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SYNOPSIS

In this thesis, we study the ollisionless instabilities driven due to the shear

in the equilibrium eletron urrent. These are the instabilities of sheared eletron

urrent on�gurations formed in a variety of physial situations e.g., fast z-pinhes

[1, 2℄, fast ignition phenomena of laser fusion [3, 4, 5, 6℄, ollision less magneti

reonnetions [7, 8, 9, 10, 11℄, plasma opening devies [12, 13, 14℄, inter planetary

urrent-arrying plasmas [15, 16℄ et. In these on�gurations, with equilibrium

length sales smaller than the ion skin depth, the urrent �ows faster than the

Alfven veloity. In these situations, ion response is ignored and a simpli�ed Ele-

tron Magnetohydrodynami (EMHD) model is evoked to study the stability of the

urrent on�gurations.

EMHD model is a single �uid desription of plasma in whih only eletron dy-

namis is of importane and ions provide merely a stati, neutralizing bakground

[17℄. In our studies, the eletrons have been treated as a old, inompressible ele-

tron �uid of uniform density. In the old �uid (plasma) desription, e�ets due

to thermal motion of partiles are negleted. This is valid when the phase velo-

ities are muh larger than the thermal veloity of partiles. In this situation, the

orresponding veloity distribution funtion may be approximately a Dira delta

funtion entered at the marosopi �uid veloity.

Sine ions are stationary in EMHD, the eletron �ow veloity ~v is diretly re-

lated to the urrent density as,

~J = −ne~v. In our ase of uniform density eletron

�uid, the shear in the urrent is due to the shear in �ow veloity. The shear in

the urrent an also be generated due to the density gradient. However, the den-

sity gradient an not relax in a old ollisionless plasma so there is no free energy

available for the exitation of instability [18℄. Further, it has been shown that the
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presene of urrent gradient due to density gradient alone, is unable to exite the

instability. The free energy assoiated with the sheared �ow on�guration is ne-

essary for the instability. Thus in our ase the shear driven instability is essentially

the veloity shear driven Kelvin Helmholtz (KH) instability. The KH instability

is one of the prominent neutral �uid instabilities [19, 20℄ whih destabilizes the

interfae separating the two �uids in relative motion. The development of insta-

bility leads to turbulene, transport of energy and momentum and dissipation and

mixing of �uids. Extensive work has been devoted in literature to the investigation

of 2D and 3D KH instability in the framework of EMHD [21, 22, 23, 24, 25℄.

The EMHD system losely resembles an inompressible hydrodynami �uid

system with additional features assoiated with the magnetized harater of ele-

tron �uid. The eletromagneti harater of EMHD �uid manifests itself in terms

of natural length and time sales. Eletron skin depth de is the natural length sale

whih arises on the aount of eletron inertia. Also, whistlers being the normal

osillatory modes of EMHD introdue the natural time sale (whistler periods).

The neutral �uids, however, are devoid of any suh spei� length and/or time

sales. We investigated the role of these natural sales of EMHD on KH instability

in two dimensions. The perturbations are on�ned to the 2D plane onsisting of

shear and �ow diretions in whih the major ation of KH instability lies. The self

onsistent magneti �eld, arising due to 2D sheared �ow of eletrons, is direted

along the symmetry diretion. Role of eletron skin depth on the KH instability

has been investigated and thereby a omparison between EMHD �uid and neutral

hydrodynami �uid has been provided. The EMHD model, for sales shorter than

the eletron skin depth, redues to Navier Stokes (NS) equations in 2D for an

inompressible neutral hydrodynami limit. For NS �uid ase, plot of the growth
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rate of KH instability is a universal urve for di�erent values of shear width when

veloity is adjusted to aommodate for the length resaling. However, it is ob-

served that the growth rate for EMHD �uid ase dereases as the shear width is

inreased in omparison to the eletron skin depth. The instability is prominent

only when the shear sale in the eletron �ow veloity is shorter than the eletron

skin depth. Moreover, the instability is of nonloal type for �nite shear width, as

outlined in earlier studies also [22, 23℄; a physial understanding of this has been

provided in the Thesis.

We next study the role of whistlers on the 2D instability. The exitation of

whistlers requires a �nite omponent of wave vetor along the diretion of magneti

�eld. In earlier 2D EMHD studies of KH-like mode [22, 23℄, the equilibrium as well

as the perturbed magneti �elds were direted along the symmetry diretion along

whih no variations were permitted. Hene, whistlers were learly not supported

in these studies. Whistler modes were supported in later 3D studies [24, 25℄.

In those studies, however, the propagation diretion of whistlers was orthogonal

to the 2D plane in whih KH ation primarily ours. To understand the role

of whistlers on the instability, we introdue a uniform external magneti �eld

along the �ow diretion (in the plane of KH). In earlier studies, a single equation

desribing the evolution of magneti �eld omponent along the symmetry diretion

was su�ient. However, we need to solve a set of oupled equations when whistlers

are permitted in the system. This is essentially due to the fat that whistlers

ouple the in-plane magneti �eld perturbations to the magneti perturbations

along the symmetry diretion. The ation of KH distorts the magneti �eld to a

sheared on�guration. The tension aused due to the distortion tries to restore

the magneti �eld on�guration and sets up osillations at whistler frequeny. The
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proess of exitation of whistlers osts the energy and makes the KH instability

less favourable. The linear analysis shows that the growth rate redues as the

magneti �eld strength is inreased.

Nonlinear simulations have been arried out to understand the role of whistlers

in the nonlinear regime of instability. For this purpose we use a nonlinear �uid

ode whih uses �ux orreted transport algorithm. The ode solves 2D EMHD

equations for tangent hyperboli pro�le of equilibrium veloity. In the nonlinear

regime of instability, in the absene of B0, a oherent vortex oupying the box

size is formed [23℄. This is beause of two non-dissipative square invariants namely,

energy and enstrophy, supported by two dimensional EMHD model. However, In

the presene of B0, the nonlinear state is signi�antly hanged from the ordered

state of B0 = 0 ase. The long sale strutures are formed only along the diretion

of B0 and there is hardly any extension in strutures along the transverse diretion.

This indues anisotropy in the system. The observed anisotropy is a harateristis

of the nonlinear asade mediated by whistlers [26, 27℄. The nonlinear interation

of whistlers produes diminishing wave number parallel to B0. The perpendiu-

lar wave numbers, on the other hand, inrease as the result of these interations.

We provide a quantitative estimate of anisotropy in the Fourier spetrum of two

�elds. Due to the anisotropi asade, the KH instability indued mixing of the

�uids, �owing in two diretions, around the shear layer is less. Consequently, the

�attening of shear layer is observed to be weaker. These studies on shear driven

instabilities in EMHD along with whistlers would be of relevane in a number of

physis situations. This kind of on�guration is quite likely in laboratory exper-

iments [28, 29℄ where the plasma is on�ned with the help of an axial magneti

�eld. Also the presene of eletron beams in plasmas threaded by a magneti �eld
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is ubiquitous in nature. For instane, in ionosphere and magnetosphere [30℄, solar

orona [31℄ and pulsars [32℄, et., the equilibrium on�guration onsidered in our

work might exist.

We extend our studies to more realisti 3D instability. In the three dimensional

regime of instability, when the variations along the diretion of self-onsistent

equilibrium magneti �eld are also allowed, a new mode exists in addition to KH

mode. This is a loal mode, termed as the kink mode, whih lies in the plane of

magneti �eld and shear [24, 33℄. The mode requires �nite eletron inertia and

is driven by the gradient in the equilibrium veloity, unlike the KH mode whih

is driven by the urvature in equilibrium veloity. Sine in EMHD, the shear in

veloity is analogous to urrent-gradient, the KH mode has also been identi�ed

as urrent-gradient driven sausage mode. The interplay of two modes has been

studied under various physial onditions.

The shear width ǫ is varied in omparison with the eletron skin depth de. It

has been observed that sausage mode is dominant for sharper shear width while,

for broader shear width, kink is the dominant mode. This is onsistent with the

fat that the 2D instability is prominent only when the shear width is sharper than

the eletron skin depth. Stabilizing behaviour of uniform magneti �eld along the

�ow diretion (denoted as B00 here) has been investigated for 3D instability. Loal

analysis shows that it has no role on pure kink mode. However, it redues the

growth rate of mixed mode. The �eld redues the pure sausage growth rate and

hene dominant mode is kink in this ase. Self onsistent magneti �eld was known

to have no e�et on 2D instability when the variations were suppressed along its

diretion. However, this magneti �eld has stabilizing role on kink instability as

shown by loal dispersion relation obtained in earlier studies [24℄. An external
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uniform magneti �eld C0 along the diretion of self onsistent �eld would simply

add to it. This would make the exitation of kink instability di�ult with no role

on pure sausage instability. This we indeed observe in our studies. The dominant

mode for this ase is pure sausage mode. We also arry out the simulations of the

three dimensional instability with the help of a nonlinear �uid ode. The linear

growth rates of instabilities alulated in various simulations with di�erent values

of ǫ, B00 and C0 are in agreement with linear theory.

The nonlinear state of instability is strongly turbulent in the 3D simulations,

unlike the two dimensional ase. The generation of turbulene is attributed to

larger number of unstable modes in 3D and also non-existene of non-dissipative

integral invariants of 2D. The generation of eletromagneti turbulene due to the

ation of shear driven instabilities has been shown to have important impliations.

This leads to the anomalous stopping of energeti eletrons moving towards ore in

Fast Ignition, whih are known to eventually reate the ignition spot by dumping

their energy to the ore [25℄. Also, in ollisionless magneti reonnetions [21℄,

the generation of turbulene may alter the mehanism by whih the frozen in

�eld ondition breaks in the dissipative regime. The reonnetions may also be

failitated by the anomalous visosity and anomalous resistivity assoiated to the

turbulene generation.

We have analyzed the spetral asade features of the turbulene generated in

the nonlinear state with and without B00. In the absene of B00, it is observed that

the spetral asade towards shorter sales is inhibited along the diretion of �ow

as well as the diretion of self-onsistent magneti �eld. The shortest sales are

thus found to generate along the shear diretion while, in other two diretions the

sales are typially longer. This indues signi�ant anisotropy in the spetrum. In
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simulations with the external magneti �eld (B00) present along the �ow diretion,

we observe that the sales along the shear diretions are more or less unhanged.

However, along the other two diretions, the sales are longer in omparison to the

ase when this magneti �eld is not present. These results are in onformity with

the whistler mediated spetral asade features [26, 27℄. We have also measured

the nonlinear broadening of shear layer whih provides the information on the

e�etive visous oe�ient. The broadening of shear layer ours muh slowly for

the ase when magneti �eld is present along the �ow diretions. In that ase, the

system evolution is governed by the kink mode whih in the linear phase does not

alter the 2D �ow struture. The broadening ours only at later nonlinear phase

when the energy starts to trikle in other modes as well. We stress here that the

studies on interplay of two modes under various physial onditions is important

as it would largely a�et the evolution of system, as disussed here.

The EMHD set of equations permits ertain exat, nonlinear eletron �ow

solutions obtained by Isihenko and Marnahev as the isolated, oherent strutures

[34℄. The �rst variety of solutions are the rotating eletron urrents giving rise to

monopolar magneti �elds. These monopolar solutions are radially symmetri and

stationary solutions. The other variety inludes the eletron urrents produing

bipolar magneti �elds. These dipolar solutions are radially non-symmetri and

propagate with onstant speed in their axial diretion. 2D evolution of monopoles

and dipoles has been studied extensively by several authors whih suggests that

these strutures are very robust and stable [35, 36℄. The strutures, speially

dipoles, are known to have important appliations. Reently, the dipole strutures

have been employed to simulate the behaviour of eletron urrent pulses through

an inhomogeneous plasma medium [37, 38℄. In an another study, Sharad et al.
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[38℄ showed a novel mehanism, the formation of urrent shok, through whih the

dipoles dissipate their energy and disussed the impliations of their study to the

fast ignition [3, 4, 5, 6℄. The similar urrent pulses an be found to get formed in

other phenomena suh as fast magneti reonnetions [7, 8, 9, 10, 11℄, fast magneti

�eld transport [39, 40℄, laser plasma interations [41℄, et.

We have investigated the instability proesses, sausage and kink, for the Isihenko

solutions of EMHD equations. These solutions have regions where eletron �ow

veloity/urrent is signi�antly sheared and hene an be suseptible to the said

instabilities. As mentioned above, in their 2D evolution, the strutures are very

robust and stable [35, 36℄. These studies do not support the kink mode, and

the strutures are stable to the sausage mode. The stability of strutures against

sausage mode has been argued on the following basis. For the EMHD strutures,

shear width as well as total extent of shear �ow are typially of the order of ele-

tron skin depth. The total extent of shear �ow limited in size does not permit the

wave number to satisfy the instability riteria of sausage mode viz., kzǫ < 1; here,

`kz' is the wavenumber along the �ow diretion and `ǫ' is the typial shear width

[42℄. Hene the strutures are found to be stable in 2D studies. The kink mode,

however, does not have to follow suh restrition. It is thus of importane to know

if the strutures are stable to this mode. To address this question, we performed a

three dimensional simulation study in whih kink mode is also operative in addi-

tion to sausage mode. In simulations, the strutures are seen to beome unstable.

The destabilization of strutures has been attributed to the presene of loal kink

mode. The unstable behaviour of strutures raises a question of their relevane in

various phenomena as desribed in earlier studies [36, 38℄. The magnitude of insta-

bility growth rate needs to be 4taken into onsideration along with the time sales
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involved in the various phenomena to investigate the relevane of these strutures.

A disussion on this issue has been provided in the thesis.

The thesis has been organized as follows. Chapter 1 presents the introdution

of the Thesis. In Chapter 2, we disuss the role of natural length and time sales

on shear driven 2D EMHD instability. Linear and nonlinear studies of shear driven

3D EMHD instability have been disussed in Chapter 3. In Chapter 4, stability

of Isihenko solutions has been investigated against various shear driven modes.

Finally, in Chapter 5, summary and onlusions of the Thesis have been outlined.
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Chapter 1

Introdution

The present thesis is devoted to the study of the urrent shear driven instabilities in

plasmas in the ontext of Eletron Magnetohydrodynamis (EMHD). This Chapter

provides the objetive and motivation for the studies ompiled in the thesis. The

EMHD model, a review of earlier work and plan of the thesis are also presented in

this Chapter.

1.1 Objetive and Motivation

Stability of sheared eletron urrent on�gurations is a long standing topi in

theoretial plasma physis. The typial sheared on�gurations of eletron urrent

are found to our in many physial situations like, fast z-pinhes [1, 2℄, fast ignition

phenomena of laser fusion [3, 4, 5, 6℄, ollisionless magneti reonnetions [7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20℄, plasma opening devies [21, 22, 23℄,

inter planetary urrent-arrying plasmas [24, 25℄ et. These urrent on�gurations

having equilibrium length sale smaller than the ion skin depth are amenable

to various instabilities. These instabilities lead to the evolution of the urrent
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on�gurations, sometimes to the point of omplete destrution.

The equilibrium sheared eletron urrent on�gurations are the harateristis

of low density plasmas in whih the urrent �ows faster than the Alfven veloity,

where the Magnetohydrodynami (MHD) model [26, 27, 28℄ is not appliable.

In this senario, we an ignore the ion dynamis and use a simpli�ed Eletron

Magnetohydrodynami (EMHD) model of plasmas in whih the overall dynamis

is governed by the motion of eletron speies only [29, 30, 31℄. We shall provide

desription of EMHD model in the next setion of this Chapter. The instabilities

of urrent on�gurations onsidered here, are inertial sale instabilities driven by

the gradient in equilibrium urrent in dissipation less, homogeneous plasma density

regime. In EMHD, these urrent- gradient driven instabilities have been previously

onsidered by Califano et al. [32℄, where they have been broadly ategorized as

tearing and bending instabilities. The �rst type of instability is the ollisionless

tearing instability [7, 33℄ of thin urrent-sheets whih leads to the reonnetion of

magneti �eld lines due to the e�et of eletron inertia. While, the seond type of

instability bends the �ow lines and leads to the vortex strutures. The mode has

also been identi�ed as the sausage mode [34℄. Classi�ation of these instabilities

an be understood from Fig. 1.1.

Apart from these instabilities, a non-tearing, inertial sale instability is known

whih also falls in the ategory of urrent-gradient driven instabilities [35℄. This

mode is driven by perturbations similar to tearing mode[Fig. 1.1℄, but unlike the

tearing mode it is a loal mode and does not require reversed equilibrium magneti

�eld on�guration. We depit this mode as kink mode. In our studies here, we

fous only on the bending instability and the kink mode instability.

