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Abstract

In this thesis we studied nonlinear oscillations/waves in a cold plasma in various

physical limits and investigated several novel aspects of wave breaking which have

not been considered up till now. We have obtained an exact solution in the lab

frame describing the space time evolution of an arbitrary perturbations in a cold

homogeneous plasma and have shown that addition of a second harmonic increases

the breaking amplitude of the fundamental mode. Later we veri�ed this interesting

observation in 1-D particle in cell simulation. We have further studied nonlinear

oscillations in a cold viscous/hyperviscous and resistive plasma and obtained an

expression describing the breaking criterion for Dawson like perturbation [102]

for this case. Moreover, we have shown that the nonlinear e�ects as reported

in a recent reference are independent of the model for viscosity chosen in the ref.

[118]. We have numerically studied the breaking criterion of longitudinal Akhiezer-

Polovin (AP) waves [119] in the presence of noise and found that they break at

arbitrarily low amplitude through the process of phase mixing. Moreover, we have

obtained longitudinal AP wave solution [119] from space time dependent solution

of relativistic electron �uid equations for the cold homogeneous plasma [107]. We

have also shown that it is not only the nonlinearly driven ponderomotive forces but

the naturally excited zero frequency mode of the system may also be responsible

for the phase mixing in an arbitrary mass ratio cold plasma. For example we have

shown that the BGK waves in a cold electron plasma phase mix away and break

at arbitrarily small amplitude via phase mixing if we allow ions to move. Here

zero frequency mode of the system is found to be the only candidate responsible

for phase mixing. We have also shown that there exist nonlinear traveling wave

solutions in an arbitrary mass ratio cold plasma which do not exhibit phase mixing.

Further, we have studied electron plasma oscillations beyond wave breaking using

1-D particle in cell simulation and found that a fraction of energy, decided by

Co�ey's limit in warm plasma [121], always remains with the wave in the form of

the superposition of two BGK waves. This result is in contrast to the accepted

fact that after the wave breaking all energy of the wave goes to random kinetic

energy of the particles [102, 122]. The �nal distribution function is found to be

non-Maxwellian. Lastly we studied development and collapse of double layers in

the long scale length limit using method of Lagrange variables.
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Chapter 1

Introduction

The entire thesis is based on the study of breaking and evolution of nonlinear

oscillations/waves in a cold plasma. In this chapter we furnish the motivation for

such studies, a review of earlier works and a summary of the important results

obtained in this thesis.

1.1 Motivation

Plasma is a combination of charged particles which exhibit collective behavior due

to the long range Coulomb forces. A key feature of a plasma is its ability to

support various kinds of waves or collective modes of oscillation. In the simplest

case, plasma waves correspond to longitudinal charge density �uctuations along

with their associated electric �elds. These plasma waves can be excited in the

wake of the ultra-short, ultra-intense laser/beam pulse when it goes through un-

derdense plasma [1]. When a particle comes in resonance with these plasma waves,

it sees a DC electric �eld and gets accelerated to a high energy in a very short dis-

tance, a feature which is sometimes desirable and sometimes not. For example, in

accelerator applications [2-30], one aims to produce e�cient acceleration by an in-

tentionally excited plasma wave. These accelerated (energetic) particles are being

used in a wide variety of �elds, ranging from medicine and biology to high-energy

physics. These energetic particles are also desirable for producing a hot spot to ini-

tiate ignition in an already compressed pellet for fast ignition applications of laser

fusion [35-85] Hence, one promotes generation of accelerated particles by plasma

1



waves. On the other hand, these energetic electrons can prematurely heat the fuel

in a capsule and make e�cient implosions di�cult in compression applications for

inertial fusion [86-101]. Hence one tries to avoid exciting plasma waves. Note here

that larger the amplitude of plasma wave, maximum the acceleration would be

. But, we can not increase the amplitude of the plasma wave beyond a critical

limit which is mainly decided by number density of the particles. When a co-

herent plasma wave's amplitude exceeds this critical value, coherent oscillation of

plasma particles gets converted to random motion and the wave gets damped as

it delivers its energy to the particles constituting the wave. This phenomenon is

known as wave breaking [102]. When the plasma wave breaks, it is no more able to

provide us maximum acceleration due to reduction in the amplitude. Physically,

wave breaking occurs whenever there is a trajectory crossing between neighboring

particles which results in density bursts. In the �uid picture, trajectory crossing

leads to multistream motions and random acceleration of �uid particles. In a ki-

netic picture, trajectory crossing and density bursts lead to the production of very

short wavelengths which can then resonantly interact with very cold particles ac-

celerating them to high velocities. Breaking of plasma waves can also occur slowly,

at and amplitude much lower than the critical value via a novel phenomena called

phase mixing [102-109]. Phase mixing occurs when the plasma frequency for some

physical reason acquires a spatial dependence. It may occur either due to inho-

mogeneity in the ion background [102-105] or due to relativistic e�ects [107-109]

It may also occur in a homogeneous plasma as ion background selfconsistently be-

comes inhomogeneous in response to the low frequency forces [106]. Phase mixing

of a plasma wave implies decay of the wave by �ne scale mixing of various parts of

the oscillation due to temporal dependence of the phase di�erence between indi-

vidual oscillators constituting the wave. In the phase mixing process initial energy

goes into higher harmonics which form a density peak and �nally lead to density

bursts (wave breaking).

Till now we have discussed breaking of plasma waves in the 1D geometry. The

process of wave breaking in 2D and 3D plasma waves is expected to exhibit more

complicated properties. A 2D wake�eld plasma wave excited by a �nite width,

short laser pulse, or by a pulse with a sharp leading edge in an underdense plasma

has a speci�c “horseshoe” (or “D shape”) structure where the curvature of the

constant phase surfaces increases with the distance from the pulse. The curvature

2



radius “R” decreases until it is comparable to the electron displacement in the

nonlinear plasma wave leading to a new type of self-intersection of the electron

trajectories. This is called transverse wave breaking [110] which occurs at much

lower wave amplitudes than the conventional one-dimensional wave break.

Wave breaking actually is a nonlinear mechanism for dissipating coherent wave

energy in a plasma and delivering it to particles. On the face of it, wave breaking

appears similar to Landau damping [111] converting coherent wave motions into

randomized kinetic energy of particles. However, there are important di�erences

between the two which are discussed in the following subsection.

Wave breaking versus Landau damping

Landau damping is a linear phenomenon of a warm plasma and has no thresholds.

It only requires a negative slope of the distribution at the wave phase velocity such

that the number of particles giving energy to the wave is smaller than the number of

particles taking energy from the wave. It also requires that the wave amplitude be

small so that the bounce frequency of the particle in the wave trough is smaller than

the Landau damping rate ; in other words, Landau damping works if the damping

rate is faster than the bounce frequency so that the wave disappears before the

particles have a chance to bounce [112]. Otherwise, one gets a BGK mode with

trapped particles [113], which do not su�er Landau damping. In contrast wave

breaking is a nonlinear phenomenon in which the wave phase velocity typically does

not resonate with the particle thermal velocities, which are assumed to be small.

When the wave amplitude crosses the threshold for wave breaking, it basically

accelerates the particles enough so that they come into temporary resonance with

the wave, get accelerated by it and generate �nal velocities up to twice the phase

velocity. It also generates high spatial harmonics through density bursts, which

can more easily interact with the particles because they move with lower velocities

and need lower amplitudes to nonlinearly resonate with the cold particles.

An another di�erence between wave breaking and Landau damping [111] is

as follows. Landau damping is a reversible phenomena,i.e.; the energy lost by the

wave can be obtained back by the application of secondary wave. Here the direction

of the phase evolution of the perturbed distribution function due to dissipation of

the primary wave can be reversed by the application of a second electric �eld.

3



This results in the subsequent reappearance of a macroscopic �eld, many Landau-

damping periods after the application of the second pulse. This phenomena is

called plasma wave echo [114, 115]. Thus we note here that the phenomena of

Landau damping is a reversible in nature. However, in the wave breaking, energy

lost by the wave can not be recovered back by any mean.

Now, as we have discussed earlier that in the phase mixing leading to wave

breaking process, initial energy goes to higher and higher harmonics as time pro-

gresses. This can be understood as the damping of primary wave due to excitation

of higher modes and can be explained by the mode coupling e�ect. Here, the pri-

mary wave is getting damped but its energy is not going to particles which makes

this damping phenomena di�erent from the Landau damping. Thus we see that

damping of plasma wave due to wave breaking is very much di�erent from the

Landau damping.

In all the applications we have discussed here, it is important to understand

the nonlinear e�ects which determine how large and how coherent a plasma wave

can be excited with and without breaking. In this thesis we report on several novel

aspects of 1D wave breaking in cold plasma which have not been discovered yet.

1.2 Discussion of earlier work

1.2.1 Breaking of nonlinear non-relativistic oscillations with

static ion background

Concept of nonlinear oscillations and wave breaking in plasma was �rst introduced

by Dawson[102], for the cold plasma model, where thermal motion may be ne-

glected. The author proposed that, in a cold homogeneous plasma where ions are

assumed to be static, as we increase amplitude of the perturbation, oscillations

become nonlinear and lead to the excitation of higher `k' modes. However, we can

not increase the perturbation amplitude beyond a critical limit (known as wave

breaking amplitude) as trajectory crossing takes place between neighboring elec-

trons. As a result, there will be �ne scale mixing of various parts of the oscillation

which destroys the oscillations. Moreover, the author had shown that if we take an

inhomogeneous ion background to begin with, plasma frequency becomes a func-
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tion of position. As a result, at di�erent positions electrons oscillate at di�erent

local frequency. Because of this e�ect oscillations in an inhomogeneous plasma will

always break through phase mixing at arbitrarily low amplitude[102]. Kaw et al.

[103] explained the phenomenon of phase mixing as mode coupling where energy

goes form longer to shorter and shorter wavelengths. These authors have demon-

strated it by taking an example of small sinusoidal inhomogeneity in static ion

background. A couple of years later Infeld et al. [104] reported an exact solution

describing the space time evolution of nonlinear cold electron plasma oscillations

against the �xed sinusoidal ion background and found that all initial conditions

lead to density burst (wave breaking).

Davidson and Schram [116, 117] have investigated the wave breaking problem

by obtaining the exact solution of nonrelativistic cold electron �uid equations with

in�nitely massive ions using the method of Lagrange coordinates. The authors

have obtained a general wave breaking condition where they have shown that if

the minima of normalized initial density crosses 0.5 at any point in space, it will

break within one plasma period. The authors have considered the initial density

distribution to be sinusoidal and have given the solution in the lab frame also, by

an inversion process. In the lab frame, feature of the solution becomes clear and

we see surprising physical e�ect that whatever energy we load on the fundamental

mode, it gets distributed over nonlinearly generated several number of modes and

comes back to the original mode within one plasma period. Mathematically, the

inversion process from Lagrange solution to lab frame solution can however be

carried out only below a critical amplitude of the initial disturbance as beyond this

critical amplitude the Jacobian of the transformation from Eulerian to Lagrangian

coordinates goes to zero and the transformation is no longer unique.

Beyond this amplitude multistream motion results due to wave particle interac-

tion and the disturbance leads to wave breaking. For a pure sine wave, oscillations

break within one plasma period when electric �eld �keE/(mω2
pe)” becomes greater

than or equal to 0.5 [116, 117]. In realistic case, it is natural to expect that any

exciting mechanism creating the initial density disturbance will excite a bunch

of modes. Therefore it is interesting to know the space time evolution and the

breaking of such a general disturbance.

Davidson and Schram [116, 117] also studied the e�ect of collisonal drag term

(resistivity) on nonlinear oscillations in cold plasma. The solution to the equations
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exhibit damped oscillations and the density may be shown to damp to the value

of the uniform background density, n0. This asymptotic time behavior is valid

for any initial conditions that do not lead to multistream �ow. Recently Infeld

et al. [118] studied the nonlinear oscillations for a more general damping mecha-

nism, where the authors have included viscosity term along with the resistive term.

The authors observed that nonlinear oscillations, initiated by a sinusoidal initial

density perturbation, do not break even beyond the critical amplitude. However,

the authors have not made any comment on how the breaking condition modi�es

in the presence of viscosity and resistivity. Moreover, the authors found a new

nonlinear e�ect in the form of splitting of density peak for larger value of viscos-

ity coe�cient. The physical reason behind this e�ect needs to be investigated.

The most important point to be noted here is that the authors have modeled the

viscosity coe�cient as inverse of electron number density �ne(x, t)” to solve the

�uid equations analytically. However in realistic case, viscosity coe�cient has a

relatively weak dependence on density through Coulomb logarithm. Therefore it

will be interesting to investigate whether the new nonlinear e�ects as reported in

ref. [118] persist for the realistic case.

1.2.2 Breaking of nonlinear relativistic plasma oscillations

with static ion background

It is well known that in order to study very large amplitude plasma waves, one must

include relativistic corrections in the cold electron �uid equations. The longitudinal

traveling wave solutions in relativistic cold plasma were �rst obtained by Akhiezer

and Polovin [119]. The authors found that the breaking amplitudes of these waves

is very high which can be expressed as �Ewb/E0 =
√

2(γph − 1)1/2” [119].Here

γph = 1/
√

1− (vph/c)2 is the relativistic factor associated with the phase velocity

vph of the AP wave. Note here that as vph → c, γph →∞, this implies Ewb →∞.

Thus we see that if the phase velocity of the relativistic plasma waves is very close

to speed of light, their breaking amplitude will be very high.

This wave breaking formula has been used extensively in many particle ac-

celeration experiments/simulations [28, 29], to gain insight into the the observed

experimental/numerical results, after it is shown analytically that the waves which

get excited in the wake of the laser pulse when it goes through under dense plasma
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are nothing but longitudinal Akhiezer-Polovin waves [1]. It has also been proposed

that a relativistic plasma oscillations always phase mix and break at arbitrarily

small amplitude as relativity brings in spatial dependence in the frequency of the

system [107, 108]. Therefore it will be interesting to explore whether ideal wave

breaking criterion of longitudinal AP waves holds in the presence of the pertur-

bations as in realistic experiments there is always some noise associated with the

wake wave (AP wave).

As we have discussed that longitudinal AP waves are the time stationary solu-

tion of relativistic electron �uid equations in a cold homogeneous plasma [119]. In

1989, Infeld and Rowlands reported an exact space and time dependent solution

for the relativistic electron �uid equations in Lagrange coordinates which shows an

explosive behavior for almost all initial condition. It is also commented by these

authors that Akhiezer-Polovin (AP) waves are very special type of modes which do

not show explosive behavior as these structures are functions of just one variable,

x−vpht. It was also emphasized that AP waves need very special set of initial con-

ditions to set them up, and for other initial conditions there would be relativistic

bursts (wave breaking)[107]. It is to be noted here that if we take small amplitude

limit of longitudinal AP waves, we land up with nonrelativistic cold plasma BGK

waves [120]. The space time dependent solution of Davidson and Schram [116] lead

to these waves [120] if one chooses a special set of initial conditions. Therefore, for

the completeness it will also be interesting to get the initial conditions in the space

time dependent solution of Infeld and Rowlands [107] so as to excite relativistic

traveling AP waves [119].

1.2.3 Breaking of nonlinear plasma oscillations with ion mo-

tion

In all the works, we have discussed till now, ions are assumed to be in�nitely

massive i.e.; they are just providing a neutralizing background to the electrons. In

other words we can say that till now we have looked at the phenomena which occur

at very fast time scale such that we can ignore ion response which is comparatively

very slow. It is interesting to know what will happen to the plasma oscillations if

we work on the time scale where ion response can not be neglected.This behavior

was �rst studied by Nappi et al. [105] with inhomogeneous sinusoidal ion back-
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ground. The authors found that ion background gets modi�ed signi�cantly due

to ponderomotive forces, before wave breaking (due to phase mixing [102]). Later

Sengupta et al. have shown that phase mixing of plasma oscillations can occur

even if we start with homogeneous but mobile ions [106]. The authors have shown

that ion distribution becomes inhomogeneous in response to low frequency force

(ponderomotive force) and hence plasma oscillations phase mix away and break

at arbitrarily small amplitude [106]. These authors have taken the example of

sinusoidal electron density perturbation which in the absence of ion motion breaks

when “δne/n0” becomes greater than or equal to 0.5. However, with ion motion

it breaks via phase mixing at arbitrarily small amplitude and the survival time of

the oscillations is decided by the electron-ion mass ratio and the amplitude of the

perturbation. It has also been shown that damping of plasma oscillations occur as

the energy which is loaded on the fundamental mode, goes irreversibly into higher

harmonics [106] and it can be interpreted as mode coupling e�ect [103]. It is the

understanding till now that phase mixing occurs only due to ponderomotive forces.

However, phase mixing of oscillations can be seen even if one ignores the pondero-

motive force e�ect [106]. Therefore it will be interesting to explore the physical

reason behind this.

Thus we see that nonlinear standing oscillations, in an arbitrary mass ratio

cold plasma always, phase mix away and break at arbitrarily small amplitude.

This phenomenon has got a very much similarity to phase mixing of standing

oscillations in the relativistic cold plasma with in�nitely massive ions. However,

we know that there exist nonlinear traveling wave solutions for the relativistic case,

which do not show phase mixing. Therefore, it is interesting to explore whether

such solutions, which do not exhibit phase mixing, exist for the nonrelativistic

arbitrary mass ratio cold plasma.

As we have discussed earlier that cold plasma BGK waves [120] are the time

stationary solutions for electron plasma oscillations with static ion background.

Therefore it will also be interesting to explore the e�ect of ion motion on these

waves.
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1.2.4 Wave breaking at critical amplitude

In cold homogeneous plasma with static ions, electron plasma oscillations break

if we increase the amplitude of the initial perturbation beyond a critical limit

[102, 116]. However, thermal e�ects reduce the maximum amplitude require for

wave breaking for two reasons. Firstly, the tendency of the plasma density to

increase to in�nity is opposed by plasma pressure. Secondly, the thermal velocity

of particles moving in the direction of the wave enables them to be trapped at a

lower amplitude than if they were initially at rest. Thermal corrections were not

obtained until 1971 when Co�ey [121], using a 1-D until 1971 when Co�ey [121],

using a 1-D waterbag �uid description, obtained the �uid description, obtained the

nonrelativistic formula eEmax/(mωpevph) = (1 − β/3 − 8β1/4/3 − 2β1/2)1/2, where

β = 3T/mv2
ph.

