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Abstract

A plasma impregnated with heavier macroscopic sized dust particles, is termed

as a dusty plasma when the charged (due to electron/ion impingement on the

dust surface) dust species behaves in a collective manner. The typical low thermal

velocity and high charge density on the macroscopic dust species often renders such

a dusty plasma medium in a strongly coupled state. Such dusty plasmas can be

prepared arti�cially and/or get formed inherently in certain laboratory situations,

for example in Tokamaks, rocket exhausts, plasma torches etc. In addition they

are also ubiquitously present in astrophysical environments such as Planetary ring

systems, Stars, Solar nebulae etc.

In recent years, the dusty plasma medium has attracted a lot of attention

due to its variety of applications and the possibility of it being able to address

several interesting fundamental physics issues in a simpler setting. One of the main

attributes in the case of the dusty plasma medium is the ease with which it can be

prepared/found in a strongly coupled regime. In this regime, the dusty plasmas

can mimic the physical characteristics of a broad range of �uids (simple viscous as

well as elastic nature are exhibited) and crystalline solids as well. The description

of such a �uid behavior (visco - elastic features ) has been in the past provided by

the Generalized Hydrodynamic (GHD) formulation for the understanding of the

linear response of the medium. Such a study has revealed existence of a modi�ed

dispersion characteristics of dust acoustic waves and the existence of the transverse

shear waves. These predictions have been experimentally veri�ed and have also

been reproduced by the MD (Molecular Dynamics) simulations.

The GHD model has been employed in this thesis to carry out investigations of

the dusty plasma medium in the nonlinear regime. In particular the 1-D response of

v



the medium has been explored by studying the permissible coherent solutions and

their evolution. In 2-D the characteristics of shear �ow driven Kelvin - Helmholtz

(KH) instability has been studied extensively for this particular medium. The

observation of small scale structure formation in the context of KH evolution has

led us to a detailed investigation on studying spectral evolution of the turbulent

�uctuations for this medium.

Some highlights of our investigation are:

• The observation of readily accessible and stable singular cusp structures

dithering at the wave breaking point in our 1-D simulations for weakly cou-

pled dusty plasma system.

• The weakly nonlinear strong coupling 1-D dusty plasma system has been

shown to follow a novel paradigm of Hunter Saxton (HS) equation in contrast

to the usual KdV equation followed by the system in the weak coupling limit.

The HS equation is known not to permit smooth soliton solutions. The

equations instead permit both conservative and dissipative singular shock

solutions. This is a characteristic feature of elasticity in the medium. The

evolution of the GHD equations in strong coupling 1-D limit also demonstrate

the formation of shocks.

• In 2-D, the properties of the shear �ow driven Kelvin - Helmholtz (KH)

instability has been studied in detail. The compressibility and dispersion

e�ects in the weak coupling case show a reduction in the growth rate and the

domain of the unstable mode wave numbers are also found to shrink. These

features are borne out in the nonlinear simulations. In the nonlinear state,

the coalescence of smaller vortices ultimately lead to the formation of long

vi



Contents

scale vortex structures.

• In the strong coupling limit the growth rate curve is bound between the two

curves involving the inviscid and viscous cases (with in�nitesimal relaxation

time) of the weak coupling case. These features of the growth are borne out in

the simulations. In contrast to the weakly coupled case the nonlinear regime

of the strongly coupled medium shows a novel phenomena of recurrence in

which there is a repetitive formation of long scale structures interrupted by

the appearance of short scales again and again. This observation show that

the process of spectral cascade in the strong coupling regime has to be fairly

complex.

• The spectral cascade features were studied by employing an initial spectrum

of random �uctuations around speci�c regions of the wave numbers. It is

observed that unlike the turbulent spectra of normal �uids, in this case,

there cannot be any characterization in terms of a single power law. Instead

one observes a break in the spectra, with di�erent regions exhibiting di�erent

forms. The evolved spectrum also does not show any universality and has

dependence on the initial content of the spectral excitations. These features

are understood in terms of the memory relaxation parameter intrinsic to the

GHD equation.

It is important to carry out further studies on the GHD depiction of the medium

and constitutes the future scope of the thesis. Experimental con�rmation of our

observations would be interesting and important. The recent observation by Teng

et al., on the singular cusp solutions are in line with our simulation studies [1].

However, other phenomena related to turbulent spectral cascade properties can be

vii
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experimentally investigated.
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1
Introduction

1.1 Introduction

In a regular electron ion plasma, the presence of heavier (typical mass of 10−10 −
10−15 Kg), macroscopic (typically micron sized) particles often act as a third com-

ponent of the plasma. The constant impingement of electrons and ions on the

surface of these heavy particles causes it to acquire charge thereby making it

act as third charged species in the plasma. Such a plasma is termed as Dusty

Plasma medium. The dusty plasmas possess a variety of interesting properties

which have motivated considerable theoretical as well as experimental interest in

this area [9�17]. The relevance of such studies is evident from the ubiquitous pres-

ence of dusty plasma. The dusty plasmas are found as natural plasmas (planetary

ring systems, stars, cometary tails, lightening, ionosphere of Earth, Solar nebulae,

Zodiacal lights etc) as well as arti�cially produced plasmas (experimental dusty

plasma devices, tokamaks, Rocket exhaust, plasma torches, industrial plasma ap-

plications etc) [11, 13,15,18�21].

The features unique to the dust component are its large size, mass (in compar-

ison to electron and ion species) and high charged state. The massive sized dust

particles introduce a host of collective phenomena of slow time scales and larger

length scales. The high charge state often ensures that the dust component in the

plasma is in a strong coupling regime, wherein the interparticle potential energy

exceeds the thermal kinetic energy of the dust species. The dusty plasma, thus,

can often be found in a crystalline state. Even when it is in �uid regime, as the

coupling parameter Γ (ratio of electrostatic potential energy to average thermal

1
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energy) increases, the medium shows behavior similar to the complex �uids. It

aquires elastic properties as the coupling parameter is increased, a property that

is innate to complex �uids. These properties directly relate the dusty plasma

medium with other areas of physics, e.g. condensed matter, complex �uids sys-

tems etc [9, 22]. Furthermore, an additional advantage in the context of dusty

plasma is due to the macroscopic size of the dust species. It ensures that the

dusts as well as its collective dynamics can be easily visualized by simple cam-

eras. Thus, the physics associated with kinetic e�ects occurring at atomistic levels

which are normally impossible to visualize, in this case, can be seen and explored

by simple economic experiments. These advantages have been recognized and have

contributed to an increased research activity in this area lately.

A wide range of coupling parameter can be observed in simple laboratory ex-

periments of dusty plasma medium, wherein it displays features as diverse as that

ranging from simple charged �uid to complex non Newtonian elastic �uids and

even crystalline solids. Such a diverse behavior has posed theoretical challenge for

its description. At very high values of the coupling parameter where the dusty

plasma medium behaves like a crystalline solids, concepts of condensed matter

physics can be borrowed and applied. However, in the intermediate regime of cou-

pling parameter where the medium neither behaves like a solid and/or a freely

�owing �uid, the di�culty arises. In this domain, lately, there have been attempts

at using a Generalized Hydrodynamic (GHD) prescription for the depiction of the

dust �uid. In the GHD description the strong coupling e�ects are mocked up as

a relaxation time parameter of the medium. A normal �uid has an instantaneous

response. The �nite values of the relaxation time parameter are suggestive of the

elastic properties of the medium. Thus, using the GHD description one hopes to

mock up the entire domain from normal �uid to a complex visco-elastic �uid. This

model has predicted a host of properties associated with the linear normal mode

of the system. The changed dispersion curve for the longitudinal acoustic mode

and the existence of transverse shear modes being some such features. These pre-

dictions have been successfully veri�ed in the experiments [23, 24]. Keeping this

in view it is then important to understand the nonlinear implications of the GHD

model description. This is the prime objective of the studies carried out in this

thesis. In the next section of this Chapter we introduce some concepts and pa-

rameter de�nitions associated with the dusty plasma medium. We also discuss in
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some quantitative detail wherein the dusty plasma medium would be in the strong

coupling parametric domain to behave as a complex �uid. In section 1.3, we brie�y

survey some of the model descriptions that have adopted for the description of this

medium. This includes the Generalized Hydrodynamic (GHD) description of the

dust species. The GHD model being a basis of the nonlinear studies of the thesis

has been discussed in detail in Chapter 2. A brief review of earlier works on the

dusty plasma medium has been provided in section 1.4. Section 1.5 summarizes

the salient aspects of the thesis.

1.2 Dusty Plasmas

The presence of micron sized dust particles (macroscopic in comparison to the

electron and ion species) in a conventional electron - ion plasma can lead to the

formation of a dusty plasma medium. The macroscopic particles get charged by

the constant bombardment of electron and ion �uxes on its surface and act as

an additional species in the plasma. When conditions for these additional species

to behave in a collective fashion are satis�ed, the system is identi�ed as a dusty

plasma. The accumulation of charges on the dust species can be as high as 104

electronic charges. The random thermal �uctuation of these particles can, how-

ever, be quite small. This additional species can, therefore, be easily in strong

coupling regime, as Γ, the coupling parameter can be quite high for these species.

The traditional plasma is characterized by certain parameters such as temperature

associated with the species, the number density etc. Often, instead of directly talk-

ing about these parameters one mentions certain length and time scales dependent

on these parameters, which de�ne the characteristic features of the plasma. For

instance length scale such as Debye length λD =
√

λ2
deλ

2
di

λ2
de+λ2

di
(Here, λ2de,i =

kBTe,i

4πn0e,ie2
),

electron plasma frequency ωpe =
(

4πn0ee2

me

)1/2
and acoustic speed cs = λDωpe etc.,

(which are dependent on temperature and number density) are invoked to rep-

resent a traditional plasma. These scales have speci�c physical implications (e.g.

Debye length de�nes the characteristic screening length of a charge species and the

plasma frequency indicates the response time scale of the medium to electric �elds).

In a similar fashion the dusty plasma is also characterized by certain parameters

and the associated scales. We discuss about them now.
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The scales, dust radius (rd), inter-dust separation (ad) and plasma Debye length

(λD) decide the role of charged dust grains in plasma. If rd << λD < ad, the

dust grains get shielded by opposite charge species and will not participate in

collective dynamics of plasma and occasionally known as �Dust in plasma�, while

for rd << λD > ad, the charged dust grains show a collective behavior and hence

the medium is called dusty plasmas. Because of inclusion of charged dust species,

the plasma becomes even richer with several additional new modes arising solely

due to the collective behavior of charged dust grains. The Dust Acoustic Wave

(DAW), Dust Ion Acoustic Wave (DIAW), Dust Acoustic Solitons (DAS), Dust

Ion Acoustic Solitons (DIAS) , Dust shocks are among those novel modes. For

DAW's, the inertia comes from dust species while the restoring force comes from

electrons and ions. Contrary to this, for DIAW's, the ions provide inertia (As dusts

are assumed to be stationary) and restoring force comes from electrons while the

dust e�ects introduced through Poisson's equation. The length and time scales

associated with these modes are very large and typically of the order of millimeter

in length scales and several milliseconds in time scales.

The dust grains are intrinsically neutral heavy and large sized particles. Once

the grains are introduced in a typical electron-ion plasma, they face heavy �ux

of electrons and ions over its surface. As the mobility of electrons is higher than

that of ions, the dust grains gets negatively charged. The typical charge on dust

grains is 102e−105e . In some occasions, when the dust particles undergo emission

of electrons because of radiation sources like ultraviolet lights, secondary electron

emission, thermionic emission, �eld emission etc., the dust grains may also be

found to be positively charged. The charges on dust species �uctuate because

the electrons/ions may leave the surface of dust grains in course of collision with

other ions or dust grains, because of thermal e�ects or other radiative processes in

plasma.

The dust grains experience variety of forces in plasma medium. The Drag

forces (specially ions and neutrals), Electromagnetic forces, Gravitational force,

Polarization force, Radiation pressure forces and Therophoretic force are of quite

interest in the context of dust �uid. As the scope of present thesis is to study

collective nonlinear phenomena and e�ect of strong coupling over such phenomena,

the inclusion of all such forces is avoided to keep the dynamical equation simple

yet suitable enough to study prime interest of thesis.
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A very interesting feature of dust grains is that they could be found in crys-

talline form under suitable conditions. It is observed in several naturally occurring

dusty plasma mediums [25] as well as in laboratory plasmas [26, 27]. The heavily

charged dust particles often feel the presence of other dust particles because they

are not completely shielded in plasma (as Γ ≥ 1). Because of this, they are often

found to be in strong coupling regime and form crystalline structures as in most

of solids.

The coupling of plasma species is measured with the coupling parameter Γ

which is the ratio of average Coulomb energy to average kinetic energy of particles

in plasma. When the value of Γ exceeds unity, the species are termed to be

strongly coupled. For a classical one component plasma (OCP) with charge Ze on

its particles,

ΓOCP =
(Ze)2

4πε0akBT
(1.1)

Here, a is the average interparticle separation between particles in OCP. The

plasma normally contains more than one charged species like electrons, ions with

multiple charges, charged dusts etc. It has been estimated in Ichimaru et al. that

for densities of order 1011 − 1016cm−3 and temperature ranging from 104K to

108K with Z ∼ 1, the possible range of Γ parameter is 10−7− 10−3. In nature and

laboratory experiments, we occasionally �nd the plasmas of same order of density

and temperature of electrons and ions. This is the reason, the classical plasmas

are found to be in weak coupling regime hence explaining their thermodynamical

proximity with ideal gases [28].

The coupling of plasma species could increase if they are highly charged or

they are compressed so hard that the e�ect of interparticle coulomb interaction

enhance signi�cantly. There are some examples in astrophysical scenario when

such conditions are found to be achieved. It was observed that inside evolved stars

whose inner core is highly compressed, the ion species were in strongly coupled

state with coupling parameter ranging from 10 to 200 even though they are in

classical regime [29].

With the advent of laser technologies, it is now possible to generate highly

compressed plasmas with density upto ∼ 1026cm−3. In this density regime, even

the electrons could be found to be strongly coupled [30].

The strongly coupled electrons and ions could also be found in ultracold plas-
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mas. The plasmas with Te ∼ 100mK and Ti ∼ 10µK with density of order

109cm−3 had been created for which the coupling parameters for electrons and

ions were found Γe ∼ 30 and Γi ∼ 105 respectively causing the electrons to behave

as strongly coupled liquids while the ions will behave as Wigner solid [31,32].

Strongly coupled dusty plasmas

In contrast to two component electron-ion plasma, the dust species are frequently

found to be in strong coupling regime. As the dust particles get shielded with

electrons and ions in plasmas, the coupling parameter can be rede�ned as the ratio

of Yukawa potential energy to kinetic energy of particles [10,31].

Γ =
(Zde)

2

4πε0adkBTd
exp

(
− ad
λD

)
(1.2)

The ratio ad/λD is known as screening parameter κ which takes care of shielding

due to background plasma. The high dust charge ( typically 102e − 105e ) and

low dust temperature makes the coupling parameter Γ > 1 even at lower dust

density. Thus the dusty plasmas could be found in gaseous, liquid as well as

ordered crystalline phase. Also, it is found that the phase transition occur under

suitable physical condition [26].

1.3 Model description for dusty plasma medium

The conditions for strong coupling can easily be satis�ed in the context of dusty

plasma medium. This makes the task of its description fairly challenging. We

brie�y summarize some attempts at its description in this particular section.

1.3.1 Quasilocalized Charge Approximation (QLCA) approach

The dusty plasmas, as described earlier, could be found in gaseous, liquid or solid

phase depending upon the coupling parameter Γ. While the weakly coupled dusty

plasmas (Γ << 1) are close to �uid like and Vlasov description of plasmas, the

strongly coupled plasmas behave like crystals (Γ → ∞). The collective modes in

�uid plasmas come from its continuum behavior and the same come from phonons
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interactions in crystals. The QLCA approach assumes the localization of dust

particles (within the limits of relaxation time). The sites of localization are as-

sumed to evolve over time scales longer than relaxation time to new equilibrium

locations. This is the reason these dust species are assumed as Quasilocalized. A

detailed description of this approach could be found in Kalman et al. [33] and ref-

erences therein. In the QLCA approach, the particles are assumed to be trapped

in �uctuating potential wells, distributed at random locations in system. These

random locations of potential wells are correlated with each other. The trapped

particles oscillate in the momentary potential wells and cause the excitation of

phonon. These potential wells further dissolve into di�erent con�guration after

an average lifetime, hence, causing the trapped particles to di�use from its tem-

porary locations [33, 34]. The QLCA approach also assumes that the amplitude

of the excursion of oscillations as well as excursion due to external perturbations

should remain smaller than the interparticle separation. This assumption is in ac-

cordance with the harmonic approximation for phonon excitations but also limits

the QLCA approach only upto linear response studies in strongly coupled plasmas.

Also, by the de�nition, QLCA approach does not explain the weak coupling regime

of plasmas. The QLCA approach is reliable for higher Γ(≥ 10), i.e., at the onset

of localization. The model successfully explains the longitudinal and transverse

modes in Coulomb and Yukawa systems of particles [35,36].

1.3.2 Molecular Dynamic (MD) simulation approach

In MD approach, the exact dynamics of each particle is governed through some

known form of interaction potential. The dusty plasmas typically consist of three

di�erent charged species (of di�erent densities) interacting through Coulomb po-

tential. However, it is computationally very expensive to study such systems. It is

found that the electrons and ions, compared to dust mass, behave like inertia-less

medium and merely provide the shielding e�ect over dusts collective dynamics.

Hence, if the electrons and ions are assumed to serve only as the shielding back-

ground for dust species, the dusty plasma could be considered as a system with

only dust species interacting through a shielded Yukawa potential.

U(r) =
(Zde)

2

r
exp(−r/λD) (1.3)
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This assumption makes the MD simulations feasible for realistic dust density. The

MD simulations have been performed to study DAWs, propagation of shock, melt-

ing of dust crystals, elastic properties of dusty plasmas, viscosity measurements

etc, in dusty plasma medium treating them as Yukawa system [37�40]. Such sim-

ulations typically require few thousands of dust particles and hence are economic

in computation. Apart from these small scale simulations, there have also been

few attempts to study �uid instabilities and other collective phenomena in dusty

plasmas treating them as Yukawa �uids [41, 42]. Molecular Dynamic simulations

are based on the particles dynamics which is governed by their interaction poten-

tial. Most of MD simulations carried out in context of dusty plasmas assume the

charged dust species interact with each other through Yukawa potential.

1.3.3 Particle In Cell (PIC) simulations approach

In this method, the plasma is approximated by substitution of original number of

plasma particles with substantially smaller number of super-particles. The charge

and mass of these super-particles are proportionally larger than that of original

plasma particles. However, the ratio of charge to mass remains the same, hence,

PIC method makes it feasible to simulate plasma systems with large number of

particles. Thus, in principle, the dusty plasmas could be studied using PIC simula-

tion, with all three charged species i.e. electrons, ions and dusts. The phenomena

related to collective dynamics of electrons, ions and dust species have a large vari-

ation in terms of time scales which ranges from electron plasma period (ω−1
pe ) to

dust plasma period (ω−1
pd ). To simulate a dusty plasma medium where the time

scales of all three species could be resolved, will again require lots of computa-

tional resources as well as time. It again makes the PIC technique less practical to

simulate the dusty plasmas. However, a hybrid approach could be adopted where

the electrons could be assumed as negatively charged �uid while the ions and dust

species could be assumed as particles. This would help us study the more exact

description of dusty plasmas taking ion dynamics into the consideration.
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1.3.4 Generalized Hydrodynamic (GHD) approach

The GHD approach assumes the continuum �uidity primarily responsible for the

collective modes in dusty plasmas. The solid like elastic properties have been

coupled with viscous nature of dust �uid phenomenologically. In this way, the

model describes the dusty plasmas as Visco-Elastic �uids. The coupled �uid and

soild properties of such plasmas have been incorporated in terms of Visco-Elastic

nature of dusty plasma �uid. This model has been of prime focus to present thesis

work. More detailed description on the adoption of this model to study nonlinear

phenomena in dusty plasma has been provided Chapter 2.

1.4 Review of earlier works

We now brie�y review earlier studies that have been made to understand the system

of dusty plasma medium. There have been both theoretical and experimental

activities towards understanding this particular medium. Most theoretical studies

have been directed at understanding the features of linear and/or weak nonlinear

response of this medium in weak coupling regime. In experimental work strongly

nonlinear response as well as strong coupling regime of this medium has also been

explored.

1.4.1 Theoretical work

The study related to dusty plasmas have been of prime interest for long time

because of its strong presence in astrophysical scenario. Previously, the studies

have been carried out considering dust species only as a neutralizing background

to the typical e-i plasma. For example, Angelo et al. has studied the Kelvin-

Helmholtz instability in astrophysical plasmas treating dust species as neutralizing

background for electron-ion plasma in external magnetic �eld [18].

It was �rst time at the beginning of 90′s when Rao et al. �rst presented a

theoretical description for the existence of DAW's solely due to collective dynamics

of dust species in plasma [43]. The existence of DIAW's has been �rst presented

by Shukla et al. [44]. The concept of DA shocks has been stated by Eliasson

et al. [45] in weakly coupled dusty plasma medium. The formation of shocks
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has been predicted for the case of strongly coupled dusty plasmas using a GHD

model by Shukla et al. [46]. However, the nonlinear adaptation of GHD model

by the authors does not preserve the Galilean invarience. More on this will be

discussed in Chapter 2. The nonlinear coherent DA solitons has been predicted

theoretically by Rao et al. as the solution of Korteweg-DeVries (KdV) equation in

one dimension which is obtained by integrating �uid equations along with Poisson's

equation in weak nonlinearity regime [43]. Since then, the study of these localized

nonlinear structures have been of prime interest in 1-D nonlinear studies of dusty

plasmas [47�49].

Apart from studies of collective modes in plasma due to dust species, lot of e�ort

have been made to study various type of forces acting on dust species. Because of

high dust charge and large mass, many kinds of force have signi�cant response on

them, whereas they are often negligible for electron-ion plasma. The presence of

Polarization force on dust grains in a nonuniform plasma medium is �rst stated by

Farouki et al. [50]. Later the e�ect of Polarization force on DAW and DA solitons

has also been studied [51, 52]. The plasma drag forces has been �rst studied by

Northrop et al. because of coulomb collisions [53]. Recently a fully self consistent

ion drag force calculation has been made for dust in collisionless plasma in the

presence of external electric �eld [54].

Charging of dust particles is also an important phenomena as because of change

in physical conditions, the charge on dust species varies [55]. E�ect of dust charging

has been studied on DAWs [56] and Rayleigh-Taylor instability in dust �uids [57].

The strongly coupled dusty plasmas have been extensively explored through

various analytical models and simulation techniques such as Molecular dynamic

(MD) simulations and Particle in Cell (PIC) simulations. While analytical models

have been given by Kalman et al. based on Quasi Localized Charged Approxima-

tion (QLCA) approach, Murillo et al. based on Dynamic Local Field Correction

(DLFC) and Kaw et al. based on Generalized Hydrodynamic approach [35,58,59].

The strongly coupled dusty plasmas (or Yukawa liquids) has been explored using

MD simulations by Murillo in his many articles covering from excitation of acoustic

wave and study of strong coupling e�ects on these modes, existence and proper-

ties of transverse shear waves, viscosity measures for strongly coupled yukawa

�uids/dust �uids etc [37,38,60�62].

It was �rst Ikezi who predicted theoretically the existence of dust solids [63].

10
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The Dust Lattice Waves (DLW) has been �rst studied by Melandso et al. [64].

The generalized Hydrodynamic model has been proposed to study the dynam-

ics of strongly coupled dusty plasmas [59] which predicted the phase reversal phe-

nomenon in longitudinal dispersion and existence of transverse shear waves in such

plasmas. Since then, the model has been used to look over the strong coupling

e�ects on DAW and DA shock waves [46,65].

The �uid instabilities in dusty plasma medium has also been studied in past.

The Kelvin - Helmholtz (KH) instability has been analyzed with signi�cant details

in past. The instability arises due to sheared �ow velocity in �uids [66,67]. Angelo

et al. �rst time introduced the sheared �ow instability in a magnetized dusty

plasma [18]. Birk et al. and Wiechen et al. presented the simulation studies of

K-H instability in astrophysical scenario [12, 68]. They have studied extensively

the nature of instability in noctilucent clouds with magnetized, partially ionized,

di�erent polarity of charge. The KH instability has also been studied in Yukawa

liquids with strong coupling e�ects using MD simulation technique [41].

1.4.2 Experimental studies

First experimental observation of DAWs and DIAWs have been made by Barken et

al. [6,69]. Since then many experimental observations of DAW's have been made in

weakly as well as strongly coupled dusty plasma [24,70,71]. The Dust Ion Acoustic

(DIA) Solitons and DIA Shocks has been observed experimentally by Nakamura

et al. [72, 73]. These observations also show the damping of solitary waves due to

ion-dust collisions and kinematic viscosity. The DA shocks has been observed in

experiments by Merlino et al. [74] and the experimental observation of DA solitons

has been made by Pintu et al. [4]. The �rst experimental study of DA shocks under

microgravity condition has been presented by Samsonov et al. [75] and then further,

the author also studied the melting of shock waves in 2-D dusty plasma crystals [76].

The existence of transverse shear waves and phase reversal phenomenon of DAWs

in strongly coupled dusty plasmas have been observed experimentally by Pramanik

et al. and Pintu et al. [4, 23] which was the veri�cation of earlier such prediction

using GHD description of dusty plasma [59]. Nunomura et al. has also observed the

transverse shear waves in a monolayer suspension of charged dust species [77]. They

have also calculated the charge on dust particle by comparison of experimental
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results with a theoretical result based on Yukawa description of dusty plasmas. The

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Experimental observations in dusty plasmas for (a) Blobs and bubbles by
Schwabe et al. [2], (b) Dust void and formation of vortices by Nefedov et al. [3], (c)
Dust solitary wave propagation by Pintu et al. [4],(d) Mach cones observed by Melzer
et al. [5], (e) Excitation of dust acoustic waves from Barken et al. [6] and (f) 3-D dust
crystal formation by Pieper et al. [7].

di�erent kind of forces acting on dust particles have also been studied extensively.

The Thermophoretic force acts on dust species because of a temperature gradient in

neutral gas. The thermophoresis has been found to counteract gravity and lifting

up (suspending) the dust particles in Rothermel et al. [78]. The experimental

veri�cation of existence of polarization force came with Melzer et al. [79]. Nitter

et al. gave a nice description of drag forces on dust particle in rf and DC glow

discharge plasmas [80].

The �rst experimental observations of dust crystals have been reported by Chu

et al. and Thomas et al. [3, 26, 27, 81]. Further, some elaborated studies made

about the properties of 2-D and 3-D dust crystals in plasma [7]. Experimental

observations of longitudinal dust lattice waves have been reported by Homann et
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al. [82]. Further, the author has also studied the screening length of dust particles

excitation of lattice waves through lasers [83].

Selwyn et al. has encountered the dust as contamination suspending at the

sheath boundaries [84]. Charged dust species has also been found in many indus-

trial and laboratory devices such as plasma torches and magnetic fusion machines

like tokamaks [85]. Winter et al. discusses the di�erent mechanisms for dust forma-

tion in fusion devices and the growth of dust particulates during plasma discharge

process [86].

