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Abstract
Plasma is a very complex medium. A typical plasma medium is a charged many
body system which generates and responds to electromagnetic fields and behaves
in a collective fashion. Often, simplifications in such a complex plasma system
are desirable. A gross simplification is possible by adopting a macroscopic fluid
picture wherein properties averaged over a large number of particles constitute
a small fluid element whose propagation can be followed up in space and time.
Furthermore, due to the huge difference in the masses of the constituent species of
the plasma (ions are typically 1840 times heavier than electrons), their response
times are very different. Hence, a further simplification is possible if the phenom-
ena under consideration falls under the time scale regime where only one of the
constituent regime can have a dominant response. The exploitation of such time
scale separation has led to various simplified models for plasma depiction. Based
on the idea of the exploitation of time scale separation, plasma phenomena can be
broadly categorized into two groups: (a) Slow ion time scale phenomena, where
one can assume instantaneous response of electrons and (b) fast electron time scale
phenomena, for which ions are assumed to provide merely a stationary neutral-
izing background. In both the regimes of (a) and (b) further simplifications are
possible and have been adopted in literature, based on more definite information
about the phenomena under consideration. While the regime of ion response has
been studied extensively since almost a century and interesting studies are still
being pursued in this area, the phenomena associated with fast electron time scale
response has been relatively less explored. It is only recently (with the advent of
fast high power lasers) that the laboratory plasma can be triggered to respond and
diagnosed at these time scales, and studies in this regime have gained prominence.

We have chosen to investigate some fundamental issues which also have prac-
tical relevance in the regime of fast electron time scale response in plasmas. In
particular, the thesis explores the electron shear flow driven instabilities and co-
herent nonlinear solutions that may form in this domain of plasma response. The
magnetized and relativistic nature of the electron fluid produces interesting fea-
tures in the electron shear flow driven Kelvin - Helmholtz (KH) like mode of the
plasma. The study concerning this instability has been presented in the part - I of
the thesis. In part - II, the study of the existence of nonlinear coherent structure
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in the coupled laser plasma system has been presented. The dynamical evolution
of some of the solutions and questions pertaining to the stability of some of these
structures have also been looked at.

The sheared electron flow in the non-relativistic regime has often been described
by a reduced fluid Electron Magnetohydrodynamic (EMHD) model. EMHD model
describes the dynamics of magnetized electron fluid in the presence of self-consistent
and external electric and magnetic field on time scales in between electron and ion
gyrofrequencies. Here, ion dynamics is completely ignored and role of ions is simply
to provide neutralizing background. The electron fluid is assumed to be incom-
pressible in this limit, the density perturbations as well as the displacement current
are assumed to be negligible in this case.

The EMHD model resembles closely the neutral hydrodynamic fluid system
and hence the characteristic neutral fluid instabilities are also present here as well,
albeit with appropriate modifications due to magnetized character of the electron
fluid. The distinction and similarities of the KH mode in neutral fluid and the
EMHD has been outlined in the past by several authors. The sheared flow of elec-
trons also constitutes a sheared current in the plasma. It has so far not been clear,
which between the two, the current shear or the velocity shear, was responsible for
the instability of sheared electron flow configuration. It is for this reason that this
mode has often been also referred to as the sausage and/or kink mode [1, 2], the
nomenclature used when the current shear produces instability in a plasma. We
have employed a generalised Electron Magnetohdrodynamic description to distin-
guish a sheared current flow configuration from the case with velocity shear, by
choosing an appropriately tailored inhomogeneous electron density profile. The
instability studies carried out for the two configuration then clearly shows that in
2-D the instability is driven by the shear in electron flow velocity, and hence it is
a KH like mode. The interpretations for certain characteristic features, such as
existence of a threshold wavenumber along the flow direction and the excitation of
sharper scales in the direction normal to both shear and flow directions, the order
of magnitude estimation of the growth rate etc., from physical considerations of
the release in the free energy source has also been provided by us.

An important practical implication of the KH instability driven by a sheared
electron current flow can be in the context of fast ignition (FI) mechanism of
laser fusion [1–6]. The FI is a variant of the inertial confinement fusion scheme
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in which the task of material compression is separated from that of ignition by
employing two separate laser pulses. While the compression is done by a slow
nanosecond laser pulse, for ignition one employs a fast sub-picosecond laser. The
ignitor pulse is unable to penetrate the overdense compressed target core and
instead produces hot energetic electrons which propagate towards the compressed
target core. It is desirable that these energetic electrons dump their energy in the
compressed core of the target to produce the hot spot for ignition. The transport
of energetic electrons in the plasma, is therefore an important issue. The flow of
energetic electrons is typically countered by reverse shielding current provided by
the background plasma immediately. The forward and background currents, upon
suffering Weibel, tearing and coalescence instability produce cylindrical current
channels. The central portion of which carries the forward current and the external
cylindrical shell carries the reverse shielding current. The flow of electrons in the
cylinder along its axis, therefore, has sufficient shear in the radial direction. This
sheared flow configuration would in general be susceptible to the KH instability.
However, since the energetic electron flow can be relativistic, it is important that
the relativistic effects on the EMHD KH mode be understood. For this purpose,
we have carried out a detailed investigation of the KH mode in the relativistic
regime.

Our studies on the KH mode for the sheared electron flow which is relativistic
reveals that there are characteristic differences with the nonrelativistic case. We
have shown that the incorporation of displacement current (as the flows are now
relativistic) has little influence on the mode. However, as the relativistic mass
factor can also be sheared, we observe that the possibility of exciting modes sharper
than the velocity shear scale in the flow direction exists. We also show that the
unstable domain of the wave-number space is considerably wider in this case and
the mode does not remain purely growing but acquires a real frequency even for a
purely antisymmetric velocity profile. We have provided an understanding of these
features observed in the strongly relativistic regime as resulting from the shear in
the relativistic mass factor γ0.

The results of the weakly relativistic case observed from numerical analysis has
also been reproduced by a perturbative analytic treatment. A good matching be-
tween the numerical exact results for the maximum growth rate and the threshold
wave vector has been demonstrated by us.
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In the second part of the thesis, we have looked at the problem of the coupling
of the laser and the plasma medium. We have, in this context, sought exact propa-
gating nonlinear coherent solutions for the coupled set [7–14]. Existence of several
distinct varieties of solutions have been demonstrated. The different structures oc-
cur in a different parametric domain of the frequency λ vs the propagation speed
β. Some solutions occur in a continuum band of the λ vs β plane while others
are only permitted in discrete regime and satisfy certain eigen value condition.
We have carried out a detailed characterization of these solutions and have also
provided a physical interpretation of their existence in the particular regime of the
λ vs β parametric space.

We notice that for solutions moving with the group velocity of β = 0 and/or
very small, the assumption of static ions should not be made. We, therefore in-
corporated the effect of ion dynamics and investigated the eigen spectra afresh.
We notice several additional new varieties of solitonic structures in this case. We
also observe that the bright soliton solutions (with light pulse trapped within the
central region) are not permitted at low group velocities in this case. Instead dark
solitonic structures can form. At the edge, a particular variety of flat top solutions
are shown to exist.

A detailed dynamical evolution of the flat top solutions have also been carried
out. The studies show that the flat top solutions propagate stably for several
plasma periods. However, they are observed to be susceptible to an instability,
which has been identified as the backward Brillouin instability process. In the cold
plasma, it is a quasi-mode where the role of temperature is played by the electron
quiver velocity.

Further extension of our work in both the problems can be carried out. The
linear analysis of the relativistic flow shear driven instability in EMHD is useful
in understanding the basic physics of the excitation of the unstable mode but
nonlinear studies are very important. With the nonlinear studies we will be able
to have deeper insights regarding the evolution properties, saturation etc. The
nonlinear studies of the relativistic EMHD mode would be crucial for the estimation
of the effective transport properties of the electron flow. This is specially pertinent,
as pointed out by us, in the context of FI concept of laser fusion.

The dynamical evolution of flat-top solitons has shown that they develop a
backward Brillouin scattering instability. It would be interesting to see how some
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of the stable structures behave when the two-dimensional perturbations allow for
a side scattering process. The three-dimensional generalization, the effect of rel-
ativistic temperature on the stability properties and dynamics of electromagnetic
solitons are other issues of interest for future investigation.
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Chapter 1

Introduction

The thesis is devoted to the study of certain fundamental aspects of the plasma

behaviour pertaining to those time scales at which the lighter electron species have

a dominant dynamical role. Simplified fluid models (existing as well as extended)

based on the idea of time scale separation have been adopted to study certain

frontier issues of fundamental as well as applied interest in this regime. These issues

illustrate both cases e.g. wherein only electron dynamical response is important

and when the retention of the coupling of the electron dynamical response with

the slow response of heavier ion species is crucial.

One of the ways in which a plasma can be triggered to respond at the fast

electron response scales is through ultra fast short intensity lasers. In this thesis,

we have explored both situations, namely the evolution of a disturbed plasma once

the laser pulse has left and the other case when the laser light is present and plasma

continues to interact with it.

1



1.1 Motivation

The understanding of evolution of any system of interest is an issue of prime im-

portance. The laws of physics attempt at providing such an understanding. The

difficulty, however, often lies with the huge number of degrees of freedom associated

with any given system which needs to be evolved by appropriate equations of mo-

tion for its proper and complete understanding. Such a difficulty is often overcome

by invoking suitable set of approximations. For instance, in the particular case of

plasma medium an illustration of such approximations can be gleaned by looking

at its properties and the descriptions that are normally adopted to understand its

evolution under various circumstances. A typical plasma medium consists of a col-

lection of positively and negatively charged ions and electron species respectively.

The particle number density and the temperature range wherein the plasma state

of matter is observed in the universe, covers a very wide range. This has been

depicted in the plot of Fig. 1.1. Clearly, any of these plasma systems constitutes

a very large number of particles, the evolution of each of the particles ultimately

determines the overall evolution of the system.

1.2 Adoption of fluid model

To understand the overall evolution of any large system with large number of parti-

cles, one is not interested in observing developments at individual particle level. A

gross simplification is possible by adopting a macroscopic picture instead, wherein

properties averaged over a large number of particles constitute a small fluid ele-

ment whose propagation can be followed up in space and time. This is the basis of
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Figure 1.1: Overview of plasmas in the density-temperature plane.
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the development of fluid models. In the context of plasmas a two fluid depiction

corresponding to the evolution of ion and electron species has been adopted. Fur-

thermore, since the charge species of plasma responds to the electromagnetic fields

and is also responsible for the generation of electric and magnetic fields, the two

fluid depiction for ion and electron species has to be coupled with the Maxwell’s

equation which describe the evolution of electric and magnetic fields. Even though

such a fluid based description provides for a huge simplification, it may still contain

a lot of unnecessary and complicated details for the depiction of certain phenom-

ena, thereby shrouding the physics germane to that. A further simplification is

possible by defining the time scale regime of the phenomena of interest and con-

centrating on possible simplified description which would be adequate for it. We

discuss this procedure in the next section.

1.3 Exploitation of time scale separation

As mentioned earlier the plasma medium consists of two kind of species, namely the

ions and the electrons. There is a huge difference in the masses of these two species.

The ions are typically 1836 times (or more) massive compared to electrons which

constitute the lighter species of the medium. The two species have very different

response times due to the disparity of their masses. It is, thus, possible to exploit

the time scale separation to simplify the two fluid model, coupled to the Maxwell’s

set of equations, further. The exploitation of scale separation has led to various

reduced models for plasma depiction. For instance, the Magnetohydrodynamic

(MHD) fluid model represents a model of magnetized ion fluid pertaining to the

slow response of the heavier ion species. For the lighter electron species, one
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assumes an instantaneous response by ignoring the electron inertial effects. At

the other limit are phenomena associated with fast electron time scales. In this

case, the heavier ion species, which are considerably slower than electrons, are

assumed to provide only for a neutralizing static background. This is a regime

where we concentrate upon in this thesis. Certain specific issues in the frontier

areas of research pertaining to this time scale regime have been conceptualized

by us. There are, however, also cases where even though the dominant dynamical

response is that of electron species, the ion dynamics in some reduced approximate

sense does have interesting role to play. We illustrate this regime in the case of

slowly moving coherent soliton solutions for the coupled laser plasma system.

1.4 Fast electron time scale phenomena

Our interest in the study of fast electron time scale phenomena in plasmas is moti-

vated by the recent technological advancements. The development of ultra intense

short pulse lasers have now made it possible to conduct various laboratory exper-

iments in this domain. By using these laser pulses a laboratory plasma can be

triggered to respond at the fast time scales associated with electron dynamics. In

addition, novel diagnostic techniques have also been developed which are now capa-

ble of capturing the response at such time scales. Thus, plasma response associated

with faster electron species is an area of growing current research interest.

Furthermore, phenomena at these time scales have relevance in various applica-

tions. Some frontier research applications are that of the Fast Ignition (FI) concept

of Inertial Confinement Fusion (ICF), laser and beam based particle acceleration

schemes and so on. The questions pertaining to certain astrophysical puzzles as-
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sociated with the rapid reconnection of magnetic field resulting in rapid release of

energy bursts in solar flares etc., are also believed to be governed by phenomena

occurring at these time scales.

The model description in this regime is provided by the electron fluid continu-

ity and momentum equations. While any electrostatic phenomena with a static

distribution of ion charges would involve an additional Poisson’s equation alone,

for the electromagnetic case one needs to couple these equations with Ampere’s

and Faraday’s law as well. There is a further possibility of simplification in the

electromagnetic case when the phase and group speeds associated with the phe-

nomena is much slower than the speed of light and/or the typical time scales are

slower than the electron plasma period. For these cases, it is possible to ignore

the electron continuity equation by invoking the assumption of negligible electron

density fluctuation. The displacement current can also be ignored in this limit.

The model then reduces to an extremely interesting form and is known as the

Electron Magnetohydrodynamic (EMHD) model. The EMHD model has a very

simplified form wherein the governing equations can be cast entirely in terms of

the evolution equation of the magnetic field alone. We have chosen to investigate

the understanding of certain phenomena associated with the EMHD domain of

plasma response in this thesis.

1.5 Review of Earlier Works

While the plasma behaviour at slow ion time scales has been contemplated exten-

sively, studies related to fast electron response time scales have been rare. The

reason is also apparent from the fact that most laboratory experiments could ex-
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plore till recent times only slow ion time scale phenomena. With the advent of

high power fast femtosecond lasers, a relatively unexplored regime of fast electron

dynamical response came within the realm of observation in the laboratory.

The new regime offers several interesting fundamental aspects of exploration in

which there has been a considerable increase in recent activity. The new regime

has its own set of linear response, instabilities, coherent solutions and turbulent

features. The possibility of performing controlled experiments in this area has

helped in gaining insights of the topic and motivated theoretical and numerical

work in the area.

Several applications which existed as mere theoretical ideas now have become

an experimental reality. For example the entire area of laser and plasma based

particle acceleration schemes has produced significant results in recent times. The

particle energy doubling of 42GeV electrons in a metre-scale plasma wakefield

accelerator has been achieved [18]. New ideas to improve upon the qualities of the

accelerated particles are being proposed and pursued. The table top nature of the

experiments have led to a variety of medical applications. Newer schemes of fusion

e.g. FI, which relies on the transport of energetic electrons through plasma have

been proposed.

We have touched upon two specific areas pertaining to this regime of plasma

response. These two have been presented in Part - I and part - II of the thesis.

The part - I of the thesis deals with the Kelvin - Helmholtz like instability (driven

by a sheared fluid flow configuration) for the electron flow. In the second part, the

possible existence and stability of the nonlinear coherent solutions of the coupled

laser plasma system has been explored.
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1.6 Content and organization of the thesis

As mentioned in the introduction we have chosen to investigate some fundamental

issues which also have practical relevance in the regime of fast electron time scale

response in plasmas. For this purpose, we have chosen to divide the thesis in two

parts. The first part deals with instabilities in this regime. In particular, we have

chosen to study some salient features of the electron shear flow driven Kelvin -

Helmholtz instability that can get excited in a variety of circumstances. In part -

II, the study of the existence of nonlinear coherent structure in the coupled laser

plasma system has been investigated. The dynamical evolution of some of the

solutions and questions pertaining to their stability have also been looked at.

In Chapter 2, we describe the governing equations that are employed for the ex-

ploration of the phenomena in the regime of the fast electron time scale dynamics.

The complete set corresponds to the electron fluid (momentum and the continu-

ity equations) coupled with the Maxwell set of equations. The reduction of the

equations under various approximations to simpler forms have also been described

in detail in the chapter. The relativistic generalization of the equations have also

been shown. These equations have been utilized to address issues pertaining to the

topic of shear flow driven instability in Part - I and the possible coherent solutions

for the coupled laser plasma system in Part - II of the thesis.

The first part of the thesis (Chapters 3, 4 and 5) deals with the evolution of

sheared electron flow configuration against a stationary neutralizing background

of ions. The possibility of the occurrence of such a sheared electron flow configura-

tion has been envisaged in a variety of astrophysical as well as laboratory plasma

experiments. For instance, in the context of fast ignition (a frontier concept in the
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inertial confinement fusion in which the task of compression and heating are carried

out by separate laser pulses), such a configuration arises during the ignition phase.

The ignitor pulse, which is supposed to carry and deposit energy at an appropriate

spot for ignition, cannot penetrate the overdense region of the target. It generates

energetic electrons at the critical density surface. One hopes that these energetic

electrons would deposit energy at the appropriate location for the creation of hot

spot for ignition. However, as these energetic electrons move towards the com-

pressed core of the target, its current is shielded by a reverse cold electron current

from the background plasma. The forward and reverse currents get spatially sep-

arated by the Weibel instability. The subsequent tearing and Coalescence modes

lead to the formation of cylindrical current channels. These cylindrical channels

carry the forward current due to energetic electrons in their central region and in

the outer annular region, the background shielding current flows. Thus, radially

the electron flow has a sheared flow configuration. The entire process leading to

the formation of sheared electron configuration has been shown in the schematic

of Fig. 1.2.

Any fluid with a sheared flow configuration is susceptible to the Kelvin -

Helmholtz mode. The subsequent nonlinear phase of the instability determines

the transport of the fluid. If the flow remains laminar, the friction and viscous

drag would be small and remain classical. On the other hand if the flow is turbu-

lent, the drag can be very high. One, therefore, expects the same to happen in the

context of sheared flow of electrons through a plasma. However, electrons being

a charged magnetized fluid, it has subtle differences with a normal hydrodynamic

fluid. Some of these differences have been highlighted in recent studies. We have
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Figure 1.2: The schematic of a filament consisting of forward and reverse shielding
current. This particular shear profile is modelled by a step velocity profile. For the
transition layer having finite shear width, it can be modelled by tangent hyperbolic
shear flow.

provided a detailed physical description and understanding of the instability in

Chapter 3.

In the case of FI as well as in most circumstances of laboratory as well as

astrophysical situations, the electron flow can be relativistic. The dependence of

mass on velocity in the case of relativistic flow introduces a new effect in the

sheared flow case. The relativistic mass now has a sheared profile in space. The

growth rate and the mode structure in this case has been obtained numerically

and studied extensively by us. It is observed that there are certain interesting

new additional features associated with the relativistic effect on the unstable KH

mode arising through the shear in the profile of the mass. These details have

been presented and discussed in detail in Chapter 4 of the thesis. We have also

carried out a perturbative analytical calculation for the weakly relativistic case. A

comparison with the exact numerical eigen evaluation shows good agreement for
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the growth rate of the maximally growing mode and the threshold wavenumber in

the weakly relativistic case. The details of the perturbative analytic calculation

and its comparison with the exact numerical results have been provided in Chapter

5.

In the Part - II of the thesis, we investigate the possible coherent nonlinear

solutions of the coupled laser plasma system. We also explore the dynamical

evolution of some of these solutions. The coupled laser plasma system constitutes

a strongly nonlinear system. The coherent solutions in such a system can play

promising role in terms of carriers of information and energy from one point to

another. It is, therefore, important to seek the parametric domain of their possible

existence and also to have an idea of the time scale of their stable existence.

The coupled laser plasma system is a strongly nonlinear medium. A low in-

tensity laser cannot penetrate an overdense region of plasma. However, at higher

intensities the laser can evacuate the electrons by its ponderomotive pressure. Fur-

thermore, at higher intensities the electrons can be driven to relativistic speeds,

thereby reducing the plasma frequency and enabling the possibility of laser pen-

etration. Thus, a pulse of high intensity laser light can get trapped in a plasma

medium by creating a cavity for itself. The high intensity central region alters the

property of the plasma medium, for it to survive as a propagating wave, whilst

at the edges where its intensity is usually low it is unable to creep out. Usually

this forms the basis of the exact coherent nonlinear solutions of the laser plasma

system. A detail description of this has been carried out. Possible coherent struc-

tures in the laser frequency vs. the group velocity of the pulse structure have been

identified. Chapter 6 contains the detailed description about these solutions. It
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is also noticed that when the ion dynamical response is altogether ignored, stable

solutions with zero group velocity can be found. However, in such a scenario when

the pulse is at rest, it would not be correct to ignore the ion dynamics. This is an

example where the coupling to ion motion becomes important, even though the

laser frequency can be pretty high to influence ion motion in any fashion. These

details have been described in Chapter 6. It is observed that several new variety

of solutions can be found when the ion response is incorporated. The spectrum

also exhibits new features.

