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SYNOPSIS

In this thesis, we study the 
ollisionless instabilities driven due to the shear

in the equilibrium ele
tron 
urrent. These are the instabilities of sheared ele
tron


urrent 
on�gurations formed in a variety of physi
al situations e.g., fast z-pin
hes

[1, 2℄, fast ignition phenomena of laser fusion [3, 4, 5, 6℄, 
ollision less magneti


re
onne
tions [7, 8, 9, 10, 11℄, plasma opening devi
es [12, 13, 14℄, inter planetary


urrent-
arrying plasmas [15, 16℄ et
. In these 
on�gurations, with equilibrium

length s
ales smaller than the ion skin depth, the 
urrent �ows faster than the

Alfven velo
ity. In these situations, ion response is ignored and a simpli�ed Ele
-

tron Magnetohydrodynami
 (EMHD) model is evoked to study the stability of the


urrent 
on�gurations.

EMHD model is a single �uid des
ription of plasma in whi
h only ele
tron dy-

nami
s is of importan
e and ions provide merely a stati
, neutralizing ba
kground

[17℄. In our studies, the ele
trons have been treated as a 
old, in
ompressible ele
-

tron �uid of uniform density. In the 
old �uid (plasma) des
ription, e�e
ts due

to thermal motion of parti
les are negle
ted. This is valid when the phase velo
-

ities are mu
h larger than the thermal velo
ity of parti
les. In this situation, the


orresponding velo
ity distribution fun
tion may be approximately a Dira
 delta

fun
tion 
entered at the ma
ros
opi
 �uid velo
ity.

Sin
e ions are stationary in EMHD, the ele
tron �ow velo
ity ~v is dire
tly re-

lated to the 
urrent density as,

~J = −ne~v. In our 
ase of uniform density ele
tron

�uid, the shear in the 
urrent is due to the shear in �ow velo
ity. The shear in

the 
urrent 
an also be generated due to the density gradient. However, the den-

sity gradient 
an not relax in a 
old 
ollisionless plasma so there is no free energy

available for the ex
itation of instability [18℄. Further, it has been shown that the
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presen
e of 
urrent gradient due to density gradient alone, is unable to ex
ite the

instability. The free energy asso
iated with the sheared �ow 
on�guration is ne
-

essary for the instability. Thus in our 
ase the shear driven instability is essentially

the velo
ity shear driven Kelvin Helmholtz (KH) instability. The KH instability

is one of the prominent neutral �uid instabilities [19, 20℄ whi
h destabilizes the

interfa
e separating the two �uids in relative motion. The development of insta-

bility leads to turbulen
e, transport of energy and momentum and dissipation and

mixing of �uids. Extensive work has been devoted in literature to the investigation

of 2D and 3D KH instability in the framework of EMHD [21, 22, 23, 24, 25℄.

The EMHD system 
losely resembles an in
ompressible hydrodynami
 �uid

system with additional features asso
iated with the magnetized 
hara
ter of ele
-

tron �uid. The ele
tromagneti
 
hara
ter of EMHD �uid manifests itself in terms

of natural length and time s
ales. Ele
tron skin depth de is the natural length s
ale

whi
h arises on the a

ount of ele
tron inertia. Also, whistlers being the normal

os
illatory modes of EMHD introdu
e the natural time s
ale (whistler periods).

The neutral �uids, however, are devoid of any su
h spe
i�
 length and/or time

s
ales. We investigated the role of these natural s
ales of EMHD on KH instability

in two dimensions. The perturbations are 
on�ned to the 2D plane 
onsisting of

shear and �ow dire
tions in whi
h the major a
tion of KH instability lies. The self


onsistent magneti
 �eld, arising due to 2D sheared �ow of ele
trons, is dire
ted

along the symmetry dire
tion. Role of ele
tron skin depth on the KH instability

has been investigated and thereby a 
omparison between EMHD �uid and neutral

hydrodynami
 �uid has been provided. The EMHD model, for s
ales shorter than

the ele
tron skin depth, redu
es to Navier Stokes (NS) equations in 2D for an

in
ompressible neutral hydrodynami
 limit. For NS �uid 
ase, plot of the growth
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rate of KH instability is a universal 
urve for di�erent values of shear width when

velo
ity is adjusted to a

ommodate for the length res
aling. However, it is ob-

served that the growth rate for EMHD �uid 
ase de
reases as the shear width is

in
reased in 
omparison to the ele
tron skin depth. The instability is prominent

only when the shear s
ale in the ele
tron �ow velo
ity is shorter than the ele
tron

skin depth. Moreover, the instability is of nonlo
al type for �nite shear width, as

outlined in earlier studies also [22, 23℄; a physi
al understanding of this has been

provided in the Thesis.

We next study the role of whistlers on the 2D instability. The ex
itation of

whistlers requires a �nite 
omponent of wave ve
tor along the dire
tion of magneti


�eld. In earlier 2D EMHD studies of KH-like mode [22, 23℄, the equilibrium as well

as the perturbed magneti
 �elds were dire
ted along the symmetry dire
tion along

whi
h no variations were permitted. Hen
e, whistlers were 
learly not supported

in these studies. Whistler modes were supported in later 3D studies [24, 25℄.

In those studies, however, the propagation dire
tion of whistlers was orthogonal

to the 2D plane in whi
h KH a
tion primarily o

urs. To understand the role

of whistlers on the instability, we introdu
e a uniform external magneti
 �eld

along the �ow dire
tion (in the plane of KH). In earlier studies, a single equation

des
ribing the evolution of magneti
 �eld 
omponent along the symmetry dire
tion

was su�
ient. However, we need to solve a set of 
oupled equations when whistlers

are permitted in the system. This is essentially due to the fa
t that whistlers


ouple the in-plane magneti
 �eld perturbations to the magneti
 perturbations

along the symmetry dire
tion. The a
tion of KH distorts the magneti
 �eld to a

sheared 
on�guration. The tension 
aused due to the distortion tries to restore

the magneti
 �eld 
on�guration and sets up os
illations at whistler frequen
y. The
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pro
ess of ex
itation of whistlers 
osts the energy and makes the KH instability

less favourable. The linear analysis shows that the growth rate redu
es as the

magneti
 �eld strength is in
reased.

Nonlinear simulations have been 
arried out to understand the role of whistlers

in the nonlinear regime of instability. For this purpose we use a nonlinear �uid


ode whi
h uses �ux 
orre
ted transport algorithm. The 
ode solves 2D EMHD

equations for tangent hyperboli
 pro�le of equilibrium velo
ity. In the nonlinear

regime of instability, in the absen
e of B0, a 
oherent vortex o

upying the box

size is formed [23℄. This is be
ause of two non-dissipative square invariants namely,

energy and enstrophy, supported by two dimensional EMHD model. However, In

the presen
e of B0, the nonlinear state is signi�
antly 
hanged from the ordered

state of B0 = 0 
ase. The long s
ale stru
tures are formed only along the dire
tion

of B0 and there is hardly any extension in stru
tures along the transverse dire
tion.

This indu
es anisotropy in the system. The observed anisotropy is a 
hara
teristi
s

of the nonlinear 
as
ade mediated by whistlers [26, 27℄. The nonlinear intera
tion

of whistlers produ
es diminishing wave number parallel to B0. The perpendi
u-

lar wave numbers, on the other hand, in
rease as the result of these intera
tions.

We provide a quantitative estimate of anisotropy in the Fourier spe
trum of two

�elds. Due to the anisotropi
 
as
ade, the KH instability indu
ed mixing of the

�uids, �owing in two dire
tions, around the shear layer is less. Consequently, the

�attening of shear layer is observed to be weaker. These studies on shear driven

instabilities in EMHD along with whistlers would be of relevan
e in a number of

physi
s situations. This kind of 
on�guration is quite likely in laboratory exper-

iments [28, 29℄ where the plasma is 
on�ned with the help of an axial magneti


�eld. Also the presen
e of ele
tron beams in plasmas threaded by a magneti
 �eld
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is ubiquitous in nature. For instan
e, in ionosphere and magnetosphere [30℄, solar


orona [31℄ and pulsars [32℄, et
., the equilibrium 
on�guration 
onsidered in our

work might exist.

We extend our studies to more realisti
 3D instability. In the three dimensional

regime of instability, when the variations along the dire
tion of self-
onsistent

equilibrium magneti
 �eld are also allowed, a new mode exists in addition to KH

mode. This is a lo
al mode, termed as the kink mode, whi
h lies in the plane of

magneti
 �eld and shear [24, 33℄. The mode requires �nite ele
tron inertia and

is driven by the gradient in the equilibrium velo
ity, unlike the KH mode whi
h

is driven by the 
urvature in equilibrium velo
ity. Sin
e in EMHD, the shear in

velo
ity is analogous to 
urrent-gradient, the KH mode has also been identi�ed

as 
urrent-gradient driven sausage mode. The interplay of two modes has been

studied under various physi
al 
onditions.

The shear width ǫ is varied in 
omparison with the ele
tron skin depth de. It

has been observed that sausage mode is dominant for sharper shear width while,

for broader shear width, kink is the dominant mode. This is 
onsistent with the

fa
t that the 2D instability is prominent only when the shear width is sharper than

the ele
tron skin depth. Stabilizing behaviour of uniform magneti
 �eld along the

�ow dire
tion (denoted as B00 here) has been investigated for 3D instability. Lo
al

analysis shows that it has no role on pure kink mode. However, it redu
es the

growth rate of mixed mode. The �eld redu
es the pure sausage growth rate and

hen
e dominant mode is kink in this 
ase. Self 
onsistent magneti
 �eld was known

to have no e�e
t on 2D instability when the variations were suppressed along its

dire
tion. However, this magneti
 �eld has stabilizing role on kink instability as

shown by lo
al dispersion relation obtained in earlier studies [24℄. An external
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uniform magneti
 �eld C0 along the dire
tion of self 
onsistent �eld would simply

add to it. This would make the ex
itation of kink instability di�
ult with no role

on pure sausage instability. This we indeed observe in our studies. The dominant

mode for this 
ase is pure sausage mode. We also 
arry out the simulations of the

three dimensional instability with the help of a nonlinear �uid 
ode. The linear

growth rates of instabilities 
al
ulated in various simulations with di�erent values

of ǫ, B00 and C0 are in agreement with linear theory.

The nonlinear state of instability is strongly turbulent in the 3D simulations,

unlike the two dimensional 
ase. The generation of turbulen
e is attributed to

larger number of unstable modes in 3D and also non-existen
e of non-dissipative

integral invariants of 2D. The generation of ele
tromagneti
 turbulen
e due to the

a
tion of shear driven instabilities has been shown to have important impli
ations.

This leads to the anomalous stopping of energeti
 ele
trons moving towards 
ore in

Fast Ignition, whi
h are known to eventually 
reate the ignition spot by dumping

their energy to the 
ore [25℄. Also, in 
ollisionless magneti
 re
onne
tions [21℄,

the generation of turbulen
e may alter the me
hanism by whi
h the frozen in

�eld 
ondition breaks in the dissipative regime. The re
onne
tions may also be

fa
ilitated by the anomalous vis
osity and anomalous resistivity asso
iated to the

turbulen
e generation.

We have analyzed the spe
tral 
as
ade features of the turbulen
e generated in

the nonlinear state with and without B00. In the absen
e of B00, it is observed that

the spe
tral 
as
ade towards shorter s
ales is inhibited along the dire
tion of �ow

as well as the dire
tion of self-
onsistent magneti
 �eld. The shortest s
ales are

thus found to generate along the shear dire
tion while, in other two dire
tions the

s
ales are typi
ally longer. This indu
es signi�
ant anisotropy in the spe
trum. In
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simulations with the external magneti
 �eld (B00) present along the �ow dire
tion,

we observe that the s
ales along the shear dire
tions are more or less un
hanged.

However, along the other two dire
tions, the s
ales are longer in 
omparison to the


ase when this magneti
 �eld is not present. These results are in 
onformity with

the whistler mediated spe
tral 
as
ade features [26, 27℄. We have also measured

the nonlinear broadening of shear layer whi
h provides the information on the

e�e
tive vis
ous 
oe�
ient. The broadening of shear layer o

urs mu
h slowly for

the 
ase when magneti
 �eld is present along the �ow dire
tions. In that 
ase, the

system evolution is governed by the kink mode whi
h in the linear phase does not

alter the 2D �ow stru
ture. The broadening o

urs only at later nonlinear phase

when the energy starts to tri
kle in other modes as well. We stress here that the

studies on interplay of two modes under various physi
al 
onditions is important

as it would largely a�e
t the evolution of system, as dis
ussed here.

The EMHD set of equations permits 
ertain exa
t, nonlinear ele
tron �ow

solutions obtained by Isi
henko and Marna
hev as the isolated, 
oherent stru
tures

[34℄. The �rst variety of solutions are the rotating ele
tron 
urrents giving rise to

monopolar magneti
 �elds. These monopolar solutions are radially symmetri
 and

stationary solutions. The other variety in
ludes the ele
tron 
urrents produ
ing

bipolar magneti
 �elds. These dipolar solutions are radially non-symmetri
 and

propagate with 
onstant speed in their axial dire
tion. 2D evolution of monopoles

and dipoles has been studied extensively by several authors whi
h suggests that

these stru
tures are very robust and stable [35, 36℄. The stru
tures, spe
ially

dipoles, are known to have important appli
ations. Re
ently, the dipole stru
tures

have been employed to simulate the behaviour of ele
tron 
urrent pulses through

an inhomogeneous plasma medium [37, 38℄. In an another study, Sharad et al.
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[38℄ showed a novel me
hanism, the formation of 
urrent sho
k, through whi
h the

dipoles dissipate their energy and dis
ussed the impli
ations of their study to the

fast ignition [3, 4, 5, 6℄. The similar 
urrent pulses 
an be found to get formed in

other phenomena su
h as fast magneti
 re
onne
tions [7, 8, 9, 10, 11℄, fast magneti


�eld transport [39, 40℄, laser plasma intera
tions [41℄, et
.

We have investigated the instability pro
esses, sausage and kink, for the Isi
henko

solutions of EMHD equations. These solutions have regions where ele
tron �ow

velo
ity/
urrent is signi�
antly sheared and hen
e 
an be sus
eptible to the said

instabilities. As mentioned above, in their 2D evolution, the stru
tures are very

robust and stable [35, 36℄. These studies do not support the kink mode, and

the stru
tures are stable to the sausage mode. The stability of stru
tures against

sausage mode has been argued on the following basis. For the EMHD stru
tures,

shear width as well as total extent of shear �ow are typi
ally of the order of ele
-

tron skin depth. The total extent of shear �ow limited in size does not permit the

wave number to satisfy the instability 
riteria of sausage mode viz., kzǫ < 1; here,

`kz' is the wavenumber along the �ow dire
tion and `ǫ' is the typi
al shear width

[42℄. Hen
e the stru
tures are found to be stable in 2D studies. The kink mode,

however, does not have to follow su
h restri
tion. It is thus of importan
e to know

if the stru
tures are stable to this mode. To address this question, we performed a

three dimensional simulation study in whi
h kink mode is also operative in addi-

tion to sausage mode. In simulations, the stru
tures are seen to be
ome unstable.

The destabilization of stru
tures has been attributed to the presen
e of lo
al kink

mode. The unstable behaviour of stru
tures raises a question of their relevan
e in

various phenomena as des
ribed in earlier studies [36, 38℄. The magnitude of insta-

bility growth rate needs to be 4taken into 
onsideration along with the time s
ales
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involved in the various phenomena to investigate the relevan
e of these stru
tures.

A dis
ussion on this issue has been provided in the thesis.

The thesis has been organized as follows. Chapter 1 presents the introdu
tion

of the Thesis. In Chapter 2, we dis
uss the role of natural length and time s
ales

on shear driven 2D EMHD instability. Linear and nonlinear studies of shear driven

3D EMHD instability have been dis
ussed in Chapter 3. In Chapter 4, stability

of Isi
henko solutions has been investigated against various shear driven modes.

Finally, in Chapter 5, summary and 
on
lusions of the Thesis have been outlined.
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Chapter 1

Introdu
tion

The present thesis is devoted to the study of the 
urrent shear driven instabilities in

plasmas in the 
ontext of Ele
tron Magnetohydrodynami
s (EMHD). This Chapter

provides the obje
tive and motivation for the studies 
ompiled in the thesis. The

EMHD model, a review of earlier work and plan of the thesis are also presented in

this Chapter.

1.1 Obje
tive and Motivation

Stability of sheared ele
tron 
urrent 
on�gurations is a long standing topi
 in

theoreti
al plasma physi
s. The typi
al sheared 
on�gurations of ele
tron 
urrent

are found to o

ur in many physi
al situations like, fast z-pin
hes [1, 2℄, fast ignition

phenomena of laser fusion [3, 4, 5, 6℄, 
ollisionless magneti
 re
onne
tions [7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20℄, plasma opening devi
es [21, 22, 23℄,

inter planetary 
urrent-
arrying plasmas [24, 25℄ et
. These 
urrent 
on�gurations

having equilibrium length s
ale smaller than the ion skin depth are amenable

to various instabilities. These instabilities lead to the evolution of the 
urrent
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on�gurations, sometimes to the point of 
omplete destru
tion.

The equilibrium sheared ele
tron 
urrent 
on�gurations are the 
hara
teristi
s

of low density plasmas in whi
h the 
urrent �ows faster than the Alfven velo
ity,

where the Magnetohydrodynami
 (MHD) model [26, 27, 28℄ is not appli
able.

In this s
enario, we 
an ignore the ion dynami
s and use a simpli�ed Ele
tron

Magnetohydrodynami
 (EMHD) model of plasmas in whi
h the overall dynami
s

is governed by the motion of ele
tron spe
ies only [29, 30, 31℄. We shall provide

des
ription of EMHD model in the next se
tion of this Chapter. The instabilities

of 
urrent 
on�gurations 
onsidered here, are inertial s
ale instabilities driven by

the gradient in equilibrium 
urrent in dissipation less, homogeneous plasma density

regime. In EMHD, these 
urrent- gradient driven instabilities have been previously


onsidered by Califano et al. [32℄, where they have been broadly 
ategorized as

tearing and bending instabilities. The �rst type of instability is the 
ollisionless

tearing instability [7, 33℄ of thin 
urrent-sheets whi
h leads to the re
onne
tion of

magneti
 �eld lines due to the e�e
t of ele
tron inertia. While, the se
ond type of

instability bends the �ow lines and leads to the vortex stru
tures. The mode has

also been identi�ed as the sausage mode [34℄. Classi�
ation of these instabilities


an be understood from Fig. 1.1.

Apart from these instabilities, a non-tearing, inertial s
ale instability is known

whi
h also falls in the 
ategory of 
urrent-gradient driven instabilities [35℄. This

mode is driven by perturbations similar to tearing mode[Fig. 1.1℄, but unlike the

tearing mode it is a lo
al mode and does not require reversed equilibrium magneti


�eld 
on�guration. We depi
t this mode as kink mode. In our studies here, we

fo
us only on the bending instability and the kink mode instability.