The KH instability manifests in nature viz. oceans, clouds, Saturn's rings,

solar corona, Jupiter's red spots etc as well as its study is applicable in iner-

tial con�nement fusion, Q-Machines etc [87�89]. Most of astrophysical scenarios

where KH instability has been observed, belong to dusty plasmas. The �rst exper-

imental observation for KH instability in dusty plasmas has been made by Luo et

al. [20]. Several dusty plasma experiments also report the dust �ows and rotations.

Konopka et al. shows the rotation of dust crystals in a vertically aligned magnetic

�eld. They have shown the dust rotation as a rigid body as well as sheared �ow ro-

tation [90]. The Rayleigh-Taylor instability has also been observed experimentally

in dusty plasma experiments [91].

1.5 Thesis organization

The Generalized Hydrodynamic (GHD) description for the dynamics of dust species

has been successful in providing the description of the linear response of the dusty

plasma medium. It is, therefore, important that the nonlinear implications of such

a model description be investigated. This is the prime motivation of the work car-

ried out in this thesis. We have investigated various nonlinear features predicted

by the GHD model.

In Chapter 2, we describe the adaptation of the Generalized Hydrodynamic

model (GHD) for the description of the dusty plasma medium. Issues such as the

preservation of the Galilean invariance, which have been overlooked in previous

nonlinear adaptation of this particular model, have been addressed suitably by us.

This model is then employed for numerical simulation and theoretical analysis.

Chapter 3 discusses the 1-D studies carried out on a weakly coupled dusty
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plasma system. These studies could be categorized in three regimes of nonlin-

earity. Primarily, in linear regime, small sinusoidal perturbations of various wave

numbers have been evolved numerically and the phase velocity for each mode has

been evaluated. In this way, the linear dispersion of DAW has been veri�ed numer-

ically with the analytical dispersion relation. Then, in weakly nonlinear regime,

the perturbative approach has been used to study the nonlinear coherent solutions

in weakly coupled dusty plasmas. The standard Korteweg-de-Vries(KdV) form of

evolution equation is obtained. The KdV equation has the standard Soliton so-

lutions, which form because of the balance of nonlinearity with the dispersion of

medium. Apart from dusty plasmas, solitons have also been observed and studied

in variety of �elds e.g. optical �bers, oceans, as low frequency modes in proteins

and DNA, in magnets, laser plasma interaction etc. The solitons are used as signal

carriers in communication systems [92] and are also known for the transport of

energy to the core of fuel in inertial fusion experiments [93]. At small amplitude

(in weakly nonlinear regime), the exact localized solutions of weakly coupled dusty

plasma systems match with the solitons obtained as the solutions from KdV equa-

tion. Further, the standard propagation and collision characteristics of the DAS

were reproduced in our simulations. An interesting observation of our numeri-

cal studies in this context is that when the initial amplitude of the perturbation

(whether localized or a periodic pattern) is signi�cantly high, it eventually evolves

towards solutions having singular cusp structure in density, velocity and potential

�elds. Theoretical analysis reveals that these are essentially the DAS at their wave

breaking amplitude limit [94]. These structures are thus found to be fairly stable

and robust and continue to dither at the wave breaking limit. The wave breaking

may take di�erent forms. It may appear as crash of gravity waves at sea shores

where all the energy given to the particles and wave disappears. Also, it may

appear adiabatically as a sharp crest at the top of wave [95]. The highly peaked

structures dithering at wave breaking limit observed in our simulations may be-

long to the latter form of wave breaking scenario. Such high amplitude structures

dithering at wave breaking point can be utilized as energy carriers and are also

important in particle acceleration. It is interesting to note that the structures are

in strong resemblance with those found in experiments recently by Teng et al [1].

Further, in Chapter 4, we have explored the existence and evolution of 1-D

coherent structures in strongly coupled dusty plasma. Again the linear dispersion
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relation of the longitudinal mode has been veri�ed through simulation studies for

benchmarking purpose [37,59]. The weakly nonlinear regime is explored using the

theoretical reductive perturbative scheme and also via numerical simulations. We

have shown that the reductive perturbation calculation with the correct Galilean

invariant form for the strongly coupled plasma does not reduce to the standard

KdV form of equation, instead an equation with one additional term is obtained.

The additional term is a positive de�nite integral and bars formation of smooth

nonlinear localized and/or periodic solutions. In the parameter regime, where the

elastic e�ects due to correlation dominate over Boltzmann screening and thermal

dispersion e�ects, one can ignore the potential and pressure contribution and the

above mentioned equation (with KdV and an extra term) takes a new form. We

show that the new equation has the form of the Hunter-Saxton (HS) equation [8,96].

These equations have previously been invoked for the study of the directors �eld in

liquid crystals. These equations are known to support singular shock solutions of

both conservative and dissipative variety. These HS equation has step like shock

solutions with a slope and step size that are time dependent. The solutions have

a remarkable feature that as the left and right corners of linear segment having

negative slope collide for the creation of a shock wave with in�nite slope (which

may lead to wave breaking), the spatial support in real space diminishes to zero size

as the step approaches verticality, the energy can remain conserved. At complete

verticality, the HS solutions has no step size and that is why it is sometimes called

as �shock wave of zero strength�.

In subsequent Chapter 5 to 6, we have concentrated on 2-D nonlinear features

associated with the GHD model. In Chapter 5, we have studied the sheared �ow

instability for the case of weakly coupled dusty plasma. The dusty plasma medium

supports the compressible dust acoustic mode in the weak coupling limit. The role

of this particular mode on the KH mode vis a vis the incompressible hydrodynamic

�uid in both linear and nonlinear regimes have been identi�ed [97]. We have

presented a perturbative description along with exact linear stability analysis to

study the role of compressibility over the growth rate of KH instability which shows

the reduction in growth rate of instability with increasing compressibility. It has

also been observed that the dispersive e�ects further reduce the growth rate of this

instability.

When the medium is in strong coupling regime a transverse shear mode is also
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supported by the medium along with the dust acoustic mode. In Chapter 6, it is

observed that the combined e�ects of transverse shear waves and compressibility

cause formation of small scale vortices in contrast to the 2-D inverse cascade feature

associated with the incompressible hydrodynamic �ows [98]. The simulations also

re�ect recurrence of KH instability during its evolution. In this phenomenon, the

velocity shear layer forms the vortices which lengthened again to form a new shear

layer. The process recurs many times and �nally stabilizes in form of a shear layer

along with some small scale vortices.

The short scale formation in 2-D for the KH mode motivated the investigation

for the understanding of the nonlinear evolution of the random turbulent spectra for

the strongly coupled dusty plasma medium which has been presented in Chapter 7.

The simulations suggest that the inverse cascade is not the preferred way to transfer

energy for di�erent modes in such systems unlike 2-D hydrodynamic systems where

the energy and enstrophy both are conserved. There is also a tendency for transfer

of energy to smaller scales (i.e. forward cascade). The nature of such kind of

2-D decaying turbulence has been studied for strongly coupled dusty plasmas with

various kind of phase randomized initial spectral pro�les. The evolution shows a

distinct scale separation in the evolved power spectra, the slope of which depends

on the choice of length scales for initial power injection into the system as well as

on the parameters related to the strong coupling e�ects.

Finally, the Chapter 8 provides a summary of thesis work and discusses the

possible implications of our results for future work in dusty plasmas.
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An equation means nothing

to me unless it expresses a

thought of God.

S. Ramanujan 2
Generalized Hydrodynamic Model

The dusty plasma medium, as already elucidated in previous Chapter 1, can behave

like a solid, liquid and gas depending upon the value of the coupling parameter

Γ. In the weak coupling regime (Γ ≤ 1), the dust remains in gaseous or liquid

state and hence the dynamics of dust plasma could be explained with �uid de-

scription. The dynamical evolution in this case can typically be understood by the

help of continuity and momentum equations coupled with the Poisson equation,

the electromagnetic e�ects being negligible in most situations. As usual, the equa-

tion of state is used for closure. At very high values of the coupling parameter

Γ = Γc > 173, the dust species in the plasma crystallizes. In this case, concepts

from condensed matter systems can be invoked. However, there is an intervening

interesting regime of the coupling parameter, viz., 1 < Γ < Γc, where the dust

particles are neither �xed at speci�c lattice locations like crystal nor can they

freely move like a �uid. The particles are mobile but they tend to retain a certain

memory of their past locations. This leads to the medium exhibiting certain elastic

characteristics. It has, therefore, been felt that a visco - elastic �uid description

may suitably be applied for the dusty plasma medium [99]. In this regard a Gen-

eralized Hydrodynamic (GHD) description of a visco - elastic �uid has successfully

been invoked for the study of linear modes of the dusty plasma system [59, 62].

However, nonlinear regime of such a model description has largely remained un-

explored so far. There have been attempts at employing reductive perturbative

schemes to study the weakly nonlinear regime. However, even in these studies the

GHD model that was adopted did not satisfy the criteria of Galilean invariance

in the nonlinear regime [46, 65]. In this thesis, we focus on studying the weak
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as well as strong nonlinear regime for the correct Galilean invariant GHD model

description of the system.

This Chapter has been organized to introduce such a model description and

discuss the numerical procedure that has been adopted for simulating it. A brief

introduction of the visco - elastic �uids has been provided and it is shown how

the dusty plasma system can also be looked upon as such a medium. The GHD

model employed for the description of visco - elastic �uids are then adapted for

the dusty plasma system for the restricted case of unmagnetized plasma and for

the description of electrostatic phenomena. The plasma e�ects thus enter through

electrostatic �elds, which have to be evaluated self consistently through Poisson's

equation. The numerical scheme for simulating the coupled GHD - Poisson set of

equation is also discussed in detail.

2.1 Visco - elastic �uids

A Visco - elastic �uid, as re�ected from its nomenclature exhibits both viscous and

elastic traits. A pure elastic system when displaced from its equilibrium position,

tends to oscillate around and ultimately relax back to its original location, once

the perturbing stress is removed. In some systems, however, the memory of the

equilibrium location fades with time. If a stress is applied for a time interval

longer than the memory relaxation time, such a system is unable to relax back to

its original location. For an ideal elastic medium the memory never fades and hence

the memory relaxation time τm is in�nite. The other limit is that of �uids described

by the Navier Stokes equation, where the �uid elements respond immediately to

any stress and display no tendency of returning back towards their original position.

The �uid element continues to �ow in response to any stress and stops only when

viscous e�ects damp its �ow velocity. The instantaneous response of the Navier

Stokes �uid shows that for them the memory relaxation time τm is in�nitesimal

small, almost zero. The intermediate regime for which τm is �nite is an interesting

one where the medium exhibits both elastic and viscous behavior.

The response of the medium whether viscous or elastic and/or a combination

of the two is thus dependent on the time scale of the phenomena one is concerned

about. For instance if the typical time scale of a phenomena under consideration
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is much longer than τm the medium will typically behave like a normal �uid, the

elastic e�ects being negligible under these conditions. On the other hand if the

phenomena of interest occurs at time scales faster than the memory relaxation

time of the medium, the elastic traits would be dominant. A uni�ed description

for the visco - elastic �uid is desirable which can be invoked to study regimes right

from the extreme limit of viscous Navier Stokes �uid to the pure elastic system.

Numerous approaches have been attempted to provide a uni�ed model descrip-

tion. These models are essentially based on the special forms of the constitutive

equation relating shear and strain rates. For instance, the Maxwell's model [99,100]

chooses the summation of the Newton's viscous stress and Hooke's elastic stress

in the constitutive equation. The constitutive equation in this case is linear and

a de�nite memory relaxation time is chosen in this model. There are also various

di�erential and Integral forms of the constitutive relations [100]. There are models

in which the relaxation time itself is dependent on the stress etc., The Generalized

Hydrodynamic (GHD) Model, about which we will discuss in the subsequent part

of the Chapter, is primarily based on the Maxwell model and provides a uni�ed

description for the evolution of visco - elastic �uids.

In the context of neutral systems, the visco - elastic �uid behavior has been

explored extensively through both experimental and theoretical studies [100�103].

Mostly macromolecular �uids like polymer �uids, biological �uids (for example

synovial �uids found in joints) and other soft matters belong to category of visco

- elastic �uids. Studies of such systems have yielded a host of interesting obser-

vations from �uid dynamics point of view and they also have considerable applied

relevance. Experiments have shown that these �uids can withstand shear stresses.

The behavior of vortex, wake formation, bubble shapes, siphon action etc., are all

quite distinct for such �uids. Moreover, the transport properties, for �uid and heat

also get signi�cantly altered in the visco - elastic limit.

The dusty plasma medium in the parametric domain of 1 < Γ < Γc, has been

lately modeled as a charged visco - elastic �uid. The attempts in this direction

have been fruitful as the predictions of the linear modes made on the basis of such

a modeling has suitably been con�rmed by experiments. The present thesis is

now aimed at exploring the possible nonlinear collective phenomena that the dust

plasma system should exhibit when considered as a visco - elastic system.
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2.2 Dusty plasma as visco - elastic �uids

When the micron sized dust particles are sprinkled in a normal electron ion plasma,

the dust species get heavily charged (mostly negative) by the constant bombard-

ment of ions and electrons hitting its surface.

The high value of charge accumulated on the surface of dust particles, causes

the interparticle dust potential energy to be quite large. This potential energy

often easily becomes comparable and/or higher than the random kinetic energy of

the dust particle associated with its temperature. Thus, it is very easy to have a

dusty plasma medium in a strong coupling state. Hence, the dusty plasma medium

o�ers a unique possibility of studying the strong coupling regime of plasma in a

simple laboratory environment. Experiments have con�rmed liquid and solid like

characteristics of the dusty plasma medium. In the regime where the coupling

parameter 1 < Γ < Γc, the dust particles are neither crystallized nor behave like

a freely �owing �uid. In fact experiments have shown and evaluated the average

time spend by a dust particle at a particular location [104]. The results suggest

that there is a �nite memory relaxation time beyond which information of any

particular con�guration of the medium is lost. It is observed that the dust species

tend to oscillate along a shifted location when a perturbing stress is applied. These

studies suggest that the dusty plasma medium can be looked upon as a charged

visco - elastic �uid. The magnetic �eld requirement to magnetize the dust species

being typically high, most terrestrial experiments have been con�ned to the un-

magnetized dust and have dealt with only electrostatic response. We will also

adhere to these restrictions in this thesis.

In section 2.3, a Generalized Hydrodynamic model description with the above

mentioned considerations have been provided.

2.3 Generalized Hydrodynamic model for dusty plas-

mas

For the visco - elastic �uids the stress - strain relationship is provided by the consti-

tutive relationship. This modi�es the conventional momentum equation describing

any �uid. The Generalized Hydrodynamic (GHD) Model of visco - elastic �uids
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is a phenomenological model replacing the conventional momentum equation of

the �uids. The stress - strain relationship of the Maxwell's model coupling the

properties of Newtonian �uids with Hookian solid forms the basis of this model.

A proper Galilean invariant form of the GHD model for the dust species can

be written as follows:[
1 + τm

(
∂

∂t
+ ~vd · ∇

)][(
∂

∂t
+ ~vd · ∇

)
~vd +

∇P
nd

−∇φ
]
= η∇2 ~vd+

(η
3
+ ζ
)
∇ (∇ · ~vd)

(2.1)

The variables, nd, ~vd and φ are the density, velocity and electrostatic potential

of dust �uid respectively. The pressure is calculated with equation of state P =

µdndkBTd. Here Td is the dust temperature. Here, τm is the memory relaxation time

of the medium, and η and ζ are the Kinematic viscosity and the Shear viscosity

(divided with density) of the dusty plasma medium respectively. In the limit

τm
d
dt
< 1, i.e. in weak coupling limit (Γ < 1), the equation (2.1) turns in to

standard Navior Stokes form of momentum equation, thus showing that the weakly

coupled dusty plasma could be explained with typical �uid model. In contrast

limit, i.e. τm
d
dt
> 1, the equation becomes second order in time and represents the

oscillatory mode of the solid.

It should be noted that in contrast to the neutral visco - elastic �uid the electro-

static �eld in addition to pressure also appears in the equation. The electrostatic

�eld has to be self consistently evolved along with the motion of dust species. This

can be achieved by coupling the Eq. (2.1) above, with the continuity equation and

the Poisson's equation.
∂nd

∂t
+∇ · (nd ~vd) = 0 (2.2)

∇2φ = nd + µeexp(σiφ)− µiexp(−φ) (2.3)

Here, µe =
ne0

Zdnd0
, µi =

ni0

Zdnd0
and σi =

Ti

Te
. The mass of dust species is many orders

higher than that of electrons and ions present in plasma. Thus, the electron and ion

�uids are assumed to be inertialess compared to the time scale of dust dynamics.

These inertialess species, provide a Boltzmann response having the following form

ne = ne0exp(
eφ

kBTe
); ni = ni0exp(

−eφ
kBTi

) (2.4)

which has been substituted in the Poisson's equation (Eq. (2.3)) for the electron
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and ion densities. The plasma being quasineutral, the equilibrium density of the

three species, satisfy following relation:

ne0 + Zdnd0 = ni0 (2.5)

The Eqs. (2.1,2.2, 2.3) are written in their normalized form. The potential, length

and time are normalized by eφ/kBTi, LD =
√

kBTi

4πZdnd0e2
and ω−1

pd respectively.

The parameters τm, η
∗ = (4/3η + ζ) and µd appearing in the evolution equa-

tions above are not all free but satisfy the following constraining relationships.

η∗

η0
= 0.0051

Γm

Γ
+ 0.374

Γ

Γm

+ 0.022

Γm(κ) = 171.8 + 82.8(exp(0.565κ1.38)− 1)

τm =
η∗

λ2D

1

1− γdµd +
4
15
u(Γ)

µd = 1 +
u(Γ)

3
+

Γ

9

∂u(Γ)

∂Γ
(2.6)

The parameter η0 is the characteristic viscosity [105]. u(Γ) has two forms depend-

ing on the value of Γ

u(Γ) ≈ −
√
3

2
Γ3/2; Γ ≤ 1

u(Γ) = −0.89Γ + 0.95Γ1/4 + 0.19Γ−1/4 − 0.81; Γ > 1

These relationships have been obtained by extensive molecular dynamic simula-

tions which have been described in references [35, 62, 105, 106]. Experimentally,

the relaxation parameter τm has been calculated with estimation of the phase shift

between the stress and the shear rate in oscillatory tests [101]. We have chosen

the screening parameter κ as zero in our studies.

2.4 Numerical methods

Present thesis primarily focused on the nonlinear aspects of dusty plasma dy-

namics. In addition, however, linear studies have also been performed in certain

scenarios which have resulted in providing interesting new insights. In this section,
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we brie�y describe the numerical techniques that have been employed to carry out

the investigation presented in the thesis.

2.4.1 Linear stability analysis

Apart from nonlinear simulations, we have also performed the linear stability anal-

ysis numerically for 2-D K-H instability. Here, for example, we have chosen the

case of incompressible strongly coupled dusty plasma �uid (refer to Chapter 6,

section 6.3). The equations have been Fourier transformed in y direction (�ow

direction which is periodic) and in time domain. In this process, we obtain the

linearized di�erential form of equations (with derivatives in x direction which is

direction of shear).

−i (ω − kyvy0) v1x + p
′

1 = ψx

−i (ω − kyvy0) v1y + v1xv
′

0 + ikyp1 = ψy

−iτm (ω − kyvy0)ψx = η
(
v

′′

1x − k2yv1x

)
−iτm (ω − kyvy0)ψy = η

(
v

′′

1y − k2yv1y

)
v1y =

iv
′
1x

ky
(2.7)

Here, (′) is the derivative in x direction. Also, ψx, ψy, v1x, v1y, p1 are coupled vari-

ables as function of ω, ky and x. v0(x) is the equilibrium �ow velocity as function

of x. Further, the above set of Eqs. (2.7) will be solved numerically as eigen value

problem. (
k2yv1x − v

′′

1x

)
ω = k3yv1xvy0 − kyv

′′

1xvy0 + kyv1xv
′′

y0 − kyψ
′

y + ik2yψx

−iτmψxω = −ikyvy0τmψx + η
(
v

′′

1x − k2yv1x

)
−iτmψyω = −ikyvy0τmψy +

iη

ky

(
v

′′′

1x − k2yv
′

1x

)
(2.8)
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Each of above equations then discretized in following form

ω
(
l1v

i−1
1x + l2ψ

i−1
x + l3ψ

i−1
y + l4v

i
1x + l5ψ

i
x + l6ψ

i
y + l7v

i+1
1x + l8ψ

i+1
x + l9ψ

i+1
y

)
= r1v

i−2
1x + r2ψ

i−2
x + r3ψ

i−2
y + r4v

i−1
1x + r5ψ

i−1
x + r6ψ

i−1
y + r7v

i
1x + r8ψ

i
x + r9ψ

i
y

+ r10v
i+1
1x + r11ψ

i+1
x + r12ψ

i+1
y + r13v

i+2
1x + r14ψ

i+2
x + r15ψ

i+2
y (2.9)

These equations now could be written in matrix form [A] and [B] whose coe�cients

are l1−9 and r1−15 respectively.

[A][X] = ω[B][X] (2.10)

The Eq. (2.10) is then solved numerically using Eig function of MATLAB or using

ZGGEV subroutine from LAPACK package.

2.4.2 Exact nonlinear solutions

To look in to the possibility of existence of localized solutions for 1-D dusty plasma

medium, we transformed the coupled set of equations (as an example, for the case

of weakly coupled dusty plasma system Eqs. (4.1,4.2,4.5)) in a moving frame with

a constant velocity β. Thus, we have transformed to a stationary frame ξ = x−βt
and τ = t such that,

∂

∂x
=

∂

∂ξ
;
∂

∂t
= −β ∂

∂ξ
(2.11)

As ∂/∂τ = 0 for the solutions in time stationary frame. The transformed set of

equations is as follows:

∂

∂ξ
(−βnd + ndvd) = 0

∂

∂ξ

(
−βvd +

v2d
2

+ α log nd − φ

)
= 0

∂2φ

∂ξ2
= nd + µee

(σiφ) − µie
(−φ) (2.12)
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Now, with appropriate boundary conditions for localized solutions, i.e. as ξ → ∞,

nd → 1 and vd → 0, the above coupled set of Eqs. (2.12) �nally reduce to

φ =
1

2

[
β2

(
1

n2
d

− 1

)
+ 2αlog(nd)

]
∂2φ

∂ξ2
=

[
3β2

n4
d

− α

n2
d

] [
∂nd

∂ξ

]2
+

[
−β2

n3
d

+
α

nd

]
∂2nd

∂ξ2
(2.13)

Eqs. (2.13) have further been solved using any of popular numerical techniques to

solve di�erential equations (for example RK-4 method) as an initial value problem.

2.4.3 Exact nonlinear simulations

The Generalized momentum equation and continuity equation (Eqs. (2.1,2.2)) have

been modeled numerically (fully nonlinear evolution) using Flux Corrected Trans-

port (FCT) Finite Di�erence scheme. We have employed a package of subroutines

LCPFCT to evolve the Eqs. (2.1,2.2) using such scheme [107]. The LCPFCT

routines solve the equations of Generalized Continuity Equation form. The sub-

routines are speci�cally written in 1-D, but could be employed for 2-D and 3-D

dimensions easily. Also, the routines are written for Cartesian, Cylindrical as well

as Spherical coordinate systems. The LCPFCT routines employ Runga-Kutta-2

method for evolution in time while the space derivatives have been solved with

central di�erent scheme.

While the continuity equation can directly be evolved with FCT routines, the

generalized momentum equation have been split to a form of two coupled convective

equations which were then evolved using FCT set of routines.(
∂

∂t
+ ~vd · ∇

)
~vd +

∇P
nd

−∇φ = ~ψ(
∂

∂t
+ ~vd · ∇

)
~ψ = −

~ψ

τm
+

1

τm

[
η∇2 ~vd +

(η
3
+ ζ
)
∇ (∇ · ~vd)

]
(2.14)

To solve nonlinear Poisson equation for our case, we have employed a successively

relaxation method based (Storey's scheme) for periodic boundary conditions. To
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Chapter 2. Generalized Hydrodynamic Model

solve the Poisson equation with Storey's method, the Eq. (2.3) is written as

dφn+1
i

dh
= ∇2φn+1

i − nn
d − µeexp(σiφ

n
i )− µiexp(−φn

i ) (2.15)

Here, dh is a parameter responsible for relaxation of φ pro�le and should be chosen

appropriately to get a desirable result in few iteration. i and n are the index

parameters for space grid location of pro�le and number of iterations of pro�le

respectively. Further, the Eq. (2.15) has been written as

φn+1
i

dh
−∇2φn+1

i =
φn
i

dh
− nn

d − µeexp(σiφ
n
i )− µiexp(−φn

i ) (2.16)

As we know the initial pro�le of φ, to get the solution at higher time steps, we use

the previous φ pro�les and take the Fourier transform of both side of Eq. (2.16)

in spatial coordinate system. Then, we rearrange the equation and take inverse

Fourier transform of following equation to obtain φn+1.

φn+1
ik =

[
− 1

dh
− k2

] [
φn
ik

dh
− nn

dk − µeexp(σiφ
n
ik)− µiexp(−φn

ik)

]
(2.17)

The iteration remains continue until the di�erence of previous and advance itera-

tion pro�les achieve a permitted tolerance.

The complete dynamics of dusty plasmas have been performed by simultaneously

solving Continuity equation, Generalized momentum equation and Poisson equa-

tion. The results in linear regime have been obtained by keeping initial amplitude

of perturbation very small such that the nonlinear term does not play signi�cant

role. While for nonlinear studies, the amplitude of perturbation has been kept

higher.

In this Chapter, we have provided a brief description of the necessary tools

in lines of governing equations and the numerical approach towards extracting

physical insights on the dusty plasma medium when viewed as a visco - elastic

system.
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3
Coherent solutions in weakly coupled

dusty plasmas in 1-D

The nonlinear aspects of the weak coupling limit (i.e. Γ ≤ 1) of the coupled GHD -

Poisson equation in 1-D are investigated. This corresponds to choosing η = τm = 0

in the Eqs. (2.1,2.2,2.3) and hence in this limit the dusty plasma system behaves

like a weakly coupled hydrodynamic system. Such a system has been investigated

in considerable detail for the study of linear as well as weak nonlinear response. The

linear mode supported by such a system is the compressible Dust Acoustic Wave

(DAW). In the weak nonlinear limit the reductive perturbative analysis carried

out by several authors [47, 48] have shown that the equation reduces to the KdV

form and supports the Dust Acoustic Solitons. In this Chapter, we have sought

the possibility of analytical solutions for arbitrary amplitude. Furthermore, we

have carried out exhaustive studies on nonlinear simulation of weakly coupled

dusty plasma medium. An important observation is the existence, stability and

accessibility of the soliton structures at the wave breaking limit, where the density

and velocity �elds acquire a singular cusp form.