We note here that in EMHD, the eletron �ow veloity and the urrent veloity
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Chapter 1: Introdution

Figure 1.1: The shemati desribes tearing and bending modes depending upon

the orientation of perturbations relative to one dimensional equilibrium magneti

�eld B0(x)ŷ. This magneti �eld is reated by an equilibrium eletron �ow v0(x)ẑ
sheared along x diretion. Perturbations lying in the vertial plane, ontaining

magneti �eld with a null-line, give rise to tearing instability. When the angle

of perturbations is hanged to lie in the horizontal plane of shear and �ow, the

instability hanges from tearing type to bending type. Both the instabilities are

driven by veloity shear or equivalently, urrent shear in system where eletron

dynamial response is only of relevane.

are same as the ions merely provide a stationary neutralizing bakground. In

onventional MHD, the two are di�erent. In view of this fat, the urrent gradient

driven bending instability is similar to the veloity shear driven Kelvin Helmholtz

(KH) instability of the eletron �uid and vie versa. The KH instability destabilizes

the interfae of two �uids in relative motion. The development of instability may

lead to turbulene, transport of energy and momentum and dissipation and mixing

of �uids. The instability has been thoroughly disussed in literature for ordinary
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hydrodynami (HD) �uid [36, 37, 38℄ and MHD �uid [37, 39, 40, 41, 42℄. The

studies on KH instability in the ontext of EMHD have been presented by several

researhers [34, 43, 44, 45, 46, 47, 48℄. Many important features of the instability

have been reported in these studies. In this thesis, we explore the instability further

under ertain additional onsiderations, whih we shall disuss, in the later part

of the thesis, after providing su�ient bakground.

1.2 Eletron Magnetohydrodynami (EMHD)Model

We provide here a disussion on the EMHD model whih has been employed for

our studies. First, we disuss the model in brief and its appliability to various

phenomena of plasma physis. And then we disuss some of its aspets, relevant

to the studies arried out in the thesis.

1.2.1 Brief Desription of Model and Its Appliability

The EMHD model is a single �uid desription of plasmas whih onsiders eletrons

as the only speies in motion and magnetized [29, 30℄. In EMHD model, an in-

ompressible eletron �uid in onsidered to be �owing against stati, neutralizing

bakground of ions. The time sales are so fast that the inertial and magnetized

response of ions are ignored and the overall dynamis is governed by the motion of

eletrons only. Thus, the model is valid only when the harateristi frequenies

are large ompared to the ion plasma frequeny and gyro frequeny, and are small

ompared to the eletron plasma and gyro frequenies. The frequeny range reads

as follows:

ωpi, ωci << ω << ωpe, ωce
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Here, ωpj = (4πne2/mj) are ion plasma frequeny and eletron plasma frequeny

for j = i, e; respetively. Similarly, ωcj(= eB/mjc) are the gyro frequenies for ion

and eletron; mj are the mass for two speies, c in the speed of light, n and B are

the typial values of plasma density and magneti �eld respetively. Sine the ion

dynamis is ompletely ignored, one needs to deal with eletron �uid equations

only along with the Maxwell's equations to derive the EMHD equations. In our

studies, eletrons have been treated as a old, inompressible eletron �uid of

uniform density. In the old �uid (plasma) desription, e�ets due to thermal

motion of partiles are negleted. This is valid when the phase veloities are muh

larger than the thermal veloities of partiles. In this situation, the orresponding

veloity distribution funtion may be approximately a Dira delta funtion entered

at the marosopi �uid veloity.

In EMHD, displaement urrent term is also ignored under the assumption

ω << ωpe, ω
2
pe/ωce whih in turn gives an upper limit on harateristi frequenies.

Under this assumption, the density perturbations in eletron �uid an be disarded.

The modi�ed inequality an then be framed as,

ωpi, ωci << ω << min(ωpe, ω
2

pe/ωce)

In terms of spatial sales, the EMHD model is appliable to the sales whih are

shorter than the ion inertial sales and also the gyro-radius of ions. The spatial

sales may fall below the eletron inertial sale (skin depth) but remain larger than

the Debye radius λD. Also, EMHD being a �uid desription, the kineti sales

(partile orbit size of larmor radius) determine the lower bound of the length sale

below whih the model is again not appliable.

Sine ions are stationary, the eletron �ow veloity ~v is diretly related to
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urrent as,

~J = −ne~v. In view of this de�nition and the assumptions disussed

so far, the oupled �uid-Maxwell's equations lead to EMHD equations after some

algebrai manipulations. The EMHD model for ollisionless, homogeneous plasma

is ast in terms of dimensionless equations, as follows

1

,

∂

∂t
(∇2 ~B − ~B) = ~∇× [~v × (∇2 ~B − ~B)] (1.1)

~v = −~∇× ~B (1.2)

Here, length has been normalized by eletron skin depth de(= c/ωpe), magneti

�eld with some arbitrary value B00, time with inverse of gyro frequeny ωce(=

eB00/mc), and veloity �eld with eletron Alfven speed ωcede. All the symbols

retain their meanings desribed as earlier. The �rst equation is the evolution of

the generalized vortiity Ω(= ∇2 ~B − ~B) whih implies that generalized vortiity

is tied to the �uid �ow, unlike the MHD, where it is magneti �eld whih is tied

to the �ow of �uid (plasma). The seond equation is Ampere's relation, ignoring

the displaement urrent, whih relates the �ow veloity to the magneti �eld. In

ontrast to this, in MHD, �ow veloity is related to magneti �eld by an evolution

equation.

The presribed length and time sale windows of EMHD make the model appli-

able to physial systems omprising the fast time and short length sales like, as-

trophysial plasmas, earth's magnetosphere, and laboratory plasmas. The EMHD

model has added muh to the basi understanding of the phenomena of ollisionless

magneti reonnetion [8, 9, 7, 10, 11, 12, 13, 14℄, generation of large sale magneti

�eld, and rapid dissipation of magneti �eld energy in the ontext of astrophysial

1

The thesis does not ontain the mathematial derivation of EMHD model. For omplete

derivation of three dimensional EMHD equations and their redution in two dimensions, reader

may look into Refs. [48℄ and [56℄.
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plasmas [49, 50℄. The desription of earth's plasma sheet and magneto tail region

are other areas where the EMHD model has been applied [24, 25℄. The model is

further exploited to explain the anomalous stopping of energeti eletrons in the

fast ignition inertial on�nement fusion sheme [47℄.

1.2.2 Natural Sales in EMHD

EMHD systems, unlike the ordinary hydrodynami �uid systems, ontain intrinsi

length and time sales assoiated to the magnetized harater of eletron �uid. We

disuss them as below.

Natural length sale: The EMHD systems ontain the eletron skin depth as the

intrinsi length sale. This is de�ned as de = c/ωpe, where, c is the speed of light

and ωpe is the frequeny of eletron osillations. The value of skin depth is �nite

if the mass of eletron is �nite. In the inertia less eletron limit, the value of

de → 0 and in the ase of neutral �uid de → ∞. Owing to the presene of this

intrinsi length sale, EMHD equations identify distint spatial sale length regime

viz. kde >> 1 (hydrodynami limit) and kde << 1 (magnetized �uid limit). In

the �rst limit, the inertial terms dominate the eletromagneti fore terms in the

eletron momentum equation and the system behaves hydrodynamially. In the

other limit, the eletromagneti fore terms dominate the inertial terms and the

eletromagneti harater of the eletron �uid beomes important.

Natural time sale: In the presene of magneti �eld, EMHD equations permit

whistler waves as the normal exitation mode. This wave requires a �nite ompo-

nent of the wave vetor along the magneti �eld. Whistler is a transverse iru-

larly polarized eletromagneti wave. These waves are analogous to Alfven waves

in MHD, but unlike the Alfven waves, are dispersive in nature. The natural time
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sale in EMHD is assoiated to the time period of Whistler waves.

These natural sales have many interesting roles to play on various EMHD

phenomena, some of those we disuss in this thesis. Role of these natural sales

on veloity shear driven Kelvin Helmholtz (KH) instability has been studied as a

major part of thesis work.

1.2.3 Nonlinear Solutions of EMHD

The EMHD system of equations losely resembles the ordinary HD �uid and

hene is suseptible to the harateristi instabilities of ordinary HD, e.g., Kelvin-

Helmholtz instability, Rayleigh-Taylor instability et. The nonlinear features of

ordinary HD �uids like, turbulene generation and oherent pattern formation are

also displayed by EMHD systems. In a 2D system the onservation of energy and

enstrophy leads to the proess of inverse asade by virtue of whih oherent pat-

terns are formed. The oherent strutures have major role to play in determining

the transport properties of a system. They are also believed to ause the intermit-

teny in turbulene phenomena.

Coherent, nonlinear solutions of EMHD: In EMHD, the oherent strutures man-

ifest themselves in the form of magneti islands, urrent sheets, vorties et., and

are found to be exited in various proesses e.g., magneti reonnetions, Weibel

instability, in laser plasma interation studies, in tokamak plasmas during eletron

ylotron resonant heating (ECRH) and laboratory experiments. Coherent stru-

tures an be best understood by �nding the exat solutions of nonlinear equations.

These solutions were obtained by Isihenko et al. [51℄ as loalized vorties for

2D EMHD system. The vorties are stationary monopoles and traveling dipoles.

Isihenko et al. obtained the analytial onditions for these solutions and also
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studied their stability. The solutions being very robust and stable have important

appliations speially, the dipole solutions. The solutions ontain the regions in

whih the eletron urrent is signi�antly sheared. It is, therefore, of importane

to know if these strutures are suseptible to shear driven instability proesses.

We address this question in the thesis.

1.3 A Review of Earlier Work on Shear Driven In-

stabilities in EMHD Domain

The studies on shear driven instabilities in EMHD regime have a very rih litera-

ture. We present, in this setion, some of the prominent work in this area relevant

to the work arried out in the thesis.

Drake et al. [43, 44℄ have studied the stability of the urrent layers narrower

than the ion skin depth. A dispersion relation was derived, whih shows that the

ross �eld gradient in urrent is required to drive the instability. It was also shown

that for ǫ ≤ de, the KH instability is dominant over kink instability while for

ǫ > de, KH mode is stable and dominant instability is the kink instability. Here, ǫ

is the shear width of urrent layer and de is the ollisionless eletron skin depth. In

the 3D eletromagneti �uid simulations, the urrent layer breaks and evolves to a

strongly turbulent nonlinear phase. Bulanov et al. have shown the KH instability

of eletron �uid vorties in their PIC simulation studies [52℄. They have shown

the existene of magneti vorties in the eletron �uid generated in the wake of an

ultrashort, ultraintense laser pulse interating with an underdense plasma. These

vorties are unstable to the eletron KH instability if the separation between two

neighboring vorties is smaller than the eletron skin depth. When the distane
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between the vorties is larger than the eletron skin depth, the instability beomes

exponentially slow. The studies by Drake et al. and Bulanov et al., however,

are inomplete. Drake et al. have derived just an approximate loal dispersion

relation whih highlights very limited features of the kink instability. Moreover, in

nonlinear �uid simulations, only the widening of shear layer has been reported and

no disussion has been provided on issues like, saturation mehanism of instability,

modi�ation of mean �ow pro�le, haraterization of turbulene et. In the work

of Bulanov et al, the form of initial shear �ow struture is not spei�. Also, the

saturation mehanism of sausage instability were disussed very qualitatively. We

fous on some of these issues in our studies.

Das et al. [34℄ have arried out a systemati and detailed analytial study on

sausage-like instability of eletron urrent hannels. In the loal analysis of EMHD

equations the on�guration was found to be stable for sausage-like perturbations.

In the nonloal analysis, they have derived the dispersion relation for two hoies

of sheared �ow pro�le: a step-funtion pro�le (zero shear width) and a piee-wise

linear pro�le (�nite shear width). In the short wavelength limit, the instability

is essentially the KH instability of hydrodynami �uid. However, in the long

wavelength limit, the instability has growth rate substantially di�erent from hydro

�uids due to the magnetized harater of eletron �uid. The underlying physial

mehanism for instability and hene the di�erenes in two ases of MHD and

EMHD was also disussed. Later, Jain et al. [45, 46, 47℄ arried out extensive

numerial work on the sausage and kink instabilities in EMHD. Their studies an

be summarized as follows. The development of sausage like strutures is seen in

2D �uid simulations with growth rate agreeing with linear theory. The nonlinear

state is found to be oherent due to the presene of two non-dissipative square
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invariants namely, enstrophy and energy. The unstable modes ause the �attening

of equilibrium shear pro�le and hene the direted eletron �ow is redued whih

is related to the loss of eletron kineti energy. However, the redution is not very

e�ient beause the instability saturates easily. The saturation of instability an

our either by getting rid of urvature in equilibrium �ow pro�le or by violating the

instability riteria kzǫeff < 1. Here, kz is the wave vetor along the �ow and ǫeff is

the inreased e�etive shear width due to the bak reation of instability. The full

three dimensional analysis shows that the instability riteria is muh more relaxed.

Unlike the 2D ase, the loal modes are also unstable and the instability is driven

by the gradient rather than the urvature in equilibrium �ow pro�le. Owing to

the inreased number of unstable modes and absene of two non-dissipative square

invariants, the nonlinear evolution of instability leads to the turbulent state in

3D �uid simulations. The generation of turbulene leads to muh more e�ient

redution in direted �ow of eletrons. The relevane of these studies was shown

in anomalous stopping of inward energeti eletrons in fast ignition. The studies

by Das et al. and Jain et al. are extensive and over many important linear and

nonlinear features of the shear driven instability. In our thesis, we further explore

the instability in 2D and 3D under ertain additional onsiderations. We shall

disuss this in detail in the next setion.

Califano et al. [32℄ have studied the linear dispersion equations and eigen stru-

tures of high frequeny tearing-bending instabilities. These instabilities are driven

by the eletron urrent gradient in an inhomogeneous magneti �eld of the tangent

hyperboli type. As the angle between the diretion of propagation of perturba-

tions and the inhomogeneous magneti �eld lines is varied, perturbations hange

from tearing type (parallel propagation) to bending type (perpendiular propaga-
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tion). The tearing instability ats aross the magneti null line and and forms

the hain of magneti islands. However, the bending instability is similar to KH

instability whih bends the �ow lines. At oblique propagation the tearing branh

develops asymmetri magneti island and omplex veloity patterns with hannel-

like struture. A similar hannel-like struture is seen in the bending instability

at oblique propagation. The tearing instability appears to be dominant in equi-

librium on�guration with spatial sale-lengths longer than the skin depth. For

shorter equilibrium sale-length, the tearing and bending branhes have ompara-

ble growth rates. Lukin [35℄ has desribed a non-tearing inertial sale instability

whih does not fall in the ategory of the tearing-bending instabilities. But, the

energy soure of this instability also is the bakground urrent density gradient. It

is a loal mode with perturbations similar to tearing mode i.e., k ‖ B0 ⊥ J0, and

requires no bakground magneti �eld reversal unlike the tearing mode. Here, k is

the wave vetor of perturbations, B0 is the equilibrium magneti �eld and J0 is the

equilibrium urrent. An approximate analytial derivation of dispersion relation

for the instability was obtained. Further, from quasilinear numerial alulations,

the magnitude of the highest growth rate was shown to be independent of eletron

skin depth de and wave number k and to depend solely on the partiular pro�le of

B0(x), as long as d2eB
′′

0 /B0 >> 1. The ourrene of these modes has been shown

in magneti reonnetion phenomena via simulations where the instability mani-

fests itself as loalized strutures at the out�ow side of magneti separatrix. The

tearing-bending modes and the non-tearing kink mode were also desribed earlier

in setion 1.1. The geometries an be understood from Fig. 1.1.

In EMHD, the eletron �ow shear driven instability has been identi�ed as both

the veloity shear driven KH instability and urrent- gradient driven sausage and
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kink modes. This is beause the eletron �ow veloity is related to the urrent

as,

~J = −ne~v. The gradient in urrent an be generated due to veloity shear or

density gradient. However, Sita et al. [53℄ have shown that the free energy soure

for the �ow shear driven KH like instability is the kineti energy of the eletron

�ow. The density gradient an not relax in a old, ollisionless plasma so there

is no free energy available to exite the instability. Thus, the presene of urrent

gradient due to density gradient alone is unable to exite the instability. We note

here that in our studies, in homogeneous plasma (eletron �uid) density limit, the

urrent gradient driven bending instability is essentially the veloity shear driven

KH instability.

Sharad et al. [54℄ have studied the KH destabilization of urrent pulses of

�nite extent formed at the density inhomogeneity layer. The instability leads to

the oherent nonlinear state onsisting of the irular vorties aligned along the

ontours of density pro�le. The vorties of alternating sign are arranged one after

the other like beads in a wire. The urrent pulses onsidered in these studies

are traveling dipole solution of EMHD obtained by Isihenko et al. [51℄. These

solutions are stable against sausage mode and propagate robustly in a homogeneous

plasma medium [55, 56℄. An understanding of stability of these urrent pulses to

kink instability so far, is laking.