Wang et al. [122] extended the study of nonlinear plasma oscillations beyond

breaking by solving the �uid equations numerically using the Lagrange description

for the electrons and have seen multistream �ow and generation of fast electrons

when the initial amplitude of the perturbation becomes greater than the so called

wave breaking amplitude. It is to be emphasized that though the authors did

not study long time evolution of plasma oscillations in the breaking regime, they

predicted that after the wave breaking coherent oscillation energy transform into

disordered electron kinetic energy. Thus it is generally believed that after the wave

breaking, plasma gets heated and all energy of the wave goes to the randomized

kinetic energy of particles. There is also a possibility that in a warm plasma some

particles might get trapped in the wave and lead to the selfconsistent generation

of BGK type waves [113]. It may therefore be interesting to explore the physics of

nonlinear plasma oscillations beyond wave breaking.

We know that nonlinear plasma waves can be used in particle acceleration

and the phenomenon of wave breaking leads to conversion of wave energy into

random kinetic energy of the particle. Both the features can be seen in cold plasma

electrostatic instability, known as Buneman instability which involves streaming

of electron with respect to ions. It is associated with novel physical e�ects like

double layer formation, anomalous resistivity etc. [123, 124]. Double layers can

be used in particle acceleration and potential explosion, due to collapse of double

layers, converts collective energy into thermal energy. It would be interesting if
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one could use the above methods (Lagrange variables) to get an exact description

of the formation and collapse of double layers.

1.3 Scope of the thesis

Rest of the chapters of this thesis are organized as follows. Chapter 2, deals

with the space time evolution of large amplitude plasma oscillations initiated by

an arbitrary density perturbation which can be expressed as the Fourier series in

“x” in a cold homogeneous plasma. We also show in this chapter the usefulness

of our solution by describing the space time evolution of square wave, triangular

wave and Dawson like initial density perturbations. We obtain wave breaking

condition for square wave and triangular wave pro�les and recover wave breaking

limit for Dawson like pro�le using the inequality proposed by Davidson et al.

[116]. A special two mode case (where the initial energy is distributed only over

two commensurate mode) is also studied in this chapter and 1-D particle in cell

has been done to verify the evolution and breaking for this case. Moreover, we

study in this chapter the evolution and breaking of more general two mode case,

where the second mode need not be an integral multiple of the fundamental mode

and recover the case of Davidson et al. [116] and commensurate two mode case for

di�erent set of initial conditions. In chapter 3, we study the behavior of nonlinear

oscillation in a cold dissipative homogeneous plasma. Here we �rst present the

results from the �uid simulation for viscous and resistive cold plasma and reproduce

earlier results [118]. We further show that the results remain unchanged even

for the realistic case where viscosity coe�cient is chosen to be independent of

density. Moreover we study the behavior of nonlinear oscillation in cold plasma

for another dissipative mechanism by substituting viscosity with hyper-viscosity

along with the resistivity and �nd the same results as reported in Ref. [118]. We

also discuss, in this chapter, the physics behind the nonlinear e�ects and introduce

a simple relation between the breaking amplitude of nonlinear oscillations and

the viscosity/hyper-viscosity coe�cients. Chapter 4 deals with the excitation and

breaking of longitudinal relativistic plasma waves (Akhizer-Polovin waves). In this

chapter we �rst construct the longitudinal traveling wave solution of Akheizer and

Polovin [119] from the exact space and time dependent solution of relativistic cold
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electron �uid equations due to Infeld and Rowlands [107]. Moreover, we suggest an

alternative derivation of the Akheizer Polovin solution after making the standard

traveling wave ansatz. Furthermore, we load AP type initial conditions in the

relativistic sheet code and show their propagation in all physical variable with out

any dissipation up to 1000's of plasma periods. We next show in this chapter

that if we add a very small amplitude longitudinal perturbations to these waves,

they show an explosive behavior after some time (decided by amplitudes of the

AP wave and the perturbation) due to phase mixing e�ect. We also show that the

scaling of phase mixing can be interpreted from Dawson's formula for phase mixing

in inhomogeneous plasma [102]. In chapter 5, we study the nonlinear oscillation

and waves in an arbitrary mass ratio cold plasma. Here we �rst make a choice of

initial conditions such that we see pure oscillations at the linear level and phase

mixing comes nonlinearly due to ponderomotive forces only. We also demonstrate

the existence of nonlinear electron-ion traveling waves in an arbitrary mass ratio

cold plasma which do not exhibit phase mixing due to absence of ponderomotive

forces and zero frequency mode. Lastly in this chapter we show that cold plasma

BGK waves [116, 120] phase mix away when ions are allowed to move and the

scaling of phase mixing is found to be di�erent from earlier work [106]. In this

case zero frequency mode is found to be the only candidate responsible for phase

mixing as ponderomotive force for waves is zero. Chapter 6 describes the study of

plasma oscillations beyond wave breaking which is done by using 1-D particle in

cell simulation and it is shown that after the wave breaking all energy of a standing

plasma oscillation does not end up as the random kinetic energy of particles but

some fraction always remains with two oppositely propagating coherent BGK like

modes with supporting trapped particle distributions. The randomized energy

distribution of untrapped particles is found to be characteristically non-Maxwellian

with a preponderance of energetic particles. Chapter 7 deals with the development

and collapse of double layers which is studied using method of Lagrange variables.

Finally in chapter 8, we summarize all the problems addressed in this thesis.
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Chapter 2

Nonlinear evolution of an arbitrary

density perturbation in a cold

homogeneous unmagnetized plasma

In the present chapter exact and general analytical solutions describing the nonlin-

ear evolution of a large amplitude plasma oscillation initiated by arbitrary density

perturbations are found. Analytical results have been veri�ed using 1-D PIC sim-

ulation.

2.1 Introduction

The basic physics of nonlinear evolution of large amplitude plasma oscillations is

well illustrated by the exact solution of cold plasma �uid equations by Davidson et

al. [116, 117]. The solution strategy involves transforming the �uid equations to a

co-moving coordinate frame (Lagrange coordinates) where the equations become

linear, and hence are easily solved. The general features of the solution becomes

clear when the solution in Lagrange coordinates is transformed back to the lab

frame (Eulerian frame) for a model set of initial condition where all the electrostatic

energy (ESE) is loaded on a single long wavelength mode. This solution shows

coherent oscillations at the plasma frequency with the energy sloshing back and

forth between the initial mode and higher nonlinearly excited modes, provided

the initial normalized density perturbation δn/n0 ≤ 0.5. Beyond this limit the
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oscillations break and energy contained in coherent motion gets converted into

random motion.

The above conclusion, as mentioned before, has been derived with an initial

condition where only a single well de�ned mode (“k�) is excited. In present day

laser/beam-plasma experiments where E2/(8πnT ) >> 1, it is natural to expect

that the exciting mechanism (laser, electron beam, electrical pulse etc.) will in

general excite a wave packet with energy distributed over several modes. Such

a kind of excitation of wave packets has also been seen in simulation [125, 126].

Therefore, both from the point of view of experiments and simulations, it is of

utmost importance to study the spatio-temporal evolution of a wave packet, where

the initial electrostatic energy is distributed over multiple modes.

In this chapter, we report a general solution in the lab frame describing the

nonlinear oscillations initiated by an arbitrary density perturbation which can be

expressed as a Fourier series. This general solution thus, in principle describes

the evolution of di�erent type of periodic density perturbations. We �rst use

this solution to reproduce the earlier results of Davidson-Schram [116, 117] and

Dawson [102] using appropriate initial conditions. We next show the usefulness of

our solution by deriving, as examples, the space time evolution for a square wave

and a triangular wave. Furthermore, we present a very special case where the total

ESE is loaded over two commensurate modes (say “k” and 2“k”). Here we get

two wave breaking limits depending on how the total ESE is distributed over these

two modes. One of them shows, that addition of a second harmonic increases the

wave breaking limit of the fundamental mode. This may have relevance for particle

acceleration studies of breaking wake �elds.

Furthermore, we study more general two mode case and obtain an exact solution

for the space time evolution of two incommensurate modes, where second mode

need not be an integral multiple of the fundamental mode. We recover earlier

single mode [116, 117] and two mode cases for ∆2 = 0, ∆k = k respectively.

In section.(2.2), we �rst, present the basic cold plasma �uid equations and the

general solution in Lagrangian coordinates for an arbitrary initial density pro�le,

which is actually a Fourier series in “x” with zero initial velocity pro�le. The

general solution is inverted from Lagrangian coordinates to Eulerian coordinates

following the method of Davidson et al. [116]. In subsections.(2.2.1) and (2.2.2),

we respectively recover the earlier results of Davidson & Schram [116] and Dawson
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[102] from our general solution. In addition, we recover the wave breaking limit

given in Ref. [102]. In section.(2.3), we present, as examples, the evolution and

wave breaking limit for a square wave and a triangular wave as initial density

pro�les. In section.(2.4), we study a very special case where the initial ESE is

loaded over �rst two modes. Section.(2.5) contains 1-D PIC simulation [128] results

for this special case. In section.(2.6), we study evolution of two incommensurate

modes and recover Davidson's, commensurate mode solutions for special choice of

∆2 and ∆k. At the end, our results are summarized in section.(2.7).

2.2 Governing equations and the General solution

The basic equations describing the evolution of an arbitrary electrostatic pertur-

bation in an unmagnetized cold homogeneous plasma with immobile ions are

∂ve
∂t

+ ve
∂ve
∂x

= −eE
m

(2.1)

∂ne
∂t

+
∂(neve)

∂x
= 0 (2.2)

∂E

∂x
= 4πe(n0 − ne) (2.3)

where the symbols have their usual meaning. Exact solution of the above set of

equations is well known [116] and can be written in terms of Lagrange coordinates

(x0, τ) as

ve(x0, τ) = V (x0) cos(ωpeτ) + ωpeX(x0) sin(ωpeτ) (2.4)

E(x0, τ) = −m
e
ωpe
[
ωpeX(x0) cos(ωpeτ)− V (x0) sin(ωpeτ)

]
(2.5)

ne(x0, τ) =
ne(x0, 0)[

1 + 1
ωpe

∂V
∂x0

sin(ωpeτ) + ∂X
∂x0

(1− cosωpeτ)
] (2.6)
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where Lagrange and Euler coordinates (x, t) are related by

x = x0 +
1

ωpe
V (x0) sin(ωpeτ) +X(x0)(1− cosωpeτ), t = τ (2.7)

It is to be noted that the solution depends on two arbitrary functions of x0 viz.

X(x0) and V (x0) which are related to the initial density and velocity pro�le as

∂X

∂x0

=
ne(x0, 0)

n0

− 1, V (x0) = ve(x0, 0) (2.8)

The general wave breaking condition, can be easily obtained by using the fact that

density is a physical parameter and can never be negative, which is

ne(x0, 0) >
n0

2
(2.9)

This inequality was �rst derived by Davidson et al. [116, 117]. Physically, cir-

cumstances in which this inequality is violated for some range(s) of x0, lead to the

development of multi-stream �ow within half the period of a plasma oscillation as

oscillation breaks. A point to be noted here is that wave breaking condition is ac-

tually extracted from the initial density pro�le where the Euler and the Lagrange

coordinates are identical.

Let us now take the initial density and velocity pro�les as ne(x0, 0) = n0

[
1 +

∑∞
n=1 ancos(nkx0)

]
, ve(x0, 0) = 0. Therefore the set of Eqs.(2.4)-(2.7) will become

ve(x0, τ) =
ωpe
k

sin(ωpeτ)
∞∑
n=1

an
n
sin(nkx0) (2.10)

E(x0, τ) = −
mω2

pe

ek
cos(ωpeτ)

∞∑
n=1

an
n
sin(nkx0) (2.11)

ne(x0, τ) =
ne(x0, 0)

1 + 2 sin2(ωpeτ/2)
∑∞

n=1 ancos(nkx0)
(2.12)
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kx = kx0 + α(τ)
∞∑
n=1

an
n
sin(nkx0), t = τ (2.13)

Here α(τ) = 2 sin2(ωpeτ/2). Thus, set of Eqs.(2.10)-(2.13) give the evolution of an

arbitrary density perturbation in terms of Lagrange coordinates. Now we trans-

form from Lagrangian to Eulerian coordinates (Fluid frame of reference to Lab

frame of reference) following the method of Ref. [116]. We de�ne f(kx0) =∑∞
n=1

an
n
sin(nkx0). So the transcendental Eq.(2.13) becomes kx(x0, τ) = kx0 +

α(τ)f(kx0). Since f(kx0) is a periodic function of x, therefore it can be expressed

as a Fourier series in x i.e. f(kx0) =
∑∞

m=1 bm(t)sin(mkx), where bm(t) is found

to be

bm(t) =
∞∏
s=1

+∞∑
ls=−∞

Jls(
mαas
s

)

[
∞∑
n=1

an
n

{
δm−n+

∑∞
p=1 plp,0

−δm+n+
∑∞
p=1 plp,0

}
+
α

2

∞∑
n=1

an
n

∞∑
q=1

aq{
δm−n+q+

∑∞
p=1 plp,0

+ δm−n−q+
∑∞
p=1 plp,0

−δm+n+q+
∑∞
p=1 plp,0

− δm+n−q+
∑∞
p=1 plp,0

}]
(2.14)

Now from Eqs.(2.10) and (2.11) we can easily write velocity and electric �eld in

Lab frame as

ve(x, t) =
ωpe
k

sin(ωpet)
∞∑
m=1

bm(t) sin(mkx) (2.15)

E(x, t) = −
mω2

pe

ke
cos(ωpet)

∞∑
m=1

bm(t) sin(mkx) (2.16)

and using Eq.(2.16) in Poisson's equation (5.5), electron density can be expressed

as

ne(x, t) = n0[1 + cos(ωpet)
∞∑
m=1

mbm(t) cos(mkx)] (2.17)
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We have thus obtained a general solution in the lab frame for an arbitrary per-

turbation. This solution which gives the density pro�le as a function of space and

time, besides being of intrinsic interest is also superior than numerically interpolat-

ing the real space-Lagrangian formula [Eqs.(2.7),(2.13)] to obtain spatio-temporal

evolution of of density pro�le. This is because, near the wave breaking point cal-

culation of �x0� for a given �x� by numerically inverting Eqs.(2.7),(2.13) may lead

to singularities. By choosing di�erent form of an's, it is possible to obtain the

earlier results of Davidson & Schram [116], where electron density is perturbed si-

nusoidally and Dawson [102] where the particle position is perturbed sinusoidally

(as shown in subsections.(2.2.1) and (2.2.2)), and the evolution of other periodic

disturbances like a triangular wave and a square wave (as shown in section.(2.3)).

We note here that in a recent publication, Infeld et al. [118] have analytically

solved for nonlinear oscillations excited by an arbitrary initial density perturbation

in a cold, viscous and resistive plasma. The authors have left their solution in

Lagrange coordinates and did not give inversion in the Lab frame. A close look

at Eqs.(21a)-(21b) of ref. [118] reveals that inversion of their solution in the Lab

frame is included in our solution just by reading anα(τ)/n as −AnGn(t).

2.2.1 Sinusoidal perturbation in the density

Assuming all an's, except a1, to be zero, and therefore putting n = 1, s = 1 p = 1,

q = 1 in Eq.(2.14) and using the recurrence relation 2nJn(z) = z[Jn+1(z)+Jn−1(z)],

we get bm(t) = (−1)m+1

m
2
α(t)

Jm[mαa1]. This together with set of Eqs.(2.15)-(2.17)

gives the evolution of sinusoidal density perturbation [116, 117]. The general wave

breaking condition (2.9), in this case gives a1 < 0.5 [116, 117].

2.2.2 Sinusoidal perturbation in the particle position

In this case, the initial conditions are given in terms of displacements; ξ(xeq, 0), of

the particles from their equilibrium positions, xeq. Here the initial conditions are

chosen to be ξ(xeq, 0) = A sin(kxeq), ve(xeq, 0) = 0, where �A� has dimension of

length. Therefore at t=0 the Euler position of the electron and electric �eld are re-

spectively expressed as kx0 = kxeq +kA sin(kxeq) and E = 4πen0A sin(kxeq). Here

sin(kxeq) can be written as a Fourier series in x0 i.e. sin(kxeq) =
∑∞

n=1 cn sin(nkx0)
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with cn = (−1)n+1

n
2
kA
Jn[nkA]. Thus, using the expression for electric �eld in

terms of x0 and Poisson's equation, the initial electron density is found to be

ne(x0, 0) = n0

[
1 + 2

∑∞
n=1(−1)nJn[nkA] cos(nkx0)

]
. From this it is clear that

space and time evolution of this density pro�le is given by set of Eqs. (2.14)-(2.17)

with an = 2(−1)nJn[nkA].

We now use the inequality (2.9) to recover the Dawson's wave breaking limit

i.e. −
∑∞

n=1(−1)nJn(nkA) cos(nkx0) < 1
4
. Here we see that this series will have a

maxima only at kx0 = 2mπ, m = 0,1,2..and so on. Therefore putting kx0 = 0 and

using the identity
∑∞

n=1 Jn(nβ) = β
2(1−β)

we get kA < 1.

2.3 Evolution and breaking of square and triangu-

lar wave pro�les

We now present as an example space time evolution and breaking limit of a square

wave density pro�le, with height δ and wavelength 2π, which can be expressed

as a Fourier series in x as ne(x0, 0) = n0

[
1 + 4δ

π

∑∞
n=1

(−1)n+1

n
sin(nπ

2
) cos(nkx0)

]
.

It is clear that the square wave is nothing but a particular form of our general

density pro�le with very special an's. Now from the inequality (2.9) we �nd
4δ
π

∑∞
n=1

(−1)n

n
sin(nπ

2
) cos(nkx0)

]
< 1

2
. This series will have a maxima only at

kx0 = π, therefore we have 4δ
π

∑∞
n=1

1
n

sin(nπ
2

) < 1
2
. L.H.S. of this inequality is the

well known Leibniz series and its value is π/4. Thus we conclude that a square

wave pro�le will not break as long as δ < 0.5 and oscillate like a sine wave as

predicted in Ref. [127].

We next present as a second example, evolution of a triangular wave pro�le

with height δ and wavelength 2π, which can be written as a Fourier series in `x'

i.e. ne(x0, 0) = n0

[
1 + 8δ

π2

∑∞
n=1,3,5..

