STUDY OF SHEAR DRIVEN ELECTRON
MAGNETOHYDRODYNAMIC (EMHD)
INSTABILITIES IN PLASMAS

By
GURUDATT GAUR
PHYS06200704008

INSTITUTE FOR PLASMA RESEARCH, GANDHINAGAR.

A thesis submitted to the
Board of Studies in Physical Sciences

In partial fulfillment of the requirements
For the Degree of

DOCTOR OF PHILOSOPHY

of
HOMI BHABHA NATIONAL INSTITUTE

July, 2013



Homi Bhabha National Institute

Recommendations of the Viva Voce Board

As members of the Viva Voce Board, we recommend that the dissertation prepared
by Gurudatt Gaur entitled “Study of Shear Driven Electron Magnetohydrody-
namic (EMHD) Instabilities in Plasmas” may be accepted as fulfilling the disser-

tation requirement for the Degree of Doctor of Philosophy.

Chairman : Prof. Predhiman Kaw

Convener : Prof. Amita Das

Member : Prof. Abhijit Sen

Member : Dr. Sudip Sengupta

29.)0-2013

23-106- W3

. 29-/a-2013

: 29-10- 2013

Final approval and acceptance of this dissertation is contingent upon the can-

didate’s submission of the final copies of the dissertation to HBNIL.

I hereby certify that I have read this dissertation prepared under my direction
and recommend that it may be accepted as fulfilling the dissertation requirement.

&N\“A;’E V‘ 3 Date :

Guide : Prof. Amita Das

2R -16- 9013



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements
for an advanced degree at Homi Bhabha National Institute (HBNI) and
is deposited in the Library to be made available to borrowers under rules

ol the HBNI.

Briel quotations from this dissertation are allowable without special
permission, provided that accurate acknowledgement of source iz made.
Requests for permission for extended quotation [rom or reproduction ol
this mannseript in whole or in part may be granied by the Competent
Aunthority of HBNT when in his or her judgment the proposed use of the
material is in the interests of scholarship, In all other instances, however,

permission must be obtained from the anthor,

(Gust B

Gurudatt Gaur



DECLARATION

I. hereby declare that the investigation presented in the thesis has been
carried out by me. The work is original and the work has not been
submitted earlier as a whole or in part for a degree/diploma at this or

anv other Institution or University.

G@:---

Gurndatt Gaur



To my parents



ACKNOWLEDGEMENTS

It was hardly possible for me to complete this thesis without the precious
support of a number of people. T take this opportunity to express my deepest
gratitude to all of them.

I would like to start by thanking my thesis supervisor Prof. Amita Das for her
valuable guidance, scholarly inputs and consistent support and encouragement [
received throughout the tenure. She has been immensely patient in teaching me
basic tools and concepts of plasma physics, as well as ignoring my naive acts at
times. I largely owe it to her for whatever scientific understanding T have gained
so far. I thank her for introducing me to the beautiful world of plasma physics.

I also intend to thank chairman of my doctoral committee Prof. Kaw for his
kind association and invaluable time. I fall short of words to describe the great
help I received from him over the years. I also thank the other doctoral committee
members Prof. Abhijit Sen and Dr. Sudip Sengupta for monitoring the progress
of my thesis work. Special thanks are due to Dr. Sudip Sengupta for critically
reading my manuscripts and providing his valuable inputs.

I also owe many thanks to the faculty members Prof. Amita Das, Prof.
Raghvendra Sigh, Prof. Jha, Dr. R. Ganesh, Dr. Prabal Chattopadhyay, Dr.
Sudip Sengupta, Dr. S. Mukherjee, Dr. Joydeep Ghosh, Dr. Manoj Warrier for
providing excellent training during course work. I am specially thankful to Dr.
Prabal Chattopadhyay, who was the mentor of my project during the course work.
I express my sincere thanks to Dean Academic, Dr. Mukherjee who has always
offered the best to the students.

Stay at IPR was a wonderful experience in the company of many friends. I



am grateful to my batch-mates Tayyab, Sita, Kshitish, Ujjwal, Prabal, Deepak,
Vikram, Ashwin, Sanjib, Arvind and Linthish for their affection. The first year
days with them were the best fun. Unconditional support from Tayyab needs
special mention. I would also like to thank my seniors Vikrant, Maya, Kishor,
Anurag, Jugal, Sharad, Shekhar, Satya for their help and friendly attitude and
my juniors Sanat, Sushil, Rameshwar, Pravesh, Sayak, Manjit, Aditya, Soumen,
Vikram Dharodi, Rupendra, Neeraj,Vara for their love and support. I take this
opportunity to thank Vikrant for being a great moral support, in tough times too.

I extend my thanks to Sharad K. Yadav, Sita Sundar and Sarveshwar Sharma
for their association. With them, I could learn and do many things in this thesis.
Special thanks to Bhavesh, Sanat and Vikram Dharodi for proof-reading of the
thesis. Avadhesh also deserves a special mention for his timely help at several
occasions. I thank Sharad, Bhavesh, Sanat, Vikram Dharodi and Avadhesh again
for sharing their knowledge and experience during tea breaks. Thanks are also due
to Aditya for providing suggestions on the Introduction.

I would also like to acknowledge people from computer center especially Ms.
Sutapa Ranjan, Govind, Hemant, Shailendra and people from library especially
Ms. Pragnya Pathak, Shravan, Shilpa and Smita for their continuous help. Thanks
are also due to people from administration, accounts, stores, purchase and canteen
for their co-operation throughout my Ph.D., without which it would have been a
rather difficult task. Of course, the stay in the hostel would have been miserable
without the delicious food prepared by our cooks Jeevlal and his wife. They deserve
a big thanks for the good job. I also extend my thanks to Dept. of Atomic Energy,
Govt. of India for providing me all the required facilities at my workplace and for

the fellowship as well.



These were the blessings of my dear parents and best wishes of my family
members, that I could see the completion of my Thesis. I wish to thank them all.
I thank my father, for being the motivator, my mother, for being the inspiration
and family members, for always standing by my side. I thank my wife Jyoti for
taking care of our daughter Anwita and allowing me to focus. She also managed
my other responsibilities very well that really took burden off me. But hereafter,

"Hum Saath Saath Hain'.

Gurudatt Gaur



Contents

SYNOPSiS . . . . .. 2

List of Figures . . . . . . . . . . . . 16

1 Introduction 23
1.1 Objective and Motivation . . . .. .. .. ... ... ... ..... 23
1.2 Electron Magnetohydrodynamic (EMHD) Model . . . . . . ... .. 26
1.2.1  Brief Description of Model and Its Applicability . . . . . .. 26

1.2.2  Natural Scalesin EMHD . . . .. ... ... ... ...... 29

1.2.3 Nonlinear Solutions of EMHD . . . . . ... ... ... ... 30

1.3 A Review of Earlier Work on Shear Driven Instabilities in EMHD

Domain . . . . . . . . 31
1.4 Scope of the Thesis . . . . . . . .. .. .. ... . 35
1.5 Summary of Chapters . . . . . . ... ... ... .. 38

2 Role of Natural Length and Time Scales on Electron Magnetohy-

drodynamic Kelvin Helmholtz Instability: 2D Studies 44
2.1 Introduction . . . . . . ... 45
2.2 Governing Equations . . . . . ... .. Lo Lo 48
2.3 Roleof SkinDepth . . . .. ... ... ... .. .. ......... 50



2.4 Role of Whistler Waves . . . . . . . . . . . . . .. 54

2.4.1 Step Velocity Profile . . . . . ... .. ... ... ... .. %)
2.4.2  Velocity Profile with Finite Shear Width . . . . . . ... .. 59
2.5 Nonlinear Simulations . . . . . ... ... ... ... L. 61
2.6 Summary . o.o. ... e e 68
Interplay of Kelvin Helmholtz and Kink Modes: 3D Studies 71
3.1 Imtroduction . . . . . . . ... 72
3.2 Model and Governing Equations . . . . . ... ... .. ... ... 75
3.3 Linear Instability . . . . .. .. ... o oo 76
3.3.1 Local Analysis. . . . . . .. . ... Lo 7
3.3.2 Nonlocal Analysis: tanh-profile . . . .. .. ... ... ... 78
3.4 Nonlinear Simulations . . . . . .. .. ... ... 85
3.5 Summary ... ..o e 92

Stability of Isichenko Solutions of Electron Magnetohydrodynamic

Model Against Shear Driven Modes 94
4.1 Introduction . . . . . . ... 95
4.2 Solutions of 2D EMHD . . . . . .. .. ... oL 98
4.3 Nonlinear Simulations . . . . . .. .. ... ... 101
4.4 Discussion . . . . ... 105
4.5 SUMMATY . . . . v ot e 108
Summary and Future Scope 110
5.1 Summary and Conclusions . . . . . . . . .. .. ... ... ..... 110
5.2 Future Scope . . . . . ... .. 115

Bibliography . . . . . .. ... 117



SYNOPSIS

In this thesis, we study the collisionless instabilities driven due to the shear
in the equilibrium electron current. These are the instabilities of sheared electron
current configurations formed in a variety of physical situations e.g., fast z-pinches
[1, 2|, fast ignition phenomena of laser fusion [3, 4, 5, 6], collision less magnetic
reconnections |7, 8, 9, 10, 11|, plasma opening devices [12, 13, 14], inter planetary
current-carrying plasmas [15, 16| etc. In these configurations, with equilibrium
length scales smaller than the ion skin depth, the current flows faster than the
Alfven velocity. In these situations, ion response is ignored and a simplified Elec-
tron Magnetohydrodynamic (EMHD) model is evoked to study the stability of the
current configurations.

EMHD model is a single fluid description of plasma in which only electron dy-
namics is of importance and ions provide merely a static, neutralizing background
[17]. In our studies, the electrons have been treated as a cold, incompressible elec-
tron fluid of uniform density. In the cold fluid (plasma) description, effects due
to thermal motion of particles are neglected. This is valid when the phase veloc-
ities are much larger than the thermal velocity of particles. In this situation, the
corresponding velocity distribution function may be approximately a Dirac delta
function centered at the macroscopic fluid velocity.

Since ions are stationary in EMHD, the electron flow velocity ¢ is directly re-
lated to the current density as, J = —ned. In our case of uniform density electron
fluid, the shear in the current is due to the shear in flow velocity. The shear in
the current can also be generated due to the density gradient. However, the den-
sity gradient can not relax in a cold collisionless plasma so there is no free energy

available for the excitation of instability [18]. Further, it has been shown that the



presence of current gradient due to density gradient alone, is unable to excite the
instability. The free energy associated with the sheared flow configuration is nec-
essary for the instability. Thus in our case the shear driven instability is essentially
the velocity shear driven Kelvin Helmholtz (KH) instability. The KH instability
is one of the prominent neutral fluid instabilities [19, 20] which destabilizes the
interface separating the two fluids in relative motion. The development of insta-
bility leads to turbulence, transport of energy and momentum and dissipation and
mixing of fluids. Extensive work has been devoted in literature to the investigation
of 2D and 3D KH instability in the framework of EMHD |21, 22, 23, 24, 25].

The EMHD system closely resembles an incompressible hydrodynamic fluid
system with additional features associated with the magnetized character of elec-
tron fluid. The electromagnetic character of EMHD fluid manifests itself in terms
of natural length and time scales. Electron skin depth d, is the natural length scale
which arises on the account of electron inertia. Also, whistlers being the normal
oscillatory modes of EMHD introduce the natural time scale (whistler periods).
The neutral fluids, however, are devoid of any such specific length and/or time
scales. We investigated the role of these natural scales of EMHD on KH instability
in two dimensions. The perturbations are confined to the 2D plane consisting of
shear and flow directions in which the major action of KH instability lies. The self
consistent magnetic field, arising due to 2D sheared flow of electrons, is directed
along the symmetry direction. Role of electron skin depth on the KH instability
has been investigated and thereby a comparison between EMHD fluid and neutral
hydrodynamic fluid has been provided. The EMHD model, for scales shorter than
the electron skin depth, reduces to Navier Stokes (NS) equations in 2D for an

incompressible neutral hydrodynamic limit. For NS fluid case, plot of the growth



rate of KH instability is a universal curve for different values of shear width when
velocity is adjusted to accommodate for the length rescaling. However, it is ob-
served that the growth rate for EMHD fluid case decreases as the shear width is
increased in comparison to the electron skin depth. The instability is prominent
only when the shear scale in the electron flow velocity is shorter than the electron
skin depth. Moreover, the instability is of nonlocal type for finite shear width, as
outlined in earlier studies also |22, 23|; a physical understanding of this has been
provided in the Thesis.

We next study the role of whistlers on the 2D instability. The excitation of
whistlers requires a finite component of wave vector along the direction of magnetic
field. In earlier 2D EMHD studies of KH-like mode [22, 23], the equilibrium as well
as the perturbed magnetic fields were directed along the symmetry direction along
which no variations were permitted. Hence, whistlers were clearly not supported
in these studies. Whistler modes were supported in later 3D studies [24, 25].
In those studies, however, the propagation direction of whistlers was orthogonal
to the 2D plane in which KH action primarily occurs. To understand the role
of whistlers on the instability, we introduce a uniform external magnetic field
along the flow direction (in the plane of KH). In earlier studies, a single equation
describing the evolution of magnetic field component along the symmetry direction
was sufficient. However, we need to solve a set of coupled equations when whistlers
are permitted in the system. This is essentially due to the fact that whistlers
couple the in-plane magnetic field perturbations to the magnetic perturbations
along the symmetry direction. The action of KH distorts the magnetic field to a
sheared configuration. The tension caused due to the distortion tries to restore

the magnetic field configuration and sets up oscillations at whistler frequency. The



process of excitation of whistlers costs the energy and makes the KH instability
less favourable. The linear analysis shows that the growth rate reduces as the
magnetic field strength is increased.

Nonlinear simulations have been carried out to understand the role of whistlers
in the nonlinear regime of instability. For this purpose we use a nonlinear fluid
code which uses flux corrected transport algorithm. The code solves 2D EMHD
equations for tangent hyperbolic profile of equilibrium velocity. In the nonlinear
regime of instability, in the absence of By, a coherent vortex occupying the box
size is formed [23]. This is because of two non-dissipative square invariants namely,
energy and enstrophy, supported by two dimensional EMHD model. However, In
the presence of By, the nonlinear state is significantly changed from the ordered
state of By = 0 case. The long scale structures are formed only along the direction
of By and there is hardly any extension in structures along the transverse direction.
This induces anisotropy in the system. The observed anisotropy is a characteristics
of the nonlinear cascade mediated by whistlers [26, 27]. The nonlinear interaction
of whistlers produces diminishing wave number parallel to By. The perpendicu-
lar wave numbers, on the other hand, increase as the result of these interactions.
We provide a quantitative estimate of anisotropy in the Fourier spectrum of two
fields. Due to the anisotropic cascade, the KH instability induced mixing of the
fluids, flowing in two directions, around the shear layer is less. Consequently, the
flattening of shear layer is observed to be weaker. These studies on shear driven
instabilities in EMHD along with whistlers would be of relevance in a number of
physics situations. This kind of configuration is quite likely in laboratory exper-
iments 28, 29| where the plasma is confined with the help of an axial magnetic

field. Also the presence of electron beams in plasmas threaded by a magnetic field



is ubiquitous in nature. For instance, in ionosphere and magnetosphere [30], solar
corona [31] and pulsars [32], etc., the equilibrium configuration considered in our
work might exist.

We extend our studies to more realistic 3D instability. In the three dimensional
regime of instability, when the variations along the direction of self-consistent
equilibrium magnetic field are also allowed, a new mode exists in addition to KH
mode. This is a local mode, termed as the kink mode, which lies in the plane of
magnetic field and shear [24, 33]. The mode requires finite electron inertia and
is driven by the gradient in the equilibrium velocity, unlike the KH mode which
is driven by the curvature in equilibrium velocity. Since in EMHD, the shear in
velocity is analogous to current-gradient, the KH mode has also been identified
as current-gradient driven sausage mode. The interplay of two modes has been
studied under various physical conditions.

The shear width ¢ is varied in comparison with the electron skin depth d.. It
has been observed that sausage mode is dominant for sharper shear width while,
for broader shear width, kink is the dominant mode. This is consistent with the
fact that the 2D instability is prominent only when the shear width is sharper than
the electron skin depth. Stabilizing behaviour of uniform magnetic field along the
flow direction (denoted as By here) has been investigated for 3D instability. Local
analysis shows that it has no role on pure kink mode. However, it reduces the
growth rate of mixed mode. The field reduces the pure sausage growth rate and
hence dominant mode is kink in this case. Self consistent magnetic field was known
to have no effect on 2D instability when the variations were suppressed along its
direction. However, this magnetic field has stabilizing role on kink instability as

shown by local dispersion relation obtained in earlier studies [24]. An external



uniform magnetic field Cy along the direction of self consistent field would simply
add to it. This would make the excitation of kink instability difficult with no role
on pure sausage instability. This we indeed observe in our studies. The dominant
mode for this case is pure sausage mode. We also carry out the simulations of the
three dimensional instability with the help of a nonlinear fluid code. The linear
growth rates of instabilities calculated in various simulations with different values
of €, By and Cj are in agreement with linear theory.

