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[ have read the above mentioned thesis which presents several important issues to charac-
terized the magnetized plasma turbulence in light of flow generation. This thesis presents
some original work and in general has been clearly written. The author is careful enough in
implementation of ideas and to derive some new and interesting results.

In this thesis, systematic calculations of radial fluxes of turbulent momentum due to the
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flows the author showed that the eigenfunction is shifted off the mode-rational surface,
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contributes to toroidal non-diffusive residual flux. As a result the toroidal flow accumulates
with the diffusive component which modifies the turbulent viscosity. The identification
of toroidal momentum source is a good contribution of this work. Also the toroidal and
poloidal shear flow coupling in the radial force balance equation is an interesting finding.
The toroidal flow generation does not require shear electric field which seems to be a novel
result.

In normal drift wave ordering the polarization drift convection of equilibrium density is
normally ignored as compared to E x B convection of equilibrium density. In this thesis
importance of such term has been demonstrated. It has been argued that the term which has
been considered subdominant may now lead to the formation of residual parallel Reynolds
stress due to the finite p? driven parallel symmetry breaking. The other important contribu-

tion is that in the region of steep density gradient, p} effect breaks the reflectional symmetry

of the eigenfunction even without radial electric field shear in contrast to the usual belief.
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Flux tube simulation of linear ITG mode in presence of finite ballooning angle has been
carefully studied. It has been shown that zero ballooning angle is not the maximally growing
mode at high wave number region which generates an important question to investigate the
cause for the further analysis. Nonlinear simulation with mean E x B shear indicating an
intimate relation between heat flux with zonal flow is also an important conclusion.

Electromagnetic toroidal ITG mode and Zonal flow studies is a good piece of work.
The nonlinear dispersion relation for the zonal flow is quite instructive. Coupling between
polidal and toroidal zonal flow is very interesting. The self consistent flow fluctuation theory
and its application to L-H transition phenomena is similar to the modulational instability
mechanism where ITG mode behaves like a pump wave. The work is complete interesting
and has practical application in tokamak plasmas.

In my opinion this thesis not only addresses some problems and their solutions but also
opens up various questions which is also significant to study further.

In summary, according to me the work presented in this thesis is fully adequate in scope and
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in quality, as a dissertation for the degree of Doctor of Philosophy (Ph.D.).
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Professor, Plasma
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I have some suggestions/ questions for my own understanding and to improve the quality of
the thesis.
In general writing mathematical symbol in the running text one must avoid frac command

in Latex it looks ugly. The figure legend sometimes not as clear as it is expected.

1. The clarification between Zonal flow and shear flow is not adequate for a reader who

ais not familiar before.
2. In Eq. (2.16) page 17, there is a typographical error, it will be V,

3. The electromagnetic effect on zonal flow is not illustrated as compared to the electro-

static one.
4. Please see if Eq. (3.39) is dimensionally correct?

5. Chapter 1 page 2 ,.....which are known as (one typo). Also in the same line GAM is

introduced without reference.

6. In page 18, while approximating Eq. (2.22) it has been assumed that the mode fre-
quency higher than shearing rate i.e. w > V. Nothing is said about magnetic shear.
Since the mode structure is determined by the magnetic shear parameter. Probably a

little elaboration may be required.

7. With so much work about the momentum transport, are we at the point where we can
start to use this knowledge to change the flow profile as desired? If not, what are the

missing ingredients?

8. In Eq. (6.31) can we take k.o = 07 In Eq. (6.32) there is no reflection of k.o, why it

is needed?

9. Is there any mechanism by which we can have an estimate of the radial scale of zonal

flow g7

10. In the background ITG mode when one is estimating the zonal flow growth rate, how
can we ensure there is no linear ITG mode growth rate is mixed with this. Since linear

ITG mode itself is a growing mode there is a possibility of co-existence of linear ITG

as well as shear low mode. N\ &’)
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Detailed report on the thesis of Mr. Rameshwar Singh

I think Mr Singh, in this thesis, has dealt with certain very important aspects of self-consistent
dynamics of micro-turbulence and mesoscopic and macroscopic flows. The calculations
presented in the thesis are consistent and correct. The results of the thesis are relevant to modern
day tokamak research and will definitely lead to further work and extensions. I congratulate Mr
Singh and Prof Singh on this excellent task. My detailed comments are as follows

In this thesis Mr Singh has presented several important and interesting aspects of micro-
turbulence driven flows in magnetized tokamak plasmas. Specifically he has talked about two
types of self-driven flows by ITG turbulence viz., 'intrinsic rotation' and zonal flows.

He has presented careful calculations of radial fluxes of the toroidal and the poloidal momentum
and has demonstrated the existence of the residual momentum flux due to the generation of

intrinsic rotation. In normal shear configuration, the k symmetry breaking has been shown to

cause a residual parallel momentum flux and the £, symmetry breaking has been shown to cause
a residual poloidal momentum flux. The toroidal and the poloidal momentum fluxes have been
shown to be coupled via radial force balance. The macroscopic E x Bshear at leading order and
strong density gradients at higher order have been shown to cause k, symmetry breaking by

shifting the eigen-mode structure off the rational surface. Comparative study of the density
gradient driven momentum flux with other candidates is quite interesting.

Mr. Singh has also extended above described normal shear calculations to reverse shear
configuration. This I think is an important extension. Particularly the generation of residual
parallel momentum flux by the symmetric eigen-function at ¢, qualitatively explains

generation of the spontaneous flows.

The thesis also contains important results from the gyrokinetic flux tube simulation of finite
ballooning angle effects on the toroidal ITG mode. The growth rate is maximum at ballooning
angles other than zero leading to the formation of a short wavelength branch. This has been
shown to have important effects on the momentum and the heat transport. Correlation studies
among heat flux, momentum flux and the self-consistent zonal flow shear is an important piece

of work.

In the study of the electromagnetic effects on the zonal flow generation in toroidal ITG
turbulence the competition between the Reynold and the Maxwell stresses producing different
behaviour of the ratio of the zonal flow growth rate to the ITG growth rate with respect to plasma
beta near and away from marginality has been highlighted. The results obtained are consistent
with the observations of the increased nonlinear Dimits upshift of the critical temperature
gradient with increasing beta.
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It has been shown that the toroidal zonal flow shear and the conventional poloidal zonal flow
shear get simultaneously excited via modulational instability. Their dynamics has been shown to
be coupled in general when k symmetry is broken. The effects of the poloidal and the toroidal

zonal flow shear on the transient dynamics of L to H transition also been presented.
In the last part of the thesis the author has elegantly investigated stationary solutions of the
electrostatic toroidal ITG and poloidal zonal flow systems. Formation of coherent nonlinear

structures such as soliton, shocks in the zonal flow field due to trapping of quasi-particles in the
effective potential formed by the zonal flow field has been demonstrated..

The contents of the thesis are adequate in scope and quality to be considered as a dissertation for
the award of Doctor of Philosophy. I recommend it for the award of PhD degree.

Prof Avinash Khare 20 Apr. 2013




STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment
of requirements for an advanced degree at Homi Bhabha
National Institute (HBNI) and is deposited in the Library to
be made available to borrowers under rules of the HBNTI.

Brief quotations from this dissertation are allowable without
special permission, provided that accurate acknowledgement
of source is made. Requests for permission for extended quo-
tation from or reproduction of this manuscript in whole or in
part may be granted by the Competent Authority of HBNI
when in his or her judgment the proposed use of the material
is in the interests of scholarship. In all other instances, how-

ever, permission must be obtained from the author.

Date: 12/09/2013 Rameswar Singh



DECLARATION

I, hereby declare that the investigation presented in the thesis
has been carried out by me. The work is original and the
work has not been submitted earlier as a whole or in part for

a degree/diploma at this or any other Institution or University.

@Wﬂv’m 5
Date: 12/09/2013 Rameswar Singh



CERTIFICATION FROM GUIDE

This is to certify that the corrections as suggested by the Ref-
erees in the thesis evaluation report have been incorporated

in the copy of the thesis submitted to HBNL

R gun X(v

Date: 12/09/2013 Guide: Prof. R Singh






ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. R
Singh. His continuous support and guidance had been inspiring. His enthusiam
and friendly nature had made this journey possible. I really appreciate his toler-
ance for listening and answering to my every childlike questions during the initial
days of my work. I am also thankful to him for providing me enough independence
during this work and involving me in some fruitful collaborations.

I am grateful to Dr. R Ganesh, Dr. R Srinivasan and Prof. P Kaw for being
my doctoral committee members. Their comments during my reviews had been
quite helpful in improving this work. Discussions with Prof. Kaw had always been
enlightening.

I am extremely thankful to Dr. R Ganesh for involving me in collaboration on gy-
rokinetic simulations with Dr S Brunner and Prof. F Jenko. I am truly indebted
and thankful to Dr S Brunner who helped me in learning the gyrokinetic turbu-
lence code GENE with extreme patience during my stay at CRPP-EPFL. Many
thanks to Prof. F Jenko and his group from IPP, Garching for fruitful discussions
through videoconferencing. I appreciate numerous helps of Edith Grueter, Daniel
Brunetti and T Bogdan during my stay at CRPP-EPFL.

I am thankful to Dr. O D Giircan, Prof. P H Diamond, Dr. J Anderson, Prof. H
Nordman, Dr. N Bisai, Prof. A Sen and Prof. P Kaw for collaboration on various
topics that are included in this thesis.

I would like to thank Dr. P Chattopadhyay, Dr. S K Pathak, Dr. S Sengupta,
Dr. D Raju, Dr. M Warrier, Dr. S Pradhan, Dr. H Joshi, Dr. R Srinivasan, Dr.
R Ganesh, Dr. N Ramsubramaniam, Dr. Joydeep Ghos, Dr. Asim, Dr. Devendra
Sharma, Dr. R Goswami, Dr. S Mukherji, Prof. A Das and Prof. R Jha for their
endurance while teaching us during the 1st year course. Many thanks to Prof. A
Sen for guiding me during my pre-doctoral project work.

Thanks to Dr. L M Awasthi, Amulya Sanyasi and Pankaj Srivastava for being

friendly and helpful towards me on various occasions.




Thanks to the library, computer and administrative staff of IPR for being always
cooperative. I thank Mr. Saroj Das, Mr. Shravan Kumar, Ms. Smita Parmar,
Mrs. Arundhati Das, Mrs. Pragya Pathak, Mrs. Sutapa Ranjan, Mr. Shailendra
Trivedi, Mr. Arvind Singh, Mr. Hemant Joshi, Mr. Gaurav Garg, Mr. Govind
Lokhande, Mr. M Sourabhan, Mr. M. H. Vartak, Mr. H. K. Sharma, Mr. H. C.
Khanduri, Mr. Hitesh Mehta, Mr. Dinesh Nair, Mr. Silel Shah, and Ms. Shirin
Bhesania for their helps on numerous occasions.

I enjoyed the friendly hostel life at IPR. Greetings and best wishes to my dear Pintu
da, Ritu di, Manash Paul, Rajneesh Yadav, Anand Srivastava, Bhaskar Chaudhary,
Anurag Mishra, Vikrant Saxena, Kishore Karatiparambil, Padduvatti N. Maya,
Subhas, Sanjay Mishra, Swati Baruah, Ajai, Jugal Chaudhury, Satyanand Kar,
Sharad Yadav, Shekhar T. Goud, Sunita Negi, Kshitish Barada, Deepak Sangwan,
Vikram Narang, Prabal Singh Verma, Ashwin Joy, Ujjwal Shinha, Sita Sunder,
Sushil, Sanat, Pravesh, Partha, Nishant, Sayak, Manjit, Soumen, Aditya, Iliyas,
Vikram Jr, Rana, Veda, Sandeep, Zuber, Rupendra, Mangilal, Bibhuparasad,
Varaprasad, Harish, Sameer, Neeraj, Deepa, Akanksha, Vidhi, Dushyant, Anup,
Arghya, Bhumika, Debraj, Modhuchandran, Narayan, Amit, Rajnarayan, Ratan,
Sonu, Surabhi and Umesh.

My batchmates Pravesh, Sanat and Sushil deserve special thanks for always being
supportive for me.

I take this opportunity to thank my teachers during my MSc at Gauhati Univer-
sity, especially, Prof. S A’ S Ahmed and Prof. N. N. Singh for motivating me to
pursue higher studies.

Many thanks to my university friends Samiran Chaterji, Abu Mostako, Nabaratna
Bhagawati, Sandeep Chaudhury, Mayur Bawari, Shashi Kalita, Chayanika, Parijat
Saikia, Liladhar Chauhan, Rongmon Bordoloi whose company always boosted a
positive attitude in me.

Thanks a lot again to Pravesh, Aditya and Sushil for spending their valuable time
in proofreading the draft.

At last, my heartfelt gratitude to my parents and family for their goodwill and
support all through my life.

feamesion Sindh
Date: 12/09/2013 Rameswar Singh




PUBLICATIONS

Thesis:

1.

Intrinsic toroidal and poloidal flow generation in the background of ITG tur-
bulence, Rameswar Singh, R Ganesh, R Singh, P Kaw and A Sen, Nuclear
Fusion 51 013002 (2011).

Symmetry breaking effect of density gradient on parallel momentum transport:
A new p: effect; Rameswar Singh, R Singh, P Kaw, O D Giircan, P H
Diamond and H Nordman, Phys. Plasmas 19 012301 (2012).

Secondary instability of electromagnetic ion-temperature-gradient modes for
zonal flow generation, Johan Anderson, Hans Nordman, Rameswar Singh,
Raghvendra Singh, Phys. Plasmas 18, 072306 (2011).

Parallel momentum transport in the neighbourhood of ¢in in reverse shear
tokamaks, Rameswar Singh, R Singh, Hogun Jhang, and P H Diamond, Phys.
Plasmas 2013 (submitted).

A new paradigm of coupled intrinsic toroidal zonal flow - ITG turbulence -
poloidal zonal flow system, Rameswar Singh, R Singh, P Kaw, Phys. Plasmas
(to be submitted).

Coherent structures in ITG-zonal flow system, Rameswar Singh, R Singh, P
Kaw, and P H Diamond, New J. Phys. 2013 (under review).

Finite ballooning angle effects on ion temperature gradinet driven mode and
associated transports in gyrokinetic flux tube simulations, Rameswar Singh,
S Brunner, R Ganesh and F Jenko, Phys. Plasmas (to be submitted).

Others:

1.

Low-frequency fluctuations in scrape-off layer of tokamak plasma with limiter
biasing, N. Bisai, Rameswar Singh and R. Singh, J. Plasma Physics, Available
on CJO 2011, DOI: 10.1017/S0022377811000158




Abstract

Microturbulence driven by equilibrium density and temperature gradients is re-
sponsible for cross field transport of particles and energy deterioting plasma con-
finement in tokamaks. Mean shear flows tend to reduce energy and particle trans-
port by enhancing the turbulence decorrelation. These flows can be either ex-
ternally driven or can be self-generated by turbulence. Self-generated flows can
appear at macroscopic scale and mesoscopic scale. Intrinsic toroidal and poloidal
rotation without external momentum source belong to the first category while
zonal flows in poloidal and toroidal direction belong to the second category. Self
generated intrinsic rotation and zonal flows can be viewed as different manifesta-
tions of momentum transport in turbulence. This thesis deals with certain features
of momentum transport in ion temperature gradient (ITG) driven microturbulence
leading to generation of intrinsic rotation and zonal flows using mean field theory.
Analytical caclculations are mostly performed in sheared slab geometry and nu-
merical simulations are performed in local flux tube geometry using the gyrokinetic
turbulence code GENE.

Residual stress is identified as a key ingredient of intrinsic rotation drive whether
it is toroidal or poloidal. <k;||> symmetry breaking drives parallel residual stress
while (k,) symmetry breaking drives poloidal stress assisted by radial fluctuating
E x B velocity. (Here <kH> represents eigenmode averaged wave number paral-
lel to the equilibrium magnetic field and (k,) represents eigenmode averaged wave
number in the radial direction.) This <k;||> symmetry breaking is achieved by mean
E x B shear and density gradient as a higher order p} effect via mode shift off the
rational surface. (Here pf = ps/L,; ps being ion sound radius and L,, being ion
density gradient scale length.) Poloidal residual stress by (k,) symmetry breaking
requires mean parallel flow shear. This leads to coupling of parallel and poloidal
momentum fluxes and hence of intrinsic toroidal and poloidal rotations. In reverse
shear tokamak with non-monotonic safety factor g, <k:||> symmetry breaking does
not require asymmetry of the eigenmode at the minimum of ¢ due to quadratic
variation in the poloidal magnetic field there. However the mode symmetry is
spontaneously broken due to mean E x B shear and finite p} effects. Polarization
drift also drive parallel residual stress at a higher order in p} by <k:||k:x> symmetry

breaking which does not require asymmetry of the eigenmode about the rational
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surface. However polarization drift fails to drive any poloidal stress. Linear gy-
rokinetic flux tube simulations show that toroidal ITG instability extend to short
wavelength region when growth rates are maximized over all ballooning angles.
Finite ballooning angle generates parallel residual momentum flux by breaking the
symmetry of the eigenmode about the low field side (LFS) mid plane. Nonlinear
simulations with macroscopic £ x B shear show parallel residual momentum flux
by symmetry breaking of the eigenmode about the LES mid plane. 2D cross-
correlation calculations show some finite spatially local but temporally non-local
correlation between momentum flux and root mean square zonal flow shear, but
zonal flow shear fails to generate volume averaged parallel momentum flux.

Zonal flow in the poloidal direction is well known to appear as a consequence of
modulational instabilty of the I'TG turbulenece. Inclusion of electromagnetic ef-
fects show that near marginality the ratio of zonal flow growth to I'TG mode growth
~vzr/V1TG increases with 3 (ratio of thermal pressure to magnetic pressure) whereas
for larger n;, ratio of density and temperature scale lengths, the zonal flow drive
reduces due to the competition between Reynolds and Maxwell stresses. Toroidal
zonal flows (TZF) get excited via modulational instability similar to poloidal zonal
flow (PZF) excitation in ITG turbulence. Toroidal and pololoidal zonal flow shears
are coupled linearly via non-linear stresses. A 0 — D empirical model for time evo-
lution of turbulence intensity, PZF shear, TZF shear, pressure gradient in a input
power ramp shows that the input power threshold for L—H transition reduces
with PZF—TZF coupling coefficient which depends on <k||> symmetry breaking
mechanisms. In the strong turbulence regime coherent nonlinear structures like
solitons, shocks, nonlinear wave trains appear in poloidal zonal flow field due to

Reynolds stresses offered by trapped and untrapped I'TG waves.
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Introduction

1.1 Motivation and brief history

Tokamak is a toroidal magnetic confinement fusion device aimed for production
of energy via fusion reaction of deuterium and tritium in plasma state. Strong
magnetic fields are used to keep the high temperature plasmas detached from the
vessel wall. In tokamks the toroidal magnetic field is produced by external coils,
while the poloidal field is generated by the plasma itself by inducing a toroidal
plasma current as opossed to the stellarator where complex geometry coils are
used to generate both toroidal and poloidal magnetic field. The necessary ingre-
dients for the success of fusion reaction are: high temperature 7', high particle
density n of the enclosed plasma (to ensure lage fraction of high-energy particles)
and high mean energy confinement time 7z. The ’ignition condition’ is given by
the Lawson Criterion|l, 2|: nTTg > 3 x 10*’m™3keV's. That is the product of
the three parameters has to exceed a certain value, so that the energy gain due to
nuclear fusion over-compensates the energy loss due to radiation and convection.
For typical parameters of T' ~ 10 — 20 keV and n ~ 10* m~=3, the confinement
time needs to be of the order of several seconds to allow for a self-sustaining plasma
burning. The confinement time, on the other hand, depends on heat diffusivity y
and minor radius a of the tokamak through 7z = a?/x. Obviously minimum heat
loss is desired to get better confinement. Hence study of processes that effects heat
and particle confinement becomes extremly important so that optimizations can
be done to maximize confinement.

Tokamak plasmas are always found to be in a symbiotic state of turbulence and
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flows. The turbulence is usually driven by the release of free energy contained
in the equilibrium density and temperature profiles. Whereas the flows are ei-
ther externally driven e.g., by unbalanced neutral beam injections or it can be self
driven. This self generated flows include intrinsic toroidal rotation on macroscale
and zonal flows on mesoscale. Intrinsic rotation is referred to spontanous toroidal
rotation without any external momentum source which has been observed in all
types of discharges. Zonal flows correspond to poloidally symmetric band-like
shear flows|3, 4] and are most dominantly observed in high (H) confinement mode.
Zonal flows has two variants: stationary zonal flows and high frequency zonal flows
which are also know as geodesic accoustic mode (GAM). Flow generation and mo-
mentum /velocity transport are intrinsically connected. Self-generation of flows is
viewed as phenomena of self-organization in turbulence by Reynolds stresses. Mean
flow self-generation and anomalous momentum transports are prevelent at many
places in astrophysical settings such as in accretion disk formation[5], galactic dy-
namics, zonal flows in the Jovian atmosphere[6]. The phenomenon of tokamak flow
self-organization has gained considerable interest and importance in recent years.
This is because shear flows reduce outward particle and heat transport by reduc-
ing eddy decorrelation length, thus providing better confinement|7, 8, 9, 10]. Both
toroidal flow and its shear influence the power threshold for L-H transition|11],
and plays importatnt role in formation of internal transport barriers (ITB)[12, 13].
Toroidal rotation is also helpful in suppressing certain types of harmful magnetohy-
drodynamic(MHD) instabilities, such as resistive wall modes(RWM) |14, 15, 16, 17|
whose stability is a major concern for advanced ITER scenerios [18]. RWMs are
nothing but the long wavelength MHD external kink modes in the presence of a
resistive wall. RWMs stability can facilitate tokamaks to operate at normalized
pressure values beyond the no-wall stabilty limit and rotation plays a significant
role in achieving this. In present generation tokamaks neutral beam injection(NBI)
is the main external driver of rotation. However use of NBI in ITER and other fu-
ture reactor scale machines to achieve desired rotation is still debatable because of
unvoidable bulky size of these machines [19, 20, 21]. Hence self generated rotation
will play a vital role in suppression of RWMs. Fortunately Rice scaling predicts a
toroidal intrinsic rotation Alfven Mach number of M, > 0.02 for ITER plasma and
that appears to be sufficient for stabilization of RWMs [22]|. This suggests that the
RWNMs in the ITER plasma will probably be self-stabilized because of spontaneous
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rotation itself, which would provide an alternative solution to the NBI problem
apart from the active feedback control of RWMs [18]. These findings have sparked
extensive theoretical and experimental studies on intrinsic rotation generation.
Experimental efforts over the years have been able to characterize intrinsic toroidal
rotation which follow many impirical trends in H-mode[22|: a) rotation is typically
co-current, b) the increment in central velocity AV, at the L—H mode transi-
tion scales with the increment in stored energy AW and plasma current I, as
AVy ~ AW/I,, with no observed dependence on normalized gyroradius p*(= p/a)
or normalized collisionality v*(= v/1;), where @ is minor radius and v, is bounce
frequency, ¢) co-current rotation initiates at the edge and then propagates inward.
L mode plasmas show even more complex behaviour. Core plasma rotation re-
verses from co-to-counter current when the electron density is increased beyond
a critical electron density or toroidal magnetic field ramps in torque free ohmic
discharge plasmas such as in TCV[23]| and Alcator C-Mod[24, 25, 26, 27]. The
rotation reversal critical density increases linearly with plasma current I, and de-
creases with increasing toroidal magnetic field B. A strong correlation has been
oberved between the reversal density and the density at which the global ohmic
L-mode energy confinement changes from the linear to the saturated regime.
Intrinsic rotation and zonal flows can be viewed as different manifestations of
radial transport of toroidal and poloidal momentum. Early theories attempted
to explain the observed rotation in ICRF plasmas based on orbit shifts of fast
ions|28, 29, 30, 31]. But similarity between Ohmic and ICRF H-mode rotation
results suggests that it is not a fast ion orbit effect. Among others, neoclassi-
cal theories [32, 33| and ion orbit loss based [34] theories are only partly able to
explain certain features of edge intrinsic toroidal rotation. The most promising
theories are those based on flow generation by turbulent Reynolds stresses|35, 36].
While both neoclassical and turbulent contributions should be considered to pre-
dict intrinsic rotation profiles, this thesis focuses only on turbulent momentum
fluxes. Tokamak plasmas always exhibit turbulence so turbulent Reynolds stresses
are natural ways of exerting local internal torques. Momentum flux differs from
heat and particle flux in the sense that it consist of an unique part called residual
momentum flux which is not present in heat and particle fluxes. Residual flux
differs from diffusive and convective fluxes in the sense that it is independent of

mean velocity/momentum and mean velocity /momentum shear.
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The mean flows are self sustained only when the residual stress is non zero. This
residual stress acts like an internal torque and drives the spontaneous rotation[37].
Self sustained mean flows are the nothing but the so called Intrinsic Flows. So
searching for nondiffusive elements (i.e., pinch and residual stress) and understand-
ing underlying mechanisms have been the focus in research related to intrinsic ro-
tation generation in tokamaks. The structure of the residual stress has been found
to depend on the type of underlying turbulence. Different mechanisms driving the
residual stress are seen as different candidate mechanisms driving intrinsic rota-
tion. Some of the mechanisms discoverd so far in normal shear tokamak, where the
safety factor ¢ is monotonically increasing radially outward, are described below.
The first convincing mechanism was given by Gurcan etal [37]. They showed that
the mean radial electric field shear breaks the reflectional symmetry (about a mode
rational surface) in ion temperature gradient (ITG) driven microturbulence which
has also been shown by many authors in the past in different contexts. This makes
spectrally averaged (k) finite. This in turn makes parallel residual stress finite.
This electric field shear driven parallel residual stress generation mechanism has
also been reproduced in gyrokinetic simulation [38]. This mechanism of residual
stress generation is now popularly known as (k) symmetry breaking mechanism.
Later it was realized that having (k) # 0 is a generic requirement for generating
finite residual stress when radial fluctuating velocity is £ x B fluctuating velocity
only. Parallel nonlinearity in concert with the gyrokinetic poisson equation has
also been shown to generate parallel residual stress [39, 40| by making <krk||> # 0
which is a fundamentally different mechanism. Toroidicity[41] and up-down asym-
metry in toroidal plasma current|[42, 43| also drives parallel residual stress.
Tokamak plasmas are also noticed to have poloidal rotation along with intrinsic
toroidal rotation[44, 45]. Hence looking for structure of poloidal momentum flux
and other mechanisms of residual stress generation in tokamaks with regular ¢ pro-
file and non-monotonic ¢ profile (such as reversed shear case) is highly desirable.
Above mechanisms for parallel /toroidal or poloidal rotation are for mean toroidal
and poloidal rotation, there can be other varient of toroidal and poloidal flows
which appears at mesoscale. While poloidal flows at mesoscale namely zonal flows
are well explored theoretically and experimentally, possibility of toroidal flows at
mesoscale having characteristics similar to zonal flows can not be overruled.

Coming to the zonal flow generation in the poloidal plane, these mesoscale flows
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are well known to arise due to modulational instability of the drift wave tur-
bulence. The poloidal Reynolds stress leads to growth of zonal mode as a sec-
ondary instability[3]. The zonal flows provide a strong shear stabilization of the
turbulent eddies and are hence important for the self-regulation and saturation
of the turbulence|46, 47, 48, 49]. Finite § (thermal pressure to magnetic pres-
sure ratio) has stabilizing influence on ITG mode which gives favourable scaling
of confinement with § in quasilinear theories[50, 51, 52, 53|. However the role of
electromagnetic effects on the generation of zonal flows are not well studied analyt-
ically, though many nonlinear simulations of I'TG turbulence including electromag-
netic effects and zonal flow dynamics have been performed using both gyrokinetic
[53, 54, 55, 56, 57, 58| and gyro-fluid models|59, 60]. Reduction of transport levels
with increasing (3, as reported in recent gyrokinetic simulations[53, 54|, could not
be explained by the linear theories alone.

Zonal flow shear excited via modulational instability of a test shear by a drift

Mean flows
(Intrinsic toroidal and
Poloidal rotation)

Symmetry Momentum
breaking transport
Back-reacts
To reduce
grad n, |  Drift wave Wave trapping,
grad T turbulence »| Coherent structure in
Poloidal Zonal flow field

Back-reacts

o reduce

Modulational { Momentum

instability transport
Zonal flows
A(Toroidala and poloidal)
Weak turbulence analysis by quasilinear theory Nonlinear stationary solutions

Figure 1.1: Schematic showing consequences of momentum transport and ap-
proches used to handle different processes.

wave spectrum can not keep on increasing indefinitely and hence some saturation
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mechanisms are required to limit the growth of zonal flow shear. In presence of
an effective collision of ions, which could arise from collision between trapped and
passing ion in tokamak core due to high temperature, zonal flows are directly sub-
ject to collisional damping [61]. In zero collisionality regime several possibilities
can exist. Tertiary linear KH instability which is a secondary KH instability of
the zonal flow itself. This will return energy to the m # 0 fluctuations, thus
limiting the zonal flow growth. This mechanism is efficient near marginality[62].
However a follow up study in Ref.[63] shows that zonal flow damping by linear
KH instability is not efficient near marginality, but could be significant away from
marginality. Moreover Landau damping of KH modes further weakens this effect.
Among other routes with no higher order instabilities include the following. a)
Flattening of the quasi-particle distribution function (wave action density or wave
population density Ny ) through %—space diffusion. When the zonal flows grow,
they shear turbulent eddies of the drift wave and thus generates modes of higher
k, which flatten the Ny spectrum. The flattening then weakens the drive of zonal
flow generation causing it to saturate. The main features of this nonlinear feed-
back can be captured in simple “predator-pray” model by employing quasilinear
closure. b) When zonal flow amplitude grows to larger values quasi-particles may
get trapped in the effective potential formed by zonal flows profile. The trapping
is effective when the bounce frequency wy, is greater than the growth rate v of
the quasi-particle i.e., w, > . Trapping can lead to saturation of zonal flow by
formation of self-consistent zonal flow - turbulence state.

