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SYNOPSIS

The contents of this synopsis provide a detailed analytical and numerical study
of shear flows in strongly correlated liquids, considering strongly coupled dusty
plasma as a prototype. Numerical methods consist of molecular and computa-

tional fluid dynamics.

Conventional low temperature plasma is often found embedded with large size
grains or dust. Study of such plasma comprised of clectrons, ions and grains
has become a novel area of research because of its application to astrophysical
(Solar nebula, planetary ring, white dwarfs, Supernova shells, molecular clouds,
Saturn’s rings, comet tails, lightning) [1, 2], industrial (microelectronics processing
ete) [3], technological (fusion devices, deposition of nano size particles, ceramic
deposition-composites) and in fundamental plasma physics studies as well. In
general, these grains may have sizes ranging from few tens of nanometres to few
hundreds of micrometers and may be composed of dielectric (e.g. P10, or AlyO3)
or conducting materials (MnoO3) [2]. Grain attains high value of charge partly
due to the size of the dust and partly due to the high relative mobility of electrons.
Unlike electrons and ions of the background plasma, the ratio of potential energy
to kinetic energy per grain (I') can be much greater than one leading to strong
coupling effects in the grain medium. Thus, depending upon the temperature
of the dust grain 7T} , inter-grain spacing “a” and charge ¢, per dust grain, the
grain medium can be strongly coupled and can exhibit different phases of matter,
such as solid-like (crystal) [4], liquid-like [5], gas-like phases. Strongly coupled
dusty plasma is characterized by two dimensionless parameters, namely, coupling
strength I', which is the ratio of average potential to average kinetic energy per
particle T' = 2 /4repakpT), and screening parameter £ = a/\y, (A, is Debye length
of background plasma, where for 2D and 3D a = 1/ Cnwoand a = (3/4mn)!/3
respectively). For a weakly coupled plasma I' << 1, while for a strongly coupled
plasma, the value of coupling parameter I' > 1. The range of coupling strength
and screening parameter can be controlled in the laboratory dusty plasma mainly
by varying power and pressure of the gas. Due to their large mass, the dust

grain dynamics occurs in much slower time scale as compared to electron and
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ion time scales and hence unlike regular plasma components (electrons and ions)
in laboratory, dust grains can be illuminated by laser light and the dynamics of
dust grain can be recorded by CCD camera or other optical devices [6]. Grain
medium in conventional plasma responds in two qualitatively different ways. [I]
When r, < A\, < a, where r, is the mean radius of single dust grain, in this
case, dust grain number density is low and the interaction between the grains is
weak. Such grain medium is called “dust-in-plasma" or “grain-in-plasma” [II]
When 7, < a < \p, in this case, dust number density is relatively high and grains
interact via screening Coulomb potential (or Yukawa potential). The dust grain
medium shows collective behavior on its own slow time and long length scales and
is known as “dusty plasma” In this thesis work, our primary interest is “dusty

plasma”.

To understand physical phenomena in a range of time scales and length scales in
strongly coupled dusty plasma experiments, typically, one or several of the follow-
ing approaches is (are) used: Molecular Dynamics, Navier-Stokes Hydrodynamic
models, phenomenological hydrodynamic models, multiscale particle in cell (PIC)
simulation, Quasi-localized charge approximation and orbital motion limiter the-
ory. The variety of interesting phenomena, including grain charging, interaction
between charged particles, momentum exchange between different species, dust ion
acoustic wave (DIAW), dust acoustic wave (DAW), phase transition, dust plasma

crystal and other studies have been investigated in dusty plasma [2].

It has been found that the several phenomenon common to conventional hydrody-
namic fluids, such as two stream instability (Kelvin Helmholtz instability), satu-
ration in non-linear regime, vortex roll formation, inverse cascading, etc., are also
found to happen in strongly coupled dusty plasma. For example, using Molecular
dynamics method, it has been observed that a strongly correlated dusty plasma
exhibits Kelvin Helmholtz instability [7]. Formation of coherent structures [8],
such as dipole formation, has also been studied. In the same way, using phe-
nomenological hydrodynamic model, shear waves, two stream instability (Kelvin-
Helmholtz), non-linear saturation, vortex roll formation, etc., have been inves-
tigated [9, 10, 11, 12]. Far-from-equilibrium questions, such as transition from

laminar to turbulent flows, vortex-vortex interactions, interaction of embedded co-
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herent structures or rotational structures with the background turbulence etc -
for these fundamental questions, even a qualitative comparative study of strongly
correlated grain medium using fluid models and molecular dynamics simulations

has not been attempted yet.

The transition from laminar to turbulent flows in liquids remains a problem of
great interest despite decades of intensive research. Hydrodynamic like flows are
generally studied to understand such transition and stability of flow. Conven-
tionally, such shear flow related problem is mainly described by modelling the
medium as a continuum. As [' is increased, it is found that the dusty plasma in
the liquid regime may also be understand as a viscoelastic fluid. Though Navier-
Stokes equations are well known hydrodynamic equations, however, Navier-Stokes
equation does not incorporate elastic effects. To understand the role of strong
coupling, there are several phenomenological hydrodynamic models which tend to
incorporate elastic effects arising out of strong correlation effects into N-S model.
One of them is memory effect based model [Frenkel (1945)] which was applied
to dusty plasma for I' > 1 [Kaw and Sen (1998)]. In these models, viscoelatic
response of strongly correlated fluid is incorporated by a non-local viscoelatic op-
erator which incorporates memory effect and long range order, via a relaxation
time /£ . Thus for £ = 0 (memory-independent), these phenomenological models
reduce to conventional Navier-Stokes fluid model. In 2015, Diaw and Murillo [13]
described yet another hydrodynamic model for strongly coupled plasma system
suggested called as the viscoelastic-density functional (VEDF) model using den-
sity functional method. More recently, Di Luo et.al [14] have introduced another
hydrodynamic approach to simplify the calculation of dynamical structure factor
of strongly coupled plasmas using fluctuation-dissipation theorem. In this thesis,
to study shear flow dynamics in strongly coupled dusty plasma from continuum
point of view, £ based model has been used. In the concluding chapter, comments

on the more recent fluids models are made and possible future work is indicated

Dusty plasma or strongly correlated liquids can also be treated as particle medium.
As described earlier, the experiments allow direct observation of position and ve-

locity of each dust grain. This unprecedented capability makes MD and com-
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parison with experiments a very attractive possibility. In molecular dynamics
study, classical Newton’s second law of motion is solved for each particles. In
this method force between dust-grain is calculated by interaction potential. From
molecular dynamics study, data for individual particles to continuum data may
be estimated. Thus fluid models and particle (or Molecular dynamics) models
may be compared. Let alone for far-from-equilibrium phenomena described ear-
lier, even for near-equilibrium phenomena such as onset of an instability, a detailed

comparison between fluid and particle models has not been attempted.

In continuum models, whenever there is a shear in macroscopic velocity profile, it
is well known that large scale fluid instabilities set in. However, in dusty plasma
experiment, it is found that, whenever there is a shear in macroscopic velocity pro-
files, viscous shear heating occurs at the microscale because of collisions of grains
near the shear layers [6]. This shear induced localized heating reduces the strong
coupling effects. However, a detailed study of microscale shear heating and its
effcts on macroscopic flows in strongly coupled plasma has not yet been addressed.
In present thesis, a well known macroscopic flow, namely, Kolmogorov flow as an
initial shear flow has been considered. Kolmogorov flow is an unsteady, unbounded
sinusoidal driven flow Ujpnitiar(x) = U cos(k,x)y, where Uy is magnitude of initial
velocity of Kolmogorov flow and k, = 2wng/L,, where ng, L, are equilibrium mode
number, size of the system along x direction respectively. For conventional fluids,
Kolmogorov proposed a class of flows, which exhibits laminar to turbulence transi-
tion at low Reynolds number and is amenable to analytical methods. For example,
Meshalkin and Sinai 1961 [15, 16] have performed the linear stability analysis of
such flows in an unbounded domain, and obtained the critical value of Reynolds
number R, = _5, where R, is laminar to turbulent transition point. Using Kol-
mogorov flow as initial shear flow, various fundamental processes including “Anti
turbulence”, metastability and vortex pairing study and nonlinear phenomena e.g
bifurcation have been observed for Navier Stokes flow. In laboratory experiments,
Kolmogorov flow has been studied in magnetized electrolyte fluid [16, 17] and also
in driven soap film [18]. Due to its smooth (sinusoidal) flow profile, we believe it
is possible to realize such flow Kolmogorov flow in laboratory dusty plasma exper-

iments.
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A. Particle or molecular dynamics studies

We consider parallel shear profile with sinusoidal perturbation has the form U (x,y) =
Up cos(kyx)(1 + 0 cos(kyy))y where Uy, 6 are magnitude of initial velocity of Kol-
mogorov flow and magnitude of perturbation respectively and k, = 2mng/L,,
k, = 2mm/L, where ng,m, Ly, L, are equilibrium mode number, perturbation
mode number, size of the system along = and y directions respectively. Using large
scale non-equilibrium molecular dynamics, the early phase and late time dynamics
of this parallel flow in strongly coupled plasma is addressed. A parametric study
of stability of the flow with Reynolds number R has also been performed and
found that below a critical value of Reynolds number R, , flow exhibits a neutral
stability. However, above R > R, , a transition occurs from laminar to unstable
state and eventually turning into a turbulent flow. It is found that the value of
R, decreases with increasing value of coupling strength. It is observed that for the
given value of initial coupling parameter and screening parameter, molecular shear
heating strongly reduces the magnitude of coupling parameter and its decay-rate
is mainly found to be dependent upon the ratio of equilibrium shear velocity to
thermal velocity. It is found that the magnitude of coupling parameter decays ex-
ponentially by the end of the growth phase, thus altering the state of “background

grains” dramatically [19].

To understand the vortex dynamics of strongly coupled molecular fluids under-
going macroscale shear flows in the absence of molecular heat, MD simulation
has also been performed, which allows the macroscopic vortex dynamics to evolve,
while at the same time “removes” the microscopically generated heat without using
the velocity degrees of freedom. It is demonstrated that by using a configurational
thermostat (Profile Unbiased Thermostat or “PUT”) in a novel way, the microscale
heat generated by shear flow can be thermostatted out efficiently without compro-
mising the large scale vortex dynamics. In this work, using MD simulations, a
comparative study of shear flow evolution in Yukawa liquids in the presence and
absence of molecular or microscopic heating is presented [20]|. However, when PUT

is “ON” it is observed that the peaks of local temperature profile at the shear flow
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location are much lesser in magnitude and global average temperature of the sys-
tem is maintained as compared to the case with PUT “OFF”. Above mentioned
study has also been done with rotational shear flow, wherein visco-elastic nonlinear

wave evolution, nonlinear interaction have been observed.

B. Continuum or computational fluid dynamics studies

To study the behavior of parallel (Kolmogorov flow) and circular shear flow (
Rankine, Gaussian, dipole etc.) using continuum model, a phenomenological fluid
model [9, 10] has been adopted. In the fluid model, the effect of strong correla-
tion is considered by using a visco-elastic relaxation time F , Thus for example,
as ¥ — 0, the model becomes Navier-Stokes fluid model. For this purpose,
a new two-dimensional fully parallized generalised hydrodynamic pseudo spectral
code has been developed for incompressible (M = 0) [12], weakly (M < 0.3) and
strongly compressible (M > 0.3) fluids. Using generalised compressible hydro-
dynamic model good agreement in linear growth rates obtained from eigen value

solver and time dependent simulation has been observed [21].

In the incompressible limit of strongly correlated fluid, it is found that R, is
strongly reduced for increasing values of £ . A critical /' is found above which Kol-
mogorov flow is unconditionally unstable and becomes independent of Reynolds
number. For R < R., the neutral stability regime found in Navier Stokes fluid
(f = 0) is now found to be a damped regime in viscoelastic fluids, thus changing
the fundamental nature of transition of Kolmogorov flow as function of Reynolds
number R. Nonlinear states obtained from the pseudo spectral code exhibit cyclic-

ity and pattern formation in vorticity and viscoelastic oscillations in energy.

The compressibility effects on the two-dimensional strongly coupled dusty plasma
by means of computational fluid dynamics (CFD) simulations for various initial
shear flow profiles has also been studied. Incorporation of compressibility effect
allows dissipation of some amount of energy to drive longitudinal modes. Nonlinear
compressible vortex flow dynamics and other linear and nonlinear properties of
such flow in the presence of variable density, pressure and electrostatic potential

are addressed. In CFD study, the suppression of instability, elongated vortex



structures, nonlinear saturation, viscoelastic oscillations and pattern formation

have been observed.

Various linear and nonlinear properties of parallel and rotational shear flow, for
example, laminar to turbulent transition, shear flow instability, macroscale vor-
tex flow dynamics, microscopic shear heating, suppression of molecular heating
(using “PUT?”), compressibility effects over such shear flow instability have been
addressed in this thesis. In the incompressible limit (Mach number M << 1) of the
fluid, where transverse variation dominates, generation and propagation of trans-

verse shear waves have been reported using CF'D model and MD simulation as well.

A qualitative comparison between fluid and molecular dynamics studies has also

been performed in this thesis.

Chapter-wise thesis plan is as follows-

Chapter-1: [Introduction and outline of the problem| Introduction about strongly
coupled liquids, shear flow instabilities, coherent structure formation, shear heat-
ing phenomena, viscoelastic response and motivation behind doing this problem.
Chapter-2: [A development of Pseudo spectral code and molecular dynamics
methods] Numerical and computation algorithms of computer fluid dynamics (CFD)
and molecular dynamics (MD).

Chapter-3: [Kolmogorov shear flow: Study of molecular shear heating] The phe-
nomena of heat generation at the strong shear in molecular dynamics study. Ex-
ponential decay in average or global I' (inverse of temperature) value, destruction
of vortex due to molecular heating, stable to unstable transition and its depen-
dency crucially dependency on the Reynolds number values are important results
observed. To do a comparative study between the fluid and molecular study, for
example, fluid-like phenomena of K-flows, it is important to prevent molecular
heating up to some extent.

Chapter-4: [Kolmogorov shear flow in the absence molecular shear heating] Unique-
ness of configurational thermostat to control the temperature by using augmented

equations of motions for the instantaneous particle positions without disturbing

xi



the instantaneous velocity of particles. In this chapter, vortex evolution, nonlin-
ear pattern formation, neutral to unstable flow transition, a parametric study of
growth-rate of perturbed mode and their comparison with Profile Biased Thermo-
stat (PBT) e.g Gaussian thermostat will be presented. Observation of elastic shear
waves in presence of circular shear flow will also be presented.

Chapter-5: [Viscoelastic response of shear flow in incompressible and compress-
ible limits of fluids| Using fluid simulation, the shear flow instability and other
nonlinear properties of parallel and circular flows in strongly coupled liquids (vis-
coelastic liquids) will be addressed in the incompressible and compressible limit.
A qualitative comparison between fluid and molecular dynamics studies.
Chapter-6: [Conclusion and Future scope | will conclude and summarize the the-
sis work. Future direction of this thesis and open questions that remain to be

solved.
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Introduction

Gases, liquids and solids are all made up of a large number of atoms and molecules.
They differ primarily from each other in two aspects: (a) the average distance be-
tween the particles which is decided largely by the Potential Energy (P.E) between
particles and (b) the extent to which the ions or molecules move randomly which
is governed by the Kinetic Energy (K.E) of the molecules. If the P.E per particle
exceeds the K.E per particle [say I' = P.E /K .E > 1], spatial correlations tend to
increase near the vicinity of each particle. In general, the matter becomes more
active when the temperature rises [see Fig.1.1]. The dimensionless parameter T,
which decreases from left to right in Fig.1.1 decides whether the substance will be
in solid, liquid, gas or plasma phase. In solids, particles only vibrate around their
mean position. However, the atoms in fluids (Gases and Liquids) move around in

all possible directions. Fluids have an inherent viscous property (or dissipation)

i +T i ) +T +T
Solids—lLiquids —eGases—-Plasmas

Figure 1.1: Phase transition of matter due to increasing temperature.



Chapter 1. Introduction

as particles transfer momentum across. Thus, in general, spatial correlation acts
like a restoring force or has an elastic effect. Hence any fluid medium can be
thought of as a “viscoelastic medium”, i.e as a medium which has both solid-like
elastic properties and liquid-like viscous properties. Thus depending on the value
of T', the viscous and elastic or viscoelastic properties can change, in a correlated
medium. For example, synthetic polymers, human tissue, polymeric fluids (melts
and solutions) used to make plastic articles, food systems such as dough used to
make bread and pasta and biological fluids such as synovial fluids found in joints
display significant viscoelastic effects [26].

Plasma is an ionized gas consisting of ions and electrons as well as neutrals. The

Coupling parameter I' for charged particle is

¢ ¢*n

I'= 1.1
47TEQFI€BTOC T (1.1)

1/3

where 7, ¢, T" and kg are the mean inter-particle distance, particle charge, temper-
ature and Boltzmann constant respectively. In a conventional plasma system, low
density and high temperature make coupling parameter to be much less than one.
Thus electrons and ions are very weakly correlated or behave like an ideal fluid.
Let us now introduce large micron or sub-micron sized grains in this weakly cor-
related plasma. The grains tend to accumulate a large negative charge because of
the relatively high mobility of electrons. This massive charged grain medium with
very low density exhibits a strong correlation with I'g.q;, > 1. Such plasmas are
called “Complex plasma” or “Dusty plasma”. From Eq.1.1, it is clear that ' can be
made greater than one by increasing density or by reducing temperature or by in-
creasing charge. For example, highly dense astrophysical plasma (=~ 10?6 /cm?) [27]
and ultra cold plasma (T, ~ 100mk), (T; ~ 10uK) [28] also behave like strongly

coupled plasmas.
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1.1 Overview of dusty or Complex plasma

Micron-sized dust grains get highly charged when immersed in a conventional
plasma because of relatively high mobility of electrons [1]. The average charge
on a single dust grain is typically ~ 10%e — 10%e, where e is the absolute electronic
charge. There are many examples of plasma in nature wherein large sized grains
interact with an ambient plasma and play an important role, for example, comets,
planetary rings, white dwarf, earth’s atmosphere and in laboratory conditions such

as plasma processing reactors, plasma torch and fusion devices [3].

These charged grains or dust particles interact via a shielded Coulomb interaction
or as “Yukawa potential” as the ambient plasma shields the bare grain charge. Such
plasmas can be characterized by two non-dimensional parameters k = a/Ap (where
a is average inter-grain spacing and Ap = \A./ \//\fT/\g is the Debye length of
the background plasma and \;, A, are the Debye length of electron and ion respec-
tively) and the coupling parameter I' = Q3 /(4weoakpT}) wherein Qj and T}, are
charge and temperature of grains respectively. I" and « relation of dusty plasma

Qiry 71y

with conventional plasma can be represented as follow I' = 5 NoTR = INeTR

where Q) = Zye , T; are total charge over dust and the temperature of ion. Np is
plasma parameter Np = 47n\3,/3. It is found that in conventional plasma for den-
sities of the order 10" — 10'¢m =3, temperatures ranging 10* — 108K with Z = 1,
the range of I' parameter exists 10~7 — 1073, Therefore, conventional plasmas are

found to be in weak coupling limit.

For dust grain system, high charge over dust @), = Z,e = 10®—10*e makes coupling
parameter grater than unity. A system with 1 < I' < I'., is in liquid state with
strong correlation. It is found that crystallization occurs when I' is grater than
I'. = 168+2. In laboratory experiments, a grain medium can easily attain different
states such as gaseous-like, liquid-like and crystal-like phases with varying density,

charge, temperature and size of the dust particles which can be characterized by
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k and T values [1, 4, 5, 29, 30]. Grain medium in a conventional plasma responds
in two qualitative by different ways: [ When 7, < A\, < a, where 7}, is the mean
radius of a single dust grains, in this case, dust grain number density is low and
the interaction between the grains is weak. Such a grain medium is called “dust-
in-plasma” or “grain-in-plasma”. [ When 7, < a < Ap, in this case dust number
density is relatively high and grains interact via screening Coulomb potential (or
Yukawa potential). The dust grain medium shows a collective behavior on its own
slow time scale and long length scales and is known as “dusty plasma”.

To understand the physical phenomena in a range of time scales and length scales
in strongly coupled dusty plasma experiments [6, 29, 31], typically, one of the
following approaches is (are) used: Molecular Dynamics [7, 22, 32, 33, 34|, phe-
nomenological hydrodynamic models [9, 10, 11, 12], particle-in-cell Monte Carlo
simulation [35] , Quasi-localized charge approximation [36, 37] and orbital mo-
tion limiter theory [38]. In laboratory experiments, because of longer time scale
and large spatial scale of dust grain dynamics, each dust grain can be visualized
(by unaided eye) and tracked by simple optical cameras [29]. A variety of in-
teresting phenomena, including grain charging [39], interaction between charged
particles, momentum exchange between different species [40], dust ion acoustic
wave (DIAW), dust acoustic wave (DAW) [37] and other studies have been investi-
gated in dusty plasma. Our primary focus in this Thesis is in the liquid-like state
which can sustain shear flows. To study shear flow instability in a strongly coupled
dusty plasma a modified hydrodynamic model approach and a molecular dynamics
approach have been considered.

It is well known that two-dimensional macroscale shear flows are susceptible to in-
stabilities leading to macroscale vortical structures. The linear and nonlinear fate

of such a macroscale flow in a strongly coupled medium is a fundamental problem.
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1.2 Motivation

As described earlier, a massive grain in a plasma attains a large mean charge Q).
Also, the electrons and ions behave as a massless medium and attain Boltzmann
distribution on time scale of slow dust grain dynamics. Thus, Dusty plasma experi-
ments allow direct observation of instantaneous position and instantaneous velocity
of each dust grain. This unique capability makes Molecular Dynamics (MD) sim-
ulation and direct comparison with experiments a very attractive possibility. In
a Molecular Dynamics study, classical Newton’s second law of motion is solved
for each particle. In this method, the force between the dust-grains is calculated
by a grain-grain interaction potential. From Molecular Dynamics study, using
data of individual grains, the continuum “fluid” quantities may be obtained by
averaging. Thus, fluid models and particle (or Molecular Dynamics) models may
be compared with experiments. Using a Molecular Dynamics simulation, many
interesting features of dusty plasma, for example, phase transition[41], study of
transport coefficients such as shear and bulk viscosities [32], Maxwell relaxation
time [22], heat conduction, wave dispersion [42], self diffusion [33], fluid instability
such as shear-driven Kelvin-Helmholtz instability [7] and grain crystallization [43],

have been addressed in the past.

Hydrodynamic like flows and instabilities (Rayleigh Benard instability, Rayleigh
Taylor instability, Kelvin-Helmholtz instability etc.) are generally studied to un-
derstand stability and transition of flows. In general, hydrodynamic flow related
problems are addressed by modeling the system as continuum where the aver-
age number density (n) of the medium is high enough (for example, for wa-
ter n = 3.33 x 10%® m 3 and for ideal gas i = 2.5 x 10> m~3) inspite of the
range of the interaction between particles being very short. On the other hand,
dusty plasma modelled as Yukawa liquids are very low density soft matter [44],
for example, Ngpqin ~ 10%m™3. Inspite of relatively low number density of grain

(7 = 107 — 108m~?) as compared to conventional liquids (72 = 3.33 x 10%® m~2),
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grains form liquid phase. This “liquid phase” is often treated as a modified Navier-
Stokes continuum. It is also modeled as particles system interacting via a modified

Coloumb potential.

It is well known that whenever there is a shear in macroscopic velocity profiles,
a viscous shear heating occurs at the microscale. For some fluids, it is not neces-
sary that the shear heating lead to increase in the local temperature at the shear
layer. This is because heat conduction can be so rapid at the location of the ve-
locity shear where the heat is generated that as soon as heat is generated, it is
carried away or transported away due to thermal conduction. In general, the effect
of viscous shear heating and thermal conduction is measured by a dimensionless
parameter, known as Brinkman number [45, 46] B, ~ n(AV)?/A\AT (where n, A
are shear viscosity and thermal conductivity and AV, AT are difference in mean
flow velocity and temperature respectively) [46]. (This number can also be rep-
resented by the product of two other non-dimensional number, viz. B, = P.E,,
where P, and E,. are Prandlt and Eckert numbers. Prandlt number is the ratio
of momentum diffusivity to thermal diffusivity and signifies how fast the thermal
diffusion takes place in comparison to momentum diffusion [47]. Eckert number
is the ratio of the kinetic energy to the enthalpy driving force for heat transfer).
When the value of dimensionless number B, is less than 1i.e B, << 1, the energy
dissipation or shear heating can be neglected [48]. For example, for Navier-Stokes
like fluids, B, which is the ratio of viscous heating to thermal conduction, is much
smaller than unity (=~ (1 —17) x 107®) [49] and hence shear heating does not alter
the local transport properties in any significant way. Crucial to this discussion is
the fact that thermal conduction A is, typically, dependent on the average number
density n of the system. Thus for high n, Brinkman number B, can be expected

to be much less than one and for low n, B, may be expected to be comparable to 1.

In Fig.1.2 a laboratory experiment used to set up a macroscale shear flow in a

dusty plasma experiment is shown. As described earlier, the bare grain charge gets
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electrostatically shielded by the background plasma interact via screened Coulomb
potential or a Yukawa potential. Dusty plasma modeled as Yukawa liquids are very

low density soft matter [44], for example, Tigrqin ~ 108m™ .

Hence these system
in liquid state may be expected to have a relatively less thermal conductivity
compared to higher density liquids such as water. If the thermal conductivity of
the medium is relatively small. The generated heat may be accumulated in the
shear zone. In the past, using classical molecular dynamics (MD) simulations,
the development and propagation of a nonlinear heat front and shear heating in
parallel shear flows of a strongly coupled Yukawa liquid was identified [8]. In
laboratory experiments, macroscopic shear flows have been induced by an external
laser-drive in Yukawa liquids [6, 31]. To study shear heating phenomena from
an atomistic (or particle) level, we perform a classical first principle MD study
considering Kolmogorov flow (continuous gradient in velocity profile), as the initial
flow profile as continuous gradient in the shear flow profile would be relatively easily
attainable in a laboratory dusty plasma experiments than sharp velocity gradient
profiles [34]. A detailed study of shear heating in macroscopic flows in Yukawa
liquids using a molecular dynamics simulation has not yet been addressed where
the grains interact with each other through a shielded Coulomb potential, due
to the screening provided by background free electrons and ions. Therefore, it
is worthwhile to ask as to what would be the flow dynamics for large Brinkman
number (B, ~ 1) fluids system such as Yukawa liquids when the macroscale shear
flow is initialized in a Yukawa liquid, where the viscous heat may be expected to
alter the local transport coefficient of the medium in a non-trivial fashion? What
would be the effect of shear heating over large scale (macro-scale) vortex dynamics
due to small scale molecular heating (micro-scale)? How does average coupling
strength (I') of the system change due to microscale heating and in turn alters
the vortex dynamics? To address some of these questions, it becomes necessary to
perform a classical first principle simulation such as molecular dynamics where no

assumption or approximations regarding transport coefficients are introduced.

