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Abstract

The present thesis examines some important issues regarding acceleration of plasma

ions to high energies by ultra-intense circularly polarized (CP) lasers in the Hole

Boring (HB) mode of Radiation Pressure Acceleration (RPA). A major part of

the study is devoted to the analysis of the accelerating structure (laser piston)

under the influence of a longitudinal magnetic field as well as for a plasma target

composed of multiple ion species. The laser piston is a charge separation layer

created due to the ponderomotive force of the incident laser. This induced charge

separation field is responsible for accelerating the plasma ions. Under the influ-

ence of a static magnetic field, the polarization state (i.e left or right circulation)

plays an important role in this process. It has been found that right circularly po-

larized (RCP) lasers are more efficient as the net ponderomotive force on plasma

electrons is enhanced in this case due to resonance between their quiver motion in

laser field and cyclotron motion due to applied magnetic field. Further a residual

ion space charge behind the laser piston is discovered. It is found that this space

charge undergoes coulomb explosion under its own field and do not contribute to

the accelerated ion beam. However when an energetic test ion is incident in the

direction opposite to the incident laser, this coulomb exploding region reflects it

with a velocity higher than the incident velocity, thus amplifying the kinetic energy

of the test ion.

Further acceleration of ions using ultra-intense laser irradiated on an overdense

target plasma composed of two ion species has been described using a self con-

sistent approach. The analytical model for the steady state described here gives

a complete description of the charge separation zone, i.e., ion space charge and

electron sheath, created due to ponderomotive force of the laser. It successfully

explains the jump in electrostatic potential or field in the laser piston responsible

for a major part of the acceleration. The information about the structure of laser

piston obtained from the analytical model is used for the stability analysis of the

process. It has been found that the stability of the laser piston depends on the

target composition. The reflection of incoming test ion from the coulomb explod-

ing region of the ion space charge has been described in context of the charge on

the incident beam species.

Extending the theory of ion acceleration to two dimensions (i.e. radial and axial
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with azimuthal symmetry), it was found that a radial intensity variation in the

incident circularly polarized (CP) laser introduced radial electron density inhomo-

geneity in the electron sheath formed due to ponderomotive pressure. This density

inhomogeneity drives an azimuthal current. Besides this the circular motion of

the plasma electrons under the influence of the CP laser field induces a magnetic

dipole moment. This dipole moment when summed over all the plasma electrons

give rise to a net magnetization. The azimuthal and magnetization current to-

gether generates a quasi-static axial magnetic field in the mega-gauss regime.

Finally the multi-stage process of ion acceleration is studied in the relativistic

regime. A fully relativistic calculation for the second stage ion velocity is pre-

sented and is validated using 1D3V particle in cell (PIC) simulations. Also a

comparative study between non-relativistic and relativistic case is done and it is

found that at high piston velocities the relativistic results differ a lot from the

non-relativistic ones.
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1
Introduction

1.1 Overview and Motivation

For the last 100 years, physicists have used particle accelerators to explore atomic

and sub-atomic structure, material science, structural biology, nuclear medicine,

fusion research, food sterilization, transmutation of nuclear waste, cancer treat-

ment and find answers to some of nature’s profound questions.

Twentieth century witnessed an explosion in development of particle accelerators

that can provide mono-energetic, ultra-intense particle beams that can go upto

energies in TeV. These devices are either linear or circular and use radio frequency

(RF) voltages across materials to accelerate particles. By increasing the RF volt-

ages applied, the acceleration gradient could be increased. However, such devices

are limited by the surface breakdown voltages which are of the order of MV/m.

Due to this, there is an upper limit to the voltage that can be applied. Thus, if

one has to increase the energy of accelerated beams, the size of the accelerator has

to be increased. Energetic particle beams have wide variety of uses depending on

their kinetic energies. Particle beams of energy ranging from a few hundred MeVs

to a few GeVs have uses in particle therapy for oncological processes, generation of

X-rays, building light sources, condensed matter physics, ion implantation, indus-

trial processing and bio medical research. For particle physics, the beam velocities

required are close to that of light and hence very large accelerators are required.

Accelerators like LHC and Tevatron have diameter in kilometers [1]. Because of

their large size, they are very expensive. Using current technology, generating ion

beams of energy 200 to 300 MeV (required for cancer therapy) would cost around

1



Chapter 1. Introduction

$200M, thus making such treatments beyond the reach of common people.

Need of the hour is therefore devising mechanisms to accelerate charged particles to

high energies at a small distance. One of the mechanisms may be directly exposing

charged particles to high electric fields in vacuum as there is no surface breakdown

limit here. Ultra-intense lasers are a source of very high electric fields. Present

day lasers are capable of intensities of the order of 1022W/cm2[2]. This has been

possible because of the chirped pulse amplification (CPA) technique developed by

Mourou et.al.[3, 4]. As laser field constitute of oscillating electric (E) and magnetic

(B) fields, the equation of motion of electrons in these fields can be written as,

dp

dt
= −e[E+ v ×B] (1.1)

Here p is the electron momentum. Electron motion in laser fields is referred to as

quiver motion, and is defined as,

posc
mec

=
γvosc
c

=
eE0

meωc
=

√

Iλ2µ
1.3× 1018

(1.2)

Here posc(vosc) is the transverse quiver momentum (velocity) of an electron in the

laser field with an electric field amplitude E0, I is the laser intensity (in W/cm2),

λµ is the laser wavelength in microns and γ is the relativistic factor. Defining

a dimensionless laser amplitude as a = eE0/meωc the relativistic factor can be

written such that γ =
√
1 + αa2 with α = 1 for circularly polarized light and

1/2 for linear polarization. The energy associated with this momentum can easily

reach MeV levels for electrons in the presence of lasers with intensities 1019W/cm2.

It is compelling that with the availability of high intensity lasers, electrons alone

can be accelerated to very high energies in vacuum. However, electromagnetic

energy cannot be easily dumped as kinetic energy in a particle. It is because an

electron in a plane infinite EM field in the absence of any external fields in vacuum

with no boundaries surrenders its energy back to the wave. This effect is known

as Lawson-Woodward (LW) theorem[5, 6]. So in order to accelerate electrons in

vacuum by an EM pulse the LW theorem needs to be violated. One of the ways

to do this is by tightly focussing a laser beam[7, 8, 9, 10, 11, 12, 13]. A finite

focal spot size will cause an electron to drift away from the beam axis, converting

2
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its quiver energy to forward directed kinetic energy in the process. The energy

gain from this essentially adiabatic process is almost equal to the ponderomotive

energy∆u ≈ 0.25mec
2a2. Thus, the electron simply slides down the ponderomotive

potential without picking up any longitudinal component. Another method is by

tailoring a laser beam profile in such a way that it creates ponderomotive potential

well. One way by which this can be done is by superposing higher order light

modes in such a way that there is an intensity minimum at the radial position

r = 0[14].

We observed here that to accelerate charged particles by EM pulses in vacuum,

the entire emphasis was to device ways to violate the LW theorem. If we shift

our attention from vacuum to plasma (a quasineutral gas of charged i.e. electrons

and ions and neutral particles), we observe that all the assumptions of the LW

theorem are violated[15]. Under the influence of an inhomogeneous EM field a

charged particle drifts towards the weak field region. This drift is because of a

nonlinear force called the “Ponderomotive force”arising due to the v × B part of

the Lorentz force. For a plasma of density n0, the ponderomotive force exerted on

the plasma species of mass m is given by [16]

Fp = −
ω2
p

γω2
∇< ǫ0E

2 >

2
(1.3)

where ωp = (4πn0e
2/m)1/2 and ω is the laser frequency. Electrons being much

lighter than ions respond quickly to externally applied electric and magnetic fields

generating local concentrations of positive and negative charge which give rise to

self consistent electric fields. A particle injected into such a plasma would be ac-

celerated by this charge separation field. As the magnitude of the ponderomotive

force directly depends on the incident laser amplitude we observe that a plasma has

an interesting property to efficiently convert transverse field of an electromagnetic

wave to a longitudinal field of a plasma wave or other high gradient plasma struc-

tures like shock and sheath fields. The electrostatic field (Es) in these structures

is proportional to the square root of the plasma density n0. Hence for a plasma

density of 1018cm−3 the electrostatic field gradient turns close to 1GeV/cm[17]. To

analyze the interaction of EM waves in a plasma, we first look at the wave equation
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governing the EM field which is given as,

∇2E+ ǫE = 0 (1.4)

where ǫ = (1 − ω2
pe/ω

2) is the plasma dielectric constant[16]. From Eq. 1.4 it is

clear that there exists two class of solutions depending on the sign of ǫ. When ǫ is

positive i.e. ωpe/ω < 1 (underdense plasma), we have propagating solutions. On

the other hand, when ǫ < 0 i.e. ωpe/ω > 1 (overdense plasma) we have decaying

solutions.

When the laser pulse interacting with the plasma is relativistically intense, strong

nonlinear effects come to play. For such high intensities the quiver velocity of

electrons become comparable to the velocity of light and the effect of relativistic

mass variation becomes important. The electrons oscillating in the laser field gets

heavier due to relativistic effects as meeff = γme where γ = 1/
√

1− v2osc/c
2 is the

relativistic factor and vosc is the quiver velocity of the electron. As a result of this

relativistic increase in the electron mass the effective plasma frequency reduces to

ωpeff = ωp/
√
γ [18] and can even go below the frequency of the incident pulse.

Consequently, the propagation of such intense pulses is allowed even in overdense

region of the plasma . For such cases reflection will take place only when the local

electron plasma frequency ωpeff is greater than the laser frequency ω. It should

be noted that in such case the laser fields are evanescent at the surface with in the

thickness of the order of skin depth. As the field intensity gain a spatial depen-

dence, interaction with electrons become highly nonlinear.

An underdense plasma allows a laser pulse to normally pass through it. The cou-

pling of electromagnetic wave energy into such plasma leads to generation of lon-

gitudinal plasma waves[19, 20]. A finite laser pulse injected into a plasma would

generate an electrostatic wake behind the pulse via ponderomotive force. The

group velocity of the pulse travelling inside the plasma is close to that of light.

Once the light pulse has passed the space charge produced by this displacement

pulls the electron back and a plasma oscillation is set up. The wake which propa-

gates with velocity close to c, can trap electrons. The trapped electrons can gain

a large amount of energy under the influence of the longitudinal field of the wake.

This mechanism was first formulated by Tajima and Dawson in 1979[21]. The

energy gained by the trapped electrons depended on the amplitude of the wake
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generated. High amplitude wake could produce high energy electrons. However as

the laser pulse move very fast, the plasma ions because of their high mass did not

have enough time to respond to these wakefields. As a result this mechanism was

limited to studying electron acceleration.

Overdense plasmas on the other hand reflect incident laser light due to the for-

mation of electrons sheath on the plasma surface as a result of ponderomotive

force. This induces an electrostatic charge separation field. If the pulse length

is long enough, the plasma ions get sufficient time to respond to this field. This

phenomenon is exploited to accelerate ions. The next section describes in detail

the interaction of laser pulses with overdense plasma and how such interactions

can give rise to energetic ions.

1.2 Laser pulse interaction with overdense plasmas

Laser interaction with underdense plasmas can be described as a reactive response

of the matter to the light passing through it. In other words, one either considers

how the properties of the pulse changes as it propagates, or either tries to find out

what leaves behind assuming the material ahead of the pulse to be undisturbed.

For overdense plasmas the picture is radically different. A overdense target (like

metal) will initially reflect the laser pulse like a mirror.

Coupling the laser energy to the target material in overdense plasmas still remain

one of the hottest issues in this field. This is because more than one physical pic-

ture is possible depending on whether the material is treated like a conductor or

a sandwich of cold solid plus a hot, thin or extended layer of plasma in the region

of the laser’s focal spot. There is no single model which can adequately describe

all the main pieces of absorption physics, mass and energy transport and so on.

Departures from the common wisdom which prevailed for nanosecond interactions

[22] were predicted towards the end of the 1980’s by a number of authors anticipat-

ing the first experiments with sub-picosecond lasers [23, 24, 25, 26]. They pointed

out several ways in which the traditional laser plasma physics would not apply to

short pulse lasers.

The first thing to be noted in interaction with solid targets is the field ionization

over the first few laser cycles rapidly creates a surface plasma layer with a density
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many times the critical density nc. This is the density at which the plasma be-

comes opaque for an electromagnetic wave with frequency ω, and is defined such

that

ω2 =
4πe2nc

me

(1.5)

In practical units, this translates to

nc ≈ 1.1× 1021
( λ

µm

)−2

cm−3 (1.6)

Another aspect is the short pulse duration, which means that there is not enough

time for a substantial region of coronal plasma to form in front of the target during

the interaction. Just as in long pulse inertial confinement fusion (ICF) interactions,

this underdense region is created by ablation. The plasma pressure created during

heating causes matter to blow off at roughly the sound speed:

cs =
(ZkBTe

mi

)1/2

≈ 3.1× 107
( Te
keV

)1/2(Z

A

)1/2

cms−1 (1.7)

where kB is the Boltzmann constant, Te the electron temperature and mi the

ion mass. Assuming the plasma expands isothermally[22], the density profile will

assume an exponentially decreasing form with a well defined scale length “L”given

in angstrom (A0) by the formula

L = csτL ≈ 3
( Te
KeV

)1/2(Z

A

)1/2

τfsA
0 (1.8)

Finally, because of a steep density gradient, the laser pulse interacts directly with

the solid density plasma which has just formed and the laser energy can be de-

posited at much higher intensities than in nanosecond interactions. The initial

situation we are faced with then, is an intense EM wave impinging on a highly

overdense mirror like wall of plasma. In the absence of absorption, the electromag-

netic field will form a standing wave pattern in front of the target, augmented by

an evanescent component penetrating into the overdense region to a characteristic

skin depth ls = c/ωp. In the evanescent region, the laser intensity is non-uniform

giving rise to nonlinear effects. The nonlinear force exerted in this region is the
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ponderomotive force. When the laser pulse is linearly polarized, this force is

Fp = fp(1 + cos(2ωt)) (1.9)

where fp = −mec
2/2γ∇a2. The ponderomotive force in this case is composed of

a dc component and an oscillatory component that oscillates the electrons with in

the skin depth with a frequency of twice the laser frequency. If the magnitude of

the force is large enough, all the electrons at the boundary will oscillate in this

field in the direction of k vector of the laser. The phases of some electrons in this

field may be such that they gain energy from this oscillation, i.e. the electrons are

given a non-adiabatic kick into the overdense plasma. The fraction of electrons

that escape depends on the strength of the oscillating force. This gives rise to the

J×B[27] heating of the plasma. On the other hand, for a circularly polarized

laser the oscillatory component is zero when averaged over one laser cycle. Hence,

there is no such heating. It is because of this reason that a circularly polarized

laser can lead to steady shock structures in an overdense plasma[28].

It has been shown in [29, 30, 31, 31, 32, 33, 34] that there are two different cases

when it comes to interaction of a circularly polarized laser beam with a plasma

of density n0: (i) When n0 < 1.5nc and (ii) n0 > 1.5nc, which are also confirmed

by computer simulations[35, 36]. In fact, at n0 < 1.5nc, it was shown by Mar-

burger and Trooper[29] that in a stationary regime there is a continuous family

of solutions for the everywhere positive electron density distribution. This means

that the penetration deep into the plasma occurs in a “classical”way, through low-

ering the effective plasma frequency due to both relativistic and ponderomotive

nonlinearities. Modelling the self induced transparency (SIT) effect using PIC

simulations and the fluid approach showed quantitatively close results, indicating

that kinetic effects are not important for this case, at least for incident intensities

not much exceeding the threshold of penetration. The situation changes drastically

at densities n0 > 1.5nc, when the relativistic EM wave can considerably reduce the

electron density in the region of its front until electron cavitation takes place. This

electron cavitation acts as a “wall”making the plasma opaque to the propagation.

Thus, for laser penetration into a rather thick overdense plasma, a travelling plane

wave approach cannot be applied because in real situations this regime cannot

be achieved, although, due to the relativistic increase of the electron mass and
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the associated decrease of the effective plasma frequency, the nonlinear refractive

index may become positive. The nonlinear ponderomotive force generated in the

laser plasma interaction leads to a compression of the electron density profile that

counteracts the increased penetration due to relativistic nonlinearity and plays a

crucial role in the description of the interaction between an overdense plasma and

high intensity laser radiation[37, 38].

1.3 Ion acceleration in solid targets

The direct interaction of protons and heavier ions with laser light at presently

achievable intensities is by far not strong enough to accelerate these particles to

MeV energies. Similar to the relativistic threshold for electrons Ieλ2 = 1.37 ×
1018[Wµm2/cm2], one can derive the intensity when the kinetic energy of an oscil-

lating proton in the laser field is equal to its rest energy[39],

Ipλ
2 =

(mp

me

)2

≈ 5× 1024[Wµm2/cm2] (1.10)

This intensity is far beyond the present laser technology. However, the plasma

electrons can mediate the forces of laser fields on ions by generation of strong and

quasi-static electric fields arising from local charge separations. These fields can

be of the same magnitude as the fast oscillating laser fields, but they vary on a

time scale comparable to the laser pulse duration giving the ions a significantly

longer time to be accelerated. In this section we describe three mechanisms of laser

ion acceleration: (i) Target Normal Sheath Acceleration (TNSA), (ii) Radiation

pressure acceleration (RPA) and (iii) Ion acceleration in clusters.

1.3.1 Target Normal Sheath Acceleration (TNSA)

In this mechanism foils, several microns thick are irradiated with ultra-intense laser

pulses. On reaching a plasma vacuum interface, the plasma electrons stream out

into vacuum, while the plasma ions are relatively immobile due to their higher

mass. Because of negative charge escaping into vacuum a large positive charge is

induced at the plasma vacuum interface. The positive potential electrostatically
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traps most of the relativistic electrons, drawing them back to the interface. As

long as there is a source of fast electrons, i.e. over the laser pulse duration, a

capacitor plate like charge separation is formed with electric fields of the order of

1012V/m generated at the interface. Light ions at the plasma vacuum surface are

most readily accelerated in the field, reaching energies of tens of megavolts over

an acceleration length of few tens of microns, over picosecond time scales. As the

ions gain energy, the sheath field drops and the fast ions and electrons propagate

balistically as a quasi-neutral beam. This mechanism was first devised by Snavely

and Wilks[40] in short-pulse experiments using the NOVA-Petawatt laser at the

Lawrence Livermore National Laboratory where the emission of protons to both

rear surfaces of a wedge -shaped target was observed. The basic theory describing

this mechanism has been further developed in[41, 42, 43, 44, 45].

1.3.2 Radiation Pressure Acceleration (RPA)

Radiation pressure acceleration (RPA) of ions occur in two regimes depending on

the thickness of the plasma target on which the laser is normally incident. (i) Light

Sail regime and (ii) Hole Boring regime. Both these mechanisms are described

separately below.

Light Sail regime of RPA

When a high-irradiance laser pulse with sufficiently large focal spot interacts with

a thin foil, it can push forward the electrons due to the radiation pressure; ideally,

all electrons are involved. The ions respond slowly, and a large charge separation

field builds up and efficiently accelerates the main body of the irradiated target

area, i.e. the ions. If this charge separation field is strong enough to accelerate

ions quickly to relativistic velocity, the distance between the electrons and ions

remains relatively small, and instabilities do not have time to develop [46]. Note

that this scenario in the optimum condition borders with the Coulomb explosion

mechanism described above. At the second stage, the ions and electrons moving

together represent a relativistic mirror co-moving with the laser pulse, as in the

“light sail”paradigm. Even if at the early stage the foil is partly transparent to the

laser due to relativistic effects, at a later time, when the foil velocity approaches c,

9



Chapter 1. Introduction

it becomes highly reflective due to the laser frequency downshift in the co-moving

frame. Further, due to the double Doppler effect, the frequency of the reflected

light becomes ωr ≈ ω0/4γ
2, where γ ≫ 1 is the relativistic gamma-factor of the

accelerated foil, and the reflected light energy significantly decreases; almost all of

the laser pulse energy is transferred to the foil. At the final acceleration phase, the

ions moving with nearly the same velocity as electrons take most of this energy

due to their much larger mass. This acceleration mechanism has much in common

with Veksler’s collective acceleration[47, 48].