We note here that in EMHD, the ele
tron �ow velo
ity and the 
urrent velo
ity
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Figure 1.1: The s
hemati
 des
ribes tearing and bending modes depending upon

the orientation of perturbations relative to one dimensional equilibrium magneti


�eld B0(x)ŷ. This magneti
 �eld is 
reated by an equilibrium ele
tron �ow v0(x)ẑ
sheared along x dire
tion. Perturbations lying in the verti
al plane, 
ontaining

magneti
 �eld with a null-line, give rise to tearing instability. When the angle

of perturbations is 
hanged to lie in the horizontal plane of shear and �ow, the

instability 
hanges from tearing type to bending type. Both the instabilities are

driven by velo
ity shear or equivalently, 
urrent shear in system where ele
tron

dynami
al response is only of relevan
e.

are same as the ions merely provide a stationary neutralizing ba
kground. In


onventional MHD, the two are di�erent. In view of this fa
t, the 
urrent gradient

driven bending instability is similar to the velo
ity shear driven Kelvin Helmholtz

(KH) instability of the ele
tron �uid and vi
e versa. The KH instability destabilizes

the interfa
e of two �uids in relative motion. The development of instability may

lead to turbulen
e, transport of energy and momentum and dissipation and mixing

of �uids. The instability has been thoroughly dis
ussed in literature for ordinary
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hydrodynami
 (HD) �uid [36, 37, 38℄ and MHD �uid [37, 39, 40, 41, 42℄. The

studies on KH instability in the 
ontext of EMHD have been presented by several

resear
hers [34, 43, 44, 45, 46, 47, 48℄. Many important features of the instability

have been reported in these studies. In this thesis, we explore the instability further

under 
ertain additional 
onsiderations, whi
h we shall dis
uss, in the later part

of the thesis, after providing su�
ient ba
kground.

1.2 Ele
tron Magnetohydrodynami
 (EMHD)Model

We provide here a dis
ussion on the EMHD model whi
h has been employed for

our studies. First, we dis
uss the model in brief and its appli
ability to various

phenomena of plasma physi
s. And then we dis
uss some of its aspe
ts, relevant

to the studies 
arried out in the thesis.

1.2.1 Brief Des
ription of Model and Its Appli
ability

The EMHD model is a single �uid des
ription of plasmas whi
h 
onsiders ele
trons

as the only spe
ies in motion and magnetized [29, 30℄. In EMHD model, an in-


ompressible ele
tron �uid in 
onsidered to be �owing against stati
, neutralizing

ba
kground of ions. The time s
ales are so fast that the inertial and magnetized

response of ions are ignored and the overall dynami
s is governed by the motion of

ele
trons only. Thus, the model is valid only when the 
hara
teristi
 frequen
ies

are large 
ompared to the ion plasma frequen
y and gyro frequen
y, and are small


ompared to the ele
tron plasma and gyro frequen
ies. The frequen
y range reads

as follows:

ωpi, ωci << ω << ωpe, ωce

26



Chapter 1: Introdu
tion

Here, ωpj = (4πne2/mj) are ion plasma frequen
y and ele
tron plasma frequen
y

for j = i, e; respe
tively. Similarly, ωcj(= eB/mjc) are the gyro frequen
ies for ion

and ele
tron; mj are the mass for two spe
ies, c in the speed of light, n and B are

the typi
al values of plasma density and magneti
 �eld respe
tively. Sin
e the ion

dynami
s is 
ompletely ignored, one needs to deal with ele
tron �uid equations

only along with the Maxwell's equations to derive the EMHD equations. In our

studies, ele
trons have been treated as a 
old, in
ompressible ele
tron �uid of

uniform density. In the 
old �uid (plasma) des
ription, e�e
ts due to thermal

motion of parti
les are negle
ted. This is valid when the phase velo
ities are mu
h

larger than the thermal velo
ities of parti
les. In this situation, the 
orresponding

velo
ity distribution fun
tion may be approximately a Dira
 delta fun
tion 
entered

at the ma
ros
opi
 �uid velo
ity.

In EMHD, displa
ement 
urrent term is also ignored under the assumption

ω << ωpe, ω
2
pe/ωce whi
h in turn gives an upper limit on 
hara
teristi
 frequen
ies.

Under this assumption, the density perturbations in ele
tron �uid 
an be dis
arded.

The modi�ed inequality 
an then be framed as,

ωpi, ωci << ω << min(ωpe, ω
2

pe/ωce)

In terms of spatial s
ales, the EMHD model is appli
able to the s
ales whi
h are

shorter than the ion inertial s
ales and also the gyro-radius of ions. The spatial

s
ales may fall below the ele
tron inertial s
ale (skin depth) but remain larger than

the Debye radius λD. Also, EMHD being a �uid des
ription, the kineti
 s
ales

(parti
le orbit size of larmor radius) determine the lower bound of the length s
ale

below whi
h the model is again not appli
able.

Sin
e ions are stationary, the ele
tron �ow velo
ity ~v is dire
tly related to
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urrent as,

~J = −ne~v. In view of this de�nition and the assumptions dis
ussed

so far, the 
oupled �uid-Maxwell's equations lead to EMHD equations after some

algebrai
 manipulations. The EMHD model for 
ollisionless, homogeneous plasma

is 
ast in terms of dimensionless equations, as follows

1

,

∂

∂t
(∇2 ~B − ~B) = ~∇× [~v × (∇2 ~B − ~B)] (1.1)

~v = −~∇× ~B (1.2)

Here, length has been normalized by ele
tron skin depth de(= c/ωpe), magneti


�eld with some arbitrary value B00, time with inverse of gyro frequen
y ωce(=

eB00/mc), and velo
ity �eld with ele
tron Alfven speed ωcede. All the symbols

retain their meanings des
ribed as earlier. The �rst equation is the evolution of

the generalized vorti
ity Ω(= ∇2 ~B − ~B) whi
h implies that generalized vorti
ity

is tied to the �uid �ow, unlike the MHD, where it is magneti
 �eld whi
h is tied

to the �ow of �uid (plasma). The se
ond equation is Ampere's relation, ignoring

the displa
ement 
urrent, whi
h relates the �ow velo
ity to the magneti
 �eld. In


ontrast to this, in MHD, �ow velo
ity is related to magneti
 �eld by an evolution

equation.

The pres
ribed length and time s
ale windows of EMHD make the model appli-


able to physi
al systems 
omprising the fast time and short length s
ales like, as-

trophysi
al plasmas, earth's magnetosphere, and laboratory plasmas. The EMHD

model has added mu
h to the basi
 understanding of the phenomena of 
ollisionless

magneti
 re
onne
tion [8, 9, 7, 10, 11, 12, 13, 14℄, generation of large s
ale magneti


�eld, and rapid dissipation of magneti
 �eld energy in the 
ontext of astrophysi
al

1

The thesis does not 
ontain the mathemati
al derivation of EMHD model. For 
omplete

derivation of three dimensional EMHD equations and their redu
tion in two dimensions, reader

may look into Refs. [48℄ and [56℄.
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plasmas [49, 50℄. The des
ription of earth's plasma sheet and magneto tail region

are other areas where the EMHD model has been applied [24, 25℄. The model is

further exploited to explain the anomalous stopping of energeti
 ele
trons in the

fast ignition inertial 
on�nement fusion s
heme [47℄.

1.2.2 Natural S
ales in EMHD

EMHD systems, unlike the ordinary hydrodynami
 �uid systems, 
ontain intrinsi


length and time s
ales asso
iated to the magnetized 
hara
ter of ele
tron �uid. We

dis
uss them as below.

Natural length s
ale: The EMHD systems 
ontain the ele
tron skin depth as the

intrinsi
 length s
ale. This is de�ned as de = c/ωpe, where, c is the speed of light

and ωpe is the frequen
y of ele
tron os
illations. The value of skin depth is �nite

if the mass of ele
tron is �nite. In the inertia less ele
tron limit, the value of

de → 0 and in the 
ase of neutral �uid de → ∞. Owing to the presen
e of this

intrinsi
 length s
ale, EMHD equations identify distin
t spatial s
ale length regime

viz. kde >> 1 (hydrodynami
 limit) and kde << 1 (magnetized �uid limit). In

the �rst limit, the inertial terms dominate the ele
tromagneti
 for
e terms in the

ele
tron momentum equation and the system behaves hydrodynami
ally. In the

other limit, the ele
tromagneti
 for
e terms dominate the inertial terms and the

ele
tromagneti
 
hara
ter of the ele
tron �uid be
omes important.

Natural time s
ale: In the presen
e of magneti
 �eld, EMHD equations permit

whistler waves as the normal ex
itation mode. This wave requires a �nite 
ompo-

nent of the wave ve
tor along the magneti
 �eld. Whistler is a transverse 
ir
u-

larly polarized ele
tromagneti
 wave. These waves are analogous to Alfven waves

in MHD, but unlike the Alfven waves, are dispersive in nature. The natural time
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s
ale in EMHD is asso
iated to the time period of Whistler waves.

These natural s
ales have many interesting roles to play on various EMHD

phenomena, some of those we dis
uss in this thesis. Role of these natural s
ales

on velo
ity shear driven Kelvin Helmholtz (KH) instability has been studied as a

major part of thesis work.

1.2.3 Nonlinear Solutions of EMHD

The EMHD system of equations 
losely resembles the ordinary HD �uid and

hen
e is sus
eptible to the 
hara
teristi
 instabilities of ordinary HD, e.g., Kelvin-

Helmholtz instability, Rayleigh-Taylor instability et
. The nonlinear features of

ordinary HD �uids like, turbulen
e generation and 
oherent pattern formation are

also displayed by EMHD systems. In a 2D system the 
onservation of energy and

enstrophy leads to the pro
ess of inverse 
as
ade by virtue of whi
h 
oherent pat-

terns are formed. The 
oherent stru
tures have major role to play in determining

the transport properties of a system. They are also believed to 
ause the intermit-

ten
y in turbulen
e phenomena.

Coherent, nonlinear solutions of EMHD: In EMHD, the 
oherent stru
tures man-

ifest themselves in the form of magneti
 islands, 
urrent sheets, vorti
es et
., and

are found to be ex
ited in various pro
esses e.g., magneti
 re
onne
tions, Weibel

instability, in laser plasma intera
tion studies, in tokamak plasmas during ele
tron


y
lotron resonant heating (ECRH) and laboratory experiments. Coherent stru
-

tures 
an be best understood by �nding the exa
t solutions of nonlinear equations.

These solutions were obtained by Isi
henko et al. [51℄ as lo
alized vorti
es for

2D EMHD system. The vorti
es are stationary monopoles and traveling dipoles.

Isi
henko et al. obtained the analyti
al 
onditions for these solutions and also
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studied their stability. The solutions being very robust and stable have important

appli
ations spe
ially, the dipole solutions. The solutions 
ontain the regions in

whi
h the ele
tron 
urrent is signi�
antly sheared. It is, therefore, of importan
e

to know if these stru
tures are sus
eptible to shear driven instability pro
esses.

We address this question in the thesis.

1.3 A Review of Earlier Work on Shear Driven In-

stabilities in EMHD Domain

The studies on shear driven instabilities in EMHD regime have a very ri
h litera-

ture. We present, in this se
tion, some of the prominent work in this area relevant

to the work 
arried out in the thesis.

Drake et al. [43, 44℄ have studied the stability of the 
urrent layers narrower

than the ion skin depth. A dispersion relation was derived, whi
h shows that the


ross �eld gradient in 
urrent is required to drive the instability. It was also shown

that for ǫ ≤ de, the KH instability is dominant over kink instability while for

ǫ > de, KH mode is stable and dominant instability is the kink instability. Here, ǫ

is the shear width of 
urrent layer and de is the 
ollisionless ele
tron skin depth. In

the 3D ele
tromagneti
 �uid simulations, the 
urrent layer breaks and evolves to a

strongly turbulent nonlinear phase. Bulanov et al. have shown the KH instability

of ele
tron �uid vorti
es in their PIC simulation studies [52℄. They have shown

the existen
e of magneti
 vorti
es in the ele
tron �uid generated in the wake of an

ultrashort, ultraintense laser pulse intera
ting with an underdense plasma. These

vorti
es are unstable to the ele
tron KH instability if the separation between two

neighboring vorti
es is smaller than the ele
tron skin depth. When the distan
e
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between the vorti
es is larger than the ele
tron skin depth, the instability be
omes

exponentially slow. The studies by Drake et al. and Bulanov et al., however,

are in
omplete. Drake et al. have derived just an approximate lo
al dispersion

relation whi
h highlights very limited features of the kink instability. Moreover, in

nonlinear �uid simulations, only the widening of shear layer has been reported and

no dis
ussion has been provided on issues like, saturation me
hanism of instability,

modi�
ation of mean �ow pro�le, 
hara
terization of turbulen
e et
. In the work

of Bulanov et al, the form of initial shear �ow stru
ture is not spe
i�
. Also, the

saturation me
hanism of sausage instability were dis
ussed very qualitatively. We

fo
us on some of these issues in our studies.

Das et al. [34℄ have 
arried out a systemati
 and detailed analyti
al study on

sausage-like instability of ele
tron 
urrent 
hannels. In the lo
al analysis of EMHD

equations the 
on�guration was found to be stable for sausage-like perturbations.

In the nonlo
al analysis, they have derived the dispersion relation for two 
hoi
es

of sheared �ow pro�le: a step-fun
tion pro�le (zero shear width) and a pie
e-wise

linear pro�le (�nite shear width). In the short wavelength limit, the instability

is essentially the KH instability of hydrodynami
 �uid. However, in the long

wavelength limit, the instability has growth rate substantially di�erent from hydro

�uids due to the magnetized 
hara
ter of ele
tron �uid. The underlying physi
al

me
hanism for instability and hen
e the di�eren
es in two 
ases of MHD and

EMHD was also dis
ussed. Later, Jain et al. [45, 46, 47℄ 
arried out extensive

numeri
al work on the sausage and kink instabilities in EMHD. Their studies 
an

be summarized as follows. The development of sausage like stru
tures is seen in

2D �uid simulations with growth rate agreeing with linear theory. The nonlinear

state is found to be 
oherent due to the presen
e of two non-dissipative square
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invariants namely, enstrophy and energy. The unstable modes 
ause the �attening

of equilibrium shear pro�le and hen
e the dire
ted ele
tron �ow is redu
ed whi
h

is related to the loss of ele
tron kineti
 energy. However, the redu
tion is not very

e�
ient be
ause the instability saturates easily. The saturation of instability 
an

o

ur either by getting rid of 
urvature in equilibrium �ow pro�le or by violating the

instability 
riteria kzǫeff < 1. Here, kz is the wave ve
tor along the �ow and ǫeff is

the in
reased e�e
tive shear width due to the ba
k rea
tion of instability. The full

three dimensional analysis shows that the instability 
riteria is mu
h more relaxed.

Unlike the 2D 
ase, the lo
al modes are also unstable and the instability is driven

by the gradient rather than the 
urvature in equilibrium �ow pro�le. Owing to

the in
reased number of unstable modes and absen
e of two non-dissipative square

invariants, the nonlinear evolution of instability leads to the turbulent state in

3D �uid simulations. The generation of turbulen
e leads to mu
h more e�
ient

redu
tion in dire
ted �ow of ele
trons. The relevan
e of these studies was shown

in anomalous stopping of inward energeti
 ele
trons in fast ignition. The studies

by Das et al. and Jain et al. are extensive and 
over many important linear and

nonlinear features of the shear driven instability. In our thesis, we further explore

the instability in 2D and 3D under 
ertain additional 
onsiderations. We shall

dis
uss this in detail in the next se
tion.

Califano et al. [32℄ have studied the linear dispersion equations and eigen stru
-

tures of high frequen
y tearing-bending instabilities. These instabilities are driven

by the ele
tron 
urrent gradient in an inhomogeneous magneti
 �eld of the tangent

hyperboli
 type. As the angle between the dire
tion of propagation of perturba-

tions and the inhomogeneous magneti
 �eld lines is varied, perturbations 
hange

from tearing type (parallel propagation) to bending type (perpendi
ular propaga-
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tion). The tearing instability a
ts a
ross the magneti
 null line and and forms

the 
hain of magneti
 islands. However, the bending instability is similar to KH

instability whi
h bends the �ow lines. At oblique propagation the tearing bran
h

develops asymmetri
 magneti
 island and 
omplex velo
ity patterns with 
hannel-

like stru
ture. A similar 
hannel-like stru
ture is seen in the bending instability

at oblique propagation. The tearing instability appears to be dominant in equi-

librium 
on�guration with spatial s
ale-lengths longer than the skin depth. For

shorter equilibrium s
ale-length, the tearing and bending bran
hes have 
ompara-

ble growth rates. Lukin [35℄ has des
ribed a non-tearing inertial s
ale instability

whi
h does not fall in the 
ategory of the tearing-bending instabilities. But, the

energy sour
e of this instability also is the ba
kground 
urrent density gradient. It

is a lo
al mode with perturbations similar to tearing mode i.e., k ‖ B0 ⊥ J0, and

requires no ba
kground magneti
 �eld reversal unlike the tearing mode. Here, k is

the wave ve
tor of perturbations, B0 is the equilibrium magneti
 �eld and J0 is the

equilibrium 
urrent. An approximate analyti
al derivation of dispersion relation

for the instability was obtained. Further, from quasilinear numeri
al 
al
ulations,

the magnitude of the highest growth rate was shown to be independent of ele
tron

skin depth de and wave number k and to depend solely on the parti
ular pro�le of

B0(x), as long as d2eB
′′

0 /B0 >> 1. The o

urren
e of these modes has been shown

in magneti
 re
onne
tion phenomena via simulations where the instability mani-

fests itself as lo
alized stru
tures at the out�ow side of magneti
 separatrix. The

tearing-bending modes and the non-tearing kink mode were also des
ribed earlier

in se
tion 1.1. The geometries 
an be understood from Fig. 1.1.

In EMHD, the ele
tron �ow shear driven instability has been identi�ed as both

the velo
ity shear driven KH instability and 
urrent- gradient driven sausage and

34



Chapter 1: Introdu
tion

kink modes. This is be
ause the ele
tron �ow velo
ity is related to the 
urrent

as,

~J = −ne~v. The gradient in 
urrent 
an be generated due to velo
ity shear or

density gradient. However, Sita et al. [53℄ have shown that the free energy sour
e

for the �ow shear driven KH like instability is the kineti
 energy of the ele
tron

�ow. The density gradient 
an not relax in a 
old, 
ollisionless plasma so there

is no free energy available to ex
ite the instability. Thus, the presen
e of 
urrent

gradient due to density gradient alone is unable to ex
ite the instability. We note

here that in our studies, in homogeneous plasma (ele
tron �uid) density limit, the


urrent gradient driven bending instability is essentially the velo
ity shear driven

KH instability.

