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SYNOPSIS

Dusty plasma is often referred to as ‘Complex Plasma’ because the presence

of dust in normal plasma gives rise to new types of dust-related modes and/or may

also modify the existing modes which lead to complexity of plasma behavior [1–

11]. Moreover, despite its complexity, the beauty of dusty plasma medium arises

from the fact that it can be handled rather easily in experiments as well as in

numerical simulations. This simplification comes from the fact that mass (typical

mass of 10−15 − 10−10 Kg) as well as the size (∼ micron) of the dust particles is

quite large compared to that of normal electrons and typical ions in any electron-

ion plasmas. Owing to heavy mass, the dust particle dynamics is quite slow in

comparison to the background lighter species of electrons and ions in which it

is interspersed. Thus one can assume inertia less response for the other species,

while studying the dynamical response at dust time scales. The large size of the

dust particles also ensures that the diagnostics involved in studying the system

are simpler. The experimental observations can be carried out by naked eyes in

the laboratory [12, 13] and can be recorded by simple cameras. Due to the large

size of a dust, a huge number of charged particles (about a 103 to 105 [12, 14]) can

stick over it. Thus, dust particles acquire high charge and the dusty plasma can

readily go into the strongly coupled regime even at moderate temperature and a

low density. Therefore, no sophisticated experimental efforts have to be carried

out to cool the system and/or take it to the super-solid high density regimes for

driving the system in the strongly coupled domain. The dusty plasma is thus a

unique medium where one can directly observe simple interactions at micro-levels

leading to complexity at macro-scales [15, 16].

Depending on value of the Coulomb coupling parameter Γ, the behaviour

of dusty plasma can vary from that of a normal fluid to solid crystalline medium

[17, 18]. It is found, experimentally/analytically and numerically, that crystalliza-

tion is possible if Γ � Γc , here Γc is a critical parameter with the approximate

value 172 [13, 19]. For the intermediate range 1 ≤ Γ ≤ Γc, the dust species do

not crystallize and neither do they behave like normal Newtonian fluids. In this

regime, dusty plasma behave likes visco-elastic fluid having both traits, namely



that of viscous (fluids) and elastic (solids) characteristics under strain. Viscous ef-

fects lead to the dissipation of energy, while elasticity of the medium is responsible

for energy storage.

In this thesis we have employed ‘Generalized Hydrodynamic (GHD) model’

for the study of the dusty plasma medium. This phenomenological model takes

into account both viscous and elastic effects [20, 21]. Lately, this model has

been placed on firmer grounds by Diaw and Murillo using density functional ap-

proach [22]. In this model a parameter τm [20, 23–25] corresponding to memory

relaxation time scales is introduced. The two features (viscosity and elasticity)

are ascertained with respect to this characteristics relaxation time scale τm. For

those phenomena which are faster compared to τm, the system retains the mem-

ory of the past configurations and the elasticity effects dominate. However, for

times longer than τm the memory effects are insignificant and the usual viscous

characteristics of the fluid phase dominate.

The thesis contains six chapters. We provide below the chapterwise summary

of the work carried out in this thesis.

• Chapter - I: The first chapter provides a brief introduction of the dusty

plasma medium. Here we have briefly listed commonly used fluid model

descriptions and particle-based approaches used to explore the properties of

the complex dusty plasma medium. Predictions based on model descriptions

have often inspired experimental investigations of the dusty plasma medium

in certain directions. Similarly, experimental observations have also led to

significant progress in model development. We briefly list out some of the

models that are being employed most often for the study of the complex

medium of dusty plasma system.

(i) The quasilocalized charge approximation was proposed by Rosenberg

et al. [26] to derive the dispersion relation in strongly coupled plasma.

This approach is based on the localization of dust particles in the strongly

coupled liquid phase [27, 28]. It is assumed that the dust particles oscillate

with small amplitude along their randomly quasi-localized positions.



(ii) Generalized Hydrodynamic fluid approach has already been success-

fully applied to study the visco-elastic nature of strongly coupled dusty

plasma. The work in this thesis is based on this approach and has been

described in details in present thesis.

(iii) Molecular dynamics is also often used to model this medium to un-

derstand relevance of various physical processes at microscopic level. In

Molecular dynamic simulations one follows the trajectories of each individ-

ual particle in the combined force field that gets generated due to the pres-

ence of other particles and/or external agencies. This scheme was originally

employed for the simulations of small molecules and/or molecular chains

where the total particle number is significantly small. For fluid and plasma

system the particle number being huge, such a scheme (particle based) is

computationally not feasible. However, in the case of dusty plasmas the

dust particle numbers are reasonably small to adopt this simulation proce-

dure. The electrons and ions which constitute the background plasma are,

however, huge in number and can not be treated by this approach. Thus,

a scheme can be adopted wherein one does not follow the dynamics of in-

dividual electrons and ions but incorporates their effects in the formulation

of force field for the evolution of dust particles, the MD approach can be

applied to the individual dust particles.

The next four chapters, Chapters 2-5, are dedicated to our research work,

the collective behavior of the dusty plasma medium under the formalism of

Generalized Hydrodynamic (GHD) fluid model. In the last (sixth) chapter,

the thesis work is summarized, and some future prospectives of the presented

work are described.

• Chapter - II: The GHD model supports the existence of both incom-

pressible transverse shear and compressible longitudinal modes [20]. To

concentrate on the incompressible features of this system, we separate out

the compressibility effects altogether. For this purpose, the incompressible

limit of the GHD (i-GHD) coupled set of equations has been obtained in

Chapter - II. The density perturbations in this limit are altogether ignored



and the Poisson’s equation is replaced by the quasi neutrality condition. The

i-GHD set of equations then casts as a coupled set of convective equations

which is numerically evolved with the help of the flux-corrected scheme of

Boris et al [29].

The numerical code is validated by studying the emission of radially propa-

gating transverse shear waves from a smooth circular rotating vortex. The

radial transverse shear (TS) waves traveling with phase velocity
√
η/τm as

predicted analytically by Kaw et al. [20] is confirmed by our simulations.

Furthermore, the expected 1/r fall in the circular geometry of the system

in the intensity of the waves is also confirmed by our studies.

Often the vorticity structure in a fluid may not have a circular shape. We

consider, therefore, for our studies an initial distorted patch of vorticity. A

simple elliptical form of distortion has been considered by us. We have also

investigated the process of interaction between various vortex structures

within the GHD formalism for a strongly coupled medium. It is well known

that a sharp shear profile is susceptible to the well known Kelvin - Helmholtz

(KH) instability. We avoided the KH destabilization by considering smooth

vorticity patches and concentrated solely on understanding the evolution of

vorticity patches in both strong and weak coupling limits. The prominent

feature of i-GHD model is that it supports the transverse shear waves. To

scrutinize the effect of these TS waves on the evolution and interaction be-

tween distinct vortex structures an extensive numerical simulation has been

performed for i-GHD system. A comparison with Hydrodynamic (HD) sys-

tem has also been provided. In particular, we consider two cases. First is the

interaction and subsequent merging two like-signed vorticity patches. We

observed that in i-GHD formalism the merging does not lead to a coherent

final form like hydrodynamic fluids [30–32], the continuing emission of TS

waves dominates over the merging process because each of the vortex patch

also emits the TS waves, as expected. In second case we study a dipolar

structure, which gets formed when two unlike-signed vorticity patches are

brought in the vicinity of each other. This dipolar structure propagates



along the direction of its axis as a single stable entity in hydrodynamic

fluids. Moreover, keeping in view that TS waves travel with phase velocity
√
η/τm. We have considered two types of dipoles, viz., moving slower/faster

than the phase velocity of the emitted waves. In the former slower case, the

dipole remains engulfed inside the continuous emission of waves which re-

act and distorts the original structure ultimately. For the second case of

faster dipoles, the TS waves are emitted from this dipolar structure, remain

confined in the form of a wake. The dipole, therefore, continues to move as

a stable entity with a conical wake of waves trailing behind it. The colli-

sional interaction of oppositely propagating dipole structures has also been

studied.

• Chapter - III: In the this chapter, a Poynting-like conservation theorem is

constructed for the 2-D i-GHD model equations and obtained a enstrophy-

like conserved quantity. The rate of change of this quantity (sum of square

integrals of vorticity and the velocity strain) is controlled by radiative, con-

vection and dissipative effects. The radiation term corresponds to the TS

waves and shows a striking similarity with electromagnetic waves. The

equation also indicates that convective and viscous dissipation are other

important mechanism that could significantly change the conserved quan-

tity.

The Poynting-like theorem has been shown to be satisfied with great pre-

cision in our numerical simulations for all the cases of vortex evolution

considered in Chapter - II. These observations are likely to be generic and

applicable to all strongly coupled media.

• Chapter - IV: In this chapter, we study the evolution of sharp vorticity

patches, which showed the KH destabilization. The interplay of transverse

shear waves and the KH destabilization in the context of i-GHD fluid results

in a good mixing of fluid material, unlike the HD case where the fluid seems

to remain entrained in the confined domain for long. We also considered

the evolution of a multi-circulation vortex profiles. We have found that at

intermediate time range, it provides a complete picture of a turbulent flow



which is a collection of small vortices and waves. When the system is left

for a very long time, it ultimately relaxes to a single vortex faster than in

hydrodynamic fluid. Additionally, we found that the relaxing rate of this

turbulent medium increases with the increasing coupling strength.

To quantify the mixing and transport features in the presence of TS waves,

we have also studied the dynamical evolution of test tracer particles. The

diffusion and clustering of these test particles are directly linked to the

mixing characteristic of a medium [33]. The displacement of these particles

provides a quantitative estimate of the diffusion coefficient of the medium.

We also showed that often these test particles organize themselves in a

spatially inhomogeneous distribution. Phenomenon of clustering amongst

these particles is clearly evident from the simulations results.

• Chapter - V: In the previous chapters we had restricted our studies to

homogeneous dusty plasma medium. In this chapter we focus on the dusty

plasma medium which is stratified against gravity. This configuration is

unstable to the usual Rayleigh Taylor (RT) instability. We have shown

that the RT instability gets suppressed in the presence of strong coupling.

Such a suppression had been predicted earlier in the context of strongly

coupled dense matter of the inertial fusion by Das. et. al. [34]. Simulations

of localized rising low density bubbles and falling high density droplets are

also considered. We found that the falling/rising rate of droplet/bubble gets

decrease with increasing coupling strength.

• Chapter - VI: In the sixth and final chapter, we summarize our results

and also provide the future scope of our work.

The thesis, thus carries out a series of detailed investigation of collective behaviour

of the strongly coupled dusty plasma system using the GHD model representing



a visco-elastic medium.
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1
Introduction

The understanding of strongly coupled state of matter is of prime importance in
several contexts and frontier areas of research. The dusty plasma offers a unique
opportunity of understanding such state of matter as it can easily be prepared in
a strong coupling regime at low densities and room temperature. Thus, the study
of dusty plasma medium may reveal interesting details of the strongly coupled
state of matter. Since the collective response mirrors the dynamical traits of any
medium, we have chosen to study certain collective properties (namely coherent
structures, instabilities, transport and mixing) of the dusty plasma medium in the
strong coupling limit.

Although many approaches are employed to study the dusty plasma medium
in strong coupling limit, we have restricted our studies to the fluid description
of Generalized Hydrodynamic (GHD) model which treats the medium as a visco-
elastic system. This model introduces strong coupling effects in terms of relaxation
parameter τm and the viscosity η.

In this chapter we provide a brief introduction of the dusty plasma medium,
highlighting its unique characteristics. The various descriptions and models adopted
so far for the depiction of this medium have been presented. A review of earlier
work keeping in view the content of this thesis has been presented. Finally, the
outline of the dissertation is also presented.
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1.1 Background

The three well-known states of matter are solid, liquid and gas. By raising the
temperature, solid gets converted to liquid and then at higher temperature it goes
to a gaseous state. Plasma is known as the fourth state of matter, which forms
when a gaseous medium is heated further so that individual atoms get ionized.
The ionized medium with the constituent charged particles, however, interacts via
long range electromagnetic forces and exhibits a host of interesting phenomena.
This ionized state of plasma matter being the most abundant (e.g. 99 %) observed
form in universe, is not only attractive from the fundamental research point of
view but has many applications in different areas of science.

In many physical situations∗ the usual electron-ion plasma is interspersed with
some heavier mass species (typical mass of 10−15 − 10−10 Kg). These particles
are often termed as the dust particles. These dust particles can come in various
shapes and sizes and often acquire charge when present in a plasma due to the
electron and ion fluxes falling on their surface. In general, the lighter electron flux
on the dust grain surface is comparatively higher than that of the ion flux, causing
the dust species to acquire a net negative charge. In such a system, the dust
component acts as a third species with a very high negative charge. It is found
that a micron-sized dust particle may get negatively charged with about 103 to
105 [3, 4] of elementary electron charges. However, in some special circumstances,
like secondary electron emission, dust grains may get positively charged [5]. When
these dust particles participate in collective interaction, then the plasma is termed
as “dusty plasmas” [5].

The dusty plasmas provide immense opportunities for applications ranging from
industrial study to space physics. Sometimes the presence of dust particles can have
desirable consequences and at times their presence can be unsolicited. For example
in fusion plasma devices (tokamaks, sellarators, etc.), in industrial processes like
plasma vapor deposition, chip production and etching [6,7] etc., dust species behave
as contaminants in the plasma. On the other hand, the collection of dust leads to
the formation of astronomical bodies e.g. asteroids, moons, stars and planets, thus

∗Like the Earth’s lower magnetosphere [1, 2], planetary atmospheres, cometary tails and co-
mae, planetary and solar nebulae, asteroids, volcanoes, lighting discharge, interstellar clouds
etc.
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by studying the dynamics of dust species in a plasma one can hope to understand
much of the behaviour of universe around us.

1.1.1 Comparison with electron-ion plasmas

The aggregation of charged species form a medium whose Coulomb coupling
parameter Γcoulomb

† between these species is given as

Γcoulomb =
Q2

adkBT
∝
Q2n1/3

T
. (1.1)

Here, T and kB are the average particle temperature and Boltzmann constant,
respectively. Total charge Q = Ze, Z is the number of charges residing on a
particle and e is elementary charge. Here, ad is the average interparticle separation
between two particles which is related to the number density n by ad

3 = 3/4πn,
for a three-dimensional system. Depending on the value of Γcoulomb, a medium
may be weakly coupled if Γcoulomb < 1 and may be strongly coupled if Γcoulomb ≥ 1.
For electron-ion plasmas, the value of Γcoulomb � 1, since the species (electrons
and ions) typically have low electronic charges (corresponding to their ionization
state) at high temperature. For dusty plasma, on the other hand, the value of
the Coulomb coupling parameter can be easily Γcoulomb ≥ 1. This is because
significantly large numbers of electrons can reside on the surface of each dust
particle, thereby making very high charged species. Thus, even at low dust density
and at normal temperatures, the dust particles can be in the strongly coupled
regime.

The presence of dust grains influences the dynamical traits of the medium at
very slow time scales. It introduces new types of low frequency dust related modes
[see Section 1.2].

1.1.2 Objective and motivation

Our objective is to study the slow time scale phenomena that results from the
collective dynamics of massive dust particles. The response of electrons and ions

† Γcoulomb is defined as the ratio of electrostatic potential energy to average thermal energy
between two particles of given medium.
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being fast, their inertia can be ignored for the study of these phenomena. The bal-
ance between pressure and electric field then results in the Boltzmann distribution
of electron and ion densities. The dust continuity and momentum along with the
Poisson’s equation constitute the governing set of equations for dust dynamics.

The movement of heavy dust particles is quite slow. In typical laboratory
experiments one can observe the dust particles dynamics by ordinary cameras or
even with naked eyes. Thus, one can directly view any of the dynamical phenomena
as they occur. Thus, simple diagnostics are sufficient to follow the dynamics.
Furthermore, as mentioned earlier, the medium can easily be prepared at room
temperature and normal densities in strong coupling regime.

The entire physics community is currently grappling with questions and ap-
propriate simplified descriptions of strongly coupled state of matter. The dusty
plasma medium can play an important role in this regard due to its uniqueness, as
its dynamical response typically falls within the perceptible grasp of human senses.
It is thus a unique medium in which one can directly view simple interactions at
micro levels leading to complexity at macro scales. So, the dusty plasma medium
has attracted a significant research interest.

The dynamical response of any medium is best understood in terms of its
collective behaviour. We, therefore, focus in this thesis on the influence of strong
coupling on certain collective properties, namely coherent structures, instabilities
and turbulent transport and mixing.

1.2 Description of complex dusty plasma medium

We provide here a brief overview of the dusty plasma medium along with various
methods that have been adopted to explore the system in different physical regimes.
Dusty plasma is also called “complex plasma” because the presence of dust in
normal plasma enhance the complexity of such system by introducing new types
of dust related modes and/or may also modify the existing modes such as dust-
acoustic (DA) waves ‡ [8–13]; DA shocks [14–17]; DA solitons [18] etc, dust ion-
acoustic (DIA) waves [19–21]; DIA shocks [22,23]; DIA solitons [24] etc, dust lattice
(DL) waves [25–27] etc.
‡ In the DA waves the massive dust particles act as a source of inertia and the restoring force

comes from the pressure of background species (electrons and ions)
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Dust particles present in plasma acquire negative charge because of high mobil-
ity of electrons in comparison to ions. The ions perform the Debye shielding of the
negative potential on the dust surface. Thus the inter-dust interaction potential
is a screened Coulomb potential. This modified potential is known as Yukawa or
Debye-Huckel potential [4, 28]

U(r) =
Q2
d

r
e−r/λd . (1.2)

Here Qd = Zde is the total charge on dust particle, Zd is the number of charges
residing on a dust particle and e is electron charge. The Debye length§ is given as

λd =

√
λ2deλ

2
di

λ2de + λ2di
. (1.3)

λde =
√
kBTe/4πne0e2 and λdi =

√
kBTi/4πneie2 are the electron and ion Debye

length, respectively. Td, Te and Ti are the dust, electron and ion temperatures,
respectively; ne0 and ni0 are the electron and ion equilibrium densities, respec-
tively. The coupling parameter Γ amidst the dust particles taking into account the
screening effects in the potential in Eq. (1.1) can be written as

Γ =
Q2
d

adkBTd
e−ad/λd . (1.4)

Even with the screening factor (e−ad/λd) the value of coupling parameter Γ can
easily exceed unity for the dusty plasma medium, due to the high value of charge
that resides on the surface of dust particles. Depending on value of Γ the behaviour
of dusty plasma can span from normal conducting fluid to solid crystalline medium.
One can usually find in the literature that crystallization is possible if Γ� Γc , here
Γc is a critical parameter with the approximate value 172 [28,29]¶. For intermediate
range 1 ≤ Γ ≤ Γc, the dust species do not crystallize and neither do they behave
like normal Newtonian fluids‖. In this regime, dusty plasma behave like a visco-
elastic fluid. Visco-elastic fluids exhibit both viscous (fluids) and elastic (solids)

§ λd is the shielding parameter which define the the characteristics length scale of the expo-
nential decay of dust potential
¶For the screening parameter κ = ad/λd=0
‖ Fluids which obey the Newton’s law of viscosity are called Newtonian fluids
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characteristics when undergoing deformation (viscous effects correspond to energy
dissipation, while elastic effects correspond to energy storage).