1
n2 cos(nkx0)

]
. This pro�le will also evolve in

space and time as given by Eqs.(2.14) to (2.17) and the wave breaking limit can

be obtained using the inequality (2.9) i.e. − 8δ
π2

∑∞
n=1,3,5..

1
n2 cos(nkx0) < 1

2
. This

series has a maxima at kx0 = π. Now using the identity
∑∞

n=1,3,5..
1
n2 = π2

8
and

putting kx0 = π we get δ < 1
2
. Thus we see that a triangular wave pro�le will also

not break if its height δ is less than 0.5.

It is to be noted that for the triangular and the rectangular case, the wave

breaking condition can also be obtained even without the Fourier series repre-
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sentation. In fact, wave breaking points for both pro�les can also be seen from

their respective graphical plots. Here we have used the Fourier representation for

illustrative purpose.

2.4 First two modes are non-zero

Let us now consider a case where all an's are zero for n > 2; then the density pro�le

can be expressed as ne(x0, 0) = n0[1+a1 cos(kx0)+a2 cos(2kx0)]. Now in Eq.(2.14)

expanding n, s, p and q from 1 to 2 and doing some algebra we get the evolution

of two modes in space and time. Using the wave breaking condition (2.9) we get

−a1 cos(kx0)− a2 cos(2kx0) < 1/2. Let G(kx0) = −a1 cos(kx0)− a2 cos(2kx0). In

order to get the wave breaking limits we need to evaluate the maxima's of G(kx0).

For a1 > 4a2, G(kx0) has a maxima at kx0 = π and for a1 < 4a2 G(kx0) has a

maxima at kx0 = cos−1(−1a1/4a2). Using these, the two wave breaking limits are

(i) (a1 − a2) < 0.5 for a1 > 4a2, (ii) (
a21+8a22

8a2
) < 0.5 for a1 < 4a2. When compared

with the results of Davidson et al. [116, 117], the �rst wave breaking limit presents

a very interesting situation. If all the initial ESE is loaded on the fundamental

mode (i.e. a2 = 0), the wave will break if the amplitude of the fundamental mode

a1 ≥ 0.5. But if we add a very small perturbation to the next higher mode, wave

does not break even when a1 > 0.5. We have veri�ed this interesting observation

using 1-D PIC simulation [128], which we present in the next section.

2.5 Results from the simulation

We have done a electrostatic 1-D PIC simulation [128] using the following param-

eters : total number of particles (N) ∼ 3 ×105, number of grid points (NG) ∼
3 ×104, time step ∆t ∼ π/50 and system length (L) ∼ 2π. We have used peri-

odic boundary conditions and all physical quantities are normalized as x → kx,

t → ωpet, ne → ne/n0, ve → ve/(ωpek
−1) and E → keE/(mω2

pe), where ωpe is the

plasma frequency and `k' is the wave number of the longest (fundamental) mode.

Fig.(2.1) shows the spatial pro�le of the electron number density at various

time steps for a1 = 0.6 and a2 = 0.0. This value for a1 is clearly beyond the wave

breaking point for the single mode case. The appearance of sharp spikes (blue
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Figure 2.1: Numerical plot of electron density at a1 = 0.6 and a2 = 0.0 where red line

shows the pro�le at ωpet = 0, black line at ωpet = π/2 and blue line at ωpet = π
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Figure 2.2: Velocity distribution of electrons at a1 = 0.6, a2 = 0.0 and ωpet = 2π

lines) in the density pro�le at ωpet = π, is a clear indicator of wave breaking.

Physically, at the wave breaking point, the energy contained in the initial mode

goes irreversibly into self-consistently excited high �k� modes. This generation of
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high �k� modes shows up in the density pro�le as sharp �spikes�. Resonant inter-

action of these high �k� modes with the particles causes the particles to accelerate,

resulting in multistream �ow (another signature of wave breaking [102]). This is

shown in Fig.(2.2) for the same parameters as in Fig.(1) at ωpet = 2π, which gives

the probability of �nding a particle with velocity lying between v and v + ∆v,

and is independent of total number of simulation particles. The magnitude of a

streamer at a given value of �v� is thus determined by the fraction of total number

of particles interacting resonantly with a mode �k� such that v ∼ ωpe/k.

Fig.(2.3), which shows density pro�les at di�erent times with two modes, clearly

shows coherent oscillations even when the amplitude of the fundamental mode is

beyond the wave breaking limit for a single mode. It thus shows that addition of

a second mode enhances the wave breaking limit of the fundamental mode. The

points (`*') on the density pro�le are a result of analytical calculation. We see here

a good agreement between our analytical calculation and numerical results.
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Figure 2.3: Numerical vs analytical (`*') plot of electron density at a1 = 0.6 and
a2 = 0.14 where red line represents the pro�le at ωpet = 0, black line at ωpet = π/2
and blue line at ωpet = π

Fig.(2.4) where we present the harmonic content of density pro�le for the single

mode case (δn/n0 ∼ 0.6) and the two mode case [(δn/n0)k ∼ 0.6,(δn/n0)2k ∼
0.14] beyond the wave breaking time (ωpet = 3π/2) further supports the above

mentioned fact. For the single mode case at ωpet = 3π/2, the wave is already broken
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Figure 2.4: Number density vs mode number at a1 = 0.6, a2 = 0.0 shown by curve
(1) (solid line`-') and at a1 = 0.6, a2 = 0.14 shown by curve (2) (line points `*') at
ωpet = 3π/2

and the energy is spread over several modes. This is shown by curve(1) in Fig.(4).

For the two mode case at ωpet = 3π/2, the density pro�le after exhibiting a peak

at ωpet = π, comes back to the equilibrium. The curve(2) in Fig.(4) thus shows

negligible energy distribution over modes. Thus we observe that the addition of a

second mode avoids breaking of wave even when the amplitude of the fundamental

mode is as high as ∼ 0.6. Physically, this happens because the addition of the �2k�

perturbation to the fundamental mode (�k� perturbation) produces a destructive

interference at the peak of the `k' mode with the result that the wave breaking

condition is not satis�ed anywhere .

In the next section, we are now going to present the case of two incommensurate

modes.

2.6 Evolution and breaking of incommensurate modes

Let us take the initial density and velocity pro�les as below:

ne(x0, 0) = n0[1 + δ1 cos kx0 + δ2 cos(k + ∆k)x0], ve(x0, 0) = 0 (2.18)
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Now the set of Eqs.(2.4)-(2.7) will become

ve(x0, τ) =
ωpe
k

sinωpeτ [δ1 sin kx0 +
kδ2

k + ∆k
sin(k + ∆k)x0] (2.19)

E(x0, τ) = −
mω2

pe

ek
cosωpeτ [δ1 sin kx0 +

kδ2

k + ∆k
sin(k + ∆k)x0] (2.20)

ne(x0, τ) =
ne(x0, 0)

1 + (1− cosωpeτ)(δ1 cos kx0 + δ2 cos(k + ∆k)x0)
(2.21)

kx(x0, τ) = kx0 + α(τ)f(x0) (2.22)

Here α(τ) is given by

α(τ) = 2 sin2 ωpeτ/2 (2.23)

and f(x0) is expressed as :

f(x0) = δ1 sin kx0 +
kδ2

k + ∆k
sin(k + ∆k)x0 (2.24)

Again f(x0) can be written as the Fourier series of x:

f(x0) =
∞∑
n=1

an(t) sinnkx (2.25)

Now from Eqs.(2.19) and (2.20), we can easily express velocity and the electric

�eld in the lab frame as

ve(x, t) =
ωpe
k

sinωpet
∞∑
n=1

an(t) sinnkx (2.26)

E(x, t) = −
mω2

pe

ek
cosωpet

∞∑
n=1

an(t) sinnkx (2.27)

Equation.(2.27) together with Poisson's equation gives an expression for electron

density as

ne(x, t) = n0[1 + cosωpet
∞∑
n=1

nan(t) cosnkx] (2.28)
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Now from Eq.(2.25), an can be written as

an(t) =
k

π

∫ 2π
k

0

f(x0) sinnkxdx (2.29)

Solving Eq.(2.29) we get an exact expression for an(t)

an(t) = (−1)n
+∞∑

m=−∞

Jm(
zδ2

k′δ1

)[(−1)mk
′
δ1{Jn+mk′+1 − Jn+mk′−1}

−(−1)mk
′ zδ1

2n
{Jn+mk′−2 − Jn+mk′+2}

+
δ2

k′
{(−1)(m−1)k′Jn+(m−1)k′ − (−1)(m+1)k′Jn+(m+1)k′}

+
zδ2

2

2nk′δ1

{(−1)(m−2)k′Jn+(m−2)k′ − (−1)(m+2)k′Jn+(m+2)k′}

+
zδ2

2n
(1 +

1

k′
){(−1)(m+1)k′Jn+1+(m+1)k′ − (−1)(m−1)k′Jn−1+(m−1)k′}

+
zδ2

2n
(1− 1

k′
){(−1)(m−1)k′Jn+1+(m−1)k′ − (−1)(m+1)k′Jn−1+(m+1)k′}] (2.30)

Here k′ = k+∆k
k

, Js ≡ Js[z] and z=nα(τ)δ1

Eq.(2.30) together with Eqs.(2.26)-(2.28) gives an exact solution for the evolu-

tion of incommensurate modes in cold plasma. We can easily recover single mode

case [116] just by putting δ2 = 0 in Eq.(2.30). One can also recover earlier derived

commensurate case just by substituting ∆k = k. For incommensurate waves,

breaking occurs when δ1 + δ2 > 0.5 for all ∆ks, except ∆k = 0.5k and k. As for

these cases, both the waves superpose in such a way that wave breaking condition

(2.9) is not satis�ed even though δ1 + δ2 > 0.5.

2.7 Summary

In summary, we have given, in this chapter, the exact evolution of an arbitrary

density pro�le which can be expressed as a Fourier series in x in the lab frame.

This solution describes a realistic situation where a bunch of modes are excited

initially. In our work, we have taken an initial density pro�le which is represented

by a general Fourier series. In order to illustrate the calculation of wave breaking
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condition for series like pro�les, we have presented examples of triangular wave,

rectangular wave and Dawson like perturbations. For the speci�c case with two

modes, we �nd that if all the initial ESE is loaded on the fundamental mode (i.e.

a2 = 0), the wave will break if the amplitude of the fundamental mode a1 ≥ 0.5

[116]. But if we add a very small perturbation to the next higher mode, wave does

not break even when a1 > 0.5. This interesting observation has been veri�ed using

1-D PIC simulation. Moreover, we have studied a more general two mode case

where second mode need not be an integral multiple of the fundamental mode. It

would be interesting to carry out experiments that would follow the space time

evolution and wave breaking limits as predicted by the theory and seen in the

simulation.

In the next chapter, we are going to study the behavior of nonlinear oscillations

if one includes dissipative (viscous/hyperviscous and resistive) e�ects in the cold

plasma model.
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Chapter 3

Nonlinear oscillations in a cold

dissipative plasma

Recently, it has been shown that, when viscosity and resistivity is included in

the cold plasma model, nonlinear plasma oscillations exhibit two new nonlinear

e�ects. First one is that plasma oscillations do not break even beyond the critical

amplitude and the second one is that the density peak splits into two [Infeld et al.,

Phys. Rev. Lett. 102, 145005 (2009)]. Infeld et al. have analytically derived these

results for a speci�c model of viscosity as 4/3νe = ν(n0/ne(x, t)). In a realistic case

however, electron viscosity has a relatively weak dependence on density through

Coulomb logarithm. In this work, �rstly Infeld's result is numerically extended

for the more realistic case where electron viscosity is chosen to be independent of

density and secondly an alternative electron dissipative mechanism is studied by

substituting viscosity with hyper-viscosity. In both cases, results are found to be

qualitatively similar to Infeld et al. . Moreover, we obtain an analytical expression

describing the wave breaking criteria for both viscous and hyperviscous cases.

3.1 Introduction

The subject of large amplitude oscillations and waves in a cold homogeneous

plasma has retained the interest of plasma physicists for a long time, mainly be-

cause of two reasons. Firstly, it belongs to a class of nonlinear problems which

is exactly solvable analytically using the methods of Lagrangian hydrodynamics
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[117] and secondly it serves as a useful paradigm to illustrate the physics of many

plasma based experiments where large amplitude oscillations/waves are excited.

The problem which had de�ed an exact solution till recently was cold plasma

nonlinear oscillation with the addition of viscous term to �uid-Maxwell equations.

In the absence of viscosity and resistivity, Davidson-Schram solution [116] shows

that when a cold homogeneous plasma is excited with energy loaded on a single

mode, coherent nonlinear oscillations appear with the energy moving back and

forth between the single initial mode and a large number of nonlinearly excited

higher modes, and this entire process happens at the plasma frequency. The ap-

pearance of large number of higher modes results in the formation of a density

peak which occurs once in a plasma period. Coherent nonlinear plasma oscilla-

tions occur only when the amplitude of the initial density perturbation δn/n0 is

kept below 0.5. Above this value the oscillations break and the energy loaded on

the initial mode goes into random particle motion.

In a recent publication, it has been shown that when viscosity and resistivity

are included in the cold plasma model, nonlinear plasma oscillations exhibit a

new nonlinear e�ect in the form of splitting of density peak, and oscillations do

not break even when the amplitude of the density perturbation δn/n0 is greater

than 0.5 [118]. In order to make the problem analytically tractable, the authors

have modeled the viscous term in a way which makes the viscosity coe�cient

depend inversely on the local electron density ne(x, t). They have argued in their

paper, that if ne/n0 (where n0 is the equilibrium density) is �not much di�erent

from unity and Te (electron temperature) = constant�, then their modelling of

viscosity coe�cient is approximately consistent with equation (5a) of ref. [118].

In reality however, during the course of oscillation, speci�cally when the initial

density perturbation is close to the breaking point, ne/n0 becomes considerably

di�erent from unity, which makes their modelling of viscosity coe�cient inaccurate.

A close look at equation (5a) of ref. [118] shows that viscosity coe�cient actually

has a relatively weak dependence on density through Coulomb logarithm.

Therefore in this work, we have �rst studied the nonlinear oscillations in a cold

viscous and resistive plasma with a constant viscosity coe�cient by neglecting the

weak density dependence. Our aim here is to see whether the new nonlinear e�ects

as seen in ref. [118] persist even in the absence of inverse density dependence of

viscosity coe�cient. With a constant viscosity coe�cient, the cold plasma �uid
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Maxwell's equations are not amenable to Lagrangian treatment. We have thus

done a �uid simulation of the problem using a �ux corrected transport code [129].

We observe that the same new nonlinear e�ect in the form of splitting of density

peak persists although in a slightly di�erent parameter regime, clearly indicating

that this e�ect is not due to inverse dependence of viscosity coe�cient on local

electron density as chosen in ref. [118].

If there are some turbulence e�ects in the plasma, oscillations may damp faster

than the normal dissipation due to viscosity and the plasma may be considered as

hyper-viscous. Therefore, we have further studied the e�ect of hyper-viscosity on

cold plasma nonlinear oscillations, where we have replaced the viscous term with a

hyper-viscosity term. Here, following Infeld et al. [118] we have chosen the hyper-

viscosity coe�cient to depend inversely on the cube of local electron density. This

has been done, so that the problem yields to Lagrangian methods. Here again, we

�nd that the same nonlinear e�ect in the form of splitting of density peak appears.

In section.(3.2), we �rst present the basic governing equations, give a brief

description of our code and present a validation of our code against the analytical

results [118]. We next present our simulation results for the case where viscosity

coe�cient is independent of density. Section.(3.3), contains our analytical work on

nonlinear cold plasma oscillations with hyper-viscosity. In section.(3.4) we derive

an analytical relation which describes how wave breaking amplitude modi�es in

the presence of viscosity and hyperviscosity. Finally in section.(3.5) we present a

summary of our results.

3.2 Nonlinear plasma oscillations with viscosity and

resistivity

The basic equations governing the evolution of large amplitude oscillation in a cold

homogeneous, unmagnetized, viscous and resistive plasma with immobile ions, are

the continuity equation, momentum equation and Poisson's equation which in

normalized form are
∂ne
∂t

+
∂(neve)

∂x
= 0 (3.1)

∂ve
∂t

+ ve
∂ve
∂x

= −E +
1

ne

∂

∂x

(
νe
∂ve
∂x

)
− ηve (3.2)
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∂E

∂x
= 1− ne (3.3)

Where the dimensionless form is obtained by x→ k−1, t→ ω−1
pe , ne → n0, E →

mω2
pe

ke
, ve → ωpe

k
, νe → 3mn0ωpe

4k2
, η → mωpe

n0e2
. Here νe is the electron viscosity, η is

the plasma resistivity; the other symbols have their usual meaning. We now model

νe(x, t) as νe = ν
(

1
n̄e(x,t)

)α
, ν → mn0ωpe

k2
is a constant, where α = 1 corresponds to

the ref. [118].

We now solve equations (3.1)-(3.3) using a �uid code (LCPFCT) based on a

�ux corrected transport scheme [129] which is a generalization of the two step Lax-

Wendro� scheme [130]. Equations (3.1)-(3.3) are solved using periodic boundary

conditions with initial conditions as

ne(x, 0) = 1 + ∆ cos x, ve(x, 0) = 0, E(x, 0) = −∆ sinx (3.4)

We now present results for α = 1 [118] and α = 0 which is the constant viscosity

case.

3.2.1 α = 1 (viscosity coe�cient inversely depends on den-

sity)

In this subsection, the evolution of a sinusoidal density pro�le in space and time,

for α = 1, is presented, for the same parameters as were used in ref. [118], this is

done to validate our code against the analytical results.