The nonlinear state of instability is strongly turbulent in the 3D simulations,
unlike the two dimensional case. The generation of turbulence is attributed to
larger number of unstable modes in 3D and also non-existence of non-dissipative
integral invariants of 2D. The generation of electromagnetic turbulence due to the
action of shear driven instabilities has been shown to have important implications.
This leads to the anomalous stopping of energetic electrons moving towards core in
Fast Ignition, which are known to eventually create the ignition spot by dumping
their energy to the core [25]. Also, in collisionless magnetic reconnections [21],
the generation of turbulence may alter the mechanism by which the frozen in
field condition breaks in the dissipative regime. The reconnections may also be
facilitated by the anomalous viscosity and anomalous resistivity associated to the
turbulence generation.

We have analyzed the spectral cascade features of the turbulence generated in
the nonlinear state with and without Byg. In the absence of By, it is observed that
the spectral cascade towards shorter scales is inhibited along the direction of flow
as well as the direction of self-consistent magnetic field. The shortest scales are
thus found to generate along the shear direction while, in other two directions the

scales are typically longer. This induces significant anisotropy in the spectrum. In



simulations with the external magnetic field (Byg) present along the flow direction,
we observe that the scales along the shear directions are more or less unchanged.
However, along the other two directions, the scales are longer in comparison to the
case when this magnetic field is not present. These results are in conformity with
the whistler mediated spectral cascade features [26, 27|. We have also measured
the nonlinear broadening of shear layer which provides the information on the
effective viscous coefficient. The broadening of shear layer occurs much slowly for
the case when magnetic field is present along the flow directions. In that case, the
system evolution is governed by the kink mode which in the linear phase does not
alter the 2D flow structure. The broadening occurs only at later nonlinear phase
when the energy starts to trickle in other modes as well. We stress here that the
studies on interplay of two modes under various physical conditions is important
as it would largely affect the evolution of system, as discussed here.

The EMHD set of equations permits certain exact, nonlinear electron flow
solutions obtained by Isichenko and Marnachev as the isolated, coherent structures
[34]. The first variety of solutions are the rotating electron currents giving rise to
monopolar magnetic fields. These monopolar solutions are radially symmetric and
stationary solutions. The other variety includes the electron currents producing
bipolar magnetic fields. These dipolar solutions are radially non-symmetric and
propagate with constant speed in their axial direction. 2D evolution of monopoles
and dipoles has been studied extensively by several authors which suggests that
these structures are very robust and stable [35, 36]. The structures, specially
dipoles, are known to have important applications. Recently, the dipole structures
have been employed to simulate the behaviour of electron current pulses through

an inhomogeneous plasma medium [37, 38]. In an another study, Sharad et al.



[38] showed a novel mechanism, the formation of current shock, through which the
dipoles dissipate their energy and discussed the implications of their study to the
fast ignition [3, 4, 5, 6]. The similar current pulses can be found to get formed in
other phenomena such as fast magnetic reconnections [7, 8,9, 10, 11|, fast magnetic

field transport [39, 40], laser plasma interactions [41], etc.

We have investigated the instability processes, sausage and kink, for the Isichenko

solutions of EMHD equations. These solutions have regions where electron flow
velocity /current is significantly sheared and hence can be susceptible to the said
instabilities. As mentioned above, in their 2D evolution, the structures are very
robust and stable [35, 36]. These studies do not support the kink mode, and
the structures are stable to the sausage mode. The stability of structures against
sausage mode has been argued on the following basis. For the EMHD structures,
shear width as well as total extent of shear flow are typically of the order of elec-
tron skin depth. The total extent of shear flow limited in size does not permit the
wave number to satisfy the instability criteria of sausage mode viz., k,e < 1; here,
‘k,’ is the wavenumber along the flow direction and ‘€’ is the typical shear width
[42]. Hence the structures are found to be stable in 2D studies. The kink mode,
however, does not have to follow such restriction. It is thus of importance to know
if the structures are stable to this mode. To address this question, we performed a
three dimensional simulation study in which kink mode is also operative in addi-
tion to sausage mode. In simulations, the structures are seen to become unstable.
The destabilization of structures has been attributed to the presence of local kink
mode. The unstable behaviour of structures raises a question of their relevance in
various phenomena as described in earlier studies [36, 38|. The magnitude of insta-

bility growth rate needs to be 4taken into consideration along with the time scales

10



involved in the various phenomena to investigate the relevance of these structures.
A discussion on this issue has been provided in the thesis.

The thesis has been organized as follows. Chapter 1 presents the introduction
of the Thesis. In Chapter 2, we discuss the role of natural length and time scales
on shear driven 2D EMHD instability. Linear and nonlinear studies of shear driven
3D EMHD instability have been discussed in Chapter 3. In Chapter 4, stability
of Isichenko solutions has been investigated against various shear driven modes.

Finally, in Chapter 5, summary and conclusions of the Thesis have been outlined.
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Chapter 1

Introduction

The present thesis is devoted to the study of the current shear driven instabilities in
plasmas in the context of Electron Magnetohydrodynamics (EMHD). This Chapter
provides the objective and motivation for the studies compiled in the thesis. The
EMHD model, a review of earlier work and plan of the thesis are also presented in

this Chapter.

1.1 Objective and Motivation

Stability of sheared electron current configurations is a long standing topic in
theoretical plasma physics. The typical sheared configurations of electron current
are found to occur in many physical situations like, fast z-pinches [1, 2], fast ignition
phenomena of laser fusion [3, 4, 5, 6], collisionless magnetic reconnections |7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20|, plasma opening devices [21, 22, 23|,
inter planetary current-carrying plasmas [24, 25| etc. These current configurations
having equilibrium length scale smaller than the ion skin depth are amenable

to various instabilities. These instabilities lead to the evolution of the current
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configurations, sometimes to the point of complete destruction.

The equilibrium sheared electron current configurations are the characteristics
of low density plasmas in which the current flows faster than the Alfven velocity,
where the Magnetohydrodynamic (MHD) model [26, 27, 28| is not applicable.
In this scenario, we can ignore the ion dynamics and use a simplified Electron
Magnetohydrodynamic (EMHD) model of plasmas in which the overall dynamics
is governed by the motion of electron species only [29, 30, 31]. We shall provide
description of EMHD model in the next section of this Chapter. The instabilities
of current configurations considered here, are inertial scale instabilities driven by
the gradient in equilibrium current in dissipation less, homogeneous plasma density
regime. In EMHD, these current- gradient driven instabilities have been previously
considered by Califano et al. [32], where they have been broadly categorized as
tearing and bending instabilities. The first type of instability is the collisionless
tearing instability |7, 33] of thin current-sheets which leads to the reconnection of
magnetic field lines due to the effect of electron inertia. While, the second type of
instability bends the flow lines and leads to the vortex structures. The mode has
also been identified as the sausage mode [34]. Classification of these instabilities
can be understood from Fig. 1.1.

Apart from these instabilities, a non-tearing, inertial scale instability is known
which also falls in the category of current-gradient driven instabilities [35]. This
mode is driven by perturbations similar to tearing mode[Fig. 1.1], but unlike the
tearing mode it is a local mode and does not require reversed equilibrium magnetic
field configuration. We depict this mode as kink mode. In our studies here, we
focus only on the bending instability and the kink mode instability.

We note here that in EMHD, the electron flow velocity and the current velocity
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Plane of Tearing Instability
J‘;BO(;;) (magnetic field and shear)

;r

Plane of Bending Instability
= (flow and shear)
\

Z v,y (x)

Figure 1.1: The schematic describes tearing and bending modes depending upon
the orientation of perturbations relative to one dimensional equilibrium magnetic
field By(x)y. This magnetic field is created by an equilibrium electron flow vg(x)2
sheared along x direction. Perturbations lying in the vertical plane, containing
magnetic field with a null-line, give rise to tearing instability. When the angle
of perturbations is changed to lie in the horizontal plane of shear and flow, the
instability changes from tearing type to bending type. Both the instabilities are
driven by velocity shear or equivalently, current shear in system where electron
dynamical response is only of relevance.

are same as the ions merely provide a stationary neutralizing background. In
conventional MHD, the two are different. In view of this fact, the current gradient
driven bending instability is similar to the velocity shear driven Kelvin Helmholtz
(KH) instability of the electron fluid and vice versa. The KH instability destabilizes
the interface of two fluids in relative motion. The development of instability may

lead to turbulence, transport of energy and momentum and dissipation and mixing

of fluids. The instability has been thoroughly discussed in literature for ordinary
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hydrodynamic (HD) fluid [36, 37, 38] and MHD fluid [37, 39, 40, 41, 42]. The
studies on KH instability in the context of EMHD have been presented by several
researchers [34, 43, 44, 45, 46, 47, 48|. Many important features of the instability
have been reported in these studies. In this thesis, we explore the instability further
under certain additional considerations, which we shall discuss, in the later part

of the thesis, after providing sufficient background.

1.2 Electron Magnetohydrodynamic (EMHD) Model

We provide here a discussion on the EMHD model which has been employed for
our studies. First, we discuss the model in brief and its applicability to various
phenomena of plasma physics. And then we discuss some of its aspects, relevant

to the studies carried out in the thesis.

1.2.1 Brief Description of Model and Its Applicability

The EMHD model is a single fluid description of plasmas which considers electrons
as the only species in motion and magnetized [29, 30]. In EMHD model, an in-
compressible electron fluid in considered to be flowing against static, neutralizing
background of ions. The time scales are so fast that the inertial and magnetized
response of ions are ignored and the overall dynamics is governed by the motion of
electrons only. Thus, the model is valid only when the characteristic frequencies
are large compared to the ion plasma frequency and gyro frequency, and are small
compared to the electron plasma and gyro frequencies. The frequency range reads
as follows:

Wpi, Weig << W << Wpe, Wee
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Here, w,; = (4mne?/m;) are ion plasma frequency and electron plasma frequency
for j = i, e; respectively. Similarly, w.;(= eB/m;c) are the gyro frequencies for ion
and electron; m; are the mass for two species, c in the speed of light, n and B are
the typical values of plasma density and magnetic field respectively. Since the ion
dynamics is completely ignored, one needs to deal with electron fluid equations
only along with the Maxwell’s equations to derive the EMHD equations. In our
studies, electrons have been treated as a cold, incompressible electron fluid of
uniform density. In the cold fluid (plasma) description, effects due to thermal
motion of particles are neglected. This is valid when the phase velocities are much
larger than the thermal velocities of particles. In this situation, the corresponding
velocity distribution function may be approximately a Dirac delta function centered
at the macroscopic fluid velocity.

In EMHD, displacement current term is also ignored under the assumption
W << Wpe, %2;@ /wee which in turn gives an upper limit on characteristic frequencies.
Under this assumption, the density perturbations in electron fluid can be discarded.

The modified inequality can then be framed as,
Wiy Wei << W << min(wpe,wie/wce)

In terms of spatial scales, the EMHD model is applicable to the scales which are
shorter than the ion inertial scales and also the gyro-radius of ions. The spatial
scales may fall below the electron inertial scale (skin depth) but remain larger than
the Debye radius A\p. Also, EMHD being a fluid description, the kinetic scales
(particle orbit size of larmor radius) determine the lower bound of the length scale
below which the model is again not applicable.

Since ions are stationary, the electron flow velocity ¢ is directly related to
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current as, J = —net. In view of this definition and the assumptions discussed
so far, the coupled fluid-Maxwell’s equations lead to EMHD equations after some
algebraic manipulations. The EMHD model for collisionless, homogeneous plasma,

is cast in terms of dimensionless equations, as follows',

%(VZE—E) — Vx[ix (V2B - B)] (L1)

¢ = -VxB (1.2)

Here, length has been normalized by electron skin depth d.(= ¢/w,.), magnetic
field with some arbitrary value By, time with inverse of gyro frequency we.(=
eBoo/mc), and velocity field with electron Alfven speed we.d.. All the symbols
retain their meanings described as earlier. The first equation is the evolution of
the generalized vorticity Q(= V2B — E) which implies that generalized vorticity
is tied to the fluid flow, unlike the MHD, where it is magnetic field which is tied
to the flow of fluid (plasma). The second equation is Ampere’s relation, ignoring
the displacement current, which relates the flow velocity to the magnetic field. In
contrast to this, in MHD, flow velocity is related to magnetic field by an evolution
equation.

The prescribed length and time scale windows of EMHD make the model appli-
cable to physical systems comprising the fast time and short length scales like, as-
trophysical plasmas, earth’s magnetosphere, and laboratory plasmas. The EMHD
model has added much to the basic understanding of the phenomena of collisionless
magnetic reconnection [8,9, 7, 10, 11, 12, 13, 14], generation of large scale magnetic

field, and rapid dissipation of magnetic field energy in the context of astrophysical

IThe thesis does not contain the mathematical derivation of EMHD model. For complete
derivation of three dimensional EMHD equations and their reduction in two dimensions, reader
may look into Refs. [48] and [56].
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plasmas [49, 50]. The description of earth’s plasma sheet and magneto tail region
are other areas where the EMHD model has been applied [24, 25|. The model is
further exploited to explain the anomalous stopping of energetic electrons in the

fast ignition inertial confinement fusion scheme [47].

1.2.2 Natural Scales in EMHD

EMHD systems, unlike the ordinary hydrodynamic fluid systems, contain intrinsic
length and time scales associated to the magnetized character of electron fluid. We
discuss them as below.

Natural length scale: The EMHD systems contain the electron skin depth as the

intrinsic length scale. This is defined as d. = ¢/wy., where, ¢ is the speed of light
and wy, is the frequency of electron oscillations. The value of skin depth is finite
if the mass of electron is finite. In the inertia less electron limit, the value of
d. — 0 and in the case of neutral fluid d. — oco. Owing to the presence of this
intrinsic length scale, EMHD equations identify distinct spatial scale length regime
viz. kd. >> 1 (hydrodynamic limit) and kd. << 1 (magnetized fluid limit). In
the first limit, the inertial terms dominate the electromagnetic force terms in the
electron momentum equation and the system behaves hydrodynamically. In the
other limit, the electromagnetic force terms dominate the inertial terms and the
electromagnetic character of the electron fluid becomes important.

Natural time scale: In the presence of magnetic field, EMHD equations permit

whistler waves as the normal excitation mode. This wave requires a finite compo-
nent of the wave vector along the magnetic field. Whistler is a transverse circu-
larly polarized electromagnetic wave. These waves are analogous to Alfven waves

in MHD, but unlike the Alfven waves, are dispersive in nature. The natural time
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scale in EMHD is associated to the time period of Whistler waves.

These natural scales have many interesting roles to play on various EMHD
phenomena, some of those we discuss in this thesis. Role of these natural scales
on velocity shear driven Kelvin Helmholtz (KH) instability has been studied as a

major part of thesis work.

1.2.3 Nonlinear Solutions of EMHD

The EMHD system of equations closely resembles the ordinary HD fluid and
hence is susceptible to the characteristic instabilities of ordinary HD, e.g., Kelvin-
Helmholtz instability, Rayleigh-Taylor instability etc. The nonlinear features of
ordinary HD fluids like, turbulence generation and coherent pattern formation are
also displayed by EMHD systems. In a 2D system the conservation of energy and
enstrophy leads to the process of inverse cascade by virtue of which coherent pat-
terns are formed. The coherent structures have major role to play in determining
the transport properties of a system. They are also believed to cause the intermit-
tency in turbulence phenomena.

Coherent, nonlinear solutions of EMHD: In EMHD, the coherent structures man-

ifest themselves in the form of magnetic islands, current sheets, vortices etc., and
are found to be excited in various processes e.g., magnetic reconnections, Weibel
instability, in laser plasma interaction studies, in tokamak plasmas during electron
cyclotron resonant heating (ECRH) and laboratory experiments. Coherent struc-
tures can be best understood by finding the exact solutions of nonlinear equations.
These solutions were obtained by Isichenko et al. [51] as localized vortices for
2D EMHD system. The vortices are stationary monopoles and traveling dipoles.

