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SYNOPSIS

Plasma is an ensemble of charged particles which is neutral macroscopically.
These charged particles respond to the self-consistent and external electric and
magnetic fields in a collective manner. The disparate masses of the two species and
the nature of electromagnetic interaction leads to the existence of many collective
modes in plasma at distinct spatial and temporal scales. The plasma is thus a
complex medium which supports a plethora of waves and instabilities where the
nonlinearity of the medium manifests in terms of the existence of diverse coherent
structures as well as turbulence fluctuations.

The interaction of plasma with electromagnetic radiation leads to interesting ef-
fects which are of interest both from fundamental and applied points of view. The
electric and magnetic field of the radiation essentially interact with the charged
species of plasma. The electron species, which has a smaller mass than ions, re-
sponds predominantly to the oscillating electric and magnetic fields at the light
frequencies. With the advent of powerful lasers, the new physical regime has been
opened up wherein electron quiver velocity in the light field becomes relativistic.
A one-dimensional fluid model along with the complete set of Maxwell’s equations
has been found extremely useful in predicting the formation and the evolution
of nonlinear coherent electromagnetic structures in a laser-plasma system. One
dimensional localized structures were predicted analytically [1-4] and further ex-
plored using full nonlinear set of fluid-Maxwell equations in the simulation studies
as well [5-11]. Experimental and PIC studies also show formation of localized
structures [12-14]. They also suggest that a significant amount of laser energy
(25-30 %) gets trapped into the plasma in the form of these coherent structures.
Clearly, such localized structures would then have an important role in many ap-
plications such as particle acceleration and inertial confinement fusion. Keeping
their importance in view, the solutions have been characterized in considerable
detail by various authors in the A (laser frequency) and 3 (group velocity) plane
6, 8-10]. Six different varieties of solitonic structures have been identified. These
are, (i) single peak (corresponding to radiation in the plasma density cavity) (ii)
multi-peak (iii) paired structures (iv) flat top (v) cusp and (vi) high amplitude.
The dynamical evolution studies of some of these structures have also been carried
out which have illustrated that solutions which have a single light peak trapped
inside the plasma cavity are stable [6], while those having multiple radiation peaks
and the flat top structures with ion response have been found to be unstable to

Raman forward [7] and Brillouin backscattering instabilities [9] respectively.



This thesis focusses on the study of the coherent localized solutions in consid-
erable detail. In particular, we have provided an analytical description of the cusp
solitonic structure, which shows a good match with the numerical profile. The
cusp structures have been shown to be unstable to the forward Raman scatter-
ing process. The 2-D evolution studies of several 1-D structures have also been
performed which show that even those structures which are stable in 1-D are un-
stable to filamentation instability. Furthermore, certain time-dependent localized
structures have been identified in the thesis which shows the interesting interplay
between field and kinetic energies. Question on the formation of such structures in
the aftermath of a wave breaking process has been probed in detail by employing
both fluid and Particle-In-Cell (PIC) codes.

The thesis covering discussions on these specific issues comprises of six chapters.

The chapter wise summary of the thesis has been provided below:

e Chapter - I: In this chapter an introduction to the laser plasma (LP)
interaction process and the physics of the formation of localized exact solu-
tions are discussed in detail. The energy trapped in these solutions can be
naturally transported as the structures often move with a group speed and
may have interesting implications to problems such as particle acceleration
[15-19] and inertial confinement fusion [20, 21] etc. A detailed review of the
earlier studies on the exact solutions of the coupled laser plasma system has
been provided. This includes the characterization of the variety of solutions
and their dynamical evolution in 1-D. A brief introduction to the proposed
study in this thesis have been presented and the future challenges have been

outlined.

e Chapter - II: The incorporation of ion dynamical response leads to an
increased number of possible solitonic structures in the coupled laser plasma
system. The single peak and multiple peak solitonic structures show a clear
split in two distinct branches of low and high amplitude structures. The
bifurcation occurs beyond a particular group velocity after which two solu-
tions, one with a small and other with high amplitude is possible. Certain
solutions with new and distinct profiles are also possible, such as flat top and
cusp structures. As the names suggest the flat top solutions have a profile
which remains flat at the high value of all the fields. The cusp structure,
on the other hand, has a discontinuity in the derivative of scalar potential

at the center. This happens as a result of ions achieving the wave breaking
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condition at the center resulting in a sharp peak of ion density there. In this
chapter, the cusp solitons are discussed in detail. These solitonic structures
form in the presence of ion response when the ions reach the wave breaking
limit at the center of the solitonic structures. An analytical approximate
form of these solitonic structures has been obtained which is shown to agree
with the numerically obtained structures. The dynamical evolution of these
structures have also been studied and it is shown that the cusp structures

are unstable to the forward Raman scattering instability.

Chapter - III: Several studies [2, 4-11, 22-24] have been conducted on
the evolution of one-dimensional solitary structures. The 1-D studies have
shown that out of the three varieties of solutions, (in the case where only
electron response is considered) the single peak and paired peak are solutions
stable whereas the multiple peak solutions are unstable to forward Raman
scattering instability. In the presence of ion response, the evolution of flat
top [9] and cusp structures [24] have been investigated, showing them to be
unstable to Brillouin backscattering and forward Raman scattering instabili-
ties respectively. In this chapter, we have considered the evolution studies in
2-D by including the second dimension in the numerical code. The LCPFCT
package of flux corrected subroutines with time-splitting technique has been
adopted for the purpose of integrating into the second dimension. We have
considered the evolution of three solutions (which are permitted in the pres-
ence of only the electron response) in 2-D. The numerical studies show that
the single peak, paired peak and multiple peak 1-D structures are unstable
to transverse perturbations. It is shown that the transverse instability is the
filamentation instability. The 1-D solitons thus break up as light filaments.
For the multiple peak structures which were unstable in 1-D, the forward
Raman scattering instability appears earlier which is then followed up by

the filamentation instability in 2-D.

Chapter - IV: In the fourth chapter of this thesis, we present our obser-
vations of certain time-dependent localized structures which invariably form
either by ejection from unstable structures or as an aftermath of collisional
interactions amidst certain solitonic structure. These time-dependent struc-
tures are observed to be considerably robust and are seen to preserve their
identity for hundreds of plasma period. Typically the structures show the
interplay of oscillations amidst density and radiation fields and often have

compact support. To gain a better understanding we have introduced ex-
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cess radiation in the density cavity of exact solutions, thereby disturbing the
precarious balance of forces of the structure. The radiation pressure being
high, it pushes the electron density and triggers a plasma oscillation. An
interesting interplay of out of phase oscillations between the field and ki-
netic energies are observed. This continues for hundreds of plasma periods.
However, the electron density in the plasma oscillations keeps getting steeper
and ultimately approaches the wave breaking limit. In the fluid simulations,
the density spike approaches the grid scale and one observes a slight dip
in the total energy. The simulation thereafter continues with spiky density
structures with radiation trapped inside it. In the next chapter, PIC studies
have been carried out to confirm the wave breaking process and the evolution

thereafter.