Fig.(3.1) shows the space-time evolution of density pro�le for α = 1, and for

the same parameters as were used in ref. [118] i.e. ∆ = 0.55, ν = 0.03 and

η = 2× 10−5. As time progresses, the damping of nonlinear oscillations is clearly

observed, as predicted in ref. [118]. Fig.(3.2) shows the evolution of electron

density for ∆ = 0.55, ν = 0.2 and η = 2 × 10−4 and we �nd bifurcation in the

density peak as was shown in ref.[118]. In both the �gures, the lines show the

numerical results and the points (`*') show the analytical pro�le. It is clear from

these �gures that our code reproduces the analytical results [118] quite well.
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Figure 3.1: Numerical versus analytical (`*') plot of ne(x, t) in a viscous and re-
sistive plasma with α = 1, ∆ = 0.55, ν = 0.03, η = 2 × 10−5 at various time
steps
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Figure 3.2: Numerical versus analytical (`*') plot of ne(x, t) in a viscous and resis-
tive plasma with α = 1, ∆ = 0.55, ν = 0.2, η = 2× 10−4
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Figure 3.4: Numerical plot of ne(x, t) in a viscous and resistive plasma for one
plasma oscillation with α = 0, ∆ = 0.55, ν = 0.35, η = 2× 10−3

3.2.2 α = 0 (viscosity coe�cient is constant)

In this subsection, the evolution of electron density is presented for constant vis-

cosity coe�cient i.e. for this case, where electron viscosity is not a function of
31



density. Fig.(3.3) shows evolution of density pro�le for α = 0, and parameters

∆ = 0.55, ν = 0.03 and η = 2 × 10−5; and again we observe nonlinear damped

oscillations similar to that as seen in ref. [118]. Fig.(3.4) again shows the bifurca-

tion in the density peak for ∆ = 0.55, ν = 0.35 and η = 2× 10−3. Thus it is clear

that the new nonlinear e�ects, i.e. the observed bifurcation of density peak and

the non-breaking of plasma oscillations even beyond the critical amplitude are not

restricted to the viscosity model of ref. [118] as they are seen even for the constant

viscosity coe�cient.

3.3 Nonlinear Plasma Oscillations with

hyper-viscosity and resistivity

We, now investigate the e�ects of hyper-viscosity on cold plasma oscillations by

replacing viscosity with hyper-viscosity. For hyper-viscous case, the momentum

equation in normalized form can be written as

∂ve
∂t

+ ve
∂ve
∂x

= −E − 1

ne

∂

∂x

(
νhy

∂3ve
∂x3

)
− ηve (3.5)

Equation (3.5) together with equations (3.1) and (3.3) describes the evolution of

large amplitude oscillations in a hyper-viscous and resistive plasma. Here νhy is

the electron hyper-viscosity coe�cient and η is the plasma resistivity.

In order to solve above equations analytically, we model νhy(x, t) as νhy =

νh/n
3
e(x, t); νh = constant. This choice of “ne” dependence may be consistent

with some turbulence models of anomalous hyperviscosity.

Let us now choose the Lagrange coordinates as

x = xeq + ξ(xeq, τ), t = τ.

Here �xeq” is the equilibrium position of an electron �uid element (i.e. the posi-

tion when the electrostatic force on the �uid element is zero) and ξ(xeq, τ) is the

displacement from the equilibrium position. In terms of Lagrange coordinates, the
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convective derivative becomes ∂
∂τ

= ∂
∂t

+ve
∂
∂x

and the continuity equation becomes

∂xeq
∂x

= ne(x, t) (3.6)

and therefore momentum equation (3.5) can �nally be written as

∂ve
∂τ

= −E − νh
∂4ve
∂x4

eq

− ηve (3.7)

Further, Poisson's equation combined with Ampere's law, in Lagrange coordinates,

gives
∂E

∂τ
= ve (3.8)

Now di�erentiating equation (3.7) with respect to “τ” and using equation (3.8) we

get

∂2ve
∂τ 2

+ νh
∂4

∂x4
eq

∂ve
∂τ

+ η
∂ve
∂τ

+ ve = 0 (3.9)

which is a linear partial di�erential equation for ve(xeq, τ) with constant coe�cient.

Writing the solution of equation (3.9) as a sum of normal modes of the form

exp[i(nxeq − ωτ)], we get

ve =
∞∑
n=1

Anexp(−αnτ) sin(ωnτ) sin(nxeq) (3.10)

where An is the amplitude of a normal mode and ω = −iαn ± ωn, with αn =
1
2
(n4νh+η) and ωn =

√
1− α2

n. Here we have chosen ve(xeq, 0) = 0 and ve(0, τ) = 0.

Using equation (3.8) and (3.10), the electric �eld can now be written as

E(xeq, τ) = −
∞∑
n=1

AnGn(τ) sin(nxeq) (3.11)

where

Gn(τ) = exp(−αnτ)
[
αn sin(ωnτ) + ωn cos(ωnτ)

]
(3.12)

To calculate the electron density, we write Poisson's equation in Lagrange variables
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as ∂E
∂xeq

= 1
ne
− 1 which �nally gives

ne(xeq, t)
−1 = 1−

∞∑
n=1

nAnGn(t) cos(nxeq) (3.13)

The relation between the Lagrange variable “xeq” and the Euler variable “x” can

be found from equation (3.6) and Poisson's equation as

x = xeq + E(xeq, τ) (3.14)

Using equations (3.11) and (3.14) the coe�cients An's can be related to the initial

electric �eld as

An = − 1

nπ

∫ 2π

0

cos[nx0 − nE(x0, 0)]dx0 (3.15)

where x0 = xeq + ξ(xeq, 0) = xeq +E(xeq, 0) is the initial Euler coordinate of a �uid

element. The set of equations (3.10)-(3.12) and (3.13) describes the space-time

evolution of an electron �uid, in terms of Lagrange coordinates for an arbitrary

initial density perturbation, in a cold hyper-viscous and resistive plasma. The

relation between Euler and Lagrange coordinate is given by equation (3.14).

Now we present, as an example, evolution of a sinusoidal initial density per-

turbation as ne(x0, 0) = 1 + ∆ cosx0. From Poisson's equation (3.3), electric �eld,

in the lab frame, at t = 0 can be expressed as E(x0, 0) = −∆ sinx0 and therefore

equation (3.15) takes the form An = (−1)n+1 2
n
Jn[n∆]. This expression of An to-

gether with set of equations (3.10)-(3.14) gives the evolution of a pure sinusoidal

density perturbation in a cold, hyper-viscous and resistive plasma. Fig.(3.5) shows

the space time evolution of a sinusoidal density pro�le in the lab frame (Euler

coordinates) for νh = 0.002, η = 2× 10−6 and ∆ = 0.55. Fig.(3.6) shows the same

for a di�erent set of parameters viz. ν = 0.03, η = 2 × 10−5 and ∆ = 0.55. The

splitting of the density peak is clearly seen in this case.
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Figure 3.5: Analytical plot of ne(x, t) a hyper-viscous and resistive plasma with
∆ = 0.55, νh = 0.002, η = 2× 10−6

3.4 Relation between breaking amplitude and

viscous/hyper-viscous coe�cient

For Dawson like initial condition [102] equation (3.11) at t = 0 takes the form as

ξ(xeq, 0) = −A1ω1 sinxeq

Now the general breaking condition [102]

∂ξ

∂xeq
> −1

gives A1ω1 < 1, i.e. A1 < 1/ω1, where ω1 =
√

1− α2
1 =

√
1− (νh + η)2/4. i.e.

A1 < 1/(
√

1− (νh + η)2/4). Due to absence of `n' this relation is true for both

35



0

2

4

6

kx
0

5

10

15

20

t Ωpe

0.5
1.0
1.5
2.0
2.5

ne

n0

Figure 3.6: Analytical plot of ne(x, t) in a hyper-viscous and resistive plasma with
∆ = 0.55, νh = 0.03, η = 2× 10−5

viscous and hyper-viscous case, therefore we drop the subscript `h' i.e.,

A1 <
1√

1− (ν + η)2/4
(3.16)

Above equation, in terms of actual plasma parameters, modi�es as

kA1 <
1√

1− [4νek2/(3men0ωpe) + ηn0e2/(meωpe)]2/4
(3.17)

Thus we see that nonlinear oscillations in the cold dissipative plasma initiated by

Dawson like initial condition, do not break as long as above inequality is satis�ed.

Note here that if there is no viscosity/hyper-viscosity and resistivity in the plasma

i.e.; νe = η = 0, breaking condition modi�es as kA1 < 1, which is the wave breaking

criteria obtained by Dawson [102] for the cold homogeneous plasma model. Thus

we see that the wave breaking condition in the cold dissipative plasma is consistent

with the wave breaking condition in the non-dissipative plasma [102]. It is also
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to be noted here that the inclusion of even a small dissipation in the cold plasma

enhances the critical (wave breaking) amplitude signi�cantly.

3.5 Summary

In summary, we have numerically studied nonlinear plasma oscillations in a cold,

viscous and resistive plasma, where the electron viscosity coe�cient is chosen to

be independent of density. This is in contrast to the study carried out in a recent

publication [118] where authors have chosen the electron viscosity coe�cient to

depend inversely on density, to allow for analytical treatment. Our studies are

closer to the realistic case where electron viscosity has a weak dependence on

density through Coulomb logarithm. We observe that our results are similar to that

of ref.[118], and hence conclude that that new nonlinear e�ect (splitting of density

peak) observed in ref. [118] is independent of the model for viscosity coe�cient.

We have further analytically studied an alternative electron dissipative mechanism

by substituting viscosity with hyper-viscosity, using Lagrangian methods. We

observe that in a certain parameter regime, the same nonlinear e�ect i.e. splitting

of the density peak is seen. This new nonlinear e�ect i.e. bifurcation of the

density peak may be explained on the basis of interference between initial mode and

nonlinearly excited modes during the course of oscillation. It is clear from the linear

dispersion relation that viscosity a�ects di�erent modes di�erently by introducing

wave number dependent damping and frequency shifts, the latter leading to shifts

in their relative phases. Some of these modes interfere destructively with the

initial mode and produce a dip at the center. It is to be noted that resistivity

alone does not produce any splitting or interference e�ects because the frequency

shift introduced is wave number independent. We have con�rmed this concept

further by incorporating a small thermal correction to the non-dissipative cold

plasma model and verifying that the wavelength dependent thermal frequency

shifts again lead to interference and peak splitting e�ects. Moreover, we obtain a

wave breaking criterion for Dawson like initial condition which clearly show that

if we include dissipative (viscous or hyperviscous) terms, it does not remove the

phenomenon of wave breaking completely but increases the critical amplitude.

In all studies presented up to this chapter,motion of the electron �uid was
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hitherto treated as nonrelativistic. However, in order to study very large amplitude

plasma waves/oscillations we need to include the relativistic corrections in the

equation of motion. In the next chapter we are going to study relativistic electron

plasma waves/oscillations in a cold plasma.
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Chapter 4

Breaking of longitudinal

Akhiezer-Polovin waves

It is well known that breaking amplitude of longitudinal Akhiezer-Polovin (AP)

waves approaches to in�nity when their phase velocity is close to speed of light

[119]. However, Infeld and Rowlands [107] have shown that relativistic plasma

oscillations break at arbitrarily small amplitude as frequency acquires a spatial

dependence for almost all initial conditions. In order to show a connection be-

tween both the theories, we �rst obtain the initial conditions which excite travel-

ing AP waves, once substituted in the exact solution of Infeld and Rowlands [107].

Later, we demonstrate using the 1-D simulation based on Dawson sheet model,

that AP waves break at arbitrarily small amplitude through the process of phase

mixing when subjected to very small perturbation. Results from the simulation

show a good agreement with the Dawson phase mixing formula for inhomogeneous

plasma.This result may be of direct relevance to the laser/beam plasma wake�eld

experiments.

4.1 Introduction

The problem of propagation of relativistically intense nonlinear plasma waves trav-

eling close to the speed of light has been a problem of great interest from the

viewpoint of plasma methods which may be used for accelerating particles to very

high energies. An exact solution for relativistic traveling waves in cold plasma was
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�rst reported by Akhiezer and Polovin [119]. It is to be noted here that Akhiezer

and Polovin demonstrated the existence of these waves without worrying about

how they can be excited in real plasma. Later it has been shown analytically [1]

that when an ultra-short, ultra-intense laser pulse propagates through underdense

plasma, the waves which get excited in the wake of the laser pulse are nothing but

AP waves. One of the important properties of these waves is that their frequency

depends on their amplitude in such a way that larger the amplitude, smaller the

frequency will be. This happens due to increase in the mass of the electrons because

of relativistic e�ects. Second important property of these waves is that their break-

ing amplitude is very high and can be expressed as eEwb/(mωpec) =
√

2(γph−1)1/2,

here γph = 1/
√

(1− v2
ph/c

2) is the relativistic factor associated with the phase ve-

locity vph of the AP waves. Note here that as vph → c, γph → ∞, this implies

Ewb → ∞. In other words we can say that for highly relativistic plasma waves

breaking amplitude becomes too high to break. Breaking property of the relativis-

tic plasma oscillations has also been studied by Infeld and Rowlands by obtaining

an exact space and time dependent solution for the relativistic �uid equations in

Lagrange coordinates. In contrast to the wave breaking criteria as suggested by

Akhiezer and Polovin [119], the authors [107] have shown that their solution shows

an explosive behavior (wave breaking) for almost all initial conditions. The au-

thors have shown that relativistic e�ects bring position dependence in the plasma

frequency, as a result plasma oscillations phase mix away and break at arbitrarily

small amplitude. On the other hand, the authors accepted that AP waves are

very special case of their solution as these waves do not show explosive behavior

and need a special set of initial conditions to set them up. However, the authors

have not shown how their solution leads to class of traveling waves (do not show

explosive behavior), i.e., what initial conditions should be chosen in their solution

so as to get AP waves. Elucidation of initial conditions leading to AP traveling

waves might show the connection between the theories of Akhiezer & Polovin [119]

and Infeld & Rowlands [107]. Besides one may need to worry about sensitivity

to initial conditions because the manner AP waves are excited in the plasma may

introduce some noise (due to group velocity dispersion of the pulse, thermal e�ects

etc) along with the AP waves.

Therefore, in this chapter we �rst show what initial conditions we should choose

in the solution of Infeld and Rowlands such that we get AP wave solution. We
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next perform relativistic sheet simulation [108] in order to study the sensitivity of

large amplitude AP waves due to small perturbations. We �nd that AP waves are

very sensitive and their breaking criterion as given in ref.[119] does not really hold

in the presence of perturbations. Physically, it happens due to phase mixing e�ect

[108] as frequency of the system which is constant for pure AP waves, acquires a

position dependence in the presence of perturbations.

In the section.(4.2) we obtain traveling AP wave solution from space time de-

pendent solution of Infeld and Rowlands [107]. Section.(4.5) contains an alternative

derivation of AP wave solution. In section.(4.3) we present results from the sim-

ulation. In section.(4.4) we show a good match between analytical and numerical

scaling of phase mixing time. Finally in section(4.5) we summarize all the results.

4.2 Relativistic �uid equations and Lagrange solu-

tion

The basic equations describing the evolution of an arbitrary electrostatic pertur-

bation in an unmagnetized cold homogeneous plasma with immobile ions are

( ∂
∂t

+ v
∂

∂x

)
p = −eE (4.1)

∂n

∂t
+
∂(nv)

∂x
= 0 (4.2)

∂E

∂x
= 4πe(n0 − n) (4.3)

∂E

∂t
= 4πenv (4.4)

where p = γmv is momentum and γ = 1/
√

1− v2/c2 is relativistic factor, n0 is

the back ground ion density and other symbols have their usual meaning.

We now introduce Lagrange coordinates (xeq,τ) which are related to Euler

coordinates as

x = xeq + ξ(xeq, τ), t = τ (4.5)

here ξ is the the displacement from the equilibrium position xeq of the electron
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�uid (sheet). Using Eq.(4.5),set of Eqs.(4.1)-(4.4) again can be combined as

d2p

dτ 2
+ ω2

pe

p

[1 + p2/(m2c2)]1/2
= 0 (4.6)

Integrating once Eq.(4.6) we get

dp

dτ
= ±
√

2mωpec
[
a(xeq)− [1 + p2/(m2c2)]1/2

]1/2
(4.7)

Here `a' is the �rst integration constant which is a function of position `xeq'. Let

us again substitute

a− [1 + p2/(m2c2)]1/2 = (a− 1) sin2 α (4.8)

Solution of Eq.(4.7) can be expressed as

ωpeτ =
√

2(a+ 1)E(α, κ)−
√

2

a+ 1
F (α, κ) + Φ(xeq)

ωpeτ =
2

κ′
E(α, κ)− κ′F (α, κ) + Φ(xeq) (4.9)

Here Φ is the second integration constant which is also a function of xeq and

κ =
[a− 1

a+ 1

]1/2

, κ′ =
√

1− κ2 (4.10)

Thus set of Eqs.(4.8)-(4.10) together with Eq.(4.5) gives the space-time evolution

of relativistic Langmuir waves initiated by an arbitrary perturbation. This exact

solution was �rst obtained by Infeld and Rowlands [107]. The frequency of the

wave is obtained by integrating equation (4.9) over �α” from 0 to π/2, as

ω = ωpe
π

2

κ′

[2E(κ)− κ′K(κ)]
(4.11)

Note here that the equations (4.10)-(4.11) together with equation (4.5) give an

exact dependence of frequency on the initial spatial position of sheets. We are now

going to construct plane wave solution from this non-trivial space-time dependent
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solution. We know that

p = γmv =
ξ̇√

1− ξ̇2/c2

(4.12)

From Eqs.(4.8) and (4.12) we can easily get an expression for ξ̇ and ξ as

ξ̇ = c
(2κ/κ′2) cosα[1− κ2 sin2 α]1/2

[1 + 2(κ2/κ′2) cos2 α]
(4.13)

ξ =
c

ωpe

2κ

κ′
sinα (4.14)

Now subtract ωpex/β on both sides of Eq.(4.9) and using Eqs.(4.5),(4.14) we get

ωpe(t− x/β) =
2

κ′
E(α, κ)− κ′F (α, κ)

−ωpe
xeq
β
− c

β

2κ

κ′
sinα + Φ(xeq) (4.15)

Now we �rst choose `a' to be independent of `xeq' and Φ(xeq) as follows

Φ(xeq) = ωpe
xeq
β

(4.16)

then Eq.(4.15) becomes

ωpe(t− x/β) =
2

κ′
E(α, κ)− κ′F (α, κ)

− c
β

2κ

κ′
sinα (4.17)

Thus we have obtained longitudinal plane wave solution from non-trivial space-

time dependent solution with special choice of integration constants. One can note

from Eq.(4.9) that, the frequency of the system will have a position dependence

if �a” is a function of position and the solution will show an explosive behavior

according to Infeld et al. [107]. However, we know that AP waves do not show

explosive behavior, therefore �a” must be independent of `xeq' to excite AP wave.