1.4 Sope of the Thesis

The work presented in thesis fouses on the study of KH instability using EMHD

model. As disussed already, unlike the hydrodynami �uid model, the EMHD

model ontains natural length and time sales viz., eletron skin depth and whistler

time period respetively. Owing to the existene of natural sales, eletron KH
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may su�er major modi�ations from the KH instability in neutral �uid. In this

thesis, we investigate the role of natural sales of EMHD on KH instability. Earlier

studies, as reviewed in the last setion, do not highlight this feature of instability.

In earlier 2D studies, the equilibrium as well as perturbed magneti �elds were

direted along the symmetry diretion. Hene, whistlers were learly not sup-

ported. Whistler modes were supported in 3D studies. In those studies, however,

the propagation diretion of whistlers was orthogonal to the 2D plane in whih KH

ation primarily takes plae. To study the role of whistlers, we introdue a uni-

form external magneti �eld along the �ow diretion (in the plane of KH). These

studies would have relevane in ionosphere and magnetosphere, solar orona and

pulsars [57, 58, 59℄ et., where the ounter streaming eletron beams immersed

in a magneti �eld may exist. This kind of on�guration is also quite likely in

laboratory experiments [60, 61℄ where the plasma is on�ned with the help of an

axial magneti �eld.

In MHD, a uniform magneti �eld parallel to �ow is known to stabilize the �uid

interfae against the KH instability and it is asribed to the tension generated to

bend the magneti �eld [37, 41, 62℄. The redution in growth rate is a funtion

of �eld strength. The instability is fully suppressed if the Alfven veloity exeeds

the total veloity jump aross the shear layer. Whistlers are the normal osillatory

mode of EMHD akin to Alfven modes in MHD. One expets that osillations set up

at whistler time sale would give similar e�ets on instability as Alfven modes do

in MHD. The presene of magneti �eld also largely a�ets the nonlinear evolution

of instability in MHD [42, 63, 64, 65, 66, 67, 68℄. Even a weak magneti �eld

potentially hanges the nonlinear state. The magneti �eld aught in vorties

formed due to KH instability gets ampli�ed and then relaxes through the proess
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of magneti reonnetions [66, 67℄. Magneti reonnetion leads to the disruption

of �ow vortex. One the vortex is destroyed, the �ow relaxes into a broadened,

laminar and marginally stable shear layer. In even weaker (very weak) �eld ase

the magneti reonnetion leads primarily to the expulsion of �eld line from inside

the vortex and to enhane the dissipation of kineti energy. This is well known

�ux expulsion phenomena [69℄. We also try to understand the nonlinear phase of

EMHD instability in the presene of in-plane magneti �eld.

Earlier studies on EMHD KH instability show that in 3D regime kink mode is

also present in addition to the KH mode [46℄. The kink mode lies in the plane of

magneti �eld and shear and unlike the KH mode it is a loal mode. We investigate

the interplay of the two modes, KH and kink, with and without external magneti

�eld in a onsiderable detail. In 3D, the evolution of shear driven instabilities

leads to the self onsistent generation of turbulene in the nonlinear state [43, 47℄.

The generation of eletromagneti turbulene due to the ation of shear driven

instabilities has been shown to have important impliations. This leads to the

anomalous stopping of energeti eletrons moving towards ore in Fast Ignition,

whih are known to eventually reate the ignition spot by dumping their energy to

the ore [47℄. Also, in ollisionless magneti reonnetions [43℄, the generation of

turbulene may alter the mehanism by whih the frozen in �eld ondition breaks in

the dissipative regime. The reonnetions may also be failitated by the anomalous

visosity and anomalous resistivity assoiated to the turbulene generation. In our

thesis, we analyze the spetral asade features of the turbulene generated in

three dimensional simulations, with and without an external magneti �eld along

the �ow diretion. The nonlinear asade develops the anisotropy mediated by

the normal osillatory modes; Alfven in MHD [70, 71℄ and whistlers in EMHD
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[72, 73℄. In view of this, nonlinear asade is expeted to show the anisotropy in

the presene of whistlers; whih we have quanti�ed.

We also address in this thesis, the question of stability of oherent nonlinear so-

lutions of the EMHD equations from the perspetive of the aforementioned modes,

KH and kink. Isihenko et al. [51℄ obtained exat, nonlinear solutions of two

dimensional EMHD equations in the form of loalized rotating eletron urrents,

giving rise to monopolar and dipolar magneti �eld. These solutions have regions

where eletron �ow veloity/urrent is signi�antly sheared and hene an be sus-

eptible to the �ow shear driven instabilities. These solutions were shown to be

very robust and stable against the sausage instability, in the earlier 2D studies

[55, 56, 54℄. In these studies, the kink mode was not supported, and hene the

stability of the solutions against this mode has remained unknown. We make an

attempt to investigate this issue in the present thesis.

The sope of the thesis an be summarized as follows. We disuss the role

of natural length and time sale on KH instability, in Chapter 2. The interplay

of KH and kink modes under various physial onditions is disussed in Chapter

3. In Chapter 4, shear driven KH and kink modes are investigated for Isihenko

solutions.

1.5 Summary of Chapters

The Chapter-wise summary of the thesis is given below.
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Chapter 2: Role of Natural Length and Time Sales on Ele-

tron Magnetohydrodynami Kelvin Helmholtz Instability: 2D

Studies

In Chapter 2, we investigate the role of natural sales on veloity shear driven KH

instability in the ontext of 2D EMHD. The perturbations lie in the plane of �ow

and shear, in whih the major ation of KH lies, variations along the equilibrium

magneti �eld are negleted. The role of eletron skin depth has been disussed

in omparison with the KH instability of neutral hydrodynamis �uid. To un-

derstand the role of whistlers we introdue a uniform external magneti �eld B0

along the �ow diretion. Presene of this magneti �eld exites the whistlers in

the system, unlike the previous 2D studies [34, 45℄. In those studies, a single equa-

tion desribing the evolution of the magneti �eld omponent along the symmetry

diretion was su�ient to desribe the instability. But here, we need to solve a set

of oupled equations in two salar �elds. This is essentially due to the fat that

whistler waves ouple the in-plane magneti �eld perturbations to the magneti

perturbations along the symmetry diretion. The instability problem is solved

as the eigen value problem analytially, for step pro�le and numerially, for tanh

pro�le of equilibrium �ow veloity. The eigen values are obtained as the growth

rate of instability. The role of B0 has been to redue the instability growth rate.

Further, the growth rate urves show that the instability is nonloal even in the

presene of in-plane magneti �eld B0.

Nonlinear simulations have been arried out to understand the role of whistlers

in the nonlinear regime of instability. For this purpose we have developed a non-

linear �uid ode whih uses �ux orreted transport algorithm [74, 75℄. The ode
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solves 2D EMHD equations for tangent hyperboli pro�le of equilibrium veloity.

In the absene of B0, the nonlinear state is a oherent vortex formed as a onse-

quene of inverse asade. However, in the presene of B0, the nonlinear state is

signi�antly hanged from the ordered state of B0 = 0 ase. The long sale stru-

tures are formed only along the diretion of B0 and there is hardly any extension

in strutures along the transverse diretion. This indues the anisotropy in the

system. We provide a quantitative estimate of anisotropy in the Fourier spetrum

of two �elds. The observed anisotropy is a harateristis of the nonlinear as-

ade mediated by whistlers. The anisotropi asade has an adverse e�et on the

KH instability indued mixing of the �uids �owing in two diretions around the

shear layer. Consequently, the �attening of shear layer is weaker in the presene

of whistlers, whih we have also measured.

Chapter 3: Interplay of Kelvin Helmholtz and Kink Modes:

3D Studies

When the variations along the diretion of self-onsistent equilibrium magneti

�eld (generated due to sheared �ow) are also allowed, a new loal mode exists in

the plane of the magneti �eld and shear. The mode requires �nite eletron inertia

and is driven by the gradient in the equilibrium veloity unlike the KH mode whih

is driven by the urvature in equilibrium veloity. We note that due to similarity

in urrent and �ow veloity in EMHD, veloity shear driven KH is often termed

as the urrent-gradient sausage mode. In Chapter 3, we investigate the interplay

of the two modes, sausage and kink, under various physial onditions determined

by: (a) the value of shear width in omparison to the eletron skin depth, (b) a

uniform magneti �eld (B00) present along the �ow diretion and () a uniform
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magneti �eld (C0) employed along the diretion of self-onsistent magneti �eld.

For sharper shear width, the dominant mode is sausage mode while for broader

shear width, the dominant instability is kink instability. The presene of B00 has

been shown to redue the pure sausage growth rate. We show here that the pure

kink mode remains unin�uened by this magneti �eld. Also, the presene of C0

has no e�et on sausage growth rate [34℄, but has been shown by us to alter the

growth rate of pure kink mode. Therefore, one mode an dominate over the other

in the given onditions.

We also arry out the simulations of the 3D instability with the help of a

nonlinear �uid ode. The growth rates of instabilities alulated in the linear

regime of simulations math with the linear theory. The nonlinear state is strongly

turbulent in these simulations unlike the 2D ase. The spetrum of turbulene is

found to be anisotropi. We have observed that the spetral asade is inhibited

both along the diretion of �ow as well as the diretion of magneti �eld. Thus,

the shortest sales are generated along the shear diretion. In the presene of

B00, the sales along the shear diretion are more or less unhanged while along

other two diretions, the sales turn out to be longer than the ase for B00 = 0.

These observations are onsistent with the anisotropi feature of whistler mediated

asade. The broadening of shear layer ours muh more slowly for this ase as

the kink mode being the dominant mode governs the evolution of system. During

the linear phase the kink instability does not alter the 2D �ow on�guration. Thus,

the broadening ours at later nonlinear phase when the other modes also grow.

This shows that it is important to understand the interplay of two modes under

various physial onditions, as the evolution would be di�erent when governed by

the di�erent modes.
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Chapter 4: Stability of Isihenko Solutions of Eletron Mag-

netohydrodynami Model Against Shear Driven Modes

In setion 1.2.3, we pointed out that the EMHD system permits ertain exat,

nonlinear solutions. Isihenko and Marnahev [51℄ obtained these solutions as the

stationary monopoles and propagating dipoles of loalized eletron �ow struture.

The dynamial properties of these solutions have been studied in onsiderable

detail by many researhers [55, 56, 76, 77℄. Among these strutures, dipoles are

of pratial importane. The dipoles arrying energy and momentum with them

propagate stably and may prove to be useful in phenomena like, fast ignition

onept of laser fusion [3, 5, 6℄, fast magneti �eld transport [49, 50℄, laser plasma

interation studies [78℄ et.

The eletron �ow pattern in these EMHD strutures, monopoles and dipoles, is

signi�antly sheared and hene they ould be unstable to the shear driven modes

namely, sausage and kink [34, 46℄. The strutures are known to be stable to

the 2D sausage perturbations as the unstable wavelengths are longer than the

struture size, an explanation provided by Sharad et al. [54℄. For kink mode,

however, wavelengths smaller than the struture size are also unstable. Stability

of strutures against this mode is not known so far; we investigate this in Chapter 4.

For this, we arry out a 3D nonlinear simulations with monopoles and dipoles as the

initial onditions. We observe that the strutures are unstable in our simulations.

The unstable behaviour of strutures has been attributed to the presene of kink

mode.

42



Chapter 1: Introdution

Chapter 5: Summary and Future Sope

Finally, in Chapter 5, onlusions of the thesis work have been drawn and the

prospets for future work have been outlined.
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Chapter 2

Role of Natural Length and Time

Sales on Eletron

Magnetohydrodynami Kelvin

Helmholtz Instability: 2D Studies

The Eletron Magnetohydrodynami (EMHD) model represents an inompressible

eletron �uid moving against stati, neutralizing bakground ion speies. In on-

trast to ordinary hydrodynami �uids, the EMHD model ontains intrinsi length

(eletron skin depth) and time (whistler period) sales. In this Chapter, we in-

vestigate the role of skin depth and existene of whistlers on veloity shear driven

Kelvin Helmholtz instability in the ontext of two dimensional EMHD. Numerial

simulations are also arried out to understand the role of whistlers in nonlinear

regime of instability.

44



Chapter 2: Role of natural length and time sales ...

2.1 Introdution

Eletron Magnetohydrodynamis (EMHD) is a �uid model to desribe the plasmas

in whih the eletrons dynamis is of importane. The ions are stati and provide

a neutralizing bakground to the eletrons. The EMHD system losely resem-

bles an inompressible hydrodynami �uid system and hene the harateristis

neutral �uid instabilities are present here as well. One of the prominent neutral

�uid instability is Kelvin Helmholtz instability in whih the interfae of two �uids

in relative motion (parallel to interfae) is unstable under ertain onditions. The

Kelvin Helmholtz instability of neutral hydrodynami �uid is thoroughly disussed

in the literature [37, 38℄. In the ontext of EMHD also, the instability has been

investigated in ertain detail and has often been termed as sausage and kink like

modes [34, 46℄. Besides due similarities, the EMHD system also has ertain dif-

ferenes with neutral �uids due to the magnetized harater of the eletron �uid.

The eletromagneti harater of the system manifests as the existene of intrinsi

natural sales. In the ontext of EMHD, the eletron skin depth is suh a length

sale arising due the inertia of eletrons. In the the presene of external (and/or

strong self onsistent) magneti �eld, whistler waves are the normal modes of the

system and hene the whistler periods appear as the natural time sale. A neutral

hydrodynami �uid system, in ontrast, is devoid of any spei� sales. In this

Chapter, we disuss the role of these natural length and time sales on the veloity

shear driven Kelvin Helmholtz instability in the ontext of 2D EMHD. And the

omparison with the neutral hydrodynami �uid instability are presented.

In these studies the spatial variations in perturbations are on�ned in the plane

omprising the �ow and shear diretions, the variations in the diretion normal to
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this plane (whih is also the diretion of self-onsistent magneti �eld generated

due to the shear �ow) have been negleted. The EMHD set of equations redues

to the Navier-Stoke's equations of hydrodynami �uid in the short wavelength

limit. To understand the role of skin depth, the shear width of the system is

varied in omparison to the eletron skin depth. We show that by appropriate

resaling the KH growth rate urve plotted with respet to the exitation wave

number (along the �ow diretion) redues to a universal urve for the neutral �uid

hydrodynamis system (see Fig. 2.1). This, however, does not happen for the

EMHD system for whih the growth rate diminishes as the shear width beomes

broader in omparison to the eletron skin depth parameter. The KH instability in

EMHD is prominent only when the shear in eletron �ow veloity is sharper than

the skin depth, a fat whih has been outlined in our earlier studies also [34, 45℄.

We also study in detail the role of whistler waves on this partiular instability.

In previous 2D EMHD studies of KH like mode [34, 45℄, the equilibrium and also

the perturbed magneti �elds arising as a result of the 2D eletron urrent �ow, was

direted along the symmetry diretion. Sine the variations were on�ned in the

two dimensional plane orthogonal to the equilibrium magneti �eld, the on�gura-

tion learly did not support the normal osillatory whistler wave mode assoiated

with EMHD phenomena. The 3D study of the instability in subsequent work

[46, 47℄ does support the whistler mode. However, in the 3D ase one is not able

to isolate the role of whistlers from e�ets arising due to the three dimensionality

of the problem. Furthermore, in those studies [46, 47℄ the propagation diretion

of the whistler waves being primarily along the equilibrium magneti �eld, was

orthogonal to the 2D plane de�ned by the equilibrium shear and the �uid �ow

diretion. For the KH instability major ation is on�ned to this plane. We, there-
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fore, hoose here to study a 2D ase of the instability with an additional uniform

magneti �eld in the �ow diretion. For this ase whistlers are permitted even in

the 2D limit. This on�guration is thus markedly di�erent from both the previous

2D and 3D studies arried out by us. For this ase, we would see in the next

setion that the evolution is governed by a set of oupled equations in two salar

�elds. This is unlike the previous 2D studies where the magneti �eld omponent

along the symmetry diretion was su�ient for the desription. This is essentially

due to the fat that the whistler wave perturbations ouple the in-plane magneti

�eld perturbations to the magneti perturbations along the symmetry diretion

1

.

We wish to point out here that Califano et al. [32℄ also onsidered an instability of

a sheared eletron �ow on�guration. The 2D plane of perturbations in their ase

is inlined with respet to the eletron �ow diretion. Suh a geometry has been

termed by us as a 3D kink mode. Angle between the 2D plane of perturbations and

the �ow diretion is hanged through a dimensionless parameter α by hoosing its

values between 0 and 1. The hoie of α = 1 (2D plane of perturbations lying along

the �ow diretion) in their work redues the on�guration to the 2D ase that we

disuss here. Furthermore, the studies by Califano et al. have been restrited to

the ase for whih the shear width is omparable or broader than the eletron skin

depth. We have onsidered in our studies shear width, whih are sharper than the

eletron skin depth .We assume that the kineti sales are muh shorter than the

eletron skin depth and the shear width for the appliability of the �uid EMHD

model.

