motion is exactly perpendicular to the original

axis (Figure 5.6a). Particle color coding reveals that no mass is exchanged

between the partners: except for some very few “streamers” wrapped around

the respective new partners - an effect due to thermal fluctuations at the

initial contact. The dipoles thus appear to conserve their mass. In the

second run (Figure 5.6b), a centered head-on collision was created between

two dipoles of slightly different strength and size. This was achieved by

taking (V0 = 1.3, y0 = 30.0) for the left dipole and (V0 = 1.0, y0 = 26.25) for

the right dipole. As before, the dipoles exchange partners (without any mass

transfer between them) and the newly formed dipoles move away from the

collision area. In a stark contrast, however, the newly formed dipoles are not

symmetric (as they are of different size and strength), and as a consequence

they leave out on a looping excursion. In our simulations, these newly formed

dipoles become progressively slower and approach the periodic boundaries.

So far we have shown the results of our MD simulations in limit of vanishing

gas friction. It will be interesting to see the role played by finite gas friction

on the evolution of these dipolar vortices. This is the subject matter of the

following section.

5.5 Role of gas friction

Laboratory dusty plasma exist under finite neutral gas friction. The conden-

sation of liquid “dusty” plasmas into a solid like state is routinely achieved

by increasing the neutral gas pressure in ground based laboratory experi-

ments. Hence it becomes important to study the role of neutral gas friction

in the evolution of a dipolar vortex. In Figure 5.7(a,b,c), we show the time

evolution of a dipole vortex at two different values of gas friction. It is easily

seen from Figure 5.7 that inertial effects that are are crucial for the evolution

of a dipole are rapidly killed by the increasing gas friction. Hence, one may

expect such dipolar structures to sustain for longer times only in the limit

of low gas friction. In Figure 5.8(a,b), we show the time evolution of peak

vorticity and kinetic energy of the dipole in presence of finite gas friction.
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Figure 5.7: Time evolution of a dipole at two different values of gas
friction, namely, (a.) νdn = 0.001, (b.) νdn = 0.003 and (c.) νdn = 0.007.
The inertial effects needed to sustain the dipole are rapidly quenched at
higher values of gas friction.
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Figure 5.7: Continued

Once again, it is clear from these figures that the fall in both peak vorticity

and kinetic energy is faster at higher values of gas friction.

5.6 Summary

In summary, we have reported, for the first time, through “first principles”

classical MD simulations, the formation and collision of dipolar vortices in

a prototype 2D strongly coupled Yukawa liquid. A dipolar vortex is seen

to emerge from the self-organization of an initial sub-sonic jet profile, and,

in general, is seen to have a nonlinear relation between vorticity and stream

function. The dipoles formed are very robust and our simulations reveal that

a centered head-on collisions between two such dipolar vortices results into

exchange of partners but no mass is exchanged. For such dipoles to exist for

longer times, the neutral gas friction needs to be small in value. At higher

values of gas friction, the inertial effects needed to sustain a dipole are rapidly
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Figure 5.8: Time evolution of a dipole at two different values of gas
friction, namely, (a.) νdn = 0.001 and (b.) νdn = 0.007. The inertial
effects needed to sustain the dipole are rapidly quenched at higher values
of gas friction.
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quenched and the dipole is lost. For a comparison, it will be interesting to

construct Lamb like solutions (Lamb, 1932) and perform nonlinear simula-

tion of interacting jets using a lower dimensional generalized hydrodynamic

model - an exercise which we defer for future work. Our work suggests the

possibility of observing such dipolar vortices and their interactions in labo-

ratory experiments on strongly coupled complex plasma at low values of gas

friction, thereby, vastly extending the generality of the phenomenon.



Chapter 6

Heat Front Propagation

In the foregoing chapters on shear flow studies, generation of heat was ob-

served at the particle level close to shear layers. It will be interesting to

see if one can resolve the connection between such macroscopic shear flows

and particle level heat generation. Here, we report using classical molecular

dynamics simulations, the development and propagation of a nonlinear heat

front in parallel shear flows of a strongly coupled Yukawa liquid. At a given

coupling strength, a subsonic shear profile is superposed on an equilibrated

Yukawa liquid and Kelvin Helmholtz (KH) instability is observed. Coherent

vortices are seen to emerge towards the nonlinear regime of the instability. It

is seen that while inverse cascade leads to a continuous transfer of flow energy

towards the largest scales, at the smallest scale there is also a simultaneous

transfer of flow energy into the thermal velocities of grains. The latter is an

effect of velocity shear and thus leads to the generation of a nonlinear heat

front. In the linear regime, the heat front is seen to propagate at speed much

lesser than the adiabatic sound speed of the liquid. Spatio-temporal growth

of this heat front occurs concurrently with the inverse cascade of KH modes.