In parallel shear flows [7, 8, 19], the spatio-temporal evolution of instabilities as
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Figure 1.2: A typical experimental example to setup shear flow in a labora-

tory dusty plamsa using laser [Figure adapted from Yan Feng et.al. PRE, 83
(2012) ]
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an initial value problem have been studied using molecular dynamics in a micro-
canonical ensemble. As no attempt was made to control the temperature of the
liquid during the simulation, the flow evolves under adiabatic conditions and the
shear heat generated due to shear heating. An increase in overall temperature and
also strong localized gradients eventually destroy large scale vortex structures. We
investigate whether or not, at least in principle, it is possible to address macroscale
vortex dynamics using MD simulation and at the same time maintain the grain
bed at the desired temperature. For this purpose, using a thermostat based on
configurational space degrees of freedom [50, 51, 52, 53], it is demonstrated that
the average coupling strength can be controlled without compromising the effects

of strong correlations on the macroscopic shear flow and vortex dynamics.

Unlike parallel shear flows discussed earlier, there is an important class of 2D co-
herent flows, namely, rotational or circular flows. Strong coupling effects of the
Dusty plasma medium tend to couple the optical or transverse wave dynamics to
the acoustic or compressional wave dynamics [54]. However, this initial condition
with shear also may introduce strong shear heating. This important aspect is in-
vestigated here. The nonlinear structures found here resemble nonlinear elastic-like
wave. Understanding of such wave propagation has many important applications
in geophysics, petroleum engineering and mining, carthquakes and seismology [55]

as well.

In general, the governing equations for Newtonian fluid dynamics is Navier-Stokes
equations, have been known for over 150 years. As discussed earlier, strongly
coupled dusty plasma can be often treated like a fluid and modeled by modified
Naiver-Stokes equations called as generalized hydrodynamics models [9, 10]. For
example, a recently proposed generalized hydrodynamic model for strongly cou-
pled plasma system referred as the viscoelastic-density functional (VEDF) model
uses a density functional method [13]. In another work, yet another generalised
hydrodynamic approach is used to simplify the calculation of dynamical structure

factor of strongly coupled plasmas using fluctuation-dissipation theorem [14]. In
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this Thesis, a generalized hydrodynamic model with a single relaxation k£ is used
to model the “elastic” nature of strongly coupled dusty plasma. First an incom-
pressible version is used to studied linear and nonlinear properties of a parallel
shear flow, namely, an undriven Kolmogorov flow as an initial value problem in
strongly coupled dusty plasma has been addressed. The transition from stable
to unstable flow has been found to occur at a critical value of Reynolds number
R. such that for R < R,, growth rate is less than zero (i.e or damped) and for
R > R, growth rate greater than zero (i.e or unstable). A novel observation is that
unlike Kolmogorov flow in Navier Stokes hydrodynamics which is neutrally stable
for R < R., Kolmogorov flow in strongly coupled dusty plasma is found to have

no such neutral stability, howsoever small the non zero value of  may be.

When density and temperature of the fluid element system spatio-temporal vari-
ations, one can not ignore the effect of compressibility. The compressibility effect
on shear flow is an important problem in the field of hydrodynamic flows and
has been addressed in the past using both atomistic [56, 57] (MD) and contin-
uum (fluid) approaches [9, 10, 11, 12]. It was found that compressibility stabilizes
the instability and changes the nature of stability from “exchange of instability” to
“over-stability” [58]. Similarly in strongly coupled plasma, Kelvin-Helmholtz insta-
bility in the presence of compressibility with quasi-neutrality and mixed boundary
(periodic along flow and bounded along the direction perpendicular to the flow)
conditions [11] has also been shown to be relatively stable as compared to the
incompressible limit. In this Thesis, the effect of compressibility on the onset of
laminar to turbulent transition of Kolmogorov in strongly coupled plasma and on
rotational shear flow such as monopolar, Rankine-like vortex and other structures
for non-zero variation of mean density, pressure and electrostatic potential per-
turbations have been addressed. Finally, for non-zero variation of mean density,
pressure and electrostatic potential perturbations using MD and CFD simulations,
we perform a comparative study of compressible parallel shear flow using Molec-

ular dynamics (MD) simulation and computational fluid dynamics (CFD) using
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Kolmogorov flows as initial conditions.

1.3 Organization of the thesis

In this Thesis, detailed analytical and numerical studies of various linear and non-
linear properties of shear flow in strongly coupled dusty plasma have been de-

scribed. The Chapters of this thesis are organized in the following fashion:

Chapter-2: Dusty plasma can be treated as a continuum or discrete particle
system depending upon the value of I' and the phenomena studied. Typically, a
Computational Fluid Dynamics (CFD) based generalized hydrodynamic model is
used for continuum description at low I' values and long wavelength and Molecular
dynamics is used for capturing particle effects at arbitrary I' values. In this Chap-
ter, we present the basic model and algorithm of fluid and molecular dynamics
simulation. As discussed, in general, fluid motion is governed by the well-known
Navier-Stokes equations. However, strongly coupled dusty plasma can be modeled
by modified Navier-Stokes equation where the effect of finite spatial correlation is
incorporated via a memory effect (memory dependent fluid equations). A set of
coupled and nonlinear partial differential equations is derived from the basic laws
of conservation of mass, momentum and energy and phenomenological complex
viscosity coefficient. Various numerical aspects of computational fluid dynamics
and molecular dynamics simulation is presented in this Chapter. To understand
shear flow instability from a continuum point of view a new CFD code has been
developed based on a pseudo spectral method has been chosen. As strongly cou-
pled dusty plasma is often modeled using Yukawa interaction between grains, a
Molecular Dynamics procedure is used wherein Newton’s second law of motion has

been used to simulate the N-body problem.

Chapter-3: It is well known that, whenever there is a shear in macroscopic veloc-

ity profiles, viscous shear heating occurs at the microscale. Recently, laboratory

11



Chapter 1. Introduction

experiments [Fig.1.2] and MD studies of shear flows in strongly coupled Yukawa lig-
uids have indicated occurrence of strong molecular shear heating. In dusty plasma
experiments, to study shear flow generate laser driven has been shown to be ef-
fective [Fig.1.2]. The velocity profile thus obtained experimentally is continuous
in space without sharp spatial changes. Therefore, to study shear heating phe-
nomena from atomistic level, we consider Kolmogorov flow (continuous gradient
in velocity profile) as an initial input profile because we believe it is relatively cas-
ily attainable in laboratory dusty plasma experiments. Rotational shear flows are
addressed with monopolar coherent vortex for example, Rankine vortex source in
strongly coupled Yukawa medium using MD simulation. The results thus obtained
in our MD simulations may be directly comparable with experiments. The findings
may have relevance to wave propagation in geophysics, petroleum engineering and
mining, earthquakes and seismology [55]. In this Chapter, the emergence of non-
linear elastic waves from monopolar coherent vortex source in strongly correlated

Yukawa medium using Molecular dynamics simulation has been also studied.

Chapter-4: To understand the vortex dynamics of strongly coupled molecular
fluids undergoing macroscale shear flows and molecular shear heating, MD simula-
tion has been performed, which allows the macroscopic vortex dynamics to evolve
while at the same time, “removes” the microscopically generated heat without
using the velocity degrees of freedom. We demonstrate that by using a configura-
tional thermostat in a novel way, the microscale heat generated by shear flow can
be thermostatted out efficiently without compromising the large scale vortex dy-
namics. In present work, using MD simulations, a comparative study of shear flow
evolution in Yukawa liquids in presence and absence of molecular or microscopic
heating is presented for a prototype shear flow namely, Kolmogorov flow and a

rotational shear flow namely, monopole and Rankine-like vortex are considered.

Chapter-5: It was found that several phenomena common to conventional hydro-

dynamic fluids, such as shear waves, [10] shear flow instability (Kelvin-Helmholz)
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[11, 59], nonlinear saturation, vortex roll formation etc have been investigated in
the field of strongly coupled dusty plasma using generalized hydrodynamic model.
In this chapter, transition of stable Kolmogorov flow to unstable regime is demon-
strated for strongly coupled dusty plasma using a generalized hydrodynamic fluid
model where in strong coupling effects are incorporated via viscoelastic relaxation
time £ in the incompressible limit using a linear stability analysis and nonlinear
pseudo spectral simulation.

In the above studies, in the incompressible, compressible limit, density and po-
tential variations have not been considered. Fluids sustaining flow speeds with a
good fraction of sound speed in the medium are found to be compressible. Thus,
density and temperature of the fluid element have spatio-temporal variation, which
leads to effects of compressibility. In second section of this Chapter, linear and
nonlinear properties of Parallel ( Kolmogorov flow ) and Rotational flow in the
presence of variable density, pressure and electrostatic potential are addressed us-
ing generalized compressible hydrodynamic model. A comparative study has been
performed between computational fluid dynamics and molecular dynamics for com-
pressible Kolmogorov flow. While the MD considers the interaction of grains using
a screened Coulomb or Yukawa potential, the compressible fluid model includes
the effect of non-uniformity in density and the consequent non- zero divergence of
velocity, the effect of electrostatic potential and pressure while the effect of corre-

lations is included phenomenologically using a visco-elastic relaxation time.

Finally, comparative study between CFD and MD results for parallel shear flow

namely K-flows is also reported.
Chapter-6: A summary and conclusion of this thesis work is presented. The

important problems that remain unsolved are also discussed point wise which could

be interesting for further research.
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fluid dynamics

Classical molecular dynamics (MD) and computational fluid dynamics (CFD) al-
low one to study large-scale hydrodynamic phenomena from two very different
viewpoints viz microscopic or MD and macroscopic or CFD respectively. Classi-
cal molecular dynamics provides the system behavior in terms of the dynamics of
individual atoms or molecules, using Newton’s law. In MD simulation, Newton’s
second law of motion is used to simulate the N-body problem. The mean or average
behavior is then extracted using the principle of equilibrium statistical mechanics
or non-equilibrium statistical mechanics which ever is applicable to the problem of
interest. No assumptions are made as to the transport coefficients, for example,
viscosity, diffusion, thermal conductivity etc are all self consistently obtained. In
contrast, CFD describes the motion of a fluid element from a macroscopic level in
terms of the transport of mass, momentum, and energy of a system and a set of

assumed transport coefficients.

Depending upon the problem of interest, a dusty plasma system may be treated

as a fluid medium or as a collection of interacting particles. In this Chapter, we
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present the basic model and algorithm of fluid and molecular dynamics simulation

to be used in this Thesis work.

Fluid motion is governed by a set of coupled, nonlinear partial differential equations
derived from the basic laws of conservation of mass, momentum and energy and
assumed transport coefficient which may be phenomenological. There are several
ways to solve a set of the fluid equations in time. For example, Adams-Bashforth
method [60], Crank-Nicolson method [61], fourth Runge-Kutta method [62] and
Rahman midpoint predictor/corrector. In the Section, we present the development
of a pseudo-spectral code. In space, spectral or Fourier synthesis is used. In the
following, we present the structure of the CFD code developed using the example
of the Navier-Stokes equation. The actual equation used for dusty plasma as a

visco-elastic fluid is presented in Appendix-A.

2.1 Fluid simulation : Pseudo Spectral method

In 1822 Claude Navier and in 1845 George Stokes formulated the famous Navier-
Stokes equation that describes the dynamics of fluids. Besides the Navier-Stokes
equation which describes conservation of momentum, two additional equations
namely continuity equation describes mass conservation and a state equation de-
scribes energy conservation are needed to simulate fluids. In general, these are
partial differential equations. In the following, we give the outline of how pseudo
spectral method, which is used to solve Navier-Stokes equation. As indicated ear-

lier, our fluids equation [see Appendix-A] is for viscoelastic fluids.

Spectral methods are a class of techniques used in applied Mathematics and scien-
tific computing to numerically solve the partial differential equations (PDEs). A
popular method is Fourier Spectral Method, which is based on Fourier Transform
[63]. Fourier spectral methods (e.g pseudo spectral method, Galerkin method)

have emerged as powerful computational techniques for the simulation of complex
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continuum problem have been addressed using a pseudo-spectral method. Since
1970 spectral methods have been extensively used in fluid dynamics. For exam-
ple, several interesting phenomena such as turbulent flow, vortex dynamics, fluid
instabilities, geomagnetism, aerodynamic and astrophysical related phenomena.
In 1972 Orszag [64] developed a Fourier series based method for the solution of
isotropic turbulence, which he termed as a pseudo-spectral method. Since then
many variants have been developed.

To demonstrate how pseudo spectral method works, a non-dimensional (velocity
and space are normalized by characteristic velocity V' and characteristic length L
and density p is normalized to some equilibrium density). Continuity and Navier-

Stokes momentum equations have been considered:

dp = -
el . = 2.1
PV (o) =0 2.1)
ap S o o
E+pV-U+U~Vp:O (2.2)

where U = T+ vj. When the density of fluid does not vary with space and time
then % +U- ﬁp =0 or % = 0. Then Eq.2.2 with % = 0 may be described as
V-U = 0 and the medium is said to be in the incompressible limit. For incompress-
ible, two dimensional fluid in a (z-y) plane, a scalar function v, called the stream
function and can be defined in such a way that the incompressibility is automati-
cally satisfied. For example, stream function i can be represented conventionally
in the following way U = 2 x Vi or u = oY/dy and v = —0Y/0x, where 2 is
a unit vector, normal to the z — y plane. Poisson’s equation can be obtained by
substituting velocity component in the stream function form in vorticity definition
w=(VxU)- 2as

w= -V (2.3)
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Navier-Stokes equation in velocity form is-
— +U-VU ==V - — (2.4)

where p, U , P, R arc density, fluid flow velocity, pressure and Reynolds number
(R =UL/v) and v is kinematic viscosity. Curl of Eq.2.4 gives the Navier-Stokes

equation in vorticity form, which is as follows

. 1
88—(: +U - -Vw= EVQw (2.5)

where V2 = 8’9—; + aa—;g and w =V x U. Now Eq.2.5 becomes

E‘Fu%—F’Ua—y—E

ow Ow ow 1 [ 0? 0?
(61‘2 + 8_y2> w (26)

To describe the pseudo-spectral method, we recall that the discrete Fourier trans-

form of a periodic function, say vorticity in one-dimensional space w(x):

1 N+1

Wg = N Z w(mj)e_ikxf (27)
j=—N
The inversion formula Vil
1 .
w(z;) = N 7 w(k)eth (2.8)
k=—N

Taking the Fourier transform of Eq.2.3 in K-space (kg, k), we get.

Wi

S B 2.9

(k% n k;) wk? ( a”)
Ve — kawk (2.9C)
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Using Eq.2.8, derivatives may be transformed as:

‘Z_i — T, (2.10a)
g_z T (2.10b)
K-space [q.2.5 becomes:
% + FETINLT] = —— (K2 + k2) wr (2.11)
¢ R

where NLT implies Non-Linear Terms ((7 ﬁw) and FF'T implies Fast Fourier Trans-

form, a discrete Fourier transform algorithm which reduces the amount of com-

putational time, for N points, from 2N? [from discrete Fourier transform (DFTs)]

to 2Nlogo N [from fast Fourier transform (FFTs)|. Fourier transform of non-linear

terms (ug—’; + vg—‘;) is obtained in the following fashion, using FFTW-library [65].
ow Ow

NLT = (u% + va—y) = [FFTup|+I F FT](—Towy)|+1F FT v ] FFT[(=Beywr)]
(2.12)

where I FF'T stands for inverse Fourier transform.

2.1.0.1 Anti-aliasing or de-aliasing

Aliasing is a kind of numerical error, which generally arises when a function is
discretely sampled. According to Nyquist sampling theorem, “the sampling fre-
quency should be at least twice of the highest frequency in the signal”. In Navier-
Stokes case, the spectral discretization is in space, therefore the idea about sam-
pling frequency of Nyquist theorem is applied for wave number space. Hence, if
L and N are the system size and number of grid points respectively, then step
size will be Az = L/N, the wave number k£ = 27/L must be in the range of
—knyquist < k < +knyguist, where knyguiq = (1/2)(27/Az) = m/Ax (highest fre-
quency) is the Nyquist wave-number. For non-linear term present in the Navier-

Stokes equation, the Nyquist frequency criteria should be well satisfied. Let us
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discuss a one dimensional case. Let fi(z) = exp(Tkix), fo(x) = exp(Tkox), then
nonlinear term is fi(x)fa(x) = exp(Lky + kz)z). If fi and fo are presented on
the numerical grid, then &' = (k; + k2) may exist outside the the Nyquist limits
(knyquist) and can no more be represented on the grid. For example, [see Fig.2.1],
consider K-grid in the range [k i, ki 0x]=[—Ko +Ko|. As discussed ki + ko may
lie “outside” [— Ky, K| and hence way calculated erroneously. This is an aliasing

effect and leads to error and numerical instability.

There are several methods which one can use to remove such errors, which are
known as anti-aliasing or de-aliasing. The easiest being the two-thirds rule intro-
duced by Orszag [64]. Let k; 4 = ko denote the highest wave number resolved by

the numerical grid. Non-linear terms are filtered according to 2/3-rule as follows:

A

» f(kt) if & S 2kt ax/3
fk,t) =
0 else (zero padding)

where f (k,t) is Fourier transform of function f(x,t). As described earlier, to
avoid the aliasing error in non-linear terms in Fourier space, zero-padding method
is used. In 2/3 dealiasing rule, one sets to zero the last 1/3 of the high frequency

modes and keeps the first 2/3 of the Fourier modes unchanged.

For a given K, Eq.2.11 is time dependent ordinary differential equation. There are
several methods to solve time dependent differential equation, for example, Adams-
Bashforth method [60], Crank-Nicolson method [61], Runge-Kutta method of order
four [62] and Rahman midpoint predictor/corrector. However, for our purpose we
have chosen Nordsieck-Gear predictor-corrector [66, 67| time stepping numerical
method. In general, predictor-corrector methods, the corrector step may repeated
to achieve accuracy in results. Due to the high accuracy of the Nordsieck-Gear
predictor-corrector [66, 67], it is not necessary for the Nordsieck/Gear method to

include corrector steps.
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ki+k2-2Ko k1+k2
o ki k2 K
Ko Ko —»

Figure 2.1: Figure shows the aliasing error: suppose as ki + ko arises out of a
nonlinear interaction such that k; + ko lies “outside” [— Ky, K]. Hence, due to
periodic boundaries, the information about k; + ky comes inside the simulation
region wrongly.

2.1.0.2 Nordsieck-Gear predictor-corrector method

Nordsieck [1962] and Gear [1966, 1971] developed a time integration scheme on
the basis of Taylor expansion [66, 67]. To describe how this method works, let us
consider a simple second order differential equation, a simplest example being:

dz r

— = F() (2.13)

Using Taylor expansion, one can predict the quantities at time (¢ + h) [where h is

the step in time] from positions and their derivatives. Let us define variables in
. hr 2 B2y 3 B3y

the following form: ¢;(t) = thtQ, q(t) = %%tzﬂ, q3(t) = %#ﬂ

Predicted values using Taylor expansions are:

rP(t+h) = r(t) + q(t) + q(t) + ¢s(t) (2.14)
@i (t+h) = qi(t) + 2ga(t) + 3gs(t) (2.15)
a5 (t + h) = qa(t) + 3gs(t) (2.16)
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g5 (t +h) = gs(t) (2.17)

Error in the acceleration dgo(t + h) = hQM — @ (t+h).

Corrected values using error value are:

r(t+h) =r(t+h) + codga(t + h) (2.18)
qi(t +h) =q(t +h)+ciog(t+h) (2.19)
q5(t +h) = q2(t + h) + c20q2(t + h) (2.20)
q5(t + h) = gs(t + h) + c30q2(t + h) (2.21)

where ¢g = 1/6, ¢y = 5/6. ¢ = 1, ¢c3 = 1/3 are magic numbers considered to
maximize the stability of the numerical algorithm. To solve Navier-Stokes equation
third order of Nordsieck-Gear predictor-corrector Eq.2.14-Eq.2.21 method has been

used in our code.

2.1.0.3 Courant-Friedrichs-Lewy (CFL) condition

The problem of stability and convergence are important issues in the numerical
solution of partial differential equations. The relationship between stability and
convergence in numerical studies was first pointed out by Richard Courant, Kurt
Friedrichs and Hans Lewy in 1920’s, hence commonly used as “CFL condition”
[68]. In a numerical scheme, to solve time and space dependent partial differential
equation, it is found that by increasing the time steps while keeping the mesh
size fixed or decrease the mesh size while keeping the time steps fixed, numerical
scheme eventually becomes unstable. Therefore, it is clear that the choice of the
time step or mesh size cannot be independent. For example, for a one-dimensional

discretized differential equation, the CFL condition is

|u|dt

FL=
¢ dx

<1 (2.22)
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— SO

Spring

Dashpot

Figure 2.2: Maxwell model: Stress relaxation behavior using a spring and
dashpot in series.

where u is the magnitude of the typical velocity in most cases the largest velocity
in the system at which information can propagates while dx and dt are step sizes in
space and time respectively. Non-linear pseudo-spectral code is parallelized using
MPI [69] and Parallel FETW library [65]. More details about parallelization is
given in the Appendix-D.

2.1.1 Dusty plasma as a continuum medium

Computational Fluid Dynamics (CFD) provides a qualitative and sometimes quan-
titative prediction of fluid flows. In general, the governing equations for Newtonian
fluid dynamics is Navier-Stokes equations. Strongly coupled dusty plasma can be
often treated like a fluid and modeled by generalized hydrodynamic model [10]
with in the range of fluid limit (for 1 < I" < I'; ) [5], here I'; is the liquid to the
solid phase transition point. The physics of strong coupling of the dust fluid is
incorporated via a viscoelastic coefficient K :%, where G, 5 are rigidity modulus
and dynamic viscosity respectively. Viscoelasticity is the property of fluid having
both the property of viscosity as well elasticity. In such viscoelastic medium, stress

relaxes with time exponentially i.e as e=*/™.

To give a brief description about viscoelasticity and exponential stress relaxes with
time, we describe Maxwell’s Spring-Dashpot model [70, 71, 72] in a simple fashion.
A dash-pot is a piston cylinder arrangement, filled with a viscous fluid responds
like a viscous material. However, Spring responds as an elastic material. The
series arrangement of spring (elastic) and dashpot (viscous) is called Maxwell’s

Spring-Dashpot model [as shown in Fig.2.2]. Suppose after applying stress o, the
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strain generated by spring and dashpot are ¢; and €5 respectively. The total strain

in the system.

€e=¢€+ € (2.23)

According to Hooke’s law ' = o /¢, where E is Young’s modulus. Dashpot follows
Newton’s law of viscosity ( for a given temperature and pressure, the ratio of shear
stress to shear rate is a constant, and is defined as the coefficient of viscosity). This
implies n = 0 /4, where 7 is strain rate (¥ = dey/dt). Let us take time derivative

of above Eq.2.23 and putting the values of €; and e,.

de dey des
— = — 4+ — 2.24
TR TIT (2.24)
de 1do o
S,z 2.25
it Edt (2.25)
In stress relaxation experiments Z—; = 0. Then
d E
9 __ 27 (2.26)
dt n

Let us for now consider § = o/ is a coefficient and integrate the above equation.

a(t) d t
/ Y _ g / dt (2.27)

o0 o 0
o(t) = ape™/m™ (2.28)

Eq.2.28 expresses three different states, which depend upon relaxation f param-

eter and timescale of interest ¢.
e For solids, stress never relaxed, i.e f — oo or t/F << 1.
e For viscous liquids, stress relaxes very fast, i.e f — O or t/F >> 1.
e For viscoelastic fluids, stress relaxes with time as et/

It is important to note that in dusty plasma medium, relaxation time F is a con-

stant parameter, representing several physical effects combined together [9, 10].
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Also, in real dusty plasma experiments, multiple relaxation time scales may exist.
Set of modified hydrodynamic equations for strongly coupled dusty plasma medium

are as follow. Details about hydrodynamic equations are given in Appendix-A.

The continuity equation for dust fluid is as follows.

%’ +V.(pU) =0 (2.29)

Momentum conservation equation (force balance equation) for dust fluid is as fol-

lows [11]
d
1+ —
U )

Here Fy is body force per unit mass, this can be any external force for example,

dU
_ F’
a 3

_ [VV2 n <Z n 5/) v(v.)} U (2.30)

gravitational, electrostatic, pressure and driven forces. Let us consider for dusty
plasma medium with density n; and mass density p, = Mpny, there are following

forces applied

e Pressure force per unit mass: —~—

e Flectrostatic force per unit mass:

_qanaVé _ __ qdV¢
p Mgy

where ¢, and M) are mean charge and mass of dust as p, = Mpn,. Then the

modified hydrodynamic equation will look as follows:

d
1+ F —
{—I-tdt}

h - . . h 0 7
where 4+ is the total derivative given by & = 3, + U.V, v is kinematic viscosity

dﬁ qdn = 1=
= BTy —Vp| = -
Mj, ¢ P p}

Vet (5 + 5’) V(V-)] U (2.31)

dt 3

=n/pn. U , pu(= Mpnp), ng, qn, 0, ¢, n are average fluid dust velocity, mass density,

dust density, dust charge, pressure, electrostatic potential and absolute or dynamic
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viscosity respectively. Electrostatic potential ¢ is obtained, using Poisson’s equa-

tion given by:

V2 = g[nh — i+ n] (2.32)
n; = nl‘()e_ecb/kBTi (233)
ne = nege®®/FBTe (2.34)

To perform the computational fluid dynamics study of grain medium, the non-
linear coupled set of fluid equations Eq.2.29, 2.31 and Eq.2.32 have been solved
numerically by above explained methodology using a pseudo spectral method. For
this purpose, a massively parallelized Advanced Generalised SPECTral Code (AG-

Spect) has been developed and benchmarked against linear eigen value solver{®.

2.1.1.1 Advanced Generalised SPECTral Code (AG-Spect)

AG-Spect is capable of solving coupled set of two dimensional coupled time de-

pendent fluid equations.

e Performance of Parallelization: Fig.2.3 shows the scalability of the code
with number of grid points and number of CPUs. Parallelization works better
for higher grid size [N, x N, = 1024 x 1024]. It is clear from the figure that
a sensible combination of number of grid-pints (/V, x N,) and number of
CPUs will provide direction on what would be the optimal combination of
spatial /temporal discretization to attain a desired accuracy on the solution

while minimizing the computational time.

e External Libraries: Massage Passing Interface (MPI) [69], Fastest Fourier
Transform in west (FFTW) [65].

e Further Development: Code is easily extendable to three-dimensional

multi-field system (3D system).

YResults are in chapter-5
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Figure 2.3: Scalability of the code for different grid sizes. Typical input
parameters are f{ = 10, v = 2.0, dt = le — 4 (in normalized unit) and total
time=>5.0 (in normalized unit).

e Possible Applicability: Newtonian and non-Newtonian fluids in both in-
compressible and compressible limits may be solved using AG-Spect. Multi-
component flows such as fluids with polymer concentration dynamics may be
studied. For example, Hyaluronan/hyaluronic acid which comprises of long
unbranched polymer of various concentration in synovial fluid flow and its

shear-thinning/thickening dynamics may be modeled [26].

As discussed earlier, hydrodynamic like flows are generally studied by modeling
the medium as a continuum. However, there are substances, for example, granular
material, colloids, for which one needs to perform the study of flows at the kinetic
level, i.e, at the level of individual particles. In laboratory experiments using CCD
camera or video microscopy particle positions and velocities can be recorded to

study the phase space evolution with time. Dusty plasma or strongly correlated
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liquids are yet another example which allows direct experimental observation of
position and velocity of each dust grain and hence molecular dynamics simulation
becomes very useful. In molecular dynamics study, classical Newton’s second law
of motion is solved for each particle. In this method force between dust-grain is
calculated by interaction potential. In the next section, we present the algorithm

for classical molecular dynamics simulation for the two-dimensional system.