Dominance of different processes can be understood in a unifying framework of
shearing and wave kinetics|3]. Quasi-particle bounce frequency wy, and the disper-
sion in the wave number Ak of the quasi-particle due to mesoscale zonal flow field
serve as key parameters to identify different processes. Ak is typically the width
of the island in the phase space for quasi-particle orbit. Chirikov parameter S is

introduced for quasi-particle dynamics in mesoscale zonal flow perturbations as

(D, /Ok) Ak

5= TAQ/)

which is ratio of variation in velocity (0v,/0k)Ak of quasi-particle over the island
width Ak to separation between phase velocities A(£2/q) of the modulations. Sim-

ilarly effective Kubo number K of quasi- particle is introduced as ratio between
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the life time and bounce time of the quasi-particle

K =wy/v

Depending on different values of these parameters & and K different nonlinear
processes become dominant. The values S — 0 and K — 0 correspond to the
case of single zonal flow perturbation and with infinitesimal small amplitude so
that there is no island overlapping and quasi-particle trapping. Then simply the
method of modulational parametric instability apply. This regime does not yield
saturation level of zonal flow. For § > 1 and K << 1, the resonances overlap and
the quasi-particle trapping is not efficient. The dynamics then become stochastic,
with stochastic rays, and random shearing and refraction of drift waves by zonal
flows constitute the principal effect of zonal flows on the turbulence. Quasi-linear
theory may be used in this regime which yield a picture of diffusive refraction.
Higher order extension of the quasilinear theory is possible to account the effects
of strong nonlinear deviations of Ny by larger amplitude zonal flows. Retaining
terms up to third order produces zonal flow equation with cubic nonlinearity which
supports propagating kink soliton like solutions|64]. The regime with S ~ 1 and
IC ~ 1 correspond to the regime of turbulent trapping. This is a kind of mixed
regime with stochasticity and trapping where closely separated quasi-particles re-
main correlated for times greater than the nonlinear decorrelation time. This
causes granulation in Nj. For § << 1 and K > 1 there is no island overlapping
but trapping is effective. In this case the dynamics is coherent and the quasi-
particle moves along its perturbed orbit without decorrelation. Eventually a BGK
state|65] of the wave kinetic equation may be reached. Kaw et al [66] in context of
disparate scale interaction between Langmuir turbulence and acoustic turbulence
showed soliton formation in the envelope of acoustic density modulation by appro-
priate choice of distribution of trapped and untrapped plasmon (or quasi-particle)
density. Then again inspired by the non-Gaussian features such as intermittency,
burstiness etc., [67, 68, 69, 70, 71] in turbulent transport in tokamaks, Kaw etal|72]
showed that in a strongly non-linear regime in a drift wave - zonal flow system a
significant fraction of drift wave trajectories get perturbed by trapping effects in
the effective potential formed by zonal flow. Then the Reynolds stress offered by

trapped and untrapped drift waves can sustain coherent structures like solitons,
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shocks, and nonlinear wave trains in the zonal flow field in the drift wave turbu-
lence. Similar phenomena may also be expected in other disparate scale systems
such as toroidal ITG turbulence and zonal flows. These coherent structures might
provide alternate saturated states of the ITG turbulence.

In the backdrop of the scopes outlined above this thesis is dedicated to study of
some critical issues related to momentum transport in normal and reverse shear
tokamaks, possibility of zonal like toroidal flows and its role in L-H transition,
electromagnetic effects on zonal flow generation in toroidal ITG turbulence and

coherent structure formation in ITG-zonal flow system.

1.2 Thesis outline

This thesis deals with parallel and poloidal momentum transport in tokamaks
which manifest as intrinsic toroidal and poloidal rotation and zonal flows. Chap-
ters 2 to 5 present studies on momentum transport relevent to macroscale intrinsic
toroidal and poloidal rotation and the Chapters 6 to 8 deals with momentum trans-
port phenomena leading to the generation of mesoscale poloidal and toroidal zonal
flows.

Chapter 2: deals with intrinsic toroidal and poloidal flow generation in the back-
ground of ion temperture gradient turbulence. In this chapter we have performed a
systematic calculation of toroidal /parallel and poloidal Reynolds stresses for elec-
trostatic slab ITG turbulence with adiabatic electron response and macroscopic
E x B shear and parallel flow shear, in fluid theoretical framework. Structure
of parallel and poloidal stresses in the low flow shear limit is discussed. Parallel
and poloidal symmerty breaking mechanisms of residual stress generation linked
to intrinsic rotation in toroidal and poloidal direction are detailed. £ x B leads to
generation of parallel residual stress by kj symmetry breaking via radial symme-
try breaking of the eienmode about a mode rational surface. Parallel flow shear
generates poloidal residual stress by k. symmetry breaking via radial symmetry
breaking of the eigenmode. Residual parallel polarization stress generated by £,k
symmetry breaking however, does not require radial asymmetry of the eigenmode.
Chapter 3: Divergence of the fluctuating polarization current that arise from the

radial gradient of the density of the particles generates a fluctuating current by
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their polarization drift motions which is one order higher in p! in regular drift
wave ordering used in Chapter 2. Inclusion of this higher order term in the ITG
eigenmode calculation, leads to a symmetry breaking in k by breaking of radial
symmetry of the eigenmode due to finite p%, and therefore a net non-zero residual
momentum flux which does not require background E x B shear. The importance
of this effect is discussed by making comparisons with the residual stresses driven
by E,-shear, parallel polarization residual stress (already obtained in Chapter 2)
and the turbulence intensity gradient.

Chapter 4: Theories discussed in Chapters 2 and 3 are further extended to reverse
shear configuration where the safety factor ¢ profile varies non-monotonically in
the minor radial coordinate. Because of the novel configuration of magnetic field
and existence of internal transport barrier (ITB), momentum transport studies are
done at the minimum of q. At ¢,,;, the parallel and poloidal symmetry is sponta-
neously broken without the need of eigenfunction with broken symmetry in radial
direction.

Chapter 5: Calculations in the previous Chapters have been performed in sheared
slab geometry which captures the effect of radial eigenmode structure only because
poloidal variation of equilibrium magnetic field is not considered there. The effect
of poloidal eigenmode structure on momentum and heat transport is studied in
this Chpater using the gyrokinetic turbulence code GENE. First part of this chap-
ter discovers finite ballooning angle 6, effects on toroidal [TG mode in linear flux
tube simulations. The k, spectrum of growth rates maximized over all 6, extends
to wavelength region k,p; > 1 which disappears at lower values of R/L; near
marginality. Finite 6y leads to generation of parallel residual momentum flux by
symmetry breaking of the eigenfunction about the low field side (LFS) mid plane.
Transport of heat and parallel momentum are discussed in detail.

Second part of this chapter discovers the effects of macroscopic £ X B shear on
nonlinear toroidal ITG simulations with adiabatic electrons. Simulations clearly
show generation of parallel residual stress by symmetry breaking of the eigenfunc-
tion about the low field side mid plane. Role of self-consistently formed zonal flows
on parallel momentum flux is analyzed.

Chapter 6: This chapter deals with generation of zonal flows in electromagnetic
toroidal ITG turbulence. A two-fluid model for the ions and the electrons are used

and the wave kinetic approach is employed for zonal flow generation. The ion fluid
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response is used in the limit w >> k¢, i.e., ignoring the ion parallel compression
effect which eliminates the need of parallel ion dynamics. A system of equations
is derived which describes the coupling between the background ITG turbulence,
using a wave-kinetic equation, and the zonal flow mode driven by Reynolds and
Maxwell stress forces. The scaling of the zonal flow growth rate with plasma pa-
rameters is studied and the implications for I'TG driven transport are discussed.
Chapter 7: Now the ion parallel dynamics is retained in the toroidal ITG equations
which facilitate the possibility of excitation of toroidal zonal flows (TZF) by the
same modulational instability of the ion temperature gradient (ITG) turbulence
that excites poloidal zonal flows (PZF). However, to keep things simple and to
dig out the fundamental mechanism of toroidal zonal flow excitation electromag-
netic effects are not considered. TZF and PZF dynamics is coupled linearly via
non-linear stresses. Then considered the effect of mean poloidal and toroidal shear
flows on zonal flows (both toroidal and poloidal) generation. It is found that, in
weak shear limit, mean shear flows reduces the growth of zonal flows shear by
enhancing the decorrelation of underlying mode propagation.

Based on these observations an extended 0D model is proposed which contains
the self-consistent dynamics of turbulence intensity, mean pressure gradient, mean
FE x B shear, mean toroidal flow shear, PZF, TZF and input power. Predictions
from the model in context of input power threshold and the transients of L to H
transition are discussed.

Chapter 8: In this chapter nonlinear stationary solutions of the coupled toroidal
ITG-Zonal flow system is investigated. Here, for simplicity the parallel ion dy-
namics is ignored. The I'TG turbulence is described by a wave-kinetic equation for
the action density of ITG mode and the longer scale zonal mode is described by a
dynamic equation for the m = n = 0 component of the potential. Some fraction
of drift wave trajectories get trapped in the effective potential formed by the large
amplitude zonal flows in the nonlinear regime. This novel effect leads to formation
of nonlinear stationary structures in a moving frame. It is shown that the ITG
turbulence can self-consistently sustain coherent, radially propagating modulation
envelope structures such as solitons, shocks, nonlinear wave trains, etc.

Chapter 9: The results of the entire thesis are summarized in this chapter and

future directions are outlined.
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Intrinsic toroidal and poloidal flow
generation in the background of ion

temperature gradient turbulence

2.1 Introduction

Anomalous momentum transport is a kind of phenomenon which is prevalent at
many places in nature, such as accretion disks, solar atmosphere, galactic dy-
namics, laboratory and space plasmas etc. In laboratory fusion grade plasmas
such momentum transport is manifested in the form of intrinsic or spontaneous
rotation|73|. Intrinsic rotation is the toroidal rotation observed without external
momentum injection. Though observed in all modes of tokamak discharges, it is
most prominent in H-mode discharges. Both toroidal rotation and its shear is
observed to influence the power threshold for L-H transition[11]. Toroidal rota-
tion is also found to have stabilizing influence on resistive wall modes (RWMs),
which are dangerous MHD modes and it has been estimated that a speed of ~ 200
km/s is needed to stabilize RWMs in ITER. While neutral beam injection (NBI)
is a means of generating toroidal rotation in present generation of tokamaks, it
is still questionable whether such high toroidal rotation can be produced by NBI
in ITER and other future fusion grade machines because of their bulky size. But
intrinsic rotation, as suggested by “Rice scaling”, can reach upto ~ 250 km/s in
ITER scenario, which appears to be sufficient to stabilize RWMs|22]. This finding

has revived the interest of fusion community to understand the generation mech-
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anism of intrinsic rotation and its enhancement. However a good and satisfactory
explanation of this fundamental phenomenon is still not found. Till date many
theories have been advanced to understand the generation mechanism of intrin-
sic rotation. Sub-neo-classical[32], neoclassical[33], thermal ion orbit loss theory
[34] explain certain features of intrinsic rotation. Because the tokamak plasma
is always found to be in a turbulent state, theory based on flow generation from
turbulent Reynolds stresses|[36, 35| also seem to provide a natural and promising
mechanism for intrinsic rotation. From this perspective intrinsic rotation can be
viewed as specific manifestation of the more general phenomena of mean field gen-
eration by turbulent stresses. To name a few, are « effect in magnetic dynamo
theory|74|, flow generation due to inverse cascade of energy in 2D incompressible
fluid turbulence|75, 76] and zonal flow generation in strongly magnetized plasmal3].

Let’s now look at the structure of parallel momentum flux
(mnuyvy) = m(u) (1) + m(n)(0:0))

where the first term is the momentum flux due to particle flux, which very sensi-
tively depends on electron response and the second term is Reynolds stress driven
momentum flux. The particle flux for adiabatic electron response is zero and will
not be considered in further analysis. In the mean field electrodynamics|77], the
distinct scale separation between mean and fluctuating magnetic field facilitates
the mean electromotive force to be expressed in terms of mean magnetic field and
its spatial derivative, thus providing closure. The Reynolds stress term, in the
spirit of mean field electrodynamics, is shown to be decomposed as[37, 78|

(vy)

. 0
(0:0y) = —x—,— + Velvy) + 5

where the first term is diffusive, second term is convective or pinch and the third
term called residual stress is independent of mean parallel flow and its shear. xj is
parallel momentum diffusivity and V. is radial convective velocity. With this the
mean parallel flow equation in cylindrical system for circular flux surfaces, in the

presence of external momentum source S, can be written as

Ov) 10 [T (_X(9<v>

ot ror or + VC<U”> + S)] = Seat

12
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which is same as the evolution equation for mean toroidal flow (vs) when By <
By, where r represents radial coordinate in poloidal plane. Assuming stationary
solution and integrating from 0 to r,

O(vy) A

—wj§—+nww+5=&m

which makes it obvious that residual stress term is isomorphic to integrated exter-
nal momentum source Sext and hence S is an ideal term to drive intrinsic rotation.
Earlier diffusive momentum transport has been studied extensively both theoreti-
cally [79] and experimentally[80] and it has been established that toroidal momen-
tum diffusivity x, ~ x;, ion thermal diffusivity. However it should be noted that,
whereas some recent gyrokinetic simulations[38] support this scaling, others|81|
have shown departure from this. Turbulent momentum pinch has been treated in
Refs.[82, 83, 84|. A particular form of residual stress has been shown to arise due
to asymmetry of fluctuation spectra induced by mean radial electric field shear
and so this mechanism of intrinsic rotation is found to be operative in the region
of strong mean radial electric field shear[37, 38|. Perturbation experiments carried
out on JT60U tokamak has also demonstrated and confirmed the link between ra-
dial electric field shear and intrinsic rotation|85]. It has recently been shown that
breaking of up-down symmetry of equilibrium magnetic topology[42, 43] and par-
allel nonlinearity in gyrokinetic framework |39, 40| are also capable of generating
residual stresses.

However these earlier works have not considered about simultaneous generation of
mean poloidal flow. Again in the same spirit of mean field electrodynamics we can

write poloidal turbulent Reynolds stress as

d(vy)

<1~)7"1~)y> ~ =Xy or

+ Vi{v,) + S,

where as before first term is diagonal diffusive, second term is off-diagonal convec-
tive/pinch and the third term is off-diagonal poloidal residual stress. x,, is poloidal
momentum diffusivity and V; is radial convective/pinch velocity. Here the residual
stress term .S, is independent of mean poloidal flow (v,) and its shear (v;) but may
depend on mean toroidal flow (v) and its shear (vj). That is, off-diagonal part

for one type of stress may serve as diagonal part for the other, hence providing
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coupling between toroidal and poloidal flow generation mechanisms. In this chap-
ter we have performed a systematic calculation of toroidal and poloidal Reynolds
stresses for electrostatic ITG turbulence with adiabatic electron response, in fluid
theoretical framework, and found that toroidal and poloidal flow generation mech-
anisms and their evolutions are naturally coupled. We also find that while a “seed”
poloidal flow is necessary to generate the toroidal residual stress due to F x B
drift, the polarization drift can generate residual stress even in absence of “seed”
poloidal flows. While turbulent £ x B drift is found to generate poloidal stress
(and hence poloidal rotation), by means of asymmetric eigen spectrum and radi-
ally propagating nature of basic mode [86], no appreciable mean poloidal stress is

generated by polarization drift.

This chapter is organized as follows. In Section 2.2 toroidal and poloidal mo-
mentum conservation theorem is derived. In Section 2.3 radial eigenmode analysis
is done where potential eigenfunction and eigenmode dispersion relation, in pres-
ence of seed flows, is derived which is used in Section 2.4 to evaluate the contri-
butions to toroidal and poloidal momentum fluxes due to £ x B and polarization
drift, for slow and fast modes. In Section 2.5 toroidal and poloidal coupled flow
equations are written using the exact expressions for various Reynolds stresses cal-
culated in the previous section. The chapter ends with conclusions and discussion

in Section 2.6.

2.2 Flow generation and amplification: momen-

tum conservation

In this section the equations for mean toroidal and poloidal flow evolution equa-
tions are derived in slab geometry where x represents radial, y represents poloidal
and z represents toroidal coordinates. We separate temporal and perpendicular
spatial scales into a set of “fast” variables, (¥, , ), associated with the microturbu-
lence and a set of “slow” variables (X |, T, typical of slowly evolving equilibrium

profiles|87|. Treating these fast and slow variables as independent one can decom-
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pose the perpendicular space and time derivatives in the form

Vi — ﬁ(f) + eﬁ(j), % — e% + 626%, V| — €V (2.1)
where € ~ (ps/Ln) ~ (w/we) ~ (k)/k,) < 1 in drift wave ordering. Here ﬁ(f)
corresponds to a derivative with respect to ¥, and ﬁ(j) corresponds to a derivative
with respect to X ;. Furthermore, for any field f and it’s fluctuation 6 f(z, ¢, X, T),
we may define a space-time average over the fast scales such that (§f(z,t, X, T)) =
0, but functions of only slow variables are left unaltered, i.e., (f(X,T)) = f(X,T).
Similarly, averages over the fast scales annihilate derivatives of fast variables as well
as derivatives along magnetic field lines but commute with slow derivatives, i.e.,
(ﬁ(f)f) = (V) f) =0, but (ﬁ(j)f) = ﬁ(f)(f} Using above tools to the momentum

equation

0 L o o Lo L
mini(a—{—%-V)Vi =eni(E+V;x B)—VPF, (2.2)
the evolution equation for mean toroidal and poloidal flows are obtained up to
order ¢* as oy o 5
Il
a—T + a—X<5UE$(5U||> + a—X<5Upol$5UH> =0 (23)
and o)) 0 P
a; + a—X<(S’UE15UEy> + a—X<5Upolx5UEy> =0 (24)

which are coupled through the radial force balance equation

B, 1 dRy,  (V.)B,
— + +
B, ngeB, dX B,

(2.5)

Note that, though the third term in above mean toroidal and poloidal momentum
equation is nominally one order higher it will be shown in Section2.5.1 that under

certain conditions the second and third terms can become comparable.

2.3 Model equations

In this section the linear eigenfunction for electrostatic ITG instability in the pres-
ence of mean flows is derived. In the following we derive a simplified set of fluid

equations governing the electrostatic ion temperature gradient driven instability in
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the presence of poloidal and toroidal sheared seed flows, under the assumption of
1) quasi-neutrality one = on;, 2) constant electron temperature , 3) zero resistivity

, 4) zero electron inertia for ¢; < ki” < Cey 4) w K we; and 5) m; > 1, ITG mode

dominated regime. Here ¢; , = ,/% is the ion(i)/electron(e) thermal speed, Tp; .

are ion(i)/electron(e) temperature, m; . is ion/electron mass, w is a typical fre-

quency, we = fn—B is ion cyclotron frequency and n; = LL—; is the ratio of density
g 7
: —1 _ __dlnng —1 __  dInTy :
and ion temperature scale lengths , > = =<2 and Ly, = —<3-¢ respectively.

We consider a sheared slab configuration of magnetic field B and an equilibrium
flow velocity lying in the (y,z) plane and all equilibrium quantities varying in x
direction

€r — Zo .

I 9) (2.6)

B=B(:+

which represents neighborhood of a rational surface situated at zg, where L' =
% is magnetic shear scale length. Z,¢, 2 are unit vectors in (z,y.z) orthogonal
Cartesian coordinate system. For fluctuations localized on a particular rational

surface at © = xg , the mean ion flow velocity ‘Z‘o may be expanded as

Vio(x) = Vig(xo) + (z — x0) (86Vf> o (2.7)

We will describe the system of equations in inertial frame moving with constant
velocity ‘_/;-0(.7:0). The electron response is adiabatic
one. €edp

= 2.8
o T (2.8)

The ion response is determined by the continuity equation, the momentum equa-

tion and the pressure evolution equation

+V-(nV;) =0 (2.9)

+ Vi - V)V, =eny(E +V; x B) — VP, (2.10)
9

9
ot
Q%+ﬁ-ﬁ)ﬂ+waﬁ-ﬁ: (2.11)
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where n, m, V, E, é, P are density, mass, velocity, electric field, magnetic field,
and pressure respectively and subscript ¢ stands for ion. The perpendicular ion
dynamics, in drift wave regime w < w,;, with equilibrium flows are due to Ex B ,

ion diamagnetic drift and polarization drifts :
Vii=Ve+Vu+ ‘7pol (2.12)

where F x B and diamagnetic drifts are of first order and polarization drift term

is of second order in (w/w;) which are given by

- B x ﬁ(b
Ve =—1; (2.13)
— é X ﬁpl
=t 2.14
en; B2 ( )
V;ool - _chi a + <VE + V;pz) . V VJ_¢ (2.15)

In the limit when the equilibrium scale is larger than perturbation scale, we
can separate equilibrium and fluctuating parts in Equations(2.9-2.11) as f; =
fio(Z@) + 6 f;(Z,t). Then the perturbed nonlinear continuity, momentum and pres-

sure equation for ions becomes as follows.

0 A, = 0 A=
(a + 2V - Vni + Vb — % +aVh, -V — KV,)Vié+ Vv
=N/J = ap a¢
LT, + T, 0+ + 0.0 = [0+ 720] - |5
dp 0¢
— =, = = 2.1
{931’ 8@/] 0 218
0 1 Y4
(@ +2VioVy)v = VigVyo + V(p + ¢) + [¢,v] = 0 (2.17)
d 1
(a + 2V V)p+ KV,¢+TV)v + [¢,p] = 0 (2.18)
Linearizing the set of Equations(2.16-2.18), we get
0 N
(5 + 2V V) (1= V3)o+ (1 + KVI)Vyop+ Vv =0 (2.19)
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0 i 7l
(a +2ViVy)v = VioVyd + Vi(p+¢) =0 (2.20)
0 !
(57 T 2VEaVi)p + KV + Vv =0 (2.21)

where normalization is

r=(x—x0)/ps, Y=Y/ps, 2z=2/Ln, t=tcs/Ly, ¢=1(0¢/Te)(Ly/ps), ni=
(G /n)(Lafps) v = (6vp/c)(Lnfps). = (70pi/ Po)(Lufps),  Lu¥) = V)=
% + msa% and the non dimensional parameters are 1n; = L,/Ly, K = 7;,(1+
mi) = T, 7 = Toi/Toe, T =7, s = Ln/Ls, Véo = (Ln/cs)Vio, VIIIO -
(Ln/CS)VH/o’ Ps = Cs/Wei-

Now considering the perturbation of the form f = fiy(x)exp(ik,y — iwt) , where

k, and w are normalized as k, = kyps,w = w/(cs/L,), the above set of Equa-

tions(2.19-2.21) form an eigenvalue problem in x direction in ¢

d2 ko — 2
% k2t Y (s2) o
dx 106k +w — xk, Vi, (w—xkyViy)? —T'(sx)?
i y
+ak, 0 — 1o —— | o = 0(2.22)
ik, +w —xk, Vi, (w— xk, Vi) (Tiuky +w — xk, Vi)

For flow shear frequency much smaller that the mode frequency Equation(2.22)

simplifies to

d2 ¢y, ) k, —w (xs)? V! ‘A/Hlo
_k, Yy k,2 k' FEO - — 0
da? L Tk, 4+ w Ty w? Ty rioiky +w  w(nok, +w) P
(2.23)
which can be written as
d?¢y, 9
where
T P TR N a= (") o)
! Tioky +w Y ? Tk, +w \ 0 w7 8 '
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Using the transformation

A
£ = (—A)" (x+ 2—/123) (2.26)
above Equation(2.24) becomes
d2
d?z’“ +(E—€)¢p=0 (2.27)

where E = <A1 4A3>/\/ (—As) The solution of Equation(2.27) is

2

)e) 2.29

Pri = doexp(—

with
E=20+1,1=0,1,2,3,.....etc (2.29)
Being the most dominant we will consider the [ = 0 mode for which the eigen

function in x is

2
Or = Qg exp ——2\/ T+ — (2.30)
2A3
and the corresponding eigenmode dispersion relation is
2
wk? | Vi = Vo]
w? (1 + k;) + wk, (—1 + kjﬂ-ai + is) + iSTial-k; = — - (2.31)

4 (Tiaiky + UJ)

Equation2.30 shows that the eigenfunction is shifted off the mode rational surface
in the presence of background sheared flows and it has a propagating wave nature
as well. In the limit Vj, = \7||’0 = 0 and s < 1 and for long wavelength mode
satisfying ]kznozﬂ < 1 we get the purely a growing mode

w = 15704k, (slow mode) (2.32)

Taking this as the zeroth order wi.e. wy and taking other parameters perturbatively

can get the next order frequency w; which carries the effect of flows. Using the
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. N . N2
ine: k2| = elk2rasl. s = wyr v\ = (e
ordering: |k;mic;| = €|k, 5 = es, <Sky Vio ||0> =¢ (sky Vio V||o) , we get

wiy = —s"kymioy [1+ 1oy (14 k)| + 055700k, Vi Vo (2.33)
~ 2 ~
Wi = STiOéi/Cy [TiQikj + o0 |:— (TZ‘OCZ'VE/'()) + ‘/]/(2):|:| (234)

This shows that growth rate decreases with increasing f/éo where as it increases
with increasing AH’O . This could be due to K-H instability. However, this is not
prime focus of the present work and will be discussed somewhere else. Anyway for
calculating turbulent parallel momentum flux we will use the purely growing status
of this mode. When V5, = ‘7||’0 = 0 and under the assumption that [1 — E27a;] S
s < 1 the fastest growing mode occurs at k] = (7;;)~" which is given by

w=(—1+1) (fast mode) (2.35)

5
21+ k2)

2.4 Momentum flux

In this section we calculate toroidal and poloidal quasi-linear momentum fluxes
due to E' x B drift and polarization drift. Assuming flow shear frequency much
smaller than the mode frequency the linear response for v, in dimensional form,
from Equations(2.20,2.21) is obtained to be

> k *Pi
Suj e = (CSpS) Ky {—v”'o + o[- w—pH S (2.36)

L, ) w k, w

The response for v, is obtained from Equations(2.12,2.13) as

6vy,k = 5UEy,k =1 (Czps> qubk (237)

The response for dvy, i is obtained from Equation(2.15) as

2
6Upolac,k = —Cg (z—s> wk:wgzﬁk (238)
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where w,,; = -k, , ky, = —i0lngy,/0x. Further we will make use of the following

definition for averaging

=Y ALB; =) A_;B; (2.39)
P P

for two fluctuating fields A and B when they do not contain explicit time deriva-

tives. To proceed further we use

2= Z/ dkj =) kys /_:O dz (2.40)

to carry out the > .

24.1 FE x B Flux

From linear responses for v, from Equation(2.36) and for dvg, from Equa-
tion(2.13) we obtain a quasilinear form of toroidal Reynolds stress (with seed

flows)

(6vgadv)) = (csps> ZZ— { o +:—L [1 - W*sz | x| (2.41)

the first term is diffusive and the second term, being independent of V) and V”’ ,
is non-diffusive residual flux. Since kj = kysx so, (k/k,) survives when scalar
potential ¢, possess odd parity about a mode-rational surface and poloidal stress

is

2
(dvgadv,) = —Re S <czp5) koo | k2 (2.42)
E n

It is obvious that poloidal flux survives only if k, # 0. In case of standing eigen-
modes k, is imaginary and hence mean flow can not be generated. If k, is linear in
x, as happens to be for electrostatic drift waves, another turbulence characteristic
necessary for poloidal flow generation is that of radial asymmetry of fluctuation
spectrum about mode-rational surface. This is analogous to (k) symmetry break-
ing and hence may be termed as (k,) symmetry breaking. Note that in Equa-

tion(2.42) the diamagnetic advecting velocity dv,, does not appear because of the
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well known “gyro-viscous cancellation”. The advected diamagnetic velocity dv,, is
not considered under the assumption of weaker diamagnetic velocity fluctuation
i.e., 0v,, << dvg,. We now calculate toroidal and poloidal stresses explicitly for
slow Equation(2.32) and fast Equation(2.35) modes.

Slow mode

Using Equations (2.32) and (2.25), various parameters are

N (2.43)
w

iTiC(i

(Tiaif/];o + @VH’O> (s < 1) (2.44)

And hence using Equation(2.44) the eigenfunction Equation(2.30) becomes

1 €r — gks ? . ‘A/”/O
_ _ - —r 2.4
Ok = Qoks €XP [ 5 ( AL ) ] exp 227_i04ix (2.45)
for which the radial wave number is
k, = 2.46
Azs * 2’7’1'041' ( )

Note that Equation(2.45) represents spatially bound growing mode with a finite
Rek, whose mode half-width is Ay, = /7;a; and is shifted by &, = TiaiVéo/Q from
the mode rational surface. Also a finite real Rek, of the eigenmode is equivalent to
having a finite radial group velocity because the eigenfunction actually represents a
wave packet rather than a single wave. From Equation(2.45) the square amplitude

of the mode is

. 2
|0k]* = |poks|” exp [— (xA:ks> ] (2.47)

Using Equations(2.32) and (2.47) in Equation(2.41) the toroidal Reynolds stress

from E x B drift for slow mode is

2
(Svp.dvp) =Y (CL—”) i [_% + sgks] VT Ags|bons | (2.48)
Ky "
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and the poloidal stress due to E x B drift for slow mode is

2
CsPs 97
(Bvgadvg) = =3 ( Lp ) K2 (VHO /2Ak8> |Goks |2 (2.49)
k' n

Y
which is purely non-diffusive flux, and hence is capable to produce intrinsic mean
poloidal rotation.
Fast mode

We now evaluate the eigenfunction for fast I'TG mode. For computing eigenfunc-

tion various parameters,using Equations(2.35) and (2.25), are

S(l + TZ'OéZ') A2 iTiozif/éO
Z Z Q(Tiai)2 ’ 2A3 QS(TZ‘OZZ‘ + ]_) ( )

In the limit when Véo > XA/“’O(Tiai)*l\/Qs(l + 1) and 105k, > w. Corresponding

fast growing eigenfunction turns out to be

2 .
Pr = Pokf €XP [—% (%}ikf) ] exp [5 (xz,ikf) ] (2.51)

for which the radial wave number is

.Jc—fkf_|_$+§kf

ky =
A%f Aif

(2.52)
Where Ep = TiOéiV]fJO/ZS (1ici; + 1) is the mode shift off the rational surface and
kf = \/3 (1i06 + 1) /2(700)? where Ay is half-width of the mode. Here again the

existence of finite Rek, is equivalent to having a finite radial group velocity. The

square of the amplitude of the fast eigenmode is

2
|6k|* = [dons|” exp [— <%}jﬁ0) ] (2.53)
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Toroidal stress due to £ x B drift for fast mode is

2 1.3
CspPs kys |: ") Wiepi :| 2
SvpLov)) = — =V, + 1+ s&r | AppV/T|o 2.54
(Ovpaov)) §ky <Ln) 2, | Vi ( 7f) k| DVl does|”  (2.54)

The appearance of 7 in the denominator can be traced back to the particular form
of the fast mode frequency Equation(2.35) by writing it in the form w = (—1+17)~;.
Poloidal stress due to £ x B drift for fast mode is

2
(p.b0,) = — (‘“Z”S) ks [Q%ﬂ 7| bors|? (2.55)

ky

which does not contain a non-diffusive component for the assumptions made in
this section. This means either no or very weak intrinsic poloidal flow, compared
to intrinsic toroidal flow, is generated due to fast modes. It is also obvious that fast
mode is dominant for intrinsic toroidal rotation generation whereas slow mode is
dominant for intrinsic poloidal rotation generation. From above analysis of £ x B
flux few points are in order. The residual toroidal flux is proportional to mean
electric field shear, and hence to mean pressure gradient, and so this mechanism
of flow generation is active in high pressure gradient region, typical to the edge of

H-mode plasma.

2.4.2 Polarization driven flux

From linear responses for dv| i, vy 1, 0Vpo, from Equations(2.36), (2.37) and (2.15)

respectively, we obtain a quasilinear form of toroidal stress

3
ps\ O 00
(0UpoOvy) = —C2 (—) 8_T<%6U”>

3
+e? (g—n) ReY mok:;k:y — Kk [1 -
k

Wiepi
W

|l (2:56)
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and poloidal stress

(Fopaby) = —2 (Lp—)a% ;<(g—¢)>] (2.57

where Re(f) means real part of (f) and the angular braces indicates average over

fast space-time scale. Equation(2.56) reveals that the time asymptotic polariza-
tion drift induced residual stress survives when the spectral average (kjk,) # 0
which is always satisfied because k| o z and k, o z in general, and due to the
shifted gaussian structure of the fluctuation spectrum. Equation(2.57) suggests
that poloidal momentum flux due to polarization drift vanishes for stationary so-
lutions. Moreover, the time derivatives in Equations(2.56) and (2.57) are of ¢!
order and so they are not considered in our further discussions. Now we calculate
toroidal stresses due to polarization drift explicitly for slow (Equation(2.32)) and
fast (Equation(2.35)) modes.