3.1 Introduction

The linear and nonlinear characteristics of collective oscillations in a dusty plasma

system have been the subject of much theoretical and experimental studies in recent

years [10,108]. The dust acoustic wave (DAW), in particular, has received a great

deal of attention. This low frequency longitudinal mode is an analogue of the ion
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Chapter 3. Coherent solutions in weakly coupled dusty plasmas in 1-D

acoustic mode found in normal electron-ion plasmas with the massive dust particles

now providing inertia and the pressure contributions for sustaining the wave coming

from both electrons and ions [43]. Its linear propagation characteristics are well

understood theoretically and have also been widely con�rmed experimentally [109,

110]. There is also an extensive theoretical literature on the subject of nonlinear

evolution of DAWs mostly centered on the idea of excitation of solitons [4, 43, 47,

72,111]. These localized one dimensional pulse structures belong to a class of exact

solutions of integrable nonlinear partial di�erential equations (PDEs), such as the

Korteweg-DeVries (KdV) equation (and its generalizations) and have been applied

in a wide variety of physical systems. The one dimensional idealization holds good

in many practical situations where the time scale for the breakup of the soliton

due to bending instabilities in the perpendicular direction are quite long compared

to the propagation time of the soliton over an experimental length. Likewise,

collisional e�ects and other damping mechanisms can be e�ectively controlled by

varying the plasma parameters ensuring that the solitons have a long life time.

Consequently, KdV solitons and similar other one dimensional solitons have been

experimentally studied by many researchers (see [112] for a detailed review) ever

since the �rst laboratory observations by Ikezi et al. [113]. More recently such

pulses have also been observed in dusty plasmas [4]. Other nonlinear structures

that have been studied in the context of DAWs are shock waves and two dimensional

vortices.

An important class of nonlinear solutions that has not received much atten-

tion in a dusty plasma is that of sharply peaked solitons. These solutions occur

near the wave breaking amplitude and have a spatial structure that is distinctly

di�erent from the smooth pulse soliton solutions. Mathematically, these sharply

peaked solitons, dithering at the wave breaking amplitude, are singular in nature

and may exhibit singularities in the �eld and/or its higher derivatives at its max-

imum amplitude [114]. They are similar to singular structures observed in other

situations such as slowly propagating envelope solitons in laser plasma interac-

tions. The physical mechanism responsible for the excitation of such structures

is the incident laser pulse produced ponderomotive pressure driving the ion waves

to near wave breaking amplitudes [115]. Similar nonlinear states involving upper

hybrid waves have also been reported for theoretical studies of electron-ion magne-

tized plasmas [116�118] and in numerical simulations [119] of the Jaulent Miodek
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equations [120]. More recently such singular structures have been observed in ex-

periments with dusty plasmas. Schwabe et al. [2] have observed cusp like structures

on the surface of voids formed in a dusty plasma system created in a micrograv-

ity environment of outer space . Teng et al. [1] have carried out wave breaking

experiments in the laboratory and have seen cusp-like structures in the bulk of a

compressible dusty plasma �uid.

The work in present Chapter is motivated to some extent by these recent ex-

perimental observations and by a desire to theoretically explore the accessibility

and evolution of sharply peaked solitons for DAWs. To achieve this goal we have

carried out large scale 1-D numerical simulations of bulk longitudinal oscillations

in a dusty plasma using a standard three �uid model that has been widely used in

the literature for solitonic studies. Our simulations show the spontaneous excita-

tion of a single sharply peaked propagating structure or a chain of sharply peaked

pulses when large amplitude initial perturbations in the form of a single pulse or a

wave train are imposed on the system. These structures are quite long lived (over

several dust acoustic frequency periods) and are accessible from a range of initial

conditions.

Our simulation results show a remarkable resemblance to the cusp like struc-

tures observed in the above mentioned recent experiments and may provide impor-

tant insights into the role of such structures in the wave breaking and wave-particle

interaction processes of dusty plasma systems.

3.2 Governing equations

Our simulation model equations describing the dusty plasma medium in 1-D are

∂n

∂t
+
∂ (nv)

∂x
= 0 (3.1)

∂v

∂t
+ v

∂v

∂x
+
α

n

∂n

∂x
− ∂φ

∂x
= 0 (3.2)

∂2φ

∂x2
= n+ µee

(σφ) − µie
(−φ) (3.3)

The above set of equations are in normalized units and the electrons and ions were

assumed to follow Bolzmannian distribution, as per description given in previous
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Figure 3.1: (a) A small amplitude sinusoidal DA perturbation (linear regime) in velocity
has been evolved in time. (b) The linear dispersion relation plotted numerically (stars)
and analytically (line). The parameters chosen for simulation are µe = 0.1, µi = 1 + µe,
σ = 1.0 and α = 0.1.

Chapter 2. Also, the subscript d has been dropped from dust density and velocity

for simplicity. We would like to remind that the parameter α = v2thd in normalized

units.

Equations (4.1) and (4.2) are numerically solved by the �ux corrected scheme

of Boris et al. [107]. At each time step the scalar potential φ is determined from the

Poisson equation (4.5). The latter is solved by employing a successive relaxation

scheme. Fig. 3.1(a) shows the evolution of k = 1 mode of DA sinusoidal small

amplitude perturbation. It is observed that as expected in linear regime, the

DA mode does not decay in amplitude and if we calculated the phase velocity

of DA mode for di�erent k values, we can plot a dispersion relation numerically.

Fig. 3.1(b) gives a comparison between numerically obtained dispersion relation

and one plotted analytically and both were found to match exactly. In this way,

our numerical code has been appropriately benchmarked in the small amplitude

limit to accurately agree with the linear dispersion relation of the dust acoustic

wave. The analytical dispersion relation for DAW could be obtained by linearizing

the Eqs. (4.1-4.5) and replacing other variables in terms of single variable. The
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dispersion relation for DAW is,

ω2 = αk2 +
k2

k2 + µeσ + µi

(3.4)

3.3 The KdV DA solitons

The existence of DA solitons was �rst predicted by Rao et. al. [43] by obtain-

ing an analytically solvable KdV form of partial di�erential equations in weak

nonlinearity regime. To obtain KdV form of equation, we have expanded the vari-

ables n, v and φ using standard reductive perturbative method in terms of a small

parameter ε as,

n = 1 + εn(1) + ε2n(2) + ε3n(3) + . . .

v = εv(1) + ε2v(2) + ε3v(3) + . . .

φ = εφ(1) + ε2φ(2) + ε3φ(3) + . . . (3.5)

Taking stretched co-ordinate system ξ = ε1/2(x − λt) and τ = ε3/2t we can write

the derivatives as,
∂

∂x
= ε

1
2
∂

∂ξ
;

∂2

∂x2
= ε

∂2

∂ξ2
(3.6)

∂

∂t
= −λε

1
2
∂

∂ξ
+ ε

3
2
∂

∂τ
(3.7)

Expanding Eqs. (4.1-4.5) using above expansion, collecting the lowest order terms

from each equation and then replacing each other, we �nally get a equation of KdV

form as,

∂3φ1

∂ξ3
+

2λ

(λ2 − α)2
∂φ1

∂τ
+

(
(µi − µeσ

2)− 3λ2 + α

(λ2 − α)3

)
φ1
∂φ1

∂ξ
= 0 (3.8)

Here, φ1 is same as φ(1) and is the �rst order amplitude of φ in terms of small

parameter ε. Now this KdV form of equation is exactly solvable by transforming

it again from ξ, τ → ζ frame using transformation ζ = ξ−Mτ , the Eq. (3.8) could
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be written as a di�erential equation as,

∂3φ1

∂ζ3
−Ma

∂φ1

∂ζ
+ bφ1

∂φ1

∂ζ
= 0 (3.9)

Where a and b are the coe�cient of ∂φ1/∂τ and φ1∂φ1/∂ξ in Eq. (3.8) respectively.

Now with appropriately choosing boundary (or initial) conditions, the �nal solution

could be written as,

φ1 =
3Ma

b
sech2

[
ζ − ζ0

(Ma)1/2/2

]
(3.10)

Here, ζ0 is the constant of integration.

3.4 Exact solutions

The KdV equation obtained under the ansatz of weak nonlinearity is an approx-

imate solution of the complete set of equations, which clearly will not hold in

the high amplitude limit. Here, we obtain exact solutions for the complete set of

equations which is valid for any amplitude. This is achieved by seeking seeking

stationarity in a moving frame for the full set of Eqs. (4.1) - (4.5). Assuming that

all dependent variables are functions of ξ = x− βt only, we can reduce the full set

of equations to the following ordinary di�erential equation (ODE) in n as

1

2

(
∂n

∂ξ

)2

+ V (n) = 0 (3.11)

Where

V (n) =

[
2

(−2β2/n3 + 2α/n)2

]
×[

2β2

(
1

n
− 1

)
+ 2α (n− 1) +

2µe

σ
{exp (σφ)− 1}+ 2µi {exp (−φ)− 1}

]
with

φ =
1

2

(
β2(

1

n2
− 1) + 2α log n

)
(3.12)

The Fig. 3.2(a) is the low amplitude localized solution of Eqs. (3.11-3.12) while
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Figure 3.2: (a) The numerical solutions of Eqs. (3.11-3.12) obtained by shooting scheme
illustrating the conventional Soliton solution and (b) Cusp structures at the wave breaking
point for the dusty plasma system. The parameters of simulation are µe = 0.1, µi = 1+µe,
σ = 1.0 and α = 0.0.

the solution shown in Fig. 3.2(b) is the extream end of solutions where the lo-

calized structures become singular in nature. Such limit of localized solutions are

categorized as �Cusp� solutions. This could also be understood from the expression

for V (n) that it blows up when the denominator of the �rst bracket goes to zero.

This occurs when n = nmax = β/vthd and here clearly the �rst derivative in den-

sity ∂n/∂ξ blows up from Eq. (3.11). Also from the continuity equation we have

n = β/(β − v); thus at this point we would have v = vmax = β − vthd, as observed

in our simulations studies. Similarly an expression for φmax can be obtained from

Eq. (3.12). The analytical values corresponding to these expressions for nmax, vmax

and φmax have been tabulated for various cases in Table 5.1.
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Table 3.1: Cusp solutions

S. No. vthd βanal vanalmax φanal
max nanal

max βsim vsimmax φsim
max nsim

max

1 0.0 1.5090 1.5090 -1.1385 ∞ 1.5057 1.456 -1.033 10.2
2 0.2236 1.3316 1.1080 -0.7724 5.9553 1.3484 1.164 -0.7778 7.423
3 0.3162 1.3018 0.9856 -0.6558 4.1167 1.3094 1.047 -0.6348 5.068
4 0.3873 1.2917 0.9044 -0.5786 3.3352 1.2970 0.9719 -0.5634 4.023
5 0.4472 1.2908 0.8436 -0.5211 2.8863 1.2936 0.9152 -0.5023 3.42

3.5 A comparison amidst approximate KdV and

exact solutions

Here, we provide a comparison between the approximate KdV solitons and those

exact solutions which are obtained for the complete set of equations.
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Figure 3.3: (a) Exact solutions of Eq. (3.11), (b) A comparison between exact solutions
(�lled circles) and KdV soliton structure (∗), (c) The matching of exact localized solutions
(red dashed line) with KdV soliton solutions (solid blue line) in low amplitude limit and
(d) distinction between the two at high amplitudes.
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The pro�les of density n, potential φ and velocity v for exact localized solutions

have been shown in the Fig. 3.3(a). The structure deviates from the KdV soliton

pro�le at high amplitudes. This can be seen from the comparison with the KdV

form provided in the other subplots of the �gure. In Fig. 3.3(b) we have compared

the width of the KdV solutions with the exact solutions obtained by numerically

integrating Eq. (3.11). The exact solutions with similar amplitude are wider com-

pared to KdV solution with increasing amplitude. The width keeps increasing as

one increases the amplitude. In subplot (c) we show that at lower amplitude there

is complete overlap between the KdV form and that of the exact solution. How-

ever, subplot (d) shows that the higher amplitude the form of the two solutions

di�er considerably. We observe that these higher amplitude solutions also show

stable propagation when chosen as initial condition in our numerical evolution code

which has been elaborated in following section.

Fig. 3.4 shows the collision of two oppositely moving low amplitude exact lo-

calized solutions while evolving it with time through Eqs. (4.1 - 4.5). It is found

that such solutions not only move stably in time but also propagate through each

other without any change in momentum, hence showing the property of solitons.

The exact solutions of such low amplitude belong to the category of DA KdV soli-

tons. Unlike soliton solutions, however, when two of these solutions are made to

collide they are not able to preserve their identity. It can be seen from the plots

of Fig. 3.5 that a signi�cant amount of perturbed �eld appears as an aftermath of

such a collisional interaction. Thus these localized solutions are not solitons in the

true sense but can be looked upon as localized stable solutions permitted by the

system.

3.6 Evolution studies

In previous sections, we have studied the possibility of existence for di�erent possi-

ble coherent solutions in weakly coupled dusty plasma medium under observation.

In the present section, we have observed not only the evolution of exact localized

solutions with full set of model equations de�ning system but also observe the

formation and evolution of coherent structures spontaneously appear during the

course of evolution of various kind of high amplitude initial perturbations.
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Figure 3.4: Evolution and collision of low amplitude exact stationary localized solutions
with time in di�erent subplots.

If we increase the amplitude of the initial perturbations gradually, we observe

the excitation and evolution of the usual KdV soliton solutions that have been

analytically predicted before. For a further increase in the amplitude we observe

the excitation of both a smooth soliton and a sharply peaked soliton. This is shown

in Fig. 3.6 where an initial large amplitude Gaussian pulse Fig. 3.6(a) is seen to

split up into two oppositely propagating pulses Fig. 3.6(b) and as we follow the

evolution of the right propagating pulse it is seen to separate into a smooth small

amplitude soliton and a large amplitude sharply peaked solution (Fig. 3.6(c) and

Fig. 3.6(d) show this at various stages in time). In Fig. 3.7, we have shown the

spatial structures of the density n (solid line), the velocity v (dashed dot line)

and the potential φ (dash line) of the soliton solution. The plots clearly reveal
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Figure 3.5: Evolution and collision of high amplitude exact stationary localized solutions
with time in di�erent subplots.

the development of a singular structure. For these simulations the dust species

was assumed to be cold, i.e. α = v2thd = 0.0. The zero temperature case is,

however, a mathematical idealization. Keeping this in view we have also carried

out simulations of an initial Gaussian pulse for the case of �nite dust temperature.

We show the results of the �nite temperature case in Fig. 3.8. (the inset in Fig. 3.8

shows the splitting of Gaussian pulse in opposite directions.) In this case also the

singular characteristics, namely a cusp formation in density pro�le can be observed

clearly. We note from our simulations that the pro�les and the maximum value of

the �elds v and φ of the sharp structures that �nally form are insensitive to any

re�nements in the grid resolution both for the zero as well as the �nite temperature

cases. The density pro�le and its maximum value are, however, insensitive to grid
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Figure 3.6: Emergence of soliton and cusp soliton solutions from an initial Gaussian
density pulse (subplot (a) at t = 0). The pulse generates two oppositely propagating
similar structures as shown in (b)for t = 9.817. The evolution of right going pulse has
been shown in (c) and (d) at t = 24.54 and t = 61.36 respectively. It is evident that it
evolves into a small amplitude soliton and a large amplitude sharply peaked soliton. The
parameters of simulation are µe = 0.1, µi = 1 + µe, σ = 1.0 and α = 0.0.

resolution only for the �nite temperature case. When the dust temperature is

chosen as zero the maximum of the density is dependent on the choice of the grid

resolution. We would show that in this case one expects the theoretical value of

the density to shoot o� to in�nity, which obviously can never be captured, no

matter how much the grid is re�ned. The sharply peaked soliton and the regular

soliton move apart in time as their propagation velocities are di�erent because of

the di�erence in their respective amplitudes. We also observe from our simulations

that the maximum value of the dust �uid speed v = vsimmax (which occurs at the

cusp point) is close to (β−vthd) where β is the sharply peaked soliton propagation

speed and vthd is the dust thermal velocity. This is seen from data gathered and

consolidated from several simulations and summarized in Table 5.1. We also show

the maximum values of the density, velocity and potential �elds observed in the
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Figure 3.7: The plot of density n (green solid line), velocity v (dot dashed green line)
and potential φ (blue dashed line) for the cusp solutions observed �nally in Fig. 3.6(d).
The inset shows the expanded form of the density pro�le of the structure.

simulation, for the sharp pulse that eventually forms spontaneously from a given

large amplitude Gaussian initial condition. We observe that for vmax and φmax

there is a good agreement between the analytical estimation and observations

obtained from simulations. The estimates and the observed values of the density

in simulations show slight di�erences. For the cold dust (Td = 0), the density

can be in�nite for the cusp solutions, which as stated earlier cannot be captured

in simulations. In any case the simulations for Td = 0 is only a mathematical

idealization. We also wish to state that the choice of σ = Ti/Te = 1.0 made in our

simulations, though unrealistic, does not in�uence the cusp behavior, which is the

main theme of this paper. The cusp occurs at the point where V (n) blows up, i.e.

when the denominator of the �rst factor in Eq. (5) (which does not depend on σ
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Figure 3.8: The evolution of an initial Gaussian density pulse for the case of �nite dust
temperature. The evolution of the right pulse enclosed by blue dashed box in the inset
has been shown in the main frame of the �gure at times 63.81 (solid magenta line) and
73.63 (solid black line) respectively. The parameters in this simulation are µe = 0.1,
µi = 1 + µe, σ = 1.0 and α = 0.1.

) goes to zero. Furthermore, basically the realistic condition of Ti << Te would

simply make ion shielding more important. Charge density on the dust changes the

electron density, in�uencing the electron Debye length and again enters through

shielding e�ects only.

We also choose to consider di�erent initial conditions for our simulations. For

instance we have chosen the �elds corresponding to the regular large amplitude

solitons and the cusp solutions obtained from Eq. (3.11) as initial conditions. The

regular soliton solutions and the cusp structure for a particular set of parameters
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have been shown in Fig. 3.2(a) and Fig. 3.2(b) respectively. In Fig. 3.9(a) the

evolution of regular soliton structure of Fig. 3.2(a) has been shown. As expected

the undistorted propagation of the soliton is captured well by our simulation.

The choice of the cusp structure of Fig. 3.2(b) as our initial condition, again

leads to a stable propagation. The evolution of the pro�les of density n and

velocity v are shown in Fig. 3.9(b) and Fig. 3.9(c) respectively. It should be noted

that we had speci�cally chosen to show here the pathological case of Td = 0 for

which ideally the density solution should blow o� to in�nity. Clearly, the density

pro�le for this case can not be accurately represented in the numerical solution

chosen as initial condition and/or its simulation. The evolution, therefore, shows

�uctuations in the amplitude of density. However, we would like to point out that

even for this case, the velocity evolution shows a very stable propagation as has

been demonstrated in the plots of Fig. 3.9(c). For those simulations for which

the dust temperature is �nite even the evolution of density shows no perceptible

change in its amplitude. It appears that when a sharply peaked structure forms,

the gradients in density and velocity become large close to the peak. These are

smoothed by the numerical integration schemes at the grid scale which may be

interpreted as viscosity/hyperviscosity operating on the soliton peak. This keeps

the amplitude dithering close to the wave breaking amplitude. In reality, these

numerical e�ects will be replaced by collisional e�ects or wave particle interaction

e�ects in collisionless plasmas. To further test the accessibility and excitation

conditions of the cusp solitons we have next changed the initial conditions to be

in the form of a sinusoidal perturbation. This is also close to the experimental

conditions of [1]. Again for very small amplitudes the wave train remains sinusoidal

and propagates with a phase velocity given by the linear dispersion relation of the

DAW. When the amplitude of the initial sinusoidal perturbation is chosen to be

large, we observe that in the beginning the sinusoidal perturbations get steepened

to form a periodic train of shocks. These shock structures then eventually evolve

into a chain of cusp like sharply peaked structures which are stable and survive

over hundreds of DAW periods. These stages of evolution have been illustrated

in Fig. 3.10 and Fig. 3.11 for a cold and �nite temperature dusty plasma system

respectively. The evolutionary stages of a sinusoidal perturbation leading to the

emergence of a train of sharply peaked structures bear a remarkable resemblance

to the experimental �ndings of Teng et al. [1] where a self excited DAW is found to
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Figure 3.9: The evolution of exact solutions of Fig. 3.2 used as initial conditions of (4.1)
- (4.5) has been shown. The subplot (a) shows the evolution of density pro�le for the
initial condition of regular soliton of Fig. 3.2 and subplot (b) and (c) show the evolution
of density and velocity pro�les for the Cusp solution. The structures from left to right
correspond to t = 0.0, t = 6.135, t = 12.27 and t = 18.41 respectively.

grow in amplitude till it approaches the wave breaking condition. The measured

dust density pro�les in that stage appear as a series of propagating cusp pro�les.

These steepened structures are seen to then signi�cantly in�uence the dust micro-

dynamics leading to particle trapping and disordered motion that brings about a

phase transition from a liquid state of the dust �uid to a gaseous state. Our simple

model simulations, based on a �uid model, cannot reproduce the wave particle

dynamics observed in the experiment but does seem to capture well the emergence

of propagating cusp structures that are close to wave breaking conditions. One

further shortcoming of our model is that it is valid in the weakly coupled regime of
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Figure 3.10: Evolution of a sinusoidal wave train perturbation has been shown. Subplot
(a) shows the initial density pro�le. The pro�le develops into a series of shock structure
shown at t = 1.227 in subplot (b), which eventually form a chain of cusp structures shown
at t = 3.067 and t = 60.132 in subplot (c) and (d) respectively. The other parameters of
simulation are µe = 0.1, µi = 1 + µe, σ = 1.0 and α = 0.0.

a dusty plasma where correlation e�ects arising from strong dust-dust interactions

have been neglected. However the basic nonlinear wave propagation phenomena

displayed by the present �uid model may not be signi�cantly altered by these

correlations in the framework of a hydrodynamic description.

3.7 Summary

One of the main result of this Chapter is a strong evidence of the existence of cusp

solitons in a dusty plasma medium on the basis of 1-d numerical solutions using a

43



Chapter 3. Coherent solutions in weakly coupled dusty plasmas in 1-D

0

0.5

1

1.5

2

n

(a)

0.5

1

1.5

2

2.5

3
(b)

−5 0 5
0.5

1

1.5

2

x

n

(c)

−5 0 5
0.5

1

1.5

2

x

(d)

Figure 3.11: The evolution for sinusoidal perturbation for the case of �nite temperature
dusty plasma system α = 0.1 has been shown. The various subplots (a), (b), (c) and
(d) correspond to t = 0, t = 1.227, t = 3.067 and t = 60.132 respectively. The other
parameters are same as that of Fig. 3.10. In this case also the development of shocks
initially turning into cusp structure can be clearly observed.

�uid model. These nonlinear states of the dust acoustic wave are shown to be long

lived structures and accessible from a variety of initial conditions. The conditions

for their onset and existence are obtained by carrying out numerical simulation

studies. Our results assume signi�cance in the light of recent observation of similar

structures in laboratory experiments and their potential role in in�uencing the

micro-state of dusty plasmas.
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4
Coherent solutions in strongly coupled

dusty plasmas in 1-D

The behavior of strongly coupled dusty plasma medium in 1-D limit is the theme

of this Chapter. Previous studies in the linear regime have shown marked char-

acteristic di�erences with the weak coupling case. Some attempts have also been

made earlier to study the weakly nonlinear response using the reductive perturba-

tive approach for the strongly coupled dusty plasma medium. However, in those

studies, use of an incorrect form (non - Galilean invariant form) of Generalized

Hydrodynamic (GHD) description, led to the conclusion that it would support

solitons of the KdV variety. In this Chapter we illustrate that for the correct set of

equations no localized smooth solutions are permitted. It is shown that reductive

perturbative analysis reduces the original GHD set of equations to Hunter Saxton

nonlinear equation which permits a new variety of singular solutions. The Chapter

also discusses the nonlinear evolution of di�erent initial perturbations of arbitrary

amplitude using the full set of equations.

4.1 Introduction

As mentioned in previous Chapters, the dust system can easily be driven in a

strongly correlated regime. Thus, it is an ideal system for investigation of ideas

related to phase transition and non - equilibrium thermodynamics [27]. The gen-

eralized hydrodynamic (GHD) �uid model provides the description of the dust

�uid in both weak and strong coupling limits [46, 59, 99]. The strongly coupled
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dusty plasma has been investigated using this GHD model in some detail earlier

speci�cally for the study of linear response of the medium in the small amplitude

limit [59]. Such studies have revealed novel characteristic modi�cation in the well

known dispersion relation of the longitudinal dust acoustic mode. The group ve-

locity of the mode shows reversal ∂ω/∂k < 0. It has also been shown that in the

strongly correlated regime the viscosity no longer plays a dissipative role but is

responsible for oscillatory characteristics. This results in the existence of trans-

verse shear mode supported by the strongly correlated dust medium [23]. The

longitudinal dust acoustic mode also gets modi�ed. These studies were primarily

con�ned to the linear regime of small amplitude.

In this Chapter, we investigate the high amplitude regime of the dusty plasma

�uid depicted by the GHD model. We restrict to the study of the longitudinal

response of the medium in present Chapter and provide comparison between the

behavior of the dust �uid for weak and strong coupling regimes. We employ the re-

ductive perturbative approach as well as studies through direct numerical evolution

for our observations.

In section 4.2, the governing equations in 1-D limit for the GHD description of

dusty plasma are written down. The linear dispersion characteristics of the lon-

gitudinal dust acoustic mode are obtained and compared with the observations of

numerical evolution of small amplitude perturbations in section 4.3. This validates

the numerical code developed by us for the GHD set of equations.

In section 4.4, we study the response of the medium at high amplitude where

nonlinearity is of importance. For this purpose both reductive perturbative ana-

lytical scheme as well as the numerical simulation tools are employed. Our studies

show that in the strong coupling regime of the dust �uid the GHD equations do

not allow any localized smooth stationary solutions. The reductive perturbative

approach does not lead to the simpli�ed KdV form for the equations in the low

amplitude limit. One also does not obtain smooth solutions through numerical

eigenvalue search procedure. We show that in this case the reductive perturbation

scheme leads instead to an altogether di�erent equation, viz., the Hunter Saxton

(HS) equation [8]. It is well known that the HS equation does not permit smooth

localized solutions. The HS system admits singular solutions which have conser-

vative as well as dissipative properties. The simplest variety of solutions of the HS

equation can be cast in terms of a piecewise linear form. A physical understanding
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of the singular solutions of the HS equation has also been provided. In section 4.5,

we summarize the work presented in this Chapter.