The equation of motion of the moving foil was derived in [46, 49, 50]. Tripathi et.

al. [50] also calculated the critical thickness ∆ of the foil required for this process.

The critical thickness was given as

∆ =
a0ncλL
πn0

(1.11)

where a0 is the dimensionless laser amplitude, λL is the laser wavelength, n0 is the

initial plasma density and nc is the critical density. It was found that the reflectiv-

ity, calculated using the sliding mirror approximation ([51, 52, 53, 54, 55], of the

thin foil increases with the velocity of the foil and tends to 1 as the foil velocity

approaches c.

In order to implement this idealized scenario, however, several conditions should

be met. First, in order to repel all electrons, which corresponds to the maximum

achievable acceleration, the laser electric field should be of the order of the max-

imum charge-separation field, which corresponds the the target thickness given

by Eq. 1.11 [50, 54]. Second, the ions must be quickly accelerated up to rel-

ativistic velocity to suppress the development of instabilities. 1D and 2D PIC

simulations suggest that the intensity requirement to achieve high velocities can

be substantially relaxed by using circular polarization, which induces much less

electron heating [56, 57, 58, 59, 60, 61, 62, 63] and target structuring [62]. Third,

the focal spot size must be relatively large to keep the quasi-1D dynamics; for

this reason, a super-Gaussian or flat-top pulse is advantageous compared with a

Gaussian one [57, 58, 59, 64]. Fourth, for large ion energies the Rayleigh length

should be at least of the order of the acceleration length; other possibilities include

several focused laser pulses[65, 66]. Another elegant way is to employ a cocoon

formed by the plasma to confine the laser pulse, which can in this case propagate
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without divergence much longer than the Rayleigh length[46, 67]. Fifth, the pulse

duration should be sufficiently short, such that the instabilities do not destroy the

foil, but sufficiently long, such that the very efficient final acceleration phase is

achieved.

Hole Boring regime of RPA

If an overdense target is relatively thick, it cannot be treated as a thin foil, as in the

“light sail”RPA acceleration regime. However, the plasma is still pushed forward

by the radiation pressure, the so-called hole boring process[68]. This gives rise

to another kind of radiation pressure acceleration mechanism, hole boring accel-

eration or collisionless shock acceleration [69, 70, 71, 72, 73, 74]. Ion acceleration

attributed to collisionless shocks has been reported by Henig et. al.[75] (protons

up to 8 MeV using 0.6 J, 45 fs, 20TW laser irradiating overdense micro-sphere

targets) and Wei et. al.[76] (helium up to 13 MeV using 180 J, 0.5-0.7 ps, 0.25PW

laser irradiating an underdense gas jet target).

In a simple 1D quasi-stationary model of hole boring acceleration [77], the laser

pulse piles up the electrons, forming a thin electron spike in front of the pulse; an

electron free area appears behind the spike. It is assumed that the laser pulse is

totally reflected from the electron spike. The ions left behind are pulled by the

arising charge separation field, thus forming the second ion spike. In the boosted

frame moving with the hole boring velocity, the unperturbed plasma ions imping-

ing on these moving spikes are accelerated (“reflected”) by the electric field existing

between the spikes; at the turning point, the ion velocity changes sign, and at zero

velocity the ion density tends to infinity. Analogously, the electron spike also has a

sharp rear edge. Thus, an electrostatic shock propagating into a plasma is formed

(hence there is another name for this acceleration mechanism, collisionless elec-

trostatic shock acceleration (CESA)). In contrast to the electrostatic collisionless

shocks in low-density plasmas, in the case of high-density, low-temperature i.e.

small thermal velocity and large (≫ 1) Mach number plasmas, the unperturbed

plasma electrons and ions can be nearly totally reflected by the laser ponderomo-

tive pressure and the longitudinal charge separation electric field between the two

spikes. For this reason, a circularly polarized laser pulse normally incident to the

target is advantageous for this mechanism, as in this case the plasma is heated less
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effectively [54, 72, 73].

Unlike the “light sail”case, hole boring has a quasi-stationary velocity, because the

radiation pressure is balanced by the momentum change of the continuously re-

flecting particles of the unperturbed plasma, mostly ions due to their larger mass.

The 1D model of hole boring predicts a mono-energetic ion spectrum. This is

indeed confirmed in the 1D PIC simulations. However, even for constant-intensity

pulses, as a0 increases, the finite acceleration time, which is in contrast to the

instantaneous ion reflection assumed in the model, causes periodical oscillations of

the hole boring velocity and periodical overtaking of the electron spike by the ion

spike, which in turn results in broad ion spectra [77, 78].

It is seen that the ions obtained in hole boring mode of acceleration has lower peak

energies and wide energy distribution than that obtained by light sail. However,

the problems with making ultra-thin targets and less sensitivity of thick targets

towards laser prepulse and spatial intensity variation makes hole boring mode an

attractive choice for high intensity laser ion acceleration.

There are a number of issues with hole boring and light sail modes of ion accel-

eration. These are the effect of longitudinal magnetic field that induces cyclotron

motion[79, 80], transverse instabilities[59, 81, 82, 83], effect of multiple ion species

and laser spot profile[59, 57, 73, 84]. These issues are important to understand the

mechanism of ion acceleration in realistic conditions and hence needs to be inves-

tigated thoroughly. In the context of scope mentioned above, this thesis is related

to study of issues related to ponderomotive ion acceleration in bulk targets like

effect of axial static magnetic field, transverse instabilities, presence of multiple

ion species, axial magnetic field generation because of transverse inhomogeneity of

laser and multi-stage acceleration as a result of long pulse length.

1.4 Organization of the thesis

This thesis is mainly devoted to analytical and computational investigation of ion

acceleration by relativistic laser pulses in overdense plasma targets having thickness

of a few laser wavelengths. Analytical theories have been developed to describe the

ion acceleration process for plasma targets composed to single and multiple species

together with effects of externally applied fields. 1D3V particle in cell simulations
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have been carried out to further study and validate the theories. The thesis con-

sists of six chapters including the present one. The brief contents of the next five

chapters are presented below.

1.4.1 Chapter 2: Ponderomotive Ion Acceleration in dense

magnetized laser-irradiated thick target plasmas

Application of static longitudinal magnetic field induces cyclotron motion in the

electron sheath formed due to ponderomotive force of the laser. The magnetic fields

which are observed in experiments with laser irradiated solid targets[85, 86, 87],

can play an important role in laser driven ion acceleration. Wilks et.al.[68] and

Sudan[88] studied the interaction of an ultra-intense laser with an overdense target

and predicted magnetic fields upto 1GG. Cai et. al.[89] studied the role of electron

cavitation in the generation of strong quasi-static magnetic field in the interaction

of ultra-intense laser pulse with overdense plasmas. Haines[90] proposed a mech-

anism for generation of an axial magnetic field through the deposition of spin of

the photons during the absorption of circularly polarized light of finite radius in

an underdense plasma. The time dependent magnetic field thus generated has a

magnitude proportional to the transverse gradient of the absorbed intensity but

inversely proportional to the electron density.

Plasma electrons under the influence of the electric field of a circularly polarized

laser produce circular motion. Same kind of motion is also exhibited by electrons

in an axial magnetic field. We find that the electron motion under the field of

a right circularly polarized (RCP) laser is in the same direction of the cyclotron

motion. This gives rise to a resonance state that leads to an enhanced pondero-

motive force. On the other hand for left circularly polarized (LCP) light, the

oscillatory and cyclotron motion are in opposite direction leading to a reduction

in the ponderomotive force exerted. Thus, we find that for a given laser intensity,

the ponderomotive forces exerted by RCP and LCP light differs. As a result of

this the extent upto which the electrons are pushed inside the plasma also varies

and gives rise to different charge separation leading to varying electrostatic fields.

As it is this induced electrostatic field that accelerates plasma ions, RCP and LCP

lasers give ion beams of different energies for a given intensity and plasma density.
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It has been seen in sec.1.3.2 that the accelerated ions originate from a thin ion

sheath lying close to the electron sheath. Behind this ion sheath lies a region of

residual ions that do not take part in the direct acceleration process. In this chap-

ter, we find that this region undergoes coulomb explosion and its density decreases

uniformly with time. It has also been found that the electrostatic field with in this

region can reflect incoming ions and the reflected velocity is found to be greater

than the incident velocity. As a result, this region acts as a velocity amplifier for

incoming ions.

1.4.2 Chapter 3: Self consistent model for ponderomotive

ion acceleration of laser irradiated two species dense

target plasmas

It has been observed in previous theories that the ion energy obtained in HB-RPA

increases with laser intensity and decreases with plasma density for a plasma target

composed of single ion species [73, 78]. As the energy obtained by the ions are a

result of net momentum transfer from the laser pulse to the plasma ions, it can be

expected that if the target plasma is doped with lighter ions then the total light

momentum will be distributed proportionally to both the species. The laser piston

in this case moves at a constant velocity determined by the mass and proportion

of both the ion species. For a given laser intensity and plasma number density, the

piston velocity is higher for lighter mass ions than the heavier species. However,

in case of a composite target the piston velocity will be intermediate between the

two cases. As a result both the species will move with the same velocity and the

kinetic energy of heavier species will be higher than that obtained in the single

species target [74, 91]. A self consistent analytical theory has been formulated to

describe this process. From the theory it is clear that in such processes the laser

piston is composed of three layers instead of two as in case of single ion species.

The structure of the laser piston gave information about the thickness and mass

of the accelerating region.

The accelerating structure (laser piston) seems analogous to a heavy fluid sus-

pended over a light fluid (laser radiation pressure in this case) under the influence

of an electrostatic force (analogous to gravity). Such a system is susceptible to

Rayleigh-Taylor (RT) instability. Using the analytical model described in this
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chapter we determine the growth rate of RT instability and its dependence on the

ratio of number density of both the species in the target.

1.4.3 Chapter 4: Analytical model for axial magnetic field

generation by interaction of radially inhomogeneous

laser pulse with solid target

Recent remarkable progress in the development of intense (Iλ2 > 1018Wµm2/cm2)

short pulse (< 1ps) lasers has stimulated worldwide interest in relativistic intense

laser plasma interaction[92]. In this interaction, the generation of huge quasi-static

magnetic fields is one of the most significant phenomena which has considerable

influences on the whole nonlinear plasma dynamics. The study of this problem

has wide applications in fast ignition scheme[93] for inertial confinement fusion,

particle acceleration[94], and laboratory astrophysics[95]. The experiments[96, 97]

report that magnetic fields about tens of mega-Gauss (MG), including the axial

component Bz and the azimuthal one Bθ, are generated in underdense plasma. It

should be noted that in case of interaction of a circularly polarized wave with mat-

ter, the axial magnetic field is inherently generated due to inverse Faraday effect

(IFE) if the transverse effects are taken into account [90, 98, 99, 100].

Although much effort has been devoted to quasi-static axial magnetic field gen-

eration in plasmas using circularly polarized lasers, a self consistent fluid theory

incorporating both azimuthal and magnetization currents determined solely from

laser and plasma parameters do not exist. In this chapter the hole boring radiation

pressure acceleration model is further extended to two dimensions with transverse

inhomogeneity in laser intensity profile. A two dimensional analytical fluid treat-

ment has been done for the interaction process and it was found that such laser

pulses produce transverse electron density inhomogeneity which produce non-zero

azimuthal currents. Also the circular motion of electrons under the influence of

laser fields produces magnetization current. Thus the azimuthal and magnetiza-

tion currents together produce an axial magnetic field extending to a few hundred

megagauss. Using azimuthal symmetry, electron density profile of the sheath is

determined self consistently as a function of radial (r) and axial coordinates (z).

The density inhomogeneity introduced gives rise to azimuthal current as well as a
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magnetization is induced due to the circular motion of sheath electrons under the

influence of the laser field. An algebraic expression for this magnetic field obtained

self consistently from laser and plasma parameter has been given.

1.4.4 Chapter 5: Relativistic theory for multistage ion ac-

celeration

In the HB-RPA regime, it has been found that when the initial target is cold,

the flat-top laser pulse acts as a steady piston and drives a flow of ions in the

front surface into the target, which is similar to ions reflecting off an electrostatic

shock front. The electrostatic field induced by the charge separation at the front

surface of the target is steady enough to accelerate ions in multiple stages. That is,

after the whole ion plasma is accelerated to a quasi-monoenergetic state, another

acceleration process begins for the continuing steady state.

A non relativistic theory has been given in [73] and has been verified using particle

in cell (PIC) simulations. However, further from PIC simulations it can be seen

that at very high laser intensities, such that the piston velocity turns relativistic,

this theory is no more valid. In this chapter a fully relativistic analytical theory has

been devised for multistage acceleration process. Further 1D3V PIC simulations for

such systems have been performed using LPIC++[101]. The simulation results are

found to closely match with the analytical prediction, thus validating our proposed

theory. Also a comparative study of the relativistic and non-relativistic theories

have been done and a significant difference in both the cases has been noted.

1.4.5 Chapter 6: Conclusions and Future direction

In this chapter we briefly summarize the results of the whole thesis. We then

provide a glimpse of the possible future research that can be carried out in contin-

uation of the work described here.
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2
Ponderomotive Ion Acceleration in dense

magnetized laser-irradiated thick target

plasmas

2.1 Introduction

Ponderomotive force of intense electromagnetic pulse is considered for many years

as a promising way to accelerate matter upto relativistic velocities [1, 2]. For

non relativistic intensities, the absorption of laser energy results in an increase

in plasma temperature and therefore the ablation pressure quickly dominates the

radiation effects. The situation changes considerably at extremely high intensities.

It has been demonstrated theoretically and experimentally [3, 4] that ions can be

accelerated to high energies by the electric field of the electron cloud expelled by

the radiation pressure of ultra-intense lasers.

Recently there has been an increasing interest in the area of laser induced ion

acceleration. Using the chirped pulse amplification (CPA) technique [5, 6] present

day lasers are capable of producing intensities of the order of 1022W/cm2 [7] which

makes this area feasible for experimental studies. Its application covers a broad

spectrum extending from medical applications to inertial fusion [8, 9, 10, 11, 12, 13].

An intense laser pulse can accelerate ions up to energies of the order of GeV within

micrometers with a very small energy spread [14, 15].

As mentioned in the previous chapter several mechanisms like target normal sheath

acceleration (TNSA) [16, 17, 18, 19, 20], radiation pressure acceleration (RPA)[2,
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3, 13, 15, 21, 22, 23, 24, 25, 26, 27, 28, 29] and laser interaction with clusters

[30, 31, 32, 33, 34] are employed for accelerating ions to sufficiently high energies.

The mechanism we deal with in this chapter is the Hole-Boring radiation pressure

acceleration (HB-RPA)[2, 3, 13, 15, 21, 22, 23, 24, 25]. In this mechanism of radia-

tion pressure acceleration the laser pushes the plasma electrons via ponderomotive

force inside the plasma so as to create an electron compression region or an electron

sheath in front of it leaving behind almost a pure ion space charge. This charge

separation induces a longitudinal electric field which pulls the electron sheath back.

This electrostatic force increases as the electrons are pushed further inside by the

laser. The position at which the ponderomotive force is equal to the electrostatic

force of charge separation is the equilibrium position. Under the influence of the

electrostatic field, the plasma ions are dragged in the laser propagation direction.

This causes the electron sheath to move inside the plasma. The electron sheath

and the ion space charge together form a double layer. As the intrinsic electric

field of this double layer is responsible for ion acceleration, this double layer acts

as a “laser piston”. Such ion acceleration process has been studied under several

parameters like initial plasma temperature with ions as neutralizing background

[35], laser polarization [15, 36], target thickness [3], pulse amplitude [22] and initial

plasma density [24]. The polarization of incident laser (linear or circular) plays an

important role in this mechanism. Linearly polarized (LP) lasers lead to J×B

heating because of the oscillatory nature of the ponderomotive force which in turn

destroys the laser piston. On the other hand for a circularly polarized (CP) laser

the oscillatory component goes to zero when averaged over one laser cycle. Hence

CP lasers are ideal for this acceleration process. It has also been observed in thick

targets that if the pulse is long enough then the acceleration process is repeated

leading to a multistage acceleration [37]. Nonlinear penetration of an electromag-

netic wave in an overdense plasma plays a significant role in this process [38]. This

area has been studied with self consistent electron density modification due to

incoming electromagnetic wave with ions acting as a uniform neutralizing back-

ground [39, 40, 41]. Such studies are valid only when the longitudinal electric field

produced is so small that the time scale at which the ions respond to it is very

large as compared to the interaction time with the incoming pulse. At relativistic

intensities, the ions quickly respond to the electrostatic field generated inside the

plasma leading to their density modification. This phenomenon has been discussed
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in [26], where they have described the structure of laser piston comprising of elec-

tron and ion sheath. However, the ion space charge region present behind the ion

sheath of the laser piston has been neglected. It is seen that for a finite spot size

CP laser, axial magnetic field is inherently generated due to inverse faraday effect

(IFE)[42, 43, 44]. Further, transverse density inhomogeneities introduced by the

laser pulse or the shape of plasma target leads to azimuthal currents and in turn

a longitudinal magnetic field[45]. This magnetic field is oriented along the propa-

gation direction and induces cyclotron motion in the plasma electrons. Thus the

plasma electrons exhibit two kinds of motion: (i) Quiver motion in the laser fields

and (ii) Cyclotron motion due to magnetic field.

In this chapter, we present a detailed analysis of the quasi stationary regime of ion

acceleration in the laser piston in the presence of an external static axial magnetic

field by applying analytical methods (the magnetic field here is assumed to be self

generated or externally applied). In the analytical model we describe the internal

structure of the laser piston as well as explore the region of residual ions left behind.

The longitudinal magnetic field changes the plasma dielectric constant due to cy-

clotron effects which in turn enhances or reduces the ponderomotive force exerted

by the laser depending on whether the laser is left or right circularly polarized.

The residual ion space charge present behind the laser piston undergoes coulomb

explosion and their dynamics has been explored for the first time. In figuring out

the usage of this region, we have found that it has got the ability to enhance the

kinetic energy of incoming ion beams and hence can act as energy amplifiers.

2.2 Theoretical model for laser piston

2.2.1 Laser piston velocity in HB RPA

We consider a 1D situation where a beam of light of constant intensity I is normally

incident on a plasma of uniform density and one ion species. Assuming that the

plasma is effectively collisionless and the light beam is perfectly reflected at the

plasma surface, the steady state of this system can be found by examining the

momentum balance in the instantaneous rest frame (IRF). Let the velocity of the

plasma surface in the lab frame be vf . The light intensity in the IRF is not equal
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to the light intensity in the lab frame. In fact, it can be shown that

IIRF

I
=
1− vf/c

1 + vf/c
(2.1)

The plasma that is at rest in the lab frame now approaches the plasma surface

at vf in the IRF. In order to conserve the particle number there must therefore

be a beam of plasma propagating at +vf away from the plasma surface. The

momentum balance in the IRF is therefore given by,

2I

c

1− βf
1 + βf

= 2γ2fminiv
2
f (2.2)

where βf = vf/c, γf is the relativistic factor, mi is the ion mass and ni is the initial

ion density. Rearranging the above equation we arrive at a quadratic equation in

βf , which when solved for its roots gives,

βf =

√
Ξ

1 +
√
Ξ

(2.3)

where Ξ = I/minic
3, and the ion energy can be given by,

E = mic
2 2Ξ

1 + 2
√
Ξ

(2.4)

The parameter ǫ defines the piston velocity such that βf is dependent both on

incident laser intensity and plasma mass density. The piston velocity and ion

energy are decreasing function of the plasma density and increasing function of

laser intensity. However, an interesting fact is that the ion energy does not depend

on the ion charge. Therefore, the ponderomotive mechanism is well suited for the

acceleration of heavy ions independently on their charge. The important conditions

for an efficient ponderomotive ion acceleration are a reflection of the laser pulse

from the electron density peak and suppression of the energy transfer to electrons.

