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SYNOPSIS

There has been rapid progress in high-intensity short pulse laser technology
recently. These lasers are capable of delivering enormous energy density ranging
from 10'® W/em? to 1022W/em? in femtosecond time scales. When such a laser is
incident on a solid target, the target gets ionized and gets converted into a plasma.
At such short time scales, only the lighter electron species of the plasma interacts
with the laser field. Thus the incident laser energy is primarily absorbed by the
electrons creating fast energetic electrons. These electrons can help transport en-
ergy in the overdense region of the plasma which is inaccessible to lasers. In fact
Fast Ignition (FI) [1] scheme of laser fusion depends crucially on energy transport
through electrons in the dense core region for ignition. Thus it would be desirable
to have schemes which improves the laser absorption efficiency to generate energetic
electrons and also improves its unhindered propagation towards the dense plasma
region. In this thesis one such idea, namely that involving structured targets is
investigated and significant improvement in both the properties are demonstrated.
We have used Particle - In - Cell (PIC) code PICPSI 2] to study the interaction
of laser with a target plasma. A comparison of laser energy absorption in the case
of a homogeneous target and when the target is structured (by placing a periodic
array of nano-wires transverse to the laser propagation direction) has been made.
The pre-pulse of the high intensity lasers in general ionizes the target material and
converts it into a plasma. Thus it is the plasma which interacts with the main laser
pulse. In the case of structured nano-wire targets, the attached nano-wires also get
ionized by the pre-pulse. However, since the plasma can expand only at a slow ion
acoustic speed cg, the interaction of the main pulse sees a target plasma having a

spatial inhomogeneity at the scale of the nano-wires, transverse to the laser propa-
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gation direction. The laser interaction with such a structured target plasma in the
PIC simulation is mimicked by a configuration of sinusoidal ripple of the plasma
density transverse to the laser propagation direction. The scale length of the ripple
was varied in the study. The results show that there is significant improvement in
the laser absorption in the case of laser interacting with such structured targets.
This has been understood on the basis of a novel vacuum heating like mecha-
nism [3] by us. It occurs as the plasma density inhomogeneity at the surface of the
nano-wire acts like a vacuum plasma interface prompting a vacuum heating like
absorption. The plasma density inhomogeneity due to the structures ensures that
even for the case of normal incidence of the laser the vacuum heating like mech-
anism is operative in the transverse direction. Thus the geometry of structured
targets in fact enhances the absorption of the laser light. The second important
observation made by us in simulations is that the subsequent propagation of the
energetic electrons is also significantly collimated over much longer distances in
the case of structured targets in simulations. This has been understood on the
basis of the suppression of certain instabilities which are invariably present in a
beam plasma system. It is well known that the fast electrons generated in intense
laser-solid interaction propagate inside the overdense plasma and are able to carry
currents more than Alfvén current limit /4 (/4 =~ 175y kAmps where § = v./c
and v is Lorentz factor). In vacuum this is impossible as the self generated mag-
netic fields will turn the trajectories of the electrons responsible for the current.
However in plasma, current propagation exceeding Alfvén current limit occurs as
a result of a return reverse shielding current from the background electrons. If the
focal spot size of an electron beam is less than the skin depth (¢/w,) of plasma, the

induced return currents flows outside the beam otherwise it flows within the beam.



In overdense case, the transverse spot size of the fast electron beam is nearly equal
to the focal spot size of laser which is in general much greater than the skin depth
of plasma. In this case, the return current spatially overlaps with the fast electron
current and annihilates the magnetic field. This full and/or partial annihilation
of the magnetic field in plasma permits the fast electron transportation with cur-
rent exceeding the Alfvén limit. Thus the spatially overlapping configuration of
forward and return current has no net magnetic field to stop the propagation of
electrons. However, the spatially overlapping oppositely propagating forward and
reverse shielding currents are unstable to several micro- instabilities. The most
dominating is Weibel or filamentation instability [4, 5], which can lead to spatial
separation of currents and generate huge magnetic fields. The generated magnetic
field can in turn deflect the electrons and is thus detrimental to their propagation.
This poses serious limit to the propagation of energetic electrons in plasma. As
stated above we have demonstrated a significant suppression of the growth rate
of the beam Weibel instability in our simulations for structured targets in both
1-D and 2-D simulations. Once the energetic electrons move past the electron skin
depth region the laser fields have no role to play and it propagates under the in-
fluence of its own self consistently generated fields as well those due to that of the
reverse shielding currents. The evolution of an interpenetrating spatially overlap-
ping oppositely flowing currents of electrons were considered by PIC simulation. In
1-D simulations the variations are chosen to be perpendicular to the current flow
direction. This geometry permits the Weibel destabilization. In 2-D two distinct
geometries are possible, one in which the 2-D plane is orthogonal to the current
flow direction. The other is the one for which the current flow is along one of the

dimensions of the 2-D simulation box. In the former only variations normal to
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the current propagation (e.g. Weibel/filamentation instability) are permitted. In
the latter both Weibel and electrostatic two stream instabilities can get excited.
Simulations were carried out in both the configurations. The linear instability
leading to current separation is clearly visible. In the latter 2-D configuration one
observes appearance of tilted magnetic field lines which is in conformity with the
fact that the oblique mode typically has the maximum growth rates. A detailed
study of growth rates of maximally growing modes observed from the simulations
is compared with the growth rate obtained from a two fluid description obtained
by linearization and eigen value evaluation process. The growth rate obtained from
simulations match reasonable well with those obtained from linearized eigen values.
The nonlinear regime shows the development of longer scales. We explore these
instabilities in the nonlinear regime. We also study the effect of plasma density
inhomogeneity on these instabilities. The inhomogeneity is chosen to mimic the
behaviour of the presence of structured targets. In this inhomogeneous case a clear
suppression of the instability is observed. The above simulations were all carried
out for a periodic geometry, which assumes an infinite transverse extension of the
beam. For realistic cases, the relativistic electron beam would be produced with
a finite transverse width, typically commensurate with the laser focal spot. The
propagation an electron beam with a finite width will also induce return current in
background electron. However, this return current may not be able to completely
spatially overlap with the beam current . There will be an imbalance at the edges.
Thus at the edge, there would appear a sheared flow between the plasma and
beam. Such a sheared configuration in electron flow would also arise in the after-
math of Weibel instability, wherein the forward and the reverse shielding currents

get spatially separated and the oppositely propagating filaments merge with each
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other. Keeping this in view, we have also carried out the numerical study of the
instabilities associated with a 2-D sheared electron flow configuration against a
neutralizing background of ions. Analysis of sheared electron configuration has
been carried out earlier in the context of electron magnetohydrodynamic (EMHD)
fluid description for non relativistic and weakly relativistic cases [6]. EMHD fluid
simulations studies have also been carried out for the nonrelativistic case. Here we
carry out PIC studies for the sheared electron flow configuration in the regime of
both weak and strong relativistic flow velocities. We have shown the development
of Kelvin Helmholtz instability and the formation of electromagnetic KH vortices.
When the flow velocities are weakly relativistic we find that they agree with the
predictions made by EMHD model earlier [6,7]. However, for mild and strong
relativistic case, we have seen that the fluid tends to become fairly compressible.
Since EMHD model provides a description for incompressible electron flow, the
PIC observations significantly deviate from the EMHD fluid inferences. The PIC
studies shows a development of electron density oscillations at the beam edge con-
stituting compression and rarefaction. This observation was then understood on
the basis of one-dimensional magnetized relativistic electron fluid equations for
electrostatic disturbances. We find that the compression and rarefaction are up-
per hybrid oscillation which suffers breaking in the nonlinear regime. The final
turbulent behaviour of the observed magnetic fields in the simulations were iden-
tified with the help of their spectral behaviour. In the turbulent stage for weakly
relativistic flows there is a slow cascade of energy from short to long scales. While
for mild and strong relativistic cases the energy continues to remain trapped at
higher k modes. To summarize, in this thesis we have carried out PIC studies for

several fast time scale phenomena involving only the lighter electron species in the
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plasma. In particular we have studied the process of energetic electrons generation
by the absorption of laser energy in the plasma. We identified the presence of a
novel vacuum heating like mechanism in the context of structured targets which
enhances the laser absorption process. We have also considered the propagation
of energetic electron beam in the plasma and its associated instabilities in simula-
tions for both ordinary and structured targets. We observe that the instabilities
which are responsible for scattering the electron beam and hindering its propaga-
tion get suppressed in the presence of structured targets when the inhomogeneity
scale length is shorter than the skin depth. The plasma density inhomogeneity
perpendicular to the flow direction with scale length shorter than skin depth pro-
vides a coupling between the growing electromagnetic mode and the short scale
perturbations. Thus, the inhomogeneity acts as a conduit for the transfer of the
energy of the growing mode to short scale damped perturbations resulting in the
suppression of the growing modes. We have simulated the sheared electron flow
configuration with the help of PIC simulations. The growth of Kelvin Helmholtz
mode has been observed. While in the weakly relativistic case it matches with
the prediction of the EMHD fluid model, in mild and/or strongly relativistic case
the compressibility effects dominate. electron density pinching constituting com-
pression and rarefaction is observed which at later stage is observed to undergo
wave breaking. We identify this as the electrostatic upper hybrid oscillations which
suffers wave breaking ultimately. The thesis has thus addressed certain issues asso-
ciated with the generation and propagation of energetic electron in plasmas. The
3-D simulations, finite beam size effects (both transverse and longitudinal) etc.,

are some questions which remain to be explored for future studies.
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Introduction

The thesis concentrates on the study of fast electron scale phenomena in plasmas
using Particle - In - Cell (PIC) simulation. In particular, the interaction of fast
femtosecond laser pulse with plasma has been studied, which is responsible for
the excitation of phenomena at fast electron time scales. The laser power gets
absorbed as a result of interaction with plasma electrons. The propagation of
energetic electrons in the plasma results in a host of phenomena related to beam-
plasma instabilities that get excited. In this work, the absorption of laser energy
and the beam plasma instability in the presence of plasma density inhomogeneity

has been studied in considerable detail.

1.1 Introduction

In the last few decades, there has been a rapid progress in high-intensity short
pulse laser technology. At present lasers are capable of delivering enormous energy
density ranging from 10'8W/cm? to 10%2W/em? within a couple of femtoseconds.
When such a laser irradiates a solid target, the target ionizes and converts into
a plasma instantaneously. The time scale of the laser being rapid, the lighter
electron species in the plasma are typically the only one suited to interact with
the electromagnetic field of the laser. Thus the behaviour of subsequent processes
are predominantly governed by electron dynamics. At higher intensities bordering
close to 10?2WW/cm? ion involvement would also be expected even at such rapid
time scales. We have, however, focused in this thesis on the study of that regime

of laser plasma interaction where electrons species alone plays a dominant role in
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Chapter 1. Introduction

dynamics.

The study of electron dynamics under the influence of high power laser fields
in a plasma medium attracts a great deal of attention amongst the scientific com-
munity. The reason being that the understanding of such a system is applicable
to a variety of frontier research areas ranging from astrophysics to laboratory ex-
periments which are both of fundamental interest as well as cater to development
of cutting edge technologies. For instance, such applications are in the areas of
fusion technology through Fast Ignition Scheme (FIS) in inertial confined fusion
(ICF) [1,8,9], plasma based particle accelerators [10-12], plasmas switches [13] etc.
In addition a variety of physical phenomena related to fundamental interest such
as magnetic reconnection [14-16], gamma rays bursts [17], generation of magnetic
field in early universe |18] etc., are some issues which seem to be also crucially
tied up with the behaviour of electrons in high intensity electromagnetic fields
which can now be reasonably mimicked in a laboratory setting. The laser energy
absorption resulting in the creation of energetic electrons and the propagation and
dynamics of energetic electrons through plasma are two key aspects in most of the
applications and fundamental phenomena that have been listed above.

The crucial role that these two aspects have in the context of Fast ignition (one
of the frontier problem of interest) can be understood by the following discussion.
In conventional ICF scheme, the spherical fuel target pellet is compressed and
ignited with a very slow nano-second laser pulse. This process is not very eflicient
from the point of view of energetics. The system is susceptible to the hydrodynamic
Rayleigh Taylor (RT) instability which mixes the hot and cold fluids making the
condition to achieve ignition temperature difficult. The effect of RT instability can
be avoided by imposing stringent conditions on the precise spherical symmetry of
the imploding fuel capsule as well as the incident laser pulse, which is difficult and
almost impossible to achieve. The other option that has been thought of is that
of fast ignition scheme, wherein the task of compression and heating for ignition
arc separated. A tailored slow nanosecond laser pulse first merely compresses
the target fuel. The fuel remains cold during this phase and hence compression is
casier. After compression, an ignitor laser pulse of sub - picosecond duration is sent.
The compressed target being overdense for this laser, the laser energy is absorbed
at the critical density layer (critical density n. is decided by laser wavelength as

ne = (w?m,/4me?) where wy, is laser frequency, m, is the electron mass, and e is the
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electronic charge) generating fast energetic electrons. These energetic electrons are
expected to propagate inside a high density core region and dump their energy over
a localized region to create the hot spot for ignition. It is thus clear that the success
of fast ignition crucially hinges upon efficient absorption of laser energy and also
the subsequent propagation of the energetic electrons through the plasma. The
generation and evolution of magnetic field in laboratory laser plasma experiments
is another area where the propagation of energetic electron beam through plasma
plays a crucial role and its proper understanding is important.

In this thesis, we focus on the issue of laser absorption and the propagation of
energetic electron beam through plasma using Particle - In - Cell (PIC) simulations.
Lately, there have been some experiments in which structured targets were used to
study their implication on improved energy absorption [19-24] as well as collimated
propagation characteristics of energetic electrons |25| through plasma. This has
been studied in detail here with the help of PIC simulations. In the next section of
this Chapter, we introduce some preliminary concepts on laser-plasma interaction.
A brief review of earlier works on fast electron time scale phenomena, relevant
to present thesis, have been provided in section 1.3. Section 1.4 summarizes the

salient aspects of the thesis.

1.2 Laser-plasma interaction

For high intensity laser pulses, the pre-pulse and/or the rising edge of the laser
light itself has sufficient power to ionize the solid target it impinges upon. Thus
target surface is thus converted into a dense plasma. The trailing laser pulse in-
teracts with plasma. Plasma is instrumental in getting the laser energy absorbed.
The next subsection, summarizes certain well known processes of the intense laser
absorption mechanisms in plasma. The creation of energetic electrons, their prop-
agation in the plasma medium and its susceptibility to various instabilities has

been elaborated upon in the subsequent subsections.

1.2.1 Light absorption and generation of hot electrons

The absorption, reflection or propagation of laser wave in plasma depends on char-

acteristic features of laser as well as the plasma. The intensity of the laser, its
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pulse duration, the shape of the pulse, laser wavelength, polarization, angle of the
incident etc., are the main effective parameters of laser which influence the absorp-
tion process. The plasma density profile and the scale length of its inhomogeneity
are the plasma related important determining factors for the absorption process.
In vacuum, an electron oscillates in the electric field of the laser light. If the
strength of laser electric field strong for the electron to be in relativistic regime,
it makes a figure-8 trajectory and drifts along the laser propagation direction.
However, ultimately there is no gain of energy by the free electron as the laser
pulse goes past it. In plasma, however, the presence of ions creates a different
scenario. The oscillating electrons collide with ions and thereby transfers a part
of laser wave energy into the thermal energy of the plasma. The electron - ion

Coulomb collision frequency is given as [26]

B e*neZInA

= 1.1
4re2m2ol’ (1.1)

Vei

Where e and Ze are electron and ion charge respectively. The plasma electron
density is n. and InA is Coulomb logarithm and v, is the velocity of electrons
relative to the ion scattering centre. Thus we can see that electron-ion collision
frequency depends on electron density and relative velocity of colliding charge
particles.

When the intensity of laser beam is low (e.g. < 10"®W/cm?) and pulse dura-
tion is long (~ ns), collisional absorption processes dominate and heat the plasma.
The main collisional absorption processes are inverse bremsstrahlung [27, 28] and
normal skin effect [29]. When the laser intensity is high (e.g. I > 10®W/cm?),
the quiver velocity of electrons oscillations become high (with energies ~ 1keV).
Since electron-ion collision frequency v,; is inversely proportional to the cube of
velocity of colliding charge particles (o< v.3), the collisional absorption process is
thus ineffective at high laser intensities. Thus, for laser intensity I > 10'® W/cm?,
collisionless absorption processes start becoming dominant [30]. The dominat-
ing collisionless absorption processes are anomalous skin effect, sheath inverse
bremsstrahlung [31], sheath transit absorption [32], resonance absorption [33],
vacuum (Brunel) heating [3], J x B acceleration [34], ponderomotive accelera-
tion [35,36], stochastic heating [37], and absorption due to parametric decay insta-

bilities [38]. While vacuum heating, resonance absorption, J x B acceleration, and
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ponderomotive acceleration processes are dominant for overdense plasmas, stochas-
tic and parametric decay instabilities aid the absorption processes in underdense

plasmas.

In resonance absorption case, the obliquely incident (i.e. # > 0) p-polarized
laser reflects before reaching to the critical density n. to satisfy the momentum
conservation (incident K-wave vector conservation). The plasma density n, from

where the laser wave gets reflected is given by
n, = n.coso, (1.2)

At the turning point, the electric field component of the incident wave generates
an oscillating standing wave. In case of a sufficiently small distance between the
turning point and the position of the critical density, the evanescent electric field
excites plasma electron oscillations parallel to density gradient direction within the
region of the reflection and the critical density point. This localized and quasi-
standing plasma wave satisfying resonance condition reaches high amplitude and
ultimately suffers wave breaking generating a sufficiently high number of energetic
electrons. This process is called resonance absorption and dominates all other

processes when the condition
wrL/c ~ sind, (1.3)

is satisfied. Here L is the plasma density scale length and wy, is the laser frequency.

A collisionless absorption mechanism for p-polarized laser pulse obliquely in-
cident on steep plasma density surface is given by Brunel [3]. This mechanism is
known as Brunel’s heating or vacuum heating. In this mechanism, the laser electric
field pulls the electron from surface boundary to vacuum in half of its cycle and in
the next half cycle it accelerates the electrons, thereby increasing the kinetic en-
ergy of the electrons. This mechanism is highly efficient when following conditions
are satisfied

L < Uosc/wL': Vosc = Ut

Where v,s. and v; are the quiver and the thermal velocity of the electron respec-
tively.

The intensity at which the quiver velocity of electrons become comparable to
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the speed of light ¢ is known as relativistic intensity. A normalized vector potential

ap is defined as

eA

mec?

ap = (14)

For ay > 1 the electron motion becomes relativistic. This corresponds to an
intensity of 1 > 10"®W /cm?. In this range the magnetic field B of the laser starts
to influence the electron trajectory by the Lorentz force component v, x B. The
resultant Lorentz force accelerates the electron in laser propagation direction. This
mechanism is known as J x B heating process.

Thus when an intense short pulse laser interacts with an overdense plasma,
absorption processes lead to a sizeable fraction of electrons having much higher
mean kinetic energy. These electrons are known as the supra-thermal component
(and /or hot electrons component) and can often be in a form of relativistic electron

beam.

1.2.2 Propagation of relativistic electron beam in overdense

plasma

The fast electrons generated in intense laser-solid interaction has a density of the
order of critical density, i.c., ~ 10?2, The velocity of these clectrons being close to
the speed of light, these electrons carry currents which is of the order of ~ M Amps
[39,40]. In vacuum, the electron trajectories carrying this current would turn due
to the self generated magnetic field. In fact, the maximum current that an electron
beam can carry in vacuum is provided by the Alfvén current limit, which is 173~
kAmps, where = v./c and 7 is the Lorentz factor. In plasma, propagation of fast
electrons with current exceeding the Alfvén limit is permissible. In the presence of
plasmas, the charge imbalance generated by the beam causes electrostatic fields to
which the background plasma electrons respond by flowing in the reverse direction.
If the focal spot size of an electron beam is less than the skin depth (c¢/w,) of
plasma, the induced return currents flow outside of beam, else the reverse shielding
current also flows within the beam. Typically, the focal spot size of the fast electron
beam is nearly equal to the focal spot size of the laser. In overdense case, this is
much greater than the skin depth of plasma. In general, thus the return current

spatially overlaps with fast electron currents and annihilates the magnetic field
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generated by the fast clectrons. The full or partial annihilation of the magnetic
field in plasma permits the fast electron transportation even though the Alfvén

current limit is exceeded.