Sharad et al. [54℄ have studied the KH destabilization of 
urrent pulses of

�nite extent formed at the density inhomogeneity layer. The instability leads to

the 
oherent nonlinear state 
onsisting of the 
ir
ular vorti
es aligned along the


ontours of density pro�le. The vorti
es of alternating sign are arranged one after

the other like beads in a wire. The 
urrent pulses 
onsidered in these studies

are traveling dipole solution of EMHD obtained by Isi
henko et al. [51℄. These

solutions are stable against sausage mode and propagate robustly in a homogeneous

plasma medium [55, 56℄. An understanding of stability of these 
urrent pulses to

kink instability so far, is la
king.

1.4 S
ope of the Thesis

The work presented in thesis fo
uses on the study of KH instability using EMHD

model. As dis
ussed already, unlike the hydrodynami
 �uid model, the EMHD

model 
ontains natural length and time s
ales viz., ele
tron skin depth and whistler

time period respe
tively. Owing to the existen
e of natural s
ales, ele
tron KH
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may su�er major modi�
ations from the KH instability in neutral �uid. In this

thesis, we investigate the role of natural s
ales of EMHD on KH instability. Earlier

studies, as reviewed in the last se
tion, do not highlight this feature of instability.

In earlier 2D studies, the equilibrium as well as perturbed magneti
 �elds were

dire
ted along the symmetry dire
tion. Hen
e, whistlers were 
learly not sup-

ported. Whistler modes were supported in 3D studies. In those studies, however,

the propagation dire
tion of whistlers was orthogonal to the 2D plane in whi
h KH

a
tion primarily takes pla
e. To study the role of whistlers, we introdu
e a uni-

form external magneti
 �eld along the �ow dire
tion (in the plane of KH). These

studies would have relevan
e in ionosphere and magnetosphere, solar 
orona and

pulsars [57, 58, 59℄ et
., where the 
ounter streaming ele
tron beams immersed

in a magneti
 �eld may exist. This kind of 
on�guration is also quite likely in

laboratory experiments [60, 61℄ where the plasma is 
on�ned with the help of an

axial magneti
 �eld.

In MHD, a uniform magneti
 �eld parallel to �ow is known to stabilize the �uid

interfa
e against the KH instability and it is as
ribed to the tension generated to

bend the magneti
 �eld [37, 41, 62℄. The redu
tion in growth rate is a fun
tion

of �eld strength. The instability is fully suppressed if the Alfven velo
ity ex
eeds

the total velo
ity jump a
ross the shear layer. Whistlers are the normal os
illatory

mode of EMHD akin to Alfven modes in MHD. One expe
ts that os
illations set up

at whistler time s
ale would give similar e�e
ts on instability as Alfven modes do

in MHD. The presen
e of magneti
 �eld also largely a�e
ts the nonlinear evolution

of instability in MHD [42, 63, 64, 65, 66, 67, 68℄. Even a weak magneti
 �eld

potentially 
hanges the nonlinear state. The magneti
 �eld 
aught in vorti
es

formed due to KH instability gets ampli�ed and then relaxes through the pro
ess
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of magneti
 re
onne
tions [66, 67℄. Magneti
 re
onne
tion leads to the disruption

of �ow vortex. On
e the vortex is destroyed, the �ow relaxes into a broadened,

laminar and marginally stable shear layer. In even weaker (very weak) �eld 
ase

the magneti
 re
onne
tion leads primarily to the expulsion of �eld line from inside

the vortex and to enhan
e the dissipation of kineti
 energy. This is well known

�ux expulsion phenomena [69℄. We also try to understand the nonlinear phase of

EMHD instability in the presen
e of in-plane magneti
 �eld.

Earlier studies on EMHD KH instability show that in 3D regime kink mode is

also present in addition to the KH mode [46℄. The kink mode lies in the plane of

magneti
 �eld and shear and unlike the KH mode it is a lo
al mode. We investigate

the interplay of the two modes, KH and kink, with and without external magneti


�eld in a 
onsiderable detail. In 3D, the evolution of shear driven instabilities

leads to the self 
onsistent generation of turbulen
e in the nonlinear state [43, 47℄.

The generation of ele
tromagneti
 turbulen
e due to the a
tion of shear driven

instabilities has been shown to have important impli
ations. This leads to the

anomalous stopping of energeti
 ele
trons moving towards 
ore in Fast Ignition,

whi
h are known to eventually 
reate the ignition spot by dumping their energy to

the 
ore [47℄. Also, in 
ollisionless magneti
 re
onne
tions [43℄, the generation of

turbulen
e may alter the me
hanism by whi
h the frozen in �eld 
ondition breaks in

the dissipative regime. The re
onne
tions may also be fa
ilitated by the anomalous

vis
osity and anomalous resistivity asso
iated to the turbulen
e generation. In our

thesis, we analyze the spe
tral 
as
ade features of the turbulen
e generated in

three dimensional simulations, with and without an external magneti
 �eld along

the �ow dire
tion. The nonlinear 
as
ade develops the anisotropy mediated by

the normal os
illatory modes; Alfven in MHD [70, 71℄ and whistlers in EMHD
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[72, 73℄. In view of this, nonlinear 
as
ade is expe
ted to show the anisotropy in

the presen
e of whistlers; whi
h we have quanti�ed.

We also address in this thesis, the question of stability of 
oherent nonlinear so-

lutions of the EMHD equations from the perspe
tive of the aforementioned modes,

KH and kink. Isi
henko et al. [51℄ obtained exa
t, nonlinear solutions of two

dimensional EMHD equations in the form of lo
alized rotating ele
tron 
urrents,

giving rise to monopolar and dipolar magneti
 �eld. These solutions have regions

where ele
tron �ow velo
ity/
urrent is signi�
antly sheared and hen
e 
an be sus-


eptible to the �ow shear driven instabilities. These solutions were shown to be

very robust and stable against the sausage instability, in the earlier 2D studies

[55, 56, 54℄. In these studies, the kink mode was not supported, and hen
e the

stability of the solutions against this mode has remained unknown. We make an

attempt to investigate this issue in the present thesis.

The s
ope of the thesis 
an be summarized as follows. We dis
uss the role

of natural length and time s
ale on KH instability, in Chapter 2. The interplay

of KH and kink modes under various physi
al 
onditions is dis
ussed in Chapter

3. In Chapter 4, shear driven KH and kink modes are investigated for Isi
henko

solutions.

1.5 Summary of Chapters

The Chapter-wise summary of the thesis is given below.
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Chapter 2: Role of Natural Length and Time S
ales on Ele
-

tron Magnetohydrodynami
 Kelvin Helmholtz Instability: 2D

Studies

In Chapter 2, we investigate the role of natural s
ales on velo
ity shear driven KH

instability in the 
ontext of 2D EMHD. The perturbations lie in the plane of �ow

and shear, in whi
h the major a
tion of KH lies, variations along the equilibrium

magneti
 �eld are negle
ted. The role of ele
tron skin depth has been dis
ussed

in 
omparison with the KH instability of neutral hydrodynami
s �uid. To un-

derstand the role of whistlers we introdu
e a uniform external magneti
 �eld B0

along the �ow dire
tion. Presen
e of this magneti
 �eld ex
ites the whistlers in

the system, unlike the previous 2D studies [34, 45℄. In those studies, a single equa-

tion des
ribing the evolution of the magneti
 �eld 
omponent along the symmetry

dire
tion was su�
ient to des
ribe the instability. But here, we need to solve a set

of 
oupled equations in two s
alar �elds. This is essentially due to the fa
t that

whistler waves 
ouple the in-plane magneti
 �eld perturbations to the magneti


perturbations along the symmetry dire
tion. The instability problem is solved

as the eigen value problem analyti
ally, for step pro�le and numeri
ally, for tanh

pro�le of equilibrium �ow velo
ity. The eigen values are obtained as the growth

rate of instability. The role of B0 has been to redu
e the instability growth rate.

Further, the growth rate 
urves show that the instability is nonlo
al even in the

presen
e of in-plane magneti
 �eld B0.

Nonlinear simulations have been 
arried out to understand the role of whistlers

in the nonlinear regime of instability. For this purpose we have developed a non-

linear �uid 
ode whi
h uses �ux 
orre
ted transport algorithm [74, 75℄. The 
ode
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solves 2D EMHD equations for tangent hyperboli
 pro�le of equilibrium velo
ity.

In the absen
e of B0, the nonlinear state is a 
oherent vortex formed as a 
onse-

quen
e of inverse 
as
ade. However, in the presen
e of B0, the nonlinear state is

signi�
antly 
hanged from the ordered state of B0 = 0 
ase. The long s
ale stru
-

tures are formed only along the dire
tion of B0 and there is hardly any extension

in stru
tures along the transverse dire
tion. This indu
es the anisotropy in the

system. We provide a quantitative estimate of anisotropy in the Fourier spe
trum

of two �elds. The observed anisotropy is a 
hara
teristi
s of the nonlinear 
as-


ade mediated by whistlers. The anisotropi
 
as
ade has an adverse e�e
t on the

KH instability indu
ed mixing of the �uids �owing in two dire
tions around the

shear layer. Consequently, the �attening of shear layer is weaker in the presen
e

of whistlers, whi
h we have also measured.

Chapter 3: Interplay of Kelvin Helmholtz and Kink Modes:

3D Studies

When the variations along the dire
tion of self-
onsistent equilibrium magneti


�eld (generated due to sheared �ow) are also allowed, a new lo
al mode exists in

the plane of the magneti
 �eld and shear. The mode requires �nite ele
tron inertia

and is driven by the gradient in the equilibrium velo
ity unlike the KH mode whi
h

is driven by the 
urvature in equilibrium velo
ity. We note that due to similarity

in 
urrent and �ow velo
ity in EMHD, velo
ity shear driven KH is often termed

as the 
urrent-gradient sausage mode. In Chapter 3, we investigate the interplay

of the two modes, sausage and kink, under various physi
al 
onditions determined

by: (a) the value of shear width in 
omparison to the ele
tron skin depth, (b) a

uniform magneti
 �eld (B00) present along the �ow dire
tion and (
) a uniform

40



Chapter 1: Introdu
tion

magneti
 �eld (C0) employed along the dire
tion of self-
onsistent magneti
 �eld.

For sharper shear width, the dominant mode is sausage mode while for broader

shear width, the dominant instability is kink instability. The presen
e of B00 has

been shown to redu
e the pure sausage growth rate. We show here that the pure

kink mode remains unin�uen
ed by this magneti
 �eld. Also, the presen
e of C0

has no e�e
t on sausage growth rate [34℄, but has been shown by us to alter the

growth rate of pure kink mode. Therefore, one mode 
an dominate over the other

in the given 
onditions.

We also 
arry out the simulations of the 3D instability with the help of a

nonlinear �uid 
ode. The growth rates of instabilities 
al
ulated in the linear

regime of simulations mat
h with the linear theory. The nonlinear state is strongly

turbulent in these simulations unlike the 2D 
ase. The spe
trum of turbulen
e is

found to be anisotropi
. We have observed that the spe
tral 
as
ade is inhibited

both along the dire
tion of �ow as well as the dire
tion of magneti
 �eld. Thus,

the shortest s
ales are generated along the shear dire
tion. In the presen
e of

B00, the s
ales along the shear dire
tion are more or less un
hanged while along

other two dire
tions, the s
ales turn out to be longer than the 
ase for B00 = 0.

These observations are 
onsistent with the anisotropi
 feature of whistler mediated


as
ade. The broadening of shear layer o

urs mu
h more slowly for this 
ase as

the kink mode being the dominant mode governs the evolution of system. During

the linear phase the kink instability does not alter the 2D �ow 
on�guration. Thus,

the broadening o

urs at later nonlinear phase when the other modes also grow.

This shows that it is important to understand the interplay of two modes under

various physi
al 
onditions, as the evolution would be di�erent when governed by

the di�erent modes.

41



Chapter 1: Introdu
tion

Chapter 4: Stability of Isi
henko Solutions of Ele
tron Mag-

netohydrodynami
 Model Against Shear Driven Modes

In se
tion 1.2.3, we pointed out that the EMHD system permits 
ertain exa
t,

nonlinear solutions. Isi
henko and Marna
hev [51℄ obtained these solutions as the

stationary monopoles and propagating dipoles of lo
alized ele
tron �ow stru
ture.

The dynami
al properties of these solutions have been studied in 
onsiderable

detail by many resear
hers [55, 56, 76, 77℄. Among these stru
tures, dipoles are

of pra
ti
al importan
e. The dipoles 
arrying energy and momentum with them

propagate stably and may prove to be useful in phenomena like, fast ignition


on
ept of laser fusion [3, 5, 6℄, fast magneti
 �eld transport [49, 50℄, laser plasma

intera
tion studies [78℄ et
.

The ele
tron �ow pattern in these EMHD stru
tures, monopoles and dipoles, is

signi�
antly sheared and hen
e they 
ould be unstable to the shear driven modes

namely, sausage and kink [34, 46℄. The stru
tures are known to be stable to

the 2D sausage perturbations as the unstable wavelengths are longer than the

stru
ture size, an explanation provided by Sharad et al. [54℄. For kink mode,

however, wavelengths smaller than the stru
ture size are also unstable. Stability

of stru
tures against this mode is not known so far; we investigate this in Chapter 4.

For this, we 
arry out a 3D nonlinear simulations with monopoles and dipoles as the

initial 
onditions. We observe that the stru
tures are unstable in our simulations.

The unstable behaviour of stru
tures has been attributed to the presen
e of kink

mode.
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Chapter 5: Summary and Future S
ope

Finally, in Chapter 5, 
on
lusions of the thesis work have been drawn and the

prospe
ts for future work have been outlined.
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Chapter 2

Role of Natural Length and Time

S
ales on Ele
tron

Magnetohydrodynami
 Kelvin

Helmholtz Instability: 2D Studies

The Ele
tron Magnetohydrodynami
 (EMHD) model represents an in
ompressible

ele
tron �uid moving against stati
, neutralizing ba
kground ion spe
ies. In 
on-

trast to ordinary hydrodynami
 �uids, the EMHD model 
ontains intrinsi
 length

(ele
tron skin depth) and time (whistler period) s
ales. In this Chapter, we in-

vestigate the role of skin depth and existen
e of whistlers on velo
ity shear driven

Kelvin Helmholtz instability in the 
ontext of two dimensional EMHD. Numeri
al

simulations are also 
arried out to understand the role of whistlers in nonlinear

regime of instability.
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2.1 Introdu
tion

Ele
tron Magnetohydrodynami
s (EMHD) is a �uid model to des
ribe the plasmas

in whi
h the ele
trons dynami
s is of importan
e. The ions are stati
 and provide

a neutralizing ba
kground to the ele
trons. The EMHD system 
losely resem-

bles an in
ompressible hydrodynami
 �uid system and hen
e the 
hara
teristi
s

neutral �uid instabilities are present here as well. One of the prominent neutral

�uid instability is Kelvin Helmholtz instability in whi
h the interfa
e of two �uids

in relative motion (parallel to interfa
e) is unstable under 
ertain 
onditions. The

Kelvin Helmholtz instability of neutral hydrodynami
 �uid is thoroughly dis
ussed

in the literature [37, 38℄. In the 
ontext of EMHD also, the instability has been

investigated in 
ertain detail and has often been termed as sausage and kink like

modes [34, 46℄. Besides due similarities, the EMHD system also has 
ertain dif-

feren
es with neutral �uids due to the magnetized 
hara
ter of the ele
tron �uid.

The ele
tromagneti
 
hara
ter of the system manifests as the existen
e of intrinsi


natural s
ales. In the 
ontext of EMHD, the ele
tron skin depth is su
h a length

s
ale arising due the inertia of ele
trons. In the the presen
e of external (and/or

strong self 
onsistent) magneti
 �eld, whistler waves are the normal modes of the

system and hen
e the whistler periods appear as the natural time s
ale. A neutral

hydrodynami
 �uid system, in 
ontrast, is devoid of any spe
i�
 s
ales. In this

Chapter, we dis
uss the role of these natural length and time s
ales on the velo
ity

shear driven Kelvin Helmholtz instability in the 
ontext of 2D EMHD. And the


omparison with the neutral hydrodynami
 �uid instability are presented.

In these studies the spatial variations in perturbations are 
on�ned in the plane


omprising the �ow and shear dire
tions, the variations in the dire
tion normal to
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this plane (whi
h is also the dire
tion of self-
onsistent magneti
 �eld generated

due to the shear �ow) have been negle
ted. The EMHD set of equations redu
es

to the Navier-Stoke's equations of hydrodynami
 �uid in the short wavelength

limit. To understand the role of skin depth, the shear width of the system is

varied in 
omparison to the ele
tron skin depth. We show that by appropriate

res
aling the KH growth rate 
urve plotted with respe
t to the ex
itation wave

number (along the �ow dire
tion) redu
es to a universal 
urve for the neutral �uid

hydrodynami
s system (see Fig. 2.1). This, however, does not happen for the

EMHD system for whi
h the growth rate diminishes as the shear width be
omes

broader in 
omparison to the ele
tron skin depth parameter. The KH instability in

EMHD is prominent only when the shear in ele
tron �ow velo
ity is sharper than

the skin depth, a fa
t whi
h has been outlined in our earlier studies also [34, 45℄.

We also study in detail the role of whistler waves on this parti
ular instability.

In previous 2D EMHD studies of KH like mode [34, 45℄, the equilibrium and also

the perturbed magneti
 �elds arising as a result of the 2D ele
tron 
urrent �ow, was

dire
ted along the symmetry dire
tion. Sin
e the variations were 
on�ned in the

two dimensional plane orthogonal to the equilibrium magneti
 �eld, the 
on�gura-

tion 
learly did not support the normal os
illatory whistler wave mode asso
iated

with EMHD phenomena. The 3D study of the instability in subsequent work

[46, 47℄ does support the whistler mode. However, in the 3D 
ase one is not able

to isolate the role of whistlers from e�e
ts arising due to the three dimensionality

of the problem. Furthermore, in those studies [46, 47℄ the propagation dire
tion

of the whistler waves being primarily along the equilibrium magneti
 �eld, was

orthogonal to the 2D plane de�ned by the equilibrium shear and the �uid �ow

dire
tion. For the KH instability major a
tion is 
on�ned to this plane. We, there-
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fore, 
hoose here to study a 2D 
ase of the instability with an additional uniform

magneti
 �eld in the �ow dire
tion. For this 
ase whistlers are permitted even in

the 2D limit. This 
on�guration is thus markedly di�erent from both the previous

2D and 3D studies 
arried out by us. For this 
ase, we would see in the next

se
tion that the evolution is governed by a set of 
oupled equations in two s
alar

�elds. This is unlike the previous 2D studies where the magneti
 �eld 
omponent

along the symmetry dire
tion was su�
ient for the des
ription. This is essentially

due to the fa
t that the whistler wave perturbations 
ouple the in-plane magneti


�eld perturbations to the magneti
 perturbations along the symmetry dire
tion

1

.