Moreover to make `α' (or momentum) a function of (t− x/β) alone restricts us to

choose Φ(xeq) as ωpe
xeq
β
. Thus, assuming `a' to be independent of `xeq', Eqs.(4.9)

and (4.16) together with Eqs.(4.13) and (4.14) give the velocity and displacement
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pro�les of particles in the transcedental form which can be loaded easily in the

relativistic PIC or sheet code to excite class of AP waves. On the other hand if

initial conditions are not perfectly loaded but have some perturbations on them,the

frequency may become a function of “xeq” giving the possibility of bursty solutions

and phase mixing e�ect. This is what we need to explore next.

4.3 Results from the simulation

In this section we perform relativistic sheet simulation based on Dawson sheet

model in order to study the sensitivity of large amplitude AP waves to small

amplitude longitudinal perturbations. For this purpose, we have used a relativistic

sheet simulation code [108] where we solve the relativistic equation of motion for

∼ 10000 sheets, using fourth-order Runge-Kutta scheme for a speci�c choice of

initial conditions (pure AP waves and AP waves with perturbations). Ordering

of the sheets for sheet crossing is checked at each time step. Phase mixing/wave

breaking time is measured as the time taken by any two of the adjacent sheets to

cross over.

We �rst load AP type initial conditions (as discussed earlier in this chapter) in

the relativistic sheet code and have seen smooth traveling structures in all physical

variables (quantities) up to 1000's of plasma periods. Then we add a very small

amplitude perturbation to the nonlinear AP wave and �nd that the structure

breaks at a time decided by the �um” and �δ” (where �um” and �δ” are respectively

the amplitude of the AP wave and the perturbation). In this way we show that

AP waves are very sensitive to longitudinal perturbations and the wave breaking

criterion does not hold in the presence of perturbations. In all the simulation runs

we keep the phase velocity of AP waves close to speed of light i.e. vph ∼ 0.9995c.

Moreover, time is normalized to �ω−1
pe ” and distances are normalized to �cω−1

pe ”.

Figure.(4.1) shows the space-time evolution for the density pro�le of AP wave with

maximum velocity amplitude um ∼ 0.81. Thus we see that there is no numerical

dissipation in our code and relativistic shift in the frequency is clearly visible. Now

we add a sine wave (very small amplitude AP wave) to this large amplitude AP

wave with wavelength same as the large amplitude AP wave and maximum velocity

amplitude δ = 0.001. Figure(4.2) shows the space and time evolution of the density
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Figure 4.1: Space time evolution of electron density for pure AP wave of maximum
velocity amplitude (um = 0.81) up to 1000's of plasma periods.

pro�le of the resultant structure up to the breaking point. As time progresses

density peak becomes more and more spiky as energy is going irreversibly into the

higher harmonics (a signature of phase mixing leading to wave breaking [108]) and

the time at which neighboring sheets cross (wave breaking point) density burst can

be seen.

Figure(4.3) shows the Fourier spectrum of pure AP wave and AP wave at the

time of breaking. It is clear from the �gure that a signi�cant amount of energy has

gone to the higher harmonics which is another signature of wave breaking. Thus

we see that though breaking amplitude of AP wave for our choice of parameters is

very high i.e., eEwb/(mωpec) ∼ 7.8, it breaks at a lower amplitude when perturbed

slightly. Figure(4.4) contains the space-time evolution of electric �eld which clearly

shows that maximum amplitude of the electric �eld is much less than 7.8 even at

the time of breaking. In order to get a dependence of phase mixing time on

the amplitude of the perturbation we repeat the numerical experiment such that

maximum velocity amplitude of AP wave is kept �xed at um = 0.55 and amplitude

of the perturbation δ is varied. In �gure(4.5) points (`*') represent the results

from the simulation which clearly indicate that as amplitude of the perturbation is
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Figure 4.2: Space time evolution of electron density for AP wave of maximum
velocity amplitude (um = 0.81) with perturbation amplitude δ = 0.001.
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increased, phase mixing time of AP wave decreases. We perform another numerical
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0 0.02 0.04 0.06 0.08 0.1 0.12
0

500

1000

1500

δ/c

ω pe
τ mi

x

 

 

numerical
theoretical

Figure 4.5: Theoretical (`-o') and numerical (`*') scaling of phase mixing time for
a �nite amplitude AP wave (um = 0.55) as a function of perturbation amplitudes
δ.

experiment where amplitude of the perturbation is kept �xed at δ = 0.01 and

amplitude of the AP wave is varied. This case is presented in �gure(4.6) by points

47



(`*') which shows that for a �nite longitudinal perturbation, smaller the amplitude

of AP wave, longer is the phase mixing time.
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Figure 4.6: Theoretical ( `-o') and numerical (`*') scaling of phase mixing time
as function of amplitude of AP waves (um) in the presence of �nite perturbation
amplitude δ = 0.01.

We know that relativistic plasma waves cannot accelerate particles inde�nitely,

but give us maximum acceleration only up to dephasing length or dephasing time.

If phase mixing time is longer than dephasing time, phase mixing would not a�ect

the acceleration process signi�cantly. However, if the phase mixing time is shorter,

maximum acceleration cannot be achieved as the wave gets damped before reaching

the dephasing time because of phase mixing leading to breaking. Note here that

numerical scaling in �gure(4.5) gives a clue that we have to reduce the noise in

the particle acceleration experiments in order to get maximum acceleration and

the scaling presented in �gure(4.6) gives an indication that if one cannot reduce

the noise below a threshold, one must use smaller amplitude AP waves in order to

avoid phase mixing e�ect and to gain maximum energy.
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4.4 Match between theory and simulation

Along with the choice of initial conditions as made above, equations (4.13) and

(4.14) together with equation (4.9) at t = 0 respectively give velocity and displace-

ment pro�les of sheets which are loaded in the code so as to excite a AP wave. We

note here that with this choice of �a” ω (equation (4.11)) becomes independent of

position and therefore no phase mixing occurs as shown in �gure(4.1).

In �gure(4.7) we plot frequency of the the system as a function of position for

both pure AP wave and AP wave with perturbations. From this �gure we clearly

see that for pure AP wave frequency shows a �at dependence on position, i.e.,

each sheet oscillates with the same frequency and hence no phase mixing occurs.

However, for nonzero `δ', frequency of the system acquires a position dependence

which gets stronger for larger value of `δ'. Since frequency here becomes function

of position , phase mixing happens [102, 103, 106, 108] which is responsible for the

breaking of AP waves at arbitrary amplitude.
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Figure 4.7: Frequency of the system as a function of position for �xed AP wave
(um = 0.81) along with various perturbation amplitudes δ.

It is well known that plasma oscillations/waves phase mix away when the

plasma frequency for some physical reason acquires a spatial dependence. In our
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case also frequency acquires a position dependence in the presence of perturba-

tions. We therefore expect that scaling of phase mixing can be interpreted from

Dawson's formula [102] for phase mixing in inhomogeneous plasma, which is

ωpeτmix ∼
1
dω
dxeq

ξ

From equation (4.11) we numerically evaluate dω/dxeq and use Dawson's formula

[102] to get theoretical scaling of phase mixing time. In �gures (4.5) and (4.6) solid

lines represent the theoretical scaling of phase mixing time with �δ” and �um” which

clearly show a good match between numerical experiments and theory.

4.5 Summary

In summary, we have �rst obtained the initial conditions to excite AP waves from

the exact space time dependent solution of Infeld and Rowlands. Later, in order

to validate our code we have used these initial conditions in the relativistic sheet

code to show their propagation upto thousands of plasma periods in all physical

variables. We have further added a small perturbation (sine wave) to the larger

amplitude AP wave and found that AP wave show an explosive behavior (wave

breaking) after �nite time. In order to get a dependence of wave breaking time

on the amplitude of the perturbation and amplitude of the AP wave, we have

repeated the numerical experiment and found two results which are as follows. For

a �nite amplitude AP wave, larger the amplitude of the perturbation, smaller the

wave breaking time is. Thus one has to reduce noise in the experiment in order

to get maximum acceleration. Also for �nite perturbation amplitude, smaller the

amplitude of AP wave, larger the wave breaking time is. Thus one needs to work

at smaller amplitude AP waves to gain maximum energy if the noise can not be

reduced below a threshold. In order to gain an insight into the physics behind

these results we have plotted plasma frequency with respect to the position and

found that for pure AP wave, frequencies of the sheets shows a �at dependence

on the position. On the other hand, if we add a small perturbation to the AP

wave, frequency of the system acquires a spatial dependence which is responsible

for phase mixing leading to wave breaking. We have also shown that scaling of
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phase mixing for both the results discussed above can be interpreted from Dawson's

formula [102] . Thus we have shown that although breaking amplitude of AP waves

is very high, they break at arbitrary amplitude via the process of phase mixing

when perturbed slightly.

Therefore all those experiments/simulation which use AP wave breaking for-

mula may require revisiting. For example, in a recent particle acceleration ex-

periment [28] a maximum gain in the energy up to 200 MeV was observed. The

authors used the the old formula for energy gain [2] (which is valid as long as

eE/(mωpec) ≤ 1) to interpret their observation. However, in their case eE/(mωpec)

was approximately 3.8 which is much greater than unity and therefore one has to

use the energy gain expression for nonlinear waves [27]. If we do so, energy gain

would have been approximately 975 MeV. This much energy can be obtained if the

plasma wave accelerates particles upto the full dephasing length. However, from

the experimental observation [28] it seems that wave is not able to travel up to the

dephasing time. We believe that it may be the phase mixing e�ect due to noise in

the system which is preventing electrons to gain energy greater than 200 MeV in

the above mentioned experiment [28].

The studies presented upto this chapter assume that ions are static. In the

next chapter we going to study the e�ect of ion motion on plasma oscillations.

Appendix : Relativistic wave frame solution

In this appendix we are going to present a new derivation of longitudinal AP waves.

We assume that wave is quasi-static i.e. all quantities are functions of a the single

variable ψ = t − x/β, here β = ω/k is the phase velocity the plane wave. This

permits the substitutions ∂/∂x = −(1/β)d/dψ and ∂/∂t = d/dψ and therefore set

of Eqs.(4.1)-(4.4) can be combined as

(1− v

β
)
d

dψ
(1− v

β
)
d

dψ
p+ ω2

pe

p

[1 + p2/(m2c2)]1/2
= 0 (4.18)

with p = γmv and

n =
n0

1− v/β
(4.19)
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v =
(p/m)

[1 + p2/(m2c2)]1/2
(4.20)

Now we use the following transformation as

(1− v/β)
d

dψ
=

d

dφ
(4.21)

and Eqn. (4.18) becomes

d2p

dφ2
+ ω2

pe

p

[1 + p2/(m2c2)]1/2
= 0 (4.22)

Integrating once, we obtain

dp

dφ
= ±
√

2ωpec
[
A− [1 + p2/(m2c2)]1/2

]1/2
= 0, here A = cons. (4.23)

We now substitute

A− [1 + p2/(m2c2)]1/2 = (A− 1) sin2 θ (4.24)

Then the solution of Eq.(4.25) can be expressed in terms of Elliptic integrals i.e.

ωpeφ =
√

2(A+ 1)E(θ, r)−
√

2

A+ 1
F (θ, r) +B (4.25)

Here E(θ, r), F (θ, r) are incomplete elliptic integrals of second and �rst kind re-

spectively, B is the second integration constant and

r =
[A− 1

A+ 1

]1/2

(4.26)

Now integrating Eq.(4.21) we get

ψ = φ− 1

β

∫
vdφ (4.27)

Using Eqs.(7.20),(4.24) and (4.25), Eq.(4.27) becomes

ωpeψ =
√

2(A+ 1)E(θ, r)−
√

2

A+ 1
F (θ, r)− c

β

2r

r′
sin θ +B
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Since the constant `B' a�ects only phase of the wave, it can be chosen to be zero

i.e.

ωpe(t− x/β) =
2

r′
E(θ, r)− r′F (θ, r)− c

β

2r

r′
sin θ (4.28)

Here r′ =
√

1− r2.

Thus Eq.(4.28) together with (4.24) gives the plane wave solution for relativistic

Langmuir waves for an arbitrary phase velocity in cold plasma. Note here that

Eq.(4.28) is exactly similar to the Eq.(4.17).These solutions are identical to the

plane wave solution obtained by Akhiezer and Polovin [119].
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Chapter 5

Nonlinear oscillations and waves in

an arbitrary mass ratio cold plasma

It is the understanding till date that oscillations in an arbitrary mass ratio cold

plasma phase mix away due to nonlinearly driven ponderomotive forces only. We

propose here that the naturally excited zero frequency mode of the system may

also be responsible for phase mixing. We also show here that the cold plasma BGK

waves [Albritton et al.,Nucl. Fusion, 15, 1199 (1975)] phase mix away due to the

zero frequency mode of the system if ions are allowed to move and scaling of phase

mixing is found to be di�erent from earlier work [Sengupta et al., Phys. Rev. Lett.

82, 1867 (1999)]. Phase mixing of these waves have been further veri�ed in 1-D

particle in cell simulation. Moreover, we demonstrate the existence of nonlinear

solutions in an arbitrary mass ratio cold plasma which do not exhibit phase mixing

due to absence of zero frequency mode and ponderomotive force. These solutions

are nothing but nonlinear electron-ion travelling wave solutions

5.1 Introduction

As discussed in chapter 1, if the ion background is inhomogeneous but static,

plasma frequency becomes function of position. As a result plasma oscillations

phase mix away and break at arbitrarily small amplitude [102]. Kaw et al. [103]

interpreted this phenomenon as mode coupling where energy goes from long wave-

length mode to short wavelength mode. These authors used the sinusoidal back-
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ground ion density pro�le and found the time scale of mode coupling as ωpet ∼ 2
εωp0

,

where �ε” is the amplitude of the background inhomogeneity. Later Infeld et al. ob-

tained an exact solution for electron plasma oscillations with sinusoidal but static

ion background and described phase mixing as electron density burst [104]. Nappi

et al. [105] have extended the Infeld's work and have shown that if ions are al-

lowed to move, the inhomogeneous ion distribution gets modi�ed signi�cantly due

to ponderomotive force before wave breaks. Later Sengupta et al. have shown that

phase mixing of plasma oscillations can occur even if one starts with homogeneous

but mobile ions [106]. The authors have shown that ion distribution becomes in-

homogeneous in response to low frequency force (ponderomotive force) and hence

oscillations phase mix away [106].

We �rst demonstrate in this chapter that the nonlinearly driven ponderomotive

force is not the only candidate responsible for phase mixing of plasma oscillations,

but the naturally excited zero frequency mode of the system (which appears in the

�rst order solution) may also trigger phase mixing. We propose here that if one

chooses an arbitrary initial condition to excite plasma oscillations, phase mixing

may occur due to both zero frequency mode and ponderomotive forces. However,

it is shown that in order to excite plasma oscillations we can choose the initial

conditions such that the e�ect of zero frequency mode can be ignored and then,

phase mixing occurs only due to ponderomotive forces.

We also study the behavior of cold electron plasma BGK waves [116, 120] with

ion motion and �nd that although the breaking amplitude of these waves is very

high keE/(mω2
pe) ∼ 1, they break at arbitrarily small amplitude via phase mixing.

In this case zero frequency mode of the system is found to be the only possible

candidate responsible for phase mixing as ponderomotive force for waves is zero.

As we have studied in the last chapter that the phenomena of phase mixing can

also be seen in relativistic plasma oscillations [107, 108, 109], however there exist

nonlinear traveling AP wave solutions [119] which do not exhibit phase mixing.

Thus we note here that behavior of oscillations [107] in the relativistic cold

plasma is analogous to behavior of oscillation in nonrelativistic arbitrary mass

ratio cold plasma [106]. Therefore we expect that there must be a corresponding

solution in the arbitrary mass ratio cold plasma analogous to the AP wave solution

which do not exhibit phase mixing. We demonstrate the existence of these solutions

using a perturbation theoretic calculation.
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The chapter is organized as follows. Section.(5.2) contains the basic equations

governing the dynamics of two �uids and the �rst order solution. In section.(5.3),

phase mixing of nonlinear standing oscillation has been presented. Section.(5.4)

deals with the phase mixing of cold plasma BGK waves [116, 120] due to ion

motion. In section.(5.5), nonlinear electron-ion traveling wave solutions, correct

up to second order, have been constructed. Section.(5.6) contains summary of all

the results.

5.2 Governing equations and perturbation analysis

The basic equations describing the motions of two species in cold plasma are the

continuity equations, momentum equations and the Poisson equation, which in the

normalized form can be expressed as

∂ne
∂t

+
∂(neve)

∂x
= 0 (5.1)

∂ni
∂t

+
∂(nivi)

∂x
= 0 (5.2)

∂ve
∂t

+ ve
∂ve
∂x

= −E (5.3)

∂vi
∂t

+ vi
∂vi
∂x

= ∆E (5.4)

∂E

∂x
= ni − ne (5.5)

Where x → kx, t → ωpet, ne → ne/n0, ni → ni/n0, ve → ve/(ωpek
−1), vi →

vi/(ωpek
−1), E → keE/mω2

pe, ∆ = me/mi and the symbols have their usual mean-

ing.

In order to make the problem analytically simple, one can introduce new vari-

able as δnd = δni − δne = ni − ne, δns = δni + δne = ni + ne − 2, v = vi − ve,
V = vi + ve and the set of Eqs. (5.1)-(5.5) takes the form as

∂δnd
∂t

+
∂

∂x

[
v +

δndV + δnsv

2

]
= 0 (5.6)

∂δns
∂t

+
∂

∂x

[
V +

δnsV + δndv

2

]
= 0 (5.7)

56



∂v

∂t
+

∂

∂x

[vV
2

]
= (1 + ∆)E (5.8)

∂V

∂t
+

∂

∂x

[V 2 + v2

4

]
= −(1−∆)E (5.9)

∂E

∂x
= δnd (5.10)

In order to solve the above set of equations, a perturbation method is used. There-

fore set of Eqs.(5.6)-(5.10) correct up to �rst order can be expressed as

∂δn
(1)
d

∂t
+
∂v(1)

∂x
= 0 (5.11)

∂δn
(1)
s

∂t
+
∂V (1)

∂x
= 0 (5.12)

∂v(1)

∂t
= (1 + ∆)E(1) (5.13)

∂V (1)

∂t
= −(1−∆)E(1) (5.14)

∂E(1)

∂x
= δn

(1)
d (5.15)

Now the set of Eqs.(5.11)-(5.15) can be combined to give

∂2δn
(1)
d

∂t2
+ ω2

pδn
(1)
d = 0 (5.16)

Here ω2
p = 1 + ∆. Solution of Eq.(5.16) can be expressed as

δn
(1)
d = A(x) cosωpt+B(x) sinωpt (5.17)

Here A and B are constants which are to be determined from the initial conditions.