1.2.3 Beam-plasma instability

The configuration of spatially overlapping forward and return current is, how-
ever, susceptible to a host of beam-plasma instabilities which drastically influence
the propagation of beam electrons in the plasma. For instance, the two stream
instability [41], Weibel instability [4], filamentation [5] and oblique modes insta-
bility [42] are some instabilities which have a profound influence on electron beam
propagation in the plasma.

Langmuir observed oscillations in electron beam-plasma system for the first
time in 1925 [43]. Subsequently in 1948 Pierce demonstrated that these oscilla-
tions might be unstable. Bohm and Gross developed a kinetic theory to study
unstable perturbations that propagate along beam direction. This class of insta-
bility has been termed as the two-stream instability |[41]. This instability has a
pure longitudinal electrostatic character that creates charge density bunching in
the direction parallel to the beam propagation. The bunching of electrons creates
space charge separation. Their are two populations of electrons, one which gets
trapped and oscillate in the space charge potential and other with higher kinetic
energy are passing particles and remain un-trapped. The oscillating electrons form
nonlinear coherent structures such as vortices in phase space. The energy boundary
where the kinetic energy of a charged particle equals to electric potential energy is
knowns as separatrix. The separatrix defines the boundary between the trapped
and untrapped electrons.

Fried showed that beam-plasma system may also be unstable to electromagnetic
perturbations that vary normal to the flow direction of the beam [5]. This class
of instability is known as "filamentation instability". The unstable perturbation
breaks up a homogeneous electron beam into small-scale current filaments, and are
responsible for the generation of magnetic fields. In fact, temperature anisotropy
in electron fluid also results in such a separation as demonstrated by Weibel in
1959 [4] and has been subsequently termed as the Weibel instability.

In actual scenario, the perturbations are the superposition of randomly oriented
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modes. The eigen mode with the maximum growth rate grows with time and
is the one to be observed. The maximally growing mode may have variations
oblique to the beam propagation direction. In that case, both two-stream and
filamentation instability characteristics are coupled to each other, and it is known
as oblique mode instability. Sometimes it is also referred as coupled Two-Stream
Filamentation (TSF) instability [42]. The tilted current filaments in beam-plasma
system are the signature of this instability [44,45].

1.3 Review of earlier works relevant to thesis

We now briefly review theoretical, numerical and experimental works carried out
earlier in the area of intense laser-solid interaction which are relevant for the work
that has been carried out in the thesis here. We, therefore, focus specifically issues
pertaining to electron energy gain through laser and its dynamics in plasmas.

Lately, there has been a great deal of interest towards possible mechanisms of
enhancing laser energy absorption so as to increase the number and the energy
of hot electrons [46-52|. Most of these studies have emphasized the role of laser
pulse duration, intensity, role of pre-plasma formation on the front surface of the
target etc. It is reported that the presence of pre-plasma on the front surface of
the target increases the absorption of laser energy as well as the number of hot
clectrons [48,53,54]. Recently, a novel technique of structured target has been used
which shows significant absorption of laser energy as compared to the conventional
approaches. Both experimental and simulation work have been carried out towards
observing and understanding increased production of hot electrons by designed
target [19-23]. We investigate the absorption of laser energy in rippled plasma
targets, where the ripples mimick the inhomogeneous plasma density created by
the ionization of nano structures protruding from the target surface by the pre-
pulse of laser light.

The propagation of hot electrons which get generated in the target by laser
energy absorption is another arca of wide interest. The techniques for possible
guiding and reduction in divergence of beam propagation through plasma medium
are being explored. It is well known that the beam propagation in the plasma

is fraught with various instabilities which are responsible for deterioration in the
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beam transport. The attempt has been, therefore, towards curbing the growth of

such instabilities.

Some other technique involves the resistive collimation of fast electrons by gen-
erating guiding magnetic field on the boundary of two different material. This
has been proposed in Ref. [55]. The experimental investigations, based on this
scheme, have been carried out by S. Kar et al. [25] and shown the similar results
which were predicted in Ref. [55]. Another experimental work by Chatterjee et al.
involves using aligned carbon nanowire arrays as the target. The irradiation of
such a target generates inhomogenous plasma. They have demonstrated experi-
mentally eflicient transportation of laser-generated mega- ampere electron currents
over long distances compared to flat solid target |24]. A theoretical interpretation
was provided by Mishra et al. which suggests that the beam Weibel instabilities
get suppressed in such inhomogeneous targets [56]. We present the 1-D and 2-
D PIC (Particle - In - Cell ) simulation of counter-steaming plasma with rippled

background density, and discuss the beam-Weibel instability in this case.

The beam-Weibel or current filamentation instability have been extensively
studied theoretically as well as numerically in the context of laser-solid interaction
as well as the astrophysical scenario. This instability leads to current separation
and generation of magnetic fields [57]. The Weibel instability maximizes at the
electron skin depth scale. The current filaments, therefore, in the aftermath of the
Weibel instability form at the scale length of electron skin depth. The subsequent
nonlinear evolution the filaments have shown in PIC simulations to undergo the
process of merging and coalascence processes forming long scale current structures.
The separated current filaments have sheared electron flow configuration and are,
therefore, susceptible to shear flow instabilities of magnetized electron flow |58].
In the non-relativistic limit, the electromagnetic effects on KH instability in the
context of sheared electron flows have been investigated in detail by employing the
Electron Magnetohydrodynamic (EMHD) model by Jain et al. [59]. Relativistic
effects on sheared-electron flow led instability have been explored in Ref. [6]. We
have conducted the particle-in-cell (PIC) simulation technique to understand the
electrons dynamics at electron time scale in context to laser-plasma interaction

and have demonstrated the results in subsequent chapters.
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1.4 Layout of the thesis

This thesis is divided into 7 chapters in the following manner. In Chapter 2,
we provide a brief introduction to the Particle - In - cell simulation technique
which has been adopted for most of the work in this thesis. The basic algorithms
which are used to develop the fully electromagnetic relativistic code have been
described in this chapter. In Chapter 3, we present PIC studies on absorption of
high-intensity short pulse laser-plasma interactions. We have chosen structured
targets with inhomogenous density for the purpose. We demonstrate that for the
structured targets the laser absorption is better. The dependence on scale length
of the inhomogeneity on absorption efficiency has also been studied. We have then
investigated the question of the role of inhomogeneity in suppressing the beam-
plasma instabilities for efficient transport of the energetic electrons in the plasmas
For this purpose in Chapter 4 we consider the evolution of counterpropagating
electron currents in 1-D PIC simulations. It is demonstrated that the rippled
targets are better suited for the task. In Chapter 5, we consider the 2-D case.
The multidimensional nature of unstable spectrum in 2-D from the simulation
and a two fluid model has been considered which show the suppression of the
instabilities when the rippled density scale lengths are shorter than the skin depth.
The nonlinear regime of the instability has also been explored through PIC studies.
In laser-plasma interaction, the relativistic electron beam is produced with
finite beam width being commensurate with the laser focal spot. The propagation
the finite width electron beam induce the return current in background electron.
This return current may be induced with the time delay or not able to fully nullify
the beam current due to low background density. In this case, there may be sheared
flow between the plasma and the edge of the beam. Furthermore, the nonlinear
stage of Weibel instability, the beam filaments merge into each-other and expel
the return background plasma out of the beam. This separation leads to a sheared
electron flow configuration. Keeping this in view, we carried out the numerical
study of the instabilities associated with a 2-D sheared electron flow configuration
against a neutralizing background of ions, in both weak and strong relativistic flow
velocities regime, and have presented the details of such studies in Chapter 6.
Finally, in the last the Chapter 7, we summarize our findings and conclude our

thesis work with the discussion of the possible future scope.
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Description of Particle-In-Cell (PIC)

algorithms

As mentioned in chapter 1, we have carried out simulation and theoretical stud-
ies on laser-matter interaction with specific emphasis on aspects such as efficient
absorption of laser energy and the subsequent propagation of energetic clectrons
in the plasma. The Particle - In - Cell (PIC) code named PICPSI3D [2]| has been
suitably adapted for most of these studies. We have analyzed the simulation ob-
servations appropriately to draw inferences related to these phenomena. In this

chapter, we provide a brief description of the PIC code.

2.1 Introduction

The experimental studies of complex phenomena are often very expensive and
time consuming. Furthermore, in experiments, there is also the difficulty of not
being able to span the entire range of parameter space. Neither it is possible to
have control over various conditions to assess the underlying important mechanism
at work. The analytical approach also has limitations wherein the solutions are
possible only for oversimplified models. The computer simulation fills in this gap
as it can provide observational data on complex processes over an extensive range
of parameters which can then be suitably analyzed to extract an understanding of
the essence of any phenomena.

In plasma physics, a technique known as Particle-In-Cell (PIC) is mostly used.

Here particles are dynamically evolved in the external and self-consistent elec-
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tromagnetic fields. Thus, it preserves the discrete particle nature in evolution.
However, the evolution does not require the exact number of particles present in
the system to be evolved. In fact, the simulation particles are considered as super-
particles representing a collection of real particles, corresponding to similar charge
by mass ratio and the same density as in the system. We provide a brief introduc-
tion and salient features of relativistic electromagnetic PIC simulation technique

here.

2.2 Governing equations for relativistic electromag-

netic system

The collection of charged particles in plasma can be described by the distribution
function fs(r,v,t). Here s represents the plasma species and r and v are the
position and velocity vectors of the particle respectively. The distribution function
fs gives the probability of finding the species "s" at time ¢ at a position between r
and r-+dr and having velocity between v and v+dv. The charged particles, in the
plasma, interact with each other via external and self-consistent clectromagnetic
fields and through collisions. In the absence of collisions, we can describe the
evolution of plasma particles by a coupled set of Maxwell-Vlasov equations. One

can write the Vlasov equation for the evolution of the distribution function f, as

Ofs /s vxB\Jdf,
Y +v- i —I—qs<E—|— - >8p =0, (2.1)

Here c is the speed of light and ps = myy,vs, Mg, ¢s and v, are the momentum, rest

following,

mass, charge and the Lorentz factor of the species "s". The electric E and magnetic

B fields in the Vlasov’s equations evolve according to Maxwell’s equations which
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have been written below.

V- E = 4mp, (2.2)

V xB =0, (2.3)
10B

4m 10E

The charge density
pP=> 4 / fs(t,r,p)d’p
S
and current density

J= ZQS/Vst(t> r,p)d’p

in Maxwell’s equations have to be determined from the distribution function which
obeys Vlasov’s equation. It can thus be observed that the Vlasov equation(eq. (2.1))
is a complicated partial differential equation. It is coupled with the Maxwell’s
equations through charge and current density, thereby acquiring a highly non-
linear form. In most cases, this complex non-linear structure of the equation make
it difficult to find analytical solutions for this set. In such cases, one resorts to
numerical techniques to solve eq.( 2.1). The simple and straightforward numeri-
cal technique would be to discretize coupled Vlasov-Maxwell’s equations in phase
space. This method, however, requires a large number of computational grid (in
both position and momentum space). This technique also looses its effectiveness
when the distribution function is compact in momentum space and continues to

remain so with time.

The other techniques of solving Vlasov-Maxwell’s equation is to consider the
evolution of discrete set of particles. In this case, thus a continuum distribution
function in momentum and position space is replaced by the dynamical evolution
of a discrete set of particles from which the continuum properties of charge and cur-
rent densities are evaluated at the grid points by proper interpolation techniques.
This is known as Particle-In-Cell (PIC) method.

The relationship between the distribution function and the position and mo-
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mentum of the super-particles in the simulation can be expressed by the following

relationship:

Fotorip) = Y~ NaSe(r = () Sp(p = pal?)), (2.6)

where N; is the number of physical particles that are represented by the n!* compu-
tational particle. The functions S, and S, are the shape functions of computation
particle in position and momentum space. The ensemble average of orbit of com-
putation particles in phase space gives the solution of Vlasov equation. The orbit
of computational super-particle in momentum and physical space is governed by

the equation of motion of particles under Lorentz force as follows:

drp

T _ 2.

= =V (2.7)
dpn vn X B(t,ry)
(B, ry,) + 22l ) 2.
R (2.9

Since the particle position and momentum can take continuum values, the Lorentz
force needs to be evaluated at these points. The fields which are known at the
location of grid points are interpolated at the location of the computational particle
at every time step for the Lorentz force evaluation needed for solving eqs. (2.7,2.8).
With the updated location and momentum of the particles the charge density and
current densities are evaluated at grid points which are used for updating the fields
at the next time step. This entire process runs in the time loop. The standard
cycle of PIC simulation technique is summarized by Fig. 2.1. The interpolation
of parameters from grid to particle location and vice versa would clearly depend
on the shape of the computational particle. In the next section, we present a
description of evaluating the weighting factors for interpolation from the shape of

the computational particle.
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1) Interpolate field on particles
Einr Bin

(using E,, B,)

2) Advance particles
Pin+1/2/ Xin

4) Advance Fields on grid

Bn Bn+1/2: En En+1
Bn+1/7 Bn+1

(using Jns172: P ns1)

Pin-172 Xin+1

(using E;n, Bin)

3) Deposite currents /or
chagre density on grid
Jn+120 Prs1

(using Pin+1/2: Xins Xin+1)

Figure 2.1: The standard cycle of PIC simulation

2.3 The shape of computational particle and the

weighting factors

The standard PIC method uses the Dirac’s delta function for momenta shape factor
Sp(p —pi) = 6(p — pi) (2.9)

On the other hand, the spatial shape factor depends on chosen b-splines function,

by, which is defined as
bi(x;) = / dx'bo(x; — 2" )by (") (2.10)

where

1, iflgl <t
bo(§) = el <2

0, otherwise
The shape factor of super particle is defined as

Tr — T

Sz(l’,) = bl( Az

), (2.11)
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One can choose the shape factor of the computational particle to any order. De-
pending on shape factor, the charge, and current densities are assigned on the grid
point and the fields are interpolated from the grid to particles. The choice of a
higher order shape factor reduces the associated numerical noise of the system but
it results in an increased computational cost. For low computation cost the zero”
order spline, known as Nearest Grid Point (NGP) weighting scheme, is used. We
have used the first-order weighting for our studies which is known as Cloud In Cell
(CIC) weighting. The zeroth and first order of b-spline are shown schematically in

Fig. 2.2.

=
o
I

bo

/bl

(&) -

/

©bp
(@]
[

0.0 |
-2 -1  -0.5 0 0.5 1 2

3

Figure 2.2: B-spline curve of various order

The first order by is defined as

_ lmp—ail e |zp—ail 1
_ 1 JAV if Ax S 2
by =
0, otherwise

In the simulation, the first order b-spline is realized by the following weighting
factors in two-dimensional space, for the n"* superparticle corresponding to the

first order b-spline, are

Yn

Wj:j‘i‘l—A—y» Wis1 =25 = J,
Zn .

Where j = floor(%%) and k = floor(Z2) where floor(n) means the largest integer
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but less than n.

2.4 Spatial gridding and assignment of the physical

variables with the time step chart

To solve the Maxwell’s equations numerically, we use the Finite-Difference-Time-
Domain (FDTD) method which is based on Yee’s algorithm. The basic idea of this
algorithm is to get the successive update of magnetic and electric field in time based
on leap-frog method on staggered grid point of Yee’s lattice as illustrated in Fig. 2.3.

The staggered grid point is used to improve the numerical accuracy. We grid the

T =~ (1, 41, k1)
Bz

G, j, k+1) = /\ /4 A
—> —
~ Bx
EZ /i\ By A A\
T - (+1, j+1, k)
Ey
(i, j, k) = (i+1,j, k)

Ex

Figure 2.3: Grid assignment of the physical parameters of three-dimensional system

computation box in the integral multiples of grid spacing viz., Az, Ay and Az along
z, y and z directions respectively. The indices ¢, j and k represent the it*, %" and
k*" multiple of the grid spacing in the three directions respectively. In addition, a
shifted grid with half integral spacing is denoted by i+1/2, j+1/2, k+1/2 indices.

The specification of various fields is carefully done depending on the kind of
differential equation satisfied by them on appropriate grid points. For instance,
the charge density p is specified at the full integer (i, j, k) grid points. The x

component of electric field E, is specified at (H—%, j, k). This is so because in the
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Poisson’s equation the = derivative of F, is required. Since F, is specified at the
half integral grid along x, the central difference yields the derivative at the integral
locations where the charge density is defined. Similarly, the ¥ component of the
clectric field E, is defined at (i, j+3, k) and 2 component of E, is defined at (i, j,
k+%) as their y and z differentiation appears in the Poisson’s equation. Applying
similar logic it can be shown that the electrostatic potential ® should be assigned
on full integer (4, j, k) grid points and current density components J,, J,, J. should
be assigned at the grid point similar to that of the electric fields components. The
magnetic field components B,, B,, B, require being assigned at (i, j+%, kJr%),
(i+3, J, k—&—%) and (i—i—%, j—&—%, k) respectively. For two-dimensional system, we put
k=0. After the initialization of physical parameters at time t=0, we push back the
velocity by time ¢ — %. After that simulation is run in the time loop according to
KEMPOL1 [60] which is illustrated in Fig. 2.4
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t-At/2 t+At/2 t+At

Figure 2.4: Time step chart used in the present PIC code: At initial time, we
know z, and E at time t, P, and B at time t-A¢. 1. Compute B from ¢ — % to
t+ £t by using E at t and average it (B = (B(t — £!) + B(t +4!)) /2) to get B
at t.( dotted orange color) 2.compute p, at time ¢+ 5t(blue color) 3. Then, move
particle’s position z, from t to t + At (blue color) 4. The current density J is
calculated at time ¢ + 5 by using z,(t — 4, ¢ + §!) and p,(t + 5!) (dotted green
color) 5. Finally calculate the electric field E at time ¢ + At.(blue color)

2.5 Charge density

From the particle location obtained at each time step the charge density on the

grid is assigned by using the weighting function defined by eq. (2.12).

p(jv k) - QnWjka p(j, k+ 1) = QnWjWk—i-la
p(] +1, k) = Q71,Wj+1ka p(] +1,k+ 1) = Q71Wj+1Wk+17 (215)
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Where ¢, is charge of n* super particle. The charge density p at each grid point is

obtained from the superposition of contributions obtained by each superparticle.

2.6 Solution of Maxwell’s equations

We now describe the solution of Maxwell’s equation in the PIC simulation.

2.6.1 Poisson solver

The gradient of scalar potential ¢ gives the electrostatic electric field E.
E=-V¢ (2.14)

The two eq. 2.14 in eq. 2.2 gives the Poisson equation,

. Ar
Vi = —r (2.15)

With the knowledge of charge density at each grid point this equation is solved
by Successive Over Relaxation (SOR) numerical technique [61] to obtain scalar

potential ¢. This provides for the electrostatic part of the electric field.

2.6.2 The FDTD scheme

For the electromagnetic problem the Finite-Difference-Time-Domain (FDTD) nu-
merical scheme is used for the evaluation of electric and magnetic fields in time
through the Maxwell’s equations (eq. (2.4), eq. (2.5)). We have in our studies
employed only 2-D simulations with variations confined in the y — z plane. No
variations are considered along  which is taken as the direction of symmetry with
Z=o.

The electric and magnetic fields are then determined by the following procedure,
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2.6.2.1 Electric field

We can rewrite the eq. (2.5) in the component form as follows:

OB, = c(9,B. — 0.B,) — 4nJ,, (2.16)
OB, = cd.B, — 4nJ,, (2.17)
OB, = —c0,B, — AnJ., (2.18)

The eq. (2.16), eq. (2.17) and eq. (2.18) upon discretization in time and in space

are written as

BN = B — ATALT

x,(j.k) T ©,(4,k)
Bt+At/12 _Bt+At/12 Bt+At/21 _Bt+At/21
2,5+ 5.k) 2G5k  yGkt3) v,(J:k—3)
+CAt Ay Az ) (219)
t-+At _ ot t+At/2
B i = Bygran —AmAL 01
Bt+At/2 7Bt+At/2
z,(j+5.k+3) w(tih—3)
+cAt 2 ZAz Z—2- |, (2.20)
t+At _ ot t+At/2
B Gty = By —AmAL G
Bt+At/2 _Bt+At/2
G-kl G+ e+l
Al | SR 0D ) (2.21)

Here Ay and Az are spatial step size along y and z directions respectively and At

is the time step size.