Chapter - V: In this chapter we employ Particle - In - Cell (PIC) codes
to reproduce the results that have been obtained in Chapter IV by fluid
simulations. The PIC studies capture the observations associated with the
time-dependent structures with fluid simulations very accurately till the wave
breaking point. The oscillations in the field and kinetic energies are captured
exactly. Though the fluid simulations show a dip in energy at the time of
wave breaking, in PIC the energy remains conserved all throughout. How-
ever, after wave breaking one observes an increase in the random thermal
part of the kinetic energy. The PIC studies compare well qualitatively with
fluid observations even after wave breaking. the main conclusion of the stud-
ies conducted in chapter IV and V are that even when the precarious balance
required in the exact solutions are disturbed the localized structure retains
its identity for a sufficiently long time. The imbalance triggers plasma os-
cillations and the inhomogeneity of the clectron density lead to the wave
breaking of these oscillations ultimately as a result of which density spikes
are formed. Radiation trapped between the density spikes invariably form
interesting time-dependent structures with compact support which last for
a considerable time. Thus such time-dependent compact structures are ex-

pected to be observed invariably.

Chapter - VI: This chapter summarizes the thesis work recapitulating
its salient points. Future prospects in terms of the form of the solutions
in higher three dimensions and the process of thermalization of the plasma
through the wave breaking process triggered in unstable solutions as well as

those in which the delicate balance between electrostatic and ponderomotive
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forces are disturbed are projected.

The detailed investigations made in this thesis thus contribute significantly to the

theoretical understanding of formation and stability of localized structures in a

system where lasers interact with the plasma.
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Introduction

A typical plasma is a collection of freely moving charges under the influence of
a self-consistent and external electromagnetic fields. Such a medium comes into
existence by violently imparting energy (in the form of heat, laser, intense electric
field, etc.) to ordinary matter. The neutral atoms and molecules of the matter
get ionized and release some or all of its electrons. The collection of such an
ensemble of charged particles is called plasma provided it satisfies certain criteria,
e.g. displaying collective properties, remaining quasi-neutral etc. The majority of
the universe (excluding dark matter and dark energy) is in the form of plasma. It
is often also referred to as the fourth state of matter.

Understanding the behavior of plasma state of matter under various circum-
stances remains a topic of considerable interest for the research community. The
quest is driven by both fundamental understanding and the host of applications
which are being and can be garnered through this medium. One such important
aspect is the interaction of this medium with the electromagnetic field of the light

wave. With the steady improvements in the laser power (and many other attributes
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Chapter 1. Introduction

of the laser system) many new challenges and novel features are continuously being
uncovered in the interaction of plasma with laser light. For instance, laser plasma
interaction forms the basis for the new principle of particle acceleration with a a
promise of almost thousand-fold increase in the acceleration gradient [1-9]. Areas
such as photon acceleration [10-13|, production of X-ray sources [14-17|, novel
radiation sources of table top sizes hold a lot of promise in the field of medical,
security and imaging are all based on light plasma interaction. Furthermore, the
inertial confinement fusion (and its variants such as fast ignition etc.,) are all
dependent crucially on the interaction of laser with the plasma medium [18-21].
The interaction of laser electromagnetic field with plasmas is beset with many
interesting collective phenomena. This involves a variety of collective plasma
modes, instabilities and coherent nonlinear structures and their dynamics. In this
thesis formation, stability and dynamics of coupled light plasma coherent struc-
tures are explored. In the subsequent sections, we will provide the background and
motivation behind the thesis work. The basis tenets of the laser-plasma interaction
is introduced briefly and the summary of earlier studies have been provided. A

brief outline of the studies carried out in the present thesis has also been provided.

1.1 Background and Motivation

A soliton is one of the very interesting coherent nonlinear structure and is ubig-
uitously found in many natural circumstances. This was first observed and de-
scribed by John Scott Russell in 1834. He observed solitary wave in the Union
Canal, Scotland and named it the "wave of translation". Thereafter these struc-
tures have been observed many diverse areas, for example in optical fibers [22],

as energy carrying packets in protein and other molecular systems [23], localized

4



Chapter 1. Introduction

structures in fermionic superfluids [24,25] and conducting polymers [26], spiky
electrostatic structures in the Earths magnetosphere [27] etc. The main proper-
ties of such structures are that they propagate unmolested and survive even after
mutual collisions. This property of the soliton makes them significant useful en-
tities for the purpose of information and signal transmission. In the context of
plasmas also such coherent nonlinear entities have been observed and studied. For
example, such localized structures have been observed in the simplest setting of
the dusty plasma experiments, where their robustness have been tracked even by
naked eyes [28-34]. Other areas where there are evidence of the existence of such
structures include space plasma - in the form of a bow shock [35,36], pulsar radio
emission [37], and in the laser-matter interaction [38-42]. In this thesis, we will
focus mainly on the behavior of coherent nonlinear entities in the context of laser

plasma interaction.

1.2 Laser Plasma Interaction: An introduction

After the invention of the chirped pulse amplification (CPA) technique given by
Mourou et al. [43], it has been possible to amplify an ultra-short laser pulse up to
the petawatt level. In the CPA method, a short laser low intensity pulse is first
stretched in time and then amplified. It is then compressed to obtain an ultra-
short pulse of a very high intensity. This technique increases the laser intensities
from 10W/cm? to well above 10¥¥W /cm?. A dimensionless parameter aq is used

to characterize the strength of a laser pulse

= By /mw.c = 0.85 x 10~ A[um]+/(I[W /cm?)),

Qag ~
meC



Chapter 1. Introduction

Here, p is the quiver momentum of electrons, and Ej, is the laser electric field.
When a powerful laser pulse is focused on the matter, a plasma is formed by field
ionization. In this state, the electrons are no longer bound to the ions, however,
both the charge particles can move freely. As the ions are much heavier compared
to the electrons, their response is very slow to the rapidly changing electric field
of the laser light. Typically, at the intensities of 10'¥W /cm?, ions are assumed to
form merely a stationary neutralizing background. The electrons on the other hand
quiver at the frequency of the applied light field. The interaction of laser fields
with electrons can under various circumstances lead to an irreversible transfer of
energy to the electrons. The laser energy gets absorbed by the plasma medium.
This energy typically excites electron plasma waves at the frequency of
4mn,e?

Wpe = )
P! Me

The plasma frequency depends upon mass of the electron m, and the electron

density n.; where e is the charge of the electron

When the frequency of laser wy, incident on plasma, is higher than the plasma
frequency wy, i.e. (wp > wp,e), plasma behaves as an under dense medium for
the laser pulse. The electrons oscillate in the electric field of the laser pulse and
thus allow the pulse to propagate inside the plasma. On the other hand when
(wr, < wpe), plasma act as an over-dense medium for the laser. Therefore, the
electrons can completely shield the electric field of the laser pulse and the light gets
reflected from a boundary of the plasma surface. However, when an ultra-intense
laser pulse (@ > 1 and intensity 10'®W /cm? ) is incident on the plasma, electrons

quiver velocity v becomes close to the speed of light. Under these circumstances,
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The plasma frequency (w,) get reduced by the relativistic factor (v) as,

Wpe
w=-%

Where,

1
f}/ - 2
1
This relativistic factor is associated with the electrons velocity v, and c is the
speed of light in free space. In this case, if the laser frequency is higher than
the relativistically modified plasma frequency the laser ficlds can penetrate inside
the plasma. Basically, plasma behaves as a locally under dense medium for a
high-intensity laser pulse.