The dynamical evolution of a particular flat-top variety of solutions formed in

the presence of ion response has also been studied numerically. It is observed that

as these solutions propagate, they show initial stable propagation for several plasma

periods, but ultimately disintegrate as a result of a backward Brillouin instability.

Chapter 7 contains the description of the flat top solution, its dynamical evolution

and the identification of the instability process.

Finally, in chapter 8 we summarize our studies and point out at the possible

issues for future exploration of the work presented in the thesis.
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Part I

Problem one
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Chapter 2

Governing Models to describe
plasma dynamics at fast electron
time scales

We have adopted fluid model for our studies, which provides a simplified descrip-

tion of plasma evolution. In general, a two fluid description for the ion and electron

species coupled with the Maxwell’s set of equations govern the properties of plasma

evolution. However, due to huge difference in the mass of the constituent species,

electrons and ions (at least a factor of 1840) in a plasma their response time differ

considerably and further simplifications are possible. In this chapter we concen-

trate on the simplifications that can be made when the concerning phenomena

occur at a time scale at which the lighter electron species has a dominant dynami-

cal role to play. We also illustrate the simplifications due to reduced dimensionality,

non - relativistic nature and incompressible situation that may arise in different

contexts.
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2.1 Governing Equations for fast time scale phe-
nomena: The most general case

At fast electron time scales, the ions are assumed to play a subsidiary role of pro-

viding a static neutralizing background. The governing equations for a relativistic

electron fluid in three dimensions is then provided by the electron momentum

equation
∂ (γe(ve)

∂t
+ (ve · ∇ (γe(ve) = − e

me

{
(E +

(ve × (B

c

}
− ∇pe

mene
(2.1)

and the electron continuity equation

∂ne

∂t
+ ∇ · (ne(ve) = 0 (2.2)

where e and me denote the charge and rest mass of electron. The number density,

fluid velocity and the pressure of the electron species is denoted by ne, (ve and

pe respectively. The evolution of electron fluid is governed by the Lorentz force

which depends on the externally applied as well as the self consistent electric

and magnetic field, denoted here by conventional symbols of (E and (B respectively.

Here, γe = 1/
√

1 − v2
e/c2 is the relativistic factor of the electron fluid. The electron

momentum equation can also be expressed alternatively in terms of the scalar

potential ϕ and the magnetic vector potential (A as

∂

∂t

(

meγe(ve −
e (A

c

)

= (ve×∇×
(

meγe(ve −
e (A

c

)

+∇
(
eϕ− me

2
γev

2
e

)
−∇pe

ne
(2.3)

The electron fluid being charged, its flow produces a current and often a charge

separation, and is thus responsible for the generation of self consistent electric and

magnetic field. These fields can be evaluated with the help of the Maxwell’s equa-
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tions. Thus the coupled set of Eqs. (2.1)-(2.2) along with the Maxwell’s equations

provided below describe the complete evolution of the system in this case. The

Ampere’s law from the Maxwell’s set of equation

∇× (B =
4π

c
(J +

1

c

∂ (E

∂t

∇×∇× (A = −4π

c
ene(ve −

1

c

∂

∂t

(
∇ϕ +

1

c

∂ (A

∂t

)
(2.4)

along with the Poisson’s equation

∇2ϕ = −4πe(n0 − ne) (2.5)

defines the model. Where n0 and (J are the background plasma density and electron

current density respectively.

An important issue in all physics problems is the choice of normalizations. It is

convenient and advisable to use the typical time scales pertaining to the problem

under consideration for normalization purposes.

2.2 Approximations and reduced models

In section - I, we presented the most general set of evolution equations. It is

still quite complicated. Depending on the specific nature of the problem several

simplifications are possible. Apart from the simplifications arising due to reduced

dimensionality and/or due to the non relativistic nature, there are some interesting

approximations in which the above set of equations take very simplified forms. We

discuss those cases, here, one by one. These equations have been adopted in the

subsequent chapters of the thesis to explore a specific question.
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2.2.1 EMHD

When the electron fluid flow can be considered incompressible, the evolution equa-

tions take a very simplified form as we show below. The flow can be treated as

incompressible when the density perturbations of the fluid can be ignored. Thus,

the electron continuity equation becomes irrelevant. This is the case, when not

only the equilibrium state but also the time evolution preserves quasi - neutrality.

Thus, the Poisson’s equation reduces to ∇2ϕ ≈ 0 and the displacement current in

the Maxwell’s equations can also be treated as negligible. One should in principle

retain the displacement current for relativistic studies. However, under the approx-

imation of the typical time scale concerning the system to be much slower than

those of the electron plasma period, ignoring displacement current and treating the

electron fluid as incompressible are reasonable. For a cold unmagnetized electron

fluid, this can happen when the time scales are slower than the electron plasma

period, i.e. ω << ωpe. In the magnetized case, the condition is ω << ω2
pe/ωce [19].

For a warm electron plasma this would require the electron flow to be subsonic.

Under these conditions the set of Eqs. (2.1)-(2.5) can be simplified and take

the following form
∂

∂t
(∇× (P ) = ∇× [(ve × (∇× (P )] (2.6)

Here, (P = γe(ve − (e/mec) (A. It should be noted that the evolution in this case

can be described entirely in terms of the evolution of the magnetic field. The

instantaneous magnetic field is related to the electron flow by the relationship

(ve = − c

4πne
∇× (B (2.7)
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The magnetic field evolution thus provides the complete description of the system.

In the reduced 2-D case, the above equations take a further simplified form. In

the 2-D x − z plane the EMHD equations can be expressed in terms of evolution

of two scalar fields, which define the total magnetic field as (B = bŷ + ŷ × ∇ψ.

Consequently, the electron velocity can be expressed in terms of these two scalar

fields as (ve = −∇× (B = ŷ ×∇b − ŷ∇2ψ [20].

∂

∂t
(∇2b − b) + ŷ ×∇b · ∇∇2b − ŷ ×∇ψ · ∇∇2ψ = 0

∂

∂t
(∇2ψ − ψ) + ŷ ×∇b · ∇(∇2ψ − ψ) = 0 (2.8)

Here, ŷ denotes the symmetry direction. Eq. (2.8) has been expressed in normalized

variables. Magnetic field has been normalized by a typical amplitude of B00, the

time by the corresponding electron gyro-period ω−1
ce = (eB00/mec)−1 and length by

the electron skin depth de = c/ωpe. The Eqs. (2.13) can be further simplified when

the electron flow is also confined in the 2-D plane. It is interesting to note that in

the limit of k2d2
e >> 1, where k is the wavevector along with ψ = 0, reduces the

coupled set of Eq. (2.8) to the Navier Stokes equations in 2-D for an incompressible

neutral fluid hydrodynamics,

∂

∂t
∇2b + ŷ ×∇b · ∇∇2b = 0 (2.9)

here b can be identified with the velocity potential. Thus, when the scales of the

phenomena under consideration become smaller and/or comparable to the electron

skin depth the electron fluid behaves like a neutral hydrodynamic fluid.

This model has been extensively employed by us in Part - I of the thesis (Chap-

ters 3-5) where we have explored various aspects of the flow shear driven Kelvin -
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Helmholtz (KH) like instability in the context when the electron flow is sheared.

2.2.2 GEMHD

The EMHD model has been generalized recently to consider cases where the back-

ground plasma is inhomogeneous. In these cases if one still assumes the response to

remain quasineutral (if the two conditions ω << ωpe and ω << ω2
pe/ωce continue to

be satisfied at all locations ), the electron density though a function of space, can

remain independent of time. The effect of inhomogeneous plasma density intro-

duces an additional term in the governing equations, Eqs. (2.6) as now the electron

velocity and the current in the medium are not related only by a constant scalar

multiplier. The curl of the momentum equations for the GEMHD model in the

normalized form are as follows [21]

∂(g

∂t
= ∇× [(ve × (g] (2.10)

where

(ve = − 1

ne
∇× (B; (g =

∇2 (B

ne
−∇

(
1

ne

)
×

(
∇× (B

)
− (B (2.11)

Normalizations introduced are same as in the previous section. The density is

normalized by a typical value n00. In the 2-D case, magnetic field being divergence-

less, can now be expressed in terms of two scalar fields as (B = bŷ + ŷ×∇ψ, which

in turn simplifies the Eqs. (2.10-2.11) to

∂

∂t

{
b −∇ ·

(
∇b

ne

)}
+ ŷ ×∇b · ∇

[
1

ne

{
b −∇ ·

(
∇b

ne

)}]

+ŷ ×∇ψ · ∇
(
∇2ψ

ne

)
= 0 (2.12)
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and
∂

∂t

{
ψ − ∇2ψ

ne

}
+

ŷ ×∇b

ne
· ∇

{
ψ − ∇2ψ

ne

}
= 0 (2.13)

where ŷ is the symmetry axis. Thus, b represents the magnetic field component

along the symmetry direction and the magnetic field along x and z directions are

∂ψ/∂z, and −∂ψ/∂x, respectively. When the flow of electron fluid is confined in

the 2-D plane it takes the following form :

∂

∂t

{
b −∇ ·

(
∇b

ne

)}
+ ŷ ×∇b · ∇

[
1

ne

{
b −∇ ·

(
∇b

ne

)}]
(2.14)

When the electron plasma density ne is constant, the above coupled set of Eqs. (2.13-

2.13) reduce to the EMHD Eqs. (2.8) in 2-D.

2.2.3 Weakly relativistic case

In general, incompressibility cannot be a good approximation when the electron

flow is relativistic. The flow speed being comparable to speed of light, the dis-

placement current has to be retained. Furthermore, if the temperature is finite,

the flow will always be supersonic and hence density fluctuation would be present

and continuity equation would need to be retained.

Some simplification is, however, possible in the weakly relativistic case of cold

electron fluid. Here, ve/c < 1 and can be treated as a small parameter for expan-

sion. In this case assuming if condition ω << ωpe holds, we can still ignore the

continuity equation. We, however, retain the displacement current contribution as

ve/c is small but not negligible. In this limit, the governing equations are

∇2b −Aσ2∂
2b

∂t2
=

(
∂vex

∂z
− ∂vez

∂x

)
(2.15)
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∂(ξ − b)

∂t
+ (ve · ∇(ξ − b) = 0 (2.16)

where vex and vez are the x and z component of the electron fluid velocity ve.

Here, σ = ωce0/ωpe where ωce0 is the electron gyroperiod. An extra coefficient A is

introduced to signify the contribution of displacement current. The coupled set of

Eqs. (4.8-4.9) along with

∇2γevex =
∂ξ

∂z
; ∇2γevez = −∂ξ

∂x
(2.17)

can now be employed to study the electron velocity shear driven instability in the

relativistic regime. Here ξ = ∇ × γe(ve. If one ignores the displacement current

also, one obtains a simplified generalization of the EMHD equation for the weakly

relativistic case.

d2vx1

dx2 + 3
d (log γ0)

dx

dvx1

dx
−

(
k2

z

γ0
2

+
1

γ0
3
−

kz

(
(γ0vz0)

′′ − vz0

)

ω̄γ0
3

)
vx1 = 0 (2.18)

This equation has been used earlier [22] to evaluate the relativistic correction of

the KH growth rate for the specific case of step velocity profile.

We have considered the Eqs. (4.8)-(4.10) and Eq. (2.18) to show that a profile

with finite shear width exhibits new features in the KH instability which primarily

arise as the relativistic mass now has a sheared profile.

2.3 Other effects

For the study of phenomena at fast electron time scales, we wish to point out here

that the ion response can be altogether ignored. However, it is not possible to do
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so in all cases. We cite here an example where the retention of ion response would

become necessary.

In the context of light wave propagation through the plasma medium, the elec-

tron species typically has the maximal role to play. The electrons acquire a quiver

velocity due to the transverse oscillating electric field associated with the light

wave. Thus, the propagation of electromagnetic waves with frequencies lower than

the electron plasma period completely get screened and are unable to propagate in-

side the plasma. The waves with higher frequency do propagate inside the plasma

but with reduced group velocity. In the context of high intensity light waves,

various nonlinear effects come into play and it is possible to have exact pulse like

localized structures which can propagate with slow group velocity [23]. Theoretical

analysis based on ignoring the ion response completely, have predicted existence

of even static structures. Even though the light trapped inside such structures os-

cillate rapidly and would not be able to influence ion response, the ponderomotive

force associated with the static structure would ultimately trigger the evolution

of ions. In such cases, therefore, a coupling between ion and electron response

time scales would occur and the ion response should be retained. The coupled set

of fluid Maxwell’s equations in such cases will have additional equations for the

momentum and continuity equations of ions as follows.

∂ne

∂t
+ ∇ · (ne(ve) = 0

∂ni

∂t
+ ∇ · (ni(vi) = 0 (2.19)
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[
∂

∂t
+ (ve · ∇

]
(pe = −e

(
(E +

(ve × (B

c

)

[
∂

∂t
+ (vi · ∇

]
(pi = e

(
(E +

(vi × (B

c

)

(2.20)

∇× (B =
4π

c
(J +

1

c

∂ (E

∂t

∇× (E = −1

c

∂ (B

∂t

∇ · (E = −4πe(ne − ni)

∇ · (B = 0 (2.21)

The 1-D version of these equations have been utilized by us to seek specific

coherent solutions pertaining to the coupled laser plasma system in Part - II of the

thesis.

2.4 Summary

We have provided a brief description of the set of governing equations that have

been employed in the thesis for studying various phenomena associated with the

fast electron dynamics in plasmas.
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Chapter 3

Physics of flow shear driven
instabilities in EMHD

In Chapter 2 we have shown that the incompressible electron flows can be depicted

by Electron - Magnetohydrodynamic (EMHD) model. This model resembles the

neutral hydrodynamic fluid model in the limit when the scale lengths are compa-

rable to or smaller than the electron skin depth. It is, therefore, suggestive that

the electron flow in the limit of EMHD description will be plagued by similar in-

stabilities that plague any hydrodynamic fluid system. One of the prominent fluid

instabilities is the shear flow driven Kelvin - Helmholtz (KH) mode. The inter-

est in the study of this particular mode has been motivated both by fundamental

considerations as well as due to the relevance of this mode in the frontier Fast

Ignition (FI) concept of Inertial confinement Fusion (ICF) scheme [24]. This mode

has also been extensively explored [25] in the context of a sheared electron flow

configuration within the framework of EMHD depiction. It has been observed that

the magnetized character of the electron flow introduces certain differences. These

differences along with similarities with the fluid KH mode have been pointed out
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in earlier studies [25].

In this chapter, we have provided a detailed physical description of the shear

flow driven Kelvin - Helmholtz (KH) mode in the context of electron fluid. In

particular, we have shown that the free energy source of the mode is the shear in the

flow velocity and not the sheared current configuration. We have also provided an

order of magnitude estimate of the growth rate purely from physical considerations

associated with the release of free energy in exciting the mode. In 3-D systems,

the behaviour of the mode has also been physically interpreted.

3.1 Introduction

The fast time scale phenomena occurring at electron time scales are often depicted

by a simplified single electron fluid treatment of the Electron Magnetohydrodynam-

ics (EMHD) model [19, 20, 26]. The model has been investigated for the study of

electron time scale phenomena by several authors [27–32]. The model ignores the

dynamical response of the heavier ion species. Ions are assumed to provide merely

a neutralizing stationary background. In addition, the model does not incorporate

effects related to the electron density perturbations and the displacement current

contribution in the Ampere’s law is also not retained. Under such simplifications,

the model can be completely represented in terms of a nonlinear evolution equation

for the magnetic field. The model has also been generalized to incorporate effects

due to the background plasma density inhomogeneity (G-EMHD) recently [5, 21].

The EMHD model which represents the magnetized electron fluid description

reduces to the neutral hydrodynamic fluid dynamics at scales shorter than the

electron skin depth. Thus, the characteristic neutral fluid instabilities are present
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here as well, albeit with appropriate modifications due to the magnetized character

of the electron fluid. In some recent works [1, 2, 21, 22, 25, 33–35], the velocity

shear driven instabilities have been studied extensively in the context of the EMHD

model. The mode compares closely with the Kelvin - Helmholtz mode of the neu-

tral hydrodynamic fluid [24]. Since the shear in velocity is also associated with the

current gradients in a typical scenario of EMHD phenomena, the mode has often

also been identified as current gradient driven sausage and kink-like mode. In this

chapter, we distinguish the two cases of current and velocity shear by choosing

an inhomogeneous density plasma. Since the current is the product of velocity

and density, the inclusion of density gradient can distinguish between current and

velocity shear configurations. It should be noted that the equilibrium density in-

homogeneity cannot relax in a cold collisionless plasma. Thus, there is no free

energy available for excitation of any instability with the density inhomogeneity.

The distinct cases of velocity and current shear are then analyzed with the help of

G-EMHD equations Eq. (2.12)-(2.13) to show that the free energy associated with

a sheared velocity configuration is necessary for the instability. The presence of

current gradient without a sheared velocity configuration is unable to excite any

instability. Another possible way to distinguish between the velocity and current

shear driven cases is by considering an electron-positron (or a two electron fluid)

system. The importance of velocity shear for instability has also been demon-

strated by studying a combined electron - positron two fluid system within the

EMHD formalism. On the basis of these analyses we conclude that the flow shear

driven instabilities in the context of EMHD are, in fact, a modified fluid Kelvin -

Helmholtz mode.
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3.1.1 Flow with current shear only

We consider a neutral, cold inhomogeneous plasma with density variation along

x. For the analysis pertaining to this section, we consider the electron species

to be having a constant ẑ directed flow. The electron flow along ẑ produces a

current along ẑ and an associated magnetic field along ŷ direction Fig. 3.1. Since

Figure 3.1: The equilibrium electron flow configuration

the plasma/electron density profile varies along x, a constant shearless ẑ directed

velocity flow produces a sheared electron current flow. We emphasize here that

incorporating a density inhomogeneity in a cold collisionless plasma does not con-

tribute towards an additional free energy source for instability to the system.

We now investigate with the aforementioned configuration, a possible excita-

tion of the pure current shear driven instability within the EMHD formalism. We
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first consider a simplified case when the perturbations are confined in the 2-D x−z

plane of Fig. 3.1. For this particular configuration, even the perturbed magnetic

field would also be directed along ŷ. Earlier studies [25] have already shown that

for a homogeneous plasma, a sheared velocity (producing a sheared current con-

figuration as well) excites unstable modes in the 2-D x − z plane. Here, as stated

earlier we have an inhomogeneous plasma density with variations along x, enabling

shearless electron flow velocity along ẑ producing a sheared current configuration.

This system is then depicted by the 2-D G-EMHD evolution equation, Eq. (2.14)

for the magnetic field component b along ŷ.

∂

∂t

[
b −∇ ·

(
∇b

n

)]
+ ŷ ×∇b · ∇

[
1

n

{
b −∇ ·

(
∇b

n

)}]
= 0 (3.1)

The current shear along x produces an equilibrium magnetic field b0. The equilib-

rium velocity along ẑ, though finite, however, has been chosen to have no depen-

dence on x. Thus,

ẑv0 =
ŷ ×∇b0

n0
= − 1

n0

db0

dx
ẑ = const (3.2)

Linearizing the G-EMHD equations around this equilibrium and Fourier analyzing

in z and t, ( exp(ikzz − iωt)) we obtain the following differential equation with ω

as the eigen value.

1

n0

d2b1

dx2
+

d

dx

(
1

n0

) (
db1

dx

)
−

(
1 +

k2
z

n0

)
b1 +

1

ω̄

d

dx

(
b0

n0

)
kzb1 = 0 (3.3)

Here ω̄ = ω−kzv0 and we have used the condition of the constancy of (1/n0)(db0/dx)

in our derivation. The eigen value ω decides whether or not the system is unstable

for any given choice of the equilibrium profiles of b0 and n0. Here, for the specific

choice of a shearless electron flow, the profiles of b0 and n0 are constrained to obey
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the relationship of Eq. (3.2). Multiplying Eq. (3.3) by b∗1 and integrating over x

gives

∫ [
1

n0

∣∣∣∣
db1

dx

∣∣∣∣
2

+

(
1 +

k2
z

n0

)
| b1 |2

]
dx − 1

ω̄

∫
d

dx

(
b0

n0

)
kz | b1 |2 dx = 0 (3.4)

Here, the perturbations have been assumed to vanish at the boundaries. It should

be noted that v0 being independent of x, we could take ω̄ outside the integrand.

Clearly, from Eq. (3.4) we have

ω = kzv0 +

∫ ∞

−∞

d

dx

(
b0

n0

)
kz | b1 |2 dx

∫ ∞

−∞

[
1

n0

∣∣∣∣
db1

dx

∣∣∣∣
2

+

(
1 +

k2
z

n0

)
| b1 |2

]
dx

(3.5)

showing that ω is real. Thus, the current shear configuration in the absence of

velocity shear can not be unstable to the excitation of 2-D modes in the x − z

plane.

We now consider perturbations in the x−y plane, referred as kink geometry in

earlier publications [2, 33], for the possible excitation of instability in the absence

of velocity shear. In this case too, as the perturbations are confined in a 2-D plane,

the EMHD evolution equations, Eq. (2.8) can be cast in terms of two scalar fields.