6.1 Introduction

As is well known, complex plasmas can behave as essentially single phase

systems when the grain-grain interactions dominate over the grain-plasma
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interactions (Khrapak et al., 2004). Thus a near “exact” description of a

complex plasma can be constructed by considering only the dust grains and

assuming that the background plasma does not evolve in time. This allows

the grain dynamics to be modeled by a Yukawa (screened Coulomb) poten-

tial (Equation 2.1). The resulting N body problem can then be numerically

solved using a molecular dynamics (MD) simulation. In past, several authors

have used such MD simulations to study transport phenomena (Saigo and

Hamaguchi, 2002; Liu and Goree, 2005, 2008), phase transition (Hamaguchi

et al., 1996, 1997; Ashwin and Ganesh, 2009) and collective behavior (Ohta

and Hamaguchi, 2000b) in strongly coupled complex plasmas. There exists,

however, a class of problems in complex plasmas where such a “first prin-

ciples” study has so far, remained elusive. These are the “hydrodynamic

instabilities”- a subject traditionally studied only through continuum meth-

ods. Recently, some of these hydrodynamic instabilities such as “shear flows”

have been investigated at the most fundamental level of atomic motion by

MD simulations of complex plasmas, for details, see chapter 3 and (Ashwin

and Ganesh, 2010a,b, 2011b). In these works, it was noticed, that in addi-

tion to generation of coherent structures, shear flows also lead to “particle

heat generation”. Such shear induced heat generation has been known to

cause solid to liquid phase transition in soft materials (Ackerson and Clark,

1981; Delhommelle, 2004) and complex plasmas (Nosenko and Goree, 2004).

Recently, shear induced melting has also been discovered in two-dimensional

(2D) Yukawa crystals, where a melting front was seen to propagate at trans-

verse sound speed (Feng et al., 2010). In the following section, we give details

of the MD simulations carried out in the present chapter.

6.2 Molecular dynamics

In a typical large scale MD simulation like ours, one can control the grain-

grain interactions using the switch ‘κ’ and obtain either ideal gas (κ → ∞)
or Coulomb gas (κ → 0) behavior. We recall that the length, time and

energy are normalized to a, Ω−1
pd and Q2/(4πǫ0a) respectively. The dust

plasma frequency is given by Ωpd = [Q2n/(4ǫ0ma)]1/2, where n and m are
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the 2D dust number density and mass of the dust grain respectively. We

take a total of 2.304 × 105 grains for the 2D Yukawa liquid and periodic

boundary conditions are employed along x̂ and ŷ. The number density n of

the Yukawa liquid is taken to be 1, which gives us a square region of size

L = 480, centered at the origin (0, 0). The value of screening parameter κ

in our simulations is taken to be 0.5. The Yukawa liquid is first thermally

equilibrated by connecting to a Gaussian thermostat (Evans et al., 1983)

and letting it evolve canonically for 200ω−1
pd . A standard leapfrog integrator

with a time step ∆T = 0.01ω−1
pd is employed such that the fluctuation in

total energy ∼ 10−5% without the thermostat over a typical run duration of

1000Ω−1
pd . In the following section we report our results on Kelvin-Helmholtz

instability due to a double step velocity profile.

6.3 Kelvin Helmholtz instability

The initial equilibrium is a thermally equilibrated Yukawa liquid at a desired

Γ along the with the following step velocity profile superposed on grain ve-

locities (only once at t = 0). Thus we have in Cartesian coordinates (x, y):

Vx =







+V0, |y| ≥ L/4

−V0, |y| < L/4
Vy = 0.0 (6.1)

where V0 = 1 is the magnitude of imposed velocity. The adiabatic sound

speed of the system on this scale is cs ≈ 2.4 and the thermal speed is about

vth =
√

2/Γ ≈ 0.13, at Γ = 120. Hence, our profile V0 is “subsonic” in

nature. In Figure 6.1, we show time evolution of KH instability starting

from an equilibrated liquid at Γ = 120 and shear profile (Equation 6.1). A

grain at time t = 0 (when the shear is imposed) is colored blue if |y| ≥ L/4,

else colored green. One can clearly see the development of KH instability and

the roll up of vortices in the nonlinear regime eventually leading to turbulent

mixing of the liquid. In the following section we present the time evolution

of local vorticity ω and local flow field v.
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Figure 6.1: Blue colored fluid moves in the +x̂ direction and green
colored fluid moves in −x̂ direction. Starting from a initial background
Γ = 120, the snapshots are shown for the full system (±240,±240) at
different times. The development of KH instability leads to formation
of vortices in the nonlinear regime. At late times t ≥ 800, one can see
the emergence of large coherent vortices due to inverse cascade which is
typical of 2D turbulence [see Figure 6.5 for more detail].