2.2.2 Structure of the laser piston

When a circularly polarized laser pulse falls normally on an overdense plasma, it

pushes the electrons via ponderomotive force creating a charge separation region.
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To visualize this process, a schematic diagram is presented in Fig. 2.1. The

entire target plasma can be divided in four regions. First, an ion charge region

undergoing coulomb explosion [−zi,−δ], second, an ion sheath [−δ, 0], third, the

electron sheath region [0, zes] and fourth, the undisturbed plasma [z > zes]. In the

region [0, zes], electrons pile up as a sheath in front of the laser to reflect it. With in

this sheath the laser field is evanescent. The dynamics of this sheath in the absence

of any external magnetic field has been presented in [26]. In the region between

0 < z < zes there is an overlap of plasma electrons moving toward the piston and

reflected from it. For ions this region of overlap extends from z = −δ to z = zes.

Assuming the structure to be quasistationary, we have the unperturbed ions with

velocity −vf , arriving to the piston from the undisturbed region. These ions are

decelerated passing from z = zes to z = −δ. They reverse their motion at z = −δ
and are then accelerated in the region [−δ, zes]. These two steps correspond to ion

acceleration. A similar scenario takes place in the region of electron sheath. We

discuss the laser piston by dividing it into two regions of electron and ion sheath.

We further explore the evolution of residual ions in the rear of the ion sheath i.e

the region z < −δ.

A. Electron sheath in an overdense magnetized plasma

We first investigate the structure of the electron sheath layer [0, zes] and the laser

intensity profile with in under the influence of a static axial magnetic field Bs.

The laser fields are evanescent in the electron sheath. The incident and reflected

circularly polarized laser pulse in the electron depletion region (z < 0) is given as

[46],

~Ei =(x̂+ iαŷ)E0exp[−i(ωt− kz)]

~Er =(x̂+ iαŷ)RE0exp[−i(ωt+ kz)] (2.5)

where E0 is the electric field amplitude, R is the reflection coefficient and α equal

to +1 or -1, corresponding to right and left circularly polarized light respectively.
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Figure 2.1: Schematic diagram (not to scale), representing the process of inter-
action of an ultraintense circularly polarized laser with a thick overdense plasma
target. The region [−zi,−δ] represents the ion space charge region undergoing
coulomb explosion, [−δ, 0] represents the ion sheath, in which the ions present
undergo direct radiation pressure acceleration. The region [0, zes] represent the
electron sheath formed due to laser ponderomotive force and beyond zes is the
region of undisturbed plasma.

31



Chapter 2. Ponderomotive Ion Acceleration in dense magnetized laser-irradiated
thick target plasmas

The evanescent laser fields inside the electron sheath is given by,

~ET = (x̂+ iαŷ)ET (z)exp[−i(ωt)], ~BT =
c

iω
∇× ~ET (2.6)

The momentum equation for electrons under the influence of evanescent laser fields

and static longitudinal magnetic field can be written as,

d~p

dt
= −e ~ET −

e

c
(~v × ~BT )−

e

c
(~v × ~Bs) (2.7)

Considering transverse components of Eq.2.7, we obtain the expression for quiver

velocity of the electrons as,

~v⊥ = (x̂+ iαŷ)
aTωc

i(γeω − αωc)
exp[−iωt] (2.8)

where ωc = eBs/mec and aT = eET/meωc is the dimensionless evanescent laser

amplitude. Besides the transverse quiver velocity the electrons also acquire a longi-

tudinal velocity because of an induced longitudinal electric field Ez. The relativistic

factor γe = (1 + p2||/m
2
ec

2 + p2⊥/m
2
ec

2)1/2 where p|| = γemevez and p⊥ = γemev⊥ are

the longitudinal and transverse components of electron momentum. Substituting

for v⊥ from Eq.2.8, the expression for the longitudinal electron velocity takes the

form,

βez =

√

(γ2e − 1)(γe − αΩc)2 − a2Tγ
2
e

γe(γe − αΩc)
(2.9)

where βez = vez/c and Ωc = ωc/ω. In the frame of the double layer, the electrons

in the undisturbed plasma appears to come towards the electron layer and the

ones with in the electron sheath get pushed away towards the undisturbed region

via ponderomotive force. Thus, in this frame, the electron sheath comprises of

two electron streams with opposite directed velocities. Following conservation of

particle flux, the electron continuity equation gives the electron density with in

the sheath as,

ne = 2Zn0γf
βf
βez

(2.10)

where βf = vf/c with vf as the piston velocity, Z is the ion charge, n0 is the

equilibrium ion density and γf is the relativistic factor corresponding to vf . As

the continuity equation describes the transport of a conserved quantity (like energy,
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momentum, mass, charge etc.) the total momentum of all the electrons present at

a given cross section of the electron sheath must remain constant. As the electron

velocity is maximum at z = zes and decreases monotonically as z decreases reaching

a minimum (≈ 0) at z = 0, to conserve momentum the number of electrons

monotonically increases as we move from z = zes to z = 0. This electron sheath

also contains plasma ions. The induced electrostatic field acts on both electrons

and ions with in the sheath. Hence the ion density becomes ni = 2n0γf
βf

βiz
with

βiz = viz/c where viz is the local longitudinal ion velocity. The Poisson’s equation

with modified electron and ion densities given by their equations of continuity can

be written as,
d2φ

dz2
= 8πeZn0γfβf

( 1

βez
− 1

βiz

)

(2.11)

where φ = mec
2/e(γe − 1) is the ponderomotive potential. Using this expression

for the potential and electron velocity from Eq.2.9, we can derive the equation

governing the electron relativistic factor to be given as,

d2γe
dz2

= 2
ω2
pe0

c2
γfβf

( γe(γe − αΩc)
√

(γ2e − 1)(γe − αΩc)2 − a2Tγ
2
e

− γi
√

γ2i − 1

)

(2.12)

where ωpe0 = (4πne0e
2/me)

1/2 is the electron plasma frequency and ne0 = Zn0 is

the electron density. From Eq.2.12 we discover that the evolution of electron rela-

tivistic factor γe also depends on the evanescent laser field and the ion relativistic

factor γi. In the sheath region, as the ions and electrons are moving under same

electrostatic field, the relation between their relativistic factors can be seen as in

[26],

γi(z) = γf − µ(γe(z)− γf ) (2.13)

µ = me/mi (the electron to ion mass ratio). For aT , one has to account for the

wave equation governing the evanescent laser field given by,

d2aT
dz2

=
ω2

c2

( ω2
pe/ω

2

γe − αΩc

− 1− βf
1 + βf

)

aT (2.14)

where ωpe corresponds to the local plasma frequency at a given z with in the

electron sheath. Substituting for electron density from the equation of continuity
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and βez from Eq.2.9, Eq.2.14 takes the form,

d2aT
dz2

= 2
ω2
pe0

c2
γfβf

aTγe
√

(γ2e − 1)(γe − αΩc)2 − a2Tγ
2
e

− ω2

c2
1− βf
1 + βf

aT (2.15)

Equations 2.12, 2.13 and 2.15 together corresponds to the evolution of the electron

relativistic factor γe as well as the evanescent laser field aT . The coupled set of

equations (8) and (11) are solved backwards from z >> c/ωpe0, taking γe = γf+δγ

and δγ, aT (z) << 1. Upon integrating Eqs. 2.12 and 2.15 by multiplying them with

their first derivatives under the limits discussed, we arrive at the initial conditions

as,

daT
dz

∣

∣

∣

z>>c/ωpe0

= −
[

2
ω2

pe0

c2
γf

γf−αΩc
− ω2

c2
1−βf

1+βf

]1/2

aT (2.16)

dδγ

dz

∣

∣

∣

z>>c/ωpe0

= −
[

ω2

pe0

c2
γf

β2

f
(γf−αΩc)2

[

− δγ2

γ2

f

+ a4T

]]1/2

(2.17)

For a given Bs and βf we obtain the initial value of the first derivative of the

evanescent field from Eq. 2.16. In Eq. 2.17 as we do not have any free constants,

δγ can be taken as the same order of magnitude as a2T as in [26]. Using these initial

conditions, we can numerically integrate the coupled set of Eqs. 2.12 and 2.15 for

a given magnetic field and βf . The equations are integrated until the condition,

dγe
dz

∣

∣

∣

z=0
= −2

√

1

Zµ

ωpe0

c

√

γfβf [γ
2
i (0)− 1]1/4 (2.18)

obtained from the continuity of longitudinal electric field is satisfied. Taking this

position as z = 0, the incident amplitude of laser field is can be obtained by the

boundary condition,

(daT
dz

)2∣
∣

∣

z=0
+
ω2

c2
1− βf
1 + βf

a2T (0) = 4
ω2

c2
1− βf
1 + βf

a20 (2.19)

where a0 is the dimensionless laser vector potential in the laboratory frame. Here

we study the process of ion acceleration for both left and right circularly polarized

light i.e. α = -1 and +1 respectively. For the laser field in the sheath to be

evanescent the permittivity of the plasma ǫ = (1 − ω2
peff/ω

2), where ωpeff =

ωpe/
√
γe − αΩc and ωpe is the local electron plasma frequency, has to be negative.
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In case of left circularly polarized (LCP) laser for an overdense plasma we can

choose any value of Ωc or Bs as α = −1 in this case. However, the laser intensity

required to achieve a given βf in this case is higher than that without magnetic

field. For example in case of βf = 0.05, Z = 1, µ = 1/2000 and Ωc = 0.5, a0 = 8.2

for a plasma with density n0/nc = 10, where nc = meω
2/4πe2 is the critical

plasma density. Whereas the required amplitude in the absence of magnetic field

would have been a0 = 7.5. With increase in magnetic field the required incident

laser intensity also increases for LCP. Next we consider right circularly polarized

(RCP) laser light. Here we have a restriction on the choice of Ωc as α = +1 and

the permittivity has to be kept negative for the laser field to be evanescent. For

the same parameters discussed above, the required incident laser pulse amplitude

is a0 = 6.7, which corresponds to nearly 80% of the intensity required without

magnetic field. In Fig. 2.2, the normalized evanescent field aT has been plotted

for both LCP, RCP and Bs = 0. For RCP lasers (i.e.α = +1) ωpeff increases

with application of magnetic field, because in this case the direction of rotation of

electrons due to electric field of the laser pulse is the same as that induced due

to externally applied magnetic field. As a result, the skin depth c/ωpeff decreases

because of which the transmitted laser field in the electron sheath decreases for

a fixed laser intensity. As the laser field falls to zero at a shorter distance in the

electron sheath, the ponderomotive force increases with magnetic field for RCP.

For LCP (i.e.α = −1), the effect is reversed as the electron gyrations induced by

the laser and magnetic field are opposite, hence ωpeff decreases with magnetic field.

This phenomena can be collectively referred to as cyclotron effects. It is tempting

to believe that for Ωc > 0.5 we may achieve the same βf for even lower a0, but in

this case we observe that the electron density at the ion-electron interface reaches

infinity, or the electron wave breaks much before the longitudinal electric field is

balanced. This is an unstable double layer and not suitable for ion acceleration.

Hence, we can conclude that for RCP there is an upper limit of Ωc for a required

βf . We have observed that for higher βf the upper limit of Ωc increases but slowly.

For βf = 0.124 the maximum Ωc = 0.62 which makes the required intensity go

down to 88% of that with Bs = 0. Fig. 2.3 shows the required laser amplitudes for

LCP, RCP and Bs = 0 for different βf . It is clear that using an RCP laser with a

longitudinal magnetic field is advantageous over LCP as a desired ion velocity can

be achieved with relatively smaller incident intensity. Influence of magnetic field
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Figure 2.2: Dimensionless amplitude of evanescent laser field profiles inside the
electron sheath for equilibrium plasma density n0/nc = 10, βf = 0.05 and Ωc = 0.5
for left and right circularly polarized lasers together with the profile in the absence
of magnetic field.
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on thin foil has been reported in [46], where the optimum foil thickness is found

to be sensitive to laser polarization (for LCP lasers it is less than that for RCP).

It was found that LCP lasers are more efficient than RCP ones as they have to

propel a comparatively lighter target. However, in the hole boring mode of ion

acceleration, presented here, target plasma thickness is not a critical parameter.

Unlike [46] the ion velocity is not time dependent and we have a steady state. As

the ponderomotive force is enhanced for RCP lasers due to cyclotron effects, RCP

lasers exert a greater force than LCP leading to higher ion velocity at comparatively

lower intensities which is converse of what is presented in [46]. Fig. 2.4 shows the

ratio of incident intensity for RCP to that required with Bs = 0 for different βf . It

can be seen that as βf increases the required intensity for RCP lasers approach close

to that for Bs = 0. From this we can say that applying a longitudinal magnetic

field is more advantageous for lower βf . However, the corresponding lower βfs

represent ion beams of energies sufficient for processes like fission of Ra226 [47] and

transmutation of N14 [48]. Besides this, they can act as source beams for energy

amplification process described in the next section.

B. Structure of the ion space charge region

In this section we first recollect the model for ion sheath proposed in [26]. Here,

the ion charge separation layer extends with in a small region say [−δ, 0]. The

electrostatic field in this region is the one that is responsible for acceleration of

ions. In the frame of the piston, the ion sheath comprises of incoming and reflected

ions. From the conservation of ion particle flux the ion density here is given in

terms of the ion velocity as,

ni = 2n0γf
βf
βiz

(2.20)

The ion energy conservation with ion kinetic energy Ei(z) = mic
2(γi − 1) at a

given z gives, Ei + Zeφ(z) = mic
2(γf − 1). This gives the value of the potential

jump in this layer as, φ(−δ) = mic
2/Ze(γf − 1), needed to stop and reflect the

ions. The electric field in this region is given as Ez(z) = −dφ(z)/dz. The equation

governing the ion relativistic factor γi = 1/
√

1− v2i /c
2 in the frame of the laser

piston moving with velocity vf is derived from the ion equation of continuity and
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Figure 2.3: Dimensionless incident laser amplitudes required for different βf for
the case of left and right circularly polarized light and Bs = 0. The initial plasma
density n0/nc = 10 and Ωc = 0.5.

Figure 2.4: Dimensionless incident laser amplitudes required for different βf for
the case of left and right circularly polarized light and Bs = 0. The initial plasma
density n0/nc = 10 and Ωc = 0.5.
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Poisson’s equation is,
d2γi
dz2

=
2ω2

piγf

c2
βf
βiz

(2.21)

where ωpi = (4πn0Z
2e2/mi)

1/2 is the ion plasma frequency. The first integral of

Eq.2.21 reads as,
dγi
dz

=
2ωpi

c

√

γfβf (γ
2
i − 1)1/4 (2.22)

The longitudinal electric fieldEz = (mic
2/e)dγi/dz can be determined from Eq.(18).

The local ion velocity in lab frame viL can be obtained by relativistic velocity

transformation as viL = (vi + vf )/(1 + vivf/c
2). Upon integration of Eq.2.22 the

thickness of the ion space charge is found to be vf/3ωpi extending from say z = −δ
to z = 0 moving together with the electron sheath with constant velocity vf with

the ion density going to infinity at z = −δ and the longitudinal electric field to

zero. In this treatment they have ignored the ion region of constant density that

extends beyond the ion sheath towards the incoming laser. This ion region under-

goes coulomb explosion and its density continues to decrease uniformly with time

with its origin fixed at the initial position of the plasma (say −zi). To analyze the

coulomb explosion of ion space charge region we transform from Eulerian variables

(z, t) to Lagrangian variables (z0, τ), where

τ = t, z0 ≡ z −
∫ τ

0

dτ ′v(z0, τ
′) (2.23)

The space and time derivatives transform according to,

∂

∂z
≡
[

1 +

∫ τ

0

dτ ′
∂

∂z0
v(z0, τ

′)
]−1 ∂

∂z0
(2.24)

and,
∂

∂t
=

∂

∂τ
− v(z0, τ)

[

1 +

∫ τ

0

dτ ′
∂

∂z0
v(z0, τ

′)
]−1 ∂

∂z0
(2.25)

In terms of the Lagrangian variables (z0, τ), the force equation for ions become,

∂

∂τ
v(z0, τ) =

Ze

mi

E(z0, τ) = ω2
piz0 (2.26)
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The initial condition for the electric field in this region has been taken to be linearly

increasing with distance. The equation of continuity can be expressed as,

∂

∂τ

(

ni(z0, τ)
[

1 +

∫ τ

0

dτ ′
∂

∂z0
v(z0, τ

′)
])

= 0 (2.27)

The solution of equations 2.26 and 2.27 are,

v = ω2
piz0τ =

ω2
pizt

[

1 +
ω2

pit
2

2

] (2.28)

and,

ni(z, t) =
n0

[

1 +
ω2

pit
2

2

] (2.29)

where n0 is the equilibrium ion density. From Eqs. 2.28 and 2.29 we see that

the velocity of ions increases linearly with distance, with ion velocity zero at z =

−zi and the ion density decreasing with time. Before the start of acceleration

process the ion space charge region extends upto the distance zd(say) to balance

the ponderomotive force to electrostatic force, which is given by,

zd =
Emax

4πen0

(2.30)

Where Emax is computed numerically from Eq.(14). In an overdense plasma the

response time of plasma electrons to the laser fields is less than one laser period.

In case of linear polarization with normal incidence, the electrons attain a drift

velocity caused by v×Blaser which eludes steady state solution. For ion accelera-

tion, the choice of circular polarization rests on its advantage that the oscillatory

part of v×Blaser force is zero. The plasma electrons respond to the laser field in

the order of few plasma periods. For concreteness we can assume that in overdense

plasmas the electron sheath is pushed upto a steady state velocity vf in one laser

time period tL as the results are insensitive to this choice. Beyond this the laser

piston starts to move with a constant velocity vf . Due to coulomb explosion the

ions reaching z = −δ from the side of incident laser attain very high velocities.

As the ion density rapidly increases at this point they tend to loose their velocity

till it becomes equal to vf . The complete induced electrostatic field profile can be
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Figure 2.5: Induced longitudinal electric field at different times for n0/nc = 10,
βf = 0.05, Ωc = 0.5 and α = +1. λ is the laser wavelength.

obtained by adding the fields with in the electron sheath and the part derived from

coulomb explosion of ions in the region [−zi,−δ] and the ion sheath [−δ, 0]. We see

that this electric field first linearly increases in the region [−zi,−δ], then takes a

jump in [−δ, 0]. The jump becomes more prominent at the point of reflection with

time as the coulomb exploding ions and the reflected ions tend to get deposited

at this point from opposite sides leading to increase in ion density. Finally the

electric field decays down to zero in [0, zes]. The complete electrostatic field profile

is shown at different times in Fig. 2.5. Direct ion acceleration via laser piston

has been described using the concept of reflection of incoming ions from the ion

sheath. In the piston frame the plasma ions approach the ion sheath with velocity

−vf and decelerates as it progresses upstream before getting reflected at z = −δ.
These ions never overshoot the ion sheath. However, if we have an incoming test

ion towards the laser pulse, it will overshoot the ion sheath and move into the

region z < −δ, further experiencing the decelerating field. The initial velocity of

the test ion determines whether it will be reflected from somewhere in the region

[−zi,−δ] or will be lost in the region [z < −zi]. The equation of motion of ions

entering the region [−zi,−δ] can be described by the force equation,
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dpi
dt

= eE(z) (2.31)

where E(z) = 4πeni(t)z with ni(t) given by Eq. 2.29. Substituting for pi Eq. 2.31

takes the form,
d2z

dt2
=

4π2µn0z

(1 + 2π2µn0t2)

[

1−
(dz

dt

)2]3/2

(2.32)

Solution of Eq. 2.32 gives the trajectory of incoming test ion. The initial position at

which the test ion enters the region undergoing coulomb explosion is z = −δ′(say)
which moves ahead with time with velocity vf such that at any time t, δ′ =

δ + vf (t − tL). At t = tL, δ′ = δ. When the test ion enters this region at time

tL it had already lost kinetic energy equal to mic
2/e(γf − 1). With the remaining

velocity it continues to experience further deceleration till it comes to rest. If the

ion continues to have some residual velocity at z = −zi it will be lost, otherwise

will be reflected and chase δ′. Upon reflection the ion has to travel a longer distance

as the laser piston moves ahead with velocity vf . The velocity of the reflected ion

at the time at which the two trajectories coincide is the velocity with which it

re-enters the laser piston. Upon entering the laser piston its further gains energy

equal to mic
2/e(γ′f − 1), where γ′f is the ion relativistic factor in the lab frame.