We wish to point out here that Califano et al. [32℄ also 
onsidered an instability of

a sheared ele
tron �ow 
on�guration. The 2D plane of perturbations in their 
ase

is in
lined with respe
t to the ele
tron �ow dire
tion. Su
h a geometry has been

termed by us as a 3D kink mode. Angle between the 2D plane of perturbations and

the �ow dire
tion is 
hanged through a dimensionless parameter α by 
hoosing its

values between 0 and 1. The 
hoi
e of α = 1 (2D plane of perturbations lying along

the �ow dire
tion) in their work redu
es the 
on�guration to the 2D 
ase that we

dis
uss here. Furthermore, the studies by Califano et al. have been restri
ted to

the 
ase for whi
h the shear width is 
omparable or broader than the ele
tron skin

depth. We have 
onsidered in our studies shear width, whi
h are sharper than the

ele
tron skin depth .We assume that the kineti
 s
ales are mu
h shorter than the

ele
tron skin depth and the shear width for the appli
ability of the �uid EMHD

model.

In se
tion 2.3, we dis
uss the role of the natural length s
ale (de = c/ωpe) that

1

For des
ription of geometry, see Fig. 1.1 in Chapter 1. The x − z plane in the �gure is the

2D plane of �ow and shear that we 
onsider here. The external uniform magneti
 �eld lies in

this plane along the �ow dire
tion. y is the symmetry dire
tion.
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appears in EMHD. We 
ompare the KH instability in neutral hydrodynami
 �uid

with that of EMHD. In se
tion 2.4, the role of whistler waves on the instability is

dis
ussed. An interesting observation is that in 2D, even in the presen
e of whistler

waves, the instability 
ontinues to be nonlo
al. The growth rate is �nite only for

those modes with s
ales longer than the original shear width. This is in 
ontrast

to the 3D 
ase where the lo
al modes were also found to be unstable. Thus, the

three dimensional 
hara
ter of the mode (and not the existen
e of whistler waves)

is essential for the destabilization of lo
al modes for the ele
tron velo
ity shear

driven instability. In se
tion 2.5, a numeri
al study of the shear driven instability

in the presen
e of in-plane magneti
 �eld is presented. The role of whistler waves in

the nonlinear regime is outlined. Se
tion 2.6 
ontains the dis
ussion and summary

of our observations.

2.2 Governing Equations

In the 2D x − z plane, the EMHD equations (1.1) and (1.2), given in Chapter 1,


an be written in terms of evolution of two s
alar �elds, whi
h de�ne the total

magneti
 �eld as

~B = bŷ + ŷ × ∇ψ. The ele
tron velo
ity 
an then be expressed

in terms of these two s
alar �elds as ~ve = −∇× ~B = ŷ ×∇b− ŷ∇2ψ [55℄,

∂

∂t
(∇2b− b) + ŷ ×∇b · ∇∇2b− ŷ ×∇ψ · ∇∇2ψ = 0

∂

∂t
(∇2ψ − ψ) + ŷ ×∇b · ∇(∇2ψ − ψ) = 0 (2.1)

Here, ŷ denotes the symmetry dire
tion. The equation has been expressed in

normalized variables. Magneti
 �eld has been normalized by a typi
al amplitude

of B00, the time by the 
orresponding ele
tron gyro-period ω−1
ce = (eB00/mec)

−1
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and length by the ele
tron skin depth de = c/ωpe. The limit of k2d2e >> 1 along

with ψ = 0, redu
es the 
oupled set Eq.(2.1) to the Navier Stokes equations in 2D

for an in
ompressible neutral �uid hydrodynami
s,

∂

∂t
∇2b+ ŷ ×∇b · ∇∇2b = 0 (2.2)

here, b 
an be identi�ed with the velo
ity potential.

The equilibrium sheared ele
tron �ow velo
ity in the presen
e of in - plane

magneti
 �eld 
an be des
ribed by a 
hoi
e of b0 = b0(x) and ψ0 = −B0x. This


hoi
e of ψ0 ensures that the in - plane magneti
 �eld is oriented along the �ow

dire
tion. The total equilibrium magneti
 �eld 
an thus be represented by

~Beq =

ŷb0(x) + ẑB0. The �eld b0 is an equilibrium magneti
 �eld dire
ted along the

symmetry dire
tion ŷ and is dependent on x. The in - plane magneti
 �eld B0 is

dire
ted along ẑ and is 
hosen to be a 
onstant. The equilibrium ele
tron velo
ity

pro�le is de�ned by ~v0 = −ẑdb0/dx. A spe
i�
 form of the ele
tron velo
ity shear

pro�le 
an be 
hosen by an appropriate 
hoi
e of the fun
tional form for b0(x).

The dynami
al evolution of a small perturbation in the two �elds, viz., b1 and ψ1

around this equilibrium 
an be analyzed with the help of linearized EMHD model

Eqs.(2.1),

∂

∂t
(∇2b1 − b1) + v0

∂

∂z
∇2b1 − v′′0

∂b1
∂z

− B0

∂

∂z
∇2ψ1 = 0

∂

∂t
(∇2ψ1 − ψ1) + v0

∂

∂z
(∇2ψ1 − ψ1) +B0

∂b1
∂z

= 0 (2.3)

It should be noted that for the 
ase of B0 = 0, the equations redu
e to the form

analyzed in the earlier work [34℄. In this 
ase the �eld ψ1 is merely 
onve
ted by

the equilibrium �ow velo
ity due to the velo
ity potential b0 and plays no a
tive

49



Chapter 2: Role of natural length and time s
ales ...

role in evolution. The evolution of the �eld b1 gets entirely de
oupled from the

�eld ψ1 for the linear problem. The linear stability problem is redu
ed to that of

the study of the evolution of the single s
alar �eld of b1. The presen
e of �nite B0


ouples the evolution of b1 and ψ1 �elds in the linear limit through whistler like

perturbations and its in�uen
e on the instability is a topi
 of our investigation.

Fourier analyzing Eq.(2.3) in z and time we obtain,

d2b1
dx2

− (1 + k2z)b1 −
kz(v0 − v′′0)

(ω − kzv0)
b1 +

kzB0

(ω − kzv0)

(

d2ψ1

dx2
− k2zψ1

)

= 0

d2ψ1

dx2
− (1 + k2z)ψ1 −

kzB0

(ω − kzv0)
b1 = 0 (2.4)

For v0 = 0, one obtains the whistler wave dispersion relation from Eq.(2.4). The


oupled set of Eqs.(2.4) 
an also be expressed in a fashion whi
h eliminates the

se
ond derivative of ψ1 from the �rst equation of the set [Eqs.(2.4)℄ by substituting

for it from the se
ond equation,

d2b1
dx2

− (1 + k2z)b1 −
kz(v0 − v′′0)

(ω − kzv0)
b1 +

kzB0

(ω − kzv0)
ψ1 +

k2zB
2
0

(ω − kzv0)2
b1 = 0

d2ψ1

dx2
− (1 + k2z)ψ1 −

kzB0

(ω − kzv0)
b1 = 0(2.5)

This set of 
oupled linearized equations we shall use for the linear instability


al
ulations. The equations shall be analyzed analyti
ally and numeri
ally to be

solved as the eigen value problem.

2.3 Role of Skin Depth

In this se
tion we 
hoose to study the role of ele
tron skin depth on the KH

instability and thereby o�er a 
omparison amidst the KH mode in a Navier Stokes
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(NS) (the limit of d−1
e → 0 ) and an EMHD �uid (de is �nite and taken to be

unity). To avoid any role of whistlers we 
on�ne ourselves to the 
hoi
e of B0 =

0 (the in-plane 
omponent of equilibrium magneti
 �eld) in this se
tion. This

redu
es the equilibrium 
on�guration to the 
ase studies earlier. We would see

in next se
tion that a �nite value of in-plane 
omponent of B0 introdu
es the

magneti
 tension, 
auses whistler ex
itations, and redu
es the KH growth rate.

The linearized equations in the NS limit,

d2b1
dx2

− k2zb1 +
kzv

′′

0

(ω − kzv0)
b1 = 0 (2.6)

and in the EMHD limit, in the absen
e of B0,

d2b1
dx2

− (1 + k2z)b1 −
kz(v0 − v′′0)

(ω − kzv0)
b1 = 0 (2.7)

We 
onsider here a tangent hyperboli
 shear pro�le for the equilibrium �ow,

v0(x) = V0tanh
(x

ǫ

)

(2.8)

The growth rate for the hydrodynami
 
ase is a universal 
urve shown by the thi
k

line in Fig.2.1. The growth rate has been plotted here as a fun
tion of kzǫ. Here,

ǫ is the shear width of the �ow as 
an be seen from the above equation. In the

hydrodynami
 
ase there is no spe
ial s
ale in the system. Hen
e, a 
hange in

the shear width ǫ 
an always be a

ommodated by an appropriate length s
ale

res
aling, whi
h would mean a readjustment in the value of V0 as well. We indeed

observe that the plot of growth rate for the hydrodynami
 
ase 
ollapses on a single


urve for di�ering values of ǫ when the velo
ity V0 is adjusted to a

ommodate
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Figure 2.1: The plot of growth rate vs. kzǫ for the hydrodynami
 
ase (thi
k 
urve).

The growth rate has been obtained for a shear �ow pro�le v0 = V0 tanh(x/ǫ).
The 
urve for the hydrodynami
 
ase is universal for the 
hoi
e of ǫ = 0.1f and

V0 = 1.0f . The 
urves with dots, 
ir
les and stars show the growth rate for an

EMHD system for f = 1, 3, 5 respe
tively.

for the length res
aling. The thi
k line representing the hydrodynami
 
ase in

Fig.2.1 
orresponds to several 
hoi
es of shear width, e.g. ǫ = 0.1f along with

V0 = 1.0f , obtained by varying the parameter f . This 
an also be demonstrated

from Eq.(2.6), whi
h is invariant under the transformation ǫn = ǫf , kzn = kz/f ,

d/dxn = (1/f)d/dx and v0n = v0f . The value of ω thus remains the same. The

growth rate 
urve when plotted against kzǫ = kznǫn has an identi
al form. It 
an

be seen that Eq.(2.7) does not remain invariant under this transformation.

Hen
e, for the EMHD �uid 
ase, where the skin depth exists as a spe
ial s
ale (

de = 1 has been 
hosen as a normalizing s
ale), the growth rate 
urves are no longer

universal. For ea
h value of f a di�erent growth rate 
urve results. For �nite de

the growth rate deviates from the universal 
urve for the NS system predominantly
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at lower kz values (i.e. at longer s
ales). With in
reasing f as the shear width

in
reases in 
omparison with the skin depth and the growth rate keeps redu
ing.

It be
omes negligible when the shear width is mu
h broader than the ele
tron skin

depth.

Another striking feature of the growth rate 
urve is the fa
t that it has a bell

shaped 
hara
ter with a single maxima for both NS as well as the EMHD 
ases.

For a tangent hyperboli
 shear �ow it is zero at kz = 0 and also at kzǫ = 1.0. For

all values of the wavenumber beyond kzǫ = 1 the growth rate 
ontinues to remain

zero. The unstable wavenumbers for the tangent hyperboli
 pro�le thus exist only

in the domain of 0 ≤ kzǫ ≤ 1.0, irrespe
tive of the values of V0. Thus as the

shear width parameter ǫ is in
reased, the threshold 
ondition on kzǫ being unity,

diminishes the range of unstable kz modes. Though the exa
t value of the upper

limit on kzǫ is dependent on the spe
i�
 form of the shear pro�le, the 
ut o� value

for unstable wavenumbers is 
onstrained by kzǫ of the order of unity. For instan
e,

for a pie
ewise linear pro�le the growth rate vanishes beyond a smaller value of kz,

viz., kzǫ = 0.639 [34℄. In another publi
ation [79℄ an analyti
al proof was given to

show that the growth rate is zero for kzǫ = 1 for the tangent hyperboli
 equilibrium

shear pro�le.

The fairly general 
onstraint 
an, however, be understood on physi
al grounds.

The mode whi
h is driven unstable due to a shear s
ale length of ǫ, has an eigen-

stru
ture whi
h itself is like a sheared �ow pattern orthogonal to the original �ow

dire
tion having a typi
al shear s
ale length of k−1
z as depi
ted in Fig.2.2. Sin
e

the free energy for the instability is provided by the sheared �ow 
on�guration, the

unstable eigen fun
tions themselves 
annot have sharper shear �ow stru
ture. This

is responsible for the threshold on the wavenumber kz. Thus, the KH instability
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Figure 2.2: A s
hemati
 showing the �ow 
on�guration after KH destabilization

in 2D. It 
an be seen that the destabilized �ow 
on�guration results in a sheared

�ow orthogonal to the original shear �ow, with a shear width given by k−1
z .

in 2D always generates velo
ity shear s
ales whi
h are longer than the original

equilibrium shear s
ale. This is responsible for the threshold 
ondition of the

unstable wavenumbers a kzthǫ ∼ O(1). The instability is therefore nonlo
al in 2D.

In the next se
tion we would see that even in the presen
e of whistler wave like

ex
itations, the threshold 
ondition on the unstable modes 
ontinues to hold.

2.4 Role of Whistler Waves

In this se
tion we study the in�uen
e of whistler waves on the shear driven insta-

bility of EMHD model and 
hoose B0 to be �nite. For this purpose, we 
hoose two

kinds of equilibrium �uid shear �ow pro�les. A step velo
ity pro�le for whi
h the

shear width ǫ → 0 is used for analyti
al simpli
ity. A tangent hyperboli
 shear

pro�le is then studied to investigate the in�uen
e of �nite shear width of the �ow

pro�le.
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2.4.1 Step Velo
ity Pro�le

We 
hoose a step ele
tron velo
ity shear pro�le of the form v0(x) = −V0+2V0Θ(x).

Thus in region I (−∞ ≤ x ≤ 0), v0(x) = −V0 and for region II (0 ≤ x ≤ ∞) we

have v0(x) = V0. We 
hoose to depi
t the perturbed �elds by b1 = bI,II and

ψ1 = ψI,II in the two regions. For a �nite jump in the equilibrium �ow velo
ity it


an be shown by using Eq.(2.4) that the following fun
tions of the perturbed �elds

should be 
ontinuous at x = 0 the lo
ation of velo
ity dis
ontinuity,

f1 = (ω − kzv0)
db1
dx

+ kzv
′

0b1; f2 =
b1

(ω − kzv0)

f3 =
dψ1

dx
; f4 = ψ1 (2.9)

In the two regions, the Eq.(2.5) 
an be written as,

d2

dx2
bI,II + αI,IIbI,II + βI,IIψI,II = 0

d2

dx2
ψI,II + ηψI,II − βI,IIbI,II = 0 (2.10)

Here, η = −(1 + k2z) and the 
oe�
ients α, β are de�ned in the two regions as,

αI,II = η +
k2zB

2
0

(ω ± kzV0)2
±

kzV0
(ω ± kzV0)

βI,II =
kzB0

(ω ± kzV0)

Sin
e the wave fun
tions should vanish at ±∞, we 
hoose the solution of Eq.(2.10)

as,

bI = Abexp(pIx); bII = Cbexp(−pIIx)
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ψI = Aψexp(pIx); ψII = Cψexp(−pIIx)

where, pI,II are those roots whi
h have a positive real part. They are obtained by

substituting for bI,II and ψI,II in Eq.(2.10). We thus have,

p2I,II = −
(αI,II + η)

2
±

1

2

√

(αI,II + η)2 − 4(αI,IIη + β2
I,II)

Thus, there are two roots ea
h for p2I and p
2
II 
orresponding to the ± sign before

the square root. Upon substituting for η, αI,II and βI,II the roots are,

p2I± =

{

1 + k2z −
kzV0
2Ω+

−
k2zB

2
0

2Ω2
+

}

±
1

2

{

(

kzV0
Ω+

+
k2zB

2
0

Ω2
+

)2

−
4k2zB

2
0

Ω2
+

}1/2

p2II± =

{

1 + k2z +
kzV0
2Ω−

−
k2zB

2
0

2Ω2
−

}

±
1

2

{

(

kzV0
Ω−

−
k2zB

2
0

Ω2
−

)2

−
4k2zB

2
0

Ω2
+

}1/2

Here Ω± = ω±kzV0 and the± sign in the su�x denotes the two roots 
orresponding

to the positive and negative sign before the square root. In the limit of B0 = 0 one

re
overs the expression obtained in earlier studies by 
hoosing appropriate sign of

the square root in the two regions. In addition there is another value p2I,II = 1+k2z


orresponding to the evolution equation for ψ (whi
h gets de
oupled from b in

this limit). The earlier studies [34℄ had then shown that upon using the mat
hing


onditions one �nds a purely imaginary value for ω for all �nite values of kz and

V0. This has shown that a sheared ele
tron velo
ity 
on�guration with zero shear

width is always unstable.

In the present 
ase, the other limit of V0 = 0, leads to p2I = p2II = −k2x (the

wave number along x) and yields the dispersion relation of whistler wave mode

for whi
h ω is real. Clearly, in the general 
ase when both V0 and B0 are �nite, a

56



Chapter 2: Role of natural length and time s
ales ...


omplex value of ω 
an be expe
ted. Using Eq.(2.10) we 
an �nd a relationship,

Aψ± =
βI

p2I± + η
Ab±; Cψ± =

βII
p2II± + η

Cb±.

This leaves us with four unknown 
oe�
ients Ab± and Cb±. The mat
hing 
ondi-

tions are then utilized to eliminate these 
oe�
ients, whi
h yields the value of ω

from det||M || = 0 where the matrix M is de�ned as follows:

1/Ω+ 1/Ω+ −1/Ω− −1/Ω−

Ω+pI+ Ω+pI− Ω−pII+ Ω−pII−

1/[(p2I+ + η)Ω+] 1/[(p2I− + η)Ω+] −1/[(p2II+ + η)Ω−] −1/[(p2II− + η)Ω−]

pI+/[(p
2
I+ + η)Ω+] pI−/[(p

2
I− + η)Ω+] pII+/[(p

2
II+ + η)Ω−] pII−/[(p

2
II− + η)Ω−]

The roots, ω for det || M ||= 0, for various values of B0 and kz have been

obtained. We show in Fig. 2.3 the plot of the variation of the real and imaginary

part of ω as a fun
tion of the in - plane magneti
 �eld B0. The plots 
learly show

that as the value of B0 is in
reased the growth rate of the KH mode de
reases.

This is be
ause the perturbations asso
iated with the instability 
ause bending of

the equilibrium magneti
 �eld whi
h requires energy.