2.2 Dusty plasma as molecular medium

A massive grain in a plasma attains mean charge )5 and electron and ion follow
Boltzmann distribution in the slow time scale of dust dynamics. Thus the poten-

tial due to single grain (Poisson’s Equation) is as follows:

V2= —(ny— ) —

- () (2.35)

When electron and ion densities are considered as Boltzmann response, n., and n;

become:

ne = nege /7 (2.36)
n; = nipe (2.37)

For condition e¢p << T, and e¢ < Tj, one can linearize the Boltzmann equations
Eq.2.36 and Eq.2.37 and using equilibrium quasi-neutrality condition, solution

Eq.2.35 for r # 0 in spherical symmetric condition is given by.

¢(r) = D e (2.38)

dmegr

where r and ), are the length between two dust gain and charge on the individ-

ual dust grain respectively and \j, = \/ @ni/cokpT; + q2neo/eokpT, is the Debye
length of the background electron-ion plasma, where n;, nco, 1ie ,¢i correspond

to density, temperature and charge of the ion and electron respectively. The force
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on the grain Thy grain j is :

Q3 ( 11 > A
F, = — 4+ — Je T/ ap, 2.39
J 47”07"@'2]‘ Tij - )\h € r] ( )

where r;; = r; —r; is the distance between “I"” and “j*” particle. N-body problem

has been solved using this force Eq. 2.39.

N
J=1j#i

In two-dimensional system the inter-grain spacing “

a” can be calculated by the
Wigner-Seitz radius a = 1/ . Time, distance and energy are normalized to

inverse of dust plasma frequency 2wp_h1 = wp ', mean inter-gain spacing a and
2

average Coulomb energy of dust particle respectively. Hence, all physical
TTEQQ

quantities appearing henceforth are dimensionless. Now Eq.2.38 becomes:

Ur) = (2.41)

The N-body problem is then numerically integrated using our parallel code Multi
Potential Molecular Dynamics (MPMD) [34]. In our simulations, the size of the
system is decided by average number of dust particles 7. Grains in a conventional
plasma are trapped in the quasi two-dimensional sheath generated by compensation
of electrostatic force and gravitational force. In a grain medium, the inter-grain
spacing a &~ 0.35mm, the thickness of the grain bed is dz ~ 10a—15a, the size of the
grain bed L, x L, = 36 x 22mm? [Ref. Yan Feng et. al, PRL, 105, 025002 (2010)],
hence, the ratio of dz/L, ~ §z/L, << 1, which results in a 2D grain bed with
negligible variation along the vertical direction. In this thesis, we address spherical
charged grains restricted to quasi-2D beds interacting via 3D Yukawa potential.
We understand that to simulate infinitely long rods using molecular dynamics
simulation in ideal two dimensional system, a logarithmic potential should be used

o(r, L, \) = 2Xlog(L/r), where A and L are line charge density and length of the
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wire respectively. To study long range hydrodynamic phenomena from atomistic

point of view, we use Multi Potential Molecular Dynamics (MPMD). [34].

2.2.1 MPMD code

Multi Potential Molecular Dynamics (MPMD) code is fully parallelized molecular
dynamics code capable of simulating both pair-wise and many body force fields and
can handle Lennard Jones, Yukawa and Tersoff-Brenner potentials. This Code can
simulate various thermodynamic ensembles such as NVT', NV E and NPT'. To set
up the system at desired temperature, Gaussian thermostat [73] and Braga-Travis
thermostat [52, 53] have been used. The later one has been developed during the
course of present Thesis work [20]. In MPMD code, Leap-frog time integration
method has been used to get the phase trajectory of N particles for each step of

time.

2.2.2 Leap-frog integration

For a single degree of freedom (one-dimensional), the equations of motion are:

dz
- = 2.42
= =Y (2.42)
dv ~dU(x)
@ T =" 24

where F(z) is the force on the particle when it is at x, U(x) is the inter-grain
potential (for dusty plasma system, U is Yukawa potential), and for simplicity we
set the mass equal to unity. In this time stepping method, position and velocity
arc calculated at integer and integer plus half time step respectively, hence known

as “Leap-Frog method”.

v(t + At/2) = v(t — At/2) + AtF(t) (2.44)
z(t + At/2) = z(t) + Atv(t + At/2) (2.45)
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Postion(x) —— ——— ™

Velocity (v) N—————

Figure 2.4: Diagram showing the structure of the Leap-Frog method

velocity at time t can be calculated as

v(t) = v(t — At) + (At/2)F(t) (2.46)
There are following benefits of using Leap-Frog method.
e Time reversal invariant
e Second order accuracy
e Conserves Angular Momentum
e Symplectic i.e area preserving

Boundary condition is periodic. Hence, the contribution from the replicated sys-
tems due to periodic boundaries becomes important when the size of simulation
box is much small and because of that the energy contribution of charged particles
comes back inside the simulation box. In present work, Ewald sums [74] are not
considered because of sufficiently large system size. The details about Ewald sums

are given in the Appendix-E.
In the following Chapters, evolution and dynamics of unstable parallel and rota-

tional shear flow using non-equilibrium molecular dynamics and fluid dynamics

simulation have been described.
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Shear flow in a Yukawa liquid: A

Molecular dynamics study

3.1 Introduction

Laminar to turbulent transition has been and continuous to be one of the most
intriguing and fundamental problems of fluid dynamics. Hydrodynamic like flows
(e.g two stream instabilities) are generally studied to understand stability and
transition of flows. Conventionally for Navier-Stokes fluids, such hydrodynamic
flow related problems are described by modeling the systems as continuum, as the
average number density (72) of the medium is sufficiently high (for example, for wa-
ter i = 3.33 x 102 m ™2 and for ideal gas 7 = 2.5 x 10% m~?) in spite of the range

of the interaction between particles constituting the “ continuum” being very short.

On the other hand, in spite of relatively low number density, grains (7 = 107 —
108m=3) form liquid phase. This is largely due to the magnitude of grain charge
and the range of interaction. As described earlier in the Introduction, due to the
low density and large mass of the dust grains, the experiments allow direct ob-

servation of instantaneous position and instantaneous velocity of each dust grain.
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This unique capability of the dusty plasma medium makes molecular dynamics an
ideal tool to simulate and understood this medium and permits comparison with

laboratory experiments at microscopic level.

It is well known that, whenever there is a shear in the macroscopic velocity pro-
files, viscous shear heating occurs at the microscale [Fig.3.2]. In some fluids, shear
heating is not necessary lead to increase in the local temperature at the shear
layer. This is because heat conduction can be so rapid at the location of the
velocity shear where the heat is generated that as soon as heat is generated, it
is carried away or transported away due to thermal conduction. In general, the
effect of viscous shear heating and thermal conduction may be measured by a di-
mensionless parameter, known as Brinkman number [45, 46] B, ~ n(AV)?/AAT
(where 7, A are shear viscosity and thermal conductivity and AV, AT are dif-
ference in mean flow velocity and temperature respectively) [46]. (This number
can also be represented by the product of two other non-dimensional number, viz.
B, = P.E., where P, and E. are Prandlt and Eckert numbers. Prandlt number is
the ratio of momentum diffusivity to thermal diffusivity and signifies how fast the
thermal diffusion takes place in comparison to momentum diffusion [47]. Eckert
number is the ratio of the kinetic energy to the enthalpy driving force for heat
transfer). When the value of dimensionless number B, is less than 1i.c B, << 1,
the effect of energy dissipation or shear heating can be neglected relative to heat
conduction in the fluid [48]. For example, for Navier-Stokes like fluids, B, which
is the ratio of viscous heating to thermal conduction, is much smaller than unity
(~ (1 —17) x 1078) [49] and hence shear heating does not alter the local trans-
port properties in any significant way. Crucial to this discussion is the fact that
thermal conduction A is, typically, dependent on the average number density 7 of
the system. Thus in general, for high n, Brinkman number B, can be expected

to be much less than one and for low 7, B, may be expected to be comparable to 1.

It is important to recollect that dusty plasma modeled as Yukawa liquids are very
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low density soft matter [44], for example, figrein ~ 108m ™3 as compared to water
Towater =~ 102 m™3. Hence these system in liquid state have relatively less thermal
conductivity compared to higher density liquids such as water. Consequently, if
the thermal conductivity of the medium is relatively small, generated heat may
be accumulated in the shear zone. In the past, using classical molecular dynam-
ics (MD) simulations, the development and propagation of a nonlinear heat front
and shear heating in parallel shear flows of a strongly coupled such as, Yukawa
liquid, was identified [8]. In laboratory experiments, macroscopic shear flows have
been induced by external laser-drive [6, 31]. In one of these experiment [31], a

co-evolving shear heating was observed.

A detailed study of shear heating in macroscopic flows in Yukawa liquids using
molecular dynamics simulation has not yet been addressed where the grains inter-
act with each other through a shielded Coulomb potential, due to the screening
provided by background free electrons and ions. Therefore, it is worthwhile to ask
as to what would be the flow dynamics for large Brinkman number (B, ~ 1) fluids
system such as Yukawa liquids when the macroscale shear flow is initialized 7 Can
one expect the viscous heat to alter the local transport coefficient of the medium
in a non-trivial fashion? What would be the effect of shear heating over large scale
(macro-scale) vortex dynamics due to small scale molecular heating (micro-scale)
and due to these effects how does average coupling strength (I') of the system
change and in turn alters the vortex dynamics? To address some of these ques-
tions, it becomes necessary to perform classical first principle simulation such as
molecular dynamics where no assumption or approximations regarding transport

coefficients are introduced.

The present Chapter is divided into two Sections to study shear flow dynamics,
shear heating phenomena, vortex dynamics, elastic-like wave propagation in ro-
tational shear flows and other non-equilibrium properties of the grain medium,

Viz
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e Parallel shear flow study using Kolmogorov flow as an initial condition

e Rotational shear flow study using Rankine vortex as an initial condition

It is important to note that, in the parallel flow, shear heating zones are inseparably
embedded in the region of vortex dynamics while in the rotational flows, the region
of shear heating may be reasonably well separated in space from the nonlinear wave
propagation region. Thus fluid study may help delineate as to what kind of shear

flow profiles are seriously impacted due to shear heating.

3.2 Parallel Shear flow: Kolmogorov flow

To study shear heating phenomena from atomistic (or particle) level, we perform
classical first principle MD study considering a Kolmogorov flow (continuous gra-
dient in velocity profile), as the initial flow profile. A Kolmogorov flow is chosen

because of the following reasons:
e Laminar to turbulent transition is at low R., where R, is stable to unstable

transition point of Reynolds number.

e Continuous gradient in shear flow profile such as a Kolmogorov flow would
be relatively casily attainable in laboratory dusty plasma experiments than

sharp velocity gradient profiles [34].

e Due to the number of equilibrium period in initial flow profile (as will be
discussed below), heat generated by the shear flow would be substantial and

will be embedded in the region of vortex dynamics and as well as non-local.

The details and importance about Kolmogorov flow are described in the next

section.

3.2.1 Kolmogorov flow

Kolmogorov flow is an unsteady, unbounded periodic, driven flow. In Fig.3.1, the

velocity profile of Kolmogorov flow in two dimensional doubly periodic domain
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(x,y) € [-m, 7] x [—m, 7| is presented where, red and blue color strips show the
positive and negative velocities respectively. Velocity profile of Kolmogorov flow
has the form

Uo(z,y) = Uy cos(kyz)(1 4 0 cos(kyy))y (3.1)

where Uy, 0 are magnitude of initial velocity of Kolmogorov flow and magni-
tude of perturbation respectively. Wave numbers are given by k, = 2mngz/L,,
k, = 2mmyy/ L, where ng, my. Ly, L, are equilibrium mode number, perturbation
mode number, size of the system along x and y directions respectively. For better
representation of Fig.3.1, the corresponding one dimensional velocity profile has
been plotted in Fig.3.2, which shows the continuous gradient in equilibrium veloc-
ity profile. Note that for doubly periodic boundaries as employed in this Thesis,

it does not matter if equilibrium flow is along & or §.

For conventional fluids e.g Navier Stokes fluids, Kolmogorov proposed a class of
flows, which exhibits laminar to turbulence transition at low Reynolds number
and at the same time are amenable to analytical methods. Starting from Navier-
Stokes equation, Meshalkin and Sinai 1961 [15] performed linear stability analysis
of such flows in an unbounded domain and obtained the critical value of Reynolds
number to be R, < _5, where R, is laminar to turbulent transition point. Using
Kolmogorov flow as initial condition, various kinds of phenomena including “Anti
turbulence” [75], metastability and vortex pairing study [76] and other nonlinear
phenomena such as bifurcation [77, 78, 79] have been addressed. In the labo-
ratory experiments, Kolmogorov flow has been studied in magnetized clectrolyte
fluid [16, 17, 80]. The behavior of Kolmogorov flow in the granular matter [81]
has also been reported. Statistical properties [82] and hydrodynamic fluctuation
in the linear regime [83] have been investigated in the past. Kolmogorov flow for
polymer solution modeled as a visco-elastic fluid, using the Oldroyd-B model has
been addressed by G. Boffeta et.al.[84]. Instability in 2D Kolmogorov flow [85] and
the effect of compressibility on the stability of wall-bounded Kolmogorov flow [86]
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have also been performed. Quasi-two-dimensional Kolmogorov flows in the labo-
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Figure 3.1: Initial velocity profile Figure 3.2: Figure shows the vis-
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coloured contour show the positive tion at maximum shear location.
and negative direction of velocity re-

spectively

ratory using flowing soap films [18, 87] and electromagnetically driven thin-layer
flows [16, 80, 88, 89] are also interesting. For example, in soap film experiments,
a horizontal film stretched across a metal frame is suspended over a set of belts
with alternate belts moving in opposite directions to generate spatially periodic
Kolmogorov flow and found the critical value of Reynolds number R. = 70 [18]. In
electrolyte fluid experiment, Kolmogorov flow had been set-up in laboratory using
permanent magnets. Permanent magnets are arranged in the form of opposite po-

larity [17] and the resulting J x B force was used to drive the flow with R. ~ 61.

As described in Chapter-1, when spherical, micron sized grain (conduction or di-
electric) are introduced in low temperature plasma, the grains are found to acquire
large negative bare charge (~ 10%e). The background plasma shields this charge,
thus making the grain-grain interaction to be shielded Coulomb interaction or
Yukawa-type interaction. Due to their relatively large mass and high charge, grains

tend to be repelled by the negative sheath in the direction of gravity and attain
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“equilibrium” in a plane perpendicular to gravity just above the sheath region.
This grain bed in laboratory is found to behave like quasi-two-dimensional system
with only a small variation in the direction of gravity. These variations are known
to be small over a broad range of experimental conditions. This bed exhibits gas-
like, liquid-like and solid-like phases. As discussed, dusty plasma is often modeled
as Yukawa liquids. It has been found that shear flows may be induced by exter-
nal low power laser-drive in such Yukawa liquids [6, 31]. Low power laser allows
initialization of smooth velocity profiles in the quasi-2D grain beds, which further
motivates one to study Kolmogorov flow for such system. Also as described earlier,
due to low density of grains and relatively large size, the instantaneous velocities
and positions of the grains can be measured. This facilitates comparison of grain-
level dynamics with MD simulation and provides an unprecedented opportunity to
study large scale hydrodynamic-like flows using molecular dynamics simulation at
microscale and macroscale level without approximating the transport coefficients.
The Kolmogorov flow can be thought as a simplified channel flow without bound-
aries. In the present Chapter, to study the shear heating phenomena in detail
Kolmogorov flow as an initial input profile (as an initial value problem) has been
considered. In this Chapter, we report an atomistic study of laminar to turbulent

transition in a model Yukawa liquid using molecular dynamics simulations.

3.2.2 Particle or molecular dynamics studies

In molecular dynamics studies, the N-body problem of interacting classical grains
has been solved, assuming for simplicity all molecules (or bodies) to be point-like
spherical objects and of equal mass. The details of molecular dynamics procedure
have been described in Chapter-2. As discussed earlier, the interaction between
grains of complex/dusty plasma may be modeled as a Yukawa interaction given

by the inter-particle potential :

Qu et

dmey  Tij
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Figure 3.3: Total energy vs time for initial coupling parameter 'y = 50,
screening parameter (¢ = 0) = 0.5, spatial period number ny = 3 in canonical
[(0—300)wy '] and micro-canonical [(300 —600)w '] runs. At [(600 —1600)wq ']
of shear flow profile over thermally equilibrated dust bed (micro-canonical
Run). Superposition of shear flow increases the velocity of particles, hence
the value of total energy changes from 1.147 to 1.3967 (for Uy = 1.0) with
SENuL erical — () 24 from Eq.3.4 it is § Eyptq=0.25. Similarly for Uy = 0.7 with
§ENut erical — () 12 which is same as the value obtained from Eq.3.4 .

where r;; = |r; — r;| is the distance between 7 and j™ dust grain. Note that
due to the relatively fast dynamics of background plasma consisting of electrons
and ions, we consider background plasma properties to be invariant on the time
scale of grains and model only grain dynamics. The N-body grain problem is then
numerically integrated using our parallel code MPMD [34]. We choose density
n = 7! and total number of particles N, = 62500 such that L, = L, = L =

443.12. Screening parameter x is chosen to be 0.5. The Yukawa liquid is first
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thermally equilibrated by connecting the system to a Gaussian thermostat [34] at
desired I' and is evolved for time ¢ = 300wy ' . For the next 300wy *, the system is
isolated from heat-bath and evolved micro-canonically. In Fig.3.3 the total energy
as a function of time is shown. As can be expected, in the Canonical phase (see
Fig.3.3) a mean energy is attained for a constant value of coupling parameter I" and
in the micro-canonical phase, the total energy is seen to be conserved. As can be
expected, when shear flow of certain magnitude Uy is superimposed over thermally
equilibrated dust particles, the total energy changes (see Fig.3.3). To confirm that
the total energy is consistent, kinetic energies with and without shear flow for
two different equilibrium velocity flows Uy = 1 and Uy = 0.7 is evaluated. The
difference in total energy can be calculated by 0Ejp0 = Eyorar (With shear flow)-
Eiotar (without shear flow), where Ej,, implies the sum of kinetic and potential
energies. Note that the potential energy before and after superposition of shear

flow is equal, hence will not take part in the calculation of § Ey,q. Therefore,

1l
5Etotal = L_/O §{U32hear($7 y) - U'r?anhot (:E? y)}dl‘ (33)

From Eq.3.8
Us

1 b 1
O Frotat = 7 /0 SUgcos(kyo)da == =] (3.4)

Therefore, dE;y;=0.25 and 0.12 for Uy = 1 and Uy = 0.7 respectively which is
consistent with the obtained numerical values (see Fig.3.3 and caption). For the

rest of the Chapter, we consider Uy = 1.0.

Macroscopic quantities from microscopic information

- process of “fluidization”:

A mesh-grid of size 55 x 55 is superimposed on the particles of the system to calcu-
late the macroscopic or “fluid” variables from microscopic velocities and positions.
We call “mesh” an Eulerian grid (z¢, yo). Average local fluid velocities along x and
y directions are calculated as U, = (1/N,) ZZN:(H Vigs Uy = (1/Ny) Zf\i”l Viy, Where vy,

and v;, are individual instantaneous particle velocities along x and y direction and
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N, is the total number of particles present in an individual bin. Each bin contains
approximately 20 particles [ N, = N;,/(55 x 55) ~ 20 with N;, = 62500]. It is
important to note that the number of particles or molecules in each bin should be
adequate enough so that the quantities like density and mean velocity are meaning-
ful and reasonable and mimic fluid-like features. We have performed fluid average
on various grid sizes such that average number of particles in a single bin to be in
the range of 20 - 30 and find that about 20 particles to be adequate to capture the
mean fluid properties. From average local velocities, we calculate the average local
vorticity @(zq, yg) = V x U at the Eulerian grid location (x¢, y¢). The average

local temperature and average local coupling parameter are given as follows:

T($G>yGa t) = (2/3) Zb: ((sz - U_:r)2 + (Uiy - U_y)2> /Nb (35)
[(za,y6,t) = m (3.6)

To see the effect of velocity shear over the coupling parameter, a figure of cou-
pling parameter vs time has been plotted in Fig.3.4. It shows that the coupling
parameter is constant before superposition of shear profile. However, as shear pro-
file superimposed on thermally equilibrated dust grains and the system is evolved

further the value of coupling parameter decays as shear heating sets in.

Data shown in Fig.3.4 is divided into three regions. In the first region (a), the cou-
pling parameter T'(t) with time (0 — 300)wy ! has been plotted in Canonical phase
where thermostat is turned on, in second region (b), the same variable is plot-
ted against time (300 — 600)wy ' with the thermostat turned off (micro-canonical
phase). In the last region (¢) after the superposition of shear flow Uy(z)y (see
Sec. 3.2.3 for details of shear flow) over system of particle velocities, a dynamic
coupling parameter I is plotted for time (600 — 1600)wy . In the next sub section,
we report early and late time behavior of shear flow in strongly correlated Yukawa

liquids. It is noted that the shear flow is adiabatic (non-thermostatted) which
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implies that heat transfer away from the shear layer is minimal or in other words

leads to localized heating.

55 T T T T T T

Coupling parameter I'(t)

15} (c) -

10

0 200 400 600 800 1000 1200 1400 1600
Time

Figure 3.4: A plot of average coupling parameter f(t) vs time for initial cou-
pling parameter 'y = 50, screening parameter x = 0.5 spatial period number
no = 3 and shear velocity Up=1. (a) canonical run for time (0 — 300)wy*, (b)
micro-canonical run for time (300 —600)wg !, wherein peak to peak fluctuation
1.406%, (c) micro-canonical run for time (600 — 1600)wy ' after superposition
of shear flow profile over thermally equilibrated particles of the system

3.2.3 Kolmogorov flow as an initial value problem in Yukawa
liquid

Kolmogorov shear flow has been superposed over thermally equilibrated dust par-

ticles at a desired temperature and allowed it to evolve Micro-canonically upto

1000wy ' without a heat-bath. The initial input parameters are Uy = 1 (the

magnitude of equilibrium velocity , no = 3 (spatial period number), § = 0.01

(magnitude of perturbation), mg = 2 (perturbed mode number). The coupling
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parameter I'(t) at time ¢ = 0 is I'g = I'(¢t = 0) = 50, for which the thermal ve-
locity vy, = \/FZO = 0.2. It is estimated that the longitudinal sound speed Cj of
the system for I'y = 50 and x = 0.5 is within the range of Cy = 1.5 — 2.0 [25].
Hence, equilibrium velocity (Uy = 1) is greater than thermal speed (vy, = 0.2) but
is smaller than sound speed (Cs = 1.5 — 2.0) of the system, therefore the flow is

regarded as “subsonic” in nature.

Note that, in the present Chapter, the entire macroscopic flow speed is along 7
direction initially. The transition from laminar to turbulent flow to an unstable
macroscopic dynamic state may be identified by calculating the change in per-

turbed kinetic energy along & direction as defined in Eq. 3.7 below.

‘5Ekm(t) ’ _ i) — vz (0)ldady (3.7)

6 Eyin(0) [ Jv2(0)dxdy

In Fig.3.5, perturbed kinetic energy along xz— direction and coupling parameter
is plotted on a log-linear scale against time t. The growth rate of perturbation is
found to be approximately 5.5 x 1072, In Fig.3.5, perturbed kinetic energy along
with decay of average coupling parameter I' are plotted in the same figure. It is
important to note that, the molecular shear heating reduces the value of average
coupling parameter by 50% or more (I' ~ 26 at ¢ = 220wy ") from its initial value
(To = 50 at t = 0). From Fig.3.5, it is evident that the molecular shear heating is
very fast at initial phase of shear flow (before t = 0 to t = 220wy " ). It is important
to note that the Zero in time-axis is shown in Fig.3.5 is after the superposition of
shear flow.

Let us look at the viscosity of 2D Yukawa bed at density 7 = 1/7 and various
values of (I, k) under equilibrium condition [22]. The viscosity obtained under
equilibrium condition is a non monotonous function of I' and for various value
of k as shown in Fig.3.6. Similarly the diffusion coefficient and thermal conduc-
tivity are shown in Fig.3.7 and Fig.3.8. Thus, for whatever reason, if I' varies,
one expects variations in diffusion coefficient [Fig.3.7] and thermal conductivity

[Fig.3.8] as well. These changes would affect the local transport in a non-trivial
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Figure 3.5: A plot of perturbed kinetic energy (left y-axis) and decay of cou-
pling parameter (right y-axis) in a linear-log scale for number for perturbation
mode mg = 2, initial coupling parameter I'g(t = 0) = 50, screening parameter
k = 0.5, spatial period number ny = 3 and shear velocity Uy=1. Calculated
growth rate from simulation is 5.5 x 1072, The zecro of time-axis shown in
Fig.3.5 is after the superposition of shear flow

fashion and cannot be calculated using a fluid model, which, by construction, as-
sumes particular values for transport coefficients. This point highlights the need

for performing a classical first principle based non-equilibrium MD for our problem.

In late time regime, inertial effects dominate over the stabilizing viscous effects.
The fluid undergoes a laminar to turbulent flow transition and late time saturation
in perturbed kinetic energy is seen. In Fig.3.10, the time evolution of vorticity
structure in Yukawa liquid at initial coupling parameter I'y = 50 has been pre-
sented. As described earlier, to construct these vorticity structures we first obtain
the local velocity by “fluid” dust particle velocities over a 55 x 55 meshgrid. In
vorticity evolution plot [Fig.3.10] it is depicted that in initial time perturbed mode

mg = 2 first grows and in late time mode-mode interactions dominate and nonlin-
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Figure 3.6: Shear viscosity vs coupling strength plot for different s values.
Here I' is same as I'y. After Ref: [22]

ear patterns are obtained. It is found that after some time the vorticity structures
are destroyed because of microscale molecular shear heating, the details of which

will discussed in Sec.3.2.4

In Fig.3.11 results from a parametric study for the maximum growth-rate of per-
turbed modes with initial Reynolds number R = Uyln/n have been shown, where
[, n are the shearing length and initial shear viscosity of the flow respectively.
Here, the value of shear viscosity 7 is calculated using the Green-Kubo formalism
[22, 90]. Tt is depicted in Fig.3.12 that for a given value of T'y and &, the flow is
neutrally stable below R < R,., where R, is the critical value of Reynolds number
and for R > R, flow becomes unstable and eventually turbulent [see Fig.3.12].
In the same way, in Fig.3.12, a parametric study for maximum growth-rate has
been shown for reduced Reynolds number R* = R — R.(I'g), which shows also the
laminar to turbulent transition. In this figure R.= 59, 47, 18 for coupling strength
'y = 10, 50 and 130 respectively. It is tempting to speculate from the result shown

in Fig.3.12 that such laminar to turbulent transition in our system would lead to
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Figure 3.7: A plot of self-diffusion coefficient D* obtained from equilibrium
MD simulation vs reduced temperature 7% = T/T, or T'./T" (where T, and
['. are melting temperature and coupling strength for low value of x, where
diffusion coefficient D* are normalized by wga? with wg being the Einstein
frequency. [After Ref: [23]]

a standard bifurcation [91] (The mathematical nature of this transition is not ad-
dressed here). Interestingly, we find that a higher value of coupling parameter I'
decreases the critical value of Reynolds number R.. In the next section, the effect

of viscous heating on shear flow has been studied.