Fig. 2.6 shows the trajectories of test ion with velocities −0.25c,−0.20c and −0.15c
together with that of the laser piston for n0/nc = 10, µ = 1/2000,Ωc = 0.5, Z = 1

and βf = 0.05. At t = tL, the point at which the test ion overshoot the plasma

ion sheath is given by δ′ = zd − vf/3ωpi, where zd is given by Eq. 2.30. The point

of intersection of the ion beam and laser piston trajectories determines the time

at which the test ion re-enters the piston. Fig. 2.7 shows the velocities of this

ion with time. It can be seen that at the time of intersection the magnitude of

velocities of the test ion has increased than what it was initially. Upon moving

through the piston this ion further gain energy equal to the energy achieved by

plasma ions undergoing direct acceleration. We find that the kinetic energy of this

incoming test ion gets enhanced by this process or in other words the ion space

charge region behind the ion sheath acts as an amplifier to an incoming ion. The

kinetic energy of test ion of velocities −0.25c,−0.20c and −0.15c are 33.52, 21.07

and 11.7 MeV respectively corresponding to which the reflected ion energies are

87.82, 64.46 and 44.50 MeV. For given plasma parameters and piston velocity there

is a maximum velocity vbmax that an incoming test ion can have to get reflected

42



Chapter 2. Ponderomotive Ion Acceleration in dense magnetized laser-irradiated
thick target plasmas

Figure 2.6: Trajectories of incoming test ion with different velocities with in the
ion space charge region undergoing coulomb explosion together with that of the
laser piston. The laser piston moves ahead with a constant velocity because of
which the test ion has to traverse a longer distance to enter the piston region upon
reflection.

Figure 2.7: Velocity profile of test ion incident with different initial velocities with
in the ion space charge region with time. The graphs are plotted upto the time at
which the reflected ion re-enter the laser piston.
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from the coulomb exploding space charge region. This maximum ion velocity is

determined numerically from Eq.2.32. The ion with velocity vbmax are reflected

from z = −zi. In order to derive a relationship between the incident and reflected

velocity of incoming test ion, we first note the relative velocity of the incoming

ion and the double layer. The relative velocity V can be obtained by relativistic

velocity addition as,

V =
vb + vf
1 + vbvf

(2.33)

where vb is the incoming test ion velocity in the lab frame. If viL is the velocity of

reflected test ion in lab frame, then, in the frame of the double layer, conservation

of momentum gives,

γfmiV = γfmi
viL − vf
1− viLvf

(2.34)

which gives,

viL =
V + vf
1 + V vf

(2.35)

In the non-relativistic limit viL = vb + 2vf . Fig. 2.8 shows maximum velocity

magnitude |vbmax| that an incoming test ion can have for different βf keeping initial

ion density constant. Higher β′fs represent higher incident laser intensity. We

observe that for higher laser intensities |vbmax| increases. Fig. 2.9 shows reflected

ion velocities for different |vbmax|.

2.3 Conclusions

In this chapter we have presented a theory for laser induced ion acceleration in the

presence of a longitudinal static magnetic field and have explored the property of

ion space charge region to amplify the velocity of incoming ion beams. The region

of ion space charge undergoing coulomb explosion has been discussed. It has been

found that the density of this region decreases uniformly with time.

Under the influence of a static longitudinal magnetic field, the electron sheath gets

significantly influenced. The observations for RCP and LCP light are completely

opposite. While LCP light penetrates to a larger distance inside the sheath, RCP

light goes to a relatively smaller distance. The rate at which the field of RCP light

falls inside the electron sheath is faster than that of LCP, throwing light on the fact

that ponderomotive force is enhanced due to cyclotron effects in the former case.
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Figure 2.8: Maximum velocity magnitude the incoming test ion can have for dif-
ferent βf keeping initial ion density constant. n0/nc = 10, µ = 1/2000,Ωc = 0.5
and Z = 1.
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Figure 2.9: Reflected ion velocities for different |vbmax|. n0/nc = 10, µ =
1/2000,Ωc = 0.5 and Z = 1.
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Because of this effect the required laser intensity to achieve a given ion velocity

via direct laser acceleration goes down. However, the advantage of this property

remains limited only till small ion velocities. With aiming to achieve higher ion

velocities the required intensities approach closer to that required without magnetic

fields. Also it has been observed that for a given ion velocity, there is a upper

limit for the magnetic field in case if RCP light. As we go beyond this limit, the

electron sheath beaks before the radiation pressure is balanced by the electrostatic

field. Under such circumstances there will not be any stable double layer, which is

essential for this type of acceleration.

The longitudinal magnetic field discussed in this paper can either be externally

applied or self generated. Circularly polarized light induces electron gyrations in

the plane perpendicular to the direction of propagation. If there is inhomogeneity

in laser intensity along transverse direction, the radial ponderomotive force will

generate radial density gradient. The electron gyration and radial density gradient

will together produce azimuthal current which will induce strong axial magnetic

field. By this method, at ultra-relativistic intensities ωc ≈ ω or Ωc → 1 can be

achieved, which will suffice our requirement to observe the phenomena described

in this paper. A similar description is also given in [46].

Direct ion acceleration has been attributed only to the laser piston comprising of

ion and electron sheath. The ions accelerated in this case are the ones reflected from

the other end of the ion sheath. Beyond this ion sheath there is an ion region which

undergoes coulomb explosion, but it does not play any role in direct acceleration

process. However, with introduction of incoming test ion, this region displays its

amplification properties. Incoming ion significantly amplify their energy by passing

through this region. If we have two plasma targets, on which laser pulse falls in

opposite directions, then by appropriately timing the interaction of lasers with the

target plasma, we can make ion beams obtained from direct RPA from one of the

targets as an incoming ion beam source for the other. This ion beam will undergo

velocity amplification by the coulomb exploding part of the other target. Such

multi-target multistage processes can significantly enhance ion energies. In [37],

multistage ion acceleration was described, which to be realized required longer

laser pulse length. Here we have presented a different method of multistage ion

acceleration involving more than one target.

The most likely multi-dimensional effect that will be of interest in this area is the
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Rayleigh-Taylor instability. In the presence of a magnetic field, the RT instability

may be subject to some stabilizing effects. Detailed analysis has been presented

in later chapter.

47



Bibliography

[1] J. Denavit, Phys Rev. Lett. 69, 3052 (1992).

[2] S. C. Wilks, W. L. Kruer, M. Tabak and A. B. Langdon, Phys. Rev. Lett. 69,

1383 (1992).

[3] Esirkepov, T. and Borghesi, M. and Bulanov, S. V. and Mourou, G. and

Tajima, T., Phys. Rev. Lett. 92, 17500 3 (2004).

[4] Dan Haberberger, Sergei Tochitsky, Frederico Fiuza, Chao Gong, Ricardo A.

Fonseca, Luis O. Silva, Warren B. Mori and Chan Joshi, Nature Phys. 8, 95

(2012).

[5] G. Mourou and D. Umstadter, Phys. Fluids B 4, 2315 (1992).

[6] G. Mourou, C.P.J. Barty and M.D. Perry, Phys. Today 51, 22 (1998).

[7] V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Mat-

suoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou and K. Krushelnick,

Opt. Express 16, 2109 (2008).

[8] Hegelich B. M., Albright B. J., Cobble J., Flippo K., Letzring S., Paffett M.,

Ruhl H., Schreiber J., Schulze R. K. and FernÃąndez J. C., Nature 439, 441

(2006).

[9] Ledingham K. J., Phys. D 37, 2341 (2004).

[10] Kodama R., Nature 412, 2341 (2004).

[11] Roth M., Phys. Rev. Lett. 86, 436 (2001).

[12] Temporal M., Honrubia J. J. and Atzeni S., Phys. Plasmas 9, 3098 (2002).

[13] N. Naumova, T. Schlegel, V. T. Tikhonchuck, C. Labaune, I. V. Sokolov and

G. Mourou, Phys. Rev. Lett. 102,025002(2009).

[14] Yin L., Albright B. J., Hegelich B. M. and Fernandez J. C., Laser and Particle

Beams 24, 291 (2006).

48



Bibliography

[15] Xiaomei Zhang, Baifei Shen, Xuemei Li, Zhangying Jin, Fengchao Wang and

Meng Wen, Phys. Plasmas 14, 123108 (2007).

[16] P. Mora, Phys. Rev. Lett. 90,185002 (2003).

[17] V. Yu. Bychenkov, V. N. Novikov, D. Batani, V. T. Tikhonchuk, and S. G.

Bochkarev, Phys. Plasmas 11, 3242 (2004), DOI:10.1063/1.1738649.

[18] S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett,

M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas

8, 542 (2001), DOI:10.1063/1.1333697.

[19] Y. Sentoku, T. E. Cowan, A. Kemp, and H. Ruhl, Phys. Plasmas 10, 2009

(2003), DOI:10.1063/1.1556298.

[20] A. J. Kemp and H. Ruhl, Phys. Plasmas 12, 033105 (2005),

DOI:10.1063/1.1856933.

[21] Gibbon Paul, Phys. Rev. E 72, 026411 (2005).

[22] Macchi Andrea, Cattani Federica, Liseykina, Tatiana V. and Cornolti Fulvio

Phys. Rev. Lett. 94, 165003 (2005).

[23] Silva Luís O., Marti Michael, Davies Jonathan R., Fonseca Ricardo A., Ren

Chuang, Tsung Frank S. and Mori Warren B. Phys. Rev. Lett. 92, 015002

(2004).

[24] Amol R. Holkundkar and N. K. Gupta, Phys. Plasmas 15, 123104 (2008).

[25] A P L Robinson, P Gibbon, M Zepf, S Kar, R G Evans and C Bellei Plasma

Physics and Controlled Fusion 51, 024004 (2009).

[26] T. Schlegel, N. Naumova, V. T. Tikhonchuck, C. Labaune, I. V. Sokolov and

G. Mourou, Phys. Plasmas 16, 083103 (2009).

[27] Yan X. Q., Lin C., Sheng Z. M., Guo Z. Y., Liu B. C., Lu Y. R., Fang J. X.

and Chen J. E., Phys. Rev. Lett. 100, 135003 (2008).

[28] V K Tripathi, C S Liu, X Shao, B Eliasson and R Z Sagdeev, Plasma Physics

and Controlled Fusion 51, 024014 (2009).

49



Bibliography

[29] Macchi, Andrea, Veghini, Silvia and Pegoraro, Francesco, Phys. Rev. Lett.

103, 085003 (2009).

[30] Nishihara K, Amitani H, Murakami M, Bulanov S V and Esirkepov T Z (2001),

High energy ions generated by laser driven Coulomb explosion of cluster, Nucl.

Instrum. Methods Phys. Res. A 464, 98-102.

[31] Bychenkov V Yu and Kovalev V F (2005), Coulomb explosion in a cluster

plasma, Fiz. Plazmy 31, 203-8.

[32] Kovalev V F, Bychenkov V Y and Mima K (2007), Quasimonoenergetic ion

bunches from exploding microstructured targets, Phys. Plasmas 14, 103110.

[33] Kovalev V F, Popov K I, Bychenkov V Y and Rozmus W (2007), Laser trig-

gered Coulomb explosion of nanoscale symmetric targets, Phys. Plasmas 14,

053103.

[34] Esirkepov T Zh, Bingham R, Bulanov S V, Honda T, Nishihara K and Pego-

raro F (2000), Coulomb explosion of a cluster irradiated by a high intensity

laser pulse, Laser Part. Beams 18, 503-6.

[35] Xiaomei Zhang, Baifei Shen, M. Y. Yu, Xuemei Li, Zhangying Jin, Fengchao

Wang and Meng Wen, Phys. Plasmas 14, 113108 (2007).

[36] T. V. Liseikina and A. Macchi, Applied Physics Lett. 91, 171502 (2007).

[37] Xiaomei Zhang, Baifei Shen, Xuemei Li, Zhangying Jin, and Fengchao Wang,

Phys. Plasmas 14, 073101 (2007) ; doi:10.1063/1.2746810.

[38] Predhiman Kaw and John Dawson, Physics of Fluids 13, 472 (1970).

[39] Lai C. S., Phys. Rev. Lett. 36, 966 (1976)

[40] Cattani F., Kim A., Anderson D. and Lisak M., Phys. Rev. E 62, 1234 (2000).

[41] Shen Baifei and Xu Zhizhan, Phys. Rev. E 64, 056406 (2001).

[42] Sheng, Z. M., and J. Meyer-ter-Vehn. "Inverse Faraday effect and propagation

of circularly polarized intense laser beams in plasmas." Physical Review E 54,

no. 2 (1996): 1833.

50



Bibliography

[43] Karpman, V. I., and A. G. Shagalov. "The ponderomotive force of a high-

frequency electromagnetic field in a cold magnetized plasma." Journal of

Plasma Physics 27 (1982): 215-224.

[44] Hertel, Riccardo. "Theory of the inverse Faraday effect in metals.“Journal of

magnetism and magnetic materials”303, no. 1 (2006): L1-L4.

[45] H. Cai, W. Yu, S. Zhu, and C. Zhou, Phys. Rev. E 76, 036403 (2007).

[46] Anamika Sharma, C. S. Liu and V. K. Tripathi, Phys. Plasmas 17, 013101

(2010) ; doi:10.1063/1.3278600.

[47] R. C. Jensen and A. W. Fairhall, Phys. Rev. 109, 942(1958).

[48] D. B. Duncan and J. E. Perry, Phys. Rev. 82, 809(1951).

51



3
Self consistent model for ponderomotive

ion acceleration of laser irradiated two

species dense target plasmas

3.1 Introduction

The ability of high intensity lasers to produce energetic ions have been of enor-

mous interest as they can generate nearly monoenergetic ion beams at very short

distance [1, 2] and its applications ranging cancer research to inertial fusion [3,

4, 5, 6, 7, 8]. Chapters 1 and 2 introduced ion acceleration mechanisms like

TNSA [9, 10, 11, 12, 13], “Light Sail”radiation pressure acceleration (LS-RPA)

[14, 15, 16, 17, 18, 19] and Hole Boring radiation pressure acceleration (HB-

RPA)[8, 2, 20, 21, 22, 23, 24, 25, 26, 27]. Rayleigh Taylor (RT) instability in

the process of LS-RPA has been studied in [18, 19]. The central motivation to

study this area is to develop high energy ion beam sources with available lasers.

A lot of effort is being given to develop techniques to increase ion kinetic energies

keeping the incident laser intensity as constant. Previous chapter discussed the

effect of a static longitudinal magnetic field on this process. It was found that

ponderomotive force was enhanced for a right circularly polarized (RCP) light as

the direction of rotation of electrons in the electron sheath of the laser piston under

the influence of laser fields and the externally applied magnetic field are the same.

This leads to increase in kinetic energies of obtained ion beams. On the other hand,

left circularly polarized (LCP) light had the opposite effect because the electron
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quiver motion and cyclotron motion are in opposite directions. Thus by coupling

magnetic field to the laser field can generate higher energy ions. Recently there has

been an increasing interest in laser ion acceleration with mixed target plasmas. In

this case the target plasma is composed of more than one ion species with different

masses. In [28, 29, 30] a plasma target composed of two ion species was analyzed.

It was found that the velocity of the heavy ion obtained in this case was higher than

what would have been achieved with a target composed of only the heavy ions with

laser of the same intensity and plasma with same number density. Hence, mixing

the target plasma with lighter ions prove to be advantageous. In [29], the study

was performed using different number densities of the two species. It was found

that the acceleration was more efficient when the number density of the heavier

species was less. In [30], the treatment of this process was performed taking the

mass density of the composite target instead of number density. They concluded

that the piston velocity was inversely proportional to the square root of the mass

density of the composite target. So far the treatment for laser ion acceleration for

mixed target plasma has been limited to conservation laws, i.e. conservation of

energy and momentum. In [26, 27] a complete analytical treatment of the laser

piston was given for a single species target. In this chapter, we present a detailed

analytical treatment of the steady state regime of ion acceleration in the laser pis-

ton composed of two ion species. In the analytical model we describe the internal

structure of the laser piston as well as the coulomb exploding ion region lying be-

hind the piston using a two fluid model. The entire accelerating electrostatic field

has been described. We emphasize the need for such investigation by performing

the stability analysis of the accelerating structure using the information obtained

from this treatment. Further the evolution of coulomb exploding part of ion space

charge region with different charge states of the plasma ion species has been de-

scribed. The dependence of reflection of incoming ion beam from the coulomb

exploding part on the charge state of the beam species has also been explored.
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3.2 Acceleration process with two ion species

Here we first recollect the expression for the steady state velocity attained by the

charge separation layer or the laser piston for a two ion species. In the reference

frame of the piston moving with velocity vf = βfc, i.e. the instantaneous rest

frame (IRF), the laser intensity turns out to be I = I0(1− βf )/(1 + βf ) where I0
is the incident laser intensity in the lab frame. In the IRF, all the plasma ions

appear to approach the piston with velocity vf . Making the assumption that in

the steady state all the ions are reflected from the laser piston, the conservation of

momentum gives,
I0
c

1− βf
1 + βf

= γ2fβ
2
f

∑

i

mini (3.1)

where the subscript “i”refers to the number of ion species, m and n are the ion

mass and number density. The piston velocity thus obtained from Eq. 3.1 is,

βf =

√
Ξ

1 +
√
Ξ

(3.2)

with Ξ = I0/c
3
∑

imini. The piston velocity thus can be seen as a function of

the incident laser intensity and the total mass density of the target plasma. The

velocity of the reflected ion can be obtained in the lab frame by relativistic velocity

transformation as viL = 2vf/(1+β
2
f ) and the corresponding kinetic energy is given

as,

Γ = mic
2
[ 2Ξ

1 +
√
Ξ

]

(3.3)

The calculations discussed so far had not analyzed the basic mechanism of acceler-

ation of these ions. Also it has not provided the details of the structure of the laser

piston. The structure of the laser piston for single ion species has been discussed

in detail in [26] and with a longitudinal magnetic field in [27]. In the following

work, we present a detailed description of the ion space charge and electron sheath

for a two ion species target. Studying the ion acceleration phenomena keeping the

total ion number density constant and changing the number density ratio of the

two species is found to yield interesting results.
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3.3 Ion space charge for a two species target

We have seen in [26, 27] that because of different response times of ions and elec-

trons, the ion sheath lags behind the electron sheath. In case of two species plasma,

both the ion species because of their different masses will respond to the induced

electric field at different time scales. So, instead of a double layer, the laser piston

will comprise of a triple layer in this case. A schematic diagram of the acceleration

process for two species target has been presented in Fig.3.1. It emphasizes on the

different regions with in the target during the interaction of laser with the target

plasma. In case of a two species target, the ion separation layer can be studied by

dividing it into three parts. First, the region [−δl, 0], which comprises of both the

ion species. Second, is the region [−δh,−δl] where primarily the heavier species

are present and third, the region undergoing coulomb explosion comprising of both

the ion species extending from z = −zi to z = −δh.