6.4 Vorticity field

The development of KH instability leads to a nonlinear regime which is char-

acterized by the formation of vortices. In Figure 6.2, we show a snapshot at

t = 400 with well developed vortices in the nonlinear regime. The magnitude

of local vorticity (ω = ∇×v) is indicated on the vertical colorbar, where blue

and red regions correspond to negative and positive values respectively. To

construct local vorticity ω, we first obtain the local velocity v by “fluidizing”

grain velocities over a 45×45 grid. This amounts to a local averaging of grain
velocities to obtain the fluid velocity at a grid point. The superposed white
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Figure 6.2: Vorticity field (ω = ∇ × v) for the entire system
[±240,±240] shown at time t = 400 in the nonlinear regime. One can
clearly see the developed vortices. Grain velocities in the region are flu-
idized through a 45 × 45 grid to construct local vorticity. Blue and red
regions correspond to negative and positive vorticity respectively and
the color-map label shows the magnitude of local vorticity. Arrows in-
dicating direction of local velocity are obtained by fluidizing the grain
velocities over a 60×60 grid. Arrow lengths give magnitude of local flow
field qualitatively.

arrows showing the local flow direction are similarly obtained from a 60× 60
grid. In Figure 6.3, we show the time evolution of this vorticity field through

a sequence of vorticity (ω) snapshots for the full system (±240,±240). At
late times t ≥ 800, one can clearly see the emergence of giant vortices due to

inverse cascade of KH modes which is typical of 2D turbulence. In the fol-

lowing section, we present a discussion on the topology of this 2D turbulent

field using the Okubo-Weiss criterion. The resulting Okubo-Weiss param-

eter Q can then be used to divide the turbulent field into either “rotation

dominated” or “deformation dominated” regions.
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Figure 6.3: Snapshots showing vorticity (ω = ∇×v) contour plots for
the full system (±240,±240). For details on extraction of ω and v, see
Figure 6.2 caption.
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Figure 6.3: Continued

6.5 Topology of turbulent mixing

One can simplify the partition of a 2D turbulent field by distinguishing the

contributions of rotation and deformation to the square of velocity gradient.

This is done by writing,

||∇v||2 = 1

2
(ω2 + s2) (6.2)

where v is the Eulerian velocity field, ω refers to the vorticity and s to the

deformation, i.e

ω = ∂xvy−∂yvx, s2 = s21+s
2
2, s1 = ∂xvx−∂yvy, s2 = ∂xvy+∂yvx (6.3)
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Under the assumption that vorticity and strain (i.e spatial derivatives of

velocity) are slowly varying with respect to the vorticity gradient, the La-

grangian evolution of ∇ω is then given by a linear differential equation whose

solution is (Okubo, 1970; Weiss, 1991; Elhmaidi et al., 1993)

∇ω ≈ exp(±1
2
Q1/2t) (6.4)

where Q = s2 − ω2. Even though Weiss approximation holds in the limit of

vanishing viscosity, it has also been used by several authors in presence of

finite viscosity (Rivera et al., 2001; Perlekar and Pandit, 2009). The Okubo-

Weiss parameter Q provides a simplified picture of 2D turbulence by an ele-

mentary partition of the field into two distinct domains, namely (a) “elliptic

domains” (Q < 0), where rotation dominates deformation, ω2 > s2, and

(b) “hyperbolic domains” (Q > 0) , where deformation dominates rotation,

ω2 < s2.

Figure 6.4 shows contour plots of Q(x, y) at different times for the corre-
sponding vorticity field shown in Figure 6.3. Based on the local value of Q,
we identify three regions, namely (a) vortex cores, which are characterized

by strong negative values of Q, (b) strain cells surrounding the vortex cores,
which are characterized by large positive values ofQ, and (c) the background,
where Q fluctuates between positive and negative values. Depending on the

sign of Q, the background field may be further divided into non-coherent el-
liptic and hyperbolic patches. As the vortex cores show up in stark contrast

to the background field, a Q map is sometimes also used to count the number

of vortices or coherent structures in the liquid. In the following section we

present a quantitative analysis of inverse cascade of KH modes using Fourier

transform of ŷ averaged kinetic energy.

6.6 Inverse cascade of KH modes

To further characterize the KH instability in detail, we obtain the power

spectrum of modes as follows: On the 2D simulation box, we construct a

(60×60) grid and calculate the ŷ averaged kinetic energy at various locations
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Figure 6.4: The field of Okubo-Weiss parameter Q (×10−3) at corre-
sponding times for the vorticity field shown in Figure 6.3. The positive
(“hyperbolic domain”) and negative values (“elliptic domain”) of Q are
indicated on the vertical colorbar.



6.6 Inverse cascade of KH modes 103

Figure 6.4: Continued

along x̂

Ēk(x) =
1

L

∫ L/2

−L/2

Ek(x, y)dy (6.5)

where Ek(x, y) is the kinetic energy per grain at the grid location (x, y). By

taking Fourier transform of this ŷ averaged kinetic energy Ēk(x), we get the

power spectrum of modes as follows:

Ek(mn) =

∫ ∞

−∞

Ēk(x)exp

(

i
2πmn

L
x

)

dx (6.6)

where mn is the mode number. In Figure 6.5, we show the power spec-

trum (normalized to the maxima) at similar times and quantitatively show

inverse cascade of energy towards large scales (smaller mn) which is typical
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Figure 6.5: Power spectrum (normalized to the maxima) plotted at
various times show the emergence of dominant mode mn = 1 at late
times. The initial excitation is random which is shown in the panel at
t = 20. This inverse cascade of randomly excited modes to a dominant
large scale structure (mn = 1) at t ∼ 980 is typical of 2D turbulence.

of 2D turbulence. This inverse cascade of KH modes is seen to concurrently

evolve with the spatio-temporal growth of a nonlinear heat front, which is

the subject matter of the following section.