We have employed a Generalized Hydrodynamic visco-elastic model which takes
account of the viscous and elastic effects, for our numerical and theoretical studies
[a detailed description of the same has been provided in the Subsection 1.3.2]. In
this phenomenological model, elasticity is represented by the memory relaxation
parameter τm [30]. The evolution of coherent vorticity patches, involving their
propagation and transverse emission of waves from them, their susceptibility to
the shear flow driven Kelvin-Helmholtz (K-H) mode, the mixing and transport
of the fluid etc., are some questions that have been investigated in detail. The
gravitational and buoyancy driven instabilities in this medium including Rayleigh-
Taylor instability for a dusty plasma medium have also been studied. For the
GHD model the numerical code was developed on the basis of the flux-corrected
scheme [31]. To understand the mixing and transport properties of the considered
visco-elastic medium, passive tracing particle (inertial and non-inertial) simulations
have also been performed. The dynamics of these particles is simulated using
a one-way coupled Lagrangian point-particle approach where the feedback effect
of particles on the flow of the medium has been neglected. The diffusion and
clustering of these particles are directly related to the mixing characteristic of a
medium.

There are other approaches which have been employed for the understanding
of this complex medium. A summary of those have been presented in Section 1.3.

1.3 Fluid and kinetic approaches

There have been many fluid model descriptions and particle based approaches
that have been employed to explore the properties of the complex dusty plasma
medium. Predictions based on model descriptions have often inspired experimental
investigations of the dusty plasma medium in certain directions. Similarly, exper-
imental observations have also led to significant progress in model development.
We list below some of models that are being employed most often for the study of
the complex medium of dusty plasma system.
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1.3.1 Quasi-Localized Charge Approximation (QLCA) ap-

proach

The quasi-localized charge approximation was proposed by Rosenberg et al. [32]
to derive the dispersion relation in strongly coupled plasma. This approach is based
on the localization of dust particles in the strongly coupled liquid phase [33, 34].
It is assumed that the dust particles oscillate with small amplitude along their
randomly quasi-localized positions. The strong coupling effects on DA waves in
dusty plasmas have been considered by Rosenberg et al. [35,36]. Kalman et al. [37]
studied the wave propagation in a strongly coupled dusty plasma by using QLCA
model based on MD simulation data [38] and found a very good agreement except
for the transverse mode which vanishes for small wave numbers. A comparative
study between QLCA model and MD simulations was done by Kalman et al. [39].
This approach along with MD simulations has been successfully applied to describe
waves in various strongly coupled liquid phases [40, 41]. This approach has been
modified by Golden et al. [42–44] who treat the dipole interaction between dust
particles. Recently, Hartmann et al. [45] calculated the wave dispersion relation
where the dust particles interact via both Yukawa and magnetic dipole-dipole
interaction i.e. modified QLCA approach.

1.3.2 Generalized Hydrodynamic (GHD) approach

Generalized Hydrodynamic fluid approach has already been successfully applied
to study the visco-elastic nature of strongly coupled dusty plasma. This approach
is physically understandable and models the dust system in both weak (simple
charged fluids) and strong coupling limits (visco-elastic fluids). These two aspects
(viscosity and elasticity) are ascertained with respect to a characteristic time scale
τm which signifies the memory relaxation time. For those phenomena which are
faster compared to τm the system retains the memory of past configurations and
the elasticity effects dominate. However, at times longer than τm the memory fades
and the usual viscous characteristics of the fluid phase dominates.

The visco-elastic description of the electrostatic response of strongly coupled
dusty plasma medium is provided by the following coupled set of continuity equa-
tion, the evolution of velocity through a Generalized Hydrodynamic description

7
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and the Poisson’s equation, respectively

∂nd
∂t

+∇ · (nd~vd) = 0, (1.5)

[
1 + τm

d

dt

] [
mdnd

d~vd
dt

+∇P − ndZde∇φ
]

= η∇2~vd +
(
ζ +

η

3

)
∇(∇ · ~vd), (1.6)

∇2φ = −4πe (ni − ne − Zdnd) . (1.7)

Here η, ζ and τm are the shear, bulk viscosity coefficients and relaxation time
parameter, respectively. The total time derivative is d

dt
=
(
∂
∂t

+ ~vd · ∇
)
. The vari-

ables ~vd, φ and ns (s = e, i, d) are the dust fluid velocity, potential and number
density of the charged species (electrons, ions and dust, respectively). To achieve
dimensionless forms of Eqs. (1.5)-(1.7), we have normalised the time, length, ve-
locity and potential by the dust plasma frequency ωpd = (4π(Zde)

2nd0/md0)
1/2,

plasma Debye length λd = (kBTi/4πZdnd0e
2)

1/2, λdωpd and Zde/kBTi, respectively.
Zd is the charge on each dust grain, this charge is considered to be fixed. However,
the charging equation can also be added to account for the fluctuating electron
charge of the dust particles. The parameters md, Ti and kB are the dust grain
mass, ion temperature and Boltzmann constant, respectively. The densities ns
(s = e, i, d) are normalised by their respective equilibrium values ns0.

The pressure can be determined using the equation of state P = µdγdndkBTd

with compressibility parameter µd = 1
Td

∂P
∂nd
|Td and adiabatic index γd. The param-

eters µd, τm and η are empirically related to each other and their relationship is
obtained by molecular dynamic simulations [46, 47]. The normalised continuity,
momentum and the Poisson’s equations for the dust fluid can be written as:

∂nd
∂t

+∇ · (nd~vd) = 0, (1.8)

[
1 + τm

(
∂

∂t
+ ~vd · ∇

)][
nd

(
∂~vd
∂t

+ ~vd · ∇~vd
)

+∇P − nd∇φ
]

=

η∇2~vd +
(
ζ +

η

3

)
∇(∇ · ~vd),

(1.9)

∇2φ = nd + µeexp(σeφ)− µiexp(−φ), (1.10)

with parameters σe = Ti/Te, µe = ne0/Zdnd0 and µi = ni0/Zdnd0. The memory
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effect related to elasticity is incorporated through a relaxation time parameter
τm [48–50] ∗∗. For τm ∂

∂t
< 1, there are no memory effects and the equation of

motion is that for a standard viscous fluid driven by self-consistent electric and
pressure fields. For τm ∂

∂t
≥ 1, the memory effects are strong (for the time scales

of interest, each fluid element remembers where it came from) and the viscosity
coefficient η becomes more like a non-dissipative elastic coefficient because of strong
particle correlation. The inertia of electrons and ions is negligible at slow dust time
scales and hence these species can be assumed to follow a Boltzmann distribution.

1.3.3 Viscoelastic-Density Functional (VEDF) approach

Recently, Diaw and Murillo derived a hydrodynamic model referred as the
viscoelastic-density functional (VEDF) model for strongly coupled plasmas using
density functional approach [51]. The authors validated this model by comparing
its results with molecular dynamics simulations of Yukawa plasmas, and found an
excellent agreement for three quite different types of systems: ultracold plasmas,
dusty plasmas, and dense plasmas.

1.3.4 Molecular Dynamic (MD) simulation approach

In molecular dynamic simulations one follows the trajectories of each individual
particle in the combined force field that gets generated due to the presence of other
particles and/or external agencies. This scheme was originally employed for the
simulations of small molecules and/or molecular chains where the total particle
number is significantly small. For fluid and plasma system the particle number
is huge, so such a scheme is computationally not feasible. However, in the case
of dusty plasmas the dust particle numbers are reasonably small to adopt this
simulation procedure. The electrons and ions which constitute the background
plasma are, however, huge in number and cannot be treated by this approach.
Thus, a scheme can be adopted wherein one does not follow the dynamics of
individual electrons and ions but incorporates their effects in the formulation of
force field for the evolution of dust particles, the MD approach can be applied
to the individual dust particles. This is indeed what is done in the inertia less

∗∗The relation between coupling constant Γ and τm is given in [48]
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approximation employed for ions and electrons, which is valid at the slow dust
time scales. Such an approximation results in the Boltzmann distribution for
electron and ion densities and retaining the linear terms of the Boltzmann form
in the Poisson’s equation for electron and ion density, yields a screened Yukawa
potential for the dust-dust interaction. Using such an interaction potential the
dust particles can be evolved with the help of molecular dynamics simulations.

Molecular dynamic simulations thus helps to observe the behavior of individual
particles at the microscopic level. In dusty plasma experiments, illuminating the
dust with laser light allows to capture the individual particles’ positions with time,
by means of ordinary videography. The MD simulations thus mimics this scenario
directly.

This approach has been widely used for the understanding of the transport
processes in strongly coupled dusty plasma medium, like diffusion [52–55], thermal
conductivity [56] and viscosity [57–62], phase transitions [63,64] etc. The nonlinear
behaviour of dusty medium has also been studied via coherent structures evolution
[65], fluid instabilities like Rayleigh-Taylor [66] and Kelvin-Helmholtz [67, 68]. In
the understanding of other phenomena like TS waves, DA waves, shock waves and
thermodynamic properties i.e. excess free energy, internal energy and pressure
etc., this approach plays a very important role. This technique is the easiest and
the most realistic.

1.3.4.1 Hybrid approach: Particle-in-cell (PIC) and fluid simulations

The advantage of Particle-in-cell (PIC) approach is that one can simulate a high
dense system with less computational effort by using the concept of super particle
(aggregation of many particles of same species). The concept of super particle is
very relevant for the description of charged particle system because it just rescales
the number of particles while the ratio of charge to mass remains the same. Under
the Lorentz force the trajectory of super particles will be same as the trajectory
for a real particle. The standard PIC method is used to model the dynamics of
the dust particles by integrating the Lorentz force equation.

The fluid approach is simplest but does not include the particle and wave
interaction; PIC (where all three species i.e. dust, electrons and ions are governed
by PIC with different time scales) and MD simulations would be prohibitively
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computationally expensive and often impossible as stated earlier. Hybrid approach
may be most useful as one has freedom to work without loss of any physical concept
and with a reasonable computational cost. Hybrid models use the particle-in-cell
method for charged dust species, while other species like electrons and ions are
treated as Boltzmann fluid at a constant temperature by D. Winske et al. [69,70].
Hence, dust dynamics is governed by PIC methods and electric field is calculated
by using the Poisson’s equation.

1.4 Summary of the earlier studies

The initial research interest in dusty plasmas was motivated by astrophysical
phenomena. The involvement of dust particles in many self-occurring natural
phenomena make it a very intensively studied and interesting topic of research.

The first predictions for plasma crystal formation was made by W. L. Slat-
tery [71] and H. Ichimaru [46]. They suggested that if the value of the coupling
parameter Γ ≥ 172††, the particles should organize in a Coulomb lattice form.
H. Ikezi [28] showed that Γ ' 172 can be achieved for highly charged dust grain
easily. The expected dust crystal structure was achieved in laboratory experiments
by two different groups Chu et al. [3] and Thomas et al. [29], this worked as stim-
ulation in enhancing the interest of researchers in its basic studies. After that, the
study of various phenomena like dust crystallization, phase transitions etc. have
been made by numerous researchers [4,72–76]. With this, the importance of dusty
plasma in capturing the complex fluid and solid-like features was realised soon.

However, a complete theoretical description of this complex state of matter is
quite challenging and in the past several different approaches have been adopted
to understand the behaviour of this medium [a detailed description is given in
section 1.3]. Among the most well-known descriptions are the Generalized Hy-
drodynamic visco-elastic approach used by Kaw et al. [48,77], where they showed
that in addition to longitudinal DA waves, strongly coupled media may also sus-
tain transverse shear waves. The prediction based on GHD description was ver-
ified experimentally by Pramanik et al. [78] and Pintu et al. [18]. A plenty of
research work has been carried out by using this approach, Sanat and coauthor/s

††For the screening parameter κ = ad/λd=0
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have observed nonlinear phenomena like nonlinear wave propagation, shear flow
structures [79], the cusp formation [80], solitons in 1D [81] and Kelvin-Helmholtz
instability [68, 82, 83] as well as turbulent characteristics [84] for this medium in
2D. The other phenomena like Jeans instability [85], viscoelastic modes [86], non-
linear wave propagation [87], viscosity gradient-driven instability [88] and shear
wave vortex solution [89] in a strongly coupled dusty plasma have also been stud-
ied. Shukla et al. [90] stated the formation of shocks in strongly coupled dusty
plasmas.

Apart from GHD model, theoretically, the existence of transverse modes in
dusty plasma medium has also been predicted by several authors [91–93]. Schmidt et
al. [94] showed such transverse modes in molecular dynamic simulations. Nuno-
mura et al. [95] has also observed transverse modes in dusty plasma experiment.
Recently, the strong coupling effects on DA waves in dusty plasmas have been
considered by Rosenberg et al. [35, 36], based on the quasi-localized charge ap-
proximation, by Murillo [47], based on the multicomponent kinetic approach and
by Winske et al. [69] and Ohta et al. [38], based on molecular dynamics simulations.

The vortex study plays a crucial role in the understanding of the behaviour
of dusty plasma. There have been many studies on rotating vortices of dusty
plasma, these vortices have been seen to form both in the presence as well as
in the absence of magnetic field [96–101]. Recently Yoshifumi et al. [102] have
presented interesting experimental results on dust rotation. Konopka et al. [103]
and Sato et al. [103] have shown the rotation of dust particles experimentally in
the magnetized dusty plasma. Schwabe et al. [104], reported in their dusty plasma
experiment that the formation of variety of rotating dust structures depends on
the varying magnetic field strength. The coherent solutions in the form of tripolar
vortex have also been studied theoretically in the context of dusty plasma [105].
By particle simulation the coherent structures evolution has been observed [65].

The instabilities like Kelvin-Helmholtz and Rayleigh-Taylor are considered to
be responsible for mixing and transport in any medium. Rayleigh-Taylor instabil-
ity is observed in diverse situations such as supernova explosion [106, 107], plane-
tary rings, geophysics, astrophysics, liquid atomization [108,109], supersonic com-
bustion, industrial plasmas, fusion physics [66, 110–112], oceans, turbulent mix-
ing [113–115] etc. In normal electron-ion plasmas the effect of gravity is pretty
weak due to the lightness of the electron and ion species. But in the dusty plasma
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where one of the main constituent is the micron-sized dust particle has the typi-
cal mass of 10−15 − 10−10 Kg, the role of gravitational force becomes important.
A lot of research papers are dedicated to the dynamics of dusty plasma medium
under the effect of gravitational force. To study the dynamics of dusty plasma in
laboratory experiments, charged dust grains are sustained to levitate by applying
the sufficient external electrical field against the gravitational force [29, 74, 116].
Recently, some dusty plasma experiments have been carried out in space under
micro-gravity conditions to avoid the gravitational effect on dust [97, 117–119].
D’Angelo showed the Rayleigh-Taylor instability in dusty plasmas [120] for wave
frequencies much smaller (or much larger) than the charging frequency of the dust
grains. Veeresha et al. [121] showed that this instability has driven nonlinear vor-
tices in dusty plasmas. Recently, the Taylor instability has been observed in dusty
plasma experiments by Pacha et al. [122]. Das et al. [123] (in the context of inertial
fusion) using GHD description have shown the stabilization of transverse modes
due to the strong coupling effects. Avinash et al. [124] showed that the elasticity
of the strongly coupled dust is shown to set a threshold for the RT instability.
The shear in a flow of any medium leads to the instability i.e. Kelvin-Helmholtz.
In dusty plasma shear driven i.e. Kelvin-Helmholtz instability has been observed
analytically [125–127], experimentally [128] and by simulation [67].

An inhomogeneous medium under gravity may experience to the buoyancy evo-
lution i.e. falling droplets and rising bubbles. The falling droplet [129,130] and ris-
ing bubble [131] has been studied extensively in hydrodynamic fluids. Schwabe et al. [132,
133] also investigated the formation of microparticle bubbles and droplets in com-
plex plasmas. Chu et al. [134] report a direct experimental observation of traveling
microbubbles in complex plasmas induced by intense laser.

One of our goals is to study the nonlinear behaviour of dusty plasma by adding
passive inertial particles in the considered visco-elastic medium. The mixing and
diffusion of these particles with flow is a topic of a great relevance in many natural
and industrial applications. In fluid mechanics it has been studied extensively
for flow visualization [135, 136] by means of theoretical [137–143] and compu-
tational [144–155] as well experimental [156–160] approaches. This technique is
also used in complex fluids (polymers, colloids and biological materials) [161,162].
Schwabe et al. [163] numerically studied the vortex movements by adding some
micro particles around the void in complex plasma simulation.
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1.5 Outline of the thesis

This doctoral thesis reports the collective behavior demonstrated by the GHD
model for the dusty plasma medium. Emphasis is given to the understanding of
the evolution of coherent structures, certain instabilities (e.g. Kelvin-Helmholtz,
gravitational and buoyancy-driven instabilities) and their associated transport and
mixing properties. Detailed numerical simulation studies have been carried out
to understand the nonlinear regime of these phenomena. We provide below a
chapterwise summary of the work carried out in this thesis.

In Chapter 2, the GHD model supports the existence of both incompressible
transverse shear and compressible longitudinal modes [48]. To concentrate on the
incompressible features of this system, we separate out the compressibility effects
altogether. For this purpose, the incompressible limit of the GHD (i-GHD) coupled
set of equations has been obtained. The density perturbations in this limit are
altogether ignored and the Poisson’s equation is replaced by the quasi-neutrality
condition. The i-GHD set of equations then casts as a coupled set of convective
equations which is numerically evolved with the help of the flux-corrected scheme
of Boris et al. [31].