Slow mode

From Equations(2.47), (2.56), and (2.57) we obtain toroidal stress

~

X 3 V/ k R A .
(S0potdvy) = D €2 (p—> ks [ B A/ = =5V | ol + O(e')2.58)

Ln 2’7}'0@'

Y

where it is clearly seen that the diffusive component of flux is modulated by
the propagating wave nature of the eigenmode. The effect of eigenmode shift

on toroidal momentum conductivity comes at a higher order ¢!

. The eigenmode
shift also contributes to the non-diffusive non-pinch component of the toroidal
momentum flux for slow mode but at even higher order €> and hence the effect of
spectral shift off the mode rational surface here can be ignored in the total toroidal
momentum flux budget. The term independent of \A/H/O and &, is identified as a
purely “seedless” contribution to total toroidal momentum flux which we term as

“seedless” residual flux.
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Fast mode

Similarly from Equations(2.53), (2.56), and (2.57), we obtain toroidal stress

3
_ 2 Ps Sy Wipi \ Ay 2
<5Upol:r(57)”> - % Cs (Ln) (kys) |: sA f‘/HO ( + ’Yf ) :| \/_‘(b()kf‘

0(€°)2.59)

Here, again the origin of v in the denominator is because of the particular form of
the fast mode frequency Equation(2.35) where real and imaginary parts are equal
in magnitude. The diffusive flux shown in the above expression is of €* order and
hence will not be considered in momentum flux budget. We strongly emphasize
that in the limit of vanishing “seed flows” the polarization drift driven toroidal
momentum fluxes are residual in nature which we term here as “seedless” residual
flux which, being independent of mean radial electric field shear, is likely to be
active in wide parameter regime and may complement the toroidal flow generation

mechanism in weak mean electric field shear region or flat pressure profile region.

2.5 Coupled Toroidal and Poloidal Flow Equations

Using expressions for toroidal and poloidal stresses obtained in the previous section,

we obtain coupled toroidal and poloidal flow equations, from Equations(2.3,2.4) as

oV ad v,
8T + 8—X - <X”E + X”pol) 8—X - X‘Bﬁ_)g + S”E + SHpOl =0 (260)

where for the slow mode

2
I CsPs \/_ L CsPs B Ti O \/7 L
Xis = 2 ( L, ) zAk o, 1ol t2 < Ly, ) 555 2 g o, 1P 261

ky ky

3
Ps Nz~
Xipot == 26 <—n) kys V||’02A Iszﬁ(msl2 (2.62)
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CsPs Tzal\/_L
b= 30 (%) el g 269
ky "
2
CsPs Tzaz\/_
SEZ—Z<L ) ks A Ve, |¢0ks|2 (2.64)
ky n
3
s ™
St = =% <£—) k2556 ol (2.65)
ky "

and for the fast mode,

=S () ey (g ) B mes ) s Dy o )
= — — s — | Poks|” (2.
X”E . Ln 2’}/10 /yf B 2(1 —f—TiOéi) kS Cg Ok

||
X[pot = 0(2.67)

I CsPs ’ /{28 Wipi Ti%i L 2
Xy = — Z Pyl Ll ﬁAka_S|¢Oks| (2.68)

e | 2(1+ 1)

213
CsPs ks Wipi T
Sjp==>_ (_p) pp [1 i p} 2 *pzfAkf—|¢0ks|2 (2.69)

ky Ly, Z’Yf v 14+ 7« z)
3
S|pol = —Zcﬁ (g_s) (kys)2 [ ,;;n} Akf%ld)Oks‘ (2.70)
key n
and
(V) 9 oV, W ,OVy
T + X [ <X||E + XHpol> X Xy oy X + Syr + Sypot | T VneoVy =0 (2.71)
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where for slow mode

Xﬁpol 0 (2.73)

Xy =0 (2.74)
Syr =0 (2.75)
Sypot = 0 (2.76)

and for fast mode

(2.72)

2
y o CsPs k?2 & Ti O 2\/7[/ 2
Xjie ; ( L, ) V"B 2s (1+ 105) Agy s o 1ol (2.77)
Xﬁpol =0 (2.78)
2
Yy _ csps kQ Ti Qv 2\/_ L 2 2
Xy % < Ln ) 3182 (1 +Tzaz) Ak:f Cs |¢0ks| ( 79)
2
CsPs 5 e , QfL 5
= k s 2.
Sypol =0 (2.81)
where use has been made of the radial force balance equation in the form
Vg, 0V, 0OV 0 By
_ _ — 2.82
oX ~ox ox ax\B'l (2.82)

Note that a neoclassical damping term v,,,V, is included in the poloidal flow
Equation(2.71) for saturation of flow. The coupling of toroidal and poloidal flow
dynamics is appreciable in the following limits. a) For slow mode: when k, ~
s(By/B)(mia;)/2 in Equation(2.61) and V) ~ V|/(B,/B) ~ V/,; in Equation(2.60).
b) For fast mode: when (1+w—p)( B,/B)(tie;))/(2(1+Tici;)) ~ 1 in Equation(2.67)
and V) ~ V/(B,/B) ~ V,,; in Equat10n(2 60). Similarly from poloidal flow Equa-

tion(2.71) and the expressions following Equation(2.77), for fast mode, the flow
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coupling is appreciable when V| ~ H’(By/B) ~ V!

*pi

2.5.1 Comparison of nondiffusive fluxes

Let’s now compare various toroidal and poloidal non-diffusive fluxes, in order to
see under what condition the contribution due to polarization drift be important.
Estimating the magnitude of radial electric field shear by diamagnetic term in
the radial force balance equation i.e, Vj, ~ (ps/Ln)Tic; , we get from residual
component in Equation(2.48) and “seedless” residual component in Equation(2.58)
and from residual component in Equation(2.54) and “seedless” residual component

in Equation(2.59), respectively

S|| pol,slow 1
— ~ 2.83
SH,E,slow | Ti QY ( )
S ol,fas 1 A
and | QIR oY e (2.84)
I.E,fast T

where S stands for respective residual components of toroidal and poloidal fluxes
and 7 is the fast mode linear growth rate. One observation that immediately
follows from Equations(2.83) and (2.84) is that polarization drift driven toroidal
momentum flux increasingly gains relative importance in weak temperature gradi-
ent region where radial electric field shear driven flux becomes vanishingly small.
Above comparison also shows that the polarization driven flux is more active for
slow mode compared to fast mode. As shown in Equations(2.56) and (2.57), the
polarization drift driven poloidal stress vanishes for stationary state whereas cor-
responding parallel stress remains finite so one may conclude that the toroidal flow

is stronger.

2.6 Discussion and conclusions

We performed systematic calculations of radial fluxes of turbulent momentum due
to slab ITG mode in the presence of a mean velocity field. We see that in the
presence of sheared seed flows the eigenfunction and the eigenspectrum is shifted
off the mode rational surface, leading to (k) symmetry breaking. Here it must be

noted that fluctuation spectrum shift is proportional to both toroidal and poloidal
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seed flow shear in general (see Equation(2.30)), but only the poloidal flow shear
contributes to toroidal non-diffusive residual flux and the toroidal flow shear simply
adds up with the diffusive component modifying the effective turbulent toroidal
viscosity xe. This makes residual stress non-zero which acts as a local toroidal
momentum source to drive it further. Looking at the poloidal flow generation
mechanism we see that like (kj) symmetry breaking “(k,) symmetry breaking”
also produces non-diffusive residual poloidal momentum flux which is proportional
to parallel seed flow shear. But because toroidal and poloidal flow shear are coupled
by the radial force balance equation, the mean toroidal and poloidal flow dynamics

gets naturally coupled. The principal results of this chapter are

e The coupled set of equations for evolution of mean toroidal and poloidal flows
were derived (see Equations(2.60) and (2.71)).

e A novel non-diffusive residual component to the radial flux of toroidal and
poloidal momentum has been derived, which arises from polarization drift
in fluid theoretical framework. Though nominally it is higher order in ex-
pansion in € ~ w/we ~ ps/L,, detailed analysis (Section2.5.1) shows that
the polarization driven flux can become comparable to mean electric field
shear driven flux in weak pressure gradient region and hence it complements
to I/ x B shear driven flow generation mechanism in weak pressure gradient
region. That is, if £/ x B shear is absent then polarization driven toroidal

stress is alone capable to produce toroidal flow.

e This mechanism for toroidal flow generation does not require a mean electric
field shear and it is due to (kjk,) # 0 which is fundamentally different
from (k) symmetry breaking mechanism. It is found that in steady state
the polarization drift driven poloidal Reynolds stress vanishes and hence no

residual stress is offered by polarization drift.

Next chapter presents another mechanism of & symmetry breaking by steep den-
sity gradient alone which is independent of the density gradient contribution to
the symmetry breaking coming from the radial £/ x B shear via the radial force

balance relation.
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Symmetry breaking effects of density
eradient on parallel momentum transport:

A new pi effect

3.1 Introduction

It is now understood that a breaking of the symmetry of the underlying microturbu-
lence is necessary in order for the turbulence to generate a net wave-momentum,
whose flux is then tied to the transport of the bulk plasma momentum|88]. In
addition to a diffusive component, the plasma momentum flux, consists of two
separate kinds of off-diagonal pieces. The diffusive momentum flux has been stud-
ied extensively both theoretically [79, 89] and experimentally [80] and established
momentum diffusivity x, ~ x;, ion thermal diffusivity except with some departure
from this scaling noted in recent gyrokinetic simulation [81]. The effects of cur-
vature in a tokamak, result in a pinch-like contribution|90, 84, 91, 92, 93|, mainly
via a turbulent equipartition (TEP) mechanism|91|. While this term transports
momentum (especially when the rotation is already sufficiently large), its effect
on rotation itself is not too pronounced. In contrast a residual stress term can
be driven by various different mechanisms including Alfven waves [94], intensity
gradients [95], up-down asymmetry of current [42, 43| and toroidicity [41]. And the
residual stress due to a self-consistent E' x B shear that feedback from the pressure
gradient through the radial force balance is a possible mechanism that may explain
the intrinsic L-H spin-up|96]. Experiments on JT-60U by Yoshida et al [85] also
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seems to support this pressure gradient scaling. However the discovery of I mode
[97], where particle transport is like L mode and energy transport is like H mode,
and a recent follow up experiment by Rice et al [24] in Alcator C-Mod suggests
that gradient in temperature rather than gradient in pressure is the main driver
of intrinsic rotation. Experiments on the Large Helical Device (LHD) with ITB
also demonstrates temperature gradient as the driver of toroidal intrinsic rotation
[98]. Recent gyro-kinetic simulations [89, 99, 100] have verified certain aspects of
mean F X B shear driven mechanism and also highlighted the role of the intensity
gradient|95] as a mechanism for driving residual stress. Wang et al [99, 101], in gy-
rokinetic simulations, have also demonstrated nonlinear residual stress generation
in collissionless trapped electron mode turbulence. The fundamental similarity
underlying all the above mentioned residual stress generation mechanisms is the
symmetry breaking in k (i.e., (k) # 0 where () indicates average over fluctuation
spectrum) by macroscopic gradients. Different means of breaking <k||> symmetry
has lead to different mechanisms of residual stress generation. For example, <k||>
symmetry breaking by asymmetrizing the eigenfunction via mean E x B shear
[96, 102]. A fundamentally different mechanism of residual stress generation based
on <k:||k$> symmetry breaking has also been shown to be driven by polarization
drift |39, 40, 102] which does not require asymmetry in eigenfunction. The residual
stress is the key driver of intrinsic rotation be it toroidal or azimuthal [102|. The
connection between azimuthal intrinsic rotation and directly measured azimuthal
residual stress has been demonstrated by Yan et al [103] in CSDX plasmas. The
residual stress combined with proper boundary condition can explain intrinsic spin-
up of the core. However a recent experiment [104] shows that all the features of
intrinsic rotation can not be explained just by fluid turbulent stresses. While the
effect of temperature gradient seems to be more pronounced on the experimental
observations of intrinsic rotation. The density gradient can also generate residual
stress. Furthermore, the mechanism for the generation of this residual stress is
more direct, and the symmetry breaking is more general in the case of drift waves.
Here, we will discuss the effect of finite p}, and show that the ITG eigenmode has
a broken symmetry in the case of sharp density gradients (e.g. as in an H-mode).

The analytical derivation presented in this chapter is performed in simple slab
geometry. This is considered as a local piece-wise linear approximation to a small

part of the plasma in the vicinity of the low field side of the tokamak. While
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this approach does not capture the exact form of the eigenmode it represents the
local processes as long as the microturbulence is sufficiently small scale with their
eigenmodes tightly packed.

The process that leads to symmetry breaking due to finite p?, arises from
the well known expression for the divergence of polarization current, which enter
the quasi-neutrality equation in the usual dimensionless units (i.e. = — z/p;,
¢ — eD/T; etc.) as:

D -
\VARS {nEVJ—¢:| —{—VHJ” =0

while part of the above perpendicular divergence gives rise to the usual definition
of vorticity, part of it leads to a nonlinear term which survives in the linear limit
due to the existence of the background density gradient. This term is normally
small since it involves both the density gradient and the D/Dt, (and for drift waves
D /Dt ~ w, already). However, it can become important when the background flow
is sufficiently large (i.e. Vok > w,) or if the density gradient is sufficiently large (i.e.
an H-mode pedestal for instance). Physically, this term comes from the fluctuating
radial gradient of the polarization current that arise from the radial gradient of the
density of the particles that generate this fluctuating current (by their fluctuating
polarization drift motions). We will show that the inclusion of this term in the
ITG eigenmode calculation, leads to a symmetry breaking in %), and therefore a net
non-zero momentum flux, which has in principle the form of a residual stress. To
justify further the importance of this effect we show the comparisons of this with
the residual stresses driven by FE,-shear, parallel polarization residual stress and
the intensity gradient. It is shown that for fixed E,-shear the p? induced residual
stress may become comparable to E,.-shear driven residual stress in the region of
small L,,. p!induced residual stress turns out to be of the same order as the parallel
polarization stress in the regular drift wave ordering where p! ~ w/w, < 1, w is
typical mode frequency and w,; is the ion gyro frequency. And comparison with
turbulence intensity gradient driven residual stress shows that p! driven residual
stress dominates at the sharp density gradient region whereas the intensity gradient
driven residual stress dominates at the strong profile curvature regions such as head
and the foot of the I'TB or the H-mode pedestal.

The rest of the chapter is organized as follows. In Section3.2, we start with the
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derivation of a simple set of reduced fluid equations, and continue with deriving
an eigenmode equation corresponding to this system. In the final part of the
Section3.2 we present the solution of this eigen-mode equation, which displays a
characteristic shift from the mode rational surface on which it is localized. In
Section3.3 we discuss the effect of this mode shift on momentum transport via
the symmetry breaking mechanism, and compare this with the effect due to £ x
B shear, parallel polarization stress and the turbulence intensity gradient driven

residual stress. We conclude and discuss the implications of our work in Section3.4.

3.2 Radial Eigenmode Analysis

In this section the linear eigenfunction for electrostatic ITG instability in the pres-
ence of mean flows is derived. A simplified set of fluid equations that describes the
ion temperature gradient driven instability in the electrostatic regime is derived in
the presence of poloidal and toroidal sheared flows. The assumptions made are 1)
quasi-neutrality on. = én;, 2) constant electron temperature , 3) zero resistivity |,
4) zero electron inertia for ¢; < ’%H < ¢, and 4) w < we;, where ¢; . = \/:;I is the
ion(i)/electron(e) thermal speed, Ty, . are ion(i)/electron(e) temperatures, m; . is

ion/electron mass, w is a typical frequency, w.; = %Bi is ion cyclotron frequency and

;= f—; is the ratio of density and ion temperature scale lengths , L1 = —C”C?—I”O
and Lili = —% respectively. For concreteness we closely follow the Ref.[102].

We use (x,y.2z) orthogonal Cartesian coordinate system, with unit vectors , 7, 2,
situated at a rational surface. All the equilibrium quantities are considered to vary
in x direction only. We consider a sheared slab configuration of magnetic field B

in the neighborhood of a rational surface situated at x,

T — o .

—29) (31)

B=DB(:+

B, . : . .
where L' = - is magnetic shear scale length. We also consider a mean ion flow

field ‘_/;0 lying in the (x,y) plane. For fluctuations localized on a particular rational

surface at © = xg, the mean ion flow velocity may be expanded as

Vio(z) = Vio(@o) + (z — o) (%‘io) Tt (3.2)
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We will describe the system of equations in inertial frame moving with constant
velocity Vio(xo). The perturbed linearized continuity, momentum and pressure

equations for ions can be obtained as :

0 71 * *
(a + 2V V) (1 = Vi 4+ piVa)o+ [1+ K (V] — piV,)] Vyo + Vv =0 (3.3)

d Ot rt
(a + 2V Vy)v = VoV + Vi(p+ ¢) =0 (3.4)
9 rt
(57 T 2VeoVy)p+ KV + Vv =0 (3.5)

where normalizations are chosen such that

v =(x=m0)/ps, Y=Yy/ps, z=2/Ln, t=1c/Ln, ¢=(00/T)(Ln/ps), mni=
(6ni/n0)(Lnfps) v = (Gvjs/e)(Lufps). P = (7:8p/ Pu)(Lnfp),  LuVj= V) =
%+xsa% with the nondimensional parameters: 1, = L,,/Ly, K = 7;(1+mn;) = 1,
7, = Toi/Toe, I = 13, s = L,/ L, ‘A/éo = (Ln/cs)Vio, ‘7||’0 = (Ln/cS)V”’O, Ps = Cs/Wei,
and pf = ps/L,. The difference between the above set of linear equations and that
obtained in the past references [105, 106, 107, 102] etc. is in the ion continuity
Equation(3.3) which now contains an additional term proportional to p¥. However,
Dubin et al [108] has retained such term in their gryrokinetic formulation to ensure
energy conservation. This term arises from the density gradient dependent part
‘7]301 - Vng of the divergence of ion polarization current density V- (novpol). As can
be obviously seen in the Equation(3.3) this term is one order higher in p? in the
regular drift wave ordering scheme and hence it is normally not considered in drift
wave theory. But it is clear that this term can become significant in strong particle
density gradient regions such as in the H-mode pedestal. Also the above set of fluid
equations are in fact a subset of the general gyro-fluid system of equations, which
can also be derived by taking the moments of the gyro-kinetic equation[109]. The
effect of this pI term on the eigenmode structure is derived in the following. We
consider the perturbation of the form f = fi(z)exp(ik,y — iwt) , where k, and w
are normalized as k, = kyp;,w = w/(cs/L,), the above set of Equations(3.3-3.5)
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form an eigenvalue problem in the x direction for the Fourier amplitude ¢y

d? .d k, — 2
qb?'“ pi—> L —k2 + U (52) o
dx dx 106k, +w — xk, Vi, (w—zk,VE)? —T'(sx)?
71
+ak, VEo ~
TiOél'k +w — xkyVE,'O
V/
- . o — | ¢ =0 (3.6)
(w — zky Vi) (Ticiky, + w — 2k, V)

For shearing rate is much smaller than the mode frequency Equation(3.6) simplifies

to
d*¢y, doy, k, —w (ws)?
o _k2 Yy 2
da? Ps dz + * Tiiky + w Y ow?
7 i,
k E0 Il . .
+x Yy TZOéZky + w W(Tzazk + (A)) ¢k 0 (3 7)
which can be written as
d? d
where
_ ky —w 2 o ky " VHO kys ’
A= Tiky +w iy Ao = Tioky + w (VEO s w Az = w (3.9)

The total eigen function satisfying Equation(3.8) for the [ = 0 radial quantum

number, can be obtained as

2
o = Poexp [——u/ﬁ (x + 2—143)

1, Ay
exp | 5/} x+2—AB (3.10)
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Figure 3.1: Real frequencies (a) and growth rates (b) vs k, obtained from numerical
solution of the dispersion relation. The dashed-dotted (-.-.-. curve) reperesnts the
analytical approximation of the growth rate on the low k, side of the spectrum
only. Parameters: L, = 0.05m, Ly = 0.020m, § = 2.0, g, = 2.0, R = 1Im,
a=0.25m, T, =T,=4KeV,m; = 1.6 x 1072"Kg, B =4.6T, r = a/2.

and the corresponding eigenmode dispersion relation is

w? (1+ k) +w (ky (=1 + k2mioy;) +islky|) + ismiaiky|ky|

~ ~ 2
ka [LV’ _ V’}
y [ sky VEO T Vo0 1,
= — ~pP%w (ryaik 3.11
4(Ti06ik'y+W) 4/)5 W(TOZ y+w) ( )

Equation(3.10) shows that the eigenfunction is shifted off the mode rational
surface, even in the absence of background shear flows, due to finite p:. In the

absence of shear flows the above equation becomes

2
or = Py exp [—% (x ;f*k) ] exp |:—i%R€\/A>3QE2:| (3.12)

where a factor of exp(—p:?/2Im+/A3) has been absorbed in the amplitude ®.
Mode width A, ? = —Im+/A3 = |k,|s7/|w|? and mode shift off the rational surface
is & = —pt/2Im/ Az = ptlw|?/(2|k,|sy) = piA2/2. Also the real part of the
radial wave number is Re(k,) = —3Rev/Asz and w = w, + i7.
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Figure 3.2: Eigenfunction shifts off the resonant surface due to finite p}. The figure
shows Rep(— curve) , Im¢(— curve) and |¢|*(— curve). The zoomed-in subplot
highlights the mode shift. The solid vertical line indicates the peak of the shifted
eigenfunction. Parameters: ky nq = 0.60, Yimee = 2.92, Wy e = —4.41 and other
parameters are same as in Fig.(3.1). The mode width is A = 1.59, the mode shift
is £ = 5.90e — 03 and the mode averaged </£H> = 3.15e — 03.

From dispersion relation Equation(3.11) one can pick up a slow mode, on the low
k, side of the spectrum, as
isTio) kyl

w= - ~ sty Ky (3.13)
1— k’;’fi&i — (1/4)p527—i04i

The dispersion relation Equation(3.11) is rewritten in a form where the frequency
is normalized by ¢;/R and Ly is written as Ly = qR(1/$). Here R is the tokamak
major radius, § = rq’/q is the shear in safety factor q. The resulting dispersion
relation with V]go = VH’O = 0 is solved numerically using the Matlab root finding
routines. The Fig.(3.1) shows the plots of real frequency and growth rates vs k.
Next we computed the eigenfunction Equation(3.10) for the highest growth rate.
Fig.(3.2) shows the shift of eigenmode structure off the mode rational surface

without mean flows.
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3.3 Momentum flux by Reynolds stresses

The net radial flux of parallel momentum <n’urv|‘> is broadly composed of particle
flux driven momentum flux <v||> (0ndv,), Reynolds stress driven momentum flux
(n) (6v,0v)) and mean radial low driven momentum flux (v,) (dndv|) and triple
correlation <5n(5vr(5v”>. Since particle flux vanishes for adiabatic electron response
and there are no mean radial flows, in this section we calculate the momentum flux
due to parallel Reynolds stress carried by fluctuating F x B drift. We first compute
the flux driven by only p! induced symmetry breaking of the eigenfunction. Then in
the subsequent subsections comparisons are made with £, shear induced symmetry
breaking driven residual stress, parallel polarization stress and turbulence intensity
gradient induced symmetry breaking driven residual stress respectively, to gain a
feeling for the importance of the new effect reported here. From Equations(3.4)

and (3.5), we get the parallel velocity response as

T T I A PR
(51)“7;9 = < Ln) w |: ‘/||O+ ky |:1 W i| qbk (314)

The parallel Reynolds stress due to fluctuating £ x B drift, using Equation(3.14)

for the parallel velocity fluctuation response, is obtained as

2 2
Csps k "y k w* 7,
n - Y
k

where (...) indicates averaging over fast space-time scale. From above Equa-

tion(3.15) the diffusive parallel momentum flux is

v,

Hdif f
dx

||’:E

= mno(OVEL0V))aiff = —X|MN0—— (3.16)

where the diffusivity is given by

x| = (Csps) Z 2\/_L dor” (3.17)
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The residual flux is given by

CsPs w* 127V,
1% = mno(0vEL0v)|)res = mng ( & ) Zkﬁ k) [ pic] } |pl?> (3.18)

jw??

For the particular slow mode Equation(3.13), where w, = 0, the above residual

flux expression becomes

CS S
ﬁfj—mn()( p) Zk Ik, |s = k) (3.19)
where the spectrum average of k| is defined as

(k) = (kyloel*)e (3.20)

where we have made use of 3 z(--) = >0, [ky|s((--+))a = 224 |kyls fj;o dx(--+)
to evaluate the summation over k for tightly packed modes. Further using kj =
kysx and (z|dg|?) s = EaDpv/T|Pox|* gives the parallel residual flux as

2
CsPs 1 %
e = (52) 50 S Ao (3:21)
n k)y

This clearly shows parallel residual flux generation due to finite p effect. The
parallel residual flux to parallel diffusivity ratio is

]:[7"65 1
_le < [9¢%)e _ = mnoSEsk— G mnos—pSA2 (3.22)

= Mmny S
X| n (02 L, 2 L,

This demonstrates parallel mean flow generation via microturbulence due to finite

p: effect.
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3.3.1 Comparison with fluxes driven by mean radial electric
field shear

Following Chapter2 the slow mode eigenfunction, with mean E x B shear present

and ignoring the p? term, is given by

1 (2 — & ? |k| 0
gbf = Qors EXP [_5 < AkSE ) ] exp [ k QTZH@Z:C

where &g, = A2 Vh/2 and A2, = 7,05 The slow mode frequency turns out to be

(3.23)

w = isT;u|ky| (3.24)

In the above and in the following equations the subscript or superscript £ indicates
corresponding quantities with mean E x B shear only. Using Equations(3.15),
(3.23) and (3.24), the parallel momentum diffusivity Xf is given by

x| = <CSZS) Z Q\FL oo (3.25)

and the parallel residual momentum flux Hfges can be written in the form

L7 = mn (CSPS) ka |s (ke (3.26)

where

(k) = kys(@|op ) = kysEopArv/T|dok|” (3.27)

and £, = A2 VE,/2. Plugging the above form of (k))e and the mode frequency
Equation(3.24) gives the form of the residual stress as

e = mng (p) Zkzsgksf I (3.28)
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Comparing Equation(3.17) and Equation(3.25) we get

X

1 (3.29)
E
X

That is the parallel momentum diffusivity remains unaltered. This is because the
summand in the Equation(3.17) contains |¢;|*> and no other multiples of function
of z. Eigenfunction symmetry breaking has no role in determing parallel diffusivity
x| as long as the turbulence intensity is homogeneous. Again from Equations(3.21)
and (3.26) we get
A T
mere (ke Vi,

||7"1‘l

(3.30)

Here we have made use of Ay, = A, because the mode width is determined by /As
which is the same in both cases of the momentum flux calculation. Equation(3.30)
suggests that p? induced <kH> symmetry breaking driven residual flux may become
comparable to F,-shear induced <kH> symmetry breaking driven residual flux in
strong density gradient regions such as [TB and pedestal in H-mode plasma.
Note that, a similar result is expected if one considers the zonal E x B shear
as a source of symmetry breaking, since in a quasi-steady state, the zonal flow
shear level can be roughly determined by the balance of zonal shear frequency Vy,
with linear growth rate v, (that is Vi ;. =~ v oc p7). This means that the p;
effect introduced here can be viewed as linked to the zonal E x B shear induced
symmetry breaking mechanism.

In a more rigorous computation of the ZF shear driven residual stress, since the
screening length of the ZF would be proportional to the poloidal gyro-radius the
effect would probably be more pronounced. A quick way to realize this fact is as
follows. V},, may result from the Rosenbluth Hinton (R H) neoclassical residual

zonal flow [110]. The corresponding potential is

ep 1 5 9
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where € = r/R, running minor radius and a? = (T}/m;)/w?. Now we estimate the

V,;O, the F x B shear required for asymmetric eigenfunction as follows

A L L, 1 ep
Vio=—V/ ~——csps | — 3.32
E0 e, E0 . Léc'g (Te) ( )

where L, is potential scale length. We assume [ d¢S;/ (k7a?) = 1. Then the ratio

of p induced residual stress to £ x B shear driven residual stress becomes

e _ b L 1 L5 (1+164°/¢7) (3.33)
mpmeres vy, Ly (e¢/Te) L, Ti
where 7; = T;/T,. In neoclassical theory L, ~ L, therefore
ITes 1+ 1.6¢%/€"/?
ER”H = ( /") >1 (3.34)

TA
H7:L‘ !

This implies that the p? induced residual stress is stronger than the R H residual
zonal flow driven residual stress. This is as expected because the actual level of
zonal flow in the turbulent case is higher than in the neoclassical case.

To get a feeling for the importance of the p? induced <k||> symmetry breaking driven
residual stress relative to the FE,.-shear induced <k||> symmetry breaking driven
residual stress, the expression for Hﬁij in Equation(3.18) is estimated numerically
for the highest growing mode (ky maz, Vimazs Wrmaz). Here ky maqq is the wave number
corresponding to the highest growth 7,4, and the w; ;4,) is the corresponding real
frequency. The variation of I} and Hﬁfs with L, /R is shown in the Fig.(3.3).
It shows that for fixed V} the term II/°* can be dominant over the IT"" term for

= [l

low values of L, /R typical to ITBs. The Fig.(3.4) also conveys the same message.

Next approximate flow levels generated by the these two stresses are evaluated
separately. Using the no-slip boundary condition V(a) = 0 to the zero net flux
equation

d‘/” res
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Figure 3.3: Variation ofp induced symmetry breaking driven residual stress I ;|’|res

(— curve) and E,-shear induced symmetry breaking driven residual stress Hfm’ms

(— curve) with L, /R. Stresses are computed corresponding to the highest growing
mode for every L,/R. Parameters: V} = 100000s~' and other parameters same
as in Fig.(3.1).