6.7 Development and growth of heat front

At the smallest scales, particle heat generation due to velocity shear leads

to the development of a heat front. The propagation of this heat front is

elucidated through a time sequence of Γ contour plots as shown in Figure

6.6. A typical instantaneous plot of Γ(x, y) field is obtained as follows:

Γ(x, y, t) =
1

∑N
i

1
2
(vi − v̄)2

(6.7)
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Figure 6.6: Γ contour plots at different times showing the spatio-
temporal growth of heat front (Ashwin and Ganesh, 2011a). It is easily
seen that the development of heat front follows the spatial profile of
coherent structures as seen in Figure 6.3
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Figure 6.6: Continued

where vi is the velocity of i
th grain in the bin at location (x, y) on the 45×45

grid. N and v̄ are the total number of grains and average velocity in the

specified bin. The spatio-temporal growth of heat front reveals particle heat

generation - an effect of velocity shear. In Figure 6.6, we see the spreading

of hot regions due to particle heat generation. At t = 20, this hot region

is confined close to the shear layer at y = ±120. In the nonlinear regime,
a spatial growth (“widening”) of this hot region continues due to velocity

shear close to vortex boundaries. Interestingly, while part of flow energy is

transferred towards the largest possible length scale due to inverse cascade

(see Figure 6.3 and 6.5), at the smallest scale there is also a simultaneous

transfer of this flow energy into thermal velocities of grains.

The temporal evolution of thermal kinetic energy of the liquid can be ob-

tained by constructing a spatial average of instantaneous Γ(x, y, t) as follows:
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Figure 6.7: Plot of 〈Γ〉xy at different times for the full system
(±240,±240). The rise in thermal kinetic energy (fall in Γ) is easily
seen from this figure.

���� ���� � ��� ���
�

�

��

��

��

��

���

���

���

�
��
� �

�
�

����

�����

�����

Figure 6.8: Profiles of the coupling parameter as function of y at x = 0:
Γ(y)x=0 at different times. The initial state is a uniform Γ = 120. These
profiles show the propagation of heat front corresponding to the first
three panels of Figure 6.6. Dashed lines show the location of initial
shear layer at y = ±120.
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Figure 6.9: Time evolution of “full width half maxima” (FWHM) of
Γ(y)x=0 in the linear regime. Dashed line shows a linear fit having slope
vhf , which is the propagation speed of the heat front.
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Figure 6.10: Time evolution of spatially averaged density variation
normalized to initial background density (n0). It is clearly seen that the
peak density variation is around 4% which is observed close to t ∼ 800.
At such late times, inverse cascade has already resulted in the formation
of large scale coherent structures in the liquid [see Figure 6.3]
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〈Γ〉xy(t) =
1

L2

∫ ∫

Γ(x, y, t)dxdy (6.8)

where 〈. . . 〉xy correspond to instantaneous spatial average over the entire 2D
system. In Figure 6.7, we show a plot showing the time evolution of 〈Γ〉xy.
The generation of heat in the system is evident from the fall of 〈Γ〉xy in time.
It should be noted that the total energy of the 2D Yukawa liquid

E = 0.5

[ N
∑

i

vi
2 +

N
∑

i�=j

1

rij
exp(−κrij)

]

(6.9)

remains conserved upto 10−5% throughout the simulation (not shown here).

To further elucidate this spatio-temporal growth of heat front, we obtain the

profile of Γ as a function of y at x = 0 and plot this at various times (see

Figure 6.8). One can clearly see the propagation (“widening”) of heat front

starting from a thermally equilibrated background at t = 20. To aid the

reader, we have shown the location of initial shear layer (y = ±120) with
vertical dashed lines.

The propagation speed of the heat front can be obtained by from the

time evolution of “full width half maxima” (FWHM) of Γ(y)x=0 in the linear

regime (see Figure 6.9). The dashed line shows a linear fit, the slope of which

gives the propagation speed vhf of the heat front. In our normalized units

vhf ≈ 0.34, which is much lesser than the adiabatic sound speed cs ≈ 2.4

at background Γ = 120. As shown in Figure 6.6, beyond this linear regime,

structures begin to develop in the the heat front and it no longer remains

symmetric about x̂ or ŷ. As time evolves and the heat front propagates

nonlinearly, one can clearly see the local modulation of grain number density

n(x, y). The deviation from incompressibility can be quantified by taking a

spatial average of density variation normalized to background density n0 = 1

(in normalized units n0 = 1) as follows:

〈∣

∣

∣

∣

∆n

n0

∣

∣

∣

∣

〉

xy

(t) =
1

L2

∫ ∫
∣

∣

∣

∣

n0 − n(x, y, t)

n0

∣

∣

∣

∣

dxdy (6.10)
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Figure 6.11: Snapshots of density profile n(x, y) for the full system
(±240,±240) shown at different times. As the heat front evolves (see
Figure 6.6), hot zones expand in size and push grains into nearby cooler
zones. This is evident from the reduced densities in hotter zones com-
pared to cooler zones.
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Figure 6.11: Continued

In Figure 6.10, we plot the time evolution of 〈|∆n
n0

|〉xy and see that the peak
value of density variation is around 4% at t ∼ 800. At such late times,

large scale coherent structures “vortices” have already been formed due to

inverse cascade [see Figure 6.3]. The development of heat front and its spatio-

temporal growth is also manifested in Figure 6.11, where we show the time

evolution density contour plots. One can clearly see the development of

both low and high density zones as the time evolves. These zones are the

manifestations of onset of hot and cool regions respectively. This is because

these hot zones push the particles towards comparatively cooler zones.