3.3.1 Mixed species ion sheath

We first investigate the ion sheath comprising of both the species in the region

[−δl, 0]. As the ion species are massive as compared to the electrons, we neglect

their quiver motion due to the laser fields. The longitudinal electric field, induced

due to charge separation are the ones that accelerate the ions. In the frame moving

with the laser piston, the ion species in the undisturbed plasma appear to come to-

wards the sheath and the ones accelerated by the electrostatic field appear to move

outward towards the undisturbed plasma gaining velocity. The conservation of ion

particle flux and the continuity equation yields a relation between ion density and

velocity for both the species. For incoming ions, we have n−l (z)v
−
lz = −nl0γfvf and

n−h (z)v
−
hz = −nh0γfvf where n and v represents ion density and velocity respec-

tively and the subscript l and h corresponds to the lighter and heavier species. nl0

and nh0 are the initial ion number density of both the species. vf is the velocity

of the charge separation layer and γf is the relativistic factor corresponding to

vf . For the ions moving towards the undisturbed plasma a similar relation gives

n+
l (z)v

+
lz = nl0γfvf and n+

h (z)v
+
hz = nh0γfvf . Taking consideration for incoming

and outgoing ions of both species, their density with in the sheath can be written
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Figure 3.1: Charge separation layer maintained by the radiation pressure of the
incident laser. The blue curve represent heavy ions, red represent light ions and
black curve refers to electrons. The region [0, zes] represents the electron sheath.
The region [−δl, 0] is an ion sheath comprising of both the light and heavy ion
species. [−δh,−δl] comprises primarily of the heavy ion species and in the region
[−zi,−δh] the ions are undergoing coulomb explosion. z > zes is the region of
undisturbed plasma.
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as,

nl(z) = 2nl0γf
βf
βlz

; nh(z) = 2nh0γf
βf
βhz

(3.4)

As both the ion species are moving in the same potential, ion energy conservation

gives,
KEl + Zleφ(z)

mlc2
=
KEh + Zheφ(z)

mhc2
= γf − 1 (3.5)

where KEl and KEh are the local kinetic energies of lighter and heavier ion species

respectively. ml, mh, Zl and Zh are the mass and charge of the ions and φ(z) is

the local electrostatic potential with in the sheath. Under this consideration, the

relation between the γfactors of both the ion species can be derived as,

mlc
2

Zle
(γf − γl(z)) =

mhc
2

Zhe
(γf − γh(z)) (3.6)

To determine the electrostatic field Ez, the Poisson’s equation gives,

dEz

dz
= 4πZlenl(z) + 4πZhenh(z) (3.7)

The electrostatic potential φ(z) follows the relation Zleφ(z) = mlc
2(γf − γl(z)).

Hence substituting for Ez = −dφ/dz gives,

ZleEz = mlc
2dγl
dz

(3.8)

Substituting Eq.3.8 in Eq.3.7 and using Eq.3.4 , we arrive at,

d2γl
dz2

= 2
ω2
pl

c2
γfβf

( 1

βlz
+
Zhnh0

Zlnl0

1

βhz

)

(3.9)

where βlz = (1− 1/γ2l )1/2 and ωpl = (4πnl0Z
2
l e

2/ml)
1/2. To solve this equation, we

require γl and it’s first derivative at the point of reflection of the lighter ions i.e.

at z = −δl. At this point γl = 1. For the first derivative we integrate the above

equation by first multiplying it with dγl/dz. The first integral obtained is,

dγl
dz

=
[

4
ω2
pl

c2
γfβf

[
√

γ2l − 1 +
nh0mh

nl0ml

√

γ2h − 1
]]1/2

(3.10)
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From this relation we can obtain the profile of Ez within the sheath in the region

[−δl, 0] composed of both species of ions. At the boundary of reflection of lighter

ions (z = −δl), the electric field can be obtained by putting γl = 1 which turns

out to be,

Ez(−δl) =
mlc

2

Zle2

[

4
ω2
pl

c2
γfβf

nh0mh

nl0ml

√

γ2h − 1
]1/2

(3.11)

At z = −δl the heavier ions still has got residual velocity in the negative direction.

As a result of this, these heavier species overshoot the mixed ion sheath and un-

dergo further deceleration forming another sheath behind z = −δl comprising of

only the heavier species. The velocity with which these ions enter the heavy ion

sheath is given by,

βhz(−δl) =
(

1− 1

γ2h(−δl)
)1/2

(3.12)

where,

γh(−δl) = γf −
Zhml

Zlmh

(γf − 1) (3.13)

3.3.2 Heavier species ion sheath

The heavier species enter into this region further experiencing deceleration before

getting reflected at z = −δh. The heavier ion density goes to infinity at the point

of reflection. The longitudinal electric field in this region is given by Ez = −dφ/dz
where φ = mhc

2/Zhe(γf − γh(z)). Here, Poisson’s equation together with the

longitudinal electric field can be written as,

d2γh
dz2

= 2
ω2
ph

c2
γf
βf
βhz

(3.14)

where βhz = (1 − 1/γ2h)
1/2 and ωph = (4πnh0Z

2
he

2/mh)
1/2. The first integral of

Eq.3.14 read as,
dγh
dz

=
2ωph

c

√

γfβf (γ
2
h − 1)1/4 (3.15)

The boundary condition at z = −δh required to solve Eq. 3.14 is γh(−δh) = 1 and

dγh/dz|z=−δh = 0. Solving Eq. 3.14 will give the density and velocity profile of

the heavier species together with the longitudinal electric field. The longitudinal

58



Chapter 3. Self consistent model for ponderomotive ion acceleration of laser
irradiated two species dense target plasmas

electric field in this region is given by,

Ez[−δh,−δl] =
mhc

2

Zhe

dγh
dz

(3.16)

The boundary −δl can be determined by equating the heavier ion velocity obtained

from Eq. 3.14 to Eq. 3.12. Using this we can also numerically compute the the

thickness of the heavier ion sheath. Fig.3.2 shows the ion density profiles in the

sheath for three different initial number density ratios (nh0/nl0) of the ions viz.

1/9, 3/7 and 1 with βf = 0.2 and n0/nc = 10, where n0 is the total initial ion

number density and nc = meω
2/4πe2 is the critical density. We must note that

the ion sheath thickness for heavier species is greater than that for the lighter ones

and the separation between the two ion sheaths decreases with increasing ratio.

Fig.3.3 shows the velocity profile of the accelerated C6+ and H+ ions in the frame

of the laser piston with βf = 0.2 and different nh0/nl0. As the zone responsible

for acceleration of ions comprises of two distinct sheath, we can say that there is a

jump in electrostatic potential at z = −δl. Fig.3.4 shows the electrostatic potential

in the sheath. The jump at z = −δl was also observed in the PIC simulations

of [28]. Thus, this treatment gives an understanding for such occurrence in the

electrostatic field profile.

3.3.3 Coulomb exploding ion space charge region

In order to obtain analytical estimates of the physical processes that are involved in

the ion space charge region behind the sheaths, i.e. [−zi, δh], we adopt a two-fluid,

cold ion model. Instead of Eulerian coordinates z, t we use Lagrangian coordinates

z0α, τ , where,

τ ≡ t; z0α ≡ zα −
∫ τ

0

dτ ′vα(z0α, τ
′) (3.17)

and α refers to the type of ion species under consideration (light and heavy in this

case). The space and time derivatives transform according to,

∂

∂zα
≡
[

1 +

∫ τ

0

dτ ′
∂

∂z0α
vα(z0α, τ

′)
]−1 ∂

∂z0α
(3.18)
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Figure 3.2: Density profiles of the ion species in the laser piston for n0/nc = 10 and
βf = 0.2. The green curves represent heavier ions (C6+) and blue curves represent
lighter ions (H+). (a) shows the ion sheaths for density ratio nh0/nl0 = 1, (b) is
for nh0/nl0 = 3/7 and (c) for nh0/nl0 = 1/9. λ here is the laser wavelength.
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and,
∂

∂t
=

∂

∂τ
− vα(z0α, τ)

[

1 +

∫ τ

0

dτ ′
∂

∂z0α
vα(z0α, τ

′)
]−1 ∂

∂z0α
(3.19)

The force and continuity equation for both the species can be written in Lagrange

coordinates as,

∂

∂τ
vα(z0α, τ) =

Zαe

mα

E(z0α, τ) (3.20)

∂

∂τ

(

nα(z0ατ)
[

1 +

∫ τ

0

dτ ′
∂

∂z0α
vα(z0α, τ

′)
])

= 0 (3.21)

Solutions of the Eqs.[3.20-3.21] for the light and heavy ions come out to be,

vl =
ω2
plzt

[

1 +
ω2

pl
t2

2

(

1 + Zhnh0

Zlnl0

)]

[

1 +
Zhnh0

Zlnl0

]

(3.22)

vh =
ω2
phzt

[

1 +
ω2

ph
t2

2

(

1 + Zlnl0

Zhnh0

)]

[

1 +
Zlnl0

Zhnh0

]

(3.23)

nl(z, t) =
nl0

[

1 +
ω2

pl
t2

2

(

1 + Zhnh0

Zlnl0

)] (3.24)

nh(z, t) =
nh0

[

1 +
ω2

ph
t2

2

(

1 + Zlnl0

Zhnh0

)] (3.25)

In case of a single ion species we saw in [27] that the velocity was dependent

on initial ion density, z and t, whereas here, in case of mixed target, we see that

besides these quantities the ratio of the equilibrium densities as well as ratio of

charges of both the species play a role in the evolution of this structure. The time

evolution of the number density of both the species normalized to their equilibrium

density is shown in Fig.5.5 for different ion charge ratio. It can be seen that the

density of the heavier species (carbon in this case) goes down slowly in time than

that of lighter ones (Hydrogen). Also with the increase in charge on carbon i.e.

C6+, the rate of decrease of its density also increases.
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Figure 3.3: Velocity profiles of the ion species in the laser piston in the piston
frame for n0/nc = 10 and βf = 0.2. The green curves represent heavier ions (C6+)
and blue curves represent lighter ions (H+). (a) shows the local ion velocities with
in the piston for density ratio nh0/nl0 = 1, (b) is for nh0/nl0 = 3/7 and (c) for
nh0/nl0 = 1/9.
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Figure 3.4: Electrostatic potential within the laser piston for n0/nc = 10 and
βf = 0.2 for different ratios of ion species.
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Figure 3.5: Time evolution of the number density of both the ion species normalized
to their equilibrium densities. Blue curves represent carbon ions and green curves
represent hydrogen. (a) shows the time evolution for C+ and H+, whereas (b) is
for C6+ and H+.
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3.4 Electron sheath for a two ion species target

To study the electron sheath in steady state, we consider the evanescent laser fields

with in the sheath. The evanescent electric and magnetic fields are given by,

~ET = (x̂+ iŷ)ET (z)exp[−iωt]; ~BT =
c

iω
∇× ~ET (3.26)

The electron sheath comprises of all the three species, i.e. electrons and the two

ion species. As the mass of the ion species are very high as compared to that

of electrons, their transverse motion due to the evanescent laser fields can be

neglected. It is only the longitudinal electrostatic field that acts upon these ions.

The momentum equation describing the electrons under the influence of evanescent

laser fields can be written as,

d~p

dt
= −e ~ET −

e

c
~ve × ~BT (3.27)

where ~p is the electron momentum and ~ve is the electron velocity. To determine

the electron quiver velocity, the transverse component of the electron momentum

equation gives,

~ve⊥ = (x̂+ iŷ)
aT c

iγe
exp[−iωt] (3.28)

where aT = eET/meωc is the dimensionless evanescent field amplitude, γe = (1 +

p2⊥/m
2
ec

2+p2||/m
2
ec

2)1/2 is the electron relativistic factor and p|| = γemevez and p⊥ =

γemeve⊥ are the longitudinal and transverse components of the electron momentum

with vez as the longitudinal electron velocity due to the induced electrostatic field.

The ion relativistic factors are given by γl = (1 + p2l /m
2
l c

2)1/2 and γh = (1 +

p2h/m
2
hc

2)1/2 for light and heavy species respectively. ml and mh are the masses of

heavy and light species and pl = γlmlvlz and ph = γhmhvhz are the longitudinal

momentum of the ion species with vlz and vhz as their respective velocities. The

longitudinal electron velocity vez can be obtained from γe and Eq.3.28 as,

vez = ±c
√

(γ2e − (1 + a2T ))/γe (3.29)

In the frame of the charge separation layer moving with velocity vf the electrons

comprise of two streams. The ones undisturbed by the laser field appear to move
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towards the charge separation layer. For these incoming electrons, from the equa-

tion of continuity we have n−e v
−
ez = −(Zlnl0 + Zhnh0)γfvf with ne as the local

electron density. For the electrons which are pushed by the laser towards the

undisturbed plasma, the equation of continuity gives n+
e v

+
ez = (Zlnl0+Zhnh0)γfvf .

By taking together the incoming and outgoing electrons, the total electron density

with in the sheath comes as,

ne(z) = 2(Zlnl0 + Zhnh0)
γfβf
βe

(3.30)

The densities of the ion species are given as nl(z) = 2nl0γfβf/βlz and nh(z) =

2nh0γfβf/βhz. As both the ion species and the electrons are moving in the same

electrostatic potential, we can derive the relation between their respective γ factors

as,

γl = γf −
Zlme

ml

(γe − γf ); γh = γf −
Zhme

mh

(γe − γf ) (3.31)

Incorporating the electron and ion densities described above with in the electron

sheath the Poisson’s equation takes the form,

d2φ

dz2
= 8πeγfβf

((Zlnl0 + Zhnh0)

βez
− Zlnl0

βlz
− Zhnh0

βhz

)

(3.32)

where φ = mec
2/e(γe − 1) is the ponderomotive potential. Substituting for φ in

the Poisson’s equation, it takes the form,

d2γe
dz2

= 2
ω2
pe0

c2
γfβf

( γe
√

γ2e − 1− a2T
− Zlnl0

ne0

γl
√

γ2l − 1
− Zhnh0

ne0

γh
√

γ2h − 1

)

(3.33)

where ωpe0 = (4πne0e
2/me)

1/2 with ne0 = Zlnl0+Zhnh0. The presence of aT in the

above equation indicates that to determine γe we must also solve for aT . As the

longitudinal electric field is continuous, Ez at the interface of the mixed ion sheath

and electron sheath (at z = 0) is given by Eq.3.10 which can be written in terms

of the electron relativistic factor γe as,

dγe
dz

∣

∣

∣

z=0
= − ml

Zlme

[

4
ω2
pl

c2
γfβf

[
√

γ2l − 1 +
nh0mh

nl0ml

√

γ2h − 1
]]1/2

(3.34)
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As has been described above that the ions do not exhibit quiver motion due to the

evanescent laser fields, its only electrons which contribute to the refractive index

of the plasma. Hence the wave equation for the fields with in the sheath can be

described in the same way as in [26, 27],

d2aT
dz2

=
ω2

c2

(ω2
pe/ω

2

γe
− 1− βf
1 + βf

)

aT (3.35)

where ωpe corresponds to the local electron plasma frequency with in the sheath.

Substituting for the local electron density from Eq.3.30, the field equation takes

the form,
d2aT
dz2

= 2
ω2
pe0

c2
γfβf

aT
√

γ2e − 1− a2T
− ω2

0

c2
1− βf
1 + βf

aT (3.36)

The boundary condition to determine the incident laser intensity for total reflection

in piston frame is given as [26],

(daT
dz

)2∣
∣

∣

z=0
+
ω2

c2
1− βf
1 + βf

a2T (0) = 4
ω2

c2
1− βf
1 + βf

a20 (3.37)

The coupled Eqs. 3.33 and 3.36 when integrated once by multiplying with their first

derivatives and compared together with the boundary condition of Eqs.3.34 and

3.37 we obtain the analytical expression for the ion velocity in the moving frame

which is the same as Eq.3.1 where the velocity was obtained using momentum

conservation arguments. To integrate the coupled system of Eqs. 3.33 and 3.36

numerically, we determine the asymptotic solution by solving them backwards from

z >> c/ωpe0, and taking γe = γf + δγ and δγ, aT (z) << 1. At z >> c/ωpe0 the

first derivatives of γe and aT read as,

dδγ

dz

∣

∣

∣

z>>c/ωpe0

= −
[2ω2

pe0

c2
1

γfβ2
f

[

a2T δγ − 2δγ2
]]1/2

(3.38)

daT
dz

∣

∣

∣

z>>c/ωpe0

= −
[2ω2

pe0

c2
− ω2

c2
1− βf
1 + βf

]1/2

aT (3.39)

Here δγ can be taken to be of the same order as a2T . For a given βf we obtain the

initial value of the first derivative of the evanescent field from the above equations.

Using these initial conditions, we can numerically integrate the coupled set of
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Figure 3.6: Spatial profile of longitudinal electric field Ez for n0/nc = 10 and
nh0/nl0 = 1 with βf = 0.2 at different times.

Eqs. 3.33 and 3.36 for a chosen βf . The equations have to be terminated at the

point when the longitudinal electric fields match the condition of Eq. 3.34. The

longitudinal electric field in the electron sheath together with that of the ion space

charge region described in three separate segments give the entire profile of Ez.

Fig.3.6 shows the complete profile of Ez at different times. We must note the jump

falling between the two ion sheaths. This occurs due to the mass difference in the

ion species because of which the heavier ones lag behind the lighter ones. Such

jump was also observed in the simulations of [28]. Thus the model successfully

explain this observation. The initial charge separation occurring to balance the

ponderomotive force and electrostatic force can be given by,

zd =
Emax

4π(Zlnl0 + Zhnh0)e
(3.40)

where Emax is computed from Eq. 3.34. The initial thickness of the coulomb

exploding part can be taken o be zc = zd−δh. We assume here that this separation

is attained in one laser period as in overdense plasma the electron plasma frequency

exceeds the laser frequency. This assumption is reasonable as the results are not
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much influenced by this choice. Also, once the force balance is obtained, it is

assumed that the laser piston moves with velocity vf .

3.5 Stability analysis of Laser Piston

In this section, we explore the vulnerability of the accelerating structure to Rayleigh

Taylor instability (RTI). As both the ion species achieve almost all of their kinetic

energy with in the ion sheath, we would limit our analysis to this structure. Also

as the thickness of the ion sheath is of the order of a fraction of the laser wave-

length, it would be reasonable to assume it as a thin sheet. In the steady state,

the charge separation layer moves through the undisturbed plasma at constant

velocity trapping and accelerating the ions that are at rest. Determining the onset

of RTI in this layer and the factors on which it depends can help us in figuring out

the time upto which the acceleration process can continue, or in other words, the

maximum pulse length we can have as well as ways to suppress RTI.

We propose a fluid treatment of RTI for the accelerating layer by considering

the ion sheath, in equilibrium, is supported against the laser ponderomotive force

(radiation pressure) by the restoring electrostatic force generated due to charge

separation. In the steady state, the radiation pressure “Prad”exerted on the charge

separation layer is constant. In the instantaneous rest frame (IRF) i.e. the frame

moving with the charge separation layer “Prad”is given as,

Prad =
2I0
c

1− βf
1 + βf

(3.41)

where I0 is the incident laser intensity in the lab frame. For the present analysis, we

consider the laser intensity to be uniform in the transverse direction. The validity

of such analysis will hold closely for laser pulses that have a super-gaussian intensity

profile along the transverse direction.

Let us consider two points (y0, z0) and (y0 + ∆y0, z0) on the ion sheath at the

stage when the system is perturbed (say at t = 0). These two points will evolve

at some time (say t) to the points (y, z) and (z + ∂z/∂y0∆y0, y + ∂y/∂y0∆y0).