E res
x|

0.05 0.1 0.15 0.2 0.25 0.3
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Figure 3.4: Relative strength of p! induced symmetry breaking driven residual
stress to E,-shear induced symmetry breaking driven residual stress vs Ln/R.
Parameters: same as in Fig.(3.3)

41



Chapter 3. Symmetry breaking effects of density gradient on parallel momentum
transport: A new p? effect
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Figure 3.5: Approximate parallel flow levels evaluated at the mid-minor radius
(a/2) by using V| = —faa/2 de(ILS /x) = (IS5 /x))(a/2). The (—) curve repre-
sents p* driven flow and the (—) curve represents the E! driven flow. This shows
that at small L,,/R the p! driven flow may be comparable to E/ driven flow.

yields the intrinsic parallel flow level as

e R
Vij(z) = /x dz @) (3.36)

This means that the intrinsic parallel flow is determined the synergistic effects of

mean profiles embeded in Hﬁej and . To get numbers for V| we used the following

crude approximation
res

Vi(a/2)] = s <9> (3.37)

x| \2

instead of the exact Equation(3.36). The typical flow levels thus obtained are
shown in Fig.(3.5). It is accepted that this estimation is far from rigorous. Any-
way the Fig.(3.5) shows that at small L,/R the flow driven by p} induced (k)
symmetry breaking can become comparable to flow driven by E,.-shear induced by

(k) symmetry breaking.
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3.3.2 Comparison with parallel polarization stress/flux

The time asymptotic form of the parallel polarization stress can be obtained as

3
<5Upolx5UH> = Cg (%) RGZ |:‘/||,Ok:::k:y - k;kH []‘ -
E

Wiepi
n W

[Jlof (338

where k, = —i0,In¢y and Re(...) stands for real part of the expression in (...). The

radial wavenumber k, as obtained from the eigenfunction Equation(3.23) is

L :i$_§k5 |ky| VHIO
* Ais ky 2TZ‘OZZ‘

(3.39)

Now using the Equation(3.39) for k., Equation(3.24) for the slow mode eigenfre-
quency and Equation(3.23) for the slow mode eigenfunction it is straightforward
to show that

3
Ps
(0Upoizdv)) = ch (L_n) kzs

Ky

Vi Ay
; VioAksv/m + Tkﬁ |pos|>+O(e*) (3.40)

27'1'041'

where € ~ (ps/Ly) ~ (w/we) ~ (kj/ky) < 1 in drift wave ordering. Here the
diffusive flux appears to be nonlinear, the diffusivity being proportional to the
parallel flow shear, due to the fact that real part of the radial wavenumber k, is
dominantly determined by the parallel flow shear for the slow mode. Comparing
the leading order residual parallel polarization stress with the p? induced symmetry
breaking driven residual stress Equation(3.21) yields

HT‘@S

hz
Hﬁolmes =1 (3.41)

This shows that the p? induced symmetry breaking driven residual flux is of the

same order as to the leading order parallel polarization flux.
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3.3.3 Comparison with fluxes driven by turbulence intensity

gradient

Now suppose that there is gradient in the fluctuation intensity introduced by mean
profile gradients. We will take the following simple minded expansion of fluctuation
intensity |por|* = €(2),

e(x) = €(0) + ze(0)" + ... (3.42)

In the following we will examine the effect of fluctuation intensity gradient on the
parallel diffusivity and residual stress separately. Including Equation(3.42) in the

parallel diffusivity expression yields

. (CZZS> ZM&<6(0)+6(0)’5) AT (3.43)

Comparison of diffusivities for the two cases of p and ¢ yields

X _
X

1 (3.44)

The residual flux takes the form

2

res __ o CsPs Y w*piQ'ywr

1% = mno(0VEL0V) )res = Mmng ( I ) Eﬂ ky| Ky LWP + w22 ] (ky) (3.45)
K

where

(k) = kys <e(0)§A\/% + €(0)’ (A?’? + Ag%/%) + ) (3.46)

In case of no spectral shift and no intensity gradient <k|‘> vanish and hence the
residual stress vanish. In case of finite spectral shift and uniform turbulence in-
tensity above expression recovers the original well know expression for <k:||>. The
<kH> may be enhanced or reduced over the uniform intensity case depending upon
the sign of the turbulence intensity gradient €(0). Also, in the case of vanishing
spectral shift the sign of (k) is determined by the sign of €(0)" and the sign of

<kH> determines the sign of the residual flux IT . Comparison of residual stresses
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equals the comparison of <k:||> for respective cases. So

”7 P. /CS €
5 — [ R— — 34 7
HE ,res <k:||>51 6/ [n ( )

H,x

where L. = ¢/€ and L,, = —n/n’ are turbulence intensity scale length and density
scale length respectively. Now it will be interesting to see in which region along
the equilibrium profiles these two scale lengths can become comparable. For con-
venience we will follow the Ref[95] and write a few steps for clarity. The turbulence
intensity is related to equilibrium profile gradients and so the turbulence intensity
gradient is related to profile curvatures. For example the, differentiating the Ficks

law for heat flux
(;2 = — - 48
Xo€ O (3 )

for constant heat flux () gives the turbulence intensity scale length as

-1 _ 1% €Xo0 aQT

LTli=— =" " 3.49
¢ € 0x Q 0x? (3.49)
Then the flux ratio Equation(3.47) turns out to be
e i)y epr L /
Hv . < >ps - 6ps __ € Q @ (350)

= = = — X —
R Ty S M

||7"'E

This shows that the p? effect can be more important at the center of the pedestal or
ITB where gradient is stronger than curvature. Whereas turbulence intensity gra-
dient driven parallel momentum flux can be more important at the pedestal /ITB
head and foot. Note that this curvature dependence could as well have been
shown with particle flux but because electrons are considered adiabatic, so it is
not attempted. This shows that the p! induced symmetry breaking driven resid-
ual stress/flux can become comparable to turbulence intensity gradient induced
induced symmetry breaking driven residual stress/flux in strong density gradient

region such as I'TB or density pedestal in H-mode ( see Fig.(3.6)).
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Figure 3.6: Schematic showing regions of relative importance of p induced symme-
try breaking driven residual parallel momentum and turbulence intensity gradient
induced symmetry breaking driven parallel residual flux. The vertical dashed-
dotted lines are only for roughly highlighting the regions where the respective
fluxes are dominating.

3.4 Results and Discussion

We presented a clear derivation of the residual stress arising from the k| symmetry
breaking via the shift of the eigenmode off of a mode rational surface, with a fluid
system of equations in a simple slab geometry. It shows that the physical process
which manifests itself as an asymmetry of the eigenmode in the extended poloidal
direction in the ballooning representation or as a radial shift of the eigenmode in
a cylindrical formulation, can be captured in a simple slab model in local fluid
approximation. This allows one to focus on individual effects for which the global
mode structure is not expected to be very important. It is well known that the
background density gradient together with fluctuating ion polarization drifts gen-
erate a term that accompany plasma vorticity and is proportional to the density
gradient. Being one order higher in p} this term is usually not considered in the
usual drift wave ordering. We considered the effect of this term using the formula-
tion that we have developed. This term is expected to be important in the regions
where the density gradient is large such as H mode pedestal or I'TBs. Following

are the principal results of this chapter.
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e The new term considered here leads to the formation of residual parallel
Reynolds stress, via finite p} driven parallel symmetry breaking. The mode
structure shifts radially off of a resonance surface. Thus when the effects of all
neighboring modes, which are similarly shifted are considered, it generates
a net kj. This then gives rise to a net Reynolds stress, which transport
momentum even in the absence of any net momentum. Comparing this term
with the more conventional F x B shear driven residual stress term, we find

that the ratio is basically given by the ratio:

w
Q;

the shear suppression to become important is roughly w/VéO ~ 1. Which

Note that in the usual gyrokinetic ordering % ~ and the condition for
suggests that the term that we introduce here is an order higher than the
E x B shear driven term in terms of pi. While it is true that a sharper
density gradient will reduce this difference, the sharper density gradients are
also usually accompanied by deeper E, wells.

Nevertheless, the term is important for completeness. It needs to be included
in a detailed analysis. It also has explicit density gradient dependence. As
such, it complements the part of the £ x B shear that comes from the profile

gradients in the radial force balance.

e V. may also be interpreted as zonal flow shear which is generated by polar-
ization current. The p? effect also originates from the polarization current.
The zonal shear level can be estimated via mixing length as being roughly
proportional to p:, so that p} effect introduced here, can be thought of as
being linked to the zonal E/ X B shear induced symmetry breaking. The pI
induced residual stress is expected to be stronger than the R H neoclassical

residual zonal flow shear induced residual stress.

e Comparing p: driven residual stress with the parallel polarization stress

shows that they are of the same order. In particular

H'I‘BS

||7"E

Hpol,res =
H 7x
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for the slow mode branch.

e Similarly comparison with turbulence gradient induced residual stress shows

that
e Ry e L

He/7res - <k||>6/ o ¢ o L_n

H,x

where L. and L, are turbulence intensity gradient length scale and density
gradient length scale respectively. L. is decided by the profile curvatures.
In the sharp gradient region L, is small, curvature is weak and so L. is
large. This means that the p? driven residual stress overtakes the turbulence
intensity inhomogeneity driven residual stress in the sharp density gradient
and weak curvature regions along the mean profiles. In contrast, near the

“corners”, where curvature is large, the intensity gradient term will be larger.

e For homogeneous turbulence intensity the parallel momentum diffusivity is
found not to show any response to this new p? effect reported here. This is
because the momentum diffusivity does not depend on the broken symmetry
of the eigenfunction. However broken symmetry of the eigenfunction to-
gether with turbulence intensity inhomogeneity does renormalize the parallel

momentum diffusivity (eg., see Equation(3.43)).

Now in the next Chapter, the momentum transport studies presented in the Chap-

ters 2 and 3 are extended to reverse shear configuration.



Momentum transport in the
neighborhood of g,,;,, in reverse shear
tokamak due to I'T'G turbulence

4.1 Introduction

All the works presented in the previous Chapters 2 and 3 applies only to normal to
shear tokamaks with a monotonically increasing ¢ profile. In this chapter we focus
our studies on toroidal and poloidal momentum transport at and about minimum
of q. Because of the novel configuration of magnetic field and existence of inter-
nal transport barrier (ITB), it forms the most natural place to focus momentum
transport studies in reverse shear configuration. The calculations are performed
in sheared slab geometry where magnetic curvature effects are not considered. As
seen in the Chapter 3 the p! effect becomes important at [TB because of short
density scale length. We have computed the ITG eigenfunction for reverse shear
case including the pI effect. It is found that the symmetry of the eigenfunction is
naturally broken by p! effect even in absence of mean radial electric field shear.
This actually complements the p? order shift coming from radial electric field shear
driven shift through radial force balance. Three different types of modes are found
at ¢min depending on whether for given mode number (m,n) it resonates once or
twice or does not resonate. These are single rational surface reverse shear mode,
double rational surface reverse shear mode and no rational surface or non-resonant

reverse shear mode. When ¢,,;, = m/n is s rational number the mode (m,n)
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has k£, = 0 and it’s a single rational surface mode resonating at the ¢,,;,. When
Gmin 7 m/n the mode (m,n) is either a double rational surface mode or a non-
resonant mode.

Toroidal and poloidal Reynolds stresses due to both turbulent E x B and polar-
ization drift have been computed. We have generalized the definition of spectrally
averaged (k) and (Rek,) which takes care for both shear and curvature in ¢. It
is seen that reflectional symmetry breaking of the eigenmode is not a necessary
condition for the survival of residual parallel stress at gn;,. That is (k) # 0 and
(Rek,) # 0 even for symmetric eigenfunction. This means spontaneous toroidal
and poloidal flow generation at ¢,,;,. Anyway, the mode structure naturally turns
out have broken symmetry due to finite pf and mean E x B flow shear (i.e.,
Vi # 0). This modifies the turbulent fluxes. However, the p? symmetry breaking
of the eigenfunction is seen to have a little contribution to turbulent £ x B drift
driven parallel residual stress due to double rational surface RS-ITG and non-
resonant RS-ITG. The residual stress is dominantly determined by mode width for
Ky oc a?.

The rest of the chapter is organized as follows. Section(4.2) contains the eigenmode
formulation of the problem where a general linear mode structure and the corre-
sponding eigenmode dispersion relation are calculated. The three different types of
ITG modes spanning the entire (k,, k.) space at ¢, are discussed in detail in Sec-
tion(4.3). A general calculation of toroidal and poloidal momentum fluxes carried
by turbulent £ x B drift and polarization drift are derived in Section(4.4). Mo-
mentum fluxes at and about g,,;, are calculated in Section(4.5). Finally discussion

and conclusions are made in the Section(4.6).

4.2 Eigenmode formulation

The magnetic field near minimum q can be expressed as [111]

_ R St Sqr\ .
B=B|l:- "1 4.1
(- (7)) 2

where § = rq,/qo is shear in ¢, $4 = rq)/2qo is curvature in ¢, qo is value of ¢

at r = rg, x = r — g and rg is the location a reference surface not necessarily a
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rational surface.

Vo) = Tolro) + (%Vf) b (4.2)

k, Sz Sqx
ky=k, — -2 1 4.3
” qoR ( " $ ) (43)

Normalizing kj and k. by Ly; ky, z, 54 by ps i.e., (k) k.) = (b, k.) Ly; (ky, 30) =
(ky, 34)ps and x = z/p; Equation(4.3) becomes

srl -
kH =k, — ky;x - (1 + Sd$) (4.4)

Note that finite 5, makes rational surfaces near - minimum non-degenerate. This
makes k, an important parameter compared to normal shear slab I'TG problem.
Following [112, 113, 114, 115] the perturbed ion continuity, parallel momentum

and pressure equations describing the fluid ITG instability are as follows.

(%nt:cv,govy)(l—ViJer—ivx)qﬁJr {1 + K (Vi - z—ivx)} V,0+Vijv =0 (4.5)
where p? terms are kept as they can be important at I'TB at g,,;, where density
gradient is strong. This term arises from the divergence of polarization current
when there is background density gradient, apart from the regular vorticity term.
Usually this term is small in regular drift wave ordering, but it can become signif-
icant at places where density gradient is strong such as I'TB at ¢,;,. The parallel

velocity and pressure fluctuation equations are, respectively

d 7t Ot
(& + 2V Vy)v — V\\Ovy¢ + Vl\(p +¢) =0 (4.6)
d 1

where normalization is

= (r—x0)/ps, Y=y/ps, z=2/Lyn, t=tcs/Ly, ¢=1(ed¢/T)(Ln/ps), mni=
(6ni/no)(Ln/ps) v = (0vyi/cs)(Ln/ps), p = (Tidpi/Pio)(Lu/ps); LV =V =

% + xsa% and the non-dimensional parameters are n; = L,/Ly, K = 7,(1+
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ni) = Tici, T = Toif/Toe, T =7, s = Ly/Ls, Véo = (Ln/cs) Vi, Vﬂo -
(Ln/CS)VHIO’ Ps = Cs/Wei.
Now considering the perturbation of the form f = fi(z)exp(ikyy + ik.z — iwt) ,
where normalized k, , and w are k, = kyp,, k, = k,L,,w = w/(cs/Ly,), the above
set of Equations(4.5-4.7) form an eigenvalue problem in x direction in ¢y,

op L dey

w2 P T U(x, Q) =0 (4.8)

where

1o (k) (K +Q) = (ky/k,) QU
R+ (K4+Q) (2T (hy/k)°)

=
8
=

|

|
Mo
+
+

(4.9)

where O = Q — 2V}, ‘A/];H = L,V /cs, @ = w/ky, wee = 5ky/Ln, ¢s = \/Te/my,
K=7r1+mn),n="T/T.,n = f—;, I' =47, and v = C,/C,. For I' = 0 and
E x B shearing rate much smaller than mode frequency the Expression(4.9) for

effective potential becomes
U(l’, Q) = Al + AQZ‘ + A3I2 + A4ZL’3 -+ A5ZE4 (410)

where

ky —w k2 kyk. VIII

A, = — k2 ST 2 | N— 4.11
! y+Kky+w+w2 w(Kk, +w) (4.11)
: YKk, +w w? R w(Kky+w) qR '
gy L (ky§Ln)2 _ 2kykisaln | ky  kySaLlnV] (4.13)
w? QR QR w(Kk,+w) qR
1 ky8Ln 2k,5qLy
= — 4.14
T W R @R (4.14)
1 (ky3aln "
Ay = — [ L= 4.15
T W ( qoR ) (4.15)
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Keeping terms upto 22 in Equation(4.10) and using

€= (=AY (x + 2’%) (4.16)

and following [115] the eigenmode Equation(4.8) becomes

d2¢k —1/4 *d¢k
d§2 - (_A3) psd_é-

where £ = (A - 1)/ /(= 43).

+(E-&)¢p=0 (4.17)

o = By exp (% /(—Ag) 1/4 *dg) (4.18)

the Equation(4.17) transforms into

d?®,,

Gt (F =€) B=0 (4.19)
where now
ALV e\ 2
Ef=FE— (%) (4.20)
The solution of Equation(4.19) is
62
Pr = Do exp(—;)Hl(ﬁ) (4.21)
with
B =20+1,1=0,1,2,3,....ctc (4.22)

Being the most dominant we will consider the [ = 0 mode for which the eigen

function in z is

(4.23)

2
q)k: (I)O exXp [——Z\/ (23 + 2—143>
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And so the total eigen function Equation(4.18), for the [ = 0 radial quantum

number, becomes

1 A
exp [apz (x + 2—1423)} (4.24)

Equation(4.24) shows that the eigenfunction is shifted off the mode rational surface

2
o = g exp [——u/ﬁ <x + 2—143>

even in the absence of background shear flows due to finite pf. The eigenfunction

Equation(4.24) can be rewritten as

(4.25)

¢dp = B exp [——@\ﬁ(:chzAg 2\;%)2 eXpll\ﬁ(Q\/%%)z

and the corresponding eigenmode dispersion relation from

(Al —~ %) - ((—A3) 1/4p:) (4.26)

is obtained to be

1-Q K kV/ 1 { VI L 2kkSL, 1

k2 — z —
y+K+Q+k§QQ E,OQOK+Q) 4| K+Q k202 qR k(K + Q)

AT Ty 2 o A
y ky3L, V| 1 (kyéLn)2 _ 2kykiSala | 1 kySaLln V]
qu ]{7592 qu qu k'yQ (K + Q) qu

~ ~ 1/2
AN ! ky$Ln\?  2k,k.84L, N 1 kySaLy V)|
J— e =1 J—
2 k‘;(ﬂ qu qu kyQ (K + Q) qu

(4.27)

-1

Separating the real and imaginary parts of the phase of the exponential in Equa-
tion(4.25), a further useful form of the eigenfunction Equation(4.25) can be ob-

tained as

2
or = Pgexp [—% <I ;f*k) ] exp

where the generalized expression for the mode shift £, off the reference surface is

7 A2 Im\/i A2 ?
_§Re\/A3 <x+ R€2A3 Re\/i ) (}4.28)
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given by
A2 RG\/ Ag AQ p*
@ =—|R + - 4.29
Eot A, T ImA 24, 2Ima/A, (4.29)
and the generalized expression for the half mode width Agis given by
A2 = —Imy/ Ay (4.30)

Also note that a factor of

of (o0 (L) (o 5 ) o

have been absorbed in the mode amplitude ®; in the eigenfunction Equation(4.28).

This suggests that turbulence intensity naturally acquires a gradient, because As
and Az depends on mean profiles. Gurcan etal[95] have shown k| symmetry break-
ing due to turbulence intensity gradient, assuming gradient in turbulence. This
factor Equation(4.31) is probably a direct analytical evidence for that. From Equa-

tion(4.28) it is also clear that p’ has no role in generating Rek, of the mode.

4.3 Eigenmode structures at ¢,,;,

Depending on the shape of ¢ profile the mode (m,n) may resonate one or many
points in radial location. For the typical reverse shear profiles of ¢ the mode
(m,n) may resonate at one or two radial points at which ¢(r) = m/n is satisfied
as shown in Fig.(4.1). In the following we classify modes according to the number

of resonating rational surfaces.

4.3.1 Double mode-rational surface RS-ITG

At minimum-q $ = 0. Let’s now consider the case where ¢,,;, is not a rational
number i.e., ¢nimn # m/n then k, = (m — nguim)/qR # 0, and also consider
k./k, > 0. Then the mode has two rational surfaces on both sides of ¢, position.
The location of the mode rational surfaces are obtained from the quadratic roots

of the Equation(4.4) by setting § = 0. The location of rational surfaces, given by
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Figure 4.1: Schematic showing a
typical reverse ¢ profile and ar-
rangement of rational surfaces res-
onating with toroidal mode number
n = 2. Zero of the radial coordinate
is fixed at the position of ¢in. ¢ =
(len + 01(7" - 02)2>7 Qmin = 1/\/57
¢y = 10.0, ¢ = 0. Here r = r/a
B —— 0 o1 02 03 04 05 06 07 where a is minor radius.

r

v = £+/(k./ky)(qoR/34Ly), are obtained to be symmetrically distributed about
the position of ¢,,;,,. The strong temperature and density gradients at ITB at
Gmin are also associated with wells in E,. But it is not very clear whether the

minimum of the well coincide with the position of ¢,,;,. In case it coincides then the

E!|,— . = 0. Then taking V}, = A”’ = 0 the [ = 0 radial eigenmode Equation(4.25)

becomes
,L' p* 2 1 p* 2
= ——V A - = —/ A = 4.32
o ¢0€XP[ 5 3(95 2\/_—143) exp [12 3(2\/——&;) ( )
where
1 2|kyk.|Sq4L,
Ay — - 2Ryhe]saln (4.33)

w? qR

Equation(4.32) can further be expressed as

2
or = Py exp [—% (x ;f*k) ] exp |:—7;%R6\/A>3£172:| (4.34)

where a factor of exp(—p:?/2Im+/A3) has been absorbed in the amplitude ®.
This represents an eigenmode with the envelope shifted from the position of g-min
(x = 0) and radially propagating as well. This is because w = w, + i7 is complex
in general. Mode width A,f = —Im+/As and mode shift off the rational surface
is & = —pi/2Imy/A3. Note that the shift is coming from finite p? which can
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Figure 4.2: The growing branch of the double rational surface RS-ITG. Fig(a) is
the dispersion plot and (b) is growth rate vs k,. Parameters are: L, = 0.020 x 4
m, Ly = 0.020 m, Vj = 00, V/ = 0.0, § = 0.0, . = T} = 4.0 keV, m; = my =
1.67 x 10727 kg, B = 4.6 Tesla, ro/a = 0.3 m, ¢} = 20, R = 2.0 m, k, = 0.7,
ps = 1.40 x 107 m

actually be pronounced at I'TB at the minimum of ¢q. The eigenmode dispersion

relation satisfied by this mode is obtained from Equation(4.27) as

(3) -2 (5)”

Plots of eigenfuction Equation(4.32) for the growing branch (see Fig.(4.2)) of the

k‘2

w?

ky —w

2|kyk.|8aLln
Kk, +w

QR

Ps
2

1

.y
y+ W

(4.35)

dispersion relation Equation(4.35) are shown in Fig.(4.3) for k, = 0.7. The mode
shift due to p, is highlighted.

In the other case when minimum of £, well does not coincide with ¢,,;, posi-
tion E!|,—, . # 0. Let us then consider the double rational surface mode with
Vi = Vil # 0. We will consider the limit when —2k.(Kk, + w) >> whk,Vi/ for
analytical tractability of the problem. Under this condition the last term in the
Equation.(4.13) for As is negligible. This allows us to write the eigenfunction in

the form of Equation(4.28), where now

(4.36)
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Figure 4.3: Eigenmode structure of the double rational surface RS-ITG. Solid
vertical line indicates the shifted position of the mode. Mode shift = 0.6485, mode
width = 8.0394. Parameters: same as in Fig.( 4.2), w = —0.672 4 40.7745

and

Ay ImyA; Ay kVE(Kky|w? + wlt/w,) qR

R — I = 4.37
‘945 Rey/A; 24, Ak k| |Kky w2 8aLn (4:37)

The mode shift including the p? term, from Equation(4.29), is given by
Eop = ky Vi Kky|w*  qoR _ pslwl® Wl (4.38)

Ak |Kky w840, 2w, \| 2]k k-|54Ln

In this case the eigenmode dispersion relation becomes

~ 2
e Rmw R U ek VE N @R (oY
v Kk tw w2 A\ Kky+w) \2lkk.|5aLn 2

1 [ 2|kyk.|3aLn \ "
-5 () e

The growing branch of the dispersion relation Equation(4.39) is shown in the
Fig.(4.4). The corresponding eigenfunction is shown in Fig.(4.5) where the en-

hanced mode shift due to V}, is clearly visible.
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Figure 4.4: The growing branch of the double rational surface RS-ITG. Fig(a) is
the dispersion plot and (b) is growth rate vs k,. Parameters: same as in Fig.( 4.2),

Ly, =0.019 x 4 m, Ly = 0.019 m, V}, = 0.01
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Figure 4.5: Eigenmode structure of the double rational surface RS-ITG. Solid
vertical line indicates the shifted position of the mode. Mode shift = 1.08, mode
width = 9.42. Parameters: same as in Fig.( 4.4), w = —0.40 +i0.517. Mode shift
enhancement due to finite V,g can easily be noticed.
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4.3.2 Single mode-rational surface RS-ITG

When ¢, is rational number i.e., ¢,,;,, = m/n then k, = (m—ngmm)/qR = 0. The
roots of the quadratic Equation(4.4) are then repeated and equals to 0. This means
that the mode has single rational surface resonating at ¢,,;,. For Vé =+ O,VH’ #0

the [ = 0 radial eigenmode(4.28) becomes

1 (=&
or = Pgexp [—5 < A, ) ] exp
Ay

ky = —idlng, /0 = —\/As (x + —) (4.41)
243

2143 Re\/i
(4.40)

where the mode shift off the rational surface is given by

ReEWTRR)| wh 1}
€*k == |Wr =7 ~ o~
Im (w + Kky) | 2kySaln Vi

N w Kk 2
k‘ Im\/w (w+ Kky) 2kySaLy, V

and the half mode width is given by

2 S LoV
A2=—Im Ky falol] (4.43)
F w(w+ Kky) qR

Surprisingly, the mode shift is determined by the ratio f/g / VH’ and the mode width
is determined by V| at min-q. The second term in the Equation(4.42) is a pj effect
on symmetry breaking. Another surprising observation here is that for VH’ — 0
the mode shift £ as well as the mode width A both — co. This means that this

particular mode exists only when ‘7||’ is finite. The dispersion relation of single

. I A 2
_%Re\/Ag <x+Re Az fm 3 2 )
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@)

Figure 4.6: The growing branch of the single rational surface RS-ITG. Fig(a) is
the dispersion plot and (b) is growth rate vs k,. Parameters: same as in Fig.( 4.2),
L, =0.019 x 4 m, Ly = 0.019 m, V4 = 0.01, V] = 0.7, k. = 0

rational single rational surface RS-ITG is

712 712
w3(1+k§+V—E Dolt )—2&@(1-1{@) <1+k§+V—E Dlt )

R AL
s4L, V! 54, V!
1K+ 2 f gt g (444
+whk, ( ST R + Tz ( )

Plots for the growing branch of the dispersion relation Equation(4.44) and the

corresponding eiegnfunction are shown in Fig.(4.6) and Fig.(4.7) respectively.

4.3.3 No mode-rational surface or Non-resonant RS-ITG

When k,/k, < 0 or k,k, < 01i.e. when k, and k, are of opposite sign the quadratic

Equation(4.4) gives imaginary roots for =, given by x = %i+/(|k./ky|) (g0 R/5aLn),
and the resulting configuration has no mode-rational surfaces. The mode does not
resonate anywhere along the minor radius for the given ¢ profile. For V}g =0 and

~

V| =0 and k.k, = —|k.k,| the eigenfunction is given by

2
or = Py exp [—% (x ;f*k> ] exp |i—i%R€\/A>3[II2:| (4.45)
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Figure 4.7: Eigenmode structure of the single rational surface RS-ITG. Solid ver-
tical line indicates the shifted position of the mode. Mode shift = 25.13, mode
width = 40.09. Parameters: same as in Fig.( 4.4), w = 0.084-:0.477, k, = 0. Mode
shift enhancement due to finite Vj, can easily be noticed.

where now

1 2|kyk.|SqLy,
A= "4 =2 1 4.46
R (4.46)
and the mode width given by A,;Q = —Im+/A3 now depends on the growth rate

~. The eigenmode dispersion relation is given by

ky—w k2 (p\? i [2lkyk.|8aL,
2 y Tz (B} = 2 ZRwRelfdTn 4.47
y+Kky+w+w2 (2) W( gkt ) o

A plot of the growing branch of the dispersion relation Equation(4.47) is shown in
Fig.(4.8). The corresponding eigenfunction is shown in Fig.(4.9).

In the other case when minimum of E, well does not coincide with ¢,,;, position
E!|,—, . # 0. Let us then consider this mode with V}, = f/”’ # 0. We will consider
the limit when —2k,(K'k, +w) >> wk, V] for analytical tractability of the problem.
Under this condition the last term in the Equation(4.13) for Aj is negligible. This

allows us to write the eigenfunction in the form of Equation(4.28) where now

wr [ 2|kyk.|84L,
Rey/As = P yqu (4.48)
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and

Ay ImyAy, Ay ke Vi (Kky|w]? + [w]*/w,) @R

Ry ™ Rev, "9y~ dlkoky|[Kky, + WP 3L,

(4.49)

The mode shift including the p¥ term, from Equation(4.29), is given by

@)

o
_05/ -
e
1| : . 4
4
1.5 ; ; ; ; ; ; ;
(o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ky
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1 T
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Figure 4.8: Growing branch of the non-resonant RS-ITG. Fig(a) is the dispersion
plot and (b) is growth rate vs k,. Parameters: same as in Fig.( 4.2).
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Figure 4.9: Eigenmode structure of the non-resonant RS-ITG. Solid vertical line
indicates the shifted position of the mode. Mode shift = 0.731081, mode width
= 8.53614. Parameters: same as in Fig.( 4.8), w = —0.6139 + i0.7885.
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kb, VEKE Jw> @R pllwl? @R

5*k:4ykzky||Kky+w|2§dLn 2y \| 2lk, k-] 5aLn

(4.50)

In this case the eigenmode dispersion relation becomes

N 2
_kQ_’_M_l_k_g_l_l M ﬁ _ '0_: ’
V' Kky+w w? 4\ Kky+w 2|kyk.|8aLn 2

i [ 2k k|80, \ Y
-4 (—| yqolz ) (4.51)

In the (ky, k.) space the double rational surface mode lies in the 1st and the 3rd
quadrant, the non-resonant mode lies in the 2nd and the 4th quadrant. The single
rational surface mode lies on the k, axis only where k, = 0.

In this picture these three modes are complementary to each other which fills up
the entire (k,, k.) space (see Fig.(4.10)).

A higher order calculation of the mode structure is performed in Appendix A. The
eigenvalue Equation(4.8) with the quartic potential Equation(4.10) for V2, VIII =0
is solved analytically by perturbative method. The eigenfunction Equation(A.25)
corrected up to first order shows double hump about the ¢, position as can
be seen in the Fig.(4.12). The p! effect is seen to have two fold effect on mode
structure. First, it shifts the mode centroid off the reference surface and second,
asymmetrizes mode intensity about the q,,;, position. However the dispersion
character and growth rates, with 1st order corrections, do not significantly differ

from their respective 0th order counterparts.

4.4 Momentum flux: General considerations of ra-

dial fluxes of parallel and poloidal momentum

In this section we calculate toroidal and poloidal quasilinear momentum fluxes
due to E' x B drift and polarization drift. Assuming flow shear frequency much
smaller than the mode frequency the linear response for v, in dimensional form,

is obtained to be

(PN Ry | o R W
()L B
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Figure 4.10: Schematic showing three distinct modes in the k, — k. space. The
nature of the mode is determined by whether the ¢,,;, is a rational number or not.

(@)

Figure 4.11: First order corrected growing branch of the double rational RS-ITG.
Fig.(a) is the dispersion plot and (b) is growth rate vs k,. Parameters: same as in
Fig.( 4.2)
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Figure 4.12: First order corrected eigenmode structures of the double rational
surface RS-ITG. Parameters: same as in Fig.( 4.11), w = —0.75 + i0.77. Color
meanings: (--.-.) Re¢ , (--.-.) Im¢, and (-.-.-.)|¢|* with 1st order correction and
without p? effect. (—) Re¢, () Img, and (—)|¢|*> with 1st order correction and
with p? effect. (-.-.-.)|¢|? at zeroth order with p* effect. Intensity humps become
asymmetric due to p? effect.

The response for dv, j is obtained from

OVy = OVEy k= 1 (Czps) kP (4.53)

The response for dvpu, i is obtained from

2
5vpol$7k = —Cg (%) wkmgf)k (454)

where w,,; = —Ta5ky , ky = —i0lngy /0x, w = w/(cs/Ly).

4.4.1 F x B Flux

From linear responses for dvj; from Equation(4.52) and for dvg, we obtain a

quasilinear form of toroidal Reynolds stress

w

2 2
_ CsPs K ’ ki Wpi 2
o) = Re (52) S0 |Vt L [1- 2] P )

—
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the first term is diffusive and the second term, being independent of V}; and V”’ , 18

non-diffusive residual flux. Since & is given by Equation(4.4) we define, for fixed
kZ?