6.8 Summary

For the first time, using large scale MD simulations, we have reported, the

coevolution of inverse cascade and spatio-temporal growth of a heat front in
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parallel shear flows of strongly coupled Yukawa liquids. At a given coupling

strength, a subsonic shear profile is superposed on an equilibrated Yukawa

liquid and KH instability is observed. The onset of nonlinear regime of the

instability is observed by emergence of coherent vortices. The characteriza-

tion of these coherent vortices is done through grain color coding, contour

plots of vorticity ω and Okubo-Weiss parameter Q. Inverse cascading of KH
modes towards the largest scales is shown quantitatively. Concurrently, it is

seen that shear flows lead to generation of heat at the smallest scales (“par-

ticle level”) resulting into the formation of a heat front. The spatio-temporal

growth of this heat front is elucidated through the contour plots of inverse

temperature Γ and grain density n. It is seen that the heat front propagates

at speeds much lesser than the adiabatic sound speed of the system for the

initial equilibrium chosen. It will be interesting to perform the present shear

flow studies at supersonic speeds, a subject which we defer for future work.

In the following chapter, we present a summary of the work done in this

thesis.



Chapter 7

Conclusions

The present thesis investigates large scale hydrodynamic flows in complex

“dusty” plasma through “first principles” classical MD simulations. To this

end, a parallel Multi Potential Molecular Dynamics (MPMD) code is de-

veloped using C language (Ashwin and Ganesh, 2009). The code can han-

dle Lennard Jones, Yukawa and Tersoff-Brenner potentials. For the case of

Yukawa liquids, the code is benchmarked exhaustively against several known

results (Donko et al., 2008). The prototype system used in the all the fluid

dynamics studies reported here is a 2D strongly coupled Yukawa liquid. The

results reported here are exact numerical solutions to the N body problem

and hence “first principles” in nature. Wherever possible, comparison be-

tween MD results and a generalized hydrodynamic (GH) model is presented.

In the following, we present a detailed discussion of the results and scope for

future work in the present thesis.

7.1 Results

The thesis work begins with the development of the MPMD code. Chapter

2 presents the computational methods used in the code in full detail. The

code is benchmarked against several known results such as dispersion rela-

tions shown in (Donko et al., 2008). Presently, the code can handle Yukawa

and Lennard-Jones inter-atomic potentials. Boundaries can be easily imple-



114 Conclusions

mented in both periodic or hard walls fashion. MPMD can simulate various

thermodynamic ensembles such as NVT, NVE, NPT by employing a Gaus-

sian thermostat (Evans et al., 1983) and an Andersen barostat (Andersen,

1980). To capture the underlying physics, several statistical mechanics and

fluid dynamics diagnostics are developed. A test problem is then undertaken

where we study the effect of a small external drive on a strongly coupled

Yukawa solid. In particular, we report for the first time, extensive equilibrium

and non-equilibrium molecular dynamics simulations on 3D Yukawa systems

with periodic boundary conditions along x̂, ŷ and ẑ, under a small external

drive. The form of the drive taken is given by V = V0cos(kLz)Θ(t−t0), where

Θ(t−t0) is a Heaviside step function in time and kL = 2π/L, L being the size

of the system. The long-range nature of the force and the periodic bound-

aries were properly handled by including Ewald sums. The initial state of the

system of 432 particles is a regular BCC state. We then apply a small exter-

nal drive and observe the melting of the system. After the initial transients

die down we measure statistical properties like the self diffusion coefficient,

mean square displacement and Fourier transformed velocity auto-correlation

functions. The solid to liquid melting transition is discussed on the basis of

these statistical properties and a mechanism for melting is proposed based

on local heating in the system in regions where the magnitude of forces are

maximum. We also qualitatively explain the decrease in melting times with

increasing the magnitude of external drive V0. For a given (Γ, κ) pair, we

have found a critical amplitude of external drive V c
o below which there is

no transition. This critical amplitude (V c
0 ) depend on the location of the

Yukawa system in the (κ,Γ) phase space. It is seen that for larger Γ, the

value of V c
0 is larger. The melting problem addressed in this chapter serves

as a benchmark for all the diagnostics of the MPMD code which is then used

to study large scale hydrodynamic phenomena in subsequent chapters.