3.2.4 Molecular heating due to shear flow

It is found that whenever there is a shear in macroscopic velocity profiles, viscous
shear heating occurs at the microscale [Fig.3.13]. Conventionally, the effect of
viscous shear heating and thermal conduction is measured by a dimensionless pa-
rameter, known as Brinkman number [45, 46] B, ~ n(AV)?/AAT (where 1, A are
shear viscosity and thermal conductivity and AV, AT are difference in mean flow
velocity and temperature respectively) [46]. For most fluids, B, which is the ratio
of viscous heating to thermal conduction is smaller than the unity. The higher

value of B,, the lesser will be the heat conduction and hence larger the tempera-

47



Chapter 3. Shear flow in a Yukawa liquid: A Molecular dynamics
study

3.0

25

2.0

1.5

A -0.127 x

1.0

0.5

0.0

Figure 3.8: Reduced thermal conductivity A* normalized by the Einstein
frequency as a function of the reduced temperature 7% = T/T,. or I'./T" for
different s values (equilibrium MD simulation). After Ref: [24]

ture rise near the shear layer. For example, for Taylor-Couette flow in Newtonian
and visco-elastic fluids trapped between concentric and rotating cylinders, value
of B, is found to be 0.00359 [92] and for conventional water flow in a channel [49]

its value is approximately in the range of (1 — 17) x 1075.

In recent dusty plasma experiments, using a laser driven shear flow study, high tem-
perature peaks are reported [6] in the regions of velocity shear in two-dimensional
layer. These high temperature peaks are due to shear heating, which occurs due
to collisional scattering at region of shear location. In such dusty plasma exper-
iments, value of B, is estimated to be 0.5 [6]. We have estimated the Brinkman
number from our numerical simulation and found that initial B, = 0.9445 for our
system parameters. For example, for I'y = 50, k = 0.5, n(t = 0) = 0.2 [22] and
AT = 50,k = 0.5) = 0.4235 [41, 93], the value of AT and AV are 0.02 and 0.2
from Fig.3.14 and Fig.3.15, B, = 0.9445 .

In the shear layers, frequency of collisions between dust grain can be expected
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Figure 3.9: A plot of perturbed kinetic energy in linear-log scale for number
for perturbation mode my = 2, initial coupling parameter I'o(t = 0) = 10,
screening parameter x = 0.5, spatial period number ny = 3 and shear velocity
Up=1. Calculated growth rate from simulation is 4.5 x 1072, Zero in Time-axis
shown in Fig.3.9 is after the superposition of shear flow.

to be high. These collisions increase the random thermal velocity of particles.
Temperature of dust grains depends upon the random thermal velocity which is
directly related to kinetic energy. Moreover, viscous dissipation effects become
important when either the viscosity is larger or when the fluids have a low thermal
conductivity, which increases the temperature gradients. As discussed earlier, low
thermal conductivity is a relative consequence of low number density. One can
clearly see the viscous shear heating at shear locations in Fig.3.14, in which the
space dependent temperature profile has been plotted at various times. In these
temperature profiles because of a spatial period number 3, six maxima (at the
location of interface between two consecutive anti parallel flow) show the shear
heating locations. As time increases, magnitude of temperature increases and at

time ¢ = 1000wy *, the temperature starts to saturate. In Fig.3.15, space dependent
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Figure 3.10: Contour plot of fluid vorticity (w = V X (j') obtained from
molecular data. The grain velocity in the bins are fluidized through a 55 x 55
grid to construct vorticity. The horizontal color bar at the bottom show the
magnitude of vorticity and blue and red strips show the opposite sign vorticity
respectively. Perturbation mode m = 2, initial coupling parameter T’y = 50,
screening parameter k£ = 0.5 equilibrium spatial period number is ng = 3,
initial Reynolds number R = 235.149 and shear velocity Uy=1. Vorticity plots
generated from microscopic velocity show Kolmogorov instability in Molecular
Dynamics, the micro scale heating quickly destroy the vorticity structures.
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Figure 3.11: Growth-Rate vs initial Reynolds number R for different initial
value of I'g with x = 0.5.

-3
x 10
8 T T T T T
7 ' .
’
% ’
’
6 - 1 ’ '* .
[}
.
' < ’
5 1 ’ . i
bt ! U ’
s ' ! *
“l‘ a ) 1 ,’
Lat i
g > 4 ‘
o (0] ] e
: o .
3t ’ g
Sy 7 .
S K
2r ’ II - 1
¢ ’ Phe —*—FD=10, R_=59
L h ’ ’*’ -<q -T,=50, r_=47 |
. - _e_ro=13o, R =18
A
-100 0 100 200 300 400 500

Reynolds number (R *=R-R )

c

Figure 3.12: Growth-Rate vs initial Reynolds number R showing bifurcation
for all the three initial 'y values. R, for various initial coupling strength I'g =
10, 50 and 130 are 59, 47, 18 respectively.

“fluidizing” velocity profile has been plotted on y = 0 axis. Again a clear signal

of molecular shear heating is visible, which shows that because of shear heating,
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Figure 3.13: Figure shows the location of maximum shear and localized

shear heating zones and the thermal conduction away from the shear heating

zone. Vertical lines J show the node points (shear heating zones) in velocity
profile.

vorticity structures are destroyed. In Fig.3.16, we have plotted average I which is
inverse of temperature as a function of time. The thermal speed (vy, = \/M) for
'y = 50,100,150 are 0.2, 0.14142 and 0.11547 respectively and are much smaller
than equilibrium velocity speed Uy = 1 (therefore the shear heating phenomena
occurs and results the decay in the I' value). It is found that decay-rate is de-
pendent on equilibrium flow velocity. To better understand the interplay between
heat conduction and viscous heating, we define a parameter o which is a ratio of

equilibrium speed of shear flow to the thermal speed a = Upy/vy,.

The observations are divided into three categories::
(a)a =0.5 or (Uy < vy,): For this case the thermal speed is greater than the equi-
librium velocity speed. In Fig.3.17 the shear heating is very small for o = 0.5 for

various values of coupling parameter. One can say that for larger value of ther-
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Figure 3.14: T'(z¢) = (T'(z¢,0,t)), temporal evolution of temperature pro-
file as a function of z¢ for different time for I'y = 50, equilibrium velocity
magnitude Uy = 1, screening parameter x = 0.5.

mal speed, the coupling parameter will be constant with very small fluctuations
throughout the simulation. (b)a =2.0 or (Up > vy,): In this case it is found that
the decay rate of higher I'y = 100, 150 is quite close, however it is slightly smaller
for I'o = 50. (c)aw =6.0 or (Uy >> wy,): For this case the thermal speed is much
smaller than the equilibrium velocity speed and results a faster decay for high
'y = 100, 150. For I'y = 100, 150 decay-rate is close each other while for I'y = 50

it is slower compare to the higher I'y.

In Fig.3.18 we have plotted the decay-rate data with an exponential fit a[l +
bexp(—pt)], where a = 0.2, b = 4.0, [ are the intercept, coefficient of exponential
part and decay-rate respectively. [ describes how rapidly the coupling parame-
ter decreases as the time increases. The decay rate 5 of coupling parameter is
approximately 3.4 x 1073 qualitatively. To see the dependency of decay rate on
equilibrium velocity to thermal velocity ratio(a = Up/vy,) we have plotted decay

rate vs « in Fig.3.19 for coupling parameter 'y = 50. It is clear that the decay
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Figure 3.18: A plot of (I'),, vs time plot for I'y = 50, equilibrium velocity to

thermal velocity ratio, say o = Up/vy, = 5. Fit line is 0.2[1 + 4.0 exp(—/t)].
Calculated decay rate is = 3.4x1073. Solid line shows the exponential fit.
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Figure 3.19: Decay rate vs a = Uy /vy, plot for number of perturbation mode
m = 2, coupling parameter [y = 50, screening parameter k£ = 0.5 equilibrium
spatial period number ng = 3.
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rate of particular coupling parameter monotonically increases with the value of a.

In the next subsection, we present the molecular dynamics study of rotational

shear flow evolution of a finite size Rankine vortex of size R.

3.3 Rotational shear flow

Unlike parallel shear flows studied earlier, there is another important class of shear
flows, namely rotational or circular shear flows. Strong coupling effects tend to
couple transverse or optical wave dynamics to compressional wave dynamics. In
the earlier study, the shear heating regions were embedded in the regions of vortex
dynamics. It would be interesting to ask about what would be the effect of shear
heating on the dynamics of a nonlinear phenomena with strong separation of re-
gions of finite vorticity and zero vorticity, one such example is Rankine vortex. How
does shear heating affect the dynamics of evolution on such nonlinear propagation
structures. Therefore, in the present chapter, for the first time, using Molecular
dynamics simulation a detailed study about the effect of strong correlation in pres-
ence of coherent vortex has been performed. We study the emergence of non-linear
elastic waves due to azimuthal motion of localized rotational flow and the effect of
strong correlation of the medium over nonlinecar waves. We investigate the speed
of nonlinear wave for different values of azimuthal velocity. Understanding of such
wave propagation has many important applications in geophysics, petroleum en-
gineering and mining, earthquakes and seismology [55]. Seismic waves have been

studied theoretically and numerically for viscoelatic medium [94].

3.3.1 Rankine Vortex

To study the vortex flow dynamics of rotational shear flow in strongly correlated
liquids, for the reasons discussed earlier, the Rankine vortex [95, 96] is considered.

Rankine vortex is an azimuthal flow. The Rankine vortex has two regions (a)
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The inner region of the flow vy(r) < R, this region rigid rotator like flows profile,
however it is liquid (b) The outer region wvy(r) > R with zero vorticity but finite

circular flow. The mathematical expression of Rankine velocity profile is as follow

V = 0,7 + vl + v.2 (3.8)

where
Vor/R ifr<R
v, = 0,19 = ,0, =0
VoR/r ifr>R
where v,, vy, v, are radial, azimuthal and axial velocities respectively. Here, V,
is the strength of azimuthal velocity, r and R are radial coordinate and radius of
Rankine vortex core respectively. Vorticity profile of Rankine vortex has interesting

features. At ¢ = 0, the vorticity is constant in magnitude in the inner part of the

region, however at the outer region its value is zero.

« ~ | 2Vor/R ifr<R
V=20
0 ifr>R

It is important to note that Rankine vortex can be described by the characteristics
that it has a continuous velocity field over the entire region, however has a discon-
tinuity in vorticity. In Cartesian co-ordinates the z and y components of velocities

are V, = vgsinf and V,, = vg cos 6.

In Fig.3.20, the vorticity profile of Rankine vortex has been plotted, where the
radius of Rankine vortex is considered to be R=10. In this figure black colored
arrows shows the velocity field, which shows the linear increase in rotation of the
velocity field in the inner core until » = R = 10. It is important to note that
the total energy (E) of the 2D Yukawa liquid before and after the superposition
of rotational shear flow remains constant throughout the simulation. Total energy

for N number of particles is as follow:
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Figure 3.20: Rankine vortex profile (w = VxV) forI'y = 70, k = 1.0, R = 10
and Vy = 5. The magnitude of vorticity inside the inner core w = 2Vyr/R = 1.0.
Black colored arrows show the direction of velocity field at ¢ = 400, the time
of superposition of Rankine vortex.

1| Noq
E = 3 [Z vl Y fe_'"”} (3.9)

i=1 it Tij
Total energy of the system has been shown in Fig.3.21 for I'y = 70 and x = 1.0
before and after superposition of rotational shear flow with various equilibrium
velocity magnitude Vp= 5, 8 ;10. The discontinuity at time ¢t = 400 is because of
the addition of mean equilibrium velocity with thermal velocity. In the following,
we will describe a study of a novel radially propagating wave which we believe is
due to a combination of strong coupling and compressibility of the medium. It is

important to note that throughout this Thesis, we called it non-linear elastic wave.
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Figure 3.21: Total energy plot for I'y = 70 and x = 1.0. (a) in canonical
run (b) in micro-canonical run (c) in micro-canonical run after superposition
of rotational shear flow with various equilibrium velocity magnitudes, viz Vo=
5.0, 8.0 and 10.0.

3.3.2 Study of non-linear elastic wave

To study the rotational shear flow and emergence non-linear elastic wave, a Rank-
ine vortex profile has been superimposed over thermalised particle velocities and
all measurements have been taken at microcannonical run [ constant volume, total
energy and particles number |. This simply implies that a flow profile V' is loaded
only at ¢ = 0 and no attempt is made to control the mean flow at later times.
The shear flow profile, which has been superimposed over thermalised particles
is the same as given in Eq.3.8. To see the fluid-like vortex flow, here we have
considered a large number of particles N, = 62500 to study large-scale hydrody-
namic phenomena using MD simulation. Due to the large size of the simulation

box L, = L, = L = 443.12, we do not consider Ewald sums [74]. The value
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of screening parameter x is kept 1.0. To obtain macro-scale quantities for ex-
ample, averaged velocity and averaged vorticity from microscopic information, we
perform a “process of fluidization”. For that, a mesh-grid of size 55 x 55 is su-
perimposed on the particles of the system to calculate the macroscopic or “fluid”
variables. Average local fluid velocities along = and y directions are calculated as
Ve = (1/N,) Ef\ﬁ’l Vig, I_/y = (1/Ny) EZN:bl Uiy, where v;; and vy, are individual in-
stantaneous particle velocities along x and y direction and N, is the total number
of particles present in an individual bin. Each bin contains approximately 20 par-
ticles [ Ny = Np,/(55 x 55) ~ 20 with N, = 62500]. From average local velocities,
we calculate the average local vorticity @(zq, yg) = V x V and the average local
temperature T(z¢, yo) = (2/3) 2N ((vm — V)2 + (vgy — \71,)2> /Ny at the Eulerian
grid location (zg,yq). It is important to note that all the quantities for exam-
ple, velocities (v, and v,), averaged density, averaged vorticity are calculated from

above mentioned fluidized procedure.

In Fig.3.22, the time evolution of Rankine vortex for I'g = 70, kK = 1.0 and V, = 5
has been shown. It can be clearly seen that the azimuthal rotation of circular vortex
generates the waves towards outward direction because of adequate elasticity of
the medium. In Fig.3.23 the magnitude of the peak of velocity along = and y
directions have been plotted against time, which show that the emergence of non-
linear wave is isotropic and non-dispersive and generates from the edge of rotating
vortex (R=10). To check whether the Yukawa fluid behaves like a incompressible
or as compressible medium maximum the value of spatially averaged density and
divergence of velocity (V - U) have been plotted in Fig.4.20 and Fig.3.25. Figures

reveal that the medium behaves as locally compressible.

To see the effect of azimuthal speed over emergence of such non-linear wave the
wave propagation 3D plot has been plotted for different values of V4 in Fig.3.26.

It has been observed that the increasing speed of rotational vortex enhance the
velocity of propagation of non-linear wave. Wave generated from higher rotational

velocity (e.g Vo = 10) touch the boundary first as compared to those generated in
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Figure 3.22: Time evolution plots of Rankine vortex for I'y = 70, k = 1.0
and Vy = 5. Black coloured arrows show the direction of velocity field.

the case with V) = 5.0. In these cases [see Fig.3.26 (a), (b) and (c)|, wave touches
the boundary and because of periodic boundary condition it comes back through
other side of the simulation box. Velocity of the emerging non-linear wave has
been calculated by Cnrw = \/C-%TCZJQ’ where Cypw means speed of non-linear
wave. It is important note that here C, and U} are speed of nonlinear wave along
and y directions respectively. In the same way, in Fig.3.27, propagation of density
variation has been shown. It is evident from the figure [see Fig.3.27 (a), (b) and

(¢)], wave has same velocity magnitude as demonstrated in Fig.3.26.

It is important to note that this non-linear wave generates because of strong spatial
correlation of the medium. In this regard, the results are presented for k = 1.0 and
a wide range of I" values. To see the effect of this spatial correlation, a series of
simulations have been performed for various values of equilibrium coupling strength

and plotted in Fig.3.28.
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Figure 3.23: Maximum amplitude of nonlinear waves along x and y directions
for I'y =70, k = 1.0, R =10 and Vi = 5.

Fig.3.28 reveals that the coupling strength does not have any effect on the non-

linear wave emergence and generation or perhaps the effects are so small that

it is not reflected from in this figure. To see the impact of coupling strength

on the propagation of the wave, we have calculated the speed of propagation of
wave for different values of equilibrium coupling strength as shown in Fig.3.29 and
Fig.3.30. It shows that as the medium becomes more and more strongly correlated,
the speed of non-linear waves is suppressed. For the range of coupling strength
[[' = 5 — 130], the speed of propagation of non-linear wave decreases with in the
range Cypw = 4.6 — 4.0. Fig.3.31 shows that, for different values of coupling

strength, increasing azimuthal speed of Rankine vortex increases the speed of non-

linear wave propagation.
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Figure 3.24: Time evolution of maximum value of spatially averaged density
(In(z.y,t) —no|)ay for I'y = 70, k = 1.0 and equilibrium velocity Uy = 5. Initial
density is no = 1/7
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Figure 3.25: Time evolution of maximum value of spatially averaged diver-

gence of velocity (|V - Ul)gy for Iy = 70, k = 1.0 and equilibrium velocity
Vo=5.
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Figure 3.26: Propagation of nonlinear wave for I'y = 70, x = 1.0 and different
values of azimuthal equilibrium velocity (a) Vy = 5, C,, = 2.109, Cypw = 2.98
(b) Vo = 8, Cx = 2687, CNLW = 3.8 and (C) Vb = 10, Cx = 2833, CNLW = 4.0,
where Cypw is calculated by Axz/At. Similar structure is seen along y— axis.
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Figure 3.27: Propagation of density wave (or compression wave) for I'g = 70,
k = 1.0 and different values of azimuthal equilibrium velocity (a) Vo = 5,
Cx = 22, CNLW =3.11 (b) ‘/E) = 8, Cx == 26, GNLW = 3.68 and (C) VE) = 10
C, = 296, Cnpw = 4.18, where Cnpw is calculated by Ax/At. Similar
structure is seen along y— axis.
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Figure 3.28: Effect of coupling strength over time evolution of Rankine vortex
for k = 1.0 and V5 = 10. Black colored arrows show the direction of velocity
field.
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Figure 3.29: Effect of coupling strength on nolinear wave speed for x = 1.0
and Vy = 10. Similar structure is seen along y— axis. Speed of nonlinear wave
(Cnpw = /C2 + C2) are 4.6, 4.6, 4.45, 4.21, 4.32, 4.21, 4.21, 4.21, 4.21 for
['p=1, 9, 15, 30, 50, 70, 90, 110, 130 respectively.
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3.3.3 Omnset of the nonlinear wave structure

To understand the nature of this radially propagating structure, let us first consider
the transverse speed C'r and longitudinal speed Cp, in a strongly coupled plasma
medium, say, at I' = 50. As is well known [25, 97], normal modes or sound speeds
are sensitive to values of s than I'. In Fig.3.32, following Khrapak [97], we show

the dependency of Cf, on k for I' = 50. Now let us fix the azimuthal speed V
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Figure 3.32: Longitudinal sound velocity Cs/w,a is same as C}, used in the
text. The plot represents the C}, as a function of x for I' = 10 and 100. (After
Ref.[25]). The values of Cp, Cp for k = 4 are 0.289 and 0.12 respectively.

of the Rankine initial condition to be V5 = 0.75 and perform MD simulations in
a Yukawa liquid for k = 1, 2, 3, 4 with Mach speeds M¢;, = V,/C}, are 0.65,
1.2, 1.89, 2.59 and Moy = Vo /Cyp are 2.34, 3.3, 4.7, 6.25. Clearly, as we change &
values, all Mor values are greater than 2.0 while M, values start from 0.62, cross
1 and go up to 2.59. The results are shown in Fig.3.33 which clearly demonstrate
that as compressibility effects set in for M, > 0.5, the radial structures form and
propagate at different speeds and become more prominent for values of M¢cy > 1. It

is important to realize that for all values of k considered here Mcr > 1. However,
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the mode is triggered when Mg, is increased beyond a certain value, in other
words, due to compressibility effects, but, propagates radially out due to the strong

coupling nature of the medium.

Figure 3.33: Propagation of nonlinear wave with various value of screening
parameter k for Vo = 0.75, I'g = 50.

In Fig.3.34 the numerically obtained speed of the wave Cnpw = \/C%TCZ with
varying longitudinal Mach number Msp = V,/Cy is shown. In the Fig.3.34 wave
and longitudinal sound speed has been demonstrated for different values of screen-
ing parameter. Note that as Mgy, increases, the value of Cyw increases beyond C7f,
values for each k, thus demonstrating that the wave becomes increasingly nonlin-
ear with increasing compressibility effects. We believe that, due to strong coupling
effects and compressibility, the rotational shear flow couples the angular and ra-
dial directions and the radial shear triggers a radially propagating disturbance
[98] which becomes nonlinear as M, increases beyond the regular compressibility
threshold of Mgp > 0.5. Let us now come back to our results with V5 = 5,8, 10

for k = 1 obtained in earlier Sections. Clearly these are cases with extremely large
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Figure 3.34: Speed of nonlinear Figure 3.35: Speed of longitudi-

wave (Cyrw) vs longitudinal Mach nal sound C) and nonlincar wave
number (M¢p) for Vo = 0.75, 'y = (Cnpw) vs screening parameter (k)
50 with various values of screening plot for Vo = 0.75, I'y = 50. Sound
parameter k. speeds are calculated from our MD

simulation. As shown in Fig.3.30 as
Vo increases the value of Cypw in-
creases.

My, values. As C, is weakly dependent on I' for a given k, for a given V5 and
k, the extreme nonlinear wave speed is therefore more or less independent of T"
(see Fig.3.30). Expectedly, for a fixed I', increasing values of V4, would increase
the nonlinear wave speed (see Fig.3.31). We shall come back to the discussions on

rotational flows in Chapter-4, in the context of shear heating.

3.4 Summary

In this Chapter, laminar to turbulent transition of Kolmogorov flow in strongly
coupled Yukawa liquid using “first principle” based classical molecular dynamics
simulation has been investigated. Parametric study for range of initial Reynolds

number R has been performed and reveal that the Yukawa liquid in neutral stable
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state for R < R, and unstable for R > R,., where R, is a transition point from
where laminar to turbulent transition occurs and R, is in general a function of
(T, k). The nature of the growth of perturbed mode against Reynolds number
exhibits a bifurcation [91]. The coupling parameter decays exponentially in the
early phase. At the late times, coherent vortices are destroyed because of molec-
ular shear heating. The description of viscous heating is characterized by a space
dependent temperature profile at a given coupling parameter (I'y = 50) of z at
y = 0 for different times. These space dependent temperature profiles reveal the
rise in temperature at shear location. For our system, for equilibrium condition,
Brinkman number (B, =~ 1.0), which suggests strongly that the shear heating due
to molecular collisions dominates over thermal conduction of heat. It is also seen
that the decay-rate of I' with time depends upon « the ratio of equilibrium shear

velocity to thermal velocity.

In present Chapter, the emergence of non-linear elastic waves from localized co-
herent vortex sources in strongly correlated Yukawa medium using Molecular dy-
namics simulation has been studied. We believe that due to strong coupling effects
and compressibility, the rotational shear flow couples the angular and radial direc-
tions and the radial shear triggers a radially propagating disturbance [98] which
becomes nonlinear as M¢, increases beyond the regular compressibility threshold
of Mcp > 0.5. It is important to note that, whereas in the parallel flow problem,
the shear heating zones are inseparably embedded in the region of vortex dynam-
ics while in the rotational flows, the region of shear heating are reasonably well
separated regions of finite vorticity and zero vorticity. The effect of shear heating
suppression over elastic waves generated by rotating localized vortex source will

be described in the coming Chapter-4.

In general, Yukawa interaction is known to be the predominant force influencing
the dynamics of a grain in a Complex plasma experiments. However, the effect of

other forces such as dust-neutral collisions resulting neutral drag force, the effect
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of ions accelerated in the sheath region where the 2D grain bed levitates are also
known to affect the dynamics of grains. For example, interesting phenomena of
dust rotation, crystallization and melting [99, 100] fall under this category. In the
present work, neutral drag forces and forces due to ion accelerated in the sheath
region have not been included which is important to study more realistic situa-

tions. We shall come back to this in Chapter-6 (Conclusions).

Returning to the content of present Chapter, no attempt has been made to con-
trol the temperature of the liquid during the simulation, the flow evolved under
adiabatic conditions and the shear heat generated due to viscosity remained in
the system. Several interesting questions are arised. For example, is it possible to
address macroscale vortex dynamics using MD simulation and at the same time
maintain the grain bed at the desired temperature 7 What would be the spatio-
temporal profile of temperature ? These questions are important not only from
the physics point of view but also computational and numerical point of views.

These important questions have been attempted in the forthcoming Chapter.
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Molecular shear heating and
vortex dynamics in thermostatted

two dimensional Yukawa liquids

4.1 Introduction

In Chapter-3, using Kolmogorov flow [15, 16, 17, 82, 83, 101] as an initial shear
flow in Yukawa liquids, it was demonstrated using molecular dynamics simulation
that molecular shear heating destroys macroscale the vortex dynamics and reduce
the coupling strength exponentially [19]. These calculations did not assume any
microscale transport coefficients, hence are called as “classical first principle” cal-
culations. In Chapter-3 in parallel shear flows [7, 8, 19] and rotational shear flows,
the spatio-temporal evolution of instabilities as an initial value problem have been
studied using molecular dynamics in a microcanonical ensemble. As no attempt
was made to control the temperature of the liquid during the simulation, the flow
evolves under adiabatic conditions and the shear heat generated due to shear heat-
ing was shown to remain in the system distributed dynamically in space and time.