()= Z/ dhy () = = > (1kyl3La/@R)({(-))s +23a/3((-))s,) (4.56)

k ky ky

where

<(...)>§:/dx(...) (4.57)

and
(()>Sd:/dx|x|() (4.58)

The modulus on k, and z is put so that the nature of the summand or integrand
with respect to k, and z do not change while evaluating the summation over k.

We can write the spectral average of k| as

(k) = (kylorl?)s + 284/ 3(ky|ox]?) s, (4.59)

So, (k) survives even when scalar potential ¢; is symmetric about a reference
surface. This means that eigenfunctions with broken symmetry is no more a strong
requirement for residual stress generation. This is attributed to the novel magnetic
field structure about g,y.

The poloidal stress is given by

2
(0uadv,) = —ReS (CZPS) k| 1) (4.60)
E n

It is obvious that poloidal flux survives only if (Rek,) # 0. Here we are defining
the spectral average of (Rek,) as

(Rek,) = (Reky|or?)s + 284/3(Rek,|on]?)s, (4.61)

In case of standing eigenmodes k, is imaginary and hence mean flow can not
be generated. Now because of the novel property of the magnetic field near q

minimum radial asymmetry in turbulence is no more a strong requirement for
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survival of poloidal flux.

4.4.2 Polarization driven flux

From linear responses for 0v)| x, 00y, 0Vporz,x from Equation(4.52), (4.53) and (4.54)

respectively we obtain a quasilinear form of toroidal stress

3
<5Upolxév||> = _Cg (%) i<a—¢67}||>

3
2 (g—) Re Y™ [Viksky — ik |1 -
;

Wiepi
w

[Jlenr (4.62)

and poloidal stress

vy =~ (2) 2 ;<(g—¢)>] (463

where Re(f) means real part of (f) and the angular braces indicates average over

fast space-time scale. The poloidal polarization stress vanish in steady state. A
cursory look at Equation(4.62) reveals that the polarization drift induced residual

stress survives when the spectral average (kjk;) defined as

(ki) = (ol dul®)s + 2%<k||kx|¢k|2>gd #0 (4.64)

which is always satisfied because k) oc x and k, o = in general, and shifted Gaus-
sian structure of the fluctuation spectrum in general. But a close look at the above
equation reveals that broken symmetry in eigenfunction is not a strict requirement
for survival of parallel polarization residual stress. However, microturbulence with
broken symmetry will do have an effect on the momentum fluxes be it toroidal or
poloidal. In the following we will examine the momentum fluxes at minimum ¢

and in the neighborhood of minimum q separately.
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4.5 Momentum flux in the neighborhood of g-min

4.5.1 F x B flux

The diffusive component of toroidal Reynolds stress is given by

2 ~ 2 N
Diff _ CsPs kyl8La\ Ky, o 2 Sd 2
Mg = Re ( I ) ; (‘4%3 1= (=Vjio) { {106]%)s +2=(10x[ s, | (4.65)

The non-diffusive component is given by
2 ~ 2
; k |SL ,k’ Wypi k”
[INDifT _ o [ CoPs _Ry[SLn ' Ky [1 _ _*pl] il 4.66
12 ‘\ L. ; Wk ) - <ky> (4.66)

where the spectral average (%) is given by
Y

() = (o) + 224 o, (467

Now
(s = Fol10uP)s = 5 3ol + el (1.68)

and
(P = 0y = 22 [salonlls, + Sallonf)a] (409)

where

(1081%)s = Axv/T|po (4.70)
(t0u)s = Dutir/Tlo ()
(@6 = | AT+ AV 6w (4.7
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and
(l6xl*)s, = AFldok|” (4.73)
(2|ok]?)s, = 20kE6v/T | Dor|? (4.74)
(2?0 ?)s, = [Ak + 3ARE + An&iv/T] |don]” (4.75)

A closer look at Equations(4.67 - 4.75) clearly unfolds the fact that reflectional
symmetry breaking of the eigen function is not strictly necessary for the survival
of parallel residual stress.

The poloidal Reynolds stress is

2 N
(Gvpadvy) = Be' Y <Czp5) k, (@)—SRL”) (Rek,) (4.76)
ky "

where the spectral average (Rek,) is obtained as
(Rek,) = (Rek,|ow|*)s + 254/ 3(Reky|or))s, (4.77)

where again

(R o) = ~Re/ s [l + (R = T Im 2 ) (s a79)

and

(Rl )s, = e/ (el + (e — T 122 ()9

This shows that spectrally averaged Rek, has to be finite for poloidal stress to

be finite. In turn this may demand some specific turbulence characteristics to be
fulfilled. Equations (4.77 - 4.79) shows that asymmetry in turbulence spectrum is
not a necessary condition for survival of spectrally averaged Rek,. However tur-
bulence with broken symmetry does effect the magnitude of poloidal momentum
flux.

Taking VJ, = 0 and considering p% as the only source of symmetry breaking of
the eigenfunction the <kH/ka> and hence the residual stress is seen to decrease
with L, /R for both double rational surface RS-ITG (Fig.(4.13)) and non-resonant
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RS-ITG(Fig.(4.14)). However the the p* induced symmetry breaking of the eigen-

(@)
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| with p_ shift _ _ _without p_ shift ’

120 -

<k/k >
Iy

100 -

80 . . . ! . n
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Ln/R
x 107 (b)
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=
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o ! ! ! I .
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Figure 4.13: Double rational surface RS-ITG: (a) Mode average of kj/k, with and
without p%. (b) Residual stress vs L, /R with and without p% shift. It appears that
ps induced symmetry breaking of the eigenfunction has no appreciable effect on &
symmetry breaking. So the k| symmetry breaking and hence the residual stress is
dominantly determined by mode width rather than mode shift.
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Figure 4.14: No rational surface RS-ITG: (a) Mode average of kj/k, with and
without p%. (b) Residual stress vs L, /R with and without p¥ shift. It appears that
p; induced symmetry breaking of the eigenfunction has no appreciable effect on &
symmetry breaking. So the kj symmetry breaking and hence the residual stress is
dominantly determined by mode width rather than mode shift.
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function is seen to have very little contribution to <l€|| / k:y> and residual stress and
are dominantly determined by mode width coming through quadratic dependence
of parallel wave number on distance from g,,;, position, i.e., kj o z?. Symmetry
breaking of the eigenfunction due to strong E x B radial shear (see Fig.(4.5)) will
have significant effect /contribution on/to the residual stress (not shown in the fig-
ures). Anyway, the most important point is that the dependence k) o 2? is alone
capable of generating finite residual stress at ¢,,;, whose origin is rooted in the
novelty of the magnetic field structure at and about g,,in.

In the following subsection we are calculating the toroidal and poloidal momentum
fluxes driven by single and double rational surface modes at ¢, respectively, due
to F x B drift.

4.5.2 FEx B Fluxes at ¢,,;, due to single mode-rational surface

mode:

Parallel fluxes

The diffusive component is

- dV]

Dif fusive __ |
H||7E _XH dz (480)

where now the diffusivity is
2 . 2
CsPs |ky|SdLn .ky 2

R —— 12 3 4.81
X| = €<Ln) Ek( Wk ) (1on]%)sa (4.81)

The non-diffusive component as obtained from Equation(4.66) is

Res CsPs Saly ? k2 Wipi 2 2
s = < ) ZI y|< ) [1—7] 2(x%|pr|?)s, (4.82)
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Poloidal fluxes

2 ~
CsPs |k3y|5dLn 2
Vg0V, ) = E — ) k, | ——— | 2(Rek, 3 4.83
< VE Uy) (Ln> y( (]()R < e |¢k| > d ( )

ky

In the following subsection we are calculating parallel and poloidal polarization

stresses.

4.5.3 Polarization drift driven flux

Parallel fluxes

The parallel diffusive polarization stress is
ll,pol

4 v
24 = —x por—t 4.84
Xl ol . (4.84)

where

3 .
o Ps 3Ln|ky| *
i = () B3 (gt ) otk (159
and the spectrally averaged Rek] is actually given by

(Rek}) = (Rek,) (4.86)

and (Rek,); has already been calculated in the previous section. The non-diffusive

component of parallel polarization stress is given by

3 ~
i Ps |ky|SLy, Winpi .
INDHT = 2 (L_) ReZ( L )y (1= =2 (k) (4.87)
n ky

do
where the spectral average (kik|) is given by

(k) = (k| 6ul?)s + 280/ 30Kk |90, (4.88)
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Now £}k can be expressed as
kiky = A+ Bx + Ca2® + Da° (4.89)

where the coefficients A, B, C' and D are complex in general and are given by

A = k. K—%—Re@ <362’Z ZZ? AQ)] (4.90)
B = —k, (A%JFRe\//Tg)—kyf}L%”ké (4.91)
¢ = (g mevm) - 5 e (negh - )|
x % (4.92)
D = (AL%—FRG\//T;;) kyqidRL” (4.93)

Poloidal fluxes

The time asymptotic poloidal polarization stress is

(0Vpo1,200y) =0 (4.94)

4.5.4 Polarization fluxes at ¢,,;, due single mode-rational

surface mode:

For single rational surface mode k, = 0, and at ¢,,;, position § = 0. Then the

turbulent parallel polarization diffusivity turns out to be

3 ~
s SaLn|k .
W= (£) Re X (<) pareizios, a9
n ky

q0

The non-diffusive component is obtained from Equation(4.87)

i |ky|8aLn Wapi .
i~ (4 ) e D LTy [ T2 2k, (4.96)
ky
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where now

(kaklonl?) s, = C2®|0xl*)s, + D(a?|6x]%)s, (4.97)

and

As ImyA A kysqLy,
C =—Re\/As | R 4.98
c 3( 621413 Rey/A 3) qRR ( )

D= (AQ +Re\f) KySaln (4.99)

The first term remains finite even for symmetric turbulence spectrum the second

term does demand broken symmetry in turbulence spectrum for its survival.

4.6 Discussion and conclusions

We presented a neat derivation of possible slab eigenmodes driven by ion temper-
ature gradient at the minimum of the safety factor q. The dynamics of electrons
is considered to be adiabatic. The steep density gradient at the I'TB at the ¢in
makes p! finite. Inclusion of finite p} effect breaks the reflectional symmetry of
the eigenfunction even without finite radial electric field shear. Anyway, the finite
p: and E x B shear together determine the effective shift of the eigenmode of
the ¢nin position. Three different types of reverse shear modes are found at ¢,
depending on whether k. is 0 or not and relative sign between k, and k.. These
are single mode-rational surface RS-ITG, double mode-rational surface RS-ITG
and non-resonant RS-ITG. The single mode-rational surface RS-ITG lies on the
k, axis (k. = 0), the double mode-rational surface RS-ITG lies in the first and the
third quadrants, and the non-resonant RS-ITG lies in the second and the fourth
quadrants respectively in the (k,, k.) space (see Fig.(4.10)).

Parallel and poloidal Reynolds stresses driven by single mode-rational surface RS-
ITG were calculated for both turbulent £ x B drift and polarization drift. The
expression for spectrally averaged k| is generalized to include both shear and cur-
vature in safety factor ¢. It is found that broken symmetry of the eigenfunction is
not a strict requirement for the survival of parallel and poloidal residual Reynolds

stresses at ¢mq,. This is because the (k) survives even for symmetric eigenfunction
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at Gmin. This is attributed to the fact that kj oc z? at ¢min. The pf induced sym-
metry breaking of the eigenfunction (of double rational surface and non-resonant
RS-ITG) appears to have insignificantly low effect on turbulent ' x B drift driven
parallel residual stress/flux which is dominantly determined by the mode width for
ky o< 2% (see Fig.(4.13) and Fig.(4.14)). The turbulent £ x B drift driven poloidal
Reynolds stress survives by making (Rek,) # 0 i.e., by (Rek,) symmetry breaking.
The residual parallel polarization stress survives when (k.k|) # 0 i.e., by (kkj)
symmetry breaking. The time asymptotic poloidal polarization stress is found to
vanish. These symmetry breakings do not necessarily require broken symmetry
of the eigenfunction (see Equations(4.78, 4.79); Equation(4.88) and (4.89)). How-
ever, the eigenfunction naturally turns out to be asymmetric and this modifies the
magnitude of parallel and poloidal momentum fluxes.

In the following chapter gyrokinetic flux tube simulation studies on momentum and
heat transport by finite ballooning angle and background E x B shear in toroidal

ITG turbulence are presented.
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Finite ballooning angle and macroscopic
FExB shear effects on ion temperature
oradient driven mode in gyrokinetic flux

tube simulations

5.1 Introduction

Sheared slab calculations of momentum transport presented in the previous chap-
ters did not consider the effects of poloidal variation of equilibrium magnetic field
and hence the effects of poloidal eigenmode structure on transport properties was
missing. Such an effect can be studied via ballooning formalism in leading order.
However, here gyrokinetic flux tube simulations|116, 117] are used as first principle
calculations to serve our purpose. Flux tube simulations, taking advantage of the
short perpendicular wavelength and long parallel wavelength i.e. (k. >> k) of
these microinstabilities, makes use of the field aligned coordinate system to reduce
computational burden [118]. A flux tube is a curved and and sheared box cen-
tered around a field line that makes an integral number of poloidal turns around
the torus, thus sampling the entire flux surface. The equilibrium quantities are
Taylor expanded to first order in the perpendicular coordinates around the central
field line (or box center). The values and first derivatives of equilibrium quan-
tities, together with the metric coefficients that describe the shaping of the box,

are taken to be constant over the perpendicular extent of the box. Only parallel
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variations are taken into account. Such a local approximation is valid when the
radial extent of the box is small compared to the machine size. Profile shearing
effects, important when p* is finite, are not captured in this formulation. Peri-
odic boundary conditions are used in radial (z) and binormal (y) directions i.e.,
fx+Ly,y,2) = f(z,y,2) and f(x,y+Ly, 2) = f(x,y,2), where L, (L,) represents
simulation box length in radial (binormal) direction. The box lengths are chosen to
be bigger than the correlation lengths of the turbulent fields in the corresponding
directions. Such periodic boundary conditions, allow us to take Fourier represen-
tation for the x and y directions. The poloidal angle is used to parametrize the
parallel direction z. The magnetic shear s causes coupling of radial modes and
leads to the parallel boundary condition f(k,ky,z + L.) = (=1)"V f(k., k,, 2)
where k), = (m +nN)E]"" and k, = mk]"" and k, = nk}]""; m and n takes values
0, , &1, £2,... and k)" = 27/L, . N = 21k, 8k]"" /K" is also an integer. The
parallel mode structure is formed by coupling all the £, modes for a given k, where
each fourier mode (k, k,) balloon at poloidal angle ), = —k, /k,$ called ballooning
angle. So a set {k,} = {..., —=k™" 0, +k™" ..} forms mode structure in z or 6
that is symmetric about low field side (LFS) mid plane (¢ = 0). Shifting each of
the elements in {k,} by some nonzero values rotates the mode structure in # and
stationing it away from LFS mid plane. That is a shift in the k, values balloons
the mode in 6 at 0y = —Kky center/kyS, Where ky center represents the central k, mode.
First part of this chapter explores the effects of finite k; cepnter On linear eigenvalues
spectrum and associated transports of heat and momentum.

The k, spectrum of the eigenvalues differ significantly when 6y # 0 from that
of the commonly considered case of 6, = 0. Finite growth rates in the usually
stable region (k, > 1) leads to development short wavelength (SW) branch when
maximum growth rates in §y scan are considered. This SWITG branch dies out on
reduction of equilibrium temperature gradient. This behavior is similar to SWITG
reported by authors [119, 120, 121, 122] in the past but the fundamental striking
difference between our and past works is that past works considered extremely high
temperature gradients (R/Ly = 25 with R/L, = 10), which might be prevalent
in pedestal and transport barriers, and 6, = 0 whereas our results are for regular
temperature gradients but at finite 5. The SW branch is damped out towards
lower temperature gradients but max growth rates still showing marked difference

from zero ballooning angle growth rates. Impact of finite 6y on associated heat
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and parallel momentum flux are discussed.

Second half of this chapter discusses symmetry breaking effects of background
macroscopic £ X B shear on parallel momentum transport in nonlinear gyroki-
netic simulations. The role of self-consistently formed zonal shear is investigated.
The chapter is organized as follows. Section5.2 contains formulation of the gyroki-
netic equations in field aligned coordinates as solved in GENE. Diagnostics used to
extract various information are also described in this section. Results of linear flux
tube simulations for I'TG mode are delineated in Section5.3. Finally discussion

and conclusions are made in Sectionb.5.

5.2 Model Equations

5.2.1 Formulation

The general perturbed gyrokinetic equation being solved in GENE is written in
field aligned coordinate (x,y, z) as follows [123]

Oy LB | o of; +iBo 3 Foaﬁlj 1 By (afmﬁ
ot OBSH " / Toj 2 70y éBgH o 7Y
OXj1 ) By Toj (o) iisBo + 207 /. ot X ¢
COXap ) 4 2 ] (icxr»ﬁlc P, >+v (20) ;L .
B4 7 BSH Z, By 7, yl gy TJ( O)J‘ByzBo 5+ 3.
BQ Toj(l'g) @ﬁ ]50 “ f‘ @Tj(xo) é “ 8B0 8Fj1
T3, o 5 APref 7z Woiliy — =t M0z
By, ZjBy C By 2 Jw:R, z Oy
Bo T (20) fii Bo + 202 o2+ ji;B )
B Tojwo) B0 20 o (R BN e g (s
BSH Zj By Toj 2

where we used the definitions 7o;(x) = To;(x)/To;(x0), Noj(x) = noj(x)/ne;(zo),

Z; = qj/e. The distribution functions are normalized as

o C?efﬁ%j(xo) . Lref C%efﬁ%j(xo)
Foj = ——"—=Fy Fj;= - iy
NyrefNoj (o Pref NrefNoj (o)
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The electromagnetic fields are normalized as

2 Lre Tre L re
¢, = —rel fq)l AIH = fBrefprefAlﬂ
Pref € Pref
Space time variables are normalized as ¢ = tref/Lycpy, T = /pref, U = Y/Press

Z =2, Teqg = ©/Lycs. The velocity variables are normalized as

N )] ~ ,UBref ~

Vjj = ———— flj = ———— vpi(x) = £/ 2T0;(x)/my = Crefir;(x

1% o7 (20) Cres H Ty (20)Tres 7j(x) 0j(x)/m; £0r; ()
Equilibrium density and temperature are normalized as Ty;(z) = To;(z)/Thes,

no; () = no;j(z)/nres. The equilibrium geometric quantities are normalized as

=7, (Y2,93) = (V2,73) Lrey, Jovz = J™? [ L,.r. Here v’s are defined using met-

ric coefficients g”: v, = g*" g% — (§"Y)%, 72 = gV g¥* — g™Vg"*, v3 = g*Vg¥* — g¥g"*
The dependent variables are defined as

N ; Z; UT]( 0)
iy = By + LG F A
J J TO]( ) 154705 411]]
7 A A
I j :a@f1j+ < ? adq)lFOj
07 ()
L= Noj(z) exp(— (0 ﬁ +,UJBO(-T z))
Y g 95)]3/2 TOj( )
= &y — Oy (o) 0y Ay

The over-bar indicates a gyro-averaged quantity.
Also,

s 1 42 0By
CH 0z

g — 1 (9B _ %95
y_C (9 1 0%

mJTOJ(@"o) Joj iy | o = Joj
Z B2 ! ENpefCref

8” = BO 1+ /Bref
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Wnj = Lyeg/Lnj = —Lpegnly/njo, @rj = Lpey/Lrj = —Lref T/ Tho, C =
C/ B, .y, B =CVzr x ﬁy
The gyrokinetic Poisson and Ampere’s equations are used to determine the self-
consistent electromagnetic fields. Quasinuetrality ;i Zjn,; = 0 for adiabatic elec-

tron response reads

ﬁ (& z T A % = ~ ~
_ To (CI)l— < Py >> -+ Z {WZ]‘TLO]'(?L’())/BOFU dUH d,u]
Oe j#e

. By [z ;B
]

2~
Zjnoj

~

To, Toj

Ampere’s law reads

- @ilelﬂ - Z {ﬁ;ef Zjﬁoj(xo)@Tj(fo)W/BSHFM‘ doy iy

>dm] } (5.3)

The above gyrokinetic Vlasov - Maxwell equation are solved for the anlytical § —«

2 . A oA
_ Brey Mojjoll 1 Bo
J 7/;0‘
y)

~

B, [
o, —— [ D —
1 Bg 1 TOj/ 161'29(

geometry in flux tube approximation for which the normalized metric and equilib-

rium magnetic field are approximated by

1 §z — OéMHDSZ.né 0
gij = Sz — aMHDSiné 1+ (éé - aMHDSin2)2 Lref/r()
0 Lyef/To (Lyes/10)?
. 1 N r p_ "o
= 0:By = B2e;sin2 J == & ==
7 1+ eos? =0 o By "R

This leads to the following curvature terms
A . L’I"Ef ~

L
K, = Tsiné K, = —% (cosz + sinZ(82 — apgpsinz))

In flux tube simulation approach the radial dependencies of the equilibrium
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quantities in above equations are removed:

~ A A ~ A ~ A~ A ~ A

C(x), Bo(w, 2), By (x, 2,v))), Kay (%, 2), Juy=(, 2) — C, Bo(2), By (2,0))), Ky (2), Jay=(2)

Wy (), wrj(x), No; (), Po(x) = Wiy, s, Nojs Do

The x and y directions are Fourier transformed due to periodic boundary conditions

in respective directions.

5.2.2 Diagnostics

Eigenvalues

Since all the k, grid points are coupled via the parallel boundary condition, the

linear eigenvalues are computed as follows|124].

ka w(ky, ky, 2)A(ks, Ky, 2)
kavzw(kz, ky, 2)

(tn)
¢(tn—1)

Aky) = where X(ky, ky, z) = In ( ) JAL(5.4)
The result A = v + iw represents the combined growth rate and real frequency
of the mode k,. The convergence criterion for a given k, is that the scatter of
Ak, ky, z) is below a certain, adjustable limit ¢, connected to the precision of the

value for \:

Zkz,z w(ky, ky, 2)| Mk, by, 2) — AEy)[?
kaw(k’x, ky, z)

< ¢ (5.5)

Here ¢, = 107 has been taken for all computations. The weight function is taken
to be w(ky, ky, 2) = ¢(tn—1).
Mode averaged quantities

Mode averaged quantities such as k2 are calculated as follows:

_ [ dzJ (=) D ok k2 | (ky, Ky, 2) 2
J d2d(2) 224, ok, Ky, 2) ]2

< k% > (k) (5.6)

where kT = g™ k2 + 29"k, k, + g*k;. J(z) is the Jacobian and g are the metric

coefficients.
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Momentum and heat fluxes

The generic structure of any flux I'4p in terms of it’s spectral components A(E)
and B(k) is given by

_ J dedyA(z,y,2)B(z,y, 2)
[ dady
= > Ak, ky, 2) B(ka, ky, 2) (5.7)

K ey

FAB(Z) - <A<£IZ’, Y, Z)B(Q?, Y, Z))xy

Summation over k, extends over all +ve and —ve k, modes while GENE outputs
for +ve k,’s only. Hence using the complex conjugation properties of Fourier
amplitudes (i.e., A*(k) = A(—k) ) the above expresssion is reduced to the following

form which uses only k, > 0.

Tap(z ZA ki 0,2)B(ky,0,2) + 2Re Y Y A*(ky ky, Z)B(ky Ky 2) (5.8)

ko ky>0
Volume averaged fluxes are calculated as follows:

[ dzJ(2)T ap(z)
[ dzJ(z)

Tup = (5.9)

Substituting

1 09,

A= =—=
T Ty

~ - 3 A~ — -~ — o —
= njOTjO <§nj1(x, t) + THjl(«Ta t)/2 + Tle(l’, t)) (510)

yields the electrostatic heat flux for the jth species in gyro-Bohm units Q,p =
PrefCrefPres/ Loy Similarly parallel momentum flux is obtained in gyro-Bohm

units Tgp = MyefNpefCleppPies/ Lie s, by making the following substitution.

1 69,
X 6o

1oty 1 (T, 1) (5.11)

where quantities with subscript 1 indicate perturbations and with subscript 0 in-
dicate equilibrium quantities. Parallel velocity density fluctuation 4, is obtained
from the parallel velocity moment of the perturbed distribution and density fluc-

tuation 7;; is obtained from the zeroth moment of the perturbed distribution
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function.

5.3 Results From Linear Gyrokinetics

In this section we present the results from the flux tube simulations using the
GENE code for the linear electrostatic ion temperature gradient (ITG) mode with
adiabatic electron response. Various parameters and reference values are tabulated
below. Magnetic shear § = 1, inverse aspect ratio ¢, = r9/ Ry = 0.16, major radius
Ro/L,c; = 1, safety factor, gy = 2, density gradient L,.;/L, = 3, and temperature
gradient L,.r/Ly = 9 unless stated otherwise. The reference quantities are L,.; =
Ry =1.65m, B,y = By =1T, Qef = e = 1.6e—19 C, mycy = m; = 3.34e—27 kg,
Trer = Teg = 350 €V, nyey = n; = 3.5e + 19 m=3, Cref = 129487.19 m/s, Pref =
0.0027029701 m. We would stress here that the marked difference between the
parameters chosen here and the previous works on conventional SWITG is that
the later considered very high temperature and density gradients R/Ly = 25 and
R/L, = 10.

5.3.1 Eigenvalues

Fig.(5.1) shows kZcenser scan of linear growth rates at different binormal wavenum-
bers k,. The figure has a couple of features that need explanation. The growth
rates are periodic in KZcenter Or O for any k,. This is due to the fact that non-zero
kxcenter shifts the eigenmode away from LFS mid-plane where it sees a different
magnetic curvature and hence different growth rate. 27 periodicity of curvature
term in 0 or z leads to 27k, s periodicity of the growth rates in kZcente,. Another
surprising feature of Fig.(5.1) is that kZcenser = 0 is not often the maximum growing
mode. Low k, modes show maximum growth at kzcent, = 0 while high &, modes
show maximum growth rate at kzscper 7 0. That is high £, modes have maximum
growth rates when the eigenmode is shifted away from the LEF'S mid plane. Values
of kxcenter and ballooning angle 6y corresponding to maximum growth rates viz.,

respectively, against k, are shown in Fig.(5.2).

|'Ymaa:

kmcenter,max and 90
When growth rates maximized over all kZ ¢y, Or 6 are considered the ITG mode
instability window in k, broadens way beyond k, > 1 in the short wavelength (SW)

regime as shown in Fig.(5.3). But the SW branch disappears at lower temperature
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Figure 5.1: Linear growth rates 7 vs kcener (left) and v vs 6y (right) with £,
as parameter. kZ.enter = 0 or 8y = 0 is not always the maximum growing mode.
Very weakly growing modes or damped mode growth rates in the valley are not
well converged as per the rule Equations(5.5) and are obtained from linear regres-
sion analysis of the available time series of [n|? and hence are only approximately
correct.
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Figure 5.2: Left: kxcenter vs ky at max. growth rates. Right: Ballooning angle at
max. growth rate vs k,

gradients. This behavior is similar to 6, = 0 SWITG driven by extremely large
temperature gradients (in fact very large density gradient such that diamagnetic
frequency exceeds the mode frequency and for 7; to stay above marginality the

needed temperature gradient becomes tremendously high. For example Fig.(10) in
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Figure 5.3: Left: Thin solid lines with  indicates v for kz ez = 0, thick solid lines
with o represent v maximized over all kxcepier 1.€., Ymaz- Right: Corresponding
real frequencies.

ref|119] shows that the instability exists for R/L,, > 6 at n; = 2.5 which translates
to R/Lr > 15 !). However, the appearance of SW branch in our case, despite
having normal temperature gradients, is due to the fact that at high &, the growth
rates maximized over all fy’s are significantly higher than that at 6y = 0(Fig.(5.1)).

5.3.2 Mixing length estimates

Mixing length estimates are generally used to project estimate of heat diffusivity
in nonlinearly saturated turbulence from linear mode calculations. Certainly these
calculations are not full proof but often gives an idea of what can be expected in a
nonlinearly saturated turbulence regime. Hence the k, spectrum of mixing length
estimates for different values of temperature gradient are calculated. Fig.(5.4)
shows that mixing length values of the SW branch is not much significant compared
to the long wavelength part even though estimates due to 7,,.. are higher than that
of modes at 0y = 0. It is important to note that the mixing length spectra peaks at
k, = 0.1 in all three cases of R/Ly and do not show any peak characteristic of SW
branch on high £, side. The observed monotonically decreasing k, spectrum of the
mixing length estimates is a consequence of monotonically increasing k, spectrum

of < k? > as shown in the adjoining left figure in Fig.(5.4).
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Figure 5.4: < k3 > vs k, (Left) and v/ < k% > vs k, (Right) at ballooning angles
60| ymas corresponding to max growth rates ,qq-

5.3.3 Momentum and heat fluxes

Parallel momentum fluxes I'|| normalized by mode intensity < ¢* > at k, = 0.3
as a function of , are shown in left panel of Fig.(5.5). T/ < ¢* > is seen to
have odd parity with respect to #y. This indicates momentum flux reversal with
mode tilt angle which may have important implication for understanding of intrin-
sic toroidal rotation reversal[125, 23]. The odd parity of parallel momentum flux
is a consequence of odd parity of the eigenmode averaged parallel wavenumber.
The right panel of Fig.(5.5) clearly demonstrates generation of parallel momentum
flux due to breaking of k| symmetry by breaking of eigenmode symmetry caused
by finite 6y. The k, spectrum of I';| (unnormalized) exhibit peaks at k, = 0.5
and 1.5 characteristic of long wavelength and short wavelength peaks in growth
rate spectra. This is depicted in Fig.(5.6) for 7,,4,. To nail down the origin of
parallel momentum flux by finite f, 2 profiles of ')/ < ¢? > and mode parities of
electrostatic potential ¢ and and parallel velocity density w in z are calculated.
Fig.(5.7) structure of normalized parallel momentum flux in z at different values
of fy. It is seen that ')/ < ®? > is locally finite but exactly antisymmetric about
z = 0 when 6, = 0. This characteristic can be understood from the even parity
of ¢ and odd parity of u); when 6y = 0 as shown in Fig.(5.8). In physical words a

mode centered on the LFS mid plane drives parallel momentum flux locally in the
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Figure 5.5: Left: I')/ < ¢* > vs 6 at k, = {0.3,0.6}, R/Ly = 9. The underlined
regions indicate damped mode contributions. Right: < k| > vs 6 showing < k| >
symmetry breaking by finite 6.
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Figure 5.6: I'|| vs k, at ballooning angles 0
and R/Lyr = 9.

corresponding to max growth rate

|'7maz

poloidal angle but flux in the upper plane is exactly canceled by flux in the lower
plane to give no net poloidally averaged parallel momentum flux. At a finite 6
the z profile of I')|/ < ¢* > losses this antisymmetry property in z hence flux in
the upper plane is not exactly canceled by flux in the lower plane constituting a
net parallel momentum flux. Again, the loss of antisymmetry of I'|/ < ¢? > can

be understood from the breaking of symmetry of ¢ and anti-symmetry of u; about
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the LFS mid plane (i.e., z = 0) at finite 6, as shown in Fig.(5.9).

k= 0.30
Yy

—_—— kxcenter =0
—— 0.047125
—f— 0.0943
—— 0.1414
—— 1.8850
—— 1 8379
—ill— 1.7908
—— 1.7436

Figure 5.7: T'| vs z with EZcepter as parameter at £, = 0.3 and R/Ly = 9.
The shown values of kZienier correspond to 6p/m = {O, —0.05, —0.10, —0.15,
0,0.05,0.10,0.15}.

k= 0.3, kx
Yy

center — O or 60 =0

Figure 5.8: Mode parities, at the end of simulation, along the field line when
kZcenter = 0 for k, = 0.3 at R/Ly = 9.