2.6.2.2 Magnetic field

To compute the magnetic field, we rewrite eq. (2.4) in component form as follows:

OB, = —c(9,B, — 0,,), (2.22)
0B, = —cd,E,, (2.23)
0,B. = cd,E,, (2.24)
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Using the center difference scheme, we discrete the above eq. (2.22), eq. (2.23) and

eq. (2.24) in space as well as time to obtain

t+ At _ t
Bw,(j+§,k+%) - Bw,(j+%,k+%)
t+At/2 _ t+At/2 t+At/2 _ tAL/2
e Ey.,(j+%,k+1) Ey,<j+§,k) - Ez,(j+1,k+é) Ez,(j,k+%) (2.25)
= Az Ay ’ .
HHAL2 A2
t+At _ pt - z,(J,k+1) z,(4,k)
By’(mk%) = By’(j’k%) cAt ( Ao ) , (2.26)
pitAY2 _ pttAr/2
t+AL Y z,(j+1.k) z,(4,k)
Bz.(j+%,k) - Bz,(j+§,k:) + cAl ( Ay ; (2.27)

2.7 Equation of motion

2.7.1 Particle momentum

The difference form of momentum equation (eq. 2.8) for n'* superparticle can be

written as

i X Bt
Z+At/2 _ pZ—At/2 1 Atg, (Et 4 Pn : ) 7

(2.28)
Since we do not know the momenta pf, at time t, we rewrite the eq. (2.28) as
t+AL/2

t—At/2 ¢
~ + x B
pUA2 — pi=BU2 4 Aye (Et 4 (Pn p"t ) ) , (2.29)
myyy,C

The electric and magnetic fields are interpolated from the grid to particle’s posi-
tions by using the same weight factor which is defined by eq. (2.12). We use the
Buneman-Boris method [62,63] to solve this eq. (2.29). This method solves the
eq. (2.29) in four step. The first half acceleration of particle by electric field is
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written as

P = p;—At/Q + ﬁqn (Et) 7

2
(2.30)
Then two-step rotation in magnetic field
P, =P, P, Xt
P, =P, +P, X5,
(2.31)
where t = % and s = (13-_‘;2) Finally, again a half acceleration by electric field

is provided to obtain the evolved momenta of the particle

At
piFAt2 = pt 4 — (EY),

(2.32)

The new particle positions are obtained by integrating the momenta (eq. 2.7)in

time
t+AL/2
A p At
I'fj_ t = I',tn + nt—JrAt/Q’ (233)
Mnn
(2.34)

2.8 [Evaluation of current density on the grid

The particles move continuously and generate currents. This current should be
deposited on the grid where the fields are defined as mentioned in earlier section.
The simple area weighting scheme to deposit the currents on the grid does not sat-
isfy the continuity equation. Therefore, we need the solution of Poisson equation
at each time step to use correct the electric field in simulation. There are other
schemes also which do not need to solve the Poisson’s equation as these satisfy
the continuity equation of charge flow. These schemes are known as "charge con-

servation scheme". One of them is "zigzag scheme" which is proposed by Umeda
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et al. [64]. In all other schemes, the particle trajectory is assumed to be that of a
straight line during one-time step. In reality, the particle would take any curved
path depending on the kind of forces acting on it. Umeda realized it in computa-
tion by making the zigzag trajectory of the particle. We use this method in our
code to compute the current density.

We assume that the point ( yi, 21 ) belongs to the cell with coordinates (jy, k1)
and (ya, 22 ) belongs to the cell with coordinates (j2, ks ). A particle moves from
a starting point (v, z1) to point (y2, 2z2) in one-time step. We can decompose
this movement of particle in a special pattern as shown in Fig. 2.5 and Fig. 2.6.
Depending on particle movement only four cases are possible which are following:
(a)f1 # j2; k1 # k2 (b)j1 = j2; k1 # k2
(c)jl # j2; k1 = k2 (d)jl = j2; k1 = k2

(a) In this case (j1 # j2 and k1 # k2), the particle moves across two cell
meshes one is along y direction and second one is along z direction. As shown in
Fig. 2.5, the straight line trajectory of the particle cross the cell meshes two times.
While in zigzag scheme, we assume that the movement of the particle from (y1, z1
) to (y2, 22 ) is described as movements of two particles. One particle moves from
(yl,2z1 ) to ((j1 4 1)Ay, (k1 + 1)Az) =(j2Ay, k2A%), and another particle moves
from (j2Ay, k2Az) to (y2,22) during the time from t to t + At. Therefore, the
particle trajectory becomes a "zigzag" line. Since we compute only one cross-points
of the particle trajectory and cell meshes, computation becomes much easier and
faster.

(b) In case of j1 = j2; k1 # k2, the particle moves to one of the adjacent
cells in the z direction. We assume here also the movement of two particles. one
particle moves from (y1,z1) to (Y22 (k1 + 1)Az) = (X222 k2A%), and another
particle moves from (y%’ﬂ, k2Az) to (y2,22) during the time from t to t + At.
The particle trajectory also becomes a zigzag line as shown in Fig. 2.6.

(¢) When j1 # j2; k1 = k2, the particle moves to one of the adjacent cells in
the y direction. Thus the particle trajectory becomes very similar to that in Case
(b).

(d) When j1 = 72 and k1 = k2, the particle does not cross the cell meshes.
However, we assume that the movement of a particle from (y1, z1) to (y2,22) is
described as movements of two particles. That is, one particle moves from (y1, z1)

yl4+y2 21422

to (L2, 2122) and another particle moves from (Y522, 2£22) ¢ (y2, 22 ) during
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the time from t to t + Af.

j14j2;  k1#k2

: ‘F2
Ay| .. o e 1A L frs 0NN N S - ,{7
Flﬁ v
v
- k1+1 k2

Az

Figure 2.5: Particle trajectory of the two-dimensional zigzag scheme for j1 # ;52
and k1l # k2 (case a). One particle moves from (y1, z1) to ((j1 + 1)Ay, (k1 +
1)Az) = (j2Ay, k2Az), and another particle moves from (j2Ay, k2Az) to (y2, 22)
during the time from t to t +A¢. The solid arrows represent particle trajectories.
The dashed red color lines represent cell meshes.

Figure 2.6: Particle trajectory of the two-dimensional zigzag scheme for j1 = j2,
k1 # k2 (case b). One particle moves from (y1, z1) to (ylng, k2Az), and another
particle moves from (yl+y2, k2Az) to (y2, 22) during the time from t to t + At. The
solid arrows represent particle trajectories. The dashed red color lines represent

cell meshes. By interchanging y and z, the case (b) is transformed into the case

(c).

To realize all four cases as describe above in computation, we introduce a relay
point (y,, z,) as proposed by Umeda and redefine the movement of the particle

from (y1, z1) to (y,, 2,) and another particle moves from (y,, z.) to (ya, z2) in At
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time step. The relay point is defined as

Yr = min [mm (71Ay, 12Ay) + Ay, mazx (max (71Ay, 12Ay) , i ; y2>] (2.35)

2 = min [mm (k1Az, ko Az) + Az, mazx <max (k1Az, ko Az) i ; Z2>] (2.36)

By using (yy, 2,), a charge flux qv = q(vy,vz) is decomposed into F'1 = (Fyl, Fz1)
and 2 = (I'y2, I'22) as follows:

Fy = qn%tyl, Flo = g ;ty2?
o= an:l, Fo= qn%tﬁ, (2.37)
The weight factor for first-order shape function is given as follow:
Wi = B0 = LWy = 5 — L
Wy = y;Z;’T T I S Y (2.38)

The segments of the charge flux assigned to 8 grid points are obtained by the
following procedure

. 1 1 . 1 1
Jy(jl + 5, k?].) = mFyl (1 — Wzl) s Jy(jl + 5, k14 1) = MFylwzl,
. 1 1 . 1 1
Jy(]Q + 5, k2) — MFZﬂ (]. - Wz?) 5 a]y(]2 + 5, k2 + ].) — mFyQWZQ,(239)
1 1 1 1
GLEL+ =)= ——F (1 =W,), LGl + 1kl + =) = ——F,W,,,
JL R+ 5) = R s T (= W), LGLH LR 5) = o Fa Wy
1 1 1 1
(G2,k2 4 =) = ———F (1 = Wy), (G2 + 1,k2 4+ =) = ——— oW,
J(G2 k24 5) = R T (1= W) L2+ L k2 + 5) = o W
(2.40)

The x-component of current density .J, is free from the charge continuity
equation. Therefore, we compute J, in two-dimension by apply the simple arca-

weighting scheme (2.12). The J, assigned on grid points corresponding to their
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indices are following:

Ja:(ja k) = qvmwrjka? Jx(] + ]-: k) = qvaVj+1Wk7
Jo(J, b+ 1) = queWiWipa, (5 + 1Lk + 1) = queW 1 Wiy,
(2.41)

2.9 Summary

In this Chapter, we have provided a brief description of Particle-In-Cell simula-~

tion technique which has been adopted for our studies in this thesis.
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Short-pulse intense laser interaction with

overdense plasmas

The production of high energetic charge particles during the interactions between
the intense, short pulse laser with overdense plasma and subsequently, its colli-
mated propagation inside the target are important for many application such as
fast ignition scheme of inertial confinement fusion (ICF) [1], generation of energetic
charged particle beams [65-67|, bright source of X-rays [68,69], generation of high-
order harmonic |70] etc. Therefore, the basic understanding of absorption of laser
radiation into overdense plasma and manipulation of the same by controlling the
laser and plasma parameters are highly desired. In conventional, intense laser-solid
interactions, the laser radiation are absorbed by collisionless processes viz vacuum
heating [3], resonance absorption [33] and J x B heating [34] cte. However, for
short femtosecond (fs) laser pulses and steep density profile of plasma, the laser
radiation is absorbed by vacuum heating and J x B mechanism. In the case of
vacuum heating, a p-polarized laser obliquely incident on a plasma surface has
an electric field component normal to plasma surface. This normal component of
electric field pulls the electrons into the vacuum during one half of the laser cycle
and then returns them back into the target with a quiver velocity in next half laser
cycle. However, at normal incidence, vacuum heating would be absent as there
would be no component of the electric field vector normal to the plasma surface.
The absorption process will then take place entirely through J x B mechanism.

The absorption rate is typically small [71] for this case.

Recently, there have been indications that the laser absorption improves when
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structured targets are employed. We explore this question with the help of PIC

studies in this chapter.

3.1 Introduction

The amplification of ultrashort pulses to extremely high power levels became pos-
sible due to the introduction of chirped-pulse amplification technique (CPA). In
a CPA laser system, an ultrashort tiny laser pulse is first stretched in time by a
factor of 10° to 10° by means of a strongly dispersive element, the stretcher (e.g.
a grating pair). The stretched pulse has sufficiently low power and is used for
amplification in gain media. After the gain medium, the amplified pulse passes
through a dispersive compressor, which removes the chirp and re-compresses the
pulse in time.

Most of the energy of an intense short CPA laser pulse is concentrated in the
main pulse. However, a short laser pulse generated by chirped pulse amplification
(CPA) technique is inevitably accompanied by a long pre-pulse typically of the
order of ~ ns of amplified spontaneous emission (ASE) [72,73]. The ASE pulse
comes from the amplifier chain. The intensity contrast ratio which is a ratio of the
intensity of main peak pulse to ASE pre-pulse is typical of the order of 107%. Thus
even for a short laser pulse at moderate intensity 10'8W/em?, the ASE pulse alone
would have an intensity corresponding to 10'3W/cm? which is sufficient to create
a pre-plasma in laser-solid interaction, for the main pulse. A number of techniques
have been proposed to clean away pre-pulses [74,75] but, most of these techniques
are still in developmental stage.

The intensity of laser pre-pulse is lower than 10T /em?, therefore the pre-pulse
energy transfers its electromagnetic energy to pre-plasma by collisional processes.
The electrons of pre-plasma start to expand toward vacuum with thermal energy
and generate the space charge related electric field. The ions follow the electrons
to maintain the quasineutrality. The simplest model to describe a freely expanding
plasma is the isothermal model [76,77]. In this model, it is assumed that plasma
maintains the constant temperature by transferring the electromagnetic energy of
pre-pulse to electrons, and electrons utilize it to accelerate ions. At temporal scale

of pre-pulse, the electrons, and ions in pre-plasma have sufficient time to achieve
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the thermal equilibrium. According to isothermal expansion model, pre-plasma
results in an exponential plasma density profile on the target surface with the
characteristic length L = ¢, t , where ¢; = \/% is the ion sound speed, Z is ion
charge, m; is ion mass, T, is electron temperature, and t is the expansion time.

Thus, when a short pulse high intensity laser interacts with a solid target,
which is already ionized and in the form of a plasma when the main pulse interacts
with it. In the case of structured targets, it is interesting as the plasma that gets
formed before the arrival of the main pulse has the inhomogeneity of the target
structure embedded in its spatial profile. Plasma expansion being limited by the
acoustic speed, this preformed plasma does not get sufficient time for expansion
before the arrival of the main pulse. Thus the main pulse gets to see an overdense
inhomogeneous plasma profile.

For our numerical study, we consider the interaction of the main laser pulse with
both homogeneous and inhomogeneous plasma targets and show conclusively that
in the latter case the heating /absorption is considerably increased. It is shown
that a novel vacuum heating mechanism is operative in the case of the rippled

targets which is responsible for this enhancement.

3.2 Simulations of the interaction of laser with over-

dense plasma

The simulation set up has been shown in Fig. 3.1(a). We choose the right-handed
rectangular 2-D simulation box depicting the Y x Z plane as shown in Fig. 3.1(a).
A Gaussian laser beam with FWHM(full-width half maximum) of 3um and an
intensity of 1 x 10 /cm? enters from the left boundary and propagates in the
Z-direction as depicted by the propagation vector k in Fig. 3.1(a) for the normal
incidence. Uniform plasma has been depicted by the orange shaded region in
Fig. 3.1(a). The left and right unshaded regions correspond to vacuum. The
laser field is p-polarized with the electric field in the Y-direction and the magnetic
field in the "-ve" X-direction. The laser beam has top-hat temporal profile of 30
femtoseconds (fs) and interacts with plasma at normal incidence. In the simulation
geometry, the size of plasma slab (shown by orange color shaded region ) has been

chosen to be 6y, in the transverse direction and 9\, in the longitudinal direction
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Figure 3.1: 2D PIC simulation setup: (a)p-polarized laser is irradiated on uniform
plasma target (b)p-polarized laser is irradiated on structured plasma target

where A\ = 1um is the laser wavelength. There is a vacuum region of 2A\y in
front of plasma slab and 1A\; behind the plasma slab. The absorbing boundary
conditions have been used for field, and reflecting boundary conditions have been

used for particles.

The conventional laser-plasma interaction with uniform plasma targets assumes
a plasma density ny = 10n., where n. is critical density. The second set of
simulations are performed on corrugated plasma targets (representing embedded
nanowires on a flat surface) with plasma density of the form of ng;(y) = nee(y) =
no[l + ecos(ksy)]. Thus there is a variation in plasma density along y transverse
to the laser propagation direction. The schematic diagram of simulation set up for
this case in shown in Fig. 3.1(b). Here, ng; is ion density, ng. is electron density in
plasma. The wave number k, for the plasma density variation is 2wm/l,; where [,

is scale length of inhomogeneity and ¢ is the amplitude of density variation. The
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mesh size is chosen to be fine as 6z = dy = 0.02¢c/w, to resolve the density scale
length. Here w), = \/W is plasma frequency, m, is rest mass of the electron,
e is the electric charge, and c/w, = d. = 5 x 10 %m is electron skin depth. The
ions, having charge and mass of the proton, are kept in rest during simulation. We
use 4 particles per cell for each species (electron and proton).

As laser interacts with uniform plasma, the plasma surface gets modified by
ponderomotive force. The ponderomotive force expels the electrons from higher
laser intensity to lower intensity. The depletion of electrons from high intensity
region forms a cavity. The formation of cavity in laser-plasma interaction can be
seen in Fig. 3.2(b) ( zoomed image of Fig. 3.2(a)) at time ¢ = 30.70 fs where laser

interacts with uniform plasma density. In conventional vacuum heating mechanism

t=33.70 fs 15N, 6 1.5ng
tilted filaments 5
1 4 1
3
105 2 05
1
6 8 10 12 ’ %.9 ’

Z(p m) Z(p m)

Figure 3.2: The electron density | in unit of ng| for uniform plasma density target
at time ¢t = 33.70 fs: (a) The observation of tilted filaments in electron density as
fast electrons propagate inside the target (highlighted by arrow) (b)Formation of
cavity due to evacuation of electrons from high-intensity region to low intensity
region (highlighted by arrow).

the laser clectric field draws the electrons from the target in the vacuum during
the half laser cycle. This requires that a laser electric field component normal
to the target surface be present. The schematic diagram of conventional vacuum

heating mechanism is shown in Fig. 3.3. For a p-polarized normal incident laser
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there is no component of laser electric field normal to the surface. Thus, in this

case, the conventional vacuum heating can not occur. The longitudinal phase

(a) p-polarized laser
Oblique incident
E pulls electrons
in Vacuum during
first half laser cycle
next half accelerate
inside the target

y-axis

—_—
Z-axlIs

(b) p-polarized laser E
Normal incident
No E, component
No vacuum heating

Figure 3.3: Sketch of conventional vacuum heating mechanism:(a) In oblique inci-
dence, the electric field component, normal to plasma surface, pulls the electron in
the vacuum in first half laser cycle and accelerates back into plasma target in next
half laser cycle (b) In normal incidence, there is no electric field normal to plasma
surface. Therefore, there is no vacuum heating (Brunel’s mechanism).

space projection of electron phase space in Fig. 3.4 shows some energetic electron
generating occurring in this case also. It appears that the J x B forces acting
normal to the plasma surface are responsible for this energetic electron generation
as they can even in this configuration accelerate the electrons inside the target. It
is also likely that the dimpled cavity surface, created by the laser ponderomotive
pressure, having modified the direction of surface normal now has laser electric field
component normal to itself. This electric field can then contribute to the particle
acceleration. This can be verified by purposely generation surface corrugations in
the target, the surface normal of which would have an electric field component of

similarly incident laser beam.
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Figure 3.4: Phase-space projection of electronic distribution of longitudinal mo-

mentum along laser propagation direction for the uniform target at time ¢t = 26.48
fs: the appearance of electron bunches are highlighted by arrows.

We, therefore, choose a target surface of the form shown in Fig. 3.1(b), which
can essentially form as a result of nanowires embedded on the surface of a flat
target. These nanowires, when exposed to the prepulse, generate a plasma profile
of similar form. In the simulations, we have exposed this particular target profile
again to the similar p-polarised laser propagating along Z direction.

In this case too, the front surface gets dimpled in a similar fashion (See Fig. 3.5)
as that of Fig. 3.2(b). However, the density grooves due to nanostructuring can be
clearly seen to persist. The phase space plot of Fig. 3.6, in this case, shows a much
higher gain in electron energy compared to planar targets shown in Fig. 3.4, as
the z component of electron momentum is considerably larger for many particles
in this plot. In the case of corrugated target, the laser clectric field component
normal to the corrugations can draw the electron out of the surface as shown in
the schematic drawing of Fig. 3.7. This leads to the mechanism of vacuum heating

being operative. It should also be noted that the surface corrugations not only
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Figure 3.5: The electron density | in unit of ng| for rippled case (¢ = 0.5, ks = )
at time t = 33.70 fs: the appearance of grooving structures at vacuum-plasma
interface (highlighted by box).

lead to a geometry where the laser electric field is normal to the surface, it also
enhances the overall surface area from which the electrons can get extracted. Thus
the laser energy absorption in the case of corrugated targets gets amply enhanced.
The spectral power in the Z component of the electric field in k,-k, plane in the
system has been shown in Fig. 3.8. It shows that the maximum power appears at

ripple scale length ks = 7 chosen for this particular case.