However, in this case the equilibrium magnetic field along ŷ lies in x − y plane,

which couples the two scalar fields unlike the previous case. The total magnetic

field in terms of the two scalar fields can be written as (B = ẑφ + ẑ ×∇ψ and the

evolution equations are

∂

∂t

{
φ−∇ ·

(
∇φ

n

)}
+ ẑ ×∇φ · ∇

[
1

n

{
φ−∇ ·

(
∇φ

n

)}]

+ẑ ×∇ψ · ∇
(
∇2ψ

n

)
= 0 (3.6)
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∂

∂t

{
ψ − ∇2ψ

n

}
+

ẑ ×∇φ

n
· ∇

{
ψ − ∇2ψ

n

}
= 0 (3.7)

We now linearize these equations in the presence of an equilibrium magnetic

field ŷb0 = ŷdψ0/dx arising from the electron flow along ẑ. The electron flow veloc-

ity is related to the magnetic field and plasma density in the G-EMHD formalism

through (v = −∇ × (B/n0 and the current as (J = ∇× (B. As before, we choose a

sheared equilibrium current flow along ẑ but the x dependence of plasma density

is chosen so as to have no shear in the flow velocity. Thus,

v0 = − 1

n0

db0

dx
= − 1

n0

d2ψ0

dx2
= constant

Linearizing Eqs. (3.6) and (3.7) we obtain

∂

∂t

{
φ1 −∇ ·

(
∇φ1

n0

)}
+ ẑ ×∇ψ0 · ∇

(
∇2ψ1

n0

)
= 0 (3.8)

∂

∂t

{
ψ1 −∇ ·

(
∇ψ1

n0

)}
+

ẑ ×∇φ1

n0
· ∇ψ0 = 0 (3.9)

Fourier analyzing in y and t we obtain

(
1 +

k2
y

n0

)
φ1 −

d

dx

(
1

n0

dφ1

dx

)
− kyb0

ωn0

(
d2ψ1

dx2
− k2

yψ1

)
= 0 (3.10)

(
1 +

k2
y

n0

)
ψ1 −

1

n0

d2ψ1

dx2
+

kyb0

ωn0
φ1 = 0 (3.11)

Multiplying Eq. (3.10) by φ∗
1 and Eq. (3.11) by (k2

y − d2/dx2)ψ∗
1 and integrating
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over x yields

∫ {(
1 +

k2
y

n0

)
| φ1 |2 +

1

n0

∣∣∣∣
dφ1

dx

∣∣∣∣
2

+ k2
y

(
1 +

k2
y

n0

)
| ψ1 |2

+

∣∣∣∣
dψ1

dx

∣∣∣∣
2

+
1

n0

∣∣∣∣
d2ψ1

dx2

∣∣∣∣
2
}

dx

+
ky

ω

∫
b0

n0

{
k2

y(φ
∗
1ψ1 + φ1ψ

∗
1) −

(
φ∗

1

d2ψ1

dx2
+ φ1

d2ψ∗
1

dx2

)}
dx = 0

upon summing the two equations.

In this case too, ω is real as it can be expressed as a ratio of two real integrals.

Thus, there are no unstable eigen modes when the variations are confined to the

x − y plane. For the general 3-D perturbation, a similar energy integral equation

with two terms can be constructed. In the absence of velocity shear 1/ω̄ = 1/(ω−

kzv0) can be taken outside the integral. Similar arguments follow which lead to

the conclusion that no unstable eigen mode exist in the absence of velocity shear.

3.1.2 Flow with velocity shear only

We now consider another example to show the relevance of free energy associated

with the velocity shear to be behind the excitation of flow shear driven modes in

the context of EMHD formalism. We consider an electron - positron plasma. Ions

may or may not be present in this case. A sheared equilibrium flow velocity in

both of these species is chosen so as to have no currents. We show that in this

case, there indeed exist unstable modes.

For this system of electron positron plasma, we now obtain the governing set

of equations. The curl of the momentum equation for both electron as well as

positron can be expresses using Eq. (2.6) where, (P = (v+(q/mec) (A and q = ±e for
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electron and positron respectively. For variations confined in the 2-D x-z plane,

∇× (P has only ŷ component and the equation can be written as

∂

∂t
(∇× (P )y + (v · ∇(∇× (P )y = 0 (3.12)

An equilibrium fluid flow of the form v0(x)ẑ is assumed (i.e. directed along ẑ with

x dependent sheared profile). We linearize the Eq. (3.12) and Fourier analyze the

linear perturbations in z and t to obtain

d2vx1

dx2 − k2
zvx1 +

q

e
ikzb1 −

kz

(ω − kzv0)
(
q

e
B′

0 − v′′
0)vx1 = 0 (3.13)

We have used the same normalizations as in the previous section for Eq. (3.13). The

equations for the electron and positron fluid with density n0e and n0p respectively

and flowing with an equilibrium velocity of v0e(x)ẑ and v0p(x)ẑ can be written as

d2vxe

dx2 − k2
zvxe − ikzb1 −

kz

(ω − kzv0)
(B′

0 + v′′
0e)vxe = 0 (3.14)

d2vxp

dx2 − k2
zvxp + ikzb1 +

kz

(ω − kzv0)
(B′

0 − v′′
0p)vxp = 0 (3.15)

The current in the system is the sum of electron and positron currents, which

produces a total magnetic field Bŷ = (B0 + b1)ŷ. Here, B0 is the magnetic field

due to the equilibrium current and b1 arises from the perturbed current. From

Ampere’s law we have

dB0/dx = B′
0 = J0 = n0pv0p − n0ev0e.

The perturbed flow of the two fluids is assumed to be incompressible under the

approximation that time scales considered are much slower than the effective
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plasma frequency. The perturbed flow being in the 2-D x − z plane, we have

−ikzb1 = n0pvxp − n0evxe.

The instability due to shear flow for single electron fluid cases studied earlier,

had contributions from both the terms B′
0 and v′′

0 . Also, for this case, since the

current was also carried by the electron fluid, we had v0 = −B′
0, the distinction

between velocity and current shear could not be made. For the two fluid electron

- positron system, we make a distinction between the two by choosing the total

equilibrium current to be zero, i.e. B′
0 = n0pv0p − n0ev0e = 0. The shear in

velocity flow of the two fluids continues to be finite, whereas since the current is

zero everywhere, the current shear is also zero for this case.

For this simplified case, we multiply Eq. (3.14) with n0ev∗
xe and Eq. (3.15) with

n0pv∗
xp and integrate with respect to x to obtain

n0e

∫ {

k2
z | vxe |2 +

∣∣∣∣
dvxe

dx

∣∣∣∣
2
}

dx + n0p

∫ {

k2
z | vxp |2 +

∣∣∣∣
dvxp

dx

∣∣∣∣
2
}

dx

+n2
0e

∫
| vxe |2 dx + n2

0p

∫
| vxp |2 dx − n0pn0e

∫
{v∗

xevxp + v∗
xpvxe}dx

+n0ekz

∫ {
v′′

0e

ωe − kzv0
| vxe |2

}
dx

+n0pkz

∫ {
v′′

0p

ωp − kzv0
| vxp |2

}
dx = 0 (3.16)

We have eliminated b1 in terms of vxp and vxe in the above derivation. The first five

terms in Eq. (3.16) are real. Thus, the equation can be satisfied for an imaginary

value of ω if and only if the coefficient of ωi vanishes (where ωi represents the

imaginary part of ω). This implies

n0e

∫ | vxe |2

| ωe − kzv0 |2
v′′

0edx + n0p

∫ | vxp |2

| ωp − kzv0 |2
v′′

0pdx = 0 (3.17)
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Since, the total equilibrium current has been chosen to be zero, we have v0p =

(n0e/n0p)v0e. For the analysis, in this section, we have chosen the electron and

positron densities to be homogeneous, thus v′′
0p = (n0e/n0p)v′′

0e. Thus, the equi-

librium velocity v0p and its derivatives can be expressed in terms of v0e and its

derivatives. The condition for imaginary values of ω provided by Eq. (3.17) can

then be satisfied only for those equilibrium flows which have an inflection point.

It should be noted that unlike the case considered in the previous section, here

ω̄e = ω − kzv0e and ω̄p = ω − kzv0p, both are functions of x and hence cannot be

taken outside the integral. This has led to a possibility that ω can have a imaginary

part. This analysis, however, only provides a necessary condition for instability.

We would now show explicitly that the instability exists by evaluating the

growth rate. We choose for the purpose of illustration, a simple case for which the

equilibrium velocity of both electron and positron flows have a simple form of a step

profile, viz. v0e = −V0 + 2V0Θ(x), and v0p = (−V0 + 2V0Θ(x))(n0e/n0p). It should

be noted that this choice ensures that the total equilibrium current in the system

is zero. In region I (−∞ < x ≤ 0) and II (0 ≤ x < ∞) the Eqs. (3.14)-(3.15) can

be separately written as :

d2veI,II

dx2 − k2
zveI,II + n0pvpI,II − n0eveI,II = 0

d2vpI,II

dx2 − k2
zvpI,II − n0pvpI,II + n0eveI,II = 0 (3.18)

Eq. (3.18) is solved in the two regions separately. The growth rate is then deter-

34



mined by ensuring the continuity of the following functions at x = 0

f1e = ω̄e
dvxe

dx
+ kzv

′
oevxe; f2e =

vxe

ω̄e

f1p = ω̄p
dvxp

dx
+ kzv

′
opvxp; f2p =

vxp

ω̄p
(3.19)

We choose ve,p as ∼ exp(px) to solve the homogeneous coupled set given by

Eq. (3.18). This yields the following equation for p

p4 − (2k2
z + n0e + n0p)p

2 + (k2
z + n0e)(k

2
z + n0p) − n0pn0e = 0

The double quadratic equation for p is solved leading to p+
2 = k2

z + n0e + n0p

and p−2 = k2
z , corresponding to the ± sign of the two solutions of p2. Defining

q±2 = (k2
z + n0e − p±)/n0p we obtain q+

2 = −1, and q−2 = n0e/n0p. Since the

solution should vanish at ±∞, we make the following choices for the solutions in

the two regions:

veI = Aexp(p+x) + Bexp(p−x),

vpI = q+
2Aexp(p+x) + q−

2Bexp(p−x),

veII = Cexp(−p+x) + Dexp(−p−x),

vpII = q+
2Cexp(−p+x) + q−

2Dexp(−p−x).

Now, utilizing the matching conditions of Eq. (3.19) and eliminating the coef-

ficients, we obtain the dispersion relation as det||M || = 0, where the matrix M is

defined as follows
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1/Ω+ 1/Ω+ −1/Ω− −1/Ω−

−1/Ωs+ σ/Ωs− 1/Ωs− −σ/Ωs−

Ω+p+ Ω+p− p+Ω− Ω−p−

−p+Ωs+ σp−Ωs+ −Ωs−p+ σp−Ωs−

Here, Ωs± = ω ± σkzv0e, Ω± = ω ± kzV0 and σ = n0e/n0p.

Now, det||M || = 0 gives

ω2 = [k2
zv

2
0e/(2(1 + σ)2p−p+)][−(σ(σ − 1)2(p2

+ + p2
−) + (σ4 + 6σ2 + 1)p+p−)

±{(σ(σ − 1)2(p2
+ + p2

−) + (σ4 + 6σ2 + 1)p+p−)2 − (2σ(1 + σ)p+p−)2}1/2].

(3.20)

For the particular case of n0e = n0p = 1, we have v0e = v0p and ω2 = −k2
zv

2
0e. This

exhibits that the mode is purely growing despite the fact that the plasma is current-

less. It clearly shows that the mode is driven by the velocity shear. Furthermore, it

needs to be emphasized here that the growth rate in this particular currentless case

is identical to that of the velocity shear driven Kelvin - Helmholtz instability, for

a step velocity shear profile of a neutral hydrodynamic fluid. Thus, in the absence

of current, the mode is the pure Kelvin-Helmholtz mode. It should be noted that

for the EMHD case with current, the growth rate γ = kzV0

√
(1 + 4k2

z)/(3 + 4k2
z).

The factor inside the square root appearing for this case arises due to the fact that

the electron current influences the instability but is not responsible for it.
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3.2 Free energy for flow shear driven instability in
EMHD

We have shown that the flow shear driven modes can be excited within the EMHD

formalism only if the free energy source is available in velocity shear. The pres-

ence of current shear alone is not sufficient to excite the instability. This can be

understood from the physical grounds also. An electron fluid moving with a con-

stant velocity (contributing to the current) can always be transformed to a frame

in which it is at rest. In this frame, there is no free energy source available with

the electron fluid. Such a frame transformation leads to the motion of background

ions in the opposite direction, which is now responsible for current flow in this

frame. However, since the ions do not have any dynamical role within the EMHD

formalism, there is no mechanism by which any energy can be tapped from the ion

fluid. This clearly shows that there can be no instability in the absence of velocity

shear.

We now look at some other interesting aspects of this instability using physical

arguments based on the availability of free energy from velocity shear. In Fig. 3.2,

we show a surface plot of the growth rate for the typical case of a single electron

fluid with tangent hyperbolic velocity profile (considered in a number of previous

studies) as a function of kz and ky.

As specified earlier, the equilibrium flow is along ẑ and is sheared along the

x̂ direction. Some characteristic features of the instability are that the unstable

wavenumber along the flow direction ẑ has a threshold kzth ≤ 1/ε (where ε is

the width of the velocity shear layer). Thus, the unstable perturbations with
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Figure 3.2: A surface and contour plot of the growth rate for the velocity shear
driven mode in the ky − kz plane. The equilibrium velocity profile chosen as
v0 = V0tanh(x/ε). Here, ε = 0.2 is the shear width in units of electron skin depth.

variations confined in the flow - shear plane (x − z plane), have a non - local

character. However, this is not so for those perturbations which have variations in

the x−y plane. The growth rate here too shows a maxima at some ky but extends

far beyond 1/ε. These observations have been noted in earlier studies [2]. Here,

we try to provide a physical understanding of these features.

When the variations of the perturbations are confined to the x − z plane the

equilibrium flow lines along ẑ have to bend along x̂ as shown in Fig. 3.3. The

unstable eigen mode structure resembles a sheared flow, orthogonal to the original

flow direction as illustrated in Fig. 3.3. The shear scale length of the eigen mode

structure is of the order of k−1
z . Since the free energy for the instability is provided

by the sheared flow configuration, the unstable eigen functions themselves cannot

have scales sharper than shear scale, ε. This is responsible for the threshold on the
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wavenumber kz. On the other hand, when the variations of the perturbations are

confined in the x−y plane, the flow lines do not have to bend, but they merely get

shuffled around as shown in Fig. 3.3. It can be seen that in this case much sharper

scales along ŷ can be generated which hardly cost any kinetic energy. In EMHD,

however, the equilibrium magnetic field lines are along ŷ. Thus, for this particular

case of finite ky the magnetic field lines have to bend. The predominant energy

expenditure in this case is thus for the creation of magnetic energy associated with

field line bending. As it is well known in EMHD, the magnetic energy associated

with any mode is down by a factor of k2 as compared to the kinetic energy. The

energy requirement for unstable modes with x − y variation being predominantly

magnetic is much less at higher ky than at a corresponding high value of kz. This

explains the extended range of ky in comparison to kz for instability.

The typical value of the growth rate being of the O(kzV0) can also be understood

from energetics of the unstable mode. It has been observed in simulations that

the original equilibrium shear width of ε as a result of the instability, typically

gets broadened and saturates at an effective value of the shear width εeff = 1/kz.

For simplicity, we represent the original equilibrium velocity flow profile within the

shear layer as vi(x) = V0x/ε and the final relaxed profile as vf (x) = V0x/εeff . The

longitudinal kinetic energy that gets released due to this change is

∆K.E. =
V 2

0

εeff

∫ εeff

0

{
x2

ε2
− x2

ε2eff

}
dx

= V 2
0

{
1

ε2
− 1

ε2eff

}
ε2eff

3
≈ V 2

0

k2
zε2

(3.21)

We have replaced εeff by 1/kz and approximated εeff >> ε for writing the last

expression in the Eq. (3.21). This kinetic energy would be released due to the re-
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Figure 3.3: (a) A schematic showing the flow configuration after KH destabilization
in 2-D. It can be seen that the destabilized flow configuration results in a sheared
flow orthogonal to the original shear flow, with a shear width given by k−1

z . (b)
For perturbation scales along the third ŷ direction, the flow lines do not have to
bend. They merely get shuffled around to generate short scales along ŷ.

arrangement in the velocity configuration resulting from the instability. The fluid

due to the KH mode attains a transverse velocity in the x̂ direction. This velocity

would be of the order of ∼ ωεeff (as εeff is distance covered in a typical time

scale of the mode). Here, ω is the typical time scale associated with the growing

mode. A symmetric profile for which we have estimated ∆KE, the mode is purely

growing and hence ω ∼ γ represents the growth rate. The kinetic energy required

for this transverse motion ought to be less than the kinetic energy released from
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the original flow along ẑ estimated in Eq. (3.21). Thus, we have

ω2ε2eff =
ω2

k2
z

≤ V 2
0

k2
zε

2

Since kzε ≤ 1, for instability we obtain ω ≤ kzV0. In fact, the growth rate for

a step profile is kzV0 and for a finite shear width (e.g. piecewise linear and/or

tangent hyperbolic), the maximum growth rate is always less than this value. The

typical estimate for growth rate is thus O(kzV0).

3.3 Summary

We have discussed various aspects of the free energy source for the flow shear

driven instability in the context of Electron - Magnetohydrodynamic (EMHD)

system, which is a fluid depiction of fast electron time scale phenomena in plasma.

The EMHD model resembles closely the neutral hydrodynamic fluid system and

hence the characteristic neutral fluid instabilities are present here as well, albeit

with appropriate modifications due to the magnetized character of the electron

fluid.

One of the prominent fluid instability namely the Kelvin - Helmholtz mode

driven by the velocity shear has been studied in great detail recently. In the con-

text of EMHD, however, the flow of electrons is solely responsible for the current

in the medium (the heavier ion species merely provides a neutralizing stationary

background at fast time scales). Since, the shear in electron flow also corresponds

to a sheared current configuration, the electron flow shear instability has often been

characterized as both the velocity shear driven KH like mode as well as the current

gradient driven sausage and/or kink like modes [1, 2, 22, 25, 33]. We studied two
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cases to distinguish between the current and velocity shear equilibrium configura-

tions to show that the free energy source for the flow shear driven instability is

essentially the kinetic energy of the electron flow.

The G-EMHD model equations [5, 21] are used for the evolution of an inho-

mogeneous density plasma. The density inhomogeneity distinguishes between the

current and velocity shear configurations. It should be noted that under the cold

plasma approximation, the presence of density inhomogeneity does not add any

new free energy source. The analysis then clearly shows that there is no instability

in the absence of velocity shear. We also use a sheared two fluid uni-directional

electron - positron (or oppositely directed two electron fluids) to illustrate that even

in the absence of any current (and consequently any current shear) the sheared

velocity flow excites a KH-like mode. The instability is thus a fluid KH mode and

not a sausage or kink like mode. Furthermore, in recent publications [1, 2, 22, 35]

it has been shown that as shear width of the flow is made broader in comparison to

electron skin depth, thereby reducing the role of electron inertia related terms, the

growth rate of the instability diminishes. This also demonstrates that the electron

inertia plays a crucial role for the instability. The free energy for the instability is

essentially the kinetic energy of the electron sheared flow. The role of the kinetic

energy as the free energy source for the instability has been explicitly demonstrated

by us in previous section where the typical estimate of the growth rate of the mode

is evaluated from kinetic energy released during the course of the instability. A

couple of other characteristic features (e.g. existence of a threshold wavenumber

along the flow direction but excitation of sharper scales in the direction normal

to both shear and flow directions) associated with the instability have also been
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interpreted using physical considerations.

In this chapter, we have discussed the various aspects of flow shear driven KH-like

instability using EMHD model for non-relativistic flows. But in many physical

experiments like Fast-Ignition(FI) concept of inertial fusion, the flow velocity is

often relativistic. It would be pertinent to study the KH-like flow shear driven

instability for relativistic flows. So, to supplement this study, in the next chapter,

we have incorporated relativistic effects. There, we will see the role of relativity

on the flow shear driven instability within the purview of EMHD model.
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Chapter 4

Electron Velocity Shear Driven
Instability in Relativistic Regime

The electron flow in laboratory as well as astrophysical situations can often be

relativistic. The present chapter discusses the role of relativity on the shear flow

driven instability associated with the electron fluids. Both cases of weak and

strong relativistic regime have been explored. It is observed that when the flow is

weakly relativistic the growth rate diminishes and the domain of the unstable wave

number also shrinks. However, when the flow is strongly relativistic additional

features emerge. The growth rate as a function of wave number is no longer a single

humped curve but additional peaks emerge. The unstable domain of wave numbers

gets broader and can even exceed the threshold wave vector domain of the non-

relativistic case. The difference between the weak and strong relativistic behaviour

has been interpreted as an effect due to shear flow influencing the relativistic mass

factor of the fluid.
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4.1 Introduction

The sheared electron flow configuration occurs in a variety of contexts such as

astrophysical jets, laser plasma interaction experiments, fast ignition studies, etc.