This led to a gradual increase in overall temperature and also strong localized

75



Chapter 4. Molecular shear heating and vortex dynamics in
thermostatted two dimensional Yukawa liquids

gradients eventually resulting in short lifetimes of large scale vortex structures.
Thus to address macroscale vortex dynamics it is highly desirable to “remove”
this excess heat from the shear layer without altering the physics of the problem.
In the present Chapter, we investigate, whether or not, at least in principle, is it
possible to address macroscale vortex dynamics using MD simulation and at the
same time maintain the grain bed at the desired temperature. In the following,
in continuation of earlier Chapter, we consider Kolmogorov flow and Rankine vor-
tex, which has been studied in Chapter-3 in the context of laminar to turbulent
transition [19] wherein it was shown that the average coupling strength decreases
exponentially with time due to molecular shear heating has been considered. In the
current Chapter, it is proposed and demonstrated here that using MD simulation
and thermostat based on configurational space degree of freedom [50, 51, 52, 53]
(also called profile unbiased thermostat or PUT), it is possible to “remove” heat
from the system generated by shear flow and yet study macroscale vortex dynamics
due to shear heating without altering the velocity degree of freedom (DOF). Using
this PUT, it is demonstrated that the average coupling strength can be controlled
without compromising the effects of strong correlations on the macroscopic shear
flow and vortex dynamics. A detailed comparison of the evolution and dynamics
of parallel shear e.g Kolmogorov flow in the presence and absence of molecular
shear heating, its effect on linear growth rate, non-linear saturation and transition
from laminar to turbulence flow has been presented in this Chapter. As discussed
earlier, in the parallel flow, shear heating zones are inseparably embedded in the
region of vortex dynamics while in the rotational flows, the region of shear heating
may be reasonably well separated in space from the nonlinear wave propagation
region. In the last section of this Chapter, the emergence and propagation of
nonlinear elastic-like waves generated from rotating circular vortex source has also
been studied in absence of molecular shear heating. In the following, background

for Configurational temperature has been presented first.
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4.2 Configurational Temperature

Thermodynamic temperature is an estimate of the average or random kinetic en-
ergy of the particles in a homogeneous system. According to kinetic theory of

gases, the kinetic temperature can be expressed as:

IR
kBT kinetic = m Z mgv; (41)
=1

where kg is Boltzmann constant and m;, v; are mass and instantaneous velocity of
“P" particle respectively, N and d are number of particles and dimensionality of
the system. Apart from this definition of temperature, assuming ergodicity, one can
also define temperature by a purely dynamical time averaging of a function which
is related to the curvature of energy surface. For example, H. H. Rugh [50], in 1997,
presented a dynamical approach for measuring the temperature of a Hamiltonian
dynamical system. Rugh indicates, using statistical thermodynamics for any closed
Hamiltonian system, that the kinetic and configurational temperature would be
asymptotically identical for a closed system of interacting particle. His definition

of configurational temperature is:

1 H
:VV

- S — 4.2
FoTonre Y IVH] (42)

where [|...|| is modulus operator and H is the Hamiltonian of classical dynami-
cal system as V is the phase space gradient. Butler [51] and others [102, 103]
generalized Rugh’s idea for any function B(A) of phase space A, such that

VH(A) - B(A)>

kBT:< V.- B(A)

(4.3)

where A = {q1, ¢2......q3n, P1., P2-.....p3n } is the phase space vector and (g;, p;) are

6N generalized coordinates for conjugate positions and momenta respectively. The

nian of the system H(A) = K(p;) +U(g;), where K (p;) and U(g;) are kinetic and
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potential energy of the dynamical system respectively. In Eq.4.3, B(A) can be any
continuous and differentiable vector in phase space. For example, if one chooses
B(A) as B(A) = B(p1,p2, .-, 3n,0,0,...,0), Eq. 4.3 yields the familiar kinetic
temperature namely, (3N/2)kgT = SN, p?/(2m;), which reduces to Eq.4.1 for
d = 3. Similarly when B(A) = B(0,0,...,0,q1, 2, ..., gsnv) = —VU (say), Eq. 4.3

gives configurational temperature in potential form

(VU )2>

ki Toom iy = < oo (4.4)

Assuming ergodicity, the temperature of the system is determined by averaging
large number of time steps. In a closed system, these kinetic and configurational
temperatures are expected to be asymptotically identical. In the following, we
shall try to demonstrate that kinetic and configurational temperature are close to

each other for a system of particle interacting via Yukawa type potential.

4.2.0.1 Kinetic and configurational temperatures

In dusty plasma, larger mass of dust grains as compared to other component
(electron and ion) makes dust dynamics slow. Due to slow dynamics of grain
medium, ambient plasma properties have been considered invariant and modeled
only grain dynamics, which is strongly coupled. The configurational temperature of
the grain medium where, grains interact via screened Coulomb or Yukawa potential
U(r) has been calculated first using U(r) :

On & e—milro

Ulr)) = —> (4.5)

4meq I Ty

where r;; = |r; — 7;| is the inter particle distance of 7" and j** particle. The N-
body problem is then numerically integrated using our parallelized MD code [34].
Configurational temperature have been calculated by using Eq. 4.4 where, inter-

action potential U(r;) is given by Yukawa potential as in Eq. 4.5. Time, distance
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Figure 4.1: Thermalisation of particles using Gaussian thermostat for screen-
ing parameter k = 0.5 and various desired coupling parameter I'y value.
From 0 — 300w,' Gaussian thermostat is ON (canonical run) and after
that for next 300wy ' thermostat is OFF (microcanonical run) for different
['p = 50, 100, 150.

and energy are normalized same as described in Chapter.3. Therefore, all physical
quantities appearing hereafter in present chapter are non-dimensional. In presented
simulations, for a given dust grain density 7, the size of the system is decided by
the total number of particles. For the purpose of demonstrating, kinetic and config-
urational temperature, we have considered small degree of freedom. For N = 2500
and k = 0.5, a system has been first brought to the desired I' using a Gaussian
thermostat [104]. In Fig.4.1, we have measured results for various coupling pa-
rameter and calculated configurational temperature using Eq.4.4 as a function of
time. In this figure particles are thermalised canonically by Gaussian thermostat
upto 300wy ! and thereafter microcanonically for next 300wy *. After this, system is
evolved under micro-canonical conditions and notice excellent agreement between

temperatures obtained from both kinetic [using Eq.4.1] and configurational [using
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Figure 4.2: Kinetic (blue) and configurational (red) I'(t) extracted under
micro-canonical conditions for the Yukawa liquid previously equilibrated at
' =50, 100, 150 with x = 0.5

Eq.4.4] degrees of freedom (see Fig.[4.2]). The absence of any noticeable drift in
temperature even without a thermostat indicates good numerical stability of our

time integration.

4.3 Configurational Thermostat

In conventional MD simulations, thermostats are generally used to maintain the
temperature of the system at a desired value in a canonical ensemble. For example,
in a typical Gaussian thermostat [104], a Lagrangian multiplier is invoked for in-
stantaneous velocities and equations of motion are augmented (in the Nose-Hoover
sense) with a velocity dependent non-holonomic constraint (Constraints that con-
strain the velocities of particles but not their positions ). While the trajectory
of the system generated so, strictly conforms to the iso-kinetic ensemble, it can

be shown that the observed thermodynamic behavior of the system corresponds
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very well to that of the canonical ensemble in thermodynamic limit. As can be
expected, such velocity scaling based thermostats can work only at low shear rates
and are immediately rendered useless at high shear rates where secondary flows
usually develop. The purpose of this Chapter to show that a profile unbiased ther-
mostat or PUT can be efficiently applied to control the temperature of shear flows

and below we present the details of our protocol.

Once a macroscale flow is superimposed onto the thermalized grain bed, the in-
stantaneous particles velocities contain information regarding the “thermal” and
the “flow (or average)” parts. Especially at high Reynolds number regime where
secondary flows usually develop, it becomes impossible to control temperature us-
ing such PBTs which rely only on velocity scaling. Thus controlling the “thermal”
component of velocity and letting mean component evolve is impossible using ther-
mostats which use augmented velocity equation as in a Gaussian thermostat. Is
it then possible to “thermostat” a system with N particles without modifying the

instantaneous velocities of particles 7 The answer is yes.

As discussed earlier, a novel method of thermostatting namely, configurational
thermostat has been introduced. In the past, Rugh [50] and Butler[51] pre-
sented a method of calculating the temperature of a Hamiltonian dynamical sys-
tem. This method of calculating temperature only depends upon the configura-
tional information of the system, hence named configurational temperature. Influ-
enced by the concept of configurational temperature, a new method of thermostat-
ting namely configurational thermostat, has been introduced by Delhommelle and
Evans [105, 106], Patra and Bhattacharya [107] and, Braga and Travis [52, 53].
Due to its relative simplicity in implementation, the Braga-Travis version of PUT
has been chosen. This method amounts to invoking appropriate Lagrange mul-
tipliers that will efficiently couple the grain bed to a configurational thermostat,
which controls the temperature by using augmented equations of motions for the

instantaneous particle positions without disturbing the instantaneous velocity of
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particles. In this PUT, instead of a non-holonomic constraint, a holonomic con-
straint is augmented to the equation of motion. The temperature of the system is
then calculated by using configurational definition [Eq. 4.4] that agrees well with
the kinetic temperature calculated using Eq. 4.1. To better understand the ways
in which the configurational thermostat differs from its kinetic counterpart, both

these schemes have been described below.

The equation of motion corresponding to conventional kinetic Nose-Hoover ther-

mostat are:

ou
p. = — — nw;, 4.
pl (97°i v, ( 7)
o L 3 mvl g op (4.8)
= Qn i=1 2 oo '

where m;, r;, p; and T are mass, position, momentum of “I"-th particle and
desired temperature respectively. Lagrange multiplier 7 is a dynamical variable and
Eq.4.6-Eq.4.8 are the new augmented equations of motion. (), is damping constant
or effective mass [108, 109]. In the same way, for “I"-th particle the augmented
equations of motion corresponding to configurational temperature based Nose-

Hoover thermostat as defined by Braga and Travis [52, 53] are :

. p; OU
" m; ’ua'r‘z (49)
.U
Pi= "5, (4.10)
o1 (X soUunN2 N 52y
“_@7(;(%) ‘kBT‘);aTg) (4.11)

In above equations, the Lagrange multiplier p is a dynamical variable. In config-
urational thermostat, (), is an empirical parameter which behaves as the effective

mass associated with thermostat. The value of (), decides the strength of coupling
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between system and heat-bath. It is found that the value of damping constant or
effective mass @), is sensitive to the desired coupling parameter I' values. For a
desirable T, it is found that for low values of damping constant, the system arrives
at the desired I' faster and vice-versa. In the limit (), — oo the configurational
thermostat is de-coupled and formulation becomes micro-canonical ensemble. In
Fig.[4.3], it is shown that how coupling parameter is sensitive to the value of
damping constant or effective mass (),. Here we have taken three different val-
ues of effective mass QQ, = 2 x 10%,2 x 10% and 2 x 107. It is found that for low
value of damping constant the system equilibrated at desired temperature faster
rather than high @), values. In the limit @), — oo the Configurational thermo-
stat is de-coupled and formulation becomes microcanonical ensemble. Extended
Hamiltonian H' for various @ values in Fig.[4.4] has been plotted. It is found that,
the @, which decides the strength between the system and the heat-bath. For
example, larger the value of (),, weaker is the coupling strength between physical
system to heat-bath changes the time of conservation of H' because H' depends
upon the @, value [see Eq.4.12], it is clear from the Fig.[4.3] that for @), = 2 x 10°
after t = 100wy ' coupling parameter starts to reach its desired value I' = 50. In

this chapter, chosen @, = 2 x 10° has been considered.

Lo . 1
H'(7,p, p, b) = H(7,p) + 5@,412 + b, (4.12)
where,

N2 N
H(’F,m = ! + Z U(T‘i]‘), Pi = Myv; (413)

ioiZmi

- N orU

Ou = 1tkpTo ) 57 (4.14)

where Tj is desired temperature. For the range of I' values studied here, we
find that Q, = 2 x 10° allows steady state with in time ¢ = 100 and hence
is used throughout. Using a PUT, it is depicted in Fig.[4.5] that kinetic and
configurational coupling parameter I' follow the same behavior in canonical and

in micro-canonical run as well. In the following section, the evolution of shear
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Figure 4.3: Canonical run using B-T thermostat for desired coupling param-
eter I'y = 50 with various effective mass @, for N = 2500, x = 0.5.

flow namely, Kolmogorov flow, in Yukawa liquids in the presence and absence of

microscopic or molecular shear heat is presented.

4.4 Kolmogorov Flow as an initial value problem
in Yukawa liquid with and without molecular

heat generation

To study the shear flow evolution and vortex dynamics from the microscopic dy-
namics in presence and absence of heat generation phenomena, Kolmogorov flow
[15] as an initial value problem has been studied. This simply implies that a
flow profile Uy is loaded at ¢ = 0 and no attempt is made to control the mean
flow at later times. At time ¢ > 0, a PUT is used to maintain the desired tem-

perature. The loaded shear profile has the form Ug(z,y)=Uy cos(2mnoz/L,)(1 +
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Figure 4.4: Extended Hamiltonian of the system with time. Canonical run
from (0 — 250)wy® and microcanonical run for next 250wy* for various Q,
values for N = 2500, x = 0.5 and 'y = 50.

250

:
L}
L}
L}
]
200 | L] ]
N
f '
= 1 nm‘ ! 'M - | Il
E 150 \ I W,ﬂlnl P L8 il Ui gl w'W' bl
& 1 .‘\‘ w W i L i | 1N i@ I Torim
£ | % W’ | g !
= I [ ]
& WO i m .
2 Ty PN ”'IN\ N | ,Ml ' bl |
S 100 X A Ma e sty y g
3 1 i i VT v (et TPy st TPV (i
3 \ IM ‘ o " : I |\I W MW\/‘.‘ M“ "‘M“ |
\ M [ ]
h | '
w Wi , [ } \
50 | ) P U o A ‘ g " (i . ‘ AI ‘
A .
.
.
N
o \ L \ \ ] L \ \ L
50 100 150 200 250 300 350 400 450 500
Time (t)

Figure 4.5: Kinetic (blue) and configurational (red) I' vs time. Parameters
used: @, =2 x 10% N = 2500 and x = 0.5.

dcos(2mrmy/L,))y, where the magnitude of equilibrium velocity Uy = 1, spatial

period number ng = 3 , magnitude of perturbation § = 0.01 , perturbed mode
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number m = 2. Coupling strength at time ¢ = 0 is I'g = I'(¢ = 0) = 50, for which
calculated thermal velocity is vy, = \/2/711) = 0.2, which is much smaller than the
equilibrium velocity (Up = 1). Unlike earlier section [Sec. 4.3], here large number
of particles N = 62500 have been considered to study large-scale hydrodynamic
phenomena using MD simulation. Due to the large size of the simulation box
L, =L, = L = 443.12, Ewald sums [74] has not considered. The non-dimensional
screening parameter k is 0.5. It is estimated that the sound speed of the system
for Tg = 50 and x = 0.5 is with in the range of 1.6-2.0 [25] which is larger than
the equilibrium velocity Uy. Hence the shear flow is considered to be “subsonic”

in nature.

Previously, it has been demonstrated that after superposition of the Kolmogorov
flow, the coupling parameter was found to weaken under adiabatic conditions due
to molecular shear heating[19]. In the present chapter, it is demonstrated that this
average coupling parameter when coupled to the configurational thermostat is ap-
proximately constant and close to desired I'. In Fig.[4.6], earlier results along with
the current results of average coupling parameter have been plotted. In Fig.[4.6](a)
the system is thermally equilibrated up to time ¢ = 300 using a conventional Gaus-
sian thermostat. In () it is shown that the microcanonical run in the time interval
300 < t < 600. At ¢ = 600 the shear flow has been superposed just once and then
observe the system both with PUT “ON” (¢) and with PUT “OFF” (d). As clearly
seen from (d), the heat generated due to shear flow remains within the system and
weakens the coupling strength I'. It is found that this decay to be exponential in
time (see fit). This is in stark contrast to the regime (c¢) where this excess heat
has been “removed” from the system through heat-bath, which is turn facilitates
' to remain constant. [The study has been repeated by replacing the Gaussian
thermostat in a with a PUT and found identical results]. It has also been seen
from Fig.[4.7] that both the configurational and kinetic coupling parameter are

close to the initial value I'g = 50.
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Figure 4.6: Coupling parameter vs time. The system is evolved (a) coupled
to Gaussian thermostat (b) under micro-canonical conditions (c¢) with PUT
“ON” and flow superposed at t = 600 (d) with PUT “OFF”. A fit (red) to
show that weakening of I' is indeed exponential in time has been provided.
Parameters used: I'y = 50.
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Figure 4.7: Coupling parameter vs time plot with PUT always “ON". Shear
flow is superimposed at time ¢t = 1000.
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Macroscopic quantities from microscopic information-process of “fluidization”:

A mesh-grid of size 55 x 55 is superimposed on the particles of the system to calcu-
late the macroscopic or “fluid” variables. Average local fluid velocities along x and
y directions are calculated as U, = (1/Ny) Zf\ﬁl Vig, Uy = (1/Ny) Z,LN:bl Uiy, Where vj,
and v;,, are individual instantaneous particle velocities along x and y direction and
N is the total number of particles present in an individual bin. Each bin contains
approximately 20 particles [ NV, = N;, /(55 x 55) ~ 20 with N}, = 62500]. From av-
erage local velocities, we calculate the average local vorticity &(zq, yg) = V x U
and the average local temperature T(zg, yo) = (2/3) SN ((Uw — Up)? + (viy —
@)2) /Ny at the Eulerian grid location (z¢q, ya). In Fig.4.9 time evolution of
“fluidized” vorticity after superposition of shear flow both in the presence (top
panel) and absence (bottom panel) of PUT has been shown. It is clearly seen that
shear heating destroy vortex structures thus resulting in their shorter lifetimes
compared to the case when PUT is “ON” where the lifetimes of these vortices
become significantly longer. In Fig.4.11 the time evolution of “fluidized” coupling
strength after superposition of shear flow both in the presence (top panel) and
absence (bottom panel) of PUT has been demonstrated. From these figures, it
is clear that due to shear heating [see Figd.11 (top)] the coupling strength de-
creases and becomes weaker and weaker. Unlike, In PUT “ON” case [see Figd.11
(bottom)], the coupling strength is maintained. However, there is still local shear
heating present at the shear location because thermostat maintained the global
temperature of the system not local temperature. In Fig.4.12, it is shown that
data for T(zq,yq) extracted at different times with shear flow imposed. In the
absence of PUT (shown with symbols), the temperature first increases and then
eventually saturates at a particular value at long times. This is in contrast to the
case when PUT is present where the temperature first increases (discussed later)
and then saturates at the initial temperature at long times. The value of initial
temperature taken was 0.02 (I'y = 50). In Fig.5.2 and Fig.5.3 the y-component

of velocity at various times in the absence and presence of PUT have been plot-
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Figure 4.8: “Fluid” vorticity (w = V x U) contour plots. Color bars show
the magnitude of local vorticity. Parameters used: perturbation mode m = 2,
equilibrium spatial period number ng = 3, I'y = 50, £ = 0.5, initial Reynolds
number R = 235.149 and shear velocity Uy=1 with PUT “OFF”. The micro
scale heating quickly destroy the vorticity structures when PUT is “OFF”.
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Figure 4.9: “Fluid” vorticity (w = V x U) contour plots. Color bars show
the magnitude of local vorticity. Parameters used: perturbation mode m = 2,
equilibrium spatial period number ng = 3, I'g = 50, x = 0.5, initial Reynolds
number R = 235.149 and shear velocity Up=1 with PUT “ON”. When PUT
is “ON”/ vortex structures sustain for longer time.
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Figure 4.10: Spatial distribution of I'(z,y,t)-Contour plots of Coupling pa-
rameter I'. Parameters used: perturbation mode m = 2, equilibrium spatial
period number ng = 3, I'y = 50, k = 0.5, initial Reynolds number R = 235.149

and shear velocity Uy=1 with PUT “OFF”.
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Figure 4.11: Contour plots of Coupling parameter. Parameters used: per-
turbation mode m = 2, equilibrium spatial period number ny = 3, I’y = 50,
k = 0.5, initial Reynolds number R = 235.149 and shear velocity Uy=1, when
PUT is “ON”.
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Figure 4.12: y- averaged temperature profiles (T'(xq, ya,t)) at various times
after the shear flow is superimposed. Parameters used are I'y = 50, Uy = 1 and
k = 0.5. Symbols show the temperature profile with PUT “OFF" and solid
lines show temperature variation with PUT “ON".

ted respectively. It is found that in both the cases the velocity profiles have not
changed much between the linear and non-linear regimes of shear flow evolution.
They remain qualitatively similar and differ only quantitatively. The perturbed z
component of kinetic energy 0 Ey, is obtained from the expression below and it is

used to calculate the growth rate shown in the Fig.4.15.

‘5Ekm(t)‘ _ ) — v3(0)]dady (4.15)

It is found that the calculated growth rate 7, in the absence and presence of PUT
are very close with the difference being only marginal (< 10%). In Fig.[4.17], it
have been shown that the results of a parametric study for maximum growth-rate
of perturbed mode with initial Reynolds number R = Uyln/ny, where [, 1y are
the shearing length and initial shear viscosity of the flow respectively. Here, the
initial value of shear viscosity 79 is calculated using the Green-Kubo formalism

[22, 90] before Kolmogorov flow superimposed. It is depicted from figure that for
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Figure 4.13: Temporal evolution
of y averaged velocity v,(zg) pro-
file for I'y = 50, equilibrium veloc-
ity magnitude Uy = 1, screening pa-
rameter k = 0.5, in the presence of
heating (PUT “OFF”). Time ¢ here
are shown after superimposition of
shear flow.
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Figure 4.14: Temporal evolution
of y averaged velocity v,(zg) pro-
file for I'y = 50, equilibrium veloc-
ity magnitude Uy = 1, screening pa-
rameter x = 0.5, in the presence of
heating (PUT “OFF”). Time ¢ here
are shown after superimposition of
shear flow.
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Figure 4.15: Perturbed kinetic energy in linear-log scale with and without
PUT. Calculated growth rates from simulation are 5.5 x 1072 and 6.0 x 1072
for PUT “OFF" and “ON" case respectively.
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Figure 4.16: Growth-Rate vs initial Reynolds number (R = M) plot for

screening parameter £ = 0.5.

given value of I'y and &, flow is neutrally stable below R < R,., where R, is critical

value of Reynolds number and for R > R, flow becomes unstable and eventually

turbulent. Such laminar to turbulent transition in our system might be a trans-

critical bifurcation [91]. Interestingly, It is found that higher values of coupling

parameter ' decreases the critical value of Reynolds number R.. Also the critical

value of Reynolds number R. is found to be independent of heat generation. It

is evident from Fig.[4.17] that the growth-rate of perturbed mode (m = 2) is not
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Figure 4.17: Growth-Rate vs initial Reynolds number R* = R — R, plot
showing trans-critical kind of bifurcation for screening parameter x = 0.5,
where R. =47 and 18.80 for [y = 50 and 130 respectively.

affected by molecular or microscopic heating, which shows that the suppression
of heat generation does not modify the shear flow dynamics in early phase of

simulation.

4.5 Rotational shear flow

In the past, various wave related phenomena have been studied in strongly corre-
lated grain medium for example, compressional and shear modes [98, 110], Mach
cones [111], transverse waves [112] and driven transverse wave [113]. Also, using
molecular dynamics simulation and experiment the radiation of elastic waves in
a plasma crystal using small dipole source has been observed [54]. In this Sec-

tion we address several important questions for example, what would be the effect
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t=15

t=50

Figure 4.18: Time evolution plots of Rankine vortex for I'g = 70, k = 1.0
and Vp = 5 with configurational termostat. Black coloured arrows show the
direction of velocity field.

of strong correlation over the shear wave in presence of coherent localized vortex
with configurational thermostat, where temperature is constant through out the
simulation [as described in Sec.4.3]?7, How the shear wave changes its nature with
azimuthal speed of coherent localized vortex. To study the rotational shear flow
and emergence non-linear elastic wave, Rankine vortex profile has been superim-
posed over thermalised particles velocities and configurational thermostat is “ON”
through out the simulation time (canonical run) | constant volume, constant total
temperature and constant particles number |. It is important to note that the
input profile (Rankine vortex) is same as given in Chapter-3. In Fig.4.18, time
evolution of Rankine vortex for I'y = 70, k = 1.0 and V3 = 5 has been shown.
It can be clearly seen that the azimuthal rotation of circular vortex generates the
waves towards periodic boundaries. Non-linear wave propagation in 3D plot has
been plotted for Vo = 5.0 in Fig.4.19. In the same way, in Fig.4.20, propagation of

density variation (compression wave) has been shown. It is found that the velocity
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Figure 4.19: Propagation of nonlinear wave for I'y = 70, x = 1 and V =
5[C, = Az/At = 2109, Cyw = /CZ + C2 = 2.98] with configurational

thermostat. Similar structure is seen along y— axis.
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Figure 4.20: Propagation of density wave (or compression wave) for I'y = 70,
k = 1.0 and V = 5 with configurational termostat. Similar structure is seen
along y— axis. The nonlinear wave speed C, = Ax/At = 2.22, Cypw =
3.1395.
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of nonlinear wave propagation in the presence and the absence [See Chapter-3] of

configurational thermostat does not show much difference.

4.6 Summary

In the present chapter, taking Kolmogorov flow as an initial condition, the role of
molecular shear heating in strongly coupled Yukawa liquids has been investigated
using configurational thermostat. The results are compared with earlier chapter
using micro-canonical ensemble [19]. In both the cases, depending on the initial
(T, k) values, it is observed that the laminar to turbulent transition of Kolmogorov
shear flow crucially depends upon Reynolds number R and shows existence of a
critical value of Reynolds number R, and is more or less independent of the pres-
ence or absence of heat generation. Parametric study of growth-rate of perturbed
mode over the range of Reynolds number shows the neutrally stable and unstable
nature of Yukawa fluids undergoing Kolmogorov flow for R < R. and R > R, case
respectively. It is important to note that the critical value of Reynolds number in
the presence and absence of heat generation is nearly same. Molecular shear heat
is found to decrease the coupling strength exponentially in time and hence destroys
the secondary coherent vortices. In this work, using the method of configurational
thermostat, it has been demonstrated that the average or global temperature of
the system can be maintained at a desirable value in spite of molecular shear heat-
ing. This in turn is found to help sustain the secondary coherent vortices dynamics
for relatively longer time span. In thermostatted Yukawa liquids, it is found that
the vortex structures which were destroyed by molecular shear heating are now
sustained. In dusty plasma lab experiments, this is possible by incorporation of
neutral dust collisions via increasing the neutral gas pressure [43]. However, dust
neutral collision alters the instantaneous particle velocities and destroys the vor-
tex dynamics. Therefore, at this point of time, it is not clear as to how to realize
configurational thermostat in real experiment. In the non-linear states obtained

with PUT “ON”, spatially non-uniform profiles of temperature is observed in the
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regions of strong velocity shear. However, average temperature of the system is
controlled by the configurational thermostat. For example when, PUT is “ON”,
it is observed that the peaks of local temperature profile at the shear flow loca-
tion, are much lesser in magnitude and global average temperature of the system

is maintained as compared to the case with PUT “OFF”.

As described earlier, a dusty plasma medium may be treated as a fluid medium or as
a collection of interacting particles. To study the behavior of parallel (Kolmogorov
flow) and circular shear flow (Rankine, Gaussian, Dipole etc.) using compressible

continuum model are presented in the coming chapter.
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liquids: A computational fluid

dynamics study

5.1 Introduction

As described in Chapter-3 and Chapter-4, Kolmogorov flow [15, 16] is a two-
dimensional flow and becomes unstable as Reynolds number increases beyond a
critical value. This is a classic problem of fluid dynamics. As described in the In-
troduction (Chapter-1), strongly coupled dusty plasma can be often treated like a
fluid and modeled by hydrodynamic models [10] within the range of fluid limit for
I' << T, ,herel'; isthe liquid to solid phase transition point [5]. For a 2D system,
I'; is found to be in the range of 130-135 and in general depends on the screening
parameter k. It has been found that several phenomena common to conventional
hydrodynamic fluids, such as Kelvin-Helmholtz [11, 59], nonlinear saturation, vor-

tex roll formation have been investigated in the field of strongly coupled dusty
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Figure 5.1: Equilibrium vorticity contour plot showing the direction of ve-
locity flow and shearing length

plasma using generalized hydrodynamic model. It is well known that a variety
of flows can be initialized in 2D strongly coupled dusty plasma experiments with
coupling strengths from weak to very strong coupling [29]. In present Chapter,
the transition of stable Kolmogorov flow to the unstable regime is demonstrated
for strongly coupled dusty plasma using a generalized hydrodynamic fluid model
where in strong coupling effects are incorporated via viscoelastic relaxation time

g .

Kolmogorov flow [15, 16, 101] is a two-dimensional flow with a sinusoidal periodic
equilibrium velocity ug(y)=Uy cos(Ny)Z , where N is the equilibrium wave number.
Note that the direction of equilibrium flow (z or y) does not matter because of

doubly periodic boundary condition.