The numerical code is validated by studying the emission of radially propa-
gating transverse shear waves from a smooth circular rotating vortex. The radial
transverse shear waves traveling with phase velocity

√
η/τm as predicted analyt-

ically by Kaw et al. [48] are confirmed by our simulations. Furthermore, the ex-
pected 1/r fall of the intensity of the waves in the circular geometry of the system
in is also confirmed by our studies.

Often the vorticity structure in a fluid may not have a circular shape. We
consider, therefore, for our studies an initial distorted patch of vorticity. A simple
elliptical form of distortion has been considered. We have also investigated the
process of interaction between various vortex structures within the GHD formalism
for a strongly coupled medium. It is well known that a sharp shear profile is
susceptible to the well-known Kelvin-Helmholtz instability. We avoided the K-H
destabilization by considering smooth vorticity patches and concentrated solely on
understanding the evolution of vorticity patches in both strong and weak coupling
limits. The prominent feature of i-GHD model is that it supports the transverse
shear waves. To scrutinize the effect of these TS waves on the evolution and
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interaction between distinct vortex structures, an extensive numerical simulation
has been performed for i-GHD system. A comparison with Hydrodynamic (HD)
system has also been provided. In particular, we consider two cases. First is
the interaction and subsequent merging of two like-signed vorticity patches. We
observed that in i-GHD formalism the merging does not lead to a coherent final
form like hydrodynamic fluids [164–166]. The continuing emission of TS waves
dominates over the merging process because each of the vortex patches also emits
the TS waves, as expected. In second case we study a dipolar structure, which gets
formed when two unlike-signed vorticity patches are brought in the vicinity of each
other. This dipolar structure propagates along the direction of its axis as a single
stable entity in hydrodynamic fluids. Moreover, we keep in view that TS waves
travel with the phase velocity

√
η/τm. We have considered two types of dipoles,

viz. moving slower/faster than the phase velocity of the emitted waves. In the
former slower case, the dipole remains engulfed inside the continuous emission of
waves which reacts and ultimately distorts the original structure. For the second
case of faster dipoles, the TS waves which are emitted from this dipolar structure
remain confined in the form of a wake. The dipole, therefore, continues to move
as a stable entity with a conical wake of waves trailing behind it. The collisional
interaction of oppositely propagating dipole structures has also been studied.

In Chapter 3, a Poynting-like conservation theorem is constructed for the 2-D
i-GHD model equations and obtained an enstrophy-like conserved quantity. The
rate of change of this quantity (sum of square integrals of the vorticity and the
velocity strain) is controlled by radiative, convective and dissipative effects. The
radiation term corresponds to the TS waves and shows a striking similarity with
electromagnetic waves. The equation also indicates that convective and viscous
dissipation is another important mechanism that could significantly change the
conserved quantity.

The Poynting-like theorem has been shown to be satisfied with the great pre-
cision in our numerical simulations for all the cases of vortex evolution considered
in Chapter 2. These observations are likely to be generic and applicable to all
strongly coupled media.

In Chapter 4, we study the evolution of sharp vorticity patches, which showed
the K-H destabilization. The interplay of transverse shear waves and the K-H
destabilization in the context of i-GHD fluid results in a good mixing of fluid
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material, unlike the HD case where the fluid seems to remain inside a confined
domain for a long time. We also considered the evolution of a multi-circulation
vortex profiles. We have found that at intermediate time range, it provides a
complete picture of a turbulent flow which is a collection of small vortices and
waves. When the system is left for a very long time, it ultimately relaxes to
a single vortex faster than in hydrodynamic fluid. Additionally, we found that
the relaxing rate of this turbulent medium increases with the increasing coupling
strength.

To quantify the mixing and transport features in the presence of TS waves, we
have also studied the dynamical evolution of test tracer particles. The diffusion
and clustering of these test particles are directly linked to the mixing characteris-
tic of a medium [167]. The displacement of these particles provides a quantitative
estimate of the diffusion coefficient of the medium. We also showed that often
these test particles organize themselves in a spatially inhomogeneous distribution.
Phenomenon of clustering amongst these particles is clearly evident from the sim-
ulation results.

In Chapter 5, we consider an inhomogeneous dusty plasma medium which is
stratified against gravity. We observe that the visco-elasticity of the strongly cou-
pled medium leads to a suppression of these instabilities. This has been illustrated
by a local linear analysis as well as by numerical simulations of density inho-
mogeneity stratified against gravity. The dynamical evolution and propagation
of light density bubbles in heavier fluid as well as higher density droplets in a
lighter density media were also considered. We found that the falling/rising rate
of droplet/bubble gets decreases with the increasing coupling strength.

In Chapter 6, we summarize our findings and also provide the future scope for
the thesis work.
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2
Visco-elastic fluid simulations of coherent

structures in strongly coupled dusty
plasma medium

In this chapter the incompressible limit of the Generalized Hydrodynamic equa-
tions for the dusty plasma medium has been obtained. The numerical imple-
mentation of the incompressible set of GHD (i-GHD) equations in 2-D has been
illustrated. The validation of the code is carried out by considering a circular ro-
tating vorticity profile using this set of equations and observing the emission of
transverse shear (TS) waves.

Furthermore, the chapter focuses on the study of nonlinear dynamical char-
acteristic features of this model. Specifically, the evolution of coherent vorticity
patches is being investigated.

2.1 Introduction

The strongly coupled dusty plasma system has been analysed with the help of
coupled set of continuity, generalized momentum and Poisson equations, both an-
alytically as well as numerically to a great extent in the past studies [48, 68, 77,
83, 84, 87–90]. The set of these equations permits both the existence of incom-
pressible transverse shear and compressible longitudinal modes. In this chapter,
we concentrate on the incompressible features of this system by separating out the
compressibility effects. For this purpose, the incompressible limit of the GHD (i-
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GHD) set of equations has been obtained. In the incompressible limit the Poisson’s
equation is replaced by the quasi-neutrality condition and charge density fluctu-
ations are ignored. The reduced set of equation not only caters to the strongly
coupled incompressible dusty plasma medium but also is relevant for any other
incompressible visco-elastic system. The derivation of this reduced equation is dis-
cussed in detail in subsequent sections along with the procedure of its numerical
implementation and validation.

For the validation of the numerical code, we have shown that a circular rotating
vortex in strongly coupled limit (where elastic effects do feature in the GHD for-
malism) emits TS waves for different coupling parameters. The phase velocity of
the TS wave agrees with the analytical prediction made by Kaw et al. [48]. In ad-
dition the radially emitted waves show a 1/

√
r fall in the amplitude as expected in

this 2-D geometry. The hydrodynamic fluid, on the other hand, shows no emission.
The vortex structure in this case remains intact, provided the Kelvin-Helmholtz
(K-H) destabilization condition is either not satisfied anywhere by the sheared ro-
tational velocity in the vorticity patch or the time scale under consideration is too
short compared to the growth rate of such a destabilization process.

The radiative emission from monopoles have the same circular symmetry of the
structure. In this regard, it is interesting to study the emission of waves from non-
symmetric structures. A simple elliptical form of distortion has been considered by
us. It would also be interesting to see evolution and interaction between distinct
vortex structures in presence of TS waves. We consider, therefore, the merging
phenomenon between two like-signed vorticity patches and the propagation of two
unlike-signed vortices as single entity (namely dipole structure) in the context of
i-GHD model. This dipole structure propagates along the direction of its axis as a
single stable entity in hydrodynamic fluids. The evolution of dipole structures are
studied in detail and has been presented in subsection 2.5.1. In i-GHD formalism,
it shows that the dipoles also emit transverse shear waves as expected. However,
there are two different cases considered in the simulation. When the dipole moves
slower than the phase velocity of the emitted waves (sub-luminar), it gets totally
engulfed within the propagating waves which react and distort the original dipole
structure pretty soon. In the other limit (super-luminar), when the dipoles move
faster than phase velocity of the transverse shear waves in the medium, the TS
waves are emitted from the tail of the structure in the form of a wake. The dipole,
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however, continues to move as a stable entity with a conical wake of waves trailing
behind it. We also carry out studies to understand the collisional interaction of
oppositely propagating dipole structures discussed in subsection 2.5.2. Here too
they behave like hydrodynamic fluid, they exchange partners and move in the
orthogonal direction in the super-luminar cases.

The chapter has been organized as follows. Section 2.2 contains the details
of the governing equations. In Section 2.3, a brief description of the numerical
approach has been discussed. In Section 2.4, we present the simulation studies of
a circular rotating vortex in the context of i-GHD model which emits transverse
shear waves. This confirm the validity of our code. In Section 2.5, the merging
phenomenon and various cases of dipole evolution and interaction have been pre-
sented showing the influence of the emitted transverse shear waves on the integrity
of these structures. Finally a summary of the whole chapter is provided in the
Section 2.6.

The subsequent chapters of this thesis utilize the i-GHD model set of equations
to study various phenomena related to normal modes and instabilities.

2.2 Governing Equations

Incompressibility is always a good approximation while considering disturbances
in the medium whose propagation is much slower than the sound speed. In the
limit of incompressible flow dynamics, the density/potential perturbations can be
ignored. Hence the momentum and continuity equations for i-GHD of strongly
coupled homogeneous dusty plasma can be written as:

[
1 + τm

(
∂

∂t
+ ~vd · ∇

)][
∂~vd
∂t

+ ~vd · ∇~vd +
∇P
nd
−∇φ

]
= η∇2~vd, (2.1)

and
∇ · ~vd = 0, (2.2)

respectively. Here η and τm are the kinematic viscosity and relaxation time param-
eter, respectively. The variables ~vd, φ and nd are the dust fluid velocity, potential
and number density, respectively. The normalisaton scheme of these equations is
already discussed in details in Chapter 1. The standard Navier-Stokes equation
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can be achieved from Eq. (2.1) by taking τm = 0. For our convenience, we can
split the Eq. (2.1) in following two coupled equations:

∂~vd
∂t

+ ~vd · ∇~vd +
∇P
nd
−∇φ = ~ψ, (2.3)

∂ ~ψ

∂t
+ ~vd · ∇~ψ =

η

τm
∇2~vd −

~ψ

τm
. (2.4)

Thus the Eq. (2.1) has now been expressed as a set of two coupled convective
equations. The gradient terms are eliminated by taking the curl of Eq. (2.3) which
yields an equation for the evolution of the vorticity field. So the coupled set of
Eqs. (2.3)-(2.4) has been recast in the following form:

∂~ξ

∂t
+ ~vd · ∇~ξ = ∇×~ψ, (2.5)

∂ ~ψ

∂t
+ ~vd · ∇~ψ =

η

τm
∇2~vd −

~ψ

τm
. (2.6)

Equations (2.5) and (2.6) are a coupled set of closed equations for a visco-elastic
fluid in the incompressible limit. These equations would be referred as i-GHD
model equations henceforth in the thesis. Here, ~ξ = ∇×~vd (here ~ξ is normalised
with dust plasma frequency) is the vorticity. It should be noted that in this
particular limit there is nothing specific which is suggestive of the fact that the
system corresponds to a strongly coupled dusty plasma medium.

2.3 Numerical implementation and validation

For the validation of the numerical procedure several things were tested out.
These include the dispersion relation of transverse shear wave. The dispersion
relation (Fourier transform in space and time) of the transverse shear wave [48],
obtained by linearizing the above set of equations is

ω =
−iηk2

1− iωτm
. (2.7)
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In the strong coupling limit of (ωτm >> 1) this yields

ω

k
=

√
η

τm
, (2.8)

which implies wave propagation and in the other limit of (ωτm << 1)

ω = −iηk2,

we have the usual damping due to viscosity in hydrodynamic fluids. We have used
the flux corrected scheme (Boris et al. [31]) to evolve the coupled set of Eqs. (2.5)-
(2.6). The velocity field at every time step is obtained using the equation ∇2~vd =

−~∇×~ξ, which uses the incompressibility condition of ∇ · ~vd = 0. The equations
were evolved for a slab sinusoidal perturbation and the dispersion relation for
the transverse shear wave was verified numerically as a part of code validation
[79]. In the next section we would show that a rotating vortex structure also
emits transverse shear waves. The dispersion relation again agrees with Eq. (2.8).
Moreover, the radial fall of the wave amplitude is 1/

√
r as expected in the 2-D

circular geometry is also clearly shown to be verified.

2.4 Evolution of vorticity patches

A typical fluid flow contains a wide variety of coherent patterns in the form
of localized vorticity patches. Their interaction and evolution are important for
the understanding of the system which in turn is responsible for the transport
properties of the system. The objective of the present work is to understand the
dynamical characteristics of these entities for a strongly coupled system within
the framework of the visco-elastic i-GHD model. The vorticity patches are chosen
to be quite smooth so as to avoid sharp shear flows which may lead to the K-
H destabilization. The case of sharp shear structures are considered in Chapter
4 wherein the added process of K-H destabilization is added. We consider the
following specific cases, in particular: (i) evolution of circular and elliptical vorticity
patches and (ii) interaction between vorticity patches of like and unlike signs. The
vorticity patch representing a sheared rotation emits the transverse shear wave for
a visco-elastic fluid, making the evolution significant in terms of rapid mixing and
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transport behaviour of the GHD fluid system.

2.4.1 Evolution of monopoles

We consider a radially smooth vorticity profile (clockwise rotation of the fluid)
initially having the following spatial profile :

ξ0(x, y, t0) = Ω0exp

(
−
(
(x− xc)2 + (y − yc)2

)

a2c

)
. (2.9)

Here Ω0 = Γ0/πa
2
c , Γ0 is the total circulation, ac is the vortex core radius. xc and

yc are the x and y coordinates of the center of the vorticity profile. This vorticity
profile has circular symmetry. The numerical simulation has been carried out for
ac=1.5, Ω0 = 8 and xc = yc = 0. The simulation region is a square box of length
12π units with periodic boundary (PB) conditions.

(a)

(b)

Figure 2.1: Evolution of smooth circular vorticity profile in time for (a) hydrody-
namic fluid and (b) visco-elastic fluid with the parameters η = 5, τm = 20.

In Fig. 2.1, we compare the evolution of such circular vorticity patch in the
weakly coupled hydrodynamic fluid limit and the i-GHD model by plotting the
color contours of vorticity. It can be observed that while the structure remains
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stable in the former case as shown in Fig. 2.1(a), in the latter strongly coupled
limit the radial wave emission can be clearly observed in Fig. 2.1(b). This emerging
waves have the same circular symmetry as that of the initially considered vorticity
profile structure, until there is no boundary effect or no interaction with other
waves or obstacle like vortex. The prime objective of the present section is to
evaluate the speed of outgoing shear wave. Hence we limit our study to the time
till the shear wave remains confined within the boundary. The boundary effects
shall be discussed later.

(a)

(b)

Figure 2.2: Radial emission (emerging wavefront) of TS waves along one of the
axes at different times during vortex evolution in visco-elastic medium for the
parameters (a) η = 5, τm = 20 and (b) η = 2.5, τm = 20 with different line styles.

A better depiction has been provided in Fig. 2.2, where the vorticity profile as
a function of r has been plotted for various times. A perturbation clearly proceeds
along radially outward direction. The radial speed of this perturbation has been
evaluated and found to match with

√
η/τm as has been shown in Fig. 2.3(a).

The circular nature of the emitted wave also suggests that the amplitude of these
characteristic perturbations should display a 1/

√
r radial fall off. This has also

been demonstrated numerically as shown in Fig. 2.3(b).
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Figure 2.3: (a) Wavefront position of TS waves at different time steps with pa-
rameter values η = 10, τm = 40 (•), η = 5, τm = 20 (∗) and η = 2.5, τm = 20 (F),
where vp is the phase velocity related to corresponding parameters (of correspond-
ing color) and black line is linear fitted curve and (b) Wavefront amplitude of TS
waves with 1/

√
r with parameter values η = 10, τm = 40 (•) , η = 5, τm = 20 (�)

and η = 2.5, τm = 20 (F) with black line as linear fitted curve.

The emission of such TS waves is due to the possible local instability which has
been found to exist in GHD description of strongly coupled dusty plasma medium
as earlier discussed by Sanat et al. [79].

(a)

(b)

Figure 2.4: Evolution of elliptical vorticity profile in time for (a) hydrodynamic
fluid and (b) visco-elastic fluid with parameters η = 5, τm = 20.
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Often the vorticity structure in a fluid may not have a circular shape. We
consider, therefore, for our studies an initial distorted smooth elliptical vorticity
patch. Various time frames of the evolution of such a vortex pattern in both HD
and GHD case has been shown in Fig. 2.4 for smooth elliptical vorticity patch.

For the elliptical perturbation even the HD case is not stable and adjusts its
vorticity to ultimately acquire a circular shape. The GHD seems to acquire this
shape considerably faster by emitting the transverse shear waves.

2.5 Interaction between vorticity patches

We have also investigated the process of interaction between various vortex struc-
tures within the GHD formalism for a strongly coupled medium. A comparison
with HD system has also been provided.

2.5.1 Evolution of dipole structures

When two monopoles rotating in opposite directions (i.e. unlike-sign vortices)
are brought close, they take shape of a dipole which propagates along the direction
of its axis as a single stable entity in the context of Newtonian fluids as shown in
Fig 2.5.

Figure 2.5: Evolution of dipole in time for hydrodynamic fluid

For present case the dipole vorticity profile is given by

ξ0(x, y, t = 0) = Ω0(y − yc)exp
(
−
(
(x− xc)2 + (y − yc)2

)

a2c

)
. (2.10)
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Here ac is the vortex core radius and numerical simulation has been carried out
for ac=2.5, xc = −24 and yc=0. The simulation region is a square box of length
24π units with periodic boundary (PB) conditions.

Figures 2.6 to 2.8 show three different cases of simulations in the context of
i-GHD model for the same system of dipole, shown in Fig 2.5. The values of
the coupling parameters η = 5 and τm = 20 have been chosen to be same for
all these three cases. The transverse shear waves emerge with the phase velocity
vp =

√
η/τm = 0.5 for the parameters chosen for these simulations. The three cases

(a, b and c) have different amplitude of vorticity (Ω0 of 3.5, 5 and 7.5 respectively)
which makes them move with the increasing axial speeds. The axial speed of the
dipoles vdip turns out to be 0.4<vp, 1.14>vp, and 2.29>vp, for cases (a), (b) and
(c) respectively. This is evident from the plot of traversed distance vs. time for the
peak of the structure shown in Fig. 2.9 for the three cases, where the respective
slope corresponds to vdip. Clearly, while case (a) corresponds to the sub-luminar
speed of the dipole, (b) and (c) are super-luminar.