4.2 Governing equations

In 1-D (with variations only along x) the coupled GHD - Poisson set of equations

(Eqs. 2.1,2.2,2.3) depicting a strongly coupled dust plasma can be written as :

∂nd

∂t
+
∂ (ndvd)

∂x
= 0 (4.1)

Here, vd is the dust velocity along x. The evolution of vd is obtained from the x

component of the generalized momentum equation for the dust species.[
1 + τm

(
∂

∂t
+ vd

∂

∂x

)][(
∂

∂t
+ vd

∂

∂x

)
vd +

α

nd

∂nd

∂x
− ∂φ

∂x

]
= η∗

∂2vd
∂x2

(4.2)

Here φ is scalar potential and η∗ = (4
3
η + ζ), (where η and ζ are shear and bulk

viscosity coe�cients respectively). The equation reduces to conventional weakly

coupled dust �uid for τm = 0 as(
∂

∂t
+ vd

∂

∂x

)
vd +

α

nd

∂nd

∂x
− ∂φ

∂x
= η∗

∂2vd
∂x2

(4.3)

The memory e�ects in this limit have no role. In the strongly coupled limit where

the elastic behavior associated with solid like trait survives for times longer than

the characteristic times of interest ( i.e. ωτm >> 1 ) the Eq. (4.2) takes the form

of [(
∂

∂t
+ vd

∂

∂x

)][(
∂

∂t
+ vd

∂

∂x

)
vd +

α

nd

∂nd

∂x
− ∂φ

∂x

]
=
η∗

τm

∂2vd
∂x2

(4.4)

The behavior of the dust �uid in the three cases of τm = 0, τm �nite but small so

as to have ωτm ∼ 1 and ωτm >> 1 will be studied in detail. The scalar potential

�eld φ is determined from the Poisson's equation

∂2φ

∂x2
= [nd + µeexp(σiφ)− µiexp(−φ)] (4.5)
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As explained in Chapter 2, time scales associated with the evolution of dust being

long, the electrons and ions species are assumed to satisfy the Boltzmann dis-

tribution. The estimate of τm and its relationship with η are typically obtained

through extensive molecular dynamic simulations and have been described in ref-

erences [35,62,105,106].

4.3 Validation of linear results

The numerical scheme for solving the complete set of coupled GHD - Poisson

equation has already been discussed in Chapter 2. In brief, Equation (4.1) being a

continuity equation has been solved by �ux corrected scheme of Boris et al. [107].

The momentum Eq. (4.2) which has a second order time di�erentiation is split in

terms of two �rst order convective di�erential equations and then the �ux corrected

scheme is applied to them for evolution.(
∂

∂t
+ vd

∂

∂x

)
vd +

α

nd

∂nd

∂x
− ∂φ

∂x
= ψ (4.6)

(
∂

∂t
+ vd

∂

∂x

)
ψ +

ψ

τm
=
η∗

τm

∂2vd
∂x2

(4.7)

At each time step the scalar potential φ is determined from the Poisson equa-

tion (4.5) which is a nonlinear equation for φ. A successive relaxation scheme [121]

is employed for its solution. The pressure P has been determined from the equation

of state. The numerical simulations for a small amplitude sinusoidal perturbation

should be according to the linearized dispersion relation of for the medium.

The linearization of Eqs. (4.1,4.2,4.5) for an equilibrium homogeneous dust,

ion and electron densities satisfying the charge neutrality condition, leading to

the absence of any equilibrium electric �eld (thus φ0 = 0) yields the following

dispersion relation:

−ω3τm− iω2+ω

(
αµdτmk

2 +
τmk

2

k2 + µeσi + µi

+ η∗k2
)
+ iαk2+

ik2

k2 + µeσi + µi

= 0

(4.8)

The dispersion relation of Eq. (4.8) reduces to Eq. (14) of Kaw et al. [59] in the

limit of ωτm << 1 and when dust neutral collisions are absent. Also we recover
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the dust acoustic dispersion relation in the limit of η∗ = τm = 0

ω2 = αk2 +
k2

k2 + µeσi + µi

(4.9)

We provide a comparison of the analytical dispersion relation with those obtained
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Figure 4.1: Linear Dispersion relation for the three cases of subplot (a) for τm = η∗ = 0,
subplot(b) for ωτm >> 1, subplot(c) for ωτm < 1 (real part of frequency) and subplot(d)
for ωτm < 1 (imaginary part of frequency). The solid line shows the analytical curve and
the ∗ symbols have been obtained from the numerical simulation. The other parameters
are α = 0.1, µe = 0.1, µi = 1 + µe and σi = 1.0.

numerically in Fig. 4.1 The analytical dispersion relation of Eq. (4.9) has been

shown in the subplot (a) of Fig. 4.1 as thick solid line. The frequency ω is real in this

particular case. In subplot (b) of Fig. 4.1 we show the dispersion relation for the

case when both τm and η∗ are �nite. This is the case for which ωτm >> 1. Clearly,
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the plot, therefore starts from a �nite k and ω value. As expected the imaginary

part of ω is very small and negligible for this case. Even though η∗ is �nite ω is

real. Hence presence of viscosity causes no damping. In Fig. 4.1 A comparison of

the subplot (a) and (c) shows that the dust acoustic dispersion relation shows a

monotonic increase of frequency with the wave vector. The dispersion curve in the

case of �nite ωτm < 1 shows that the curve turns around with increasing value of

the wave number. This implies a negative value of the group velocity (∂ω/∂k < 1

) talked about in some previous studies. This turning down of the dispersion curve

depends primarily on value of compressibility factor µd, whose value turns negative

as the value of coupling parameter Γ increases.

4.4 Nonlinear Studies for dust �uid in the strong

coupling regime

Earlier studies in the nonlinear regime have primarily been based upon the re-

ductive perturbative analytical scheme employed for the case of weak nonlinearity.

However, the GHD equations employed in that case were not proper as they did

not respect the Galilean invariance. The analysis done on such a incorrect equa-

tion led to the reduction of equations to the KdV form. However, when the correct

equation are used which respect the criteria of Galilean invariance, the extra non-

linearity associated with the strong coupling parameter τm leads to an altogether

di�erent form of the reduced equation. It does not fall in the paradigm of the

KdV set. The existence of smooth localized solutions are no longer permitted for

strongly coupled dusty plasma medium. A detailed reductive perturbative calcu-

lation for the correct set of equation has been provided in the subsection below.

We also show how the analysis leads to solutions with singular forms.

4.4.1 Reductive perturbation expression

We carry out the reductive perturbation analysis [122] retaining the additional

convective term seeking analytical description in the weakly nonlinear regime for

a strongly coupled dusty plasma. To keep track of the contribution due to the

additional convective term in the reductive perturbation analysis, we attach an
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arti�cial coe�cient ζ, i.e. the Eq. (4.4) is rewritten as:[(
∂

∂t
+ ζvd

∂

∂x

)][(
∂

∂t
+ vd

∂

∂x

)
vd +

α

nd

∂nd

∂x
− ∂φ

∂x

]
=
η∗

τm

∂2vd
∂x2

(4.10)

We choose

n = 1 + εn(1) + ε2n(2) + ε3n(3) + . . .

v = εv(1) + ε2v(2) + ε3v(3) + . . .

φ = εφ(1) + ε2φ(2) + ε3φ(3) + . . . (4.11)

and stretched variables ξ and τ are such that, ξ = ε1/2 (x− λt) and τ = ε3/2t ,so

the new derivatives in form of old one are as follows

∂

∂x
= ε

1
2
∂

∂ξ
;

∂2

∂x2
= ε

∂2

∂ξ2
(4.12)

∂

∂t
= −λε

1
2
∂

∂ξ
+ ε

3
2
∂

∂τ
(4.13)

Collecting �rst two lowest order terms ε from the continuity equation yields

∂

∂ξ

[
v(1) − λn(1)

]
= 0 (4.14)

∂n(1)

∂τ
+

∂

∂ξ

[
v(2) − λn(2)

]
+

∂

∂ξ

[
n(1)v(1)

]
= 0 (4.15)

From Poisson's equation we obtain

[µeσi + µi]φ
(1) + n(1) = 0 (4.16)

∂2φ(1)

∂ξ2
= n(2) + (µeσi + µi)φ

(2) +
1

2

[
σ2
i µe − µi

] (
φ(1)
)2

(4.17)

and for Momentum equation we get

λ2τm
∂2v1
∂ξ2

+ λτm
∂2φ1

∂ξ2
− αλτm

∂2n1

∂ξ2
= η∗

∂2v1
∂ξ2

(4.18)
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λ2τm
∂2v(2)

∂ξ2
− τmλ

∂

∂τ

∂v(1)

∂ξ
− ζτmλv

(1)∂
2v(1)

∂ξ2
− λτm

∂

∂ξ

∂v(1)

∂τ
− λ

2
τm
∂2
(
v(1)
)2

∂ξ2
+

τmλ
∂2φ(2)

∂ξ2
− τm

∂

∂τ

∂φ(1)

∂ξ
− ζτmv

(1)∂
2φ(1)

∂ξ2
− αλτm

∂2n(2)

∂ξ2
+ τmα

∂

∂τ

∂n(1)

∂ξ

−αλτm
2

∂2
(
n(1)
)2

∂ξ2
+ ζτmαv

(1)∂
2n(1)

∂ξ2
= η∗

∂2v(2)

∂ξ2
(4.19)

From �rst order terms of continuity, momentum and Poisson's equation the ex-

pression for phase velocity λ is,

λ2 =
η∗

τm
+ α+

1

µeσi + µi

(4.20)

Now replacing values for φ(2) and v(2) from Eqs. (4.17 and 4.15) in equation (4.20)

and writing the equation in terms of variable n(1), we get the simpli�ed nonlinear

equation as,

A
∂4n(1)

∂ξ4
+B

∂

∂τ

∂n(1)

∂ξ
+ C

∂2

∂ξ2
(
n(1)
)2

+Dn(1)∂
2n(1)

∂ξ2
= 0 (4.21)

Where the constants are,

A =
λ

µeσi + µi

B = λ2 (µeσi + µi)

C = λ

(
(µeσ

2
i − µi)

2 (µeσi + µi)
2 − λ2

2

(
τm

η∗ − λ2τm

)
+ (µeσi + µi)

(
3α

2
+

1

µeσi + µi

))
D = λζ

(
(µeσi + µi)

(
η∗

τm
+

1

µeσi + µi

)
− 1

)
(4.22)

Thus the coe�cient D arises due to the additional convective term that has now

been retained in the momentum equation. It should also be noted that because of

the term associated with the coe�cient D the reduced Eq. (4.21) does not have

the usual KdV form. Some of the coe�cients of Eq. (4.21) can be absorbed in the

length and time scales. We de�ne the new length and time scales as tn = (A/B)t

and ξn = (
√
2C/A)ξ and drop the su�x n to recast the equation as:

ntξ + nξξξξ + n2
ξ + (

D

2C
+ 1)nnξξ = 0 (4.23)
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Here for clear emphasis on form of Eq. (4.23), the �rst order density perturbation

n(1) is replaced by n. It should be noticed that the coe�cient of the last term

cannot be absorbed and its di�erence from unity, viz., D/2C is responsible for the

equation not permitting a soliton solution. It can be seen that when D = 0 the

equation can be integrated to yield KdV equation which permits soliton solutions.

While on the other hand the integration of the complete equation yields

nt + nξξξ +
(n2)ξ
2

+
D

2C

∫
nnξξdξ = 0 (4.24)

Using the assumption of periodicity and/or vanishing �elds at ξ = ±∞ one can

express the last term of the equation as∫
nnξξdξ = −

∫
(n2

ξ)dξ

However, the integrand being a positive de�nite quantity, in the presence of this

term in the evolution equation (Eq. (4.23)) the value of the �eld n at both the

boundary can not vanish and/or become identical. It is thus clear that the soliton

condition can never be satis�ed.

In the absence of dispersion and for the case when D/C = 1 Eq. (4.24) is the

Hunter Saxton (HS) equation. Here we have performed a perturbative analysis in

weak nonlinearity for complete GHD set of equations and then under simpli�ed

physical condition (i.e. ignoring dispersion), we obtained the HS form of equation.

A HS equation could also be derived directly from initial generalized momentum

equation neglecting the e�ect of dispersion.

In the strongly coupled limit k
√
τmη∗ >> 1, where k is the inverse scale length

of the solution, η∗/τm >> C2
da (Cda being the dust acoustic speed), i.e. when the

elastic wave dominates the dust acoustic speed, one can ignore the contribution

from the scalar potential φ and the thermal contribution due to P in the momentum

equation. Physically, this is the regime when elastic coe�cients due to correlations

dominate over Boltzmann screening and thermal dispersion e�ects. The dusty

plasma medium is, however, still in a �uid molten state with no lattice formation.
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In this limit the dust �uid is governed by the following simpli�ed equation:[
∂

∂t
+ vd

∂

∂x

] [
∂vd
∂t

+ vd
∂vd
∂x

]
=
η∗

τm

∂2vd
∂x2

(4.25)

It should be emphasized that compressional velocity perturbations in the dust �uid

will still produce density disturbances, which in turn will be shielded by electrons

and ions producing potential perturbations. The inequality at the beginning of

this paragraph ensures that the reaction back of these driven disturbances on

the momentum equation is negligible. Physically Eq. (4.25) contains dispersion

free linear elastic waves that are supported by the correlation driven elasticity

coe�cient and nonlinear contributions through inertial e�ects appear through the

convective terms. In principle, linear wave dispersion may be introduced through a

k dependent form of τm [62]; here we assume that this e�ect is small. Note that the

second convective derivative which arose through constraints of Galilean invariance

is playing a crucial role in the nonlinear dynamics. This equation can also model

plastic �ow deformation disturbances in solids undergoing failure through severe

stresses. In the weakly nonlinear regime Eq. (4.25) can be subjected to a reductive

perturbation analysis, by expanding,

vd = λ+ εv
(1)
d + ε2v

(2)
d + . . . (4.26)

w = ε3/2(w(1) + εw(2) + . . .) (4.27)

where w = (∂/∂t+vd∂/∂x)vd. Further, using the stretched variables, ξ = ε1/2 (x− λt),

τ = ε3/2t, taking λ =
√
η∗/τm, and retaining terms up to second order for the vd

and w �elds, we can obtain the following single equation in the variable v
(1)
d (rewrit-

ten below without the superscript),

(vdτ + vdvdξ)ξ =
1

2
v2dξ (4.28)

The left hand side equated to zero is the nonlinear equation for dispersion less

waves with the convective nonlinearity giving inde�nite steepening of waves which

can lead to wave breaking or form shocks, or solitons depending on whether non-

linearity, viscous dissipation (Burger's equation) or dispersion (Korteweg de Vries

equation) dominates the physics of steepened waves. Here the extra convective
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derivative nonlinearity of the simpli�ed generalized hydrodynamic model equa-

tion (4.25) is responsible for the nonlinear term on the right side of Eq. (4.28).

This term dramatically changes the character of the equation and the nature of its

solutions. Equation (4.28) is the so-called Hunter-Saxton equation, which has been

derived earlier [8] for director �elds 1 in liquid crystals, where the positional disor-

der of polymer molecules gives the medium �uid properties whereas the positional

order due to correlations gives them crystal like properties. It is also the high

frequency limit of the Cammasa- Holm equation [123] , which has been derived

to describe the nonlinear dynamics and wave breaking of shallow water waves.

These equations belong to a new class of equations which can be derived from

variational principles in more than one non equivalent forms. They typically have

an in�nite number of conservation laws and possess singular solutions with in�-

nite derivatives. If these solutions are propagating, they pass through each other

undisturbed, except for a phase shift, somewhat like solitons.

We now recapitulate some properties [124] of the Hunter Saxton equation and

its solution, which are of relevance to our problem, Firstly, integrating Eq. (4.28)

over ξ we note that because of the positive de�nite value of the integral on the

right side, if the solutions leave one boundary unperturbed, the other boundary is

perturbed, thus showing the impossibility of smooth periodic or isolated solutions

with undisturbed boundaries. Secondly, a Lagrange variable treatment for the

derivative vdξ shows that the velocity derivative blows up in a �nite time. This

indicates that the nonlinear disturbances will lead to a wave breaking like behavior

in a �nite time. However, since correlations lead to elasticity, we �nd wave breaking

phenomenon with a di�erence. This is best illustrated by the exact solution [8]

below. Hunter Saxton (HS) equation has step like piecewise continuous and non -

smooth solutions. A single step solution may be written as

vd(ξ, τ ;αa, β) = U(ξ, τ ;αa) if τ ≤ 0

= U(ξ, τ ; β) if τ ≥ 0 (4.29)

1local orientation for long axes of liquid crystal molecules
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where αa and β are positive constants with condition β ≤ αa and,

U(ξ, τ ;αa) = −αaτ −∞ < ξ ≤ −αaτ
2

2

= 2
ξ

τ
− αaτ

2

2
< ξ < 0

= 0 0 ≤ ξ <∞ (4.30)

Also U(ξ, 0, ;αa) = 0 so that U is a continuous function of ξ and τ . Mathematically,

the solution is a weak solution of the HS equation satisfying the condition∫ [
Φξτvd +

1

2
Φξv

2
d −

1

2
Φv2dξ

]
dξdτ = 0 (4.31)

for arbitrary test function Φ; this is weakly admissible if

(v2dξ)τ + (vdv
2
dξ)ξ = 2(β − αa)δ(τ)δ(ξ) (4.32)

From Eq. (4.32) we note that conservation of
∫
v2dξdξ is strictly valid if β = αa.

For any other value β < α, the solution is dissipative but still weakly admissible.

The solutions are non propagating in the wave frame traveling to the right with the

linear phase velocity
√

(η∗/τm). Unlike the inviscid Burger equation, where the

step becomes vertical (shock solution) and acquires a �nite steady value consistent

with conservation laws, the HS equation has a step solution with a slope and a step

size that are time dependent. The remarkable feature of the solution is that as the

left and right corners of the linear segment having negative slope collide for the

creation of a `shock wave' with in�nite slope (which may lead to wave breaking)

the spatial support in real space diminishes to a point and the step size vanishes

simultaneously. Since the region of transition diminishes to zero size as the step

approaches verticality,
∫
v2dξdx can remain conserved. In this case no norm is lost

and `energy' is conserved. This is unlike normal Burger's like shock wave where

the step is constant and some energy is converted to heat. In fact at complete

verticality, the HS solution has no step and that is why it is sometimes called a

'shock wave of zero strength'.
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Figure 4.2: Schematic view of time evolution of solution (4.29) of the Hunter Saxton
equation for the conservative and dissipative cases (redrawn from [8]).

However, we note that such shock waves of zero strength can form either con-

servative (β = αa) or dissipative (β < αa including β = 0) global solutions. For

example, for αa 6= 0, β = 0 the disturbance starts with a positive step of vd on

the left at τ < 0 ( see Fig. 4.2) and then this step goes to zero at τ = 0 when

the step becomes vertical. Thereafter (τ > 0), the disturbance vanishes from ev-

erywhere. This is a dissipative global solution for which the entire energy in the

initial disturbance damps away and disappears. This is akin to conventional wave

breaking, where the in�nite slope leads to toppling of the wave and conversion of

coherent wave energy into chaotic multi stream motions. The conservative global

solution, on the other hand, corresponds to β = αa and results in a fresh distur-

bance with positive slope at τ > 0, where the conserved
∫
v2dξdx energy results
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in a diminishing slope disturbance in a widening region (Fig. 4.2) as τ increases.

This is a remarkable sequel to wave breaking with in�nite slope at τ = 0, a sequel

in which the entire elastic energy of the in�nite slope wave trapped in a region of

zero size reappears as a coherent elastic disturbance. This is only possible due to

the presence of the RHS of HS equation. The HS equation thus shows evidence for

self consistent nonlinear elastic waves supported by correlations which steepen in-

de�nitely but peter out in strength before they reach verticality; these are weakly

nonlinear waves which steepen and want to break but cannot do so because of

strong coupling and correlations. Physically, one may picture the global dissipa-

Figure 4.3: Cartoon picture showing energy conservation mechanism in Hunter-Saxton
equation.

tive and conservative solutions described above as longitudinal disturbances along

a spring attached to a wall (Fig. 4.3). Imagine a compressional disturbance com-

58



Chapter 4. Coherent solutions in strongly coupled dusty plasmas in 1-D

ing towards the wall, steepening and becoming in�nitely compressed at the wall.

The subsequent behavior can be either inelastic (global dissipative solution) with

the entire energy in the disturbance dissipated at the wall (say, because of plastic

failure of the spring) and nothing returning back or elastic with a longitudinal

disturbance of equal magnitude returning from the wall.

4.4.2 Singular solutions of the form of cusp

We demonstrate here the possibility of having singular cusp solutions for the HS

equation, which can be obtained from Eq. (4.23) by ignoring the dispersive term.

The �eld n is assumed to be a function of only one variable f which has a speci�c

combination of time t and the spatial coordinate ξ. The function f is de�ned by

an implicit relationship of the form

f = κ(ξ − V t) +G(f) (4.33)

It should be noted that the choice ofG = 0 leads to the well known case wherein one

seeks stationarity in a moving frame. This implicit function is a more generalized

choice and has been made by several authors earlier [125]. Here G is another

function of f . We have then

∂

∂t
=

κV

(1−Gf )

d

df
;

∂

∂ξ
=

κ

(1−Gf )

d

df
(4.34)

Equation (4.23) can then be written as with D̂ = D/2C and de�ning s = (D̂ + 1)

κV

(1−Gf )

d

df

{
κ

(1−Gf )

dn

df

}
+s

κn

(1−Gf )

d

df

{
κ

(1−Gf )

dn

df

}
+

(
κ

1−Gf

)2(
dn

df

)2

= 0

(4.35)

Equation can then further be simpli�ed by canceling the common coe�cient to

obtain :

(sn− V )
d

df

{
1

(1−Gf )

dn

df

}
+

1

(1−Gf )
(
dn

df
)2 = 0 (4.36)

We choose the function G such that 1 − Gf = n − V/s which then reduces the

equation to

snff = (s− 1)
n2
f

(n− V/s)2
(4.37)
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De�ning N = n− V/s we obtain

Nff

Nf

=
s− 1

s

Nf

N
(4.38)

Integrating one obtains

Nf = K̂N
s−1
s (4.39)

For a negative value of D̂ and an s which is less than unity it can be seen that

Nf → ∞ for N → 0 or when n = V/s. Thus at a �nite value of the �eld the

derivative shows a tendency of blowing up which is one of the characteristic features

of the cusp structures. In the next section we investigate the case of arbitrary

amplitude, and show that the complete GHD set of equations also generate singular

forms.

4.4.3 Cusp solutions for arbitrary amplitude

We now show that the full set of GHD equations in the strong coupling limit

ωτm >> 1 can permit cusp solutions. Such a dynamical system is already explained

with Eq. (4.25) with η = η∗/τm. Here also like before we assume that the �eld

depends on the space and time coordinate through a single variable f de�ned in

Eq. (4.33) and using the corresponding transformations for the derivatives given

in Eq. (4.34) we obtain

U
d

df

{
U

1−Gf

}
dU

df
=

d

df

{
1

1−Gf

dU

df

}
(4.40)

Here,
√
ηU = vd − V . We choose the function G so as to have 1− Gf = U . This

reduces the Eq. (4.40) to

U
d2U

df 2 =
d

df

{
1

U

dU

df

}
=

{
−
U2
f

U2
+
Uff

U

}
(4.41)

Here, the su�x f denotes di�erentiation with respect to f . Equation (4.41) can

be rewritten as
Uff

Uf

=
1

(1− U2)

Uf

U
(4.42)
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The integration of Eq. (4.42) leads to the familiar equation, viz., known for per-

mitting cusp solutions
dU

df
=

U√
1− U2

(4.43)

Where the constant of integration has been absorbed in function f as a multipli-

cation factor and sets the scale of the solution. Equation (4.43) is the equation

of a zero total energy e�ective particle moving in a potential energy bowl with

an inverse parabolic form near the origin that blows up at U = ±1. Thus if the

e�ective particle starts from U = 0 with near zero velocity (U ′), it falls towards

U = 1 slowly at �rst and then rapidly, till it reaches the �wall� (singularity at

U = 1) from where it is re�ected back . It takes an in�nite time to climb back to

U = 0 again. The resulting solution is an isolated soliton like solution with a cusp

at the maximum U = 1. The solution showing this property is

U = sech(f +
√
1− U2) (4.44)

This solution is illustrated in Fig 4.4 and shows in�nite derivatives and a cusp

singularity at U = 1 (that is, vd = β +
√

(η∗/τm). The phase speed and the scale

size of these solutions are not directly determined by the maximum amplitude.

The nature of singularity can be explored by expanding the solution around U =

1 and demonstrating that U ′ ≈ f−1/3. These cuspon like solutions are steady

propagating solutions which are singular at a point and are dithering at the wave

breaking amplitude. Physically, such solutions might arise when smooth nonlinear

waves acquire amplitudes close to wave breaking, but because of conservation laws

squeeze the in�nite derivative region to a point with a �nite elastic energy content.

That this is indeed so, can be ascertained from the integral
∫
U ′2df =

∫
U ′dU =∫

UdU/
√
1− U2 = 1 in normalized units. Such �nite energy content singular

solutions may have special stability properties.

4.4.4 Numerical evidence of formation of singular solution

There exist numerical evidence of spontaneous formation of singularities in deriva-

tives in the strong coupling limit. In Fig. 4.5 we show the evolution of a localized

Gaussian pulse through the GHD equations. The development of discontinuities

are evident from the �gure 4.5. Incidentally the evolution through the complete
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Figure 4.4: Form of potential energy �bowl� and zero energy �particle� orbit corresponding
to a cuspon solution.

set shows the tendency of forming piecewise linear form, a characteristic trait of

the HS solutions. A choice of high amplitude sinusoidal perturbation in this limit

yields a train of singular cusp solutions.

4.5 Summary and conclusion

Physical phenomena typically involve observations of smooth analytic �elds in

space. However, there are instances when non - analyticity emerges in the obser-

vation associated with certain �elds and/or their derivatives. One such example

is the observation of cusp structures in variety of contexts. For instance, one ob-

serves cusp formation on the surface of any water body when waves originating
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Figure 4.5: Evolution of localized (Gaussian) pulse with Eq. (4.25) valid for the strongly
coupled dusty plasma. The parameter η∗/τm is chosen to be unity for simulation.

from opposite directions collide or when a high amplitude surface wave hovers

around its wave breaking point. Recently, a number of experimental groups have

reported the formation of cusp structures in the context of dusty plasmas. While

Schwabe et al. [2] have observed such structures on the surface of voids formed

in the dusty plasma system, the wave breaking experiments conducted by Teng

et al. [1] are suggestive of cusp formation in the bulk. Against this backdrop we

report the �rst observations of cusp formation in the 1-D numerical simulation of

both weakly and strongly coupled dusty plasma medium. Large amplitude initial

perturbations are shown to spontaneously develop propagating cusp structures in

dust density and velocity. This shows that not only the cusp structures permitted

by the governing equations but they are also stable and accessible in the context
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of dusty plasma. To illustrate this further we have also analytically shown that

the equations describing these systems permit cusp solutions. Another noteworthy

issue of our investigation are that while the weakly coupled dusty plasma medium

follows the KdV paradigm and admits soliton solutions in the small amplitude

limit, this is not possible for the strongly coupled plasma medium. An altogether

di�erent paradigm of Hunter - Saxton equations are relevant in the strong coupling

regime. The HS equations were earlier invoked in the contexts of director �elds of

the liquid crystal and as the high frequency limit of the Camassa Holm equation

employed for the description of the surface wave breaking in �uids. Here for the

�rst time we have shown its applicability to a viscoelastic medium like a dusty

plasma system.
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They change, they deny, they

contradict- and they call it

growth.

Ayn Rand 5
Kelvin-Helmholtz instability in weakly

coupled dusty plasmas: 2-D studies

In the previous Chapters (3,4), we have carried out 1-D studies of collective

phenomena in weakly and strongly coupled dusty plasma medium where we dis-

cussed the existence, formation and evolution of coherent structures (e.g. solitons,

shocks, cusps etc.) in such systems. The 1-D simulations presented in previous

Chapters constrain the system wherein only longitudinal modes can be excited.