The electron velocity in these situations is often in the Relativistic regime. It is,

therefore, important to understand the role of relativistic effects on the electron

velocity shear driven instability. The flow of lighter electron species being of main

concern in these cases, the dynamical response of heavier ion species is negligible

and can be ignored. The ions are, therefore, treated as merely a stationary neu-

tralizing background. The fluid Electron Magnetohydrodynamics (EMHD) model

[19–21, 26, 29–32, 34, 35], therefore, seems an appropriate framework for the study

of these phenomena. As we have already discussed in Chapter 2 and Chapter 3,

the EMHD model ignores the displacement current contribution in the Ampere’s

law and provides description for non-relativistic incompressible electron flows [19–

21, 26, 29–32, 34, 35]. The generalization of the model for weakly relativistic

flows (where ignoring displacement current continues to be a good approximation)

has been made earlier [22]. However, with the advent of high power femtosecond

lasers, plasma can be triggered to respond at very fast time scales with its elec-

tron component in strongly relativistic regime. In this strongly relativistic regime,

ignoring displacement current can no longer be considered a good approximation.

This chapter discusses the extension of the EMHD model to a strongly relativistic

regime. In the limiting case when the phenomenon under consideration is slower

than the electron plasma period (e.g. very dense plasmas), the electron density

perturbations can be ignored and the relativistic electron fluid can still be consid-

ered as an incompressible fluid. The response of the electron fluid in this limit is
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purely electromagnetic. We concentrate in this particular regime to analyze the

behaviour of the electron velocity shear driven modes.

The influence of relativistic effects on the flow shear driven Kelvin - Helmholtz

(KH) instability [24] has been studied by Bodo et al. [36] in the context of com-

pressible neutral hydrodynamic fluid. The characteristic features of the linear

instability for an abrupt step function velocity profile were delineated for various

Mach numbers and the inclination of the wave number with respect to the flow

direction, in the study by Bodo et al. [36]. The KH like instability for the magne-

tized electron fluid has been investigated in the non-relativistic limit in considerable

detail in some recent studies [25, 33, 35]. It was observed that the magnetized char-

acter of the electron fluid makes it somewhat distinct from the hydrodynamic KH

mode. There have been suggestions lately [5, 33, 37] that this instability might

have an important role in the context of the propagation of energetic electrons in

the ignition phase of Fast Ignition (FI) experiments [3, 6, 38]. The electron in such

experiments being strongly relativistic, it is necessary to study the role of relativ-

ity on the growth of the mode. Such a study would also have relevance in some

astrophysical contexts, where one often encounters a strongly relativistic sheared

electron flow (e.g. astrophysical electron jets, etc.). It is, therefore, of importance

to study the influence of relativistic motion on the shear driven mode for electron

fluids. Present chapter aims at this objective.

An important observation gleaned from these studies is that the role of dis-

placement current is negligible in the present incompressible limit. Our studies

also show that the growth rate for the relativistic case for an abrupt step function

velocity differs only slightly from the non - relativistic expression. Thus, the typical

46



estimates of growth rate in a relativistic situation, when evaluated from a simpli-

fied non relativistic expression, produce only a small deviation. The relativistic

effect, however, manifests as extended unstable wave number domain, for gradu-

ally varying realistic velocity profiles in the strongly relativistic regime. In this

case (unlike the conventional KH instability), the threshold wave number along

the flow direction, is no longer constrained by the inverse of the shear width of

the velocity profile [1, 2, 35]. Also, the mode no longer remains a purely growing

mode, instead it acquires a real frequency even for an antisymmetric (e.g. tangent

hyperbolic) shear velocity profile. The appearance of these new features have been

understood by realizing that the presence of shear in the velocity, also produces a

shear in the relativistic mass factor, γ0. The shear in the relativistic mass factor

is sharper (due to its nonlinear dependence on velocity) in the strongly relativistic

regime and is responsible for the expanded domain of the unstable wave numbers.

Furthermore, it has been shown that for this case, the Rayleigh criteria of insta-

bility can be satisfied even when the wave function is not localized symmetrically

about the velocity null point. This produces a Doppler shifted real frequency.

4.2 Governing Equations

The electron time scale phenomena in relativistic regime can be described by the

coupled set of Maxwell’s and the relativistic electron fluid equations. We restrict

to the case where the electron fluid is either cold or it has a non - relativistic

temperature. The set of Eqs. (2.1)-(2.5) discussed in Chapter 2, describe the

most general set of governing equations. We now seek simplified limits of this

set. We consider the variations to be confined in the 2-D x − z plane. The ŷ
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axis represents the symmetry direction. The ion species of the plasma forms a

stationary neutralizing background of homogeneous density at the time scales of

interest. The electron flow velocity (both equilibrium and the perturbed) and

consequently the associated current is assumed to lie in the 2-D, x − z plane. For

this simplified case, the magnetic field component along the symmetry axis ŷ is

the only relevant component. Thus, we choose to represent the magnetic field

in terms of a single scalar field (B = bŷ. Similarly, the relativistic fluid vorticity

∇× γe(ve in this case has only one scalar component directed along the symmetry

axis ξŷ. In the Ampere’s law, due to the existence of displacement current, one is

not able to express the electron velocity directly in terms of magnetic field here, as

is done in the context of conventional non-relativistic EMHD model. Taking the

ŷ component of the curl of Eqs. (2.3)-(2.4) yield the following equations for the

fields ξ and b respectively:

{
∂

∂t
+ (ve · ∇

}(
mξ − e

c
b
)

= −
(
mξ − e

c
b
)
∇ · (ve

−
{

∂

∂z

(
1

ne

∂pe

∂x

)
− ∂

∂x

(
1

ne

∂pe

∂z

)}
(4.1)

1

c2

∂2b

∂t2
−∇2b = −4πe

c

{
ne

(
∂vxe

∂z
− ∂vze

∂x

)
+ vxe

∂ne

∂z
− vze

∂ne

∂x

}
(4.2)

The divergence of the electron momentum equation yields the following equation

for χ = ∇ · γe(ve

m

{
∂χ

∂t
+ (ve · ∇χ

}
=

e

c

{
∂

∂x
(vzeb) −

∂

∂z
(vxeb)

}
+ e∇2ϕ−∇ ·

(
∇pe

ne

)

−m

{
∂vxe

∂x

∂γevxe

∂x
+

∂vze

∂x

∂γevxe

∂z
+

∂vxe

∂z

∂γevze

∂x
+

∂vze

∂z

∂γevze

∂z

}
(4.3)
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The evolution of fields ne, ξ, b and χ through Eqs. (2.5),(4.1)-(4.3) represent a

complete and a consistent set of coupled equations for analysis under the condition

of (i) stationary neutralizing ions (ii) two dimensionality, and (iii) absence of in-

plane magnetic field component. The other fields ϕ, vxe and vze can be determined

from Poisson’s equation along with

∇2γevxe = ∂χ/∂x + ∂ξ/∂z

∇2γevze = ∂χ/∂z − ∂ξ/∂x. (4.4)

The various constants π, e, c etc., from Eqs. (4.1)-(4.3) can be absorbed by ap-

propriate normalization. We choose to normalize the magnetic field by a typical

amplitude B00, time by the gyroperiod ωce0
−1 corresponding to B00 and length by

the electron skin depth de = c/ωpe (where ω2
pe = 4πn0ee2/m ). The normalized

equations can then be written as

∇2b − σ2∂
2b

∂t2
=

{
ne

(
∂vxe

∂z
− ∂vze

∂x

)
+ vxe

∂ne

∂z
− vze

∂ne

∂x

}
(4.5)

∂(ξ − b)

∂t
+ (ve · ∇(ξ − b) = −(ξ − b)(∇ · (ve) (4.6)

∂χ

∂t
+ (ve · ∇χ = σ2(ne − 1) +

∂(bvze)

∂x
− ∂(bvxe)

∂z
−∇2pe

−
[
∂vxe

∂x

∂γevxe

∂x
+

∂vze

∂z

∂γevze

∂z
+

∂vxe

∂z

∂γevze

∂x
+

∂vze

∂x

∂γevxe

∂z

]
. (4.7)

We have eliminated ϕ from Eq. (4.7) by using Poisson’s equation, Eq. (2.5). The

continuity equation for density remains unaltered. The symbol σ = ωce0/ωpe and

γe = 1/
√

1 − σ2v2
e . It is clear that the inclusion of effects related to the displace-

ment current has complicated the governing equations considerably in comparison
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to the conventional EMHD model. While the EMHD equations under identical

conditions of 2-D variation and the absence of electron flow along symmetry di-

rection can be expressed solely in terms of one field (namely the magnetic field

component along the symmetry direction b), here, on the other hand one has to

consider the evolution of four fields (b, ne, ξ and χ). Moreover, Eq. (4.5) contains

second derivative with respect to time.

We now seek possible limits in which further simplifications are possible. Con-

sidering a pure electromagnetic mode in a homogeneous plasma, one can ignore

electron density perturbations under the approximation of ω < ωpe. This corre-

sponds to incompressible flows for which ∇ · (ve should also be zero. The displace-

ment current contribution continues to be present through the ∂2b/∂t2 term in

Eq. (4.5). This is, thus, a case when ∇ × (ve is more prominent than the ∇ · (ve.

The simplified equations in this limit can thus be written as

∇2b −Aσ2∂
2b

∂t2
=

(
∂vxe

∂z
− ∂vze

∂x

)
(4.8)

∂(ξ − b)

∂t
+ (v · ∇(ξ − b) = 0 (4.9)

The coupled set of Eqs. (4.8)-(4.9) along with

∇2γevxe =
∂ξ

∂z
; ∇2γevze = −∂ξ

∂x
(4.10)

to determine the velocity, would be employed to study the electron velocity shear

driven instability in the relativistic regime. It should be noted that we have added

an extra coefficient A in the L.H.S. of the second term of Eq. (4.8). Two cases

A = 0 and A = 1 would be considered to identify the role of displacement current

50



term. Choosing A = 0, the contribution of the displacement current gets ignored.

In the next section, we obtain the linearized equations for a sheared relativistic

electron velocity flow equilibrium.

4.3 Linearized Equations

We consider an electron flow v0z(x)ẑ, which is directed along the ẑ axis and has

a sheared profile along x as the equilibrium. This equilibrium flow produces an

equilibrium vorticity ξ0ŷ = −(∂(γ0vz0)/∂x)ŷ. The linearized equations around this

equilibrium can then be written as

Aσ2∂
2b1

∂t2
− ∂2b1

∂x2 − ∂2b1

∂z2 =

(
∂vz1

∂x
− ∂vx1

∂z

)
(4.11)

∂(ξ1 − b1)

∂t
+ vz0

∂(ξ1 − b1)

∂z
+ vx1

∂(ξ0 − b0)

∂x
= 0 (4.12)

Expressing ξ1 in terms of vx1 and taking Fourier Transform of Eqs. (4.11)-(4.12)

along ẑ and time we obtain

−Aω2σ2b1 −
d2b1

dx2 = −k2
zb1 +

i

kz

[
d2vx1

dx2 − k2
zvx1

]

(ω̄)

[
γ0

3 d2vx1

dx2 − k2
zγ0vx1 − ikzb1 + 3γ0

5σ2vz0v
′

z0

dvx1

dx

]

+kz

[
(γ0vz0)

′′
− vz0

]
vx1 = 0 (4.13)

where ω̄ = ω − kzvz0. For A = 0, the equations reduce to the previous case of

pure EMHD studies for linear shear flow instability in 2-D. It can be shown from

Eq. (4.13) that for a step velocity profile, following four functions f1,f2,f3, and f4
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should be continuous at the boundary separating different regions of flow velocity:

f1 = b′1 +
iv′

x1

kz

f2 = b1 + i
vx1

kz

f3 = γ0
3(ω̄v′

x1 + kzv
′
z0vx1)

f4 =
vx1

ω̄
(4.14)

Thus, while obtaining the eigen functions, one must ensure the continuity of these

functions.

4.4 Step profile

We consider, in this section, the simplest step velocity profile to study the role

of relativistic effects on the growth rate of shear driven modes. The step velocity

profile corresponds to two adjoining regions of oppositely streaming electrons. In

Region I (−∞ < x < 0), the electron flow velocity vz0(x)ẑ = −V0 and in Region

II (0 < x < ∞), the flow velocity is chosen as vz0(x)ẑ = V0. In the two regions,

the equations can then be written separately as

d2bI,II

dx2 + αI,IIbI,II + βI,IIvxI,II = 0

d2vxI,II

dx2 + µI,IIbI,II + δI,IIvxI,II = 0 (4.15)

with the coefficients αr, βr, γr, and δr (the suffix r stands for the two regions) as

constants (independent of x) defined as follows

αI,II =
(
Aω2σ2 − k2

z − 1/γ0
3
)
, βI,II = ∓(iV0)/γ0

3Ω± + ikz/γ0
2 − ikz

52



δI,II =
(
−k2

z/γ0
2 ± kzV0/γ0

3Ω±
)
, µI,II = −ikz/γ0

3

Here, Ω± = ω±kzV0. The coupled set defined by Eq. (4.15) can be solved assuming

the form ∼ exp(prx) for the solution.

(
p2

r + αr

)
br + βrvxr = 0

(
p2

r + δr

)
vxr + µrbr = 0 (4.16)

which gives, p2
r = (1/2)

[
− (αr + δr) ±

√
(αr − δr)

2 + 4βrµr

]
. Thus, there are two

roots each for p2
I and p2

II corresponding to the ± sign before the square root. Upon

substituting for αI,II , βI,II , µI,II , and δI,II we obtain the expression for the roots

as

p2
I± = ±1

2

{(
Aω2σ2 −

(
ω + 2kzV0

Ω+γ0
3

)
− kz

2vz0
2

)2

+
4kz

2

γ0
6

(
γ0 − γ0

3 − vz0

kzΩ+

)}1/2

+

{
k2

z

(
1 − vz0

2

2

)
+

ω

2γ0
3Ω+

− Aω2σ2

2

}

p2
II± = ±1

2

{(
Aω2σ2 −

(
ω − 2kzV0

Ω−γ0
3

)
− kz

2vz0
2

)2

+
4kz

2

γ0
6

(
γ0 − γ0

3 +
vz0

kzΩ−

)}1/2

+

{
k2

z

(
1 − vz0

2

2

)
+

ω

2γ0
3Ω−

− Aω2σ2

2

}

Using the condition that the solutions of Eq. (4.15) should vanish at ±∞, we have

the following expression for them

bI = bI+exp(pI+x)+bI−exp(pI−x); bII = bII+exp(−pII+x)+bII−exp(−pII−x)

vxI = vxI+exp(pI+x)+vxI−exp(pI−x); vxII = vxII+exp(−pII+x)+vxII−exp(−pII−x)
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Here, pr± are chosen as the positive square root of p2
r±. The solutions contain eight

unknown coefficients which have to be determined. There are only four matching

conditions to be satisfied in terms of the continuity of the four functions in the

two regions, as already discussed in the previous section. It should be noted that

the coefficients of one of the fields, viz., vx can be expressed in terms of b by using

Eq. (4.16). This gives

vxI,II± =

(
ikz

δI,II + p2
I,II±

)

bI,II±

This leaves us with four unknown coefficients vxI,II± which have to satisfy the four

matching conditions. In order to obtain a non trivial solution, the determinant of

the coefficient matrix M̄ should be zero. The condition det||M || = 0 then deter-

mines the eigen value ω. Upon applying the matching conditions, the coefficient

matrix M can be expressed as follows

pI+

(
1 − 1

q2
I+

)
pI−

(
1 − 1

q2
I−

)
pII+

(
1 − 1

q2
II+

)
pII−

(
1 − 1

q2
II−

)

(
1 − 1

q2
I+

) (
1 − 1

q2
I−

) (
−1 + 1

q2
II+

) (
−1 + 1

q2
II−

)

pI+

(
Ω+

q2
I+

)
pI−

(
Ω+

q2
I−

)
pII+

(
Ω−
q2
II+

)
pII−

(
Ω−
q2
II−

)

(
1

Ω+q2
I+

) (
1

Ω+q2
I−

)
−

(
1

Ω−q2
II+

)
−

(
1

Ω−q2
II−

)

where δr + p2
r± = q2

r±. In the Fig. 4.1, we have shown the surface and contour plot

of one of the roots of this determinant. For subsequent analysis, we choose the

normalizing magnetic field B00 (for any given density n0e) so as to have σ = 1.

The eigen value ω as a function of kz and V0 can be obtained from the roots of

the equation det || M ||= 0. The root with maximum value of Im(ω) provides for
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the maximum growth rate of the instability. The corresponding eigen vector is the

maximally growing mode of the system. The growth rate in the absence of dis-

placement current contribution ΓWR can be obtained analytically (by substituting

A = 0 in the equation det || M ||= 0) as

ΓWR = kzV0

√
(1 + 4k2

zγ0)/(3 + 4k2
zγ0). (4.17)

This expression for ΓWR has also been obtained in an earlier publication by Das et

Figure 4.1: The contour as well surface plot of one of the roots obtained after
solving the determinant det||M || = 0. Here, kz = 2.

al. [22]. The non-relativistic expression ΓNR results simply by substituting γ0 = 1

in Eq. (4.17). The difference between the expressions of ΓWR and the ΓNR (for

same V0 ) is very small. Hence the curves corresponding to these growth rates as a

function of kz overlap in the subplots (a) and (b) of Fig. 4.2. The small difference
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between ΓWR and ΓNR has been shown in subplot (c) of Fig. 4.2. The plot clearly

shows that the difference maximizes at an intermediate kz. This difference at
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Figure 4.2: The plot of various limiting forms of the growth rates for a step velocity
shear profile. Subplot (a) show for V0 = 0.8 the relativistic growth rate ΓR/V0

for A = 1 (solid line) as a function of kz. The dashed line represents the non
relativistic ΓNR/V0 and also the relativistic growth rate ΓWR/V0 evaluated for
A = 0. The difference between ΓWR/V0 and ΓNR/V0 is very small to be seen in the
plot. Subplot (b) is similar to (a) but here V0 = 0.9. Subplot (c) shows the plot of
(ΓWR − ΓNR)/V0 as a function of kz for V0 = 0.8 (dashed line) and V0 = 0.9 (solid
line). Subplot (d) is for (ΓR − ΓWR)/V0 as a function of kz for V0 = 0.8 (dashed
line) and V0 = 0.9 (solid line).

intermediate range of kz increases with V0. From the expression, Eq. (4.17) also,

it is clear that both, at very small and very large values of kz, the two expressions

asymptote towards kzV0 and kzV0/
√

3 respectively. We would also like to emphasize

here that small difference simply means that the expressions for the growth rates in

relativistic and non-relativistic cases for the step profile are typically very similar.

Since V0 is comparable to the speed of light (unity in the present normalizations)

for the relativistic case and is much smaller in the non-relativistic situations, the
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value of the growth rate for relativistic flows would indeed be much higher than

that for non-relativistic cases. The small difference in Fig. 4.2 merely suggests that

the use of non-relativistic expression for evaluating the growth rate in relativistic

cases would not cause any significant error. We now study the role of displacement

current on the mode by choosing A = 1. The thick solid line of subplots (a) and

(b) of Fig. 4.2 show the the growth rate ΓR as a function of kz for V0 = 0.8 and 0.9

respectively. The value of ΓR is smaller than ΓWR for lower kz values, however at

higher kz, ΓR > ΓWR. The difference between the two increases monotonically with

kz and V0 as illustrated in the subplot (d) of Fig. 4.2 . It basically means that the

displacement current plays negligible role at small and intermediate wave numbers.

The figure, however, suggests that at higher wave numbers the differences could be

significant. However, only for the unrealistic step function velocity profile, there

exist all higher values of the wave number kz which can be destabilized. When

a realistic profile of the velocity shear is chosen such as the tangent hyperbolic

function, there exists a threshold on the wave number kzth (inversely proportional

to shear width) [1, 2] beyond which the growth rate vanishes. It will be shown in

the next section that for the entire range of wave numbers for which the mode can

be excited the contribution of displacement current is insignificant.

4.5 Tangent hyperbolic velocity profile

In this section, we consider a shear flow profile which has a finite width ε and has

a tangent hyperbolic form vz0(x) = V0 tanh(x/ε). The growth rate in this case

is obtained numerically by solving for the eigen value ω from Eqs. (4.11)-(4.12).

In Fig. 4.3 and 4.4, we show the plot of the growth rate and the real frequency
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Figure 4.3: The growth rate for a tangent hyperbolic sheared velocity profile of the
form vz0 = V0 tanh(x/ε). Here, V0 = 0.8 and ε = 0.1 has been chosen. The solid
and dashed lines show the plot of ΓR/V0 and ΓWR/V0 respectively, as a function
of kzε. The inset shows the plot over an extended scale. The eigen value is purely
growing for this case.

as a function of kzε for V0 = 0.8 and V0 = 0.9 respectively. The two figures

provide comparison between ΓWR (growth rate in the absence of the contribution

from displacement current, i.e. for A = 0 ) and ΓR (when A = 1). The inset

in Fig. 4.3 shows this difference in an expanded scale. The figures, thus, suggest

that the difference between ΓR and ΓWR is quite small over the entire regime of

kz. Thus, the role of the displacement current, in the incompressible limit that we

are considering here, appears negligible.