For all these three cases the dipole emits transverse shear wave. However,
in case (a) the sub-luminar dipole of Ω0=3.5 gets completely engulfed into the
emissions. These emissions then react on the original structure and the distortions
increase with time. It should also be noted that the emission from each of the
lobes gets significantly impeded by that of the other as a result of which the
emission profile is no longer symmetrically centered around each of the lobe. The
wave emission from each lobe pushes the other lobe as a result of which the tail
end of the two lobes can be seen to get pushed away significantly apart. This
increased separation between the two lobes, as well as the continuous sapping of
the strength of the dipole due to wave emission, appears to impact the dipole
propagation speed which can be observed to slow down as shown in Fig. 2.6 and
there is also a considerable distortion in the structure. At later times the lobes
have been observed to rotate and newer structures emerge, resulting in a reformed
weak dipole with reversed polarity propagating backwards to its original direction.
In the process of such a reformation the merging of like-sign vorticity patches and
emission patterns play an important role. Ultimately, the identity of the original
dipole structure gets completely lost.
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Figure 2.6: Evolution of sub-luminar dipole in time for visco-elastic fluid of Ω0=3.5
with the coupling parameters η = 5, τm = 20.

Figure 2.7: Evolution of super-luminar dipole in time for visco-elastic fluid of Ω0=5
with the coupling parameters η = 5, τm = 20.

In the other two cases (b) and (c) of Ω0=5 and 7.5 respectively, however, the
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dipole structure continues to maintain its identity. The wave emission in these
cases (because of the super-luminar velocity of dipole) remains confined to a conical
spatial regime at the tail. The radiation merely separates the tail region of the
dipole.

In case (b), we show the evolution of super-luminar dipole ( i.e. larger velocity
amplitude) with more strength of Ω0=5 than the former case (a). In this case
we restrict the speed of dipole to be not too large, so that it leaves behind wake
structures. It can be observed that there is wake-type structure formation as it is
evident from Fig. 2.7.

In Fig. 2.8, we consider the case (c) of another super-luminar dipole of Ω0=7.5
moving with more strength than the both former cases (a) and (b). The dipole
gets out of the cage of the wake structures.

Figure 2.8: Evolution of super-luminar dipole in time for visco-elastic fluid of
Ω0=7.5 with the coupling parameters η = 5, τm = 20.

We also observed that with the increase in the speed of the dipole, the angle
of the cone that confines TS wave radiation gets reduced.
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Figure 2.9: Position of the maximum of the dipole amplitude at different time steps
along the axial direction with the parameter values (a) Ω0=3.5 (�); vdip = 0.4<vp
corresponds to sub-luminar dipole, (b) Ω0=5 (•); vdip = 1.14>vp corresponds to
super-luminar dipole, and (c) Ω0=7.5 (F); vdip = 2.29>vp is also corresponds
to super-luminar dipole, where vdip is the corresponding axial velocity of dipole
related to Ω0 and the blue line is linear-fitted curve.

2.5.2 Head-on collision between dipoles

When two oppositely propagating dipoles collide with each other, it is well known
in the context of hydrodynamics, that their lobes exchange partners and form a
new dipolar structure which propagates orthogonally to the initial propagation
direction. This can be observed from the Fig. 2.10. We consider two dipoles whose
vorticity profile is given by ξ0(x, y, t0) = ξ01(x, y, t0) + ξ02(x, y, t0). Here, the left
side dipolar vorticity is:

ξ01(x, y, t0) = Ω01(y − yc1)exp
(
−
(
(x− xc1)2 + (y − yc1)2

)

a2c1

)
, (2.11)

and the right side dipolar vorticity is:

ξ02(x, y, t0) = Ω02(y − yc2)exp
(
−
(
(x− xc2)2 + (y − yc2)2

)

a2c2

)
, (2.12)

with the parameters ac1=ac2=2.5, xc1 = −24, yc1=0, xc2 = 24, yc2=0 and Ω01=Ω02

for equal strength dipoles. In cases of disparate strength dipoles Ω01 6= Ω02.
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Figure 2.10: Head-on collision between two dipoles for hydrodynamic fluid with
Ω01=Ω02=7.5.

Similar effect is observed in the context of collision in i-GHD system. We
again consider the two cases of collision between two equal strength sub- and
super-luminar pairs of dipoles in Fig. 2.11 and Figs. 2.12, 2.13 respectively. The
coupling parameters (η = 5, τm = 20) are same for all these cases.

In Fig. 2.11 the radiation engulfs the dipoles. The two equal strength sub-
luminar dipoles of Ω01=Ω02=3.5 slow down considerably as they move towards
each other. This happens due to the preceding waves from each structure that in-
hibits their propagation forward. They almost become standstill before exchanging
partners and moving in the orthogonal direction. The identity of the dipolar lobes
is ultimately completely lost due to the interaction with the emitted shear waves.
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Figure 2.11: Head-on collision between two equal strength sub-luminar dipoles for
visco-elastic fluid of Ω01=Ω02=3.5 with the coupling parameters η = 5, τm = 20.

Figure 2.12: Head-on collision between two equal strength super-luminar dipoles
for visco-elastic fluid of Ω01=Ω02=5 with the coupling parameters η = 5, τm = 20.

In the second case the two equal strength super-luminar dipoles of Ω01=Ω02=5
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exchange partners and move ahead in the orthogonal direction leaving the radiation
behind. This can be observed from the Fig. 2.12.

In Fig. 2.13, we consider the case of an other two equal strength super-luminar
dipoles of Ω01=Ω02=10 approaching toward each other with more strength than
the former cases of Ω01=Ω02=3.5, 5. The damage in this case to the lobes is very
weak and the dipoles retain their identity.

Figure 2.13: Head-on collision between two equal strength super-luminar dipoles
for visco-elastic fluid each of Ω01=Ω02=10 with the coupling parameters η = 5, τm =
20.

Collisional interactions of disparate strength dipoles have also been studied. In
Fig. 2.14, we consider two disparate strength dipoles. The sub-luminar dipole on
the left has Ω01= 3.5 and the super-luminar dipole on the right has Ω02=10. As
opposed to the normal case where the dipoles of equal strength propagate in the
direction normal to the direction of propagation before collision, for the present
case as evident from Fig. 2.14, the super-luminar dipole pierces into the lobes of
sub-luminar dipole. It can be clearly seen, after the accomplishment of this crossing
process, the lobes of sub-luminar dipole again come close to each other and start
propagating like an independent dipole. It is interesting to note that there is no
exchange of lobes between dipoles. Both these dipoles (sub and super) propagate
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in the same direction as before collision. As time progresses, these dipoles interact
with the wake-type structures (left behind by them) and sub-luminar dipole loses
its identity earlier than super-luminar dipole.

Figure 2.14: Head-on collision between two disparate strength dipoles, sub-luminar
dipole (left) of Ω01= 3.5 and super-luminar dipole (right) of Ω02=10 with the
coupling parameters η = 5, τm = 20.

In Fig. 2.15, we consider two super-luminar disparate strength dipoles, of
Ω01=7.5 (left) and Ω02=10 (right). It is observed after exchanging lobes, these
new dipoles change their trajectory and along with the axial motion, the weaker
lobe rotates around the stronger lobe. With this rotation, new dipoles of unequal
lobe strength approach each other and collide again. The exchange of lobes takes
place once again and the newly formed dipoles (with same lobes as before collision
process) starts propagating in the same direction just as before collision. This
collisional process repeats again and again due to PB conditions and the dipoles
also experience the interaction with the wake left behind by them.
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Figure 2.15: Head-on collision between two disparate strength super-luminar
dipoles of Ω01= 7.5 (left) and Ω02= 10 (right) with the coupling parameters
η = 5, τm = 20.

2.5.3 Merging

The interaction and subsequent merging of two like signed vorticity patches have
been well known in the context of a hydrodynamic system [164–166] as shown in
Fig. 2.16(a). The same, in the case of i-GHD, has been illustrated in the subplots
of Fig. 2.16(b).

In contrast to HD, the merging does not lead to a coherent final form, instead
as expected the TS waves continue to dominate the system.
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(a)

(b)

Figure 2.16: Evolution of two like sign vortices in time for (a) hydrodynamic fluid
and (b) visco-elastic fluid with parameters η = 5, τm = 20.

The emission of transverse shear waves appears to have a predominant role in
the mixing and transport of the fluid elements in the context of the visco-elastic
GHD system. The strong mixing can be suppressed provided that the TS waves
have damped characteristics in the medium.

2.6 Summary

The evolution and interaction of localized vortex patterns for a strongly coupled
medium depicted by the visco-elastic i-GHD description have been studied. The
incompressible limit of the model which supports transverse shear wave mode is
studied in detail. We have shown numerically, in particular, for the smooth rotating
vorticity profile the emission of transverse shear waves traveling with phase velocity√
η/τm as expected analytically from GHD model.
The interactions between TS waves and coherent structures have shown the

generation of various complicated radiation and convection pattens during their
evolution. To provide the insights on the evolutionary behavior of this compli-
cated system, in the Chapter 3, a Poynting-like conservation law is constructed
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analytically for the i-GHD set of equations and numerically verified for the non-
linear structures discussed in present Chapter i.e. monopole and dipole (sub- and
super-luminar dipole) and their collision.

Our studies show that due to the existence of such transverse shear waves
in the strongly coupled medium, the mixing and transport behaviour in these
fluids are much better than in Newtonian hydrodynamic systems. The chances of
fluid element and/or test particles to remain entrained for long duration within
a localized region are insignificant in i-GHD when compared with the Newtonian
fluid. In the Chapter 4, we have quantified this transport behaviour by carrying
out test particle simulations in the system of i-GHD model.

36



3
A conservation theorem for incompressible

Generalized Hydrodynamic fluid model

In the Chapter 2, the incompressible limit of GHD (i-GHD) model which sup-
ports transverse shear wave mode is studied in detail. In this chapter, a Poynting-
like conservation law is obtained from the 2-D i-GHD equations, where radiative,
convective and dissipative terms are shown to be responsible for the evolution of
W , which is similar to “enstrophy” like quantity in normal hydrodynamic fluid
systems. The conservation law is shown to be satisfied to a great accuracy for the
evolution and interaction of nonlinear structures like monopole and dipole (sub-and
super-luminar dipole) and their collision.

3.1 Introduction

In the Chapter 2, it was shown that in contrast to Newtonian fluids, visco-elastic
fluid (described by i-GHD model) supports the emission of transverse shear waves
from the rotating vorticity patches. The phase propagation speed was observed to
match the theoretical prediction of

√
η/τm as predicted by Kaw et al. [48]. The

other important structure which has been studied extensively in the context of
i-GHD has dipolar symmetry.

The conservation laws satisfied by any evolution equation help to provide im-
portant insights on the evolutionary behavior of any system. Keeping this in view,
the i-GHD set of equations was analyzed for a possible construction of such laws.
We obtain a kind of Poynting theorem for an enstrophy-like integral associated
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with the i-GHD system. The mean square integral quantity is shown to decay
due to dissipation and through convection and emission of waves. The validity of
this theorem is then numerically verified over a considered local circular regime for
nonlinear structures like monopole and dipole structures in both sub/super lumi-
nar limits (i.e. when the propagation speed of the dipole is slower/faster than the
TS wave phase velocity) and their collision. It is shown that monopole structures
which do not move at all but merely radiate shear waves, the radiative term and
dissipative losses solely contribute to the evolution of W . The dipolar structures,
on the other hand, propagate in the medium and hence convection also plays an
important role in the evolution of W .

The present chapter has been organized as follows. In Section 3.2, we de-
rive analytically a Poynting-like conservation equation for our i-GHD system. In
Section 3.3, we present the simulation studies which confirm the validity of the
Poynting-like theorem and help to identify the dominant mechanism of the decay
for the enstrophy-like integral of the system. Section 3.4 contains the summary of
the whole chapter.

3.2 A Poynting-like theorem for the coupled set of

i-GHD

A Poynting-like theorem can be obtained for the i-GHD model. Such conserva-
tion equations are in general a powerful tool for any system. They provide new
interesting physical insights for the system and can also be employed for validating
as well as discerning the accuracy of any numerical program.

Taking the dot products with respect to ~ξ and ~ψ for Eqs. (2.5) and (2.6) re-
spectively, we obtain:

1

2

∂ξ2z
∂t

+ ~ξ·(~vd · ∇) ~ξ = ~ξ·∇×~ψ, (3.1)

1

2

∂ψ2

∂t
+ ~ψ· (~vd · ∇) ~ψ = ~ψ· η

τm
∇2~vd −

ψ2

τm
. (3.2)

It should be noted that the vorticity vector ~ξ in the 2-D geometry has only ẑ
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component. We have the following vector relations:

~ξ· (~vd · ∇) ~ξ = ∇·(~vd
ξ2z
2

),

~ψ· (~vd · ∇) ~ψ = ∇·(~vd
ψ2

2
),

~ψ·∇2~vd = −ξz·(∇×~ψ)−∇·(ξz×~ψ).

Using the first vector relation and multiplying Eq. (3.1) by η/τm we have

1

2

η

τm

∂ξ2z
∂t

+
η

τm
∇·(~vd

ξ2z
2

) =
η

τm
ξz·∇×~ψ. (3.3)

The other two vector relations are used in Eq. (3.2) to obtain:

1

2

∂ψ2

∂t
+∇·(~vd

ψ2

2
) = − η

τm
ξz·(∇×~ψ)− η

τm
∇·(ξz×~ψ)− ψ2

τm
. (3.4)

Now summing Eqs. (3.3) and (3.4), we get

∂

∂t

(
ψ2

2
+

η

τm

ξ2z
2

)
+∇· η

τm
(ξz×~ψ) +∇·~vd

(
ψ2

2
+

η

τm

ξ2z
2

)
= −ψ

2

τm
. (3.5)

Clearly, the form of Eq. (3.5) is that of the Poynting-like equation:

∂W

∂t
+∇·~S +∇·(Td~vd) + Pd = 0, (3.6)

with following identifications:

W ≡
(
ψ2

2
+

η

τm

ξ2z
2

)
, ~S ≡ η

τm
(ξz×~ψ), Pd ≡

ψ2

τm
and Td~vd ≡

(
ψ2

2
+

η

τm

ξ2z
2

)
~vd.

This shows that the rate of change of W depends on dissipation through Pd in the
medium, a convective and radiative flux of Td~vd and ~S, respectively. The radiative
Poynting flux, as we will see later, is associated with the emission of transverse
shear waves in the medium. Equation (3.5) can also be recast in the following
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integral form:

∂

∂t

∫

V

Wdv +

∮

S

~S·d~a+

∮

S

Td ~vd·d~a = −
∫

V

Pddv, (3.7)

which corresponds to

∂

∂t

∫

V

(
ψ2

2
+

η

τm

ξ2z
2

)
dv +

η

τm

∮

S

(ξz×~ψ)·da +

∮

S

(
ψ2

2
+

η

τm

ξ2z
2

)
~vd·da = −

∫

V

ψ2

τm
dv

(3.8)
or

∂

∂t

∫

V

(
ψ2

2
+

η

τm

ξ2z
2

)
dv

︸ ︷︷ ︸
dWdt

=

− η

τm

∮

S

(ξz×~ψ)·da
︸ ︷︷ ︸

S

−
∮

S

(
ψ2

2
+

η

τm

ξ2z
2

)
~vd·da

︸ ︷︷ ︸
T

−
∫

V

ψ2

τm
dv

︸ ︷︷ ︸
P

. (3.9)

It is important to physically analyse each of the terms. The contributions to dWdt

arise from two mean square integrals. While ξz can easily be identified with the z
component of vorticity which is typically conserved in two-dimensional Newtonian
fluids, the quantity ~ψ relates to the strain created in the elastic medium by the
time-varying velocity fields. Thus, dWdt is the sum of square integrals of vorticity
and velocity strain. The radiation term S contains the integral of the cross product
of ξz ẑ and ~ψ. This term is like a Poynting flux for the radiation corresponding to
the transverse shear waves. A comparison with electromagnetic light waves where
~E× ~B acts as a radiation flux, shows that the corresponding two fields here are ξz ẑ
and ~ψ. The equation also indicates that convection T (which would vanish if the
velocity normal to the boundary region is zero) and viscous dissipation P through
η are other important mechanism that could significantly change W .

Later, in Section 3.3 simulation studies have been presented and it is showed
that the theorem is remarkably accurate even for the most complicated simulation
cases that have been considered by us. It also helps to identify the prominent
mechanism of decay in W in various scenarios.
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3.3 Numerical verification of Poynting-like equa-

tion for i-GHD

We now study the role of different transport processes in the integral equation
Eq. (3.9) on the evolution of W in the context of monopole, dipole evolution and
dipole-dipole collision.

3.3.1 Monopole evolution

In the Chapter 2, we have investigated the emission of transverse shear waves
from the rotating smooth vorticity profile in strongly coupled dusty plasma medium
[168]. In this case the smooth vorticity profile is given by

ξ0(x, y, t0) = Ω0exp

(
−
(
(x− xc)2 + (y − yc)2

)

a2c

)
. (3.10)

The numerical simulation has been carried out for ac=0.5, Ω0 = 8 and xc = yc=0.
We found that phase velocity vp of such waves is proportional to the coupling
strength of the medium.

In Fig. 3.1 the evolution of a circular vorticity patch in the strong coupling
limit with parameters η = 2.5 and τm = 20 for i-GHD system has been shown.
A circle with a radius of 0.6π units has been drawn in the plots. Initially all the
action is within this circular boundary. However, as time progresses, the waves
are emitted which cross this boundary. We investigate the validity of the integral
Eq. (3.9) within this boundary. Our simulation region is a square box of the length
2π units with periodic boundary (PB) conditions. The PB ensures that the waves
would not only propagate out of the circular demarcated region but would also
enter it subsequently from the other side due to the periodicity of the square box.
In fact, the evidence is clear from the subplots in the second row of the Fig. 3.1∗.

∗Fig. 3.1 appeared on the cover page of the Phys. Plasmas 23(1), 2016
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Figure 3.1: Evolution of smooth circular vorticity profile in time for visco-elastic
fluid with the parameters η = 2.5, τm = 20 and a circular local volume element
(inside the circumference) over which the different transport quantities are calcu-
lated.
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Figure 3.2: Subplot (a) shows the evolution ofW and the subplot (b) shows dWdt
for the rotating circular vorticity profile within our considered regime.