In this Chapter and subsequent Chapters, we will study some nonlinear collective

phenomena in 2-D. This adds another degree of freedom making way to study

collective phenomena where variations along the transverse direction too are nec-

essary. In this Chapter, we extensively explore the Kelvin-Helmholtz instability

in the context of weakly coupled dusty plasmas. The linear and nonlinear (per-

turbative and exact nonlinear simulations) studies carrried out and a comparative

study of growth rate and nonlinear evolution of this sheared �ow instability has

been made with hydrodynamic �uids.

5.1 Introduction

The classical Kelvin-Helmholtz (KH) instability has been extensively investi-

gated in a variety of �uid systems and applied to many physical scenarios ever

since the �rst enunciation of its physical mechanism by Helmholtz in 1868 [67] and

its mathematical formulation by Kelvin in 1871 [66]. While much of the earliest

work is devoted to the excitation of this instability in neutral hydrodynamic �u-
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ids [126,127], the KH instability is also important in plasmas for understanding a

variety of astrophysical phenomena involving sheared plasma �ows [16, 128, 129].

In some of these applications the plasma can also have a signi�cant dust compo-

nent (e.g. in cometary tails, planetary ring systems, plasma torches in industrial

applications etc.) [13,15,18�20] and it is important to study the characteristics of

the KH instability in such a plasma.

Motivated by such considerations, in the present Chapter, we have carried out

a basic investigation to look at the linear stability of the KH mode in a weakly

coupled dusty plasma �uid. In particular, we have looked at the e�ect of compress-

ibility and dispersion due to coupling with dust acoustic waves on the threshold

and growth rate of the instability. While similar e�ects have been studied in the

past in the context of neutral �uids [130] their manifestation in a dusty �uid can be

quite distinct and di�erent. In a dusty plasma compressibility arises through two

mechanisms, namely, due to a �nite dust temperature and also via the interaction

energies of the dust �uid with the electron and ion species. In general the magni-

tude of compressibility depends on the temperature and density of these (electrons

and ions) species. For this reason the variation of any of these parameters (ion

density/dust charge, ion temperature/dust temperature, ion temperature/electron

temperature, dust charge density, etc.) can cause large variations in the com-

pressibility parameter. Thus, the dusty plasma can exhibit behaviour which can

correspond to being totally in the incompressible regime to an extremely compress-

ible one. This can be observed from Table - 5.1, where we show the typical range of

the dust acoustic speed cDA and the �ow velocities and the resultant Mach number

for various systems where dusty plasma is prevalent.

Table 5.1: Flow velocities in Dusty plasmas

Physical Systems cDA Vd0 MA

(mt/sec) (mt/sec)
Lab. Dusty Plasmas ( [4, 16,71,131,132]) 0.02 - 3.16 0.04 - 1 0.4 - 2
Comets and cometary tails ( [14,133]) 0.02 - 10 ∼ 10− 4000 ∼ 1− 400
Saturn Rings( [17,19,109]) 3.1 0.5 - 100 0.15 - 32
Protoplanetary accretion disks( [134]) ∼ 200 ∼ 10000 ∼ 5

Furthermore, the compressible dust perturbations can also be dispersive, which

is quite unlike the sound waves in a neutral hydrodynamic �uid. For a detailed
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characterization of the in�uence of compressibility and dispersion on the KH mode

we have carried out a non-local stability investigation for di�erent shear �ow pro-

�les using both analytic and numerical approaches. Three distinct, simple and

speci�c �ow pro�les, viz., step, piecewise linear and tangent hyperbolic pro�les

have been analysed. For the step/tangent hyperbolic pro�les exact value of the

growth rate have been obtained analytically/numerically respectively. A perturba-

tive scheme for the evaluation of the growth rate and the threshold wave-number

for the excitation of instability in terms of various orders of the compressibility

parameter (Mach number) has been put forth. This scheme has been applied to

the piecewise linear and the tangent hyperbolic cases. It has been shown that

the analytic perturbative approximation is quite good when compressible e�ects

are weak. We have also provided comparisons in suitable limits with the known

results of neutral hydrodynamic �uid, all throughout our analysis, thereby putting

our study in proper perspective. We �nd that the presence of a compressible mode

reduces the growth rate and also diminishes the range of unstable wave-numbers.

The threshold value of the wave-number beyond which the growth rate vanishes, is

smaller in the presence of compressibility. We also �nd that when the dispersive ef-

fects are taken into account, the growth rate of the KH mode reduces further. The

eigen functions of the unstable modes are broader in the presence of compressible

e�ects and dispersion causes further broadening of its shape.

The nonlinear stage of the instability has also been investigated by numerically

simulating the governing set of dusty plasma equations. The role of compress-

ibility on saturation of the instability, formation of vortex structure in saturation

state and process of mergers of vorticity patches have been illustrated by extensive

simulations.

The Chapter is organized as follows. In section 5.2, we present the governing

�uid equations for the weakly coupled dusty plasma system. Section 5.3 con-

tains the linearized equations for the KH instability for a sheared equilibrium �ow

pro�le. In section 5.4 we provide a perturbative treatment to account for e�ects

arising from weak compressibility, on the KH mode. The �rst order perturbative

corrections are then compared with exact results obtained subsequently in section

5.5. In section 5.6, we provide a physical picture of the instability and discuss how

compressibility causes the reduction of the KH growth rate. Section 5.7 contains a

brief description of the numerical procedure adopted for the simulation of the �uid
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equations pertaining to the dusty plasma medium in 2-D. The section also con-

tains the description of results obtained during the linear phase of the instability.

These results essentially validate our code. In section 5.8 the salient observations

from simulation in the nonlinear phase of the instability have been described and

a physical interpretation of the results have been provided. Our results are brie�y

summarized and discussed in the concluding section 5.9.

5.2 Governing equations

The governing equations for a weakly coupled dusty plasma system comprises

of continuity and momentum equations for the dust �uid along with Poisson's

equation as described in Chapter 2. The momentum equation for weakly coupled

dusty plasma system could be obtained from Eq. (2.1) in the limit of τmd/dt << 1.

The normalized form of the momentum equation for this dust �uid system can be

written as: (
∂

∂t
+ ~vd · ∇

)
~vd +

α

nd

∇nd −∇φ = 0 (5.1)

Here, we have considered inviscid dust �uid. The continuity and Poisson's equa-

tions are referred from Eqs. (2.2, 2.3). We do not consider the e�ect of the evolu-

tion of energy and/or temperature in the present work. It should be noted from

Eq. (5.1) that the compressible perturbations can arise both from the ∇nd as well

as ∇φ terms in the equation.

5.3 Equations for linear instability analysis

We linearize the Eqs. (2.2,2.3,5.1) around the equilibrium dust density nd0 and

a sheared dust �ow velocity ~v0 = ŷv0(x) along ŷ which varies with x. Various

speci�c forms of the �ow velocity will be chosen for the analysis later. For the

sake of tractability and simplicity we consider here only 2-D perturbations lying

in the x− y plane (of �ow and the shear direction) for our analysis. The linearized

equations after Fourier analyzing in y and time coordinates can be written as

− iΩn1 + nd0(ikyv1y + v′1x) = 0, (5.2)
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− iΩv1x + αn′
1 − φ′

1 = 0, (5.3)

− iΩv1y + iky(αn1 − φ1) + v1xv
′
0 = 0, (5.4)

φ′′
1 − k2yφ1 = n1 + (µeσe + µi)φ1 (5.5)

Here prime (′) as a superscript denotes a derivative with respect to x ( the coordi-

nate along which the equilibrium velocity is sheared). The subscripts 0 and 1 de-

note the equilibrium and the perturbed quantities respectively and Ω = (ω−kyv0).
Eliminating all �elds in terms of φ1 from the set of Eqs. (5.2,5.3,5.4,5.5) we obtain{

d2

dx2
− k2y

}{
φ1 − α

(
d2

dx2
− k2y − µeσe − µi

)
φ1

}
= Ω2

(
d2

dx2
− k2y − µeσe − µi

)
φ1

− 2kyv
′
0

Ω

d

dx

{
φ1 − α

(
d2

dx2
− k2y − µeσe − µi

)
φ1

}
, (5.6)

which represents the linearized �nal equation for our instability analysis.

A simpli�ed limiting case is when the perturbations are quasineutral. The

quasineutral perturbations essentially stand for those perturbations for which the

left hand side of the Poisson's equation [Eq. (5.5)] can be ignored, i.e. ∇2φ1 ≈ 0.

Thus, for this case there exist a simple relationship

φ1 = −n1/(µeσe + µi) (5.7)

in the linear regime between the scalar potential and the density perturbation. In

the quasineutral limit when we ignore ∇2φ1 it can be shown that the Eq. (5.6) gets

simpli�ed to

n′′
1 − k2yn1 +

2kyn
′
1v

′
0

Ω
+

Ω2

α1

n1 = 0 (5.8)

Here, α1 = α+1/(µeσe + µi) and we have used Eq. (5.7) to express φ1 in terms of

n1. Thus, α1 represents the total e�ect of compressibility arising from �nite dust

temperature as well as interactions due to ion and electron species of the plasma.

It is interesting to note that Eq. (5.8) has two more representations as written

below.

ψ′′ +

{
Ω2

α1

− k2y −
kyv

′′
0

Ω
−

2k2yv
′2
0

Ω2

}
ψ = 0 (5.9)
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This arises when �rst derivative of n1 in Eq. (5.8) is eliminated by using the

transformation ψ = n1/Ω. The other form of the equation is in terms of the

perturbed velocity �eld v1x

kyΩv1x −
{
kyv

′
0v1x + Ωv′1x

ky − Ω2/α1ky

}′

= 0 (5.10)

In fact Eq. (5.10) is the familiar linearized Kelvin - Helmholtz (KH) instability

equation for a neutral compressible �uid [130]. This is expected as in the quasineu-

tral limit the equations for dust �uid should reduce to those of the neutral com-

pressible �uid. The perturbed velocity v1x is related to n1 with the relationship

v1x = −in′
1/Ω. Any of these Eqs. (5.8,5.9,5.10) can be used for the purpose of

evaluating the growth rate and the unstable eigenfunction for a compressible �uid

without dispersive e�ects. The choice of a particular form out of these three equa-

tions is often guided by whichever simpli�es the analysis of any given problem at

hand.

For an incompressible �uid we have 1/MA =
√
α1/V0 = ∞. Here MA is the

Mach number. In this case there exist no density perturbations in the �uid. The

variable n1 of Equation (5.8) in this limit essentially represents the pressure pertur-

bations of the �uid. All these three forms, viz., Eq. (5.8), Eq. (5.9) and Eq. (5.10)

in the limit of α1 → ∞ (for �nite non zero V0) reduce to the familiar incompressible

limit of the linearized KH equation, viz.,(
d2

dx2
− k2y

)
v1x +

kyv
′′
0

Ω
v1x = 0 (5.11)

5.4 Perturbative treatment for compressibility

The value of the KH growth rate and the threshold wave vector for instability

along the periodic �ow direction for the incompressible case ( with α1 = ∞ ) are

well known. The growth rate has a typical bell shaped form as a function of kyε,

where ky is the wavenumber along the �ow direction and ε is the shear width of

the equilibrium �ow. The growth rate is zero at ky = 0, maximizes and then again

falls back to zero at a threshold value of wavenumber ky = kyth. It is observed that

kyth is typically of the order of 1/ε and is exactly = 1/ε for a tangent hyperbolic
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form of the shear velocity.

It would be interesting to see how the compressibility alters the growth rate and

the unstable range of wave numbers. To understand this analytically we employ a

perturbative treatment for weakly compressible cases in this section. We consider

here the case of large α1 and evaluate the role of compressibility by considering a

perturbative expansion in O(1/α1) around the zeroth order known incompressible

result. The problem is thus cast in various orders of ν = 1/α1. We assume that

the eigenvalue and the eigenfunction can be expanded as ω = ω(0) + ω(1) + ..., and

v1x = v = v(0) + v(1) + ... respectively. The superscripts index inside the brackets

represent the various orders of ν the function is dependent upon. We have dropped

the su�x 1x from v1x (representing perturbation from equilibrium shear �ow). The

zeroth order of Eq. (5.10) is

v(0)′′ +

(
−k2y +

kyv
′′
0

Ω(0)

)
v(0) = 0 (5.12)

The �rst order expansion of Eq. (5.10) in 1/α1 is given by the following equation :

v(1)′′ +

(
−k2y +

kyv
′′
0

Ω(0)

)
v(1) − kyv

′′
0

Ω(0)2
ω(1)v(0)

+
1

α1k2yΩ
(0)

{
Ω(0)2(kyv

(0)v′0 + v(0)′Ω(0))
}′

= 0 (5.13)

We multiply Eq. (5.13) by v(0) and integrate over x. For the �rst term the x

di�erentiations are transferred to v(0) from v(1). Using Eq.(5.12) the �rst two

terms then vanish. The remaining equation can then be cast as

ω(1)

∫
v′′0v

(0)2

Ω(0)2
dx =

1

α1k3y

∫
1

Ω(0)

[
Ω(0)2(kyv

′
0v

(0) + Ω(0)v(0)′)
]′
v(0)dx (5.14)

By evaluating the two integrals for the zeroth order wavefunction for speci�c shear

�ow pro�les one can get the value for ω(1). For the step function pro�le the e�ect

of compressibility can be evaluated exactly analytically (this is shown in the next

section). It shows that the growth rate reduces due to compressibility. For other

pro�les the exact result is obtained numerically which also show that the growth

rate reduces due to compressibility. We will show in the section IV when we
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consider speci�c pro�les that perturbative expression for ω(1) from Eq. (5.14) also

shows it to be negative. Furthermore, for weak compressibility the perturbative

expressions are in good agreement with the exact results obtained numerically.

We now obtain the expression for the altered threshold wavenumber ky for

growth, by the �rst order perturbative treatment. To evaluate the threshold we

put ω = 0 and look for the change in the value of ky from its original incompressible

value of k
(0)
y Thus, expanding ky = k

(0)
y + k

(1)
y + ... in this case we have the zeroth

order equation as

v(0)′′ −
(
k(0)2y +

v′′0
v0

)
v(0) = 0 (5.15)

The �rst order equation is

v(1)′′ −
(
k(0)2y +

v′′0
v0

)
v(1) − 2k(0)y k(1)y

− v0
α1

(
v(0)v′′0 − v(0)′′

)
− 2v′0
α1

(
v(0)v′0 − v(0)′v0

)
= 0 (5.16)

We again apply the same technique of multiplying Eq. (5.16) by v(0) and integrat-

ing over x. We transfer the two spatial derivatives from v(1) in the �rst term of

Eq. (5.16) to v(0) and use Eq. (5.15). The contribution from the �rst two terms of

Eq.(5.16) therefore vanishes from the integration. Again the �rst order correction

for ky can be obtained from the following expression :

2k(0)y k(1)y α1

∫
v(0)2dx = −

∫ [
v0v

′′
0v

(0)2 + 2v′20 v
(0)2 − v20v

(0)v(0)′′ − 2v0v
(0)v′0v

(0)′] dx
(5.17)

Simplifying Eqn.(5.17) we get a �nal expression as follows

k(1) = − 1

2k(0)α1

∫∞
−∞

(
v′0v

(0) − v0v
(0)′)2 dx∫∞

−∞ v(0)2dx
(5.18)

Both the integrands of the numerator as well as that of the denominator of

Eq. (5.18) being positive de�nite, it shows that k(1) would be negative. The shows

clearly that the threshold value of the wavenumber decreases in the presence of

compressibility. The integrals in Eq. (5.18) has been evaluated numerically for
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obtaining the value of k(1) for speci�c �ow pro�les. This is discussed in section V.

5.5 Instability analysis for speci�c �ows

!"#$%&'$'' !"#$%&''$$''

()*'

)*'

)+
,*
-./
0'
'

123'

1'

)*

1'

()*'

)*'

)+
,*
-./
0'
'

!"#$%&'!%%%!!"#$%&'$'' !"#$%&'$$''

12(4' 123' 12'4'

567'

587'

Figure 5.1: The equilibrium dust shear velocity pro�les have been shown in the �gure.
The subplot (a) shows the step function shear �ow velocity and (b) represents a piecewise
linear �ow pro�le.

We now try solving the linearized equations Eqs. (5.8,5.9,5.10) for speci�c given

pro�les of the sheared �ow velocity exactly. Often for analytical tractability one

considers simple forms of the equilibrium velocity �ow pro�les. For complicated

shear �ow structure numerical solutions are obtained. Typically, the simplest case

that has often been considered is the case when the �ow velocity has a step function

form about a point say at x = 0. In this case, the velocity is uniform on both sides

of x = 0 but the values di�er by a �nite amount. The form of such a �ow pro�le

has been illustrated in Fig. 5.1(a). In this case the eigenvalue equation turns out to

be homogeneous in the two regions and can be expressed in terms of exponential

functions. However, to obtain the �nal solution the eigenfunctions in the two
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separate regions have to be matched at the location of discontinuity. There are

two matching conditions (the di�erential equation [Eq. (5.8)] being of second order

under the quasineutral assumption) for the �elds. The Eq. (5.8) can be expressed

in three equivalent forms of di�erential equations in terms of variables v1x, n1 and

ψ. The form of two matching conditions in terms of each variables can be written

down as follows:

f1(v1x) = Ωv′1x + kyv
′
0v1x; f2(v1x) =

v1x
Ω

f1(n1) =
n′
1

Ω2
; f2(n1) = n1

f1(ψ) =
ψ′

Ω
− kyv

′
0ψ

Ω2
; f2(ψ) = Ωψ (5.19)

These need to be satis�ed at the location of the discontinuity of the equilibrium

�ow. For the full fourth order di�erential equation [Eq. (5.6)] for which dispersive

e�ects from Poisson's equation have been incorporated four matching conditions

are required. These matching conditions are as follows :

f1(φ1) =
−αφ′′′

1

Ω2
+

(1 + αR)φ
′
1

Ω2
; f2(φ1) = −αφ′′

1 + (1 + αR)φ1

f3(φ1) = αφ
′

1; f4(φ1) = αφ1 (5.20)

where R = k2y + µeσe + µi.

The step velocity pro�le is an extreme case of any �ow pro�le with zero shear

width. In a realistic situation the �ow shear would always have a �nite shear width.

A piecewise linear velocity �ow pro�le as shown in Fig. 5.1(b) takes account of a

�nite shear width through a middle region where the equilibrium �ow varies linearly

with x, thereby connecting the two layers with disparate �ows. The matching

conditions of Eq. (5.19) being valid for the abrupt step function discontinuity,

clearly, also holds for any smoother pro�le, the piecewise linear case being one.

5.5.1 Step pro�le

The equilibrium velocity pro�le is chosen to have a step function form as shown in

Fig. 5.1(a). For this pro�le v0 = −V0 for −∞ < x < 0 (we denote this by Region I)

and v0 = V0 for 0 < x <∞ (Region II). Thus, there is an abrupt jump in the �ow
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at x = 0. The simplicity of the pro�le renders the possibility of exact analytical

evaluation of the growth rate as we would now observe. The linearized equation

takes a simple homogeneous form in the two regions. We employ Eq. (5.8) for n1

for the purpose of analysis here. Denoting the �elds in the two regions by su�x I

and II we have

n′′
1,I,II − k2yn1,I,II +

Ω2
I,II

α1

n1,I,II = 0 (5.21)

The solutions for n1,I,II in the two regions can now be obtained easily and have

the following form:

n1,I = B exp
{√

k2y − Ω2
I/α1x

}
; n1,II = A exp

{
−
√
k2y − Ω2

II/α1x
}

The boundary condition for the solution to vanish at ±∞ has been used. Now,

by employing the matching conditions we seek to obtain the eigenvalue ω. This is

provided by

ω2 + (kyV0)
2 =

(ω2 − (kyV0)
2)2

2k2yα1

(5.22)

The above equation in the limit of α1 → ∞ gives the correct growth rate γ =

iω = kyV0 for the incompressible step function pro�le of the �ow. The growth

rate for the compressible case can be obtained by choosing α1 �nite. Solving the

biquadratic equation for ω, we obtain

ω2 = k2y

[
V 2
0 + α1 ±

√
α2
1 + 4α1V 2

0

]
(5.23)

Expanding the expression for growth rate in powers of 1/α1 we have

ω2 = k2y

[
−V 2

0 +
2V 4

0

α1

]
showing clearly that compressibility reduces the KH growth rate. There exists a

lower threshold on α1, which is the square of dust acoustic speed c2s beyond which

the instability cannot be excited. This threshold condition can be obtained by

demanding that ω2 remain negative for instability, which yields

| V0 |<
√
2α1
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This shows that for instability, the dust acoustic speed in the medium has to be

faster than the �ow velocity. In other words the instability is possible only when

the �ow velocity is subsonic.

In the above derivation we had used quasineutral assumption for simpli�cation.

We now consider the full equation including the e�ect of dispersion arising from

the Poisson's equation. For step �ow pro�le the form of Eq. (5.6) in both regions

can be expressed in terms of �eld variable φ1 with su�x I and II denoting the

respective regions.

−αΦ′′′′

I,II +
(
1 + αR + αk2y − Ω2

I,II/n0

)
Φ

′′

I,II +
(
−k2y + αRk2y +RΩ2

I,II/n0

)
ΦI,II = 0

(5.24)

In the above the perturbed �eld φ1 has been represented by Φ to simplify the

notation as the su�x due to region I and II are also to be incorporated. Now,

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

Ky

ω i

Figure 5.2: Figure shows linear growth for α = 1 for the quasineutral case (dashed line)
and with dispersive correction due to ∇2φ1 (shown by circles). The other parameters are
V0 = 1, µe = 0.1, µi = 1 + µe with step shear �ow pro�le.

choosing appropriate form of exponential solution for Eq. (5.24) so that they vanish

at ±∞ and utilizing the four matching conditions provided by Eq. (5.20) we obtain

a set of four coupled equations relating the coe�cients of the four exponential
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functions. For non - trivial solutions, the determinant of the coe�cient matrix

viz., det ‖ M ‖= 0 should vanish. This condition gives the eigenvalue ω. The

matrix M has the following form:

M =

∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 1 −1

p −q r −s
(−αp2 + 1 + αR) (αq2 − 1− αR) (−αr2 + 1 + αR) (αs2 − 1− αR)

(−αp3/Ω2
+ (αq3/Ω2

− (−αr3/Ω2
+ (αs3/Ω2

−

+(1 + αR)p/Ω2
+) −(1 + αR)q/Ω2

−) +(1 + αR)r/Ω2
+) −(1 + αR)s/Ω2

−)

∣∣∣∣∣∣∣∣∣∣∣∣
Here, the following notations have been used:

Ω± = ω ± kyV0

p =
(
−a+/2 +

√
(a2+ − 4b+)/2

)1/2
q = −

(
−a−/2 +

√
(a2− − 4b−)/2

)1/2
r =

(
−a+/2−

√
(a2+ − 4b+)/2

)1/2
s = −

(
−a−/2−

√
(a2− − 4b−)/2

)1/2
Also the coe�cients a± and b± are

a± = −(1/α)(1 + αR + αk2y − Ω2
±)

b± = −(1/α)(RΩ2
± − k2y − αRk2y)

The roots ω, for above determinant has been calculated numerically. We shown

in Fig. 5.2 the growth rate obtained as a function of ky and for α = 1. A comparison

with the non - dispersive compressible growth rate shown in the same �gure 5.2 for

this range of parameter shows that the dispersive e�ect reduces the growth rate.

The step pro�le, however, is too simplistic and somewhat unrealistic. It shows

that the growth rate increases inde�nitely with increasing value of ky. A realistic

�ow in general will change over some �nite width say ε. When k−1
y becomes

comparable to ε the e�ects due to �nite width may become important. In fact

for the case of incompressible �uid, it has already been shown that the growth
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rate vanishes when kyε ≥ 0.639 for a piecewise linear pro�le and for kyε ≥ 1

for a tangent hyperbolic form of the velocity pro�le [135]. To discern the e�ect

of compressibility on such a limit, as well as to identify any other role that the

compressibility of the �uid may have on the mode, we next carry out analysis for

the two cases of piecewise linear and the smooth tangent hyperbolic pro�les of the

velocity. For these cases it is not possible to obtain the growth rate analytically, we

employ the perturbative scheme and numerical eigen value search for our studies.

5.5.2 Piecewise linear pro�le

The form of the piecewise linear pro�le is shown in Fig. 5.1(b). We have now Region

I and II for −∞ < x < −ε (where v0 = −V0) and ε < x < ∞ (where v0 = V0).

The middle region −ε < x < ε is termed as region III for which v0 = V0x/ε. The

eigenvalue for this system in the incompressible limit which is the zeroth order

expansion result in the compressibility parameter of 1/α1, can be evaluated easily

and is given by the following expression:

ω(0)2 =
1

4

[(
V0
ε

− 2kyV0

)2

− V 2
0

ε2
exp(−4kyε)

]
(5.25)

This expression (Eq. (5.25)) is same as that obtained by Drazin [126] for V0 = ε = 1.

It should be noted that the above expression easily reduces to the result of the

step velocity �ow pro�le in the limit of ε → 0. The zeroth order eigenfunctions

corresponding to Eq. (5.25) are as follows :

v
(0)
I = B exp(kyx)

v
(0)
II = A exp(−kyx)

v
(0)
III = A0 exp(−kyx) +B0 exp(kyx) (5.26)

The relationship between the coe�cients A, B, A0 and B0 are obtained from

matching conditions and they are given by :

B = A0fB = A0

[
1 +

ε

V0

(
2Ω+ − V0

ε

)]
exp (2kyε)
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B0 = A0fB0 =
εA0

V0

[
2Ω+ − V0

ε

]
exp (2kyε)

A = A0fA = A0

[
1 +

ε

V0

(
2Ω+ − V0

ε

)
exp (2kyε)

]
This completely determines the eigenfunction in the zeroth order.

To evaluate the correction in the threshold value of the wavevector due to

compressibility we substitute ω = 0 in the above expressions. The coe�cients of

the zeroth order wavefunction fB, fA0 and fB0 in the limit of ω = 0 are then related

as:

f̃B = [1 + (2k0ε− 1)] exp (2k0ε)

˜fB0 = (2k0ε− 1) exp (2k0ε)

f̃B = 1 + (2k0ε− 1) exp (4k0ε)

Using these relationships the numerical value for k1 from Eq. (5.18) for α1 = 50

and ε = 0.5, turns out to be k(1) = −0.5976 and k(1)ε = −0.2988. Thus, the

new threshold on the wavenumber for these compressibility parameters is kyth =

(0.639 − 0.2988)/ε = 0.3402/0.5 = 0.6804. It should be noted that for this value

of α1 = 50, the second order corrections are of order O(k(1)/k(0))2 ∼ 0.2 which

is quite high. Since the exact value can not be evaluated for the piecewise linear

pro�le we are in no position to judge the accuracy of the perturbative treatment

and to ascertain upto what α1 the perturbative treatment would work �ne. In

the next section we carry out the analysis for a smooth tangent hyperbolic pro�le.

For this particular pro�le the role of compressibility can be exactly determined

by evaluating the eigenvalue and the eigenfunction for the Eqs. (5.2,5.3,5.4,5.5)

numerically. We then compare these results with our perturbative analysis.