In fluid dynamics approach, the effect of shear heating as found in Chapter-3 and its
effects on vortex dynamics of parallel shear flow are considered. Fig.5.1 shows the

periodic array of vorticity of the Kolmogorov flow with equilibrium wave number

102



Chapter 5. Compressible and incompressible shear flow in strongly
coupled liquids: A computational fluid dynamics study

N=3. Flow is in two dimensional doubly periodic domain (z,y) € [—m, 7] x [—m, 7).
As described in the Introduction, in practice, such a grain flow profile may be
generated by the appropriate external forcing of the dust fluid. To study the
linear and non-linear properties of such flow by means of the macroscopic point of
view, a generalized hydrodynamic model has been used. The description of this

model is given in the next section.

5.2 Generalized Hydrodynamic model and Gov-

erning equations

In general, the governing equations for Newtonian fluid dynamics is Navier-Stokes
equations and have been known for over 150 years. As discussed earlier, strongly
coupled dusty plasma can be often treated like a fluid and modeled by gener-
alized hydrodynamics model [10]. Recently, a generalized hydrodynamic model
for strongly coupled plasma system referred as the viscoelastic-density functional
(VEDF') model using density functional method [13] have described. In an other
work, another generalized hydrodynamic approach to simplify the calculation of dy-
namical structure factor of strongly coupled plasmas using fluctuation-dissipation
theorem has been described [14]. More detailed, discussion about Ref.[13] and [14]
are given in the Appendix-B and C. Yet another model due to J. Frenkel [9] has
been adopted to study the low-frequency modes in strongly coupled dusty plasma
system [10]. In this model, the effect of strong correlations are introduced by a sin-
gle viscoelastic coefficient (% ). Typically & depends upon the coupling strength
and many other statistical parameters [114]. One can also calculate Maxwell’s re-
laxation time F , which is the ratio of shear viscosity and bulk modulus by means
of equilibrium molecular dynamics simulation. As discussed earlier, to address the
problem of Kolmogorov flow in strongly coupled plasma, a phenomenological vis-
coelastic generalized hydrodynamic model, [9, 10] which has been used extensively

in the past has been considered. In this study, only the dynamics of the dust

103



Chapter 5. Compressible and incompressible shear flow in strongly
coupled liquids: A computational fluid dynamics study

fluid medium is considered and the background plasma medium is considered to

respond in a Boltzmann-like fashion. The continuity equation of the dust fluid is

as follows.
dp -
o9 g _ 1
5 +V.(pU) =0 (5.1)
The momentum conservation equation (force balance equation) for dust fluid is as
follows. .
d dU  qp = 1 = 0o ;
14K =} | —/—+ — = 2
{ T dt} it 2V 2P| T o, (5:2)
where % is the total derivative given by % = % + U.V and the stress tensor
= A ) J P2 52_' U U — M / /
0i5=" (817] 8137) + <§ 37]) ](v ) ) ph( nh)v Nhy, 4n, Py, @, 1, N,

& are the average fluid dust velocity, mass density, dust density, dust charge,
pressure, electrostatic potential, dynamic viscosity, shear and bulk viscosities per
unit number density respectively. Electrons and ions respond “instantancously” as
compared to dust fluid and are considered as inertialess. Hence, the equations of
motion of the electron and the ion fluids become kgT,n. = n.eVo and kpTin; =
—n;eV¢ which results as Boltzmann distributions of electrons and ions. That
is, ne = nepe®* 8T and n; = ne %87 where ng, T, [where s = ¢ (electron)
and T'(ion) | are the number density and temperature of the particular species

respectively. The normalized Poisson’s equation is:

Vi = %(nh —n; +ne) (5.3)

As described in Appendix-A, a 2D bed of strongly coupled dust fluid whose cou-
pling strength is measured via a viscoelastic relaxation time or Maxwell’s relaxation

time namely, £ has been considered.

5.3 Incompressible limit

In this Section, to begin with, a simpler form of the fluid model (vorticity form) has

been considered. In Section. 5.4 a fully compressible limit is addressed. Note that
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for an incompressible fluid such as present Chapter, specifying equilibrium velocity
profile [and hence the vorticity profile] completely defines the initial condition. A
fluid is said to be incompressible when the mass density of a co-moving volume ele-
ment does not change appreciably as the element moves through regions of varying
pressure. The conservation of mass density for such a dust fluid element (also called
the continuity equation) is given in Eq.A.20. For addressing phenomena where the
disturbances travel at speeds much less than the sound speed of the system, density
variations are negligible i.e %f = 0, resulting in V - U=0 leading to incompress-
ibility of the dust fluid. To keep things simple, potential variations in Eq.A.33 are
considered to be ignorable (These effects have been included in Section.5.4). This
allows us to introduce a stream function ¢ (x,y). For an incompressible fluid, in
general, vorticity-stream function formulation make the calculations easier than
velocity formulation because it changes vector velocity equation into scalar stream

function equation. Vorticity w is a curl of velocity defined as

-~ Ov  Ou
w=2VxU=——— 5.4
oxr Oy (54)
where u and v are x and y component of velocity. Velocity component (u,v)
can be expressed in terms of ¥ (z,y) as u = %, v = —g—ﬁ which gives w = —V?%).

Taking the curl of Eq.A.33, the incompressible generalized hydrodynamic equation

in terms of the dust fluid vorticity becomes as

9 [dw . _dU )
{1—|—E a} [E]+EVX U.V% =vVw (5.5)
where V2 = % + %, v = % and % = % + U.V as mentioned earlier. In the

following, the above-said model to address the linear stability and nonlinear phase
for an initial velocity profile described by the Kolmogorov flow of dust fluid has

been used.
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5.3.1 Study of linear stability of viscoelastic Kolmogorov

flow

Perturbations of small amplitude that grow when superimposed on an equilibrium
state of the flow render the base flow unstable. One of the standard mathematical
techniques to describe such fundamental problem is cigenvalue analysis. Let us
consider the Kolmogorov flow described earlier as the equilibrium flow and the
corresponding vorticity wy(y). Let us now perturb the velocity such that the to-
tal vorticity w(z,y,t) is given by w(z,y,t) = we(y) + @(x,y,t) and total velocity
Uz, y,t) is given by U(z, y,t) = (uo(y) +@(x,y, )2+ (x, y, t)), where & is small

perturbation such that wﬁo << L

Let us linearise Eq.A.39 keeping only first order terms for addressing stability.
Using the incompressibility condition, one will get a fourth order differential equa-
tion of stream function. After linearization and taking normal modes ansatz,
Y(z,y,t) = ¢(y)e'™™ =€) where k and & are wave number and frequency respec-

tively. An obtained eigen value equation is

— RR{1+ E (10 - IH (o — )z ~ ) = T2} (5.6)
dUQ d dUO
+TRE p {(uo — )d_y_d_y Jo(y)

For K =0, this eigen-value equation reduces to famous Orr-Sommerfeld Equation

for Navier stokes fluid. where R = Uyl/v , l:%, eigen value & = ke, ¢ and k are
the phase velocity and wave number of the perturbed wave respectively. Eq.5.6 is

quadratic in eigen value & and can be written as:

[Bo— Bi& = BBy¢*| ély) = 0 (5.7)
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where (3 is a artificial parameter which is introduced here for further discussion to
understand the role of viscoelastic parameter F . Unless stated others [ is always

equal to 1. In Eq.5.7, ¢ is the eigen function and the coefficient By, By, By are as

follows:
2 2\2 2 2 d*ug
By = (D* — k°)° — kRuy (T— K kug) (D — k )+1de >
d*u du du \ (5:8)
+k’RE ug— + K*RE ug—D — k*RE [ —>
dy? dy dy
2 9 d2U0 dU()
By, = —RE (D* — k?) (5.10)

where D = h—’; Note that while terms By and B survive for / = 0 leading to
Navier Stokes fluid, Bs is found to be the term that changes the nature of the eigen
value problem from nonlinear to linear in & when £ = 0, thus indicating that the
limit £ — 0 and /i = 0 are mathematically different problems. More discussion

will come in next section.

Using eigen value methods I£q.5.6 has been numerically solved which gives us
eigen values and corresponding eigen functions. The positive and negative value of
imaginary part of eigen value is the growth rate and damping rate of perturbation
respectively. In the following section, numerical results of linear stability analysis

have been presented.

5.3.2 Numerical results of linear stability analysis

The fourth order differential equation Eq.5.6 has been solved numerically to obtain
eigen values and corresponding eigen functions. The results are the following.

Case.1 Navier Stokes fluid (F = 0)::

As one increases R, for the system size considered here, the flow is known [15] to
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Figure 5.2: Growth rate vs Figure 5.3: Growth rate vs

Reynolds number plot with different
value of N value for £ = 0, Navier
Stokes case. Notice that R, is nearly
independent of N.
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Figure 5.4: Growth rate vs
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Figure 5.5: Growth rate vs

Reynolds number plot with different

value of k£ value F =1

be neutrally stable until R = R, from below, after which the stability changes and
the flow becomes unstable . The growth rate obtained from the eigen value solver
for N=3, 4, 5 and k=2 is shown in Fig.5.2. In Fig.5.3, IV is held constant at N = 3
and the growth rate spectrum is obtained for different k values, namely k=1, 2, 3.
Instability growth is seen to be a function of Reynolds number R as is clear from

Fig.5.2. For Navier Stokes limit ( = 0), it is well known that the growth rate vs
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and perturbed mode number k£ = 2.
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Figure 5.6: Growth rate vs vs
Reynolds number (R) for various
values of viscoelastic coefficient F
and perturbed mode number k = 2

R plot shows a super critical Hopf-like bifurcation as shown in Fig.5.2 and Fig.5.8.

In the following, it is shown that the nature of this transition depends nontrivially

on the value of F .

Case.2 Viscoelastic fluid (£ # 0)::

In Fig.5.4 and 5.5, the growth-rates for k = 2 have been plotted, for various
N values and N=3 for various k values respectively. There are two important
observation to be made. (a) The nature of the stability or transition £ — 0 is
observed to be different from that of the case with 5 = 0. (b) The R, reduces
with increasing £ and thereby increasing the window of the instability.

Importantly, modes previously stable in Navier Stokes fluid, for example k=1,
E =0, for ¥ # 0 are now found to be unstable, thus increasing the window

of instability, which appears to be a direct consequence of strong coupling effect
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Figure 5.8: Growth rate vs vs Reynolds number (R) for various values of
viscoelastic coefficient /' and perturbed mode number k = 2

represented in our model by viscoelastic relaxation time £ . Fig.5.6 shows that on
increasing viscoelasticity (by increasing viscoelastic coefficient F ) decreases the
magnitude of critical Reynolds number. There is a critical value of viscoelastic
coefficient beyond which Kolmogorov flow becomes unconditionally unstable (that
is independent of Reynolds number R). For example, for k=2, N=3 the critical
value of K = 9 for lower value of N. K may be larger [see Fig.5.6]. It implies
that the flow will always be unstable for k =2, N =3 and f > 9. In Fig.5.7, the
real frequencies of the perturbed mode k = 2 has been plotted against Reynolds
number show the frequency of oscillations. We shall come back to Fig.5.7 when

we discuss the nonlinear results in the next section [for example, see Fig.5.12].

It is observed that unlike Navier Stokes case (ff/ = 0), for finite £ , however
small, no neutral stability is found in this incompressible viscoelastic model for

Kolomogorov flow for R < R, [see Fig.5.8 (red colour)] . This can be rephased as
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follows : the case of = 0 (Navier Stokes) and the case of ki — 0 (viscoelastic)
are not identical as for as R < R, regime is considered with in the incompressible

model.

Note that for R > R., the unstable eigen values asymptote correctly to § — 0
limit and match with / = 0 results. To understand this mathematically, as dis-
cussed in Eq.5.7, an artificial factor 8 has been multiplied with the coefficient of
nonlinear eigen value term (Bs) such that if § = 0 the nonlinear eigen value term
which results out of £ g—; in Eq.5.7 vanishes [Note that the correct eigen value
problem is for 3 = 1]. For small F , say = 107%, the eigen value for R > R,
correctly asymptotes to the Navier Stokes limit (4 = 0). On the other hand,
for f; = 107%, the behavior of the eigen value for R < R, is seen to crucially
depend on the viscoelasticity driven nonlinear eigenvalue term By¢? in Eq.5.7. For
F =10"*for B = 1 and 0, the same study has been performed. The results shown
in Fig.5.8 indicate viscoelasticity (Bz) alter the stability for R < R, quite interest-
ingly. Thus, the quadratic eigen value term which is a consequence of viscoelastic
effect in our model is seen to bring important changes in the entire R domain.This
observation indicates that viscoelasticity effect alter the nature of the laminar to
turbulent in a fundamental way. For better understanding of Fig.5.2 and 5.4, in
Fig.5.9 for = 0 (upper) has been plotted, ' = 1 (middle) and £ = 10 (lower)
as function of (N, R), which shows the range of N for which k=2 is unstable. In
the same way, to better understand Fig.5.3 and 5.5, in Fig.5.10, maximum growth
rate is given as function of (k, R). It is clear from Fig.5.9 and 5.10 that for Navier
Stokes limit or simply the hydrodynamic fluid has less domain of instability as

compared to viscoelastic fluids for the values of /', R considered here.

In the this Section, we described linear stability analysis of Kolmogorov flow in
strongly coupled dusty plasma system. However, when the amplitude of perturba-
tion is quite small, one can take a first order approximation as the modes of per-

turbation will not interact with each other. As amplitude of perturbation becomes
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larger, one can not ignore the higher order nonlinear terms which are responsible
for mode-mode interaction and nonlinear saturation. Therefore nonlinear stability

analysis has been performed in the next Section.

5.3.3 Nonlinear study of Kolmogorov flow using incom-

pressible viscoelastic model

Modified hydrodynamic equations are a system of non-linear partial differential
equation in which the non-linear terms play an important role in determining the
evolution of the flow. To study the nonlinear vortex dynamics and other nonlinear
properties of Kolmogorov flow, a nonlinear study of such modified hydrodynamic

equations has been performed.

5.3.3.1 [Initial value problem

To investigate the linear stability and nonlinear fate of viscous undriven, incom-
pressible Kolmogorov flow for strongly coupled dusty plasma, the vorticity formu-
lation of the generalized hydrodynamic model has been used. Let us take Eq.(3),

as vorticity (local angular velocity) completely describes the flow dynamics.

{1vr g | %]+ m v

L _dU
ot dt uv

dt

] =vViw (5.11)
Perturbation in equilibrium vorticity have the following form :
w = wo + A cos(kz) (5.12)

wy =V x U = UyN sin(Ny) (5.13)

where wy, A, k = 2nrm/L, are initial vorticity profile, magnitude of perturbation
(~ 0.01), wave number in perturbation and m is number of modes, L, = 27 is
size of the system along x direction respectively. To obtain the growth rate of a

particular mode at a given Reynolds number R and viscoelastic coefficient F the
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evolution of perturbed kinetic energy with time along velocity shearing direction

has been studied .

J J(wp(t) — v2(0))dudy

SEp| = 5.14
19| J Jv2(0)dxdy (5.14)
Consistent with the equilibrium flow here, it is observed that the total circulation
dzd
C= J wdzdy is zero through out the simulation time [Not Shown here].
[/ dzdy

5.3.3.2 Numerical modeling and results

Linear Regime: Eq.5.11 is a nonlinear partial differential equation which is sec-
ond order in time. To find out the non-stationary solutions of this nonlinear
differential equation, here pseudo spectral method [115] has been used. Nord-
sieck Predictor-corrector method has been used for time-stepping. As described in
Chapter-2, a pseudo-spectral method is used here, to avoid the aliasing error, there
are several methods which one can use such as %-rule [116], %-rule (zero-padding
method) [117]. In our nonlinear pseudo spectral simulation zero-padding method
is used in calculation of nonlinear terms in Fourier space. In these simulations,
Courant Friedrichs Lewy condition (CFL condition) is well satisfied. For exam-
ple, for our nonlinear pseudo spectral simulation runs parameters used are number
of grids along x and y axis N,=N,=1024, initial velocity Uy = 0.5, step in time

At=0.0005, step in space Ax = ]2\,—7;, CFL= Ugﬁt value is 0.0407, which is quite

smaller than 1. MPI based [116] parallelized code is used effectively along with
FETW library [65] for Fourier transform.

Fig.10 shows the lincar growth of perturbed kinetic energy for k, i/ = 10 and N=3
on log-linear scale. The purple line is a linear fit to the linear growth rate. The
linear growth rate obtained from the pseudo spectral simulation of Eq.5.11 is close
to eigen values obtained earlier as observed in the caption of Fig.5.11. Fig.5.12
reveals the decay of perturbed mode for Reynolds number R=1, F = 5, where
the value of R is chosen to be less than critical Reynolds number R, ~ 1.5. Again,

the rate of damping observed from the pseudo spectral simulation is close to that
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Figure 5.11: Growth rate from simulation is 0.45 and from eigen value
solver is 0.48 for Reynolds number R=2, Number for perturbation mode k=2,
Maxwell’s relaxation time F = 10, equilibrium wave number N=3 and shear
velocity Uy=0.5

obtained from eigen value solver. To further benchmark nonlinear pseudo spectral
results, we plot the linear growth rate with various values of Reynolds number for
E =10and K = 5 and compare it with eigen value solver. The correctness of the
pseudo spectral code is seen from Fig.5.13 as the linear growth rates match well
with results from the eigen value solver. Having established the correctness of the

pseudo spectral code, in the following, let us now focus on nonlinear regime.

Nonlinear Regime: For times beyond the linear regime (¢ > 12), Fig.5.11 shows
the oscillations in perturb kinetic energy, which is an evidence of viscoelasticity
nature of the fluid. Fig.5.15 shows the evolution of Kolmogorov flow vorticity with
time. It is clear from the Fig.5.15 that as time increases perturbed mode first

grows linearly and becomes nonlinear.

Because of viscoelastic nature of fluid, elasticity makes it to come back to near-
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Figure 5.12: Damping rate from simulation is -0.07 and from eigen value
solver is -0.0722 for Reynold number R = 1 < R., Number for perturbation
mode k=2, Maxwell’s relaxation time & = 5, equilibrium wave number N=3
and shear velocity Upy=0.5. Note that the real frequency of damping 2w, is
close to i—:, which is corresponds to wﬁmea’”, See Fig.5.7

equilibrium states and viscosity pushes it away leading to a decaying cyclicity.
At time t=1 the initial vorticity contour plot showing equilibrium wave number
N three (vorticity strip=3) along x direction (horizontal). As the perturbation
amplitude starts to grow, the vorticity strip becomes vertical along y direction
at t=3.75 (more clear at t=16.5) and the cycles continue. For example, vorticity
strip starts with horizontal state, converts into vertical state followed by a variety
of pattern formation as time evolves. These novel features are addressed here for
the first time in the context of strongly coupled dusty plasma. These features of the
perturb mode show the cyclicity as is clear from the Fig.5.15. These oscillations
in perturbed kinetic energy are a consequence of viscoelasticity. To unveil that
these oscillations in perturbed kinetic energy are because of nature of the fluid, a

contour of perturbed kinetic energy for only viscous fluid where F = 0 (Navier
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Figure 5.13: Comparison of growth rate between eigen value solver and
nonlinear pseudo spectral code for perturbation mode number k=2, Maxwell’s
relaxation time K = 10 (upper) and & =5 (lower), equilibrium wave number

N=3 and shear velocity Uy=0.5. For above given parameters, real frequency
in this case is very small ~ 10~% [Not shown here, see fig.5.7]

Stokes fluid) has been demonstrated in Fig.5.15. It is clear from that, once the
shear flow become unstable and achieve vertical strips of vorticity from horizontal
equilibrium flow, vorticity strip does not come back because of non-existence of

solid like elastic property in the Navier-Stokes fluid i.e (§ = 0).

5.4 Compressible Limit

Compressibility is a natural fluid (liquid and gas) property. A fluid is said to
be incompressible fluid, when the variation in density is so small, as to be neg-
ligible. In other words, the speed of sound is expected to be large enough that

no density variation, in space and time, is sustainable. Hence, compared to flow
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Figure 5.15: Vorticity contour show a variety of pattern formation at different
time with Kolmogorov initial condition for Reynold number R=5000 , Number
for perturbation mode number k=2, Maxwell’s relaxation time = 0 (Navier-
Stokes fluid), equilibrium wave number N=3 and shear velocity Uy=0.5. The
choice of such high Reynold number is just to show the laminar to turbulent
transition, note that for R=2, Navier Stokes fluid is stable for our case, see
Fig.5.3.
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speeds Uy of interest, the sound speed Cy can be thought to be infinitely large
or M = Uy/Cs << 1. On the other hand, a fluid is said to be compressible,
when Mach number M = Uy/Cys — 1 or > 1. The compressibility effect on shear
flow is an important problem in the field of hydrodynamic flows and is addressed
by many authors in the past using both atomistic [56, 57] (MD) and continuum
(fluid) approaches. In general, an instability in incompressible limit is relatively
stabilized by compressibility effects. It was found that compressibility stabilizes
the instability and changes the nature of stability from “exchange of instability” to
“over-stability” [58]. Similarly strongly coupled plasma, Kelvin-Helmholtz insta-
bility in the presence of significant compressibility with quasi-neutrality and mixed
boundary (periodic along flow and bounded along the direction perpendicular to

the flow) conditions [11] has also been shown to be relatively stable.

5.4.1 Generalized Hydrodynamic model and Governing equa-

tion

To address the problem of Kolmogorov flow in strongly coupled plasma, we consider
a phenomenological viscoelastic generalized hydrodynamic model,[9, 10] which
has been used extensively in the past. We consider only the dynamics of dust
fluid medium and the background plasma medium is considered to respond in

Boltzmann-like fashion. Normalized continuity equation of dust fluid is as follows:

dp o
yn +V.(pU)=0 (5.15)

Momentum conservation equation (force balance equation) for dust fluid is as fol-

lows [11]
d) |dU
1+ —
P i

2 2 ]
(lb Cs nh 1% (5 6)
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Normalized Poisson’s equation:
V20 = ny, — n; + ne (5.17)

A detailed description about the compressible model and its formalism are given
in the Appendix-A. In generalized fluid model Eq.(5.15-5.17) all equations are

dimensionless and the normalization quantities are given in Table.5.3. Here Debye

” S.No Quantity Normalized quantity ”
1. Distance (1) v/ Apt ix
2. Time (t) twp,
3. Potential () e/ KT,
4. Density (nao, o = e, 1'd) Moo/ ZrNho
Table 5.1: Table for normalized quantities, here length %, .. = % o~
E—g%% ~ \h; ~ A}, dust plasma frequency w2, = (Qinw/eoMy ), Qn = Zne

and M), are charge and mass of single dust particle.

length A3, = (eoKpTi/nu@3), dust plasma frequency w2, = (Qinno/eoMp), Qn =
Zpe and M), are charge and mass of single dust particle. Note that, For x = 1,
our normalization for fluid equations is same as molecular dynamics simulation.
Therefore, we can chose  and 7 from molecular dynamics simulation. For our
study of shear flow, we consider F (I'(t = 0) = T'g,k) = 5 and n(I'(t = 0) =
I'o, k) = 0.3 corresponding to 'y = 110 and x = 1[22]. To study the stable and
unstable shear flow properties and behavior of Kolmogorov flow, we carried out

the linear and nonlinear studies of shear flow.

5.4.2 Linear stability analysis

To perform the linear stability analysis of Kolmogorov flow, equations of gener-
alized fluid model Eq.(5.15-5.17) are linearised. Let us consider the Kolmogorov
flow as described earlier, as an equilibrium flow and the corresponding velocity
Up(z). Let us now perturb the velocity such that total velocity U (x,y,t) is given
by U(z,y,t) = d(z,y, 1)z + (Up(x) + (z,y,1))§. After linearization and taking

121



Chapter 5. Compressible and incompressible shear flow in strongly
coupled liquids: A computational fluid dynamics study

normal modes ansatz, ¥, ) = qb(w)ei(kyy_ft), where k, and £ are wave number and

frequency respectively, we obtain an eigen value equations as :
Tokyuy + noDvy + Wo(x)kyny = Eny (5.18)

{1-1K (&£ — k,Up)} {—7(5 — k,Up)uy + C2Dn — qu‘)] =v(D* = k)uy  (5.19)

{1 -1 (£~ k,Us)} [_7('5 — kyUp)vr + %:uc?nl - /‘F"uﬁbl} = V(D2 - k;)ﬂl (5.20)

(D* = k2)pr = 1 + ¢1 (5.21)

where D = }i

- Lo calculate the growth rate of perturbation mode, the above

set of equations (E¢.5.18 — E¢.5.21) have been solved numerically using central
difference formula with periodic boundary conditions. In Fig.5.16 growth rates vs
Reynolds number (1/v) have been plotted for different perturbation modes. It is
clear from the figure that for lower mode numbers k, = 27m/L, = 1,2, growth

rates of perturbation are finite while higher modes &, = 4, are stable.

We have also performed the parametric study of growth rate of perturbation with
Reynolds number for various equilibrium mode number in Fig.5.17. For our system
parameters, we find that the equilibrium flow is neutrally stable for k, = 1,2 and
becomes unstable for higher values. In Fig.5.18, growth rate of perturbation has
been plotted with Reynolds number for various values of Mach number (M =
Up/Cs) which decides the compressibility of the fluid. In earlier studies, it was
found that for viscous flow compressibility effect suppress the mode of perturbation
and reduce the growth rate. Qualitative a similar trend is found for viscoelastic

fluid. Growth rate decreases with increasing value of Mach number.
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Figure 5.16: Growth rates (7,) vs Reynolds number (R) plot for various
perturbation wave number k, for equilibrium wave number k, = 3, equilibrium
velocity Uy = 1, relaxation time = 5 and Mach number=U,/Cs = 0.5
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In Fig.5.19, growth rates are plotted against Reynolds number for various values
of relaxation time (£ ). It is found that the growth rate increases with increasing
value of F . For lower value of F | there is a critical value of Reynolds number R,
exists below which the perturbed modes are neutrally stable and above R, modes
become unstable. In this plot one can clearly see the laminar to unstable flow

transition is sensitive to the value of R,.

5.4.3 Nonlinear Simulation

In linear stability analysis, we consider only first order approximation and discard
the nonlinear terms, which describe the interaction of perturbation. To study the
fate of perturbations at longer times, when amplitude of perturbation becomes
large, we consider the higher order terms present in linear stability analysis as
mode-mode interaction starts to play an important role in convective terms. The

set of non-dimensional nonlinear hydrodynamics equations are as follows:

0nh -

V3¢ = ny, — n; + ne (5.23)

dY |dU =  C?Vn, .
1+4F —} |—— B AV 24
{ + 5 dt} dt V¢+ o vV=U (5 )

where d/dt is a material derivative d/dt = 8/8t + U - V. Tt is important to note
that, in our non-linear simulation linearized Poisson’s equation has been consid-
ered. We follow here the velocity-vorticity formulation of generalized hydrody-
namic equation and to estimate vorticity from this formulation, curl of velocity
is used (w = 2-V x U = 9v/8x — du/dy). This way of initialization comes
handy to get velocity information from vorticity inputs. However, this proce-
dure is strictly true only for incompressible systems. These above nonlinear par-
tial differential equations (Eq.5.22-Eq.5.24) are solved numerically. In CFD, the

spectral method is often considered in combination with Fourier expansions to
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study the periodic flows. Spectral methods are computationally less expensive and
easier in implementation than finite element methods, to simulate turbulence re-
lated problem [118]. To find out the time dependent nonlinear solutions of PDEs,
we have chosen pseudo spectral method. Spatial derivatives are computed us-
ing Fourier transform in Fourier space k = (k;, k). On the contrary, temporal
derivatives are solved in real space R. As pseudo spectral method is used here,
to avoid the aliasing error, there are several methods which one can use such
as 3-rule[116], %i-rule [64], 2-rule (zero-padding method)[117]. In our nonlinear
pseudo spectral simulation zero-padding method is used in calculation of nonlin-
ear terms in Fourier space. Spatial and temporal discreatisation are in such way
that they must satisfy the Courant-Friedrichs-Lewy (CFL) condition. It is im-
portant to note that, in this time dependent numerical study, we have considered
linearised Poisson’s equation for simplification of numerical procedure. Nordsieck
Predictor-corrector method has been used for time-stepping. Initial profile of ve-
locities are u(z,y,t) = dcos(kyy), v(z,y,t) = Upcos(kyz)(1 + 6 cos(kyy)), where
uw and v are x and y component of velocity respectively. Initial density profile is

np(z,y,t) = ng + dcos(kyy), where ng = 1.0, 6 = 0.005 and k, = 2.