In setion 2.3, we disuss the role of the natural length sale (de = c/ωpe) that

1

For desription of geometry, see Fig. 1.1 in Chapter 1. The x − z plane in the �gure is the

2D plane of �ow and shear that we onsider here. The external uniform magneti �eld lies in

this plane along the �ow diretion. y is the symmetry diretion.
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appears in EMHD. We ompare the KH instability in neutral hydrodynami �uid

with that of EMHD. In setion 2.4, the role of whistler waves on the instability is

disussed. An interesting observation is that in 2D, even in the presene of whistler

waves, the instability ontinues to be nonloal. The growth rate is �nite only for

those modes with sales longer than the original shear width. This is in ontrast

to the 3D ase where the loal modes were also found to be unstable. Thus, the

three dimensional harater of the mode (and not the existene of whistler waves)

is essential for the destabilization of loal modes for the eletron veloity shear

driven instability. In setion 2.5, a numerial study of the shear driven instability

in the presene of in-plane magneti �eld is presented. The role of whistler waves in

the nonlinear regime is outlined. Setion 2.6 ontains the disussion and summary

of our observations.

2.2 Governing Equations

In the 2D x − z plane, the EMHD equations (1.1) and (1.2), given in Chapter 1,

an be written in terms of evolution of two salar �elds, whih de�ne the total

magneti �eld as

~B = bŷ + ŷ × ∇ψ. The eletron veloity an then be expressed

in terms of these two salar �elds as ~ve = −∇× ~B = ŷ ×∇b− ŷ∇2ψ [55℄,

∂

∂t
(∇2b− b) + ŷ ×∇b · ∇∇2b− ŷ ×∇ψ · ∇∇2ψ = 0

∂

∂t
(∇2ψ − ψ) + ŷ ×∇b · ∇(∇2ψ − ψ) = 0 (2.1)

Here, ŷ denotes the symmetry diretion. The equation has been expressed in

normalized variables. Magneti �eld has been normalized by a typial amplitude

of B00, the time by the orresponding eletron gyro-period ω−1
ce = (eB00/mec)

−1
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and length by the eletron skin depth de = c/ωpe. The limit of k2d2e >> 1 along

with ψ = 0, redues the oupled set Eq.(2.1) to the Navier Stokes equations in 2D

for an inompressible neutral �uid hydrodynamis,

∂

∂t
∇2b+ ŷ ×∇b · ∇∇2b = 0 (2.2)

here, b an be identi�ed with the veloity potential.

The equilibrium sheared eletron �ow veloity in the presene of in - plane

magneti �eld an be desribed by a hoie of b0 = b0(x) and ψ0 = −B0x. This

hoie of ψ0 ensures that the in - plane magneti �eld is oriented along the �ow

diretion. The total equilibrium magneti �eld an thus be represented by

~Beq =

ŷb0(x) + ẑB0. The �eld b0 is an equilibrium magneti �eld direted along the

symmetry diretion ŷ and is dependent on x. The in - plane magneti �eld B0 is

direted along ẑ and is hosen to be a onstant. The equilibrium eletron veloity

pro�le is de�ned by ~v0 = −ẑdb0/dx. A spei� form of the eletron veloity shear

pro�le an be hosen by an appropriate hoie of the funtional form for b0(x).

The dynamial evolution of a small perturbation in the two �elds, viz., b1 and ψ1

around this equilibrium an be analyzed with the help of linearized EMHD model

Eqs.(2.1),

∂

∂t
(∇2b1 − b1) + v0

∂

∂z
∇2b1 − v′′0

∂b1
∂z

− B0

∂

∂z
∇2ψ1 = 0

∂

∂t
(∇2ψ1 − ψ1) + v0

∂

∂z
(∇2ψ1 − ψ1) +B0

∂b1
∂z

= 0 (2.3)

It should be noted that for the ase of B0 = 0, the equations redue to the form

analyzed in the earlier work [34℄. In this ase the �eld ψ1 is merely onveted by

the equilibrium �ow veloity due to the veloity potential b0 and plays no ative
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role in evolution. The evolution of the �eld b1 gets entirely deoupled from the

�eld ψ1 for the linear problem. The linear stability problem is redued to that of

the study of the evolution of the single salar �eld of b1. The presene of �nite B0

ouples the evolution of b1 and ψ1 �elds in the linear limit through whistler like

perturbations and its in�uene on the instability is a topi of our investigation.

Fourier analyzing Eq.(2.3) in z and time we obtain,

d2b1
dx2

− (1 + k2z)b1 −
kz(v0 − v′′0)

(ω − kzv0)
b1 +

kzB0

(ω − kzv0)

(

d2ψ1

dx2
− k2zψ1

)

= 0

d2ψ1

dx2
− (1 + k2z)ψ1 −

kzB0

(ω − kzv0)
b1 = 0 (2.4)

For v0 = 0, one obtains the whistler wave dispersion relation from Eq.(2.4). The

oupled set of Eqs.(2.4) an also be expressed in a fashion whih eliminates the

seond derivative of ψ1 from the �rst equation of the set [Eqs.(2.4)℄ by substituting

for it from the seond equation,

d2b1
dx2

− (1 + k2z)b1 −
kz(v0 − v′′0)

(ω − kzv0)
b1 +

kzB0

(ω − kzv0)
ψ1 +

k2zB
2
0

(ω − kzv0)2
b1 = 0

d2ψ1

dx2
− (1 + k2z)ψ1 −

kzB0

(ω − kzv0)
b1 = 0(2.5)

This set of oupled linearized equations we shall use for the linear instability

alulations. The equations shall be analyzed analytially and numerially to be

solved as the eigen value problem.

2.3 Role of Skin Depth

In this setion we hoose to study the role of eletron skin depth on the KH

instability and thereby o�er a omparison amidst the KH mode in a Navier Stokes
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(NS) (the limit of d−1
e → 0 ) and an EMHD �uid (de is �nite and taken to be

unity). To avoid any role of whistlers we on�ne ourselves to the hoie of B0 =

0 (the in-plane omponent of equilibrium magneti �eld) in this setion. This

redues the equilibrium on�guration to the ase studies earlier. We would see

in next setion that a �nite value of in-plane omponent of B0 introdues the

magneti tension, auses whistler exitations, and redues the KH growth rate.

The linearized equations in the NS limit,

d2b1
dx2

− k2zb1 +
kzv

′′

0

(ω − kzv0)
b1 = 0 (2.6)

and in the EMHD limit, in the absene of B0,

d2b1
dx2

− (1 + k2z)b1 −
kz(v0 − v′′0)

(ω − kzv0)
b1 = 0 (2.7)

We onsider here a tangent hyperboli shear pro�le for the equilibrium �ow,

v0(x) = V0tanh
(x

ǫ

)

(2.8)

The growth rate for the hydrodynami ase is a universal urve shown by the thik

line in Fig.2.1. The growth rate has been plotted here as a funtion of kzǫ. Here,

ǫ is the shear width of the �ow as an be seen from the above equation. In the

hydrodynami ase there is no speial sale in the system. Hene, a hange in

the shear width ǫ an always be aommodated by an appropriate length sale

resaling, whih would mean a readjustment in the value of V0 as well. We indeed

observe that the plot of growth rate for the hydrodynami ase ollapses on a single

urve for di�ering values of ǫ when the veloity V0 is adjusted to aommodate
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Figure 2.1: The plot of growth rate vs. kzǫ for the hydrodynami ase (thik urve).

The growth rate has been obtained for a shear �ow pro�le v0 = V0 tanh(x/ǫ).
The urve for the hydrodynami ase is universal for the hoie of ǫ = 0.1f and

V0 = 1.0f . The urves with dots, irles and stars show the growth rate for an

EMHD system for f = 1, 3, 5 respetively.

for the length resaling. The thik line representing the hydrodynami ase in

Fig.2.1 orresponds to several hoies of shear width, e.g. ǫ = 0.1f along with

V0 = 1.0f , obtained by varying the parameter f . This an also be demonstrated

from Eq.(2.6), whih is invariant under the transformation ǫn = ǫf , kzn = kz/f ,

d/dxn = (1/f)d/dx and v0n = v0f . The value of ω thus remains the same. The

growth rate urve when plotted against kzǫ = kznǫn has an idential form. It an

be seen that Eq.(2.7) does not remain invariant under this transformation.

Hene, for the EMHD �uid ase, where the skin depth exists as a speial sale (

de = 1 has been hosen as a normalizing sale), the growth rate urves are no longer

universal. For eah value of f a di�erent growth rate urve results. For �nite de

the growth rate deviates from the universal urve for the NS system predominantly
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at lower kz values (i.e. at longer sales). With inreasing f as the shear width

inreases in omparison with the skin depth and the growth rate keeps reduing.

It beomes negligible when the shear width is muh broader than the eletron skin

depth.

Another striking feature of the growth rate urve is the fat that it has a bell

shaped harater with a single maxima for both NS as well as the EMHD ases.

For a tangent hyperboli shear �ow it is zero at kz = 0 and also at kzǫ = 1.0. For

all values of the wavenumber beyond kzǫ = 1 the growth rate ontinues to remain

zero. The unstable wavenumbers for the tangent hyperboli pro�le thus exist only

in the domain of 0 ≤ kzǫ ≤ 1.0, irrespetive of the values of V0. Thus as the

shear width parameter ǫ is inreased, the threshold ondition on kzǫ being unity,

diminishes the range of unstable kz modes. Though the exat value of the upper

limit on kzǫ is dependent on the spei� form of the shear pro�le, the ut o� value

for unstable wavenumbers is onstrained by kzǫ of the order of unity. For instane,

for a pieewise linear pro�le the growth rate vanishes beyond a smaller value of kz,

viz., kzǫ = 0.639 [34℄. In another publiation [79℄ an analytial proof was given to

show that the growth rate is zero for kzǫ = 1 for the tangent hyperboli equilibrium

shear pro�le.

The fairly general onstraint an, however, be understood on physial grounds.

The mode whih is driven unstable due to a shear sale length of ǫ, has an eigen-

struture whih itself is like a sheared �ow pattern orthogonal to the original �ow

diretion having a typial shear sale length of k−1
z as depited in Fig.2.2. Sine

the free energy for the instability is provided by the sheared �ow on�guration, the

unstable eigen funtions themselves annot have sharper shear �ow struture. This

is responsible for the threshold on the wavenumber kz. Thus, the KH instability
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Figure 2.2: A shemati showing the �ow on�guration after KH destabilization

in 2D. It an be seen that the destabilized �ow on�guration results in a sheared

�ow orthogonal to the original shear �ow, with a shear width given by k−1
z .

in 2D always generates veloity shear sales whih are longer than the original

equilibrium shear sale. This is responsible for the threshold ondition of the

unstable wavenumbers a kzthǫ ∼ O(1). The instability is therefore nonloal in 2D.

In the next setion we would see that even in the presene of whistler wave like

exitations, the threshold ondition on the unstable modes ontinues to hold.

2.4 Role of Whistler Waves

In this setion we study the in�uene of whistler waves on the shear driven insta-

bility of EMHD model and hoose B0 to be �nite. For this purpose, we hoose two

kinds of equilibrium �uid shear �ow pro�les. A step veloity pro�le for whih the

shear width ǫ → 0 is used for analytial simpliity. A tangent hyperboli shear

pro�le is then studied to investigate the in�uene of �nite shear width of the �ow

pro�le.
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2.4.1 Step Veloity Pro�le

We hoose a step eletron veloity shear pro�le of the form v0(x) = −V0+2V0Θ(x).

Thus in region I (−∞ ≤ x ≤ 0), v0(x) = −V0 and for region II (0 ≤ x ≤ ∞) we

have v0(x) = V0. We hoose to depit the perturbed �elds by b1 = bI,II and

ψ1 = ψI,II in the two regions. For a �nite jump in the equilibrium �ow veloity it

an be shown by using Eq.(2.4) that the following funtions of the perturbed �elds

should be ontinuous at x = 0 the loation of veloity disontinuity,

f1 = (ω − kzv0)
db1
dx

+ kzv
′

0b1; f2 =
b1

(ω − kzv0)

f3 =
dψ1

dx
; f4 = ψ1 (2.9)

In the two regions, the Eq.(2.5) an be written as,

d2

dx2
bI,II + αI,IIbI,II + βI,IIψI,II = 0

d2

dx2
ψI,II + ηψI,II − βI,IIbI,II = 0 (2.10)

Here, η = −(1 + k2z) and the oe�ients α, β are de�ned in the two regions as,

αI,II = η +
k2zB

2
0

(ω ± kzV0)2
±

kzV0
(ω ± kzV0)

βI,II =
kzB0

(ω ± kzV0)

Sine the wave funtions should vanish at ±∞, we hoose the solution of Eq.(2.10)

as,

bI = Abexp(pIx); bII = Cbexp(−pIIx)
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ψI = Aψexp(pIx); ψII = Cψexp(−pIIx)

where, pI,II are those roots whih have a positive real part. They are obtained by

substituting for bI,II and ψI,II in Eq.(2.10). We thus have,

p2I,II = −
(αI,II + η)

2
±

1

2

√

(αI,II + η)2 − 4(αI,IIη + β2
I,II)

Thus, there are two roots eah for p2I and p
2
II orresponding to the ± sign before

the square root. Upon substituting for η, αI,II and βI,II the roots are,

p2I± =

{

1 + k2z −
kzV0
2Ω+

−
k2zB

2
0

2Ω2
+

}

±
1

2

{

(

kzV0
Ω+

+
k2zB

2
0

Ω2
+

)2

−
4k2zB

2
0

Ω2
+

}1/2

p2II± =

{

1 + k2z +
kzV0
2Ω−

−
k2zB

2
0

2Ω2
−

}

±
1

2

{

(

kzV0
Ω−

−
k2zB

2
0

Ω2
−

)2

−
4k2zB

2
0

Ω2
+

}1/2

Here Ω± = ω±kzV0 and the± sign in the su�x denotes the two roots orresponding

to the positive and negative sign before the square root. In the limit of B0 = 0 one

reovers the expression obtained in earlier studies by hoosing appropriate sign of

the square root in the two regions. In addition there is another value p2I,II = 1+k2z

orresponding to the evolution equation for ψ (whih gets deoupled from b in

this limit). The earlier studies [34℄ had then shown that upon using the mathing

onditions one �nds a purely imaginary value for ω for all �nite values of kz and

V0. This has shown that a sheared eletron veloity on�guration with zero shear

width is always unstable.

In the present ase, the other limit of V0 = 0, leads to p2I = p2II = −k2x (the

wave number along x) and yields the dispersion relation of whistler wave mode

for whih ω is real. Clearly, in the general ase when both V0 and B0 are �nite, a
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omplex value of ω an be expeted. Using Eq.(2.10) we an �nd a relationship,

Aψ± =
βI

p2I± + η
Ab±; Cψ± =

βII
p2II± + η

Cb±.

This leaves us with four unknown oe�ients Ab± and Cb±. The mathing ondi-

tions are then utilized to eliminate these oe�ients, whih yields the value of ω

from det||M || = 0 where the matrix M is de�ned as follows:

1/Ω+ 1/Ω+ −1/Ω− −1/Ω−

Ω+pI+ Ω+pI− Ω−pII+ Ω−pII−

1/[(p2I+ + η)Ω+] 1/[(p2I− + η)Ω+] −1/[(p2II+ + η)Ω−] −1/[(p2II− + η)Ω−]

pI+/[(p
2
I+ + η)Ω+] pI−/[(p

2
I− + η)Ω+] pII+/[(p

2
II+ + η)Ω−] pII−/[(p

2
II− + η)Ω−]

The roots, ω for det || M ||= 0, for various values of B0 and kz have been

obtained. We show in Fig. 2.3 the plot of the variation of the real and imaginary

part of ω as a funtion of the in - plane magneti �eld B0. The plots learly show

that as the value of B0 is inreased the growth rate of the KH mode dereases.

This is beause the perturbations assoiated with the instability ause bending of

the equilibrium magneti �eld whih requires energy.