Isichenko et al. obtained the analytical conditions for these solutions and also
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studied their stability. The solutions being very robust and stable have important
applications specially, the dipole solutions. The solutions contain the regions in
which the electron current is significantly sheared. It is, therefore, of importance
to know if these structures are susceptible to shear driven instability processes.

We address this question in the thesis.

1.3 A Review of Earlier Work on Shear Driven In-

stabilities in EMHD Domain

The studies on shear driven instabilities in EMHD regime have a very rich litera-
ture. We present, in this section, some of the prominent work in this area relevant
to the work carried out in the thesis.

Drake et al. [43, 44] have studied the stability of the current layers narrower
than the ion skin depth. A dispersion relation was derived, which shows that the
cross field gradient in current is required to drive the instability. It was also shown
that for ¢ < d,., the KH instability is dominant over kink instability while for
e > d., KH mode is stable and dominant instability is the kink instability. Here, €
is the shear width of current layer and d, is the collisionless electron skin depth. In
the 3D electromagnetic fluid simulations, the current layer breaks and evolves to a
strongly turbulent nonlinear phase. Bulanov et al. have shown the KH instability
of electron fluid vortices in their PIC simulation studies [52]. They have shown
the existence of magnetic vortices in the electron fluid generated in the wake of an
ultrashort, ultraintense laser pulse interacting with an underdense plasma. These
vortices are unstable to the electron KH instability if the separation between two

neighboring vortices is smaller than the electron skin depth. When the distance
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between the vortices is larger than the electron skin depth, the instability becomes
exponentially slow. The studies by Drake et al. and Bulanov et al., however,
are incomplete. Drake et al. have derived just an approximate local dispersion
relation which highlights very limited features of the kink instability. Moreover, in
nonlinear fluid simulations, only the widening of shear layer has been reported and
no discussion has been provided on issues like, saturation mechanism of instability,
modification of mean flow profile, characterization of turbulence etc. In the work
of Bulanov et al, the form of initial shear flow structure is not specific. Also, the
saturation mechanism of sausage instability were discussed very qualitatively. We
focus on some of these issues in our studies.

Das et al. [34] have carried out a systematic and detailed analytical study on
sausage-like instability of electron current channels. In the local analysis of EMHD
equations the configuration was found to be stable for sausage-like perturbations.
In the nonlocal analysis, they have derived the dispersion relation for two choices
of sheared flow profile: a step-function profile (zero shear width) and a piece-wise
linear profile (finite shear width). In the short wavelength limit, the instability
is essentially the KH instability of hydrodynamic fluid. However, in the long
wavelength limit, the instability has growth rate substantially different from hydro
fluids due to the magnetized character of electron fluid. The underlying physical
mechanism for instability and hence the differences in two cases of MHD and
EMHD was also discussed. Later, Jain et al. [45, 46, 47| carried out extensive
numerical work on the sausage and kink instabilities in EMHD. Their studies can
be summarized as follows. The development of sausage like structures is seen in
2D fluid simulations with growth rate agreeing with linear theory. The nonlinear

state is found to be coherent due to the presence of two non-dissipative square
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invariants namely, enstrophy and energy. The unstable modes cause the flattening
of equilibrium shear profile and hence the directed electron flow is reduced which
is related to the loss of electron kinetic energy. However, the reduction is not very
efficient because the instability saturates easily. The saturation of instability can
occur either by getting rid of curvature in equilibrium flow profile or by violating the
instability criteria k.e.fr < 1. Here, k, is the wave vector along the flow and €. is
the increased effective shear width due to the back reaction of instability. The full
three dimensional analysis shows that the instability criteria is much more relaxed.
Unlike the 2D case, the local modes are also unstable and the instability is driven
by the gradient rather than the curvature in equilibrium flow profile. Owing to
the increased number of unstable modes and absence of two non-dissipative square
invariants, the nonlinear evolution of instability leads to the turbulent state in
3D fluid simulations. The generation of turbulence leads to much more efficient
reduction in directed flow of electrons. The relevance of these studies was shown
in anomalous stopping of inward energetic electrons in fast ignition. The studies
by Das et al. and Jain et al. are extensive and cover many important linear and
nonlinear features of the shear driven instability. In our thesis, we further explore
the instability in 2D and 3D under certain additional considerations. We shall
discuss this in detail in the next section.

Califano et al. [32] have studied the linear dispersion equations and eigen struc-
tures of high frequency tearing-bending instabilities. These instabilities are driven
by the electron current gradient in an inhomogeneous magnetic field of the tangent
hyperbolic type. As the angle between the direction of propagation of perturba-
tions and the inhomogeneous magnetic field lines is varied, perturbations change

from tearing type (parallel propagation) to bending type (perpendicular propaga-
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tion). The tearing instability acts across the magnetic null line and and forms
the chain of magnetic islands. However, the bending instability is similar to KH
instability which bends the flow lines. At oblique propagation the tearing branch
develops asymmetric magnetic island and complex velocity patterns with channel-
like structure. A similar channel-like structure is seen in the bending instability
at oblique propagation. The tearing instability appears to be dominant in equi-
librium configuration with spatial scale-lengths longer than the skin depth. For
shorter equilibrium scale-length, the tearing and bending branches have compara-
ble growth rates. Lukin [35] has described a non-tearing inertial scale instability
which does not fall in the category of the tearing-bending instabilities. But, the
energy source of this instability also is the background current density gradient. It
is a local mode with perturbations similar to tearing mode i.e., k || Bo L Jo, and
requires no background magnetic field reversal unlike the tearing mode. Here, k is
the wave vector of perturbations, By is the equilibrium magnetic field and Jg is the
equilibrium current. An approximate analytical derivation of dispersion relation
for the instability was obtained. Further, from quasilinear numerical calculations,
the magnitude of the highest growth rate was shown to be independent of electron
skin depth d, and wave number k and to depend solely on the particular profile of
By(w), as long as d?B, /By >> 1. The occurrence of these modes has been shown
in magnetic reconnection phenomena via simulations where the instability mani-
fests itself as localized structures at the outflow side of magnetic separatrix. The
tearing-bending modes and the non-tearing kink mode were also described earlier
in section 1.1. The geometries can be understood from Fig. 1.1.

In EMHD, the electron flow shear driven instability has been identified as both

the velocity shear driven KH instability and current- gradient driven sausage and
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kink modes. This is because the electron flow velocity is related to the current
as, J = —net. The gradient in current can be generated due to velocity shear or
density gradient. However, Sita et al. [53] have shown that the free energy source
for the flow shear driven KH like instability is the kinetic energy of the electron
flow. The density gradient can not relax in a cold, collisionless plasma so there
is no free energy available to excite the instability. Thus, the presence of current
gradient due to density gradient alone is unable to excite the instability. We note
here that in our studies, in homogeneous plasma (electron fluid) density limit, the
current gradient driven bending instability is essentially the velocity shear driven
KH instability.

Sharad et al. [54] have studied the KH destabilization of current pulses of
finite extent formed at the density inhomogeneity layer. The instability leads to
the coherent nonlinear state consisting of the circular vortices aligned along the
contours of density profile. The vortices of alternating sign are arranged one after
the other like beads in a wire. The current pulses considered in these studies
are traveling dipole solution of EMHD obtained by Isichenko et al. [51]. These
solutions are stable against sausage mode and propagate robustly in a homogeneous
plasma medium [55, 56]. An understanding of stability of these current pulses to

kink instability so far, is lacking.

1.4 Scope of the Thesis

The work presented in thesis focuses on the study of KH instability using EMHD
model. As discussed already, unlike the hydrodynamic fluid model, the EMHD
model contains natural length and time scales viz., electron skin depth and whistler

time period respectively. Owing to the existence of natural scales, electron KH

35



Chapter 1: Introduction

may suffer major modifications from the KH instability in neutral fluid. In this
thesis, we investigate the role of natural scales of EMHD on KH instability. Earlier
studies, as reviewed in the last section, do not highlight this feature of instability.

In earlier 2D studies, the equilibrium as well as perturbed magnetic fields were
directed along the symmetry direction. Hence, whistlers were clearly not sup-
ported. Whistler modes were supported in 3D studies. In those studies, however,
the propagation direction of whistlers was orthogonal to the 2D plane in which KH
action primarily takes place. To study the role of whistlers, we introduce a uni-
form external magnetic field along the flow direction (in the plane of KH). These
studies would have relevance in ionosphere and magnetosphere, solar corona and
pulsars [57, 58, 59| etc., where the counter streaming electron beams immersed
in a magnetic field may exist. This kind of configuration is also quite likely in
laboratory experiments [60, 61] where the plasma is confined with the help of an
axial magnetic field.

In MHD, a uniform magnetic field parallel to flow is known to stabilize the fluid
interface against the KH instability and it is ascribed to the tension generated to
bend the magnetic field [37, 41, 62]. The reduction in growth rate is a function
of field strength. The instability is fully suppressed if the Alfven velocity exceeds
the total velocity jump across the shear layer. Whistlers are the normal oscillatory
mode of EMHD akin to Alfven modes in MHD. One expects that oscillations set up
at whistler time scale would give similar effects on instability as Alfven modes do
in MHD. The presence of magnetic field also largely affects the nonlinear evolution
of instability in MHD [42, 63, 64, 65, 66, 67, 68]. Even a weak magnetic field
potentially changes the nonlinear state. The magnetic field caught in vortices

formed due to KH instability gets amplified and then relaxes through the process
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of magnetic reconnections [66, 67|. Magnetic reconnection leads to the disruption
of flow vortex. Once the vortex is destroyed, the flow relaxes into a broadened,
laminar and marginally stable shear layer. In even weaker (very weak) field case
the magnetic reconnection leads primarily to the expulsion of field line from inside
the vortex and to enhance the dissipation of kinetic energy. This is well known
flux expulsion phenomena [69]. We also try to understand the nonlinear phase of
EMHD instability in the presence of in-plane magnetic field.

Earlier studies on EMHD KH instability show that in 3D regime kink mode is
also present in addition to the KH mode [46]. The kink mode lies in the plane of
magnetic field and shear and unlike the KH mode it is a local mode. We investigate
the interplay of the two modes, KH and kink, with and without external magnetic
field in a considerable detail. In 3D, the evolution of shear driven instabilities
leads to the self consistent generation of turbulence in the nonlinear state [43, 47].
The generation of electromagnetic turbulence due to the action of shear driven
instabilities has been shown to have important implications. This leads to the
anomalous stopping of energetic electrons moving towards core in Fast Ignition,
which are known to eventually create the ignition spot by dumping their energy to
the core [47]. Also, in collisionless magnetic reconnections [43|, the generation of
turbulence may alter the mechanism by which the frozen in field condition breaks in
the dissipative regime. The reconnections may also be facilitated by the anomalous
viscosity and anomalous resistivity associated to the turbulence generation. In our
thesis, we analyze the spectral cascade features of the turbulence generated in
three dimensional simulations, with and without an external magnetic field along
the flow direction. The nonlinear cascade develops the anisotropy mediated by

the normal oscillatory modes; Alfven in MHD [70, 71| and whistlers in EMHD
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[72, 73]. In view of this, nonlinear cascade is expected to show the anisotropy in
the presence of whistlers; which we have quantified.

We also address in this thesis, the question of stability of coherent nonlinear so-
lutions of the EMHD equations from the perspective of the aforementioned modes,
KH and kink. Isichenko et al. [51] obtained exact, nonlinear solutions of two
dimensional EMHD equations in the form of localized rotating electron currents,
giving rise to monopolar and dipolar magnetic field. These solutions have regions
where electron flow velocity /current is significantly sheared and hence can be sus-
ceptible to the flow shear driven instabilities. These solutions were shown to be
very robust and stable against the sausage instability, in the earlier 2D studies
[55, 56, 54]. In these studies, the kink mode was not supported, and hence the
stability of the solutions against this mode has remained unknown. We make an
attempt to investigate this issue in the present thesis.

The scope of the thesis can be summarized as follows. We discuss the role
of natural length and time scale on KH instability, in Chapter 2. The interplay
of KH and kink modes under various physical conditions is discussed in Chapter
3. In Chapter 4, shear driven KH and kink modes are investigated for Isichenko

solutions.

1.5 Summary of Chapters

The Chapter-wise summary of the thesis is given below.
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Chapter 2: Role of Natural Length and Time Scales on Elec-
tron Magnetohydrodynamic Kelvin Helmholtz Instability: 2D

Studies

In Chapter 2, we investigate the role of natural scales on velocity shear driven KH
instability in the context of 2D EMHD. The perturbations lie in the plane of flow
and shear, in which the major action of KH lies, variations along the equilibrium
magnetic field are neglected. The role of electron skin depth has been discussed
in comparison with the KH instability of neutral hydrodynamics fluid. To un-
derstand the role of whistlers we introduce a uniform external magnetic field B
along the flow direction. Presence of this magnetic field excites the whistlers in
the system, unlike the previous 2D studies [34, 45|. In those studies, a single equa-
tion describing the evolution of the magnetic field component along the symmetry
direction was sufficient to describe the instability. But here, we need to solve a set
of coupled equations in two scalar fields. This is essentially due to the fact that
whistler waves couple the in-plane magnetic field perturbations to the magnetic
perturbations along the symmetry direction. The instability problem is solved
as the eigen value problem analytically, for step profile and numerically, for tanh
profile of equilibrium flow velocity. The eigen values are obtained as the growth
rate of instability. The role of By has been to reduce the instability growth rate.
Further, the growth rate curves show that the instability is nonlocal even in the
presence of in-plane magnetic field B,.

Nonlinear simulations have been carried out to understand the role of whistlers
in the nonlinear regime of instability. For this purpose we have developed a non-

linear fluid code which uses flux corrected transport algorithm |74, 75]. The code
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solves 2D EMHD equations for tangent hyperbolic profile of equilibrium velocity.
In the absence of By, the nonlinear state is a coherent vortex formed as a conse-
quence of inverse cascade. However, in the presence of By, the nonlinear state is
significantly changed from the ordered state of By = 0 case. The long scale struc-
tures are formed only along the direction of By and there is hardly any extension
in structures along the transverse direction. This induces the anisotropy in the
system. We provide a quantitative estimate of anisotropy in the Fourier spectrum
of two fields. The observed anisotropy is a characteristics of the nonlinear cas-
cade mediated by whistlers. The anisotropic cascade has an adverse effect on the
KH instability induced mixing of the fluids flowing in two directions around the
shear layer. Consequently, the flattening of shear layer is weaker in the presence

of whistlers, which we have also measured.

Chapter 3: Interplay of Kelvin Helmholtz and Kink Modes:

3D Studies

When the variations along the direction of self-consistent equilibrium magnetic
field (generated due to sheared flow) are also allowed, a new local mode exists in
the plane of the magnetic field and shear. The mode requires finite electron inertia
and is driven by the gradient in the equilibrium velocity unlike the KH mode which
is driven by the curvature in equilibrium velocity. We note that due to similarity
in current and flow velocity in EMHD, velocity shear driven KH is often termed
as the current-gradient sausage mode. In Chapter 3, we investigate the interplay
of the two modes, sausage and kink, under various physical conditions determined
by: (a) the value of shear width in comparison to the electron skin depth, (b) a

uniform magnetic field (Byy) present along the flow direction and (c¢) a uniform
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magnetic field (Cy) employed along the direction of self-consistent magnetic field.
For sharper shear width, the dominant mode is sausage mode while for broader
shear width, the dominant instability is kink instability. The presence of By, has
been shown to reduce the pure sausage growth rate. We show here that the pure
kink mode remains uninfluenced by this magnetic field. Also, the presence of ()
has no effect on sausage growth rate [34], but has been shown by us to alter the
growth rate of pure kink mode. Therefore, one mode can dominate over the other
in the given conditions.

We also carry out the simulations of the 3D instability with the help of a
nonlinear fluid code. The growth rates of instabilities calculated in the linear
regime of simulations match with the linear theory. The nonlinear state is strongly
turbulent in these simulations unlike the 2D case. The spectrum of turbulence is
found to be anisotropic. We have observed that the spectral cascade is inhibited
both along the direction of flow as well as the direction of magnetic field. Thus,
the shortest scales are generated along the shear direction. In the presence of
By, the scales along the shear direction are more or less unchanged while along
other two directions, the scales turn out to be longer than the case for By, = 0.
These observations are consistent with the anisotropic feature of whistler mediated
cascade. The broadening of shear layer occurs much more slowly for this case as
the kink mode being the dominant mode governs the evolution of system. During
the linear phase the kink instability does not alter the 2D flow configuration. Thus,
the broadening occurs at later nonlinear phase when the other modes also grow.
This shows that it is important to understand the interplay of two modes under
various physical conditions, as the evolution would be different when governed by

the different modes.
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Chapter 4: Stability of Isichenko Solutions of Electron Mag-

netohydrodynamic Model Against Shear Driven Modes

In section 1.2.3, we pointed out that the EMHD system permits certain exact,
nonlinear solutions. Isichenko and Marnachev [51] obtained these solutions as the
stationary monopoles and propagating dipoles of localized electron flow structure.
The dynamical properties of these solutions have been studied in considerable
detail by many researchers [55, 56, 76, 77]. Among these structures, dipoles are
of practical importance. The dipoles carrying energy and momentum with them
propagate stably and may prove to be useful in phenomena like, fast ignition
concept of laser fusion [3, 5, 6], fast magnetic field transport [49, 50|, laser plasma
interaction studies [78] etc.