5.5.3 Tangent hyperbolic pro�le

We now choose a smoothly varying equilibrium pro�le of the form of a tangent

hyperbolic function v0(x) = V0 tanh(x/ε) and study the linear problem de�ned by

the complete set of Eqs. (5.2,5.3,5.4,5.5) by solving it numerically. This has two

objectives, we are able to consider the e�ects of compressibility non perturbatively,

thereby checking the conclusions of a perturbative treatment presented earlier. The

second objective is to understand the role of∇2φ1 on the instability. In the presence
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Figure 5.3: The plot of γ/V0 (where γ is the linear growth rate) as a function of kyε
has been shown for a tangent hyperbolic shear �ow pro�le. In subplot (a) the solid line
corresponds to the incompressible case MA = 0 (α = ∞), the small dots and the stars
represent the exact and the perturbative values respectively for MA = 0.158. Subplot
(b) solid line again shows the incompressible case and the dots and triangles are the
exact and perturbative values for MA = 0.7. Subplot (c) is for MA = 0.5 for which the
solid circles and the hollow circles correspond to quasineutral and the dispersive cases.
Subplot (d) shows a comparison of the threshold wavenumber evaluated exactly (∗) and
by perturbative scheme (◦) as a function of 1/MA.
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of this term the equations are fairly cumbersome to make any analytical progress,

hence this e�ect is investigated numerically with the help of a smooth �ow pro�le.

For the numerical scheme, we use the linearized Poisson's equation Eq. (5.5) to

express n1 in terms of φ1 and its derivatives. The set of Eqs. (5.2,5.3,5.4) are then

discretized in x space. Eigenvalue is then obtained by the standard routines of

Matrix eigenvalue evaluation.

In Fig. 5.3(a), we show a comparison between the growth rate as a function

of kyε for the incompressible α = ∞ and the compressible α = 1000 cases (solid

lines and solid circles respectively). Clearly, the growth rate diminishes in the

presence of compressible perturbations. We have also shown the estimates obtained

from the �rst order perturbation treatment by stars for some particular values

of the wavenumber in the �gure. This has been shown for points around the

maximum growth rate where ω(0) being large the perturbative treatment would

hold. For one typical value of kyε (say = 0.4333 ) the incompressible growth rate

is ω(0) = i1.896, the exact compressible growth rate ω = i1.847, thereby implying

that ω(1) = i(1.896 − 1.847) = i0.05. The ratio, ω(1)/ω(0) ≈ 0.02 is small and the

second order corrections are of the order of 10−4 which can be ignored. Thus, the

�rst order corrections work �ne for this high value of α. This is the reason that

the perturbative treatment provides a very good agreement for this particular case

as the �gure shows.

In Fig. 5.3(b) we have shown a plot for the case when the value of α = 50. In this

case the e�ect of compressibility is not weak to warrant a perturbative analysis.

This can be observed by comparing the two exact results obtained numerically,

viz., the incompressible (solid line) and the compressible (circles) cases. They

di�er signi�cantly. Clearly, the second order terms, e.g. O(ω1/ω0)
2 would be

signi�cant for this case, which has been ignored in our perturbative treatment. As

expected, the estimates obtained from our �rst order perturbative analysis shown

by triangles in the Fig. 5.3(b) are also not close to the exact numerically obtained

values for the compressible case denoted by circles. For this case we had also

evaluated the exact growth rate with the dispersive corrections through ∇2φ. The

dispersion, however, does not seem to play any signi�cant role for this particular

value of α. The growth rate was found to exactly overlap with the quasineutral

plots denoted by circles in Fig. 5.3(b).

At higher compressibility, viz., α = 1 the di�erences between the dispersive and
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non - dispersive cases start showing up. In Fig. 5.3(c) the plots show a comparison

of growth rates for a quasineutral non dispersive case (solid circles) with that

obtained by incorporating dispersive e�ects for α = 1. In this strongly compressible

case, the e�ect of dispersion is clearly evident. The growth rate shows reduction

due to dispersion at higher wavenumbers. This e�ects the threshold wavenumber of

the instability which gets considerably reduced in the presence of dispersion. The
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Figure 5.4: Plot of the eigenvector v1x as a function of x has been shown. The subplot
(a) is for ky = 0.5334. the solid, dot-dashed and dashed lines represent α = 50, α = 100
and α = ∞ respectively. Subplot (b) shows the eigenfunctions for the maximally growing
mode for α = 50, α = 100 and α = ∞ by solid, dot- dash and dahsed lines respectively.

exact results clearly show that compressibility reduces the threshold wavenumber

for instability and dispersion at higher compressibility further limits the unstable

domain. We now provide a comparison with the exact threshold wavenumber with

that evaluated from our perturbative analysis presented in section IV. This has
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been shown in the plot of Fig. 5.3(d). The symbol asterix(∗) and circles(◦) denote
the exact and perturbative evaluation of kyth. The perturbative result improves

with increasing value of α. These results are for ε = 0.5 and it should be observed

that for higher α values the kyth slowly asymptotes towards the incompressible

limit of 1/ε.

We now study the properties of the eigenfunctions of the unstable KH mode for

the various cases. The solid, dot dashed and dashed lines are the unstable eigen

modes for α = 50, α = 100 and the α = ∞ (incompressible) respectively in Fig. 5.4.

While the plots in Fig. 5.4(a) correspond for a speci�c wavenumber value of ky =

0.5333, in Fig. 5.4(b) the maximally unstable eigen mode has been plotted. It

should be noted that the eigenfunctions have a double humped form. The KH mode

is essentially driven by the second derivative of the equilibrium shear �ow pro�le.

The second derivative maximizes at two locations in the tangent hyperbolic shear

�ow. It is at these locations that the unstable KH eigen mode also maximizes. The

comparison of various α values clearly illustrates that compressibility broadens the

eigen mode form. This behaviour of the eigenfunction can be readily understood

from the analytic expression of the eigenfunction that has been obtained for the

step velocity pro�le in Eq. (5.21). The slow decay of the exponential along the

shear direction x in the presence of �nite α1 testi�es to the broader wave functions

for compressible cases.

In Fig. 5.5, we provide a comparison of the eigenfunction for the compressible

quasineutral case with the one having contribution from ∇2φ1 and thereby having

dispersive contributions. We observe that the eigenfunctions get even more broader

when dispersion is taken into account.

5.6 Physical interpretation

The process of KH instability can be understood from the schematic cartoon pre-

sented in Fig. 5.6. The equilibrium dust �ow velocity ~v0 has a step pro�le and is

depicted by the arrows pointing along ±V0 in the three subplots. This �ow corre-

sponds to a vortex sheet denoted by the thin solid (black) line in the �gure. The

equilibrium vorticity ~Ω0 = ∇× ~v0 points inside the plane of the paper.
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Figure 5.5: Plot of eigenfunction v1x as a function of x for the quasineutral case (solid
line) and the one with dispersive corrections arising from ∇2φ1 (dashed lines) for α = 1
and ky = 1.

The curl of the inviscid dust momentum equation (Eq. 5.1) yields the following

evolution equation for the vorticity ~Ω = ∇× ~v

∂

∂t
~Ω + ~v · ∇~Ω− ~Ω · ∇~v = 0. (5.27)

Similarly, taking the divergence one obtains

∂

∂t
∇ · ~v = ~Ω · ~Ω− ~v · ∇ × ~Ω +∇2

(
φ− v2

2

)
−∇ · ᾱ∇n. (5.28)

Here, ᾱ = (α/n). For the 2-D case considered by us one would have ~Ω ·∇~v = 0. In

addition if the system is incompressible we have ∇ · ~v = 0 for all times. Thus, for

such a case the right hand side of Eq. (5.28) is balanced for all times. It is clear

from Eq. (5.27) that for the 2-D incompressible case the vorticity gets convected

by the �ow velocity.

The perturbed vortex sheet has been shown by the curve depicted in the form of

a ribbon with segments A−B−C−D−E identi�ed in the �gure 5.6. The perturbed

velocity disturbance shown in the subplot(a) of Fig. 5.6 has an associated perturbed

84



Chapter 5. Kelvin-Helmholtz instability in weakly coupled dusty plasmas: 2-D
studies

vorticity which enhances and diminishes the equilibrium vorticity at locations B

and D respectively. The equilibrium �ow velocity has a con�guration such that it

brings the vorticity along A to C nearer and extends it from C to E as illustrated

in the subplot(b) of the Fig. 5.6. When the vorticity patch between A and C

are brought closer it further enhances the vorticity around B, thereby setting up

an instability process. This is the basis of the conventional KH mode instability

process. For the compressible case due to the additional ∇ · ~v dependent term the

vorticity is not tied to the �uid �ow. As the �ow tries to bring the vorticity patches

along the segment A − B − C nearer, the compressibility e�ects come into play.

The divergence in the �ow acquires a �nite value in this case (even if it were zero

to begin with) and acoustic perturbations get excited as has been schematically

shown in subplot(c) of the Figure. This essentially inhibits the process of bringing

the segment A−B −C closer, thereby reducing the growth rate of the KH mode.

It should also be noted that if the time scale of the acoustic perturbation is similar

and/or faster than the growth period the �ow would never be able to bring the

segments A − B − C closer and/or move the segments C − D − E farther away.

In this case then the instability would get totally suppressed. The mathematical

analysis essentially conveys this physical mechanism for the stabilization of the KH

mode in the presence of compressible perturbations.

We also wish to point out that the KH instability is related to the convection

of the vorticity by the �uid �ow velocity. Thus, the vorticity merely re-arranges

spatially in the 2-D incompressible case. In the presence of compressibility and/or

three dimensional perturbations, the vorticity is not carried by the �uid �ow but

evolves due to additional terms as well. The presence of compressible acoustic

perturbations causes the the growth rate to get reduced, as some energy is spent on

its excitation. Any 3-D perturbation would have to bend the equilibrium vorticity

lines in the third dimension instead of merely convecting the vorticity lines in the

2-D plane. Since the bending of vorticity lines would require additional straining,

this would reduce the growth rate of the KH mode. We, therefore, feel that the

maximum growth rate is for those modes which have variations only in the 2-D

plane of shear and �ow. Next, we investigate the process of nonlinear saturation of

the KH mode by carrying out nonlinear simulations. The details of the numerical

studies are presented in the subsequent sections.
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Figure 5.6: A schematic cartoon illustrating the physical mechanism of the KH instability.
The equilibrium �ow has a step pro�le and is represented by the arrows pointing at ±V0.
The associated vortcity sheet is shown by the horizontal solid line. This equilibrium
vorticity is directed into the plane of paper. The cross and dot indicate the perturbed
vorticity directed into and out of plane of paper respectively. Subplot (a) shows the initial
sinusoidal perturbation in the �ow due to which the equilibrium vorticity gets enhanced
over locations B and reduced over locations D. Subplot(b) and (c) show the development
of the KH instability schematically for the incompressible and compressible cases. The
physical distinction between the two have been described in section VI in detail.
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5.7 Numerical scheme and validation of the code

The governing equations for the dust �uid are simulated numerically in two di-

mensional x − y plane for the purpose of nonlinear studies. The continuity and

the momentum equations (2.2,5.1) have been solved with the help of �ux corrected

scheme of Boris et. al. [107]. A time splitting method is adopted to integrate

along the two directions. At each time step the scalar potential φ is determined

from the Poisson equation (2.3). It should be noted that the Poisson equation is a

nonlinear equation in φ here, as the right hand side has an explicit dependence on

φ. To obtain φ from Eq. (2.3) we therefore employ a successive relaxation scheme

at each time step. A converged solution is fed at each time step in Eq. (5.1) for

the purpose of evolution.

We choose an equilibrium sheared �ow con�guration for the dust �uid de�ned

by a �ow of the form

~v0 = V0 tanh(x/ε)ŷ (5.29)

along the ŷ direction. The equilibrium velocity pro�le thus has a tangent hyperbolic

form and its shear width is de�ned by the value of ε. At any time the �ow velocity

of the dust �uid in 2-D is then given by

~v(x, y, t) = ~v0 + ~v1(x, y, t) = V0 tanh(
x

ε
)ŷ + ~v1(x, y, t) (5.30)

which is the sum of the equilibrium �ow velocity ~v0 and the perturbed �ow velocity

~v1(x, y, t).

In the numerical simulation the instability will manifest as the growth of the

deviation of the velocity �eld ~v1 from the equilibrium �ow pro�le. In general, for

an unstable system ~v1 would automatically emerge in simulation from numerical

noise. However, such a process would take a long time. To hasten the development

of the �uctuations to a level where the perturbation could be easily distinguished

from the equilibrium, we choose an initial �nite but small amplitude (compared to

the equilibrium amplitude) of ~v1. The two components of ~v1 have been chosen in
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our simulations here to have the following form at t = 0

vx1 = V1ky cos(kypy) exp
(
−x2/σ2

)
vy1 = V1

(
2x

σ2

)
sin(kypy) exp

(
−x2/σ2

)
(5.31)

Here, 1/kyp and σ de�ne the length scales of the chosen initial velocity perturba-

tion. It should be noted that with this choice, the initial velocity pro�le satis�es the

incompressible condition, viz., ∇.~v = 0. For compressible dusty plasma medium,

imposing such an initial condition is, however, not essential. We have, however,

chosen such initial condition to have it identical to the case of neutral hydrody-

namic case with which comparisons would be made in the present Chapter. Here,

V1 is the amplitude of initial perturbation and σ is a parameter which de�nes the

extent of initial perturbation around the shear width of the equilibrium �ow. To

con�ne it within a shear width one makes a choice of σ ≤ ε.

As time progresses, the perturbed velocity grows exponentially. The perturbed

kinetic energy associated with the perturbed velocity �eld is given by the expression

Ẽ =

∫ (
v2x1 + v2y1

)
dxdy∫

dxdy
(5.32)

The tracking of this quantity as a function of time provides a good measure of the

growth of the instability and its saturation in the nonlinear regime. We show the

evolution of Ẽ as a function of time in the semilog plot in Fig. 5.7 for four di�erent

cases.

In subplot(a) and (b) we have shown the result of the studies for the case α = ∞
and α = 50 respectively, V0 = 5 for both the cases. All the other parameters in this

case are identical and have been provided in the �gure caption (Fig. 5.7). In both

cases the perturbed energy initially grows exponentially as illustrated by the linear

behaviour of the energy evolution in the semilog plots of the Fig. 5.7. The slope

of the curve in this regime (for example, Fig. 5.7 (a)) = 3.45 matches closely with

twice the value of the growth rate = 1.896 corresponding to the maximally growing

mode of the KH instability. The dotted line drawn alongside represents the curve

with slope twice the analytical growth rate of the fastest growing KH mode for the
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system Subplot (c) and (d) we have chosen α = 1 where e�ects of dispersion start

playing role for the shorter scales permitted by the simulation box size. The results

in subplot (c) show the case for which the e�ect of dispersion was deliberately

dropped. Instead of using Poisson's equation one assumed quasineutrality here.

The subplot(d) on the other hand retains the e�ect of dispersion as the Poisson

equation is used. For (c) and (d) we had also chosen the value of V0 = 1. It should

be noted that while the linear growth rate scales with V0, the perturbed energy

for the smaller choice of V0 saturates at a smaller value. This is reasonable as the

nonlinear e�ects sets in when the perturbed velocity starts becoming comparable

to the value of the equilibrium �ow velocity.

5.8 Nonlinear phase of the KH instability

After the initial exponential rise, the perturbed energy ultimately saturates. This

happens typically when the perturbed velocity �elds achieve amplitudes which are

comparable to equilibrium values. We now present our observations pertaining to

this nonlinear phase of the instability.

The evolution of power in perturbed velocity �eld for various cases have been

shown in Fig. 5.7. The description has been provided in the �gure caption. In

all these cases a distinct oscillation are observed in the nonlinear phase of the

evolution. Furthermore, a comparison of subplot(a) and (b) shows that the ampli-

tudes of the oscillations are more pronounced in the compressible case than that

of the incompressible case. Similarly, a comparison of subplot(c) and (d) shows

that dispersive e�ects have more pronounced amplitude of oscillations. In addition

to these reversible oscillations, the plots also show that at a later stage an irre-

versible increase in the power of perturbed velocity occurs. This has been shown

by encircling the region in all the subplots of Fig. 5.7. Thus, the salient features

during the nonlinear phase are (i) the reversible oscillations in the power of per-

turbed velocity, the amplitude of which gets pronounced for the compressible and

dispersive cases and (iii) the irreversible increase of the saturation level resulting

in an observation of second saturation regime at a later time in all these plots.

We will provide an interpretation for these observations shortly. The snapshots of

vorticity contours have been shown in Fig. 5.8 and Fig. 5.9 for the incompressible
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Figure 5.7: The evolution of log(E) (Eq. (5.32)) with time has been shown. The straight
segment represents the linear growth of the instability. The dashed line alongside has been
plotted for comparison and has twice the slope of the exact analytical value of maximally
growing mode mentioned for each cases below. The curve in all the subplots later saturate
corresponding to the nonlinear regime of the instability. In addition reversible oscillations
and a second phase of growth and subsequent saturation of E at a higher level (Shown by
the encircled region) at later time is also observed in all the cases. Subplot (a) shows the
evolution for incompressible case with MA = 0.0, (α = ∞), V0 = 5, the analytical growth
rate for this case is = 1.896 and the growth rate evaluated from the simulation is = 3.45.
Subplot (b) shows the evolution for compressible case with MA = 0.7, (α = 50), V0 = 5,
the analytical growth rate for this case is = 1.05 and the growth rate evaluated from
the simulation is = 1.9477. Subplot (c) and (d) compare the quasineutral and dispersive
cases respectively for evolution of log(E) for which (α = 1), V0 = 1. For quasineutral case
(c), the analytical growth rate for this case is = 0.3063 and the growth rate evaluated
from the simulation is = 0.5043. While for dispersive case (d), the analytical growth rate
for this case is = 0.2432 and the growth rate evaluated from the simulation is = 0.4165.
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Figure 5.8: The various subplots show the vorticity contours at various times obtained
from numerical simulation of the incompressible �uid system. At t = 3.404 the �ow is
in the linear growth regime of the KH instability, at t = 15.77 the system is in the �rst
saturated nonlinear regime, at t = 27.47 the vortices have just started to merge.

case. While in Fig. 5.8, we have shown the snapshots pertaining to the period of

linear growth regime and when the power in perturbed �ow saturates at the �rst

lower level, the plots in Fig. 5.9 on the other hand correspond to the time when the

power in perturbed �ow velocity shows irreversible rise and leading subsequently

to the second level of saturation. In Fig. 5.10 and Fig. 5.11, the snapshots similarly

correspond to the compressible, dispersive case. From these snapshots it is clear

that the KH mode initially develops as a perturbation around the shear �ow re-
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Figure 5.9: The evolution of vorticity contours for the incompressible case for times
when the two distinct vorticity patches are about to merge t = 29.89, and at other times
t = 34.30, 36.50, 38.71 the vortex has already merged and the various stages of its rotation
has been depicted.

gion. The maximally growing mode permissible by the system is observed during

the linear phase. For instance in the second subplot of Fig. 5.8 the maximally

growing mode permissible for a box size of Ly = 20 corresponds to ky = 0.63. This

is what develops initially as can be seen from the subplot at t = 3.404 of Fig. 5.8.

This time corresponds to the linear growth period of the instability as can be ob-

served from the energy evolution shown in Fig.5.7 for this case. Two modes of this

wavenumber get accommodated in the box size, hence two structures develop later
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(subplot at time t = 15.77, when the energy shows �rst saturation regime). We

note that for this incompressible case the structure during the saturation regime

(e.g. from time t = 6 to t = 26, the �rst saturation regime of the nonlinear phase)

is essentially isotropic.

In Fig. 5.9, we have plotted the stages where the two isotropic structures begin

to coalesce and ultimately merge with each other. The time corresponding to the

merging process matches with the irreversible increase of perturbed energy (see

Fig. 5.7). The process of merging for the incompressible case can be understood

by invoking the existence of the second enstrophy (mean square vorticity) invari-

ant in addition to the energy invariant for the system, which promotes the inverse

cascade of �ow structures. After the merging process the structure remains some-

what anisotropic. The subplot (a) of Fig. 5.7 for this time regime shows somewhat

pronounced oscillations. We have observed that at a later stage as the structure

isotropizes the amplitude of the oscillations also become weak. For the compress-

ible dispersive case, the vorticity contours have been shown in the plot of Fig. 5.10

and Fig. 5.11. Here, again in the linear regime the most unstable mode permissible

with the simulation box size, namely ky = 0.94 appears. For this case Ly = 20,

same as before. Thus, three modes develop and ultimately form three distinct vor-

tex structures. In this case, we note, however, that the three vorticity patches that

develop are anisotropic. Thus, as they rotate they generate reversible oscillations

in the perturbed velocity power. These structures (even though they correspond to

compressible dispersive simulations for which the second enstrophy invariant does

not exist) also coalesce and show mergers. The merging process in this case also

leads to an irreversible increase in E. The reversible oscillations of E correspond to

the rotation of vorticity patches. The rotation of the asymmetrical vortex patches

generates the reversible oscillations in E, with minima coinciding with the instant

when the longer axis of the patch is aligned along the �ow direction and the max-

ima when it is aligned orthogonal to �ow, along the shear direction. Thus, higher

the anisotropy of the vortex patch, higher is the amplitude of oscillation. From the

snapshots of vorticity contours it is clear that the vorticity patches get distinctly

anisotropic as compressibility and/or dispersive e�ects increase. We would delve

into the reason behind this shortly.

We now re�ect upon the mechanism of the nonlinear saturation of the KH

instability. Once the perturbed velocity reaches a level in which it becomes com-
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Figure 5.10: The various subplots show the vorticity contours at di�erent times obtained
from numerical simulation of compressible dust �uid. The subplot at t = 14.85 shows
the linear regime of evolution, while the anisotropy of vortex structures in �ow direction
(y-axis) and direction of �ow discontinuity is shown at times t = 24.999 and 34.226.

parable to the order of the original equilibrium �ow, it alters the equilibrium shear

con�guration itself. The new sheared �ow pro�le can be observed by averaging

the ŷ component of the velocity over y coordinate. Thus, the altered sheared pro-

�le is v̄y =
∫
vydy/Ly. The e�ective shear width of this average �ow, viz., εeff

is observed to get broader with time in comparison to ε, the shear width of the

original �ow pro�le at t = 0. When the instability saturates (as evidenced from the

evolution of E) the e�ective shear width εeff also stabilizes at a particular value
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Figure 5.11: The subplots show the evolution of vorticity contours for compressible and
dispersive dust �uid with parameters same as in Fig. 5.10. The subplot at t = 54.191
shows the start of merger of vortices while the vortex coalescing is observed at advance
times t = 69.393 and 81.899.

( broader than ε). In the nonlinear phase the εeff , acts as the shear width of the

modi�ed pro�le and decides the further course of evolution. In Fig. 5.12 (a) and

(b) we have shown the modi�ed average pro�le of v̄y for the cases corresponding

to those depicted for E evolution in subplots (a) and (b) of Fig. 5.7 respectively.

These velocity pro�les have been shown in Figs. 5.12(a,b) for three di�erent times

(i) t = 0 (original pro�le depicted by solid lines), (ii) t = 9.626 (corresponding to

�rst saturated regime of perturbed energy shown by dash lines) and (ii) t = 34.303
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(the pro�le in the second saturated regime shown by dash dot lines). An e�ective

shear width was obtained by �tting these pro�les to a tangent hyperbolic form.

At t = 9.626, the shear width are εeff = εi1 = 1.2 and εeff = εc1 = 0.9, here the

su�x i and c correspond to incompressible and compressible cases respectively.

Similarly, the width at t = 34.303 are εeff = εi2 = 2.4 and εeff = εc2 = 1.8 for the

two cases.

Now, as mentioned before the broadend shear pro�le decides the future course

of action. This pro�le can be unstable only if there exists a k < A/εeff permitted

by the simulation box. This relation with A = 1 for the incompressible �ow

and A < 1 (for α = 50, it can be seen from Fig. 5.3 that A = 0.72) for the

compressible case decides the threshold wave number for the instability (as the

linear growth rate plots of Fig. 5.3(b) for the two cases shows). Clearly, then for

similar simulation box sizes and hence similar permissible range of k the εeff for

the compressible case at saturation would be less compared to the e�ective shear

width for the incompressible simulations. This is indeed what the plots of Fig. 5.12

illustrates. At t = 9.626 the perturbation has maximum power in a mode number

of 2, i.e. k2 = 2 × 2π/Ly = 0.63 (two wavelengths in the simulation box). This

mode is stable according to the threshold criteria for both the incompressible and

compressible cases for their respective shear widths of εi1 and εc1. The perturbed

energy, therefore, remains at a stationary level at k2 in the �rst saturation regime.

However, there is another scale k1 = 2π/Ly = 0.314 (longest scale) which is also

permitted by the simulation box and is unstable for the shear width εi,c1 of the

altered pro�le of the �rst stage. For this scale, the calculation shows that k1εi1 =

0.3768 < 1 for the incompressible case and k1εc1 = 0.2826 < A for the compressible

case. This longest scale mode which is susceptible to instability then develops

from the background and is ultimately responsible for causing the merger of the

two vorticities producing an irreversible jump in the energy. After this merger the

respective εeff increases further as we have already noted and acquires a value such

that even the k1 is beyond the threshold of the unstable wavelength domain. Since,

no permissible modes of the system are unstable anymore the system relaxes to a

�nal saturated state.

The above description also provides an explanation for the underlying reason

for observing more prominent reversible oscillations in energy when compressibility

and dispersive e�ects are added. The vorticity patches, (essentially representing
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the perturbation scales) typically have the scale of k−1
y along the �ow direction and

εeff in the shear direction in the nonlinear saturated state. For the incompressible

hydrodynamic case the two scales are related by the condition of kyεeff = 1,

implying that the vortex pattern is symmetrical in this case. For the compressible

and dispersive cases, however, the two dimensions of the vortex patch at a saturated

state are related by the condition of kyεeff = A < 1 and are hence asymmetric.

The numerical simulation yields the dimension of the vorticity patches which are

very closely related by this theoretical condition. This explains why the reversible

oscillations get pronounced with increasing compressibility and dispersion.
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Figure 5.12: The subplots (a) and (b) show the evolution of the average pro�le v̄y =∫
vydy/Ly for the incompressible and the compressible cases respectively. The solid,

dashed and the dash dot plots show the pro�le at t = 0 (original), t = 9.626 (�rst
saturation regime) and t = 34.303 (second saturated regime).Their respective �tted shear
width also shown by horizontal lines with respective line styles(i.e. solid, dashed and the
dash dot lines for t = 0, t = 9.626 and t = 34.303 respectively).

97



Chapter 5. Kelvin-Helmholtz instability in weakly coupled dusty plasmas: 2-D
studies

5.9 Summary and conclusion

A weakly coupled dusty plasma system behaves like a �uid which di�ers from the

neutral hydrodynamic �uid in certain ways. The dust �uid can have a very strong

compressible nature. The compressibility arises in this case not merely from ther-

mal e�ects but also due to its interaction with electron and ion charged species.