As a part of this Thesis, a two-dimensional Advanced Generalized Spectral Code
(AG-Spect) has been developed to study the linear and nonlinear features of Kol-
mogorov flow in incompressible and compressible limit. To check the correctness
of the code in the linear regime we first estimated the growth rate of perturbed
wave number k, = 2 with different dynamic viscosity coefficient v for the param-
eters Uy = 1, K = 5, Mach number M = 0.5, equilibrium wave number k, = 3.
Obtained growth rates have been plotted against Reynolds number R = Uyl/v,
where 1 is shearing length of the system. In Fig.5.20, perturbed kinetic energy is
plotted against time in linear-log scale. As can be expected, in the early phase, the
perturbed mode grows linearly in time and eventually attains nonlinear saturation
as mode-mode coupling sets in. In non-linear regime, nonlinear modes start to sat-

urate for a small time and then show the oscillation because of visco-elastic nature
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ber M= 0.5.

of fluid. Linear growth rate of the perturbed mode is obtained using Eq.5.25.

J S (t) — u*(0))dwdy

[ [ 2(0)dudy (5.25)

’5Ekx(t) ‘ o
Ei(0) |

In Fig.5.22, we show the time evolution of Kolmogorov flow for Uy = 1,7 = 0.33,
ky = 3, i = 5 and k, = 2 and Mach number M=0.5. It is interesting to note
that while in our fluid model, time is normalized to dust plasma frequency wyy,
defined in Table.5.3, where as in our ecarlier studies using Molecular dynamics
(Chapter-3 and Chapter-4), time was normalized to wy which is related to w,, as
Wo = Wpn/ \KQ) We shall come back to this again later. Fig.5.23 shows the contour
plot of divergence of velocity (V - U = du/0x + dv/9dy). The divergence of the
velocity is positive shows flow expansion (red colored contour). In contrast, the
negative sign shows the compression of fluid in opposite direction of expansion (blue
colored contour). In Fig.5.21 we plot growth rates obtained from our nonlinear
pseudo spectral code and linear eigen value solver together. We find that the
linear growth rates obtained from AG-Spect are in good agreement with the eigen

value solver.
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Figure 5.22: Time evolution of vorticity for Uy =1, n=0.33, k, =3, F =5
and k, = 2 and Mach number M=0.5.

Figure 5.23: Time evolution of divergence of velocity (V- U) for Uy = 1,n =
0.33, k, = 3, if =5 and k, = 2 and Mach number M=0.5.
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5.4.4 Rotational Shear flow: Nonlinear coherent struc-
tures in strongly coupled dusty plasma in the com-

pressible limit using generalized fluid model

Using AG-Spect, we first perform benchmark studies for M < 0.3, i.e, in the
weakly compressible limit following which we perform a series of studies for M >
0.3. In this code, the velocity formulation of momentum equation has been used.
Therefore, for time evolution of momentum equation, velocities (v and v) are
required as an input velocity profile. Vorticity-stream function formulation makes
the calculations easier than vorticity-velocity formulation because it changes vector
velocity equation into scalar stream function equation [119]. Vorticity w is a curl

of velocity defined as

- Jdv  Ju
w=2VxU=——-— 5.26
oxr Oy (5:26)
where u and v are x and y component of velocity. Velocity component (u,v) can
be expressed in terms of ¢ (z,y) as u = g—;f,v = —% which gives w = —V?%).

For our purpose, as an input profile we provide vorticity to start the time evolu-
tion part of momentum equation, we first calculate the stream function and then
velocities accordingly and the velocities become the input velocity of the momen-

tum equation. Strictly speaking, this procedure is valid for an incompressible fluid.

In fluid dynamics, nonlinear states are typically found to be dominated by tur-
bulence and embedded coherent structures. Depending on the dimensionality of
the problem and the physics model, the existence and interaction of these coherent
structures with themselves as well as with the background turbulence is considered
as an important issue. Such problems are abound in conventional Navier-Stokes

turbulence as well as in Super-fluids, Astroplasmas, Tokamaks, to mention a few.

In the following, we investigate, the viscoelastic (or memory dependent), compress-

ible, nonlinear evolution of a typical class of coherent structures, which have been
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Figure 5.24: Vortex evolution plots of Gaussian profile for wy = 5.0, F = 5,
n = 0.3 and Mach number M = 0.5 (compressible limit).

frequently studied and often observed in as embedded in a sea of Navier-Stokes
turbulence. Some of these are a Gaussian Vortex, a Pair of Co-rotating Gaussian
vortices, a Pair of Counter-rotating Gaussian vortices and an large Elliptic vortex.

They have been evolved in time until the dynamics reaches the periodic boundaries.

Gaussian vortex: Initial input profile of vortex w = w{,e_“Q“’z), where wy = 5.0.
In Fig.5.24, time evolution of Gaussian profile are shown, where we can see the

emergence and propagation of transverse shear wave towards periodic boundaries.

Co-rotating vortex: Co-rotating vortex interaction is a very fundamental phe-
nomena in complex fluids. In vortex dynamics simulation, various kinds of pro-
cesses occur in vortex interaction for example, merger, periodic motion, separation
without elongation, and separation with elongation. In earlier studies, it is found
that these kinds of interaction depend upon the sign and the strength of the back-
ground shear relative to the vorticity of the vortices. It has also been noticed
that in absence of shear the vortex merger phenomena crucially depends upon the

aspect ratio which is the ratio of core size of vortex and separation distance be-
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through out the simulation for wg = 5.0, &/ = 5, n = 0.3 and Mach number

M = 0.5 (compressible limit).
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Figure 5.26: Vortex evolution plots of co-rotating unlike profile for wg = 5.0,
FE =5 n = 0.3 and Mach number M = 0.5 (compressible limit). Total
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Figure 5.27: Vortex evolution plots of elliptic profile for wg = 3.0, & = 5,
n = 0.3 and Mach number M = 0.5 (compressible limit).

tween vortices [120]. It is found that when this ratio exceeds to the critical value,
the vortex merger process happen. In the effect of compressibility, growth rate of
the mixing layer reduces and elongation in vortex structures are observed [121]. In
Fig.5.25, initial input profile of vortex w = woe™** ¥/ at location (L, /14, 0) and
(—=L,/14,0), where wo = 5.0, 0 = 0.5, radius of dipole r. = 0.2. Time evolution of
co-rotating vortex are shown, like vortex start to revolve around each other and
slowly decrease the distance between them and eventually vortex stars to merge.
Fig.5.26 shows the repulsion between unlike vortex and simultaneously propaga-
tion of transverse shear wave of co-rotating unlike vortex. Initial input profile of
vorticity w = —wee~ @ ¥)/7" at location (Ly/14,0) and w = +we™ @ +¥°)/° at

location (—L,/14,0), where wy = 5.0, 0 = 0.5.

Elliptic vortex: Initial input profile of vorticity w = w, when r < rg and otherwise

w = 0, where r = \/(:cQ + (ay/b)? — a?), wy = 3.0, a (minor axis)=0.5, b (major

axis)=1.0 with eccentricity € = b/a = 2.0. In Fig.5.27 elliptic vortex rotate, nutate,

and changes its shape. We find that, this vortex exhibits various types of rotational
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motion and nutation around its origin point.

In next Section, compressibility effects on the two-dimensional strongly coupled
dusty plasma by means of molecular dynamics (MD) and computational fluid dy-
namics (CFD) simulations with Kolmogorov flow as an initial shear flow profile, to
study nonlinear compressible vortex flow dynamics and other linear and nonlinear
properties of such flow in the presence of variable density, pressure and electrostatic

potential are addressed.

5.5 A comparative study of compressible parallel

shear flow using MD and CFD simulations

The compressibility effect on shear flow is an important problem in the field of
hydrodynamic flows and is addressed by many authors in the past using both
atomistic (MD) and continuum (fluid) approaches [56, 57]. In the past, in molec-
ular dynamics simulation of compressible hot/cold moving lid-driven microcavity
flow in which Mach number is increased by increasing the magnitude of equilib-
rium velocity [57] has been studied. Tt was found that compressibility stabilizes
the instability and change the nature of stability from “exchange of instability” to

“over-stability” [58].

In the field of strongly coupled plasma, Kelvin-Helmholtz instability in the pres-
ence of significant compressibility with quasi-neutrality and mixed boundary (peri-
odic along flow and bounded along transverse shear direction) conditions has been

demonstrated by means of generalized hydrodynamic model [11].

In present Chapter, we present for the first time, the qualitative and quantitative
comparative study of compressible parallel shear flow e.g Kolmogorov flow. To
best of our knowledge, such kind of study has not be performed in the past in

any kind of viscoelastic fluids. Our focus is to address the compressible flow on
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the onset of laminar to turbulent transition in strongly coupled plasma for non-
zero density, pressure and electrostatic potential perturbations using MD and CFD
simulations. In present study, we perform the comparative study of compressible
parallel shear flow using Molecular dynamics (MD) simulation and computational
fluid dynamics (CFD). To study compressible shear flow, we have chosen Mach
number to be one on both the studies. In this studies, we chose Kolmogorov flow
as an initial condition. The details and speciality about this flow are given in the
earlier Chapter. In the present studies, qualitative and quantitative comparison of
the evolution of vortex dynamics of Kolmogorov flow using MD and fluid simulation
has been presented. In nonlinear regime of vortex evolution, elongated vortex
structures, nonlinear saturation, visco-elastic oscillations and pattern formation

have been observed.

5.5.1 Normalizations in MD and CFD studies

Normalizations used in MD and CFD are shown in Table 5.2 and Table 5.3 for
easy comparison. For k = a/A\p ~ 1, the length and time normalizations are same,
except for a factor of 27 in time. We shall come back to this again. An impor-
tant difference exist in density normalization of our MD and our CFD calculations.
While in MD, density is normalized to “a” which implies a normalization of dust
density nyg, in CED, density is normalized to Zpnpg =~ N = Neo = ng. That is in

CFD, dust density is normalized to the background plasma density.

Let us come back to time normalization: In CFD, time is normalized to w,, while
in MD it is normalized to wg = §wph. Thus typ = twy = itwph = 2crp
or simply tup = §fCFD. An example which will be useful is the following :

Growth rate in MD simulation is obtained by a fitting exp(2vyptap) which is

exp(2ymp *  2tcrp). Thus yorp = 27ump-
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” S.No Quantity Normalised quantity ”
1. Distance (r) r/a
2. Time (t) two
3. Temperature (T) Ky T(4mepa/Q3)
4. Density (n) na?
5. Energy (E) E(4mepa/Q3)

Table 5.2: Table for normalized quantities used in MD simulation

” S.No Quantity Normalized quantity ”
1. Distance (r) v/ Apt ix
2. Time (t) twp,
3. Potential () e/ KpT;
4. Density (nao, o = e,T'd) Na0/ 2o

Table 5.3: Table for normalized quantities, here length A%, .. = % o~

E—%’“ﬂ%@ ~ A}, ~ A, dust plasma frequency w2, = (Qinw/eoMy ), Qn = Zne

and M), are charge and mass of single dust particle.

5.6 Results

To make close comparison of results for parallel shear flow e.g Kolmogorov flow
obtained from CFD and MD simulation, the following important aspects have been

considered and incorporated.

e All the non-dimensional parameters are kept same in both the simulation,

for example Reynolds [R(t=0)=235] and Mach numbers [M(t=0)=1].

e To make the normalization same in space in both the simulations, we have

chosen screening parameter to be 1 (k = a/A, = 1).

e To make the non-dimensional parameters to be same in both the dynam-
ics, we have calculated the number density for CFD and MD appropriately.
Another way of relating the densities is by equating the number of particles

present in the system of MD and fluid of sizes 443 and 47 respectively.

e In both the studies, time is normalized by dust plasma frequency wy,. As
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discussed earlier, a simple scale factor of 2 would give us identical time

normalizations for CFD and MD.

It is important to note that in our earlier fluid simulation, the system size in CFD
is much smaller (L = L, = L, = 2m) because of spatial and temporal resolution or

CFL condition. Parameters used in both the simulations are given in table.5.4. In

” S.No | Parameters | MD CFD ”

1 Mach number (M = Uy/Cs) 1.0 1.0

2 | Reynolds number (R = Uyl/v) 235 235

3 Dynamic viscosity (n) 0.2 0.2

4 U/ L ratio 2x 1073 | 2x 1073

5 §/L ratio 2x107° | 2x107°

6 System size L, = L, = L Lyip=443 | Lgpin=4m
7 Equilibrium mode no. (ng) 3 3

8 Perturbation mode no. (myg) 2 2

Table 5.4: Table for values of parameters used in MD and CFD simulations.
In above table table [ is shearing length [ = L/ng

fluid simulation 512 x 512 grid resolutions has been used for 47 x 47 system size.
In MD simulation, A mesh-grid of size 55 x 55 is superimposed on the particles
of the system to calculate the macroscopic or “fluid” variables from microscopic
velocities and positions.

Quantitative comparison - Linear regime: Linear growth rate of perturbed
mode number m = 2 is calculated by the formula given in the Eq.5.25. Growth-
rate of perturbed mode m = 2 has been calculated from MD and CFD simulations
in Fig.5.30 and Fig.5.31. It is clear from the figures that, growth rates obtained
using MD and CFD are close if the scale factor of "2 is taken into account as

shown earlier.

Qualitative comparison - Nonlinear regime: As discussed earlier, non-dimensional
parameters (Reynolds number and Mach number) in both the cases are kept the

same. To do so, equilibrium densities have been rescaled so that the total circula-
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Figure 5.28: Contour plot of fluid vorticity (w = V x U) obtained from
molecular data. The grain velocity in the bins are fluidized through a 55 x 55
grid to construct vorticity. The horizontal color bar at the bottom show the
magnitude of vorticity and blue and red strips show the opposite sign vorticity
respectively. Perturbation mode m = 2, initial coupling parameter 'y = 50,
screening parameter £ = 1.0 equilibrium spatial period number is ng = 3
and shear velocity Uy=1. Vorticity plots generated from microscopic velocity
show Kolmogorov instability in Molecular Dynamics, the micro scale heating
quickly destroy the vorticity structures. The dimensionless parameters are
initial Reynolds number R = 235 and Mach number M = 1. Simulation box
is doubly periodic of size L, = L, = 443.
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Figure 5.29: Contour plot of fluid vorticity (w = V X (7) obtained from
computational fluid dynamics simulation. Input parameters are: number for
perturbation mode my = 2, initial viscoelastic coefficient F (I'
1.0) = 2.0, spatial period number ny = 3 and shear velocity Uy=0.028 with
system size L, = L, = 4m. The dimensionless parameters are initial Reynolds
number R = 235 and Mach number M = 1.
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Figure 5.30: Perturbed kinetic energy in linear-log scale for number for per-
turbation mode my = 2, initial coupling parameter I'o(f = 0) = 50, screen-
ing parameter k = 1.0, spatial period number ng = 3 and shear velocity
Uo=1, Reynolds number R = 235 and Mach number M = 1.0. Calculated

growth rate (v,) from simulation is 0.01 with system size and number density
L,=L,=443 and n = 1/m
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Figure 5.31: Perturbed kinetic energy in linear-log scale for number for per-
turbation mode my = 2, initial viscoelastic coefficient F (I' = 50,x = 1.0) =
2.0, spatial period number ny = 3 and Reynolds number R = 235 and Mach
number M = 1.0. Calculated growth rate (,) from simulation is 0.015. Sys-
tem size and number density are L, = L, = 47 and n = 400.
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tion in MD and CFD simulations are identical. It is important to realize that in
MD simulation, the transport coefficients are calculated self-consistently without
any approximation whereas in CFD model the transport coefficient chosen at the
initial time ¢ = 0 are external to the model and remain the same through out the

time evolution.

In Fig.5.28 and Fig.5.29 vorticity contour plot of evolution of vorticity of Kol-
mogorov flow from molecular dynamics and computational fluid dynamics has
been shown. It is clear from figure that fluidized vortex structures are destroyed
at late times [see Fig.5.28] in MD simulation because of molecular shear heating
as described in Chapter-3. However, in our computational fluid dynamics (using
continuum model), we have not incorporated a temperature evolution equation.
Hence, the heating effects are not directly included in this model. Hence, one
would expect the vortex structures to be sustain for longer time scale compare
to MD simulations. However, comparison of Fig.5.28 and Fig.5.29 shows that the
peak vorticity values and vortex structures are better preserved in MD as compared
to CFD at least for the dimensionless parameters and the procedure used by us
in this comparative study. It is interesting to note that the saturated amplitudes
obtained using MD and CFD differ by a factor of 2.5, similarly the time at which

the saturation happen is different for the two cases.

A brief summary of the results and discussions of the studies made in the present

Chapter is given in the next Section.
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5.7 Summary

In the first part of this Chapter, using an incompressible generalized hydrodynamic
model [9, 10] the linear and nonlinear properties of undriven Kolmogorov flow as
an initial value problem in strongly coupled dusty plasma has been addressed .
The transition from stable to unstable flow has been found to occur at a critical
value of Reynolds number R, such that for R < R., growth rate is less than zero
or damped and for R > R. growth rate greater than zero or unstable. A novel
observation is that unlike Kolmogorov flow in Navier Stokes hydrodynamics which
is neutrally stable for R < R., Kolmogorov flow in strongly coupled dusty plasma
has no such neutral stability, however small the non zero value of E may be. This
interesting feature is shown to be a direct consequence of the viscoelasticity in-
duced nonlinear (quadratic) eigen value. Real frequency of perturbed mode k = 2
with Reynolds number with increasing value of viscoelastic coefficient I has been
observed, which shows that the oscillation of modes decreases with increasing value
of I/ . The linear growth rate from eigen value solver is close to linear growth rate
obtained from nonlinear spectral simulation in its linear regime, for entire range
of R. A complete stability diagram is obtained for low Reynolds numbers R and
for a range of viscoelastic relaxation time F [0 < F < 10]. It is observed that
the critical value of Reynolds number R, for strongly coupled viscoelastic fluid is
always smaller than the viscous hydrodynamic fluid. Viscoelasticity changes the
nature of perturbed kinetic energy in the nonlinear regime and exhibits viscoelas-
tic oscillation, cyclicity and pattern formation. It is found for given (N, k) as K
increases R, — 0 i.e the Kolmogorov flow losses its criticality and become uncon-

ditionally unstable.

In the later part of this Chapter, the effect of compressibility limit, density and
potential variations have not been considered. In reality, all fluids are found to
be compressible fluids. When density and temperature of the fluid element have

spatio-temporal variation, one can not ignore the concept of compressibility. We
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have investigated in detail effect of compressibility on the two-dimensional strongly
coupled dusty plasma by means of computational fluid dynamics (CFD) with Kol-
mogorov flow as an initial shear flow profile. The compressibility allows transverse
wave propagation along with longitudinal variation because of viscoelastic response
of fluid. To study the compressibility effects on shear flow, a generalized hydro-
dynamic model has been used, where the weak and strong coupling between fluid
elements is controlled by Maxwell relaxation time  (viscoelastic coefficient). It is
found from the statistical calculation and also from molecular dynamics simulation
that i and n both are not capricious parameters. In the liquid regime of strongly
coupled dusty plasma, for the range of coupling strength I' and screening length &,
F lies in the domain of I'=[1-10]. Henceforth, in our study of shear flow, we have
elected n and K from MD simulation. A massively parallelized pseudo-spectral
code has been developed, which is capable of solving coupled set of two-dimensional
time-dependent fluid equations. Good agreement in linear growth rates obtained
from eigen value solver and from pseudo spectral simulation has been observed and
used as a benchmarking of spectral code in the linear regime. Like Navier-Stokes
fluids, in our shear flow study, the growth rates are observed to be suppressed by
increasing value of Mach number. In contrast, § responds in opposite fashion, i.e
increasing value of K decreases the value of growth-rate v, and critical value of
R.. In nonlinear simulation, the suppression of instability, elongated vortex struc-
tures, nonlinear saturation, visco-elastic oscillations in perturbed kinetic energy

and pattern formation have been observed for Kolmogorov shear profile.

Qualitative difference is found between MD simulation and GHD. In both the
study, the transition from stable to unstable flow has been found to occur at a
critical value of Reynolds number R. such that for R < R., growth rate is close
to zero or damped and for R > R. growth rate greater than zero or unstable.
The growth-rate of perturbed mode with Reynolds number show different trend of

variation above R > R, regime in compressible fluid model and MD simulation.
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Linear growth-rates calculated from phenomenological fluid model is found to be
close to that obtained from MD simulation for the same non-dimensional param-
eters, initial coupling and screening parameter as well as initial transport coeffi-
cients. However, with the procedures used for the comparison between MD and
CFD, in the non-lincar regime we find that there are some essential differences.
For example, the peak vorticity value is better preserved in MD whereas in CFD
model we find that the peak vorticity is dissipated relatively earlier. Similarly we
find a substantial difference in the nonlinear saturation amplitude as well as the

time of saturation between MD and CFD results.

We summarize the major findings and future scope of present Thesis in the next

Chapter.
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In this Chapter, we summarize the major findings and future scope of present
Thesis.

Relatively massive grains when immersed in a low temperature plasma can attain
high inter particle potential energy per grain as compared to its kinetic energy,
leading to strong coupling effects within the grain medium. Depending on the
grain density and temperature, the grain medium can exist in solid-like, liquid-like
or gas-like phase. These structures are now routinely studied in plasma labora-
tories worldwide. Strongly coupled plasma is fascinating not only because of its
applications to white dwarf matter, dust rings, the interplanetary medium but also
one of the rare system whose kinetic observation of the dynamics can be made in
the laboratory due to slow time scale and long length scale. These systems can
be addressed by computer simulation and also using phenomenological generalized

hydrodynamic models.

Shear flows are ubiquitous in nature. A variety of fluid phenomena in strongly cou-
pled fluids are studied. A parallel flow is possible to set up in laboratory strongly
coupled plasma. Far-from-equilibrium questions, such as transition from laminar

to turbulent flows, vortex-vortex interactions, an interaction of embedded coherent
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structures or rotational structures with the background turbulence etc - for these
fundamental questions, even a qualitative comparative study of strongly correlated

fluids using fluid model and molecular dynamics has not been attempted yet.

Kolmogorov Flows are a class of flows which exhibit laminar to turbulence tran-
sition at low Reynolds number and are amenable to analytical methods in con-
ventional fluids. Using large scale non-equilibrium molecular dynamics, the carly
phase and late time dynamics of this parallel shear flow in strongly coupled plasma
are addressed. A parametric study of the stability of the low with Reynolds num-
ber R has been performed and found that below a critical value of Reynolds number
R., flow exhibits a neutral stability. However, above R > R,., a transition occurs
from laminar to the unstable state and eventually turning into a turbulent flow.

It is found that the value of R. decreases with increasing value of coupling strength.

It is observed that for the given value of initial coupling parameter and screening
parameter, molecular shear heating strongly reduces the magnitude of coupling
parameter and its decay-rate is mainly found to be dependent upon the ratio of
equilibrium shear velocity to thermal velocity. It is found that the magnitude of
coupling parameter decays exponentially by the end of the growth phase, thus
altering the state of background grains dramatically. To understand the vortex
dynamics of strongly coupled molecular fluids undergoing macroscale shear flows
in the absence of molecular heat, MD simulation has also been performed, which
allows the macroscopic vortex dynamics to evolve, while at the same time removes
the microscopically generated heat without using the velocity degrees of freedom.
It is demonstrated that by using a configurational thermostat (Profile Unbiased
Thermostat or “PUT”) in a novel way, the microscale heat gen- erated by the
shear flow can be thermostatted out efficiently without compromising the large
scale vortex dynamics. In this work, using MD simulations, a comparative study
of shear flow evolution in Yukawa liquids in the presence and absence of molec-

ular or microscopic heating is presented [20]. However, when PUT is “ON” it is
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observed that the peaks of local temperature profile at the shear flow location are
much lesser in magnitude and global average temperature of the system is main-
tained as compared to the case with PUT “OFF”. Above mentioned study has
also been done with the rotational shear flow, wherein visco-elastic nonlinear wave
evolution, nonlinear interaction has been observed. The emergence of non-linear
elastic waves from localized coherent vortex sources in strongly correlated Yukawa
medium using Molecular dynamics simulation has been studied. We believe that,
due to strong coupling effects and compressibility, the rotational shear flow couples
the angular and radial directions and the radial shear triggers a radially propagat-
ing disturbance [98] which becomes nonlinear as M, increases beyond the regular

compressibility threshold of Mqp > 0.5.

Using a Generalized Hydrodynamic model the linear and nonlinear properties of
undriven incompressible Kolmogorov flow in strongly coupled dusty plasma has
been addressed. The transition from stable to unstable flow has been found to
occur at a critical value of Reynolds number R, such that for R < R, the growth
rate is less than zero or damped and for R > R, growth rate greater than zero
or unstable. A novel observation is that unlike Kolmogorov flow in Navier Stokes
hydrodynamics which is neutrally stable for R < R., Kolmogorov flow in strongly
coupled dusty plasma has no such neutral stability, however small the non zero
value of § may be. This interesting feature is shown to be a direct consequence
of the viscoelasticity induced nonlinear (quadratic) eigen value.The linear growth
rate from eigen value solver is close to linear growth rate obtained from nonlinear
spectral simulation in its linear regime, for the entire range of R. It is observed
that the critical value of Reynolds number R. for strongly coupled viscoelastic fluid
is always smaller than the viscous hydrodynamic fluid. Viscoelasticity changes the
nature of perturbed kinetic energy in the nonlinear regime and exhibits viscoelas-
tic oscillation, cyclicity and pattern formation. It is found for given (N, k) as E
increases R, — 0 i.e the Kolmogorov flow losses its criticality and become uncon-

ditionally unstable.
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When density and temperature of the fluid element have spatio-temporal variation,
one can not ignore the concept of compressibility. Linear and nonlinear proper-
ties of such flow in the presence of variable density, pressure and electrostatic
potential are addressed using generalized compressible hydrodynamic model. The
compressibility allows transverse wave propagation along with longitudinal varia-
tion because of viscoelastic response of fluid. To study the compressibility effects
on shear flow, a generalized hydrodynamic model has been used, where the weak
and strong coupling between fluid elements is controlled by Maxwell relaxation
time F (viscoelastic coefficient). It is found from the statistical calculation and
also from molecular dynamics simulation that & and n both are not capricious
parameters. In the liquid regime of strongly coupled dusty plasma, for the range
of coupling strength I and screening length x, K lies in the domain of I'=[1-10].
Henceforth, in our study of shear flow, we have elected n and f from MD simu-
lation. A massively parallelized pseudo-spectral code has been developed, which
is capable of solving coupled set of two-dimensional time-dependent fluid equa-
tions. Good agreement in linear growth rates obtained from eigen value solver and
from pseudo spectral simulation has been observed and used as a benchmarking
of spectral code in the linear regime. Like Navier-Stokes fluids, in our shear flow
study, the growth rates are observed to be suppressed by increasing value of Mach
number. In contrast, K responds in opposite fashion, i.e increasing value of K
decreases the value of growth-rate v, and critical value of R.. In the nonlinear
simulation, the suppression of instability, elongated vortex structures, nonlinear
saturation, visco-elastic oscillations in perturbed kinetic energy and pattern for-

mation have been observed for a Kolmogorov shear profile.