An interesting feature of the plot is a sudden fall of the growth rate in the

neighborhood of a parti
ular value of the B0. A 
loser look reveals that this fall

o

urs at the lo
ation when the KH growth rate γ = kzV0
√

(1 + 4k2z)/(3 + 4k2z)

of the unmagnetized ele
tron �uid for B0 = 0 mat
hes with the typi
al whistler
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Figure 2.3: The growth rate (solid line) and the real frequen
y (dashed line) for

the KH mode as a fun
tion of the in-plane magneti
 �eld B0 for a step ele
tron

velo
ity pro�le.

frequen
y of the system. The �ow perturbations transverse to the shear �ow in the

KH mode grow at the typi
al time s
ale of ∼ (kzV0)
−1
. In EMHD pres
ription it is

well known that

~B−d2e∇
2 ~B is tied to the �uid �ow velo
ity. Sin
e the equilibrium

�eld B0 is homogeneous, the �ow perturbations 
arry the equilibrium �eld lines

with themselves. Thus, the �ow perturbations due to the KH instability distort the

equilibrium straight magneti
 �eld to a sheared 
on�guration. The tension due to

this distortion tries to restore the magneti
 �eld line to its original 
on�guration,


ausing os
illations at the whistler frequen
y. When the whistler period be
omes


omparable to the growth time of the KH mode, the phase reversal of the transverse

perturbations o

ur at the time s
ale at whi
h the shear instability grows, resulting

in 
onsiderably redu
ing the growth rate. The whistler frequen
y in
reases with B0

and at higher B0 thus it be
omes more and more di�
ult for the KH instability to
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get ex
ited. The growth rate subsequently at higher B0 falls to zero as illustrated

from the plots of the Fig.2.3. The variation of real part of ω with B0 shows

deviation from the whistler frequen
y at the lower value of B0. However, at large

B0 it asymptoti
ally mat
hes with the whistler frequen
y.

The step velo
ity pro�le is an extreme 
hoi
e made for the sake of simpli�ed

analyti
al treatment. In the realisti
 
ase the velo
ity would vary in a 
ontinuous

manner. The width of the sheared ele
tron �ow pro�le plays an important role for

the instability. In earlier 2D studies [34℄ (with no in-plane equilibrium magneti


�eld and hen
e no whistlers) it was observed that only those modes whi
h satisfy

kzǫ < 1 
ondition were unstable. The typi
al s
ale length of the eigen mode

stru
ture along the shear dire
tion is similar to p−1

I,II for the step pro�le 
onsidered

in this se
tion. The expression for pI,II in the absen
e of B0 shows a monotoni


dependen
e on kz. For shear pro�le with �nite width, similar of proportionality of

eigen fun
tion s
ales along the shear dire
tion x with kz 
an be expe
ted. Thus

the 
ondition kzǫ < 1 for instability translates to the fa
t that the 2D instability is

essentially nonlo
al, and arises only when the mode stru
ture is broader than the

shear width. In the next se
tion, we investigate the role of �nite shear width of

the velo
ity pro�le on this parti
ular instability in the presen
e of whistler modes.

2.4.2 Velo
ity Pro�le with Finite Shear Width

In this se
tion, we 
onsider the instability in the presen
e of B0 when the shear of

the equilibrium ele
tron �ow has a �nite width. For this purpose, we 
hoose tangent

hyperboli
 form of the velo
ity pro�le shown in Eq.(2.8). We use the 
oupled set

of Eq.(2.5) with this form of v0 to evaluate the eigen value ω numeri
ally. The

results have been shown in Fig.2.4, whi
h show that the maximum growth rate
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Figure 2.4: The KH growth rate as a fun
tion of kzǫ for a tangent hyperboli
 shear
�ow pro�le. Here the solid, dotted and the 
urve with 
ir
les 
orrespond to B0 = 0,
0.5 and 1.0 respe
tively.

redu
es in the presen
e of a magneti
 �eld. This feature is same as that observed

in the 
ontext of step velo
ity pro�le in the previous se
tion. The transverse

�uid motion asso
iated with the unstable KH mode generates transverse magneti


�eld perturbations as it 
arries with itself the equilibrium B0 magneti
 �eld. The


onsequent tension of the magneti
 �eld perturbation provides the restoring for
e

(responsible for the whistler wave os
illations) and opposes the growth of the KH

mode. The 
reation of magneti
 �eld perturbations 
osts energy and hen
e the KH

growth does not remain as energeti
ally favourable as for the 
ase when B0 = 0.

It should be noted that the growth rate 
urve of Fig.2.4 is again 
on�ned to

0 < kzǫ < 1.0. This feature, therefore, is a universal aspe
t of the KH instability

in 2D. The physi
al interpretations provided in the previous se
tion holds good
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even in the presen
e of in - plane equilibrium magneti
 �eld B0.

2.5 Nonlinear Simulations

In this se
tion, we simulate the 
oupled set of Eq.(2.1) using the �ux 
orre
ted

algorithm developed by Boris et al. [74℄. A tangent hyperboli
 form for the initial

shear �ow 
on�guration for whi
h the linear growth rates have been evaluated in

the previous se
tion, has been 
onsidered here also. This is to understand the

behaviour of the additional in - plane equilibrium magneti
 �eld in the nonlinear

regime of the KH instability. The shear �ow equilibrium 
on�guration along with

the in-plane magneti
 �eld is 
hosen as the initial state for the b and ψ �elds. A

low amplitude arbitrary perturbation is purposely added initially to hasten the

growth of the instability, whi
h otherwise would take long to emerge from the very

low amplitude numeri
al noise.

In Fig.2.5 we show the evolution of the perturbed energy of the system for

B0 = 0.0, 0.5 and 1.0. During the initial phase of the simulation the total per-

turbed energy in
reases exponentially. In the semilog plot of Fig.2.5 this 
an be

seen initially where the 
urve is a straight line. The slope of this line mat
hes


losely with twi
e the maximum growth rate γ obtained analyti
ally in the previ-

ous se
tion for ea
h of the distin
t values of B0. The dashed line shown alongside

the simulation 
urve has twi
e the slope 
orresponding to the analyti
al value of

the maximum growth rate. Thus the simulations also 
on�rm that the presen
e

of B0 redu
es the maximum growth rate. As the amplitude of the perturbed �eld

in
reases, the nonlinear e�e
ts be
ome important in the simulation resulting in the

saturation of the perturbed energy seen at the later stage.

In Fig.2.6 and Fig.2.7 we show the 
ontour plot of the �eld b at various times
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Figure 2.5: The evolution of perturbed energy for B0 = 0, 0.5, 1.0 in subplots (a),

(b) and (
) respe
tively.

( both during linear and nonlinear phases) for two 
ases of B0 = 0 and B0 = 1.

These plots are for the total b �eld 
orresponding to the sum of equilibrium as well

as the perturbations. Fig.2.8 and Fig.2.9 on the other hand show similar plots for
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Figure 2.6: Contour plots for the �eld b at various times for the nonlinear simula-

tion of B0 = 0.0 
ase.

the perturbed �eld ψ̃ = ψ−ψ0. The equilibrium 
ontribution to the �eld, namely

ψ0 = −B0x has not been in
luded in the plots. The �eld ψ = ψ̃ for the 
ase in

Fig.2.8 where B0 = 0.

For this simulation the maximally growing mode has a wavenumber kz = 1.67.

This 
orresponds to a wavelength of λ = 3.77. The simulation box length being

Lz = Lx = 24.0 
an a

ommodate 6 number of wavelengths for this parti
ular

mode along the periodi
 z dire
tion. Indeed, we observe that during the initial

state there appears 6 stru
tures. The stru
tures, however, 
oales
e later. For

B0 = 0, the �nal state in b �eld shows one large stru
ture �tting the box size.
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Figure 2.7: Contour plots for the �eld b at various times for the nonlinear simula-

tion of B0 = 1.0 
ase.

When B0 = 0 the �eld b gets de
oupled from the �eld ψ. The evolution of the

�eld b in this 
ase supports two square integral invariants in the non-dissipative

limit. The existen
e of two square integral invariants is responsible for the inverse

spe
tral 
as
ade and formation of long s
ale patterns in b �eld.

It should also be noted that when B0 = 0 the �eld ψ gets merely 
onve
ted

by the �eld b. We had for these simulations 
hosen an initial small perturbation

in ψ, as is evident from the t = 0 
ontours of ψ in Fig.2.8. The �eld ψ merely

gets 
onve
ted by the ele
tron �ow. There is no growth of energy 
ontent of this

�eld in this 
ase. The �eld ψ thus 
ontinues to have a low amplitude and behave
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Figure 2.8: Contour plots for the �eld ψ̃ at various times for the nonlinear simu-

lation of B0 = 0.0 
ase.

as a passive s
alar in this parti
ular 
ase. It should be noted from the plots for

simulations with B0 = 0 that even though there is a distin
tion between the �ow

dire
tion (z axis) and the shear dire
tion (x) the evolved stru
ture in both b and

ψ �eld is typi
ally isotropi
.

When B0 is 
hosen to be �nite the 
ontours of b during the linear phase are

quite similar to the 
ase of B0 = 0. The stru
ture 
orresponding to the maximally

growing mode emerges during this period. However, during the nonlinear phase

the stru
tures in b �eld seem to be preferentially elongated along the z dire
tion

(the dire
tion of in-plane magneti
 �eld). The stru
tures hardly get extended
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Figure 2.9: Contour plots for the �eld ψ̃ at various times for the nonlinear simu-

lation of B0 = 1.0 
ase.

along the transverse dimension. Thus, in the presen
e of the in-plane magneti


�eld the inverse 
as
ade in b gets limited to the dire
tion of the in-plane magneti


�eld. This 
an be explained by realizing that the whistler wave mediated 
as
ade

is anisotropi
 [72, 73℄. The nonlinear intera
tion of whistler wave produ
es dimin-

ishing wave numbers parallel to B0. The perpendi
ular wavenumber on the other

hand in
reases as the result of these intera
tions. The 
ontour plots of the �eld ψ̃

for B0 �nite shows 
onsiderable randomness as 
ompared to the 
ase of B0 = 0.

The �eld is now no longer passively 
onve
ted. It 
ouples a
tively to the b �eld

through whistler wave ex
itations. However, the stru
tures in ψ �eld do not seem
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Figure 2.10: The evolution of mean square wavenumbers for the b and ψ �elds in

the x and z dire
tions.

to exhibit any anisotropy(Fig. 2.9).

The smaller s
ale generation in the transverse dire
tion for b �eld and a rela-

tively isotropi
 stru
tures of ψ in the presen
e of B0 
an be quantitatively observed

from Fig.2.10 whi
h shows the evolution of mean square wavenumbers de�ned as

follows,

< k2x,z >A=

∫ ∫

k2x,z | A(kx, ky) |
2 dkxdkz

∫ ∫

| A(kx, ky) |2 dkxdkz
(2.11)

Here A(kx, kz) represents the Fourier transformed �elds (b or ψ). The plot in

Fig.2.10 
learly shows that < k2x > for the �eld b asymptotes at a 
omparatively

higher value than < k2z > in the presen
e of B0. However, for the ψ �eld the

mean square wavenumbers along both the dire
tions are almost identi
al. This is

a 
hara
teristi
 feature of the anisotropy exhibited by the whistler wave mediated
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Figure 2.11: The plot of z averaged ele
tron �ow velo
ity pro�le at various times

for B0 = 0 and B0 = 1 in subplot (a) and subplot(b) respe
tively.


as
ade in the nonlinear regime for the EMHD system as observed in previous

studies [72, 73℄.

This de
rease in the transverse extent of the perturbations in the presen
e of

B0 has an adverse e�e
t on the KH instability indu
ed mixing of the �uid �owing

in the two dire
tions around the shear layer. This 
an be observed from the plot

of z averaged �ow shown for the two 
ases in Fig.2.11. The �attening of the shear

layer is 
onsiderably weaker in the presen
e of B0.

2.6 Summary

We have in this work investigated the role of the existen
e of natural length s
ales

(skin depth ) and time s
ale (whistler wave) in EMHD phenomena on a prominent
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velo
ity shear driven �uid Kelvin - Helmholtz instability in 2D. The growth rate

of the instability de
reases as the shear width is in
reased in 
omparison to the

ele
tron skin depth.

The magneti
 �eld 
orresponding to a 2D shear �ow in EMHD is dire
ted

orthogonal to this plane. For 2D KH instability studies the perturbation s
ales

are also 
on�ned in this plane. The la
k of variations along the magneti
 �eld

essentially rules out the whistler ex
itations in this 
ase. To study the role of

whistler in the 2D KH instability we have 
onsidered an additional homogeneous

magneti
 �eld B0 dire
ted along the �ow dire
tion in the equilibrium. This kind of


on�guration is quite likely in laboratory experiments on EMHD [60, 61℄ where the

plasma is 
on�ned with the help of an axial magneti
 �eld. Also the presen
e of

ele
tron beams in plasma threaded by a magneti
 �eld is ubiquitous in nature. For

instan
e in ionosphere and magnetosphere [57℄, the solar 
orona [58℄ and pulsars

[59℄ et
., the equilibrium 
on�guration 
onsidered here might exist.

We observe that the growth of the KH instability redu
es in the presen
e of a

homogeneous magneti
 �eld dire
ted along the �ow 
on�guration. This is primarily

due to the whistler wave ex
itations that exist for su
h system. This has been

illustrated expli
itly analyti
ally by evaluating the growth rate for a step velo
ity

shear 
on�guration, and has also been demonstrated for a tangent hyperboli
 shear

�ow pro�le by numeri
al eigen value evaluation. The tangent shear �ow pro�le

shows that the 2D KH mode is nonlo
al with perturbation s
ales always being

longer than the original shear �ow. A physi
al understanding of this has been

provided.

The nonlinear simulation studies highlight another aspe
t. For B0 = 0, the

2D EMHD model represented solely in terms of the magneti
 �eld 
omponent
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along the symmetry dire
tion b 
onserves two non-dissipative square integrals.

This 
onstrains the evolution in the nonlinear regime for b �eld towards long s
ale

inverse spe
tral 
as
ade. In this 
ase there are no whistler wave ex
itations in the

system and the nonlinear 
as
ade is governed entirely due to intera
tions amongst

the eddies. For the 
ase when B0 is �nite the system ex
ites whistler waves.

The nonlinear 
as
ade mediated through these whistler waves 
ause an anisotropi


spe
tral 
as
ade [72, 73℄. This anisotropy is dominant for the �eld b, for whi
h

preferentially longer s
ales get formed only along the dire
tion of the in-plane

magneti
 �eld. The transverse spe
trum for b has 
onsiderably shorter s
ales. As

a result of this feature 
onsiderably redu
ed mixing of forward and reverse ele
tron

�ows o

urs in the presen
e of B0. The e�e
tive vis
ous 
oe�
ient arising due to

the KH indu
ed turbulen
e is thus signi�
antly smaller in the presen
e of in-plane

magneti
 �eld.
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Chapter 3

Interplay of Kelvin Helmholtz and

Kink Modes: 3D Studies

In the previous Chapter, we have studied velo
ity shear driven Kelvin Helmholtz

(KH) instability, whi
h lies in the two dimensional plane of �ow and shear. Per-

turbations were 
on�ned in this plane with no spatial variations along the normal

dire
tion whi
h is also the dire
tion of magneti
 �eld (generated due to 2D sheared

�ow). However, in three dimensional regime of instability, in addition to KH mode,

a new mode also exists in the plane of magneti
 �eld and shear. This is a lo
al

mode, known as kink mode. In this Chapter, the interplay of these two modes has

been studied for simple sheared �ow 
ase, as well as for the 
ase when an external

magneti
 �eld also exists. The studies have been 
arried out extensively in linear

and nonlinear regimes.
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3.1 Introdu
tion

As we know that the EMHD model 
losely resembles the behaviour of neutral

in
ompressible hydrodynami
 �uid, with the additional 
hara
teristi
 traits asso-


iated with the magnetized ele
tron �uid �ow dynami
s. The magnetized 
har-

a
ter of the ele
tron �uid essentially introdu
es (i) intrinsi
 natural length s
ales,

e.g. ele
tron skin depth and (ii) an os
illatory dispersive whistler mode in the

system. The EMHD model thus provides an interesting paradigm for studying

spe
tral 
as
ade and turbulent features, asso
iated with nonlinearity, in a medium

whi
h 
ontains spe
ial s
ales as well. For instan
e, the presen
e and/or absen
e of

whistler e�e
t on spe
tral 
as
ade have 
ontinued to be debatable in this regard.

It should be noted that the �ow of ele
trons automati
ally has asso
iated with

it an ambient magneti
 �eld. Thus, the possibility of whistler mode ex
itation

exists, if one permits variations along the dire
tion of su
h a magneti
 �eld. For

a sheared ele
tron velo
ity �ow, the asso
iated magneti
 �eld is dire
ted orthog-

onal to the 2D plane of shear and �ow. The study of velo
ity shear instability,

with variations 
on�ned in the 2D plane of shear and �ow, therefore, does not get

plagued by the whistler modes. In the previous Chapter, we had spe
i�
ally added

an external magneti
 �eld along the �ow dire
tion and had studied its impli
ation

due to whistlers on the 2D mode (with variations 
on�ned in the plane of �ow

and shear termed as the pure sausage mode, see Fig. 3.1(a)) of the velo
ity shear

driven instability. The study showed the redu
tion and 
omplete vanishing of the

growth rate of the instability with in
reasing strength of the external magneti


�eld aligned along the �ow dire
tion. The �ow perturbations asso
iated with the

sausage mode had to over
ome the whistler os
illatory mode for growth. Basi
ally
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Figure 3.1: A s
hemati
 diagram showing the pure sausage (subplot (a)) and pure

kink (subplot (b)) perturbations.

the �ow perturbations had to bend the magneti
 �eld lines whi
h be
omes di�
ult

with its in
reasing strength. Thus, in the 2D 
ase, there exists a threshold mag-

nitude of the external magneti
 �eld beyond whi
h the sheared ele
tron �ow was

unable to ex
ite the instability. When perturbations perpendi
ular to the plane

of �ow and shear are permitted, but with no variation along the �ow dire
tion, a

new mode turns up whi
h we term as the pure kink mode as shown in Fig. 3.1(b).

In our studies presented in this Chapter, we permit full three dimensional

perturbations that would in
lude both the modes i.e. sausage and kink in the
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system (modes having general perturbations are termed as mixed modes). The

interplay of these two modes under various physi
al 
onditions has been extensively

studied here. The pure kink mode having no variations along �ow dire
tion may not

be a�e
ted by the addition of an external magneti
 �eld along the �ow dire
tion.