The electron flow pattern in these EMHD structures, monopoles and dipoles, is
significantly sheared and hence they could be unstable to the shear driven modes
namely, sausage and kink [34, 46]. The structures are known to be stable to
the 2D sausage perturbations as the unstable wavelengths are longer than the
structure size, an explanation provided by Sharad et al. [54]. For kink mode,
however, wavelengths smaller than the structure size are also unstable. Stability
of structures against this mode is not known so far; we investigate this in Chapter 4.
For this, we carry out a 3D nonlinear simulations with monopoles and dipoles as the
initial conditions. We observe that the structures are unstable in our simulations.
The unstable behaviour of structures has been attributed to the presence of kink

mode.
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Chapter 5: Summary and Future Scope

Finally, in Chapter 5, conclusions of the thesis work have been drawn and the

prospects for future work have been outlined.
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Chapter 2

Role of Natural Length and Time
Scales on Electron

Magnetohydrodynamic Kelvin

Helmholtz Instability: 2D Studies

The Electron Magnetohydrodynamic (EMHD) model represents an incompressible
electron fluid moving against static, neutralizing background ion species. In con-
trast to ordinary hydrodynamic fluids, the EMHD model contains intrinsic length
(electron skin depth) and time (whistler period) scales. In this Chapter, we in-
vestigate the role of skin depth and existence of whistlers on velocity shear driven
Kelvin Helmholtz instability in the context of two dimensional EMHD. Numerical
simulations are also carried out to understand the role of whistlers in nonlinear

regime of instability.
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2.1 Introduction

Electron Magnetohydrodynamics (EMHD) is a fluid model to describe the plasmas
in which the electrons dynamics is of importance. The ions are static and provide
a neutralizing background to the electrons. The EMHD system closely resem-
bles an incompressible hydrodynamic fluid system and hence the characteristics
neutral fluid instabilities are present here as well. One of the prominent neutral
fluid instability is Kelvin Helmholtz instability in which the interface of two fluids
in relative motion (parallel to interface) is unstable under certain conditions. The
Kelvin Helmholtz instability of neutral hydrodynamic fluid is thoroughly discussed
in the literature [37, 38]. In the context of EMHD also, the instability has been
investigated in certain detail and has often been termed as sausage and kink like
modes [34, 46]. Besides due similarities, the EMHD system also has certain dif-
ferences with neutral fluids due to the magnetized character of the electron fluid.
The electromagnetic character of the system manifests as the existence of intrinsic
natural scales. In the context of EMHD, the electron skin depth is such a length
scale arising due the inertia of electrons. In the the presence of external (and/or
strong self consistent) magnetic field, whistler waves are the normal modes of the
system and hence the whistler periods appear as the natural time scale. A neutral
hydrodynamic fluid system, in contrast, is devoid of any specific scales. In this
Chapter, we discuss the role of these natural length and time scales on the velocity
shear driven Kelvin Helmholtz instability in the context of 2D EMHD. And the
comparison with the neutral hydrodynamic fluid instability are presented.

In these studies the spatial variations in perturbations are confined in the plane

comprising the flow and shear directions, the variations in the direction normal to
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this plane (which is also the direction of self-consistent magnetic field generated
due to the shear flow) have been neglected. The EMHD set of equations reduces
to the Navier-Stoke’s equations of hydrodynamic fluid in the short wavelength
limit. To understand the role of skin depth, the shear width of the system is
varied in comparison to the electron skin depth. We show that by appropriate
rescaling the KH growth rate curve plotted with respect to the excitation wave
number (along the flow direction) reduces to a universal curve for the neutral fluid
hydrodynamics system (see Fig. 2.1). This, however, does not happen for the
EMHD system for which the growth rate diminishes as the shear width becomes
broader in comparison to the electron skin depth parameter. The KH instability in
EMHD is prominent only when the shear in electron flow velocity is sharper than
the skin depth, a fact which has been outlined in our earlier studies also [34, 45].

We also study in detail the role of whistler waves on this particular instability.
In previous 2D EMHD studies of KH like mode [34, 45|, the equilibrium and also
the perturbed magnetic fields arising as a result of the 2D electron current flow, was
directed along the symmetry direction. Since the variations were confined in the
two dimensional plane orthogonal to the equilibrium magnetic field, the configura-
tion clearly did not support the normal oscillatory whistler wave mode associated
with EMHD phenomena. The 3D study of the instability in subsequent work
[46, 47| does support the whistler mode. However, in the 3D case one is not able
to isolate the role of whistlers from effects arising due to the three dimensionality
of the problem. Furthermore, in those studies [46, 47| the propagation direction
of the whistler waves being primarily along the equilibrium magnetic field, was
orthogonal to the 2D plane defined by the equilibrium shear and the fluid flow

direction. For the KH instability major action is confined to this plane. We, there-
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fore, choose here to study a 2D case of the instability with an additional uniform
magnetic field in the flow direction. For this case whistlers are permitted even in
the 2D limit. This configuration is thus markedly different from both the previous
2D and 3D studies carried out by us. For this case, we would see in the next
section that the evolution is governed by a set of coupled equations in two scalar
fields. This is unlike the previous 2D studies where the magnetic field component
along the symmetry direction was sufficient for the description. This is essentially
due to the fact that the whistler wave perturbations couple the in-plane magnetic
field perturbations to the magnetic perturbations along the symmetry direction!.
We wish to point out here that Califano et al. [32] also considered an instability of
a sheared electron flow configuration. The 2D plane of perturbations in their case
is inclined with respect to the electron flow direction. Such a geometry has been
termed by us as a 3D kink mode. Angle between the 2D plane of perturbations and
the flow direction is changed through a dimensionless parameter o by choosing its
values between 0 and 1. The choice of & = 1 (2D plane of perturbations lying along
the flow direction) in their work reduces the configuration to the 2D case that we
discuss here. Furthermore, the studies by Califano et al. have been restricted to
the case for which the shear width is comparable or broader than the electron skin
depth. We have considered in our studies shear width, which are sharper than the
electron skin depth .We assume that the kinetic scales are much shorter than the
electron skin depth and the shear width for the applicability of the fluid EMHD
model.

In section 2.3, we discuss the role of the natural length scale (d. = ¢/w,.) that

!For description of geometry, see Fig. 1.1 in Chapter 1. The x — z plane in the figure is the
2D plane of flow and shear that we consider here. The external uniform magnetic field lies in
this plane along the flow direction. y is the symmetry direction.
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appears in EMHD. We compare the KH instability in neutral hydrodynamic fluid
with that of EMHD. In section 2.4, the role of whistler waves on the instability is
discussed. An interesting observation is that in 2D, even in the presence of whistler
waves, the instability continues to be nonlocal. The growth rate is finite only for
those modes with scales longer than the original shear width. This is in contrast
to the 3D case where the local modes were also found to be unstable. Thus, the
three dimensional character of the mode (and not the existence of whistler waves)
is essential for the destabilization of local modes for the electron velocity shear
driven instability. In section 2.5, a numerical study of the shear driven instability
in the presence of in-plane magnetic field is presented. The role of whistler waves in
the nonlinear regime is outlined. Section 2.6 contains the discussion and summary

of our observations.

2.2 Governing Equations

In the 2D x — 2 plane, the EMHD equations (1.1) and (1.2), given in Chapter 1,
can be written in terms of evolution of two scalar fields, which define the total
magnetic field as B = by + y x V. The electron velocity can then be expressed
in terms of these two scalar fields as v, = —V x B = § x Vb — §V2¢ [55],
0, ) 2 A 2
E(V b—0b)+yxVb-VVb—yxVi-VVZY = 0

0

a(vzw—@bngvb-vw%—@b) =0 (2.1)

Here, § denotes the symmetry direction. The equation has been expressed in
normalized variables. Magnetic field has been normalized by a typical amplitude

of By, the time by the corresponding electron gyro-period w_' = (eBgy/mec) ™
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and length by the electron skin depth d. = ¢/w,.. The limit of k*d* >> 1 along
with ¢ = 0, reduces the coupled set Eq.(2.1) to the Navier Stokes equations in 2D

for an incompressible neutral fluid hydrodynamics,

%v% +§xVb-VVh =0 (2.2)

here, b can be identified with the velocity potential.

The equilibrium sheared electron flow velocity in the presence of in - plane
magnetic field can be described by a choice of by = by(x) and 1y = —Bpz. This
choice of 1y ensures that the in - plane magnetic field is oriented along the flow
direction. The total equilibrium magnetic field can thus be represented by éeq =
Ubo(z) + 2ZBy. The field by is an equilibrium magnetic field directed along the
symmetry direction ¢ and is dependent on x. The in - plane magnetic field By is
directed along 2z and is chosen to be a constant. The equilibrium electron velocity
profile is defined by Uy = —Zdby/dz. A specific form of the electron velocity shear
profile can be chosen by an appropriate choice of the functional form for by(z).
The dynamical evolution of a small perturbation in the two fields, viz., b; and

around this equilibrium can be analyzed with the help of linearized EMHD model

Egs.(2.1),
9 v 0 2 » by 92y
a(v bl—bl)+vogv bl—vo 82’ —BanV wl = O
0 0 db
E(VQ@ZH — ) + UO@(V%M — 1) + Boa—z1 = 0 (2.3)

It should be noted that for the case of By = 0, the equations reduce to the form
analyzed in the earlier work [34]. In this case the field v is merely convected by

the equilibrium flow velocity due to the velocity potential by and plays no active
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role in evolution. The evolution of the field b; gets entirely decoupled from the
field v, for the linear problem. The linear stability problem is reduced to that of
the study of the evolution of the single scalar field of b;. The presence of finite B
couples the evolution of b; and 1y fields in the linear limit through whistler like
perturbations and its influence on the instability is a topic of our investigation.

Fourier analyzing Eq.(2.3) in z and time we obtain,

2 /i B 2
@ _ (1 + ki)bl . kz(UO U0>b1 + kz 0 (d 1/}1 - k‘g%) -0

da? (w — k.vg) (w—k,vy) \ da?
d*y 9 k. By
—(1+k - = 2.4
dx? ( + z)wl (w — szO) 1 0 ( )

For vy = 0, one obtains the whistler wave dispersion relation from Eq.(2.4). The
coupled set of Eqs.(2.4) can also be expressed in a fashion which eliminates the
second derivative of ¢4 from the first equation of the set [Eqs.(2.4)] by substituting

for it from the second equation,

d2b1 k (’Uo — U”) k Bo ]{ZQBQ
e (1+EHb — 2 9p z 20 _ph = 0
dz? (L4 A2)by (w — k.vg) o (w— kzvo)wl + (w— kvp)? !
dQ’QZ)l k BO
—(1+ K - — =" b = 2.5
d{L‘2 ( + z)wl (w B k‘zvo) 1 0( )

This set of coupled linearized equations we shall use for the linear instability
calculations. The equations shall be analyzed analytically and numerically to be

solved as the eigen value problem.

2.3 Role of Skin Depth

In this section we choose to study the role of electron skin depth on the KH

instability and thereby offer a comparison amidst the KH mode in a Navier Stokes
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(NS) (the limit of d;' — 0 ) and an EMHD fluid (d, is finite and taken to be
unity). To avoid any role of whistlers we confine ourselves to the choice of By =
0 (the in-plane component of equilibrium magnetic field) in this section. This
reduces the equilibrium configuration to the case studies earlier. We would see
in next section that a finite value of in-plane component of By introduces the
magnetic tension, causes whistler excitations, and reduces the KH growth rate.

The linearized equations in the NS limit,

d*b, k.vy
—— = k2 —2 ) = 2.
dx? oLt (w — kuvo) 0 (2.6)

and in the EMHD limit, in the absence of By,

d*b,

d°by k.(vo — vf)
dx?

— (L4 kDb —
(14 £)by (w—k,vg)

by =0 (2.7)
We consider here a tangent hyperbolic shear profile for the equilibrium flow,
x
vo(x) = Votanh (—) (2.8)
€

The growth rate for the hydrodynamic case is a universal curve shown by the thick
line in Fig.2.1. The growth rate has been plotted here as a function of k,e. Here,
¢ is the shear width of the flow as can be seen from the above equation. In the
hydrodynamic case there is no special scale in the system. Hence, a change in
the shear width e¢ can always be accommodated by an appropriate length scale
rescaling, which would mean a readjustment in the value of V} as well. We indeed
observe that the plot of growth rate for the hydrodynamic case collapses on a single

curve for differing values of € when the velocity 1} is adjusted to accommodate
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Figure 2.1: The plot of growth rate vs. k.e for the hydrodynamic case (thick curve).
The growth rate has been obtained for a shear flow profile vy = Vjtanh(x/e).
The curve for the hydrodynamic case is universal for the choice of ¢ = 0.1f and
Vo = 1.0f. The curves with dots, circles and stars show the growth rate for an
EMHD system for f = 1, 3,5 respectively.
for the length rescaling. The thick line representing the hydrodynamic case in
Fig.2.1 corresponds to several choices of shear width, e.g. ¢ = 0.1f along with
Vo = 1.0f, obtained by varying the parameter f. This can also be demonstrated
from Eq.(2.6), which is invariant under the transformation €, = €ef, k., = k./f,
d/dz, = (1/f)d/dx and vy, = vof. The value of w thus remains the same. The
growth rate curve when plotted against k.e = k.,¢, has an identical form. It can
be seen that Eq.(2.7) does not remain invariant under this transformation.
Hence, for the EMHD fluid case, where the skin depth exists as a special scale (
d. = 1 has been chosen as a normalizing scale), the growth rate curves are no longer

universal. For each value of f a different growth rate curve results. For finite d,

the growth rate deviates from the universal curve for the NS system predominantly
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at lower k, values (i.e. at longer scales). With increasing f as the shear width
increases in comparison with the skin depth and the growth rate keeps reducing.
It becomes negligible when the shear width is much broader than the electron skin
depth.

Another striking feature of the growth rate curve is the fact that it has a bell
shaped character with a single maxima for both NS as well as the EMHD cases.
For a tangent hyperbolic shear flow it is zero at k, = 0 and also at k,e = 1.0. For
all values of the wavenumber beyond k.e = 1 the growth rate continues to remain
zero. The unstable wavenumbers for the tangent hyperbolic profile thus exist only
in the domain of 0 < k.e < 1.0, irrespective of the values of V. Thus as the
shear width parameter € is increased, the threshold condition on k.e being unity,
diminishes the range of unstable k£, modes. Though the exact value of the upper
limit on k.e is dependent on the specific form of the shear profile, the cut off value
for unstable wavenumbers is constrained by k.e of the order of unity. For instance,
for a piecewise linear profile the growth rate vanishes beyond a smaller value of k.,
viz., k.e = 0.639 [34]. In another publication [79] an analytical proof was given to
show that the growth rate is zero for k.e = 1 for the tangent hyperbolic equilibrium
shear profile.

The fairly general constraint can, however, be understood on physical grounds.
The mode which is driven unstable due to a shear scale length of ¢, has an eigen-
structure which itself is like a sheared flow pattern orthogonal to the original flow
direction having a typical shear scale length of k' as depicted in Fig.2.2. Since
the free energy for the instability is provided by the sheared flow configuration, the
unstable eigen functions themselves cannot have sharper shear flow structure. This

is responsible for the threshold on the wavenumber k.. Thus, the KH instability
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Figure 2.2: A schematic showing the flow configuration after KH destabilization
in 2D. Tt can be seen that the destabilized flow configuration results in a sheared
flow orthogonal to the original shear flow, with a shear width given by k.

in 2D always generates velocity shear scales which are longer than the original
equilibrium shear scale. This is responsible for the threshold condition of the
unstable wavenumbers a ke ~ O(1). The instability is therefore nonlocal in 2D.

In the next section we would see that even in the presence of whistler wave like

excitations, the threshold condition on the unstable modes continues to hold.