Normalized heat flux Q;/ < ¢ > exhibits even parity in f, with a nonzero mini-
mum at 6y = 0. Fig.(5.10) shows Q;/ < ¢? > vs 6, for a test case of k, = 0.3 and
R/Lr = 9. Q;/ < ¢* > increases with 6y up to 6y = +0.457 and then decreases

rapidly to vanishingly small values as 8y — +7 in the damped eigenmode region.
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Figure 5.9: Mode parities, at the end of simulation, along the field line when

0o = —0.157 for k, = 0.3 at R/Ly = 9.
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Figure 5.10: Left: Q;/ < ¢* > vs 6, at k,

={0.3,0.6}, R/Ly = 9. The underlined

regions correspond to damped modes. Right: < k% > vs 6.

Heat flux distribution in poloidal angle 2z

is shown for different eigenmode balloon-

ing angles are shown in Fig.(5.11). Heat flux z profile is seen to follow the z profile

of mode intensity (Fig.(5.12)). Heat flux profile is exactly symmetric about z = 0

when 6y = 0. At finite 0, eigenmode intensity is shifted either below or above the

LFS mid plane depending on the it’s sign which is also reflected in the poloidal

structure of the heat flux. Like &, spectrum of parallel momentum flux, the &,

spectrum of ion heat flux in Fig.(5.13) shows peaks at k, = 0.5 and 1.5 character-
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istic of long and short wavelength growth spectra respectively. The even parity
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Figure 5.11: Q; vs z with kZee, as parameter at k, = 0.3 and R/Ly = 9.
The shown values of kZienier correspond to 6p/m = {O, —0.05,—-0.10, —0.15,
0,0.05,0.10,0.15}.

—_—— kXcenter =0

0.9 —— 0.047125
—f— 0.0943

0.8 —_—— 0.1414

o7}k —— 1.8850

—— 1.8379
—f— 1.7908
W —@— 1.7436

oz max(oF(2)
@]
[4)]

—1 —0.5 (o] 0.5 1
z/Tt

Figure 5.12: Finite kZiepser shifts mode away from LFS midplane. The fig-
ure highlights the same for k, = 0.3 for few representative cases of growing
modes. The shown values of kz cpser correspond to 0y /m = {0, —0.05,—-0.10, —0.15,
0,0.05,0.10,0.15}.

of heat flux with respect to #; could be understood from the fact that potential

fluctuation ¢, parallel temperature fluctuation 7}, and perpendicular temperature
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fluctuations 7', all have same even parity when 6, = 0 as shown in Fig.(5.14).
This symmetry is broken when 6, # 0 and the fluctuation intensity in all fields
maximizes at position other than z = 0 as shown in Fig.(5.15) for an example of
0, = —0.157.

@ o

Figure 5.13: @); vs k, at ballooning angles 0,
rate and R/Ly = 9.

corresponding to max growth

|'Ymaac

ky = 0.30 @ kxcemer =0ore,=0

6000 ‘ : ‘ —— Re(T))

—6000
-1

z/7c

Figure 5.14: Mode parities, at the end of simulation, along the field line when
6y =0 for k, =0.3 at R/Ly = 9.
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Figure 5.15: Mode parities, at the end of simulation, along the field line when
0p = —0.157 for k, = 0.3 at R/Ly = 9.

5.4 Non-linear gyrokinetic simulations with back-

ground ExB shear

Effects of £ x B shear on ion temperature gradient(ITG) driven turbulence in
context of basic linear growth properties and turbulent heat transport has been
studied quite extensively [126, 105, 127, 128, 129, 130, 131]. Parallel momentum
transport driven by E x B shear and parallel flow shear has been studied quite
well in Ref.[100]. However the connection of self-consistently generated zonal flow
shear with residual momentum flux, if any, has not been studied well in flux tube
simulations. This section shows that the zonal flow shear itself fails to drive flux

tube averaged parallel momentum flux.

5.4.1 System description

Nonlinear gyrokinetic simulations in toroidal geometry are performed with the
Vlasov flux tube code GENE. All simulations were done for collisionless Waltz
standard case[128, 132, 129] with temperature scale length R/ Ly = 9, density scale
length R/L, = 3, safety factor ¢ = 2, magnetic shear § = 1 and inverse aspect
ratio e = /R = 0.16 unless stated otherwise. The geometry used is the analytical

s — a model, which assumes circular flux surfaces with the magnetohydrodynamic
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parameter « = 0. Unless otherwise stated all simulations are performed with
ny, = 48 binormal modes, ny, = 128 radial modes. The number of grid points in
parallel velocity v)|, magnetic moment p and along the field line z are n, = 32,
n, = 16, n, = 16.

5.4.2 Results

Parallel momentum fluxes are calculated with and without zonal flow shear as a
function of E' x B shearing rates vz as shown in the left panel of Fig.(5.16). It is
seen that the momentum flux without zonal flows is much higher than that with
zonal flows. Momentum flux initially increases with shearing rate at smaller values
of the later but starts to roll over at larger values of shearing rate. This could be
understood from the fact that with increasing shearing rate the enhancement of
the symmetry breaking of the eigenmode about the LF'S mid plane is accompanied
by the reduction in mode intensity as shown in left panel of Fig.(5.17). Right panel
of Fig.(5.16) also reflects the symmetry breaking contribution of E x B shear to
momentum flux.

The root mean square value of zonal shearing rate goes down with background

T T T
—©— without zonal flow
—©&— with zonal flow

40 4 0.012

T
—&— with zonal flow

8= 20f o8- ¥
=3

. . . . . . 0 . . . . . .
UO 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.05 01 0.15 02 0.25 03 0.35
% i3

Figure 5.16: Left: Fﬁes vs I/ x B rate, Middle: Fﬁes/ < ¢* > vs E x B rate.

E x B shearing rate as shown in right panel of Fig.(5.17). Background F x B
shear and zonal flow shear both are stabilizing but the former one has symmetry
breaking properties in addition.

Now we present 2D space-time correlation studies among I'|, Qi, WgxB,zonat, and
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with zonal flow Y = 0.00 027

Figure 5.17: Left: |¢|*(2) vs z at various F X B rates. Right: rms Wgxp_.ona VS
E x B rate.

|¢]? with and without macroscopic E x B shear. Results without F x B shear
are discussed first. 2D space time cross correlations between I'|| and wgy B zonal are
calculated in Fig.(5.18) to ascertain role of zonal flow shear in generating parallel
momentum flux locally in radial position z. Left panel of Fig.(5.18) shows that
the maximum of the correlation function is situated at Ax = 0 and At # 0 with
the maximum value being 0.15. To make sense of the strength of the correlation
value, cross correlations between heat (); and wgx B ona are calculated as show in
left panel of Fig.(5.18).The maximum value is 0.20 with the maximum centered
away from the origin at Ax # 0,At # 0. Hence compared to the correlation
value of zonal shear and heat flux we conclude that zonal flow shear and parallel
momentum flux are locally correlated in x but non-locally in ¢. Bottom panel of
Fig.(5.18) shows that I'| and @; are not correlated. Fig.(5.19) shows that com-
pared to correlation between @; and |¢|* correlation between I and [¢[* is poor.
On introducing finite £/ X B shear the first eye catching difference effect that ap-
pears in correlation diagrams is that now the streak like structure diminish in the
other diagonal direction. This could be related to the fact that avalanche direction
symmetry (when vz = 0) is broken and is dominantly determined by the radial
electric field direction. With background E x B shearing rate v = 0.30 the corre-
lation between wgy B .ona and I')| is still maintained as compared to the correlation
between wgy g rona and @; which is depicted in the left and right plots of Fig.(5.20).
The bottom plot in Fig.(5.20) shows a high correlation between @); and I'). This

indicates that the momentum and heat transport channels get coupled at finite
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Figure 5.20: 2d Cross-correlations of zonal shear and momentum flux
R s onar (left) and zonal shear and heat flux R right), heat flux
and momentum flux Rq,r, (bottom) at vz = 0.30

wEXB,zonalQi (

~vg. This could be understood by writing the fluid ITG equations in Chapter 1 in
field aligned coordinates and calculating the flux tube averaged parallel momentum
flux. It is easy to show that the parallel momentum flux coming from the parallel
velocity fluctuations driven by parallel pressure gradient fluctuations Vp will con-
sist of a term containing heat flux spectrum Qy: [ dz Y, (v/|wil®) V| QixJ (2).
This term survives only when @)y is losses symmetry about the LEFS mid-plane
z = 0 which is brought by finite vg. This causes coupling of momentum and heat
transport channels when ~g is non-zero. Moreover, the correlation between |¢|?
and I becomes significant compared to correlations between |¢|* and Q; as shown

in Fig.(5.21). This is just a consequence of symmetry breaking agent vz.
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Figure 5.21: 2d Cross-correlations Rjg2q, (left) Rjger (right) at vz = 0.30

5.5 Discussion and Conclusions

We performed flux tube simulations of linear I'TG mode exploiting the freedom of
mode ballooning angle for the first time. So far flux tube simulations have only
been reported for 6y = 0 in the best of our knowledge. Following are the major

findings that add to the conventional wisdom:
e High k, modes often show maximum growth rates at 6y’s other than 0.

e ITG instability window extends to short wavelength (SW) regime k, > 1

when growth rates maximized over all ballooning angles are considered.

e The SW branch dies out on decreasing R/Ly showing behavior similar to
the zero ballooning angle SWITG driven by extremely large temperature

gradients.

e Though mixing length estimates of ~,,,,. are slightly greater than that of
Yo the SW branch shows insignificantly low contribution to mixing length

estimates compared to the long wavelength branch.

e Loss of symmetry of potential fluctuations and loss of anti-symmetry of par-
allel velocity fluctuations about LFS mid plane due to finite 6y leads to net

poloidally averaged parallel momentum flux. The parallel momentum flux is
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antisymmetric with respect to 6y which provides a mechanism of flux reversal

and hence reversal of intrinsic toroidal rotation.
e Heat flux shows even parity with respect to 6.

e Un-normalized heat and momentum flux £, spectra obtained from 7,4
modes show peaks at k, = 0.5 and 1.5 characteristic of both low £, and

high £, spectrum of 7,45

The freedom of setting arbitrary 6, deserves some discussion. The periodic
nature of growth rates of the eigenmodes with respect to 6y can best be understood

by calculating eigenmode averaged curvatures

ST Ky (2)loP(2)
]Cy - - +m
< > J=% dzloP(2)

For a test eigenfunction of the type ¢ = (1 + cos(6 — 6p)) it is easy to show that
< Iéy > consist of terms proportional to sinfy and cosfly. That is an eigenmode
“ballooned” at different poloidal angles samples different effective magnetic field
curvatures and hence different growth rates periodic in 6y for effective curvature
being periodic in 6. This is shown in an example for k, = 0.6 in Fig.(5.22). But
understanding of why 6y = 0 modes are not maximum growing modes at high
k, region requires further deep investigation which is not within the scope of this
chapter.

Obviously, the freedom of choosing 6, is neither desirable nor self-consistent
for the description of the mode. What decides ballooning angle in more realistic
situation when global profile effects are considered? Eigenmode ballooning angle
becomes a free parameter in flux tube simulations due to fourier decomposition
of perturbations in radial direction allowed by periodic radial boundary condition
which is based on assumption that the profile shearing effects are not important
i,e., px — 0. Hence it is natural to wonder if eigenmode ballooning angle in
a global calculation with finite p* correspond to 6),,,,, at all. In conventional
ballooning representation /formalism for 2D eigenmode structure calculation in the
poloidal plane, the solution of the global eigenmode is accomplished in two steps.
In the lowest order in 1/n, where n is toroidal mode number, the eigenmode

structure along the field line is calculated via an eigenvalue problem in which
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Figure 5.22: Eigenmode averaged curvatures < I@z >, < Iéy > VS kZeenter (left)
and 6, (right) for a test case of k, = 0.6 when R/Ly = 9. The periodic nature of

v is a reflection of periodic nature of Iey.

0y, which actually appears as an operator 0, = —(i/ng’)d/dz, is set to zero
and local approximation to global eigenvalues are obtained|133]. 6y is determined
self-consistently from the integrability condition of the next order inhomogeneous
radial envelope Equation([134]). Kim etal [135] and Kishimoto etal [136, 137]
showed that in 2D envelope problem the most unstable mode is characterized by

ballooning angle 6, = —sign(sw’ (W’ /2key08)"/?) where 7 is growth rate at

|'7’ma,z
zero ballooning angle and w/. is shear in real frequency due to equilibrium profile
shear which is a finite p* effect. Hence imposing finite tilts in flux tube simulations
seems to violate the basic philosophy of taking p* — 0 in the same. A comparison
of 90

gyrokinetic simulations is desired which is left for future work.

of the the modes reported here with the poloidal tilt angle in global

|'7maz

Nonlinear simulations lead to the following conclusions.

e Nonlinear simulations with background E x B shear shows parallel momen-
tum flux level without zonal flow shear much higher than with zonal flow
shear present. However, momentum flux initially increases with £/ x B shear
but starts to roll down due to turbulence suppression being dominant over

symmetry breaking effects.

e Zonal flows shear do not produce net volume averaged parallel momentum
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flux. But zonal flow shear and parallel momentum flux do show some cor-
relations that is local in radial space = and nonlocal in time ¢. Heat flux is

correlated with zonal flow shear non-locally in both space and time.

e Parallel momentum and heat flux channels get coupled at finite £ x B shear

which can be attributed to a momentum flux component driven by heat flux.

In the next Chapter we look for zonal flow generation mechanism and electro-
magnetic effects on zonal flow excitation and subsequent effects on transports in

toroidal ITG turbulence via analytical calculations.
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Secondary instability of electromagnetic
ion temperature gradient modes for zonal

flow generation

Having looked at radial transport of parallel momentum we now look for radial
transport of poloidal momentum which manifests as radially oscillating zonal flows

in the poloidal plane.

6.1 Introduction

The dependence of energy transport on plasma 3 (8 = 8wn,(T.+1T;)/ B2, kinetic-to-
magnetic pressure ratio) is of major importance for the operation and performance
of a magnetic confinement fusion device. For tokamaks, the combination of high
confinement and high $ would allow for a high fraction of bootstrap current as
well as high fusion gain and offer the promise of a more compact and economi-
cally feasible tokamak reactor operating in steady-state. The investigation of such
advanced confinement regimes is presently a high priority research area in both
experimental and theoretical fusion plasma physics.

Experimentally, the scaling of confinement with 5 has shown inconsistent results.
In the commonly used empirical scaling law IPB98(y,2), a strong degradation of
confinement with increasing /8 is predicted[138]. In dimensionless scaling exper-
iments on the other hand, where [ is varied while the other dimensionless vari-

ables are kept fixed, the strong degradation of confinement has not always been
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confirmed[139, 140]. The mixed results may be due to the different turbulent
types/regimes in the edge and core plasmas.

Theoretically, it is well known that the interplay between ion temperature gradient
(ITG) mode turbulence and zonal flows play a crucial role for the level of turbulent
transport in core plasmas. Zonal flows are radially localized flows that are driven
by the turbulence and propagating mainly in the poloidal direction. The zonal
flows provide a strong shear stabilization of the turbulent eddies and are hence
important for the self-regulation and saturation of the turbulence[46, 47, 48, 49].

Theoretical studies of ITG turbulence and transport including finite § electro-
magnetic effects have usually been based on linear and quasi-linear (QL) theo-
ries. It is known that the linear I'TG mode growth rate is reduced by electro-
magnetic fluctuations, resulting in a favorable scaling of confinement with g in
QL theories|50, 51, 52, 53|. Less studied is the role of electromagnetic effects for
the generation of zonal flows. Nonlinear simulations of ITG turbulence including
electromagnetic effects and zonal flow dynamics have been performed using both
gyrokinetic |53, 54, 55, 56, 57, 58| and gyro-fluid models|59, 60]. Recently, nonlin-
ear gyrokinetic simulations of ITG turbulence has reported a significant reduction
of transport levels with increasing # which could not be explained by the linear
physics alone |53, 54].

From a theoretical point of view there are several analytical models for treating
multi-scale interactions. Among the widely used models are the coherent mode
coupling method (CMC), the wave kinetic equation (WKE) approach and the re-
ductive perturbation expansion method. In comparison, the CMC model is based
on a finite number of test waves, such as pump waves, zonal flows and side bands
whereas the WKE analysis is based on the coupling of the micro-scale turbulence
with the zonal flow through the WKE under the assumptions that there is a large
separation of scales in space and time|3].

In the present chapter, electromagnetic 3 effects on I'TG turbulence and transport
is analyzed based on a two-fluid model for the ions (Refs. [141, 128, 142|) and the
electrons employing the WKE model for the zonal flow generation. Note that the
kinetic ballooning mode (KBM) is however not included. A system of equations
is derived which describes the coupling between the background ITG turbulence,
using a wave-kinetic equation, and the zonal flow mode driven by Reynolds and

Maxwell stress forces. The work extends a previous study (Ref. [143]) by self-

106



Chapter 6. Secondary instability of electromagnetic ion temperature gradient
modes for zonal flow generation

consistently including linear as well as nonlinear g effects in the derivation. The
derived dispersion relation for the zonal flow is solved numerically and the scalings
of the zonal flow growth rate with plasma parameters, in particular with plasma
B, is studied and the implications for ITG driven transport scaling with [ are
discussed.

The chapter is organized as follows. In Section6.2 the fluid model used to de-
scribe the electromagnetic ITG modes are presented. The derivation of the zonal
flow growth rate in the presence of a background of I'TG modes is described in
Section6.3. In Section6.4 the results are presented and discussed. Finally the

conclusions are given in Section6.5.

6.2 Electromagnetic toroidal ion temperature gra-

dient driven modes

We will start by presenting the ion part of the fluid description used for toroidal
ion-temperature-gradient (ITG) driven modes consisting of the ion continuity and
ion temperature equations by following the Refs [52, 143]. The electromagnetic
effects enter through electron fluid model via quasi-neutrality while the ion branch
is identical to the electrostatic case. Combining the ion and electron fluid model
through quasi-neutrality results in the dispersion relation for ITG modified by
finite 3 effects. It has been found that the effect of parallel ion motion is weak
on the reactive I'TG modes and therefore it is neglected, moreover, the effects of
electron trapping is neglected for simplicity. The linearized ion-continuity and

ion-temperature equations can be written

wit = (wpi — wyi)d+ wpi(A+T;) — k2 (W — w,) o, (6.1)
~ 2 ~ 2 - 5 ~ -
wl = (ngi — i) + ngi<ﬁ +Ti) + ngiTi — kKl (w — awwii)g. (6.2)

Here we have assumed 7 = T;/T, = 1 and 72 = (L,,/ps)on/ng, ¢ = (Ln/ps)edo/T.,
T, = (Ly/ps)0T; /Ty are the normalized ion particle density, the electrostatic po-
tential and the ion temperature, respectively. We have denoted the ion diamagnetic
and magnetic drift frequency as w,; = —w,. and wp; = —wp, where the geomet-

rical quantities are calculated using a semi-local model where g; (6) is defined by
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wp (0) = wy€,6: (0), with w, = kyv, = kypscs/ Ly, see Equations(6.17) - (6.19) be-
low. The normalized gradient scale lengths are defined as Ly = — (dinf/dr)”"
(f = {n,73}), i = Ln/Lr1,, ¢, = 2L,/R where R is the major radius and
a; = (1+mn;). The perpendicular length scale and time are normalized by p
and L, /c,, respectively. Here py = ¢,/€Q.; where ¢y = \/m and Q. = eB/m;c.
We will start by deriving the linear ion density response of the form n; = Qo for
this system of equations. Combining Equations(6.1) - (6.2) and eliminating the

temperature perturbations we find a relation between the ion density and potential

perturbations,
T - -
i, = —ob=Qo, 6.3
W= d=0Q9 (63
10 5
N = - 5 Wi + ngDi, (6.4)
5 5
= w(wpi — wy) + w*iwDi(§ — ;) — §w2Di — (w+ o) (w — gWDz‘)ki(6-5)

Now we turn our attention to the electron fluid model. We will consider a low-
B tokamak equilibrium with Shafranov shifted circular magnetic surfaces while
omitting the parallel magnetic perturbations (the compressional Alfvén mode) and

we will make use of a electric field representation of the form,
Fj = —V¢ -~ €I (6.6)
c

where gg is the scalar potential, /I” is the parallel component of the vector potential
and € is the unit vector along B. We find from the parallel momentum equation for
electrons while neglecting electron inertia a relation between the electron density,

potential and parallel vector potential,

- T W T Wee 7
) o

We will now use the quasi-neutrality condition (72; = 7.) in combination with

the parallel electron momentum Equation(6.7) and the ion density response Equa-

tion(6.3) to determine the parallel vector potential in terms of the electrostatic
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potential yielding

_ 1-Q - ~
Ay = cky— o P= Q0. (6.8)
Here,
1 _
Qa = C/{?”w — . (69)

In order to arrive at the dispersion relation, we need yet another equation relating
the electrostatic potential and the vector potential, see Ref. [52]. We use the

electron continuity equation to find

1
W, = (w*e — (JJDe)(b + wp P, — %k”JH, (6.10)

where wp, is the electron magnetic drift frequency and f’e = nTe + T.n. is the
linearized electron pressure perturbation. Furthermore we assume that the electron
parallel heat conductivity is large VHT~6 ~ 0 where V| is taken along the total

magnetic field line giving

. ko
kHTe == ne—yA”. (6.11)

c
In the regime v; << % R vy << v, the parallel current is primarily carried
by electrons (vy4 = \/ﬁ and v; are the Alfvén and thermal speed, respectively)

resulting in,

kﬁJH = /{ﬁJHe =ne ((w*e - (JJ)/{H(Z; + (W= wee)lw = UCJDe) + er*ewDeAIO (6.12)

The parallel current density (/) can be determined through the parallel component

of Ampeére’s law,

~ 47
VIAj==—) (6.13)
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yielding the second relation between the potentials ¢ and 121” as

- k2 k202 + wWpe(w — Wie -
ko = <1+ LRjVA + el T)> 24 (6.14)
W(Wye — w) c

Combining Equations(6.8) and (6.14) and normalizing with w?, we find the ITG

mode dispersion relation as

(w—1)*

o kikﬁ + 5 <%) (((D — 1)((:) — Engi) + Ne€ngi — 1 Q

) —0.  (6.15)

Here, we have normalized the ITG mode real frequency and growth rate as w =

W
Wye

assuming an approximate eigenfunction while averaging the geometry dependent

The geometrical quantities will be determined using a semi-local analysis by

quantities along the field line. The form of the eigenfunction is assumed to be[52],

1
V() = ——=(1+cosf) with |0 <. 6.16
(©) \/37( ) 16l (6.16)
In the dispersion relation we will replace kj = (k), k. = (k1) and wp = (wp) by

the averages defined through the integrals,

R = / AU = J2 <1 + 2= 75) - 50304 4 15—2a2> . (6.17)

—Tr

T 2 5 5
(wp) = /7r dOVwp¥ = €,w, <§ + 95~ ﬁa) , (6.18)

<]€H]{?ik}||> = /Tr dg\lfk‘”kik”q/ = kg (1 + SQ(W—2 - 05) - §SO( + §Oé2(>19)
- 3(qR)? 3 3 4

Here a = B¢*R (1 +n. + (1 +1;)) /(2L,,) and 8 = 8mn,(T, + T;)/B? is the plasma

B, q is the safety factor and s = r¢'/q is the magnetic shear. The a-dependent

term above (in Equation(6.17)) represents the effects of Shafranov shift. We will

now study the non-linear generation of zonal flow induced by toroidal I'TG modes

modified by electromagnetic effects.
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6.3 The model for zonal flow generation

In order to determine the zonal flow generation from the non-linear coupling of ITG
modes modified by electromagnetic effects, we will need to describe the temporal

evolution of the zonal flow through the vorticity equation,

=

(V- Iy =(V-J)+(V-J)) (6.20)

Here (f(ky, ky)) = [ d*kf(ks, k,). The vorticity equation consists of two parts,
the first including a derivative perpendicular to the field line and the second along
the field line. At first, we will consider the two contributions separately where the

perpendicular part can be written,

(V-Ju) = (V-(enity —ns)) + (V- enUy)
_ovie

— - - (8V.9) (6:21)

Here [A, B] = %%—5 - %%—f is the Poisson bracket. Next, we consider the contri-

bution from the parallel derivative of the current density,

(%VJn) = <%V0Jn—$€” va21| V)
= (%A)QMnaViAD
= (=) 000 (S5 ) e via)
= (1Q0/%[6, Viel) (6.22)

where we have used Equation(6.9) to substitute the vector potential by the electric

potential and we have asssumed that the variation along the field line is very small

Vo = 0. The time evolution of the zonal flow potential (®) is them given by,
0

5 Vid=—(01- 1Q0%)[6, V) (6.23)
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We will now compute an estimate for the generation of zonal flows through the
Reynolds stress and Maxwell stress terms. We consider the Reynolds stress,

- N O O N
(6. V) = ~V3 (5o 50) = ~ViRe [ by G (6.21)
Ox Oy
Here Re stands for the real part of the integral and the gradient in X acts on the
spatial scale of the zonal flow. We will now assume that there exist a wave action
invariant of the form |@|? = C'(k,, k,)Ni. Now the zonal flow evolution becomes,
0 g2 2 d*kk,k Qo)) C(ky, k
aVL@ = —VxRe oKy (1 — Q0 |%)C(ky, ky) N (6.25)
In order to close the system of equations we need an additional relation for the
action invariant (V) which is given by the wave kinetic equation. The wave kinetic
equation (see Refs [46, 143, 144, 145, 146, 147, 148, 149|) for the generalized wave
action N in the presence of mean plasma flow due to the interaction between

mean flow and small scale fluctuations is

) ) L\ ONu(z,t) O /- _\ ONu(z,1)
iVt g (et Reo) TR - g (R ) S
= ’}/[TgNk(l‘, t) - Aka(.T, t)2 (626)

Here wyrg is the real frequency and v;r¢ is the growth rate of the small scale ITG
mode fluctuations. In this analysis it is assumed that the RHS is approximately
zero (stationary turbulence). The role of non-linear interactions among the ITG
fluctuations (here represented by a non-linear frequency shift Aw) is to balance
the linear growth rate. In the case when y;pgNi(z,t) — AwNi(z,t)? = 0, the
expansion of Equation(6.26) is made under the assumption of small deviations
from the equilibrium spectrum function; N, = N + N, where N, evolves at
the zonal flow time and space scale (©,q,,q, = 0) of the form W ~ ¢¥=X=1% for
U = {®, N,}, as

ONY
Ok,

. . - o -
— i (Qy — uVge + ivrra) Ny = %(k - Zx V(1 +V?3)0) (6.27)
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While using Equation(6.27) we now find the perturbed action density as,

< i(Qq — G2Vge) + ViTC ON}
N, = 14 g k, (Vi(1+V3)® k. 6.28
: (Qq - qazvga:)g + ,V%TG’ Y ( ( ) ) 5]{:1; ( )
and substituting Equation(6.28) into the zonal flow evolution we obtain,
0 (1— |25 Vi(1+V3) ONY
“ V29 =-V%R /kokku el 2 Oy, k) (——2). (6.29
OV = ViR g I R o k) (5. (629

The adiabatic invariant Ny = f_jc is determined by the energy density Fj and the
real frequency w,;. An approximate wave action density can be obtained using the
same methodology as in Ref. [143] where the linear electron Equation(6.14) and
quasi-neutrality Equation(6.8) are used to find the modified normal coordinates
¢ = ¢ + a, T, for which a generalized invariant is found of the form Nj, = |¢|> =
C(k)|p[%. Tt is generally found that C(k) is only weakly dependent on the wave
vector k as long as the FLR effects are small. The remaining integral displayed
in Equation(6.29) can be solved in the two limits 225 < 1 and JZ2&= > 1. We
assume a certain spectral form on the action density N} and that C(k,,k,) is
weakly dependent on k.. In the limit where the linear growth rate is much larger

that the zonal flow growth JIZTZ < 1 we find the dispersion relation,

kok2(1 — |27 NY

— o) (6.30)

0, = i1~ ¢) [ &
Here the 1—|Q,|? represents the electromagnetic effects on the zonal flow evolution
and the 1 —¢? term is the FLR stabilization. We choose the particular form of the
the spectrum as a Gaussian wave packet in k£, with width A and delta function in
k, such that,

(ke —k0)?

NY = Noe~ 22 §(ky, — kyo). (6.31)

We have chosen a drift wave packet centered around the most unstable mode in
k, and a spectrum in k, similar to that used in Ref. [150]. Now the derivative on

the action density is easily found and the integral can be computed resulting in
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the final zonal flow dispersion relation as,

, k2 AT -
Qg = i(K — Q)3 (1 - qi)y"TW. (6.32)

Here the dispersion relation may be modified with the inclusion of the FLR non-
linearities (see e.g. Ref. [143]) by setting K = 1+ 7 + 79, where

A1 Ay + %7?TG

R S (639
A 2\ 2
1 = <77i - g) + gwng, (634)
)
AQ = Wrrg + geng (635)

and w;rq is the real frequency and ;¢ is the linear growth rate of the ITG mode.
Next we will consider the more interesting limit JIZTFG > 1 in the integral (6.29). In
this limit the zonal flows are expected to have an impact on the I'TG turbulence.
We assume that the coefficient C'(k,, k,) is weakly dependent on k and that the
group velocity can be written vy, = kyky,f(1;, 7, 8,...) where f(n;,n.,03,...) is
independent of of k) similar to the case in Ref [143]. We can now rewrite the
integral as

201 _ 2 0
L e e
C(ky, ky) /d%kyvgx(l - |Qa|2)(_6N,9)‘ (6.36)

f (i me, B, - ) Qg = @vge) Ok

= ¢(1-¢)

We consider the same spectral form as in Equation(6.31) and performing one partial

integration the dispersion relation is readily found,
(Q = @vg)* = G2 (K = [Qul*)(1 = @)k, Av/7|0] (6.37)

In the following we will use a fixed width of the spectrum with Ay/7 = 1.0 cor-
responding to a monochromatic wave packet in k.. In the following section we
will explore this dispersion relation numerically and discuss the results and its

implications.
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6.4 Results and discussion

The algebraic Equation(6.37) describing the zonal flow growth rate is solved nu-
merically with the ITG eigenvalues w;rg taken from a numerical solution of the
ITG dispersion relation Equation(6.15). The zonal flow growth rate is then nor-
malized to the ITG growth rate to highlight the competition between the linear
ITG drive and the stabilizing effect of the zonal flow mode through shearing of the
turbulent eddies. The results are expected to give an indication of the strength

2o
dx?

trostatic potential) relative to the linear growth rate. The results for vzr/virc

of the shearing rate w, ~ (where @ is the zonal flow component of the elec-

is calculated for a turbulence saturation level, corresponding to a mixing length
ed _ 1

estimate with 7= = =~ = o that is fixed. [142] In experimental tokamak plas-
mas the core density profiles are rather flat (¢, > 1) whereas the edge profiles are
peaked (e, < 1) with a typical experimental value of the plasma 5 around 1%.