We investigate and 
on�rm this with our 3D studies here. However, the magneti


�eld along the �ow dire
tion may 
hange the growth rate of mixed modes. In

addition, we also employ and external magneti
 �eld along the dire
tion normal

to plane of �ow and shear. This magneti
 �eld may 
hange the growth rate of

pure kink mode and may not a�e
t the pure sausage mode. We try to understand

the role of this magneti
 on the two modes of instability. The nonlinear state

of instability in three dimensions is strongly turbulent due to the dire
t 
as
ade

of power, unlike the inverse 
as
ade in 2D. We also 
arry out the simulations to

understand the spe
tral 
as
ade features with and without an external magneti


�eld present along the �ow dire
tion in the nonlinear regime of instability. The

spe
tral 
as
ade is expe
ted to be anisotropi
 due to the presen
e of whistlers and

the �ow along the preferred dire
tions.

The Chapter has been organized as follows. In se
tion 3.2 we brie�y introdu
e

the model and the equilibrium 
on�guration of the system. Se
tion 3.3 
ontains

linear instability analysis for spe
i�
 equilibrium �ow pro�les (a step pro�le and

a tangent hyperboli
 pro�le) for our studies in the presen
e of external magneti


�eld. Se
tion 3.4 
ontains the results of the nonlinear simulations. We provide the


omparisons of the growth rates from linear theory with the growth rates measured

in the linear regime of the simulations. We also brie�y 
omment on the spe
tral

power 
as
ade features in the presen
e of external magneti
 �eld. Se
tion 3.5

summarizes the studies presented in the Chapter.
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3.2 Model and Governing Equations

We rewrite the normalized EMHD equations (1.1) and (1.2) as below,

∂

∂t
(∇2 ~B − ~B) = ~∇× [~v × (∇2 ~B − ~B)]

~v = −~∇× ~B (3.1)

These equations have been obtained from the 
ombined set of ele
tron �uid equa-

tions and Maxwell's equations under the approximation of ions being stati
 and

providing a neutralizing ba
kground and ignoring the displa
ement 
urrent and

ele
tron density �u
tuations, whi
h would o

ur at the ele
tron plasma period.

The �rst equation represents the evolution of generalized vorti
ity

~∇×{~v− ~A} =

∇2 ~B − ~B and is obtained by taking the 
url of ele
tron momentum equation and

making use of Faraday's law. Se
ond equation is Ampere's law in whi
h displa
e-

ment 
urrent has been ignored (under EMHD assumption). Here, the length s
ale

has been normalized by ele
tron skin depth de = c/ωpe, magneti
 �eld by a typi
al

magnitude 
on
erning any problem, e.g. BN , the time has been normalized by the

ele
tron 
y
lotron period 
orresponding to the normalizing magneti
 �eld BN .

We 
onsider an equilibrium ele
tron �ow velo
ity with a sheared 
on�guration

of the form, ~v0(x) = v0(x)ẑ. This ele
tron �ow, dire
ted along ẑ axis, is sheared

along the x axis. The 2D x− z plane forms the �ow-shear plane of the equilibrium

ele
tron velo
ity distribution. Sin
e the ele
tron �ow also 
onstitutes a 
urrent in

the system, 
orresponding to this �ow, there exists an equilibrium magneti
 �eld

along ŷ, the third dimension, whi
h 
an be obtained by integrating the relation-

ship dB0/dx = −v0(x) (thus B0(x) = −
∫ x

v0(x)dx + C0). In addition to this
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self 
onsistent magneti
 �eld, in our studies we have also 
onsidered the presen
e

of an external homogeneous magneti
 �eld B00ẑ along the �ow dire
tion for our

equilibrium. We now linearize Eqs. (3.1) around this equilibrium to study its sta-

bility. The Fourier transform along y and z 
oordinates and time variable of the

linearized set of equations leads to the following 
oupled set of equations,

d2Bx1

dx2
− (1 + k2)Bx1 =

ky(v
′

0 +B0)vx1
ω̄

+
kzB00vx1

ω̄
(3.2)

d2vx1
dx2

− (1 + k2)vx1 +
Bx1

a
+
kz(v

′′

0 − v0)

ω̄
vx1 +

(kyB0 + kzB00)

ω̄a
vx1 = 0 (3.3)

Here, a = ω̄/[ky(v
′

0+B0)+kzB00] , ω̄ = ω−kzv0 and k
2 = k2y+k

2
z . It should be noted

that in Eqs. (3.2) and (3.3), v0 and B0 are fun
tions of x, whereas B00 appears as

a 
onstant parameter. The instability of the equilibrium has been analyzed in the

next se
tion by evaluating the eigen value ω for the 
ombined set of Eqs. (3.2,3.3)

for given spe
i�
 forms of the equilibrium �ow pro�les.

3.3 Linear Instability

In this se
tion, we analyze the 
oupled linearized Eqs. (3.2) and (3.3) obtained in

the previous se
tion to understand the role of the presen
e of the external B00 on

the 3D instability. We mention here that we would term modes with �nite ky and

with kz = 0 as the pure kink modes. Those with �nite kz, and with ky = 0 as

the pure sausage modes of the system. Modes with both ky and kz as �nite are

the mixed modes. The terms sausage and kink used here are in analogy with the

perturbations of a 
ylindri
al plasma 
olumn in the 
ontext of MHD. The form of
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perturbations for two modes in 
ylindri
al geometry and their representation in the

slab geometry has been shown with the help of a s
hemati
 diagram in Fig. 3.1. We

�rst present the lo
al stability analysis by assuming that the perturbation length

s
ales are smaller than the shear s
ale length.

3.3.1 Lo
al Analysis

Assuming that the perturbation s
ales are smaller than the equilibrium s
ales, we

take the Fourier transform of Eqs. (3.2) and (3.3) also along x dire
tion and obtain

the dispersion relation as follows:

2ω̄(1 + k20) = (v
′′

0 − v0)kz ± {(v
′′

0 − v0)
2k2z

− 4[ky(v
′

0 +B0) + kzB00][kyv
′

0 − k20(kyB0 + kzB00)]}
1/2

(3.4)

Here k0 = (k2x + k2y + k2z)
1/2. The above dispersion relation predi
ts the possibility

of instability when the dis
riminant D = −4[ky(v
′

0+B0)+kzB00][kyv
′

0−k
2
0(kyB0+

kzB00)] + (v
′′

0 − v0)
2k2z < 0. It is 
lear that for v

′

0 = 0 and/or ky = 0, D is always

positive. It shows that the variations perpendi
ular to the plane of �ow and shear

(i.e. ky �nite) along with a �nite value of v′0 is essential for any lo
al instability to

exist. Furthermore, the existen
e of a �nite in-plane magneti
 �eld B00 does not

in�uen
e the growth rate of pure kink modes for whi
h kz = 0. When both ky and

kz are �nite, the growth rate diminishes with in
rease in B00 as the expression for

the dis
riminant 
learly suggests.

It 
an be shown that in various simpli�ed limits, the lo
al dispersion relation

redu
es to well known forms:
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• Case (i): Choosing B00 = 0 the dispersion relation redu
es to,

2ω̄(1 + k20) = (v
′′

0 − v0)kz ± {(v
′′

0 − v0)
2k2z − 4k2y(v

′

0 +B0)(v
′

0 − k20B0)}
1/2
(3.5)

This mat
hes with the dispersion relation of Jain et al. [46℄ obtained earlier.

• Case (ii): For ky = 0 and B00 = 0, the dispersion relation redu
es to the lo
al

dispersion relation obtained by us earlier [34℄ in the 
ontext of 2D sausage

modes.

• Case (iii): For v0 = v
′

0 = v
′′

0 = 0 we obtain,

ω =
(kyB0 + kzB00)k0

(1 + k20)
(3.6)

the dispersion relation for the whistler waves.

It is 
lear that in the presen
e of 3D perturbations, lo
al unstable modes exist for

a sheared ele
tron �ow 
on�guration.

3.3.2 Nonlo
al Analysis: tanh-pro�le

We now 
onsider the general 
ase where the perturbation s
ales 
an be extended.

In this 
ase it will not be possible to take the Fourier transform along the sheared

dire
tion of x. The eigen modes in this 
ase sense the extended pro�le of the

velo
ity shear. The growth rate of instability has to be obtained as an eigen value

of the solution of ordinary di�erential equation. We have 
onsidered a spe
i�


tangent hyperboli
 shear �ow pro�le for the purpose of our studies i.e., v0(x) =

V0tanh(x/ǫ), where 2ǫ is typi
ally the width of shear region around x = 0 and
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| V0 | is the asymptoti
 magnitude of the �uid �ow far from the shear region. The


orresponding equilibrium magneti
 �eld 
an be obtained by integrating Ampere's

law,

B0(x) = −V0ǫ log cosh(x/ǫ) + C0 (3.7)

Here, C0 is the 
onstant of integration and represents a uniform magneti
 �eld

along ŷ dire
tion. We have made use of two 
oupled linearized Eqs. (3.2) and (3.3)

to evaluate the eigen values numeri
ally. The magnitude of the external magneti


�eld B00 along the �ow dire
tion as well as the value of C0 has been varied to study

their role on the instability.

Our linear studies indi
ate that the dominan
e of pure sausage and/or kink

mode gets determined by the following three fa
tors, (i) the 
omparison of shear

s
ale ǫ of the �ow with the ele
tron skin depth. For sharper shear s
ales, the

sausage growth rates are higher. (ii) the addition of B00 along the �ow dire
tion

redu
es the sausage growth rate as for the sausage 
on�guration extra energy is

now required to bend the �eld lines of B00. This �eld, however, does not in�uen
e

the kink growth rates. (iii) The addition of C0, a uniform magneti
 �eld along the

third dimension (perpendi
ular to the plane of �ow and shear), similarly redu
es

the kink growth rate and has no in�uen
e on sausage mode.

In Fig. 3.2(a), we show the surfa
e plot of the growth rate as a fun
tion of kzǫ

and kyǫ for B00 = 0 and C0 = 0. This plot 
orresponds to ǫ = 0.3, i.e. the shear

s
ale is about 1/3 of the skin depth. For this parti
ular value of skin depth, the

maximum growth rate of the sausage mode is almost 
omparable with that of the

maximum growth rate of the kink mode. This has been 
learly illustrated in the

line plots of Fig. 3.2(b) for whi
h the growth rate plot as a fun
tion of kzǫ is shown
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Figure 3.2: The subplot (a) shows the surfa
e plot of the growth rate for the

tangent hyperboli
 velo
ity shear pro�le ~v0(x) = ẑV0 tanh(x/ǫ) as a fun
tion of kzǫ
and kyǫ for B00 = 0 and C0 = 0. For this 
ase V0 = 1.0 and ǫ = 0.3. In subplot (b)

of the �gure the same data for growth rate has been shown as a fun
tion of kzǫ.
The various 
urves show di�erent values of ky. For this 
ase the kink growth rate

for ky = 2, kz = 0 (equal to 0.52) is almost identi
al to the maximum growth rate

of the sausage mode at kzǫ = 0.5, ky = 0 (equal to 0.54).

for various values of ky. It should be noted that for this 
ase, the maximum of the

kink growth rate o

urring for ky = 2, kz = 0 is almost identi
al to the maximum

growth rate of the sausage mode at kzǫ = 0.5, ky = 0. When ǫ is de
reased below
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Figure 3.3: The subplot (a) shows the surfa
e plot of the growth rate for the

tangent hyperboli
 velo
ity shear pro�le ~v0(x) = ẑV0 tanh(x/ǫ) as a fun
tion of kzǫ
and kyǫ for B00 = 0 and C0 = 0. For this 
ase V0 = 1.0 and ǫ = 0.5. In subplot

(b) of the �gure the same data for growth rate has been shown as a fun
tion of

kzǫ. The various 
urves show di�erent values of ky. For this 
ase the kink growth

rate for ky = 2, kz = 0 (equal to 0.43) is higher than the maximum growth rate of

the sausage mode at kzǫ = 0.5, ky = 0 (equal to 0.27). The pure kink mode 
learly

dominates for this 
ase.

the value of 0.3 we observe that the sausage growth rate dominates. However, for

a higher value of ǫ, say = 0.5, the growth rate 
orresponding to the kink modes

dominate the system as 
an be seen from the plots of Fig. 3.3.
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Figure 3.4: Plot of the eigen fun
tions of pure sausage mode (ky = 0). The other
parameter values are V0 = 1.0, ǫ = 0.3, kz = 1.7, B00 = 0.0 and C0 = 0.0.
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Figure 3.5: Plot of the eigen fun
tions of pure kink mode (kz = 0). The other

parameter values are V0 = 1.0, ǫ = 0.3, ky = 2.0, B00 = 0.0 and C0 = 0.0.

82



Chapter 3: Interplay of Kelvin Helmholtz and ...

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k
z

ε

γ

 

 

B
00

 = 0.0

B
00

 = 0.2

B
00

 = 0.5

B
00

 = 1.0

Figure 3.6: Variation of growth rate with kzǫ for di�erent values of uniform mag-

neti
 �eld B00 along �ow dire
tion. The various parameters for this 
ase are

V0 = 1.0, C0 = 0, ǫ = 0.3 and ky = 0.4. The growth rate de
reases as the value of

B00 in
reases.

The eigen fun
tions for pure sausage mode (i.e. ky = 0 and kz �nite) are shown

in Fig. 3.4. We 
an see that there is no stru
ture in Bx1 while, vx1 has a lo
alized

stru
ture in x. The two linearized equations get de
oupled in this 
ase for B00 = 0

and the �eld Bx1 assumes a trivial solution. Whereas, for pure kink mode (ky �nite

and kz = 0), both Bx1 and vx1 are �nite as 
an be observed in Fig. 3.5.

We next study the 
ase when a uniform magneti
 �eld B00 along the �ow

dire
tion is added. It 
an be observed from Fig. 3.6 that for in
reasing values of

B00 the sausage growth rate de
reases 
onsistently. However, the growth rate of

the kink mode kz = 0, and �nite ky does not get in�uen
ed by this magneti
 �eld.

It is 
lear from this �gure (Fig. 3.6) as well as from Fig. 3.7, where the growth
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Figure 3.7: Variation of growth rate as a fun
tion of kzǫ for the 
ase B00 = 1.0
with V0 = 1.0 , C0 = 0 and ǫ = 0.3. The various 
urves 
orrespond to di�erent

values of ky. For this 
ase the kink growth rate for ky = 2, kz = 0 (equal to 0.52)

is higher than the maximum growth rate of the sausage mode at kzǫ = 0.5, ky = 0
(equal to 0.39). The pure kink mode 
learly dominates in this 
ase.

rate plots for various ky has been shown, that the kink growth in this 
ase 
an

signi�
antly dominate the sausage growth. This is physi
ally understandable as

the 3D kink related perturbations do not 
ause the bending of the magneti
 �eld

lines asso
iated with B00, whereas the sausage perturbations do have to bend these

lines. Thus, from energy point of view the kink perturbations 
an dominate even

though the shear s
ale length ǫ is sharp when the value of B00 is in
reased. On the

other hand when C0, whi
h 
orresponds to a uniform magneti
 �eld along the ŷ, is


hosen to be �nite, the growth rate of kink mode redu
es signi�
antly. Whereas,

the sausage mode thrives irrespe
tive of the value of C0. This 
an be seen from

the plots of Fig. 3.8.
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Figure 3.8: The variation of growth rate as a fun
tion of kyǫ has been shown in

subplot (a) for kz = 0 i.e. pure kink modes and in subplot (b) for the value of

kz = 1.7. The di�erent 
urves 
orrespond to the di�erent values of C0 in two

subplots. The other parameters are V0 = 1.0 B00 = 0 and ǫ = 0.3. It is 
lear

from the two subplots that as the value of C0 is in
reased the growth rate of kink


onsistently drops down whereas the pure sausage growth rate is not in�uen
ed by

this �eld.

It would be interesting to see how these fa
tors (predominan
e of one mode over

the other in various situations) �gure in the nonlinear evolution of a 3D system.

We present the results of the nonlinear evolution in the next se
tion.

3.4 Nonlinear Simulations

The 
omponents of the evolution Eqs. (3.1) 
an be expressed in the form of gener-

alized 
ontinuity equations with sour
e terms. The 
omponents have been evolved
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Figure 3.9: The evolution of perturbed energy with V0 = 1.0, C0 = 0 and ǫ = 0.3
for B00 = 0.0 and B00 = 1.0 has been shown in subplots (a) and (b) respe
tively.

The dashed lines shown alongside are having the slope equal to 2γi, where γi is
the growth rate of the maximally growing mode in the system. In subplot (a) the

slope 
orresponds to growth rate of pure sausage mode (with γi = 0.54) whereas,
in subplot (b) the slope 
orresponds to the growth rate of pure kink mode (with

γi = 0.52) whi
h is the maximally growing mode in the system for this 
ase.

in slab geometry using the �ux 
orre
ted s
heme of Boris et. al. [75℄. A suite

of subroutine for solving su
h generalized 
ontinuity equations are available as a

pa
kage known as LCPFCT [74℄. This has been adapted suitably for our system

of equations. At ea
h time step one evolves ∇2 ~B − ~B �rst and then employs a

Helmholtz solver to solve for

~B at the updated time. The updated ele
tron velo
-

ity is obtained from the relationship ~v = −∇ × ~B, whi
h is then used to evolve

∇2 ~B − ~B at the next step. The evolution of total energy was tra
ked throughout

the time of evolution to as
ertain the a

ura
y. We observe that the numeri
al
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Figure 3.10: The evolution of perturbed energy with V0 = 1.0, C0 = 0 and ǫ = 0.1
for B00 = 0.0 and B00 = 1.0 has been shown in subplots (a) and (b) respe
tively.

The dashed lines shown alongside are having the slope equal to 2γi, where γi is
the growth rate of the maximally growing mode in the system. For two 
ases the

values of γi are equal to 1.85 and 1.78 for subplots (a) and (b) respe
tively. The

maximally growing mode for two 
ases is pure sausage mode.

variation of total energy is (∆Etot/Etot) ∼ O(10−6) in the linear regime whereas

the 
hange in the perturbed energy (∆Ep/Etot) ∼ O(10−3). The initial 
ondition

was 
hosen as the sheared ele
tron velo
ity �ow equilibrium of the tangent hy-

perboli
 form, ~v0 = ẑV0 tanh(x/ǫ). This translates to the initial 
ondition for the

magneti
 �eld of the form,

~B0 = −V0ǫ log [cosh(x/ǫ)] ŷ + C0ŷ (3.8)
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Figure 3.11: The evolution of perturbed energy with V0 = 1.0, C0 = 1.0 and ǫ = 0.3
for B00 = 0.0 and B00 = 1.0 has been shown in subplots (a) and (b) respe
tively.

The dashed lines shown alongside are having the slope equal to 2γi, where γi is
the growth rate of the maximally growing mode in the system. For two 
ases the

values of γi are equal to 0.54 and 0.39 for subplots (a) and (b) respe
tively. Here

again the maximally growing mode for two 
ases is pure sausage mode.