An interesting feature of the plot is a sudden fall of the growth rate in the

neighborhood of a partiular value of the B0. A loser look reveals that this fall

ours at the loation when the KH growth rate γ = kzV0
√

(1 + 4k2z)/(3 + 4k2z)

of the unmagnetized eletron �uid for B0 = 0 mathes with the typial whistler
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Figure 2.3: The growth rate (solid line) and the real frequeny (dashed line) for

the KH mode as a funtion of the in-plane magneti �eld B0 for a step eletron

veloity pro�le.

frequeny of the system. The �ow perturbations transverse to the shear �ow in the

KH mode grow at the typial time sale of ∼ (kzV0)
−1
. In EMHD presription it is

well known that

~B−d2e∇
2 ~B is tied to the �uid �ow veloity. Sine the equilibrium

�eld B0 is homogeneous, the �ow perturbations arry the equilibrium �eld lines

with themselves. Thus, the �ow perturbations due to the KH instability distort the

equilibrium straight magneti �eld to a sheared on�guration. The tension due to

this distortion tries to restore the magneti �eld line to its original on�guration,

ausing osillations at the whistler frequeny. When the whistler period beomes

omparable to the growth time of the KH mode, the phase reversal of the transverse

perturbations our at the time sale at whih the shear instability grows, resulting

in onsiderably reduing the growth rate. The whistler frequeny inreases with B0

and at higher B0 thus it beomes more and more di�ult for the KH instability to
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get exited. The growth rate subsequently at higher B0 falls to zero as illustrated

from the plots of the Fig.2.3. The variation of real part of ω with B0 shows

deviation from the whistler frequeny at the lower value of B0. However, at large

B0 it asymptotially mathes with the whistler frequeny.

The step veloity pro�le is an extreme hoie made for the sake of simpli�ed

analytial treatment. In the realisti ase the veloity would vary in a ontinuous

manner. The width of the sheared eletron �ow pro�le plays an important role for

the instability. In earlier 2D studies [34℄ (with no in-plane equilibrium magneti

�eld and hene no whistlers) it was observed that only those modes whih satisfy

kzǫ < 1 ondition were unstable. The typial sale length of the eigen mode

struture along the shear diretion is similar to p−1

I,II for the step pro�le onsidered

in this setion. The expression for pI,II in the absene of B0 shows a monotoni

dependene on kz. For shear pro�le with �nite width, similar of proportionality of

eigen funtion sales along the shear diretion x with kz an be expeted. Thus

the ondition kzǫ < 1 for instability translates to the fat that the 2D instability is

essentially nonloal, and arises only when the mode struture is broader than the

shear width. In the next setion, we investigate the role of �nite shear width of

the veloity pro�le on this partiular instability in the presene of whistler modes.

2.4.2 Veloity Pro�le with Finite Shear Width

In this setion, we onsider the instability in the presene of B0 when the shear of

the equilibrium eletron �ow has a �nite width. For this purpose, we hoose tangent

hyperboli form of the veloity pro�le shown in Eq.(2.8). We use the oupled set

of Eq.(2.5) with this form of v0 to evaluate the eigen value ω numerially. The

results have been shown in Fig.2.4, whih show that the maximum growth rate
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Figure 2.4: The KH growth rate as a funtion of kzǫ for a tangent hyperboli shear
�ow pro�le. Here the solid, dotted and the urve with irles orrespond to B0 = 0,
0.5 and 1.0 respetively.

redues in the presene of a magneti �eld. This feature is same as that observed

in the ontext of step veloity pro�le in the previous setion. The transverse

�uid motion assoiated with the unstable KH mode generates transverse magneti

�eld perturbations as it arries with itself the equilibrium B0 magneti �eld. The

onsequent tension of the magneti �eld perturbation provides the restoring fore

(responsible for the whistler wave osillations) and opposes the growth of the KH

mode. The reation of magneti �eld perturbations osts energy and hene the KH

growth does not remain as energetially favourable as for the ase when B0 = 0.

It should be noted that the growth rate urve of Fig.2.4 is again on�ned to

0 < kzǫ < 1.0. This feature, therefore, is a universal aspet of the KH instability

in 2D. The physial interpretations provided in the previous setion holds good
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even in the presene of in - plane equilibrium magneti �eld B0.

2.5 Nonlinear Simulations

In this setion, we simulate the oupled set of Eq.(2.1) using the �ux orreted

algorithm developed by Boris et al. [74℄. A tangent hyperboli form for the initial

shear �ow on�guration for whih the linear growth rates have been evaluated in

the previous setion, has been onsidered here also. This is to understand the

behaviour of the additional in - plane equilibrium magneti �eld in the nonlinear

regime of the KH instability. The shear �ow equilibrium on�guration along with

the in-plane magneti �eld is hosen as the initial state for the b and ψ �elds. A

low amplitude arbitrary perturbation is purposely added initially to hasten the

growth of the instability, whih otherwise would take long to emerge from the very

low amplitude numerial noise.

In Fig.2.5 we show the evolution of the perturbed energy of the system for

B0 = 0.0, 0.5 and 1.0. During the initial phase of the simulation the total per-

turbed energy inreases exponentially. In the semilog plot of Fig.2.5 this an be

seen initially where the urve is a straight line. The slope of this line mathes

losely with twie the maximum growth rate γ obtained analytially in the previ-

ous setion for eah of the distint values of B0. The dashed line shown alongside

the simulation urve has twie the slope orresponding to the analytial value of

the maximum growth rate. Thus the simulations also on�rm that the presene

of B0 redues the maximum growth rate. As the amplitude of the perturbed �eld

inreases, the nonlinear e�ets beome important in the simulation resulting in the

saturation of the perturbed energy seen at the later stage.

In Fig.2.6 and Fig.2.7 we show the ontour plot of the �eld b at various times
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Figure 2.5: The evolution of perturbed energy for B0 = 0, 0.5, 1.0 in subplots (a),

(b) and () respetively.

( both during linear and nonlinear phases) for two ases of B0 = 0 and B0 = 1.

These plots are for the total b �eld orresponding to the sum of equilibrium as well

as the perturbations. Fig.2.8 and Fig.2.9 on the other hand show similar plots for
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Figure 2.6: Contour plots for the �eld b at various times for the nonlinear simula-

tion of B0 = 0.0 ase.

the perturbed �eld ψ̃ = ψ−ψ0. The equilibrium ontribution to the �eld, namely

ψ0 = −B0x has not been inluded in the plots. The �eld ψ = ψ̃ for the ase in

Fig.2.8 where B0 = 0.

For this simulation the maximally growing mode has a wavenumber kz = 1.67.

This orresponds to a wavelength of λ = 3.77. The simulation box length being

Lz = Lx = 24.0 an aommodate 6 number of wavelengths for this partiular

mode along the periodi z diretion. Indeed, we observe that during the initial

state there appears 6 strutures. The strutures, however, oalese later. For

B0 = 0, the �nal state in b �eld shows one large struture �tting the box size.
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Figure 2.7: Contour plots for the �eld b at various times for the nonlinear simula-

tion of B0 = 1.0 ase.

When B0 = 0 the �eld b gets deoupled from the �eld ψ. The evolution of the

�eld b in this ase supports two square integral invariants in the non-dissipative

limit. The existene of two square integral invariants is responsible for the inverse

spetral asade and formation of long sale patterns in b �eld.

It should also be noted that when B0 = 0 the �eld ψ gets merely onveted

by the �eld b. We had for these simulations hosen an initial small perturbation

in ψ, as is evident from the t = 0 ontours of ψ in Fig.2.8. The �eld ψ merely

gets onveted by the eletron �ow. There is no growth of energy ontent of this

�eld in this ase. The �eld ψ thus ontinues to have a low amplitude and behave

64



Chapter 2: Role of natural length and time sales ...

0

−10 −5 0 5 10
−10

0

10

23.159

−10 −5 0 5 10
−10

0

10

31.1608

−10 −5 0 5 10
−10

0

10

54.9337

−10 −5 0 5 10
−10

0

10

85.4185

z

x
−10 −5 0 5 10

−10

0

10

183.054

−10 −5 0 5 10
−10

0

10

Figure 2.8: Contour plots for the �eld ψ̃ at various times for the nonlinear simu-

lation of B0 = 0.0 ase.

as a passive salar in this partiular ase. It should be noted from the plots for

simulations with B0 = 0 that even though there is a distintion between the �ow

diretion (z axis) and the shear diretion (x) the evolved struture in both b and

ψ �eld is typially isotropi.

When B0 is hosen to be �nite the ontours of b during the linear phase are

quite similar to the ase of B0 = 0. The struture orresponding to the maximally

growing mode emerges during this period. However, during the nonlinear phase

the strutures in b �eld seem to be preferentially elongated along the z diretion

(the diretion of in-plane magneti �eld). The strutures hardly get extended
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Figure 2.9: Contour plots for the �eld ψ̃ at various times for the nonlinear simu-

lation of B0 = 1.0 ase.

along the transverse dimension. Thus, in the presene of the in-plane magneti

�eld the inverse asade in b gets limited to the diretion of the in-plane magneti

�eld. This an be explained by realizing that the whistler wave mediated asade

is anisotropi [72, 73℄. The nonlinear interation of whistler wave produes dimin-

ishing wave numbers parallel to B0. The perpendiular wavenumber on the other

hand inreases as the result of these interations. The ontour plots of the �eld ψ̃

for B0 �nite shows onsiderable randomness as ompared to the ase of B0 = 0.

The �eld is now no longer passively onveted. It ouples atively to the b �eld

through whistler wave exitations. However, the strutures in ψ �eld do not seem
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Figure 2.10: The evolution of mean square wavenumbers for the b and ψ �elds in

the x and z diretions.

to exhibit any anisotropy(Fig. 2.9).

The smaller sale generation in the transverse diretion for b �eld and a rela-

tively isotropi strutures of ψ in the presene of B0 an be quantitatively observed

from Fig.2.10 whih shows the evolution of mean square wavenumbers de�ned as

follows,

< k2x,z >A=

∫ ∫

k2x,z | A(kx, ky) |
2 dkxdkz

∫ ∫

| A(kx, ky) |2 dkxdkz
(2.11)

Here A(kx, kz) represents the Fourier transformed �elds (b or ψ). The plot in

Fig.2.10 learly shows that < k2x > for the �eld b asymptotes at a omparatively

higher value than < k2z > in the presene of B0. However, for the ψ �eld the

mean square wavenumbers along both the diretions are almost idential. This is

a harateristi feature of the anisotropy exhibited by the whistler wave mediated
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Figure 2.11: The plot of z averaged eletron �ow veloity pro�le at various times

for B0 = 0 and B0 = 1 in subplot (a) and subplot(b) respetively.

asade in the nonlinear regime for the EMHD system as observed in previous

studies [72, 73℄.

This derease in the transverse extent of the perturbations in the presene of

B0 has an adverse e�et on the KH instability indued mixing of the �uid �owing

in the two diretions around the shear layer. This an be observed from the plot

of z averaged �ow shown for the two ases in Fig.2.11. The �attening of the shear

layer is onsiderably weaker in the presene of B0.

2.6 Summary

We have in this work investigated the role of the existene of natural length sales

(skin depth ) and time sale (whistler wave) in EMHD phenomena on a prominent
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veloity shear driven �uid Kelvin - Helmholtz instability in 2D. The growth rate

of the instability dereases as the shear width is inreased in omparison to the

eletron skin depth.

The magneti �eld orresponding to a 2D shear �ow in EMHD is direted

orthogonal to this plane. For 2D KH instability studies the perturbation sales

are also on�ned in this plane. The lak of variations along the magneti �eld

essentially rules out the whistler exitations in this ase. To study the role of

whistler in the 2D KH instability we have onsidered an additional homogeneous

magneti �eld B0 direted along the �ow diretion in the equilibrium. This kind of

on�guration is quite likely in laboratory experiments on EMHD [60, 61℄ where the

plasma is on�ned with the help of an axial magneti �eld. Also the presene of

eletron beams in plasma threaded by a magneti �eld is ubiquitous in nature. For

instane in ionosphere and magnetosphere [57℄, the solar orona [58℄ and pulsars

[59℄ et., the equilibrium on�guration onsidered here might exist.

We observe that the growth of the KH instability redues in the presene of a

homogeneous magneti �eld direted along the �ow on�guration. This is primarily

due to the whistler wave exitations that exist for suh system. This has been

illustrated expliitly analytially by evaluating the growth rate for a step veloity

shear on�guration, and has also been demonstrated for a tangent hyperboli shear

�ow pro�le by numerial eigen value evaluation. The tangent shear �ow pro�le

shows that the 2D KH mode is nonloal with perturbation sales always being

longer than the original shear �ow. A physial understanding of this has been

provided.

The nonlinear simulation studies highlight another aspet. For B0 = 0, the

2D EMHD model represented solely in terms of the magneti �eld omponent
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along the symmetry diretion b onserves two non-dissipative square integrals.

This onstrains the evolution in the nonlinear regime for b �eld towards long sale

inverse spetral asade. In this ase there are no whistler wave exitations in the

system and the nonlinear asade is governed entirely due to interations amongst

the eddies. For the ase when B0 is �nite the system exites whistler waves.

The nonlinear asade mediated through these whistler waves ause an anisotropi

spetral asade [72, 73℄. This anisotropy is dominant for the �eld b, for whih

preferentially longer sales get formed only along the diretion of the in-plane

magneti �eld. The transverse spetrum for b has onsiderably shorter sales. As

a result of this feature onsiderably redued mixing of forward and reverse eletron

�ows ours in the presene of B0. The e�etive visous oe�ient arising due to

the KH indued turbulene is thus signi�antly smaller in the presene of in-plane

magneti �eld.

70



Chapter 3

Interplay of Kelvin Helmholtz and

Kink Modes: 3D Studies

In the previous Chapter, we have studied veloity shear driven Kelvin Helmholtz

(KH) instability, whih lies in the two dimensional plane of �ow and shear. Per-

turbations were on�ned in this plane with no spatial variations along the normal

diretion whih is also the diretion of magneti �eld (generated due to 2D sheared

�ow). However, in three dimensional regime of instability, in addition to KH mode,

a new mode also exists in the plane of magneti �eld and shear. This is a loal

mode, known as kink mode. In this Chapter, the interplay of these two modes has

been studied for simple sheared �ow ase, as well as for the ase when an external

magneti �eld also exists. The studies have been arried out extensively in linear

and nonlinear regimes.
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3.1 Introdution

As we know that the EMHD model losely resembles the behaviour of neutral

inompressible hydrodynami �uid, with the additional harateristi traits asso-

iated with the magnetized eletron �uid �ow dynamis. The magnetized har-

ater of the eletron �uid essentially introdues (i) intrinsi natural length sales,

e.g. eletron skin depth and (ii) an osillatory dispersive whistler mode in the

system. The EMHD model thus provides an interesting paradigm for studying

spetral asade and turbulent features, assoiated with nonlinearity, in a medium

whih ontains speial sales as well. For instane, the presene and/or absene of

whistler e�et on spetral asade have ontinued to be debatable in this regard.

It should be noted that the �ow of eletrons automatially has assoiated with

it an ambient magneti �eld. Thus, the possibility of whistler mode exitation

exists, if one permits variations along the diretion of suh a magneti �eld. For

a sheared eletron veloity �ow, the assoiated magneti �eld is direted orthog-

onal to the 2D plane of shear and �ow. The study of veloity shear instability,

with variations on�ned in the 2D plane of shear and �ow, therefore, does not get

plagued by the whistler modes. In the previous Chapter, we had spei�ally added

an external magneti �eld along the �ow diretion and had studied its impliation

due to whistlers on the 2D mode (with variations on�ned in the plane of �ow

and shear termed as the pure sausage mode, see Fig. 3.1(a)) of the veloity shear

driven instability. The study showed the redution and omplete vanishing of the

growth rate of the instability with inreasing strength of the external magneti

�eld aligned along the �ow diretion. The �ow perturbations assoiated with the

sausage mode had to overome the whistler osillatory mode for growth. Basially

72



Chapter 3: Interplay of Kelvin Helmholtz and ...

y

(Slab adaptation)  

z

(Slab adaptation)  

x(r)

z

y( )

Figure (b) 

Region of interest 

Region of interest 

Figure (a) 

z

r

x(r)

y( )

z

y( )

Figure 3.1: A shemati diagram showing the pure sausage (subplot (a)) and pure

kink (subplot (b)) perturbations.

the �ow perturbations had to bend the magneti �eld lines whih beomes di�ult

with its inreasing strength. Thus, in the 2D ase, there exists a threshold mag-

nitude of the external magneti �eld beyond whih the sheared eletron �ow was

unable to exite the instability. When perturbations perpendiular to the plane

of �ow and shear are permitted, but with no variation along the �ow diretion, a

new mode turns up whih we term as the pure kink mode as shown in Fig. 3.1(b).

In our studies presented in this Chapter, we permit full three dimensional

perturbations that would inlude both the modes i.e. sausage and kink in the
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system (modes having general perturbations are termed as mixed modes). The

interplay of these two modes under various physial onditions has been extensively

studied here. The pure kink mode having no variations along �ow diretion may not

be a�eted by the addition of an external magneti �eld along the �ow diretion.