In 1979, Tajima et al. [4] has proposed a mechanism to create a longitudinal
electrostatic field. This longitudinal electric field is set up by the expulsion of
electrons through the ponderomotive pressure of the laser radiation, thereby form-
ing ion cavity which provides an attractive force to electrons. As the laser pulse
propagates one is left in an ion cavity surrounded by electrons. The electrostatic
force due to the separated charge attracts the expelled electrons. As electrons rush
inwards they overshoot and continue to oscillate in the wake of the laser. These
wakefields can be utilized for accelerating electrons in the same way as a surfer ac-
celerates on water waves in the ocean [44]. In recent experimental works, Mangles
et al. [45], Geddes et al. [46], and Faure et al. [47] reported the generation of the
quasi- mono-energetic electron beam of GeV order [48].

The high intense laser pulse can also be used to accelerate photons in plasma.

By acceleration of photons, one implies an increase in the frequency of the photons.
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One of the governing nonlinear mechanisms to speed up the photons in plasmas
is - Raman forward scattering (RFS). In RFS, incident electromagnetic wave of
frequency wy scatters into a plasma wave of frequency wy,. with two electromagnetic
side-bands of frequencies (wy £ wye). The photon experiences a frequency shift.
Thus the photon with up-shifted frequency has an increased energy proportional

to the frequency and can be viewed as photon acceleration [49,50] in plasmas.

The Inertial Confinement Fusion (ICF) relies entirely on the interaction of laser
with plasma. In ICF, which is an important option for controlled thermonuclear
fusion (the other being magnetic confinement fusion), where the target is com-
pressed to supersolid densities by laser to achieve the desirable Lawson Criteria for
fusion. In ICF laser power is used to compress as well as heat the target. However,
it is observed that the process is pretty inefficient as hydrodynamic instabilities
mix the hot and cold fuels, making the energy requirements to be pretty high. In
1994, Tabak et al. [18] had proposed high-intensity, ultrashort laser pulse with an
intensity of ~ 10W /cm? and a duration of about 100ps is used to push the critical
surface of the plasma corona closer to the dense core by the ponderomotive force
associated with high-intensity laser light. This process is known as hole-boring.
In the third and final stage of this scheme, an intense laser pulse(~ 102°W /cm?),
which is shorter (about 1 to 10 ps), propagates in this channel and is stopped at
the critical density. There a significant part of the laser energy is converted into
hot electrons. These high energetic electrons are now able to penetrate deeply
into fuel and deposit their energy to heat high compressed (~ 10%/cm?) core.
So, according to the scenario, a part of the fuel, is rapidly heated and ignition of
the thermonuclear fuel is initiated. The particular advantages of this concept are

high gain and significantly reduced requirements on driver energy. The hot elec-
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trons generated by the laser are often source for intense X-ray pulses [51]. Thus
laser plasma interactions also lead to possible applications in terms of compact
radiations sources.

The plasma response to the laser is in terms of coherent plasma oscillations.
With high intensity, the coherent oscillations can be nonlinear and/or have rela-
tivistic electron response. Such nonlinear waves display phenomena of wave break-
ing and phase mixing. The possibility of formation of coherent soliton solutions
also exists. When a laser pulse interacts with the plasma, it expels plasma electrons
due to ponderomotive force and creates an ion cavity devoid of plasma electrons.
The electrons get piled up at the edge which prevents, in turn, the light to escape
the cavity. Thus a precarious balance between the ion attraction and repulsion by
a ponderomotive pressure of light creates an electron configuration which in turn
traps the light field inside to form a soliton structure. Such solitonic structures
which can either be moving or stationary have been obtained by the solution of
coupled Fluid Maxwell system of equation. The schematic diagram of such laser

plasma solitonic structures has been shown in figure (1.1).

maE=———  Pondermotive Force =~ ——= _

—3 Laser Pulse

u
el Electrostatic Potential ——ssjijmmm

Figure 1.1: Schematic of soliton formation.
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1.3 Review of earlier works

Theoretical investigations of the problem of one-dimensional electromagnetic
solitons started in the seventies. Both analytical, as well as numerical efforts, were
made in this direction. The detailed investigations of these spatially localized so-
lutions with finite ion response were carried out by Kozlov et al. [40] in 1979. They
numerically obtained the soliton solution for the propagation of an intense circu-
larly polarized electromagnetic wave in a cold plasma. They analyzed the existence
of the continuous spectrum of small amplitude soliton solutions in terms of group
velocity (3) and the ratio of the plasma frequency (w,) to the laser frequency (w).
They mentioned the transcritical limit :—’E’ ~ 5 of the plasma in their work above
which no soliton solution was possible. Further, Kaw et al. [39] studied an exact
one-dimensional relativistic soliton solution in cold plasma by considering ions as
a stationary entity. They obtained 1-D soliton solutions for various group speeds
(B) extending up to the speed of light (¢). The relationship between the group
velocity (), the eigenvalue (A), and the maximum amplitude of the electromag-
netic wave for the soliton was provided by them. It was recognized by them that
such coherent entities would play an important role in charge as well as photon
acceleration. Esirkepov et al. [52] obtained an exact analytical form for stationary
solitons and provided a critical value of the maximum amplitude of the vector po-
tential at R = /3. In 2001, Farina ct al [53] presented the detail investigation of
the ion motion on the dynamics of the relativistic soliton solution. They presented
the eigenspectra of the effective plasma frequency with the soliton velocity for the
single node and multinode (p=2) soliton solution with ion dynamics. They also

argued that ion can not be assumed to be at rest when the group velocity of the
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soliton is close to zero and very small. At low speed, the ponderomotive force of
the laser pulse would start affecting the ion density profile which changes the na-
ture of the eigenspectrum. So, at slow propagation speed and/or sufficiently high
electromagnetic field intensities, the dynamical response of ions would also need

to be incorporated.

Poornakala et al. |54]| and Saxena et al. [55] had presented a characterization
of the one- dimensional solitonic structures. The solitons were classified in terms
of the single peak, paired peak, and the multipeak structures depending on the
number of peaks of the radiation trapped inside the density cavity. Besides, a
paired structure is also observed wherein light wave of opposite polarity trapped
in two distinct density cavities tunnels across the high electron density at the center
to connect with each other and form a single coherent entity. These structures can
have group speeds ranging from zero to close to the speed of the light. A complete
characterization of the electron dynamics case for one-dimensional soliton solution
has been studied in the parameter space of the light frequency (\) and the group
speed (3) given in ref [39,54,55]. These solutions thus represent an envelope of light
waves modulated by a large amplitude plasma wave. The time evolution of such
solutions has also been studied using the coupled set of fluid Maxwell equations.
The simulation studies on the evolution of these solutions in 1-D have shown that
the single-peak and paired solutions are stable and remain intact throughout the
simulation. The multiple peak structures, on the other hand, have been found to

be unstable to the Raman forward scattering instability [56].