The entire sheath can be divided into these small segments, and by analyzing the

time evolution of this segment and integrating over the whole sheath along the

transverse direction (i.e. y-direction), we can arrive at the evolution of the entire
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ion sheath (i.e. accelerating structure). The mass of this small element can be

given by,

dm = σdy0 = (
∑

i

mi

∫

ni(z)dz)dy0 (3.42)

where σ is the surface mass density of the layer, mi is the mass of the ith species

and ni(z) is the local ion density with in the sheath which can be determined

numerically from Eqs. 3.4, 3.9 and 3.14. If “g”is the acceleration, then from the

force balance we obtain,

Praddy0 = gdm (3.43)

or,

g =
1

∑

imi

∫

ni(z)dz

2I0
c

1− βf
1 + βf

(3.44)

The y and z components of the force equation of the sheath element can be written

as,

∂pz
∂t

= −gdm+ Praddy0
∂y

∂y0
∂py
∂t

= −Praddy0
∂z

∂y0
(3.45)

where pz = γfdmdz/dt and py = γfdmdy/dt. Hence, the equations take the form,

∂2z

∂t2
= − g

γf
+

g

γf

∂y

∂y0

∂2y

∂t2
= − g

γf

∂z

∂y0
(3.46)

The above coupled set of equations give the time evolution of the segment of our

consideration. In the non-relativistic case, the above equation turn out to be the

same as that of [31]. When summed upon entire transverse direction (i.e. the

complete ion sheath as a sum of these small segments), we get the time evolution

of the entire ion sheath. It would be reasonable to expect the solution of the above

equations as non-linear as a given perturbation need not be sinusoidal in the y, z

plane. Hence, the solutions turn out to be,
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Figure 3.7: Time evolution of the laser piston of a composite target with n0/nc = 10
and nh0/nl0 = 1 with the incident laser amplitude a0 = 50.

z = ∆0exp[t(kg/γf )
1/2]cos(ky0)

y = y0 −∆0exp[t(kg/γf )
1/2]sin(ky0) (3.47)

where∆0 is the perturbation amplitude and k, its corresponding wave number. Our

aim would now be to analyze the time evolution of the ion sheath in the steady

state as a function of incident laser intensity and target composition in terms of the

number densities of two ion species. In this paper, we consider a target composed

of hydrogen (H+) and carbon (C6+) ions whose masses normalized to electron mass

are taken to be m̃l = 2000 and m̃h = 24000 respectively. We study the evolution of

ion sheath for targets with total number density n0/nc = 10 with the composition

ratio nh0/nl0 = 1/9, 3/7, 1. Fig. 3.7 shows the time evolution of a composite target

with a0 = 50 and nh0/nl0 = 1. a0 is the dimensionless laser amplitude incident

on the plasma. We have taken ∆0 = 0.01ω/c and k = ω/c. We observe that

a small perturbation induced at t = 0 grows with time and at t = 25tL (where

tL = 2π/ω) the cusps begin to form. At this time the ion sheath tends to become

porous and eventually get torn apart. The time at which the cusps begin to form

is the time after which we cease to get monoenergetic ions. Thus RTI prevents or
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Figure 3.8: Cusp formation time with incident laser intensity for different target
compositions keeping n0/nc = 10.

acts as a limiting factor on the time upto which we can accelerate the ions. Fig.

3.8 shows the cusp formation time with incident laser intensity for different target

compositions. We can see that with increasing laser intensity the cusp formation

time decreases, but the rate of decrease also goes down approaching an asymptotic

behavior at the tail. Also with increasing ratio of nh0/nl0 we see that this time

goes up or RTI gets a little suppressed with increase in proportion of heavier ion

species in the target.

3.6 Velocity amplification of an incoming test ion

We now focus our attention to the coulomb exploding ion space charge region. For

the ion species at rest, the lighter ions are reflected from z = −δl and the heavier

ions are reflected from z = −δh. If a test ion approaches this charge separation

layer with some velocity, it will over shoot these ion sheath regions and move to the

coulomb exploding part. This phenomena was explored for a single species plasma

target in [27]. There, the momentum conservation lead to an additional velocity

equal to nearly twice the double layer velocity to the test ion upon reflection.
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Figure 3.9: Trajectories of test ions comprising of C+ and C6+ with incident
velocity vb = −0.15c. n0/nc = 10 and nh0/nl0 = 1. Red curve is for C6+ and green
for C+. The blue line represent the laser piston moving with velocity vf = 0.2c.

Thus, enhancing its kinetic energy. The double layer velocity was dependent on

incident laser intensity, mass of the ion and its density. However, in case of a mixed

target, i.e. a target where less massive ions are added to heavier ones, the charge

separation layer moves with a higher velocity than what it would have been in case

of a single species. The expression for the reflected ion velocity in the lab frame

“viL”remains the same as in [27], i.e.,

viL =
V + vf
1 + V vf

(3.48)

where V is the relative velocity of approach of the test ion towards the charge

separation layer. But in this case as vf is higher than that of single species for

a given laser intensity and plasma density, the reflected velocity of the test ion is

more as compared to what it would have been in case of single species target with

same laser intensity. For a given incident laser intensity and density ratio of the

ion species, there is a maximum permissible velocity of approach of the incoming

test ion. This maximum velocity corresponds to the ion that gets reflected from
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z = −zi. In order to determine this, we need to solve the equation of motion of

the test ion inside the coulomb exploding region. The equation of motion is given

by,
dp

dt
= ZbeE(z); E(z) = 4πe(Zlnl(z, t) + Zhnh(z, t)) (3.49)

where p = γmbv is the beam momentum with mb as the mass of the beam species,

v its velocity and γ its relativistic factor. Zb is the charge on the test ion. Sub-

stituting for the densities from we obtain the equation of the trajectory of the

incoming test ion as,

d2z

dt2
=
ml

mb

ω2
plz

[

1 +
ω2

pl
t2

2

(

1 + Zhnh0

Zlnl0

)]

Zb

Zl

[

1 +
Zhnh(z, t)

Zlnl(z, t)

][

1−
(dz

dt

)2]3/2

(3.50)

The incoming ion approaching the charge separation layer loses kinetic energy

equal to mbc
2(γf − 1) while overshooting this layer and reaching z = −δh. At this

point the kinetic energy of the beam is mbc
2(γ − 1) = mbc

2(γb − γf ), where γb is

the relativistic factor corresponding to vb, the initial ion velocity. Hence,

γ = γb − γf + 1 (3.51)

and,

v =
dz

dt
= −c

(

1− 1

γ2

)1/2

(3.52)

This is taken to be the initial condition for solving the test ion trajectory using

Eq.3.50. Fig.3.9 shows the trajectory of two test ions C+ and C6+ coming in with

initial velocity vb = −0.15. The straight line represents the laser piston moving

with velocity 0.2c, n0/nc = 10 and nh0/nl0 = 1. We observe that C6+ is reflected

before C+. This is because the repulsive force exerted on C6+ is more than C+ due

to excess charge present on it. Hence the maximum permissible incoming velocity

is more for C6+ than C+. The time of intersection of ion trajectories with that

of laser piston is the time at which the test ion re-enter the ion sheath. Fig.3.10

shows the maximum permissible velocities for both C6+ and C+. It can be seen

that ions with greater charge can have higher incident velocities to get completely

reflected. As the mass of both C6+ and C+ is the same, it is possible to obtain

higher energy ions with increased charge states. Fig.3.11 shows the reflected ion
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velocities corresponding to their maximum permissible velocity.

3.7 Conclusions

In this chapter, we have presented a complete analytical model for the ion charge

separation region and the electron sheath created due to the ponderomotive force

of the incident laser for a two ion species target. It was found that the lighter

and heavier ions got reflected from different positions. From this, we discover that

the laser piston in case of two ion species comprises of an electron sheath and two

ion sheaths separated by a distance. The ion sheath close to the electron sheath

comprises of both the ion species, the lighter ones are reflected from the other

boundary of this sheath and the heavier ones overshooting this region. The heavier

ions move further forming another sheath of primarily the heavier ion species before

getting reflected at the point where the density blows up. The separation between

the density peaks of these two sheaths decreases with increased proportion of

number of heavy ions. Also, as there is ion density jump at two points, we observe

a kink in the electrostatic field profile responsible for ion acceleration. In the

coulomb exploding ion region, though the density goes down uniformly in time, it

has been observed that the heavy ion species depletes slowly than the lighter ions.

Also, the rate of depletion of ion density in this region increases with higher ion

charge.

The description of the laser piston throws light on the thickness and mass of the

ion sheath responsible for acceleration. As the acceleration gradient is determined

by the radiation pressure exerted by the laser, the information for the ion sheath

thickness and mass proves helpful in the stability analysis of the laser piston.

Rayleigh Taylor instability plays an important role here. With time this instability

grows making the laser piston porous to the incident light. At this point the ions

ceases to accelerate. Analysis of the piston shows that RTI gets suppressed for

targets where the proportion of heavy species is more. Also, with increase in

incident laser intensity the cusp formation time goes down but at a slower rate

showing nearly an asymptotic behavior at higher intensities.

The coulomb exploding ion charge region serves as a velocity amplifier for incoming

ions. The maximum permissible velocity for these ions for a given laser and plasma
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parameters have been found to depend on the charge state of the beam species.

Higher the charge on the ions, higher is the maximum permissible velocity.
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4
Analytical model for axial magnetic field

generation by interaction of radially

inhomogeneous laser pulse with solid

target

4.1 Introduction

Relativistic interaction of laser pulses with plasma has long been studied where it

has been shown that there is non linear coupling between plasma and electromag-

netic waves [1, 2]. Arrival of laser systems capable of producing intensities higher

than 1020W/cm2 and pulse length in the sub picosecond regime has made them an

attractive choice for development of compact particle accelerators [3, 4, 5, 6]. Fur-

ther studies have shown a variety of effects, one of which is generation of quasistatic

magnetic (QSM) fields in plasma by laser pulses [7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

This problem is of both fundamental and applied interest like particle acceleration,

inertial confinement fusion, X-ray generation and radiation of pulsars [17, 18, 19].

Spontaneous magnetic fields can be generated by several mechanisms, including

non-parallel density and temperature gradients [20], the ponderomotive force as-

sociated by incident laser [7, 8] and the currents of fast electrons generated during

the interaction [10]. It was discussed in [21, 22] that application of a static axial

magnetic field had a significant impact on the process of ion acceleration using

ultra-intense lasers incident on solid targets. In these studies the source of axial
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magnetic field was not discussed and it was assumed that the magnetic fields re-

quired were either self generated or externally applied. The magnetic fields required

for such studies were of the order of 100MG. It was shown in [7, 8] that linearly

polarized ultra-intense lasers can drive axial currents that can generate azimuthal

magnetic field close to 1 Gegagauss. In studies by [13, 14, 15, 16] it was shown

that circularly polarized lasers can drive azimuthal currents that in turn generates

an axial magnetic field. Further, it has been seen that circularly polarized light

inherently induce a magnetization in the plasma via inverse Faraday effect (IFE)

when transverse effects are taken into account [13, 23, 24]. This magnetization

leads to an additional axial magnetic field. Together adding for both the effects

i.e. azimuthal current and magnetization current gives a net axial magnetic field

[13].

The studies of laser matter interaction in previous chapters have considered evo-

lution in one spatial dimension, which inherently assumed uniform transverse dis-

tribution of laser intensity and ponderomotive force exerted by them. However,

in real scenario the laser pulse has a finite cross section and transverse intensity

profile. We have seen in earlier studies [22, 25, 26] that the laser ponderomotive

force stuffed plasma electrons in front of it leading to an electron density spike

and formation of an electron sheath in which electron density decreased axially.

However because of one-dimensional treatment it was assumed that this density

was uniform along transverse direction. When an azimuthally symmetric circularly

polarized laser beam of finite cross section is normally incident on an overdense

plasma, it exerts a non uniform ponderomotive force radially. As a result different

segments of the electron sheath are pushed inside the plasma upto varying dis-

tances. Also the peak of the electron density spike in front of the laser pulse varies

as we move out radially. This induces radial inhomogeneity in electron density.

For a laser pulse with radially decreasing intensity, the extent upto which electron

sheath is pushed inside the plasma reduces as we move radially outwards. This

leads to formation of a cavity region behind the electron sheath [16].

In the study by Sheng and Meyer-ter-Vehn [13], the laser intensity and plasma

electron density profile was chosen arbitrarily. Besides this only the radial pro-

file of the magnetic field was described. In another study by Cai et. al [16] the

contribution due to magnetization current was not taken into account as well as

there was no algebraic expression given for the magnetic field generated. Further,
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ion acceleration due to induced charge separation field was neglected in both the

studies. In this chapter, we present a self-consistent analytical model for genera-

tion of axial magnetic field by interaction of a radially inhomogeneous circularly

polarized laser pulse with a solid target. In our model, the laser fields and electron

density in the electron sheath are determined self consistently using the incident

laser pulse profile and initial plasma density. The motion of plasma ions under

the influence of charge separation field has also been taken into account. Because

of a radial dependence of laser intensity the ponderomotive force varies radially

because of which the electron density with in the sheath becomes radially inho-

mogeneous as opposed to one-dimensional studies described in previous chapters.

This radial inhomogeneity introduces an azimuthal current in the sheath, which in

turn produces an axial magnetic field. Further, because of circular polarization the

plasma electrons produce circular motion under the influence of laser field. This

circular motion mimics a current loop and hence induces a magnetic moment.

Adding up the magnetic moments of all the electrons in the sheath gives rise to a

net magnetization in the plasma which in turn gives a magnetization current. The

magnetization and azimuthal currents are roughly of the same order of magnitude

and hence to provide an accurate description both of them should to be taken into

account. Also the axial profile of the magnetic field that exists with in the electron

sheath has been described.

This chapter is organized as follows. In the next section we present the basic equa-

tions governing the plasma dynamics and the laser fields inside the plasma. Using

them the electron density and laser field profiles in the sheath is determined. Next

we analyze the extent upto which the electrons are ponderomotively pushed inside

and hence analyze the formation of density cavitation. In the fourth section we

understand the axial magnetic field generation and derive a complete analytical

expression for axial magnetic field for a transverse gaussian incident laser field.

Finally the conclusions of the study is presented.

4.2 Laser fields in the electron sheath

We consider a cylindrical plasma column in the region 0 < z < L. A radially

inhomogeneous circularly polarized ultra-intense laser is incident on the plasma
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from 0 > z side. The incident and reflected electric field vectors of the laser pulse

can be written as,

~Ei = (êr + iαêθ)E0(r)exp[−i(ωt− kz)] (4.1)

~Er = (êr + iαêθ)RE0(r)exp[−i(ωt+ kz)] (4.2)

where E0(r) is the electric field amplitude which varies radially, R is the reflection

coefficient and α = 1 for circular and 0 for linear polarization. The plasma elec-

trons are pushed inside via ponderomotive force to form an electron sheath leaving

behind an ion space charge such that the electron plasma boundary shifts from

z = 0 to z = ∆(r). For a laser pulse with radially decreasing intensity, the radi-

ation pressure also decreases as r increases. Because of this the electron plasma

boundary is pushed to varying distances inside the plasma as we move along r.

As the ions do not respond to the laser fields, the ion space charge region can be

treated as vacuum. Thus z = ∆(r) is the vacuum plasma interface at a given r.

Inside the electron sheath, the laser fields are evanescent and can be written as,

~ET = (êr + iαêθ)ET (r, z)exp[−i(ωt)], ~BT =
c

iω
∇× ~ET (4.3)

The momentum equation of the plasma electrons in the sheath under the influence

evanescent laser fields can be written as,

d~p

dt
= −e ~ET −

e

c
(~v × ~BT ) (4.4)

where ~p is the electron momentum. Taking transverse component of the above

equation, the quiver velocity of the electrons can be written as,

~v⊥ = (êr + iαêθ)
aT (r, z)c

iγe
exp[−iωt] (4.5)

where aT = eET (r, z)/meωc is the dimensionless evanescent laser amplitude and

γe = (1+p2||/m
2
ec

2+p2⊥/m
2
ec

2)1/2 is the electron relativistic factor. Usually p⊥ >> p||

where p⊥ = γemev⊥. Substituting for v⊥ from Eq. 4.5, the electron relativistic

factor γe = (1+aT (r, z)
2)1/2. The charge separation induces a longitudinal electric

field which in turn induces a longitudinal velocity to the ions. To maintain the
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charge separation, the electron sheath moves with a constant velocity. As discussed

earlier, because of radially decreasing ponderomotive force the charge separation

distance decreases with r. As a result, the induced longitudinal electric field also

decreases radially. Hence, the ions at different radial locations are accelerated

to different velocities. Because if this different surface elements of the electron

sheath move through the plasma with different velocities. To analyze this the

sheath can be divided into different segments radially. Each segment moves with

constant velocity vf (r). In the frame moving with a segment of electron sheath,

the ions with in the sheath consists of two opposite directed streams. Thus, from

the conservation of particle flux, the ion density in the sheath can be written as,

ni(r) = 2n0γf (r)
βf (r)

βiz(r)
(4.6)

with βf (r) = vf (r)/c and βiz = viz(r)/c where viz(r)is the longitudinal ion velocity

at a given r. To calculate βf , we recollect the momentum conservation equation

in the frame of the frame of the moving electron sheath given by,

2I0(r)

c3
1− βf
1 + βf

= 2γ2fmin0β
2
f (r) (4.7)

Algebraically solving this equation, we arrive at the expression for βf (r) as,

βf (r) =

√

a20(r)µ/n0

1 +
√

a20(r)µ/n0

(4.8)

where a0(r) = eE0(r)/meωc with me as the electron mass and ω is the incident

laser frequency. µ = me/mi i.e. the electron to ion mass ratio and n0 is the initial

plasma density normalized to the critical density nc = meω
2/4πe2. Thus, for a

given plasma target the velocity of the electron sheath in the lab frame can be

determined by the incident laser amplitude. Assuming azimuthal symmetry and

taking ion density in the sheath as given by Eq. 4.6, the Poisson’s equation takes

the form,

1

r

∂

∂r

(

r
∂γe
∂r

)

+
∂2γe
∂z2

=
ω2
p0

c2

[ne(r, z)

n0

− 2γfβf
γi

√

γ2i − 1

]

(4.9)
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Now, for the laser fields inside the sheath, the evanescent amplitude can be written

as aT (r, z) = aT (r, z)θ(r), where Θ(r) is the function determining the radial field

profile. Θ(r) = exp[−r2/σ2] for Gaussian laser intensity with spot size σ. Here

aT (r, z) is a slowly varying function of r as compared to Θ(r). Hence ∂(aTΘ)/∂r ≈
aT∂(Θ)/∂r. A similar approximation has been made in [16, 27, 28]. Therefore the

electron relativistic factor γe =
√

1 + a2T (z)Θ
2(r). In the sheath region, as the

ions and electrons are moving under the same electrostatic field, the relationship

between their relativistic factors can be written as,

γi(r, z) = γf (r)− µ(γe(r, z)− γf (r, z)) (4.10)

This equation gives the dependence of γi on evanescent laser field via γe. To

account for the evanescent laser field inside the electron sheath, we need to take

into account the wave equation governing a′T given by,

∇2a′T (r, z) =
ω2

c2

(

ω2
pe/ω

2

γe
− 1− βf (r)

1 + βf (r)

)

a′T (4.11)

where ωpe is the local electron plasma frequency at a given r and z. For a laser

with Gaussian radial profile, i.e. Θ(r) = exp[−r2/σ2], combining Eqs. 4.9 and 4.11

gives the local electron density with in the sheath as,

ne(r, z)

nc

= 2γfβf
γ2

i γe√
γ2

i−1

n0

nc
− γea

2
0Θ

2
[

4
σ2

[

r2

σ2 − 1
]

− δ
]

(4.12)

+Θ2

γe

(

∂aT
∂z

)2

+
2γea2TΘ2

σ2

[

r
σ2

(

1+γ2
e

γ2
e

)

− 1
]

where δ = 1− βf (r)/1 + βf (r). It can be noted that for a chosen axial position z,

the electron density ne varies along r. As the electron density in the sheath is a

steady function of radial position under high ponderomotive pressure, substituting

for electron density in Eq. 4.11, the wave equation will have different solutions

at different radial positions [16, 27, 28]. To solve this case, we divide the cross

section of the laser pulse into small parts and consider the propagation of each

part as a plane wave inside the sheath similar to [16, 27, 28]. The wave equation

is solved backwards from the a distance z >> ∆(r) where the laser fields nearly

vanish and by choosing a βf obtained from 4.8 for a given laser pulse amplitude,
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plasma density and ion mass. Upon solving Eq. 4.11, we can obtain the entire

evanescent laser field profile inside the electron sheath as well as density profile

can be calculated at a given r. At the boundary, i.e. at the interface of charge

separation the tangential components of electric and magnetic fields should be

continuous at a given r say r0. This gives the condition,

(daT
dz

)2∣
∣

∣

r0,z=0
+
ω2

c2
1− βf (r)

1 + βf (r)
a2T (r0, 0) = 4

ω2

c2
1− βf (r)

1 + βf (r)
a20(r0) (4.13)

The solutions of Eq.4.11 has to be terminated at the position where the boundary

condition given by Eq. 4.13 is satisfied. The electrostatic potential φ(r, z) inside

the electron sheath is given by,

φ(r, z) =
mec

2

e
(γe(r, z)− 1) (4.14)

The electrostatic field Ees(r, z) can be determined as Ees(r, z) = −dφ(r, z)/dz. At

a given radial position r0, the longitudinal electrostatic field profile in the sheath

can be computed using the following expression,

Ees(r0, z) = −
mec

2

e
Θ2(r0)aT (z)

daT
dz

(4.15)

The initial distance ∆(r0) upto which the electron sheath is pushed can be calcu-

lated using the expression,

∆(r0) =
Ees(r0,∆(r0))

4πn0e
(4.16)

The segment of electron sheath at the radial location r0 moves with velocity vf (r0).