We investigate and on�rm this with our 3D studies here. However, the magneti

�eld along the �ow diretion may hange the growth rate of mixed modes. In

addition, we also employ and external magneti �eld along the diretion normal

to plane of �ow and shear. This magneti �eld may hange the growth rate of

pure kink mode and may not a�et the pure sausage mode. We try to understand

the role of this magneti on the two modes of instability. The nonlinear state

of instability in three dimensions is strongly turbulent due to the diret asade

of power, unlike the inverse asade in 2D. We also arry out the simulations to

understand the spetral asade features with and without an external magneti

�eld present along the �ow diretion in the nonlinear regime of instability. The

spetral asade is expeted to be anisotropi due to the presene of whistlers and

the �ow along the preferred diretions.

The Chapter has been organized as follows. In setion 3.2 we brie�y introdue

the model and the equilibrium on�guration of the system. Setion 3.3 ontains

linear instability analysis for spei� equilibrium �ow pro�les (a step pro�le and

a tangent hyperboli pro�le) for our studies in the presene of external magneti

�eld. Setion 3.4 ontains the results of the nonlinear simulations. We provide the

omparisons of the growth rates from linear theory with the growth rates measured

in the linear regime of the simulations. We also brie�y omment on the spetral

power asade features in the presene of external magneti �eld. Setion 3.5

summarizes the studies presented in the Chapter.
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3.2 Model and Governing Equations

We rewrite the normalized EMHD equations (1.1) and (1.2) as below,

∂

∂t
(∇2 ~B − ~B) = ~∇× [~v × (∇2 ~B − ~B)]

~v = −~∇× ~B (3.1)

These equations have been obtained from the ombined set of eletron �uid equa-

tions and Maxwell's equations under the approximation of ions being stati and

providing a neutralizing bakground and ignoring the displaement urrent and

eletron density �utuations, whih would our at the eletron plasma period.

The �rst equation represents the evolution of generalized vortiity

~∇×{~v− ~A} =

∇2 ~B − ~B and is obtained by taking the url of eletron momentum equation and

making use of Faraday's law. Seond equation is Ampere's law in whih displae-

ment urrent has been ignored (under EMHD assumption). Here, the length sale

has been normalized by eletron skin depth de = c/ωpe, magneti �eld by a typial

magnitude onerning any problem, e.g. BN , the time has been normalized by the

eletron ylotron period orresponding to the normalizing magneti �eld BN .

We onsider an equilibrium eletron �ow veloity with a sheared on�guration

of the form, ~v0(x) = v0(x)ẑ. This eletron �ow, direted along ẑ axis, is sheared

along the x axis. The 2D x− z plane forms the �ow-shear plane of the equilibrium

eletron veloity distribution. Sine the eletron �ow also onstitutes a urrent in

the system, orresponding to this �ow, there exists an equilibrium magneti �eld

along ŷ, the third dimension, whih an be obtained by integrating the relation-

ship dB0/dx = −v0(x) (thus B0(x) = −
∫ x

v0(x)dx + C0). In addition to this
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self onsistent magneti �eld, in our studies we have also onsidered the presene

of an external homogeneous magneti �eld B00ẑ along the �ow diretion for our

equilibrium. We now linearize Eqs. (3.1) around this equilibrium to study its sta-

bility. The Fourier transform along y and z oordinates and time variable of the

linearized set of equations leads to the following oupled set of equations,

d2Bx1

dx2
− (1 + k2)Bx1 =

ky(v
′

0 +B0)vx1
ω̄

+
kzB00vx1

ω̄
(3.2)

d2vx1
dx2

− (1 + k2)vx1 +
Bx1

a
+
kz(v

′′

0 − v0)

ω̄
vx1 +

(kyB0 + kzB00)

ω̄a
vx1 = 0 (3.3)

Here, a = ω̄/[ky(v
′

0+B0)+kzB00] , ω̄ = ω−kzv0 and k
2 = k2y+k

2
z . It should be noted

that in Eqs. (3.2) and (3.3), v0 and B0 are funtions of x, whereas B00 appears as

a onstant parameter. The instability of the equilibrium has been analyzed in the

next setion by evaluating the eigen value ω for the ombined set of Eqs. (3.2,3.3)

for given spei� forms of the equilibrium �ow pro�les.

3.3 Linear Instability

In this setion, we analyze the oupled linearized Eqs. (3.2) and (3.3) obtained in

the previous setion to understand the role of the presene of the external B00 on

the 3D instability. We mention here that we would term modes with �nite ky and

with kz = 0 as the pure kink modes. Those with �nite kz, and with ky = 0 as

the pure sausage modes of the system. Modes with both ky and kz as �nite are

the mixed modes. The terms sausage and kink used here are in analogy with the

perturbations of a ylindrial plasma olumn in the ontext of MHD. The form of
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perturbations for two modes in ylindrial geometry and their representation in the

slab geometry has been shown with the help of a shemati diagram in Fig. 3.1. We

�rst present the loal stability analysis by assuming that the perturbation length

sales are smaller than the shear sale length.

3.3.1 Loal Analysis

Assuming that the perturbation sales are smaller than the equilibrium sales, we

take the Fourier transform of Eqs. (3.2) and (3.3) also along x diretion and obtain

the dispersion relation as follows:

2ω̄(1 + k20) = (v
′′

0 − v0)kz ± {(v
′′

0 − v0)
2k2z

− 4[ky(v
′

0 +B0) + kzB00][kyv
′

0 − k20(kyB0 + kzB00)]}
1/2

(3.4)

Here k0 = (k2x + k2y + k2z)
1/2. The above dispersion relation predits the possibility

of instability when the disriminant D = −4[ky(v
′

0+B0)+kzB00][kyv
′

0−k
2
0(kyB0+

kzB00)] + (v
′′

0 − v0)
2k2z < 0. It is lear that for v

′

0 = 0 and/or ky = 0, D is always

positive. It shows that the variations perpendiular to the plane of �ow and shear

(i.e. ky �nite) along with a �nite value of v′0 is essential for any loal instability to

exist. Furthermore, the existene of a �nite in-plane magneti �eld B00 does not

in�uene the growth rate of pure kink modes for whih kz = 0. When both ky and

kz are �nite, the growth rate diminishes with inrease in B00 as the expression for

the disriminant learly suggests.

It an be shown that in various simpli�ed limits, the loal dispersion relation

redues to well known forms:
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• Case (i): Choosing B00 = 0 the dispersion relation redues to,

2ω̄(1 + k20) = (v
′′

0 − v0)kz ± {(v
′′

0 − v0)
2k2z − 4k2y(v

′

0 +B0)(v
′

0 − k20B0)}
1/2
(3.5)

This mathes with the dispersion relation of Jain et al. [46℄ obtained earlier.

• Case (ii): For ky = 0 and B00 = 0, the dispersion relation redues to the loal

dispersion relation obtained by us earlier [34℄ in the ontext of 2D sausage

modes.

• Case (iii): For v0 = v
′

0 = v
′′

0 = 0 we obtain,

ω =
(kyB0 + kzB00)k0

(1 + k20)
(3.6)

the dispersion relation for the whistler waves.

It is lear that in the presene of 3D perturbations, loal unstable modes exist for

a sheared eletron �ow on�guration.

3.3.2 Nonloal Analysis: tanh-pro�le

We now onsider the general ase where the perturbation sales an be extended.

In this ase it will not be possible to take the Fourier transform along the sheared

diretion of x. The eigen modes in this ase sense the extended pro�le of the

veloity shear. The growth rate of instability has to be obtained as an eigen value

of the solution of ordinary di�erential equation. We have onsidered a spei�

tangent hyperboli shear �ow pro�le for the purpose of our studies i.e., v0(x) =

V0tanh(x/ǫ), where 2ǫ is typially the width of shear region around x = 0 and
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| V0 | is the asymptoti magnitude of the �uid �ow far from the shear region. The

orresponding equilibrium magneti �eld an be obtained by integrating Ampere's

law,

B0(x) = −V0ǫ log cosh(x/ǫ) + C0 (3.7)

Here, C0 is the onstant of integration and represents a uniform magneti �eld

along ŷ diretion. We have made use of two oupled linearized Eqs. (3.2) and (3.3)

to evaluate the eigen values numerially. The magnitude of the external magneti

�eld B00 along the �ow diretion as well as the value of C0 has been varied to study

their role on the instability.

Our linear studies indiate that the dominane of pure sausage and/or kink

mode gets determined by the following three fators, (i) the omparison of shear

sale ǫ of the �ow with the eletron skin depth. For sharper shear sales, the

sausage growth rates are higher. (ii) the addition of B00 along the �ow diretion

redues the sausage growth rate as for the sausage on�guration extra energy is

now required to bend the �eld lines of B00. This �eld, however, does not in�uene

the kink growth rates. (iii) The addition of C0, a uniform magneti �eld along the

third dimension (perpendiular to the plane of �ow and shear), similarly redues

the kink growth rate and has no in�uene on sausage mode.

In Fig. 3.2(a), we show the surfae plot of the growth rate as a funtion of kzǫ

and kyǫ for B00 = 0 and C0 = 0. This plot orresponds to ǫ = 0.3, i.e. the shear

sale is about 1/3 of the skin depth. For this partiular value of skin depth, the

maximum growth rate of the sausage mode is almost omparable with that of the

maximum growth rate of the kink mode. This has been learly illustrated in the

line plots of Fig. 3.2(b) for whih the growth rate plot as a funtion of kzǫ is shown
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Figure 3.2: The subplot (a) shows the surfae plot of the growth rate for the

tangent hyperboli veloity shear pro�le ~v0(x) = ẑV0 tanh(x/ǫ) as a funtion of kzǫ
and kyǫ for B00 = 0 and C0 = 0. For this ase V0 = 1.0 and ǫ = 0.3. In subplot (b)

of the �gure the same data for growth rate has been shown as a funtion of kzǫ.
The various urves show di�erent values of ky. For this ase the kink growth rate

for ky = 2, kz = 0 (equal to 0.52) is almost idential to the maximum growth rate

of the sausage mode at kzǫ = 0.5, ky = 0 (equal to 0.54).

for various values of ky. It should be noted that for this ase, the maximum of the

kink growth rate ourring for ky = 2, kz = 0 is almost idential to the maximum

growth rate of the sausage mode at kzǫ = 0.5, ky = 0. When ǫ is dereased below
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Figure 3.3: The subplot (a) shows the surfae plot of the growth rate for the

tangent hyperboli veloity shear pro�le ~v0(x) = ẑV0 tanh(x/ǫ) as a funtion of kzǫ
and kyǫ for B00 = 0 and C0 = 0. For this ase V0 = 1.0 and ǫ = 0.5. In subplot

(b) of the �gure the same data for growth rate has been shown as a funtion of

kzǫ. The various urves show di�erent values of ky. For this ase the kink growth

rate for ky = 2, kz = 0 (equal to 0.43) is higher than the maximum growth rate of

the sausage mode at kzǫ = 0.5, ky = 0 (equal to 0.27). The pure kink mode learly

dominates for this ase.

the value of 0.3 we observe that the sausage growth rate dominates. However, for

a higher value of ǫ, say = 0.5, the growth rate orresponding to the kink modes

dominate the system as an be seen from the plots of Fig. 3.3.
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Figure 3.4: Plot of the eigen funtions of pure sausage mode (ky = 0). The other
parameter values are V0 = 1.0, ǫ = 0.3, kz = 1.7, B00 = 0.0 and C0 = 0.0.
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Figure 3.5: Plot of the eigen funtions of pure kink mode (kz = 0). The other

parameter values are V0 = 1.0, ǫ = 0.3, ky = 2.0, B00 = 0.0 and C0 = 0.0.
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Figure 3.6: Variation of growth rate with kzǫ for di�erent values of uniform mag-

neti �eld B00 along �ow diretion. The various parameters for this ase are

V0 = 1.0, C0 = 0, ǫ = 0.3 and ky = 0.4. The growth rate dereases as the value of

B00 inreases.

The eigen funtions for pure sausage mode (i.e. ky = 0 and kz �nite) are shown

in Fig. 3.4. We an see that there is no struture in Bx1 while, vx1 has a loalized

struture in x. The two linearized equations get deoupled in this ase for B00 = 0

and the �eld Bx1 assumes a trivial solution. Whereas, for pure kink mode (ky �nite

and kz = 0), both Bx1 and vx1 are �nite as an be observed in Fig. 3.5.

We next study the ase when a uniform magneti �eld B00 along the �ow

diretion is added. It an be observed from Fig. 3.6 that for inreasing values of

B00 the sausage growth rate dereases onsistently. However, the growth rate of

the kink mode kz = 0, and �nite ky does not get in�uened by this magneti �eld.

It is lear from this �gure (Fig. 3.6) as well as from Fig. 3.7, where the growth
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Figure 3.7: Variation of growth rate as a funtion of kzǫ for the ase B00 = 1.0
with V0 = 1.0 , C0 = 0 and ǫ = 0.3. The various urves orrespond to di�erent

values of ky. For this ase the kink growth rate for ky = 2, kz = 0 (equal to 0.52)

is higher than the maximum growth rate of the sausage mode at kzǫ = 0.5, ky = 0
(equal to 0.39). The pure kink mode learly dominates in this ase.

rate plots for various ky has been shown, that the kink growth in this ase an

signi�antly dominate the sausage growth. This is physially understandable as

the 3D kink related perturbations do not ause the bending of the magneti �eld

lines assoiated with B00, whereas the sausage perturbations do have to bend these

lines. Thus, from energy point of view the kink perturbations an dominate even

though the shear sale length ǫ is sharp when the value of B00 is inreased. On the

other hand when C0, whih orresponds to a uniform magneti �eld along the ŷ, is

hosen to be �nite, the growth rate of kink mode redues signi�antly. Whereas,

the sausage mode thrives irrespetive of the value of C0. This an be seen from

the plots of Fig. 3.8.
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Figure 3.8: The variation of growth rate as a funtion of kyǫ has been shown in

subplot (a) for kz = 0 i.e. pure kink modes and in subplot (b) for the value of

kz = 1.7. The di�erent urves orrespond to the di�erent values of C0 in two

subplots. The other parameters are V0 = 1.0 B00 = 0 and ǫ = 0.3. It is lear

from the two subplots that as the value of C0 is inreased the growth rate of kink

onsistently drops down whereas the pure sausage growth rate is not in�uened by

this �eld.

It would be interesting to see how these fators (predominane of one mode over

the other in various situations) �gure in the nonlinear evolution of a 3D system.

We present the results of the nonlinear evolution in the next setion.

3.4 Nonlinear Simulations

The omponents of the evolution Eqs. (3.1) an be expressed in the form of gener-

alized ontinuity equations with soure terms. The omponents have been evolved
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Figure 3.9: The evolution of perturbed energy with V0 = 1.0, C0 = 0 and ǫ = 0.3
for B00 = 0.0 and B00 = 1.0 has been shown in subplots (a) and (b) respetively.

The dashed lines shown alongside are having the slope equal to 2γi, where γi is
the growth rate of the maximally growing mode in the system. In subplot (a) the

slope orresponds to growth rate of pure sausage mode (with γi = 0.54) whereas,
in subplot (b) the slope orresponds to the growth rate of pure kink mode (with

γi = 0.52) whih is the maximally growing mode in the system for this ase.

in slab geometry using the �ux orreted sheme of Boris et. al. [75℄. A suite

of subroutine for solving suh generalized ontinuity equations are available as a

pakage known as LCPFCT [74℄. This has been adapted suitably for our system

of equations. At eah time step one evolves ∇2 ~B − ~B �rst and then employs a

Helmholtz solver to solve for

~B at the updated time. The updated eletron velo-

ity is obtained from the relationship ~v = −∇ × ~B, whih is then used to evolve

∇2 ~B − ~B at the next step. The evolution of total energy was traked throughout

the time of evolution to asertain the auray. We observe that the numerial
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Figure 3.10: The evolution of perturbed energy with V0 = 1.0, C0 = 0 and ǫ = 0.1
for B00 = 0.0 and B00 = 1.0 has been shown in subplots (a) and (b) respetively.

The dashed lines shown alongside are having the slope equal to 2γi, where γi is
the growth rate of the maximally growing mode in the system. For two ases the

values of γi are equal to 1.85 and 1.78 for subplots (a) and (b) respetively. The

maximally growing mode for two ases is pure sausage mode.

variation of total energy is (∆Etot/Etot) ∼ O(10−6) in the linear regime whereas

the hange in the perturbed energy (∆Ep/Etot) ∼ O(10−3). The initial ondition

was hosen as the sheared eletron veloity �ow equilibrium of the tangent hy-

perboli form, ~v0 = ẑV0 tanh(x/ǫ). This translates to the initial ondition for the

magneti �eld of the form,

~B0 = −V0ǫ log [cosh(x/ǫ)] ŷ + C0ŷ (3.8)

87



Chapter 3: Interplay of Kelvin Helmholtz and ...

0 2 4 6 8 10
2

4

6
(a)

ln
(E

)

0 5 10 15 20
0

5

10

15
(b)

Time

ln
(E

)

Figure 3.11: The evolution of perturbed energy with V0 = 1.0, C0 = 1.0 and ǫ = 0.3
for B00 = 0.0 and B00 = 1.0 has been shown in subplots (a) and (b) respetively.