Note here that if we linearize the set of equations (5.1)-(5.5) in order to get a

dispersion relation, we get two natural modes of the system “ωp” and “0”. Here

“ωp” is responsible for the high frequency oscillations and “0” which is ion acoustic

mode for the cold plasma model (zero temperature), excites DC and secular terms

in the �rst order solution. These DC and secular terms may also be responsible

for the phase mixing of plasma oscillations/waves.
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If we choose an arbitrary initial condition, we may get a mixture of both the

modes [106]. However, we can select the initial conditions such that only one of

the two modes get excited. In the following section, we will choose the initial

conditions such that the zero frequency mode does not get excited and we see pure

oscillations in the �rst order solution.

5.3 Standing plasma oscillations

In this section, di�erent set of initial conditions have been chosen, in order to excite

nonlinear standing oscillations in the arbitrary mass ratio cold plasma, such that

in the �rst order one can see pure oscillations.

5.3.1 sinusoidal velocity perturbations to both electron and

ion �uids

Let us choose the initial conditions as follows.

ne(x, 0) = ni(x, 0) = 1,

ve(x, 0) = ωpδ cosx, vi(x, 0) = −ωpδ∆ cosx (5.18)

Now the �rst order solution can be obtained as

δn
(1)
d = −δ(1 + ∆) sinx sinωpt (5.19)

v(1) = −δωp(1 + ∆) cosx cosωpt (5.20)

V (1) = δωp(1−∆) cosx cosωpt (5.21)

δn(1)
s = δ(1−∆) sinx sinωpt (5.22)

E(1) = δ(1 + ∆) cosx sinωpt (5.23)

The set of Eqs.(5.19)-(5.23) exhibit pure oscillatory solution in the �rst order. Now

we write the second order solution as follows

δn
(2)
d =

δ2

2
(1−∆2) cos 2x(1− cos 2ωpt) (5.24)
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V (2) =
δ2

2
ωp sin 2x

[
ωp∆t+

(1 + ∆2 −∆)

2
sin 2ωpt

]
(5.25)

δn(2)
s = −δ2ωp cos 2x

[
ωp∆

t2

2
− (1 + ∆2 −∆)

4ωp
cos 2ωpt

]
+ C2 (5.26)

E(2) =
δ2

4
(1−∆2) sin 2x(1− cos 2ωpt) (5.27)

If we take average over fast time scales of Eqs.(5.23) and (5.27), there is non-zero

DC electric �eld which makes the ponderomotive force non-zero. This ponderomo-

tive force redistributes the ions in such a way that frequency becomes function of

position which is the clear signature of phase mixing [102]. According to Zakharov

[131], the slow variation (in the ion time scale) of the background density in the

presence of a high frequency oscillation is governed by ∂ttδns−T∂xxδns = ∂xx|E|2.
Note here that, the term on RHS is ponderomotive force term. For cold plasma,

second term on LHS can be ignored. Therefore Zakharov's theory says that if there

is a non-zero ponderomotive force in the system, ion density must go as ∼ t2. Thus

we see that Eq.(5.26) is consistent with the Zakharov theory.

5.3.2 sinusoidal density perturbations to both electron and

ion �uids

Here the initial conditions are chosen as follows.

ne(x, 0) = 1 + δ cosx, ni(x, 0) = 1− δ∆ cosx,

ve(x, 0) = vi(x, 0) = 0. (5.28)

Therefore the solution of set of Eqs.(5.11)-(5.15) can be written as

δn
(1)
d = −δ(1 + ∆) cosx cosωpt (5.29)

v(1) = −δωp(1 + ∆) sinx sinωpt (5.30)

V (1) = δωp(1−∆) sinx sinωpt (5.31)

δn(1)
s = δ(1−∆) cosx cosωpt (5.32)

E(1) = −δ(1 + ∆) sinx cosωpt (5.33)
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Note here that the set of Eqs.(5.29)-(5.33) shows pure oscillations in the �rst order,

i.e., at the linear level there is no phase mixing. Now let us write down the second

order solution which is

δn
(2)
d =

δ2

2
(1−∆2) cos 2x

[
2 cosωpt− (1 + cos 2ωpt)

]
(5.34)

V (2) = −δ
2

2
ωp sin 2x

[
ωp∆t+ (1−∆)2 sinωpt−

(1 + ∆2 −∆)

2
sin 2ωpt

]
(5.35)

δn(2)
s = δ2ωp cos 2x

[
ωp∆

t2

2
− (1−∆)2

ωp
cosωpt

+
(3 + 3∆2 −∆)

4ωp
cos 2ωpt

]
+ C2 (5.36)

E(2) =
δ2

4
(1−∆2) sin 2x

[
2 cosωpt− (1 + cos 2ωpt)

]
(5.37)

We note here that density in this case also goes as ∼ t2 which is qualitatively same

as found in ref.[106] and is consistent with the Zakharov theory [131].

The studies, presented in this section, are di�erent from the earlier work [106],

because phase mixing is coming here nonlinearly due to ponderomotive forces only.

In the next section, the behavior of cold plasma BGK waves [120] in the presence

of ion motion has been presented.

5.4 Phase mixing of traveling waves

Albritton modes are nonlinear traveling waves in cold homogeneous plasma where

ions are assumed to be in�nitely massive [120]. It is the question of interest that

what happens to these modes, if ions are allowed to move. In order to study

this behavior using perturbative approach, let us choose linearized Albritton type
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initial conditions, which are

n(1)
e = 1 + δ cosx, v(1)

e = δ cosx,

ni = 1, vi = 0, (5.38)

The �rst order solution, for above set of initial conditions, can be obtained as

δn(1)
s =

δ

ωp

(1−∆)

(1 + ∆)

[
ωp cosx cosωpt+ sinx sinωpt

]
+ δ

2∆

1 + ∆

[
t sinx+ cosx

]
(5.39)

v(1) = −δ
[

cosx cosωpt+ ωp sinx sinωpt
]

(5.40)

V (1) = δ
(1−∆)

(1 + ∆)

[
cosx cosωpt+ ωp sinx sinωpt

]
+ δ

2∆

1 + ∆
cosx (5.41)

E(1) = − δ

ωp

[
ωp sinx cosωpt− cosx sinωpt

]
(5.42)

One can note form Eq.(5.39) that there are DC and secular terms present in

the �rst order solution. As has been discussed in section.(6.2) that, the DC and

secular terms come in response to the zero frequency mode. Therefore it can be

noted that if ions are allowed to move, cold plasma BGK waves [120] will phase

mix away and the scaling of phase mixing will be as tmix ∼ (1 + ∆)/(2δ∆).

In order to verify the analytical treatment, 1D PIC simulation [128] has been

carried out for exact Albritton type initial conditions [120]. Here, the simulation

parameters are chosen to be as follows.

Total number of particles = 40960, total number of grid points = 4096, time

step = π/50, temperature = 0, system length = 2π.

Normalizations are as follows. x → k−1, t → ω−1
pe , ne → n0, ve → ωpe

k
, E →

mω2
pe

ke
, where all the symbols have their usual meanings.

Analytical expressions, for various physical quantities, have been plotted against

the results from the simulation. It is to be noted the in all �gures, lines repre-

sent the numerical results and points (`*') denote the analytical pro�le. In the

Figures.(5.1) and (5.2) numerical and analytical pro�les of δnd and δns have been

plotted respectively at δ = 0.001 and ∆ = 1.0 for one plasma period.

Figures.(5.3) and (5.4) shows the time evolution of δnd and δns respectively at
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Figure 5.1: Numerical (solid lines) vs analytical (`*') pro�les of δnd at δ = 0.001
and ∆ = 1.0 for one plasma period.
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Figure 5.2: Numerical (solid lines) vs analytical (`*') pro�les of δns at δ = 0.001
and ∆ = 1.0 for one plasma period.

kx = 1.257, δ = 0.001, ∆ = 1.0 up to two plasma periods.

From all the �gures one can see a good match between numerical results and

theory.
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Figure 5.3: Numerical (solid lines) vs analytical (`*') pro�les of δnd at kx = 1.257,
δ = 0.001 and ∆ = 1.0 up to two plasma periods.
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Figure 5.4: Numerical (solid lines) vs analytical (`*') pro�les of δns at kx = 1.257,
δ = 0.001 and ∆ = 1.0 up to two plasma periods.

Till now we have seen that if one excites plasma oscillations, either by a density

perturbations or by a velocity perturbations or due to both, they will always phase

mix and break at arbitrarily small amplitude. However, in the next section we

demonstrate the existence of solutions in an arbitrary mass ratio cold plasma which
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do not exhibit phase mixing.

5.5 Electron-ion traveling wave solution

In order to get wave like solution, let us choose the �rst order perturbations such

that zero frequency mode does not get excited. These initial conditions are as

follows.

n(1)
e = 1 + δ cosx, n

(1)
i = 1− δ∆ cosx,

v(1)
e = ωpδ cosx, v

(1)
i = −ωp∆δ cosx. (5.43)

For these initial conditions the solution of set of Eqs.(5.11)-(5.15) can be written

as

δn
(1)
d = −δ(1 + ∆) cos(x− ωpt) (5.44)

v(1) = −δωp(1 + ∆) cos(x− ωpt) (5.45)

V (1) = δωp(1−∆) cos(x− ωpt) (5.46)

δn(1)
s = δ(1−∆) cos(x− ωpt) (5.47)

E(1) = −δ(1 + ∆) sin(x− ωpt) (5.48)

The set of Eqs.(5.44)-(5.48) clearly exhibits a pure traveling solution in the �rst

order. Now the second order equation for δnd can be written as

∂2δn
(2)
d

∂t2
+ ω2

pδn
(2)
d =

∂2

∂x2

[v(1)V (1)

2

]
− ∂2

∂x∂t

[δn(1)
d V (1) + δn

(1)
s v(1)

2

]
(5.49)

Using Eqs.(5.44)-(5.48) in Eq.(5.49) one can get

∂2δn
(2)
d

∂t2
+ ω2

pδn
(2)
d = 3δ2ω2

p(1−∆2) cos(2x− 2ωpt) (5.50)
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Now the solution of Eq.(5.50) can be expressed as

δn
(2)
d = C(x) cosωpt+D(x) sinωpt

−δ2(1−∆2) cos(2x− 2ωpt) (5.51)

Let us now choose the second order perturbations in δn(2)
d and V (2) such that C(x)

= D(x) = 0 i.e. Eq.(5.51) becomes

δn
(2)
d = −δ2(1−∆2) cos(2x− 2ωpt) (5.52)

Now from Eq.(5.15) second order solution for the electric �eld can be written as

E(2) = −δ
2

2
(1−∆2) sin(2x− 2ωpt) (5.53)

Similarly one can write second order solution for V, v and δns which is

V (2) =
δ2

2
(1 + ∆2 −∆) cos(2x− 2ωpt) (5.54)

v(2) = −δ
2

2
ωp(1−∆2) cos(2x− 2ωpt) (5.55)

δn(2)
s =

δ2

2
(2 + 2∆2 −∆) cos(2x− 2ωpt) (5.56)

Note here that second order solution is pure traveling one without any DC or

secular term. Now if we take average over fast time scales of Eqs.(5.48) and (5.53),

slow component of electric �eld is found to be zero which makes ponderomotive

force zero. Because of absence of ponderomotive force, redistribution of ions does

not take place and therefore, both electrons and ions keep oscillating coherently at

the plasma frequency for inde�nite time.

Thus, the set of Eqs. (5.44)-(5.48) together with Eqs.(5.52)-(5.56) gives the

nonlinear electron-ion traveling wave solutions up to second order. These solu-

tions do not show phase mixing as ponderomotive force for waves is zero and zero

frequency mode is absent here. Note here that an exact solution for nonlinear

electron-ion traveling waves can be obtained from the set of Eqs.(5.1)-(5.5), as-

suming each quantity to be a function of single variable i.e., �x − vpht”. Here

vph = ωp is the phase velocity of these waves. One can also note here that, like
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Albritton waves [120] and AP waves [119], these waves also need a very special

set of initial conditions,to set them up. Therefore we expect that these waves may

also phase mix, if perturbed slightly.

5.6 Summary

In this chapter, we have shown that it is not only the nonlinearly driven pondero-

motive force but the naturally excited zero frequency mode of the system may

also be responsible for phase mixing of oscillations in an arbitrary mass ratio cold

plasma. We have also demonstrated how to choose initial conditions, in order to

excite plasma oscillations, such that phase mixing can be avoided in the linear

solution. We have further studied the behavior of cold plasma BGK waves [120]

with ion motion. It is found that although the breaking amplitude of these waves

is very high, they break at arbitrarily small amplitude via phase mixing which is

triggered only by zero frequency mode of the system as ponderomotive force for

waves is zero. This phase mixing e�ect has been further veri�ed in PIC simulation

and results are found to show a good match with the theory.

Moreover, it is shown that there exist nonlinear electron-ion traveling wave

solutions which do not exhibit phase mixing due to absence of both ponderomotive

forces and zero frequency mode.

The studies presented upto this chapter do not include the physics of plasma

oscillations beyond wave breaking. In the next chapter, we study the long time

evolution of electron plasma oscillations in the wave breaking regime.
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Chapter 6

Breaking of nonlinear oscillations in

a cold plasma

In this chapter we carry out 1-D particle in cell simulation of large amplitude

plasma oscillations to explore the physics beyond wave breaking in a cold homo-

geneous plasma.It is shown that after the wave breaking all energy of the plasma

oscillation does not end up as the random kinetic energy of particles but some

fraction which is decided by Co�ey's wave breaking limit in warm plasma, always

remains with two oppositely propagating coherent BGK like modes with supporting

trapped particle distributions. The randomized energy distribution of untrapped

particles is found to be characteristically non-Maxwellian with a preponderance of

energetic particles.

6.1 Introduction

As we have discussed earlier that beyond a critical amplitude there will be �ne scale

mixing of various parts of the oscillations, as a result of which they will destroy

themselves through the development of multistream �ow [102].

Wang et al. [122] extended the study of nonlinear plasma oscillations beyond

breaking by solving the �uid equations numerically using the Lagrange description

for the electrons because the Eulerian description can only describe the average

properties of the �uid, while the Lagrange description can describe the �ne struc-

ture such as multistream �ow and wave breaking etc. The authors have seen the
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multistream �ow and generation of fast electrons when the initial amplitude of

the perturbation becomes greater than the wave breaking amplitude. It is to be

emphasized that although the authors did not study long time evolution of plasma

oscillations in the breaking regime, they speculated that after the wave breaking

coherent oscillation energy transforms into disordered electron kinetic energy.

Thus it is generally believed that after the wave breaking, plasma gets heated

and all energy of the wave goes to the randomized kinetic energy of particles

[102, 122]. The simulations presented in this paper show in contrast that this

is not true as after the breaking of plasma oscillations, a fraction of the energy

always remains with a pair of oppositely propagating coherent waves which are

in the nature of nonlinear BGK modes with supporting trapped and untrapped

particle distributions. The magnitude of the energy surviving in the coherent BGK

modes gets smaller as the electric �eld parameter is increased beyond the critical

value and becomes very small when the parameter approaches unity.

It is to be emphasized that to understand these results, we need to get famil-

iar with the wave breaking criterion in warm plasmas [121, 135]. This is because

as soon as wave breaking starts and part of the coherent wave energy goes into

randomized kinetic energy of particles, the plasma begins to exhibit characteristic

features of a warm plasma. Co�ey analytically derived an expression for maxi-

mum (breaking) amplitude of the oscillations in warm plasma using a water-bag

distribution for the electrons and showed that as the ratio of the electron thermal

velocity to the wave phase velocity increases, the maximum amplitude for wave

breaking decreases monotonically [121]. This breaking amplitude comes from the

trapping condition also i.e., when the electrons from the boundary of the water bag

distribution get trapped in the potential well, the wave breaks [136]. The waterbag

distribution has a substantial number of particles at the boundary (the number of

particles interacting with the wave does not go up gradually as in a Maxwellian)

and once trapping condition is satis�ed, the wave collapses and breaks immediately.

Thus the present understanding is that the maximum amplitude of a coherent

wave which does not break in a warm plasma is decided by the Co�ey limit [121].

In our case, we start with the cold plasma model but after the wave breaking

commences, the plasma becomes warm as some fraction of energy gets converted

to random energy of particles. We therefore expect that the �nal amplitude of the

surviving wave should be such that it matches with the Co�ey criterion . It will
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be shown that there is indeed a good qualitative match between the two.

In section.(6.2), we report our results from 1-D PIC simulations on the break-

ing of nonlinear plasma oscillations which may be initiated either by a density

perturbation or by a velocity perturbation. Section.(6.3) contains the interpreta-

tion of the numerical results and demonstrates a good qualitative match with the

theoretical prediction. Finally sections.(6.4), describes the summary of our results.

6.2 Results from the simulation

Here we carry out 1-D PIC simulation with periodic boundary conditions, in order

to study the evolution of large amplitude plasma oscillations initiated by sinu-

soidal density pro�le beyond wave breaking amplitude. Our simulation parame-

ters are as follows: total number of particles (N) ∼ 3×105, number of grid points

(NG) ∼ 5×102, time step ∆t ∼ π/50 and system length (L) ∼ 2π. The initial

electron density and velocity pro�les are chosen to be as follows. ne(x, 0) =

1 + ∆ cos kx, ve(x, 0) = 0; Ions are assumed to be in�nitely massive which are just

providing the neutralizing background to the electrons. Normalization is as fol-

lows. x → kx, t → ωpet, ne → ne/n0, ve → ve/(ωpek
−1) and E → keE/(mω2

pe),

where ωpe is the plasma frequency and �k” is the wave number of the longest (fun-

damental) mode. It is well known that a sinusoidal initial density pro�le does not

break as long as ∆ < 0.5 [116], therefore we perform our �rst numerical experiment

at ∆ = 0.6, L = 2π and k = 1.

Fig.(6.1) shows snap shots of the phase space at ωpet = π/2, π, 3π/2 and 5π/2.

It is clear that at ωpet = π/2, the v-x plot has a smooth pro�le since the particles

have not experienced the trajectory crossing as yet.

When ωpet becomes greater than π/2 trajectory crossing occurs at kx = π and

we see a density burst (wave breaking) [116]. Multistream motion results [102, 122]

after wave breaking has occurred as shown in the snap shots at ωpet = π, 3π/2 and

5π/2.