However, at slow propagation speed and/or sufficiently high electromagnetic
field intensities the dynamical response of ions should also be incorporated. Such

studies have been carried out by several authors [53,57-59|. The incorporation of
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ions leads to several new varieties of solutions, viz., (i) flat top, (ii) an additional
high amplitude solutions at the similar group speed 3 and lower frequency A and
(iii) cusp structures where at the center ion speed matches the group speed, and
the ions are thus at the limit of wave breaking [53]. The time evolution of the flat
top solutions was investigated by Sundar et al [58]. It was shown that the flat top

solutions were unstable to the Brillouin’s scattering instability.

1.4 Content and organization of the thesis

As we have mentioned in section (1.1), the main aim of this thesis is to investigate
the properties of localized structures in the laser plasma coupled system. We

discuss in detail the issues that have been covered in the next chapters.

1.4.1 Study of electromagnetic Cusp Solitons

The incorporation of ion dynamics yields additional new varieties of solitons -
six kinds of soliton solution are now possible. Along with the single peak, paired
peak and multiple peak solutions observed in electron response only case, the ion
involvement lead to the high amplitude branch, flat-top and the cusp solitonic
structures. The dynamical evolution of single peak and multipeak soliton struc-
tures have been investigated by Saxena et al. [55,56]. Sita et al., [58] considered
the evolution and analytical description of the flat-top soliton.

In chapter (2) we have focussed towards providing an analytical description
of the cusp solitons which are found at the ion wave breaking point. We show
that the analytical form of the scalar potential obtained under the assumption of

ion wave breaking matches well with the solutions obtained numerically from the
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eigenvalue search. In the second part of this chapter, we have focussed on the
dynamical evolution of the cusp soliton with the help of the coupled fluid-Maxwell
equations. The study shows that the cusp soliton is unstable during the evolution.

This instability is identified as the Raman forward scattering instability.

1.4.2 Dynamical study of 1-D soliton in transverse direction

The coupled light plasma system has been studied seeking 1-D coherent solu-
tions. The attempts of seeking 2-D structures have been rare. Some approximate
analysis to obtain 2-D solutions have been provided in the work by [60,61].

Furthermore, earlier evolution studies have also concentrated only on 2-D evo-
lution characteristics of the exact solutions wherein it was shown that while the
single peak and paired solutions are stable, the multiple peaks are unstable to Ra-
man forward scattering instability and the flat top solution is unstable to Brillouin
instability in 1-D. It is, however, of interest to see whether the stable structures
remain stable or get destabilized in higher dimensions. In the case of 2-D destabi-
lization, it is of interest to see whether the nonlinear development of the instability
takes it towards coherent 2-D structures or disintegrates the solutions altogether.

In this chapter, we concentrate on studying the 2-D evolution of various soli-
tonic structures. This includes single and paired peak structures which are stable
in 1-D; and also the multiple peak solutions which are known to be unstable even
in 1-D. As this is a first attempt towards studying the transverse dynamics of a
coupled laser plasma system, we restrict to the case of electron dynamical response
only. The ions are assumed to be massive for any response. The fluid code is gener-
alized in the second dimension using the time-splitting technique. The simulations

show that the structures survive for few hundred of plasma periods and, thereafter,
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become unstable. This instability emerges due to the modulation in the transverse
direction and finally suffers destabilization by the transverse filamentation insta-
bility [62-67]. The numerical growth rates obtained from simulations shows good
agreement with the analytical values determined from growth rate expression pro-
vided by Decker et al. [68]. We observed that multiple peaks solitons first undergo
the conventional 1-D forward Raman scattering instability. After the longitudinal
destabilization, it suffers transverse filamentation. The growth of perturbed energy
shows two episodes of the rise in this case. The first rise in the perturbed energy
exhibits Raman forward scattering instability. Whereas the second increase in the
perturbed energy comes due to the filamentation instability which occurs at the

later stage of the evolution.

1.4.3 Observation of the time-dependent 1-D localized struc-

tures in laser plasma system with fluid simulations

In the coupled laser plasma system there exists a wide variety of exact 1-D
solutions which are stationary as well as propagating. These solutions require
a very precarious balance of various field profile. It, therefore, seems that their
formation in the experimental situation will be fraught with complications. We,
however, observe that there is another class of localized structures which forms
rather spontaneously in simulations which do not require such a delicate balance
between various field profiles. These structures are found to be time dependent.
In the fourth chapter of this thesis, we focus on the study of these time-dependent
structures with the help of fluid simulations. It is observed that these structures
form as a result of collision amongst certain exact solutions and/or are the emitted

remnants from the unstable exact 1-D multipeak soliton solutions. These struc-
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tures arc seen to survive as coherent entities for the long time (~ 100wp_61) and
are found to display interesting out of phase interplay between field and kinetic
energies. We observe that the dis-balance in the fields (compared to the exact
solutions) triggers a plasma wave in the medium. The plasma wave acquires a
high amplitude and invariably gets broken. However, even after the plasma wave
gets broken and forms density spikes the structure continues to survive as a robust
entity.

Various properties of these time-dependent structures are analyzed and inves-

tigated in detail.

1.4.4 Observation of time-dependent 1-D localized struc-
tures in laser plasma system with Particle in cell sim-

ulations

As mentioned in the earlier subsection the time-dependent structures involve
broken plasma waves ultimately. The evolution with the fluid equation is then ques-
tionable. We have, therefore, investigated the properties of these time-dependent
structures through Particle - In - Cell (PIC) simulations in a chapter (5). The
PIC simulations compare quantitatively well before the wave breaking phenom-
ena. However, after wave breaking the evolution shows qualitative agreement with
fluid observations. The structure continues to exist as a local robust entity for a
long time. We also observe the particle thermalization as a result of wave breaking
phenomena.

The fluid and PIC studies thus clearly suggest the existence of interesting time-
dependent structures which are more versatile than the regular solutions which

require a delicate balance.
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1.5 Conclusion and future scope of the thesis

In this chapter, we summarize the results of the whole thesis and recapitulate
the salient points of this thesis. We also provide the future scope of work in

continuation of the study that has been made in the present thesis.
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Study of Electromagnetic Cusp Solitons

This chapter is devoted to understanding analytically the formation of a cusp
structure in the envelope of electromagnetic solitons for an electron-ion plasma at
the condition of ion wave breaking point. Analytical form of the cusp structure
has been obtained by solving the fluid-Maxwell equation using the condition of
ion wave breaking. It is shown to match well with numerically obtained cusp so-
lutions. These cusp structures which form at the ion wave breaking point would
be important for the acceleration of ions. In an effort towards studying the dy-
namical stability of such structures, the time evolution has been carried out which
shows that the structure survives for several plasma periods. However, ultimately

it breaks apart due to the forward Raman scattering instability.