In chapter 3, we present the results of our first fluid dynamics study in

complex plasma- the “Kelvin Helmholtz (KH) instability”. For this, we take

2.5×105 grains in a simulation square box of size 640a and density n = 1/a2,
where a ≈ 0.4 mm. This corresponds to a region size 26cm. Such a system

size is comparable to the macroscopic length scales usually seen in labora-
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tory experiments. Starting from a thermally equilibrated strongly coupled

Yukawa liquid, we report for the first time, KH destabilization of a double

step velocity shear profile (Ashwin and Ganesh, 2010a). The linear growth

rates (γ) are directly computed from MD simulations and vortex roll forma-

tion in the non-linear regime is reported. The most interesting feature we

notice here is the increase of instability growth rate with strong coupling.

We also observe inverse cascading of the modes in time. For a comparison,

growth rate spectra of KH instability has been obtained analytically using

a generalized hydrodynamic (GH) model (Ashwin and Ganesh, 2010b). To

this end, we have performed a linear stability analysis of the GH model equa-

tions using the assumption of incompressibility. The growth rates obtained

from the linear stability calculations are compared with the MD simulations

and the agreement is seen to be only qualitative. Inclusion of the effect of

shear heating as an effective coupling parameter Γe appears to improve the

quantitative comparison as well. However, we find a general disagreement

between GH and MD growth rates at high mode numbers for all values of

Γe. This could be due to the limitations of the GH model especially the

uncertainties in the determination of viscosity η(Γ) and viscoelastic relax-

ation time τm. The emergence of coherent vortices in the nonlinear regime of

KH destabilized flows motivates one to think of the stability of an isolated

coherent vortex, which is the subject matter of the following chapter.

In chapter 4, we present the results of our second study, namely “ax-

isymmetric flows” in complex plasma. Here, we demonstrated for the first

time, through large scale MD simulations, the emergence of isolated coherent

tripolar vortices from the decay of unstable axisymmetric flows in strongly

coupled Yukawa liquids (Ashwin and Ganesh, 2011b). Linear growth rates

of the instability are directly obtained from “first principles” MD simula-

tions and emergence of coherent tripolar vortices in the non-linear regime is

reported. The tripoles formed are very robust and persist for several eddy

turnover times. An attempt is made to compare the growth rates obtained

from MD simulations with the GH fluid model. Our work expands the pos-

sibility of observing such tripolar vortices in laboratory experiments on com-

plex plasmas, condensed matter systems and astrophysical systems such as
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white dwarfs thereby vastly extending the generality of the phenomenon. In

this chapter it was seen that a tripolar vortex under certain conditions can

spontaneously decay into a pair of dipolar vortices propagating in mutually

opposite directions. One naturally wonders if it is then possible to excite

such dipolar vortices from generic initial conditions and study their interac-

tions in a laboratory produced complex plasma. In the following chapter,

the emergence of dipolar vortices from the self organization of an initial jet

profile in a 2D strongly coupled Yukawa liquid is discussed in detail.

In chapter 5, we have reported, for the first time, through “first principles”

classical MD simulations, the formation and collision of dipolar vortices in a

prototype 2D strongly coupled Yukawa liquid (Ashwin and Ganesh, Under

Review). A dipolar vortex is seen to emerge from the self-organization of

an initial sub-sonic jet profile, and, in general, is seen to have a nonlinear

relation between vorticity and stream function. The dipoles formed are very

robust and our simulations reveal that a centered head-on collisions between

two such dipolar vortices results into exchange of partners but no mass is

exchanged. For such dipoles to exist for longer times, the neutral gas friction

needs to be small in value. At higher values of gas friction, the inertial effects

needed to sustain a dipole are rapidly quenched and the dipole is lost. Our

work suggests the possibility of observing such dipolar vortices and their

interactions in laboratory experiments on strongly coupled complex plasma

at low values of gas friction, thereby, vastly extending the generality of the

phenomenon.

In the foregoing shear flow studies, generation of heat is observed at the

particle level close to shear layers. Similar generation of molecular heat has

been observed in MD simulation of flows past an obstacle (Rapaport and

Clementi, 1986a; Rapaport, D. C., 1995). Recently, a study on the evolu-

tion of shear induced melting has been reported experimentally by Feng and

Goree (Feng et al., 2010), where they apply a sudden shear and observe the

spatiotemporal development of the melting front. Their experiments thus

corroborates our results on shear induced heating in both parallel and az-

imuthal shear flows. In chapter 6, perhaps for the first time, we report the

development and spatio-temporal growth of a heat front in parallel shear
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flows of strongly coupled Yukawa liquids (Ashwin and Ganesh, 2011a). At a

given coupling strength, a subsonic shear profile is superposed on an equili-

brated Yukawa liquid and KH instability is observed. The onset of nonlinear

regime of the instability is observed by emergence of coherent vortices. The

characterization of these coherent vortices is done through grain color cod-

ing, contour plots of vorticity ω and Okubo-Weiss parameter Q. Inverse
cascading of KH modes towards the largest scales is shown quantitatively.

Concurrently, it is seen that shear flows lead to generation of heat at the

smallest scales (“particle level”) resulting into the formation of a heat front.