In Fig.(6.1) the ITG eigenvalues (normalized to the electron diamagnetic drift fre-
quency) as a function of 3 are displayed with 7; as a parameter for ¢, = 2.0, . = 0,
7=1,qg=155s=0.5and k% p*> = 0.1. The results are shown for ; = 3.5 (dashed
line), and for n; = 4.0 (solid line). In the electrostatic limit 5 — 0, the analytical
results as obtained from Equations.(8 - 10) of Ref.[143| (neglecting FLR effects) is
w/wye = —3.03440.90 for the case n; = 3.5 and w/w,, = —3.03+141.28 for n; = 4.0,
in good agreement with the numerical results of Fig.(6.1). The results show that
the ITG growth rate is reduced with increasing 8 as expected from previous studies
(|50, 51, 52, 53, 54| and [142]).

The corresponding results for the zonal flow growth rate (normalized to the
ITG growth rate) versus § are shown in Fig.(6.2). As observed, the normalized
zonal flow growth increases for large 3 close to marginal stability. The scaling
illustrates the competition between the linear and nonlinear stabilizing 3 effects.
Close to marginal stability (for n; = 3.5), the decrease of v;7¢ due to increasing 3
dominates resulting in a normalized zonal flow growth rate that increases with f.
This would indicate that the ITG turbulence and transport decrease faster with
than expected from a purely linear analysis, in agreement with recent simulation
results ([53]). For larger n;, a decreasing zonal flow drive is observed due to Maxwell
stress. We note that this result differs with that reported in Ref. (|151, 152]), using

the drift-Alfven wave branch neglecting effects of curvature, where the zonal flow
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Figure 6.1: Numerical solution to Equation(6.15) displaying the ITG growth rate
(normalized with w,.) versus 8 forn, =0, ¢ = 1.5, s = 0.5, k2 p> = 0.1, Ay/mr = 1.0
with €, as a parameter. Results are shown for n; = 3.5 (dashed line) and n; = 4.0
(solid line).
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Figure 6.2: Zonal flow growth rate (normalized with v;r¢) versus  with n; as
a parameter for the same parameters as in Fig.(6.1) as obtained numerically by
solving Equation(6.37). A fixed ITG turbulence saturation level ¢ = ¢ was used.
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growth initially decreases with $ and reaches a minimum and then increases. The
consequence of such a 3 dependence is not apparent, but could indicate a transition
to a more favorable confinement regime for 5 > (..

Figs.(6.3, 6.4) illustrates the ITG and zonal flow growth rates as a function of 7;
with 8 as a parameter. The other parameters are ¢, =2, 7. =0, 7 =1, ¢ = 1.5,
s = 0.5 and k2 p*> = 0.1. The results are shown for 3 = 0.1% (dash-dotted line),
f = 0.5% (dotted line), 5 = 1.0% (dashed line) and 5 = 1.3% (solid line). The
linear ITG growth rates (normalized to the electron diamagnetic drift frequency)
in Fig.(6.3) illustrates the typical 8 stabilization with a S-threshold close to the
analytical result 7, = 3.01 for § — 0 (from Equation(10) of Ref. [51]). Fig.(6.4)
displays the corresponding zonal flow growth rates (normalized to the ITG growth
rate). The un-normalized zonal flow growth is weakly dependent on 7;, resulting
in a normalized zonal flow growth rate which strongly increases when approaching
the stability threshold ;. The results indicate the importance of the zonal flows
close to marginal stability (n; < 4.0) where vzr/v7¢ >> 1 is obtained. In this
region the effects of zonal flow increases with increasing  whereas for larger 7;
the opposite trend is found. This is in line with the strong nonlinear upshift
of the critical ion temperature gradient with increasing [ and converging Dimits
shift for larger § recently observed in nonlinear gyrokinetic simulations of ITG
turbulence|53, 153]. However, a complete treatment of the Dimits shift requires a
model for the zonal flow saturation mechanisms which is outside the scope of the
present chapter. We note that the same trend, with an increase of vzr/v/7¢ with
increasing [ is obtained in Fig.(6.2) close to marginal stability (n; = 3.5). For

larger 1; > 4, the condition vzr/v/r7¢ > 1 is however not satisfied.

6.5 Conclusions

A system of fluid equations describing the coupling between the zonal flow mode
and the background ITG turbulence including finite 8 electromagnetic effects is
derived. The model equations include the linear stabilization of the [TG mode due
to finite [ electromagnetic perturbations as well as the nonlinear § effects on the
zonal flow entering through the Maxwell stress force. The scaling of the zonal flow

growth rate with plasma parameters is studied and the implications for I'TG driven
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Figure 6.3: Numerical solution to Equation (6.15) showing the ITG growth rate
(normalized with w,.) versus n; for . = 0, €, = 2, ¢ = 1.5, s = 0.5, k¥ p? = 0.1,
Ay/m = 1.0 with § as a parameter. Results are shown for 5 = 0.1% (dash-dotted
line), 8 = 0.5% (dashed line), 8 = 1.0% (dashed line) and 8 = 1.3% (solid line)

Figure 6.4: Zonal flow growth rate (normalized with vy;r¢) versus 7; with § as
a parameter for the same parameters as in Fig.(6.3) as obtained numerically by
solving Equation(6.37). A ITG turbulence saturation level ¢ = ¢y was used.
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transport are discussed. It is found that the ZF growth rate relative to the ITG
growth rate increases with /3 close to marginal ITG mode stability. The result in-
dicates a [ stabilization of the ITG turbulence and transport at a faster rate than
expected from a purely linear or quasi-linear analysis. Such behavior has recently
been observed in nonlinear gyrokinetic simulations of ITG turbulence[53, 54]. The
results are also line with the strong nonlinear upshift of the critical ion temperature
gradient with increasing  and converging Dimits shift for larger g recently ob-
served in nonlinear gyrokinetic simulations of ITG turbulence[153]. We note that
close to marginal stability the increase of vzr/v/r¢ is dominated by the linear
stabilization of v;7¢ whereas for larger 7; a decreasing zonal flow drive is observed
due to the competition between Reynolds and Maxwell stresses.

In the immediate future, it is of interest to complement the present model by in-
cluding geometry effects and A; which is important in high § plasmas relevant for
spherical systems. In addition, further investigations of zonal flow stability and
saturation mechanisms and their relation to transport barriers are left for future
study.

The next chapter discover the possibility of zonal like mesoscale flows in the toroidal
direction. This is done by including the parallel ion dynamics and following the
modulational instability analysis similar to that presented in this Chapter. How-
ever for simplicity and to clearly pull out the mechanisms of toroidal zonal flow

generation, the electromagnetic effects are ignored.
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toroidal zonal flow - I'T'G turbulence -

poloidal zonal flow system

7.1 Introduction

Heat and particle confinement in tokamaks first deteriorates in a power ramp
because of increase of free energy in the background profiles and its subsequent
release by various microinstabilities. But confinement does not keep on degrading
with increasing power. Beyond a critical input power the plasma settles in a high
confinement state (H mode). This is an universal phenomenon seen in all fusion
devices. Suppression of turbulence by macroscopic or zonal E x B shearing has
been thought as a mechanism of L-H transition|[13]. Fluctuations driven Reynolds
stresses drive zonal flows|3| as well as mean E x B flows apart from mean F x B flow
drive from pressure gradient, poloidal and toroidal flows which can be generated
by external sources. Zonal flows has been shown to cause transient oscillations and
eventual transition to H mode due to building of strong mean shear in a power
ramp|154, 155].

Toroidal zonal flows (TZF) can also be excited via fluctuation driven toroidal
Reynolds stress [156, 38|, in a way exactly similar to excitation of zonal flows (here
onwards dubbed as poloidal zonal flows (PZF)). However, the role of self excited
TZFs in the transient dynamics of L-H transition and its effect on input power
threshold has not been studied yet.
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We ask and answer the following questions in this chapter:
e Is there possibility of exciting toroidal zonal flows in I'TG turbulence?

e If yes, then what is the self-consistent dynamics of coupled TZF-ITG-PZF
system? What is the role of TZF in LH transition?

In this chapter we show self generation of TZFs via modulation instability of the
background ITG turbulence. TZFs show linear coupling with PZFs via non-linear
stresses. Then we study the role of TZFs and PZFs and the transient dynamics
of the L-H transition. We propose an extended 0D model for LH transition which
contains the physics of mean toroidal and poloidal flows, TZFs and PZFs and
the ion pressure profile, and which treats the interplay between mean and zonal
flows. The model shows reduction in power threshold with increase of PZF-TZF
coupling.

The chapter is organized as follows. Sec.7.2 demonstrates coupled excitation of
PZFs and TZFs via modulation instability. Sec.7.3 discusses the effect of mean
poloidal and toroidal shear flows on PZFs and TZFs. Sec.7.4 presents an extended
0 D model L—H transition based on the results obtained in above sections. Finally

the chapter is concluded in Sec.7.5.

7.2 Coupled excitation of PZF and TZF: A new
paradigm

We start with the nonlinear fluid equations describing the background toroidal
ITG turbulence

0 - = 0¢ 0
(_at + V- v) nit g eng(ﬁ)—ay (¢+pi) + Vv
0 - = 0 Op d¢ dp 9¢
B .V - K. 24 241 | 22 _ — 1
(aﬁvﬂ \Y Kzay> Vig—[¢+p. Vig] {8x’8x} {8y’8y] 0(7.1)

Paralle]l momentum equation, including parallel ion stress tensor |41]

o - = %) 0 0
(— + V-V — 2Ti£nga—y) v — VH/0—¢ - V\\oﬁnga—y (¢ +p)+ Vi (¢ +p)

ot dy
+[p,v] =0 (7.2)
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Temperature perturbation equation

d - = 5 s, 2\ ¢ 2[00 - =
— V= Sre a— T P Ik . ,
(c‘% +V-V 3715ngay) + (m 3) 3 (87& + Vo V) n;

6T %ni] —0  (7.3)
Adiabatic electron response
Ne=¢ — Pyp (7.4)
Quasineutrality
Ne = N (7.5)

Now the zonal modes are nothing but poloidal mode number m = 0, toroidal mode
number n = 0 and radial wave number ¢, # 0 perturbations in the turbulence.
Equations governing zonal mode evolution can be obtained by toroidal and poloidal
averaging of the background turbulence equations. Following this one can identify
that the PZF is driven by the so called Reynolds stress ([¢, V2 ¢]) in a simple
drift wave turbulence. In the same spirit one can expect the Reynolds stress
([¢,v]) (from the averaged parallel momentum equation of ITG turbulence) to
drive parallel zonal flow. The stresses can be expressed in terms of wave action
density Ny = Ej/w, . Here Ej is the energy and w; x is the real frequency of the kth
mode. The evolution of wave action in the presence of zonal flow modulations can
be described by the Wave Kinetic Equation (WKE). This forms coupled zonal flow-
turbulence system. We adopt this methodology and assume that 1) the momentum
diffusivity x, is known, 2) momentum pinch is vanishing and 3) By < B, so that
<’UH> ~ (vg), to proceed further. The residual stress in terms of wave action or

quasi-particle population density Ny(Z, k, t) can be expressed as [156]
e = / kg, Ny (7.6)
The equation for intrinsic toroidal flow V,, then becomes

8Vy — 8:xs0.Vy = =0, / kg, k) Ny (7.7)
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The poloidal zonal flow, including the viscous damping p, is governed by

OV Ppp — pVPpep = v§(/ dk (1 +7; 4 0,7;) Kok, ok |®

where 0, = T}, /¢y is the temperature linear response function. This term provides
diamagnetic enhancement to the poloidal stress and |¢|> = Cy N, has been used in
the last step to express fluctuation intensity in terms of action density. The exact
form of C} can be obtained from the mode energy density and the real frequency,
but it is not required here. The above equation nicely reduces to the potential
vorticity equation for zonal flows generation in simple drift wave case on taking
the limit 7; — 0. The detailed structure of d; is provided in the next Chapter 8
since it is not needed here. The quasi-particle population density obeys the WKE
given by

ON,  Ow.p ON;  Ow,i ON,
by Pk Ok Pk Tk _ Ny — AwN? (7.9)

o 9k 0X 0X Ok

where w,, and 7, are respectively the real frequency and growth rate of the un-

derlying turbulence in the presence of the slowly varying mesoscale zonal fields.

—

Wk = Witg + k-V (7.10)

and V = ‘_/;,z Ft ‘ZZ ¢. The above system of equations forms closed set of coupled
equations describing TZF-ITG-PZF system.

Assuming the stationary turbulence as new equilibrium state, the equilibrium
turbulence spectrum is given by 7y (Ni) — Aw (N;)* = 0. The linear population

density response due to flow modulations

(‘35w7a,k ) (9 <Nk>
0X ok

9 (Ni)
0X

ONkq = Rig — 0Ugy + vk () (7.11)

where the propagator Ry, is given by

1
(Qq —q_)'U;—FZ"Vk)

Ry = (7.12)
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and 6w = kyVx®p. p4k| Vizp+(0w/0n; ) 6n;, dvge = (00w /0k,) and 07y, = (Oyi/Oni)om;
represents respective modulations by the zonal flows. Thus the parallel residual

stress can be written as

0 (Ni)

- O (N,
Hresz/dkvgrklthq {(kyV?Xq)pi_*'k t/zf) ok — Oy )

0X

+ 5k <NkX}7.13)

Similarly the poloidal stress on the r.h.s of PZF equation becomes

9 (N)

- 0 (N,
.y = / dkkyky R qCr {(kyv?xq)pd + k) t/zf) — T — OUgs W)

0X

ok + 0k <NkX}.14)

Assuming (Ny) to be homogeneous in X and weaker growth rate modulation by

zonal flows and taking fourier transform in z one obtains the following coupled
equations for TZF and PZF

Vi + XMQVt,zf = —q'01Ppoy + QQUZVtsz (7.15)
NPy + G Ppoy = ¢°S1®Pyp — SV, (7.16)
where
o) = / dl;:'vgrkaky% (7.17)
oy = / dEngkHRmkHa éi;v ) (7.18)
Sy = / dkk, Ry, k2C), (—%ﬁi’“)) (7.19)
Sy = / Akeky Ry, gkoyy C (_a gﬁj ’“>) (7.20)
(7.21)

and vy, o< —kgk,. For independent modulational excitation of TZF and PZF shear

the integrals o, and S has to be +ve definite which requires

> 0, (N(ky)) # (N(=k,)) or (k) # 0 (7.22)
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>0 (7.23)

The other two integrals o; and S; has to be definite for effective cross coupling
between TZF and PZF shear.

aéﬁ” > 0, (N (ky)) # (N(=ky)) or (ky) # 0 (7.24)

o1 —k,

9 (Ni)

=k
521 =k ok,

> 0, <N(k’y, k‘H)> 7§ <N(—/€y, —/-CH)> 0T(</{3y> s </€H>) 7& (0,0) (7.25)

where ((...)) = [ dk (N;,) (...). These coupling coefficients will feedback shear
to each other. Whether this coupling will cause +ve or —ve feedback depends
on the sign of oy and S;. Obviously —ve o; and S5 will cause +ve feedback
enhancing the destabilization. While condition (7.23) is easily met in the drift
wave turbulence condition (7.22) can be a stringent requirement. Even if (k,) =
0 the PZF shear excited via modulational instability acts as an inhomogeneous
source term in the TZF shear evolution equation leading to amplification of TZF
shear. However, for the TZF shear to get unstable the parallel spectral symmetry
has to be broken (i.e., (kj) # 0 ) which can be easily provided by background
mean F x B shear|96, 112|, toroidicity|41], steep density gradient as a finite p¥
effect [115], up-down asymmetric equilibrium magnetic topology[42, 43| and by
turbulence intensity gradient[95]. This shows coupled excitation of TZF and PZF.

The back reaction of zonal flow shear on the turbulence can be studied by the
evolution equation for the mean action density under the quasilinear approxima-

tion.

8 <Nk> <86wmk ) (%Nk

= = + (070N — Aw (ON,.ON, 7.26
ot 0X ak,> {07k Nk) w (ONRON,) ( )

e The 2nd term in the Equation(7.26) eventually gives nonlinear growth of

turbulence due to zonal temperature modulations, comes from term like

(Ovk/Omi)0m;.

e The 3rd term represents nonlinear pull back of turbulence.
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Finally
% (N}) = aim 8(%’“) + T4 (N — Aw (SNLSN) (7.27)
where
Dy, = / dGRy (@ |ikyGe®q + Ky Viey,q|® (7.28)
and the nonlinear growth is given by
= [ daRegedl o (7.29)

7.3 Zonal flows suppression by mean shear flows

The response of drift wave spectrum 6Ny, to zonal flows V,,.¢ and Vi, is given by
the following linearized WKE

0
010Ny, + iquge 0Ny, — (k, Vi + Ky V) oh —— 0N, + YON,
. 0
Evolution equation for mean wave quanta density
0 0
5 (Np) = (kyVi + k) V) 55— I (N:)
0
= ((ky V. + Ky Vis) ONg) + v (Ni) — Aw (Ny,)? (7.31)
Introducing total time derivative
0 0
Dy = = = (kVe + Ry Vi) ok, (7.32)
In this coordinate,
Dk, = — (k,Vi + k) V) (7.33)
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Integrating along unperturbed, shearing ray orbit from an initial time ¢y to final
time ¢, as done in Ref.[154, 155|, yields

t t
ONk(q,t) = / dt’exp{—v(t—t’)—z'q / dt"vgz(t”)}
tO t

d (N(1))

Xiq (ky%zf + kl\%Zf) (9/%(15’)

(7.34)
where the shearing by mean flows is contained in vy, and 0 (Ny(t')) /0k,(t').
In the limit when shearing time scale of the mean flows 7, > other dynamical
time scales (i.e., 1/, 1/v,,q and 1/$2) one can approximate 0 (Ny(t')) /Ok,(t') ~
O (Ny(t)) /Ok,(t). Then using the time dependence exp(—i€2t) for 6Ny, V)., and
Vi yields

0 (Ni)

ONk(q, Q) =iq (kyVpss + kyVisy) RW (7.35)
Here the real part of R becomes
2
1 12¢? (kyVé + k‘uVH’) w}
Re(R) ~ ; 1— - (7.36)

for k1 ps < 1 and v > qug, > €2. This shows weakening of response of drift wave
spectrum to zonal flow via enhanced decorrelation of drift wave propagation by
mean shear flows. This implies inhibition of zonal flow growth by mean shear

flows.

7.4 An extended 0D empirical model: Role of TZF

in ., =& H transition

We present a 0D model based on the results of the sections 5.2 and 5.3 which

consists of turbulence intensity ¢, TZF shear V/;, PZF shear V ., mean E x B

pzf?
shear V£, mean parallel (or toroidal) flow shear VH’ , mean pressure gradient p and
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input power Q.

Ohe = ep — are” — axVije — asVie — asV,2 e — a5 Ve (7.37)

(v i)

at‘/;)zf — 01 P) _b4 p,zf (738)
1+ (B + sV
e (c11V/5; + c2V!
Vi = (Vi + o pzfz — eV — Vi (7.39)
1+ (CQVE, + 03‘/”,)
Orp = —diep — dap + Q (7.40)
Vi = e1p — eV (7.41)

where p o« 0,F;. @@ = 0.01¢™. Pressure curvature and mean poloidal flow not
considered. Here the coefficients a;, b;, ¢;, d;, e; are largely unknown but should be
model dependent. However, the exact form of these coefficients are not important
for the qualitative discussion presented in this chapter. Equation(7.37) describes
temporal evolution of turbulence intensity: the first term on the right hand side
represents turbulence generation by pressure gradient via linear instability, the sec-
ond term represents its nonlinear pull back, the third, fourth, fifth and sixth terms
represent suppression of turbulence by mean E x B shear, mean parallel flow shear,
PZF shear and TZF shear respectively. Equation(7.38) describes temporal evolu-
tion of PZF shear: the first term on the right hand side captures zonal flow shear
growth by poloidal Reynolds stress. This is +ve definite due to —ve k, gradient
of the quasiparticle population density. The second term represents coupling to
TZF shear inspired by Equation(7.16) and its finiteness condition Equation(7.25).
The third term is the collisional damping of PZF. The denominator of the first
and second terms models suppression of PZFs growth by mean shear flows. The
excitation and regulation of TZF is contained in Equation(7.39): the first term

on the right hand side represents modulational excitation of TZF by finite paral-
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lel( or toroidal ) Reynolds stress motivated by second term of Equation(7.15) and
its finiteness condition Equation(7.22). However, even if the this condition is not
met in experiments the second term, coming from the other part of the toroidal
Reynolds stress, the right hand side acts as a source term hose finiteness condi-
tion only requires parallel spectral asymmetry which can be naturally satisfied in
a number of ways as mentioned above in section5.2. The denominator is again
to model the TZF suppression by mean shear flows. The third term represents
TZF shear quenching due to turbulent toroidal momentum diffusion. The fourth
term represents the neoclassical momentum diffusion. The Equation(7.40) is for
mean pressure gradient evolution: the first term on the right hand side accounts
for turbulent diffusion of mean pressure profile, the second term is for neoclassical
transport and the third term represents input power. Equation(7.41) simply rep-
resents the radial force balance relation from the ion momentum equation. This
model is an extension of the model proposed by Kim and Diamond[154, 155 and
Diamond etal[157]. Self-consistent treatment of TZFs and PZFs coupled dynamics
is what makes this model significantly different from the previous model.

Here, the input power ) controls the evolution of the system [Equations(7.37,
7.38, 7.39, 7.39, 7.40, 7.41)| for given parameters a;, b;, ¢;, d;, and e;. With the
increase of input power the mean pressure profile steepens leading to development
of turbulence. Beyond a critical turbulence level decided by the neoclassical flow
damping rate, the turbulence generates the PZF shear via modulational instability.
Similarly TZF shear is excited beyond a critical turbulence amplitude determined
by the neoclassical and turbulent damping rate for TZF shear. Once these zonal
shears are excited they pull down turbulence level which in turn increases zonal
flows shear. Thus turbulence and zonal flows (both TZF and PZF) form a self-
regulating system. After a sufficiently long time and hence at sufficiently large
@, the turbulence and hence zonal flows are completely quenched transiting the
system to a quiescent H mode where the slope of the profile is determined by the

neoclassical transport,

We systematically explore the model numerically for linear power ramp ) = 0.01¢

and the results are presented in Figs.(7.1 - 7.3) for different cases. First we consid-
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ered the cases without zonal flows shear as shown in Fig.(7.1). Plots for turbulence
intensity and pressure gradient shows that finite £ x B shear causes early transition
to quiescent H mode by reducing the threshold power. E' x B shear increases with
input power to respect radial force balance which in turn suppresses turbulence by
enhancing the its decorrelation. After a sufficiently long time input power and so
the E/ x B shear becomes so large that it completely quenches turbulence forcing
the system into the quiescent state.

Then included PZF shear in the above picture with the same value of mean

] @ no PZF, no TZF @ no TZF, finite \,
@ VE 0 "r 15
- - &@finite V; o
Si_ga@V'E=0 /’,
~ . . p @ finite Vé Il

4 : 1
]
' i

3
]
|

- - : 05 0I5 ]

7. ey - \‘ 1
7 A
1 'l - -~y b
A et ——
! IS ' J/\IW

1

% 50 100 150 200 250 a0 % 50 100 150 200 250 300

time time
Figure 7.1: Parameters: Common: a; = 0.2, as = 0,0.7(solid curves on left,

otherwise), ag = 0.0, ay = 0,0.7(left, right), a5 = 0, by = 0, 1(left, right), by; =
O, 15(left, I‘lght) 5 b12 = 0, b2 = 10, bg = 0, b4 = 0, 1(left, I'lght), C1 = 0, C11 = OO,
01220.0,02:0,03:0,04:0, C5:0,d1:1,d2:0.5,61:1, 62:0, ”/:0,
m = 1.

E x B shear (Fig.(7.1) right panel). Other parameters are shown in the caption
of Fig.(7.1). It shows further reduction in the time for transition to H mode as
expected from additional suppression of turbulence by zonal flows shear. However,
the transition to H mode happens only via an oscillatory transient. This can be
explained as follows. Increasing () with time increases o which grows ¢ which in
turn excites V. at high enough turbulence level. But £ and o damp by growing

p

V.. and € respectively. This forms a self-regulating oscillatory system. Moreover,

the net gradual rise of € in the oscillatory phase is due to inhibition in growth of

p/zf by mean shear flows. After a sufficiently long time E x B shear becomes so

high that turbulence dies completely leading to death of PZF shear accompanied
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by steep linear rise in pressure gradient.

Finally TZF shear V;_, is also considered in the above picture. The parameters

@c‘2=0.5 @c‘2=4.0

08r

061

05r

04r

02r —

. L L . . . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
time time

Figure 7.2: Parameters: a; = 0.2, a; = 0.7, a3 = 0.0, a4 = 0.7, a5 = 0.1, b; = 1,
bu == 15, b12 = 0.15 ,bQ == ]_0, bg == O, b4 == ]_, Cc1 = 1, C11 = 001, C1g2 = 05(left
panel), ¢;o = 4.0(right panel), co =1, ¢c3=0,¢, =1, ¢5 = 0.5, dy = 1, dy = 0.5,
e1 =1, e =0, VH’:O,mzl

are given in the caption of Fig.(7.2). In this composite picture the transition to
the quiescent H mode also happens through transient oscillations in populations of
different species, V;, ; being an additional species here. For the chosen parameters
the figure on the left shows early onset of the oscillatory region due to enhanced
damping of turbulence by V/ ;. V/_, is almost in the same phase as V| ;. This is
due to this particular choice of parameters where c;; << ¢ for which the t’zf
becomes proportional to Vp’zf. On increasing ci5 to 4.0 in the right plot it is seen
that the transient oscillations begin even earlier and the quiescent H mode is also
achieved much earlier compared to the previous case. This is due to the fact that
strong PZF—TZF coupling forces the TZF shear to grow quickly to very high lev-

els causing strong damping of turbulence and hence reducing the threshold power.
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Figure 7.3: Turbulence intensity ¢ in different situations explained in the legend

7.5 Conclusions

We showed excitation of toroidal zonal flows by modulational decay instability of
the background ion temperature gradient driven turbulence. Toroidal and poloidal
zonal flow evolutions are found coupled via the nonlinear toroidal and poloidal
Reynolds stresses. Two routes to this excitation are found. One is the direct and
independent modulational excitation which requires following spectral properties
of the background turbulence —Fk,0 (Ny) /Ok, > 0 and (k,) # 0. If the later
criterion is failed to get satisfied the external forcing by growing poloidal zonal flow
shear provides the another route to toroidal zonal flows excitation. And this route
requires —k,0 (Ny) /Ok, > 0 and (k;) # 0. While the first criterion is virtually
satisfied in all experiments the second criterion requires various parallel symmetry
breaking agents like mean E x B shear, up-down toroidal current asymmetry etc
which are naturally present in most experimental conditions.

Then we considered the effect of mean poloidal and toroidal shear flows on zonal
flows (both toroidal and poloidal) generation. It is found that, in weak shear
limit, mean shear flows reduces the growth of zonal flows shear by enhancing
the decorrelation of underlying mode propagation. Based on these observations
an extended 0D model is proposed which contains the self-consistent dynamics of
turbulence intensity, mean pressure gradient, mean F x B shear, mean toroidal flow

shear, poloidal zonal flows and toroidal zonal flows as well. Self-consistent inclusion
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of toroidal zonal flows dynamics is what creates a novel difference between this and
the other models proposed so far. One of the main aspects of this new model is
the linear coupling of toroidal and poloidal zonal flows via non-linear stresses.
Different effects were included stepwise to explore the properties of this model.
Retention of only mean F x B shear and no zonal flows shows that transition
to quiescent H mode occurs early compared to the only self nonlinearity driven
damping and saturation mechanism. Then inclusion of poloidal zonal flows shows
that transition is triggered earlier lowering the critical input power. The transient
in this case becomes oscillatory because of self-regulation of turbulence and poloidal
zonal flows shear. Next inclusion of toroidal zonal flows shear and its coupling
with poloidal zonal flows shear shows further reduction in critical input power
for transition to the H mode. The critical input power goes down with increase
of PZF—TZF coupling coefficient. Since this coupling is proportional to <k||>, it
means that the devices and regimes in which parallel spectral asymmetry is strong
the threshold power will be less. This implies that the critical input power for
L—H transition in a shaped equilibrium device ,where toroidal current is up-down
asymmetric, will be less than in an up-down symmetric equilibrium provided other
symmetry breakers are either absent or equally strong in both cases.

In the next Chapter we study the stationary solutions of ITG-zonal flow sytem

ignoring the parallel ion dynamics in the limit w >> k¢, for simplicity.
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['TG-Zonal flows system

8.1 Introduction

Heat and particle transport in tokamak plasmas is dominantly governed by drift
wave turbulence. Zonal flows are excited self-consistently via nonlinear turbu-
lent Reynolds stresses in the drift wave turbulence which then back-react (causes
induced diffusion in & space) on the host turbulence causing it to saturate|157,
154, 155, 3, 158]. Zonal flows are defined as poloidal and toroidally symmetric

(g9 = ¢. = 0) potential perturbation with a finite radial scale g *

significantly
larger than the scale of underlying small scale turbulence, ¢, << k,., where ¢ is the
wave vector of the zonal perturbations and k is the wave vector of the background
small scale turbulence. Such a renormalized weak turbulence theory [159] assumes
1) the separation in phase space velocities A(€2/q) of modulation (2 and ¢ corre-
spond to frequency and radial wave number of modulation) is smaller than change
in quasi-particles velocity (Jv,/0k)Ak, Ak being width of island in the phase for
the quasi-particles orbit, so that island overlapping of resonances occurs. That is
Chirikov parameter S = (Jv,/0k)Ak/A(/q) > 1. 2) the amplitude of modula-
tion is so low that the quasi-particle trajectories are unperturbed. Alternatively
this amounts to saying that the Kubo number K = wy,/y < 1 where w; is bounce
frequency of the quasi-particle and 1/ is its life time.

Such a renormalized weak turbulence theory is able to explain certain features of

observed turbulence. However, numerical simulations and experiments show that
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drift wave turbulence exhibits several non-Gaussian features like intermittency,
bursty transport etc |67, 160, 68, 69, 70, 71|. These characteristics are related to
the presence of coherent structures in the turbulence, and cannot be described by
renormalized weak turbulence theories. Nonlinear coherent structure formation in
simple drift wave zonal flow system has been studied by Kaw et el[72]. This chap-
ter aims at describing the physics of nonlinear coherent structures in the coupled
ion temperature gradient (ITG) driven turbulence and zonal flows.

The methodology used is quite similar to Kaw et al[72|. The short wave high fre-
quency drift wave turbulence is treated as gas of quasi-particles which is described
by the wave kinetic equation|161] for the wave action density N and the long scale
zonal flow structures are described by an evolution equation for m = n = 0 com-
ponent of the electrostatic potential ®, which is basically the flux surface averaged
potential vorticity equation. The coupled equation for N, and ®; shows trapping
of quasi-particles in the effective potential trough generated by the zonal flow pro-
file in strong turbulence regime K >> 1 but § << 1. This leads to possibility of
coherent structures which can be described in the form of BGK waves|65]. Reynold
stresses offered by the trapped and untrapped ITG waves act in synergy to gener-
ate novel coherent structures like solitons, shocks and nonlinear wave trains in the

zonal flow field in the strongly turbulent state.