With the progress of time more and more streams are developing as shown in

Figs.(6.2) and (6.3). Thus we can say that the plasma is being heated by wave

breaking. It is observed that the phase space stops evolving any further after

approximately 25 plasma periods as shown in Fig.(6.4) and in the phase space we
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Figure 6.1: Snap shots of phase space at ∆ = 0.6, L = 2π and k = 1 at ωpet =
π/2, π, 3π/2 and 5π/2
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Figure 6.2: Snap shots of phase space at ∆ = 0.6, L = 2π and k = 1 at ωpet =
7π/2, 9π/2, 11π/2 and 13π/2

see two holes propagating in opposite direction. Also in Fig.(6.5) we observe the

evolution of electrostatic energy (ESE) up to 200 plasma periods and �nd that ESE

decreases initially (approximately up to 25 plasma periods) and later saturates at
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Figure 6.3: Snap shots of phase space at ∆ = 0.6, L = 2π and k = 1 at ωpet =
15π/2, 17π/2, 19π/2 and 27π/2

Figure 6.4: Snap shots of phase space at ∆ = 0.6, L = 2π and k = 1 at ωpet =
50π, 100π, 200π and 400π

a �nite amplitude. This indicates that all energy of the wave does not vanish after

wave breaking but a fraction always remains with the wave.

Figs.(6.6)-(6.9) contain the evolution of distribution function at various time
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Figure 6.5: Average kinetic energy (KE) and ESE at ∆ = 0.6, L = 2π and k = 1
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Figure 6.6: Distribution function of electrons at ωpet = 2π

steps which clearly show how more and more streams keep developing as time

progresses and �nally the distribution function becomes continuous and the system

acquires a �nite temperature. The distribution function at ωpet ∼ 400π is shown in

Fig.(6.10). Note here that the �nal distribution is non-Maxwellian as it is found to

�t with two Maxwellians. However, for the use of an e�ective parameter measuring

the width of the waterbag in the waterbag model of Co�ey, we numerically calculate
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Figure 6.7: Distribution function of electrons at ωpet = 10π
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Figure 6.8: Distribution function of electrons at ωpet = 20π

the second moment of the �nal distribution function and de�ne an e�ective thermal

velocity vth of the particles , which is found to be ∼ 0.26.
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Figure 6.9: Distribution function of electrons at ωpet = 80π
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6.3 Interpretation of the results

As long as amplitude of the initial density perturbation is less than the critical

value for breaking, nonlinearly generated high “k” modes do not interact resonantly
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with the particles in the distribution for two reasons. One is that the amplitude

of the high �k” modes whose phase velocities lie in the distribution have negligible

energy. Second one is that the high �k” modes which have �nite energy but being

their phase velocity far from the distribution, cannot interact with the particles.

However, beyond the critical amplitude wave breaking occurs which leads to the

production of very short wavelengths (very high �k” modes). These very high �k”

modes can more easily interact with the particles because they move with lower

velocities and need lower amplitudes to nonlinearly resonate with the cold particles.

When some very high �k” mode, having signi�cant amount of energy, interacts

resonantly with particles in the distribution, it loses energy in accelerating them

up to a little higher velocity. When these fast electrons come in resonance with

comparatively low �k” modes with little larger amplitudes, they get accelerated to

slightly higher velocities. As soon as these energetic electrons interact resonantly

with the fundamental mode with phase velocity ωpe/k, they get accelerated up to

twice the the phase velocity because amplitude of the fundamental mode is the

largest. The electrons which acquire velocity twice of phase velocity, may be called

freely moving electrons as they are not trapped in the wave and do not give their

energy back to the wave. Therefore, amplitude of the wave keeps diminishing as

density of these freely moving electrons increases. At the same time a few electrons

having wave frame kinetic energy less than potential maxima, get trapped in the

wave which can then exchange energy with the wave during trapped oscillations.

Since wave is losing energy in accelerating particle i.e., amplitude of the wave

is decreasing, it is no longer able to accelerate slow electrons to higher velocities.

Meanwhile, with the progress of time, the trapped particle distribution is becoming

well phase mixed through nonlinear Landau e�ects [112] such that an asymptotic

state is �nally reached where the distribution function becomes stationary in its

own frame and the ESE neither grows nor damps. This further becomes clear

from the Fig.(6.4), which contains the snap shots of phase space at ωpet = 50π,

100π, 200π and 400π and clearly shows that all the snap shots are exactly similar.

Fig.(6.5) contains the space average of kinetic energy (KE) and ESE over 200

plasma periods which shows that up to ωpet ∼ 150, wave keeps on losing its energy

and as soon as the asymptotic state is reached, no further dissipation in the ESE is

seen. This is consistent with phase space snap shots in Fig.(6.4). The asymptotic

states we get after the wave breaking may be interpreted as a superposition of
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two oppositely propagating BGK type waves. Such superposed solutions are not

exact solutions of BGK's original set of equations [113]. However, such states have

also been reported by several authors in warm plasma well below the breaking

amplitude using Vlasov simulation [137, 138, 139, 140]. It is to be noted that these

states can be considered as approximate superpositions of independent oppositely

propagating BGK modes, as long as their relative phase velocity is su�ciently

large, so that particles trapped in one wave feel only high frequency perturbation

from the other [137, 138, 139, 140].

Since we know that the amplitude of a BGK wave depends on the plateau

width over which electrons are trapped in the wave troughs as (∆vtrap)
2 ∼ E/k

[141]. From Fig.(6.4 we can see that ∆vtrap ∼ 1.22, while its theoretical values is

∆vtrap = 2
√
Esat/k ∼ 1.216, here Esat = 0.37 which is the saturation amplitude

of the electric �eld. Thus we �nd that these BGK waves are in agreement with

theoretical prediction.

Thus we see that wave saturates at �nite amplitude after the wave breaking,

now the question is that �what decides the �nal amplitude ?”. Answer to this

question can be addressed as follows. The wave amplitude drops as part of the

coherent ESE is converted to random KE of untrapped particles and if it drops

below the threshold for wave breaking in warm plasma [121], it stops breaking and

converting any more coherent wave energy into heat. To verify this interpreta-

tion we have repeated the numerical experiment for di�erent values of ∆ and in

Fig.(6.11), we have compared maximum amplitude of the saturated electric �eld

(shown by points `*') with Co�ey's results (shown by solid line `-') which clearly

show a qualitative match between theory and simulation.

Thus we have shown that after the wave breaking, plasma becomes warm but

all initial energy does not go to particles and a fraction, depending on initial ampli-

tude, always remains with the wave which support a trapped particle distribution

in the form of averaged BGK waves.

6.4 Summary

In summary, we have studied in this chapter, a long time behavior of plasma os-

cillation in the wave breaking regime using 1D PIC simulation and demonstrated
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Figure 6.11: Final amplitude of the electric �eld at the end of the run vs thermal
velocity (`*') and its comparison with Co�ey's result (`-' solid line)

that all the coherent ESE does not convert to random energy of particles but a

fraction which is decided by the Co�ey criterion, always remains with the wave

which support a trapped particle distribution in the form of BGK waves. The ran-

domized energy distribution of untrapped particles is found to be characteristically

non-Maxwellian with a preponderance of energetic particles.

In the next chapter, we are going to study the development and collapse of

double layers due to streaming of electrons over ions by using method of Lagrange

variables.
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Chapter 7

Development and breaking of double

layers using method of Lagrange

variables

The nonlinear development and collapse (breaking) of double layers in the long

scale length limit is well described by equations for the cold ion �uid with quasineu-

trality. It is shown that electron dynamics is responsible for giving an equation of

state with negative ratio of speci�c heats to this �uid. Introducing a transforma-

tion for the density variable, the governing equation for the transformed quantity

in terms of Lagrange variables turns out exactly to be a linear partial di�erential

equation. This equation has been analyzed in various limits of interest. Nonlin-

ear development of double layers with a sinusoidal initial disturbance and collapse

of double layers with an initial perturbation in the form of a density void are

analytically investigated.

7.1 Introduction

In all the chapters which have been discussed so far, behavior of nonlinear oscilla-

tions/waves and their wave breaking criterion have been studied in cold plasma in

various physical limits. We know that in the �eld of plasma waves, particles can

be accelerated to very high energy in a distance much shorter than a conventional

accelerator and the breaking of plasma waves lead to conversion of collective en-
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ergy into random energy of the particles. There is also another kind of �eld due

to double layers which may exist in the plasma. These double layers may also be

used in particle acceleration and their collapse is analogous to the wave breaking

where collective energy gets converted into random kinetic energy of the particles.

Formation and collapse of double layers may be triggered by the most elementary

cold plasma electrostatic instability involving streaming of electron with respect

to ions.

Electrons streaming rapidly past the ions excite electrostatic �uctuations which

can either lead to anomalous resistivity of plasma by random scattering of electrons

or double layer formation by re�ection of streaming electrons. Formation and

breaking of double layers is of importance in many laboratory plasma experiments

with intense parallel electric �elds, such as for example in turbulent Tokamaks and

in astrophysical situations with relativistic jets.

The physics of development of double layers in the long scale length limit, when

the perturbations are quasineutral, is well described by nonlinear cold ion �uid

equations along with electron dynamics giving an equation of state with negative

ratio of speci�c heat to this �uid. In the linear limit, it exhibits an instability

similar to that found in a plasma / �uid with negative pressure perturbation with

growth rate which scales as ∼
√

(m/M).

In this chapter, we present a full nonlinear treatment describing the develop-

ment and collapse of double layers in the long scale length limit, by transforming

the nonlinear cold ion �uid equations to a linear partial di�erential equation us-

ing the method of Lagrange variables. Solution of the resulting partial di�erential

equation shows a similar scaling of growth rate with mass ratio as seen in the linear

case. Using harmonic and void like initial conditions, we analytically describe the

early results [123].

7.2 Governing Equations and the Linear limit

In the low frequency, long scale length limit (ω � kve), we neglect the time

derivative in the cold electron �uid equations. In this limit, the electron continuity

equation gives neve = I ( a constant ) and the electron momentum equation reduces
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to
∂

∂x

(
I2

n2
e

)
=

∂

∂x

(
2eφ

m

)
(7.1)

where electron �uid velocity is substituted in terms of constant electron current

I = n0ve0. The ion �uid equations in the cold limit are

∂n

∂t
+
∂nv

∂x
= 0 (7.2)

∂v

∂t
+ v

∂v

∂x
= − e

M

∂φ

∂x

= − m

2M

∂

∂x

(
I2

n2

)
= −m

M
I2

(
1

n

)
∂

∂x

(
1

n

)
(7.3)

where electron momentum equation (7.1) and constant current I is used to elimi-

nate φ on the r.h.s of ion momentum equation (7.3) and quasineutrality is used to

replace ne by n. It is clear from above that for a given (m/2M)I2, the problem is

closed within the ion �uid itself and reduces to that of a nonlinear ion �uid with

a novel equation of state. It is e�ectively an equation of state with Γ = −1, viz. a

negative ratio of speci�c heats (The e�ective pressure goes as p ∼ 1/n).

Linearising equations (7.2) and (7.3), the equation describing the evolution of

density perturbation δn can be written as

∂2

∂t2
δn+ α2 ∂

2

∂x2
δn ≈ 0 (7.4)

where α2 = (mI2/Mn2
0). This immediately gives an exponential growth of the

density perturbation at a growth rate γ ∼ k
√
m/MI/n0 ∼ ve0

√
m/M . It is

shown in the later sections that, similar exponential growth is also seen in the

fully nonlinear case.

In order to physically understand the cause of this instability, we compare a

sound wave with negative pressure perturbation, with the usual ion-acoustic wave.

For a standard ion �uid with warm electrons, the ion acoustic dispersion relation

is

1−
ω2
pi

ω2
+

ω2
pe

k2v2
th

= 0 (7.5)

where v2
th = Te/m. For quasineutral perturbations, �1� is negligible and the ion and
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electron density responses are equal in magnitude with ω2 = k2(Te/M) > 0. This

is because ion density perturbation is related to potential as (δn/n0) ∼ (eφ/mv2
th).

Thus the cold ions are shielded by the warm electrons with electrons congregating

around the ion peaks providing a shielding which produces the dispersion free

ion acoustic wave. For the present novel ion �uid with streaming electrons, the

complete dispersion relation is [147]

1−
ω2
pe

(ω − kve0)2
−
ω2
pi

ω2
= 0 (7.6)

Again, evoking quasineutrality �1� may be neglected. Further taking ω � kve0,

we get
ω2
pe

k2v2
e0

+
ω2
pi

ω2
= 0 (7.7)

Now the electron and ion charge density responses can balance only if ω2 < 0

i.e. there is an instability. Physically, if ion motions produce a positive potential

somewhere, electron stream gets accelerated and to maintain constant current pro-

duces a reduction of electron density thus locally enhancing the original potential

perturbation. This positive feedback of streaming electrons is responsible for the

instability γ2 = k2v2
e0(m/M) and is the source of the negative speci�c heat ratio of

the nonlinear ion �uid in the quasineutral limit. This is evident from the linearised

perturbation equation (δne/n0) ∼ −(eφ/mv2
e0) (note the negative sign).

The closed set of equations (7.2) and (7.3) contain (1) convective nonlinearity

and (2) ∼ 1/n2 pressure nonlinearity. These look very similar to sound wave

equations with a negative pressure perturbation and can be solved exactly by

transforming to Lagrange variables, which we present in the next section.

7.3 Governing Equation in Lagrange Variables

Transformation of Euler coordinates (x, t) to Lagrange coordinates (x0, τ) is de�ned

as [116]

x = x0 +

∫ τ

0

v(x0, τ
′
)dτ

′
(7.8)

t = τ (7.9)
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which immediately gives

∂

∂x0

=

[
1 +

∫ τ

0

∂v(x0, τ
′
)

∂x0

dτ
′
]
∂

∂x
(7.10)

∂

∂τ
=

∂

∂t
+ v

∂

∂x
(7.11)

Using equations (7.10) and (7.11), the ion continuity equation gives the ion density

as

n(x0, τ) = n(x0, 0)

[
1 +

∫ τ

0

∂v(x0, τ
′
)

∂x0

dτ
′
]−1

(7.12)

where n(x0, 0) is the initial density pro�le. The momentum equation in Lagrange

coordinates now stands as

∂v

∂τ
= −m

M
I2

2

[
1 +

∫ τ
0
∂v(x0,τ

′
)

∂x0
dτ ,
]−1

∂
∂x0

1
n2

= −m
M
I2
[
1 +

∫ τ
0
∂v(x0,τ

′
)

∂x0
dτ ,
]−1

1
n

∂
∂x0

1
n

= −m
M
I2 1

n(x0,0)
∂
∂x0

1
n(x0,τ)

(7.13)

where we have used equation (7.12) in the last step. Di�erentiating the above

equation further w.r.t x0, we get

∂

∂τ

∂v

∂x0

= −m
M
I2 ∂

∂x0

1

n(x0, 0)

∂

∂x0

1

n(x0, τ)
(7.14)

De�ning inverse of density as a new variable ψ(x0, τ) = n0/n(x0, τ) and using a

second coordinate transformation [148] which depends on initial density pro�le as

∂

∂z
=

n0

n(x0, 0)

∂

∂x0

(7.15)

the ion momentum equation (7.14), �nally becomes a linear elliptic PDE in (z, τ)

∂2ψ

∂τ 2
+ α2∂

2ψ

∂z2
= 0 (7.16)

where
∂ψ

∂τ
=

n0

n(x0, 0)

∂v

∂x0

=
∂v

∂z
(7.17)
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Here �z� is a new Lagrange coordinate. The linearity of equation (7.16) shows that

the nonlinear problem with arbitrary initial conditions can be solved in principle.

In the next section, we give the general solution of equation (7.16), and explore

the nonlinear development and collapse of double layers with sinusoidal and void

like initial perturbations respectively.

7.4 Exact Nonlinear Solution

The exact solution of equation (7.16) is given by

ψ(z, τ) = F (z + iατ) +G(z − iατ) (7.18)

where F and G are arbitrary functions of the complex characteristics z ± iατ and

are determined from the initial conditions. Once the the expression for ψ(z, τ)

is known, the ion density, ion �uid velocity and the inversion from Lagrange co-

ordinates (z, τ) to Euler coordinates (x, t) are respectively given by the following

relations

n(z, τ) =
n0

ψ(z, t)
(7.19)

∂ψ

∂τ
=
∂v

∂z
(7.20)

∂x

∂z
=

n0

n(x0, 0)

∂x

∂x0

=
n0

n(x0, τ)
= ψ(z, τ) (7.21)

In the next two subsections, we respectively present exact solutions with harmonic

initial conditions and void like initial conditions.

7.4.1 Harmonic initial conditions

Here we choose initial conditions for ion density and ion �uid velocity as

n(x, 0) = n0

(
1 + v0

α
sin(kx)

)
(7.22)

v(x, 0) = v0 cos(kx)
v0

α
� 1 (7.23)
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Using the above initial conditions, ψ(z, 0) and ψ̇(z, 0) linearised in perturbation

amplitude �v0/α� are given by

ψ(z, 0) ≈ 1− v0
α

sin(kz) (7.24)

ψ̇(z, 0) ≈ −kv0 sin(kz) (7.25)

Using equations (7.24) and (7.25) in equation (7.18) we get

F (z) = 1
2
− i v0

2α
e−ikz (7.26)

G(z) = 1
2

+ i v0
2α
eikz (7.27)

Using the above form of F and G, the ion density, ion �uid velocity and the

transformation from the Lagrange coordinates (z, τ) to Euler coordinates (x, t) are

given by

n(z, τ) = n0

[
1− v0

α
sin(kz)ekατ

]−1
(7.28)

v(z, τ) = v0 cos(kz)ekατ (7.29)

kx = kz + v0
α
ekατ cos(kz) (7.30)

Using equation (7.30), the ion velocity, density and potential can �nally be written

in terms of Euler coordinates as

v(x, t) = v0e
kαt cos

[
kx− v(x,t)

α

]
(7.31)

n(x, t) = n0

[
1− v0

α
sin(kx− v(x,t)

α
)ekαt

]−1

(7.32)

eφ(x, t)

M
= 1

2

(
v0e

kαt sin
(
kx− v(x,t)

α

)
− α

)2

− α2

2
(7.33)

where the expression for potential is obtained using equation (7.1) and quasineu-

trality condition. Figs. (7.1),(7.2) and (7.3) respectively show the evolution of

ion �uid velocity, potential and ion number density for v0/α = 0.1. The potential

exhibits the formation of a double layer type structure.