We have also often 
hosen an additional uniform magneti
 �eld B00ẑ along the �ow

dire
tion. The presen
e of this magneti
 �eld does not disturb the equilibrium �ow.

However, a �nite B00ẑ in�uen
es the linear growth rate of the system as we saw

in our linear analysis. Here, we have studied the role of this magneti
 �eld along

with C0 on the nonlinear state.

The evolution of perturbed energy has been shown in Fig. 3.9 for the 
ase of

ǫ = 0.3 and C0 = 0 in subplot (a) for B00 = 0.0 and in subplot (b) for B00 = 1.0

respe
tively, depi
ted by the solid lines. The perturbed energy shows a linear rise

in the semilog plot initially. This 
orresponds to the linear growth rate regime.
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Figure 3.12: The plot of averaged ele
tron �ow velo
ity pro�le at various times for

B00 = 0.0 and B00 = 1.0 in subplots (a) and (b) respe
tively. The values of the

other parameters have been 
hosen to be same as in Fig. 3.9. The �attening of

shear pro�le is weaker for �nite B00 
ase.

We observe that the slope of the dashed lines drawn along side for the two 
ases

mat
hes with twi
e of the maximally growing mode 
orresponding to it. While for

(a) the sausage mode has the maximum, for (b) it is the kink mode. The energy

is observed to saturate subsequently when the perturbations a
quire a nonlinear

amplitude. Further, it is interesting to see that for another plot in Fig. 3.10 with

ǫ = 0.1, the sausage mode dominates in both 
ases of B00 = 0.0 and B00 = 1.0. In

addition, in Fig. 3.11, C0 is 
hosen to be �nite for the 
ase of ǫ = 0.3. Here again

the sausage mode dominates for both 
ases of B00 = 0.0 and B00 = 1.0.
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Figure 3.13: Evolution of average wave-numbers in di�erent dire
tions for B00 =
0.0. The values of the other parameters have been 
hosen to be same as in Fig. 3.9.

It is often of importan
e to know the pro
ess of nonlinear broadening of the

shear layer in the presen
e of these unstable modes. The nonlinear broadening

of the shear layer provides the information on the e�e
tive anomalous vis
osity

for the system in the nonlinear regime of the instability. We show the evolution

of the mean �ow pro�le with time in Fig. 3.12 for the two 
ases (a) and (b) of

Fig. 3.9. It is observed that the broadening o

urs mu
h more slowly when the

system evolution is governed by the kink like mode than that of the sausage mode.

This 
an be understood by realizing that during the linear phase, the kink mode

does not alter the 2D �ow stru
ture. Thus, the broadening o

urs for this 
ase

only at a later phase when the nonlinear phase sets in and energy starts to tri
kle

in the other modes as well. This is 
orroborated by studying the time at whi
h

the pro�le gets broadened in the two subplots.

For a 2D EMHD system, typi
ally, one en
ounters inverse 
as
ade of energy
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Figure 3.14: Evolution of average wave-numbers in three di�erent dire
tions has

been shown in three di�erent subplots in 
omparison for two 
ases B00 = 0.0 and

B00 = 1.0. The values of the other parameters have been 
hosen to be same as in

Fig. 3.9.

and the �nal state 
omprises of ordered vortex �ow patterns. However, in the

presen
e of additional external uniform �elds, short s
ale stru
tures were observed

to get formed in 2D [80℄. Here, we investigate the behaviour of the spe
trum in the

nonlinear regime of the KH instability in 3D with and without external magneti


�eld. The plot of Fig. 3.13 shows the evolution of the average wavenumber along

the three dire
tions. The evolution of average wavenumber, along all the three

dire
tions, shows a sudden rise and then a steady slow de
ay whi
h eventually
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shows a saturation. It is observed that the average value of the wavenumber is

typi
ally highest along the dire
tion of shear x̂; along ẑ, the dire
tions of �ow and

ŷ, the dire
tion of the magneti
 �eld asso
iated with �ow, the s
ales are in general

longer in the nonlinear regime. It appears, therefore, that both the presen
e of

�ow and magneti
 �eld inhibits the pro
ess of dire
t 
as
ade of spe
trum towards

higher wavenumbers. This leads to signi�
ant anisotropization of the spe
trum.

In the presen
e of B00, we observe that the evolution of the typi
al s
ale along

the x̂ (shear dire
tion) remains more or less unaltered. This 
an be seen from the

plot of Fig. 3.14. However, the s
ales along the other two dire
tions turn out to

be longer when B00 is �nite than when it is 
hosen to be zero. These results are

in 
onformity with the whistler wave mediated spe
tral 
as
ade features presented

in referen
es [72, 73℄.

3.5 Summary

The study of ele
tron velo
ity shear driven instability in EMHD (Ele
tron Magne-

tohydrodynami
s) regime in three dimensions has been 
arried out. The instability

is non - lo
al in the plane de�ned by the �ow dire
tion and that of the shear and

is the familiar Kelvin - Helmholtz (KH) mode whi
h has often been termed as

the sausage mode in the 
ontext of Ele
tron Magnetohydrodynami
s �ows. On

the other hand a lo
al instability with perturbations in the plane of shear and

the magneti
 �eld exists whi
h has been referred as kink mode. The addition of

an external magneti
 �eld along the shear �ow dire
tion has been shown earlier

to stabilize the sausage modes in 2D. We have shown here that the kink modes

remain unin�uen
ed by this magneti
 �eld and hen
e 
an be the pertinent fastest

growing mode in su
h a s
enario. It is also shown that the addition of external
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magneti
 �eld along the ambient magneti
 �eld dire
tion generated by the �ow

(e.g. perpendi
ular to hear and �ow dire
tion) redu
es the kink mode but the

sausage growth remains unaltered by it. The nonlinear evolution 
on�rms these

observations.

We also observe that the spe
tral 
as
ade towards shorter s
ales in 3D gets

inhibited both along the �ow as well as along the dire
tion of magneti
 �eld. Thus

the shortest s
ales are found along the shear dire
tion, while in the other two

dire
tions, one observes s
ales whi
h are typi
ally longer. This is 
onsistent with

an earlier work where it was shown that the spe
tral 
as
ade is typi
ally mediated

by the whistler wave.
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Chapter 4

Stability of Isi
henko Solutions of

Ele
tron Magnetohydrodynami


Model Against Shear Driven Modes

The studies on velo
ity shear driven Ele
tron Magnetohydrodynami
s (EMHD)

instability in the previous Chapters, have shown that the instability is nonlo
al, if

the variations lie in the plane of �ow and shear. This is usual Kelvin Helmholtz

mode, often termed as sausage mode in EMHD. Besides the KH mode, a lo
al

mode with perturbations in the plane of magneti
 �eld and shear is also known

to exist, whi
h is termed as the kink mode. In this Chapter, we analyze these

instability pro
esses for the exa
t nonlinear solutions of EMHD equations in the

form of monopolar and dipolar magneti
 �eld stru
tures obtained by Isi
henko et

al. [51℄.
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4.1 Introdu
tion

The 
oherent stru
tures play an important role in governing transport properties

of a system. The presen
e of these stru
tures is believed to be the 
ause of phe-

nomena of intermitten
y in turbulen
e. The 
oherent stru
tures 
an be des
ribed

as the exa
t solutions of the nonlinear �uid equations. The studies on transport,

stability and intera
tion pro
esses of these stru
tures provide an understanding of

their role in the turbulen
e. The EMHD equations in 2D permits 
ertain exa
t,

nonlinear ele
tron �ow solutions. These solutions were obtained by Isi
henko and

Marna
hev as the isolated, 
oherent stru
tures [51℄. The �rst variety of solutions

are the rotating ele
tron 
urrents giving rise to monopolar magneti
 �elds. These

monopolar solutions are radially symmetri
 and stationary solutions. The other

variety in
ludes the ele
tron 
urrents produ
ing bipolar magneti
 �elds. These

dipolar solutions are radially non-symmetri
 and propagate with 
onstant speed

in their axial dire
tion.

In their work, Isi
henko et al. have obtained analyti
al 
onditions for the exis-

ten
e of exa
t nonlinear lo
alized solutions of EMHD equations in two dimensions.

They also 
arried out the stability analysis and have shown that the solutions are

stable. The propagation and intera
tion 
hara
teristi
s of su
h EMHD solutions

in a homogeneous plasma have been studied by Das [55℄ and later by Dastgeer [56℄

in 2D. They observe stru
tures to be fairly robust and stable. Various intera
tion

pro
esses amidst monopoles and dipoles have also been studied by them and a

qualitative understanding of the observations has been provided on the basis of

point vortex model (PVM). Subsequent studies in 2D by Sharad et al. [76℄ on

propagation of su
h stru
tures in an inhomogeneous plasma illustrate interesting
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adjustments in shapes. However, the overall integrity of the stru
tures is found to

remain preserved in su
h simulations.

While the monopolar solutions represent stati
 ele
tron 
urrent pulse in plasma,

the dipolar solutions 
an be looked upon as propagating 
urrent pulses. They

thus mo
k up a translating 
urrent pulse in whi
h the 
entral region 
arries a

forward 
urrent (along the dire
tion of propagation) and the outer region 
arries a

reverse 
urrent surrounding the forward 
urrent, a situation of pra
ti
al relavan
e

in various s
enarios. For instan
e, in the 
ase of fast ignition s
enario [5, 6℄, the

hot ele
trons generated by the lasers at the 
riti
al density surfa
e move towards

the dense 
ore and generate the return shielding 
urrent in ba
kground ele
trons to

maintain the 
harge neutrality. This 
on�guration is subje
ted to the Wiebel and

tearing instabilities. Due to these pro
esses the 
urrent �laments are formed whi
h

self-organize through the 
oales
en
e pro
ess and �nally result in few 
ylindri
al


urrent 
hannels in whi
h the return 
urrent surrounds the 
entral forward 
urrent.

The ele
trons 
onstituting the forward 
urrent are good sour
e for heating the 
ore

and produ
e the hot spot for ignition by dumping their energy to the ba
kground

plasma through various pro
esses. Sharad et al. [77℄ have shown in their studies

a novel me
hanism, the formation of 
urrent sho
k, through whi
h these dipoles

dissipate their energy and have dis
ussed the impli
ations of their study to the fast

ignition. The similar 
urrent pulses are aslo formed in other phenomena su
h as

fast magneti
 re
onne
tions [7, 10, 11, 12, 13, 14, 33℄, fast magneti
 �eld transport

[49, 50℄, laser plasma intera
tions [78℄, et
.

The EMHD solutions have an ele
tron �ow 
on�guration whi
h is signi�
antly

sheared (Fig. 4.1). Sin
e the simulations in 2D show the stru
tures to be robust

and stable. It is, thus, of importan
e to understand why the stru
tures are not
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Figure 4.1: Representation of EMHD monopolar and dipolar solutions in the form

of 
urrent pulses. Subplots (a) and (d) show the forms of typi
al monopole and

dipole as lying in x−z plane. The 
orresponding magneti
 �eld and �ow pro�les are

shown in subplots below to them (see subplots (b), (
) for monopole and subplots

(e), (f) for dipole). Here, using the Maxwell's relation, the �ow velo
ity is related

to magneti
 �eld as v0 = −dB0/dx. In subplots (
) and (e) we see that there are

the regions of in �ow and out �ow that make the 
on�guration as the sheared �ow


on�guration.

97



Chapter 4: Stability of Isi
henko solutions ...

sus
eptible to the 2D instabilities dis
ussed in earlier Chapters. An explanation

of this was provided by Sharad et al. [54℄, where they suggest stru
ture size

being 
omparable to the shear s
ale, nonlo
al 2D sausage mode, having a 
ut o�

wavelength of the order of shear s
ale, 
an not be ex
ited. A 3D evolution of these

solutions has not been 
arried out so far where the kink mode, being lo
al mode,

has no su
h 
ut o�s. In this Chapter we study the 3D evolution numeri
ally and

show expli
itely the destabilization of these solutions.

The Chapter has been organized as follows. In se
tion 4.2 we brie�y des
ribe

the nonlinear solutions of EMHD equation. In se
tion 4.3, we present the results

of numeri
al simulations in 3D 
arried out with monopole and dipole stru
tures

as the initial 
onditions in a homogeneous plasma medium. In se
tion 4.4, the

stability of stru
tures against �ow shear driven modes has been dis
ussed. Finally,

in se
tion 4.5, we summarize the out
ome of our study.

4.2 Solutions of 2D EMHD

We re
all the two dimensional EMHD equations (Eqs. 2.1 in Chapter 2),

∂

∂t
(∇2ψ − ψ) + ŷ ×∇b · ∇(∇2ψ − ψ) = 0

∂

∂t
(∇2b− b) + ŷ ×∇b · ∇∇2b− ŷ ×∇ψ · ∇∇2ψ − ψ = 0 (4.1)

Here b and ψ are two s
alars whi
h represent the total magneti
 �eld as,

~B =

bŷ+ ŷ×∇ψ, y is the symmetry dire
tion. Using the property ŷ×∇A·∇B = [A,B],
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the above set of equations (Eqs. 4.1) 
ould be 
ast in the following form,

∂F

∂t
+ [b,F ] = 0

∂G

∂t
+ [b,G] = [ψ,F ] (4.2)

Here F = ψ −∇2ψ and G = b −∇2b. The Eqs. (4.2) are in Hamiltonian form in

terms of non-
anoni
al Poisson bra
kets [81℄ with energy fun
tional,

H = 1

2

∫

[b2 + (∇ψ)2 + (∇b)2 + (∇2ψ)2]dxdz,

whi
h is the total energy (sum of the magneti
 energy and the kineti
 energy) of the

system. In Eqs. 4.2 the �eld b a
ts as a stream fun
tion whi
h adve
ts the quantities

F and G. The quantity F is adve
ted as a Lagrangian invariant whi
h represents

the 
onservation of generalized momentum along y dire
tion. The quantity G, in

addition to adve
tion, has a sour
e term in the evolution equation, and is not a

Lagrangian invariant.

The Poisson bra
ket in Eqs. (4.2) vanishes for radially symmetri
 forms. Hen
e

the symmetri
 stru
tures i.e. monopoles are exa
t, stationary solutions of these

equations. Any 
olle
tion of monopoles separated by a distan
e mu
h larger than

their spatial extent su
h that there is no spatial overlap among them, is also a

solution. Two monopoles when pla
ed su�
iently 
lose to ea
h other in�uen
e

the dynami
s of ea
h other. The another interesting solution whi
h is a traveling

dipole, is indeed a manifestation of this intera
tion. A dipole 
an be imagined

as a 
ombination of two monopoles of equal strength but opposite polarity pla
ed

in the vi
inity of ea
h other. The net results of intera
tion is the translation of

the 
ombined stru
ture. These solutions were obtained analyti
ally by Isi
henko

et al. [51℄ by seeking the stationarity in a moving frame. The solutions are the
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ombination of Bessel fun
tions of various kinds.

Consider the 
ase that the 
urrents lie in the x − z plane only i.e. ψ = 0. For

this, Eqs. (4.2) redu
e to,

∂

∂t
(b−∇2b) + [b, b−∇2b] = 0 (4.3)

Stationary monopolar solutions 
an be obtained for [b, b−∇2b] = 0 whi
h suggests

∇2b = f(b). Here, f is a fun
tion of b. For instan
e, a lo
alized b of the following

form 
an be one su
h solution,

b = A0exp

{

−
(x− x0)

2 + (z − z0)
2

σ2

}

(4.4)

Here, A0 and σ are 
onstants whi
h de
ide the strength and spatial extent of the

stru
ture, respe
tively. The other 
onstants x0 and z0 �x the lo
ation of 
entre of

the stru
ture in the 2D spa
e. This form we have used in our studies as the initial


onditions for monopole.

The propagating dipole solutions are obtained by transforming the 
oordinates

to a frame moving with uniform velo
ity U along z dire
tion. Stationarity in this

frame yields,

[∇2b− b, b− Ux] = 0 ⇒ ∇2b− b = fb(b− Ux) (4.5)

Here, fb is an arbitrary fun
tion of (b − Ux). Isi
henko et al. [51℄ have obtained

the analyti
al solutions whi
h are lo
alized within a �nite spatial extent a0. In the

inner region (r ≤ a0), the vorti
ity sour
e fun
tion is 
hosen to be a linear fun
tion

of its argument as, fb(= β(b− Ux)). For lo
alization, the fun
tion fb is 
hosen to
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vanish (i.e. β = 0) in the outside region (r > a0). Solutions are obtained in the


ylindri
al 
oordinates as given below,

1

b = [d1J1(kr) + d2r]cos(θ); r ≤ a0

b = d3K1(r)cos(θ); r > a0 (4.6)

Here, d′s and k are unknown 
onstants whi
h are determined from the mat
hing

of �eld b and its derivatives at r = a0. The above solutions of b form the dipole

stru
ture for a set of free parameters (U, β, a0). These solutions with the known


onstants are then used as initial state in our studies.

4.3 Nonlinear Simulations

To study the evolution of the EMHD stru
tures (monopole and dipole) against

3D perturbations we have 
arried out 3D nonlinear simulations. The simulation

s
heme is the same as adapted in Chapter 3. The initial 
onditions 
hosen are

monopole and dipole stru
tures. Boundary 
onditions are 
hosen to be periodi


in all the three dire
tions. The values of various parameters have been mentioned

wherever required. We have 
he
ked for the 
onservation of total energy in our

simulation run(s) to as
ertain that there is no numeri
al instability.

Evolution of Monopole:

The monopole stru
ture has been 
hosen to lie in the x− z plane. The monopole

magneti
 �eld is along y - dire
tion. We show the 
ontour lines showing the

magneti
 �eld of the monopole in the x− y plane at various times in Fig. 4.2. The

1

Detailed mathemati
al derivation of solutions 
an be seen in Ref. [82℄.
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Figure 4.2: The 
onstant magneti
 �eld 
ontours of the monopole have been shown

at various times in the x− y plane.


ontour lines whi
h are straight initially (as the equilibrium is independent of y)

evolve to show the development of instability (at t = 3.24123). The instability

be
omes more pronoun
ed at later time, say at t = 3.83055. Up to this time the

monopole 
ontinues to maintain its identity and remains stable, although its shape

gets somewhat distorted. This 
an be seen from the subplots of Fig. 4.3 at the


orresponding times. This �gure shows the 
ontour stru
tures of monopoles in the

x− z plane. In the later subplot of Fig. 4.2, short s
ale patterns are seen and the

monopole at 
orresponding times (in Fig. 4.3) shows 
onsiderable disintigration.

102



Chapter 4: Stability of Isi
henko solutions ...

Figure 4.3: The 
onstant magneti
 �eld 
ontours of the monopole have been shown

at various times in the x−z plane. These times are similar to those of the subplots

of Fig. 4.2.