The change in the magnitude of W within the circular region with time is
shown in the Fig. 3.2(a). We observe a steady decay in the magnitude of W . It is
clear from the plot that the rate of decay of W is not constant. Thus, the sum of
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the contribution of various terms in Eq. (3.9), which defines the evolution of W ,
changes with time. The Fig. 3.2(b) shows the corresponding change in dWdt i.e

the left hand side of integral Eq. (3.9) with time. The evolution of various terms
has been shown in the subplots of Fig. 3.3.

Figure 3.3(a) represents the change in W by wave emission. It is positive
when the waves leave the region and negative when they enter the region. The
comparison of Fig. 3.3(a) with Fig. 3.1 clearly indicates that the positive peak in
this subplot corresponds to the time when the transverse shear waves pulse leaves
the circular boundary. Similarly, the negative peak here denotes the time when
the waves enter the region after re-entering the simulation box from the other end
due to the PB condition. As the monopolar vortex remains stationary and merely
rotates about its axis, there is no convection of the fluid across the region. Thus,
there is no contribution of convection in W for this particular case as it is evident
from Fig. 3.3(b). The role of the dissipating term, which is shown in Fig. 3.3(c),
is also observed to be finite.

It should be noted that while the contribution from the Poynting flux of wave
and convective term can either decrease or increase W , the last dissipative term is
always positive and would only cause W to decay.
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Figure 3.3: Subplot (a) represents the change in W by wave emission term S, the
positive peak corresponds to the time when the TS wave pulse leaves the circular
boundary. Similarly, the negative peak denotes the time when the waves enter
the region after re-entering the simulation box from the other end due to the
PB condition. The contribution of convection (shown in subplot (b)) is almost
zero because the rotating monopole remains stationary. In subplot (c) the role of
dissipating term is shown, which is observed to be finite.
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In Fig. 3.4, we plot dWdt (solid line) and the sum of all the three terms
S+T+P (dotted line) separately. It can be seen that the two curves are the
accurate mirror image of each other proving that their sum is exactly zero as
expected from Eq. (3.9).
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Figure 3.4: Time derivative of conserved quantity W (−) is the mirror image to
the total sum (S+T+P) of all remaining quantities (−−) during the run time of
the rotating circular vorticity profile.

3.3.2 Dipole evolution and dipole-dipole collision

Monopoles being static structures, the contribution due to the convective terms
in the Eq. (3.9) was negligible as we saw in the previous subsection. We now
choose some specific cases of dipoles evolution and their collision from the previous
Chapter 2 and study the evolution of the various terms in the Eq. (3.9) in a
circular region of radius 6π units. Again, the simulation region is a square box of
length 24π units with PB conditions. The PB condition ensures that the dipole
as well as the emitted waves can enter and leave the region multiple times. The
system parameters (system length and circular local volume element) and coupling
parameters (η = 5 and τm = 20) are same for all the cases mentioned below.
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3.3.2.1 Dipole evolution

We now show the validity of Eq. (3.9) for different dipoles with varying strength,
Ω0, in the subsequent discussion. Figure 3.5 shows the propagation of the dipolar
structures along with the emitted waves.

Figure 3.5: Evolution of dipole with time for visco-elastic fluid of Ω0=3.5 with the
coupling parameters η = 5, τm = 20 and a circular local volume element (inside
the circumference) over which the different transport quantities are calculated.

The region inside the circular region is considered for studying the evolution
of W . The total change in magnitude of conserved quantity W within this region
with time is shown in Fig. 3.6 (a). The Fig. 3.6(b) shows the corresponding change
in dWdt with time.
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Figure 3.6: Subplot (a) shows the evolution of W within our considered regime
and the subplot (b) shows dWdt for the dipole of strength Ω0=3.5.

Since the dipole was placed outside this region initially, W was zero to begin
with. When the dipole enters this boundary at around time 1.0, W shows a
sharp increase. This entrance is also indicated by the occurrence of a negative
peak in the Fig. 3.7(b). As time progresses, the value of W steadily falls owing
to the dissipative term shown in Fig. 3.7(c) and the contribution of convection
term becomes almost zero because the dipole gets completely engulfed into the
emission inside this region and not able to cross this region. Due to the transverse
wave emission, the contribution of transverse term T can be seen clearly in the
Fig. 3.7(a).
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Figure 3.7: Subplot (a) represents the change in W by wave emission. The contri-
bution of the convection term is shown in the subplot (b), here the negative peak
denotes the time when the dipole enter the considered circular region. The role of
dissipating term is shown in the subplot (c), this term is observed to be finite.
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The conservation equation is pretty accurately satisfied as can be seen from
Fig. 3.8 where dWdt (solid line) and the sum of the three terms (dotted line)
are plotted. They are the identical mirror image curves, illustrating that the con-
servation equation dWdt + S + P + T = 0 is satisfied with very good precision.
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Figure 3.8: Time derivative of conserved quantity W (−) is the mirror image to
the total sum (S+T+P) of all remaining quantities (−−) during the run time for
the evolution of dipole of Ω0=3.5.

In the earlier case (Fig. 3.5), the dipole was of lesser strength and hence it
dissipated inside the circular region considered by us. In Fig. 3.9, the strength of
the dipole is chosen to be sufficiently high so that it can cross the region marked
by the circle over which we are calculating different transport quantities.
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Figure 3.9: Evolution of the dipole with time for visco-elastic fluid of Ω0=5.0
with the coupling parameters η = 5, τm = 20 and the circular local volume ele-
ment (inside the circumference) over which the different transport quantities are
calculated.

From Fig. 3.9, it is clear that as the dipole enters and leaves the considered
circular region at around time 1 and 35 respectively, there is a sharp rise and fall
in W which are also observed in Fig. 3.10 (a).
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Figure 3.10: Subplot (a) shows the evolution of W within our considered regime
and the subplot (b) shows dWdt for the dipole of strength Ω0=5.0
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In this time period the convection term contributes significantly. The entrance
is indicated by a negative peak while a positive peak marks the exit of the dipole
in Fig. 3.11(b). However, in the intervening time a steady decrease in W occurs
mainly because of the dissipative term shown in Fig. 3.11(c). The contribution of
radiation term (Fig. 3.11(a)) is smaller as compared to the convection term.

The Fig. 3.10(b) shows the corresponding change in the left hand side of integral
Eq. (3.9) with time.
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Figure 3.11: Subplot (a) represents the change in W by the wave emission. The
contribution of the convection term is shown in subplot (b), here the negative
peak denotes the time when the dipole enters the circular region and positive peak
corresponds to the leaving time of dipole. The role of dissipating term is shown in
subplot (c), which is observed to be finite.

From Fig. 3.12, one can see that dWdt is the mirror image to the total sum
(S + T + P) of all remaining quantities during the run time as observed for earlier
cases.
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Figure 3.12: Time derivative of conserved quantity W (−) is the mirror image to
the total sum (S+T+P) of all remaining quantities (−−) during the run time for
the evolution of dipole of Ω0=5.0.

3.3.2.2 Dipole-dipole collision

In order to confirm the validity of the conservation relation for a more complex
scenario, we consider the case of two colliding super-luminar disparate strength
dipoles of Ω01=7.5 (left) and Ω02=10 (right) shown in Fig. 3.13. The complexity of
the motion of dipole is evident in Fig. 3.13. Here the dipoles exhibit linear/circular
motion and collide multiple times inside, outside and along the circumference. This
complex evolution of dipoles can be closely related to the evolution of various terms
in the conservation relation.
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Figure 3.13: Head-on collision between two disparate strength super-luminar
dipoles of Ω01= 7.5 (left) and Ω02= 10 (right) with the coupling parameters
η = 5, τm = 20 and a circular local volume element (inside the circumference)
over which the different transport quantities are calculated.

The changing value of W with time also reflects this dynamics as shown in
Fig. 3.14(a). During time period from 5 to 10, the dipoles collide axially inside the
considered region so W remains almost constant during this period. The dipoles
then move along a curved trajectory at time around 14. As the trajectory of
dipoles does not coincide with the circumference of the region under consideration,
the value of W changes when the structures enter or leave the region and finally
the dipoles collide orthogonally in respect to the first collision. Further, in time
duration ranging from 33 to 43 dipoles leave completely this region so W almost
becomes zero. Again we observe a sharp increase in W at time around 44 because
of the collision between the dipoles at the circumference.
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Figure 3.14: Subplot (a) shows the evolution of W within our considered regime
and the subplot (b) shows dWdt for the head-on collision between two disparate
strength super-luminar dipoles.

The Fig. 3.14(b) shows the corresponding change in dWdt i.e the left hand side
of integral Eq. (3.9) with time. These events can be corroborated well by observing
the contour plot of Fig. 3.13 and the evolution of the various terms namely, the
Poynting, convective and dissipative terms shown in Fig. 3.15.
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Figure 3.15: Subplot (a) represents the change in W by wave emission. The major
transport process which is the convection phenomena can be seen in subplot (b).
The role of the dissipating term is shown in subplot (c), this term is observed to
be finite.

Here too the integral condition of Eq. (3.9) is satisfied identically at every time
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moment, this can be seen in Fig. 3.16.
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Figure 3.16: Time derivative of the conserved quantity W (−) is the mirror image
to the total sum (S+T+P) of all remaining quantities (−−) during the run time
for the head-on collision between two disparate strength super-luminar dipoles.

3.4 Summary

A Poynting-like conservation theorem has been constructed for the 2-D i-GHD
model equations and an enstrophy-like conserved quantity was obtained. This
conserved quantity is the sum of square integrals of vorticity and the velocity strain.
The time rate of change of this quantity is controlled by radiative, convection and
dissipative effects. The radiation term corresponds to the TS waves and shows
a striking similarity with electromagnetic waves. The theorem has been shown
to be satisfied for many complex evolution cases e.g. rotating monopole vortex,
propagating and colliding dipole structures for the dusty plasma medium.
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4
Transport and mixing in i-GHD model

In this chapter we focus on the studies related to the transport and mixing prop-
erties of the visco-elastic fluid governed by i-GHD model. In hydrodynamic fluids
the Kelvin-Helmholtz (K-H) instability is considered to be one of the prominent in-
stability responsible for mixing and transport in the fluid. The visco-elastic i-GHD
model, in addition, also supports emission of transverse shear waves. Therefore, it
is interesting to see how the interplay of K-H and Transverse Shear (TS) Waves in
the context of this model govern the mixing and transport traits in the medium.

In earlier chapters we had specifically avoided the development of fluid K-H
instability (which develops across the sharp interfaces of shear flows) by choosing
smooth flow profiles. Here for the purpose of quantifying the role of mixing, we
consider sharp profiles where K-H arises. We have also studied the dynamics of
passive tracer particles.

4.1 Introduction

A typical turbulent flow contains a wide variety of coherent structures in the
form of localized vorticity patches. The stability and evolution of these structures
for visco-elastic fluids is quite different than that of Newtonian fluids owing to the
existence of TS waves. In the Chapters 2 and 3, the interactions between TS waves
and coherent structures were studied extensively and only smooth structures were
considered to avoid K-H destabilization. In the present chapter, sharp shear flows
which favor the K-H instability across their interfaces are considered for study.
In such flows the interplay between the emitted transverse shear waves and the
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vortices of K-H instability occurs. The mixing and transport features associated
with this interplay in GHD is compared with the evolution of Newtonian fluids.
The results show that the GHD fluid shows a better mixing trait. The chances
of a fluid element and/or test particles to remain entrained for a long duration
within a localized region are smaller in GHD compared with the Newtonian fluid.
To substantiate this point, we have studied the evolution and disbursal of passive
tracer particles for HD as well GHD systems.

In test particle simulation, the diffusion and clustering of particles are directly
related to the mixing characteristic of a medium. We have considered two kinds
of point-like particles, (i) non-inertial tracers which are governed by the local flow
velocity and have density same as that of fluid, (ii) inertial particles which have
density different from that of fluid. The velocity of inertial tracers differs from
the local flow velocity due to viscous drag (Stokes) force. The feedback effect of
particles on the flow of the medium has been neglected in both cases. Essentially
the particle dynamics is simulated using a one-way coupled Lagrangian point-
particle approach.

This chapter has been organized as follows. Section 4.2 presents the evolution
of sharp vorticity patches which emit transverse shear waves and are also K-H
unstable. To understand transport we have immersed some passive particles in the
fluid. The mean square displacement of these particles serves as a good measure
of transport in the medium. This methodology and numerical observations are
described in Section 4.3 and Section 4.4, respectively. Finally the whole chapter is
summarized in Section 4.5.

4.2 Evolution of sharp vortex

We consider the following specific cases of sharp vorticity patches: (i) sharp
circular and elliptical, and (ii) multi-circulation vorticity shell profile.
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4.2.1 Evolution of sharp circular and elliptical vortices

The velocity profile for the sharp circular vortex considered for present case is
as follows

~v0(x, y, t0) =

{
vx0 = −θ0 (y−yc)b

; vy0 = θ0
(x−xc)
a

|r| ≤ 6

0 otherwise.
(4.1)

The vorticity corresponding to the above velocity profile is given below.

ξz0(x, y, t0) =

{
θ0
(
1
a

+ 1
b

)
|r| ≤ 6

0 otherwise.
(4.2)

Here |r| =
√

((x− xc)/a)2 + ((y − yc)/b)2, a and b are the major and minor axes,
respectively. xc and yc are the x and y coordinates of the center of the vorticity
profile. The numerical simulation has been carried out for amplitude θ0 = 1 and
xc = yc = 0. The simulation region is a square box of length 12π units with
periodic boundary (PB) conditions.

We consider the circular vortex (a=b=1) with a sharp cutoff at distance |r|=6
units away from the centre of the circular vortex. This rotating vorticity profile
has circular symmetry. The abruptness of the vorticity profile generates a strong
rotational sheared flow, which in turn is drastically unstable to the K-H instability
for both the HD fluid as well as the GHD system. Figures 4.1, 4.2 show the
vorticity contours at various times for both HD and GHD system, respectively.

Figure 4.1: Evolution of circular sharp vorticity profile in time for hydrodynamic
fluid.

It is evident from the Fig. 4.1 that for HD system the initial K-H perturbation
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evolves towards a very anisotropic isolated structure. For GHD system, besides
K-H instability, transverse shear waves are also emitted at the sharp interface.
For this single sharp interface we observe two transverse shear waves for the GHD
system. The propagation of these two transverse wave fronts, one inward and the
other outward and a concomitant K-H destabilization at each of these fronts is
clearly visible in Fig. 4.2.

Figure 4.2: Evolution of circular sharp vorticity profile in time for visco-elastic
fluid with parameters η = 5, τm = 20.

It can be seen clearly that the TS waves are instrumental in efficient mixing of
the fluids entrained inside the vortex structure with that which is outside the initial
vortex pattern. In Figs. 4.3, 4.4, we have considered two different cases of GHD
simulation, with different values of η and τm parameter (η = 2.5, τm = 20, vp=0.35
for Fig. 4.3 and η = 10, τm = 40, vp=0.5 for Fig. 4.4).

Figure 4.3: Evolution of sharp circular vorticity profile in time for strongly coupled
dusty plasma medium for η = 2.5, τm = 20.

We observe that the higher phase velocity of the TS wave helps in mixing
the internal fluid with that external to the initial vortex more rapidly. Also, the
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Figs. 4.2, 4.4 show that the vortex evolution is similar in time for the same value
of TS wave phase velocity (vp =

√
η/τm=0.5).

Figure 4.4: Evolution of sharp circular vorticity profile in time for strongly coupled
dusty plasma medium for η = 10, τm = 40

Often the vorticity structure in any physical flow may not have a circular shape.
Therefore, we consider for our studies an initial distorted patch of vorticity. A
simple elliptical form of distortion have been considered, with parameters θ0=1,
a=1.1, and b=1/a. Various time frames of the evolution of such a vortex pattern
in both HD and GHD case have been shown in Figs. 4.5, 4.6 for sharp elliptical
vorticity profile.

Figure 4.5: Vorticity evolution for sharp elliptical profile in time for hydrodynamic
fluid.

59



Chapter 4. Transport and mixing in i-GHD model

Figure 4.6: Vorticity evolution for sharp elliptical profile in time for visco-elastic
fluid with parameters η = 5, τm = 20.

It can be seen that while the distorted shape of the vorticity patch does help
in making the transport better in the context of HD, the GHD case still proves to
be more efficiently mixing the fluids.

4.2.2 Multi-circulation vorticity shell profile

As discussed in earlier subsection, the single circular interface of sharp shear
vorticity profile acts as a source of two (inward and outward moving) wavefronts
of TS waves along with K-H instability at each of the boundaries. And these
wavefronts enhance the mixing rate of visco-elastic fluids. With these observations
one can anticipate that presence of multiple sharp interfaces in the velocity profile
for the GHD fluid should significantly enhance intermixing. A final relaxed form
can, therefore, easily emerge.

Here, we first consider the simplest case of multiple shells of vorticities, with
each consecutive one having a reversal in its circulation. The velocity profile for
this configuration is given below.

~v0(x, y, t0) =





vx0 = −θ0(y − yc); vy0 = θ0(x− xc) |r| ≤ 5

vx0 = θ0(y − yc); vy0 = −θ0(x− xc) 5 < |r| ≤ 10

0 otherwise.

(4.3)
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The vorticity corresponding to the above velocity profile is given below,

ξz0(x, y, t0) =





2θ0 |r| ≤ 5

−2θ0 5 < |r| ≤ 10

0 otherwise,

(4.4)

with the parameter θ0=1. Figures 4.7, 4.8 show the evolution of the vorticity profile
considered above for HD and GHD mediums respectively. It is evident from the
Fig. 4.7 that for HD system the initial K-H perturbation evolves towards a very
anisotropic isolated structure at both interfaces.

Figure 4.7: Evolution of sharp circular vorticity profile in time for HD.

In Fig. 4.8, we observe that a pair of inward and outward moving wavefronts
emanates from each of the two sharp interfaces of the vortex structure.

Figure 4.8: Evolution of sharp circular vorticity profile in time for strongly coupled
dusty plasma medium for the η = 5, τm = 20.

Further, the formation of K-H vortices too can be observed at each of these two
interfaces. While the stagnant fluid in the outermost region (|r| ≥ 10 ) undergoes
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mixing due to the outgoing wave from the outermost interface at 10, the innermost
vortex region undergoes mixing due to the ingoing wave emanating from the sharp
interface located at 5. Interestingly, the vortex region confined within the two
sharp interfaces (5 < |r| ≤ 10) undergoes mixing due to the ingoing wave from the
outermost interface and the outgoing wave from the innermost interface. As the
results of these wave-wave, wave-K-H instability and wave-medium interaction the
mixing is fast and efficient.