We use the definition of determining the absorption rate provided by Ren et
al. [78] as the ratio of the electron kinetic energy gained to incoming laser power
as follows:

Et)=[KE({t+ at)— KE@)]/(PL At) (3.1)

here Pp, is the power of the incident laser pulse. We considered various inhomo-
geneity scale lengths and amplitude of the plasma density profile and estimated

the absorption rate as the function of time. This has been shown in Fig. 3.9. This
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Figure 3.6: Phase-space projection of electronic distribution of longitudinal mo-
mentum along laser propagation direction for for ripple target (¢ = 0.5, ks = m) at
time ¢ = 26.48 fs: the appearance of electron bunches are highlighted by arrows.

figure clearly shows that the absorption is high only for some intermediate value of
the inhomogeneity scale length. For both planar targets as well as when the scale
length is much sharper than the skin depth, the absorption is almost compara-
ble. However, at an intermediate value of the inhomogeneity scale the absorption
seems to maximize. This can be understood by realising that one requires a cer-
tain vacuum/ low density space in between the corrugated high density plasma in
which the electrons get sufficient time to be dragged. If this spacing is less there is
overlapping between two high density regions and the vacuum heating mechanism
is not applicable. It should also be noted from the figure that there is a amplitude
dependence also in the absorption rate. A high amplitude of inhomogeneity seems
to do better for absorption.

Fig. 3.9 shows that laser absorption rate increases with time for all parameters.
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(a) P-polarized laser
oblique incident -
electrons in Vacuum E,=E cos 6
during first half cycle
next half accelerate
inside the target

(b) P-polarized laser
Normal incident
Ey pulls electrons into
gap between the wires
duringfirst half laser cycle
next half accelerate inside
the target

Figure 3.7: Sketch of vacuum heating mechanism in structured nano-wire tar-
get:(a) In oblique incidence, the E, component of electric field is normal to front
surface of plasma and F, component of electric field is normal to the side surface
of plasma. Both components satisfy the vacuum heating conditions. Therefore the
absorption of laser radiation increases for structure target. (b) Even if in normal
incidence case, there is electric field normal to side plasma surface which satis-
fies the vacuum heating condition and increases the absorption of laser radiation
compare to conventional vacuum heating (Brunel’s mechanism).
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Figure 3.8: Two-dimensional fast Fourier transform (FFT) of Z-component of elec-

tric field energy E? [in units of (m.cw,/e)?| for ripple parameters € = 0.5, k, = 7
the maximum power appears at ripple wave number k = 7.
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Figure 3.9: Fraction of laser energy absorbed by the electrons for various parame-
ters of ripple.
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3.3 Propagation of laser generated fast electrons

inside the overdense plasma

The energetic electrons generated by the lasers are important as they have ex-
tracted energy from the laser which otherwise is unable to transport energy in the
overdense region of the plasma. The question that is of importance now is how

well to transport these energetic electrons in any desired plasma region.

The typical magnitude of electron currents generated by laser pulses with an
intensity similar to ~ 10W/cm? is of the order of ~ M Amps. In the vacuum,
the electron trajectories carrying this current would turn due to the self-generated
magnetic field. Thus the maximum current that an electron beam can carry in
the vacuum is given by the Alfvén current limit, which is 17yv, /c kAmps, where ~
is the Lorentz factor. In the presence of plasma, the charge imbalance generated
by the beam propagation causes the background plasma electrons to respond by
generating current in the reverse direction. Thus a spatially overlapping current
in the reverse direction flows which essentially annihilates the magnetic field of the
beam current. The absence of the magnetic field then leads to an unhindered prop-
agation of the fast electron in the plasma even though the beam current exceeds
the Alfvén current limit. This scenario is, however, not stable. A small imbalance
or perturbation in spatially overlapping forward and return current induces oscil-
lating magnetic field in the transverse direction at short wavelengths (~ order of
skin depth) through the mechanism of Weibel instability. The longitudinal two
stream instability is also present in such a configuration. In fact, the oblique mode
with the wave vector tilted to the current propagation direction is found to have
a maximal growth rate. The Weibel instability spatially separates the beam and
background electron currents into a large number of small-scale current filaments.
As time progresses the like current filaments attract and coalesce with each other
to form broader filaments. This leads to the generation and the growth of magnetic
fields ultimately. The magnetic field then adversely influences the propagation of

the beam current in the plasma.

The scenario described above has been observed in our present simulations. The
observations for the planar target has been shown in Fig 3.10 where we have plotted

the total current density produced by laser generated fast electrons propagation
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as well as the induced background electron current at a time of ¢ = 33.70 fs. The

0.1

0.05

-0.05

-0.1

Figure 3.10: Current density J, [in unit of jo = ngec| at time ¢t = 33.70 fs: for
uniform plasma density target which shows the filamentation in current density
due to Weibel instability.

oblique nature of the instability is clearly evident. Furthermore, the transverse
scale length is typically much smaller, typically of the order of the electron skin
depth as expected for the Weibel mode. The generation of the magnetic field
can be clearly observed in Fig. 3.11 at time t = 33.70 fs. The magnetic fields
are typically of the order of Mega Gauss. In simulations with the structured
targets, we have observed the weaker development of the instability. It appears,
therefore, even for the propagation of energetic electron beam through plasma the
structured targets are better. In these simulations for the same laser intensity,
since the electron energy for the structured target is higher compared to planar
targets, a comparison of the two can not be made to conclude that the structured
targets are better for electron propagation.

In the next chapters we, therefore, choose spatially overlapping electron current
configurations with similar energies ( depicting the forward and reverse shielding
currents) both for the planar and structured targets. A comparison of the de-
velopment of various instabilities have been provided for the two cases to discern

the role played by the structured targets on the development of the beam-plasma
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Figure 3.11: Magnetic field B, [in unit of Mega gauss| at time ¢t = 33.70 fs: for
uniform plasma case, Figure shows the Weibel generated magnetic field structures
with transverse scale of order of~2¢/w,.

related instabilities.

It should be noted that studies with some simplified fluid models (Gener-
alised Electron Magnetohydrodynamic (G-EMHD) model) have shown that better
guided propagation of electron current is possible in the presence of density in-
homogeneities |79, 80|. Some studies have also shown that targets with different
materials producing tailored resistivity gradients can be helpful in maneuvering
the electron current pulse through plasmas [81|. Here, in the subsequent chapters,
we will illustrate the role of density inhomogeneity through PIC simulations on

the propagation of energetic electrons through plasma.

3.4 Summary

In this chapter, we have carried out the 2D PIC simulations of the short pulse in-
tense laser interaction with plasma. Both planar and rippled overdense pre-ionized
plasma targets have been considered for the simulations. Such a configuration
would arise when the prepulse of the intense laser would ionize a structured tar-

get (for instance nanowires embedded on a flat surface ). Our simulations have
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demonstrated that the structured targets are better suited for the laser energy
absorption. This is understood by realising that the structured targets have an
extended surface area. Furthermore, the surface normal is directed in different
directions. Thus even for a normal incident p - polarised laser some portion of the
surface would have laser electric field directed along the surface normal resulting
in vacuum heating which otherwise is not permitted in a planar target.

In subsequent chapters, we will explore the role of inhomogeneous plasma den-

sity on the propagation of the energetic electrons through the plasma.
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Beam-plasma system in one-dimensional

geometry

In the previous chapter, we considered the interaction of laser field with overdense
plasma medium which illustrated the absorption of laser light by the medium and
the generation of energetic electrons. These energetic electrons move inside the
plasma like a charged beam. The beam dynamics inside plasma is of interest
and we focus upon this issue in considerable detail in this as well as subsequent
chapters.

In this chapter, we consider the simplified case of beam plasma system with 1-D
space variations orthogonal to the beam propagation direction. In this case, the
beam-plasma system is susceptible to the filamentation or beam-Weibel instability
which is detrimental to the beam transport through the plasma. We show that the
presence of a rippled plasma density suppresses the instability. A detailed study of
the influence of beam parameters and inhomogeneity scale length on the instability

is performed. Theoretical descriptions of the observations are also provided.

4.1 Introduction

The propagation of relativistic electron beams (REB) generated through the inter-
action of a high power laser (I> 10™W /cm?) with a solid target, induces return
currents in the background plasma. These return currents, ensure the propagation
of high beam currents in the plasma. In vacuum currents exceeding the Alfven

limit of I = (mc3/e)(vy/c)y = 17yup/c kA, (m is the electron mass, e is the
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electronic charge, vy, is beam velocity, ¢ is the speed of light and 7, is the Lorentz
factor of the beam) is not permitted, as the self magnetic field of the high cur-
rent are sufficient to turn the trajectory of the electrons completely. However, in
the plasmas, a spatially overlapping return shielding current by the background
electrons inhibits the magnetic field generation and permits the propagation of
beams with such high forward beam currents. The combination of the forward
and return currents in plasmas are, however, susceptible to several instabilities
viz., two-stream [41], beam-Weibel |4]/filamentation [5] and oblique modes |42].
For relativistic flow, the beam-Weibel instability dominates over two-stream insta-
bility. Therefore, we do not study two-stream instability in the relativistic regime,
and work only on beam-Weibel instability in this chapter by considering a 1-D
space variation orthogonal to the beam propagation direction. The beam-Weibel
instability generates a magnetic field in the unmagnetized plasma system [82]. This
instability has a detrimental influence on the propagation of the relativistic energy
electron beam through a plasma and hence puts practical constraints on the usage
of the beam electrons deep in the plasma region. In order to suitably utilize the
relativistic electron beams these constraints on the propagation of beam through
a plasma needs to be overcome. A lot of experimental, theoretical and simulation
work has been devoted to control and suppress this instability |[83-85|. The effect
of parameters such as beam density [86], beam velocity [86], transverse tempera-
ture [87], collisions [26] etc., on this instability has been extensively studied.

A recent experimental [24] result, has shown many fold improvement in the
propagation of a hot relativistic electron beam through an array of carbon nan-
otubes (CNTs). An explanation of this has been put forth by Mishra et al. [56]
suggesting that the inhomogeneous plasma created by the ionization of the CNTs
by the front of the beam is responsible for the stabilization of transverse insta-
bilities, thereby aiding the collimated propagation of the beam through longer
distances compared to a homogeneous plasma. Our PIC simulations have been
carried out for the system similar to that studied by Mishra et al. analytically by
fluid theory.

This chapter has been organized as follows. Section II contains the details of
the model configuration and governing equations. In section III, the analytical
results are presented. The details of PIC simulations are given in section IV. The

observation of results from PIC simulation are presented in section V and it’s
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interpretation are given in sec. VI. In the last sec. VII, we summarize our results.

4.2 Model configuration and governing equations

We consider a neutral, unmagnetized, collision-less, inhomogeneous beam-plasma
system and we derive the general equation to study the linear response of the
system in framework of two-fluid model wherein the fast electron beam and the
background electrons are treated as separate fluids. In this framework, we assume
that one species of counter-streaming plasma (fast electron beam) is moving in +z
direction with drift velocity wvgp, density ng, and temperature Tg,. Second species
(returning background electron) is moving in -z direction with drift velocity vy,
density ng, and temperature Tp,. The ions are heavier than electrons, therefore
they do not respond at electron time scale. Keeping this in view, we consider the
static background of ions to provides only the neutrality in system. The inhomo-
geneity in plasma density is introduced, transverse to beam propagation, along the
Y-axis. The dynamical evolution this system can typically be understood by the
help of continuity and momentum equations coupled with the Maxwell’s equation.
The considered system can be described by following set of dimensionless governing

equations:

Ony,

5 V- (navs) =0 (4.1)
%+U;.vp;:_(ﬁ+v;x§)—v71§a (4.2)
%—? —_VxE (4.3)
Ga—f —VxB-— Zafa (4.4)

where momentum vector pg, = YaUs, and Lorentz factor v, = (1 + p2/m2c?)Y/2.
The current density is defined as fa = —naUs. The pressure P, is provided by
the equation of state. In the above equations, velocity is normalized by the speed
of light ¢, density by ng (the spatially average ion density), frequency by wy =
\/W, length by electron skin depth d. = ¢/wy and electric and magnetic

field by Ey = By = mecwy/e where m, is rest mass of electron and e is the electronic
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charge. The subscript « is 'b’ for beam and 'p’ for plasma.

In the equilibrium, there is no electric and magnetic field in the system. It
means that there is complete charge as well as current neutralization. In system,
charge neutralization is achieved by imposing the quasi-neutral condition, and the
current neutralization is achieved by balancing the forward and return electron
currents at each spatial location. For simplicity of treatment, we choose the profile
of transverse temperature T, in such a way that gradient of pressure is zero in
equilibrium. Generally, the electron beam, generated in laser-solid interaction,
has the much lower temperature in propagation direction compare to transverse.
Therefore, we chose the temperature parallel to beam propagation direction to
be negligible. Thus, for an inhomogeneous case considered by us, we have the

following conditions for equilibrium:

noi(y) = nop(y) + nop(?/) (4.5)

Eanﬂa(y)vaa =0 (46)
In equilibrium, beam pressure Py, is chosen to be independent of y. This is achieved
by choosing the beam temperature Ty,(y) to be satisfying the following condition

Poy = Tos(y)nos(y) = constant = C. (4.7)

Ton(y) = C/nop(y) (4.8)

The suffix 0 indicates the equilibrium fields. To study the linear instability of
counter-streaming plasma, we linearize equations (4.1,4.2,4.3,4.4) and choose all
the perturbed quantities to have the form of : f, = fa(y)e!*s*=“. The coupled

set of differential equations obtained after linearizing are following :

Qafygavﬁvz + (w2 - kg) Qaﬁ/gavlaz +

(W =k, Ve + Y, kz—Tw;’m (Noatia:) = 0 (4.9)

2 _ k,2 2 k2 2 k2

T ity - it + (Y Bt @~ K00 )
k. _

_Q(y Z NoaVlay + <ZQ—((J_)2 _ kg)nTOu —1 (kz — Uﬂaw) Qu"yga) v;az =0 (410)
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Where Q,=(w — k,vpcr) and 7 is the ratio of specific heat. The superscript ’ is used
for /0y and " is used for 9°/0y*. We will use the equations (4.9, 4.10) in this and
upcoming chapters to study the linear instability in counter-streaming plasma in

various geometry for both homogeneous and inhomogeneous plasma density.

The model configuration chosen for 1-D studies has been shown in Fig. 4.1. The
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Figure 4.1: Schematic illustration of model configuration which shows the flow of
the beam and plasma return in +2 direction. The ripple in density is shown along
49 with ripple scale length Ay and amplitude € and the wavevector of beam-Weibel
instability in such configuration (along +y direction).

z-direction

beam and the return current are chosen to flow along the +2 respectively. The ion
density is chosen to have sinusoidal ripple along y riding on a constant density of
ng. The amplitude of the ripple is € and the spatial variations are characterized

by a wavenumber k; = 27 /A, as shown in Fig. 4.1.

The linear analysis of beam-Weibel instability in this configuration can be
studied by putting 0/0z = k, = 0, in equations (4.9, 4.10). After putting
0/0z = k, = 0, the equations represent the 1-D case which is considered by
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us in this chapter, and are the following :

WY0a Uiy + W3 VonViaz — WEaN0aViaz + 1 aV0az (M0allay) = 0, (4.11)
NToa N 7Toa Ty
nTOavl/ixy + <2 nE)a + nTéa> Ulay, + < nga + n o n6a + w2’700¢ Viay
Noo Noa Now
— Y N0aVlay + 1607 V0ayVlas = 0, (4.12)

In the presence of density ripple the equations can not be Fourier analyzed in
y. Therefore, the eigen value of w has to be obtained numerically by solving
the coupled set of differential equations (4.11, 4.12). For homogeneous plasma,

however, eq. (4.11) and eq. (4.12) reduce to

7 " 3/\ 3 1 1 1 /b 1 1 ! —
WY0a Vs T W Y0aViaz — WiaN0aViaz 1 1560002000y = 0, (4.13)

" 2 . 3 P
NT0aVly T W Y0aVlay — Zal0allay + iWY00V0ay Ve, = 0, (4.14)

By taking Fourier transform in y, we obtain the following standard dispersion

relation for homogeneous plasma

. . Nno . no . .
(wz —ky — E : 3a> (W470b70p — w*05Y0p E —A/Oa — ook (w?y0p — nOp))
(o4

a 7()0( @

2
NoaU
—k; (oﬂ%b’yop E ; % — ngpnon E Uga + 2n0pMobV0pvos — nTObk§n0pvgp> = 0(4.15)
0

« « o

This equation contains two oscillatory modes (Langmuir wave) and one purely
growing electromagnetic mode which is known as beam-Weibel instability. For cold
plasma, dispersion relation 4.15 further gets simplified and after rearrangement,
takes the following form where we can casily figure out the oscillating and beam-
Weibel instability mode:

<w2 - Z %> <w4 —w? (/ﬁ; + Z %) + k2 Z nOaU?)a)
o Oa

o Yoo o Yoo

2
Noaloa
—k? (Z M) =0, (4.16)

o Yoa
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The last term in the dispersion relation arises due to charge separation in plasma

and is responsible for the coupling of Langmuir waves <w2 ->. %) with the

beam-Weibel instability and transverse oscillations.

4.3 Analytical studies

For analytical tractability of the inhomogeneous density problem a choice of sinu-

soidal variation riding on a homogeneous background density such as
noi = [1 + ecos(ksy)], (4.17)

is chosen. Here ¢ is the amplitude of the density ripple and k; = 2rm/L, (m=
L,/ is an integer) is its wave number with L, as the system length. To satisfy the

quasi-neutrality condition, the equilibrium beam and plasma density are chosen as

noe = P(1+ ecos(ksy))
nop = (1 —pB)(1+ecos(ksy)). (4.18)

where 3 is a fraction. Now choosing the perturbed fields as

and assuming ¢ to be small so that retaining only the first order terms (as done in
the paper by Mishra et al. [56]), we can evaluate the growth rate. We evaluate the
growth rate Iy, as a function of k,. Expanding the linear coupled set of differential

equations (4.11, 4.12) corresponding to perturbed mode j = 0, £1, and equating
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the same exponent of right-hand side to left-hand side, we get following equations:

0.5¢ VoW
Qafyga ( kd Vdaz + w2 Z Q = Udaz + W2 Z 50& Vaz — oo aﬂ kdvday
e

Qa

. VoaWa
—1 Z OQ(, 0.5 BakqUay = 0,
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where kq = (ky — ks), ko = ky, and k, = (k, + k).

Typically, for laser intensity I= 1 x 10 /cm?, the fast electrons are generated
with average Lorentz factor < ~p, >~ \/a3/2+1 = 2.2 which correspond to
velocity vop, &= 0.9c. Therefore, in our studies, we choose the beam velocity vg, =

0.9¢. The plots are shown in Fig. 4.2 compare the growth rates for the homogeneous
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case with rippled cases. In Fig. 4.2 (a), we plot the growth rate I'y, versus wave
vector k, for a homogeneous (black curve) and rippled cold beam plasma system
for e=0.1, for ks = m(green curve), 27(red curve) and 37 (blue curve). The other
parameters are no,/no, = 1/9 or ng,/ng. = 0.1, v, = —0.1¢, To, = 0, and Tp, = 0.
From this plot, we can see that for the homogeneous case, the I'y, increases with
k, for small values of k, and saturates at k, ~ 3. However, for the rippled case
(e=0.1) Ty, for small values of k, is large compared to the homogeneous one. The
increase in I'y, with &, is very mild and ultimately there is a saturation at higher k,
values. It should be noted that even when k=0, the perturbed fields have variations
of the scale of the ks and its multiples. The maximum value of the growth rate

'y, increases with k, for a cold system.