Hence, its axial position after time t will be z = ∆(r0)+vf (r0)t. Fig. 4.1 shows the

electron density profile in the sheath at radial locations r/σ = 0, 0.25, 0.5 at times

ωt = 0, 10, 20. We can see that the peak density of the electron sheath decreases as

we move radially outwards. Also, the longitudinal velocity of the segment at r = 0

is maximum and decreases radially. Because of this the curvature of the electron

sheath increases with time. Fig. 4.2 shows the evanescent laser fields inside the

sheath at various radial locations at t = 0.
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Figure 4.1: Density profiles of the electrons in the sheath at different times for
n0/nc = 2 and a0 = 2 for a gaussian laser pulse and homogeneous overdense
plasma at different radial locations. The red curves represent electron density at
r/σ = 0, green curves represent electron density at r/σ = 0.25 and blue curves
represent electron density at r/σ = 0.5. ∆(r0) is the electron displacement at
t/τ = 0 at a given r.
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Figure 4.2: Evanescent laser field profiles in the electron sheath at different times
for n0/nc = 2 and a0 = 2 for a gaussian laser pulse and homogeneous overdense
plasma at different radial locations. The red curves represent evanescent field
at r/σ = 0, green curves represent the field at r/σ = 0.25 and blue curves at
r/σ = 0.5. ∆(r0) is the electron displacement at t/τ = 0 at a given r.

88



Chapter 4. Analytical model for axial magnetic field generation by interaction of
radially inhomogeneous laser pulse with solid target

4.3 Magnetic field generation

Using the fluid treatment for electrons in the sheath, we introduce a small density

perturbation such that ne(r, z) = ne0(r, z) + n, where ne0(r, z) is the equilibrium

electron density in the steady state and n is the density perturbation at fundamen-

tal frequency. From the equation of continuity, we find the density perturbation

of electrons to be,

n = − i

ω
∇.(nev⊥) (4.17)

Substituting for v⊥ from Eq. 4.5 in Eq. 4.17, we can obtain the perturbed density.

We notice from the previous section that electron cavitation is formed when a rela-

tivistic laser pulse irradiates a plasma. Therefore the electron density in the sheath

have gradients both in the axial and radial directions to the laser propagation.

The laser field oscillates in the transverse direction, which for circular polarization

makes is plasma electrons trace helical path. Thus, a slowly varying current Jθ is

generated which can be calculated using the expression Jθ = − < env >, where

<> denotes the average over one laser cycle (ω−1). For a cylindrically symmetric

incident laser beam, this current can be expressed as,

Jθ =
αea2TΘc

2

γeω

∂

∂r

(ne

γe

)

êθ (4.18)

From Eq. 4.18 it is clear that inhomogeneity in electron density drives an az-

imuthal current in the plasma. From Eq. 4.13 it is clear that when a radially

inhomogeneous laser pulse is normally incident on a homogeneous plasma it in-

duces a radial inhomogeneity in electron density. Thus, such laser pulses can drive

azimuthal currents which can act as source for axial magnetic field.

Next we look into the motion of plasma electrons under the influence of laser

fields. In the field of a circularly polarized laser these electrons produce circular

motion. Thus, each electron mimics a current loop and hence with each electron

is associated a magnetic dipole moment m = −e/2c < r0 × v⊥ > where r0 is the

orbit radius. This when summed over entire electron sheath generates a plasma

magnetization M.

M = −αnea
2
T θ

2c

γ2eω
êz (4.19)
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Hence in the steady state, the total magnetic field Bs can be calculated from,

∇×Bs =
4π

c
Jθ + 4π∇×M (4.20)

In cylindrical geometry with no externally applied magnetic field and under the

assumption that axial magnetic field vanishes at infinite radius, Stokes theorem

gives,
ωc

ω
= −α

[a2TΘ
2ne

γe
−
∫ ∞

r

a2TΘ
2

γe

d

dr

(ne

γe

)

dr
]

(4.21)

where ωc = eBs/mec. From Eq. 4.21 it is clear that axial magnetic field generation

is attributed to circular polarization of incident laser as α = 0 for linearly polarized

laser light and hence there is no azimuthal and magnetization current in this case.

An algebraic expression for the magnetic field can be calculated directly from

Eq. 4.21 by choosing a radial intensity profile Θ for the incident laser. For Θ =

exp(−r2/σ) the integral in Eq. 4.21 can solved. This region covers for most of the

spot size. Substituting for electron density from Eq. 4.13 in Eq. 4.21, we get the

expression for magnetic field as,

ωc

ω
= α

(

− 4γfn0[2lnγe − a2TΘ
2] +

8a2T
σ2

[γe(σ
2 + r2)− 1]− (4.22)

σ2γe
Θ2

ln[γe − 1]− 4
a2T

√

1 + a2T

[ 2

σ4
+ δ
][

ψ1 +
a2Tψ2

σ2(1 + a2T )
+
a2T
σ4

a2T − 2

(1 + a2T )
2
ψ3

2
(∂aT
∂z

)2[

a2T

[ 1

γ3e
− 1
]

−
[ 1

γe
− 1
]]

+
2

σ2
(γe − 1)

[

1− 2a2T
σ2

]

+
4a2T

(1 + a2T )
5/2

[

ξ1 +
5a2T

σ2(1 + a2T )
ξ2 +

5a2T (5a
2
T − 2)

2σ4(1 + a2T )
2
ξ3

]

− a2TΘ
2ne

γ2e

)

where,

ψ1 =
σ2

24
[σ
√
2π[1− Erf(

√
2r/σ)] + 4rΘ2] (4.23)

ψ2 =
σ2

26
[3σ3σ

√
2π[1− Erf(

√
2r/σ)] + 4rΘ2(3σ2 + 4r2]

ψ3 =
σ2

28
[15σ5σ

√
2π[1− Erf(

√
2r/σ)] + 4rΘ2(15σ2 + 20σ2r2 + 16r4)]
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Figure 4.3: Normalized axial magnetic field profiles in the electron sheath at dif-
ferent times for n0/nc = 2 and a0 = 2 for a gaussian laser pulse and homogeneous
overdense plasma at different radial locations. The red curves represent axial mag-
netic field at r/σ = 0, green curves the field at r/σ = 0.25 and blue curves at
r/σ = 0.5. ∆(r0) is the electron displacement at t/τ = 0 at a given r.

and,

ξ1 =
σ2

25
[σ
√
2π[1− Erf(

√
2r/σ)] + 4rΘ4] (4.24)

ξ2 =
σ2

28
[3σ3

√
π[1− Erf(2r/σ)]]

ξ3 =
σ2

211
[15σ5

√
π[1− Erf(2r/σ)] + 4rθ2[15σ4 + 40σ2r2 + 64r4]]

We observe that the magnetic field generated is dependent on the evanescent

laser field profile. Self consistently the axial profile of the induced magnetic field

can be calculated at a given radial location by simultaneously solving Eqs. 4.11

and 4.23. Solving for the magnetic field at different radial position gives entire
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to dimensional picture. Fig. 4.3 shows the axial profile of normalized magnetic

field at radial position r/σ = 0, 0.25, 0.5 for a0 = 2 and n0 = 2nc. We observe

that the peak value of magnetic field is at the interface and decreases with z.

The magnetic field is present only in the electron sheath and goes to zero towards

the region of undisturbed plasma. Also the peak value diminishes as we move

radially outwards. We see that with self consistent electron density modification

by a radially inhomogeneous laser pulse, magnetic fields close to 100 MG can be

generated for a0 = 2 and laser wavelength λ = 1µm. These values are comparable

to that mentioned in [7, 8, 9, 13].

4.4 Conclusions

In this chapter, we have presented a theory for axial magnetic field generation via

interaction of radially inhomogeneous laser field with overdense plasma targets.

The interaction of a radially inhomogeneous circularly polarized laser pulse on an

overdense plasma produces an electron sheath on the target surface. The electron

density in the sheath varies along r. This electron density and the evanescent laser

fields is determined self consistently from the incident laser and initial plasma pa-

rameters. This allows us to calculate the magnetic field in plasma for a given laser

and plasma parameters. It is seen that ultra-intense quasi static axial magnetic

fields are produced during this process. It is found that the magnetic field persists

only in the electron sheath and peaks at the interface of charge separation and

falls to zero towards the undisturbed plasma region. Also for a laser pulse with

radially decreasing intensity the magnetic field is maximum at the center and de-

creases as we move radially outwards. The effect of charge separation field has also

been taken into account, which accelerates the plasma ions. Because of this the

electron sheath moves through the undisturbed plasma. As the radiation pressure

varies along r, the propagation velocity of different radial elements of the electron

sheath varies along the radius. The central sheath element moves at the maximum

velocity and this velocity decreases as we move along r. Because of this there is a

formation of an electron cavity region.

We observe that the axial magnetic field is attributed to azimuthal plasma cur-

rents generated due to electron density inhomogeneity as well as magnetization
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current due to induced magnetic dipole moment of the plasma electrons. Both

these components are comparable in magnitude and hence should be taken into

account. In earlier studies by Sheng and Meyer-ter-Vehn [13] the axial magnetic

field was calculated with predetermined electron density profile. In our study, the

electron density is determined by the plasma parameters and incident laser pulse.

In the study by Cai. et. al. [16] they had neglected the magnetization current.

Also they did not give any expression for Bz. In this work we have successfully

derived an expression for Bz. The calculations yield good results for low intensity

lasers. For high intensity we will have to include electron cyclotron frequency in

the relativistic factor which is beyond the scope of present analysis.
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5
Relativistic Theory for Multistage Ion

Acceleration

5.1 Introduction

We have seen so far that pondermotive force of circularly polarized laser gives rise

to a stable double layer on the surface of a semi-infinite overdense plasma. This

double layer acts as a laser piston that moves through the plasma with constant

velocity reflecting the plasma ions at rest giving rise to a nearly monoenergetic ion

beam. This mode of ion acceleration is referred to as hole boring radiation pressure

acceleration (HB-RPA) [1, 9, 3, 4, 5, 6, 7, 8, 9, 10]. On the other hand, there is

another regime of radiation pressure acceleration called the "Light Sail" (LS) mode

of acceleration [11, 12, 13, 14] which differs from HB-RPA in such a way that the

thickness of the plasma target is almost of that of the laser piston. Both the

acceleration process continues till the laser pulse persists. The difference between

them being that HB-RPA is a steady state process, meaning that as the laser

piston moves with constant velocity through the plasma it reflects the plasma ions

with the same velocity, thus increasing the number of ions in the beam obtained

with time. So as long as the laser pushes the piston, the ions keep getting added

to the beam. On the other hand LS-RPA is not a steady state process where the

target is pushed as a whole. Here the laser acts as a propeller accelerating the

target whose velocity increases with time. So in this case longer the pulse we have,

higher is the energy of the obtained ions.

In case of HB-RPA we see that if the laser piston has travelled across the entire
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plasma target, the entire target starts to move with velocity nearly twice that

of the piston velocity. In the frame of this moving target, the plasma closely

resembles its initial state. When laser falls on this moving target, the situation in

the moving frame becomes similar to the initial stage as the velocity of light in

vacuum is same in all reference frames. Thus the entire process can be repeated

again. One such study has been presented in [15]. However, this study was limited

to non-relativistic ion velocities. At high velocities, it is essential to incorporate

the relativistic effects. In this chapter we recollect the analytical description of the

HB-RPA process in both relativistic and non-relativistic limits. Next we give an

analytical description of the second stage of ion velocity and finally verify it with

1D3V particle in cell (PIC) simulations. Also we compare the relativistic results

with the non-relativistic ones described in [15] and emphasize on the importance

of this analysis.

5.2 Non Relativistic theory of HB-RPA

5.2.1 First acceleration process

When a laser pulse of intensity I is normally incident on a collisionless plasma of

single ion species then because of radiation pressure its surface is pushed inside the

plasma. This surface moves with a constant velocity vf (say). If we shift to the

frame of this moving surface called the instantaneous rest frame (IRF) we observe

the plasma ions which were at rest in the lab frame approaching the plasma surface

with velocity−vf . In a steady state situation the total number of ions at the surface

must not change. Hence, for the conservation of particle number we must have an

ion beam moving out of the surface with velocity vf . Thus momentum balance in

the IRF gives the relation,
2I

c
= 2miniv

2
f (5.1)

where mi is the ion mass and ni is the initial plasma ion density. Rearranging Eq.

5.1 we can determine the surface velocity as,

vf =

√

I

minic
(5.2)
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In the IRF, it is this velocity with which the ions move. To obtain the velocity in

lab frame, we make a Galilean transformation which gives the ion velocity vi = 2vf .

The kinetic energy of the ions can therefore be written as,

E = 2mi
I

minic
(5.3)

It is convenient to relate the laser intensity to the dimensionless field amplitude

a0 as I = αa20ncmec
3. Here α = 1 in case of circular polarization and α = 1/2 for

linear polarization, me is the electron mass, nc = meω
2/4πe2 is the critical density.

For a plasma with ion species of atomic number Z, atomic mass A and ion mass

mp, the ion velocity turns out to be as in [3, 5, 8]

vi
c
= 2

√

Z

A

menc

mpne

a0 (5.4)

where ne is the initial electron density. All the initially undisturbed ions are

reflected by the large electric potential at the surface arising due to local charge

separation induced by the laser pulse. The surface is steady as there is no J×B

heating mechanism to interact with the ions. In the present situation the light

pressure overwhelms the electron thermal pressure.

5.2.2 Second acceleration process

After the first acceleration stage we end up with the generation of a quasi-monoenergetic

ion beam. The entire plasma target becomes a slab moving with velocity vi = 2vf .

From relativity we know that the velocity of light in vacuum is the same in all

frames of reference. Hence, if the laser pulse is long enough such that even after

the entire plasma slab is accelerated it continues to push it, then it is possible to

begin a second stage of acceleration. As the entire slab is moving with a constant

velocity, we can move into its reference frame where we again have a stationary

target with a laser pulse incident on it. In this reference frame, the ions will ac-

quire the same velocity vi = 2vf . Upon Galilean transformation back to the lab

frame, the ion velocity turns out to be twice that of the first stage of acceleration i.e

vi = 4vf or the kinetic energy gets enhanced by a factor of four. These results were

shown by zhang et. al [3] using 1D3V particle in cell simulations. But the laser
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intensities used could generate non relativistic ion velocities. If higher intensities

are used such that the ions become relativistic, a fully relativistic formulation of

this problem is necessary. We present such an analysis in the coming sections.

5.3 Relativistic theory of HB-RPA

5.3.1 First Acceleration Process

In order to incorporate relativistic effects in the theory presented above, two things

are to be considered. First, the light intensity in the IRF is not equal to that in

the lab frame. From the analysis presented in [16], we see that light reflected

from a surface moving with velocity vf is Doppler shifted. Considering this effect

together with the conservation of photon number, the light intensity in the IRF

can be shown as,
IIRF

I
=
1− vf/c

1 + vf/c
(5.5)

Second thing that we need to consider is the relativistic density modification as

in the IRF the entire plasma appears to drift with velocity vf . For a plasma of

initial ion density ni in the lab frame, the density in the IRF will be γfni where

γf = 1/
√

1− v2f/c
2. After recognizing these modifications we can proceed to write

down the relativistic momentum balance equation in the IRF as,

2I

c

(1− vf/c

1 + vf/c

)

= 2γ2fminiv
2
f (5.6)

Eq. 5.6 can be rearranged to a quadratic equation in vf . Choosing a dimensionless

variable βf = vf/c and Ξ = I/minic
3, the dimensionless quadratic equation in βf

is,

(Ξ− 1)β2
f − 2Ξβf + Ξ = 0 (5.7)

Solving for the root of Eq. 5.7, the plasma surface velocity turns out to be,

βf =

√
Ξ

1 +
√
Ξ

(5.8)
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Recalling the condition of conservation of particle flux, Eq. 5.8 also represents the

ion beam velocity in the IRF. To obtain the ion velocity vi in the lab frame we

make a Lorentz transformation which gives,

vi
c
=

2βf
1 + β2

f

(5.9)

Consequently the ion kinetic energy ǫ can be calculated using the formula ǫ =

mic
2(1/

√

1− v2i /c
2 − 1), where vi can be substituted from Eq. 5.9 to give,

ǫ = mic
2
[1 + β2

f

1− β2
f

− 1
]

(5.10)

5.3.2 Second Acceleration Process

In section 5.2.2 we saw that long laser pulses can initiate a second stage of ac-

celeration. In the non relativistic limit the calculations were simple. The second

stage ion velocity and the required time period to initiate a second stage could be

calculated just by linear addition. However, as we have seen in section 5.3.1, the

scenario changes when relativistic effects become important. The non relativistic

results will not hold here and hence a fully relativistic formulation of the process

must be done. To analyze this, we assume that the entire plasma slab has under-

gone acceleration and is moving with uniform velocity vi. The time required to

attain this is,

t =
L

vf
(5.11)

We define the lab frame as K and the frame moving with velocity vi as K ′. As seen

in [16], the light intensity perceived by a moving body differs from that emitted by

the source. Hence laser intensity I in frameK will become I ′ = I(1−vi/c)/(1+vi/c)
in frame K ′. With this new intensity I ′ the surface velocity v′f can be calculated

similarly as Eq. 5.6 which comes out to be,

β′f =
v′f
c
=

√
Ξ′

1 +
√
Ξ′

(5.12)
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where Ξ′ = I ′/minic
3. The ion velocity in the frame K ′ turns out to be,

v′i
c
=

2β′f
1 + β′2f

(5.13)

Hence the ion velocity in the lab frame after the second stage βi2 = vi2/c can be

obtained by relativistic velocity addition as,

βi2 =
βi + β′i
1 + βiβ′i

(5.14)

The total time ttotal and number of laser wavelengths N required to push the entire

plasma target to velocity vi2 can be given as,

ttotal = t+ t′ (5.15)

N = ttotal
τ

(5.16)

where t′ = L/v′f and τ is the time period for one laser wavelength.

5.4 Comparison with PIC simulations

A set of 1D3V particle in cell (PIC) simulations were carried out using the code

LPIC++ [17] to compare with the theory proposed above. In our simulation, the

space and time are denoted by dimensionless quantities x/λ and t/τ , respectively.

Here λ is the laser wavelength and τ is the time of one laser cycle (τ = λ/c).

Through out the simulations we have used circular polarization of the incident

laser pulse. The pulse duration is taken to be 100τ and its is assumed to have

a flat top profile. The amplitude of the laser pulse is given by a dimensionless

parameter a = eE0/meωc where E0 is the laser electric field amplitude, e and me

are the charge and mass of electron respectively and ω is the laser frequency. Laser

amplitude a is related to laser intensity as I = 1.37 × 1018[a2/λ(µm)2]W/cm2..

In our simulations we have used a = 20, 30 for different plasma densities. The

laser pulse is incident normally on the plasma surface and the direction of its

propagation is taken to be the +vex axis and opposite as −vex. The ion density

is always written in units of critical density nc = meω
2/4πe2. The mass of the

electron me = 1 and the ions considered here are hydrogen ions with mi = 1836.
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We use 200 cells per wavelength to model the plasma and each cell contains 100

macroparticles. If the number of macroparticles per cell will be small then the

results obtained will depend on the number of macroparticles used. The stability

of the results are assured by taking sufficient number of macroparticles. In our

simulations we have seen that the results do not change after 70 particles per cell.

So for our entire study we have chosen 100 macroparticles per cell. The number of

ions corresponding to each macroparticle will depend on the chosen initial plasma

density.