2.4 Role of Whistler Waves

In this section we study the influence of whistler waves on the shear driven insta-
bility of EMHD model and choose By to be finite. For this purpose, we choose two
kinds of equilibrium fluid shear flow profiles. A step velocity profile for which the
shear width ¢ — 0 is used for analytical simplicity. A tangent hyperbolic shear
profile is then studied to investigate the influence of finite shear width of the flow

profile.
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2.4.1 Step Velocity Profile

We choose a step electron velocity shear profile of the form vy(z) = —V5+2V,0(z).
Thus in region I (—oco < x < 0), vo(z) = —Vp and for region II (0 < z < o0) we
have vo(z) = Vh. We choose to depict the perturbed fields by b; = by and
Y1 = 1y 7 in the two regions. For a finite jump in the equilibrium flow velocity it
can be shown by using Eq.(2.4) that the following functions of the perturbed fields

should be continuous at x = 0 the location of velocity discontinuity,

dby by
= (W= ko) ket -
fi (w ) dr + RzUp01 fa (@ = ko)
dipy
= — = 2.9
f3 dr ) f4 ¢1 ( )
In the two regions, the Eq.(2.5) can be written as,
d2
@bl,ll + arubrn + Brotbrir =0
d2
@wl,n + nrir — Brarbrir =0 (2.10)

Here, n = —(1 + k%) and the coefficients «, 3 are defined in the two regions as,

L= RV T (@ k)
5 o kZBO
M0+ kW)

Since the wave functions should vanish at +00, we choose the solution of Eq.(2.10)
as,

by = Abeﬂip(pll’); brr = Cbeﬂip(—plﬂ)
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Y = A¢6$p(p1$)§ Yrr = C’wexp(—pnx)

where, p; r; are those roots which have a positive real part. They are obtained by

substituting for b; ;; and 7 7 in Eq.(2.10). We thus have,

arr+1 1
p%n = —% + 5\/(041,11 +mn)? — 4(azm + 5?,11)

Thus, there are two roots each for p? and p?; corresponding to the 4 sign before

the square root. Upon substituting for n, oy ;r and Sr ;1 the roots are,

1/2
k,V k2 B? 1 k,V k2B2\* 4k2B2
p%i_{1+k§— 0 z 0} 5{( 0 z O) z 0}

20, 202 Q. 2 02

Pie = {1 + k2 + wVo kzlzg} + ! { (k;ZVo - k§§§>2 - 41{?2238}1/2
20 202 2 Q. 02 Q7

Here Q4 = w=+k.V, and the £ sign in the suffix denotes the two roots corresponding
to the positive and negative sign before the square root. In the limit of By = 0 one
recovers the expression obtained in earlier studies by choosing appropriate sign of
the square root in the two regions. In addition there is another value p? =14k
corresponding to the evolution equation for ¢ (which gets decoupled from b in
this limit). The earlier studies [34] had then shown that upon using the matching
conditions one finds a purely imaginary value for w for all finite values of k, and
Vh. This has shown that a sheared electron velocity configuration with zero shear
width is always unstable.

In the present case, the other limit of Vo = 0, leads to p? = p?, = —k2 (the

wave number along x) and yields the dispersion relation of whistler wave mode

for which w is real. Clearly, in the general case when both V and By are finite, a
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complex value of w can be expected. Using Eq.(2.10) we can find a relationship,

Br
Apr = Aps; Cpr = 54—
v p%i*ﬂ v Prrs +1

This leaves us with four unknown coefficients A+ and Cjy. The matching condi-
tions are then utilized to eliminate these coefficients, which yields the value of w

from det||M|| = 0 where the matrix M is defined as follows:

1/Q, 1/Q, —1/Q_ -1/9_
Qipre Qi pr- Q_prry Q_prr-
/(074 +m)Qy] /(07— +m)Q] /[0 +mQ ] =17 + )]
pra /[ + Q] e/l A U] /(07 Q-] prr /(07— + )0
The roots, w for det || M ||= 0, for various values of By and k, have been

obtained. We show in Fig. 2.3 the plot of the variation of the real and imaginary
part of w as a function of the in - plane magnetic field By. The plots clearly show
that as the value of By is increased the growth rate of the KH mode decreases.
This is because the perturbations associated with the instability cause bending of
the equilibrium magnetic field which requires energy.

An interesting feature of the plot is a sudden fall of the growth rate in the

neighborhood of a particular value of the By. A closer look reveals that this fall

occurs at the location when the KH growth rate v = k., Vo\/(1 + 4k2)/(3 + 4k2)

of the unmagnetized electron fluid for By = 0 matches with the typical whistler
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growth rate and real frequency

Figure 2.3: The growth rate (solid line) and the real frequency (dashed line) for
the KH mode as a function of the in-plane magnetic field By for a step electron
velocity profile.

frequency of the system. The flow perturbations transverse to the shear flow in the
KH mode grow at the typical time scale of ~ (k,V;)~'. In EMHD prescription it is
well known that B —d2V2B is tied to the fluid flow velocity. Since the equilibrium
field By is homogeneous, the flow perturbations carry the equilibrium field lines
with themselves. Thus, the flow perturbations due to the KH instability distort the
equilibrium straight magnetic field to a sheared configuration. The tension due to
this distortion tries to restore the magnetic field line to its original configuration,
causing oscillations at the whistler frequency. When the whistler period becomes
comparable to the growth time of the KH mode, the phase reversal of the transverse
perturbations occur at the time scale at which the shear instability grows, resulting
in considerably reducing the growth rate. The whistler frequency increases with By

and at higher By thus it becomes more and more difficult for the KH instability to
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get excited. The growth rate subsequently at higher By falls to zero as illustrated
from the plots of the Fig.2.3. The variation of real part of w with By shows
deviation from the whistler frequency at the lower value of By. However, at large
By it asymptotically matches with the whistler frequency.

The step velocity profile is an extreme choice made for the sake of simplified
analytical treatment. In the realistic case the velocity would vary in a continuous
manner. The width of the sheared electron flow profile plays an important role for
the instability. In earlier 2D studies [34] (with no in-plane equilibrium magnetic
field and hence no whistlers) it was observed that only those modes which satisfy
k.e < 1 condition were unstable. The typical scale length of the eigen mode
structure along the shear direction is similar to p;}l for the step profile considered
in this section. The expression for pr;; in the absence of By shows a monotonic
dependence on k,. For shear profile with finite width, similar of proportionality of
eigen function scales along the shear direction x with k. can be expected. Thus
the condition k.e < 1 for instability translates to the fact that the 2D instability is
essentially nonlocal, and arises only when the mode structure is broader than the
shear width. In the next section, we investigate the role of finite shear width of

the velocity profile on this particular instability in the presence of whistler modes.

2.4.2 Velocity Profile with Finite Shear Width

In this section, we consider the instability in the presence of By when the shear of
the equilibrium electron flow has a finite width. For this purpose, we choose tangent
hyperbolic form of the velocity profile shown in Eq.(2.8). We use the coupled set
of Eq.(2.5) with this form of vy to evaluate the eigen value w numerically. The

results have been shown in Fig.2.4, which show that the maximum growth rate
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Figure 2.4: The KH growth rate as a function of ke for a tangent hyperbolic shear
flow profile. Here the solid, dotted and the curve with circles correspond to By = 0,
0.5 and 1.0 respectively.
reduces in the presence of a magnetic field. This feature is same as that observed
in the context of step velocity profile in the previous section. The transverse
fluid motion associated with the unstable KH mode generates transverse magnetic
field perturbations as it carries with itself the equilibrium By magnetic field. The
consequent tension of the magnetic field perturbation provides the restoring force
(responsible for the whistler wave oscillations) and opposes the growth of the KH
mode. The creation of magnetic field perturbations costs energy and hence the KH
growth does not remain as energetically favourable as for the case when By = 0.
It should be noted that the growth rate curve of Fig.2.4 is again confined to
0 < k.e < 1.0. This feature, therefore, is a universal aspect of the KH instability

in 2D. The physical interpretations provided in the previous section holds good
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even in the presence of in - plane equilibrium magnetic field B.

2.5 Nonlinear Simulations

In this section, we simulate the coupled set of Eq.(2.1) using the flux corrected
algorithm developed by Boris et al. [74]. A tangent hyperbolic form for the initial
shear flow configuration for which the linear growth rates have been evaluated in
the previous section, has been considered here also. This is to understand the
behaviour of the additional in - plane equilibrium magnetic field in the nonlinear
regime of the KH instability. The shear flow equilibrium configuration along with
the in-plane magnetic field is chosen as the initial state for the b and 1 fields. A
low amplitude arbitrary perturbation is purposely added initially to hasten the
growth of the instability, which otherwise would take long to emerge from the very
low amplitude numerical noise.

In Fig.2.5 we show the evolution of the perturbed energy of the system for
By = 0.0, 0.5 and 1.0. During the initial phase of the simulation the total per-
turbed energy increases exponentially. In the semilog plot of Fig.2.5 this can be
seen initially where the curve is a straight line. The slope of this line matches
closely with twice the maximum growth rate v obtained analytically in the previ-
ous section for each of the distinct values of By. The dashed line shown alongside
the simulation curve has twice the slope corresponding to the analytical value of
the maximum growth rate. Thus the simulations also confirm that the presence
of By reduces the maximum growth rate. As the amplitude of the perturbed field
increases, the nonlinear effects become important in the simulation resulting in the
saturation of the perturbed energy seen at the later stage.

In Fig.2.6 and Fig.2.7 we show the contour plot of the field b at various times
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Figure 2.5: The evolution of perturbed energy for By = 0,0.5,1.0 in subplots (a),

(b) and (c) respectively.

( both during linear and nonlinear phases) for two cases of By = 0 and By = 1.

These plots are for the total b field corresponding to the sum of equilibrium as well

as the perturbations. Fig.2.8 and Fig.2.9 on the other hand show similar plots for

62



Chapter 2: Role of natural length and time scales ...

-10

10

o

-10

Figure 2.6: Contour plots for the field b at various times for the nonlinear simula-
tion of By = 0.0 case.
the perturbed field @Z) = 1 —1y. The equilibrium contribution to the field, namely
19 = —Byz has not been included in the plots. The field ¢ = 15 for the case in
Fig.2.8 where By = 0.

For this simulation the maximally growing mode has a wavenumber £k, = 1.67.
This corresponds to a wavelength of A = 3.77. The simulation box length being
L, = L, = 24.0 can accommodate 6 number of wavelengths for this particular
mode along the periodic z direction. Indeed, we observe that during the initial
state there appears 6 structures. The structures, however, coalesce later. For

By = 0, the final state in b field shows one large structure fitting the box size.
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Figure 2.7: Contour plots for the field b at various times for the nonlinear simula-
tion of By = 1.0 case.

When By = 0 the field b gets decoupled from the field v. The evolution of the
field b in this case supports two square integral invariants in the non-dissipative
limit. The existence of two square integral invariants is responsible for the inverse
spectral cascade and formation of long scale patterns in b field.

It should also be noted that when By = 0 the field ¢ gets merely convected
by the field b. We had for these simulations chosen an initial small perturbation
in ¢, as is evident from the ¢ = 0 contours of ¢ in Fig.2.8. The field 1) merely
gets convected by the electron flow. There is no growth of energy content of this

field in this case. The field v thus continues to have a low amplitude and behave
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Figure 2.8: Contour plots for the field ¢ at various times for the nonlinear simu-
lation of By = 0.0 case.

as a passive scalar in this particular case. It should be noted from the plots for
simulations with By = 0 that even though there is a distinction between the flow
direction (z axis) and the shear direction () the evolved structure in both b and
1y field is typically isotropic.

When By is chosen to be finite the contours of b during the linear phase are
quite similar to the case of By = 0. The structure corresponding to the maximally
growing mode emerges during this period. However, during the nonlinear phase
the structures in b field seem to be preferentially elongated along the z direction

(the direction of in-plane magnetic field). The structures hardly get extended
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Figure 2.9: Contour plots for the field ¢ at various times for the nonlinear simu-
lation of By = 1.0 case.

along the transverse dimension. Thus, in the presence of the in-plane magnetic
field the inverse cascade in b gets limited to the direction of the in-plane magnetic
field. This can be explained by realizing that the whistler wave mediated cascade
is anisotropic [72, 73|. The nonlinear interaction of whistler wave produces dimin-
ishing wave numbers parallel to By. The perpendicular wavenumber on the other
hand increases as the result of these interactions. The contour plots of the field ¢
for By finite shows considerable randomness as compared to the case of By = 0.
The field is now no longer passively convected. It couples actively to the b field

through whistler wave excitations. However, the structures in v field do not seem
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Figure 2.10: The evolution of mean square wavenumbers for the b and ¢ fields in
the x and z directions.

to exhibit any anisotropy(Fig. 2.9).

The smaller scale generation in the transverse direction for b field and a rela-
tively isotropic structures of ¢ in the presence of By can be quantitatively observed
from Fig.2.10 which shows the evolution of mean square wavenumbers defined as

follows,
< kz > = ffk:%,z | A(k:vaky) |2 dkxdkz
AT [ Ak, ky) 2 diydk,

(2.11)

Here A(k,,k.) represents the Fourier transformed fields (b or ). The plot in
Fig.2.10 clearly shows that < k2 > for the field b asymptotes at a comparatively
higher value than < k? > in the presence of By. However, for the 1 field the
mean square wavenumbers along both the directions are almost identical. This is

a characteristic feature of the anisotropy exhibited by the whistler wave mediated
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Figure 2.11: The plot of z averaged electron flow velocity profile at various times
for By =0 and By = 1 in subplot (a) and subplot(b) respectively.
cascade in the nonlinear regime for the EMHD system as observed in previous
studies [72, 73].

This decrease in the transverse extent of the perturbations in the presence of
By has an adverse effect on the KH instability induced mixing of the fluid flowing
in the two directions around the shear layer. This can be observed from the plot
of z averaged flow shown for the two cases in Fig.2.11. The flattening of the shear

layer is considerably weaker in the presence of Bj.

2.6 Summary

We have in this work investigated the role of the existence of natural length scales

(skin depth ) and time scale (whistler wave) in EMHD phenomena on a prominent
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velocity shear driven fluid Kelvin - Helmholtz instability in 2D. The growth rate
of the instability decreases as the shear width is increased in comparison to the
electron skin depth.

The magnetic field corresponding to a 2D shear flow in EMHD is directed
orthogonal to this plane. For 2D KH instability studies the perturbation scales
are also confined in this plane. The lack of variations along the magnetic field
essentially rules out the whistler excitations in this case. To study the role of
whistler in the 2D KH instability we have considered an additional homogeneous
magnetic field By directed along the flow direction in the equilibrium. This kind of
configuration is quite likely in laboratory experiments on EMHD [60, 61] where the
plasma is confined with the help of an axial magnetic field. Also the presence of
electron beams in plasma threaded by a magnetic field is ubiquitous in nature. For
instance in ionosphere and magnetosphere [57], the solar corona [58] and pulsars
[59] etc., the equilibrium configuration considered here might exist.

We observe that the growth of the KH instability reduces in the presence of a
homogeneous magnetic field directed along the flow configuration. This is primarily
due to the whistler wave excitations that exist for such system. This has been
illustrated explicitly analytically by evaluating the growth rate for a step velocity
shear configuration, and has also been demonstrated for a tangent hyperbolic shear
flow profile by numerical eigen value evaluation. The tangent shear flow profile
shows that the 2D KH mode is nonlocal with perturbation scales always being
longer than the original shear flow. A physical understanding of this has been
provided.