The figures show that in the relativistic case too there exists a threshold value of

kz beyond which the growth rate vanishes. An interesting observation is that while
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Figure 4.4: The growth rate for a tangent hyperbolic sheared velocity profile of the
form vz0 = V0 tanh(x/ε). Here, V0 = 0.9 and ε = 0.1 has been chosen. The solid
and dashed lines show the plot of ΓR/V0 and ΓWR/V0 respectively, as a function of
kzε. The eigen value acquires a real frequency indicated by a line with open circles
beyond kzε ≈ 0.15 for this case.

the form of the growth rate curve in Fig. 4.3 is very similar to the non-relativistic

growth rates obtained in the earlier publications [1, 2], the plot of Fig. 4.4 for

V0 = 0.9 has certain distinctions. The contribution due to displacement current

continues to be small even when V0 = 0.9. The mode, however, shows certain

distinct features in this case, where relativistic effects are expected to be compara-

tively stronger. The typical KH mode in EMHD in the non-relativistic formulation

is a purely growing mode (no real frequency associated with the growing mode).

Also, the growth rate curve exhibits only a single maxima as a function of kz in

the non-relativistic limit. We observe that while the plot of Fig. 4.3 for V0 = 0.8

exhibits these features, this is not so for V0 = 0.9. There appear multiple peaks
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in the growth rate plot (see Fig. 4.4) and the mode also acquires a real frequency

after the first peak. We have also repeated our investigation for other values of

V0. We conclude from these studies that smaller values of V0 exhibit the typical

trait of KH mode (single maxima of the growth rate curve and the purely growing

character). However, at higher values of V0, multiple peaks appear in the growth

rate curve and the mode does not remain purely growing beyond the first peak.

A real frequency also gets associated with the subsequent peaks of the curve. We,

therefore, feel that the mode corresponding to subsequent peaks is somewhat dis-

tinct from the pure velocity shear mode that we have been acquainted with. In

the later part of this section we will trace the origin of this distinction in detail.

0.4 0.6 0.8 10

0.5

1

1.5

V
0

Figure 4.5: The maximum growth rate ΓRmax/V0 (maximized over kz) (hollow cir-
cles) and the threshold value of the wave vector kzth (hollow diamond) as a function
of V0 . These points represent only those values of V0 which are comparatively lower
and produce a single peak in the plot of the growth rate vs. the wave number. The
points, indicated by the dark filled circle and diamond in the figure correspond to
the maximum growth rate divided by V0 and the threshold wave number for the
first peak of the purely growing mode of Fig. 4.4 respectively.

The other observations in the relativistic regime for smaller values of V0 (e.g.

purely growing modes with only single peak in the growth rate curve) show a
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monotonic decrease of Γmax/V0 with V0. The points denoted by hollow circles in

Fig. 4.5 illustrate this. One also observes that the threshold of the wave number,

viz. kzth (indicated by hollow diamonds in Fig. 4.5) also reduces with increasing

V0. Thus, the domain of unstable wave number seems to diminish with increasing

speed. The last two points in the figure shown by dark filled circle and also a dark

filled diamond has been put only for the purpose of illustration. These points are

for V0 = 0.9 and correspond to the Γmax/V0 ( filled circle) maxima of the first peak,

and that value of kz (filled diamond) beyond which the growth rate acquires a real

frequency. Note that this can be looked upon as the expected value of the threshold

wave number, had only the first peak corresponding to purely growing mode been

present in the growth rate plot. These points also seem to follow the consistent

trend. The real kzth for V0 = 0.9, however, is much higher than that for V0 = 0.8

as can be seen from the comparison of Fig. 4.3 and Fig. 4.4. This again suggests

that the data corresponding to the first peak for V0 = 0.9 is perhaps consistent

with the overall trend with respect to V0. However, the subsequent peaks of the

growth rate of Fig. 4.4 appearing at higher values of V0 have distinctly different

characteristics. As we increase the value of V0 further to 0.95, the growth rate

curve in Fig. 4.6 shows that the domain of unstable wave numbers corresponding

to the purely growing mode, shrinks to zero.

However, the subsequent peak with real frequency broadens up and the thresh-

old of the wave number for the instability can be seen to exceed even the inverse

shear width of the velocity profile, viz., 1/ε. This is a very interesting result as it

shows that the unstable wave number domain increases in the strongly relativistic

regime and scales even shorter than the shear width of the velocity profile are
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unstable.

Figure 4.6: The growth rate for a tangent hyperbolic sheared velocity profile of
the form vz0 = V0 tanh(x/ε). Here, V0 = 0.95 and ε = 0.1 has been chosen. The
eigen value has real frequency over the entire domain of unstable wave numbers as
shown by the curve with open circles.

Let us now try to understand the novel characteristic features of the growth

rate curve as a function of kzε observed in the plots of Fig. 4.4 and Fig. 4.6. The

contribution of displacement current has been found to be negligible in all studies,

hence we consider the approximation of A = 0 in Eqs. (4.11)-(4.12) and try to

obtain a necessary condition for instability. For A = 0, Eqs. (4.11)-(4.12) can be

combined and written as

d2vx1

dx2 + 3
d (log γ0)

dx

dvx1

dx
−

(
k2

z

γ0
2

+
1

γ0
3
−

kz

(
(γ0vz0)

′′ − vz0

)

ω̄γ0
3

)
vx1 = 0 (4.18)
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Using the transformation vx1 = U/γ0
3/2, Eq. (4.18) the equation reduces to a

simpler form
d2U

dx2 + QU = 0 (4.19)

where

Q = − (1/γ0
3ω̄)

(
ω̄ (k2

zγ0 + 1) − kz

(
(γ0vz0)

′′ − vz0

))
− 3

2 (log γ0)
′′ − 9

4

(
(log γ0)

′)2
.

Multiplying (4.19) by U∗ and integrating by parts with respect to x leads to

∫ [
| dU

dx
|2 +

(
1 +

k2
z

γ0
2

+
3

2
(log γ0)

′′ +
9

4

(
(log γ0)

′)2
)

| U |2
]

dx

−
∫ (

(γ0vz0)
′′ − vz0

)

ω̄γ0
3

kz | U |2 dx = 0 (4.20)

where perturbations are assumed to vanish at the boundaries (i.e. at x = ±∞).

The first term in the above integral equation is real and positive. The second term

can also be written as

kz

∫
ω̄

(
(γ0vz0)

′′ − vz0

)

| ω̄ |2 γ0
3

| U |2 dx (4.21)

Eq. (4.20) can then be satisfied for an imaginary value of ω only if the coefficient

of imaginary part of ω vanishes, all other terms being real in the equation. This

implies
∫ (

(γ0vz0)
′′ − vz0

)

| ω̄ |2 γ0
3

| U |2 dx = 0 (4.22)

Hence, it is clear that the necessary condition for instability implies [24] that

vz0 − (γ0vz0)′′ should change sign, all other factors being positive in the integrand.

For the non-relativistic case, as well as the case when V0 has a low value (e.g. 0.8

chosen in our plots), the sign vz0 − (γ0vz0)′′ changes only once over a width of ε as
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shown in Fig. 4.7. However, when the value of V0 is chosen to be high (e.g. 0.9

Figure 4.7: The four subplots show v0 − (γ0v0)′′ (solid line) and the eigen function
| vx1 |2 (dashed line) as a function of x for the tangent hyperbolic equilibrium shear
profile flow for different values of kz. Here, V0 = 0.8 and ε = 0.1.

and above) the tangent hyperbolic profile of vz0 also produces a strong shear in

the relativistic mass factor γ0. This, then changes the sign of vz0 − (γ0vz0)′′ more

than once, and over much shorter width than ε as can be seen from Fig. 4.8 and

Fig. 4.9 for V0 = 0.9 and V0 = 0.95 respectively. We feel that for the additional

peaks in the growth rate plot of Fig. 4.4 and for the entire region of unstable wave

number domain shown in Fig. 4.6, the shear in the relativistic mass factor γ0 is

responsible.

This has been made more evident by plotting the corresponding eigen functions
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| vx1 |2 also as dotted lines in Fig. 4.7, Fig. 4.8 and Fig. 4.9. For V0 = 0.8 in Fig. 4.7

the eigen function can be seen to be symmetric and localized around x = 0 (the

point where vz0 is zero) for kz = 1, 2, 3. Since kz = 4 is higher than kzth the eigen

function is zero everywhere in the fourth subplot of this figure.
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Figure 4.8: The four subplots show v0 − (γ0v0)′′ (solid line) and the eigen function
| vx1 |2 (dashed line) as a function of x for the tangent hyperbolic equilibrium shear
profile flow for different values of kz. Here, V0 = 0.9 and ε = 0.1.

For the plots of Fig. 4.8, only kz = 1 lies in the region of the first peak of

Fig. 4.8. All other values of kz chosen for the various subplots of Fig. 4.8 (e.g.

2, 3, 4) correspond to the wave number of subsequent peaks of Fig. 4.4. It is

interesting to note that the eigen function is not symmetric around the point of

zero velocity for kz = 2, 3, 4 (which correspond to wave numbers of the subsequent

peaks in the growth rate).

In Fig. 4.5 the eigen function corresponding to no value of kz is symmetric
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Figure 4.9: The four subplots show v0 − (γ0v0)′′ (solid line) and the eigen function
| vx1 |2 (dashed line) as a function of x for the tangent hyperbolic equilibrium shear
profile flow for different values of kz. Here, V0 = 0.95 and ε = 0.1.

around x = 0. The appearance of additional zeroes in vz0 − (γ0vz0)′′ ensures that

the instability condition of Eq. (4.22) can be satisfied even by an asymmetric | vx1 |2

which is not localized around x = 0 for these cases.

Furthermore, since the eigen function is asymmetrically placed with respect

to the anti-symmetric tangent hyperbolic velocity shear profile, a Doppler shifted

real frequency naturally appears in the eigen value. This can be compared with

the appearance of a real Doppler shifted frequency in the eigen value even in the

non-relativistic cases in a frame where the velocity profile is not anti-symmetric.

These observations, thus, point towards a novel extension of the KH mode of

EMHD in relativistic regime arising solely due to the shear in the relativistic mass

factor. It should be noted that for the case of the step velocity flow profile these

features can not be observed. This is so because in that case the value of γ0 also
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jumps exactly at the same location as that of the velocity discontinuity.

4.6 Summary

The sheared electron flow configuration is a ubiquitous feature in laboratory as

well as astrophysical plasmas. The electron velocity in these situation is also often

in the relativistic regime. For instance, the electron jets observed in astrophysical

context have relativistic velocities. Also, with the advent of high intensity lasers,

the laboratory experiments on laser plasma interaction routinely produces sheared

electron flow at relativistic speeds. There have been suggestions that the velocity

sheared flow instability for electron fluid might play a crucial role in the anomalous

stopping mechanism of the energetic electrons within the compressed target core

during the ignition phase of the Fast Ignition (FI) experiments [3, 5, 33]. The

electrons in the experiment being strongly relativistic, the studies carried out here

might have direct relevance to such experiments. The stability of sheared electron

flow at relativistic velocities is therefore of interest both from fundamental as well

as application point of view.

We have discussed in this chapter the role of relativistic effects on the elec-

tron velocity shear driven instability. The electron species being comparatively

much lighter than the ions in the plasmas, the framework of the fluid Electron

Magnetohydrodynamics (EMHD) model, which treats the ions as a neutralizing

stationary background was adopted. The EMHD model was, however, generalized

to incorporate the relativistic effects. The simplified incompressible limit of the

relativistic EMHD model was then employed to study the KH instability in this

regime. The assumption of incompressibility can be justified for dense plasmas

67



where plasma frequency is very high, and where the time scales of the phenomena

under consideration can be assumed to be slower than the plasma period. This

implies, the density perturbations associated with the electron fluid can be ignored

in the treatment.

Our studies demonstrate that the role of displacement current in this incom-

pressible limit is considerably weak. Furthermore, it was also shown that the

growth rate for the relativistic case differs only slightly from the one evaluated us-

ing the non-relativistic expression. Thus the typical order of magnitude estimate

of the growth rate in the relativistic case, made from a non-relativistic treatment

does not introduce any major error.

There are also a number of novel features that have been uncovered for the

shear driven mode in the relativistic regime. We have shown that there exists two

varieties of shear driven mode in relativistic regime. One which arises solely from

the shear in the equilibrium velocity v0(x) , the other which is due to the associated

shear in the relativistic mass factor γ0. The first variety of mode has features similar

to the KH mode of the non relativistic case and primarily occurs in the weakly

relativistic regime. It is a purely growing mode with its eigen function localized

around the velocity null point (for a symmetric tangent hyperbolic velocity profile).

The growth rate in this case plotted as a function of kzε (ε being the shear width of

the velocity profile) displays a single maximum and vanishes both at kz = 0 and for

kzth, where kzth < 1/ε . For this particular mode the maximum value of the growth

rate Γmax/V0 and kzth diminishes with increasing amplitude of V0 indicating that

it becomes increasingly more difficult to excite the mode in relativistic regime.

In contrast, the other variety of mode occurs at very high values of velocity
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(essentially close to the speed of light). In this case the growth rate curve does

not show the universal single peak character as a function of kzε. The mode is

asymmetrically localized around the velocity null point and thereby acquires a real

frequency (Doppler shifted frequency). The threshold wave number in this case

is no longer restricted by kzth < 1/ε, in fact kzth has been shown to exceed the

inverse of the shear scale 1/ε. Thus much shorter scales get destabilized in the

strongly relativistic regime. We have shown, this mode essentially arises due to

the equilibrium shear associated with the relativistic mass factor γ0. At interme-

diate velocity range, both kind of modes are present. The modes at lower/higher

wave numbers are excited by the shear in velocity/relativistic mass factor in the

intermediate case.

In this Chapter, we studied the various physical aspects of relativistic flow

shear driven instability in EMHD. An analytical methodology to bridge strongly

relativistic flow sheared instability would be desirable. In the next chapter, we

employ perturbative analytic treatment to study the weakly relativistic flow shear

driven instability.
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Chapter 5

Perturbative analysis of sheared flow
Kelvin-Helmholtz instability in a
weakly relativistic magnetized
electron fluid

The effect of relativistic flow on the Kelvin - Helmholtz like instability has been

investigated in Chapter 4 using numerical technique. The growth rate, mode struc-

ture and the threshold wave number were obtained using well known numerical

scheme of eigen value and eigen function determination. We adopt here a pertur-

bative analytical treatment and confirm the numerical results obtained in Chapter

4 for the weakly relativistic case.

5.1 Introduction

The Kelvin Helmholtz (KH) instability has been investigated in the context of

non-relativistic Electron-Magneto-Hydrodynamics (EMHD) Model in considerable

detail [35]. In recent times, there are routine experiments which involve the in-
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teraction of intense laser pulses with compressed matter and/or plasma which can

produce a relativistically sheared electron flow configuration. An example in this

regard is the interaction of the ignitor laser pulse with the compressed target in the

context of fast ignition experiments [6]. The inward propagation of these energetic

electrons is countered by the background plasma reverse shielding current. It is

well known that the combination of such a forward and reverse shielding current

can undergo Weibel destabilization causing spatial separation of the forward and

reverse shielding currents, which subsequently form current sheets. The tearing

and coalescence of these sheets then form several current filaments. One such

particular filament consists of the central core region carrying the inward electron

current and the outer shell the reverse current [see Fig. 1.2]. The combination of

the forward and reverse shielding current produces a sheared electron flow pro-

file, which in general is susceptible to the KH destabilization process. However,

the magnetized character of the electrons and the fact that their flow speed could

be relativistic, produce certain distinct characteristic features to the properties of

this well known fluid instability. These features have been identified by employ-

ing the Electron Magnetohydrodynamic (EMHD) fluid model and its relativistic

generalization for the depiction of the electron fluid flow. The role of magnetized

behaviour of electron flow on KH instability has been investigated in considerable

detail in several publications [1, 2, 5, 19–21, 25, 26, 29–35, 39]. The additional

effects arising in the weakly relativistic regime were investigated by us numerically

[22] and have been presented in Chapter 4. In the weakly relativistic regime, the

main features pointed out were the reduction in both the value of the growth rate

as well as the threshold wave number of the instability. In this chapter, we show
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that these effects can be quantitatively understood by employing a perturbative

analytic treatment [40, 41].

5.2 Governing Equations

The governing equations for electron time scale phenomena in relativistic regime

comprises of the coupled set of Maxwell’s and the relativistic electron fluid momen-

tum equations. We assume that the ion species of the plasma forms a stationary

neutralizing background of homogeneous density at the time scales of interest.

Thus, the collisionless EMHD equations in dimensionless form when electron mo-

tion is relativistic is given by Eqs. (2.6) and (2.7). The electron fluid has been

chosen to be either cold or at non-relativistic temperature. We consider a 2-D

geometry with ŷ as the symmetry direction and variations confined in the x − z

plane. The equilibrium flow velocity of electron is sheared along x and its flow is

directed along ẑ, i.e. (ve0 = v0(x)ẑ. This equilibrium flow produces an equilibrium

magnetic field (B0y along ŷ via Eq. (2.7). The electron flow velocity (both equilib-

rium and the perturbed) and consequently the associated current is assumed to lie

in the 2-D, x− z plane. Fourier analyzing the linearized equations in time and the

z coordinate we retrieve Eq. (4.18).

5.3 Perturbative Treatment

The value of the threshold wave vector (kz along the equilibrium flow direction)

and the growth rate of the KH mode for non-relativistic sheared electron fluid are

known from numerical eigen value calculation. The growth rate has a typical bell

shaped form as a function of kzε, where kz is the wave number along the flow di-
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rection and ε is the shear width of the equilibrium flow [see Fig. 4.3]. The growth

rate is zero at kz = 0, maximizes and then again falls back to zero at a threshold

value of wave number kz = kzth. It is observed that kzth is typically of the order of

1/ε and is exactly equal to 1/ε for a tangent hyperbolic form of the sheared equi-

librium flow velocity in the non relativistic case. In the weakly relativistic case,

it was shown numerically by solving the eigen value equation that the threshold

wave number as well as the growth rate diminishes. We, however, provide a per-

turbative analytic treatment to obtain an expression for the modification of the

growth rate as well as the threshold wave number. We show that our perturbative

analytical expression yields quantitative values which are in close agreement with

the numerically obtained exact result.

We would seek the perturbative modification of the growth rate and the thresh-

old wave number around the exact solution obtained by using the non-relativistic

expression. The perturbative approach would be valid if the relativistic correction

in the expression is weak. We show that this indeed is the case. Let v(0)
x be the

exact solution when the non-relativistic expression is employed for the sheared

system. We expand in terms of the small parameter of O(v2
0/c

2) for the weakly

relativistic case, around the zeroth order known non-relativistic result. The prob-

lem is then cast in various orders of expansion parameter η = v2
0. Retaining terms

only upto first order in the expansion parameter we have for the eigen function,
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wave vector and the eigen value

vx1 = v(0)
x + v(1)

kz = k(0)
z + k(1)

z

ω̄ = ω̄(0) + ω(1) (5.1)

respectively. Here, ω̄(0) = ω(0) − kzv0. The superscript index inside the brackets

represent the various orders of η, the function is dependent upon. Using the per-

turbative expansions of eigen function, wave vector and the eigen value, Eq. (4.18)

can be rewritten as

γ0
3
(
ω̄(0) + ω(1)

)
{

d2(v(0)
x + v(1))

dx2 + 3 (log γ0)
′ d(v(0)

x + v(1))

dx

−
(

k2
z

γ0
2

+
1

γ0
3

) (
v(0)

x + v(1)
)}

+ kz

(
(γ0v0)

′′ − v0

) (
v(0)

x + v(1)
)

= 0
(5.2)

Expanding γ0 and its higher powers, we get

(
ω̄(0) + ω(1)

){(
1 +

3v2
0

2

) (
v(0)

x + v(1)
)′′

+ 3v0v0
′
(

1 +
5v2

0

2

) (
v(0)

x + v(1)
)′

−
(

k2
z(1 +

1

2
v2

0) + 1

)(
v(0)

x + v(1)
)}

+ kz

(
(γ0v0)

′′ − v0

) (
v(0)

x + v(1)
)

= 0

The zeroth order of Eq. (5.2) is

ω̄(0)

(
d2v(0)

x

dx2 −
(
k2

z + 1
)
v(0)

x

)
− kzv0

(
1 − v0

′′

v0

)
v(0)

x = 0 (5.3)
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First order expansion of Eq. (5.2) is given by the following equation

ω(1)

(
d2v(0)

x

dx2 −
(
k2

z + 1
)
v(0)

x

)
+ kz

(
3v0v0

′2 +
3

2
v0

2v(0)
x

′′
)

v(0)
x +

[
ω̄(0)

(
d2v1

dx2 −
(
k2

z + 1
)
v(1)

)
− kzv0

(
1 − v0

′′

v0

)
v(1)

]
+

ω̄(0)

(
3

2
v0

2v(0)
x

′′
+ 3v0v0

′v(0)
x

′ − k(0)
z

2
v2

0

2
v(0)

x

)

= 0 (5.4)

We multiply Eq. (5.4) by v(0)
x and integrate over x from -∞ to +∞. For the term

in square bracket the x differentiations are transferred to vx0 from v(1) and using

Eq. (5.3), it vanishes.