The dashed lines shown alongside are having the slope equal to 2γi, where γi is
the growth rate of the maximally growing mode in the system. For two ases the

values of γi are equal to 0.54 and 0.39 for subplots (a) and (b) respetively. Here

again the maximally growing mode for two ases is pure sausage mode.

We have also often hosen an additional uniform magneti �eld B00ẑ along the �ow

diretion. The presene of this magneti �eld does not disturb the equilibrium �ow.

However, a �nite B00ẑ in�uenes the linear growth rate of the system as we saw

in our linear analysis. Here, we have studied the role of this magneti �eld along

with C0 on the nonlinear state.

The evolution of perturbed energy has been shown in Fig. 3.9 for the ase of

ǫ = 0.3 and C0 = 0 in subplot (a) for B00 = 0.0 and in subplot (b) for B00 = 1.0

respetively, depited by the solid lines. The perturbed energy shows a linear rise

in the semilog plot initially. This orresponds to the linear growth rate regime.
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Figure 3.12: The plot of averaged eletron �ow veloity pro�le at various times for

B00 = 0.0 and B00 = 1.0 in subplots (a) and (b) respetively. The values of the

other parameters have been hosen to be same as in Fig. 3.9. The �attening of

shear pro�le is weaker for �nite B00 ase.

We observe that the slope of the dashed lines drawn along side for the two ases

mathes with twie of the maximally growing mode orresponding to it. While for

(a) the sausage mode has the maximum, for (b) it is the kink mode. The energy

is observed to saturate subsequently when the perturbations aquire a nonlinear

amplitude. Further, it is interesting to see that for another plot in Fig. 3.10 with

ǫ = 0.1, the sausage mode dominates in both ases of B00 = 0.0 and B00 = 1.0. In

addition, in Fig. 3.11, C0 is hosen to be �nite for the ase of ǫ = 0.3. Here again

the sausage mode dominates for both ases of B00 = 0.0 and B00 = 1.0.
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Figure 3.13: Evolution of average wave-numbers in di�erent diretions for B00 =
0.0. The values of the other parameters have been hosen to be same as in Fig. 3.9.

It is often of importane to know the proess of nonlinear broadening of the

shear layer in the presene of these unstable modes. The nonlinear broadening

of the shear layer provides the information on the e�etive anomalous visosity

for the system in the nonlinear regime of the instability. We show the evolution

of the mean �ow pro�le with time in Fig. 3.12 for the two ases (a) and (b) of

Fig. 3.9. It is observed that the broadening ours muh more slowly when the

system evolution is governed by the kink like mode than that of the sausage mode.

This an be understood by realizing that during the linear phase, the kink mode

does not alter the 2D �ow struture. Thus, the broadening ours for this ase

only at a later phase when the nonlinear phase sets in and energy starts to trikle

in the other modes as well. This is orroborated by studying the time at whih

the pro�le gets broadened in the two subplots.

For a 2D EMHD system, typially, one enounters inverse asade of energy
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Figure 3.14: Evolution of average wave-numbers in three di�erent diretions has

been shown in three di�erent subplots in omparison for two ases B00 = 0.0 and

B00 = 1.0. The values of the other parameters have been hosen to be same as in

Fig. 3.9.

and the �nal state omprises of ordered vortex �ow patterns. However, in the

presene of additional external uniform �elds, short sale strutures were observed

to get formed in 2D [80℄. Here, we investigate the behaviour of the spetrum in the

nonlinear regime of the KH instability in 3D with and without external magneti

�eld. The plot of Fig. 3.13 shows the evolution of the average wavenumber along

the three diretions. The evolution of average wavenumber, along all the three

diretions, shows a sudden rise and then a steady slow deay whih eventually
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shows a saturation. It is observed that the average value of the wavenumber is

typially highest along the diretion of shear x̂; along ẑ, the diretions of �ow and

ŷ, the diretion of the magneti �eld assoiated with �ow, the sales are in general

longer in the nonlinear regime. It appears, therefore, that both the presene of

�ow and magneti �eld inhibits the proess of diret asade of spetrum towards

higher wavenumbers. This leads to signi�ant anisotropization of the spetrum.

In the presene of B00, we observe that the evolution of the typial sale along

the x̂ (shear diretion) remains more or less unaltered. This an be seen from the

plot of Fig. 3.14. However, the sales along the other two diretions turn out to

be longer when B00 is �nite than when it is hosen to be zero. These results are

in onformity with the whistler wave mediated spetral asade features presented

in referenes [72, 73℄.

3.5 Summary

The study of eletron veloity shear driven instability in EMHD (Eletron Magne-

tohydrodynamis) regime in three dimensions has been arried out. The instability

is non - loal in the plane de�ned by the �ow diretion and that of the shear and

is the familiar Kelvin - Helmholtz (KH) mode whih has often been termed as

the sausage mode in the ontext of Eletron Magnetohydrodynamis �ows. On

the other hand a loal instability with perturbations in the plane of shear and

the magneti �eld exists whih has been referred as kink mode. The addition of

an external magneti �eld along the shear �ow diretion has been shown earlier

to stabilize the sausage modes in 2D. We have shown here that the kink modes

remain unin�uened by this magneti �eld and hene an be the pertinent fastest

growing mode in suh a senario. It is also shown that the addition of external
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magneti �eld along the ambient magneti �eld diretion generated by the �ow

(e.g. perpendiular to hear and �ow diretion) redues the kink mode but the

sausage growth remains unaltered by it. The nonlinear evolution on�rms these

observations.

We also observe that the spetral asade towards shorter sales in 3D gets

inhibited both along the �ow as well as along the diretion of magneti �eld. Thus

the shortest sales are found along the shear diretion, while in the other two

diretions, one observes sales whih are typially longer. This is onsistent with

an earlier work where it was shown that the spetral asade is typially mediated

by the whistler wave.
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Chapter 4

Stability of Isihenko Solutions of

Eletron Magnetohydrodynami

Model Against Shear Driven Modes

The studies on veloity shear driven Eletron Magnetohydrodynamis (EMHD)

instability in the previous Chapters, have shown that the instability is nonloal, if

the variations lie in the plane of �ow and shear. This is usual Kelvin Helmholtz

mode, often termed as sausage mode in EMHD. Besides the KH mode, a loal

mode with perturbations in the plane of magneti �eld and shear is also known

to exist, whih is termed as the kink mode. In this Chapter, we analyze these

instability proesses for the exat nonlinear solutions of EMHD equations in the

form of monopolar and dipolar magneti �eld strutures obtained by Isihenko et

al. [51℄.
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4.1 Introdution

The oherent strutures play an important role in governing transport properties

of a system. The presene of these strutures is believed to be the ause of phe-

nomena of intermitteny in turbulene. The oherent strutures an be desribed

as the exat solutions of the nonlinear �uid equations. The studies on transport,

stability and interation proesses of these strutures provide an understanding of

their role in the turbulene. The EMHD equations in 2D permits ertain exat,

nonlinear eletron �ow solutions. These solutions were obtained by Isihenko and

Marnahev as the isolated, oherent strutures [51℄. The �rst variety of solutions

are the rotating eletron urrents giving rise to monopolar magneti �elds. These

monopolar solutions are radially symmetri and stationary solutions. The other

variety inludes the eletron urrents produing bipolar magneti �elds. These

dipolar solutions are radially non-symmetri and propagate with onstant speed

in their axial diretion.

In their work, Isihenko et al. have obtained analytial onditions for the exis-

tene of exat nonlinear loalized solutions of EMHD equations in two dimensions.

They also arried out the stability analysis and have shown that the solutions are

stable. The propagation and interation harateristis of suh EMHD solutions

in a homogeneous plasma have been studied by Das [55℄ and later by Dastgeer [56℄

in 2D. They observe strutures to be fairly robust and stable. Various interation

proesses amidst monopoles and dipoles have also been studied by them and a

qualitative understanding of the observations has been provided on the basis of

point vortex model (PVM). Subsequent studies in 2D by Sharad et al. [76℄ on

propagation of suh strutures in an inhomogeneous plasma illustrate interesting
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adjustments in shapes. However, the overall integrity of the strutures is found to

remain preserved in suh simulations.

While the monopolar solutions represent stati eletron urrent pulse in plasma,

the dipolar solutions an be looked upon as propagating urrent pulses. They

thus mok up a translating urrent pulse in whih the entral region arries a

forward urrent (along the diretion of propagation) and the outer region arries a

reverse urrent surrounding the forward urrent, a situation of pratial relavane

in various senarios. For instane, in the ase of fast ignition senario [5, 6℄, the

hot eletrons generated by the lasers at the ritial density surfae move towards

the dense ore and generate the return shielding urrent in bakground eletrons to

maintain the harge neutrality. This on�guration is subjeted to the Wiebel and

tearing instabilities. Due to these proesses the urrent �laments are formed whih

self-organize through the oalesene proess and �nally result in few ylindrial

urrent hannels in whih the return urrent surrounds the entral forward urrent.

The eletrons onstituting the forward urrent are good soure for heating the ore

and produe the hot spot for ignition by dumping their energy to the bakground

plasma through various proesses. Sharad et al. [77℄ have shown in their studies

a novel mehanism, the formation of urrent shok, through whih these dipoles

dissipate their energy and have disussed the impliations of their study to the fast

ignition. The similar urrent pulses are aslo formed in other phenomena suh as

fast magneti reonnetions [7, 10, 11, 12, 13, 14, 33℄, fast magneti �eld transport

[49, 50℄, laser plasma interations [78℄, et.

The EMHD solutions have an eletron �ow on�guration whih is signi�antly

sheared (Fig. 4.1). Sine the simulations in 2D show the strutures to be robust

and stable. It is, thus, of importane to understand why the strutures are not
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Figure 4.1: Representation of EMHD monopolar and dipolar solutions in the form

of urrent pulses. Subplots (a) and (d) show the forms of typial monopole and

dipole as lying in x−z plane. The orresponding magneti �eld and �ow pro�les are

shown in subplots below to them (see subplots (b), () for monopole and subplots

(e), (f) for dipole). Here, using the Maxwell's relation, the �ow veloity is related

to magneti �eld as v0 = −dB0/dx. In subplots () and (e) we see that there are

the regions of in �ow and out �ow that make the on�guration as the sheared �ow

on�guration.
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suseptible to the 2D instabilities disussed in earlier Chapters. An explanation

of this was provided by Sharad et al. [54℄, where they suggest struture size

being omparable to the shear sale, nonloal 2D sausage mode, having a ut o�

wavelength of the order of shear sale, an not be exited. A 3D evolution of these

solutions has not been arried out so far where the kink mode, being loal mode,

has no suh ut o�s. In this Chapter we study the 3D evolution numerially and

show expliitely the destabilization of these solutions.

The Chapter has been organized as follows. In setion 4.2 we brie�y desribe

the nonlinear solutions of EMHD equation. In setion 4.3, we present the results

of numerial simulations in 3D arried out with monopole and dipole strutures

as the initial onditions in a homogeneous plasma medium. In setion 4.4, the

stability of strutures against �ow shear driven modes has been disussed. Finally,

in setion 4.5, we summarize the outome of our study.

4.2 Solutions of 2D EMHD

We reall the two dimensional EMHD equations (Eqs. 2.1 in Chapter 2),

∂

∂t
(∇2ψ − ψ) + ŷ ×∇b · ∇(∇2ψ − ψ) = 0

∂

∂t
(∇2b− b) + ŷ ×∇b · ∇∇2b− ŷ ×∇ψ · ∇∇2ψ − ψ = 0 (4.1)

Here b and ψ are two salars whih represent the total magneti �eld as,

~B =

bŷ+ ŷ×∇ψ, y is the symmetry diretion. Using the property ŷ×∇A·∇B = [A,B],
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the above set of equations (Eqs. 4.1) ould be ast in the following form,

∂F

∂t
+ [b,F ] = 0

∂G

∂t
+ [b,G] = [ψ,F ] (4.2)

Here F = ψ −∇2ψ and G = b −∇2b. The Eqs. (4.2) are in Hamiltonian form in

terms of non-anonial Poisson brakets [81℄ with energy funtional,

H = 1

2

∫

[b2 + (∇ψ)2 + (∇b)2 + (∇2ψ)2]dxdz,

whih is the total energy (sum of the magneti energy and the kineti energy) of the

system. In Eqs. 4.2 the �eld b ats as a stream funtion whih advets the quantities

F and G. The quantity F is adveted as a Lagrangian invariant whih represents

the onservation of generalized momentum along y diretion. The quantity G, in

addition to advetion, has a soure term in the evolution equation, and is not a

Lagrangian invariant.

The Poisson braket in Eqs. (4.2) vanishes for radially symmetri forms. Hene

the symmetri strutures i.e. monopoles are exat, stationary solutions of these

equations. Any olletion of monopoles separated by a distane muh larger than

their spatial extent suh that there is no spatial overlap among them, is also a

solution. Two monopoles when plaed su�iently lose to eah other in�uene

the dynamis of eah other. The another interesting solution whih is a traveling

dipole, is indeed a manifestation of this interation. A dipole an be imagined

as a ombination of two monopoles of equal strength but opposite polarity plaed

in the viinity of eah other. The net results of interation is the translation of

the ombined struture. These solutions were obtained analytially by Isihenko

et al. [51℄ by seeking the stationarity in a moving frame. The solutions are the
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ombination of Bessel funtions of various kinds.

Consider the ase that the urrents lie in the x − z plane only i.e. ψ = 0. For

this, Eqs. (4.2) redue to,

∂

∂t
(b−∇2b) + [b, b−∇2b] = 0 (4.3)

Stationary monopolar solutions an be obtained for [b, b−∇2b] = 0 whih suggests

∇2b = f(b). Here, f is a funtion of b. For instane, a loalized b of the following

form an be one suh solution,

b = A0exp

{

−
(x− x0)

2 + (z − z0)
2

σ2

}

(4.4)

Here, A0 and σ are onstants whih deide the strength and spatial extent of the

struture, respetively. The other onstants x0 and z0 �x the loation of entre of

the struture in the 2D spae. This form we have used in our studies as the initial

onditions for monopole.

The propagating dipole solutions are obtained by transforming the oordinates

to a frame moving with uniform veloity U along z diretion. Stationarity in this

frame yields,

[∇2b− b, b− Ux] = 0 ⇒ ∇2b− b = fb(b− Ux) (4.5)

Here, fb is an arbitrary funtion of (b − Ux). Isihenko et al. [51℄ have obtained

the analytial solutions whih are loalized within a �nite spatial extent a0. In the

inner region (r ≤ a0), the vortiity soure funtion is hosen to be a linear funtion

of its argument as, fb(= β(b− Ux)). For loalization, the funtion fb is hosen to
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vanish (i.e. β = 0) in the outside region (r > a0). Solutions are obtained in the

ylindrial oordinates as given below,

1

b = [d1J1(kr) + d2r]cos(θ); r ≤ a0

b = d3K1(r)cos(θ); r > a0 (4.6)

Here, d′s and k are unknown onstants whih are determined from the mathing

of �eld b and its derivatives at r = a0. The above solutions of b form the dipole

struture for a set of free parameters (U, β, a0). These solutions with the known

onstants are then used as initial state in our studies.

4.3 Nonlinear Simulations

To study the evolution of the EMHD strutures (monopole and dipole) against

3D perturbations we have arried out 3D nonlinear simulations. The simulation

sheme is the same as adapted in Chapter 3. The initial onditions hosen are

monopole and dipole strutures. Boundary onditions are hosen to be periodi

in all the three diretions. The values of various parameters have been mentioned

wherever required. We have heked for the onservation of total energy in our

simulation run(s) to asertain that there is no numerial instability.

Evolution of Monopole:

The monopole struture has been hosen to lie in the x− z plane. The monopole

magneti �eld is along y - diretion. We show the ontour lines showing the

magneti �eld of the monopole in the x− y plane at various times in Fig. 4.2. The

1

Detailed mathematial derivation of solutions an be seen in Ref. [82℄.
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Figure 4.2: The onstant magneti �eld ontours of the monopole have been shown

at various times in the x− y plane.

ontour lines whih are straight initially (as the equilibrium is independent of y)

evolve to show the development of instability (at t = 3.24123). The instability

beomes more pronouned at later time, say at t = 3.83055. Up to this time the

monopole ontinues to maintain its identity and remains stable, although its shape

gets somewhat distorted. This an be seen from the subplots of Fig. 4.3 at the

orresponding times. This �gure shows the ontour strutures of monopoles in the

x− z plane. In the later subplot of Fig. 4.2, short sale patterns are seen and the

monopole at orresponding times (in Fig. 4.3) shows onsiderable disintigration.
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Figure 4.3: The onstant magneti �eld ontours of the monopole have been shown

at various times in the x−z plane. These times are similar to those of the subplots

of Fig. 4.2.