Evolution of Dipole:

In another simulation, we study the evolution of dipole stru
ture as given in Eq. 4.6.

The dipole stru
ture has been 
hosen to lie in the x − z plane and propagating

along z - dire
tion. The dipole magneti
 �eld is along y - dire
tion. We show the


ontour lines showing the magneti
 �eld of the dipole in the x− y plane at various

times in Fig. 4.4. As the dipole propagates with an axial speed z, the z lo
ation of

the 
hosen x−y plane in the �gure 
orresponds to the 
entral region of the dipole.

The 
ontour lines whi
h are straight initially (as the equilibrium is independent of
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Figure 4.4: The subplots show the plots of the magneti
 �eld lines in the x −
y plane for z = 0.0, 1.87, 3.68, 5.5,−2.06 and 0.35 
orresponding to times t =
0.0, 359.561, 859.561, 1859.56, 3109.5 and 4859.45 respe
tively. The z lo
ation at

these times 
orrespond to the lo
ation of the mid plane of the dipole stru
ture

as it propagates. The magneti
 �eld lines whi
h are initially straight as there

is no dependen
e of equilibrium on y later due to the kink instability a
quire y
dependen
e.

y) evolve to show the development of instability (at t = 359.561). The instability

be
omes more pronoun
ed at later time, say at t = 859.561. Up to this time

the dipole 
ontinues to maintain its identity and 
ontinues to propagate stably,

although its shape gets somewhat distorted. This 
an be seen from the subplots

of Fig. 4.5 at the 
orresponding times. This �gure shows the 
ontour stru
tures of

dipoles in the x− z plane at y = 0.0. Later, the magneti
 �eld lines of the plot in

Fig. 4.4 develop a wider bulge and form an island stru
ture (at t = 1859.56). At
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Figure 4.5: The 
onstant magneti
 �eld 
ontours of the dipole have been shown at

various times in the x− z plane. These times are similar to those of the subplots

of Fig. 4.4.

these later times the dipole shows 
onsiderable disintegration. At subsequent times

the dipole stru
ture disintegrates 
ompletely and small s
ale stru
ture formation


an be observed.

4.4 Dis
ussion

The stru
tures both monopoles and dipoles, in our simulations, are found to be

unstable. These stru
tures, however, were stable against sausage mode in their 2D

evolution, where kink mode was not supported. The stability of stru
tures against
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sausage mode had been argued by Sharad et al. [54℄ on the following basis. For

these stru
tures, the shear layer width as well as the total extent of shear �ow both

have an extent of typi
al ele
tron skin depth size. The sausage mode 
an only be

ex
ited if a s
ale length along the �ow dire
tion is longer than the shear width,

e.g., referred to as kzǫ < 1 (kz being the wavenumber along the �ow dire
tion and

ǫ being the typi
al shear width) in earlier work. The total extent of the shear �ow

being limited in size permits no wavenumber to satisfy the 
riteria of kzǫ < 1,

hen
e the stru
tures remain stable to the sausage mode. The kink mode, however,

is free from this kind of restri
tion. Hen
e, in our simulations, where kink mode is

also operative, the stru
tures show destabilization.

The unstable behaviour of the stru
tures raises the question of their relavan
e

in various phenomena des
ribed in earlier studies. One needs to 
ompare the

instability growth rate along with the time s
ales involved in the phenomena to

investigate the relaven
e of the stru
tures. We 
hoose to dis
uss here the study by

Sharad et al. [77℄. In their study, the dipoles, while moving in an inhomogeneous

plasma medium, are shown to dissipate their energy through the me
hanism of


urrent sho
k formation. Impli
ations of the study were shown in the fast ignition

phenomena. The study, being two dimensional, does not support the kink mode.

However, in real 3D situation the dipoles would be
ome kink unstable as shown

by us. We need to 
ompare here, the time s
ale at whi
h dipoles dissipate their

energy with the growth rate of kink instability to see the relevan
e of dipoles.

As obtained by Sharad et al. [77℄, the rate of energy dissipation in the sho
k

stru
ture is,

Q =
b20a

2

2
KLve (4.7)
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Here, b0 is the typi
al value of magneti
 �eld in dipole, ve is the typi
al in
oming

velo
ity of dipoles and a is the system length along the transverse dire
tions. L

is the typi
al sho
k length and K is the inverse of the normalized density s
ale

length. The time s
ale T at whi
h the dipole energy gets dissipated is obtained as,

T =

b2
0

2
a2L

Q
∼

1

Kve
(4.8)

This suggests that the dissipation would o

ur fast for the sharp density gradients.

Let us now re
all the lo
al dispersion relation for the kink mode obtained as

Eq. (3.5) in Chapter 3,

2ω̄(1 + k20) = (v
′′

0 − v0)kz ± {(v
′′

0 − v0)
2k2z − 4k2y(v

′

0 +B0)(v
′

0 − k20B0)}
1/2

(4.9)

The above dispersion relation predi
ts the lo
al instability when the dis
riminant

D = −4k2y(v
′

0 +B0)(v
′

0 − k20B0) + (v
′′

0 − v0)
2k2z < 0. It is 
lear that ky and v

′

0 need

to be �nite for the instability to exist. However, �nite values of kz and B0, make

the task of ex
iting kink mode di�
ult. Choosing kz = 0 and also B0 = 0, the

growth rate of instability yields,

γ =
2kyv

′

0

2(1 + k20)
∼

kyv0
ǫ(1 + k20)

(4.10)

Here, ǫ is the shear width or size of the dipole. For k ∼ 1, the γ ∼ v0/2ǫ. This

suggests that the instability growth rate diminishes as the shear width in
reases,

as known.

The two time s
ales T and γ−1
would 
ompete with ea
h other to tell whi
h

pro
ess is dominant. For dipoles to be of relevan
e i.e. when dissipative pro
ess
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is dominant, the 
ondition γT < 1 should be satis�ed. This means that dipoles

dissipate their energy before the instability destroyes them. Sin
e the �nite value

of kz and B0 redu
e the instability growth rate, the 
ondition γT < 1 may be

favourble in this parameter regime. Hen
e the dissipative pro
ess may be impor-

tant. In the other limit i.e. γT > 1, the dipoles de
ay due to instability before

the dissipation phenomena takes pla
e and hen
e may not be of relevan
e. One,

thus, needs to look into the parameter spa
e of kink growth rate and 
ompare it

with the dissipation time s
ale T to establish the usefulness of the dipole stru
-

tures. The expression for growth rate of kink mode Eq. 4.9 is only approximate

one and is valid only in the lo
al limit. For more a

urate and detailed dis
ussion

the nonlo
al analysis of the instability needs to be taken into a

ount; the study

is underway.

4.5 Summary

In this Chapter, we have investigated the stability of Isi
henko solutions of 2D

EMHD against the three dimensional perturbations. The solutions are the 
oher-

ent, lo
alized stru
tures in the form of stationary monopoles and traveling dipoles

whi
h propagate with 
onstant speed in their axial dire
tion. The ele
tron �ow


on�guration is signi�
antly sheared in these stru
tures and hen
e are sus
eptible

to the velo
ity shear driven instability pro
esses. It is known that for 2D perturba-

tions (variations 
on�ned in the plane of �ow and shear only), the unstable mode

is sausage mode whi
h is a nonlo
al mode. When the variations along the third

dimension are also allowed, another mode exists, whi
h is a lo
al mode and termed

as the kink mode.

The EMHD stru
tues are known to be very robust and stable against the
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2D sausage mode perturbations. However, in our three dimensional nonlinear

simulations, we observe that the they get destabilized due to the kink mode. The

puzzling behavior of stru
tures (stability for sausage and instability for kink mode)


an be understood from the following argument. The stru
ture size does not permit

the wavenumber to satisfy the instability 
riteria of sausage mode for whi
h the

wavelength should be broader than the shear width, and hen
e the stru
tures are

stable to sausage mode. However, for kink mode whi
h is lo
al in nature, the

wavelengths sharper than the shear width are also unstable. Hen
e the stru
tures

be
ome unstable due to the presen
e of this mode.
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Chapter 5

Summary and Future S
ope

This Chapter presents the summary and 
on
lusion of the work 
arried out in

the thesis. The Chapter also provides the dis
ussion on possible future resear
h

problems in 
ontinuation to the work presented in the thesis.

5.1 Summary and Con
lusions

The work in the thesis has been fo
used on the studies of shear driven EMHD

instabilities in plasmas. Here, we present summary of the work 
arried out in

previous Chapters with a brief dis
ussion on the important results obtained therein.

• Role of natural length and time s
ales of EMHD on 2D Kelvin

Helmholtz instability

Kelvin Helmholtz (KH) instability is one of the prominent �uid instabilities

in whi
h interfa
e of two �uids in relative motion is unstable under 
ertain


onditions. In the 
ontext of EMHD, the instability has been studied in


onsiderable detail [34, 45, 46, 47℄. In this thesis, we explore the instability
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further under 
ertain additional 
onsiderations. Due to its ele
tromagneti



hara
ter, the EMHD model exhibits natural length (ele
tron inertia) and

time (whistler period) s
ales. We have studied the role of these natural s
ales

of EMHD on KH instability in 2D, in Chapter 2. Here, 2D refers to the 
ase

when the perturbations are 
on�ned in the 2D plane 
onsisting of �ow and

shear dire
tions. The self 
onsistent magneti
 �eld arising due to 2D sheared

�ow of ele
trons, is dire
ted along the symmetry dire
tion. A linear analysis

solves the problem as matrix eigen problem and obtains the eigen values

as the growth rate of the instability. It is observed that the growth rate

de
reases as the shear width is in
reased in 
omparison to the ele
tron skin

depth. The instability is prominent only when the shear in the ele
tron �ow

velo
ity is sharper than the ele
tron skin depth.

In order to understand the role of whistlers on the instability, a uniform

magneti
 �eld (B0) is imposed along the dire
tion of �ow. This magneti


�eld, being tied to the �uid �ow, gets distorted to a sheared 
on�guration due

to the a
tion of KH. The tension 
aused by this distortion tries to restore the

magneti
 �eld lines to its original 
on�guration and sets up the os
illations

at whistler frequen
y. The pro
ess of ex
iting whistlers 
osts energy and

opposes the growth of KH mode. Consequently, KH growth rate is found

to redu
e with in
reasing B0. Nonlinear �uid simulations were 
arried out

to understand the role of whistlers in the nonlinear regime of instability.

The instability growth rates with and without B0 in simulations mat
h with

linear theory, this validates the simulation 
ode. In the absen
e of B0, the

2D EMHD model is known to 
onserve two non-dissipative square integrals

namely, energy and enstrophy. This 
onstrains the power transfer in the
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nonlinear regime towards longer s
ale due to the pro
ess of inverse 
as
ade.

As a result, in simulations for the 
ase of B0 = 0, the �nal nonlinear state

is a 
oherent pattern o

upying the box size. However, in the presen
e of

B0, the nonlinear 
as
ade is governed by the intera
tions among whistlers

and exhibits strong anisotropi
 
hara
ter [72, 73℄. In the �nal nonlinear

state the stru
tures are seen preferentially elongated along the dire
tion of

magneti
 �eld. There is hardly any extension along the transverse dire
tion.

As a result, the mixing of the �uids �owing in two dire
tions indu
ed by KH

instability gets 
onsiderably redu
ed. Hen
e, the e�e
tive vis
ous 
oe�
ient

is found to be signi�
antly smaller for this 
ase.

• Interplay of Kelvin Helmholtz and kink modes

In Chapter 3, we 
arried out linear and nonlinear studies of velo
ity shear

driven 3D EMHD instability. In these studies, we permit the spatial vari-

ations along the dire
tion of self-
onsistent magneti
 �eld generated due to

sheared �ow. In addition to the sausage mode (KH mode), a lo
al mode

with perturbations in the plane of shear and the magneti
 �eld exists whi
h

is termed as the kink mode [35, 46℄. The interplay of these modes with and

without external magneti
 �eld has been studied extensively in the linear and

nonlinear regimes. The studies indi
ate that the dominan
e of one mode over

the other is mainly determined by the following three fa
tors: (i) The value

of shear width in 
omparison with ele
tron skin depth. For sharper shear

width the sausage growth rate is higher. (ii) The external magneti
 �eld

(B00) along the �ow dire
tion. The presen
e of B00 stabilizes the sausage

mode and does not a�e
t the kink mode. So, kink may be the dominant

mode for this 
ase. (iii) The external magneti
 �eld (C0) along the dire
-
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tion of magneti
 �eld generated by the �ow. The presen
e of C0 redu
es the

growth rate of kink mode and does not a�e
t the sausage growth rate. So,

sausage 
an dominate in these 
onditions.

Nonlinear simulations of 3D instability were also 
arried out. The linear

growth rates obtained from various simulation runs are in agreement with

the linear results. Unlike the 2D 
ase, the nonlinear state is found to be

strongly turbulent [43, 47℄. This is due to the non existen
e of two non-

dissipative square invariants and also the larger number of unstable modes

in 3D. We have analyzed the spe
tral 
as
ade features of the turbulen
e gen-

erated in the nonlinear state with and without external magneti
 �eld along

the �ow dire
tion. It is observed that the spe
tral 
as
ade towards shorter

s
ales is inhibited along the dire
tion of �ow as well as the dire
tion of mag-

neti
 �eld. The shortest s
ales are thus found to generate along the shear

dire
tion while, in other two dire
tions the s
ales are typi
ally longer. This

indu
es signi�
ant anisotropy in the spe
trum. In simulations with the exter-

nal magneti
 �eld (B00) present along the �ow dire
tion, we observe that the

s
ales along the shear dire
tions are more or less un
hanged. However, along

the other two dire
tions, the s
ales are longer in 
omparison to the 
ase when

this magneti
 �eld is not present. These results are in 
onformity with the

whistler mediated spe
tral 
as
ade features [72, 73℄. We have also measured

the nonlinear broadening of shear layer whi
h provides the information on

the e�e
tive vis
ous 
oe�
ient. The broadening of shear layer o

urs mu
h

slowly for the 
ase when magneti
 �eld is present along the �ow dire
tions.

In that 
ase the system evolution is governed by the kink mode whi
h in

the linear phase does not alter the 2D �ow stru
ture. The broadening o

urs
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only at later nonlinear phase when the energy starts to tri
kle in other modes

as well.

• Stability of Isi
henko solutions against sausage and kink modes

The 2D EMHD system has exa
t stationary monopole and propagating dipo-

lar solutions of lo
alized ele
tron �ow stru
tures, obtained by Isi
henko et al.

[51℄. The 2D evolution of these stru
tures has been studied in 
onsiderable

details by several authors [55, 56, 76, 77, 54℄, where they have been found

to be stable. The dipole solutions are of pra
ti
al importan
e as they 
an

be imagined as propagating 
urrent pulses 
arrying energy and momentum.

They may be employed for the purpose of hot spot generation in Fast Ignition

s
enario by dumping their energy to the 
ore through 
ollision less pro
esses

[77℄. The ele
tron �ow 
on�guration is signi�
antly sheared in these stru
-

tures and hen
e 
ould be sus
eptible to various �ow shear driven instability

pro
esses (sausage and kink modes, studied by us in Chapters 2 and 3). In

Chapter 4, we have investigated these instability pro
esses for EMHD stru
-

tures. For this purpose, we have 
arried out 3D nonlinear simulations to see

the evolution of the monopole and dipole in a homogeneous plasma medium.

As mentioned above, the EMHD stru
tures, monopole and dipole, are known

to be very robust and stable in their 2D evolution [55, 56, 76, 77, 54℄. In

2D, kink mode is not supported and the stru
tures are stable to sausage

mode. Stability of stru
tures against sausage mode 
an be understood by

the following argument, as provided by Sharad et al. [54℄. The stru
ture size

does not permit the wave number to satisfy the instability 
riteria of sausage

mode viz., kzǫ < 1; here, `kz' is the wavenumber along the �ow dire
tion

and `ǫ' is the shear width. Hen
e, the stru
tures are stable to sausage mode.

114



Chapter 5: Summary and future s
ope

However, kink mode, being a lo
al mode, does not have to follow su
h kind of


riteria and the stru
tures 
ould go unstable due to this mode. In fa
t, in our

three dimensional simulations, where kink mode is also in a
tion, we observe

that the stru
tures get destabilized. The unstable behaviour of stru
tures

raises a question of their relevan
e in various phenomena as des
ribed earlier

[55, 56, 77℄. The magnitude of instability growth rate needs to be taken into


onsideration along with the time s
ales involved in various phenomena to

investigate the relevan
e of these stru
tures. A dis
ussion on this has been

provided in the thesis.

5.2 Future S
ope

We dis
uss here the possible future resear
h problems as an extension of the work

presented in the thesis.

• In Chapter 2, we have employed an external magneti
 �eld parallel to �ow in

order to understand the role of whistlers on KH instability. In the absen
e of

this magneti
 �eld, nonlinear state is a 
oherent vortex. However, with the

magneti
 �eld present, su
h vortex is not seen in the later nonlinear phase in

simulations. Strength of the magneti
 �eld applied is typi
ally of the order

of self- 
onsistent magneti
 �eld. For weak and very weak magneti
 �eld


ases, �Disruptive� and �Dissipative� phenomena of vortex, as seen in MHD

studies, 
ould be investigated.

• In Chapter 4, we have studied the stability of dipole solution obtained for

the 
ase when ψ = 0 i.e., 
urrents lie in 2D plane of dipoles. Stability of

dipoles for ψ �nite 
ase against kink mode 
an also be 
arried out.
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• In our studies, the kink mode is shown to exist in the plane 
ontaining the

dire
tion of self-
onsistent magneti
 �eld and of shear (see Fig. 1.1). The

magneti
 �eld pro�le 
onsidered has a de�nite sign i.e. does not have a

null-line. In the same 
on�guration (perturbations 
on�ned in the plane of

magneti
 �eld and shear), another unstable mode may also be present, but

for a reversed magneti
 �eld 
on�guration. This is the well-known tearing

mode whi
h leads to the re
onne
tion of �eld lines in the presen
e of ele
tron

inertia [33, 7℄. The two instabilities, tearing and kink, 
an be investigated

simultaneously for an equilibrium magneti
 �eld.

• A general three dimensional study 
an then follow by allowing the variations

along the �ow dire
tion as well, that would in
lude the Kelvin Helmholtz

(KH) mode also in the system.

• We have modeled our studies using slab 
oordinate system. However, the


urrent 
on�gurations, des
ribed in various phenomena, are 
ylindri
al in

shape. It is, thus, important to 
arry out the studies in 
ylindri
al geometry

for more realisti
 des
ription.

• There are typi
al situations e.g., fast ignition, where the sheared �ow 
on-

�gurations of ele
trons moving at relativisti
 speeds exist. It is, thus, of

importan
e to understand the role of relativity on the �ow shear driven in-

stability.
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