Furthermore, unlike the neutral �uid it can support dispersive compressible per-

turbations. Keeping these features in view, a prominent �uid instability, namely

the Kelvin - Helmholtz mode has been studied for the weakly coupled dusty plasma

system in both linear and nonlinear regimes.

A detailed characterization of the instability in the presence of weak and strong

compressibility as well as dispersion has been carried out in this Chapter. The be-

haviour of the KH mode has been investigated both analytically and by the help

of numerics for exact eigenvalue evaluation for various shear �ow pro�les. The

studies point out that compressibility has a stabilizing role on the KH mode. The

dispersion e�ect becomes signi�cant only when the �uid is highly compressible.

Furthermore, the dispersion is observed to further stabilize the unstable modes,

typically at higher wavenumber domain. We have also provided a �rst order per-

turbative calculation for weakly compressible cases. The perturbative evaluation

of the change in growth rate and the altered threshold wavenumber matches very

well with the exact results obtained numerically.

The nonlinear studies have also been carried out by simulating the governing

equations numerically. Various distinctive characteristic features in the nonlin-

ear regime associated with compressible and dispersive perturbations have been

observed and identi�ed. A physical interpretation of the results have also been

provided for its understanding. In short the simulations con�rm the character-

istics analytical linear growth rate features of the instability. The reduction in

growth rate in the presence of compressible and dispersive perturbations have

been con�rmed through numerical simulations results as well. The presence of

compressibility and dispersion also reduces the range of the unstable wave num-

bers. We have shown that this introduces interesting characteristic features during

the nonlinear phase. The e�ective shear pro�le in the saturated state of the KH

instability shows a weaker broadening for the compressible and dispersive cases

as compared to the incompressible �uid. Furthermore, our simulations show that
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the vortex merging process, reminiscent of 2-D inverse cascade of energy spectrum

for systems preserving energy and enstrophy invariants, is preserved even for the

compressible dusty plasma medium. This leads to a coherent nonlinear saturated

state in 2-D.
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6
Kelvin-Helmholtz instability in strongly

coupled dusty plasmas: 2-D studies

In the previous Chapter 5, we have provided a detailed description about the

linear and nonlinear aspects of KH instability in weakly coupled dusty plasma

medium. But, as we have mentioned earlier that due to high charge of the dust

species, it can be easily found in the strongly coupled regime. Here, in this Chapter,

we have employed the generalized hydrodynamic description of dusty plasmas to

include the the e�ect of strong coupling on the sheared �ows in such systems.

In the presence of strong coupling, we report the existence of a local instability

along with KH instability in strongly coupled dusty plasma medium. We have

also observed the phenomenon of recurrence of instability due to competition of

strong coupling and compressibility of medium. Apart from this, we have provided

a criteria for growth of KH instability in such system.

6.1 Introduction

Plasma can often be found in strongly coupled regime, which is de�ned by the

condition of having the inter particle potential energy being comparable or exceed-

ing the thermal kinetic energy of the particles. This condition can be expressed in

terms of coupling parameter Γ for strongly coupled plasmas [28]. The strongly cou-

pled plasma medium have invoked considerable research interest due to the novel

features associated with this state [9,11] and its occurrence in a variety of realistic

situations. The normal electron - ion plasma can be in a strong coupling regime
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when cooled by laser radiation in electrostatic traps and cyclotrons [136, 137].

They tend to crystallize and form �Coulomb crystals as well as liquids" [138]. Fur-

thermore, the crystallization of electrons at 2-D Helium and Hydrogen surfaces

are other examples of such a state [139]. While these experiments require fairly

complicated apparatus, it is rather easy to produce a dusty plasma medium in

strongly coupled state in laboratory. This is so as the inter particle separation is

small and each of the dust particles can acquire a large number of electrons to

be in a highly charged state, e.g. ( 104 − 106) electronic charges. A number of

microgravity and gravity experiments show dust crystallizations in the strongly

coupled limit [26,27,81].

Normally, the coupling parameter Γ remains well below unity for most of high

temperature plasmas. For instance, for Z ∼ 1, a plasma at a temperature of 106K

can even at a high density of the order of 1026cm−3 would be in a weakly coupled

regime with the coupling parameter below unity. This is why only either high

density cold plasmas or dusty plasmas with very high charge on dust particles can

ful�ll the condition of Γ ≥ 1 [28]. As dusty plasmas can be found in the strong

coupling regime even at low densities, it provides one with a unique opportunity

to investigate the behavior of a strongly coupled plasma medium over the phase

domains right from gaseous to liquid to that of solid.

The weakly coupled dusty plasmas (Γ < 1) can be easily treated like a �uid.

However, in the very strong coupling limit where crystallization occurs, the �uid

model is clearly not an adequate description. There is, however, an intermediate

regime of the coulomb coupling parameter in which the the dusty plasma exhibits

properties which are intermediate to �uid and solid like behavior. This is a rather

interesting phase, as in this case the medium behaves like a visco-elastic system [99].

The particles are not rigidly �xed at any locations like in a solid medium. They

can wander around, but retain a certain memory of their dynamics. The visco -

elastic medium is often depicted in terms of a Generalized Hydrodynamic (GHD)

model [59]. In the context of dusty plasma it was adopted by Kaw et al. and was

found to provide a good description for the transverse shear waves supported by

the strongly coupled dusty plasma medium [23,77].

The dusty plasma medium is often observed with signi�cant amount of sheared

�ows, for instance in cometary tails, protoplanetary disks, etc. In some of these

cases the medium can be in a strongly coupled state. It is well known that shear
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�ows are susceptible to the well known �uid Kelvin - Helmholtz (KH) instability

[126, 127]. We had in our recent studies shown the e�ect of compressibility and

dispersion on the KH mode for the dusty plasma medium in the weak coupling

regime [97]. In this Chapter our aim is to study KH instability in context to

strongly coupled dusty plasma �uid and in particular seek the in�uence of the

transverse shear waves (which are the normal modes of the medium) on the KH

instability.

The Chapter has been organized as follows. Section 6.2 provides the details

of the governing equations for the visco-elastic dust �uid. In section 6.3 we study

the linear regime of the KH instability for such a visco-elastic �uid. We choose a

speci�c tangent hyperbolic form of sheared �ow pro�le for this purpose. The e�ect

and role of strong coupling on the growth rate are discussed and comparison with

the weak coupling limit is provided in this section. We also show the existence

of local instability in the strong coupling limit, this is not possible for the normal

hydrodynamic �uids. In section 6.4 we describe the numerical results obtained

from the numerical simulation of the Generalized Hydrodynamic (GHD) model.

We show that the growth of perturbed energy agrees with the prediction of the

linear studies presented in section 6.3. In the nonlinear regime the simulations show

fascinating characteristics. A phenomena of the recurrence of the KH instability

is seen due to the repeated sharpening of the shear �ow. In addition these cyclic

events are associated with a bursts of activity in terms of the emission of transverse

and compressional waves.

The emission and propagation of transverse shear wave from the sheared �ow

equilibrium is a natural outcome. The sheared equilibrium con�guration chosen

initially for these studies can in general be viewed as the superposition of the

eigen state of the transverse shear waves. At low amplitudes (when each of the

constitutive transverse shear normal mode is in linear domain) such an initial

con�guration would lead to independent propagation of all the modes. However,

a sheared �ow con�guration being unstable to the KH destabilization, the sheared

con�guration of each of the mode by itself would be susceptible to the excitation

of KH instability. We seek the possible excitation of KH instability in the sheared

con�guration of one single mode of the propagating transverse shear wave in section

6.5. In section 6.6 we summarize our observations.
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6.2 Governing equations

The dynamics of strongly coupled dusty plasma medium has been described using

GHD set of Eqs. (2.1,2.2,2.3). The description of model and its parameters have

been provided in Chapter 2. We have chosen a simpli�ed system geometry for our

studies, where variations are con�ned in 2-D x− y plane and the third dimension

of z is the axis of symmetry. The equilibrium �ow is assumed to be directed along

y and assumed to be sheared along x. Thus the �ow direction (i.e. y) is assumed

periodic at boundary while the shear direction (i.e. x) is considered to be non

periodic at boundary.

For the purpose of our investigation we take the basic equilibrium �ow to have

the following form:

~v0 = vy0(x)ŷ (6.1)

In the next section we study the stability of this �ow in the 2-D x − y plane,

wherein the role of strong coupling e�ects would be investigated.

6.3 Linear studies

We linearize the Eqs. (2.1,2.2,2.3) in the presence of the equilibrium �ow de�ned

by Eq. (6.1). The �eld variables are perturbed such that,

~v = v1xx̂+ [vy0(x) + v1y] ŷ; n = n0 + n1; φ = φ1 (6.2)

Here, the �elds with subscript ′1′ denote the perturbed �elds and those with sub-

script ′0′ represent the equilibrium. The linearized equations upon Fourier analyz-

ing in time and the y coordinate yields the following:

−iΩn1 + n0v
′

1x + ikyn0v1y = 0

(1− iτmΩ)
(
−iΩv1x + αn

′

1 − φ
′
)
= η

(
v

′′

1x − k2yv1x

)
(1− iτmΩ)

(
−iΩv1y + v1xv

′

0 + ikyαn1 − ikyφ1

)
= η

(
v

′′

1y − k2yv1y

)
φ

′′

1 − k2yφ1 = n1 + (µeσi + µi)φ1 (6.3)
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Here, Ω = ω − kyvy0, the superscript ′ shows the derivative with respect to x and

α = µdγdTd/TiZd.

The parameter
√
α/V0 in such a case represents the ratio of sound speed with

dust �ow velocity and hence is e�ectively the typical inverse Mach number of the

dusty plasma �ow under consideration. Here V0 is the amplitude of initial sheared

�ow velocity. Thus by choosing the value of α ranging from 0−∞ one can carry

out investigation for an incompressible dusty plasma medium to a compressible

case.

The assumption of incompressibility simpli�es the system of equations, as one

can then explicitly choose ∇ · ~v = 0. Also the continuity equations can then

be dropped. A further simpli�cation is possible by concentrating only on long

wavelength quasi neutral responses. For this case the left hand side of the Poisson's

equation can also be ignored. We discuss this particular simpli�ed incompressible

limit in the next sub-section 6.3.1. The general case is then discussed in the

subsequent sub-section.

6.3.1 Incompressible dust �uid

The incompressibility assumption simpli�es the set of linearized equations (6.3)

wherein they can be represented in terms of v1x alone

kyΩ (1− iτmΩ)
2 v1x −

(
v1xv

′′

y0 +
Ωv

′′
1x

ky

)
(1− iτmΩ)

2 +
iη

ky

(
v

′′′′

1x − k2yv
′′

1x

)
(1− iτmΩ)

+ ητmv
′

y0

(
v

′′′

1x − k2yv
′

1x

)
= iηky

(
v

′′

1x − k2yv1x

)
(1− iτmΩ) (6.4)

Rearranging the above equation we can write Eq. (6.4) alternatively as

v
′′′′

1x −
ikyτmv

′
y0

(1− iτmΩ)
v

′′′

1x − 2k2yv
′′

1x +
ik3yτmv

′
y0

(1− iτmΩ)
v

′

1x + k4yv1x

−
ik2yΩ (1− iτmΩ)

η
v1x +

iky (1− iτmΩ)

η

(
v1xv

′′

y0 +
Ωv

′′
1x

ky

)
= 0 (6.5)

In the incompressible case, the �uid velocity can be expressed in terms of a stream

function so as to have v1x = ∂Ψ/∂y and v1y = −∂Ψ/∂x, the Eq. (6.5) then can be
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written in terms of stream function Ψ as[
d2

dx2
− k2y

]2
Ψ =

iky (1− iτmΩ)

η

[
−Ω

ky

(
d2

dx2
− k2y

)
− d2vy0

dx2

]
Ψ

+
ikyτmdvy0/dx

(1− iτmΩ)

[
d3

dx3
− k2y

d

dx

]
Ψ (6.6)

It can be easily seen that Eq. (6.6), in the limit of τm = 0, reduces to the linearized

equations discussed by Drazin for the KH mode in viscous �uids [126]. In the

absence of equilibrium �ow, one obtains dispersion relation for transverse shear

wave from Eq. (6.5) as

ω =
−i
2τm

± 0.5

√
−1

τ 2m
+

4ηk2

τm
(6.7)

In the limit of strong coupling (i.e. ωτm >> 1), the dispersion relation for the pure

transverse shear could be written as

ω2

k2
=

η

τm
(6.8)

We next consider the local limit, wherein the equilibrium velocity �ow is as-

sumed to vary rather slowly in comparison to the perturbation scales. In this limit

vy0 and its derivative can be treated as parameters in a local sense. The system

can then be Fourier analyzed in the x coordinate as well. This yields

| k |4 −kxkyτmv
′
0 | k |2

(1− iτmΩ)
− iΩ

η
(1− iτmΩ) | k |2 +iky

η
(1− iτmΩ)v

′′

0 = 0 (6.9)

Fig. 6.1 shows a two dimensional growth rate plot for existing local instability. It

could be seen clearly that the local instability growth is symmetric for both kx and

ky directions. Equation (6.9) is a cubic equation in Ω and reduces to a quadratic

form for the case when ωτm >> 1 and v′y0 = 0, but the second derivative term v′′y0

is taken as �nite. In can be shown that in this case we get a stable system as

Ω =

(
1

2

)[
kyv

′′
y0

| k |2
±
√
(
k2yv

′′2
y0

| k |4
+

4η | k |2

τm

)]
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However, we observe that the presence of �nite v′y0 can result in producing a
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Figure 6.1: Growth rate of local instability for visco-elastic �uids. The equilibrium �ow
parameters are v0 = 0.5, v

′
0 = 0.8 and v

′′
0 = 0.8. The strong coupling parameters are

chosen as τm = 10 and η = 0.5.

local instability for the system. This has been illustrated by the plots of the

Fig. (6.2), which shows a �nite imaginary positive value of ω for various set of

parameters. Such a local instability is altogether absent in the case of sheared �ows

in neutral hydrodynamic �uids. Thus, this is one of the new features associated

with strong coupling properties of the system. Furthermore, it can also be seen

that the transverse shear waves acquires a weak dispersion in the presence of v′y0.

6.3.2 The general case

The eigen values of the complete general set of linearized Eq. (6.3) can be obtained

numerically for speci�c choices of the �ow pro�le. The set of equations involves four

�elds and takes considerable time to seek the eigen spectrum and the parameter

scan for the study of the in�uence of strong coupling e�ects. As an alternative one
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Figure 6.2: Dispersion relation for Eq. (6.9) with �nite v
′
y0 parameter while other pa-

rameters are η = 0.1, τm = 20 for subplot (a) and (b) while η = 10, τm = 20 for subplot
(c) and (d). v

′′
y0 is taken to be zero. For all subplots, v

′
y0 is 0, 0.4 and 0.8 represented by

circle, star and square respectively.

can also employ a simpli�ed case of quasi neutral response for which the dispersive

e�ects appearing in Poisson equation can be ignored and one has instead a simple

algebraic relationship between the potential and the density perturbations.

φ1 = −n1/ (µeσi + µi) (6.10)

This assumption has been invoked for simplicity and leads to a more simpli�ed

set. We have shown in our earlier work on weakly coupled dusty plasma system

studies that dispersive e�ects reduce the growth rate, however, the reduction is

insigni�cant at high values of the α parameter. We have in our linear studies,
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therefore, often chosen to consider the quasi neutral case, de�ned by the following

simpli�ed equation

−iΩn1 + n0v
′

1x + ikyn0vy1 = 0

(1− iτmΩ)
(
−iΩv1x + α1n

′

1

)
= η

(
v

′′

1x − k2yv1x

)
(1− iτmΩ)

(
−iΩv1y + v1xv

′

0 + ikyα1n1

)
= η

(
v

′′

1y − k2yv1y

)
, (6.11)

to study the e�ects of strong coupling. Here α1 = α/n0 + 1/(µeσi + µi). Choosing

Tangent Hyperbolic equilibrium sheared �ow pro�le with ε as the shear width as

shown in the following equation

~v0 = V0 tanh(
x

ε
)ŷ (6.12)

We discretized the set of Eqs. (6.11) on a spatial grid of x coordinate and obtain

the eigenvalues ω numerically by standard procedures. The positive imaginary

part of which provides for the growth rate γ.

We show in Fig. (6.3) and Fig. (6.4) the role of varying the two parameters

associated with strong coupling η and τm respectively, on the growth rate of the

KH mode. We have the plot of γ/V0 vs. kyε for various cases in the two �gures.

In Fig. (6.3), the incompressible weakly coupled dusty plasma system (the hydro-

dynamics case) for reference, has been shown by a black thick line. For the rest of

the plots the value of Mach number has been chosen to be 0.707, and hence they

all have e�ects due to compressibility. The plot with circles (red in color online) is

again for a weakly coupled dust �uid obeying hydrodynamical equations. For such

a Mach number when the value of η parameter is increased keeping τm �xed, the

growth rate is found to decrease and the threshold wavenumber for instability also

reduces. The variation in growth rate with respect to τm has another interesting

aspect. We observe that for �ows with any given speci�c Mach number and a

speci�c value of η = ηs say, the two curves for η = 0, τm = 0 (weakly coupled in-

viscid dust shown by red circles in Fig. (6.4) ) and η = ηs, τm = 0 (weakly coupled

viscous dust system, shown by diamonds in Fig. (6.4)) de�ne the upper and lower

limit of the growth rate respectively for any value of τm. As τm is increased for all

cases of η = ηs the growth rate increases from the lower curve and merges with the

upper curve at very high values of τm. It has been observed by us earlier in the
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Figure 6.3: The scaled growth rate γ/V0 Vs kyε. The smooth line (black) represents the
scaled growth rate of incompressible dust �uid and rest are all compressible cases with
Mach no of 0.707 with circles(red) for weakly coupled dust �uid while square(magenta)
and stars(blue) represents case of η = 2 and η = 5 respectively for strongly coupled
dust �uid. The value of τm is kept �x at 20 for these strong coupling cases. The other
parameters are V0 = 5 and ε = 0.5 (shear width as de�ned in Eq. (6.12) ) .

context of 1-D simulations as well [96] that the strongly coupled dust behaviour

described by the GHD set of equations, at very high values of τm behaves similar

to an inviscid weakly coupled hydrodynamic dust �uid.

It appears that in the limit of τm → ∞ the unity from the operator 1+ τmd/dt

(Eq. (2.1)) can be ignored. Dividing the equation by τm, one can then ignore

η/τm∇2~v from right hand side. Thus one is left with an equation which has the

form of the weakly coupled �uid system with an additional time derivative acting

on all the terms.

6.4 Nonlinear studies

We have also investigated the nonlinear regime of the instability numerically. For

this purpose the complete set of equations de�ned by Eq. (2.1,2.2,2.3) have been

utilized. The quasineutral assumption is considered for these numerical studies.

The assumption of incompressibility have not been invoked a - priori for any of
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Figure 6.4: The scaled growth rate γ/V0 Vs kyε for �xed value of η = 0.5 and various
values of τm = 0 (diamond), τm = 2 (square), τm = 8 (star), τm = 12 (dot) and τm = 100
(x mark). The red circles show the case of weakly coupled dust �uid. The other common
parameters are V0 = 5, ε = 0.5 and mach no 0.707.

the cases studied by simulations. A �ux corrected scheme proposed by Boris et

al. [107], have been adopted for the purpose of evolving the set of equations (2.1,2.2)

in the 2-D x − y plane. As the scheme numerically solves the continuity form of

equations with possibility of inclusion of various source terms, we split Eq. (2.1)

as two separate equations of the following form[
1 + τm

(
∂

∂t
+ ~v · ∇

)]
~ψ = η∇2~v(

∂

∂t
+ ~v · ∇

)
~v + α

∇n
n

−∇φ = ~ψ (6.13)

The initial condition is chosen as

vx = v1x = V1kyp cos(kypy) exp(−x2/σ2)

vy = v1y = V0 tanh(
x

ε
) + V1

(
2x

σ2

)
sin(kypy) exp(−x2/σ2) (6.14)
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The �rst term in the expression for vy de�nes the equilibrium �ow of Tangent hyper-

bolic pro�le de�ned in Eq. (6.12). Here kyp is a mode over which the perturbation

has been excited to facilitate the growth of instability. The perturbation is taken

such thats its e�ects die out in nonperiodic direction before it reaches to boundary.

The value of parameters chosen in typical run are V0 = 5.0, V1 = 10−2, σ = 0.8 and

ε = 0.5. The evolution is tracked by studying the evolution of the total perturbed
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Figure 6.5: The Perturbed kinetic energy(log scale) Vs. time for the strong coupling dust
�uid. η = 5 and τm = 20 has been choosen for this case. Other parameters in simulation
are same as Fig. (6.3).

kinetic energy, EPKE =
∫ ∫

| (~v − ~v0) |2 dxdy. The spatial pro�les of velocity,

density and potential obtained from simulation is also preserved at regular inter-

vals. The evolution of the EPKE for one typical simulation case has been shown

in the plot of Fig. (6.5). It clearly shows that during the initial phase the linear

instability mechanism is operative. The growth rate obtained from simulations are

observed to match well with the predictions of the linear analysis. In the nonlinear

regime the behaviour of the EPKE evolution is somewhat distinct in the strongly

coupled case than what is seen in the other weakly coupled �uid cases. For in-
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stance the simulations of incompressible �uid shows saturation and a constancy

of EPKE and the compressible and the dispersive cases show periodic oscillations

in EPKE [97] in the nonlinear regime. These periodic oscillations were attributed

to the rotation of the vortex structure that ultimately forms as an aftermath of

the KH instability in these cases. While for the incompressible �uid case the �nal

saturated structure typically has a circular form, its rotation does not cause any

periodic change in EPKE. For the compressible and dispersive cases the vortices

that �nally form have an elliptical shape. Their rotation then shows up as periodic

oscillations in the EPKE. The rotation frequency of the vortex was shown to match

with the observed oscillation in EPKE in these cases. It was also observed that

when the vortices merge an irreversible sudden increase in the value of EPKE is

observed. In the strong coupling case, though the EPKE in the nonlinear regime

exhibits non-stationarity it does not show any periodic characteristics. We would

see subsequently that this is associated with the elasticity of the medium causing

the sharpening of the shear layer and recurrence of the KH excitation phenomena

for a couple of times.

We show in Fig. (6.6) and Fig. (6.7) the snapshots of the 2−D spatial pro�le

of the curl and the divergence of the velocity �eld respectively for the simulation

run corresponding to plot of EPKE evolution shown in Fig. (6.5). The initial state

as chosen is clearly divergenceless (∇ · ~v = 0) and constitutes uniform strip of

vorticity. During the linear phase t = 10.01 (comparison of timing can be seen

from Fig. (6.5)) the usual bending of the vorticity strip due to the KH instability

can be seen. At later stage it breaks up in anisotropic vorticity patches. Apart

from the vorticity patches at the main central region, the emission of transverse

waves separating from the central region and moving towards the boundaries can

also be discerned clearly from the snapshots. These emissions are caused by the

local instability which is possible in the case of the strongly coupled medium and

about which we discussed in section 6.3 earlier. The spatial pro�le of divergence

shown in Fig. (6.7) illustrates the compressional nature of these emissions.

These vorticity patches, however, are observed to change their shape as they

rotate. This is quite unlike the other cases (e.g. incompressible and compressible

weaky coupled �uids). Here the vorticity patches get stretched against the back-

ground �ow, as they rotate. The elastic nature of the medium in this case lets the

vorticity patch get extended. The extended structures then coalesce again to form
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Figure 6.6: Nonlinear evolution of vorticity contours at di�erent times for parameter
values η = 5, τm = 20 and mach no 0.707 for this case. Other simluation parameters are
V0 = 5 and ε = 0.5. Quasineutrality has been taken under consideration.

a very thin vorticity strip (see blue colored patches) as shown in the snapshots of

Fig. (6.6) at t = 18.69 and t = 19.62 ). During this extension and coalescence

phase there is an intense activity in terms of the emission of shear waves. This

is reminiscent of the process when an elastic medium as it snaps back produces

intense oscillations.

It is interesting to observe that the thin central vorticity strip developed after

the coalescence is now again sharp enough to su�er KH destabilization. This again

results in the formation of rotating vortices (t = 22.30). The same process then

repeats itself. At a later stage one also observed that smaller lumps of vorticity

gets separated from the central region. This is when the medium yields and breaks

apart as it is no longer possible for it to sustain the strain. Some of these smaller
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Figure 6.7: Nonlinear evolution of divergence of velocity �eld contours at di�erent times
for parameter values η = 5, τm = 20 and mach no. 0.707 for this case. Other parameters
in simulation are V0 = 5 and ε = 0.5. Quasineutrality has been taken under consideration.

structures upon reaching the region of uniform background �ow form circular pat-

terns and are seen to be well preserved for quite a long duration. This entire

repetitive nature of the process can be summarized as follows:

? Initial Con�guration: Initially, the shear scale ε = εinit is sharp enough to

cause destabilization of shear �ow (Fig. 6.6, subplot at t = 0 and t = 10.01).

? Nonlinear regime: In this regime, the e�ective shear width (ε = εeff ) is

broader and the growth of KH mode is no longer sustained. The saturated

KH mode forms elliptical vortices (Fig. 6.6, subplots at t = 14.00, t = 22.30,

and 37.70).

? Elliptical vortices: The elliptical vortices formed in nonlinear regime rotate
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and get stretched by the background �ow. Basically, the elastic nature of

the medium stretches the elliptical vortices further to form sharp shear �ow

structures (Fig. 6.6, subplots at t = 15.89, t = 24.34, and t = 40.12).

? Coalescence of sharper elliptical vortices: Elongation of elliptical vor-

tices leads to formation of a sharper shear width and hence this con�guration

is once again susceptible to KH destabilization (Fig. 6.6, subplots at t = 18.69

and t = 26.37).

? Recurrence: Thus the phenomena of KH destabilization recurs in this case

of strong coupling. (Fig. 6.6, subplots at t = 19.62 and t = 32.06).

6.5 KH destabilization of transverse shear wave

propagation

The sheared velocity �ow is susceptible to KH destabilization process. Clearly, the

sheared con�guration of �ow in the transverse shear wave mode also ought to be

susceptible to this instability. However, as shown in Fig. 6.8 when we choose an

intial con�guration with a sinusoidal perturbation of the form

~v0 = V0 ∗ sinKyyx̂ (6.15)

with V0 = 1e − 3 and Ky = 0.6382 the wave propagates smoothly without any

distortion. For this particular case we had chosen η = 5 and τm = 100. The

analytical phase velocity in this case being vph ∼
√
η/τm = 0.05 also gets veri�ed

by the numerical evolution of the pro�le. Fig. 6.9 shows the comparison of the

dispersion relation between the analytical and the simulation results. We also

observe from our simulations (Fig. 6.8) that the amplitude diminishes due to the

dissipative e�ect of η. However, even though the �ow had a sheared con�guration

in this mode there is no trace of the KH instability.

We have carried out simulations for the magnitude of V0 to 0.1 and 2.0 shown in

Figs. 6.10 and 6.11 respectively. For V0 = 1e−3 again there is no trace of instability.