The nonlinear simulation studies highlight another aspect. For By = 0, the

2D EMHD model represented solely in terms of the magnetic field component
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along the symmetry direction b conserves two non-dissipative square integrals.
This constrains the evolution in the nonlinear regime for b field towards long scale
inverse spectral cascade. In this case there are no whistler wave excitations in the
system and the nonlinear cascade is governed entirely due to interactions amongst
the eddies. For the case when By is finite the system excites whistler waves.
The nonlinear cascade mediated through these whistler waves cause an anisotropic
spectral cascade |72, 73]. This anisotropy is dominant for the field b, for which
preferentially longer scales get formed only along the direction of the in-plane
magnetic field. The transverse spectrum for b has considerably shorter scales. As
a result of this feature considerably reduced mixing of forward and reverse electron
flows occurs in the presence of By. The effective viscous coefficient arising due to
the KH induced turbulence is thus significantly smaller in the presence of in-plane

magnetic field.
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Interplay of Kelvin Helmholtz and
Kink Modes: 3D Studies

In the previous Chapter, we have studied velocity shear driven Kelvin Helmholtz
(KH) instability, which lies in the two dimensional plane of flow and shear. Per-
turbations were confined in this plane with no spatial variations along the normal
direction which is also the direction of magnetic field (generated due to 2D sheared
flow). However, in three dimensional regime of instability, in addition to KH mode,
a new mode also exists in the plane of magnetic field and shear. This is a local
mode, known as kink mode. In this Chapter, the interplay of these two modes has
been studied for simple sheared flow case, as well as for the case when an external
magnetic field also exists. The studies have been carried out extensively in linear

and nonlinear regimes.
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3.1 Introduction

As we know that the EMHD model closely resembles the behaviour of neutral
incompressible hydrodynamic fluid, with the additional characteristic traits asso-
ciated with the magnetized electron fluid flow dynamics. The magnetized char-
acter of the electron fluid essentially introduces (i) intrinsic natural length scales,
e.g. electron skin depth and (ii) an oscillatory dispersive whistler mode in the
system. The EMHD model thus provides an interesting paradigm for studying
spectral cascade and turbulent features, associated with nonlinearity, in a medium
which contains special scales as well. For instance, the presence and/or absence of
whistler effect on spectral cascade have continued to be debatable in this regard.
It should be noted that the flow of electrons automatically has associated with
it an ambient magnetic field. Thus, the possibility of whistler mode excitation
exists, if one permits variations along the direction of such a magnetic field. For
a sheared electron velocity flow, the associated magnetic field is directed orthog-
onal to the 2D plane of shear and flow. The study of velocity shear instability,
with variations confined in the 2D plane of shear and flow, therefore, does not get
plagued by the whistler modes. In the previous Chapter, we had specifically added
an external magnetic field along the flow direction and had studied its implication
due to whistlers on the 2D mode (with variations confined in the plane of flow
and shear termed as the pure sausage mode, see Fig. 3.1(a)) of the velocity shear
driven instability. The study showed the reduction and complete vanishing of the
growth rate of the instability with increasing strength of the external magnetic
field aligned along the flow direction. The flow perturbations associated with the

sausage mode had to overcome the whistler oscillatory mode for growth. Basically
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Figure 3.1: A schematic diagram showing the pure sausage (subplot (a)) and pure
kink (subplot (b)) perturbations.
the flow perturbations had to bend the magnetic field lines which becomes difficult
with its increasing strength. Thus, in the 2D case, there exists a threshold mag-
nitude of the external magnetic field beyond which the sheared electron flow was
unable to excite the instability. When perturbations perpendicular to the plane
of flow and shear are permitted, but with no variation along the flow direction, a
new mode turns up which we term as the pure kink mode as shown in Fig. 3.1(b).
In our studies presented in this Chapter, we permit full three dimensional

perturbations that would include both the modes i.e. sausage and kink in the
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system (modes having general perturbations are termed as mixed modes). The
interplay of these two modes under various physical conditions has been extensively
studied here. The pure kink mode having no variations along flow direction may not
be affected by the addition of an external magnetic field along the flow direction.
We investigate and confirm this with our 3D studies here. However, the magnetic
field along the flow direction may change the growth rate of mixed modes. In
addition, we also employ and external magnetic field along the direction normal
to plane of flow and shear. This magnetic field may change the growth rate of
pure kink mode and may not affect the pure sausage mode. We try to understand
the role of this magnetic on the two modes of instability. The nonlinear state
of instability in three dimensions is strongly turbulent due to the direct cascade
of power, unlike the inverse cascade in 2D. We also carry out the simulations to
understand the spectral cascade features with and without an external magnetic
field present along the flow direction in the nonlinear regime of instability. The
spectral cascade is expected to be anisotropic due to the presence of whistlers and
the flow along the preferred directions.

The Chapter has been organized as follows. In section 3.2 we briefly introduce
the model and the equilibrium configuration of the system. Section 3.3 contains
linear instability analysis for specific equilibrium flow profiles (a step profile and
a tangent hyperbolic profile) for our studies in the presence of external magnetic
field. Section 3.4 contains the results of the nonlinear simulations. We provide the
comparisons of the growth rates from linear theory with the growth rates measured
in the linear regime of the simulations. We also briefly comment on the spectral
power cascade features in the presence of external magnetic field. Section 3.5

summarizes the studies presented in the Chapter.
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3.2 Model and Governing Equations
We rewrite the normalized EMHD equations (1.1) and (1.2) as below,

S(VB-B) = Vx[ix (VB B)

¥ = -VxB (3.1)

These equations have been obtained from the combined set of electron fluid equa-
tions and Maxwell’s equations under the approximation of ions being static and
providing a neutralizing background and ignoring the displacement current and
electron density fluctuations, which would occur at the electron plasma period.
The first equation represents the evolution of generalized vorticity V x {7 — ff} =
V2B — B and is obtained by taking the curl of electron momentum equation and
making use of Faraday’s law. Second equation is Ampere’s law in which displace-
ment current has been ignored (under EMHD assumption). Here, the length scale
has been normalized by electron skin depth d. = ¢/w,., magnetic field by a typical
magnitude concerning any problem, e.g. By, the time has been normalized by the
electron cyclotron period corresponding to the normalizing magnetic field By.
We consider an equilibrium electron flow velocity with a sheared configuration
of the form, 0j(z) = vo(z)2. This electron flow, directed along Z axis, is sheared
along the z axis. The 2D x — z plane forms the flow-shear plane of the equilibrium
electron velocity distribution. Since the electron flow also constitutes a current in
the system, corresponding to this flow, there exists an equilibrium magnetic field
along ¢, the third dimension, which can be obtained by integrating the relation-

ship dBy/dx = —uvo(z) (thus By(z) = — [“vo(x)dz + Cp). In addition to this
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self consistent magnetic field, in our studies we have also considered the presence
of an external homogeneous magnetic field ByyZ along the flow direction for our
equilibrium. We now linearize Eqs. (3.1) around this equilibrium to study its sta-
bility. The Fourier transform along y and z coordinates and time variable of the

linearized set of equations leads to the following coupled set of equations,

dQB 1 k (’UI -+ Bo)’U 1 k BOQ’U 1
i 1 2 B., = y\ "0 T z T 9
de ( + k ) xl o -+ o (3 )
v, By, ku(vy —w k,Bo + k.B
7 = - (LB + =2 + (v O)Ux1+< i 00)21961 =0 (3.3)
xXr a w wa

Here, a = @/[k,(vy+Bo)+k.Boo| , @ = w—k,vy and k? = k2-+k2. Tt should be noted
that in Egs. (3.2) and (3.3), vg and By are functions of x, whereas By appears as
a constant parameter. The instability of the equilibrium has been analyzed in the
next section by evaluating the eigen value w for the combined set of Eqs. (3.2,3.3)

for given specific forms of the equilibrium flow profiles.

3.3 Linear Instability

In this section, we analyze the coupled linearized Eqgs. (3.2) and (3.3) obtained in
the previous section to understand the role of the presence of the external Byy on
the 3D instability. We mention here that we would term modes with finite &, and
with k, = 0 as the pure kink modes. Those with finite k., and with k, = 0 as
the pure sausage modes of the system. Modes with both k, and k. as finite are
the mixed modes. The terms sausage and kink used here are in analogy with the

perturbations of a cylindrical plasma column in the context of MHD. The form of
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perturbations for two modes in cylindrical geometry and their representation in the
slab geometry has been shown with the help of a schematic diagram in Fig. 3.1. We
first present the local stability analysis by assuming that the perturbation length

scales are smaller than the shear scale length.

3.3.1 Local Analysis

Assuming that the perturbation scales are smaller than the equilibrium scales, we
take the Fourier transform of Eqs. (3.2) and (3.3) also along = direction and obtain

the dispersion relation as follows:

20(1 + k;g) = (vg — )k, + {(vg — vo)ng

— 4k, (vy + Bo) + k2 Boo)[kyvy — kZ(kyBo + k.Boo)]}?  (3.4)

Here ko = (k2 + k2 + k2)'/2. The above dispersion relation predicts the possibility
of instability when the discriminant D = —4[k, (v, + Bo) + k. Boo] [kyvy — k2 (k, Bo +
k.Boo)] + (vy — v0)%k? < 0. Tt is clear that for vy = 0 and/or k, = 0, D is always
positive. It shows that the variations perpendicular to the plane of flow and shear
(i.e. k, finite) along with a finite value of v is essential for any local instability to
exist. Furthermore, the existence of a finite in-plane magnetic field By, does not
influence the growth rate of pure kink modes for which £, = 0. When both k, and
k. are finite, the growth rate diminishes with increase in By, as the expression for
the discriminant clearly suggests.

It can be shown that in various simplified limits, the local dispersion relation

reduces to well known forms:
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e Case (i): Choosing By = 0 the dispersion relation reduces to,

1

20(1 4+ k) = (vy — vo)k. % {(vg —vp)?k? — 4]{;2(1}8 + BO)(vé — k;gBo)}l/Q(?).E))

This matches with the dispersion relation of Jain et al. [46] obtained earlier.

e Case (11): For k, = 0 and By, = 0, the dispersion relation reduces to the local
dispersion relation obtained by us earlier [34] in the context of 2D sausage

modes.
’ 17 .
e Case (iii): For vy = v, = v, = 0 we obtain,

Y (kyBo + k‘zfoo)k‘o (3.6)
(1+ k§)

the dispersion relation for the whistler waves.

It is clear that in the presence of 3D perturbations, local unstable modes exist for

a sheared electron flow configuration.

3.3.2 Nonlocal Analysis: tanh-profile

We now consider the general case where the perturbation scales can be extended.
In this case it will not be possible to take the Fourier transform along the sheared
direction of x. The eigen modes in this case sense the extended profile of the
velocity shear. The growth rate of instability has to be obtained as an eigen value
of the solution of ordinary differential equation. We have considered a specific
tangent hyperbolic shear flow profile for the purpose of our studies i.e., vo(z) =

Votanh(z/€), where 2¢ is typically the width of shear region around z = 0 and
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| Vo | is the asymptotic magnitude of the fluid flow far from the shear region. The
corresponding equilibrium magnetic field can be obtained by integrating Ampere’s

law,

By(x) = —Vyelog cosh(z/€) + Cy (3.7)

Here, () is the constant of integration and represents a uniform magnetic field
along g direction. We have made use of two coupled linearized Eqs. (3.2) and (3.3)
to evaluate the eigen values numerically. The magnitude of the external magnetic
field By along the flow direction as well as the value of Cj has been varied to study
their role on the instability.

Our linear studies indicate that the dominance of pure sausage and/or kink
mode gets determined by the following three factors, (i) the comparison of shear
scale € of the flow with the electron skin depth. For sharper shear scales, the
sausage growth rates are higher. (ii) the addition of By, along the flow direction
reduces the sausage growth rate as for the sausage configuration extra energy is
now required to bend the field lines of Byy. This field, however, does not influence
the kink growth rates. (iii) The addition of Cj, a uniform magnetic field along the
third dimension (perpendicular to the plane of flow and shear), similarly reduces
the kink growth rate and has no influence on sausage mode.

In Fig. 3.2(a), we show the surface plot of the growth rate as a function of ke
and kye for Byy = 0 and Cy = 0. This plot corresponds to € = 0.3, i.e. the shear
scale is about 1/3 of the skin depth. For this particular value of skin depth, the
maximum growth rate of the sausage mode is almost comparable with that of the
maximum growth rate of the kink mode. This has been clearly illustrated in the

line plots of Fig. 3.2(b) for which the growth rate plot as a function of ke is shown
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Figure 3.2: The subplot (a) shows the surface plot of the growth rate for the
tangent hyperbolic velocity shear profile tjy(z) = 2Vj tanh(x/€) as a function of ke
and kye for Byy = 0 and Cy = 0. For this case Vj = 1.0 and € = 0.3. In subplot (b)
of the figure the same data for growth rate has been shown as a function of k.e.
The various curves show different values of k,. For this case the kink growth rate
for k, = 2,k, = 0 (equal to 0.52) is almost identical to the maximum growth rate
of the sausage mode at ke = 0.5,k, = 0 (equal to 0.54).

for various values of k,. It should be noted that for this case, the maximum of the
kink growth rate occurring for k, = 2, k, = 0 is almost identical to the maximum

growth rate of the sausage mode at k.e = 0.5,k, = 0. When € is decreased below
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Figure 3.3: The subplot (a) shows the surface plot of the growth rate for the
tangent hyperbolic velocity shear profile tjy(z) = 2Vj tanh(x/€) as a function of ke
and kye for Byy = 0 and Cp = 0. For this case Vy = 1.0 and ¢ = 0.5. In subplot

(b) of the figure the same data for growth rate has been shown as a function of

k.e. The various curves show different values of k,. For this case the kink growth

rate for k, = 2,k, = 0 (equal to 0.43) is higher than the maximum growth rate of

the sausage mode at k.e = 0.5, k, = 0 (equal to 0.27). The pure kink mode clearly

dominates for this case.

the value of 0.3 we observe that the sausage growth rate dominates. However, for

a higher value of ¢, say = 0.5, the growth rate corresponding to the kink modes

dominate the system as can be seen from the plots of Fig. 3.3.
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Figure 3.4: Plot of the eigen functions of pure sausage mode (k, = 0). The other
parameter values are Vy = 1.0,¢ = 0.3, k, = 1.7, Byo = 0.0 and Cy = 0.0.
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Figure 3.5: Plot of the eigen functions of pure kink mode (k, = 0).
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parameter values are V, = 1.0,e = 0.3, k, = 2.0, Byy = 0.0 and C
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Figure 3.6: Variation of growth rate with k,e for different values of uniform mag-
netic field Byg along flow direction. The various parameters for this case are
Vo =1.0, Cy =0, € = 0.3 and k, = 0.4. The growth rate decreases as the value of
By increases.

The eigen functions for pure sausage mode (i.e. k, = 0 and k, finite) are shown
in Fig. 3.4. We can see that there is no structure in B,; while, v,; has a localized
structure in . The two linearized equations get decoupled in this case for Byg = 0
and the field B, assumes a trivial solution. Whereas, for pure kink mode (k, finite
and k, = 0), both B,y and v, are finite as can be observed in Fig. 3.5.

We next study the case when a uniform magnetic field Byy along the flow
direction is added. It can be observed from Fig. 3.6 that for increasing values of
By the sausage growth rate decreases consistently. However, the growth rate of
the kink mode £k, = 0, and finite k, does not get influenced by this magnetic field.

It is clear from this figure (Fig. 3.6) as well as from Fig. 3.7, where the growth
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Figure 3.7: Variation of growth rate as a function of k.e for the case By, = 1.0
with Vp = 1.0, Cy = 0 and € = 0.3. The various curves correspond to different
values of k,. For this case the kink growth rate for k, = 2, k, = 0 (equal to 0.52)
is higher than the maximum growth rate of the sausage mode at k.e = 0.5, k, =0
(equal to 0.39). The pure kink mode clearly dominates in this case.

rate plots for various £, has been shown, that the kink growth in this case can
significantly dominate the sausage growth. This is physically understandable as
the 3D kink related perturbations do not cause the bending of the magnetic field
lines associated with By, whereas the sausage perturbations do have to bend these
lines. Thus, from energy point of view the kink perturbations can dominate even
though the shear scale length € is sharp when the value of By is increased. On the
other hand when Cj, which corresponds to a uniform magnetic field along the g, is
chosen to be finite, the growth rate of kink mode reduces significantly. Whereas,

the sausage mode thrives irrespective of the value of Cjy. This can be seen from

the plots of Fig. 3.8.
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Figure 3.8: The variation of growth rate as a function of k,e has been shown in
subplot (a) for k, = 0 i.e. pure kink modes and in subplot (b) for the value of
k., = 1.7. The different curves correspond to the different values of Cy in two
subplots. The other parameters are Vj = 1.0 Byy = 0 and € = 0.3. It is clear
from the two subplots that as the value of Cj is increased the growth rate of kink
consistently drops down whereas the pure sausage growth rate is not influenced by
this field.

It would be interesting to see how these factors (predominance of one mode over
the other in various situations) figure in the nonlinear evolution of a 3D system.

We present the results of the nonlinear evolution in the next section.