2.1 Introduction

There are variety of exact nonlinear localized structures that have been observed

in the study of the laser plasma interaction process [18,39,40,52-56,58,69-72]. As
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we have illustrated in the chapter (1), these solutions are primarily of the form
of propagating structures with electromagnetic field trapped within an electron
density cavity in the plasma. When the laser frequency is high, a class of exact one-
dimensional solutions has been obtained wherein the ion response is ignored and the
interaction of light with the electron has been considered. The solutions represent
envelope solitons of light waves modulated by a large amplitude plasma wave in
the medium and fall into three distinct classes. The first variety is characterized
by a single peak of the laser field inside the soliton and is found to exist in a
band of region characterizing the group speed and laser frequency space. They
can have group speeds ranging from zero (static) to that of close to the speed of
light. For these structures, the electron density is evacuated in the central portion
and it peaks up at the edge. The second variety of solution known as paired
peak solitons represents a spatial coupling of two single peaks of light waves of
opposite polarity tunneling through an intermediate region of the electron density
plasma oscillations. For the third variety of solutions, the laser field has multiple
peaks in the near evacuated central region of the soliton. An approximate semi-
analytic understanding of their spectrum A (frequency) vs. 3 (group speed) has
been provided by Kaw et al. [39] for circularly polarized light. For a circularly
polarized electromagnetic pulse, the Lorentz factor is time independent and hence
the harmonic generation is ruled out, unlike the case of linear polarization [73,74].
When the group speed of the soliton is very slow and/or the intensity of the
laser pulse is sufficiently high, the dynamical response of ions also needs to be
incorporated. Such studies have been carried out by several authors [53,57-59).
After the consolidation of ion dynamics in the system, new varieties of solutions

emerge. Altogether, now there are six different varieties of solitons that can form
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as shown in Fig. (2.1). These are the three familiar ones single peak, paired
peak, multipeak structure; along with the new class of high amplitude, flat top,
and cusp solitons. The dynamical properties of the single peak, paired peak [55],
multipeak [56] and flat-top soliton [58] solution have already been investigated

earlier. However, cusp solitons still remain to be studied.

In this chapter, we focus on the description of cusp solutions and also study
their dynamical evolution. These solutions form when the ion density at the central
region approaches the ion wave breaking limit. This happens when the ion velocity
matches with the propagation speed of the structure. Farina et al. [53] have shown
that at the ion wave breaking point, the ion density shoots up and the scalar
potential structure in the soliton takes the form of a cusp. Here we provide a semi-
analytic description of the cusp structures. We have also presented the temporal
evolution of the cusp solution and found that it gets destabilized via forward Raman

scattering instability.

The chapter is organized as follows. Section (2.2) contains the relevant gov-
erning equations for the 1D cold plasma model in the presence of electron-ion
dynamics. In sec. (2.3), we discuss the cusp solutions. The ion density as well as
the scalar potential both exhibit a cusp structure at the wave breaking point. The
behavior of the cusp has been analyzed using the semi-analytic model description.
The analytical result has been shown to match well with the form of the exact cusp
solutions obtained numerically. In sec. (2.4), we dynamically evolve this solution.
It is observed that the solutions survive for several plasma periods. However, ul-
timately they break apart due to forward Raman scattering. In sec. (2.5), we

summarize and provide a discussion of our results.
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2.2 Governing equations

The relativistic fluid-Maxwell equations govern the formation and the evolu-
tion of solitons in a laser-plasma system. These equations contain the continuity
equation, momentum equation along with the full set of Maxwell’s equations. At
present, we have considered an intense circularly polarized laser pulse which is
propagating along the z-direction inside a plasma. This yields the following com-

plete set of the equation in the normalized variables:

on

a—l—v-(nv) =0 (2.1)
0 g . - L o=

(a + U.V) (v0) = —E — (U x B) (2.2)

. . 0B

~ . - OF
VxB=J+ E (24)
V-E=p (2.5)
V-B=0 (2.6)

Where, J is the current density, p is the charge density, and v = (1 — v?)~1/2
is the relativistic factor associated with the fluid velocity v and the density of

the plasma is n. In above equations,V = (8%,0, 0), vz, E, and B, represent

— —

the z-component of velocity (¥), electric field (F) and the magnetic field (B)

respectively. We can also write, £ = —Eg—ﬁ — %—‘?, and B = %(3:\ x A), where ¢ and

A represent electrostatic potential and vector potential respectively. Normalization

is such that, n —» &, ¢ — & F — <& B
ng c MCWpe MCWpe

r = =, L = twy,

wpe
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o — nifz, A— :l—?? We have assumed that the change in plasma parameters in a
longitudinal direction (z) is large compared to its transverse direction. Therefore
we have ignored the variation of plasma parameters (density, velocity, electric
field and magnetic field) in y and z direction. The coupled set of fluid-Maxwell
equations (2.1-2.6) are the main fundamental equations to study the propagation

of electromagnetic radiation inside the plasma. Now, solving equations (2.1-2.6 )

in terms of vector and scalar potential for electron-ion plasma, we get-

one — J(neu,)

o "o 0 (27)
<% + uea%) (ette) = % - 21% a?; (2.9)
% - (2.11)

Where o = m,/m;.

Relativistic factors for electron and ion (respectively) are:

1+ AT 14+ A%
/e— 1_ug7711_ 1—U12

We have followed the same step and notations as given by Sita et al [58]. By

using the co-ordinate transformation £ = x — ¢, 7 = t and quasi-static condition
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a% = 0in a moving frame. Eqs. (2.7-2.10) reduce to the form of ordinary differential

equation. After integrating these equation we get,

ne(ﬁ - ue) = 5 (2.13&)
ni(f—u;) =05 (2.13b)
'76(1 - Bue) - (b =1 (2.13C)
V(1 — Bu) + ga =1 (2.13d)

Now elemintaing n, and n; from Egs. (2.13a)-(2.13b), poisson equation becomes:

/A B %3
¢_ﬁ—u€_ﬁ—ui (2.14)

Here, prime(/) denotes the derivative with respect to . For circularly polarized
vecotr potential A = [a(€)/2][{g + i2}exp(—ilt) + c.c.]. Further, writing a(€) =

Rexp(if) , the wave equation Eq. (2.10) becomes

i R 2 M? 1 ﬁ 1_/3ue 5 1_%3Ui o
g KA _ﬁ)l—ﬁfﬁ—ue 116 “B-wl-ga]
(2.15)
Where,
W BLER) (Lol of (=B R
‘ (1+¢)2+ B2(1+ R?) '
and
b AU ) = (1= g)[(1=00) = (1= )1+ R,

(1—¢a)’+ (1 + R2a?)
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Here, M = R?[(1 — 3?)0' — A§] is a constant of integration and R* = A2 4 AZ.
In the next sections, we present the exact nonlinear solutions obtained by solving

the set of Egs. (2.14-2.15).