The qualitative difference is found between MD simulation and GHD. In both the
study, the transition from stable to unstable flow has been found to occur at a
critical value of Reynolds number R, such that for R < R., growth rate is close to
zero or damped and for R > R, growth rate greater than zero or unstable. The

growth-rate of perturbed mode with Reynolds number show a different trend of
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variation above R > R, regime in compressible fluid model and MD simulation.

Linear growth-rates calculated from the phenomenological fluid model is found
to be close to that obtained from MD simulation for the same non-dimensional
parameters, initial coupling and screening parameter as well as initial transport
coefficients. However, with the procedures used for the comparison between MD
and CFD, in the nonlinear regime, we find that there are some essential differences.
For example, the peak vorticity value is better preserved in MD whereas in CFD
model we find that the peak vorticity is dissipated relatively earlier. Similarly, we
find a substantial difference in the nonlinear saturation amplitude as well as the

time of saturation between MD and CFD results.

Summary :

Before projecting possible future directions, we would like to present a list of in-

teresting findings from this Thesis work:

As has been discussed several times in the Thesis, Dusty plasma is a unique com-
plex system which provides an opportunity to understand fundamental aspects
of non-equilibrium physics problems in a strongly coupled medium. One of the
fascinating aspects is its ability to provide space and time resolved single parti-
cle, kinetic-level information on the micron-sized dust grains which may be set
up at weak, intermediate or strongly coupled limits to form gas-like, liquid-like
and solid-like grain phases respectively. Our main focus is in shear flows in the
liquid-like state of the grain medium. The typical grain densities are of the order
Ngrain ~ 1 X 108 m~—3 which is several ten’s of orders smaller in density as com-
pared to any other liquid forming medium that we are aware of. This charged
grain-based liquid medium wherein grains interact with each other via a shielded
Coulomb interaction or a Yukawa interaction is also called a “Yukawa liquid” is

an example of “soft matter”.
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To understand various physical phenomena in this “soft Yukawa matter”, typically
particle-level Molecular Dynamics simulations and Hydrodynamic models based
on Visco-elastic memory have commonly been used to support/understand exper-
imental findings. Of particular interest are MD simulations because they raise the
possibility of a particle-level comparison of nonlinear, far-from-equilibrium physics
problems with Dusty plasma experiments.

This Thesis work may be broadly split into two components: First part is the
development and benchmarking of MD code MPMD with a new Configurational
Thermostat as well as development and benchmarking of an Advanced Generalized
pseudo SPECTral code AG-SPECT which has been developed from the scratch for
Hydrodynamics studies performed in this Thesis. The second part of this Thesis
is dedicated to the study of parallel and circular 2D shear flows using MD and
pseudo-spectral Hydrodynamics codes.

Some of the interesting findings are :

e For low density “soft Yukawa matter” characterized by Brinkman number of
order 1, the MD study of micro-scale shear heating, its effect on macro-scale
vortex dynamics for parallel Kolmogorov shear flows and circular Rankine-
like shear flows, indicate that the initial coupling strength I’y reduces by 70%

or more, depending on the type of flow.

e While shear heating does not affect the linear growth rate of the unstable
modes, the nonlinear features are found to be strongly influenced by the MD
studies. This is confirmed by a novel application of configuration thermostat
which “removes” the generated shear heat without affecting the velocity de-
grees of freedom. As an aside, this procedure may be used in experiments
where trajectories of individual grains are measured as a function of time, to

estimate coupling strength T

e Bifurcation of Kolmogorov flow and its dependency on coupling strength as
well as generation of radially propagating modes triggered by a combination

of compressibility and strong coupling strength is demonstrated. It is shown
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that as the magnitude of initial poloidal flow strength is increased, the radial
mode is found to increase in amplitude and speed, much beyond the speed

of longitudinal and transverse equilibrium speeds.

e MD simulations are “first principles” based, meaning, no assumptions have
been made regarding transport coefficients or shear heating. The very same
flows - except the size of the system - have been addressed using Hydro-
dynamic code AG-SPECT with input values of initial transport coefficients
from MD simulations, as well as without shear heating effects. In general, lin-
ear growth rates are found to be unaffected, while nonlinear vortex dynamics
is found to be qualitatively different than MD results. This study has been
performed with both incompressible and compressible models. As the sys-
tem sizes in MD and AG-SPECT models are necessarily different, a careful
consideration of initial density values for the Kolmogorov flow was made so
that the dimensionless numbers such as Reynolds number and Mach number
as well as total particles in the system are identical in MD and AG-SPECT
models. The results clearly demonstrate the importance and usefulness of

our comparative study.

6.1 Future scope

In this Thesis, a large scale hydrodynamics flows have been studied from continuum
and discrete point of view. This Thesis points out to several interesting directions

for future work. Some of them are:

e In general, Yukawa interaction is known to be the predominant force influ-
encing the dynamics of a grain in complex plasma experiments. However,
the effect of other forces such as dust-neutral collisions resulting neutral drag
force and the effect of ions accelerated in the sheath region where the 2D grain
bed levitates are also known to affect the dynamics of grains. The effect of

such drag force may alter the nonlinear propagation of elastic wave and will
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provide a more realistic close comparison to laboratory experiments. One

can perform such studies in molecular dynamics simulation.

As performed in the later Section of Chapter-5, for given non-dimensional
parameters (Mach number and Reynolds number), it would be interesting to
perform the comparative study of rotational shear flow, for example, Dipole,
Gaussian, Rankine ctc in strongly coupled dusty plasma using Molecular

dynamics and Computational fluid dynamics.

In present Thesis, to demonstrate the shear flow instability in Dusty plasma
medium which also treated like a continuum medium, memory dependent
model has been used. In this model, viscoelastic response of strongly corre-
lated fluid is incorporated by a non-local viscoelastic operator which incor-
porates memory effect and long-range order, via a single relaxation time F
9, 10, 11, 114, 122]. In 2015, Diaw and Murillo [13] described yet another
hydrodynamic model for strongly coupled plasma system suggested called as
the viscoelastic-density functional (VEDF) model using density functional
method. The results obtained from this model for near equilibrium problem.
In this hydrodynamic model, coulomb coupling, viscous damping, and the
high-frequency or viscoelastic response impact have been incorporated via
free energy functional, which were incorporated in earlier model by only a
single parameter & . Therefore, the results obtained by using (VEDF) model
closure to molecular dynamics simulation, generalized hydrodynamic models,
Singwi-Tosi-Land-Sjolander approximation [123, 124] and the quasi-localized
charge approximation. So it would be interesting to perform compare and
contrast studies using these two modified hydrodynamic model for far from
equilibrium kind of problem, for example, driven (Initial value problem) and

undriven (forced problem) shear flow instabilities.

In this Thesis, the presence of bifurcation in 2D Kolmogorov flows using MD
and CEFD has been demonstrated for Yukawa liquids and for strongly cou-

pled dusty plasma. However, the mathematical nature of the bifurcation has
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not been addressed. In the past, using external forcing of Kolmogorov flow
type, several steady states, traveling waves, modulated traveling waves and
dynamics of reversals and condensates have been addressed for incompress-
ible Navier-Stokes equation [101]. If driven forcing is enough, the shear flow
becomes unstable and reaches to chaotic states. In this study bifurcation
and pattern formation has been observed. It would be interesting to perform
such studies for strongly coupled dusty plasma system using hydrodynamic

model.

External drive in fluid model: Rayleljh — Benard convection cell (RBCC) is
the buoyancy-driven flow of a fluid heated from below and cooled from above.
This model of thermal convection is a paradigm for nonlinear and chaotic dy-
namics, pattern formation and fully developed turbulence [125]. In the past,
formation of Rayleigh-Benard convection cells (RBCC) in two-dimensional
strongly coupled Yukawa liquids, characterized by coupling strength I" and
screening parameter x was addressed by using Molecular dynamics simula-
tion [126]. However, to best of our knowledge, the detailed linear and non-
linear stability analysis of RBCC problem has not studied yet using modified
fluid model. In our pseudo spectral code, the boundary condition is doubly-
periodic, one can change the boundary condition and study the problem
which crucial depend upon the boundary condition. One can add the reflect-
ing boundary condition in the fluid code and add the gravity as a body force
in the momentum equation to study body force depend on the problem, for

example, Rayleigh Benard convection cell and Rayleigh Taylor instability.

Generally, non-Newtonian fluids are complex mixtures: slurries, pastes, gels,
polymer solutions, Synthetic polymers, human tissue, biological fluids such
as synovial fluids found in joints [26] etc. As described in the Introduction
(Chapter-1), dusty plasma medium also behaves like a non-Newtonian fluid.
It would be interesting to study the linear and nonlinear stability of dusty

plasma as a non-Newtonian fluid in presence of velocity shear flow.
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e In this Thesis, the shear flow has been studied in unmagnetized plasma. One

154

can incorporate magnetic field and understand magnetized hydrodynamics
(MHD). Basic equations for this study have been written in the framework
of a generalized magneto-hydrodynamic model to include viscoelastic effects.
It is found that for both longitudinal and transverse perturbations, elasticity
modified Alfven type modes can propagate that can be termed magneto-

elastic modes [127].

In the present Thesis, we have focused only on 2D studies.
However, to make a direct comparision with laboratory dusty plasma exper-
iments, it would be useful to extend the MD and CEFD codes to 3D as well

as to generalize the codes to arbitrary boundary conditions.



Appendix A

A Complex viscosity and viscoelastic operator

(En%) based Modified Hydrodynamic model

J. Frenkel [9], Ichimaru et.al [122] and M. A. Berkovsky [114] addressed viscoelas-
ticity through a memory effect via Maxwell’s relaxation time £ . This model was
adopted by Kaw and Sen [10] in 1998 for weakly correlated dusty plasma without
equilibrium flow. In the following, for the sake of completion, an outline of the

model for arbitrary initial condition is presented.

Navier-Stokes equation with mean body force density, velocity, mass and density

ﬁb, U , M and n respectively is given by:

aa . L/ L.
Mnd—g + By = V20 + (% + 5’) (V- 0) (A1)

A0 Fy e (L0 € e
it " oY Ut <3Mn o) VYY) (A.2)

where V? is a Laplacian operator. In above equation, 7 and ¢ are dynamic shear

and bulk viscosities respectively. The above equation can also be written as
S+ Fy= VT + (g 4 5) V(Y- ) (A.3)

Here ﬁb = ﬁ’b/Mn/, v =mn/Mn and { = &'/Mn are force per unit mass density,

kinematic shear viscosity and kinematic bulk viscosity respectively.

To incorporate the effect of strong correlation in space and time (viscoelastic ef-

fects), let us consider the kinematic viscosity as an non-local operator, its convo-

lution and cross-correlation in time and space respectively. For example, let us
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consider

—+ﬁb / dt/ T )dr (A.4)

Comparing Eq.A.3 and Eq.A 4

L 5 . o 5 o
[ at [ulr=re— )00 )i = vvPu + (g 4 5) V(V-T)  (A5)

Let us take Fourier transform in space with kernel K (k,r) ~ eF 7 and using con-

volution theorem in Fourier space to get:

—

/_; at [ [ e — it — )0 drar’ = [ k2 — (g +§> E(E.)] U(F. 1)

/ dt’ // =Y gy F—T_;,t—t’)eiE'FVU'(ﬁ,t’)dr' = —

vk? + (% + g) /2(1%-)} Uk, 1)

Using change variable 7 — = ]%, hence dr' = dﬁ, where R is constant, we get.

Splitting the domain of integral, we get:

0 . . t - N
/ V(E =\ U (K, #)dt'+ / V(E =\ UK, #)dt = —
0

Let us take the differentiation of above equation in time with assumption h— =

0.
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O dy(kt—t) o tdv(kt—t). .
/_x R Ukt +/O S UGt

dU (k. t) (4.6)
v - = 1
. (g 4 g) k(k')} B
Using the following:
| sttt - /io Fwde+ [T rar (A7)
,/_Ooo FO)dt = /_O:O Flt)dt — '/OOO F(t)dt (A8)
Eq.A.6 becomes
o dy(kt—t) . rodu(kt—t) o
/_OOTU(k,t)dt —/O S Ut "
+/;WU(E, Yt = — |vk® + (% + 5) /%’(/Z-)} %

Taking the Laplace transform in time on both side with kernel K (w,t) &~ e™*" and
using property L [%} = wf(w) — f(0). It is important to note that we have used
two Laplace transform property (convolution):

L { In WU(E, t’)dt’} — (W)U (F,w)

L
dt

t Lt .

/ MU(/@#)CM} = wi(E, w)U (F,w)
0

Using these property, the above equation becomes

[T [T WU(E, ¥t — — [mf 4 (g 4 g) E(E-)] (wU(F,w) - Uk,0)}
(A.10)
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00 dv(k,t —t) [ - - ,
J e_w(t_tvj%dt [ e U = - [V/# 4 (% + g) k(k-)] WU (R, w)
0 —00

It is important to note that in these calculation no equilibrium shear flow has
not been considered (Mathematical formulation is true for equilibrium and near-

equilibrium system).

0 Y 0 .
/ e—w(t—tg dV(k)t t)dt [/ e‘“tVU(k’,t’)dt’
0 d?" —00

(A.11)
vk* + (% + {) E(E)} wU (K, w)

+ / T ey (E, t’)dt’}: -
0

In Laplace transform the kernel K (w,¢) = 0 in the range [—oc,0]. There are two

important kernels to be noticed

—

e kernel with operator v(k,t —t) has two terms:
one is because of viscosity and other one is due to elasticity of the medium.
Therefore, w = w, = w, — Tv;; . Here w, is the real frequency w, = 1/F .

e For R.H.S kernel will be only real frequency dependent w = w, = 1/F .

Now Eq.A.11 will become

S . (A.12)
= vk (5 4 ) KR (/B U E,w)
w(kow) = — [ + (g 4 5) E(T-)} (1/F) (A.13)
L.H.S frequency is replaced by imaginary and real terms.
(% _ 11;> . [wf + (g + g) E(E-)] (1/F) (A.14)
vk, w) = — 2+ (5 + ) K| (A.15)

1-TH
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Now taking the Fourier and Laplace transform of Eq.A.6 and putting back the
calculated non-local kinematic viscosity operator on R.H.S and taking the inverse

Fourier and Laplace transform.

d
1+F —
{+tdt}

Here Fy is body force per unit mass-density, this can be any external force for

== [ (B4 VT (A

example, gravitational, electrostatic, pressure and driven forces. Let us consider
for dusty plasma medium with density n; and mass density p, = Myny, there are

following forces applied

e Pressure force: —VP

e FElectrostatic force: -gyn,Vo

where ¢, and M), are mean charge and mass of dust. Then the modified hydrody-

namic equation will become:

d
14+ K —
U )

The physics of strong coupling of the dust fluid, is incorporated via a viscoelastic

dU qpn = 15 [ 9 <V > } =
= e+ —Vp| = — vV (= V(V)| U A.17
. - / - D % 3 +¢ ) V(V) ( )

memory coefficient F . Viscoelasticity is the property of fluid having both the
virtue of viscosity as well elasticity. In such visco-elastic medium, stress relaxes
with finite time (t) which provide an exponential decay in time as e”¥/™. F is
also called Maxwell’s relaxation time. It is the response time taken by the fluid
element to get back to its original state, when perturbed due to “elastic” nature
of the fluid. As l goes to zero the model reduces to conventional hydrodynamic
fluid. In practice, the magnitude of /' , Maxwell’s relaxation time (or viscoelastic
coefficient) for strongly coupled plasma will have to be calculated from experiments
or Molecular dynamics simulations which depends explicitly on the strong coupling

parameters (k and I are screening and coupling parameters respectively) and some
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other statistical parameters, For example in Ref.[114, 122], F (k,T") is defined as:

4y g 1
T = — a8 G (A.18)
(3 — ypn)np + U (3 —yun) + g

where ny, 1, £ and v are density, shear viscosity, bulk viscosity and adiabatic index

(for two-dimensional system v = 2). puy, is compressibility

() D

where u(I") is excess internal energy of the system [128, 129]. Inputs of 7, &, us,
w(I"), I' come from MD simulation and experiments. Hence, it is important to
note that the physics of large number of parameters namely, 0, &, s, u(I'), I' are

combined in to a single f; [9, 10]. Therefore, the model is phenomenological.

A.1 Compressible hydrodynamic model and suitable nor-

malization : Two velocity field formulation

Continuity equation:

0 "
P ¥ (pall) = 0 (A.20)
ot
Momentum equation:
d dﬁ qpMh = 1= _ 9 <z > :| .
{1+Edt} Pt ng—l—pth} _ [uv +(5+e) v T o

where d/dt = 8/0t + U - V. Momentum equations for electrons and ions fluids are

MeNe (8[]8 +U,- V(je) = —VP, +n.eVo

min; (8Ui + U, - VU}) = _VP — nieﬁqb
where my, ng, U, Py, Ty [where, s = e (electron) and i (ion) | are mass, number
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density, velocity, pressure and temperature of the particular species respectively.
Equations of states for electron and ion fluids are P, = n. kg1, and P; = n;kgT;
respectively. FElectrons and ions may be considered inertia-less particles as com-
pared to dust. Hence, equations of motion of electron and ion fluids become
VP, = n.eVe¢ and VP, = —n;eV¢ which leads to Boltzmann distributions of

electrons and ions as follows: Poisson’s equation:

e

V2 = —[Zynp — n; + g
€0

n; = ni06_3¢/kBTi

ne — n€0€e¢/kBTe

6 .
v2¢ = _[Zhnh - nioe_ed)/kBTz + neoeeé/kBT"]
€o

First order approximation of above equation

(&

V(o + ¢1) Zpnon + Zpenp — nig + nigep/ kLT

€ (A.22)
+neo + neoe¢/kBT6]

Imposing the condition of quasi-neutrality n,0 = neo + Zpnno

V2§Z51 = EE [TlierSl/k?BTT-i- neoeqbl/kBTe + Zhenhl] (A23>
0
V2¢1 = ni062¢1/€0k’BTT+ Tl6062¢1/€0k3T€ + Zh62’rlh1/€0 (A24)
where
L o ni062¢1
N eokpTT
L o n6062¢1
>\2De N EokBTe
1 1 1
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V20, — JS - (A.25)
Normalised Potential ® = %
Bl
— ) Zne’n
2p - o =2 A2
v >\2D kpTieq ( 6)

For a while let us consider that normalized length to be some arbitrary length L

and normalization in density i.e ny = nponp.

LQCI) i ZhethgLQth

V2P — = A.27
v /\2D Eo]fBT; ( )
—,- L*® L°n
VZip — v Ul (A.28)
D Dt ix

2 . .
L= Z;Z:ﬁ?, where Ap; ;5 is mixed length scale and also equivalent to
k2

where T
ADt iz = Ap;. It is important to note that from here onwards in the calculation,
length is normalized by Ap; i» =~ Ap;. After choosing L = Ap and M2 = )%, (for
high temperature of electron, we neglect the contribution of electron Debye length
in Eq.A.25) the Poisson’s equation becomes.

Normalized Poisson’s equation:

A2 _
Vi) — %ﬁh + ® (A.29)
Di

o o2 knT _
2 _ [ Mot CofBli \ o 5 A 30
v (eokBTl “\ozne ) T (4.30)
_2ci>:( ftio >— o A.31
\V4 n}th np + ( )

As njg = np,Z, then normalized Poisson’s equation will be:
V20 = qy, + © (A.32)

Hence, in present fluid model all equations are dimensionless and the normalization
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quantities are given in table.1. Equation of state for dust fluid is P = pupyanpksTh,

” S.No Quantity Normalized quantity ”
1. Distance (r) v/ ADt ix
2. Time (t) twph
3. Potential () ¢pe/KpT;
4. Density (nao, a = e,1'd) Na0/ZnMho
Table 1: Table for normalized quantities. where length \%,, . = ZEZEZBTLI;"O =\,

dust plasma frequency wy, = (Q?npo/e0My). Qn = Zpe and My, are charge and
mass of single dust particle.

where g, and ~y, are compressibility and adiabatic index (v, = ¢,/c,) respectively.
Normalized Momentum eq:

d
1+ F —
{—l-tdt}

where C? = juyykpTy/ZyT;. Tt is important to note that in present Thesis the last
term (§ + E) V(V-) on the R.H.S has not considered for simplicity.

au - - (C?
- O L 28
= +V +ﬁh

m} — s () vw|o

Normalized Continuity eq:

% NG = 0 (A.34)

Final set of fluid equations which we have used in our Advanced Generalized Spec-

tral Code (AG-Spect) are:

O + V.(nhﬁ) =0 (A.35)
ot
V2 =ny+ ¢ (A.36)
A\ |dU -, C?*Vn, o
{1+E£} E—qu-f—n—h =vVU (AS?)
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A.2 Incompressible hydrodynamic model : Vorticity-Stream

function formulation

A fluid is said to be incompressible when the mass density of a co-moving volume
element does not change appreciably as the element moves through regions of
varying pressure. An incompressible fluid is a fluid that does not change the
volume of the fluid due to external pressure. The conservation of mass density for
such a dust fluid element (also called the continuity equation) is given in Eq.A.20.
For addressing phenomena where the disturbances travel at speeds less than sound
speed of the system, density variations are negligible i.e %‘i = 0, resulting in

V.U =0 leading to incompressibility of the dust fluid. In this context, the

following assumption has been taken in the Eq.A.33

e Density variations are not sustainable in time and space. Hence h}%i =0

e Potential variations in Eq.A.33 is considered to be ignorable.
This allows us to introduce a stream function v (z,y). For incompressible fluid,
in general, vorticity stream function formulation make the calculations easier than

velocity formulation because it changes vector velocity equation into scalar stream

function equation. Vorticity w is a curl of velocity defined as

ov  Ou

w=2VxU=——— A.38

Jdr Oy ( )

where u and v are 2 and y component of velocity. Velocity component (u,v) can be
expressed in terms of ¢ (x,y) as u = %5, v = —%ﬁ which gives w = —V?2¢. Taking

the curl of Eq.A.33, the incompressible Generalized Hydrodynamic equation in

terms of dust fluid vorticity becomes as

f1em g} %] +mvx

L dU
ot | at UNTr

2
= A.
7 vViw (A.39)

2_ 9 9 _n h _ 0 ] ; ;
where V= = = + 2 V= and 3+ = & + U.V as mentioned earlier.
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B Viscoelastic-Density Functional (VEDF) based

hydrodynamic model

Diaw and Murillo [13] have described a generalized hydrodynamic model for strongly
coupled plasma system referred as the viscoelastic-density functional (VEDF)
model using density functional method. In this model, exact equations of the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy is used to obtain the density,
momentum, and stress tensor-moment equations and the moment equations are
closed with two closures, one that guarantees an equilibrium state given by density-
functional theory and another that includes collisions in the relaxation of the stress

tensor. Momentum Eq. for this model is

d
1+ F —
{—i-tdt}

In above equation 77 and £ are dynamic shear and bulk viscosity respectively. where

dU §F
ph,ﬁ—i-vp-i-%nh] =nV2U + (n/3 + )V(V.U) (B.1)
h

F[ny] is free energy functional F[n,]=F"[n;](noninteracting free energy)+F[n;](External

0F(ng) __

energy)+ o[, | (Hartee energy)+ £ [ny](correlation functional). e =

QuniVeo + VP + %jjnd). In this hydrodynamic model, coulomb coupling, vis-
cous damping, and the high-frequency or viscoelastic response impact have been
incorporated via free energy functional. Therefore, the results obtained by using
this model are very closed to molecular dynamics simulation, generalized hydro-
dynamic models, Singwi-Tosi-Land-Sjolander approximation [123, 124] and the

quasilocalized charge approximation.

C Fluctuation-dissipation theorem based hydro-

dynamic model

In general, dynamic structure factors for strongly coupled plasma is calculated

by the molecular dynamics (MD) simulations. For this purpose, particle-particle
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particle-mesh (P3M) scheme has been used, which is much time consuming method.
More recently, Di Luo et.al [14] introduced another generalized hydrodynamic ap-
proach to simplify the calculation of dynamical structure factor of strongly coupled
plasmas using fluctuation-dissipation theorem. This model is benchmarked against
a particle-particle particle-mesh molecular dynamics simulation results for dynamic

structure factors.

D  Parallelization of pseudo spectral code

In spectral simulation, main time consuming part is fast Fourier transform. There-
fore, parallelization of spectral code becomes important. The MPI routines are
significantly different from the ordinary FFTW because the transform data here
are distributed over multiple processes, so that each process gets only a portion
of the array [65]. The MPI directory contains multi-dimensional transforms of
real and complex data for parallel machines supporting MPI. MPI FFTW routines
for distributed-memory (and shared-memory) machines supporting MPI (Message
Passing Interface) has been used.

These MPI subroutines of FE'TW can support multi-dimensional real and complex
data. In particular, for our purpose complex to complex transform has been con-
sidered. For two-dimensional system, an example of program in C-language is as
follows [65]:

#Wclude < f ftw_mpTh >

int main(int arge, char **argv)

const int NX = ..., NY = ..;

fftwnd__mpi_ plan plan;

fitw__complex *data;

MPI_ Init(&arge, &argv);

plan = fftw2d_mpi_ create_plan(MPI_COMM__WORLD, NX, NY, FFTW_FORWARD,
FFTW_ESTIMATE);
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...allocate and initialize data...

fftwnd__mpi(p, 1, data, NULL, FFTW_NORMAL_ORDER);

fftwnd__mpi_ destroy_ plan(plan);

MPI_ Finalize();

The calls to MPI_Init(&argc, &argv) and MPI_ Finalize() are required in all MPI
programs. “plan” can be created and many a times used in the program, whenever
Forward FFTW is required. In the same manner Reverse FEFTW can be planned
and called in the program. Grain medium or dusty plasma medium can be model

led by the following non-linear fluid dynamics equation.

E Ewald sums

To develop MPMD code, Salin and Cailol [74] reference has been followed. In the
Yukawa system N number of charged particles interact via screened long ranged
coulomb potential. In molecular dynamics simulation, periodic array of replicated
system is created and due to long range potential and periodic boundaries, the
interactions effects come inside the simulation box from all sides of replica since

no truncation is incorporated. In this case, the sum of potential energy is

¢(r) = o(Irl) + >_ ¢(|r +nL]) (E.1)
n#0
where ¢(r) is Yukawa potential, L is system size and n = (n,,n,,n;). It is

important to note that when the system size L is much larger than the Debye
screening length Ap, the effect from replicated systems becomes ignorable [130].
In this thesis, the system size is much larger than the Debye length, for example

L, = L, = 443a and A\ = 2a, where a is wigner seitz radius of Yukawa system.
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