ω(1) =
−

∫ (
ω̄(0)

(
3v0(v0v

(0)
x /2

′′
+ v0

′v(0)
x

′
) − k(0)

z
2
v2

0v
(0)
x /2

)
v(0)

x

)
dx

∫ (
d2v(0)

x

dx2 − (k2
z + 1) v(0)

x

)
dx

−

∫ (
3kzv0

(
v0

′2/2 + v0v
(0)
x

′′)
v(0)

x
2
)

dx

∫ (
d2v(0)

x

dx2 − (k2
z + 1) v(0)

x

)
dx

(5.5)

By evaluating the integrals for the zeroth order wavefunction for specific shear pro-

file we can obtain the value of ω(1). The results have been shown for a typical shear

flow equilibrium for weakly relativistic case for a tangent hyperbolic profile. The

reason for choosing a tangent hyperbolic equilibrium velocity profile, in particular,

is that an exact value of threshold wave vector can be calculated analytically for

non-relativistic flows. Also, for the relativistic case, the exact results have been

obtained numerically which shows that the growth rate reduces due to relativistic

factor in the weakly relativistic regime.

In Fig. 5.1, we have compared the numerical and analytical values of the growth

rate for V0 = 0.3. The figure shows that they are in good agreement with the exact

75



Figure 5.1: The comparison between the growth rate as a function of kzε for the
weakly relativistic tangent hyperbolic sheared velocity profile. The plot for non-
relativistic, perturbative and weakly relativistic has been shown by asterisk, filled
circles and triangle respectively. Here V0 = 0.3 has been taken.

result. It can be observed that even the first order perturbative corrections show

impressive agreement with numerical results.

Using the same perturbative approach we will calculate the threshold wave

vector. We now obtain the expression for the altered threshold wave number kz

for growth. To evaluate the threshold, we put ω = 0 and look for the change in

the value of kz from its original non-relativistic value of k(0)
z . For ω = 0, Eq. (4.18)
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reduces to the following form

d2vx1

dx2 + 3(
√

1 − v2
0)

d
(
1/

√
1 − v2

0

)

dx

dvx1

dx
−

(

k2
z(1 − v2

0) +
(1 − v2

0)
3/2

v0

(
v0√

1 − v2
0

)′′)

vx1 = 0 (5.6)

Upon simplification, Eq. (5.6) can be written as:

d2vx1

dx2 + 3v0v0
′dvx1

dx
− v2

0

d2vx1

dx2

−
(

k2
z − 2v2

0k
2
z + k2

zv
4
0 +

v0
′′

v0
− v0v0

′′ + 3v0
′2
)

vx1 = 0 (5.7)

The zeroth order of Eq. (5.6) is

d2v(0)
x

dx2 −
(

k2
0 +

v0
′′

v0

)
v(0)

x = 0 (5.8)

The first order expansion of Eq. (5.6) is given by the following equation

d2vx1

dx2 −
(

k2
0 +

v0
′′

v0

)
v1 + 3v0v0

′dv(0)
x

dx
− v2

0

d2v(0)
x

dx2

−
(
2k(0)

z k(1)
z − 2k(0)

z

2
v2

0 − v0v0
′′ + 3v0

′2
)

v(0)
x = 0 (5.9)

We again apply the same technique of multiplying by v(0)
x and integrating from

-∞ to +∞ over x.
∫ {(

2k(0)
z k(1)

z − v0v0
′′ − 2k(0)

z

2
v2

0 + 3v0
′2
)

v(0)2
x

+
(
v2

0v
(0)
x

′′ − 3v0v0
′v(0)

x

′
)

v(0)
x

}
dx

=

∫ {
d2vx1

dx2 −
(

k(0)
z

2
+

v0
′′

v0

)
v1

}
v(0)

x dx

For the first term on R.H.S. the x differentiations are transferred to v(0)
x from v(1).
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Figure 5.2: The comparison between the analytical and numerical wave vectors vs.
V0 for the weakly relativistic tangent hyperbolic sheared velocity profile. The line
with circles shows the values of kz obtained using perturbative analytic treatment
while the triangles are the values obtained numerically.
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Hence, using Eq. (5.8) the terms on R.H.S. vanish. Simplifying the remaining

terms give us k(1)
z as follows

k(1)
z =

∫ ((
v0v0

′′ +
∫

2k(0)
z

2
v2

0 − 3v0
′2
)

v(0)2
x +

(
3v0v0

′v(0)
x

′
− v2

0v
(0)
x

′′)
v(0)

x

)
dx

∫
2k(0)

z v(0)2
x dx

(5.10)

We have analytical equilibrium solution for the non-relativistic case for

v0 = V0 tanh(x/ε) as

v(0)
x = sech

(x

ε

)
(5.11)

Substituting these in the Eq. (5.10), we get

k(1)
z =

V0
2
(
2k(0)

z
2
ε2 − 7

)

6k(0)
z ε2

(5.12)

So, kz = k(0)
z +k(1)

z gives the exact solution to the perturbed system to the first

order in the perturbation ε. In Fig. 5.2, we have compared the analytical values

with the numerical ones. Here also, we can see that they are in good agreement. It

can also be observed that the threshold value of the wave number decreases for the

weakly relativistic case when compared with the non-relativistic results [22, 35].

5.4 Summary and Conclusion

The sheared electron flow configuration with electron speed in the relativistic

regime can occur in wide ranging experiments concerning interaction of intense

laser fields with overdense plasma. The sheared flow configuration of any fluid

suffers destabilization through the well known fluid Kelvin Helmholtz (KH) insta-

bility. A detailed study of the KH instability in the context of electron fluids have
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been carried out in recent past [25, 35]. However, these studies could be conducted

using numerical techniques for the eigen value evaluation. We have provided here a

perturbative analytic expression for the first order correction in the growth rate as

well as the threshold wave number in terms of the relativistic correction parameter

of V 2
0 /c2. We show that these perturbative expressions provide close agreement

to the exact numerical value. A physical interpretation of the reduction in the

growth rate of the KH like mode in EMHD for weakly relativistic flows has also

been provided.
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Part II

Problem two
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Chapter 6

Relativistic Electromagnetic solitons
in cold plasmas

In this second part of the thesis (the present chapter 6 and chapter 7), we consider

our studies for the coupled laser plasma system. The possible nonlinear coher-

ent solutions for such system have been identified and an understanding of their

formation in a particular parameter domain of the laser frequency and the group

velocity has been provided. It has been shown that though the oscillating electric

field of the laser light influences the electron species due to its smaller mass, when

the structures form at small and/or zero group velocity the ion evolution has to

be retained. It is shown that the retention of ion motion permits an even richer

variety of solutions.

6.1 Introduction

The interaction of the electromagnetic field with plasma encapsulates a rich vari-

ety of nonlinear physics phenomena. A lot of which has been explored [3, 7–14] in

recent times. The Ponderomotive pressure of the radiation field and the relativis-
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tic nonlinearities (typically associated with the dynamical response of the lighter

electron species of the plasma at the available Peta - Watt range of laser power)

are two major sources which alter the effective dielectric constant of the plasma.

This leads to a nonlinear coupling between the transverse electromagnetic field

and the longitudinal plasma wave. Several authors have sought exact solutions for

this particular nonlinear coupled system, which has resulted in a rich variety of

solutions in the form of propagating envelope solitary pulses. A further richer class

of solutions results when the response of the heavier ion species is incorporated

[42–55].

A detailed and complete characterization of the various kind of solutions in the

parametric space of λ (associated with laser frequency) vs the group velocity β

has, however, been lacking. We provide here, a detailed description of the possible

solutions, both in the absence and the presence of ion response. We also comment

on the main characteristic features of the possible solutions and physically interpret

their formation in specific domain of the parameter space comprising the group

speed and the frequency of the trapped electromagnetic wave.

6.1.1 One Dimensional Cold Plasma : Model Equations

The description of the propagation of intense circularly polarized laser pulse in a

cold electron-ion plasma is provided by the coupled set of relativistic fluid equations

and the wave equation for the vector potential of the electromagnetic radiation.

We consider only one dimensional spatial variation along the propagation direction

x. The evolution equations read as follows:

∂ne

∂t
+

∂(neue)

∂x
= 0 (6.1)
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∂ni

∂t
+

∂(niui)

∂x
= 0 (6.2)

(
∂

∂t
+ ue

∂

∂x

)
(γeue) =

∂ϕ

∂x
− 1

2γe

∂A⊥
2

∂x
(6.3)

(
∂

∂t
+ ui

∂

∂x

)
(γiui) = −α∂ϕ

∂x
− α2

2γi

∂A⊥
2

∂x
(6.4)

∂2ϕ

∂x2
= ne − ni (6.5)

∂2A⊥

∂t2
− ∂2A⊥

∂x2
= −

(
niα

γi
+

ne

γe

)
A⊥ (6.6)

where α = me/mi. Here, Eqs. (6.1) and (6.2) are the continuity equations for

electron and ion respectively, Eqs. (6.3) and (6.4) are the momentum equations

for these species. Eq. (6.5) is the Poisson equation for the electrostatic potential ϕ

and Eq. (6.6) is the wave equation for the vector potential (A, and other notations

are standard. The equations (eqs. (6.1)–(6.6)) form the complete set of evolution

equations for the propagation of an intense circularly polarized radiation in a cold

plasma under the one dimensional approximation. The perpendicular components

for the fluid velocities of electrons (ue⊥) and ions (ui⊥) have been eliminated by

exact integration of the perpendicular momentum equations of the two species.

The symbols γe and γi represent the relativistic factors for electrons and ions

respectively, and are given by

γe =

√
1 + A2

⊥
1 − u2

e

and

γi =

√
1 + A2

⊥α
2

1 − u2
i
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The set of equations (eqs. (6.1)–(6.6)) describe the governing model for the prop-

agation of intense circularly polarized laser pulse in a cold electron - ion plasma in

one-dimension.We have retained here the relativistic effects for both electron and

ion species for the sake of completeness and also in view of the future possibility of

laser amplitudes being high enough to drive even ions to relativistic velocities. The

set of eqs. (6.1)–(6.6) has been employed for the study of the dynamical charac-

teristics of the one dimensional exact nonlinear solutions. We choose to normalize

electron and ion densities by a typical background value n00, length by the corre-

sponding skin depth c/ωpe0 (where ωpe0 =
√

4πn00e2/me), time by the inverse of

the plasma frequency ω−1
pe0 and the scalar and vector potentials by mc2/e.

The coupled set of fluid-Maxwell equations [eqs. (6.1)–(6.6)] admits a variety of

coherent nonlinear solutions. We use the coordinate transformation ξ = x − βt

(which represents the spatial coordinate in the frame moving with a group ve-

locity β) and τ = t. The choice of circularly polarized vector potential viz.,

(A = [a(ξ)/2][{ŷ + iẑ}exp(−iλτ) + c.c.] avoids the generation of harmonics. Using

the coordinate transformation outlined above and seeking stationary solutions in

the moving frame i.e. ∂/∂τ = 0, Eqs. (eqs. (6.1)–(6.4)) reduce to the form of or-

dinary differential equations. The equations upon integration give, ne(β−ue) = β,

ni(β − ui) = β, γe(1 − βue) − ϕ = 1 and γi(1 − βui) + ϕα = 1. The integration

constant is determined from the boundary condition of ue = ui = 0, ϕ = 0 and

ne = ni = 1, R = R′ = 0 at ξ = ±∞ corresponding to the bright solitonic struc-

tures [45, 46, 49, 56]. Eliminating ne and ni, the Poisson’s equation [Eq. (6.5 )]
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becomes

ϕ′′ =
β

β − ue
− β

β − ui
. (6.7)

Here, prime(′) denotes derivative with respect to ξ. Further, writing a(ξ) =

R exp(iθ), the wave equation [Eq. (6.6)] becomes

R′′ +
R

1 − β2

[(
λ2 − M2

R4

)
1

1 − β2
− β

β − ue

1 − βue

1 + ϕ
− α

β

β − ui

1 − βui

1 − ϕα

]
= 0

(6.8)

where M = R2[(1 − β2)θ′ − λβ] is a constant of integration and R2 = A2
x + A2

y.

Eqs. (6.7) and (6.8) form a coupled set of second-order differential equations for

the fields ϕ and R. The parallel fluid velocities for electron and ion species can be

expressed in terms of R and ϕ as shown below

ue =
β(1 + R2) − (1 + ϕ)[(1 + ϕ)2 − (1 − β2)(1 + R2)]1/2

(1 + ϕ)2 + β2(1 + R2)
(6.9)

and

ui =
β(1 + R2α2) − (1 − ϕα)[(1 − ϕα)2 − (1 − β2)(1 + R2α2)]1/2

(1 − ϕα)2 + β2(1 + R2α2)
(6.10)

In the next two sections, we present the exact nonlinear solutions provided by the

set of Eqs. (6.7) and (6.8) with ue and ui given by Eqs. (6.9) and (6.10) respectively,

for various values of the parameters λ and β. These solutions have been obtained

earlier by several authors [10–13, 42–45, 48] in separate contexts. Here, we provide

a comprehensive detailed picture of the possible solutions in the parameter domain

of λ - β space.
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6.2 The Nonlinear Solutions with electron response
alone

Figure 6.1: The λ− β spectrum in subplot ‘S’ indicating the existence region for
possible soliton solutions in static ion case viz. the single peak solutions, paired
solutions, and multi peak solutions tagged with ‘A’, ‘B’, and ‘C’, respectively. The
profile of vector potential(R), scalar potential(ϕ), and electron density(ne) for the
solutions of each variety are shown in subplots with the same tags.

In Fig. 6.1, we show the possible varieties of solutions for α = 0 (infinitely

massive ions) and the region in the λ vs β plane where they occur. The figure
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(Fig. 6.1) shows that in this case, there are essentially three varieties of solutions.

These solutions have been termed as (i) the single peak solutions, (ii) the paired

solutions, and (iii) the multiple peak solutions. We now briefly discuss all possible

varieties of solutions one by one.

1. Single peak solutions:

These are structures shown in subplot (A) of Fig. 6.1. These solutions have

a single peak in both vector R and scalar ϕ potentials. The normalized

amplitude of the scalar potential ϕ for these structures is typically smaller

than that of vector potential,R. The central subplot (S) of Fig. 6.1 shows

the region of existence of these particular variety of solutions in the λ vs. β

plane by an arrow pointing at the box enclosing the alphabet A. It shows

that they exist for a continuum range of values of λ and β contained by the

region enclosed by the two topmost lines of the subplot (S). As can be seen

that these solutions are possible even when the group velocity β goes to zero.

An analytical form of the solutions for the simple case of β = 0 was obtained

by Esirkepov et al. [42]. At a fixed value of β, the amplitude of these so-

lutions increases upon decreasing the value of λ. It has been shown in our

earlier work [49] that these solutions are very robust and stable. The smaller

amplitude solutions amidst this variety of structures (i.e. solutions for high

value of λ) have the dynamical characteristics of exact soliton solutions of

the Nonlinear Schrödinger (NLS) equation. It was shown that they preserve

their identity after colliding with other similar structures. Their group ve-

locity was shown to get altered as they propagate through an inhomogeneous

plasma. At higher density, the group speed was found to reduce, as a result
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of which the structure reflects when it encounters a plasma density beyond

a certain critical value. This behaviour presents no surprise as in the small

amplitude limit one can analytically show that the coupled set of Eqs. (6.7)

and (6.8) reduces to the form of NLS equation. The higher amplitude solu-

tions obtained for somewhat lower values of λ, however, display dynamical

features distinct from the NLS solitons. Though these solutions show stable

propagation at their respective group speed, they do not behave like solitons

upon collision. While solitons with same amplitude propagating in opposite

directions reflect off each other, when those with dis-similar amplitude col-

lide, the structures simply loose their identity.

2. Paired structures:

The second variety of solutions depicted in subplot (B) has been termed as

Paired structures [55]. Basically, they represent a spatial coupling of two

single peak solutions with opposite polarity of the field R via an interme-

diate sandwiched region comprising of plasma oscillations. These solutions

also exist for a continuum range of the parameter values λ and β shown by

an arrow pointing at B in subplot S of the λ−β plane. The possible values of

the λ hovers below (in subplot(S)) the region for which single peak structures

of kind A exist. We have conducted preliminary study of their dynamical

evolution and observe that they disintegrate after about 100 plasma periods.

3. Multi-peak solutions :

This is a third possible variety of structures having multiple - peaks of
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the vector potential R as shown in subplot (C). These solutions have several

peaks of the vector potential R which reside in a cavity from where electron

density has been almost evacuated. The electron density evacuation is due

to the ponderomotive pressure of the light wave and results in a build up

of huge space charge field. This produces a high amplitude single peak ϕ

which envelopes the structure. There are no standing multi-peak solutions

possible, i.e. β is always finite for these solutions. Another aspect associated

with these solutions is that they correspond to a discrete spectrum of λ

values. A structure with a particular number of extremas in R can have

only one possible value of λ for any given β, as depicted by the various

curves in subplot (S) of Fig. 6.1. This is essentially due to the nonlinear

discrete eigenvalue condition arising from the fact that the structure has to

accommodate a particular number of extremas in R within a certain width.

In subplot (S), the lines with dots, triangles, crosses and stars represent the

values of λ and β for which solutions with 2, 3, 4 and 5 extremas in R

are possible, respectively. It has been shown by some of us in an earlier

publication [49] that these Multi - peak solutions, when evolved in time,

survive only for several 10′s of plasma periods. They are observed to be

unstable and emit radiation from their trailing edge as they propagate. The

instability has been identified as the Stimulated forward Raman scattering

instability.
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6.3 Physical interpretation of soliton formation with
electron response only

The soliton structures that we have discussed in the previous section have a lo-

calized structure in space for all the associated fields, which go asymptotically to

zero at both the boundaries x = ±∞. The spatial form of the R and ϕ fields

are governed by the second order ODE Eqs. (6.7) and (6.8). Clearly, for ϕ and R

to have a localized form, ϕ′′ and R′′ should be negative at the place of maxima

and at the edges it should change sign. This suggests that for the case when only

electrons respond, ϕ′′ can be negative to produce a maxima in the ϕ profile only if

electrons are evacuated from center. These evacuated electrons accumulate at the

edge such that ne > 1; making ϕ′′ change sign and rendering ϕ profile asymptote

smoothly at infinity.

Simultaneously it is important that similar conditions on R′′, for the R field to

be localized, should also be satisfied. This entails that the coefficient of R viz.,

A =
λ2

(1 − β2)
− ne

γe

in Eq.(6.8) (for M = α = 0) is positive at the center of the solution and it is

negative at the edge. Note that at the center of the structure, ne reduces as the

electrons get evacuated; the minimum value that ne can attain for a structure

moving with speed β, occurs when ue is negative and equal to −1 such that ne =

β/(β + 1). Thus, higher evacuation of electron density implies an increase in the

value of | ue |. Furthermore, evacuation of electron density happens due to high

radiation pressure. Thus, a higher evacuation also implies a higher value of R. Both
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Figure 6.2: Schematic of the formation of single peak solution.

a high | ue | and a high R in turn increase γe. Eventually, at the centre (ne/γe

would typically be small compared to its value at the edges and with increasing

amplitude of solitons it would decrease further.

At the edge, A is supposed to be negative. This is possible since the evacuated

ne accumulates (changing the sign of ϕ′′) at the edge. Also, ne > 1 implies that

ue is positive and less than β. The value of R also drops down away from the

center. Thus, γe can reduce, making ne/γe larger in the edge region to satisfy the

condition of A being negative. The analysis clearly shows that the dependencies are

consistent and the possibility of soliton solution exists. We now ask the question

as to what restricts the parameter values of λ and β, and why the different kinds

of structures form in distinct domain of the parameter space. Let us first analyze

the uppermost curve in the λ vs. β space, below which only, solutions can exist.

We conjecture that uppermost curve represents infinitesimally small amplitude

solitons. Thus, on the curve R ≈ 0, ne ≈ γe ≈ ne/γe ≈ 1 almost everywhere
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with very little variation from centre to edge. Thus, λ2/(1 − β2) should be equal

to 1 to satisfy both the edge and the centre conditions of having A as negative

and positive respectively. The upper boundary is thus described by the relation

λ2 = 1 − β2. This agrees with the form of the uppermost curve shown in Fig. 6.1.

We now show that by choosing any high finite amplitude of R, one can get

solutions only below the λ2/(1 − β2) = 1 curve. At the boundaries, ne/γe = 1 for

all solutions. In order to have a localized confined structure for R for all solutions,

at the edge where ne/γe would exceed briefly the value of unity, it is necessary that

λ2/(1 − β2) < 1. Thus, solutions above the curve λ2 = 1 − β2 are not permitted.