Evolution of Dipole:

In another simulation, we study the evolution of dipole struture as given in Eq. 4.6.

The dipole struture has been hosen to lie in the x − z plane and propagating

along z - diretion. The dipole magneti �eld is along y - diretion. We show the

ontour lines showing the magneti �eld of the dipole in the x− y plane at various

times in Fig. 4.4. As the dipole propagates with an axial speed z, the z loation of

the hosen x−y plane in the �gure orresponds to the entral region of the dipole.

The ontour lines whih are straight initially (as the equilibrium is independent of
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Figure 4.4: The subplots show the plots of the magneti �eld lines in the x −
y plane for z = 0.0, 1.87, 3.68, 5.5,−2.06 and 0.35 orresponding to times t =
0.0, 359.561, 859.561, 1859.56, 3109.5 and 4859.45 respetively. The z loation at

these times orrespond to the loation of the mid plane of the dipole struture

as it propagates. The magneti �eld lines whih are initially straight as there

is no dependene of equilibrium on y later due to the kink instability aquire y
dependene.

y) evolve to show the development of instability (at t = 359.561). The instability

beomes more pronouned at later time, say at t = 859.561. Up to this time

the dipole ontinues to maintain its identity and ontinues to propagate stably,

although its shape gets somewhat distorted. This an be seen from the subplots

of Fig. 4.5 at the orresponding times. This �gure shows the ontour strutures of

dipoles in the x− z plane at y = 0.0. Later, the magneti �eld lines of the plot in

Fig. 4.4 develop a wider bulge and form an island struture (at t = 1859.56). At
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Figure 4.5: The onstant magneti �eld ontours of the dipole have been shown at

various times in the x− z plane. These times are similar to those of the subplots

of Fig. 4.4.

these later times the dipole shows onsiderable disintegration. At subsequent times

the dipole struture disintegrates ompletely and small sale struture formation

an be observed.

4.4 Disussion

The strutures both monopoles and dipoles, in our simulations, are found to be

unstable. These strutures, however, were stable against sausage mode in their 2D

evolution, where kink mode was not supported. The stability of strutures against
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sausage mode had been argued by Sharad et al. [54℄ on the following basis. For

these strutures, the shear layer width as well as the total extent of shear �ow both

have an extent of typial eletron skin depth size. The sausage mode an only be

exited if a sale length along the �ow diretion is longer than the shear width,

e.g., referred to as kzǫ < 1 (kz being the wavenumber along the �ow diretion and

ǫ being the typial shear width) in earlier work. The total extent of the shear �ow

being limited in size permits no wavenumber to satisfy the riteria of kzǫ < 1,

hene the strutures remain stable to the sausage mode. The kink mode, however,

is free from this kind of restrition. Hene, in our simulations, where kink mode is

also operative, the strutures show destabilization.

The unstable behaviour of the strutures raises the question of their relavane

in various phenomena desribed in earlier studies. One needs to ompare the

instability growth rate along with the time sales involved in the phenomena to

investigate the relavene of the strutures. We hoose to disuss here the study by

Sharad et al. [77℄. In their study, the dipoles, while moving in an inhomogeneous

plasma medium, are shown to dissipate their energy through the mehanism of

urrent shok formation. Impliations of the study were shown in the fast ignition

phenomena. The study, being two dimensional, does not support the kink mode.

However, in real 3D situation the dipoles would beome kink unstable as shown

by us. We need to ompare here, the time sale at whih dipoles dissipate their

energy with the growth rate of kink instability to see the relevane of dipoles.

As obtained by Sharad et al. [77℄, the rate of energy dissipation in the shok

struture is,

Q =
b20a

2

2
KLve (4.7)
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Here, b0 is the typial value of magneti �eld in dipole, ve is the typial inoming

veloity of dipoles and a is the system length along the transverse diretions. L

is the typial shok length and K is the inverse of the normalized density sale

length. The time sale T at whih the dipole energy gets dissipated is obtained as,

T =

b2
0

2
a2L

Q
∼

1

Kve
(4.8)

This suggests that the dissipation would our fast for the sharp density gradients.

Let us now reall the loal dispersion relation for the kink mode obtained as

Eq. (3.5) in Chapter 3,

2ω̄(1 + k20) = (v
′′

0 − v0)kz ± {(v
′′

0 − v0)
2k2z − 4k2y(v

′

0 +B0)(v
′

0 − k20B0)}
1/2

(4.9)

The above dispersion relation predits the loal instability when the disriminant

D = −4k2y(v
′

0 +B0)(v
′

0 − k20B0) + (v
′′

0 − v0)
2k2z < 0. It is lear that ky and v

′

0 need

to be �nite for the instability to exist. However, �nite values of kz and B0, make

the task of exiting kink mode di�ult. Choosing kz = 0 and also B0 = 0, the

growth rate of instability yields,

γ =
2kyv

′

0

2(1 + k20)
∼

kyv0
ǫ(1 + k20)

(4.10)

Here, ǫ is the shear width or size of the dipole. For k ∼ 1, the γ ∼ v0/2ǫ. This

suggests that the instability growth rate diminishes as the shear width inreases,

as known.

The two time sales T and γ−1
would ompete with eah other to tell whih

proess is dominant. For dipoles to be of relevane i.e. when dissipative proess
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is dominant, the ondition γT < 1 should be satis�ed. This means that dipoles

dissipate their energy before the instability destroyes them. Sine the �nite value

of kz and B0 redue the instability growth rate, the ondition γT < 1 may be

favourble in this parameter regime. Hene the dissipative proess may be impor-

tant. In the other limit i.e. γT > 1, the dipoles deay due to instability before

the dissipation phenomena takes plae and hene may not be of relevane. One,

thus, needs to look into the parameter spae of kink growth rate and ompare it

with the dissipation time sale T to establish the usefulness of the dipole stru-

tures. The expression for growth rate of kink mode Eq. 4.9 is only approximate

one and is valid only in the loal limit. For more aurate and detailed disussion

the nonloal analysis of the instability needs to be taken into aount; the study

is underway.

4.5 Summary

In this Chapter, we have investigated the stability of Isihenko solutions of 2D

EMHD against the three dimensional perturbations. The solutions are the oher-

ent, loalized strutures in the form of stationary monopoles and traveling dipoles

whih propagate with onstant speed in their axial diretion. The eletron �ow

on�guration is signi�antly sheared in these strutures and hene are suseptible

to the veloity shear driven instability proesses. It is known that for 2D perturba-

tions (variations on�ned in the plane of �ow and shear only), the unstable mode

is sausage mode whih is a nonloal mode. When the variations along the third

dimension are also allowed, another mode exists, whih is a loal mode and termed

as the kink mode.

The EMHD strutues are known to be very robust and stable against the
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2D sausage mode perturbations. However, in our three dimensional nonlinear

simulations, we observe that the they get destabilized due to the kink mode. The

puzzling behavior of strutures (stability for sausage and instability for kink mode)

an be understood from the following argument. The struture size does not permit

the wavenumber to satisfy the instability riteria of sausage mode for whih the

wavelength should be broader than the shear width, and hene the strutures are

stable to sausage mode. However, for kink mode whih is loal in nature, the

wavelengths sharper than the shear width are also unstable. Hene the strutures

beome unstable due to the presene of this mode.
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Chapter 5

Summary and Future Sope

This Chapter presents the summary and onlusion of the work arried out in

the thesis. The Chapter also provides the disussion on possible future researh

problems in ontinuation to the work presented in the thesis.

5.1 Summary and Conlusions

The work in the thesis has been foused on the studies of shear driven EMHD

instabilities in plasmas. Here, we present summary of the work arried out in

previous Chapters with a brief disussion on the important results obtained therein.

• Role of natural length and time sales of EMHD on 2D Kelvin

Helmholtz instability

Kelvin Helmholtz (KH) instability is one of the prominent �uid instabilities

in whih interfae of two �uids in relative motion is unstable under ertain

onditions. In the ontext of EMHD, the instability has been studied in

onsiderable detail [34, 45, 46, 47℄. In this thesis, we explore the instability
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further under ertain additional onsiderations. Due to its eletromagneti

harater, the EMHD model exhibits natural length (eletron inertia) and

time (whistler period) sales. We have studied the role of these natural sales

of EMHD on KH instability in 2D, in Chapter 2. Here, 2D refers to the ase

when the perturbations are on�ned in the 2D plane onsisting of �ow and

shear diretions. The self onsistent magneti �eld arising due to 2D sheared

�ow of eletrons, is direted along the symmetry diretion. A linear analysis

solves the problem as matrix eigen problem and obtains the eigen values

as the growth rate of the instability. It is observed that the growth rate

dereases as the shear width is inreased in omparison to the eletron skin

depth. The instability is prominent only when the shear in the eletron �ow

veloity is sharper than the eletron skin depth.

In order to understand the role of whistlers on the instability, a uniform

magneti �eld (B0) is imposed along the diretion of �ow. This magneti

�eld, being tied to the �uid �ow, gets distorted to a sheared on�guration due

to the ation of KH. The tension aused by this distortion tries to restore the

magneti �eld lines to its original on�guration and sets up the osillations

at whistler frequeny. The proess of exiting whistlers osts energy and

opposes the growth of KH mode. Consequently, KH growth rate is found

to redue with inreasing B0. Nonlinear �uid simulations were arried out

to understand the role of whistlers in the nonlinear regime of instability.

The instability growth rates with and without B0 in simulations math with

linear theory, this validates the simulation ode. In the absene of B0, the

2D EMHD model is known to onserve two non-dissipative square integrals

namely, energy and enstrophy. This onstrains the power transfer in the
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nonlinear regime towards longer sale due to the proess of inverse asade.

As a result, in simulations for the ase of B0 = 0, the �nal nonlinear state

is a oherent pattern oupying the box size. However, in the presene of

B0, the nonlinear asade is governed by the interations among whistlers

and exhibits strong anisotropi harater [72, 73℄. In the �nal nonlinear

state the strutures are seen preferentially elongated along the diretion of

magneti �eld. There is hardly any extension along the transverse diretion.

As a result, the mixing of the �uids �owing in two diretions indued by KH

instability gets onsiderably redued. Hene, the e�etive visous oe�ient

is found to be signi�antly smaller for this ase.

• Interplay of Kelvin Helmholtz and kink modes

In Chapter 3, we arried out linear and nonlinear studies of veloity shear

driven 3D EMHD instability. In these studies, we permit the spatial vari-

ations along the diretion of self-onsistent magneti �eld generated due to

sheared �ow. In addition to the sausage mode (KH mode), a loal mode

with perturbations in the plane of shear and the magneti �eld exists whih

is termed as the kink mode [35, 46℄. The interplay of these modes with and

without external magneti �eld has been studied extensively in the linear and

nonlinear regimes. The studies indiate that the dominane of one mode over

the other is mainly determined by the following three fators: (i) The value

of shear width in omparison with eletron skin depth. For sharper shear

width the sausage growth rate is higher. (ii) The external magneti �eld

(B00) along the �ow diretion. The presene of B00 stabilizes the sausage

mode and does not a�et the kink mode. So, kink may be the dominant

mode for this ase. (iii) The external magneti �eld (C0) along the dire-
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tion of magneti �eld generated by the �ow. The presene of C0 redues the

growth rate of kink mode and does not a�et the sausage growth rate. So,

sausage an dominate in these onditions.

Nonlinear simulations of 3D instability were also arried out. The linear

growth rates obtained from various simulation runs are in agreement with

the linear results. Unlike the 2D ase, the nonlinear state is found to be

strongly turbulent [43, 47℄. This is due to the non existene of two non-

dissipative square invariants and also the larger number of unstable modes

in 3D. We have analyzed the spetral asade features of the turbulene gen-

erated in the nonlinear state with and without external magneti �eld along

the �ow diretion. It is observed that the spetral asade towards shorter

sales is inhibited along the diretion of �ow as well as the diretion of mag-

neti �eld. The shortest sales are thus found to generate along the shear

diretion while, in other two diretions the sales are typially longer. This

indues signi�ant anisotropy in the spetrum. In simulations with the exter-

nal magneti �eld (B00) present along the �ow diretion, we observe that the

sales along the shear diretions are more or less unhanged. However, along

the other two diretions, the sales are longer in omparison to the ase when

this magneti �eld is not present. These results are in onformity with the

whistler mediated spetral asade features [72, 73℄. We have also measured

the nonlinear broadening of shear layer whih provides the information on

the e�etive visous oe�ient. The broadening of shear layer ours muh

slowly for the ase when magneti �eld is present along the �ow diretions.

In that ase the system evolution is governed by the kink mode whih in

the linear phase does not alter the 2D �ow struture. The broadening ours
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only at later nonlinear phase when the energy starts to trikle in other modes

as well.

• Stability of Isihenko solutions against sausage and kink modes

The 2D EMHD system has exat stationary monopole and propagating dipo-

lar solutions of loalized eletron �ow strutures, obtained by Isihenko et al.

[51℄. The 2D evolution of these strutures has been studied in onsiderable

details by several authors [55, 56, 76, 77, 54℄, where they have been found

to be stable. The dipole solutions are of pratial importane as they an

be imagined as propagating urrent pulses arrying energy and momentum.

They may be employed for the purpose of hot spot generation in Fast Ignition

senario by dumping their energy to the ore through ollision less proesses

[77℄. The eletron �ow on�guration is signi�antly sheared in these stru-

tures and hene ould be suseptible to various �ow shear driven instability

proesses (sausage and kink modes, studied by us in Chapters 2 and 3). In

Chapter 4, we have investigated these instability proesses for EMHD stru-

tures. For this purpose, we have arried out 3D nonlinear simulations to see

the evolution of the monopole and dipole in a homogeneous plasma medium.

As mentioned above, the EMHD strutures, monopole and dipole, are known

to be very robust and stable in their 2D evolution [55, 56, 76, 77, 54℄. In

2D, kink mode is not supported and the strutures are stable to sausage

mode. Stability of strutures against sausage mode an be understood by

the following argument, as provided by Sharad et al. [54℄. The struture size

does not permit the wave number to satisfy the instability riteria of sausage

mode viz., kzǫ < 1; here, `kz' is the wavenumber along the �ow diretion

and `ǫ' is the shear width. Hene, the strutures are stable to sausage mode.
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However, kink mode, being a loal mode, does not have to follow suh kind of

riteria and the strutures ould go unstable due to this mode. In fat, in our

three dimensional simulations, where kink mode is also in ation, we observe

that the strutures get destabilized. The unstable behaviour of strutures

raises a question of their relevane in various phenomena as desribed earlier

[55, 56, 77℄. The magnitude of instability growth rate needs to be taken into

onsideration along with the time sales involved in various phenomena to

investigate the relevane of these strutures. A disussion on this has been

provided in the thesis.

5.2 Future Sope

We disuss here the possible future researh problems as an extension of the work

presented in the thesis.

• In Chapter 2, we have employed an external magneti �eld parallel to �ow in

order to understand the role of whistlers on KH instability. In the absene of

this magneti �eld, nonlinear state is a oherent vortex. However, with the

magneti �eld present, suh vortex is not seen in the later nonlinear phase in

simulations. Strength of the magneti �eld applied is typially of the order

of self- onsistent magneti �eld. For weak and very weak magneti �eld

ases, �Disruptive� and �Dissipative� phenomena of vortex, as seen in MHD

studies, ould be investigated.

• In Chapter 4, we have studied the stability of dipole solution obtained for

the ase when ψ = 0 i.e., urrents lie in 2D plane of dipoles. Stability of

dipoles for ψ �nite ase against kink mode an also be arried out.
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• In our studies, the kink mode is shown to exist in the plane ontaining the

diretion of self-onsistent magneti �eld and of shear (see Fig. 1.1). The

magneti �eld pro�le onsidered has a de�nite sign i.e. does not have a

null-line. In the same on�guration (perturbations on�ned in the plane of

magneti �eld and shear), another unstable mode may also be present, but

for a reversed magneti �eld on�guration. This is the well-known tearing

mode whih leads to the reonnetion of �eld lines in the presene of eletron

inertia [33, 7℄. The two instabilities, tearing and kink, an be investigated

simultaneously for an equilibrium magneti �eld.

• A general three dimensional study an then follow by allowing the variations

along the �ow diretion as well, that would inlude the Kelvin Helmholtz

(KH) mode also in the system.

• We have modeled our studies using slab oordinate system. However, the

urrent on�gurations, desribed in various phenomena, are ylindrial in

shape. It is, thus, important to arry out the studies in ylindrial geometry

for more realisti desription.

• There are typial situations e.g., fast ignition, where the sheared �ow on-

�gurations of eletrons moving at relativisti speeds exist. It is, thus, of

importane to understand the role of relativity on the �ow shear driven in-

stability.
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