Thus far our study shows that TS wavefronts are the two fronts (inward and
outward) across the each interface where the circulation reversal occurs. In order
to make a qualitative comparative numerical analysis about the mixing rate and
to see how fast a system (between HD and GHD, and in GHD to see the role of
coupling strength) achieves a final relaxed state, we have also considered a more
complex scenario of multiple circulations having the following velocity flow profile:

~v0(x, y, t0) =





vx0 = −θ0(y − yc); vy0 = θ0(x− xc) |r| ≤ 2.5

vx0 = θ0(y − yc); vy0 = −θ0(x− xc) 2.5 < |r| ≤ 5

vx0 = −θ0(y − yc); vy0 = θ0(x− xc) 5 < |r| ≤ 7.5

vx0 = θ0(y − yc); vy0 = −θ0(x− xc) 7.5 < |r| ≤ 10

0 otherwise.

(4.5)

The vorticity corresponding to the above velocity profile is given below,

ξz0(x, y, t0) =





2θ0 |r| ≤ 2.5

−2θ0 2.5 < |r| ≤ 5

2θ0 5 < |r| ≤ 7.5

−2θ0 5 < |r| ≤ 10

0 otherwise.

(4.6)

The complexity of this motion of multi-circulation structure is evident from the
subplots of Fig. 4.9 for inviscid hydrodynamic fluid. In initial time period, the vor-
tices of K-H instability develop across the interface of each shell. At intermediate
time range, this evolution provides a complete picture of a turbulent flow which is
collection of several small symmetric and non-symmetric vortices. The transport
phenomena like convection, merging, diffusion, and instabilities like elliptical and
K-H can also be observed.
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Figure 4.9: Evolution of different circular sharp vorticity profiles in time for hy-
drodynamic fluid

Figure 4.10, represents the evolution of same initial profile (Fig. 4.9) of vorticity
for GHD with coupling parameters η = 5, τm=20. We reported in Chapters 2 and
3 that each of vortices in GHD system emits TS waves having phase velocity
vp=

√
η/τm, so for this present case vp=0.5. From the comparative observations

between Fig. 4.9 and Fig. 4.10, it is interesting to notice that the presence of TS
waves leads to the relaxing of this turbulent medium to a single vortex faster than
in hydrodynamic fluid.

Figure 4.10: Evolution of different circular sharp vorticity profiles in time for visco-
elastic fluid with the parameters η = 5, τm = 20.

Next, we compare this GHD simulation (Fig. 4.10) with another GHD system
having lower coupling strength i.e. η = 2.5, τm = 20, vp=0.35 (Fig. 4.11). We
observe that the relaxing rate of this turbulent medium increases with increasing
coupling strength. Consequently, we obtain a single vorticity patch in the final
relaxed state earlier in stronger coupling medium with vp=0.5 than with vp=0.35.
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Figure 4.11: Evolution of different circular sharp vorticity profiles in time for visco-
elastic fluid with the parameters η = 2.5, τm = 20.

Heretofore we have presented a picturesque description of transport properties
in terms of the mixing of fluids. In next section, we employ the displacement of
passive tracers as a quantification of transport in these fluids.

4.3 Test Particle Simulation: Advection of passive

tracer particles

We have assumed that the passive particles (inertial and non-inertial) have no
size and that the motion of these particles is governed by the fluid flow alone. We
calculate the mean square displacement of these particles to find out the diffusivity
of the system. We also show that often these passive particles organize themselves
in a spatially inhomogeneous distribution. Phenomenon of clustering amongst
these particles is clearly evident from the simulations.

4.3.1 Simulation methodology

The feedback effect of particles on the flow of the medium has been neglected. Es-
sentially the particles dynamics are simulated using a one-way coupled Lagrangian
point-particle approach. We consider a point test particle with a density ρp greater
than the density ρd of the background incompressible visco-elastic fluid which
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evolves according to the dynamics

d~rp
dt

= ~vp(t), (4.7)

d~vp
dt

=
1

τs
(~vd(~r, t)− ~vp(t)), (4.8)

where ~vd is the dust fluid velocity at the location r of the particle that moves with
velocity ~vp, and τs=2a20ρp/(9νρd) is the Stokes time (ν is the kinematic viscosity
of the fluid).

Equations (4.7)-(4.8) hold true when the flow surrounding the particle is a
Stokes flow. We have used the flux corrected scheme (Boris et al.) to evolve
the coupled set of Eqs. (2.5) and (2.6), which gives velocities ~vd at cell edges of
the simulation grid. Then we integrate the equation of motion of a fluid particle
to find its present position ~rp for which governing velocity ~vp is calculated by
interpolating the velocity defined on nearby grid points. For comparison, we also
study the motion of neutral particles that follow the dynamics d~rp/dt = ~vd(~r, t)

which corresponds to the limit τs → 0 in Eqs.(4.7)-(4.8).

4.3.2 Mixing: mean square displacement and diffusivity

Our interest is to calculate the mean square displacement (MSD) and diffusion
coefficient (Dcoeff) for particles for i-GHD medium. MSD and Dcoeff characterize
the diffusivity of a medium and show whether it is normal or anomalous (i.e. either
subdiffusive or superdiffusive). We have

MSD = 〈|rj(t)− rj(0)|2〉 ∝ tα,

where rj(t) represents the position of jth particle at time t. The corresponding
values of α = 1, α < 1, α > 1 represent normal diffusion, subdiffusion and superdif-
fusion, respectively. The Dcoeff of particle system may be evaluated from Einstein
Relation (1995)

D = lim
t→∞

MSD

2dt
,

where d is number of space dimensions.
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4.4 Diffusion and clustering of inertial and non-

inertial test particles

The clustering/diffusion phenomenon depends on the particle type as well as
the flow conditions. On the basis of inertia, mainly, test particles can be with
very low, intermediate and very high inertia. Particles with very low inertia will
typically follow the flow passively as tracers, while particles with very high inertia
will remain almost unaffected by the medium fluctuations. It is between these two
limits i.e. ‘intermediate’ particles that show the strongest response to the vorticity
gradient. To validate our simulation with respect to this statement, we show a the
evolution of a smooth circular vorticity patch

ξ0(x, y, t0) = Ω0exp

(
−
(
(x− xc)2 + (y − yc)2

)

a2c

)
, (4.9)

with different time scale τs for a hydrodynamic fluid, here ac=1.0, Ω0 = 2.5 and
xc = yc=0.

(a)

(b)

Figure 4.12: Vorticity contour of hydrodynamic fluid with tracers (white dots)
having (a) low inertia i.e τs=0.1, (b) high inertia i.e τs= 50.
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Initially (t=0), we distributed 900 inertial particles (shown by white dots) ho-
mogeneously throughout the domain. From Fig. 4.12, it is clear that low inertial
particles i.e τs =0.1 (Fig. 4.12(a)) follow the dynamics along the rotating vortex
and the particles with larger inertia τs= 50 (Fig. 4.12(b)) show negligible response
to the vorticity gradient.

Figure 4.13: Vorticity contour of hydrodynamic fluid with tracers (white dots)
having intermediate inertia i.e τs=2.

In comparison to previous cases (Fig. 4.12), Fig. 4.13 shows that the parti-
cles with intermediate/moderate value of τs=2 counter a significant outward push
because of vorticity gradient experience centrifugal force.

In subsequent simulations, we are going to employ this knowledge to the sharp
rotating vortex profile, which we considered earlier.

4.4.0.1 Sharp vortex: inertial and non-inertial particles

In Fig. 4.14 (second row), we considered the same vorticity profile (Fig. 4.1) as
discussed in the earlier Section 4.2 for the case of hydrodynamic fluid. Initially
(t=0), we distributed 3600 inertial particles (shown by red dots) homogeneously
throughout the system. In Fig. 4.14, the first and the third row visualize the pat-
tern of inhomogeneous distribution of non-inertial particles and inertial particles
(τs=1), respectively, with time.

It is evident from first row of Fig. 4.14 that the cluster of non-inertial particles
can be observed along the vortex. Therefore, these particles accumulate in rotation-
dominated regions.
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Figure 4.14: First and third row show the temporal and spatial distribution of
non-inertial particles and inertial particles (τs=1), respectively, corresponding to
the sharp vorticity profile evolution for hydrodynamic fluid (second row).

The third row of Fig. 4.14 shows that the inertial particles (τs=1) are pushed
away from regions where the flow is strong enough. Consequently, the inertial
particles accumulate in strain-dominated regions.

Figure 4.15 represents the distribution of test particles (first/third row corre-
sponds to non-inertial/inertial particles) for visco-elastic fluid to the corresponding
vorticity profile (second row) as considered in Section 4.2.
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Figure 4.15: First and third row show the temporal and spatial distribution of
non-inertial particles and inertial particles (τs=1), respectively, corresponding to
the sharp vorticity profile evolution for visco-elastic fluid with coupling parameters
η = 5 and τm = 20 (second row).

From the comparative observations between Fig. 4.14 and Fig. 4.15, one can
notice that the clustering phenomenon for visco-elastic fluids is different because of
the continuous emission of TS waves from the vortices. Thus, the diffusion/mixing
of these test particles in visco-elastic fluids should also be different from the hy-
drodynamic fluids and be vary with coupling strength of visco-elastic fluids. As we
have already discussed, mean square displacement (MSD) and diffusion coefficient
(Dcoeff) characterize the diffusivity of a medium. The diffusivity of a medium is
responsible for mixing rate.
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Figure 4.16 shows the diffusion of aforementioned test particles (τs = 1). The
comparative observation showed that the MSD/Dcoeff shows the diffusion of test
particles is higher for viscoelastic fluids in comparison to hydrodynamic fluid. It
also shows that the diffusion is proportional to the coupling strength.
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Figure 4.16: (a) Mean square displacement(MSD) and (b) diffusion coefficient
(Dcoeff) for τs = 1.

Figure 4.17 (τs = 0.5) shows the same trend that the diffusion of particles
increasing with coupling strength.
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Figure 4.17: (a) Mean square displacement(MSD) and (b) diffusion coefficient
(Dcoeff) for τs = 0.5.

Thus, in case of visco-elastic fluid, we observed diffusion of particles higher
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from Newtonian fluids because of the interaction of transverse shear waves and the
particles which results in a better mixing and is proportional to coupling strength
of the medium.

4.5 Summary

The evolution and interaction of sharp localized vortex patterns for a strongly
coupled medium depicted by the visco-elastic GHD description have been stud-
ied. We observe that the rotational shear flow in a localized vortex patterns is
susceptible to the Kelvin-Helmholtz destabilization which is similar to the Newto-
nian fluids. It is, however, necessary that for K-H destabilization the shear in flow
should be strong and have an inflection point. This is possible when we considered
the sharp cutoff in the vorticity patches. In contrast to the Newtonian fluid the
GHD visco-elastic medium, in addition to K-H also permits the emission of radially
(inward as well as outward) propagating transverse shear waves.

Our studies show that due to the existence of such transverse shear waves
in the strongly coupled medium, the mixing and transport behaviour in these
fluids is much better than in Newtonian hydrodynamic systems. For this, we have
carried out a study of the evolution of tracer particles. The comparison of the
MSD for GHD and HD shows that the visco-elastic medium has efficient transport
characteristics.
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5
Effect of strong coupling in gravitational

and buoyancy instability

So far in our previous chapters we have focused on homogeneous strongly coupled
dusty Plasma (SCDP) medium. We had also ignored the role of gravity on the
medium. However, unlike electrons and typical ions, since the dust particles are
pretty massive, the gravitational attraction of earth has a significant role. In
this chapter we take account of that and consider the role of strong coupling in
the context of one of the most prominent instability arising when the density is
stratified against the gravitational force. We demonstrate that the visco-elasticity
of the strongly coupled medium leads to a suppression of this instability. Detailed
numerical simulation studies have been carried out to elucidate this effect and study
the nonlinear regime. We also consider the case of buoyancy driven instability,
which would arise when spatially localized (in both dimensions) low/high density
regions are placed in a background homogeneous medium in the presence of gravity.

5.1 Introduction

In the present chapter, we present a detailed discussion on the evolution of a
strongly coupled medium in the presence of gravity. The case of density stratifi-
cation against gravity leading to Rayleigh-Taylor (R-T) instability has been stud-
ied in detail both analytically and with the help of numerical simulation. We
also consider the buoyancy-driven evolution of two dimensional spatially localized
high/low density region placed in a background medium in the presence of gravity.
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The R-T instability is one of the most prominent fluid instability. The equiva-
lence of gravity and acceleration leads to several manifestations of the instability.
Furthermore, in the context of plasma medium the charged species respond to
electromagnetic forces and various scenarios arise where an inverse stratification
against a force (and/or a pseudo force due to the choice of the frame) leads to this
instability. It is for this reason that R-T instability is observed in diverse situations
such as supernova explosion [106, 107], planetary rings, geophysics, astrophysics,
liquid atomization [108, 109], supersonic combustion, industrial plasmas, fusion
physics [66,110–112], oceans, turbulent mixing [113–115] etc.

Buoyant force acts in the direction opposite to gravity for low density regions.
The buoyancy-driven (B-D) instability decides whether an object will float (if the
density of an object is less than background fluid) or sink (if density of object
is greater than background fluid) in fluid. The floating of boats and ships while
sinking of small objects like rocks in water, or the pouring cream (heavy fluid) into
coffee (light fluid) and petroleum wells are some examples where buoyant force
plays a major role.

Our objective here is to understand how the R-T instability and buoyancy-
driven instability behave when the medium is in a strongly coupled state. For this
purpose we consider the case of dusty plasma medium here specifically. It is well
known the dusty plasmas can be prepared/found in the strong coupling regime
rather easily. So the role of strong coupling in the behaviour of these instabilities
can be readily investigated in the context of this medium. The role of gravitational
force becomes important in dusty plasma because a micron-sized dust particle has
enough mass (typical mass of 10−15−10−10 Kg) so it can feel the effects of gravity.
To avoid the dust particles from falling under gravity, space experiments are carried
out under microgravity conditions [97, 117–119]. In ground laboratories the way
to keep the dust species levitated against gravity is by applying external electrical
field [29,74,116].

In the generalized fluid model the elasticity of the medium is represented by
a memory relaxation parameter τm [30]. This elastic behaviour of the system
is known to produce transverse shear (TS) waves in the medium. Recently, the
interplay of TS wave on the propagation of coherent structures has been extensively
studied by us. In fact, a Poynting-like theorem was constructed which shows the
losses by waves emission, convection and dissipation. In fact, the elastic shear
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waves take away the available free energy of the system, thereby weakening the
growth rate of typical instabilities. This has been illustrated earlier in the context
of the Kelvin-Helmholtz instability [83]. An analytical work for strongly coupled
electron-ion plasma medium in the context of inertial confinement fusion [123]
also demonstrates that the R-T instability would be weakened due to the presence
of shear waves in the strongly coupled plasma medium. We demonstrate this
suppression of the instability analytically and by carrying out a fully nonlinear
simulation of the GHD model for the dusty plasma medium.

The chapter has been organized as follows. Section 5.2 contains the detailed
description of GHD model and the governing equations for visco-elastic medium in
the presence of gravity. In Section 5.2.1, we find the dispersion relation for visco-
elastic fluid under gravitational force and a detailed linear local analytical study
have been carried out for 2-D system with the assumptions of incompressible flow.
Section 5.3 describe the model equations used for numerical simulation, where
momentum equation is re-casted in terms of vorticity and then decoupled in the
form of two different equations. Additionally, under Boussinesq approximation, we
derive the model equations which we use in our simulation work. In Section 5.4, we
describe the numerical evolution of density profiles with time for different values
of coupling parameters (shear viscosity coefficient η and relaxation time parameter
τm ) under the same assumptions as for analytical calculations. The suppression
of the both instabilities i.e. R-T and B-D has been clearly depicted by numerical
simulation, as one moves from weakly coupled to strongly coupled regime. The
last Section 5.5 contains the summary of the whole chapter.

5.2 Analytical Description

The continuity, momentum and the Poisson’s equations for the dust fluid under
gravity acceleration ~g can be written as:

∂ρd
∂t

+ ~vd·∇ρd = 0, (5.1)

[
1 + τm

(
∂

∂t
+ ~vd · ∇

)][
ρd

(
∂~vd
∂t

+ ~vd · ∇~vd
)

+ ρd~g + ρc∇φd
]

= η∇2~vd, (5.2)
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0 = [ρd + µeexp(σeφd)− µiexp(−φd)] , (5.3)

respectively and the incompressible condition is given as

∇ · ~vd = 0. (5.4)

Here, ρd and ρc are the mass density and charge density respectively. The entire
numerical and analytical work will be carried out for a two-dimensional incom-
pressible system of dusty plasma.

5.2.1 Gradual density gradient

Here, we consider two-dimensional (x-y coordinate) incompressible system where
density/potential gradient chosen along y axis i.e. ∂ρd/∂y, ∂φd0/∂y, respectively
and acceleration ~g applied in opposite direction of fluid density gradient −gŷ.

Initially, we consider no initial flow i.e. ~vd0 = 0 at t=0, the equilibrium condi-
tion Eq. (5.2) becomes

ρd0g = −ρc
∂φd0
∂y

. (5.5)

A small perturbation in the various fields, e.g. density, scalar potential and dust
velocity can be written as

ρd(x, y, t) = ρd0(y, t = 0) + ρd1(x, y, t), (5.6)

φd(x, y, t) = φd0(y, t = 0) + φd1(x, y, t), (5.7)

~vd(x, y, t) = 0 + ~vd1(x, y, t), (5.8)

respectively. Retaining only linear terms in the perturbed fields we obtain the
following equations for the linearized instability analysis.

∂ρd1
∂t

+ ( ~vd1 · ∇) ρd0 = 0, (5.9)

[
1 + τm

∂

∂t

] [
ρd0

∂vd1y
∂t

+ ρd1gŷ + ρc
∂φd1y
∂y

]
= η∇2vd1y, (5.10)

[
1 + τm

∂

∂t

] [
ρd0

∂vd1x
∂t

+ ρc
∂φd1x
∂x

]
= η∇2vd1x, (5.11)
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∇ · ~vd1 = 0. (5.12)

Since equilibrium fields vary along ŷ, the above set of equations can only be Fourier
analysed in time and spatial coordinate x. However, assuming the perturbations to
be of much smaller scale compared to the equilibrium variation along y we invoke
the local approximation and proceed with the Fourier decomposition along y also.
This leads to

ρd1 = − i
ω

∂ρd0
∂y

v1y. (5.13)

The ŷ component

[1− iωτm][−iωρd0v1y + ρd1g + ikyρcφ1] = −ηk2v1y. (5.14)

The x̂ component

[1− iωτm][−iωρd0v1x + ikxρcφ1] = −ηk2v1x, (5.15)

ikxv1x = −ikyv1y ⇒ v1y = −kx
ky
v1x. (5.16)

Obtain φd1, using above relation and Eqs. (5.13) (5.14) (5.15), and (5.16), we get

φd1 = −gkxv1x
ρcωk2

∂ρd0
∂y

, (5.17)

using the above relation Eq. (5.17) in Eq. (5.15), we get the dispersion relation as

(1− iωτm)

[
ω2k2 +

gk2
x

ρd0

∂ρd0
∂y

]
= −iωη∗k4, (5.18)

where η∗=η/ρd0.