3.4 Nonlinear Simulations

The components of the evolution Eqs. (3.1) can be expressed in the form of gener-

alized continuity equations with source terms. The components have been evolved
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Figure 3.9: The evolution of perturbed energy with V5 = 1.0, Cy = 0 and € = 0.3
for Byo = 0.0 and By = 1.0 has been shown in subplots (a) and (b) respectively.
The dashed lines shown alongside are having the slope equal to 2v;, where ~; is
the growth rate of the maximally growing mode in the system. In subplot (a) the
slope corresponds to growth rate of pure sausage mode (with v; = 0.54) whereas,
in subplot (b) the slope corresponds to the growth rate of pure kink mode (with
v = 0.52) which is the maximally growing mode in the system for this case.

in slab geometry using the flux corrected scheme of Boris et. al. [75]. A suite
of subroutine for solving such generalized continuity equations are available as a
package known as LCPFCT [74]. This has been adapted suitably for our system
of equations. At each time step one evolves V2B — B first and then employs a
Helmholtz solver to solve for B at the updated time. The updated electron veloc-
ity is obtained from the relationship v = —V x E, which is then used to evolve
V2B — B at the next step. The evolution of total energy was tracked throughout

the time of evolution to ascertain the accuracy. We observe that the numerical
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Figure 3.10: The evolution of perturbed energy with V, = 1.0, Cy =0 and ¢ = 0.1
for Byo = 0.0 and By = 1.0 has been shown in subplots (a) and (b) respectively.
The dashed lines shown alongside are having the slope equal to 2v;, where ~; is
the growth rate of the maximally growing mode in the system. For two cases the
values of ~; are equal to 1.85 and 1.78 for subplots (a) and (b) respectively. The
maximally growing mode for two cases is pure sausage mode.

variation of total energy is (AE;y/Eiw) ~ O(107%) in the linear regime whereas
the change in the perturbed energy (AE,/Eiy) ~ O(1072). The initial condition
was chosen as the sheared electron velocity flow equilibrium of the tangent hy-

perbolic form, 7y = 2Vj tanh(x/€). This translates to the initial condition for the

magnetic field of the form,

By = —Vyelog [cosh(x/€)] § + Coi (3.8)
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Figure 3.11: The evolution of perturbed energy with V; = 1.0, Cy = 1.0 and ¢ = 0.3
for Byo = 0.0 and By = 1.0 has been shown in subplots (a) and (b) respectively.
The dashed lines shown alongside are having the slope equal to 2v;, where ~; is
the growth rate of the maximally growing mode in the system. For two cases the
values of 7; are equal to 0.54 and 0.39 for subplots (a) and (b) respectively. Here
again the maximally growing mode for two cases is pure sausage mode.
We have also often chosen an additional uniform magnetic field By,z along the flow
direction. The presence of this magnetic field does not disturb the equilibrium flow.
However, a finite ByZ influences the linear growth rate of the system as we saw
in our linear analysis. Here, we have studied the role of this magnetic field along
with Cjy on the nonlinear state.

The evolution of perturbed energy has been shown in Fig. 3.9 for the case of
e = 0.3 and Cy = 0 in subplot (a) for Byy = 0.0 and in subplot (b) for By = 1.0

respectively, depicted by the solid lines. The perturbed energy shows a linear rise

in the semilog plot initially. This corresponds to the linear growth rate regime.
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Figure 3.12: The plot of averaged electron flow velocity profile at various times for
Boo = 0.0 and Byy = 1.0 in subplots (a) and (b) respectively. The values of the
other parameters have been chosen to be same as in Fig. 3.9. The flattening of
shear profile is weaker for finite By, case.

We observe that the slope of the dashed lines drawn along side for the two cases
matches with twice of the maximally growing mode corresponding to it. While for
(a) the sausage mode has the maximum, for (b) it is the kink mode. The energy
is observed to saturate subsequently when the perturbations acquire a nonlinear
amplitude. Further, it is interesting to see that for another plot in Fig. 3.10 with
e = 0.1, the sausage mode dominates in both cases of Byy = 0.0 and Byg = 1.0. In

addition, in Fig. 3.11, () is chosen to be finite for the case of ¢ = 0.3. Here again

the sausage mode dominates for both cases of By = 0.0 and By, = 1.0.
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Figure 3.13: Evolution of average wave-numbers in different directions for Byy =
0.0. The values of the other parameters have been chosen to be same as in Fig. 3.9.

It is often of importance to know the process of nonlinear broadening of the
shear layer in the presence of these unstable modes. The nonlinear broadening
of the shear layer provides the information on the effective anomalous viscosity
for the system in the nonlinear regime of the instability. We show the evolution
of the mean flow profile with time in Fig. 3.12 for the two cases (a) and (b) of
Fig. 3.9. It is observed that the broadening occurs much more slowly when the
system evolution is governed by the kink like mode than that of the sausage mode.
This can be understood by realizing that during the linear phase, the kink mode
does not alter the 2D flow structure. Thus, the broadening occurs for this case
only at a later phase when the nonlinear phase sets in and energy starts to trickle
in the other modes as well. This is corroborated by studying the time at which
the profile gets broadened in the two subplots.

For a 2D EMHD system, typically, one encounters inverse cascade of energy
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Figure 3.14: Evolution of average wave-numbers in three different directions has
been shown in three different subplots in comparison for two cases By = 0.0 and
Bgg = 1.0. The values of the other parameters have been chosen to be same as in
Fig. 3.9.

and the final state comprises of ordered vortex flow patterns. However, in the
presence of additional external uniform fields, short scale structures were observed
to get formed in 2D [80]. Here, we investigate the behaviour of the spectrum in the
nonlinear regime of the KH instability in 3D with and without external magnetic
field. The plot of Fig. 3.13 shows the evolution of the average wavenumber along

the three directions. The evolution of average wavenumber, along all the three

directions, shows a sudden rise and then a steady slow decay which eventually
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shows a saturation. It is observed that the average value of the wavenumber is
typically highest along the direction of shear z; along Z, the directions of flow and
7, the direction of the magnetic field associated with flow, the scales are in general
longer in the nonlinear regime. It appears, therefore, that both the presence of
flow and magnetic field inhibits the process of direct cascade of spectrum towards
higher wavenumbers. This leads to significant anisotropization of the spectrum.
In the presence of By, we observe that the evolution of the typical scale along
the Z (shear direction) remains more or less unaltered. This can be seen from the
plot of Fig. 3.14. However, the scales along the other two directions turn out to
be longer when By is finite than when it is chosen to be zero. These results are
in conformity with the whistler wave mediated spectral cascade features presented

in references |72, 73].

3.5 Summary

The study of electron velocity shear driven instability in EMHD (Electron Magne-
tohydrodynamics) regime in three dimensions has been carried out. The instability
is non - local in the plane defined by the flow direction and that of the shear and
is the familiar Kelvin - Helmholtz (KH) mode which has often been termed as
the sausage mode in the context of Electron Magnetohydrodynamics flows. On
the other hand a local instability with perturbations in the plane of shear and
the magnetic field exists which has been referred as kink mode. The addition of
an external magnetic field along the shear flow direction has been shown earlier
to stabilize the sausage modes in 2D. We have shown here that the kink modes
remain uninfluenced by this magnetic field and hence can be the pertinent fastest

growing mode in such a scenario. It is also shown that the addition of external
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magnetic field along the ambient magnetic field direction generated by the flow
(e.g. perpendicular to hear and flow direction) reduces the kink mode but the
sausage growth remains unaltered by it. The nonlinear evolution confirms these
observations.

We also observe that the spectral cascade towards shorter scales in 3D gets
inhibited both along the flow as well as along the direction of magnetic field. Thus
the shortest scales are found along the shear direction, while in the other two
directions, one observes scales which are typically longer. This is consistent with
an earlier work where it was shown that the spectral cascade is typically mediated

by the whistler wave.
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Chapter 4

Stability of Isichenko Solutions of

Electron Magnetohydrodynamic
Model Against Shear Driven Modes

The studies on velocity shear driven Electron Magnetohydrodynamics (EMHD)
instability in the previous Chapters, have shown that the instability is nonlocal, if
the variations lie in the plane of flow and shear. This is usual Kelvin Helmholtz
mode, often termed as sausage mode in EMHD. Besides the KH mode, a local
mode with perturbations in the plane of magnetic field and shear is also known
to exist, which is termed as the kink mode. In this Chapter, we analyze these
instability processes for the exact nonlinear solutions of EMHD equations in the
form of monopolar and dipolar magnetic field structures obtained by Isichenko et

al. [51].
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4.1 Introduction

The coherent structures play an important role in governing transport properties
of a system. The presence of these structures is believed to be the cause of phe-
nomena of intermittency in turbulence. The coherent structures can be described
as the exact solutions of the nonlinear fluid equations. The studies on transport,
stability and interaction processes of these structures provide an understanding of
their role in the turbulence. The EMHD equations in 2D permits certain exact,
nonlinear electron flow solutions. These solutions were obtained by Isichenko and
Marnachev as the isolated, coherent structures [51|. The first variety of solutions
are the rotating electron currents giving rise to monopolar magnetic fields. These
monopolar solutions are radially symmetric and stationary solutions. The other
variety includes the electron currents producing bipolar magnetic fields. These
dipolar solutions are radially non-symmetric and propagate with constant speed
in their axial direction.

In their work, Isichenko et al. have obtained analytical conditions for the exis-
tence of exact nonlinear localized solutions of EMHD equations in two dimensions.
They also carried out the stability analysis and have shown that the solutions are
stable. The propagation and interaction characteristics of such EMHD solutions
in a homogeneous plasma have been studied by Das [55| and later by Dastgeer [56]
in 2D. They observe structures to be fairly robust and stable. Various interaction
processes amidst monopoles and dipoles have also been studied by them and a
qualitative understanding of the observations has been provided on the basis of
point vortex model (PVM). Subsequent studies in 2D by Sharad et al. [76] on

propagation of such structures in an inhomogeneous plasma illustrate interesting
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adjustments in shapes. However, the overall integrity of the structures is found to
remain preserved in such simulations.

While the monopolar solutions represent static electron current pulse in plasma,
the dipolar solutions can be looked upon as propagating current pulses. They
thus mock up a translating current pulse in which the central region carries a
forward current (along the direction of propagation) and the outer region carries a
reverse current surrounding the forward current, a situation of practical relavance
in various scenarios. For instance, in the case of fast ignition scenario [5, 6], the
hot electrons generated by the lasers at the critical density surface move towards
the dense core and generate the return shielding current in background electrons to
maintain the charge neutrality. This configuration is subjected to the Wiebel and
tearing instabilities. Due to these processes the current filaments are formed which
self-organize through the coalescence process and finally result in few cylindrical
current channels in which the return current surrounds the central forward current.
The electrons constituting the forward current are good source for heating the core
and produce the hot spot for ignition by dumping their energy to the background
plasma through various processes. Sharad et al. [77| have shown in their studies
a novel mechanism, the formation of current shock, through which these dipoles
dissipate their energy and have discussed the implications of their study to the fast
ignition. The similar current pulses are aslo formed in other phenomena such as
fast magnetic reconnections |7, 10, 11, 12, 13, 14, 33|, fast magnetic field transport
[49, 50], laser plasma interactions [78], etc.

The EMHD solutions have an electron flow configuration which is significantly
sheared (Fig. 4.1). Since the simulations in 2D show the structures to be robust

and stable. It is, thus, of importance to understand why the structures are not
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[

Figure 4.1: Representation of EMHD monopolar and dipolar solutions in the form
of current pulses. Subplots (a) and (d) show the forms of typical monopole and
dipole as lying in x—z plane. The corresponding magnetic field and flow profiles are
shown in subplots below to them (see subplots (b), (¢) for monopole and subplots
(e), (f) for dipole). Here, using the Maxwell’s relation, the flow velocity is related
to magnetic field as vg = —dBy/dx. In subplots (¢) and (e) we see that there are
the regions of in flow and out flow that make the configuration as the sheared flow
configuration.
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susceptible to the 2D instabilities discussed in earlier Chapters. An explanation
of this was provided by Sharad et al. [54|, where they suggest structure size
being comparable to the shear scale, nonlocal 2D sausage mode, having a cut off
wavelength of the order of shear scale, can not be excited. A 3D evolution of these
solutions has not been carried out so far where the kink mode, being local mode,
has no such cut offs. In this Chapter we study the 3D evolution numerically and
show explicitely the destabilization of these solutions.

The Chapter has been organized as follows. In section 4.2 we briefly describe
the nonlinear solutions of EMHD equation. In section 4.3, we present the results
of numerical simulations in 3D carried out with monopole and dipole structures
as the initial conditions in a homogeneous plasma medium. In section 4.4, the
stability of structures against flow shear driven modes has been discussed. Finally,

in section 4.5, we summarize the outcome of our study.

4.2 Solutions of 2D EMHD

We recall the two dimensional EMHD equations (Eqgs. 2.1 in Chapter 2),

O (V20— ) 49 x Vb V(T ) = 0
O ) £ Vb YV — X Vi YV = 0 (41)

ot

Here b and 1 are two scalars which represent the total magnetic field as, B =

by+1y x Vb, y is the symmetry direction. Using the property yx VA-VB = [A, B|,
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the above set of equations (Eqs. 4.1) could be cast in the following form,

OF

E+[b’f] =0

Y

5 tb9 = [ 7] (4.2)

Here F = — V?*) and G = b — V?b. The Egs. (4.2) are in Hamiltonian form in

terms of non-canonical Poisson brackets [81] with energy functional,
H =1 [[0? + (V)2 + (VD) + (V)2 dwdz,

which is the total energy (sum of the magnetic energy and the kinetic energy) of the
system. In Eqs. 4.2 the field b acts as a stream function which advects the quantities
F and G. The quantity F is advected as a Lagrangian invariant which represents
the conservation of generalized momentum along y direction. The quantity G, in
addition to advection, has a source term in the evolution equation, and is not a
Lagrangian invariant.

The Poisson bracket in Eqs. (4.2) vanishes for radially symmetric forms. Hence
the symmetric structures i.e. monopoles are exact, stationary solutions of these
equations. Any collection of monopoles separated by a distance much larger than
their spatial extent such that there is no spatial overlap among them, is also a
solution. Two monopoles when placed sufficiently close to each other influence
the dynamics of each other. The another interesting solution which is a traveling
dipole, is indeed a manifestation of this interaction. A dipole can be imagined
as a combination of two monopoles of equal strength but opposite polarity placed
in the vicinity of each other. The net results of interaction is the translation of
the combined structure. These solutions were obtained analytically by Isichenko

et al. [51] by seeking the stationarity in a moving frame. The solutions are the
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combination of Bessel functions of various kinds.
Consider the case that the currents lie in the x — z plane only i.e. ¢ = 0. For

this, Eqgs. (4.2) reduce to,

d 2 291 _
a(b—v b) +[b,b—V? = 0 (4.3)

Stationary monopolar solutions can be obtained for [b, b — V?b] = 0 which suggests
V2b = f(b). Here, f is a function of b. For instance, a localized b of the following

form can be one such solution,

b= Agexp {— (z = w0)" + (2 = ZO)Q} (4.4)

o2
Here, Ay and o are constants which decide the strength and spatial extent of the
structure, respectively. The other constants xy and zg fix the location of centre of
the structure in the 2D space. This form we have used in our studies as the initial
conditions for monopole.

The propagating dipole solutions are obtained by transforming the coordinates
to a frame moving with uniform velocity U along z direction. Stationarity in this

frame yields,
[V2b—bb—Uz] = 0 = V2 —b= f,(b—Uz) (4.5)

Here, f, is an arbitrary function of (b — Ux). Isichenko et al. [51] have obtained
the analytical solutions which are localized within a finite spatial extent ag. In the
inner region (r < ay), the vorticity source function is chosen to be a linear function

of its argument as, f,(= 3(b — Ux)). For localization, the function f, is chosen to
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vanish (i.e. 8 = 0) in the outside region (r > ag). Solutions are obtained in the

cylindrical coordinates as given below,!

b = [diJi(kr) + dar]cos(0); 1 < ag

b = d3Ki(r)cos(f); 1> ag (4.6)

Here, d’'s and k are unknown constants which are determined from the matching
of field b and its derivatives at » = ag. The above solutions of b form the dipole
structure for a set of free parameters (U, f,aq). These solutions with the known

constants are then used as initial state in our studies.

4.3 Nonlinear Simulations

To study the evolution of the EMHD structures (monopole and dipole) against
3D perturbations we have carried out 3D nonlinear simulations. The simulation
scheme is the same as adapted in Chapter 3. The initial conditions chosen are
monopole and dipole structures. Boundary conditions are chosen to be periodic
in all the three directions. The values of various parameters have been mentioned
wherever required. We have checked for the conservation of total energy in our

simulation run(s) to ascertain that there is no numerical instability.