The effect of the transverse beam temperature (Tg,; = 10 keV) over the growth
rate can be seen in Fig. 4.2(b). The growth rate Iy, of the homogeneous hot beam
and cold background plasma system (black curve) increases with k, for small values
of k, but starts decreasing after k, > 0.5 and completely stabilizes at higher wave
numbers (k, > 1). The effect of ripple on the hot beam and cold background
plasma can be seen in Fig. 4.2(b), Fig. 4.2(c) and Fig. 4.2(d). The Fig. 4.2(b)
illustrate the effect of ripple scale length ks on the I'g,.. We see that for the ripple
case, there appears two shifted additional unstable modes. The dependence on
the amplitude € and the ripple scale length ks have been shown in Fig. 4.2(c) and
Fig. 4.2(d). Thus the study shows that at finite transverse beam temperature the
effect of increasing ks as well as ¢ is to stabilize the beam-Weibel instability. In

Table - I, we have tabulated the value of maximum growth rate for various cases.

TABLE I
The maximum growth rate of filamentation instability evaluated analytically

considering the density ripple amplitude as weak.
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Tops (keV) € ks [y (max.)
0.0 0.0 0.0 0.2006
0.0 0.1 T 0.2057
0.0 0.1 2 0.2074
0.0 0.1 3r 0.2085
10.0 0.0 0.0 0.0840
10.0 0.1 s 0.0831
10.0 0.1 27 0.0770
10.0 0.1 3 0.0648
10.0 0.2 2w 0.0510
10.0 0.2 3 0.0000

It is thus noted that for cold beam there is no significant difference between the
growth rates of homogeneous and ripple cases except at long wavelengths. However,
when the beam temperature is chosen as finite the growth rate for the ripple case
significantly reduces with increasing ks as well as €. The analytical inference is
further corroborated by Particle - In- Cell (PIC) simulations. The results of PIC

studies are presented in the next section.
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Figure 4.2: Linear growth rate of beam-Weibel instability as a function wavenum-
ber k = k, : (a) shows growth rate for cold homogencous beam-plasma system
(solid line black color), for parameters ngy/nee = 0.1, vop = 0.9¢, vg, = —0.1c
and for rippled beam-plasma, e=0.1 at ks=mn(solid line green color), ks=2m (-
Jand ky—3m(.). (b) at the transverse beam temperature Ty, —10 keV, homoge-
neous(solid black), rippled system with £=0.1 at k;=m(solid green), 1.57(-.) and
27(—) (c) at transverse beam temperature Ty, =10 keV, rippled system with e=0.2
at ks=m(solid green), 1.57(-.) and 1.87(..) (d) at the transverse beam temperature
Ty —10 keV, rippled system with ks—37 for e—0.1(-.-) and 0.2 (solid)
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4.4 PIC simulation details

We have performed Particle-In-Cell simulation to study the propagation of the
beam in both homogeneous and rippled plasma systems. Only one-dimensional
variation in space (perpendicular to the beam propagation) has been chosen for
our numerical studies here, for the purpose of comparison with linear analytical
studies.

The ions are not allowed to move in the simulations and merely provide a
neutralizing background for the plasma. This makes the simulation faster and is
a valid approximation to study the fast electron time scale phenomena of interest.
The uniform plasma density ng is chosen to be 10n, where n, = 1.1 x 10*'cm™
is the critical density for a 1um wavelength of laser light. The spatial simulation
box length L, = 60 c¢/wp, where c¢/wy = d. = 5.0 x 107%um is the skin depth
corresponding to the densily ng. The one-dimensional simulation box is divided
into 6000 cells. The grid size is, therefore, equal to 0.01 d.. Thus, scales shorter
than the skin depth can be resolved. The total number of electrons and ions
chosen for the simulations are 1800000 each. This number represents the sum of
background ng, and beam ng, electrons. The choice of rippled ion density and the
separation between the two electron species of beam and background are made as
per Eq.(4.17) and Eq.(4.18)

The beam temperature Ty, is chosen to be finite in the perpendicular direction
according to Eq.(4.8). The time step is decided by the Courant condition. The
charge neutrality, as well as the null value of total current density, is ensured
initially. The considered system is also field free initially as required by equilibrium

configuration.

4.5 Simulation observations

For the homogeneous plasma density case (e.g. ¢ = 0.0, ks = 0.0), the system
is plagued by the usual beam-Weibel instability. This causes spatial separation
between the forward and reverse electron currents. The separation leads to finite
current density in space resulting in the growth of magnetic field energy. The

evolution of box averaged magnetic field energy normalized by E2 = (m,cwo/e)?
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energy of the system is shown in Fig. 4.3 (b), Fig. 4.4 (b) and Fig. 4.5 (b). After
an initial transient, the curve settles down to a linear regime and subsequently

shows saturation.  The slope of the linear portion of the main curve has been

S . , . . o

— 0k 0
10 - == e01k=n --- gL k=n
=m £0.1, k =2 = =01, k =2
=10kOv ] To,p=10K0v ]
oo . ) . , 107 . \ . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
wot wot

Figure 4.3: Temporal evolution of the field energy densities for cold homogeneous
and rippled beam-plasma simulation. (a) normalized electrostatic y-component of
electric field energy (b) normalized x-component of magnetic field energy

employed for the evaluation of the growth rate of the maximally unstable mode in
the simulation. The growth rate has been tabulated in Table - II for various cases

of parameters.

TABLE II:
The maximum growth rate of beam-Weibel instability calculated from PIC
simulation.
Tops (keV) € ks I'yr(max.)
0.0 0.0 0.0 0.2000
0.0 0.1 27 0.2000
0.0 0.1 3 0.2000
10.0 0.0 0.0 0.0508
10.0 0.1 27 0.0349
10.0 0.1 3 0.0333
10.0 0.2 27 0.0173
10.0 0.2 3 0.0109
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Figure 4.4: Temporal evolution of the field energy densities for hot (T, =10 keV
) homogeneous and rippled beam-plasma simulation. (a) normalized electrostatic
y-component, of electric field energy for e—0, k,—0 and e—0.1 and 0.2 for k,—27
(b) normalized x-component of magnetic field energy for e=0, ks=0 and ¢=0.1 and
0.2 for k,=27

From the table as well as by following the complete evolution it is evident that
when the transverse temperature of the beam electrons is zero the rippled density
causes no change. With increasing value of ¢ and k4 the growth rate decreases
when the temperature of the beam and background electrons is finite. This trend
is similar to the behavior of growth rate evaluated analytically, shown in Table - L.
When the plasma density is homogeneous the value of the growth rates evaluated
analytically and through simulations are in good agreement. However, in the
presence of ripple, there is a small disagreement between the quantitative values.
This can be attributed to the approximate nature of the analytical treatment,
wherein the amplitude of ripple was assumed to be weak.

From Figures 4.3 (a), 4.4 (a) and 4.5 (a) it can also be seen that along with
the growth of magnetic field energy, clectrostatic field energy also grows. The
development of an electric field directed along y during the course of simulation
is responsible for this electrostatic energy. This electrostatic field develops as a
result of the redistribution and bunching of electron charges in physical y space. It
can be seen from the phase space plots of Fig. 4.6 that the electrons do reorganize

in physical space. Furthermore, the locations where these electrons get accumu-
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Figure 4.5: Temporal evolution of the field energy densities for hot (T, =10 keV
) homogeneous and rippled beam-plasma simulation. (a) normalized electrostatic
y-component of electric field energy for e=0, k;=0 and e=0.1 and 0.2 for k,=3m
(b) normalized x-component of magnetic field energy for e=0, k;=0 and ¢=0.1 and
0.2 for k=37

lated are the regions with maximal currents and negligible magnetic and electric
field as can be seen from Fig. 4.7 Finally we provide a comparison between the
cases of homogencous and rippled plasmas. It should be noted that the typical
scale length of the magnetic field developed during the initial phase in the homo-
geneous case (Fig. 4.8 (a)) is of the order of the background plasma skin depth
(e.g. 5.33 x 1072um). For the rippled case, the scale length of the magnetic field
matches initially with the ripple scale length defined by the choice of k, (Fig. 4.8
(b))(provided the scale length of ripple is smaller than the skin depth) else it is de-
termined by the typical value of skin depth. At later stages (the nonlinear phase of
the instability), however, the magnetic structures coalesce and acquire long scales
typically comparable to simulation box size in both homogeneous (Fig. 4.8 (¢)) and
rippled (Fig. 4.8 (d)) (provided the growth rate remains finite in this case) cases.
To summarize the main observations are: (i) the rippled density causes no signifi-
cant difference in the growth rate when the transverse temperature is chosen to be
zero. (ii) the growth rate of the beam-Weibel instability in the rippled density case
is reduced compared to the homogeneous case when the transverse beam temper-

ature is finite, (iii) The momentum p, is typically quite large for beam electrons
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Figure 4.6: Phase space plot for homogeneous cold beam plasma at wot= 74.0555

compared to the background plasma clectrons. (iv) in the nonlinear regime the
typical profile of electrostatic field created due to electron bunching in y is similar
to that of the magnetic field. The zeros of both the fields coincide with each other

in space and it is these very locations where electron bunching is observed.
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Figure 4.7: The accumulation of electrons in the regions of maximal currents and
negligible magnetic and electric field
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Figure 4.8: Spatial configuration of normalized magnetic field homogeneous and
rippled hot beam plasma (a) e=0.0, ks=0 at wyt=49.3703 (b) €¢=0.2, ks=37 at
wot=49.3703 (¢) e=0.0, ks=0 at wot=74.0555 (d) £=0.2, ks=37 at wyt=74.0555
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4.6 Interpretation of numerical observations

We now provide a simplified understanding of the observations made by PIC sim-
ulations listed out in the previous section. In order to understand these results we
consider the 1-D limit (with only variations along y being permitted) of the two
fluid system of beam and background electrons described in section II. In 1-D the

momentum equations of the two electron species from Eqs.(1) are:

b _ _:_g_jbim}—nibaa—};” (4.25)
o :_g_jﬂzpa,} (4.26)
By _ :—%—vybaﬂ] (1.27)
dy _ _%_B] (4.28)

(4.29)

Here p;, for ¢« = y and ¢ = z corresponds to the y and z component of momentum
respectively for the beam oo = b or plasma o = p electrons. Also vy, = Pia/Va (With
7o being the relativistic factor) is the corresponding velocity. Here P, represents
the transverse pressure which is zero for the case when the system is cold. The
scalar and vector potentials are represented by ¢ and A respectively. In 1-D only
A, component is finite. Thus the only finite component of magnetic field is along
z and B, = 0A,/0y.
The continuity equation can be written as
on on

OVyq

o — (% — 4'
T + Uya By + nq By 0 (4.30)
The Maxwell’s equation become
92
jﬁ = (6np + ony) (4.31)
PA, 0B,
o2 = a—y — [nb’l)yb + np’pr] (432)
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Here ny, and n, are the total densities of the beam and plasma eclectrons and dn
and dn,, is the difference between the total and equilibrium densities respectively.
If one considers the transverse temperature to be zero, the linearization of the
above set of equations has no other term dependent on the electron densities ex-
cept for E, = —0¢/0y in the momentum equation. However, beam-Weibel being
primarily an electromagnetic instability the electrostatic field is very weak. Thus,
the predominant term in the momentum equation is due to the second term of
vyo 32, which is not influenced by the electron density. Thus, in the limit of zero
temperature the homogeneous and inhomogeneous(ripple) cases do not show any
significant difference.

When the transverse temperature is finite our simulations show the reduction in
the beam-Weibel growth rate. In this case the pressure term in Eq. (4.8) is effective
and depends on the density inhomogeneity. It has been shown by approximate
analytical studies in [56] repeated and presented by us in Fig. 4.2 that the growth
rate indeed decreases in the inhomogeneous case. This is the main result of our
simulations which qualitatively verifies the approximate results of [56].

As we have stated earlier along with the development of magnetic field an
electrostatic field also develops. This happens due to the bunching of electron
densities at the location of zero magnetic field as shown in Fig. 4.7. At the location
of zero magnetic fields, the perturbed density shows a maxima and the electric
field also passes through zero. This arrangement is self-consistent. The Lorentz
force at these locations vanishes and hence a particle has a greater probability to
accumulate over there. The location of maximum accumulation of electron density,
in turn, results in the vanishing of the second derivative of the electric field and

for a Fourier spectrum, this location should correspond to the zero of electric field.

4.7 Summary

We have shown through 1D3V PIC simulations that the growth rate of beam-
Weibel instability gets reduced in the presence of ripple in density. A detailed study
on the dependence of scale length, plasma temperature etc., have been carried out.
It is known that the transverse electromagnetic perturbation in an un-magnetized

plasma with scale length shorter than the skin depth (¢/wy > 27/k,) are typically
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damped. The ripple in plasma density perpendicular to the flow direction with
scale length shorter than skin depth provides a coupling between the growing
electromagnetic mode and the short scale perturbations. Thus the inhomogeneity
(ripple) acts as a conduit for the transfer of the energy of the growing mode to
short scale damped perturbations resulting in the suppression of the mode.

This beam-Weibel instability analysis for the inhomogeneous medium was stud-
ied analytically earlier by Mishra et al. [56] wherein it was shown analytically us-
ing two fluid description that the beam-Weibel instability gets suppressed. The
present work supplements it with PIC studies. Our PIC simulations support the
analytical observations qualitatively. The quantitative values of the growth rate,
however, shows significant differences in certain cases. For instance, the growth
rate for 27 and 37 (for ¢=0.1 and Ty, =10Kev) differ by an order of magnitude,
whereas the PIC results show the minor difference in the growth rate. The differ-
ences between fluid and PIC results seem to be significant for finite temperature
cases, for which fluid treatment can be approximate. This relevance to a recent
experimental observation of efficient transport of mega ampere of electron currents
through aligned carbon nanotube arrays. The ionization of the carbon nanotubes
by the front of laser pulse produces the plasma which has inhomogeneous(ripple)
density. Since the beam-Weibel instability gets suppressed in such an inhomo-
geneous(ripple) plasma, the current separation could get reduced leading to the

propagation of beam electrons over large distances.

In the present work full 1D3V Particle-in-Cell (PIC) simulations have been car-
ried out for the propagation of relativistic electron beams (REB) through an inho-
mogeneous background plasma. The suppression of the filamentation instability,
responsible for beam divergence, is shown. The simulation also confirms that in
the nonlinear regime, the REB propagation is better when it propagates through
a plasma whose density is inhomogeneous transverse to the beam. The role of
inhomogeneity scale length, its amplitude, and the transverse beam temperature

etc., in the suppression of the instability, is studied in detail.
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system

In this chapter, we present 2-D PIC simulation of beam-plasma system. Two
different simulation geometries were considered. In the first case, beam is chosen
to flow out of the simulation plane. Thus, in this case, only those instabilities
which are transverse to the flow direction such as (beam - Weibel ) mode can
be observed. The longitudinal two stream mode are absent in this system as
they require variations along beam propagation direction. In the second case,
we consider one of the dimensions of the simulation box to be along the beam
propagation direction. In this geometry, the longitudinal, two stream, beam Weibel
as well as oblique modes can get excited. The role of inhomogencous plasma

transverse to the propagation direction is investigated in detail.

5.1 Introduction

As mentioned in chapter 1, the interactions of high power laser with a solid target
and /or dense plasma generates relativistic electron beam. The generated rela-
tivistic electron beam propagates inside the plasma and induces return current in
the background plasma to overcome the space charge effects. If the size of beam
radius is much bigger than the skin depth of background electron plasma, spatially
overlapping return currents flow in opposite direction of the beam. Such configu-
ration of beam-plasma system is highly susceptible to beam-Weibel and coupled

two stream beam-Weibel instabilities. These instabilities break-up the relativistic
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electron beam into a large number of current filaments. As time evolves, the like

current filaments attract each other and finally coalescence.

In the next section of this chapter, we study the propagation of relativistic
electron beam in a simulation plane transverse to the beam propagation direction.
The benefit of choosing such a geometry is that only the beam Weibel instability
can get excited in this case. Thus the exclusive role of beam-Weibel instability in
the evolution of the beam leading to magnetic field generation in an unmagnetized

plasma can be understood in considerable detail.

In section 5.3, one dimension of the 2-D simulation plane contains the propa-
gation direction of the relativistic electron beam. In this case, all the modes, viz.,
beam-Weibel instability, two-stream and oblique modes can get excited. The com-
bined role of all these instabilities lead to the break up of beam into tilted current
filaments. We also choose to consider the role of an inhomogeneous plasma density

transverse to the flow direction of the evolution.

5.2 Case I: Dynamics in the 2-D plane transverse

to beam propagation

5.2.1 Geometry and governing equations

We consider a spatially infinite (in simulation periodic boundary conditions are
employed), collisionless, quasi-neutral and unmagnetized electron beam-plasma
system. The electron beam propagates with density n,, mean velocity vy, charge
Q», and temperature Ty, in X-direction, and induces a return current in background
electrons of plasma in negative X-direction with density n,, mean velocity v, and
temperature 7,. The background ions do not respond at electron plasma frequency
time scale because of its large inertia. Therefore, we keep ions at rest. Furthermore,
we consider a charge and current neutralized system initially. So initially the
system is in equilibrium with no electromagnetic fields. In such model, we describe
each species by choosing the proper initial distribution function f°, the suffix s

ER)

stands b for beam and p for plasma. This system can be described by the following
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set of Maxwell-Vlasov equations.

ofs . Ofs s UxB\ofs
10B .
-2 - E 2
e V x (5.2)
10E R
CW V x —TESJS (5 3)

5.2.2 Kinetic theory of linear beam-Weibel instability

We linearize the coupled Vlasov Poisson equation and take Fourier transform in
space and time. Furthermore, we use quasi-neutrality condition (¥sqsngs = 0),
and current neutrality condition (Xsqsnosvps = 0) in Maxwell-Vlasov equation to

obtain well known linear dispersion relation

k262
(532;1: - _2) Eyy = Eyalay (54)

w

The form of dielectric tensor is defined as

k.o

2
2 Wy 3 — PsiPsj aps 3 — psz ()fs
€ij = W 0ij + E —/dps + E / (5.5)
s Ng Ns ’705 apsg

Yos  MmgYgsw —

3
where s = (1+ mﬁgﬁ)l/z is the Lorentz factor, wy = 47msq§/ms is s species plasma
frequency, and wi = Y,w? . For analytical tractability, we choose relativistic

drifting Maxwellian distribution function.

Py (pe—ps)?

Ng
exp | —
27Tms’785 TJ_S,THS |: 2m3’703TJ_3 2m37§5ﬂ|s

fos(p2, pYy) = (5.6)

where p, is drift momentum. The dielectric tensor components can be obtained

from eq. (5.5) as follow

w? w2 pi+mei s
=12 Y ol 7€) (5.7)

Vosw? Yosw?  2mgyosTLs
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£, =1— Z WE Z/(fs) (58)

s os k2<3

2

_ Wy Ps Z”(gs)
Cya = Z ’705002 \/m (Z(és) + 92 ) (5-9)

S

.2

where (o = /2T s /Y0sMs,Ms = w/kCs, Z(E)= /2 ffooo %dt is plasma dispersion
function and the /7 indicates derivative. For cold beam-plasma system, we consider
only drifting distribution function, and in this case, the growth rate of beam-Weibel

instability calculated from the dispersion relation is

2 1/2

WhUob

r,= 5.10
! c (701; (k? + w%/cﬂ) (5.10)

and the maximum growth is

1/2
e (maz.) ~ 2200 (10 (5.11)
c YobTop

For warm case, the growth rate obtained from dispersion relation is given by

2
w4v2< ﬂ+,/@> : 2.
. bY0b \ \/ np N wh (Yo — 1/75) — k*c?) (5.12)
T RT,T,BD/m? b |

; . V2 +v0sT) s /M .
where B=Y" w?m,/k*T |, and D:% > (,L)SL”“"/S . The maximum
2k Y0sy\/ (TL5/705m5)3

growth rate for isotropic distribution (7, = T's) and T, > T, can be given
by

2v/6 [wivgyme /Ty + wi (vob — 1/78)]
97 w2(vg, + Tp/me)c

Where m, is the rest mass of an electron. We evaluate the linear growth rate

(Tp/me)*? (5.13)

Lyr(mazx.) ~

I'yr(normalized by wg) of beam-Weibel instability as function of wave number £ (k
is normalized by (c/wp)™!) for two set of parameters (I) v, = 0.9¢, Top = T, = 0
(cold beam-plasma system) (II) vg, = 0.9¢, Top = Tpp, = 0.1 keV (warm beam-
plasma system). The plot, shown in Fig. 5.1, compares the growth rates of the
cold beam-plasma system to the warm beam-plasma. We can see from Fig. 5.1, for

cold system the I'y, increases with k for small values of k and saturates at k ~ 4.
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Figure 5.1: The growth rate of beam-Weibel instability as a function wave number
k for cold beam-plasma and warm beam-plasma system. This plot shows the
reduction in growth rate of instability for lower k and for higher k, it is completely
suppressed in the case of warm beam-plasma system.