As noted earlier, higher amplitude solitons have higher R at centre. As a result,

both ne and γe behave in a fashion so as to have a lower (ne/γe) < 1 at the center

with the increasing amplitude of solitons. The requirement for A to be positive at

the center can now be satisfied for λ2/(1− β2) < 1. The reason for λ2/(1− β2) to

decrease and not stay put at the value of unity can also be understood by realizing

that as ne/γe at the centre reduces, and if λ2/(1 − β2) is held fixed, then A = k2
c

(the wave number at the centre for R structure) would increase as well. Solutions

with single peak in R would keep making the structures narrow. The amount

of electrons evacuated from the narrow region is less. These electrons evacuated

from the centre have to accumulate at the edge to shield R at the edge. Larger

amplitude of R and weakening of the electron number available for shielding would

rule out the existence of the formation of soliton. Thus, as R increases, the value

of λ2/(1− β2) has to decrease so that k2
c does not become large enough to disturb

the balance. It is, thus, clear that the solutions with increasing amplitude of R

form only when λ2/(1 − β2) reduces. This also explains the observations that the
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higher amplitude solutions get narrower. The plots of Fig. 6.1 also show that the

single peak solutions are not permitted beyond the lower second curve. A possible

reason may be that defining the lower boundary for specific range of β values. The

minimum value that the electron density can take for a moving soliton structure is

when ue = −1 and is nM = β/(β + 1). However, this can happen iff (see Eq. (6.9)

for the expression for ue) ϕ >> 1 and ϕ >> R. For single peak solutions, ϕ is

always less than R, so this can never be met. The lowest value of density nemin in

the solutions is higher than nM . Hence, minimum value of density beyond which

ne cannot be evacuated further from the centre is nemin. The moment, the central

density reaches the value of nc = nmin, no more electrons can be scooped from the

center. At higher R, even lesser electrons would be available as the structure keeps

narrowing down. It would then become impossible at the edge to build up sufficient

density to shield the radiation R from leaking to form an isolated structure. This

can be understood from the schematic of Fig. 6.2. The subplot (a) of Fig. 6.2

shows single peak solitons. As we go for lower values of λ (i.e. increase R), it

needs higher number of electrons to be scooped out from the center(shown here

by violet color) to the edges (shown here by green color) to confine the radiations.

Since no more electrons could be scooped out due to the minimum density criteria,

it results in flattening of the density profile [see subplot (b) of fig. 6.2].

Just below the single peak solutions the paired solutions are observed. For

a single peak solution, the electron scooped out from the central region have to

pile up so as to satisfy the criteria of non-transmittance of R at the two edges.

Two such solitons would have twice the electrons available from central region.

Separately, they have to satisfy the criteria at four edges. When they pair up as in
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Figure 6.3: Schematic of the formation of paired structures.

paired structures, they satisfy the non - transmittance criteria at two edges only.

In the central region of the paired structure R is allowed to get transmitted from

one to the other structure. The formation also clearly suggests that two opposite

polarity solutions in R would form for this case. Thus, at values of λ below the

permissible curve of single peak solutions, these structures are observed. At still

further lower values of λ, even the electrons scooped out by two solutions are

insufficient to satisfy the non - transmittance of R at the two edges [see Fig. 6.3].

Then only, multiple peak solutions of R form, with higher and higher number of

peaks as for discrete values of λ. The λ in this case has discrete specific value for

a given β and a given number of peaks in the solution. The appearance of discrete

eigen spectrum has already been discussed earlier by some authors [11, 49, 56]. We

would here simply like to state that the oscillatory R in the center provides a wider

domain from where electron density can be evacuated. These solutions, therefore,

have a ϕ which is typically higher than R. The larger number of electrons available
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can then easily screen the radiation at the two edges.

6.3.1 Nonlinear Solutions for both electron and ion response

We choose a finite value of α to take account of ion participation in the formation

of the nonlinear solutions of the coupled laser plasma system. We have chosen

an unrealistic high value of the electron to ion mass ratio, namely α = 0.01 here,

for the purpose of convenience. For the true α value of 0.0005 also the solutions

have been obtained, however, the changes in the value of λ to get various kinds of

solutions are very small to be depicted clearly in a single figure.

The various possible solutions have been shown in Fig. 6.4. It is clear that a

much richer variety is possible in this particular case. There are in fact six possible

varieties which have been shown in the subplots (A) to (F) of Fig. 6.4. The central

subplot (S) again identifies the possible values of the parameter λ and β for which

each of these solutions can be obtained.

1. Single peak solutions:

The first kind of solution is shown in the subplot (A). It is similar to the

single peak solutions of Fig. 6.1. However, the permissible range of these

solutions in the λ and β parameter space gets restricted when ions are in-

volved. For instance, it can be observed that now there are no solutions

possible below a critical value of β = βc bordering the left side of the upper

two curves in the subplot S of Fig. 6.4.

2. Flat top solutions:

In the neighbourhood of the forbidden low β values where the single peak

solutions discussed in the previous paragraph cease to exist, a new variety of
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solution emerges. This has been denoted by blue colored thick line in

the color online version of subplot (S) of Fig. 6.4. The arrow pointing from

the alphabet B also depicts this region. The solutions have been shown in

the subplot (B) of Fig. 6.4. These solutions are termed as the flat top

solutions [57] as they have a central spatial region of flat profiles for all

the fields, the vector potential R, scalar potential ϕ, the electron and ion

densities ne, ni and their velocities ue, ui. It can be shown that the structure

is almost quasineutral, ne and ni being very similar. The amplitude of R is

considerably much higher than that of ϕ. It is worth noting that the field

profiles for the flat-top solutions are broader than the neighbouring single

peak solutions. The narrow spectrum of these flat-top solutions, in the eigen

space, essentially provides a transition boundary between the localized single

peak solutions and indefinitely extended wavefront solutions (shocks or dark

solitons) [48]. In fact, it is found that there occurs a smooth transition

from a single peak solution with a given group velocity to a flat-top solution

with the same group velocity as the value of λ is decreased. The detailed

characteristic features of these solutions along with their dynamical evolution

studies have been presented in detail in one of our recent work [23]. These

solutions were shown to get destabilized after several plasma periods through

an interesting Brillouin backscattering process. The plasma being cold, the

scattering occurs through a quasi mode for which the electron quiver velocity

in the laser field plays the role of the effective temperature. We will discuss

the details of the flat-top solutions in the next chapter.

3. High amplitude single peak solutions:
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The incorporation of ion response causes another modification in the eigen

spectrum of λ vs. β. The lower line enclosing the continuum single peak

solutions instead of hitting the β = 0 axis, curves backwards and traces

higher β values again, this time albeit for a different and lower value of

λ. This essentially produce another branch of solutions which have been

depicted in subplot (C) of Fig. 6.4. It can be seen from the plot that solutions

for this second branch have much higher amplitudes than the usual single

peak solutions observed in the topmost continuum domain of the λ vs. β.

The electron density evacuation in this case is stronger compared to the

single peak solutions of region A. Thus, these solutions have a larger space

charge field in the central region. These solutions have an upper threshold in

β beyond which no solutions are found. The last point of this curve has been

shown by a thick red diamond symbol about which we will discuss later.

4. Paired solution:

The fourth variety of possible solutions are the paired solutions depicted

by subplot (D), which are also found when only electron species is involved,

as we have already shown while discussing Fig. 6.1. These solutions also have

a continuum spectrum hovering below region A and have been depicted by

arrow pointing towards the character D.

5. Multi-peak solutions:

The fifth variety are the multi-peak solutions (subplot (E)) with discrete

spectrum shown by solid curve with full circle, open triangles, crosses and

stars corresponding to 2, 3, 4 and 5 extremas in R respectively in the central

subplot (S) of Fig. 6.4. As depicted in Fig. 6.1, here too, the solutions cease to
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exist below a certain group velocity β. However, in contrast to the previous

case of multi-peak solutions shown in Fig. 6.1, the curve does not stop at

certain β value but curves back to produce a second branch of solutions at

lower λ values. This is very similar to the behaviour described above for

the single peak structures. Thus, two distinct values of λ are permitted for

solutions with a particular number of extremas in R when ions participate in

the formation of the solutions. The solution corresponding to lower branch

of λ has an upper threshold value of β beyond which there are no solutions.

The last point of all these curves are special and have a singular form of the

shape of cusp in their potential profile. We call them as cusp solitons and

discuss their behaviour below.

6. Cusp solitons

The typical single and multiple peak solutions have a structure in which

the electron density is evacuated from the central region (where the light

intensity peaks) and accumulate at the two edges of the structure whereas

the ion density in all of these solutions peak at the central region.

The upper threshold on β occurs when for these high amplitude solutions, the

ion density reaches a wave breaking limit. At the wave breaking point, the

solutions acquire an interesting shape of cusp. These cusp solutions occurring

right at the ion wave breaking point were obtained by Bulanov et al. [43].

The cusp solutions exist at the ion wave breaking point and have been shown

in the subplot (F) of Fig. 6.4. At that point, the ion longitudinal velocity

(which is maximum at the center of the soliton) hits the group velocity of

the structure. Thus, the ion density becomes singular at the center of these
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solutions. Though the scalar potential ϕ remains continuous, its derivative

shows a discontinuity. The eigen values λ and β for the cusp structures have

been shown in the central subplot (S) of Fig. 6.4 by thick red diamonds

and correspond to a point beyond which the second higher amplitude branch

ceases to exist.

We see, therefore that in the presence of ion dynamics, additional three new

kinds of solutions (viz., flat top, cusp and the second high amplitude branch of

solutions) are possible which have no counterparts for the case of infinitely massive

ions depicted in Fig. 6.1. The high amplitude second branch for both single

and multiple peak solutions are essentially the second branch of solutions

which appear due to ion species in addition to electrons also getting involved in

the dynamics.

Out of these three new varieties, we have investigated the dynamical evolution

characteristics of flat-top solutions. The result of this study will be reported in the

next Chapter (Chapter 7).

6.4 Physical interpretation of soliton formation with
both electron and ion response

The new features observed in the presence of response from heavier ion species are

the appearance of (i) a lower limit of the group velocity below which the solitons

do not exist, (ii) a second branch of high amplitude solutions for both single as

well as multiple peak structures in R, and (iii) new additional variety of flat top

solution and the cusp structures.

The Poisson equation, in the presence of ion response is governed by both
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Figure 6.4: The λ− β spectrum in subplot ‘S’ indicating the existence region for
possible soliton solutions in movable ion case viz. the single peak solutions, flat-
top solutions, single peak solutions with higher amplitudes, paired solutions, multi
peak and cusp solutions tagged with ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ and ‘F’ respectively. The
profile of vector potential (R), scalar potential (ϕ), electron density (ne) and ion
density (ni) for the solutions of each variety are shown in subplots with the same
tags.
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electron and ion densities. Thus, unlike the electron only case where the ϕ structure

was determined by having ne < 1 at centre and ne > 1 at the edge, in the present

case, this comparison is with respect to the ion density ni at the center and the

edge.

Thus, while the electron only case had solitonic structures only when the elec-

trons were evacuated from centre, in this case, there can also be piling of electron

density at the centre. The only condition should be that ni is higher than ne.

This is indeed borne out from Fig. 6.4 subplot A and had also been analytically

demonstrated in an earlier publication [45].

When the soliton speed is typically less than α, the ion dynamics will wipe out

any possible electrostatic potential structure in the plasma. Thus, the possibility

of electromagnetic radiation trapping in the localized region by the electrostatic

potential is essentially ruled out at low group velocities. This is the physics behind

the existence of a threshold on β below which the solitons do not form in this case.

A small amplitude expansion upto O(R3) has clearly shown that the soliton

amplitude approaches zero, when β2 = α. Just at the edge, where β2 = α, if one

retains higher order expansion, the resulting equations yield the flat-top solutions.

This has been enunciated in detail in one of our recent publications [23] and will

be presented in next Chapter. This explains the formation of flat-top structures

for the low β regime of single peak structures.

The multiple peak solutions have higher amplitude. At higher amplitudes,

the ions can respond even if the group speed is comparatively higher. Thus, for

multiple peak solutions (structures with increasing amplitude for higher number

of peaks in R), the threshold of the group velocity β below which the solutions
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Table 6.1: Scalar potential ϕ of cusp solitons for various β values.

β λ ϕ β2/2α

0.420 0.6289599000 8.899 8.8200
0.652 0.5440000000 24.040 21.2552
0.800 0.4570000953 39.010 32.0000
0.900 0.3402846592 54.740 40.5000

cannot be found, increases. This is evident from Fig. 6.4.

The appearance of the second branch can be understood by realizing that for

an electron - ion system having disparate masses, two different modes of response

automatically exist. One, in which the electron and ion have an in-phase response.

The other, when their response is out of phase. Typically, the in-phase response

will occur at slower and/or weaker amplitudes of the scalar potential. The out

of phase will occur at faster and/or higher amplitudes. Thus, at the same group

velocity, when the ion and electron species respond in phase, a weak space charge

field gets generated. This is the case, for instance, when at the centre both ion and

electron accumulate. The solitons then, are of small amplitude and hence occur

at higher values of λ (as per the explanation provided for the electron only case).

When the two species respond out of phase, a greater space charge separation

gets created. Thus, these structures form at lower values of λ. However, as one

increases β, the amplitude of the solution keeps growing, the space charge potential

keeps building up at the centre due to ion accumulation there. A situation then

arises when ui → β, thereby meeting the condition for ion wave breaking. This

happens for the second branch of each and every kind (differing in regard to the

existence of number of peaks) of soliton structure. Beyond this β value, a smooth
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Figure 6.5: Plot showing cusps with higher amplitude of solitons form at higher β
values. The filled red circle shows the scalar potential of the cusp solitons observed
in simulations. Comparison with β2/(2α) is shown alongside with blue diamond.
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soliton solution ceases to exist.

At the ion wave breaking point, shown by red squares in Fig. 6.4, the potential

takes the form of a cusp structure. The ion density tends to infinity as ui → β.

This condition is met when (1−αϕ)2 = (1−β2)(1+α2R2). Retaining the dominant

orders, under the assumption of small α and small β limits, we have an approximate

estimate of the wave breaking amplitude of the solutions as ϕ = β2/2α. Clearly,

it is evident from Fig. 6.5 that the cusps with higher amplitude of solitons form at

higher β values.

6.5 Summary

We have found a plethora of soliton solutions for a laser plasma interacting system.

A detailed characterization of the eigen spectrum (in the frequency vs. the group

velocity space) has also been provided. We show that when ion response (typically

important for slow moving solutions and also for high power lasers) is taken into

account, a much richer variety of solutions are possible. The ion dynamics forbids

the formation of stationary nonlinear solutions. Bright soliton solutions are possi-

ble only above βc. Furthermore, an additional feature of the solutions in this case

is the emergence of a second branch of solutions at a lower λ value, which typically

have larger amplitudes.

Some new physical phenomena resulting in new kinds of solutions which have

no counterpart in the immobile ion case are also possible. One such feature is the

possibility of ion wave breaking of the high amplitude second branch of solutions.

The longitudinal velocity of ions maximize at the center of the structure. When

this velocity becomes equal to the group velocity of the structure, the ion density
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profile becomes singular. There are no solutions possible beyond this value of β.

However, solutions which are poised at the wave breaking point acquire interesting

form. The singular ion density produces a cusp in the scalar potential.

Another new variety of solution that form in the presence of ion dynamical

response are the flat- top solutions. These solutions have a very weak space charge

field as ne ∼ ni and they form at the boundary separating the forbidden low

group velocity regime for bright solitons and the continuum single peak solutions.

The dynamical evolution and the susceptibility of these solutions to a backward

scattering Brillouin process will be shown in the next chapter.
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Chapter 7

Stability of relativistic
electromagnetic flat-top solutions

In Chapter 6, detailed characterization of the 1-D laser pulse solitons along with

the eigen spectrum of their formation in the parameter space in the absence and

presence of ion dynamics has been presented. The inclusion of ion response in the

study of relativistically intense electromagnetic laser pulse propagation in plasma

yields certain new solitonic structures. A flat-top slow moving structure (for which

the various fields have flat profile over a wide spatial range) is one such solution.

In the present Chapter, the evolution of this particular flat-top soliton solution

is studied in detail with the help of coupled fluid Maxwell set of equations. The

study shows that the flat-top solution is unstable. The instability is characterized

as the backward Brillouin instability for which the electron quiver velocity plays

the role of the effective temperature.

107



7.1 Introduction

The interaction mechanism of the intense electromagnetic pulses with plasma is

rich in a variety of nonlinear physics phenomena. Some of which has been explored

[3, 7–14, 58] and a lot still needs to be examined. Several authors have sought

exact nonlinear solutions in the form of propagating envelope solitary pulses for

the coupled system of light field and the electron fluid. Some of these nonlinear

solutions move very slowly and/or are even stationary. For these slowly moving

solutions (and also in the eventuality of a major breakthrough leading to a next

generation of high power lasers), the heavier ion species would also respond. Work

along this direction has been initiated in some recent studies [42–55, 59].

It has been shown that the inclusion of ion response rules out the existence of

static single peak solutions that have been obtained when electron species alone is

considered [43]. The single peak solutions, for a continuum band in the parameter

space of λ (associated with laser frequency defined in earlier studies [11] ) vs

group propagation speed β, do not touch the β = 0 axis, when ion response is

incorporated. The single peak solutions now start from a small finite value of the

curve defined by a critical value of β = βc (which is dependent on electron to ion

mass ratio as well as the parameter λ). It has been shown in some papers [46, 48]

that the gap from β = 0 to βc supports dark solitonic structures. This transition

from the dark to the bright soliton, however, does not occur drastically. Within

a single peak and the dark soliton solutions, there exist new variety of spatially

extended solutions having flat spatial profile at the centre. These solutions appear

to be a deformation of the single peak solutions, as though their maxima have

been spatially extended. The ion and electron density profiles are also observed
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to be identical for these solution, and hence the entire structure is essentially

quasineutral.

Figure 7.1: The plot of critical group velocity β = βc above which the single peak
solutions are permissible for various values of α parameter.

We present in this chapter the numerical fluid simulation studies for these flat-

top solutions. It is shown that they survive for a long time but later develop an

instability. The instability eventually leads to the complete disintegration of the

structure. The instability is shown to be linked to a Brillouin scattering process. In

a cold plasma, there are no modes associated with ions. In this case, however, the

scattering generates a quasi-ion mode where the role of temperature is provided

by the quiver velocity of electrons in the electromagnetic field.
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7.2 The flat-top nonlinear solution

The governing equations for an interacting laser plasma system discussed in Chap-

ter 6 clearly represents a rich nonlinear set of equation. The numerical solutions

of the coupled set of Eqs. (6.7) and (6.8) using the expression for ue and ui from

Eqs. (6.9) and (6.10) leads to several varieties of exact one dimensional localized

solutions. For a fixed value of the group speed β, only certain specific values of λ

are permitted for obtaining solutions. These solutions have been obtained earlier

by several authors [10–13, 42–45, 48].

In the presence of ion response, no stationary solution can be found. In fact, the

continuum band (in λ vs β space) of single peak solutions [43] now has a forbidden

gap from β = 0 to a critical value βc. The curve β = βc as a function of λ for three

different values of α is shown in Fig. 7.1 (in the λ vs β space) where α is the mass

ratio,me/mi.

It can be observed from the figure (Fig. 7.1) that for any given value of λ,

forbidden gap shrinks as we decrease α. The plot for three different values of α,

viz., 0.1, 0.01 and 0.0005 (the realistic value for electron-proton plasma) denoted by

black line with triangles, red line with filled circles and solid blue line respectively

have been shown in the figure.

For a fixed α, the single peak solutions exist only for β > βc for any given

λ. At β = βc, just as the single peak solution ceases to exist, a new variety of

solutions emerge. These solutions are termed as the flat-top solutions [57] as

they have a central spatial region of flat spatial profile for all fields as shown in

Fig. 7.2 by the solid lines in various subplots corresponding to the profile of the

vector potential R, scalar potential ϕ, the electron and ion densities ne, ni and
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their velocities ue, ui. It can be seen that the structure is quasineutral as ne and

Figure 7.2: The profile of flat-top solution in various field are shown by solid lines
in different subplot of the figure. The value of β = 0.11 and λ = 0.99680694 for
this solution. For the same mass ratio α = 0.01 and group velocity β = 0.11, as
the value of λ is increased to 0.99682 and 0.997 the single peak solutions shown by
dashed and dashed dot lines are obtained.

ni are same. The amplitude of R is considerably much higher than that of ϕ.

The flat-top structure in this plot corresponds to βc = 0.11, λ = 0.99680694 and

α = 0.01. The width and the amplitude of these flat-top solitons get decided by

the values of the spectral parameters β and λ. A flat-top solution with a lower
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Figure 7.3: A comparison of two flat-top solutions with β = 0.11, λ = 0.99680694
and β = 0.14, λ = 0.9660155 has been shown in the left and right subplots of the
figure respectively.

value of β (higher λ) has smaller amplitude and larger width than a solution with

higher value of β (smaller λ). We compare two such solutions in Fig. 7.3.

The left column of subplots corresponds to β = 0.11 and λ = 0.99680694

whereas the parameter values for the right column of subplots are β = 0.14 and

λ = 0.9660155. These solutions correspond to α = 0.01 which is unrealistically

high. In Fig. 7.4, we show how the flat-top solutions get modified as α is reduced

to its realistic value.