However, for V0 = 2.0 the distortions con�rming the presence of KH instability can

be easily seen. From these simulations it appears that the KH destabilization is
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Figure 6.8: Transverse wave propagation of ky = 0.6382 mode for the initial �ow pro�le
Eq. (6.15). The other parameters of simulation are V0 = 1e− 3, η = 5 and τm = 100.

preferred when the amplitude of the shear �ow is high. a simple interpretation for

these observations can be provided by considering the comparison of the growth

period of the KH instability and the time period of the transverse mode. When

the growth rate of the KH mode is slower that the transverse shear wave frequency,

the wave propagation does not get hinderd by the instability process. On the other

hand when the reverse is true the instability manifests itself. A comparison of

the growth rate further testi�es to this. The typical growth rate of the KH mode

can be approximated as γkh ∼ KyV0 (the step velocity case). For the two cases

of Fig. 6.10 and Fig. 6.11 the transverse shear wave frequency is from Eq. 6.7 is

ωT ∼ 0.2236. For the case (Fig. 6.10) in which the KH is suppressed we have

ωT > γkh and for the other case (Fig. 6.11) we have ωT < γkh.

6.6 Summary

The �uid Kelvin-Helmholtz instability in the context of a strongly coupled dusty

plasma medium has been investigated in detail. In particular it is of interest to

understand the role of visco-elasticity and the existence of transverse shear waves

in a strongly coupled medium on the �uid KH instability. A generalized �uid
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Figure 6.9: The analytical dispersion relation (blue line) Eq. (6.7) with numerical disper-
sion relation (red circle) for transverse shear waves in viscoelastic �uids with large solid
like properties.

hydrodynamic model (GHD), which captures these aspects of the strong coupling

state, has been used to represent the behaviour of dusty plasma medium in this

regime.

A complete parametrization of the KH growth rate, in terms of the memory

relaxation parameter employed in the GHD model to depict strong coupling e�ect,

have been carried out. It is observed that the growth rate of KH mode reduces

in a strongly coupled medium. Furthermore, in addition to the KH mode a local

instability driven by the shear �ow is also found to exist in the strongly coupled

medium. The existence of this local mode causes emission of transverse shear

modes. These linear results were veri�ed in the nonlinear simulations conducted

by us.

The simulations showed interesting phenomena of recurrence of the KH mode

in the nonlinear regime. The KH mode typically saturates by generating vorticity

structures which typically have much broader width for sustaining the KH mode.

The 2-D constraints of the normal �uid on enstrophy can only make the scale

lengths associated with the shear scale get further broadened due to coalescence

in the case of normal �uids. However, the GHD �uid has no such constraint in
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Figure 6.10: Vorticity of a initial �ow as a transverse perturbation in velocity as given
by Eq. (6.15). The parameters are V1 = 1e−3, η = 5 and τm = 100 and the perturbation
wave number correspond to two mode numbers (Ky = 0.6382) in the system.

2-D. In fact the elastic nature of the strongly coupled �uid causes the individual

vortices as they rotate to get stretched and form sharper �ow structures. Thus

unlike a 2-D normal �uid in a 2-D visco-elastic �uid one observes formation of

short scale structures. These sharp structures are then again susceptible to the

KH instability. This cycle was observed to get repeated several times in some of our

simulations. It ultimately stops as a result of system exhausting up its free energy

associated with the shear �ows. An additional channel of free energy exhaustion

is associated with shear �ow is the local instability supported by the medium due

to which strong emission of transverse as well as compressional wave are observed.

We have demonstrated a rich variety of response in a 2-D strongly coupled visco-

elastic dusty plasma medium by our simulations conducted here for an equilibrium

shear �ow con�guration. Further studies to understand the competition between

the local instability and the KH mode in getting rid of the free energy associated

with the shear �ow in a visco-elastic medium is necessary. It is also clear from
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Figure 6.11: Vorticity of a initial �ow as a transverse perturbation in velocity as given
by Eq. (6.15). The parameters are V1 = 2.0, η = 5 and τm = 100 and the perturbation
wave number correspond to two mode numbers (Ky = 0.6382) in the system.

our simulations that in a 2-D visco-elastic medium the possibility of formation of

short scales does exist. Thus unlike the hydrodynamic �uid the cascade behaviour

of the energy spectrum is quite distinct and should be investigated in detail.
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Big whirls have little whirls

That feed on their velocity,

And little whirls have littler

whirls And so on to viscos-

ity.

L.F. Richardson

7
Visco - Elastic Turbulence

In Chapter 6, we have made observations of small scale structure formation during

evolution of 2-D K-H instability for strongly coupled dusty plasma medium. Thus,

the Generalized Hydrodynamic description of visco - elastic �uids suggests that

the inverse cascade is not the only preferred mechanism for energy transfer in

such systems. To look in to nature of power spectra for �ows in these �uids, we

have carried out the simulations for the evolution of initial random �uctuation

with spectra in a prescribed band of wave numbers. It is observed that the power

spectra for visco-elastic �uids is distinct from that of hydrodynamic �uids and

displays clear scale separation.

7.1 Introduction

The characterization of �uid �ows has been of great interest in past and a signi�-

cant amount of research have been dedicated to this particular area [140,141]. The

interest ranges from laminar to turbulent �ows, viscous to inviscid �ows, variety of

unsteady �ows, �uid instabilities etc. While most of �uid �ows have been found to

follow Newtonian dynamics and hence standard Navior-Stokes (NS) equations ap-

plies, a range of �uid (viz. polymeric and colloidal suspensions, cellular solids) have

non - Newtonian dynamics. Such �uids have characteristics of both liquid and solid

and are important from the perspective of their unique transport characteristics.

Several models have been proposed for the understanding of such non - Newtonian

�uids. The combination of viscous behavior and solid like elastic features (often

termed as visco - elastic �uids) in some cases have been depicted by introducing
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a memory relaxation time in the model description. In recent years there have

been a great deal of interest in understanding the behavior of visco-elastic �u-

ids [142�146]. One important aspect is the study of the turbulent behavior of such

systems as it plays a crucial role in determining the anomalous transport of the

system. Experiments on turbulence on Polymeric �ows of the system have been

conducted. It is observed that turbulent power spectra of such �uids are from that

of the hydrodynamic �uid [101,102].

As the dusty plasma medium has also been found to re�ect properties of �uid

as well as solids at the intermediate range of coupling parameter Γ, a Generalized

Hydrodynamic (GHD) description has been employed to study it. In the GHD

prescription the dusty plasma system is assumed to mimic visco - elastic �uid be-

havior. Using this description, we have in the previous chapters provided numerical

evidence of the existence of transverse shear waves, singular cusp structures and

formation of short scales [94,96,98].

The formation of small scale structures observed in the previous chapter while

studying the nonlinear evolution of shear �ow driven KH instability in 2-D strongly

coupled dusty plasma �ows is in contrast with the phenomenon of inverse cascade

in 2-D Navier Stokes �uids. It is, therefore, of interest to delve in a detailed study

of the spectral cascade behavior of this system.

In this Chapter, we present our investigation on the evolution of random tur-

bulent �uctuations. We choose to consider the simpli�ed incompressible limit of

the equation to limit ourselves mainly to the role of transverse shear waves (an

attribute of elasticity in the medium) in such studies. The extraneous e�ects due

to compressible �uctuations have been ignored at the moment. As the incompress-

ible limit of GHD model assumes no density and charge �uctuations, the results

obtained here would represent a wide range of �uid �ows which could be explained

using visco - elastic description. The Chapter has been organized as follows. A

brief description of the governing equations for such an incompressible case and

the numerical procedure adopted for the simulation studies have been provided in

section 7.2. Section 7.3 contains the results obtained from the numerical simu-

lation. The theoretical analysis and discussion has been provided in section 7.4.

Section 7.5 contains the conclusion.
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7.2 Governing equations

The complete set of governing equations are Eqs. (2.1,2.2,2.3) for the evolution of

a strongly coupled dusty plasma medium through the Generalized Hydrodynamic

(GHD) description.

In the limit of quasi-neutral and incompressible perturbations, we can ignore

the continuity and Poisson's equation and we are left with the following equation[
1 + τm

(
∂

∂t
+ ~vd · ∇

)][(
∂

∂t
+ ~vd · ∇

)
~vd +

∇p
nd

]
= η∇2 ~vd (7.1)

It is clear that in this limit, the model equations have no speci�c attribute con-

necting it speci�cally to the dusty plasma medium and it can in general represent

any other visco-elastic system also, along with the case of dusty plasma medium.

For the purpose of numerical simulation we reduce the second order Eq. (7.1) in

time to two coupled �rst order equations satisfying the following convective forms.[
1 + τm

(
∂

∂t
+ ~vd · ∇

)]
~Ψ = η∇2 ~vd (7.2)[(

∂

∂t
+ ~vd · ∇

)
~vd +

∇p
nd

]
= ~Ψ (7.3)

In the 2-D incompressible case, with the �ow con�ned in the 2-D plane normal

to the symmetry axis we can represent the velocity �eld by a scalar potential Φ,

satisfying ẑ × ∇Φ = ~vd. Here ẑ is directed along the symmetry axis. Taking the

curl of Eq. (7.3) we have[
∂

∂t
+ ẑ ×∇Φ · ∇

]
∇2Φ = (∇×Ψ)z =

(
∂Ψy

∂x
− ∂Ψx

∂y

)
(7.4)

We can construct the following evolution equations for the square integral quanti-

ties by taking the scalar product of ~v with Eq. (7.3) and ~Ψ with Eq. (7.2)

1

2

∂

∂t

∫ ∫
v2ddxdy =

∫ ∫
~vd · ~Ψdxdy (7.5)

1

2

∂

∂t

∫ ∫
Ψ2dxdy = − 1

τm

∫ ∫
Ψ2dxdy +

η

τm

∫ ∫
~Ψ · ∇2 ~vddxdy (7.6)
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The evolution of these quantities are tracked during the course of numerical sim-

ulation for the purpose of determining the accuracy of the simulation. For the

Figure 7.1: Evolution of phase randomized velocity potential for incompressible hydrody-
namic �uids. The inverse cascade is evident as the smaller scales are coalescing to form
large scale length structure.

purpose of simulation, a random initial condition for the incompressible �ow in

the 2-D plane is prescribed by choosing an initial spectrum for the �eld Φ accord-

ing to the following two forms:

| Φk |2=
C

(1+ | k |)n
(7.7)

| Φk |2= Csech2
(
| k | −km

4

)
(7.8)

In the �rst case, the power falls of monotonically with wave number (the rapidity

of fall being governed by n) and in the latter case the peak of the initial spectrum

can be chosen at any desired wavenumber determined by the value of km. The

phase of the Fourier modes are chosen to be random. Here, C is constant which
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decides the amount of power being injected in system. In the simulations presented

here, we have restricted to an initial choice of ~Ψ = 0. These initial conditions are

then evolved using the Eqs. (7.2,7.4) through a �ux corrected scheme [107]. In the

next section we present the details of some interesting observations obtained from

numerical simulation studies.

7.3 Numerical observations

In Fig. 7.1 and Fig. 7.2, we show the constant contour plots of the velocity

potential Φ for the hydrodynamics (HD) case (η = τm = 0) and the GHD case of

(η = 5, τm = 20) respectively.

Figure 7.2: Evolution of phase randomized velocity potential for incompressible visco-
elastic �uids. It could be seen that in contrast to hydrodynamic �uids, much shorter
structures are present in this particular case. The parameters η and τm are 5 and 20
respectively.

It is clear that the evolution of the two cases show very di�erent evolution

characteristics. In the HD case, isolated fewer vortex structures are observed at
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later times. In GHD, the time asymptotic state shows a clutter of closely packed

structures. We also monitored the evolution of averaged wavenumber in both the

cases, which has been shown in Fig. 7.3. It is clear from the �gure that in both

HD and GHD cases the spectral cascade is towards longer scales. This is evident

from the fact that the the mean square wave number reduces with time. This is

expected and well known characteristics of the 2-D NS dynamics representing HD

�ows.
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Figure 7.3: The plot of < k >2 with time for the GHD case with (η = 5 and τm = 20)
(square) and for the incompressible �uid (circle). the initial random �ow has been taken
of the form given by Eq. (7.7) with n = 2.

We also provide a comparison of spectral power for the HD and GHD cases in

Fig. 7.4 In the HD case a stationary power law spectrum with an index of −5/3

and −3 is clearly evident in the energy and vorticity cascade regimes. The GHD

spectrum, however, is in stark contrast to the HD case. Any power law dependence

if present is overwhelmed by the appearance of peaks in the spectrum at certain

wave numbers. This indicates that the cascade process is severely inhibited at

certain wave numbers, resulting in piling up of the spectral power at that location.

The peaks are not sharp though and from the plots of Fig. 7.5 and Fig. 7.6, it

is clear that their location shifts towards longer scale in the course of time. The

evolved spectra is also dependent on initial choice of the spectrum.
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Figure 7.4: Comparison of power spectra for incompressible hydrodynamic �uid (blue
box) with incompressible visco-elastic �uids (red circle).

We observe that the location of the peak depends on the choice of the parameter

η/τm. In Fig. 7.7 we plot the power spectra for several cases with di�erent values

of the parameter η/τm. It can be seen that there is a de�nite shift of the spectra

towards high k values as the value η/τm is reduced.

To summarize, the main observations of our simulations are (i) non universal

character of the evolved spectrum for GHD, which shows strong dependence on

the initial spectrum (ii) appearance of broad peaks which shift towards longer

scales with increasing time (iii) with increasing η/τm the peak location again shifts

towards long scales (iv) The peaks are dominant when the initial power content

in shorter scales is high. In the next section we provide a discussion on these

observations.
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Figure 7.5: Power spectra for incompressible visco-elastic �uids with di�erent initial form
of spectrum mentioned alongside. For the subplots (a), (b) and (c), the initial power has
been injected at km = 20, 30 and km = 90 respectively.
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Figure 7.6: Power spectra with di�erent initial form of spectrum (monotonically dis-
tributed power) mentioned alongside. For the subplots (a), (b) and (c), the initial power
has been injected as given in Eq. (7.7) with n = 8, 4 and n = 2 respectively.

128



Chapter 7. Visco - Elastic Turbulence

7.4 Discussion

A Hydrodynamic �uid in the incompressible limit is a scale free system as it does

not support any normal mode and neither does it have any intrinsic length and/or

time scale associated with it. In contrast, the incompressible GHD model employed

in the present context supports transverse shear wave mode. There also exists a

special time scale de�ned by the relaxation parameter τm in the system. In 2-D it

is well known that the spectral cascade is towards long scales for the hydrodynamic

system as it supports two non dissipative integral invariants. The GHD system

does not support the second invariant related to the mean square vorticity integral.

Thus the power cascade towards long scale is not necessary for this case. However,

in the GHD system there is an inherent slow dynamics of HD medium occurring

for time scales longer than the memory relaxation time τm. It is this aspect of

dynamics which is responsible for a slow but preferential cascade towards longer

scales. Thus while the inverse cascade is in general inhibited resulting in the

appearance of peaks in the spectrum, there is a slow but yet susceptible transfer

towards long scales resulting in the shift of the peaks towards longer scales.

In a similar fashion when the value of τm is chosen to be high, the HD dynamics

would set in at even later times. The peak in the spectrum for higher values of τm

is, therefore, found to occur preferentially at shorter scales. Similarly a dependence

of the location of the spectral peak on η/τm is indicative of the role of the transverse

shear wave on the spectrum.

7.5 Conclusion

The question of whether or not the natural modes and scales of the system have a

role on turbulence has continued to remain an outstanding problem. Attempts have

so far been made on the basis of identifying the di�erences predicted theoretically

on the power spectral index of a stationary turbulence state. This has so far

proved an extremely di�cult exercise and has resulted in endless controversies

without settling the issue one way or the other.

Against this backdrop we have shown that for the case of turbulence in Visco-

Elastic medium governed by the Generalized Hydrodynamic equation, the quasi-
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Figure 7.7: Power spectra plots with di�erent value of η/τm for incompressible visco-
elastic �uid.

stationary behavior of the turbulent spectrum provides ample evidence of the in-

volvement of the memory relaxation time τm and the transverse shear wave in the

spectral cascade process.

The appearance of shorter scales in 2-D for GHD system is also suggestive of

enhanced transport and mixing properties of the GHD system vis. a vis the HD

dynamics in 2-D.
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Conclusion

The present thesis covers several novel phenomena in one and two dimensions as-

sociated with the dusty plasma medium in both weak and strong coupling regimes.

A Generalized Hydrodynamic (GHD) �uid model coupled with Poisson's equation

has been adopted for the purpose to describe the dusty plasma medium. The

GHD model takes care of the visco - elastic properties of the medium in the strong

coupling regime. Both analytical and numerical simulation studies have been done

on the collective behavior of the dusty plasma medium in the two regimes of weak

and strong coupling.

The summary of the interesting results obtained in this thesis has been pre-

sented in section 8.1. The future scope of the research studies carried out in this

thesis have been listed point wise in section 8.2.

8.1 Main results of the Thesis

8.1.1 1-D studies

The 1-D coupled set of GHD and Poisson's equation was solved by using the �ux

corrected scheme and the Poisson solver respectively. The numerical code was

benchmarked by reproducing the linear dispersion relation of the Dust Acoustic

Wave (DAW) numerically.

We have made certain interesting observations pertaining to the characteris-

tic nonlinear solutions for the coupled GHD and Poisson set of equations in one

dimensions for the dusty plasma medium. These observations are summarized as
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below:

• Observation of stable singular cusp structure in weakly coupled

dusty plasma medium

The equations for the dusty plasma medium in the weak coupling limit reduce

to the usual �uid equation for the charged dust �uid which is in�uenced by

the scalar potential �eld through the Poisson's equation. It can be shown by

using the reductive perturbative scheme, that in the limit of weak nonlinear-

ity, the equations can be cast into a well known KdV form. Our simulations

reproduce the characteristics properties of the KdV soliton solutions in the

weak amplitude limit, thereby benchmarking the code in the nonlinear regime

too.

At higher amplitudes the exact analytical form of solutions can be obtained

by constructing Sagdeev potential. At smaller amplitude the solutions of the

Sagdeev potential are identical to KdV solutions. However, with increasing

amplitude the form starts deviating from the KdV solutions. The Sagdeev

potential provides an upper limit beyond which localized solutions propagat-

ing with constant velocity do not exist. This is due to the wave breaking

at the limiting amplitude. At the limiting amplitude the structure has a

singular cusp form for the density and velocity �elds.

We observe that by choosing an initial condition with amplitude higher than

that provided by the Sagdeev limit, the evolution invariable deforms into

two or more localized structures. The higher amplitude structures are found

to be invariably the singular cusp solutions of the Sagdeev potential at the

wave breaking limit. These solutions are observed to be fairly robust and

evolve stably during the entire course of simulation (several hundreds of dust

acoustic period).

Our numerical observations have experimental relevance as such singular cusp

structures have been observed in dusty plasma experiments by Teng et al. [1].

• The new paradigm of Hunter Saxton (HS) equation for the Strongly

coupled dusty plasma

The application of reductive perturbative approach to study the weakly non-

linear response of the strongly coupled dust �uid leads to an entirely new
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paradigm. The equation in this case do not reduce to the well known KdV

form. They have an altogether di�erent form from which it is apparent that

periodic and all localized smooth solutions are not permissible in this partic-

ular case. In fact we have shown that in the limit when the elastic e�ects due

to correlation dominate over the Boltzmann screening and dispersive e�ects,

the equation takes the form of the Hunter Saxton (HS) equation. The HS

equation is known to permit shock solutions which are either conservative or

dissipative. This, therefore, o�ers an entirely new paradigm for the strongly

coupled dusty plasma medium. The HS equations have been explored previ-

ously in context of the study of directors �eld in liquid crystals and we have

�rst time predicted the applicability of such an equation in the context of

dusty plasma medium.

The numerical simulations in 1-D with the complete set of coupled GHD

and Poisson system with localized initial conditions are found to evolve and

exhibit shock formation.

8.1.2 2-D studies

After carrying out a comprehensive investigation in 1-D, we have chosen to

investigate the characteristics features exhibited by the dusty plasma medium

in 2-D. We have chosen for this purpose to study the well known shear �ow

driven �uid Kelvin Helmholtz (KH) instability as well as turbulent charac-

teristics for this medium. The important �ndings from our studies are as

follows.

• Compressible and dispersive e�ects on the nature of Kelvin-Helmholtz

instability in weakly coupled dusty plasma medium

The growth rate as a function of wavenumber have been obtained by numeri-

cally �nding the eigen value of the system for speci�c shear �ow pro�les. We

have chosen to consider the case of a tangent hyperbolic pro�le of the shear

�ow in our studies. We observe that both compressibility and dispersive ef-

fects present in the case of dusty plasma medium reduce the growth rate of

the KH mode.
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We have also carried out perturbative analytical calculation to obtain the

correction in growth rate due to the presence of compressibility. It is clear

from such a calculation also that the presence of compressibility reduces

the KH growth rate. The reason for this being that the free energy in the

shear �ow now �nds an additional channel of release by the excitation of

compressible modes in the system.

The nonlinear 2-D simulations with an initial shear �ow pro�le shows the KH

excitations. The linear growth rate obtained numerically from simulations

are found to match with the eigen value estimates. In the nonlinear regime of

the simulations the vortices get formed at the shear layer. The usual process

of vortex coalescence is also observed in this case. The only di�erence in this

case is that the coalesced vortices have an elliptical instead of the circular

forms. The rotating elliptical structures in this case produce reversible oscil-

lations in the perturbed kinetic energy evolution in the nonlinear regime. At

each coalescence, however, an irreversible jump in perturbed kinetic energy

is observed.

• Existence of transverse shear waves in strongly coupled dusty plasma

medium

The strongly coupled dusty plasma medium supports transverse shear wave

in addition to compressible DAW's. However, the transverse nature of the

mode requires two or higher dimension for its existence. We have simulated

this mode numerically and have been able to verify the the linear disper-

sion characteristics of this particular mode. The phase velocity of the prop-

agating waves are observed to match with the analytical expression, viz.,

vph ∼
√
η/τm.

• Shear �ow instability in strongly coupled dusty plasma medium

The linear stability analysis of nonlocal KH mode for the 2-D sheared �ow

(the speci�c case of Tangent Hyperbolic sheared �ow pro�le was studied) in

the strongly coupled medium shows that the growth rate lies between the

KH growth rates for the viscous and the inviscid hydrodynamic �uid. As

the values of τm, the relaxation parameter is increased (i.e. with increase

in coupling parameter Γ), we observe that the growth rate increases but
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continues to reside between the purely viscous and the inviscid hydrodynamic

limits.

In addition to nonlocal KH mode instability, the shear �ow in strongly cou-

pled medium also supports a local instability. This is quite unlike the case

of weakly coupled dusty plasma which does not support any growing local

mode. It is also found that while v′′0 is responsible for the existence of KH

instability, the v′0 is prime cause for local sheared �ow instability. Here, ′

indicates spatial derivative.

• Phenomena of Recurrence in strongly coupled shear �ow instability

The nonlinear regime of the sheared �ow instability for the strongly coupled

medium was studied by simulations. It is observed that in the nonlinear

state the system exhibits an interesting interplay between vortex coalescence

and its stretching followed by the KH instability repeatedly. This recurrence

phenomena occurs for a couple of cycles and eventually it is followed by cer-

tain small scale vortex formation which are well separated from the original

shear scale. The formation of small scale structures in this particular case

is in distinct contrast to the inverse cascade behavior exhibited by ordinary

�uids in 2-D.

• 2-D turbulence in Visco-Elastic �uids: A scale separation in the

power spectra

The interplay between vortex coalescence and small scale formation observed

in the context of KH instability suggests that the behavior of spectral cascade

for the 2-D strongly coupled medium is distinct from the ordinary �uids.

To study the phenomena of spectral cascade behavior we have studied the

evolution of a given spectrum of random �uctuation. The evolved spectrum

exhibits a power law, with a break in spectrum. The location of spectral

break, however, is observed to evolve with time. Furthermore, the break is

prominent when the initial spectral excitations are at short scales. These

features can be understood by realizing the existence of two distinct time

scale regime in the model. For time scales longer than the relaxation time

τm, the GHD dynamics is similar to that of the ordinary �uid, exhibiting

phenomena of inverse cascade. However, for shorter time scales the elastic
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nature of the �uid plays a predominant role. In this short time scale elastic

limit the system does not respect the conservation of two invariants and direct

cascade occurs. This is also apparent from the existence of local instabilities

for the sheared system in the case of strong coupling. The interplay of these

two dynamical features of the spectral cascade results in a spectral break.

8.2 Future scope of the work

The thesis results provide a direction towards lot of possibilities which could be

explored in weakly as well strongly coupled plasmas. The formation of cusp struc-

tures, recurrence of vortex formation in sheared �ow, the nature of turbulence are

few of the interesting results predicted in strongly coupled dusty plasmas which

needs to be veri�ed by di�erent possible experimental and numerical means. Here,

we will present a point wise discussion over further possibilities of explorations in

this particular area.

• The Generalized Hydrodynamic model is a phenomenological model which

successfully explains many collective features of strongly coupled dusty plas-

mas. The model is a variant of Maxwell's model extensively used to explain

visco-elastic �uids. In the present model, we have considered only one con-

stant relaxation time scale. In actual dusty plasma medium or in other visco-

elastic materials, multiple relaxation time scales are possible. Similarly, the

viscosity which we have considered as a constant parameter could have a

functional form depending on space and time. Inclusion of these properties

will help us to look at more realistic view of dusty plasma as visco-elastic

�uids.

• Present thesis assumes electrons and ions as inertialess species while study-

ing the collective dynamics of dusty plasma medium, as the time scales and

length scales for collective dynamics in these di�erent species are well sepa-

rated. But certain phenomena like dust void formation, dust rotation (ob-

served in dusty plasma experiments) require the dynamics of ions to be in-

cluded along with dust dynamics. For example, ion streaming is important

for the formation of dust voids and the phenomenon of dust rotation oc-

curs due to magnetized ions. These magnetized ions rotate fast and because
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of momentum transfer, dust also starts rotation [147, 148]. To understand

such experimental observations in the strong coupling limit, one would need

to incorporate ion dynamics along with the dust dynamic in the GHD and

Poisson coupling.

• Throughout the thesis, the studies of dusty plasma medium assume the dust

particles carrying constant charge. But in a realistic situation, the charge on

dust species varies in time depending on a charging mechanism [57]. Inclusion

of the mechanism of charge �uctuation may be interesting.

• In present thesis, we have employed GHD �uid model to study dusty plasma

medium assuming the medium as visco-elastic �uid. Another way to study

such medium is the particle approach (i.e. Molecular Dynamics). With the

present computational facilities, realistic particle simulations are possible for

dusty plasmas having typical density of the order 106−108/m2 in laboratory

experiments. In such studies, the inter particle potential between dust par-

ticles has been taken of Yukawa potential form. The large scale simulations

could be carried out to make a comparative study of the two approaches.

Also, the particle studies will provide an opportunity to include the �nite

size e�ects of dust particles on the collective dust dynamics.

• Recently, experiments were performed to study turbulent �ows in visco-

elastic �uids [101]. Similar experimental studies could help us to understand

the similarities and di�erences of dusty plasmas with visco-elastic �uids.

• The dusty plasmas were found to show exceptional similarities with polymer

liquids in various experiments [149, 150]. The explorations to study such

similarities opens up an entirely new domain of research.
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