However, for the warm system I'y, increases with k for small values of k but starts
decreasing after k > 2 and completely stabilizes at higher wave numbers ( £ > 3.8).
The maximum growth rate I'y,(max.) of warm system is also less compare to cold
system.

In next section, we present the study of the linear and non-linear stage of
beam-Weibel instability in this 2-D configuration by 2D PIC simulation.

5.3 PIC simulation

For simulation, we choose (yxz) Cartesian plane transverse to the beam propa-
gation direction & with periodic boundary condition for both the electromagnetic
field and charged particles in all direction. The area of the simulation box R is
12.5 % 12.5 (c/wp)? corresponding to 256 x 256 cells where ¢/wy = 5 x 10~%cm. The
time step is chosen by Courant condition and it is 0.003 fsec in this simulation. The

total number of electrons and ions per cell are 32 each. The background plasma
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electrons flow opposite to the beam with a velocity of vg,. The ions have mass and
charge of a proton, and we keep them at rest during the simulation. The quasi-
neutrality is maintained in the system by choosing equal number of electrons and
ions uniformly distributed in space and the current neutrality is also ascertained
by choosing appropriate conditions for the velocity and the density of background
electrons. The uniform plasma density ng is taken as 1.1 x 10*2em=3(10n,) and
the ratio of electron beam density to background electron density is chosen as
nov/nop = 1/9. We record the evolution of box averaged field energy normalized
by B2, = E2,, = (mecwg/e)? at each time step. The role of beam temperature
on linear and nonlinear stage of beam-Weibel instability was investigated. We
present here two cases with following parameters: (I) vo, = 0.9¢, T, = T, = 0

(II) Vop = 0.90, Tgb = TOp = 0.1 keV.

5.3.1 Linear stage of beam-Weibel instability

The initial overlapping beam plasma current system is susceptible to the beam
Weibel instability which causes the spatial separation of the forward and returns
background currents. This increases the magnetic field in the system. The evo-
lution of magnetic field energy with time for both run(I) and run(II) is shown in
Fig. 5.2(a) where we can see the exponential growth of the magnetic field energy
during initial stage and its saturation subsequently for both cases. The linear evo-
lution of magnetic field energy is zoomed and shown in Fig. 5.2(b), the slope of
which is utilized for the evaluation of growth rate in simulations. We find from
the slope of the curve that the beam temperature suppresses the linear growth
of beam-Weibel instability which is consistent with the observations of the lincar
analysis of kinetic beam-Weibel instability. The maximum linear growth of beam-
Weibel instability estimated by theory and calculated from PIC simulation are
compared in Table No.III. which shows there is a good agreement in theory and
simulation.

TABLE III: The maximum linear growth rate of beam-Weibel instability cal-

culated from kinetic theory and PIC simulation.

TOb T()p FgrAnal‘ (max.)/wp Fgrplc(max.)/wp
0 0 0.18 0.16
0.1keV 0.1keV 0.06 0.07
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Figure 5.2: Time evolution of magnetic field energy (a) cold system (blue
curve),warm system (red curve) (b) the zoom of the linear regime in which we
can see the reduction in growth rate of instability for warm system compare from
that of the cold system

The spatial distribution of magnetic field (B = /B2 + B2/Bj,,) has been shown
in Fig. 5.3 at time wot = 17.6 for both cold and warm beam-plasma system.
As predicted by kinetic theory, we can observe the formation of magnetic field
structure of the order of skin depth (c/wy,) for the cold system (run(I)) while for
warm beam-plasma system (run(II)) the structures are somewhat of longer scale. It
turns out that here they correspond to about 1.5 times skin depth. The amplitude
of the magnetic field in the warm case is observed to be smaller compared to the

«

cold system in Fig. 5.3

5.3.2 Non-linear dynamics of beam-Weibel instability

The magnetic field energy saturation at later times is observed in Fig. 5.2 due to
non-linear interaction. After the linear phase of instability, the current filaments
which flow in the same direction attract each other while opposite flowing current
filaments repel to each other. In this non-linear regime of beam-Weibel instability,
the filaments of the currents flowing in the same direction merge with each other
and make a larger structure. It is believed that particles are trapped in the mag-
netic field of current filaments structure in non-linear regime, and it is the cause
of the saturation of the field energy. The temporal evolution of x-component of

current density in the z-y plane has been shown in Fig. 5.4 for cold beam-plasma
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Figure 5.3: The spatial distribution of magnetic field (B = /B2 + B2/B,,,) at
wot = 17.6 for both cold and warm beam-plasma system.

system, and in Fig. 5.5 for warm beam-plasma system respectively. In Fig. 5.4,
we can see the formation of small scale current filaments during the linear stage of
instability ( wot = 17.45 ). The like sized current filaments merge with cach other
with time and organize as bigger current filament structures ( shown in Figure 5.4
at wot = 52.36 ). In the case of warm beam-plasma, lesser number of current
filaments with reduced strength form during the linear phase (see Fig. 5.5 at time
wot = 17.45 ) which consistent with the theoretical result. In non-linear regime
(wot = 52.36), there does not appear much of a difference between cold and hot

beam-plasma systems.

A rough saturation criteria of instability can be obtained by considering a model
spatial profile of magnetic field in 2-D, mimicking the magnetic field of the current
filaments. The amplitude of the magnetic field is chosen so as to significantly
deflect the trajectory of an electron. The transverse motion of an electron in this
magnetic field is given by

d*r e

vz .
— = —2 k 14
W e osin(kr) (5.14)

The bounce frequency of a magnetically trapped electron is given by

kB
w? = EUobl o (5.15)
MeCYop
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Figure 5.4: The spatial distribution of current density (J,/noqc) at wot = 17.45,
52.36 for cold beam-plasma system which shows the formation small scale current
filaments in linear regime, and due to the merging of like current filaments, the
larger structures of current filaments at time wyt = 52.36.

Roughly it can be assumed that the instability saturates at a point where bounce
frequency becomes equal to the maximum linear growth rate of instability. There-
fore, the saturated magnetic field B,y can be estimated by comparing the linear
growth of beam-Weibel instability to the bounce frequency (w,, = I'gr(maz.)). So,

The saturated magnetic field is

2
. <me0')’0b> 2V6 | [wiodyme/Ty + i (s = 1/78)])° (T,/m.)? (5.16)
o evopk 97 (w]%('ugp + Tp/me)c)2 v

From eq. (5.16), we get Bsat/Bpor ~ 0.2 for warm beam-plasma system, and from
PIC simulation also, we get Bsqi/Bnor ~ 0.2. Thus we see that the saturated
magnetic field under this assumption matches well with the results of the PIC
simulations.

In next section, we discuss the case of a 2-D geometry for which the beam prop-
agates along one of its axis. In this geometry all the longitudinal and transverse

instabilities can get excited.
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Figure 5.5: The spatial distribution of current density (.J,/noqc) at wot = 17.45,
52.36 for warm beam-plasma system. In this we see less no. of current filaments
than the cold beam-plasma system in the linear regime at time wot = 17.45. How-
ever, there is no much difference in the non-linear regime ( wot = 52.36 )

5.4 Case II: Beam propagation in the 2-D plane

under consideration

We present theoretical and numerical study of beam-plasma system in two-dimensional
spatial configuration, where beam flows along the 2-D plane under consideration.
In this configuration all the longitudinal and transverse modes are permissible.
Thus the coupling of beam-Weibel instability with two-stream (TSF) is possible.
We explore the nature of this coupled TSF instability with two-fluid theory and
with PIC simulation in uniform, as well as an inhomogeneous plasma with ripple

in the background plasma density.

5.4.1 Analytical study of coupled two-stream filamentation

instability in beam-plasma system

We consider a collision-less, quasi-neutral and un-magnetized electron beam- plasma
system. The electron beam with density ng,, and temperature 7oy drifts with veloc-
ity vo, in the Z direction inducing a return current with density ng,, and velocity
vop in cold background plasma clectrons. We have considered both uniform as

well as an inhomogeneous plasma density with a sinusoidal ripple in ion density
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transverse to the propagation direction of the beam. The amplitude of the ripple
is € and the spatial variations are characterized by the wave number ks = 27/ A4
as shown in the sketch of the system considered for this study in Fig. 5.6. We
assume the ions having proton charge to be massive, thereby treat them as static

neutralizing background. We use a two fluid description wherein the relativistic
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0 £ % &
c © ]

m : ) f @

- — (D m
Xl =2
© Y
1
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Density profile

ANLYA
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Figure 5.6: Schematic illustration of intense laser-solid interaction

electron beam (REB) and the background electrons are treated as separate fluids.
This model can be realized by a set of coupled Maxwell equations with continuity
and momentum equation. We have already derived a generalized set of coupled
differential equations (4.9, 4.10) in presence of plasma inhomogeneity in transverse
direction of beam propagation by the two fluid model in the linear regime in chap-
ter 4. We use that generalized equations (4.9, 4.10) to study the linear response
of the considered system. The equations (4.9, 4.10) in normalized (in chapter 4)
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form are following:

o
QaYoaVin: + (W = k2) QaYoatias + (W* — &2) >

- Q_avlaz
k, — wugy ,
+ za: g Mathe: =0 (5.17)
2 k2
(w 0O Z) UTOaUZ)[y + (w2 - k?) SZ(XA/OINUZ(W/ - Qoz Z NoaViay
N 2 . 3 /
+ ZQ—(w — k)N Toa — i (ks — v0aw) QaYoa | Viee = 0 (5.18)

For uniform beam-plasma system, the coupled equations (5.17, 5.18) reduce to the

following :
. , Noa
kjﬂa’ygavlaz - (WQ - kg) Qaq/ogavlaz - (WQ - kﬁ) inlaz
kY ks — W00 ~0 (5.19)
LRy . Qa NoaViaz = .
w? — k?
k’i( Qa Z) nTOozUlay - (w2 - kz) QO/YOarUlay + Qa Z 0o Vlay
kz 2 2\, 3
+ G(W — k’Z)T]Toa — (k’z — 'U()aw) QO/‘YOO[ Viaz = 0 (520)

We obtain the linear dispersion relation for a uniform beam-plasma system, by

solving the equations (5.19, 5.20) given by
(wPe.. — k) (wieyy — k2) = (wWPeys + kaky) (wPesy + kaky) (5.21)

Where dielectric tensor elements ¢,,, .., €,., and €., are following,

inoaﬂa

ey =1— Ere (5.22)
Z.kynOoz Voo AJ.oz
L = — O (O o ) 5.23
T T (w *@%) (5.23)
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~inoalNja iNgatoaky

. - v 5.24

T e wP0n (5:24)
M0 Moal\jaky 1MooV ak? o | Ml

B e (5.25)
Vo Wha®a WA | 4 Pa w kytha

where Qa = W — UOakm wa = iﬂi“/i - inOaTHank,ga A||oz = inOaﬂmnkzkya AJ_a =

inOaTJ_ankzkyv o = Z-ch’)/a - o (::_
23 | Ry

k’ZAHa
o

)

) , and n is the ratio of specific heat.

The linear evolution of inhomogenecous beam-plasma system is studied by choos-
ing a sinusoidal form of the ion background density: ng; = ng[l + ccos(ksy)] where
ng is constant normalized density, ¢ is ripple amplitude associated with the sinu-
soidal inhomogeneity in the density. The equilibrium beam and plasma density
profile is taken as ngy = Fyno(l + epcos(ksy)), nop = Ppno(l + eycos(ksy)). To
maintain quasi-neutrality j3, satisfies > f, = 1 condition. For simplicity, we
choose ¢, = €, = € here. The suffix 0 indicates the equilibrium fields. The ripple
being periodic along 'y’ we choose all the perturbed quantities to have the form
of f, = Z'j""ﬂ’il’Ofajei((ky+jks)y+kzy_wt). For small amplitude of ripple(e < 1), the
terms corresponding to j = 0, +1 are the ones which are only retained. All higher

order terms are neglected.

To evaluate the linear growth rate of oblique mode driven instability, we expand
eq. (5.17) and eq. (5.18), and solve it by substituting for the Bloch wave function
form of the perturbed fields in the periodic system. Retaining only the first order
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terms, as mentioned ecarlier we obtain the following equations:

0.5¢0,
QaVSa ()‘ k’d Vdaz + N2 E Q—T dos + A2 95»3 Vorz
: 0‘ . Ca .
+e Ea: Q. ﬁakdvd(w +1 Ea Q_a0-555ukdvay =0 (5.2())

: o 05 Oa
Qa73a ()‘2 - ki) Vaz T A2 é Vaz 1 2’ Z Q&S} (Udaz + Uaaz)

+1 Z ,‘S’Q oVay + 1 Z Q_O 5eBako (Vday + Vaay) =0 (5.27)

Qi (A2 = k2) Vg + N2 Z e £ 7Y O'fjﬁ" Ve

o

—‘rZZ ﬁak Vaay + ZZ o 0055 Bakovay = 0 (5.28)

A2 A2
< ncakd )\QQQ’yOa> Vday + S Z BaVday + 0.56 —— nca[k2 — ko(2ko — ks)|vay

Ba aﬁa
2

A A
+0.52€2, Z BaVay + (kz k‘d . Olnca CaQoﬁgakd> Vdaz — 0.58mncak‘zkovaz =0 (5.29)

2

Qaf3 o
)\2
< 0 ncak2 A Qafy()a) Vay + Qo Z BaVay + 0. 58 5 nca[ — ka(2kq + ks)]Vday
A2
+ 05 0.7 —nea[k2 — ko (2k, — Es)|Vany + 0.5, Z Ba (Vday + Vaay)
)\2 . 2 ¢

+ <k kO 3 NCo — Conafyg@kO> Voz — 0.5 ﬁ ’I]Ca (kdvdaz + kavaaz) =0 (530)

< 0. ncak2 )\2Qa’y()a> Vaay + Qo Z BaVaay + 0. 55 0. 77%[ — ko(2ko + ks)]vay

) /\2

+0.5e€), ; BaVay + (k kd A NCo — CaQo/Ygaka> Vgoz — 0.5 Q.. ——ncak kv, = 0 (5.31)

where A\? = (w? — k2), kg = (ky — ks), ko = ky, ko = (ky+ks) and (o = (k; — voaw).

Now, we study in detail the growth rate of the most unstable mode for the

general case by using equations ( 5.26, 5.27, 5.28, 5.29, 5.30, 5.31). The growth rate
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has been mapped in the parameter space of k, and k,, for the uniform beam-plasma
system in Fig. 5.7 for ngy/nop, = 1/9 or noy/nee = 0.1, v, = 0.9¢, v, = —0.1c and
Topr = 10KeV. This figure shows that for this particular set of parameters, the

oblique mode with(k,, k,=(1.5,1)) has a maximum growth rate. Also, a narrow

Y
oblique strip of wave numbers extending up to k, —oo is found to be unstable.
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Figure 5.7: Growth rate map of the 2D oblique instability for a homogeneous
beam-plasma at transverse beam temperature Ty, —10 keV.

When the plasma density in chosen to be inhomogeneous and the scale length
of the ripple is longer than the skin depth, i.e. 27/k; > ¢/wy the growth rate of
oblique mode driven instability is observed to increase with the amplitude ¢ of the
inhomogeneity, as shown in Fig. 5.8 and 5.9. The unstable modes continue to
stay around the oblique patch in the k, vs. k, plane. However, the growth rate
is spread over a wider k, domain compared to the uniform beam-plasma density
case. Another feature is the appearance of several maxima along &, in contrast to
the single extrema for the uniform case. When the ripple scale length is sharper
than the skin depth, i.e. for the case of 27 /ks < ¢/wy, there is an overall reduction
of the growth rates in the system in comparison to the uniform case. Furthermore,
with increasing amplitude of density ripple also the growth rate reduces in this
regime. This has been illustrated in the 2-D plot of the growth rate in Fig. 5.10

and 5.11. A detailed comparison of the growth rate Iy, of the maximally growing
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Figure 5.8: Growth rate map of the 2D oblique instability for a rippled beam-
plasma at transverse beam temperature Tyy, —10 keV at ky, = 7 and € = 0.1.

mode for various different values of ks and ¢ has been provided in TABLE V.

TABLE IV
The maximum growth rate of oblique mode driven instability evaluated
analytically under the approximation of weak ripple amplitude as well as from

PIC simulation.

£ ks 'y (max.) I'pic(max.)
0.0 0.0 0.1822 0.1823
0.1 T 0.1857 0.1827
0.1 27 0.1811 0.1818
0.1 3T 0.1728 0.1813
0.2 T 0.1884 0.1830
0.2 3T 0.1475 0.1659
0.4 3T 0.1352 0.16

It is clear from the results that the growth rate drops when the amplitude, as

well as the wave number of the plasma density ripple, is increased.
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Figure 5.9: Growth rate map of the 2D oblique mode driven instability for a rippled
beam-plasma at transverse beam temperature Tyo, =10 keV at k;, = m and ¢ = 0.2.
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Figure 5.10: Growth rate map of the 2D oblique mode driven instability for a

rippled beam-plasma at transverse beam temperature Ty =10 keV at k; = 37
and ¢ = 0.1.
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Figure 5.11: Growth rate map of the 2D oblique mode driven instability for a

rippled beam-plasma at transverse beam temperature Ty, =10 keV at k;, = 37
and € = 0.2.
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5.5 PIC simulation

In this section, we present the results from the Q%D PIC simulations employed for
the beam-plasma. The simulation box is a Cartesian y — z plane with periodic
boundary condition for both the electromagnetic field and charged particles. The
electron beam is chosen to propagate in the Z direction with a relativistic velocity
vgp whose current is neutralized by the cold return shielding current from the
background plasma electron flows in the opposite direction with a velocity vg,. The
respective densities are appropriately chosen for the current to be zero. Charge
neutrality and a null current density are both ensured initially (¢ = 0). Thus, the

system is field free and in equilibrium initially.

The electron beam has also been chosen to have a finite temperature Ty,. For
the inhomogeneous plasma the pressure contribution in such cases has been avoided
by choosing Ty, to be space dependent defined by eq. 4.8. The ions are kept at
rest during the simulation. The uniform plasma density ng is taken as 10n. where
ne = 1.1 x 102em ™3 is the critical density for 1um wavelength of laser light. The
arca of the simulation box R is 30 x 15 (c¢/wp)? corresponding to 1500 x 750 cells
where ¢/wy = d. = 5.0 x 1072um is the skin depth. The total number of particles
is 45000000 each for both electrons and ions. To resolve the underlying physics at
the scale which is smaller than the skin depth, we have chosen a grid size of 0.02d,.
The time step is decided by the Courant condition. The time evolution of the
box averaged field energy density for every component of E and B are recorded at
each time step. The energy density is normalized with respect to (m.cwp/€)? and
time is normalized with respect to the electron plasma frequency wy. The results
obtained from the simulation of the beam-plasma system for various amplitudes
and scale lengths of the density inhomogeneity have been compared with the re-
sults of the uniform beam-plasma case. The initial choices of the parameters for
simulation are taken as ng,/no, = 1/9 or ney/nge = 0.1, vop = 0.9¢, v, = —0.1c
and Typyy = 10K eV. These parameters favor the growth of the oblique mode over
the filamentation and two-stream modes. While considering the simulation of the
rippled inhomogeneous density case, the ripple amplitudes ¢ is varied from 0.1
to 0.2. The ripple wave number is chosen as k;==, 27 and 37 for each of these

amplitudes.
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The perturbed field energies (magnetic as well as electric) are tracked in the
simulation for the study of instabilities associated with the system. The rate of
exponential growth of the perturbed energy provides for twice the growth rate
of the fastest growing mode associated with the instability. The growth rates
I'pic(max.), thus evaluated for different cases of simulations have been presented in
one of the columns of TABLE TV.