In this study, a circularly polarized flat laser pulse of amplitude a = 20 and 30 is

incident on a homogeneous plasma slab of thickness 4λ. The simulation domain

is of length 35λ and the plasma is located between 11λ and 15λ. The origin

x = 0 is taken as the left boundary of the simulation domain. Once the laser

enters the simulation domain, it takes 11τ to reach the plasma slab. For simplicity

in comparison with analytical estimates, we take the time of interaction to be

t = 0. Hence the laser pulse enters the simulation domain from the left boundary

at t = −11τ . We know that the velocity of the laser piston is given by βf =√
Ξ/(1 +

√
Ξ) with Ξ = (Zmenc/Amine)a

2. For a = 20 and ni = 10nc the piston

velocity βf = 0.1286. Hence for this case the time required to accelerate all the

ions of the plasma target comes out to t = 31τ . Fig. 5.1 shows the ion density

profile at at times t = −11τ, 31τ, 50τ and 70τ for a = 20 and ni = 10nc. We

can see that at 31τ the tail of the ions is at 15λ implying that the laser piston

has traversed the entire plasma slab accelerating all the ions. Also the velocity

of ions in the lab frame after the first stage can be calculated from Eq. 5.9 as

βi = 0.253. In the frame moving with velocity βi, the incident intensity is given by

I ′ = I(1−vi/c)/(1+vi/c). Hence β′f = 0.102 and β′i = 0.202. Upon relativistically

adding βi and β′i, we derive the ion velocity in the lab frame after the second

stage as βi2 = 0.43. The time period for the entire second stage of this process is

t′ = 39τ . Hence the total time ttotal required for all the ions to attain velocity βi2
is ttotal = 70τ . Fig. 5.2 shows the laser generated longitudinal electric field profile

and velocity spectrum of ions at 31τ, 50τ and 70τ. From the velocity spectrum we

can see that at 31τ majority of ions attain a single velocity of 0.248c resulting into

a peak. Also at 50τ we can see a second peak emerging at 0.41c into which all ions

get dumped at 70τ . We see more and more ions are accelerated to higher velocity

from 0.248c to 0.41c. At 31τ almost all the ions have the same velocity. By the
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Figure 5.1: Spatial density profile of ions at different times for ni = 10nc and
a0 = 20. In (a) the ion density at time −11τ is shown i.e. when the face of
the laser pulse is at the extreme left of the simulation domain and the ions are
undisturbed. (b) shows the ion density profile at 31τ . We can notice here that the
tail of the plasma is at 15λ hence indicating that all the ions have passed through
the accelerating field generated by the double layer by this time. (c) and (d) shows
ion densities at 50τ and 70τ respectively, from which we can see that the ions have
been further displaced leading to a indication of multistage acceleration process.
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Figure 5.2: Figures (a), (c) and (e) shows the longitudinal electric field at times
31τ, 50τ and 70τ respectively for ni = 10nc and a0 = 20. (b), (d) and (f) shows
the longitudinal velocity spectrum at similar times. We see that at 31τ the ions
peak at a velocity 0.248c. At 47τ we can see a second peak emerging at 0.41c to
which almost all the ions get dumped at 70τ .
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time 50τ we see a second stage of ion velocities emerging and at 70τ almost all

the ions have been dumped into the second stage. The time required by all ions

to attain steady state velocity matches fine with our analytical calculations. Also

the first and second stage ion velocities are the close to what has been predicted

by the analytical model presented. Figs. 5.3 and 5.4 present similar studies for

a = 30 with all other parameters remaining the same.

In order to study velocity and energy scaling a series of simulations were carried

out for initial plasma densities 1nc to 15nc with a0 = 20 and 30 separately. As

predicted by the analytical theory for laser penetration [18, 19, 20, 21] it was found

that the stable double layer formation and ion acceleration began from initial

density 6nc for a0 = 20, and for a0 = 30 this value was 7nc. A set of ion velocities

and energies obtained via simulation results are plotted with their corresponding

analytically predicted values and non-relativistic results given by Zhang et al.,are

plotted in Figs. 5.5,5.6, 5.7 and 5.8. From these figures it is clear that the ion

velocities and energies are in good agreement with our fully relativistic calculations.

Theory also predicts correct time required to attain steady state velocity. It can

also be concluded that even if the ratio I
ρc3

, which is nothing but the ratio of

incident laser energy to the rest mass energy of the ions, is very small still the

relativistic results hold.

5.5 Conclusions

In this chapter, the interaction of a normally incident circularly polarized laser

pulse on a solid target is studied. We found that for a cold target, a flat top laser

pulse acts as a steady piston and drives a flow of ions in front of the surface into

the target. The electrostatic field induced by the charge separation at the front

surface of the target is steady enough to accelerate ions in multiple stage i.e. after

the whole plasma target is accelerated to a quasi-monoenergetic state, another

acceleration process begins for the continuing steady state. We have presented

the relativistic corrections to the theory of multistage ion acceleration presented

in [15]. In the regime of large Ξ = (Zmenc/Amine)a
2, the predictions of a pure

non-relativistic model diverge significantly. The hole boring velocity for both the

first and second stage has been determined, which in turn gave the correct estimate
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Figure 5.3: Spatial density profile of ions at different times for ni = 10nc and
a0 = 30. In (a) the ion density at time −11τ is shown i.e. when the face of
the laser pulse is at the extreme left of the simulation domain and the ions are
undisturbed. (b) shows the ion density profile at 23τ . We can notice here that the
tail of the plasma is at 15λ hence indicating that all the ions have passed through
the accelerating field generated by the double layer by this time. (c) and (d) shows
ion densities at 35τ and 45τ respectively, from which we can see that the ions have
been further displaced leading to a indication of multistage acceleration process.
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Figure 5.4: Figures (a), (c) and (e) shows the longitudinal electric field at times
23τ, 35τ and 45τ respectively for ni = 10nc and a0 = 30. (b), (d) and (f) shows
the longitudinal velocity spectrum at similar times. We see that at 23τ the ions
peak at a velocity 0.348c. At 45τ we can see a second peak at a velocity of 0.524c.
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Figure 5.5: Plots of 1st and 2ND stage ion velocity of accelerated ions for a0 =
20. The analytical results are represented by solid lines and the dots and circles
represent first and second stage velocities respectively. The broken lines are the
non-relativistic results.
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Figure 5.6: Plots of 1st and 2ND stage ion kinetic energy of accelerated ions for
a0 = 20. The analytical results are represented by solid lines and the dots and
circles represent first and second stage velocities respectively. The broken lines are
the non-relativistic results.
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of the time required to accelerate all ions in both stages. The relativistic results

are in excellent agreement with 1D3V PIC simulations.
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Figure 5.7: Plots of 1st and 2nd stage ion velocity of accelerated ions for a0 =
30. The analytical results are represented by solid lines and the dots and circles
represent first and second stage velocities respectively. The broken lines are the
non-relativistic results.
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Figure 5.8: Plots of 1st and 2nd stage ion kinetic energy of accelerated ions for
a0 = 30. The analytical results are represented by solid lines and the dots and
circles represent first and second stage velocities respectively. The broken lines are
the non-relativistic results.
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6
Conclusion

and Future Direction

6.1 Conclusions

The acceleration of ions to high energies by interaction of circularly polarized lasers

with overdense plasmas is a topic of immense interest and has been investigated

both analytically and numerically. The analytical studies have been primarily

concentrated to one dimension whereas higher dimensional studies have been per-

formed using particle in cell codes. Higher dimensional simulations have tried to

analyze the stability of the structures formed due to laser pondermotive force and

responsible for acceleration of ions. In the present thesis we have devised analytical

models for the mechanism of ion acceleration in the presence of an externally ap-

plied magnetic field. Further we have extended the theory to incorporate the effect

of multiple species in the plasma target and the effect of finite cross section of the

incident laser beam. We have also performed 1D3V particle in cell simulations to

study the effect of longer laser pulses, the results of which have been analytically

explained. We provide a chapter wise summary of the thesis and draw important

conclusions on the basis of that.

In chapter 2 the hole boring mode of ion acceleration has been analytically studied

in the presence of a static axial magnetic field. As described earlier, in bulk targets

the ponderomotive force exerted on the plasma electrons pushes them out upto an

extent that the charge separation field is balanced. Ions being massive do not re-

spond to the oscillating electric and magnetic fields of the laser. However, the light
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momentum is transferred to them via an induced axial electrostatic field. Consid-

ering a fluid treatment of plasma species, increased response time and continuity of

ions lead to an ion sheath behind the electron sheath giving rise to a double layer.

It is the electrostatic field in this double layer that accelerates the plasma ions.

The thickness of the ion sheath is very small as compared to the entire ion space

charge lying behind the electron sheath. The residual ions lying behind this sheath

do not contribute to the accelerated ion beam obtained from the process. As the

acceleration takes place in the double layer, this structure is often referred as “laser

piston”. With the acceleration of ions to higher velocities, they tend to move out

of the laser piston creating a charge imbalance. To replenish the lost ions, the laser

piston moves ahead towards the undisturbed plasma trapping plasma ions at rest.

This process steadily continues till the laser pulse keeps pushing the electrons.

The studies performed so far has considered plasma electrons responding to inci-

dent laser fields only. If we apply a static axial magnetic field Bs, these electrons

will produce additional cyclotron motion with frequency ωc = eBs/mec. For such a

case the dielectric constant in the relativistic case takes the form ǫ = (1−ω2
peff/ω

2),

where ωpeff = ωpe/
√
γe − αΩc. ωpe is the local electron plasma frequency, α = ±1

for right and left circularly polarized light , ΩC = ωc/ω and γe is the electron

relativistic factor. For evanescent solutions of the laser field in the electron sheath

ǫ < 0. In case of left circularly polarized (LCP) light for an overdense plasma,

we can choose any value of Ωc or Bs as α = −1. However, the laser intensity

required to achieve a given piston velocity in this case is higher than that without

magnetic field. With increase in magnetic field, the required incident laser inten-

sity also increases for LCP. For right circularly polarized (RCP) light there is a

restriction on the choice of Ωc as α=+1 and ǫ has to be kept negative. In this

case, the required laser intensity to achieve a piston velocity is less than that for

Ωc = 0. We observe that for RCP ωpeff increases with application of magnetic

field because the direction of electron gyration due to electric field of the laser is

the same as that induced due to externally applied magnetic field. As a result, the

skin depth c/ωpeff decreases because of which the transmitted laser field in the

electron sheath decreases for a fixed laser intensity. As the laser field falls to zero

at a shorter distance in the electron sheath, the ponderomotive force increases with

magnetic field for RCP. For LCP the effect is reversed as the electron gyrations

induced by the laser and applied magnetic field are opposite, hence ωpeff decreases
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with magnetic field.

Looking further towards the ion space charge, we mentioned initially that behind

the ion sheath of the laser piston lies residual plasma ions that do not take part in

direct acceleration process. Under the influence of induced electrostatic field they

undergo coulomb explosion. Analyzing the dynamics of this region shows that the

density of ions here decrease uniformly in time. We have seen earlier that the

plasma ions at rest in the undisturbed part get trapped and accelerated by the

laser piston. If we have a test ion moving with some velocity towards the laser

piston, then it would overshoot and enter the coulomb exploding part. Its inter-

action with this region will decelerate it further and reflect from some point with

in. Solving the equation of motion for such test ion in this region, it is found that

upon reflection their energies get enhanced. Hence, the coulomb exploding part

acts as an energy amplifier. For a given plasma parameters and piston velocity,

there is a maximum velocity that an incoming test ion can have to get reflected

from the coulomb exploding space charge region. This maximum beam velocity is

determined numerically.

In chapter 3, a self consistent analytical model was developed to study HB-RPA

in plasma targets composed of two ion species. It was clear from chapter 2 that

in plasma targets composed of single ion species the plasma ions at rest got re-

flected from the laser piston and formed nearly a mono-energetic beam as a result

of momentum transfer from laser to ions. From the conservation of momentum it

is clear that for a given laser the velocity of lighter ions will be more than that of

heavier ions. For a cold target of two ion species with different masses, there are

two acceleration stages. One is for the light ions and the other for heavy ions. The

response time of light ions is smaller than the heavy ones, as a result they tend

to accelerate earlier. At a later time, when the interaction becomes stable, both

the species are accelerated together by the induced electrostatic field and their

velocities tend to be equal. The velocity of heavier ions is higher in mixed plasma

than what would have been obtained in case of pure heavy ion target for the same

incident laser intensity and plasma density.

Previous theories on this mechanism did not focus on the structure of the laser pis-

ton for such cases. They resorted to the law of conservation of momentum to arrive

at the ion velocities. We have described a fully analytical model for the structure

of the laser piston for two ion species. When the laser ponderomotive force pushes
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the electrons outwards, the lighter ions respond to the induced field before the

heavier ones. The ion sheath forming close to the electron sheath contains both

species, with the light ion density blowing up. However, at this point the heavier

ion density is finite hence another sheath of primarily heavy species forms behind

this layer. Thus the accelerating region for the heavy species is composed of three

stages, first the heavy ion sheath then the mixed ion sheath and finally in the

electron sheath. The lighter ions undergo acceleration in the mixed ion sheath and

electron sheath. Thus the laser piston in such case consists of a triple layer instead

of a double layer as in the case of single species plasma. This structure has been

presented in the model proposed in chapter 3. The model describes the thickness

and potential structure of the laser piston. The presence of two ion sheaths as a

result of difference in response time of the the two ion species leads to a jump in

potential at the interface of these sheaths. It was previously observed in particle

in cell (PIC) simulations but remained unexplained till now.

The structure of laser piston shows that its thickness is a fraction of incident laser

wavelength, hence it can be looked upon as a thin fluid layer supported against

induced electrostatic force analogous to gravity by the pressure of a massless fluid

(the laser radiation pressure in this case). Rayleigh-Taylor (RT) instability, in this

case can play a destructive role depending on the duration upto which the acceler-

ation process continues and its evolution. The acceleration gradient is determined

by the radiation pressure exerted by the laser, the information for the ion sheath

thickness and mass is derived from the model described. The analysis was done by

dividing the entire ion sheath into small segments and looking into their evolution

in time and finally summing them up, thus arriving at the evolution of the entire

sheath. The time evolution of the segments is given by the parametric equation,

z = ∆0exp[t(kg)
1/2]cos(ky0)

y = y0 −∆0exp[t(kg)
1/2]sin(ky0) (6.1)

where ∆0 is the initial perturbation, t is the time, k the perturbation wavelength

and g the acceleration. With time, this instability grows making the laser piston

porous to the incident light. At this point the ions cease to accelerate. Analysis

of the piston shows that RT instability gets suppressed for targets where the pro-

portion of heavy species is more. Also, with increase in incident laser intensity,the
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cusp formation time goes down but at a slower rate showing nearly an asymptotic

behavior at higher intensities.

The studies reported so far are one-dimensional and hence do not take into account

the finite pulse width. To include the effect of finite pulse width and transverse

intensity profile, an analytical two-dimensional fluid model has been proposed in

chapter 4. The steepening of the electron density profile in the originally homoge-

neous overdense plasma and the formation of electron cavitation as the electrons

are pushed inside the plasma is determined self consistently. With introduction of

transverse inhomogeneity in laser pulse intensity, the ponderomotive force exerted

also varies along this direction. Because of this, a transverse inhomogeneity in

electron density is also introduced. This inhomogeneity in electron density and

light intensity produces nonzero currents in the azimuthal direction for a circu-

larly polarized laser. Besides this, the circular motion of single electron produces

plasma magnetization. The azimuthal and magnetization current together gener-

ate an axial magnetic field. The generation of axial magnetic field is governed by

the equation,

∇×Bs =
4π

c
Jθ + 4π∇×M (6.2)

where Bs is the induced axial magnetic field, Jθ is the azimuthal current and M

is the induced magnetization. In our study we have found that during the course

of ion acceleration, the finite pulse width of the laser induces these currents. We

have successfully derived an expression for axial magnetic field generated self con-

sistently by a circularly polarized laser pulse. Previous studies had either neglected

the magnetization current or had used a pre-determined electron density and laser

intensity. In this study the electron density and evanescent laser fields inside the

electron sheath are determined self consistently by the laser and plasma parame-

ters. It has been found that the magnetic field generated extends upto the electron

sheath only and decreases axially and radially. The mechanism predicts generation

of magnetic field of hundreds of megagauss.

In chapter 5 we analyze the effect of a long relativistic circularly polarized laser

pulse on a finite bulk target. In case of laser ion acceleration with bulk targets, it

is the laser piston described in previous works that move through the undisturbed

plasma and steadily accelerate ions at rest. In this process, the number of ions in

the accelerated beam keeps increasing with time as the piston moves through the
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plasma. For a target of finite thickness the distance upto which the laser piston

traverses depends on the piston velocity and laser pulse duration. However, if the

thickness of the target is such that the time required by the laser piston to cover

entire plasma is less than the pulse duration, then the process gets repeated again.

This process has been referred as “multistage acceleration”. For non-relativistic

piston velocities this phenomenon has been described before. But, as we go to

relativistic piston velocities, the non-relativistic results hold no more. We have

presented a fully relativistic calculation for second stage ion velocities and ener-

gies. To verify our calculations, we performed a fully relativistic 1D3V particle in

cell (PIC) simulations using the code LPIC++. It was found that the relativistic

calculations matched very well with the simulation results. Also it was seen that at

relativistic piston velocities, the non-relativistic results differed by a huge margin.

6.2 Future Directions

The results presented in this thesis illustrate several interesting physical phenom-

ena and provide a basis for further investigations as direct extensions to this work.

In this regard, we suggest below some open problems which can be addressed in

the future.

• In the present work, it has been assumed that the plasma is weakly coupled.

In studies related to laser fusion, the ions sometimes are strongly coupled.

The coupling is given by

Γ =
(Ze)2

aT
(6.3)

where Ze is the charge on the plasma species, a is the interparticle distance

and T is the temperature. When a laser pulse is incident on such a plasma,

then the restoring force generated against the ponderomotive pressure in-

cluded the viscoelastic force besides the regular induced charge separation

field. It has been shown that high intensity lasers may penetrate efficiently

in the plasma by accelerating ions in the forward direction. Further, the high

directionality seems to be very useful in heating the core. However, plasma

is such case is at times in a strongly coupled state and the studies so far have

not taken this into account. An analytical model for ion acceleration in a
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strongly coupled plasma can be developed which can give a better insight.

Further, it appears that growth rate of Rayleigh Taylor (RT) instability is

suppressed when the plasma ions are strongly coupled. We have seen in

chapter 3 that RT instability plays spoil sport in the ion acceleration process

by making the laser piston porous to the incident laser. By lowering the

growth rate the acceleration process can continue for a longer time adding

more charge to the accelerated beam.

• It has been shown by Schlegel et. al. (Phys. Plasmas 16, 083103 (2009)) and

Sinha and Kaw (Phys. Plasmas 19, 033102 (2012)) that a circularly polarized

laser normally incident of a homogeneous plasma induces a charge separation

on the surface due to ponderomotive force. This charge separation leads to

a longitudinal electric field which accelerates the plasma ions, thus acting as

a laser piston. The velocity of this laser piston is dependent on the incident

laser intensity and plasma density. For constant intensity and plasma density,

the piston velocity is a constant. However, with the introduction of density

inhomogeneity in the plasma, the piston velocity varies as it moves through

the plasma. The acceleration of ions is due to the induced charge separation

field directly depends on the ponderomotive force exerted by the laser. With

increase in ponderomotive force, the accelerated ion velocity also increases.

It was shown by Lindl and Kaw (Phys. Fluids 14, 371 (1971)) that in case of

oblique incidence of a laser on an inhomogeneous plasma the solution of exact

wave equation leads to an interesting resonance effect which predicts that

the magnitude of ponderomotive force exerted is greater than that obtained

conventionally. As the ponderomotive force is enhanced or in other words

swells in this region because of a resonance between laser and excited plasma

wave, it can generate high charge separation electric field. If the pulse is long

enough, this field can be maintained for a long time and plasma ions can be

accelerated. The enhancement in ponderomotive force due to resonance effect

can thus be exploited to obtain high ion energies.
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