2.3 Exact and Analytical Cusp solutions with Ion

dynamical response

The equations mentioned above are defining the coupled electromagnetic field
and the electron-ion plasma response. The exact numerical solution which we
have obtained by solving equation are differentiated as a flat-top, single peak,
high amplitude, paired peak, multipeak, and cusp soliton. These solution are
represented by A, B, C, D, E and F in Fig. (2.1). The description of these soliton
has given below-

(A) At the lower limit of the group velocity 3, a new variety of solitary structures
emerge which has the flat profile of the scalar and vector potential at the top of the
potential. These soliton named as Flat-top Soliton, represented by solid magenta
diamonds in the center subplot of the figure. (2.1).

(B) These solutions have a single peak in both vector R and scalar ¢ potentials. In
Fig. (2.1), these structures are represented by solid line with blue square. It shows
that the single peak soliton exists below a critical value of group velocity 8 = f..
For a given value of 3, the amplitude of the soliton increases upon decreasing the
value of A. It has been observed by Saxena et al [55] that the single peak soliton
are very stable and robust.

(C) The second branch of the solutions for both single as well as multiple peak

structure named as high amplitude soliton. All these structures lies in the second
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branch, has higher amplitude of the vector potential for the given values of the
group velocity /3.

(D) Another variety of solutions depicted in figure(2.1) by brown dots with the line
has been termed as Paired structures. In this soliton, two single peak solutions get
coupled with opposite polarity of the vector potential. These solitary structures
are also found to be stable and robust similar to the single peak soliton.

(E) Three different colors of crosses(black, pink and green), represent a new variety
of soliton which is known as the multipeak soliton. These three branches are
categorized on the basis of the vector potential peaks which get trapped inside
the scalar potential. Here, the black crosses represent the 3 peak trapping of
the vector potential whereas the pink represent the 5peak trapping of the vector
potential inside the electron density cavity. Detailed study of these soliton has
been done by Saxena et al [56]. They have mentioned in his paper [56] that these
solitary structures get destabilized during the evolution due to the Raman forward
scattering instability.

(F) The new additional variety of solutions which occurs after the incorporation
of ion dynamical response is called as "cusp soliton". This soliton emerges at the
ion wave breaking point, i.e. where the ion velocity reaches the group speed of the
structure. In the figure (2.1), they are represented by red solid circular dots at the

end of branch of the multipeak soliton
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Figure 2.1: A\-f spectrum indicating the existence region for possible soliton solu-
tions in movable ion case viz. the flat-top solutions, single peak solutions, single
peak solutions with higher amplitudes, paired solutions, multi peak and cusp so-
lutions tagged with "A’, 'B’, ’C’’D’, 'K’ and 'F’ respectively. The profile of vector
potential R (black dashed line), scalar potential ¢ (blue solid line) plotted along
right y-axis and electron density n. (green solid line) and ion density n; (red dashed
line) is on right y axis respectively.

The single peak, paired peak, and multipeak solution has already been observed
and studied by Poornakala et al. [54] and Saxena et al [55,56] in electron response

case for which the ions are assumed to be infinitely massive. On the other hand
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when ion mass is taken to be finite three additional varieties of soliton appear.
The A — 3 spectrum for ion-electron is presented in Fig. (2.1). The analytical and
numerical description of the flat-top solution has done by Sita et al [58]. They have
shown that the flat-top soliton solution get destabilize due to Brillouin scattering.
However, for the cusp solitons, the ion density approaches infinity at the center of
the soliton. Thence, a scalar potential develops a cusp structure. In this chapter,
we have presented the brief description of the cusp soliton solution. Their location
in the A vs. § plane has been shown with the red circular dots at the end point of
each curve. The form of the cusp structures for each of the circular dots in the A
vs. [ plane differ by the number of extremes of the vector potential. For instance
the cusp solution plotted in Fig. (2.1), mentioned by (F) consist of four extrema

in vector potential and occurs at A = 0.3402846592 and 3 = 0.9.

A form of the cusp in scalar potential can be obtained by an approximate
analytical treatment. In the central region, electron density is taken to be minimal
~ /(14 p) for a soliton propagating with a speed of 5. This is the minimum value
of the electron density in a moving frame. The ion density is finite and assumed
to have a spatial dependence. Thus the Poisson equation in the central region of
the soliton reduces to:

BB
_6‘1‘1 ,B—UZ'

" =n.—ny (2.18)

Also using the integrated longitudinal component of ion momentum equation viz.,
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7i(1 = Bu;) + ¢ = 1 we have,

=1—a¢ (2.19)

We have ignored o> R? in the expression for the relativistic factor for ions (o =

me/m;, being small). Eq. (2.19) can further be solved for u; as

3 32 1—?
N Wb’? O (52 - @Zﬂ) (220)

Here v» = 1 — a¢. The Poisson equation then can be written as

vo_ __ 8 B8+ )
a Bl B2+ 42 —1) + /B2 —1

We integrate the equation once with respect to € to obtain

_¢//:

(2.21)

E B BB =B+
5__5-1-1—’_ 2 _1 + G (2.22)

Here (] is the constant of integration. Since the above equation is applicable
only in the central region of electron cavitation, the constant C; can be obtained,
provided one knows the value of 1) and v at a point within this cavitation region.
We assume that ) = 1y and ¢ = £/ at the exact central location (say £ = 0)
of the structure. These solutions have a peak in ion density at & = 0 point.
This occurs when the ion velocity matches the group velocity of the structure /3.
This condition defines the ion wave breaking point, and when this happens the
structures takes the shape of a cusp. At this breaking point, since u; = 5 at £ =0

the value of 1y and C; are evaluated in terms of 5 and can be written as
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Yo = V1I-3

so at centre,

o = W S

6+1
W, B
20 /1 — B2

Since the ion density blows up at the point £ = 0, ¢” behaves like a delta function.

)\/1——@—0)

Thus ¢ and hence 1)’ are discontinuous. The structure, however, being symmetric
around & = 0, the values of both ¢’ and ¢’ are unique and finite at this point.
Using the expression for C in equation (2.22) we obtain

v Y \/62+¢2 + B

= 5

20 B+1 B - T V1=p
2
- %#(\/w—%—(w—wwﬁ (2:23)

Integrating the above equation we have

dyp 2a3

/JW (v =) + (1 = B) /205 R

(2.24)

28



Chapter 2. Study of Electromagnetic Cusp Solitons

Yo (1 —p5%) Vs
N T ) (i)

v (1-62)
11} + 2a3

2
\/\/wz E+po+ “éif )y

1 2
(Yo + wé—’a—gﬁ)gﬂ

| 205

Here (y is the second constant of integration. After calculating the value of Co

Y2 tanh™!