The plot corresponds to a fixed value of λ = 0.9167206, the group velocity β

is off course different when α is changed.
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Figure 7.4: A comparison of flat-top solutions for different values of α parameter
at fixed group velocity β = 0.17. Subplots (a) and (b) show the structure of scalar
and vector potential respectively.
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These flat-top solutions, in eigen space, provide a transition boundary between

the localized single peak solutions and indefinitely extended wave-front solutions

(shocks or dark solitons) [48, 60]. In fact, it is found that there occurs a smooth

transition from a single peak solution with given group velocity to a flat-top solu-

tion with the same group velocity as the value of λ is decreased. This is clearly

evident from the other plots shown in Fig. 7.2. The profiles shown by dashed and

the dash-dot lines correspond to those solutions for which β = 0.11 (the same value

as the flat-top structure), however, the value of λ is 0.99682 and 0.997 respectively.

The formation of the flat-top solutions at the transition boundary between sin-

gle peak bright solitons and the dark structures at β = βc can be illustrated by

a small mathematical analysis. We also provide an explanation for a particular

relationship that λ and β have to satisfy for the formation of such flat-top struc-

tures. Such an analytical study is, however, carried out in the small amplitude

limit. The observations show that the small amplitude solutions (both flat-top

and single peak solitons) are essentially quasineutral, i.e. ne ≈ ni = n. This also

implies ue ≈ ui = u from the continuity equation of the two species.

Using the quasi-neutrality condition and eliminating ϕ from γe(1−βue)−ϕ = 1

and γi(1 − βui) + ϕα = 1 we get

(γi + αγe)(1 − β2(n − 1)

n
)) − (1 + α) = 0 (7.1)

At low amplitude, the density response being weak one chooses, n = 1 + ε, where

ε is a small parameter. We then obtain an expression for ε from Eq. (7.1) as

ε = [(1 + α) − (γi + αγe)]/[(1 − β2)(γi + αγe) − (1 + α)]
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In the weakly relativistic limit, we then expand γe ≈ 1 + R2/2 + ... and γi ≈ 1 for

the small amplitude flat-top soliton solutions. This yields

ε =
αR2

2β2(1 + α)
+

α2R4(1 − β2)

4β4(1 + α)2
+ .... (7.2)

n

γe
= 1 − R2

2
+

αR2

2β2(1 + α)
+

α2R4

4β4(1 + α)2
(1 − β2) − αR4

4β2(1 + α)
+ ....(7.3)

n

γi
= 1 +

αR2

2β2(1 + α)
+

α2R4

4β4(1 + α)2
(1 − β2) + .... (7.4)

Figure 7.5: A comparison of λ vs β curve for the analytical and numerical values
at α = 0.01.

We take the conventional case of M = 0, and use the above expansion for

n/γe and n/γi in Eq. (6.2). In an earlier work by Poornakala et al. [46] the low
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amplitude dark and bright solitonic structures were obtained by seeking such an

expansion for a finite temperature plasma. In that work, only terms upto order R3

were retained to get an expression of the form R′′ + AR + BR3 = 0. Considering

the limit of a cold plasma, their study shows that the transition from dark to bright

form of the solution occurred when β = βc =
√
α. At β = βc, it can be shown that

the coefficient B goes to zero. Thus, as β2 −α changes sign, the sign of coefficient

B changed giving rise to bright and dark solitonic structures. However, we show

here that if we retain higher order terms in the expansion, flat-top solutions form

at this boundary. Thus, retaining the next higher term in the expansion we obtain

the following equation

R′′ +
R

1 − β2

[
λ2

1 − β2
− (1 + α)

]
+

R3

2(1 − β2)

[
β2 − α

β2

]

+
R5

4(1 − β2)

[
β2α(1 + α) − α2

β4(1 + α)

]
= 0

which has the form of R′′ + AR + BR3 + CR5 = 0, where the coefficients are

A =
λ2 − (1 + α)(1 − β2)

(1 − β2)2

B =
β2 − α

2β2(1 − β2)

and

C =
β2α(1 + α) − α2

4β4(1 − β2)(1 + α)

It should be noted that by ignoring terms of higher power in α, we regain the

expression obtained by Poornakala et al. [46]. We integrate once to achieve

R′2

2
+ A

R2

2
+ B

R4

4
+ C

R6

6
= K (7.5)
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The constant K can be chosen to be zero for localized bright solutions including

the flat-top structures which vanish at ±∞. Hence, using K = 0 and making the

substitution f = R2 we get

f ′2

f 2
+

8C

6
f 2 + 2Bf + 4A = 0 (7.6)

This is an elliptic differential equation. The positive solution of this equation is

f(ξ) =
2f1f2

(f1 + f2) − (f1 − f2) cosh
(
2κ

√
f1|f2|ξ

) (7.7)

where κ =
√

C/3 and f1, f2 are the solutions of the quadratic equation:

8C

6
f 2 + 2Bf + 4A = 0 (7.8)

When f1 → f2, we get flat-top solutions as has been shown by Akhmediev et

al. [61]. For any other arbitrary value of f1 and f2 one obtains single-peak soliton

solutions. When f1 → f2, we have B2 = 16AC/3 which in turn gives us:

λ2 = (1 + α)
(
1 − β2

)
[

1 − 3

16α

(β2 − α)2

β2 (1 + α) − α

]

(7.9)

This is the eigen value condition for small amplitude flat-top structures. This eigen

value condition (λ vs β curve) in comparison with the numerical values for the flat-

top structures has been shown in Fig. 7.5. It can be seen from the plot that the

eigen values obtained analytically are consistent with the numerical values in the

small β limit. This is in accordance with the approximations of weakly relativistic

solitons. Deviation at large β values is due to the approximations made in deriving

the analytical values. The flat-top solutions form in the neighbourhood of the
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Figure 7.6: A plot of β2 vs α for the flat-top solutions showing a linear relation
between β2 and α.
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condition β2 → α. This has been shown in Fig. 7.6, where the plot of β2 vs α for

various flat-top solutions have been shown as hollow circles.

The points fall on a straight line as expected. If we look at the coefficients

A, B and C carefully, we find that these coefficients have the same order for any

value of α for β2 → α, where the flat-top structures form. Thus, at β ≈
√
α, the

boundary which separates dark and bright solitons in reference [46] there exists an

infinitesimal domain of β2 = α + δ where the flat-top solitons form.

We next address the question of the stability of these flat-top solutions. An-

alytically this can be addressed by using the Vakhitov-Kolokolov criteria [62, 63].

In this case, the soliton solution will be unstable if

dP0

dA
> 0 (7.10)

where P0 =
∫ ∞
−∞ R2dξ. The expression for P0(λ) for the analytical flat-top soliton

solution from Eq. (7.7) can be evaluated and is given by

P0 (λ) =
2k1

κ
(7.11)

where k1 is a positive constant. Here, we have taken positive values of f1 and f2

and f1 < f2. Thus
dP0

dA
=

2k1

κ2

(
1

2
√

(3C)

)
dC

dA
> 0 (7.12)

Hence, according to the condition (7.10), the flat-top soliton solutions turn out to

be unstable. We have also evaluated P0 for the exact numerical soliton solutions

and checked its variation with respect to the parameter A. This has been shown

in Fig. 7.7. The curve of P0 vs A clearly demonstrates that dP0/dA > 0, showing

that the solutions can be unstable.
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Figure 7.7: A plot of P0 vs A for the flat-top solutions showing a positive slope.

In the next section, we describe the dynamical trait of this particular variety

of solution in detail. Our numerical simulation studies demonstrate that the flat-

top solutions persist for several plasma periods. However, later they exhibit a

development of an instability as a result of back scattering process.

7.3 Dynamical evolution of the flat-top solutions

For the numerical simulation studies, electron and ion continuity and parallel mo-

mentum equations have been solved using the flux corrected scheme of Boris et

al. [64]. The second order time differentiation for the vector potential has been

tackled by separating it into two first order equations. We choose the field profile

of the flat-top solution as our initial condition for investigation.

The various stages of the evolution of the fields R and ϕ for a particular flat-top
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Figure 7.8: The evolution of the fields R and ϕ for a flat-top solution with
β = 0.11, λ = 0.996807 has been shown at various times. The appearance of
the unstable perturbations at the front edge of the structure and then propagating
backwards can be observed. The entire structure disintegrates subsequently as a
result of this instability.

solution with β = 0.11, λ = 0.996807 has been shown in the subplots of Fig. 7.8.

One observes that the solution propagates without perceptible distortion for > 100

plasma periods. At a later time it can be observed that the front end of the solution

gets distorted. The disturbance seems to travel backwards, grows and engulfs the

entire solution at later time. In Fig. 7.9, the amplitude of the perturbed fields R

and ϕ at t = 100 electron plasma periods has been shown.

The thin dashed dotted line shows the electron density profile of the original
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Figure 7.9: A comparison of the perturbed scalar ϕ and vector R potential in space
which shows that their length scales are typically identical. The thin dashed dot
line shows the original flat-top structure. It can be seen that the perturbations
typically maximize at the front edge of the flat-top structure.

122



flat-top solutions. This has been shown to place the location of the perturbation

with respect to the original structure at this time. It is interesting to note that

the perturbed scalar ϕ and vector R potentials have typically identical scales.

Figure 7.10: Schematic showing the mechanism of forward and backward scattering
in 1-D

Let us now comment on the possible instability mechanism which is responsible

for the break up of the flat-top solutions. If we treat the light wave associated

with the structure as the pump wave, then under the constraint of 1-D dynamics

it can either suffer a forward and /or backward scattering [see Fig. 7.10] . Such

a scattering process can generate either a plasma wave and/or a wave associated
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Table 7.1: Growth rate for quasi-mode of Brillouin scattering
β λ ω0 k0 vos Γkruer Γkaw ΓLiu Γnumerical

0.105 0.99894732 1.0101 0.1061 0.2933 0.0656 0.1202 0.0931 0.04844
0.11 0.99680700 1.0090 0.1110 0.4137 0.0825 0.1512 0.1061 0.06552
0.12 0.98956944 1.0040 0.1205 0.5638 0.1012 0.1855 0.1208 0.10643
0.13 0.97907410 0.9959 0.1295 0.6594 0.1120 0.2053 0.1304 0.14585
0.14 0.96601600 0.9853 0.1379 0.7274 0.1190 0.2182 0.1375 0.18114
0.15 0.95096800 0.9729 0.1459 0.7814 0.1241 0.2275 0.1434 0.22129
0.16 0.93440570 0.9590 0.1534 0.8186 0.1277 0.2340 0.1482 0.19200
0.17 0.91672060 0.9440 0.1605 0.8465 0.1300 0.2383 0.1523 0.30170

with ion dynamics. In the case of forward scattering (the scattered radiation being

of almost similar frequency), the scalar potential reflecting the scattered plasma

and/or ion wave will have a wave length which would be much longer than the

wavelength of the scattered radiation field. In our case, we see from Fig. 7.9 that

this is not the case. The two scales are almost identical. This suggests that it is a

backward scattering process. We now address the question whether the instability

scatters a plasma wave and/or a wave associated with ions. The plot in Fig. 7.11

shows that the ion and electron perturbed densities are in phase.

This suggests that the scattering is from a slow wave associated with ion re-

sponse. There is, however, no conventional ion wave that can be supported in a

cold plasma medium. We feel that the quiver velocity of the electrons play the role

of effective temperature for the ion wave produced in the medium which scatters

the pump radiation. This suggests that the instability associated with the flat-top

solitons is essentially a Brillouin backscattering process.

To put this assertion on a firmer footing, we evaluate the numerical growth

rate for various flat-top solutions identified by various distinct values of the group

velocity. This has been shown in Fig. 7.12 by triangular data points. We have also
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Figure 7.11: The perturbed ion and electron densities during the linear phase of the
instability has been shown. The figure clearly shows that the density perturbations
are in phase.
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Figure 7.12: A comparison of the numerically obtained growth rate with the ana-
lytical expressions [15–17].
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alongside shown the analytical growth rate of the Brillouin backscattering process

obtained from the expression of Liu et al. [15]. In the strong field limit, the growth

rate for quasi-mode of Brillouin scattering is given by:

ΓKruer = (
√

3/2)(k2
0v

2
osω

2
pi/2ω0)1/3

ΓKaw = 21/3(v2
osω

2
piω0)1/3

ΓLiu = (
√

3/21/3)(k0vosω2
pi)

1/3

The analytical and numerical growth rates show a decent match. We notice that

the approximate analytical growth rate expression obtained by different authors

[15–17] for this instability, differ from each other typically by similar order, due

to the nature of the approximation. In the light of which the agreement between

numerical and analytical estimates are fairly reasonable.

7.4 Summary

The nonlinear exact solutions of the coupled laser plasma system obtained by

ignoring ion response predict the existence of stationary as well as slowly moving

structures. For these structures, it would be incorrect to a-priori neglect the ion

dynamical response. The incorporation of ion response rules out the existence of

static solutions. Solutions are permissible only beyond a certain critical value of

group speed. For group speeds below this value there are no permissible bright

solitons. At the critical group velocity, a new kind of structures are permitted

by the equations. These structures have a flat and broad spatial profile for all

concerning fields. A detailed characterization of these flat-top solutions has been

provided in this chapter.
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We have investigated in this chapter the dynamical evolution of these flat-top

solutions. It is observed that these solutions survive for several plasma periods

but ultimately develop an instability which breaks the structure. This particular

destabilization process has been identified as the backward Brillouin scattering

process.

It should be noted that the coupled laser plasma system permits a wide variety

of solutions. These structures can have practical relevance provided questions

related to their accessibility, stability and the time scale of growth for unstable

case are understood and explored thoroughly. Our dynamical evolution study has

been motivated towards addressing these issues. In an earlier work [56], it has been

shown that the high amplitude multiple peak solutions are unstable to forward

Raman scattering process. In the present work, we have shown that the flat-

top variety of solutions observed with ion dynamical response develop a backward

Brillouin scattering instability.
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Chapter 8

Summary of the thesis and Scope
for Further Research

The development of high power lasers and fast diagnostics have opened up the

possibility of exploring an entirely new regime of plasma behaviour. This is as-

sociated with the fast electron time scale response of the medium. The goal of

this thesis is to theoretically look into some of these phenomena in plasmas. In

this respect, we have chosen two specific phenomena for our study, namely (i) the

KH like instabilities when the electron flow has a shear configuration and (ii) the

coupled laser plasma system. Issues pertaining to these two phenomena have been

addressed in the thesis which we summarize below. The future scope has also been

outlined.

8.1 Summary of the thesis

The two phenomena chosen for study in the thesis are interesting from fundamental

point of view and they also have relevance in a variety of frontier applications such

as fast ignition concept of inertial confinement fusion studies, plasma switches, fast
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magnetic reconnection etc.

8.1.1 Governing Models

We have chosen to depict the fast electron time scale phenomena by employing

a relativistic fluid model for the electron species. The ions are typically chosen

to provide merely a stationary background as the relevant times are too fast for

their response. The Maxwell’s equations provide a coupling of the electron fluid

evolution to the field evolution. A detailed description of such a governing model

has been provided in the second chapter of the thesis. The various simplifications

in different limits have also been discussed in detail. These model set of equa-

tions have been employed in the subsequent chapters to explore certain physical

phenomena.

8.1.2 Physics of flow shear driven instabilities in EMHD

A sheared flow of electron fluid produces instabilities which is akin to the Kelvin

- Helmholtz instability of the neutral fluid. However, since the electron fluid is

a charged fluid, the magnetized character of the fluid produces some interesting

differences with the pure KH mode of the neutral fluid. Furthermore, the flow of

the charge fluid also defines the current in the plasma medium. The current shear

flow driven instabilities can also arise in this context. Therefore, the instability has

a combined characteristics. In Chapter 3, these issues associated with the shear

driven instability have been discussed in detail. A physical understanding of the

instability has been provided. The free energy source of the flow has been identified.

Simplified physical reasoning has been given for understanding the characteristic

traits of the instability in terms of the threshold wavenumber, the typical order of
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magnitude of the growth rate etc.

8.1.3 Electron velocity shear driven instability in relativistic
regime

The electron velocity shear driven instability has been often invoked in the context

of fast ignition laser fusion scheme. However, the electrons involved in the shear

flow in this case may have relativistic energies. An interesting aspect to notice

is that the sheared electron flow would have an additional manifestation in the

relativistic case as the relativistic mass of the fluid would also have a sheared

configuration. We have explored the role of this effect on the growth rate. In a

weakly relativistic case, the growth rate of the KH mode shows reduction. The

unstable wavenumber domain also shrinks. This can be understood by realizing

that the increase in the inertia makes the fluid more rigid to be susceptible to the

KH instabilities.

However, at higher flow speed, an interesting effect emerges. The growth rate

again increases and the unstable wave number domain also expands. Our detailed

study has shown that the instability exhibits these novel features due to the sheared

relativistic mass of the medium. Chapter 4 contains a detailed discussion of this

effect. This clearly suggests that in the context of fast ignition where the flows

can be strongly relativistic, this instability can still have a role primarily arising

through the shear in the relativistic mass factor.

We have also carried out a perturbative analytical treatment in the weakly

relativistic domain. The numerically observed growth rate and the threshold

wavenumber change are seen to compare well with the analytical results obtained

from perturbative calculations. This has been discussed in Chapter 5.
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8.1.4 Relativistic electromagnetic soliton structures in a cold
plasmas

The electron response is typically triggered in plasma by a laser. Keeping this

in view we have investigated the coupled system of laser plasma. In particular,

we have studied the possible coherent solutions that can be permitted by such

a coupled system in a simplified 1-D scenario in the second part of the thesis,

comprising Chapter 6 and 7.

A detailed characterization of the possible one dimensional exact solutions of

circularly polarized electromagnetic pulse in a cold, collisionless plasma has been

provided. It should be noted that though the laser field has typically a fast evo-

lution time scale associated with its frequency, in the plasma medium it can get

trapped and form structures moving at very slow group velocity. For such slow

moving structures ion response also becomes crucial. It was shown that the ion

involvement in the dynamics results in several new varieties of solutions. A com-

prehensive description and physical understanding of the possible solutions in the

parametric domain of laser frequency vs. the group speed of the structure has been

provided in Chapter 6.

8.1.5 Evolution of flat top soliton

A special variety of soliton which forms in the context of the presence of ion

response, has a flat top at the centre for all the concerning fields. A detailed

evolution study of this structure was carried out using 1-D simulations of the

coupled set of fluid Maxwell system with a flux corrected code. The flat top

structure was found to be unstable at ion time scales. The instability was identified
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as the backward Brillouin scattering instability. In a cold plasma, this occurs as

the electron quiver velocity in the laser field plays the role of effective temperature.

This study has been presented in Chapter 7.

8.2 Future Directions for Research

We have studied two specific problems in the context of plasma behaviour occurring

at the fast electron time scales. We identify below the aspects which are open for

further investigation in these two set of phenomena.

8.2.1 Electron velocity shear driven instability

• We have carried out the linear stability analysis of relativistic shear driven

flow which is valid as long as the perturbation amplitude is small and there is

no coupling between various modes. In the realistic situation the instability

amplitude would soon grow to a large value when nonlinear mode coupling

effects would become important and crucial in defining the final state. It is,

therefore, important that the nonlinear simulation in the context of relativis-

tic shear driven instability be done. The nonlinear simulation studies would

also be important from the context of spectral cascade features.

• In addition to relativistic flows, the electron fluid can have temperature in the

relativistic domain in experiments and astrophysical scenario where the shear

flow instability has a role to play. It would, therefore, be of interest to carry

out studies of the shear driven modes for the case with finite temperature

effects.
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8.2.2 Laser plasma coupled system

• In this thesis, we have presented a detailed characterization of the Relativistic

Electromagnetic solitons in cold plasmas in the absence and presence of ion

dynamics. Incorporation of ion response results in three new varieties of

solitary structures i.e. high amplitude single peak solitons, flat-top solitons

and cusp solitons. We have carried out the the dynamical evolution of flat-

top solitons. It would be interesting to study the evolution of other variety

of solitonic structures. In addition, the interaction, the propagation through

inhomogeneous plasma etc., are other features which need to be extensively

simulated.

• The stability of the soliton structures in 1-D have been studied for some of the

main variety of solutions. It has been shown by earlier workers [49] that the

single peak structures are typically very robust in 1-D and the multiple peak

variety of solutions suffer the forward Raman scattering instability. We have

shown that the flat top structures develop a backward Brillouin scattering

instability. In this context, the 2-D studies should therefore be carried out to

see whether the stable single peak solutions are susceptible to side scattering

instabilities.

• At the wave breaking of the ion fluid, the cusp solitons are formed. In cer-

tain other plasma systems, such cusp variety of solitons are observed to be

very stable [65]. These structures have been observed to dither around the

wave breaking point. It has also been found that an initial large amplitude

perturbation spontaneously evolves towards the formation of such cusp struc-
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tures. Keeping these developments in view, the similar exercise for the cusp

solutions of the coupled laser plasma system should be carried out.

• We have focussed in this thesis on the cold plasma case. The effect of tem-

perature on the formation, evolution etc., of the structures need to be carried

out.

• We had limited ourselves in our study to a circularly polarized laser light.

The case of linear polarization typically leads to harmonic generation. The

possibility of stable confined solutions in this case needs to be looked at.
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