The spatio-temporal growth of this heat front is elucidated through the con-

tour plots of inverse temperature Γ and grain density n. It is seen that the

heat front propagates at speeds much lesser than the adiabatic sound speed

of the system for the initial equilibrium chosen.

7.2 Future Work

As the present thesis focuses on “first principles” MD simulations of large

scale flows in Yukawa liquids, one can think of several possible improvements

in the present study. For eg. the inclusion of ion drag forces which result

from momentum transfer from the flowing ions to charged dust grains. This

can be an exceptionally important factor in complex plasmas. Ion flows are

usually induced due to “global” large scale electric fields that can be either

caused by natural inhomogeneities in a discharge plasma (ambipolar fields)

or induced by external forces to manipulate dust grains. For typical exper-

imental conditions the ion drag is pointed in the direction opposite to the

electric force, and their competition usually determines global structures in

complex plasmas (Goree et al., 1999). It can also result from the electric

field that originates from the sheath where dusty plasma layer is formed due

to the balance of gravity and cathode bias. The sheath is negatively charged

and hence attracts ions at near acoustic speeds and hence the ions flow in and

around the dusty plasma layer. The effect of ion drag forces leads to a new

binary class of interaction such as an asymmetric Yukawa potential (Kom-

paneets et al., 2009). It will be interesting to study the phase transition and
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hydrodynamic phenomena reported in the present thesis using this asymmet-

ric Yukawa potential. The presence of temperature gradient in the neutral

gas can also exert thermophoretic forces on the dust grains, which if included,

can yield interesting consequences on the dynamics of dust grains and may al-

ter the instabilities studied so far in the present thesis. One can also think of

including the self consistent interaction between dust grains, ions, electrons

and neutrals- an approach that will require massive computational power.

Including a size distribution of dust grains instead of using point masses as

in the present thesis may also lead to interesting consequences. The present

code can also be easily modified to simulate ultra cold neutral (Killian et al.,

1999) and ion-ion (Kanakasabapathy et al., 2001) plasmas.

In the following we list some of the possible future directions leading from

the present thesis.

• Following the results for the driven Yukawa solids shown in chapter 2, one
can think of several problems, such as, the effect of external drive at multiple

values of forcing scale kL, scaling of critical amplitude V
c
0 with the screening

parameter κ, and characterization of the nature of transition of Yukawa solid

to a strongly correlated liquid. As a comparison, more rigorous potential

models, such as the asymmetric Yukawa potential (Kompaneets et al., 2009;

Ivlev et al., 2008) can be employed to study similar phenomena.

• In the area of parallel shear flows (see chapter 3), one can perform the

stability analysis of the nonlinear GH model (Frenkel, 1946) and compare

with growth rates directly obtained from MD simulations. It will be also

very interesting perform such shear flow studies at supersonic speeds.

• In the context of centrifugal flows (see chapter 4), several important ques-
tions can be addressed, such as, the enhancement of transport length scales

due to these coherent tripolar vortices, inertial power laws and inverse cas-

cade phenomena in 2D turbulent strongly coupled liquids.
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• Following the results on dipolar interaction studies shown in chapter 5,
one can think of constructing Lamb like solutions (Lamb, 1932) and per-

form a nonlinear simulation of interacting jets using a lower dimensional

generalized hydrodynamic model. It will be also very interesting to per-

form such dipole interaction studies at supersonic speeds. From our large

scale MD simulations, the fluidization process yields a nonlinear relationship

between fluid vorticity and stream function (See Figure 5.4, for example).

Within the screened GH model, vorticity and stream function are related

by: ∇2Ψ − κ2Ψ = ω = ωfit, where ωfit is obtained from MD simulations.

This nonlinear elliptic equation in Ψ if solved numerically would yield the

structure of the coherent structure in the strongly coupled limit.



Appendix A

A.1 Gaussian Thermostat

Enforcing constant temperature amounts to introducing a nonholonomic con-

straint into the equations of motion in order to fix the kinetic energy and

hence temperature. This is essentially a mathematical thermostat (Evans,

1983). The justification for this approach comes from the Gauss’ principle

of least constraint (Evans et al., 1983), which states that the following sum-

mation
∑

imi(r̈i − Fi/mi)
2 is minimized by the constrained motion. The

equilibrium properties of this isothermal system can be shown to be those of

the canonical ensemble(Evans and Moriss, 1984), but the dynamics must be

handled with care especially if there are any macroscopic flows in the system,

as the motion is no longer Newtonian. Since there are 3N degrees of freedom

(ignoring the three lost to momentum conservation for 3D and two for 2D

systems), the constraint equation taken to impose constant temperature is

1

2

N
∑

i

ṙi
2 = NEk (A.1)

The constrained equation of motion is

r̈i = Fi/mi + αṙi (A.2)
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and since Ėk = 0, and hence
∑

i
˙ri · r̈i = 0, it immediately follows that the

value of the Lagrange multiplier α becomes

α = −
∑

i ṙi · Fi

m
∑

i ṙi
2 (A.3)

This constant temperature approach can also be combined with the leapfrog

integrator as follows, see for eg. (Brown and Clarke, 1984)

ṙi(t+∆t/2) = (1 + α∆t)ṙi(t−∆t/2) + ∆t(1 + α∆t/2)Fi(t) (A.4)

where α = −∑

i ṙi(t)·Fi(t)/
∑

i ṙi(t)
2, and ṙi(t) = ṙi(t−∆/2)+(∆t/2)Fi(t).