+

(2.25)

near the central region of electron cavitation, the scalar potential (¢) is obtained.
Fig. (2.2) represent the excellent agreement of the scalar potential (¢) obtained
from the above expression with the scalar potential of the structure obtained nu-

merically.
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Figure 2.2: Analytic (solid line) and exact (dashed line) cusp solutions for ¢ field
with electrons and ions both considered as dynamical species. The parameters A
and  have been choosen as 0.4570000953 and 0.8 respectively for present case.

2.4 Dynamical Evolution of Cusp Solution and its

instability

In the above section of this chapter, we have shown the analytical form of the
scalar potential which we have obtained by solving equation under the condition of
ions approaching wave breaking criteria at the center. We have also shown that our
analytical expression compares well for the given set of parameters which we have
obtained from exact numerical solution. In the current section, we are going to
present the numerical simulation technique used to evolve the exact cusp structure

and also presented the results obtained by its dynamical evolution.
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2.4.1 Numerical simulation

The set of equations (2.7-2.12) is numerically solved to study the time-dependent
problem for the propagation of an intense electromagnetic radiation in a cold
plasma for the electron-ion response. These equations are evolved using the Flux-
Corrected Transport (FCT) algorithm developed by Boris et al [75]. LCPFCT
(Laboratory of Computational Physics, Flux Corrected Transport) is a freely avail-
able suite of the subroutines which written in Fortran. This is a standard package
whose stability properties has already been established in a variety of contexts by
many users [76-79]. Here, we have solved these equations by using periodic bound-
ary conditions along the x-direction. The wave equation (2.12) is a second order
equation which is first decomposed in terms of four coupled convective equations.
These convective coupled equations evolved by using lepfct subroutine from the
package. On the other hand, the momentum equations have been evolved by using
cnvfet subroutine. The Poisson equation is solved using tridiag method. Here, we
have used the numerical solutions of the cusp structure for initialization of fields

in our simulation to study its dynamical evolution.

2.4.2 Evolution of Cusp Solution and instability

Fig. (2.3) shows the evolution of field variables R and ¢ which have been plotted at
four different times ¢ = 0, 20,40 and ¢ = 60. here ¢ is normalized with the plasma
period (w,."). In the Fig. (2.3) the cusp solutions corresponds to f = 0.42 and
A = 0.6289599. The density evolution for electron and ion has also been presented

in Fig. (2.4) for the same set of 5 and A\ parameter as shown in Fig. (2.3). Due to

lighter mass, electrons expel out from the center region of the laser pulse. However,
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ion density is maximum at the center and forms cusp in ion density.
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Figure 2.3: Evolution of vector potential (R) and scalar potential (¢) in left and
right columns respectively at different times t=0, 20, 40, 60 electron plasma periods

(wljel). The parameters have been choosen as § = 0.42 and A\ = 0.6289599.

We have plotted the perturbed vector potential for the solutions in Fig. (2.5).

This has been generated by taking a difference between numerically observed profile

at times ¢ = 20 and ¢ = 60 electron plasma periods with the exact numerically

obtained solution displaced with group speed /3 in space. The perturbed amplitude

of R is observed to start from the front edge of the structure in few plasma period
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Figure 2.4: Evolution of electron density n.(blue solid line) and ion density n;(red
solid line) with 5 = 0.42 and A = 0.6289599 at four different times t=0, 20, 40, 60

electron plasma periods (w,').

and grows towards the trailing edge from where it is emitted outside the structure.
As from the earlier work [58,80], we know that, whenever electromagnetic light
interacts with the plasma, either it decays in two purely electrostatic modes or one
electromagnetic and one electrostatic mode. On the basis of the decomposition of
the laser pulse, different kinds of instabilities come into the picture. If both the
modes are electrostatic, then they get finally absorbed in the plasma and leading
to the absorption of the light pulse. Secondly, if one mode is electrostatic and
another is electromagnetic in nature, then it can escape from the plasma. In all
these cases the phase matching condition can be represented by wr = wy + we.

Where wy,, w1, and wy represent the frequency of a laser light, frequency of mode-
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1, and the frequency of mode-2 respectively. One of the basic phenomena in laser
plasma interaction is known as Raman scattering. In this interaction the incident
light of frequency (wp) decay into the scattered light of frequency (wy + wy,) and a
plasma wave of frequency (w,). This scattered light gets coupled with the incident
light for exciting the plasma wave. It modulates the plasma density. This plasma
density modulation again causes the modulation of the incident laser pulse. It
results in the form of further scattering and produces an instability as presented

in the schematic diagram (2.5).

Plasma wave
Force ~ V(E.E,) &n E,

K Scattered wave

Es

Figure 2.5: Parametric instability feedback loop.

In this section, we compare the numerically estimated growth rates of the in-
stability with the theoretically known growth rates for the forward and backward
stimulated Raman scattering. The analytical expression for growth rate [80-82| of

the relativistic Forward Raman scattering instability is

I "
rfs 2\/5&](1_’_%(2))
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The backward Raman scattering instability growth rate for relativistic condition
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Figure 2.6: Evolution of Vector potential (R) at (a) 20 electron plasma period (w,,')
and (b) 60 electron plasma period (w,."). Ro(black solid line) is vector potential at
t=0, R(red dashed line) is vector potential after time t evolution and R,.,,(green
dotted-dashed line) is the perturb vector potential for 3 = 0.42 and A = 0.6289599.

Here, w is the electromagnetic wave frequency, Ag is the maximum amplitude

of the vector potential and I' is the growth rate.

Table 2.1, gives the comparison of numerically obtained growth rates with ana-
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Figure 2.7: Growth rate(blue diamonds) comparison with simulation growth
rate(pink stars) for (a) backward Raman instability and (b) forward Raman insta-
bility.

lytically estimated growth rates for both forward and backward Raman scattering.
This growth rates calculated for four cusp solution which differed from each other
by group speed, frequency parameters A\ and A,,,, peak amplitude of the vector
potential. From these values there are two very important things to be noticed-
(1) The threshold value of electron density is larger than the minimum density of
the electron in the cavity of the solitary structure, ng, > nepin. (2) Growth rate
values obtained from simulation is very closed to the growth rate calculated from
the analytical expression given for the forward Raman scattering as compared to

the backward Raman scattering growth rate values and this is also clear from the

Fig. (2.7).
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Table 2.1: Numerically observed growth rates comparison with analytically estimated growth
rates.