The evolution of sinusoidal density perturbation clearly follows the physics

discussed in section.(7.2). Physically, the regions where potential is negative to

begin with, decelerates the electrons. In order to keep the electron current constant,
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Figure 7.1: Evolution of ion velocity for v0/α = 0.1

0

0.5

1

1.5

2

0
1

2
3

4
5

6

−0.5

0

0.5

1

1.5

kαt

kx

e φ
 / M

 α2

Figure 7.2: Evolution of potential for v0/α = 0.1. Note that at eφ/Mα2 = 0.5,
the electrostatic potential energy becomes equal to the initial kinetic energy and
re�ection of electron beam occurs from this point. Assumption of constant electron
current gets violated at this point

the electron number density increases in these regions making the potential further

negative.Now, due to this continuous positive feedback eventually the potential
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Figure 7.3: Evolution of ion density for v0/α = 0.1

becomes so large (negative) that the electrostatic potential energy becomes equal

to the initial kinetic energy. As a result the potential starts re�ecting the electron

current and the double layer is formed. At this point, the number density shows a

peak Fig.(7.3) and the electron current is no longer constant; so the solution does

not hold beyond this point.

7.4.2 �Void� like initial conditions

Here we choose initial conditions for ion density and ion �uid velocity as

n(x, 0) = n0

(
1− ε

2
sech

(
x
L

))
(7.34)

v(x, 0) = 0.0
ε

2
� 1 (7.35)

In contrast to the previous case, here the initial density perturbation is negative

everywhere and the associated potential perturbation is positive everywhere. As

a result it cannot re�ect the electron current. Following as above, the initial

conditions on ψ and ψ̇ linearised in perturbation amplitude is given by

ψ(z, 0) ≈ 1 + ε
2
sech

(
z
L

)
(7.36)

ψ̇(z, 0) ≈ 0.0 (7.37)
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Substituting this in the general solution (7.18), gives the general form of the arbi-

trary functions F and G as

F (z) = G(z) =
1

2

(
1 +

ε

2
sech

( z
L

))
(7.38)

Using the above form of F and G, the �nal expressions for ion density, ion �uid

velocity and the transformation from Lagrange coordinates (z, τ) to Euler coordi-

nates (x, t) is given by

n(z, τ) = n0

[
1 + ε

2
cosh

(
z
L

)
cos
(
ατ
L

) {
f
(
z
L
, ατ
L

)}−1
]−1

(7.39)

v(z, τ) = εα
2

sinh
(
z
L

)
sin
(
ατ
L

) {
f
(
z
L
, ατ
L

)}−1
(7.40)

x = z + εL
4

tan−1
(

2 sinh(z/L) cos(αt/L)

cos2(αt/L)−sinh2(z/L)

)
(7.41)

where

f
( z
L
,
ατ

L

)
= cosh2

( z
L

)
cos2

(ατ
L

)
+ sinh2

( z
L

)
sin2

(ατ
L

)
(7.42)

Figs. (7.4), (7.5) and (7.6) respectively show the evolution of ion �uid velocity,
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Figure 7.4: Evolution of ion velocity for v0/α = 0.1

potential and ion number density for ε = 0.3. As before, the potential is obtained
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Figure 7.6: Evolution of density for ε = 0.3; Note that at x/L = 0 and αt/L = π/2,
the number density vanishes

using equation (7.1) and the quasineutrality condition. The above expressions

(and also �gures) show that at x/L = 0 and at αt/L = π/2, the potential goes to

in�nity and the number density vanishes. This phenomena is known as collapse
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of double layers. Such explosive potentials have been seen in experiments [124].

Since the collapse of double layers leads to the conversion of collective energy into

random kinetic energy of the particle, we call it breaking of double layers as it is

very much similar to wave breaking. Here again, we see the evolution of potential

and density following the same physics as discussed in section.(7.2).

7.5 Summary

We have reduced the problem of nonlinear development and collapse of double

layers to a linear partial di�erential equation in Lagrange coordinates. The lin-

ear PDE is solved for two sets of initial conditions viz. (i) harmonic in density

and velocity which leads to formation of a double layer and (ii) �Void� like initial

conditions which leads to explosive potentials. Our results for these initial condi-

tions are in general agreement with those obtained in reference [123] using other

methods.
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Chapter 8

Conclusion

The present thesis mainly investigates some novel aspects of nonlinear plasma

oscillations and wave breaking which have not been considered as yet.

In the second chapter of this thesis, we report on space time evolution of non-

linear oscillations in the lab frame, initiated by an arbitrary density perturbation

which can be expressed as Fourier series in ‘x'. Before our solution, we were only

aware of space time evolution of a pure sinusoidal density perturbation in the lab

frame which is nothing but a very special case of our general solution. We have

obtained this general solution as in realistic laser/beam plasma interaction exper-

iments or simulations, instead of a single mode a bunch of modes get excited. We

believe that space time evolution of these bunch of modes may be explained from

our general solution. We have also shown the usefulness of our solution by giving

examples of the space-time evolution of square wave, triangular wave and Dawson

like initial density pro�les. Moreover, we have obtained the breaking criteria for all

the above mentioned pro�les using the inequality as given in ref.[116]. It is found

that square and triangular wave pro�les break when their height becomes greater

than or equal to 0.5. Our general solution provides the evolution of any arbitrary

density pro�le only below the wave breaking amplitude as beyond the breaking

amplitude transformation from Lagrange to Euler coordinates is no longer unique.

We also studied the evolution and breaking of two mode case which is again a

special case of our general solution. We found that addition of a second harmonic

increases the breaking amplitude of the fundamental mode. Note here that a pure

sine wave breaks when the amplitude of the normalized density perturbation be-
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comes greater than or equal to 0.5. However, we found that if we add a very

small perturbation to the second harmonic, oscillations do not break even when

amplitude of the fundamental mode is greater than 0.5. Physically this happens

because the second mode interfere with the fundamental mode in such a way that

the inequality [116] does not satis�ed anywhere. The breaking of two mode case

has been further veri�ed in 1-D particle in cell simulation. This result may have

relevance in wake �eld acceleration experiments. Furthermore, we have studied

the evolution and breaking of a more general two mode case where second mode

need not be an integral multiple of the fundamental mode. From this solution we

recover the case of Davidson et al. and commensurate mode case for di�erent set

of initial conditions.

In the chapter 3, we have studied the behavior of nonlinear oscillations in a cold

viscous/hyperviscous and resistive plasma. Note here that the behavior of nonlin-

ear oscillations in a cold viscous and resistive plasma has also been studied by Infeld

et al. [118] for an unrealistic model of viscosity; they chose a viscosity coe�cient

which depends inversely on the density in order to obtain some simpli�cation in

the analytic treatment of this problem. They observed two new nonlinear e�ects :

one is that oscillations do not break even beyond the critical amplitude and second

one is that for larger value of viscosity coe�cient density peak splits into two. It

is to be noted here that in reality viscosity has a relatively weak dependence on

density through Coulomb logarithm. Therefore we have �rst studied the evolution

of these oscillations for more realistic case where viscosity coe�cient is chosen to

be independent of density. Later we have studied these oscillations for an alterna-

tive dissipative model by replacing viscosity by hyperviscosity. In both the cases,

results are found to be qualitatively similar to Infeld et al. [118]. Physically, these

nonlinear e�ects appears due to wave number dependent frequency and damping

corrections that lead to interference e�ects between the various modes. We also

found that resistivity alone do not show the splitting e�ect as the frequency shift

introduced by resistivity is wave number independent. Moreover, we have given

an analytical expression describing a relation between breaking amplitude and vis-

cosity/hyperviscosity coe�cient which clearly show that dissipative e�ects do not

remove the wave breaking completely but enhance the critical amplitude.

In the chapter 4, we have included the relativistic e�ects in the cold plasma

model in order to study the evolution and breaking properties of very large am-
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plitude plasma waves. As we have discussed in the previous chapters that the

longitudinal relativistic plasma (AP) waves can be excited in the wake of the

ultra-intense ultra-short laser pulse when it goes through underdense plasma [1].

It is the understanding till date that breaking amplitude of longitudinal relativistic

plasma wave (AP wave) approaches to in�nity as its phase velocity approaches to

speed of light. Since these waves can have very large amplitude with out breaking,

they accelerate particles to very high energy in a distance much shorter than a

conventional linear accelerator. Wave breaking formula for these waves is being

used in recent particle acceleration experiments/simulations in order to interpret

the observations [28, 30]. However, Infeld and Rowlands [107] have shown that

all initial conditions, except the one which are needed to excite AP waves, lead to

density burst (wave breaking) at an arbitrarily small amplitude. Thus in order to

understand the connection between the theories of Akhiezer & Polovin [119] and

Infeld & Rowlands [107], we have �rst obtained the initial conditions which excite

AP waves when substituted in the solution of Infeld & Rowlands [107]. We have

then loaded these initial conditions in a relativistic code based on Dawson sheet

model to study the the sensitivity of these waves with respect to some perturba-

tions. We have done this because in a realistic wake�eld acceleration experiment,

there is always some noise (due to group velocity dispersion of the pulse, thermal

e�ects etc. [132, 133, 134, 126]) along with the AP waves in the wake. We have

observed the smooth propagating nature of AP wave in all physical variables up

to thousands of plasma periods for pure AP type initial conditions. This was done

to show that there is no numerical dissipation visible in our code at least up to

thousands of plasma periods. We have then added a small sinusoidal perturbation

to the large amplitude AP wave and found that AP wave breaks after a few plasma

periods. We have noted here that amplitude of the AP wave was found to be well

below the critical amplitude [119] even at the time of breaking.

Now in order to get the scalings which describe the dependence of wave break-

ing time on the perturbation amplitude and AP wave amplitude respectively, we

have further repeated the numerical experiment, �rst keeping the amplitude of the

AP wave as �xed and varying amplitude of the perturbation, later keeping the

perturbation amplitude as �xed and varying AP wave amplitude. We found that

larger the amplitude of the perturbation or AP wave is, shorter the wave breaking

time will be. Thus one has to reduce the noise or work at lower amplitude AP
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wave in order to get maximum acceleration. Now, to understand the physics be-

hind this phenomena, we have plotted frequency of sheets as a function of position

with and without perturbation. We found that frequency of the system shows a �at

dependence for pure AP wave case and acquires a spatial dependence for nonzero

perturbation which gets stronger for larger perturbation amplitude. This is a clear

signature of phase mixing. It is also shown that the scalings we discussed here,

can be interpreted from the Dawson's formula for phase mixing in inhomogeneous

plasma [102]. We have thus shown that, although the ideal breaking amplitude

of longitudinal AP waves is very high, they break at arbitrarily low amplitude

via phase mixing when perturbed slightly. Thus all those experiments/simulations

which use AP wave breaking formula may require revisiting. For example, Malka

et al. [28] have observed the generation of 200 MeV electrons in their wake �eld ac-

celeration experiment. Note here that the authors have used the formula [2] which

valid as long as eE/(mωpec) ≤ 1 in order to interpret their observation. However,

in their experiment eE/(mωpec) was approximately 3.8 which is much greater than

unity and hence, one needed to use the energy gain formula for nonlinear waves

[27]. If we do so, the energy gain would have been approximately 975 MeV. We

believe that it is the phase mixing e�ect which damps the plasma wave well before

the full dephasing length and is thus preventing electrons from gaining the full

energy.

In chapter 5, we have looked at the phenomena that occur on the long time scale

where the e�ect of ion motion can not be ignored anymore. It is the understanding

till date that if we allow ions to move, plasma oscillations phase mix and break at

arbitrarily small amplitude due to nonlinearly driven ponderomotive forces only.

However, we have shown that it is not only the nonlinearly driven ponderomotive

force but also the naturally excited zero frequency mode (which is nothing but the

ion acoustic mode in a zero temperature cold plasma) which could be responsible

for phase mixing. Actually, if we choose an arbitrary initial condition, solution

will be a mixture of high frequency oscillations due to “ωp” and, DC and secular

terms due to ion acoustic mode “0”. However, we can adjust the initial conditions

in such a way that only one of the two modes get excited. In this chapter we have

�rst shown how to choose initial conditions such that the zero frequency mode

does not get excited and we see pure oscillation in the �rst order and then phase

mixing occurs due to nonlinearly driven ponderomotive forces only. We have also
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shown that although the breaking amplitude of cold plasma BGK waves is high

keE/(mω2
pe) ∼ 1, they break at arbitrarily small amplitude via phase mixing if ions

are allowed to move. This result has been further veri�ed in PIC simulation. Here

zero frequency mode of the system is found to be the only candidate responsible for

phase mixing because ponderomotive force for waves is zero. Moreover, we have

reported nonlinear traveling wave solutions in an arbitrary mass ratio cold plasma

which is correct up to second order. These waves do not exhibit phase mixing as

for waves ponderomotive force is zero and zero frequency mode is absent here.

In chapter 6, we have studied the physics of plasma oscillations beyond wave

breaking. It is the understanding till date that after the wave breaking plasma

becomes warm and all energy of the wave goes to the random kinetic energy of the

particles [102, 122]. We have studied, a long time evolution of plasma oscillation in

the wave breaking regime using 1D PIC simulation and demonstrated that all the

coherent ESE does not convert to random energy of particles but a fraction which is

decided by the Co�ey criterion [121], always remains with the wave which support

a trapped particle distribution in the form of oppositely propagating BGK waves.

These BGK waves have also been seen in warm plasma [137, 138, 139, 140] using

Vlasov simulation well below the breaking amplitude. The randomized energy

distribution of the particles is found to be characteristically non-Maxwellian with

a preponderance of energetic particles.

In chapter 7, we have studied a full nonlinear treatment of the formation and

collapse of double layers in the long scale length limit, using the method of Lagrange

variables, and analytically described the early work, using harmonic and void like

initial conditions.

Future scope

We know that a sine wave, square wave and triangular wave density pro�les do

not break as long as keE/(mω2
pe) ≥ 0.5. On the other hand, Dawson like initial

density pro�le breaks only when keE/(mω2
pe) becomes greater than or equal to

unity. Therefore, one needs to understand what is so special about this pro�le

that it does not break even though keE/(mω2
pe) is greater than 0.5. We tried to

understand this via a two modes case which does not show breaking even when
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keE/(mω2
pe) ≥ 0.5. However, in order to make a more clear connection among the

works carried out by Davidson et al., by us and by Dawson, a better understanding

needs to be developed. Although, we have veri�ed the evolution and breaking

criteria of single mode case, two mode case and Dawson's case in PIC simulation,

the evolution and breaking of square wave and triangular wave cases still need to

be examined numerically in PIC or sheet simulation.

By taking an example of sinusoidal initial density perturbation, we have shown

that after the wave breaking plasma becomes warm but some fraction of initial

energy always remains with the remnant wave and the �nal distribution is found

to be non-Maxwellian. This behavior may also be studied for the above mentioned

pro�les after verifying their evolution and breaking criteria. We know that the cold

plasma BGK waves [120] breaks when keE/(mω2
pe) becomes greater than or equal

to unity. Physics of these waves beyond wave breaking needs to be explored as it

may have direct relevance in particle acceleration experiments. It is also interesting

to know the type of distribution functions that will be formed after the breaking

of these waves.

First thing one should note here that we have argued in the study beyond cold

wave breaking that during the evolution of the distribution in the breaking regime

when amplitude of the wave becomes smaller than the breaking amplitude in warm

plasma by Co�ey, wave stops breaking and converting coherent energy into heat.

However, Co�ey has derived the maximum amplitude in warm plasma for a water

bag distribution function and in our case we found the distribution function bi-

Maxwellian. Thus the wave breaking criteria in warm plasma needs revisiting for

an arbitrary distribution function.

Second thing is that we have given a qualitative interpretation for the process

of acceleration from multistream motion to coherent states. However, for a better

understanding a quantitative analysis, which explains the stochastic acceleration

of particles, is still needed.

We have studied the physics of nonrelativistic plasma oscillations in the pres-

ence of viscosity and resistivity and have derived an analytical formula for Dawson

like initial density pro�le which describes how the critical amplitude depends on

viscosity and resistivity coe�cient. This formula needs to be veri�ed numerically

and one may ask whether this formula is valid for the realistic case also where vis-

cosity coe�cient is chosen to be independent of density. Besides, a general formula
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for an arbitrary initial condition is still required. Moreover one may explore the

e�ects of viscosity and resistivity on relativistic plasma oscillations. For example,

one may ask whether the splitting e�ects, in the density pro�le, persist for the

relativistic case also. We know that relativistic plasma oscillations always phase

mix away. Therefore, the e�ects of dissipative terms on the phase mixing time

may also have some relevance in the particle acceleration experiments.

We have obtained the electron-ion traveling wave solutions correct up to second

order in an arbitrary mass ratio cold plasma. An exact solution may be more

interesting and then one may study the sensitivity of these waves with respect to

some perturbations as these waves also (like AP waves) seem to phase mixed if

perturbed slightly. Moreover, for a better understanding, phase mixing of plasma

oscillations and waves in an arbitrary mass ratio cold plasma need to be examined

experimentally.

We have shown that ideal breaking criteria of relativistic traveling waves in

cold plasma does not hold in the presence of perturbations (due to noise). If we

perturb these waves slightly they break at arbitrary amplitude after a �nite time

which is decided by both amplitude of the wave and the perturbation. We have

proposed that if the wave breaking time is longer than the dephasing time it will

not a�ect the acceleration process. However, if it is shorter one can never achieve

the full expected energy. Therefore in order to support our theory one needs to

do a qualitative analysis numerically as well as experimentally. For the relativistic

studies, we have kept the ions �xed as we have looked only at short time scales

phenomena. Hence one may include the e�ect of ion motion on the relativistic

plasma oscillations and waves for the long time scale studies.

We have studied the behavior of relativistic plasma waves only up to the phase

mixing time. Therefore, the behavior of these relativistic plasma waves beyond

wave breaking (phase mixing time) needs to be understood. Do they also lead to

coherent structures after long time evolution ? What kinds of distributions are

formed after their breaking ? These questions are still unanswered .

We have studied the evolution and collapse of double layers using method of La-

grange variables. When double layer collapse i.e.; near the singularity, the electron

and ion density tends to zero, which makes the electron relativistic. Therefore it

will be of interest to explore the consequences of relativistic electron nonlinearities.
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