Evolution of Monopole:

The monopole structure has been chosen to lie in the x — z plane. The monopole
magnetic field is along y - direction. We show the contour lines showing the

magnetic field of the monopole in the x — y plane at various times in Fig. 4.2. The

'Detailed mathematical derivation of solutions can be seen in Ref. [82].
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0 3.24123 3.83055

TNY

Figure 4.2: The constant magnetic field contours of the monopole have been shown
at various times in the z — y plane.

contour lines which are straight initially (as the equilibrium is independent of )
evolve to show the development of instability (at ¢ = 3.24123). The instability
becomes more pronounced at later time, say at ¢ = 3.83055. Up to this time the
monopole continues to maintain its identity and remains stable, although its shape
gets somewhat distorted. This can be seen from the subplots of Fig. 4.3 at the
corresponding times. This figure shows the contour structures of monopoles in the
x — z plane. In the later subplot of Fig. 4.2, short scale patterns are seen and the

monopole at corresponding times (in Fig. 4.3) shows considerable disintigration.
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3.24123 3.83055
1
) - -
0
4.41986 5.30384 6.18781
2
N 0
-2
-2 0 2 -2 0 2

Figure 4.3: The constant magnetic field contours of the monopole have been shown
at various times in the x — z plane. These times are similar to those of the subplots
of Fig. 4.2.

Evolution of Dipole:

In another simulation, we study the evolution of dipole structure as given in Eq. 4.6.
The dipole structure has been chosen to lie in the  — z plane and propagating
along z - direction. The dipole magnetic field is along y - direction. We show the
contour lines showing the magnetic field of the dipole in the x — y plane at various
times in Fig. 4.4. As the dipole propagates with an axial speed z, the z location of
the chosen x — y plane in the figure corresponds to the central region of the dipole.

The contour lines which are straight initially (as the equilibrium is independent of
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0 359.561 859.561
0.013 s

oll 0
—0.0M™°

-5 5

1859.56
5
> 0
-5

5 0 5

Figure 4.4: The subplots show the plots of the magnetic field lines in the z —
y plane for z = 0.0,1.87,3.68,5.5, —2.06 and 0.35 corresponding to times t =
0.0, 359.561, 859.561, 1859.56, 3109.5 and 4859.45 respectively. The z location at
these times correspond to the location of the mid plane of the dipole structure
as it propagates. The magnetic field lines which are initially straight as there
is no dependence of equilibrium on y later due to the kink instability acquire y
dependence.

y) evolve to show the development of instability (at t = 359.561). The instability
becomes more pronounced at later time, say at ¢ = 859.561. Up to this time
the dipole continues to maintain its identity and continues to propagate stably,
although its shape gets somewhat distorted. This can be seen from the subplots
of Fig. 4.5 at the corresponding times. This figure shows the contour structures of

dipoles in the x — 2z plane at y = 0.0. Later, the magnetic field lines of the plot in

Fig. 4.4 develop a wider bulge and form an island structure (at ¢ = 1859.56). At
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Figure 4.5: The constant magnetic field contours of the dipole have been shown at
various times in the x — z plane. These times are similar to those of the subplots
of Fig. 4.4.

these later times the dipole shows considerable disintegration. At subsequent times
the dipole structure disintegrates completely and small scale structure formation

can be observed.

4.4 Discussion

The structures both monopoles and dipoles, in our simulations, are found to be
unstable. These structures, however, were stable against sausage mode in their 2D

evolution, where kink mode was not supported. The stability of structures against
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sausage mode had been argued by Sharad et al. [54| on the following basis. For
these structures, the shear layer width as well as the total extent of shear flow both
have an extent of typical electron skin depth size. The sausage mode can only be
excited if a scale length along the flow direction is longer than the shear width,
e.g., referred to as k.e < 1 (k, being the wavenumber along the flow direction and
¢ being the typical shear width) in earlier work. The total extent of the shear flow
being limited in size permits no wavenumber to satisfy the criteria of ke < 1,
hence the structures remain stable to the sausage mode. The kink mode, however,
is free from this kind of restriction. Hence, in our simulations, where kink mode is
also operative, the structures show destabilization.

The unstable behaviour of the structures raises the question of their relavance
in various phenomena described in earlier studies. One needs to compare the
instability growth rate along with the time scales involved in the phenomena to
investigate the relavence of the structures. We choose to discuss here the study by
Sharad et al. [77]. In their study, the dipoles, while moving in an inhomogeneous
plasma medium, are shown to dissipate their energy through the mechanism of
current shock formation. Implications of the study were shown in the fast ignition
phenomena. The study, being two dimensional, does not support the kink mode.
However, in real 3D situation the dipoles would become kink unstable as shown
by us. We need to compare here, the time scale at which dipoles dissipate their
energy with the growth rate of kink instability to see the relevance of dipoles.

As obtained by Sharad et al. [77], the rate of energy dissipation in the shock

structure is,

2 9
:boa

Q TKLUe (4.7)
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Here, by is the typical value of magnetic field in dipole, v, is the typical incoming
velocity of dipoles and a is the system length along the transverse directions. L
is the typical shock length and K is the inverse of the normalized density scale
length. The time scale T" at which the dipole energy gets dissipated is obtained as,

b2
5°a2L 1

T:—N
Q Kv,

(4.8)

This suggests that the dissipation would occur fast for the sharp density gradients.
Let us now recall the local dispersion relation for the kink mode obtained as

Eq. (3.5) in Chapter 3,
20(1+ kg) = (vg — vo)k= & {(vg — v0)*kZ — 4k2(vy + Bo)(vy — kg Bo)}'/*  (4.9)

The above dispersion relation predicts the local instability when the discriminant
D = —4k2(vy + Bo)(vy — k¢Bo) + (vy — v9)?k? < 0. Tt is clear that k, and vy need
to be finite for the instability to exist. However, finite values of k, and By, make
the task of exciting kink mode difficult. Choosing k£, = 0 and also By = 0, the
growth rate of instability yields,

Qkyvé) kyvo

TS0k 4R (4.10)

Here, € is the shear width or size of the dipole. For k ~ 1, the v ~ vy/2¢. This
suggests that the instability growth rate diminishes as the shear width increases,
as known.

The two time scales 7" and v~! would compete with each other to tell which

process is dominant. For dipoles to be of relevance i.e. when dissipative process
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is dominant, the condition 47" < 1 should be satisfied. This means that dipoles
dissipate their energy before the instability destroyes them. Since the finite value
of k, and By reduce the instability growth rate, the condition v7" < 1 may be
favourble in this parameter regime. Hence the dissipative process may be impor-
tant. In the other limit i.e. v7T" > 1, the dipoles decay due to instability before
the dissipation phenomena takes place and hence may not be of relevance. One,
thus, needs to look into the parameter space of kink growth rate and compare it
with the dissipation time scale T" to establish the usefulness of the dipole struc-
tures. The expression for growth rate of kink mode Eq. 4.9 is only approximate
one and is valid only in the local limit. For more accurate and detailed discussion
the nonlocal analysis of the instability needs to be taken into account; the study

is underway.

4.5 Summary

In this Chapter, we have investigated the stability of Isichenko solutions of 2D
EMHD against the three dimensional perturbations. The solutions are the coher-
ent, localized structures in the form of stationary monopoles and traveling dipoles
which propagate with constant speed in their axial direction. The electron flow
configuration is significantly sheared in these structures and hence are susceptible
to the velocity shear driven instability processes. It is known that for 2D perturba-
tions (variations confined in the plane of flow and shear only), the unstable mode
is sausage mode which is a nonlocal mode. When the variations along the third
dimension are also allowed, another mode exists, which is a local mode and termed
as the kink mode.

The EMHD structues are known to be very robust and stable against the

108



Chapter 4: Stability of Isichenko solutions ...

2D sausage mode perturbations. However, in our three dimensional nonlinear
simulations, we observe that the they get destabilized due to the kink mode. The
puzzling behavior of structures (stability for sausage and instability for kink mode)
can be understood from the following argument. The structure size does not permit
the wavenumber to satisfy the instability criteria of sausage mode for which the
wavelength should be broader than the shear width, and hence the structures are
stable to sausage mode. However, for kink mode which is local in nature, the
wavelengths sharper than the shear width are also unstable. Hence the structures

become unstable due to the presence of this mode.

109



Chapter 5

Summary and Future Scope

This Chapter presents the summary and conclusion of the work carried out in
the thesis. The Chapter also provides the discussion on possible future research

problems in continuation to the work presented in the thesis.

5.1 Summary and Conclusions

The work in the thesis has been focused on the studies of shear driven EMHD
instabilities in plasmas. Here, we present summary of the work carried out in

previous Chapters with a brief discussion on the important results obtained therein.

¢ Role of natural length and time scales of EMHD on 2D Kelvin

Helmholtz instability

Kelvin Helmholtz (KH) instability is one of the prominent fluid instabilities
in which interface of two fluids in relative motion is unstable under certain
conditions. In the context of EMHD, the instability has been studied in

considerable detail [34, 45, 46, 47|. In this thesis, we explore the instability
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further under certain additional considerations. Due to its electromagnetic
character, the EMHD model exhibits natural length (electron inertia) and
time (whistler period) scales. We have studied the role of these natural scales
of EMHD on KH instability in 2D, in Chapter 2. Here, 2D refers to the case
when the perturbations are confined in the 2D plane consisting of flow and
shear directions. The self consistent magnetic field arising due to 2D sheared
flow of electrons, is directed along the symmetry direction. A linear analysis
solves the problem as matrix eigen problem and obtains the eigen values
as the growth rate of the instability. It is observed that the growth rate
decreases as the shear width is increased in comparison to the electron skin
depth. The instability is prominent only when the shear in the electron flow

velocity is sharper than the electron skin depth.

In order to understand the role of whistlers on the instability, a uniform
magnetic field (By) is imposed along the direction of flow. This magnetic
field, being tied to the fluid flow, gets distorted to a sheared configuration due
to the action of KH. The tension caused by this distortion tries to restore the
magnetic field lines to its original configuration and sets up the oscillations
at whistler frequency. The process of exciting whistlers costs energy and
opposes the growth of KH mode. Consequently, KH growth rate is found
to reduce with increasing Bjy. Nonlinear fluid simulations were carried out
to understand the role of whistlers in the nonlinear regime of instability.
The instability growth rates with and without By in simulations match with
linear theory, this validates the simulation code. In the absence of By, the
2D EMHD model is known to conserve two non-dissipative square integrals

namely, energy and enstrophy. This constrains the power transfer in the
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nonlinear regime towards longer scale due to the process of inverse cascade.
As a result, in simulations for the case of By = 0, the final nonlinear state
is a coherent pattern occupying the box size. However, in the presence of
By, the nonlinear cascade is governed by the interactions among whistlers
and exhibits strong anisotropic character |72, 73|. In the final nonlinear
state the structures are seen preferentially elongated along the direction of
magnetic field. There is hardly any extension along the transverse direction.
As a result, the mixing of the fluids flowing in two directions induced by KH
instability gets considerably reduced. Hence, the effective viscous coefficient

is found to be significantly smaller for this case.

e Interplay of Kelvin Helmholtz and kink modes

In Chapter 3, we carried out linear and nonlinear studies of velocity shear
driven 3D EMHD instability. In these studies, we permit the spatial vari-
ations along the direction of self-consistent magnetic field generated due to
sheared flow. In addition to the sausage mode (KH mode), a local mode
with perturbations in the plane of shear and the magnetic field exists which
is termed as the kink mode [35, 46]. The interplay of these modes with and
without external magnetic field has been studied extensively in the linear and
nonlinear regimes. The studies indicate that the dominance of one mode over
the other is mainly determined by the following three factors: (i) The value
of shear width in comparison with electron skin depth. For sharper shear
width the sausage growth rate is higher. (ii) The external magnetic field
(Byo) along the flow direction. The presence of By stabilizes the sausage
mode and does not affect the kink mode. So, kink may be the dominant

mode for this case. (iii) The external magnetic field (Cy) along the direc-
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tion of magnetic field generated by the flow. The presence of Cy reduces the
growth rate of kink mode and does not affect the sausage growth rate. So,

sausage can dominate in these conditions.

Nonlinear simulations of 3D instability were also carried out. The linear
growth rates obtained from various simulation runs are in agreement with
the linear results. Unlike the 2D case, the nonlinear state is found to be
strongly turbulent [43, 47]. This is due to the non existence of two non-
dissipative square invariants and also the larger number of unstable modes
in 3D. We have analyzed the spectral cascade features of the turbulence gen-
erated in the nonlinear state with and without external magnetic field along
the flow direction. It is observed that the spectral cascade towards shorter
scales is inhibited along the direction of flow as well as the direction of mag-
netic field. The shortest scales are thus found to generate along the shear
direction while, in other two directions the scales are typically longer. This
induces significant anisotropy in the spectrum. In simulations with the exter-
nal magnetic field (Bgg) present along the flow direction, we observe that the
scales along the shear directions are more or less unchanged. However, along
the other two directions, the scales are longer in comparison to the case when
this magnetic field is not present. These results are in conformity with the
whistler mediated spectral cascade features [72, 73]. We have also measured
the nonlinear broadening of shear layer which provides the information on
the effective viscous coefficient. The broadening of shear layer occurs much
slowly for the case when magnetic field is present along the flow directions.
In that case the system evolution is governed by the kink mode which in

the linear phase does not alter the 2D flow structure. The broadening occurs
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only at later nonlinear phase when the energy starts to trickle in other modes

as well.

e Stability of Isichenko solutions against sausage and kink modes

The 2D EMHD system has exact stationary monopole and propagating dipo-
lar solutions of localized electron flow structures, obtained by Isichenko et al.
[51]. The 2D evolution of these structures has been studied in considerable
details by several authors [55, 56, 76, 77, 54|, where they have been found
to be stable. The dipole solutions are of practical importance as they can
be imagined as propagating current pulses carrying energy and momentum.
They may be employed for the purpose of hot spot generation in Fast Ignition
scenario by dumping their energy to the core through collision less processes
[77]. The electron flow configuration is significantly sheared in these struc-
tures and hence could be susceptible to various flow shear driven instability
processes (sausage and kink modes, studied by us in Chapters 2 and 3). In
Chapter 4, we have investigated these instability processes for EMHD struc-
tures. For this purpose, we have carried out 3D nonlinear simulations to see

the evolution of the monopole and dipole in a homogeneous plasma medium.

As mentioned above, the EMHD structures, monopole and dipole, are known
to be very robust and stable in their 2D evolution [55, 56, 76, 77, 54]. In
2D, kink mode is not supported and the structures are stable to sausage
mode. Stability of structures against sausage mode can be understood by
the following argument, as provided by Sharad et al. [54]. The structure size
does not permit the wave number to satisfy the instability criteria of sausage
mode viz., k,e < 1; here, ‘k,” is the wavenumber along the flow direction

and ‘€’ is the shear width. Hence, the structures are stable to sausage mode.
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However, kink mode, being a local mode, does not have to follow such kind of
criteria and the structures could go unstable due to this mode. In fact, in our
three dimensional simulations, where kink mode is also in action, we observe
that the structures get destabilized. The unstable behaviour of structures
raises a question of their relevance in various phenomena as described earlier
[55, 56, 77|. The magnitude of instability growth rate needs to be taken into
consideration along with the time scales involved in various phenomena to
investigate the relevance of these structures. A discussion on this has been

provided in the thesis.

5.2 Future Scope

We discuss here the possible future research problems as an extension of the work

presented in the thesis.

e In Chapter 2, we have employed an external magnetic field parallel to flow in
order to understand the role of whistlers on KH instability. In the absence of
this magnetic field, nonlinear state is a coherent vortex. However, with the
magnetic field present, such vortex is not seen in the later nonlinear phase in
simulations. Strength of the magnetic field applied is typically of the order
of self- consistent magnetic field. For weak and very weak magnetic field
cases, “Disruptive” and “Dissipative” phenomena of vortex, as seen in MHD

studies, could be investigated.

e In Chapter 4, we have studied the stability of dipole solution obtained for
the case when ¢ = 0 i.e., currents lie in 2D plane of dipoles. Stability of

dipoles for 1 finite case against kink mode can also be carried out.
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e In our studies, the kink mode is shown to exist in the plane containing the
direction of self-consistent magnetic field and of shear (see Fig. 1.1). The
magnetic field profile considered has a definite sign i.e. does not have a
null-line. In the same configuration (perturbations confined in the plane of
magnetic field and shear), another unstable mode may also be present, but
for a reversed magnetic field configuration. This is the well-known tearing
mode which leads to the reconnection of field lines in the presence of electron
inertia [33, 7|. The two instabilities, tearing and kink, can be investigated

simultaneously for an equilibrium magnetic field.

e A general three dimensional study can then follow by allowing the variations
along the flow direction as well, that would include the Kelvin Helmholtz

(KH) mode also in the system.

e We have modeled our studies using slab coordinate system. However, the
current configurations, described in various phenomena, are cylindrical in
shape. It is, thus, important to carry out the studies in cylindrical geometry

for more realistic description.

e There are typical situations e.g., fast ignition, where the sheared flow con-
figurations of electrons moving at relativistic speeds exist. It is, thus, of
importance to understand the role of relativity on the flow shear driven in-

stability.
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