The linear regime can be clearly identified from a log plot of total energy shown

in Fig. 5.12. The region of the constant slope after an initial transient provides the

0 20 40 60 80 100 120

Figure 5.12: The plot on semilog scale of total perturbed normalized electromag-
netic energy (Upp = E*+ B?, Uy = B2,,) for uniform and rippled(e = 0.2, k, = 37)
density both. The growth rate calculated from PIC simulation by energy slope
shows reduction for rippled beam-plasma system.

growth rate of the fastest growing mode. The straight line alongside represents the
slope obtained from the linear theory provided in section II. It can be observed that
the agreement between simulation and the theoretical linear results are remarkably
good. The comparison also shows that the reduction in the growth rate in the
presence of ripple in plasma density for scales sharper than the skin depth.

The separate evolution of the electric field energy density, and the magnetic
field energy density for various simulation cases have been shown in Fig. 5.13 and

Fig. 5.14 respectively. The energy associated with the electric field is observed to
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Figure 5.13: The evolution of z-component of normalized electric field energies
E? with time for uniform beam-plasma system and rippled beam-plasma system
cases. In non-linear stage, there is a huge drop in the eclectric field energy for
rippled beam-plasma system.

be typically always higher than the energy in magnetic field. It is interesting to
compare these perturbed energies in the nonlinear regime. While for the uniform
density case the energy continues to remain high, there is a perceptible drop in
both electric and magnetic field energies in the presence of inhomogeneity in the
nonlinear regime. This has important significance as it suggests that the forward
and reverse currents which got separated during the linear phase have a tendency

to merge again for the inhomogeneous density when nonlinearity sets in the system.

The snapshot of the spatial profile in the y — 2z plane of certain fields (Bs, ny
and n,) at a time wot =33, 53 and 90 have been shown in Figs. 5.15, 5.16 and 5.17
respectively. In these figures, the first column corresponds to the uniform density
case, i.e. € = 0.0 and second column to the inhomogeneous case with ¢ = 0.2
and ks = 37 (corresponding to density ripple scale lengths to be sharper than the
skin depth). It is clear from these figures that the variations in these fields are in
both 'y’ as well as 'z’ directions, confirming that the oblique mode continues to
dominate the instability scene. However, it should also be noted that during the

linear phase the magnetic field acquires structures which are extended and aligned
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Figure 5.14: The evolution of x-component of normalized magnetic field energies
B2 with time for uniform and rippled cases.

along the beam flow direction of Z. The structure size along the y direction is
significantly shorter and is found to compare with the typical values of the skin
depth. Thus for the inhomogeneous case additional structures at scales shorter
than the inhomogeneity scale are observed to ride over those appearing at the
skin depth scale. These studies, therefore, suggest that specially tailored targets
incorporating appropriate forms of plasma density inhomogeneity can lead to the
suppression of the beam-plasma instabilities. Thus would be helpful for efficient

transport of electron beam through plasmas.
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Figure 5.15: Time evolution and spatial configuration of x-component of magnetic
field for uniform (first column) and rippled (¢=0.2 at k,=3m, last column) case at
time wot = 33, wot = 53 and wyt = 90.

91



Chapter 5. Two-dimensional study of beam-plasma system

t=33 t=33

Beam densitv

0 01 02 03 04 05 06 07 08 O 0.2 0.4 06 0.8

Figure 5.16: Time evolution and spatial configuration of beam density for uniform
(first column)and rippled (¢=0.2 at k=3, last column) case at time wyt = 33,
wot = 53 and wyt = 90.
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5.6 Summary

In this chapter, we have considered the study of beam plasma system in 2-D in
different geometrical configurations. In the first case, the 2-D plane of variations is
orthogonal to the flow direction, whereas in the second the beam propagation lies
in the plane of consideration. In the former configuration only the transverse beam-
Weibel instability is permitted to get excited, while for the latter both transverse
and longitudinal modes can be observed.

The linear growth rate of beam-Weibel instability have been obtained both
analytically and from PIC simulation studies. A good agreement between the
two has been observed. The linear regime of instability, clearly shows the spatial
separation of the forward and return currents leading to the generation of large
number of filaments. In the nonlinear phase, the growth of the magnetic field
saturates as a result of the merging of like current filaments.

The coupling of two-stream instability with beam-Weibel/filamentation insta-
bility has also been studied in 2-D geometry by choosing the second configuration
wherein the flow lies in the 2-D plane of study. The role of density inhomogeneity
on the growth of these instabilities have also been explored both by fluid treatment
as well as by the PIC runs. It is shown that the growth rate obtained from both
approaches are similar. A quantitative comparison of the growth rate of the max-
imally growing mode for the uniform density case with that of the inhomogeneous
one shows that the growth rate reduces in the presence of density inhomogeneity
for scales which are sharper than the skin depth. The detailed PIC simulations in

2-D have also been performed which confirms this.
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electron flows

Electron velocity shear can arise in many physical situations. In fact, a finite size
electron beam propagation in plasma would introduce sheared flow at the edges.
Furthermore, the configuration resulting after Weibel separation, of forward and
return shielding currents of the energetic electron beam propagation in plasma,
has a sheared electron flow configuration. It is well known in fluids that a sheared
flow is susceptible to Kelvin - Helmholtz instability. The characteristic features of
the instability have distinctions for the magnetized electron fluid flow [58|. In the
relativistic case, some new additional features arising through sheared relativistic
mass are also evident [6].

Some fluid simulation studies based on simplified Electron Magnetohydrody-
namic (EMHD) model have been done to understand the instability in its nonlinear
regime [7,59,88,89|. In this chapter, we present the two-dimensional particle-in-
cell simulations of a 2-D sheared electron flow configuration against a neutralizing
background of ions. We simulate cases of the weak, mild, and strongly relativistic
flow velocities. In the weakly relativistic case, we observe the development of elec-
tromagnetic Kelvin-Helmholtz instability with similar characteristics as that pre-
dicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary,
in a strong relativistic case, the compressibility effects of electron fluid dominate
and introduce upper hybrid electrostatic oscillations transverse to the flow which
are very distinct from EMHD fluid behavior. In the nonlinear regime, all three

cases (weak, mild and strong relativistic) lead to turbulence with broad power law
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spectrum.

6.1 Introduction

The fundamental physical processes, which govern the evolution of electron flows
with velocity gradient, are of great interest in wide range of research areas in
the astrophysical and laboratory contexts. In the astrophysical scenario, the rel-
ativistic jets, which are observed across a wide range of astrophysical scales from
micro-quasars to Gamma Ray Bursts (GRBs), supernovas etc., [90-93] would have
sheared flow of electrons.

In laser plasma experiments also, there are many situations where the sheared
electron flow configuration is inevitable. For instance experiments on the fast-
ignition scheme of laser-driven inertial confinement fusion involve electron beam
propagation inside a plasma which would invariably result in a sheared configura-
tion of electron flow [94]. The shear flow generation in the fast ignition context
can be understood by the following description. When a high-intensity laser irradi-
ates a solid surface and/or a compressed plasma it generates electron beam at the
critical density surface of the plasma by the wave breaking mechanism [36, 95, 96].
This beam typically propagates inside the high-density region of the plasma ex-
citing reverse shielding background electron currents. In the previous chapter 5,
we have shown that the forward and reverse currents spatially are separated by
Weibel instability. This separation leads to a sheared electron flow configuration.
In addition to this, since the transverse extent of the beam is finite compared to the
plasma width, being commensurate with the laser focal spot, the sheared configu-
ration of electron flow automatically exists between the beam and the background
stationary electrons at the edge of the propagating beam [97] even before Weibel
destabilization process gets to generate sheared electron flow in the bulk region
of the beam. Thus, the Kelvin-Helmholtz (K-H) instability develops immediately
at the edge of the beam and does not require a Weibel destabilization process to
preempt it.

The K-H instability is a well-known instability and has been widely studied
in the context of hydrodynamic fluid. However, the sheared-clectron velocity flow

encountered in the laboratory and astrophysical cases, mentioned above, differs
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from the hydrodynamic fluid flows in many respects. For instance, the sheared-
flow configuration of electron fluid invariably has associated currents and they may
often have a sheared current configuration as well. Consequently, the evolution of
the magnetic field associated with it becomes an integral part of the dynamics.
Development of charge imbalance is another aspect in the evolution. Though the
equilibrium charge balance is provided by the neutralizing static background of
ions, compressible electron flow during evolution can easily lead to charge imbal-
ance as the ions would not respond on fast electron time scale phenomena. This
would lead to electrostatic field generation which has added influence in the dynam-
ics. Lastly, the flow of electrons in most cases is relativistic. Thus, to summarize
the K-H instability, in this case, has additional effects due to the presence of elec-
tromagnetic features, compressibility leading to electrostatic fields, and features
associated with relativistic flows. In the non-relativistic limit, the electromagnetic
effects on K-H instability in the context of sheared clectron flows have been in-
vestigated in detail by employing the Electron Magnetohydrodynamic (EMHD)
model [7,98,99]. This model neglects the displacement currents and space charge
effects and assumes stationary ions which provide the neutralizing background.
The relativistic effects on K-H instability, in compressible neutral hydrodynamic
fluid, has been studied by P. G. Drazin and W. H. Reid [100] and G. Bodo, A.
Mignone, and R. Rosner [101]. Recently, [6] Sundar and Das have incorporated
relativistic effects on sheared-electron flows. This study points out the crucial role
of shear on the relativistic mass factor due to sheared velocity configuration. The
effect due to displacement current was retained in the relativistic regime. It was,
however, shown that for the weakly relativistic case the effects due to displacement
current were negligible. However, in these studies, the space charge effects which
may arise when compressibility of the electron fluid are present, was incorporated.
The present chapter aims at exploring these features using a PIC simulation.

We have carried out a 2.5D relativistic electromagnetic Particle-in-Cell simu-
lations to study the electron shear flow instability in both cases of weak as well
as strong relativistic flows. By 2.5D we mean that all three components of the
fields are taken into consideration, however, their spatial variations are confined
in a 2-D plane only. When the flow is weakly relativistic, we observe the develop-
ment of electromagnetic K-H instability at the location of shear which ultimately

develops into vortices. These vortices merge subsequently forming longer scales,
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in conformity with the inverse cascade phenomena observed in typical 2-D fluid
systems. The density perturbations are observed to be weak in this case. The
results, in this case, are thus very similar to the predictions of the EMHD fluid
behavior. When the relativistic effects are mild (but not weak), the K-H instability
occurs at a slower time scales. The K-H vortices are observed initially, which are
soon overwhelmed by compressibility effects which introduce magnetized nonlinear
electrostatic oscillations (nonlinear upper hybrid oscillations) in plasma transverse
to flow. In strongly relativistic regime the electrostatic oscillations dominate right
from the very beginning. The amplitude of the oscillations increases leading to
phenomena of wave breaking. In the nonlinear regime, the spectra are observed to
be broad in all the three cases which imply turbulence.

The chapter is organized as follows. In section II, we describe our simulation
methodology. The results of PIC simulations and their implications are presented
in section III. It is seen that in strong relativistic case compressibility effects seem
to dominate resulting in electrostatic oscillations transverse to the flow. These
electrostatic oscillations are understood on the basis of a simplified one-dimensional
model in section IV. Section V contains the description of the power spectrum of the

fields in the nonlinear regime. Section VI contains the summary and conclusions.

6.2 Simulation set-up

We choose the electron to have a flow velocity along z direction with a following

sheared flow configuration (double tangent hyperbolic profile) as in equilibrium
Voz(y) = Vo [tanh((y — Ly/4)/€) + tanh((3Ly /4 —y)/€)] = Vo, (6.1)

where ¢ is the width of the shear layer, L, is the total length of the simulation
box in the transverse direction of flow and V4 is the maximum amplitude of the
flow velocity. This flow structure is shown schematically in Fig. 6.1. The electron
flow is responsible for current and produces an equilibrium magnetic field By in
the z direction. During the simulations, ions are kept at rest and provide for the
neutralizing background. In order to satisfy the condition for equilibrium force
balance on clectrons, there is a need to displace the electrons and ions slightly in

space, so that an equilibrium electric field Eo gets created. This is chosen in such
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Z-axis

Y-axis

Figure 6.1: The schematic of the system used in the present chapter. Initially,
electrons flow in z-direction with double tangent hyperbolic (along the y-axis)
with shear width e.

a fashion so as to satisfy the condition of

o Vi x Boi
Eo+w:0 (6.2)

This ensures that the Lorentz force on electrons vanishes everywhere. This clearly
indicates the necessity for having an equilibrium electric field along 3. The electron
and ion charge are thus displaced in an appropriate fashion so as to satisfy the

Gauss’s law
0B, _18(B0xVOz)

E=—=
v oy c y

here ng; and ng. are unperturbed ion and electron number densities respectively in

= 4re (n0i — ’floe) s (63)

equilibrium, e is the charge of an electron and c¢ is the speed of light. To maintain
equilibrium in the system, we have thus arranged the electron particle number

density according to the following relationship [102],

Noge = No; + . (64)

99



Chapter 6. Kelvin-Helmholtz instability for sheared electron flows

The ions are distributed uniformly with a density ng; of 3.18 x 10¥cm ™2 and ng.
is adjusted as per Eq. (6.4). The area of the simulation box R is chosen to be
6 X 5 (c/woe)? corresponding to 600 x 500 cells; where wg, = \/m is
electron plasma frequency corresponding the uniform plasma at the background
density of ions. Also, c¢/wpe = d. = 3.0 x 107%cm is the skin depth. We have
used 128 particles per cell for both ion and electron in our simulation. To resolve
the underlying physics at the scale which is smaller than the skin depth, we have
chosen a grid size of 0.01d.. The time step At, decided by the Courant condition,
is 0.035 femtosecond.

We have considered four different set of parameters for our investigation. In
all cases, the velocity profile of electron is assigned by eq. 6.1. For the first case,
we choose the flow velocity of the electron in the weakly relativistic regime and
chose the shear width to be less than the plasma skin depth. We would refer this
as Case (a) which has the following parameters V5 = 0.1¢, ¢ = 0.05 ¢/wpe. This
is the weakly relativistic case where the EMHD fluid description is supposed to
work pretty well. We consider the case (b) then to illustrate the dependence of
K-H instability on shear width. We do this by changing the value of shear width
in comparison to the skin depth. As per the EMHD description, the growth rate
decreases when the shear width is shallow compared to the skin depth. Here, we
have chosen € = 1.5 ¢/wp.. In the third and fourth cases (c¢) and (d) a mild and
strong relativistic limit with parameters Vj = 0.5¢, € = 0.05 ¢/wp. and Vy = 0.9¢,

€ = 0.05 ¢/wo, are respectively considered.

6.3 PIC simulation results

In the three subsections, we discuss the results of (I) Weakly relativistic (IT) Mild

relativistic (IIT) Strong relativistic cases.

6.3.1 1. Weakly relativistic

We choose a value of Vi = 0.1c¢ for electron velocity to study the weakly relativistic
case. We observe a destabilization of the sheared flow configuration. The insta-
bility is tracked by plotting the evolution of the perturbed kinetic energy(PKE)

of the electrons in the system. This is shown in Fig. 6.2. The initial steep rise is
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Figure 6.2: Time evolution of perturbed kinetic energy where Uy = (mecwo./e)?
for case (a) (black color, solid line) and case(b) (red color, solid line). The slope
gives linear growth rate of KH instability.

due to numerical noise. Thereafter, the instability grows from the noise spectrum.
Since, the initial noisy background would lack the exact eigenmode structure of
any particular mode, a combination of unstable modes start growing initially. Sub-
sequently, the mode with the fastest growth dominates, and a linear rise in the
semilog plot of PKE with time can be clearly observed. It should be noted that
evolution follows the EMHD fluid predictions of the growth rate being higher for
the case (a) when the shear width is sharper than the skin depth. In case (b) the

growth is observed to be small and the saturation also occurs quite fast.

For a closer look at the instability development, we show the color contour plot
of the evolution of the magnetic field (Fig. 6.3)at various times. From (Fig. 6.3)
the magnetic field evolution, one can observe that the magnetic perturbations start
at the location where velocity shear is maximum and shows the KH vortices re-
sulting from fastest growing mode m=>5 at each shear layer with opposite polarity
in x-component of magnetic field in linear stage of K-H instability. The pertur-
bations grow to form magnetic vortices which subsequently merge to form bigger
structures. The merging process of the magnetic field is along expected lines of

2-D inverse cascade EMHD depiction of the problem. We average the velocity of
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Figure 6.3: Time evolution of x-component of the magnetic field B, =
B, /(mecwqe/€) for the case (a) at time wo.t=31.85 and 49.54. The vortices in
the magnetic field are highlighted by red box (31.85 wp.t) which merge at later
time wpet=49.54 (highlighted by red box).

electron on the simulation grid and calculate the vorticity of the velocity field. The
color plot of vorticity for the weakly relativistic case has been shown in Fig. 6.4 at
various time. The fluid vorticity also shows similar traits, however, at later times
t = 59.60 (in normalized units) the long scale vorticities show signs of disintegra-
tion. The vortices are eventually disrupted during nonlinear evolution of system
and forming two turbulent layers. The spectral analysis of the turbulent electric
and magnetic field are presented in section V. The snapshot of two components of
electric field has been shown in Fig. 6.5 at various times. The two components of
electric fields during evolution also show the emergence of K-H structures and the
phenomena of merging. A comparison of normalized amplitudes of electric and
magnetic field shows that the electric fields are much weaker than the magnetic
fields. We also show the plot of electron density in the nonlinear regime of the K-H
instability at ¢ = 36.75 in Fig. 6.6. We observe that the density also acquires dis-
tinct structures of K-H like vortices in the shear region. The density perturbations,
in the weakly relativistic case, are observed to be weak. The maximum observed
value of 11, /ng ~ 1.2. On the other hand, we would see in the strongly relativistic
case this is as large as 8 to 10. This suggests that in the weakly relativistic regime

the instability essentially has an electrostatic character.
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Figure 6.4: The time evolution of vorticity ((V x V') /wp.) calculated from velocity
field for case (a) (Vo = 0.1¢, ¢ = 0.05d,) which shows merging of vortices with time
and turbulence stage of KH instability.

6.3.2 II. Mildly relativistic

In the mild relativistic case where Vo = 0.5¢, the K-H is observed to be considerably
weak. The snapshots of vorticity have been shown in Fig. 6.7 at various time which

show an initial tendency towards developing the K-H rolls.

The K-H rolls, in this case, are fewer in number. For case(a) they were 5 in
number, here they are only around 3. This again suggests that the growth rate
for relativistic case gets confined towards longer scale as per the predictions of
EMHD model. The fluid analysis carried out earlier also suggests that the cut-off

wavenumber of the K-H moves towards longer scales in mildly relativistic cases.

The K-H rolls are observed to be very soon overwhelmed by certain oscillations

transverse to the flow. The oscillations, transverse to the flow, are also clearly
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Figure 6.5: The time evolution of electric field: first row shows the y-component of
electric field E, = E,/(mecwq./e) and second row shows z-component of electric
field E, = E./(mecwp./e) for case (a) (Vo = 0.1¢, e = 0.05d,.)

evident in the electron density plots of Fig. 6.8. The density oscillations, in this
case, are pretty strong with 7. /n. ~ 4. The K-H suppression and the appear-
ance of these upper electrostatic oscillations can be understood as follows. As the
relativistic effect increases the V x B /c force becomes dominating. Thus a small
perturbed magnetic field B, induces a strong Vp x B /c force along y, which is

responsible for the upper hybrid electrostatic oscillations.

6.3.3 III. Strong relativistic

We now choose Vy = 0.9¢ for understanding the strongly relativistic case. The time
evolution of PKE, in this case, shows the linear growth of the instability. However,
the instability is dominated by the upper hybrid electrostatic oscillations which are
observed right from the very beginning. Thus the development of the rolls, typical
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Figure 6.6: Formation of KH vortex (highlighted by black box) in electron density
Ne = Ne/No; at time wo.t =36.75 for case (a).

of the K-H instability, is not very clearly evident in this case. Representing the
initial distribution of flowing and the static electrons by different colors (red and
blue respectively) we show the snapshots of their displacement in space in Fig. 6.9.
The electron compressibility effects are clearly evident, wherein white regions to-
tally devoid of electrons are created (snapshot at wo.t = 3.5). The Electric fields
due to background ions, however, pull these electrons back which results in a large
amplitude excitation of nonlinear upper hybrid electrostatic plasma oscillations.