8.2 Basic turbulence equations

We start with the nonlinear fluid equations for ion density perturbation n; and ion

temperature perturbation 7" describing the background toroidal ITG turbulence[143]

on;  0¢ 0 0 0 5
o + T €na—y (¢+pi) — (a - Kla—y) Vi¢

2 dp 0o dp 0¢ .
+[¢,7’L]— [¢+pavj_ ] - [8_95’%} - {a_y,@} =0

(8.1)

Temperature perturbation equation

o 5 0 2\ 96 29, 2 .
(a — gTisna—y) T+ (Th - g) (9_y T30 + [0, T - gnz] =0 (8.2)
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Adiabatic electron response
ne=0¢— Pyp (8.3)
Quasi-neutrality
Ne = Ny (8.4)

The parallel ion motion is neglected under the assumption of w > kjc,. Here
mixing length normalization has been used for the fluctuating quantities
<¢>ni>p) = <€5¢/T0675ni/n077—i5pi/P0)Ln/ps-
The space-time coordinates are normalized as © = (z—x¢)/ps, ¥y = y/ps, 2 = 2/ L,
t = tey/Ly,. And the non-dimensional parameters are n; = L, /Ly, K = 1;(1 4+ n;),
7; = Toi/Toe, €n = 2L,/ R.

Mode energetics: Defining

1
E, = 5/ &z (|92 + |V.i¢) (8.5)
and . .
T.
Er=—""_— | &z|T]? 8.6
v sires | el (5.0
it is easy to show that
37’1‘ 3
O (Ey + Er) = mm d°2T (—0,0) (8.7)

where we have used the identity [ d*zf[f,g] = 0. This shows that the energy of
the system grows as the electrostatic turbulent flux Qps = [ d*2T(—08,¢) draws
energy from the mean gradients. Linearizing Equations(8.1, 8.2) and using the
adiabaticity Equation(8.3) and the quasi-neutrality Equation(8.4) and eliminating
¢ and T yields the dispersion relation

107;
w? (1+ k1) — wk, (1 — (1 + (;)),TZ e — k7 (K + gnen))

+Ti€n k:§ (m —

+

Wl
wW| Ut

5
(1+7)en + gKkg) =0 (8.8)
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The unstable root w = w, + iy from Equation(8.8) is
k, 107; 5
’ 2(1+k‘i)< <+ 3>6 l( +3T€>) 59

Ti€n (T]Z — nth) (810)

where the threshold 7 for the instability is given by

NI S N B 1 a.11)
ek = 3 21 4dre, “n 4T 9 '

The effect of finite larmor radius has been neglected in obtaining the linear stability
threshold while the same has been retained in the real frequency estimation as it
is important for determination of dispersive effects. By taking fourier transform of

Equation(8.2) the fourier amplitudes T} and ¢ are related by

Ty = 01O (8.12)
where
Vi +i2v/3
0p = ———— 8.13
b Va+ Z"}/k ( )
Here
2 2
and
5
VQ = W, + gTiEnky (815)

By using Equations(8.9) and (8.10) one can show that dj, is independent of k up to
order k2. In the long wavelength limit k2 < 1 the real frequency can be expressed

as

w, = ky (a — bk7) (8.16)
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where

a =

l1 - (1 + 1?:’) en] (8.17)

o e (134 o

N —

and

and hence the radial group velocity becomes
Vgr 2 —2kykyb (8.19)

Defining W, = 37;|0,)?/(2(1 + 7;)) the mode energy density € can be obtained
from Equations(8.5) and (8.6)

and so the wave action density becomes

LR WL

N
P a— bk

|ox]” (8.21)

8.3 Zonal mode equations

The zonal mode equations are obtained by appropriate space-time averaging of
the basic turbulence equations. Zonal modes are m = 0, n =0 or ky, =k, = 0
but radial wavenumber ¢, # 0 mode in turbulence. So the evolution equations for
the zonal perturbations can be obtained from the flux surface averaged vorticity

equation <6 T > = 0 and the flux surface averaged temperature equation|63].

V20, = — (1+71){[6,V28]) — 7 ([T, V2 ¢]) + 7 ([3i6,0T])  (8.22)

O Tzr = —([¢,T]) (8.23)
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Since
([1.V26]) =~V (0,T0,6) — {[0T. 0,0] (8.24)
and

([¢,Vid]) = =V (9,60:9) (8.25)

and for arbitrary f and ¢ using

(1) = Pe [ dEfeg; (8.26)
the Equations(8.22) and (8.23) can be expressed as

OV Dy = Vi Re / dFk s (1475 + 6073) |64 (8.27)

Tzp = —VxRe / Akik, 0| | (8.28)

In a coexisting system of ITG turbulence and zonal flow the modulations of mi-
croscale fields by mesoscale zonal flows conserve wave action density Ny = e /w, k
where ¢y, is the energy density of the £&th mode with real frequency w, ;. The action
density has the generic form Ny = Ni(|¢x|?, |T|?) which by using the linear fourier
amplitude relations can be cast in the form Ny = Ni(|#x|?). Then the modulated
non-linear drivers can be expressed as a function of Ny via §|¢x|> = CLONy. From
Equation(8.21) the coefficient C}, can be obtained as

a — bk%

= L 8.29
1+ k3 + W, (8.29)

k

The wave kinetic equation is used to describe the evolution of Vi in the presence

of mean flows|162].

aNk Gwr k 6Nk &ur k aNk 2
g Wk Ok OWrk OOk _ N AGN 8.30
ot ok ax  ox ok g (8.30)
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where w,; and 7; are respectively the real frequency and growth rate of the un-
derlying turbulence in the presence of the slowly varying mesoscale zonal fields.
The first term on the right hand side is the linear growth of the turbulence and
the second term is the pull back due to nonlinear interactions. We assume the
equilibrium as state of stationary turbulence. This allow us to find the equilibrium
turbulence spectrum (Vi) by letting the right hand side of Equation(8.30) to van-
ish i.e., v (Nz) — Aw (Ni)? = 0. To study the stability of such an equilibrium we
can make Chapman-Enskog expansion of Ny; N = (Ny) + d Ny, where (Ny) is the
slowly varying “mean” wave action density, and 0V is the coherent perturbation
to it induced by gradients of (N;) in radius X and k. The linearized wave kinetic

equation takes for d NV, can be written as

o _ 0 Dow,p O (Ny)
— 40— + ON, = SALES — + 5y (I, 8.31
(875 g ox %) k X ok %( k) ( )

Assuming U = W, exp(—iQt + gxX) for U = (INy, ®zp,Tzr) the wave kinetic
Equation(8.31) yields

0wy, O (N)
0X ok

(SNk,q = Rk,q |: + 571@' <Nk> (832)

where the propagator Ry, , is given by

i
(Qq = - 09 + i)

Ry = (8.33)

The zonal flow being a mesoscale mode will convect the fast microturbulence

modes. This effect is captured via 9, — 9, + [(¢), ]. Then, in general
Ow, -
(5wr,k = 5—77257% + k’J_ : <V>E><B
_ T G T4 kY (14 7V @ (8.34)
014 R2) Y X ar TR VX Vi) Pzr :

Here the first term represents the frequency modulation due to modulation in 7; by
zonal temperature perturbations 77z and the second term represents the frequency

modulation due to zonal potential perturbations ®;r. The modulation in growth

140



Chapter 8. Coherent non-linear structures in I'TG-Zonal flows system

rate is given by the modulation in 7; by zonal temperature perturbations 7

k
_ 8%577@' _ _M

)
Yk o, 1

€nTi 1/2
(L) VxTsr (8.35)
i — Nth

Using Equations(8.34, 8.35) and ignoring the turbulent FLR effects but retaining
the FLR effect for the mesoscale field yields

0 (Ng)
T Ok,

6Ny, = Ry, {—kquCID — i|ky, |[W,qT, (Nk)] (8.36)

where ¢ = ¢*(1 — 7i¢®) and W,, = \/e,7;/(n; — mn)/4. Finally, using Equa-
tion(8.36) the zonal flow Equations(8.27, 8.28) takes the form

9 (Ng)
T Ok,
—i|ky|WygTy (Ni)] (8.37)

8,®, = Re / dkkyky (14 75 + 6,73) Ci Ry [—kﬂzq’

9 (Ng)
T ok,

&,T, = qRe / dkk,0,Cy Ry [—kyq% — i|ky |[W,qT, (N (8.38)
Now using the k symmetry properties of 0, it is easy to verify that the cross
coupling terms survive iff < k, ># 0, where < k, >= [ dlel,Nk/ Ik dkN,, is spec-
trally averaged k,. In case < k, >= 0 the zonal potential and zonal temperature
is excited independently. Note that the independent zonal potential excitation
criterion is —k,0 < Ny > /0k, > 0 while any kind of spectrum can excite zonal

temperature.

8.4 Coherent structures: Stationary solutions

We now look for non-linear coherent stationary structure which are exact solu-
tions of Equations(8.27, 8.28, 8.30) when modulational instability have already
saturated. We seek stationary solutions in the absence of source and sink (v, =

Awy) = 0 in a frame moving with velocity U. Then we may replace 9, — —U0x.
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Defining zonal flow velocity as v = Vx®,p, we can write

ON,
(Vge — U) Vx Ny — vX“’“’“aTk =0 (8.39)

(MV?X — ,/) v+UVxv = —VX/ dEkykw (1+ 7 + Redpm;) Cp Ny (8.40)

Here p is viscous damping coefficient and v represents neoclassical flow damping.
The Equation(8.39) conserves N}, along the characteristic given by
dk, ky(d/dz) (v + 70") dk,

= — =0 8.41
dx Vge — U T de (8:41)

Equation(8.41) can be readily integrated to give the constant of motion W
W = —k, (v+70") + bkyk2 + kU, ky, = kyo (8.42)
This suggests an exact solution to Equation(8.39) in the form
Ni(kz, ky, x) = N (W (kg ), ky) (8.43)

W is physically interpreted as frequency of the I'TG mode as seen from a frame
moving radially with velocity U including the Doppler shift effect due to zonal flow
velocity perturbations. While passing regions of different v and v” the k, of the
mode change in such a way as to keep k, and € constant. The Equation(8.42) can

be expressed as
W = K2+ f(z) (8.44)

where W = W/(bk,), K, = k, + U and f(z) = —(U/2)? — (v + 7,0") /b and U =
U/(bk,). Since here k acts like @ in the Liouville equation for particle probability
distribution function the Equation(8.44) can be interpreted as a sum of kinetic
(first term) and potential (second term) energies giving the total energy W as
the constant of motion. Now if profile of the potential function f(z) is such that

it has minima and maxima (f,,) then a part of drift wave population satisfying
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W < f,, will get trapped around the position corresponding to the minimum of
the effective potential. Another part satisfying W > f,, will remain untrapped.

The characteristic ray equations can be written as

dx
— = —2k,k,b 8.45
dt Yy ( )
dk, d
a = —kya (U + Ti’U”) (846)
dk,
- 4
=0 (8.47)

Using Equation(8.45) the equation of motion for k, can be written as

d?k, o, [ d*v d*v

Equation(8.48) possesses oscillatory solution when v” 4+ 7,0 < 0
Ky = ko cos (wyt) (8.49)

where the quasi-particle bounce frequency wy is given by

wp = \/—Zkgb (v + ;") (8.50)

For a monochromatic zonal flow profile v = vy cos(gx) the drift wave quasi-particles

will get trapped in the crests of zonal flow field. Near the crest the bounce frequency

Wp = 4 /2]{'5662210 (851)

One can also arrive at the same conclusions by looking at the equation of motion in

would be given by

x. How trapping happens in the zonal flow crests can be understood as follows. As
the ITG quanta rolls down the zonal flow shear layer from its maximum it losses
its k, or x— momentum due to restoring force offered by radially inward group

velocity. Eventually k2 becomes zero and the quasi-particle gets reflected, getting
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trapped in the crest. This can also be convinced from the phase space plot of
(x, ky), shown in Fig.(8.1), obtained from numerical solutions of Equations(8.45)
and (8.46) for cosine and sine zonal flow profiles which clearly shows trapped and
passing trajectories.

So once we realized the existence of trapped and untrapped quasi-particles pop-

- 0 0 pl f - 0 0 pl Ly

Figure 8.1: k, vs x when v = vycos(qx) (left) and when v = vgsin(gz) (right) with
7T=16 =07k =02, v90=0.1,¢=0.2.

ulation densities the solution for stationary Equations(8.39) and (8.40) can be

obtained by solving the self-consistency condition:
9 1
(/va —v+ UVI) v = ~2 (1+7; + Redy1;)
+00 00 B B fm B B
<V, / a2 { / AW TNy (W, k) + / ATV T N2 (T, ky)} (8.52)
—00 fm f

where Ny and Np are the action densities for the trapped and untrapped part of
the stationary drift wave turbulence and J is the Jacobian of transformation from

k. to W given by

(1_Uov_fy”ﬁ(a_mg_baw—ff”—Uf>

J = 2
LW+ k24 (W= )" - 0)

(8.53)
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The nonlinearity in Equation(8.52) is coming from the dependence of right hand
side term on f which in turn is determined by the choice of trapped and untrapped
action densities Ny . To figure out the nature of nonlinear structures supported

by Equation(8.52) we make following choices of Ny and Ny

_ -1
U W — fm ? =
Now 1+ ( A S(ky — koy), W > fn (8.54)
NT fm - W 12 T
— 1 N ok, — k )
N +e( . ) (ky— ko), [ <TW < (5.55)
13
2 Nr /Nor
11}
.k
osof
Ny /Nov
osf
07t
o6}
0.5 : :
0 05 15 2

W) fom

Figure 8.2: Population distributions of trapped and untrapped waves for ¢ = 0.3,
A/ fm =10

The two distributions are chosen to be continuous at f = f,,, as shown in
Fig.(8.2). The monochromatic k, spectrum might appear an extreme idealization,
it safely captures the asymmetry in mode propagation direction in poloidal direc-
tion. It is extremely difficult to evaluate the integrals on the right hand side of
Equation(8.52) with the Jacobian given by Equation(8.53). Hence some sensible
simplifications are desirable. Assuming k% < 1 and v,, > U and expanding the .J

up to k% allows us to write

[1— 0k, —b (W — [)] (8.56)
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where b = b/a + 1/(1 + W,). Using this Jacobian the trapped and untrapped
integrals in Equation(8.52) are evaluated in the appendixB which yields

(MV?C—V—FUV:E)U:—V:E [a(fm_f)+ﬁ(fm_f>3/2+a1(fm_f>2
+61 (fm = )| (8:57)

where f,, — f = (v — Upin, + 7:(v" — 0,..)) /b since maximum of f corresponds to

minimum of v and

8.58
8.59
8.60
8.61

o = &(NOTA<1 — Bk;o) — NOUABTF/Z)/Q
B = aNorAe(1 — k) /3
a1 = C_LNOTAB<A/2 — 1)/2

(
(
(
B1 = aNorAeb(2A/5 —2/3) (

)
)
)
)

Here a = (1 4+ 7, + Redy7;)(akyo)/(1 + W,). Coefficients containing Nop(Nov)
corresponds to contributions from trapped(untrapped) waves.

Now in the following the Equation(8.57) is investigated in different limits. First
taking fourier transform in x of the linearized equation gives the dispersion relation
U = —a(l — 7,¢*)/b. Since « is made of Reynolds stresses both from trapped
and untrapped wave contributions this indicates that coupling to trapped and
untrapped waves converts the zonal flow perturbations into radially propagating
dispersive waves. Here no growth term appears because the resonant waves leading
to modulational excitation of zonal flows has already been trapped in the large
amplitude zonal flows at saturation. The structure of the nonlinear stationary
state is determined by the nonlinear trapped wave contributions i.e., the terms
with 3, a7 and §; in Equation(8.57). Neglecting v and retaining terms up to order
3/2 Equation(8.57) becomes

V"' 4+ V' — KV 4+ BV =0 (8.62)

where V = v — Upin, i = i/ (a7i), k = —(U + a/b)/(a7;), B = B/(am:b*?). Note
that the V3/2 nonlinearity arises due to trapped wave population which vanish
at low zonal flow amplitudes. We now obtain the solutions for Equation(8.62)

in various limits. For 1 = 0 and defining ¢ = x — Ut, Equation(8.62) gives the
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quadrature

1/ dv?
3 (d—f) + ¥ (V) = const. (8.63)

where the effective potential is given by

V2 o2
W(V) =~ + 551/5/2 (8.64)

Such a pseudo-potential will have a minimum iff K > 0 or Ub 4+ o < 0 which is

12

1t

0.8r

0.6

041

(V)

0.2r

Figure 8.3: Sketch of Sagdeev Potential for x = 0.8 and 3 = 0.5

important for coherent structure formation. An schematic of the Sagdeev pseudo-
potential is shown in Fig.(8.3). A pseudo-particle staring at V' > 0 will oscillate
back and forth in the well with a frequency dependent on the amplitude of oscilla-
tions. In real space this situation corresponds to a nonlinear periodic zonal flow V
wave train propagating in x with speed U and having spatial period dependent on
amplitude. As the initial V' approaches zero the amplitude as well as the period
of the nonlinear wave increases. As V starts from zero, the period is infinite and

we get a solitary pulse or soliton. In such a case an exact soliton solution can be
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Figure 8.4: Left: Zonal flow soliton. Right: Zonal flow shock

written as

V= f—gg—zsech‘* {% (z — Ut)} (8.65)
This soliton structure is a back to back zonal velocity shear layer, as shown in
left panel of Fig.(8.4), with a significant fraction of ITG quasi-particles trapped
between them and held together by Reynolds stresses offered by a background
population of untrapped quasi-particles and propagating radially in(out), due to
coupling between trapped and untrapped quasi-particle populations, when a/b
is +ve(—ve). Now with dissipative terms retained the pseudo-particle suffers a
damped oscillation in the pseudo-potential and eventually settles down at the
minimum value V,,, = x*/32. This corresponds to a shock like structure in zonal
flow field V(&), see right panel of Fig.(8.4), with V' going from 0 to V,, after
oscillating a few times around the final value. For large damping rate, there is no
ringing and the shock solution goes monotonically from 0 to V,,. If the dominant
dissipation is from viscosity (v = 0, p large) then a shock solution can be obtained
as
exp (k (z — Ut) /1)

V=", — (8.66)
(1 +exp (v (z = Ut) /212))
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8.5 Conclusions

Motivated by the non-Gaussian and intermittent character of observed turbulence,
we studied the possibility of coherent structures formation in zonal flow field, such
as nonlinear wave train, solitons and shocks, in ion temperature gradient driven
turbulence in tokamaks in strongly nonlinear regime. The basic methodology em-
ployed is to look for stationary solutions for the coupled set of equations describing
ITG turbulence (without source and sink) and zonal flows. The major findings in

this chapter are:

e ITG quasi-particles get trapped in the “effective potential well” formed by
the zonal flow profile which actually corresponds to the -ve flow curvature
regions. The trapping happens when v < v, < w, where v is collisionality,
74 is the growth rate of the modulational instability and wj, is the typical

bounce frequency of the ITG quanta in the modulation envelope.

e When trapping is important a variety of radially propagating structures such
as periodic nonlinear wave-trains, solitons and shocks in the zonal flow field
may appear. These solutions in fact represent alternate saturated states of
zonal flow generated via the modulational instabilities of the I'TG turbulence.
In this highly nonlinear regime coherence and quasi-particle trapping is domi-
nant while the usual saturated states (when K < 1 and & > 1) are dominated

by stochastic quasi-particle motion and diffusion in phase space[159].

Some of the limitations of the present analysis are: a) Stationary solutions were
obtained only for zonal potential assuming Bohm-Gross like stationary distribution
function for the wave action density in &, and delta distribution in k,. b) It is also
assumed that the linear coupling of zonal potential and zonal temperature arising
via the nonlinear stresses is week so that the zonal potential and zonal temperature
evolution equations can be effectively decoupled. Improving over these limitations
and looking for stationary solutions for zonal temperature self-consistently and

stability of the stationary states are left as a future challenging task.
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In this thesis few aspects of anomalous momentum transport in ion temperature
gradient driven microturbulence in tokamaks have been studied. Motivated by in-
creasing number of experimental evidences of external torque free intrinsic toroidal
and poloidal rotation studies on toroidal and poloidal momentum /velocity trans-
port have been carried out in normal and reverse shear configuration. Most of
the analytical calculations have been done in sheared slab geometry. Residual
stress/flux is identified as driver of intrinsic rotation. Several mechanisms for gen-
eration of residual stress have been obtained. Electromagnetic effects on zonal
flow generation have been looked and possibility of excitation of zonal like toroidal
flows have been studied via modulational instability mechanism using wave ki-
netics method. And finally possibility of coherent structures in the modulation
envelope of zonal flows have been investigated as stationary solutions of toroidal

ITG turbulence-zonal flows system of equations.

9.1 Summary

Reynolds stress, from the view point of mean field theory, has been shown to be
consist of diffusive, pinch and residual components. Parallel residual stress is gen-
erated by E' x B shear via kj symmetry breaking and poloidal residual stress is
generated by H/ via k, symmetry breaking. k| symmetry breaking arise due to ra-
dial eigenmode shift off the rational surface by £'x B shear. This causes exchange of
roles of diffusive and non diffusive components in the poloidal and parallel stresses

leading to their coupling. This causes coupling of toroidal and poloidal intrinsic
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flows. Polarization drift assisted parallel residual stress is generated by < &k, >
symmetry breaking which does not require radial asymmetry of the eigenmode.
However nominally in drift wave ordering parallel polarization stress is one order
higher in p; compared to fluctuating £/ x B drift assisted k| symmetry breaking
induced parallel residual stress. Relative to fluctuating £ x B drift assisted parallel
residual stress the strength of polarization drift assisted parallel residual stress is
dominant in the low temperature gradient regions. No poloidal polarization stress
exist.

Density gradient as p? effect generates parallel residual stress which is of the same
order of parallel polarization stress, may become comparable to E x B shear driven
parallel residual stress in small L,, region, can also overtake the turbulence intensity
gradient driven parallel residual stress in strong density gradient region whereas
the later one is dominant in the strong profile curvature region.

Radial asymmetry of the eigenmode is not a necessary condition for the survival
of residual parallel stress at g;,. That is (k|) # 0 and (Rek,) # 0 even for sym-
metric eigenfunction leading to spontaneous toroidal and poloidal flow generation
at ¢min-

Linear gyrokinetic flux tube simulations for parallel momentum transport in the
ITG turbulence reveals the following. k, spectrum of linear growth rates maxi-
mized over all ballooning angles show a short wavelength branch which dies out
near marginal temperature gradients. Finite ballooning angle 6, breaks eigenmode
symmetry about the LF'S mid plane and generates a parallel residual stress which
reverses sign with 6y. This could have important implications for toroidal flow
reversal in situations in which 6y naturally changes sign such as [TG to TEM tran-
sition with increasing density gradient. Nonlinear simulations with background
macroscopic I/ X B shear shows parallel residual stress generation by symmetry
breaking of the eigenmode about the LE'S mid plane. Parallel residual increases
with £ x B rate at small values of E x B but starts to roll over at larger values of
E x B rates because turbulence stabilization takes over symmetry breaking mech-
anism. Nonlinear simulations shows spatially local and temporally non-local 2d
cross correlations between the self-consistent zonal flow shear and parallel residual
stress. However the volume averaged stress is found to vanish when background
E x B shear is absent. Parallel residual flux and heat flux are correlated when

E x B shear is finite, indicating coupling of the two transport channels.
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Study of electromagnetic effects on zonal flow generation in toroidal I'TG turbu-
lence show that near marginality the ratio vzr/7vir¢ increases with § whereas for
larger 7; the zonal flow drive reduces due to the competition between Reynolds
and Maxwell stresses.

Toroidal zonal flows can be excited via modulational instability similar to poloidal
zonal flow excitation in ITG turbulence. Toroidal and poloidal zonal flow shears are
coupled linearly via non-linear stresses. Input power threshold for L.-H transition
reduces with PZF — TZF coupling coefficient which depends on k| symmetry
breaking mechanisms.

Coherent nonlinear structures like solitons, shocks, nonlinear wave trains appear in
zonal flow field in strong turbulence regime of electrostatic toroidal I'TG turbulence

due to Reynolds stresses offered by trapped and untrapped I'TG waves.

9.2 Future directions

The parallel and poloidal momentum transport calculations presented in Chapters
2, 3, 4 are for electrostatic slab I'TG turbulence. Extending this to toroidal I[TG
turbulence and including full electromagnetic effects on parallel and poloidal mo-
mentum transport could be of considerable interest. Scaling of parallel residual
stress with 8 is extremely important in order to understand the physics behind
the Rice scaling.

All calculations in Chapters 2, 3, 4 were performed for electrostatic slab I'TG mode
where electrons were treated to be adiabatic. These calculations can be extended
to toroidal ITG mode including trapped electron species. This would be labori-
ous but straightforward which will yield effect of trapped electrons on parallel and
poloidal momentum transport.

Gyrokinetic flux tube simulations performed in Chapter 5 shows that the parallel
momentum flux reverses sign with the eigenmode ballooning angle 6. Sign reversal
of residual flux is related to reversal of intrinsic rotation direction. However note
that 6y can be chosen arbitrarily in flux tube formalism which is forbidden in global
formalism. 6, is self consistently determined by the profile shearing effects and is
found to change sign when the mode transits from I'TG to TEM type on increasing

density gradient. This might provide an understanding of core toroidal flow rever-
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sal observed in density ramp experiments in TCV and other tokamaks. Hence it
is worth doing global gyrokinetic simulations on parallel momentum transport in
ITG /TEM transition regime.

From the Chapters 6, 7 and 8 presenting zonal flows generation studies, following
future directions emerge. It would be interesting to complement the model of elec-
tromagnetic effects on zonal flow generation presented in Chapter6 by including
the geometry effects and parallel magnetic field fluctuations which is important in
high 8 plasmas relevant for spherical systems. In addition, further investigations
of zonal flow stability and saturation mechanisms retaining the electromagnetic
effects are left for future study.

The coupling of toroidal and poloidal zonal flows via k| symmetry breaking and
effect of toroidal zonal flows on transport can be studied via gyrokinetic simula-
tions to validate the toroidal zonal flow generation studies presented in Chapter?7.
Stationary solution of I'TG-zonal flow system were studied in Chapter8. The access
to the assumed Bohm-Gross type distribution of trapped and untrapped quasi-
particles requires further research. Destruction of zonal flow shear layer obtained
as coherent solutions will lead to a burst in transport. Hence it will be worth doing
stability analysis of stationary solutions. The parallel ion dynamics was ignored
in this chapter. Including the parallel ion dynamics will facilitate calculation of

nonlinear stationary structure in toroidal zonal flow field as well.
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Perturbative calculation of eigenfunction

at Gmin
Consider Equations(4.8) and (4.10) with § =0, V= V| =0
d?¢y, doy
— ik 0o, = Al
2 Paigy TU@ e =0 (A1)
U(I’, Q) = Al + A3!E2 + A5.’E4 (A2)
where
1-Q k2
A = — k2 2 A.
TN T o (4.3)
1 2k kz§dLn}
Aa = Y A4
= { i (A4)
1 (k8L
Ay = yZd—n A.
= e () (A5)
Using the transformation
A
(A4 A2
€= (—As) (m+2A3) (A.6)

the Equation(A.1) becomes

2
ddggk . (_Ag)—1/4p:%¢£k + <E_§2_|_ L 4) ¢k =0
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where
A; A A8
E=(A —— —
(4112 ) Ve (A8)
Now using the transformation
1 —-1/4 «
Or = Ppexp 5 (—As) Pprde (A.9)
the first derivative can be removed. The resulting equation in ®y is
A2, As
Er—¢ 4 2 ¢t o, = Al
(e e oo A0
where now
—A —1/4 « 2
E*=F — (%) (A.11)

The quartic term in the potential can be treated perturbatively, similar to pertur-

bation theories in quantum mechanics.

b=+ P14+ P+ ... (A.12)
E=FEy+E +Ey+ ... (A.13)

Using Equations(A.12) and (A.13) in Equation(A.10) we get at zero order

d2® .
d§2° +(Ey— €)@y =0 (A.14)
whose solution is
2
) = ¢ H)(€) eXP(‘%)» Y= (2ll!ﬁ)_1/2 (A.15)
when
Bl =204 1, 1=0,1,2,.. et (A.16)
At first order
d2 . . A
(d—§2 + B - 52) ol + (Ell + Wg‘*) o, =0 (A.17)
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Appendix A. Perturbative calculation of eigenfunction at ¢,

Taking @} = Y al @5, multiplying Equation(A.17) by ®f and integrating over
all ¢ and using the property of self adjointness of the operator and orthogonality
of the set {®}}, gives

A
al, (Ej' — Eg") 2™n) + Ej'6,,2™n) + W (27016, 10 + 2772 (20 — 1) 10142

+3.2"72 (20 + 2n 4 1) nldy 110 + 2" (2n + 3) (0 + 2)16,4-2 + 2" (n + 3)16,,1-4] <A.18)

Setting n = [ in Equation(A.18) gives the solvability condition of Equation(A.17)

which are nothing but the perturbed eigenvalues

As

®l
El - (—A3)3/2

[3.27% (21 + 21 + 1) (A.19)

l

Setting n # [ determines a,,

| A
1 5 n—4 n—2
i sy el A A RS

+3.2"72 (2n% 4 2n + 1) nld, 140 + 2" (2n + 3) (0 + 2)16,1-2 + 2" (n + 3)16,,,,-(A.20)

The corrected eigenvalue up to first order for [ = 0 radial quantum number is
EY =E + EY° (A.21)
which gives the dispersion relation as
—ky+ ll(:t% * k§§222 B (%)2 B ka {QknglidLn}l/2 a % (I;lf;f};)mﬂ)

The eigenfunction corrected up to first order for [ = 0 radial quantum number is

0 = ) + ay®p + a}P; (A.23)
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Appendix A. Perturbative calculation of eigenfunction at ¢,

Substituting the value of coefficients a!, from Equation(A.20) in the above Equa-
tion(A.23) gives

2 A 3
(I)O = o exp(—%) + W @21—6 (452 _ 2)
2
04277 (166" — 48¢% +12)] eXp(—%) (A.24)

where ¢, = (2"n!\/7)~"/? Hence the total eigenfunction ¢ for the [ = 0 radial

quantum number, given by Equation(A.9), including the p* effect becomes

2 A
gbo = o exp <—% + %(—Ag)—lﬂng) + W {902% (4£2 _ 2)

2

+p4277 (166" — 486 + 12) ] exp (—% - %(—Ag)_1/4p:f) (A.25)
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Derivation of Equation(8.57)

The trapped and untrapped integrals in Equation(8.52) are evaluated first.
Trapped integral (Ir):

fm B
Iy = / AW JNp (W, k,)
f

Jm a _ -
:/f AW = (L= By = 5 (W — £)] Nor

1+e (fm; W)1/2] (B.1)

Let @ = x so that —dW = Adzx then

NopA [In=1 U
Iy = 61L+07114/* W (1= Bk2) = b (fin — f — 2A)] [1 + ex"?] (B.2)
Jm—f
= BT (A TN
x Jo
e(1=bkly—b(fin— 1)) o2 1 bAT + EAex?’/Q}
NorA _ 2 _
— ‘1L+07V“V* [(1 —Ok2) (fm — f) + 3¢ (1= k%) (f — )2
# (5= 1) (= 07 e (28-2) (= 7] (B3

Untrapped integral(/y):
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Appendix B. Derivation of Equation(8.57)

Iy = / AW TNy (7, k)
fm
—1

1+ (W;fmy] (B.4)

00 N a _ o
:/fm AW = [1 = B2 = 5 (= 1)) N

Let % =z so that dIWW = A dx then

CLNOUA & — _ 1

=y ) 4w (1= bki =0 (fm = S 2B [1 427 (B.5)
GNOUA - -

= Ty, L Ok =0 (fm = )]

s
- B.6
i (B.)
In evaluating the last step the other diverging integral [~ dzz(1 + 2?)~' has
been ignored, as it is a mathematical artifact of the expansion of FLR terms in
Equation(8.53).

Using the values of I and [y obtained above yields the desired Equation(8.52).
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