In strongly coupled regime i.e. ωτm � 1, the above dispersion Eq. (5.18)
becomes

ω2 =
η∗

τm
k2 − g

ρd0

∂ρd0
∂y

k2
x

k2
. (5.19)

For hydrodynamic fluid case where (η∗/τm=0), the above dispersion relation re-
duces to the usual expression of the R-T growth rate

ω2 = − g

ρd0

∂ρd0
∂y

k2
x

k2
. (5.20)
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5.2.2 Sharp interface

When the interface is sharp we can show that the dispersion relation becomes

ω2 =
η∗

τm
k2 − gkAT , (5.21)

where AT = (ρd02 − ρd01)/(ρd01 + ρd02) is the Atwood’s number. ρd02 is heavier fluid
density is supported by lighter fluid density ρd01. Here, too the hydrodynamic limit
is recovered when the transverse shear wave velocity η∗/τm = 0 is chosen.

ω2 = −gkAT . (5.22)

Eqs. (5.19) and (5.21) imply the existence of transverse shear wave moving with
phase velocity

√
η∗/τm for g=0. Also these equations imply that as one increases

the value of η∗/τm, first term starts to dominate over second which implies the
suppression of the Rayleigh-Taylor instability with the increasing phase velocity.
This analytical result similar to the strongly coupled electron ion plasma predicted
by A. Das et al. [123] in context of inertial fusion.

5.3 Numerical simulation

We next carry out the numerical simulation of the system. For this purpose the
generalized momentum Eq. (5.2) has been expressed as a set of following two cou-
pled convective equations, under the equilibrium condition considered in Eq. (5.5)
and perturbation in density Eq. (5.6).

∂~vd
∂t

+ ~vd · ∇~vd +
ρd1
ρd
g =

~ψ

ρd
, (5.23)

∂ ~ψ

∂t
+ ~vd · ∇~ψ =

η

τm
∇2~vd −

~ψ

τm
. (5.24)

Taking curl of Eq. (5.23) the evolution of vorticity under the Boussinesq approxi-
mation the coupled set of Eqs. (5.23)-(5.24) have been recast as:

∂~ξ

∂t
+
(
~vd · ~∇

)
~ξ = − g

ρd0

∂ρd1
∂x

+
∂

∂x

(
ψy
ρd

)
− ∂

∂y

(
ψx
ρd

)
, (5.25)
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∂ ~ψ

∂t
+
(
~vd · ~∇

)
~ψ =

η

τm
∇2~vd −

~ψ

τm
, (5.26)

and continuity equation
∂ρd
∂t

+ (~vd · ∇) ρd = 0. (5.27)

Here, ~ξ = ~∇×~vd (here ~ξ is normalised with dust plasma frequency) is the vorticity.
The velocity at each time step is updated by using the Poisson’s equation ∇2~vd =

−~∇×~ξ to be used as input to other equations for convection.
We have used the flux corrected scheme (Boris et al. [31]) to evolve the coupled

set of Eqs.(5.27), (5.25) and (5.26) for various kinds of density profiles.

5.4 Gravitational and buoyancy-driven instabilities

In this section, we present the results of the numerical simulation of gravity-
driven instabilities and show numerically that the growth rate of instabilities gets
suppressed with increasing coupling strength as expected analytically in Eqs. (5.19)-
(5.21).

5.4.1 Rayleigh-Taylor instability

We consider two types of density inhomogeneity profiles, namely (A) with sharp
interface between two different densities, where heavier fluid ρd02 (upper) is sup-
ported by lighter one ρd01 (lower) as shown in Fig. 5.1(a) and (B) with gradually
increasing density gradient along y axis as shown in Fig. 5.1(b). In colorbar, letter
H is the acronym of the heavy density regime and L stands for lighter density
regime.
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H
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Figure 5.1: Initial density profiles for R-T instability at time t=0 (a) sharp density
interface profile and (b) gradually increasing density gradient along vertical y axis;
where H stands for heavy density and L for lighter one.

For both cases A and B, system length is lx = ly = 2π and density gradient is
chosen along vertical y axis opposite to gravitational acceleration g(= 10). Bound-
ary condition is taken periodic along horizontal direction (X-axis) and non-periodic
along vertical direction (Y-axis). A sufficient electric field is provided for equilib-
rium balance against gravity for the dust particles to levitate, we had a discussion
about it in earlier Section 5.2.

5.4.1.1 Sharp interface

For case A (Fig. 5.1(a)), we consider a system consists of two incompressible
fluids of constant densities ρd01=1 for −π ≤ y ≤ 0 and ρd02=2 for 0 = y ≤
π with the denser fluid ρd02 placed above the less dense ρd01. This equilibrium
configuration remains stable in absence of gravity. To hasten the evolution (R-T
instability) of our considered equilibrated system under gravity, we impose a small
amplitude φ0 sinusoidal perturbation on the interface (y = 0) separating the two
different density profiles i.e.

ρd1 = φ0cos(kxx)exp(−y2/ε2). (5.28)

Here kx is the wavelength of the perturbation mode which governs the growth of
instability. The thickness of perturbation mode is defined by the value of ε. The
values of these parameters taken in the present case are φ0 = 0.01, ε = 0.1 and
kx = 1. The total density is ρd = ρd0 + ρd1, where ρd0 = ρd01 + ρd02
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The R-T instability for the hydrodynamic fluid (HD) of sharp density gradient
profile shown in Fig. 5.2 is reproduced by our numerical code. Here, the initial
perturbation on the interface was given at kx = 1 which is observed. At the initial
stage, the growth is linear until instability amplitudes grow to the order of 0.1λ to
0.4λ, where λ is the perturbation wavelength. As the time elapses, the instability
reaches a nonlinear regime. The heavy fluid penetrates into the light fluid as spike.
At same time, the lighter one start to move into the heavy fluid along the two sides
of the spike and roll-up forming bubbles (as the ‘cat-eye’). Bubbles start to grow
in size with time. This demonstrates the evolution (Fig. 5.2) of the sharp density
gradient stratified against gravity, a well known result for hydrodynamic fluid,
substantiating our numerical work.

Figure 5.2: Evolution of sharp density profile in time for inviscid hydrodynamic
fluid.

We now study the role of strong coupling effect on this instability by choosing a
finite value of η/τm in our simulations. The subplots of Fig. 5.3 shows the evolution
of the interface for a visco-elastic fluid with η= 0.1, τm=20, η/τm =0.005. The
initial linear growth is followed up by nonlinear stage where rolls form. The trend
is thus similar to that of the hydrodynamic fluid. However, a comparison of cases
with different values of η/τm shows that there is a reduction in growth rate with
increasing value of the coupling as expected analytically.
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Figure 5.3: Evolution of sharp density profile in time for strongly coupled dusty
plasma medium for the η= 0.1; τm=20.

In Fig. 5.4, we have compared two different cases of GHD simulation, with
different values of η and τm parameters (η = 0.1, τm = 5, η/τm=0.02 for Fig. 5.4(a)
and η = 1, τm = 20, η/τm=0.05 for Fig. 5.4(b)). From the comparison of Fig. 5.3,
Fig. 5.4(a) and Fig. 5.4 (b) it is clear that at each time step, the evolution/growth
of perturbation/instability gets weaker with increasing coupling strength i.e. η/τm.

(a)

(b)

Figure 5.4: Evolution of sharp density profile in time for strongly coupled dusty
plasma medium for the cases (a) η= 0.1; τm=5 and (b) η= 1; τm=20.

Thus, all these stages show that the R-T instability in the dust fluid phe-
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nomenologically/trend similar to the hydrodynamic case (Fig. 5.2) as observed
experimentally by Pacha et al. [122] in their experiment of dusty plasma.

5.4.1.2 Gradually density gradient in counter direction of gravity

Apart from the sharp interface separating the two fluids (Fig. 5.1(a)), the R-
T instability can also be observed where the density gradient gradually increases
with gravity/accelerating force. Fig. 5.1(b) shows the density profile with gradually
increasing in vertical direction along y axis is given as:

ρd = ρd0 + φ0exp(σy) + ρd1. (5.29)

Here ρd0 is constant background density. The value of parameters taken for present
case are ρd0=5, amplitude of inhomogeneity φ0=0.1, to evolve the coupled and
σ=0.025 decide the ramp of inhomogeneity in background density. The sinusoidal
perturbation ρd1 (see Eq. 5.28) is imposed at y = 0, which can be clearly seen in
Fig. 5.1(b).

In Fig. 5.5, we have compared three different cases of GHD simulation, with dif-
ferent values of η and τm parameter (η = 0.1, τm = 20, η/τm=0.005 for Fig. 5.5(a),
(η = 0.1, τm = 5, η/τm=0.02 for Fig. 5.5(b) and η = 1, τm = 20, η/τm=0.05 for
Fig. 5.5(c)). From the comparison of Fig. 5.5(a,b,c), it is clear that at each time
step, the evolution/growth of perturbation/instability gets weaker with increasing
coupling strength i.e. η/τm.
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(a)

(b)

(c)

Figure 5.5: Evolution of gradually density profile in time for strongly coupled
dusty plasma medium for the cases (a) η=0.1; τm=20, (b) η=0.1; τm=5 and (c)
η=1; τm=20.

One can see that the growth rate is found to decrease with the increasing value
of η/τm and finally gets saturated.

5.4.2 Buoyancy-driven evolution

We now consider the evolution of localized low/high density bubbles/droplets in
the medium. Under the influence of gravity, the less dense regions (bubble) have
a tendency to float upwards, whereas the higher density (droplet) sink against the
background low density fluid. A detailed numerical simulation is carried out to
study a rising bubble and a falling droplet for the visco-elastic medium. The prime
concern here is to specifically understand the role of TS waves on the evolution of
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a bubble and a droplet in the i-GHD medium.

5.4.2.1 Rising bubble and falling droplet

We consider the two types of density inhomogeneity profiles, namely (A) an
initially static and circular bubble whose density is less than that of the surrounding
quiescent Newtonian/visco-elastic fluid as shown in Fig. 5.6(a) and (B) initially
static and a circular droplet whose density is higher than that of the surrounding
medium as shown in Fig. 5.6(b). In both the cases the variation in density is
symmetric about the axis which is perpendicular to simulation plane.

Figure 5.6: Initial densities’ profiles at time t=0 (a) bubble of less density inside
the heavier fluid and (b) droplet of less density inside the heavier fluid.

For both cases, we have considered a system of length lx = ly = 12π, approx-
imating the gravitational acceleration as g = 10. Boundary condition is periodic
along horizontal direction (X-axis) and non-periodic along vertical direction (Y-
axis).

5.4.2.2 Rising bubble

In order to simulate the case of rising bubble (i.e. case A), we have considered
a Gaussian density profile given by

ρd1 = ρ′0exp

(
−
(
(x− xc)2 + (y − yc)2

)

a2c

)
, (5.30)

where ac is the bubble core radius and the numerical simulation has been carried
out for ac=2.0, ρ′0 = −0.5 and xc = 0, yc = −4π. We took the homogeneous
background density as ρd0 = 5. The total density is ρd = ρd0 + ρd1.
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Figure 5.7 displays the density profile of a bubble at various times. Initially
at time t = 0, the bubble is axisymmetric (Fig. 5.6(a)) and as the system evolves,
the bubble simply rises without any significant change in shape for a short period
of time. At a later stage, the initially circular profile assumes a crescent shape as
evident from the first subplot of Fig. 5.7. Further, as time progresses, a mushroom-
like structure which is characteristic of R-T instability begins to appear along with
rolling and mixing at the edge of bubble. This mushroom-like structure then breaks
into two distinct elliptical lobes as evident from the figure. These lobes propagate
forward as a single entity leaving behind wake-like structure in background fluid.

Figure 5.7: Evolution of bubble density profile in time for inviscid hydrodynamic
fluid

We now show the simulation of this density configuration for the visco-elastic
case and compare it with the simulation for hydrodynamic case described above. In
Fig. 5.8, we demonstrate the different stages of GHD simulation, with values of η =

2.5, τm = 20 i.e. η/τm=0.125. From the comparative observations between Fig. 5.7
and Fig. 5.8, it is interesting to notice that the vertically rising rate of bubble
decreases in GHD. The appearing rolled-up lobes also seem to be comparatively
much more displaced sidewards. Thus the structures are broader and the upward
movement is constraint in the visco-elastic case. The wake is also found to be
weaker in this case.
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Figure 5.8: Evolution of bubble density profile in time for the strongly coupled
dusty plasma medium, η= 2.5; τm=20.

To envisage the effect of strong coupling, we compare this GHD simulation
(Fig. 5.8) with another GHD system (Fig. 5.9) having higher coupling strength i.e.
η=10, τm=20, η/τm=0.5. We observe that with increasing coupling strength the
vertically rising rate of bubble decreases. Also, the elliptical lobes start moving
apart in horizontal direction earlier in stronger coupled medium. At the same time,
the rolling rate of lobes increases causing the expansion of lobes and disappearance
of the dragging tail. This horizontal motion commences earlier in the medium with
stronger coupling.

Figure 5.9: Evolution of bubble density profile in time for the strongly coupled
dusty plasma medium, η= 10; τm=20.

In Fig. 5.10, the vorticity subplots in first and second row correspond to the
density profiles shown in Fig. 5.8 and Fig. 5.9, respectively. This figure clearly
elucidates the role of TS waves (coupling strength i.e η/τm) in evolution of the
bubble in GHD medium.
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(a)

(b)

Figure 5.10: Evolution of bubble vorticity profile in time for strongly coupled dusty
plasma medium for the cases (a) η= 2.5; τm=20, and (b) η= 10; τm=20.

As discussed earlier, the GHD medium supports transverse waves and they tra-
verse with the phase velocity vp =

√
η/τm. It is evident from Fig. 5.10 that there

is emission of TS waves surrounding the vorticity lobes for visco-elastic fluids and
no such TS waves exist for hydrodynamic fluid (Fig. 5.11). Further, the TS waves
propagate with velocity vp=0.158 and vp=0.316 for the coupling parameters η=
2.5; τm=20 and η= 10; τm=20, respectively. This implies that the TS enclosure
should be larger for the second case. The relative observations of Fig. 5.10(a) and
Fig. 5.10(b) clearly reflect the aforementioned fact. The emission of TS wave from
each of the lobes of the vorticity structure has profound effect on its evolution.
The wave from either lobe pushes the other lobe in the direction perpendicular
to direction of propagation of the entire structure and as a result the lobes get
well separated with time. Besides this lobe separation, the emission of TS wave
significantly reduced the strength of dipole thereby impeding the dipole propaga-
tion. From the discussion thus far it is expected that the propagation speed of the
dipole should reduce and the separation between the lobes should increase with
the increase in the coupling strength of the medium. These features of the dipole
propagation can be well identified in Fig. 5.10.
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Figure 5.11: Evolution of bubble vorticity profile in time for hydrodynamic fluid

5.4.2.3 Falling droplet

For case B (Fig. 5.6(b)), the density profile of droplet is given as

ρd1 = ρ′0exp

(
−(x− xc)2 − (y − yc)2

a2c

)
, (5.31)

where ac is the droplet core radius, the numerical simulation has been carried
out for ac=2.0, ρ′0 = 0.5 and xc = 0, yc = 4π. We considered the homogeneous
background density as ρd0 = 5. The total density is ρd = ρd0 + ρd1.

Figure 5.12 shows the dynamics of the droplet, falling in tranquil hydrodynamic
fluid. The suspended drop starts to fall. As time passes, the drop breaks up forming
first a semicircular structure then a two lobes similar to the case of bubble.

Figure 5.12: Evolution of droplet density profile in time for inviscid hydrodynamic
fluid.

Figure 5.13 reveals the different stages of droplet for GHD simulation with
values of η = 2.5, τm = 20. As done for rising bubble, we shall now compare
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Fig. 5.12 and Fig. 5.13. It is evident that the vertically falling rate of droplet
decreases for the GHD case. In addition to the slowing down of the falling rate
(Fig. 5.13), the two lobes start separating apart horizontally. The dragging tail
from the structure can also be observed which decreases in size in GHD.

Figure 5.13: Evolution of droplet density profile in time for strongly coupled dusty
plasma medium for the case η= 2.5; τm=20.

For a higher coupling strength (η = 10, τm = 20 i.e. η/τm=0.5) shown in
Fig. 5.14, the downward motion is even slower. The transverse dimension is even
larger and the dragging tail does not seem to appear at all.

Figure 5.14: Evolution of droplet density profile in time for strongly coupled dusty
plasma medium for the case η= 10; τm=20.

Again, similar to the case of bubbles, the vorticity plots are provided for observ-
ing a clear role of TS waves i.e. pushing the two lobes apart, as seen in Fig. 5.15.
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(a)

(b)

Figure 5.15: Evolution of droplet vorticity profile in time for strongly coupled
dusty plasma medium for the cases (a) η= 2.5; τm=20, and (b) η= 10; τm=20

For hydrodynamic fluid the corresponding vorticity subplots (Fig. 5.16) to the
mentioned density profile (Fig. 5.12), no such wave which can constraint the falling
rate, were observed.

Figure 5.16: Evolution of droplet vorticity profile in time for hydrodynamic fluid.

Thus, we conclude that the increase of phase velocity of TS waves with coupling
strength suppresses the buoyant nature of a bubble and a droplet.
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5.4.2.4 Interaction of a bubble and a droplet

The focus of this subsection is to study the interaction between a bubble and a
droplet. Here, we have considered two cases as shown in Fig. 5.17.