These oscillations are discussed in detail in the next section.

A comparative value of the growth rate obtained from the slope of the evolution
of PKE in the table below for all the cases studied by us has been provided.

TABLE V
The maximum growth rate (I'g,maz.) of K-H instability evaluated from slope of

perturbed kinetic energy
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Figure 6.7: The time evolution of vorticity (V x V) calculated from velocity field
for case (b).

Vao/c 5/(0/‘*’06) Fmaw/(%WOe/C)
0.1 0.05 0.7
0.1 1.5 0.0
0.5 0.05 0.34
0.9 0.05 0.23

Since classically the K-H instability typically scales with the fluid flow velocity
we have chosen to divide the growth rate with V4 for a better appreciation of
the comparison. The comparison clearly, shows that I',,,,/Vo decreases due to
relativistic effects in agreement with the earlier fluid analysis by Sundar and Das [6].
Thus the distinction between the PIC and EMHD fluid simulations finally boils
down to the appearance and dominance of electrostatic oscillations, transverse to
the flow direction. We study the physics of the transverse oscillations in detail in

the next section.
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Figure 6.8: The time evolution of electron density n. = n./ng; for case (c) that
shows the roll in density at time wo.t=3.5 at shear layer (highlighted by red box)
which is a signature of KH instability. The compression and rare faction in density
can be also seen.

6.3.4 IV. Nonlinear oscillation

One of the main observations is the appearance of strong upper hybrid electrostatic
oscillations triggered from the edge of the flow region with increasing relativistic
effects. We show in Fig. 6.10 the amplitude of these oscillations as a function of
time at z = 2.5 ¢/wg, for the strongly relativistic case of V5 = 0.9¢. It can be
seen that the density perturbations acquire a very high amplitude fairly rapidly
e /Neo ~ 8. This is a very nonlinear regime for the oscillations where wave breaking
and trajectory crossing would occur. This is indeed so as the particle distribution
of Fig. 6.9 shows clear crossing of blue and red electrons.

In order to understand the dynamics behind this phenomenon, we model the

phenomena by a one-dimensional magnetized relativistic electron fluid equations
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Figure 6.9: Particle picture of 2-D electron velocity shear configuration for case
(d) which shows transverse oscillations of particles with time.

for electrostatic disturbances.

expressed as

(2 Y 2) N ey
o Yoy) e Yoy
(% T vey%) By, = 4mengivey,

Thus the governing equations of the model are

(6.5)
(6.6)
(6.7)

(6.8)
(6.9)

where poq = VMV 18 a-component of momentum;a is subscript for y and z,
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Figure 6.10: Time evolution of electron density diagnosed at y = 2.5¢/weo for
Vo = 0.9¢, ¢ = 0.05d,.: This figure shows nonlinear large amplitude electrostatic
oscillations which break in later time.

v = [1+p?/m2c®|Y/? is the relativistic factor and ny; is background ion density. The
inhomogeneous magnetic field By(y) is the equilibrium magnetic field generated
from the equilibrium electron flow considered in our PIC simulations. For the

double tangent hyperbolic profile, it will have the following form:

4mnoe
By(y) = WCLO ¢ (Voelog (cosh (0.25L, — y)) + Voelog (cosh (y — 0.75L,)) — Vo) .

(6.10)

We have solved the above equations numerically with the initial profile of v., using
eq. (6.1). For the weakly relativistic case of V5 = 0.1c the electrostatic oscillations
that get generated are quite small and continue to remain so indefinitely (See
Fig. 6.11). However, when the value of ; is increased to a high value of V4 = 0.9¢,
large-amplitude nonlinear oscillations in electron density (see Fig. 6.12) can be

clearly seen. This is similar to the results of our PIC simulations.

The upper hybrid frequency wyy is given by
w?/H = wge + wcz’,e (611)
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Figure 6.11: Time evolution of perturbed electron density An. = |(ne — neo)|

obtained from 1D model diagnosed at y = 2.5¢/w,o for Vy = 0.1¢, ¢ = 0.05d,.:This
figure shows small amplitude electrostatic oscillations in presence of inhomogenecous
magnetic field B(y).

In our simulations, since the magnetic field is non-uniform, the upper hybrid oscil-
lations occur against an inhomogeneous magnetic field background. For compar-
ing the observed oscillation frequency with that of the upper hybrid oscillations we
have chosen to consider an average magnetic field. Thus wee=€By1m.s/MeC, Brm.s is
root mean square value of magnetic ficld. We calculate the upper hybrid frequency
from dispersion relation eq. 6.11, from PIC simulation of wyy and from 1D model
and have tabulated it in table II for the two cases of mild and strong relativistic
flows. It can be seen that both approaches (simplified dispersion equation and 1
D model) yield comparable estimates for the observed electrostatic oscillations in
the PIC simulations.

TABLE VI
The table for upper hybrid frequency obtained from dispersion relation eq. 6.11
wym(anal.), from PIC simulation wyy(PIC) and from 1d model wyg(1d model)

for various different value of V;
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Figure 6.12: Time evolution of perturbed electron density n./ng; obtained from
1D model diagnosed at z = 2.5¢/w.y for Vo = 0.9¢, € = 0.05d,: This figure shows
nonlinear large amplitude electrostatic oscillations which break in later time.

Vo/c wun(anal.)/wo. wun(PIC) /woe wyp (1d model) /wpe
0.5 1.09 1.06 1.06
0.9 1.27 1.26 1.25

This clearly shows that the observed electrostatic oscillations in PIC are the upper

hybrid oscillations.

6.4 Spectral Analysis

The nonlinear regime of the simulation shows evidence of turbulence generation for
both weak and strong relativistic cases. We have plotted the spectra of magnetic

and electric fields as a function of k, defined by the following relationship:

1

Sp(k,) = L_y/o P2y, k) dy, (6.12)

where Sp(k,) is one-dimensional longitudinal energy spectra of the field F where

F is the y-dependent longitudinal Fourier transform of any field, (e.g. the electric
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and magnetic fields represented by R below )

F(k.,y) = i/0 z R(y, z)exp(—ik,z)dz, (6.13)

L,
The resulting longitudinal energy spectra corresponding to x-component of mag-
netic field B,, y-component of electric field £, and z-component of electric field
E. are plotted in Fig. 6.13, Fig. 6.14(a) and Fig. 6.14(b) respectively for weak

relativistic case at various time. At early time stage (wpet=3.5), there is com-
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Figure 6.13: Longitudinal spectrum of magnetic field energy |[Bai|? =
| Bxy,/(mecwoe/e)|? with time for case (Vo = 0.1c, ¢ = 0.05d.). (a) spectra of
magnetic field up to linear stage (b) spectra in turbulent stage (inset show the
vorticity at turbulent stage).

petition between perturbations so we do not observe dominating power on any
particular scale but, as system evolve with time, we observe the domination of
mode m=>5 (where k, = 2mm/L,) after time (wo.t=31.8) that is consistent with
observation and confirming that appropriately 5 linearly unstable wavelengths are
initially growing. At later time (Fig. 6.13 (b)), we have observed the peak diminish
that means the energy of linear modes (m=>5) are transferred to lower mode by
merging or pairing the vortices. This indicates the inverse cascade.

The snapshots of vortices at time wy.t==88.4, and wy.t=106.1 have been shown
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Figure 6.14: Longitudinal spectrum of electric field energy with time for case
(Vo = 0.1¢, e = 0.05d,). (a) spectra of y-component of electric field energy | Ey,|? =
| EByr/(mecwoe/e)|> (b) spectra of z-component of electric field energy |Fzp|*> =
|Ezy,/ (mecwoe/€)]?.

in inset in Fig. 6.13(b) which illustrate the turbulence state of system led by
KH instability. The field energy spectra of all three cases (weak, mild and strong
relativistic cases) has a power law (k?) behaviuor (see Fig. 6.13, Fig. 6.14, Fig. 6.15
and Fig. 6.16 ) and the spectral scaling index is found to be close to -4.

For mild relativistic case (V5 = 0.9¢, e=0.05 ¢/wp.), the energy spectra corre-
sponding to B,, E, and E, are shown in Fig. 6.15 (b), (c¢) and (d) respectively
at different times. We have observed a bump in magnetic field energy spectra at
higher k, (=~ 100) and power of this bump increases with time which means that
the magnetic field energies are trapped in these small scale structures however,
the power of intermediate k, is transfered to lower k, with time through nonlinear
interaction which in turn power to bigger magnetic structures.

For strong relativistic case (Vo = 0.9¢, €=0.05 ¢/wq. ), the magnetic field energy
spectra are shown in Fig. 6.16(b). We observe a bump at higher k, and that is
similar to previous mild relativistic case (Vp = 0.5¢, e=0.05 ¢/wp) but with more
power. The energy spectra corresponding to y-component of electric field is shown

in Fig. 6.16 (c) at various times.
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Figure 6.15: perturbed kinetic energy and fields spectra for strong-relativistic case
(Vo = 0.9¢, e=0.05 ¢/wp.) (a) Time evolution of perturbed kinetic energy (b) lon-
gitudinal spectra of magnetic field energy | Bxy|? = | Bxy/(mecwoe/e)|? (c) longitu-
dinal spectra of y-component of electric field energy |Eyi|> = |Eyr/(mecwoe/e)|?
(d) spectra of z-component of electric field energy |Ez|? = |Ez/(mecwoe/e)|.
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Figure 6.16: perturbed kinetic energy and fields spectra for strong-relativistic case
(Vo = 0.9¢, €=0.05 ¢/wpe) (a) Time evolution of perturbed kinetic energy (b) lon-
gitudinal spectra of magnetic field energy | Bxy|? = |Bxy/(mecwq./e)|? (c) longitu-

dinal spectra of y-component of electric field energy |Fyi|> = |Eyr/(mecwoe/e)|?
(d) spectra of z-component of electric field energy |Ezy|*> = |Ez/(mecwoe/e)|*.
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6.5 Summary

In summary, we have carried out two-dimension electromagnetic PIC simulation
on 2D electron velocity shear flow instability and we have shown the formation
of electromagnetic KH vortices in 2-D sheared electron velocity flow configuration
against a neutralizing background of ions for weak relativistic cases (Vo = 0.1c,e =
0.05¢/wpe) what have been predicted by EMHD model. However, for mild and
strong relativistic case, we have seen the compression and rarefaction in plasma
density in transverse direction of sheared-flow and this compression and rarefaction
in plasma density increases with velocity of flow. This puts constraint on EMHD
model to be used to describe the sheared-flow instability in relativistic regime. In
order to understand the compression and rarefaction in mild and strong relativistic
flow cases, we model the phenomena by a one-dimensional magnetized relativistic
electron fluid equations for electrostatic disturbances and found that compression
and rarefaction are upper hybrid oscillation which breaks in nonlinear regime.
The spectral behavior of magnetic and electric fields in turbulent stage for weak
relativistic regime shows the smooth transition of energy from lower k modes to
higher k modes while in mild and strong relativistic cases the energy is trapped in

higher k modes which do not change with time.
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The interaction of laser with plasma is a highly non-linear process where several
complex phenomena take place simultaneously. The experimental investigations
are limited in terms of available diagnostics. Numerical simulations, in this sce-
nario, appears as a useful aid. The other advantage of the numerical technique is
that one can investigate the response of the system by switching on and off certain
physical effects. In the present thesis, Particle-In-Cell (PIC) simulation technique
has been adopted to study the electron time scale phenomena in the context of
intense laser-plasma interaction. In the preceding chapters, the detail description
of some of the studies carried out by us has been presented. We briefly provide a
summary of the major findings of the thesis here. The future scope of work has

also been identified.

7.1 Main results of the thesis

7.1.1 Enhanced laser energy absorption rate: role of struc-

tured targets

One important issue associated with the interaction of laser with plasma is the
question of laser energy absorption. One would like to have a mechanism of possible
control over this process so as to maneuver the amount of energy absorbed by the
plasma. We have provided such a possibility in terms of using structured targets.
It has been shown with the help of 2D3V PIC simulations that an appropriate

structured configuration of the target can enhance the absorption of laser light.
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A structured target gets ionized by the prepulse of a strong laser field. The
main pulse, therefore, encounters a structured plasma profile for interaction which
is in general overdense. This is because the expansion of the plasma is consider-
ably small by the time the main pulse hits the target after ionization. The energy
transfer in this configuration takes place through vacuum heating mechanism pro-
posed by Brunel [3]. This mechanism requires the electric field component of the
laser light to be directed perpendicular to the surface which helps in dragging the
electrons out of the surface. This is possible only for a p - polarised light incident
at an angle. For a planar target, a normally incident light pulse will not be able
to transfer any energy to the plasma by this mechanism. On the other hand, if
the target surface is corrugated or rippled then there are local regions on the sur-
face for which a normal component of the electric field exists. Furthermore, the
effective surface area also gets enhanced. We have shown that both these effects
are instrumental in increasing the absorption. We also show that when the ripple
spacing is smaller than the typical electron displacement over one cycle of the laser
pulse, the absorption efficiency does not improve much. This is so because the in-
tergroove distance, in this case, is such that the electrons which are pulled out
from one plasma surface are essentially moved inside the other adjacent region of
the plasma. Thus the optimal requirement is that the surface corrugations should
be high so that the surface area increases, but smaller compared to the electron

displacement in the quiver electric field of the laser.

7.1.2 1-D studies on electron beam propagation in plasmas:

the role of plasma density inhomogeneity

Once the electrons acquire energy by the laser efficiently, one would be interested in
its efficient transport to the regions within the plasma where one hopes to deposit
them. This is essentially the problem of energetic electron beam propagation in
plasmas which is known to be beset with various beam-plasma instabilities. These
instabilities and possible ways to suppress them have been looked into 1-D and
2-D configurations.

A counterstreaming beam-plasma electron system is considered as an equilib-
rium configuration in an inhomogeneous plasma medium transverse to the beam

propagation direction. In the 1-D configuration, variations transverse to the prop-
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agating beam have been permitted. Our simulation study shows that the growth
rate of Weibel instability as a function of wavenumber gets suppressed in the pres-
ence of plasma inhomogeneity. The numerically obtained growth rate has been
found to compare well with approximate analytical predictions made by Mishra
et al. [56]. The reduction in growth rate can be understood by realising that the
transverse electromagnetic perturbation in an un-magnetized plasma with scale
length shorter than the skin depth is typically damped. When the plasma density
inhomogeneity scale length ( perpendicular to the flow direction) is shorter than
skin depth it provides a coupling between the growing electromagnetic mode and
the short scale perturbations. Thus, the density ripple acts as a conduit for the
transfer of the energy of the growing mode to short scale damped perturbations

resulting in the suppression of the mode.

7.1.3 2-D studies on electron beam propagation

We considered the evolution of pure Weibel mode in a 2-D configuration for which
the variations were confined in a plane transverse to the propagation direction. A
kinetic dispersion relation for beam-plasma system was obtained, which shows that
the linear growth rate of Weibel instability reduces with beam temperature. The
simulation results also confirm this. We have observed the magnetic field (B?) as
well as current filaments with the size of skin depth in linear regime of cold beam-
plasma system while for warm beam-plasma system strength of such filaments is
very weak.

In the nonlinear regime, the like current filaments (formed by the process of
Weibel destabilization) start merging. The magnetic field inside the current fila-
ments is found to be large enough to trap the electrons. This is the main cause of
saturation of instability. The trapped electrons oscillate with a frequency which is
known as bounce frequency. We have estimated the saturated magnetic field by
comparing this bounce frequency to the maximum growth rate of linear Weibel
instability. The estimate is in good agreement with PIC simulation result.

It is known that in the beam plasma system the oblique modes have a maxi-
mum growth rate. We investigated the role of plasma density inhomogeneity on
these modes by PIC studies. The 2-D plane formed by the inhomogeneity and

the flow direction showed the suppression of the oblique modes in the presence
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of inhomogeneous plasma density. The suppression in growth rate was compared
with the growth rate obtained from a linearised treatment of two fluid descrip-
tion. Both approaches indicate that there is a reduction in growth rate when the

inhomogeneity scale length is found to be less than the plasma skin depth.

7.1.4 2-D studies of electron velocity shear driven instability

The Weibel separated current filaments have a sheared electron current flow config-
uration. Thus shear flow instabilities would have a role after the Weibel separation
occurs in a beam plasma system. Furthermore, since the laser spot size is typically
finite, the electron beam generated by such a laser would also have a finite extent.
Thus even before a sheared clectron flow configuration of Weibel separated cur-
rents arise, from the very beginning of electron beam propagation in the plasma
the edges would be susceptible to sheared flow instabilities.

In the past, several authors have studied the electron sheared flow instabilities
using a simplified EMHD description. It is an incompressible fluid description of
magnetized electron flow. The displacement current is not taken into account in
this simple model. Also, the relativistic effects are totally ignored in the EMHD
description. Sita et al. [6] studied the sheared flow instability in the relativistic
regime by introducing the relativistic mass variations due to the shear electron
flow.

We investigate the sheared electron flow instability through PIC studies which
contains all the effects for example compressibility, relativistic mass variation and

displacement currents.

e Shear flow driven instability in various regime

The linear stability analysis of shear driven instability for the 2-D sheared
flow in weakly relativistic regime shows the existence of K-H instability when
shear scale is sharper than skin depth otherwise system is highly stable.
Moreover, we have also observed the development of K-H vortices in the shear
region which ultimately merge to form longer structures. All observations in

weak relativistic flow are in conformity of the fluid EMHD theory.

e Upper hybrid oscillations in mild and relativistic flow
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In the mild and strong relativistic case, the compressibility effects are dom-
inant and we have observed a characteristic electrostatic oscillations trans-
verse to the flow direction which is Upper Hybrid Oscillation (UHO). This

overwhelms the K-H in the system.

e 2-D turbulence in sheared electron flow

The nonlinear regime, in all cases, shows broad power spectra of the magnetic
field which is indicative of turbulence excitation. We have observed that in
both strong and weak relativistic cases, the spectra are broad and have power
law behavior. The spectral scaling index is found to be close to -4. In the
strong relativistic case, we have observed that the power law extends towards
the longer wavelength region nearly at the order of skin depth whereas this
is not so for the weak relativistic case. It appears that it is easier to generate

longer scales in the strongly relativistic case.

7.2 Future scope of the work

The thesis provides many directions for experimental as well theoretical explo-

rations.

7.2.1 Experimental explorations

For instance, the novel vacuum heating effects associated with structured tar-
gets demonstrated in the thesis for enhanced laser absorption can be tested in
laboratory experiments. There are already some indications of the suppression of
beam plasma instability in inhomogeneous plasmas created by attaching nanowires
[56,103,104]. Such experiments can be carried out in detail to explore the role of
density scale length and inhomogeneity amplitude. An optimized design of the
target can be proposed based on the twin requirement of efficient absorption as

well as unhindered propagation in the plasma.

7.2.2 Theoretical and simulation

It appears that the finite size of the electron beam adds novel effects related to the

shear flow instabilities. It was earlier believed to play a role only after the Weibel
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separated current led to a sheared configuration in an infinite periodic system. We
have shown that the sheared flow instabilities in this case invariably involves upper
hybrid oscillations and their associated wave breaking. The study of wave breaking
phenomena for magnetized systems are thus of paramount importance and need
to be pursued.

The thesis has restricted to 2-D simulations. In 3-D nonlinear regime, it is well
known that the hydrodynamic flows do not permit inverse cascade towards long
scales. An extension to 3-D simulations for this problem where electron are mag-
netized and relativistic would, therefore, be of interest. The ensuing characteristic
of turbulence would be interesting to pursue.

Some laboratory experiments have now been able to explore the regime of ion
response for the generation of turbulent magnetic fields. In this context, it will be
interesting to extend beam-plasma simulations with ion response and characterize

the behaviour of turbulence in detail.
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