For further details regarding implementation in numerical codes, the

reader should refer to (Rapaport, D. C., 1995) - an excellent recipe book

for classical molecular dynamics methods.

A.2 Berendsen Barostat

Coupling to a constant pressure bath can be accomplished by adding an extra

term to the equations of motion that affects the pressure change.

(

dP

dt

)

bath

=
P0 − P

τP
(A.5)

The pressure is given by

P =
2

3V
(Ek − Ξ) (A.6)

where Ξ is the internal virial for pair-additive potentials

Ξ = −1
2

∑

i<j

rij · Fij (A.7)

where rij = ri − rj and Fij is the force acting on particle i due to j. Since

intramolecular contributions to the pressure vanish, in molecular systems

Equations A.6 and A.7 can be evaluated using only the center of mass coor-
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dinates and velocities and forces acting on the centers of mass. A pressure

change can be accomplished by changing the virial through scaling of in-

terparticle distances. A simple proportional coordinate scaling, concomitant

with volume scaling, minimizes local disturbances (Berendsen et al., 1984).

So an extra term in the equation of ẋ = v is added, proportional to x:

ẋ = v + αx (A.8)

while the volume changes accordingly:

V̇ = 3αV (A.9)

The pressure change is related to the isothermal compressibility β:

dP

dt
= − 1

βV

dV

dt
= −3α

β
(A.10)

Along with Equation A.5, this determines α:

α = −β(P0 − P )/(3τP ) (A.11)

Thus the modified equation of motion is

ẋ = v − β(P0 − P )x

3τP
(A.12)

Hence, a proportional scaling of coordinates and box length l (assuming an

isotropic system in a cubic box) per time step from x to µx and l to µl with,

to first order in ∆t,

µ = 1− β∆t

3τP
(P0 − P ) (A.13)

An equivalent expression to the same order is

µ =

[

1− ∆t

τP
(P0 − P )

]1/3

(A.14)
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The compressibility, that may not accurately known, appears in the expres-

sion for the scaling factor µ. Since an inaccuracy in β only influence the

accuracy of the noncritical time constant τP , the imprecision of β is of no

consequence for the dynamics (Berendsen et al., 1984). If β is not known

for the potential model that is used in the simulation, it is sufficient to use

an experimental value for the physical system that is approximated by the

simulation.

A.3 Ewald sums

We follow references (Salin and Cailol, 2000) and (Mazars, 2007) to develop

the numerical scheme of our MD simulation. Consider a system of N atoms,

each of which now carries a charge. A periodic array of replicated systems

is created, in the spirit of the periodic boundary conditions to mimic an

infinitely large system, but now, because of the long-range nature of the

interactions, the energy of the replicated system includes contributions from

all replicas since no truncation is imposed. The interaction energy is now

given as

φ(r) = φ(|r|) +
∑

n�=0

φ(|r + nL|) (A.15)

with φ(r) being the Yukawa potential in Equation(2.1). L is the size of the

simulation box and n = (nx, ny, nz). The contribution from replicated sys-

tems becomes important especially if the Debye screening length λD becomes

comparable to or greater than size of the simulation box L. The above men-

tioned potential represents the interaction energy of particle i with particle j

(at separation r = rj −ri ) and with all the periodic images of the particles.

The infinite sum in Equation(A.15) represents the contribution from all the

periodic images. In our MD simulations we calculate the total Ewald-Yukawa

potential energy of the system by rewriting it as

φ = φr + φk − φSelf (A.16)
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Here k = (nx, ny, nz)
2π
L
. The short range contribution to Eqn (A.16) is given

as

φr =
1

4

∑

ij

′

∑

n

erfc

(

α|rij + nL|+ κ

2α

)

exp(κ|rij + nL|)

+ erfc

(

α|rij + nL| − κ

2α

)

exp(−κ|rij + nL|) (A.17)

and the long ranged contribution

φk =
2π

V

∑

k �=0

exp

(

−k2+κ2

4α2

)

k2 + κ2
|
∑

i

exp(ik · ri)|2 (A.18)

and the self interaction is given as

φSelf =

[

α√
π
exp

(−κ2

4α2

)

− κ

2
exp

(−κ
2α

)]

(A.19)

In our simulations the summation over k in Eqn(A.18) is taken over 297

vectors subject to the constraint |n| =
√

n2
x + n2

y + n2
z <= 5. The value of

Gaussian width α is taken as 5.6/L (Salin and Cailol, 2000).

Though we have employed Ewald sums in our MD simulations, for large

system size (L) and large screening parameter (κ), Ewald sums are not nec-

essary (Liu and Goree, 2005).
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