Figure 5.17: Initial density profiles at time t=0 (a) the droplet (left) and the
bubble (right) are placed at the same height and (b) the droplet and the bubble
are aligned vertically with the droplet placed above the bubble

The density inhomogeneity (droplet and bubble) for the present case is given
by

ρd1 = ρ′d1 + ρ′d2, (5.32)

with the background density ρd0 = 5 for the both cases. The density profile for
the droplet is

ρ′d1 = ρ′01exp

(
−(x− xc1)2 − (y − yc1)2

a2c1

)
, (5.33)

and the density profile for the bubble is

ρ′d2 = −ρ′02exp
(
−(x− xc2)2 − (y − yc2)2

a2c2

)
. (5.34)

Here, ρ′01=ρ′02=0.5. The total density is ρd = ρd0 + ρd1.
In the first case (A), the droplet and the bubble are placed at the same height.

For the droplet, the values of the parameters ac1, xc1, and yc1 are 2.0, 2.2 and 0.0,
respectively and for the bubble, the values of the parameters ac2, xc2, and yc2 are
2.0, -2.2 and 0.0, respectively.

It is worth noting at this point that if the bubble and the drop were well sep-
arated, there would be no interaction between them and their evolution would be
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same as discussed earlier. To include the interaction effects, the bubble and droplet
are closely spaced for the present case. This horizontal configuration of droplet and
bubble induces initial counterclockwise rotation of the combined structure about a
common center of rotation. Owing to gravity, the two density lobes gradually take
a crescent shape as they rotate. The combined effect of gravity and rotation trans-
forms the crescent-shaped lobes into thin intertwining spirals. Up to this stage,
there is no significant difference in density profiles for HD and GHD cases and the
common evolution features can be clearly seen in the first rows of Figs. 5.18, 5.19
and 5.20.

Figure 5.18: Evolution of combine bubble and drop density in time for hydrody-
namic fluid.

At later stage, the density configuration evolves quite differently for HD and
GHD cases. In case of HD we observe two persistently rotating prominent cres-
cent structures along with faint spirals. However, for the GHD cases the crescent
structure is completely absent and the whole structure evolves into spirals.
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Figure 5.19: Evolution of rotating density profile in time for strongly coupled dusty
plasma medium for η= 2.5; τm=20.

Figure 5.20: Evolution of rotating density profile in time for strongly coupled dusty
plasma medium for the η= 10; τm=20.

The evolution of the spirals in GHD medium is significantly affected by the
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coupling strength. As the coupling strength increases, the emission of TS wave from
the spirals become dominant. This TS wave then drives the spiral arms outward
away from the center of rotation. Comparison of second row from Fig. 5.19 (η=
2.5; τm = 20) and Fig. 5.20 (η= 10; τm = 20) clearly displays the aforementioned
effects of the coupling strength on the evolution of the spirals.

(a)

(b)

Figure 5.21: Evolution of vorticity profiles in time for strongly coupled dusty
plasma medium corresponding to the rotating density profiles for the cases (a) η=
2.5; τm=20, and (b) η= 10; τm=20.

Figure 5.22: Evolution of vorticity profile in time for hydrodynamic fluid.

The presence of TS wave could be understood well by comparing vorticity
contour plots for GHD mediums with different coupling strengths as shown in
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Fig. 5.21(a) (η=2.5; τm=20, η/τm=0.125) and Fig. 5.21(b) (η= 10; τm=20, i.e.
η/τm=0.5). Corresponding subplots for HD case in Fig. 5.22 show absence of TS
waves.

We now consider the second case (B) where the droplet and the bubble are
aligned vertically. For this case the values of the parameters ac, xc, yc, ρ′ for the
droplet and the bubble are 2.0, 0.0, 4π, 0.5 and 2.0, 0.0, −4π, 0.5, respectively.
For this configuration the droplet lies above the bubble (Fig. 5.17(b)) and contrary
to the previous case Fig. 5.17(a), there is no rotation of the bubble and the drop.
Here, the falling droplet and the rising bubble simply collide with each other during
the course of evolution.

Figure 5.23 displays the evolution of this density configuration for the hydrody-
namic case. It is evident from the figure that as these two structures evolve, they
hit each other and their lobes get separated. One lobe from the bubble and one
lobe from the droplet pair with each other and move horizontally subsequently.

Figure 5.23: Evolution of density profile of colliding bubble and droplet in time
for hydrodynamic fluid.

Figure 5.24(a) (η= 2.5; τm=20) and Fig. 5.24(b) (η= 10; τm=20) show the
evolution of same density configuration for GHD case. It is evident from figures
that in comparison to the HD case, the horizontal movement of the structures
is slower for the GHD case. The horizontal movement further gets slower with
increasing coupling strength of the medium.
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(a)

(b)

Figure 5.24: Evolution of density profile of colliding bubble and droplet in time
for strongly coupled dusty plasma medium for the cases (a) η= 2.5; τm=20, and
(b) η= 10; τm=20.

(a)

(b)

Figure 5.25: Evolution of vorticity profile of colliding bubble and droplet in time
for strongly coupled dusty plasma medium for the cases (a) η= 2.5; τm=20 and
(b) η= 10; τm=20.
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Figure 5.25 shows the vorticity plots for the GHD case. TS waves surrounding
the vorticity lobes are clearly visible for visco-elastic fluids while there is no such
waves for HD (Fig. 5.26).

Figure 5.26: Evolution of vorticity profile of colliding bubble and droplet in time
for hydrodynamic fluid.

As discussed earlier, the continuous emission of transverse wave saps the dipole
strength, thereby reducing its propagation speed. This effect is also observed for
the present case, as shown in Fig. 5.25.

5.5 Summary

Our studies show that both R-T instability and buoyancy driven motion get
suppressed as one moves from weakly coupled to strongly coupled regime. This
has been shown analytically by using the GHD description and also by numerically
simulating the system.

The bubble and droplet evolution in the strongly coupled medium as well as
their interaction is also studied extensively by numerical simulations. In all these
cases a major role of the TS waves in the evolution is shown.
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6
Conclusions and Future Work

This chapter summarizes the important findings of our research work and gives
an overview of the prospective problems concerning this subject that have not
been addressed in this thesis. The present thesis is focussed on the study of dusty
plasma system. The dusty plasma system has an important role to play in the
context of understanding the physics of strongly coupled systems. The Generalized
Hydrodynamic model is a simplified phenomenological model for depicting visco-
elastic fluid behaviour. The model has been used for the present studies on strongly
coupled dusty plasma behaviour.

The main results of research are summarized in Section 6.1. A brief discussion
on the future scope of the work presented in the thesis has been given in Section
6.3.

6.1 Feature points of the thesis

This doctoral thesis reports the collective behavior of the strongly coupled dusty
plasma medium using the formalism of Generalized Hydrodynamic (GHD) fluid
model. This model accounts for the strong coupling behaviour of the medium
by considering the medium to retain memory, as in elastic systems, for a certain
duration - known as the memory relaxation time. The system is thus modelled as a
visco-elastic fluid. The GHD model in addition to supporting compressible acoustic
perturbations also supports transverse shear (TS) wave which are unique to this
medium. Our present work is dedicated to an extensive study of the evolution of
coherent structures, transport and mixing of the fluid, instability development etc.,
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in the medium using this model prescription and specifically understand the role of
TS waves in it. We, have therefore, chosen to completely eliminate the compressible
acoustic perturbations from the system by considering the incompressible limit of
the GHD equations. This is a valid description when the acoustic velocity is very
high. Detailed numerical simulation studies have been carried out for this purpose
and the salient features are summarized below:

6.1.1 Incompressible limit of GHD (i-GHD) model

GHD model depicts the existence of both incompressible transverse shear and
compressible longitudinal modes. In this thesis only the incompressible limit of
the GHD equations for the dusty plasma medium has been considered, which we
refer to as the i-GHD model.

In the incompressible limit the Poisson’s equation is replaced by the quasi-
neutrality condition and charge density fluctuations are ignored. This results in
a coupled set of convective equations which are evolved using the flux corrected
scheme. In this limit, however, the equations are applicable to any incompress-
ible visco-elastic system and not merely restricted to the strongly coupled dusty
plasma (SCDP) system alone. However, the SCDP system may be one of the most
convenient system to prepare and conduct experimental studies on visco-elastic
traits of a medium.

We have in our studies considered the evolution of a variety of both smooth
and sharp coherent vortex structures. The former being smooth is stable to K-H
instability whereas the latter suffers from the K-H destabilization also at the edges
where vorticity changes sharply and a strong velocity shear exists. A comparison of
transport and mixing properties of the HD and i-GHD systems have been provided.
A prominent fluid instability, namely the Rayleigh-Taylor instability occurring in
the gravitationally stratified system has also been studied in detail.

The main results of the thesis are identified below.

6.1.2 Evolution of smooth coherent structures

The structures being smooth the K-H destabilization is absent. For the i-GHD
model these structures emit transverse shear waves.
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• Numerically observation of TS waves : Code validation
A smooth circular patch of rotating vortices are observed to emit radially
propagating transverse shear waves. The radial phase velocity

√
η/τm was

observed as per the analytical predictions made by Kaw et al. [48] for GHD
model. The 1/

√
r fall in the intensity as expected for radial emission in 2-D

is also confirmed numerically

• Interaction between distinct vortex structures in presence of TS
waves
In HD fluids the like-signed vortices are observed to merge with time. In
i-GHD, however, one of the prominent feature being the emission of TS
waves the merging does not lead to a coherent final form like hydrodynamic
fluids. Instead a continuous emission of TS waves dominate over the merging
process.

In HD case when two unlike-signed vortices are brought together, they form
dipoles which propagate with an axial velocity which depends on the strength
of the vorticities and also on the closeness of the two structures. We observe
additional features in the case of i-GHD. The axial propagation speed can
be chosen to be either faster/slower than the phase velocity of the emitted
TS wave. In the case of former which we term as the super-luminar dipoles
the emission of TS waves forms a wake behind the dipole and the structure
moves axially ahead and displays all other features which are more or less
similar to the HD case. However, when the axial propagation speed is slower
than the TS wave, it gets entirely engulfed in the emitted waves and pretty
soon looses its identity. A detail study of collisional interaction amidst sub-
and super-luminar dipoles etc., has also been carried out by us and forms a
part of Chapter 2

6.1.3 The conservation theorem

The continuous emission of TS waves from the vortex structures depletes the
strength of the structures. Keeping in view the transverse nature of the emitted
waves, we take cue from the electromagnetic waves which satisfy Poynting theorem.
A Poynting-like conservation theorem is constructed for the 2-D i-GHD model
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equations. The rate of change of a generalized enstrophy-like quantity (sum of
square integrals of vorticity and the velocity strain) is shown to be controlled
by radiative, convection and dissipative effects. The radiation term corresponds
to the TS waves and shows a striking similarity with electromagnetic waves. The
equation also indicates that convection and viscous dissipation are other important
mechanism that could significantly change the conserved quantity.

The conservation law was then illustrated by considering the emission of TS
waves radiation for various cases e.g. rotating monopole vortex patterns, propagat-
ing and colliding dipole structures for the dusty plasma medium. The demonstra-
tion of the utility of the method in understanding dipole vorticity patches moving
slower and faster than the TS waves provides a comprehensive view on the topic.
These conclusions are likely to be generic and applicable to all strongly coupled
media.

6.1.4 Sharp vorticity structures: Role in transport and mix-

ing

The sharpness of shear velocity flow leads to K-H destabilization which is an
important well known mechanism of mixing and transport in normal HD fluids. In
i-GHD the K-H unstable structures are also coupled with TS waves emision which
is shown to aid the process of mixing. This has been quantified by carrying out
extensive study on the diffusion of passive tracer particles in the medium.

• Interplay between TS waves and K-H instability
We considered various types of sharp rotating vorticity profiles. We observed
that each interfaces acts as a source of two (inward and outward moving)
wavefront of TS waves along with K-H instability. We find that the TS waves
helps in efficient mixing of the fluids entrained inside the vortex structure
with that outside in the stagnant medium.

We also considered the evolution of a multi-circulation vortex structures. At
intermediate time range, it provides a complete picture of a turbulent flow
which is collection of small vortices and waves. When the system is left for a
very long time, it is seen that the presence of TS waves leads to this turbulent
state to relax towards a single vortex form much faster than hydrodynamic
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fluid. Furthermore, it was also confirmed that the relaxation rate of the
turbulent medium increases with increasing η/τm a signature of the coupling
strength.

• Particle Tracing
The observations were quantified by considering the passive test particle sim-
ulation. The diffusion and clustering of these particles are directly related
to the mixing characteristic of a medium. We considered particles with var-
ious values of inertia which dictates there response times. We evaluated the
mean square displacement of these particles to find out the diffusivity of the
system, which is comparatively higher in i-GHD than HD. We also showed
that often these passive particles organize themselves in a spatially inhomo-
geneous distribution. Phenomena of clustering amongst these particles is
clearly evident from the simulations.

6.1.5 Rayleigh-Taylor Instability

Kelvin-Helmholtz and the Rayleigh-Taylor instability are two very prominent
fluid instability in a fluid system. While the K-H instability has been recently
studied extensively for the GHD system, the R-T instability has not been studied
so extensively. We have in this thesis studied the R-T instability and have also
considered the dynamics of bubbles and droplets, structures lighter and heavier
than the background medium, in the presence of gravity. Our observations about
the R-T instability are summarized below:

• R-T instability
We consider the two types of density inhomogeneity profiles, sharp density
interface density profile, gradually increasing density profile in opposite di-
rection of gravity force. We observed analytically as well numerically that
the growth of R-T instability gets suppressed as one increases the value of
η/τm which signifies the increase in the strong coupling behaviour. The other
trends (e.g. dependence on Atwood’s number and wave lenght etc., ) of R-T
instability in visco-elastic fluids is similar as in hydrodynamic fluids.

• Rising bubble and falling drop
We have also considered evolution of bubbles/droplets (structures with lower/higher
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density than the background medium) in the presence of gravity. The ris-
ing/falling rate of bubble/droplet are seen to be significantly reduced as
compared to the HD case with increasing η/τm. The combined system of
bubble and droplet and their interaction has also been studied in extensive
detail.

6.2 Future prospects

We provide below a list of studies which can be carried out as an extension to
our work here and which would be instrumental for furthering our understanding
of visco-elastic fluids.

• Comparison with Molecular Dynamics (MD) simulations
We adopted the GHD model description for the study of the behaviour of
strongly coupled dusty plasma medium. A comparison with MD simulations,
wherein the dust particles are assumed to interact by the screened Yukawa
potential, needs to be carried out

• Extension to 3-D
We have concentrated here on 2-D studies only, where the vorticity is a scalar
field. Also the 2-D does not have the vortex stretching term. (The term
~ξ · ∇~vd represents the vortex stretching. In 2-D flow ~ξ · ∇~vd=0 i.e. there are
no velocity gradients parallel to the vorticity vector.) An extension to 3-D
case with vector vorticity fields along with the vortex stretching term would
shed more light on the character of TS wave and its emission and interaction
with the vorticity. This would be a realistic scenario under microgravity
conditions where 2-D dust layers would not form.

• Evolution of coherent structures in an inhomogeneous medium
It is well known that the dipoles propagate with uniform velocity in a HD
fluid. In GHD they would slow down subsequently as a result of constant loss
by the emission of TS waves. It would be interesting to study the propagation
of dipolar structures in an inhomogeneous dusty plasma medium

• Magnetized dusty plasma
In this thesis, we have focussed on the studies of strongly coupled unmag-
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netized dusty plasma system depicted by the visco-elastic GHD fluid model.
with the availability of strong magnetic fields in laboratory, it would be pos-
sible to do experiments wherein the dust species is magnetized. This will
open up an entirely new regime of exploration for strongly coupled magne-
tized media. There is thus a need to develop the GHD model description for
magnetized dusty plasmas and carry out simulations and comparison with
MD and experimental studies.

These are thus some problems which can be immediately looked upon.

6.3 Final remarks

The simplicity with which the dusty plasma medium experiments can be carried
out and diagnosed and the fact that it can be pushed easily in the strong coupling
regime, the dusty plasma medium can prove to be an ideal system to explore matter
in strong coupling regime. Furthermore, since each particles here can be visualized
and the time evolution can also be easily tracked the emergence of macroscopic
complexity through underlying simplicity of microscopic interactions can be easily
tracked. Hence it is necessary that the properties of this medium be explored and
modelled suitably by simplified description. The GHD fluid model is a step in that
direction.
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[167] G. Falkovich, K. Gawȩdzki, and M. Vergassola. Particles and fields in fluid
turbulence. Rev. Mod. Phys., 73:913–975, Nov 2001.

[168] V. S. Dharodi, S. K. Tiwari, and A. Das. Visco-elastic fluid simulations of
coherent structures in strongly coupled dusty plasma medium. Physics of
Plasmas, 21(7), 2014.

122


	Synopsis
	List of Figures
	Introduction
	Background
	Comparison with electron-ion plasmas
	Objective and motivation

	Description of complex dusty plasma medium
	Fluid and kinetic approaches
	Quasi-Localized Charge Approximation (QLCA) approach
	Generalized Hydrodynamic (GHD) approach
	Viscoelastic-Density Functional (VEDF) approach
	Molecular Dynamic (MD) simulation approach

	Summary of the earlier studies
	Outline of the thesis

	Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium
	Introduction
	Governing Equations
	Numerical implementation and validation
	Evolution of vorticity patches 
	Evolution of monopoles

	Interaction between vorticity patches
	Evolution of dipole structures
	Head-on collision between dipoles
	Merging

	Summary

	A conservation theorem for incompressible Generalized Hydrodynamic fluid model
	Introduction
	A Poynting-like theorem for the coupled set of i-GHD
	Numerical verification of Poynting-like equation for i-GHD
	Monopole evolution 
	Dipole evolution and dipole-dipole collision

	Summary

	Transport and mixing in i-GHD model
	Introduction
	Evolution of sharp vortex
	Evolution of sharp circular and elliptical vortices
	Multi-circulation vorticity shell profile

	Test Particle Simulation: Advection of passive tracer particles
	Simulation methodology
	Mixing: mean square displacement and diffusivity

	Diffusion and clustering of inertial and non-inertial test particles
	Summary

	 Effect of strong coupling in gravitational and buoyancy instability
	Introduction
	Analytical Description
	Gradual density gradient
	Sharp interface

	Numerical simulation
	Gravitational and buoyancy-driven instabilities
	Rayleigh-Taylor instability
	Buoyancy-driven evolution

	Summary

	Conclusions and Future Work
	Feature points of the thesis
	Incompressible limit of GHD (i-GHD) model
	Evolution of smooth coherent structures
	The conservation theorem
	Sharp vorticity structures: Role in transport and mixing
	Rayleigh-Taylor Instability 

	Future prospects
	Final remarks

	Bibliography