B A w Ap Uemax o Nemin Nth Lyrs Ffrs

Fsim

0.420 0.628959900 0.7636715 8.604 0.321 8.899 0.6249 1.33 0.304 0.104

0.652  0.544000000  0.946258 13.57 0.604 24.04 0.3952 3.82 0.282 0.054

0.800 0.4570000953 1.269444 17.19 0.765 39.03 0.5238 10.77 0.287 0.032

0.900 0.3402846592 1.7909718 20.57 0.868 54.72 0.5356 14.75 0.304 0.019

0.109

0.060

0.012

0.007

2.5 Summary

To summarize, this chapter deals with the consolidation of soliton solutions
when the ions are dynamical. This results in new variety of solutions which have no
counterpart in the immobile ion case. The possibility of ion density hitting the wave
breaking amplitude is a new feature. The longitudinal velocity of ions maximize at
the center of the soliton. When this velocity becomes equal to the group velocity
of the structure, the ion density profile becomes singular. There are no solutions
possible beyond this value of the group velocity, . However, solutions which
are poised at the wave breaking point acquire interesting form. The singular ion
density produces a cusp in the scalar potential. We have provided an approximate
analytical description of the cusp electromagnetic envelope solitons which form
at the ion wave breaking limit. The analytical form of the solution is shown to
match the exact numerical form of the structure. The time evolution studies have

also been carried out which show that these structures survive for several plasma
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periods. However, they ultimately break away due to forward Raman scattering

process.
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The stability of 1-D soliton in transverse

direction

In this chapter we study the development of transverse structure in the coupled
1-D laser plasma solutions by carrying out 2-D numerical simulations. We have
restricted here to the study of solitonic structures which form in the presence of
electron response only. It is observed that all the solutions are unstable to the
development of transverse filamentation instability. This includes the single and
paired structures which have been shown to be robust and stable in 1-D simulations

in earlier studies [55].

3.1 Introduction

Out of all the 1-D coupled laser plasma structures, the single peak and the paired
peak structures are found to be stable and long-lived in one-dimensional evolution.

Solutions having multiple peaks of the vector potential are unstable due to Raman
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forward scattering instability [56]. In this chapter, we have shown with the help
of 2-D fluid simulation that the single peak and the paired peak soliton get desta-
bilized by the transverse filamentation instability. The numerical growth rates
obtained from simulation is found to match well with the analytical values. We
have also observed that the multiple peak soliton first undergo the regular forward
Raman scattering instability. Subsequently, they develop transverse structure and
destabilize through transverse filamentation instability. This is evident from the
plot of the perturbed energy in which first growth rate matches with the analyt-
ical estimates of the Raman forward scattering instability. The second growth in
perturbed energy which comes at the later stage is found to compare well with the
analytical estimates of the transverse filamentation instability.

This chapter has been organized as follows. Section (3.2) covers the brief de-
scription the fluid simulation. Section (3.3) discusses the numerical results on the
observed transverse filamentation instability of the structures. In section (3.4), we
provide a comparison of the numerically evaluated growth rates with the analytical
estimates obtained for the filamentation instability of the structures. Section (3.5)
discusses the nonlinear stage of the instability. Section (3.6) presents the summary

and discussions.

3.2 Fluid simulation on 2-D study of electromag-

netic solitons

The equations (2.1-2.6 ), form the complete set of equations to study the prop-
agation of an intense electromagnetic radiation in a cold plasma for electron re-

sponse, & = 0. Now to incorporate the variation along the transverse direction
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y, we would have V = (a—i,a%,()) in the set of equations (2.1-2.6 ) of chapter
(2). This particular set of the equations is employed to study the evolution of the
well-known 1-D laser plasma soliton solutions for the two-dimensional case. The
simulation box is chosen to be in the z — y plane. A 2-D fluid code based on
flux-corrected transport scheme of Boris et al. [75]. It has been developed using
the LCPFCT suite of subroutines to solve the evolution equations. The basic prin-
ciple of LCPFCT scheme is based on the generalization of two-step Lax-Wendroff
method [83]. We have solved the equations (2.1-2.6) in “z — y” plane with periodic
boundary conditions using this method. The one-dimensional LCPFCT routines
have been used repetitively to construct a 2-D solver by time step splitting into
the different (z and y) directions. At every time step, it is checked that the re-
sults satisfy equations (2.5) and (2.6). The 1-D solitons have been chosen to have
a spatial structure dependent on the = coordinate which is also the direction of
their propagation. Thus initially the structures have no y dependence. The ex-
act analytical form of the localized solutions of the above set of equations in the
limit of small amplitude is known [39]. The analytical form of stationary solutions
with arbitrary amplitude has also been obtained by Esirkepov et al. |52] for the
one-dimensional case which can be employed as an initial condition to study their
propagation. For arbitrary amplitude propagating structures, we obtain the form
numerically by solving the nonlinear eigenvalue problem. These are then employed
for initialization of fields in our simulation to study the evolution of structures in

a 2-D spatial domain.
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3.3 Numerical observations of transverse instabil-
ity

We choose to study the evolution of all the three classes (namely: single peak,

paired and multiple peak structures) of 1-D solitonic structures found in the context

of coupled light plasma system. Many solutions with different values of the light

frequency A and the group velocity 3 were studied.

3.3.1 Single peak structures

Saxena et al. [55] has examined the stability of one-dimensional solitons and
found that the single peak solutions exist in a continuum band in the parameter
space of 5 and .

It has been observed that single peak solutions are stable and robust in one
dimension. For a specific choice of a solution with A = 0.93 and 5 = 0.05, the
stability in 1-D simulations has been illustrated in Fig. (3.1) which shows the
snapshots at various times (t —0, 200, 440 and 520) of the light field amplitude R,
electrostatic potential ¢ and electron density n profiles. Here, the field R is defined
as R = (A24A2)'/? where A, and A, are the § and the Z components of the vector
potential respectively. It should be noted that for the solitonic structures chosen
in the simulations, the light wave is all circularly polarized. Consequently, A, and
A, initially have a phase difference of w/2. The profile of the various fields at
different times in Fig. (3.1) clearly shows that there is no change/distortion in the
structures in a 1-D simulation.

The structures merely get translated by the group speed of g = 0.05 from their

original location in these 1-D simulations. The same structure in a 2-D simulation,
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Figure 3.1: 1-D plot of a vector potential R, scalar potential (¢) and electron
density (n) of a single peak soliton moving with group velocity 5=0.05 and A=0.93

at different times.

however, breaks up in the transverse direction as is evident from Fig. (3.2), where

the profile of R and n have been shown at various times. The observed transverse

structures have a typical scale length of the order of a few skin depths ¢/w,.. The
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Figure 3.2: A surface plot of vector potential (R) and corresponding profile of
electron density (n) shown in “x — y” plane at z = —2 for single peak soliton
moving with group velocity 5=0.05 and A=0.93 at different times.

transverse filamentation of the structure can be understood by realizing that a
small initial variation in transverse direction expels the electrons from the high-
intensity region by ponderomotive force, thereby changing the refractive index.
The change in the refractive index is such as to accentuate the modulation thus

triggering the instability.

In Fig. (3.3) the evolution of perturbed field energy (F'E,.;) has been plotted
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Figure 3.3: Plot of a perturbed field energy vs. time for a single peak soliton
moving with group velocity 5=0.05 and A=0.93.

for this simulation. The expression for the perturbed field energy is given as-

1 - -
F&mzé//WﬂiﬂM@

Here E = E(z,y,t) — Eo(z + Bt,y) and B = B(z,y,t) — Bo(x + L, y). Where the
suffix 0 stands for the chosen soliton solution. The Fig. (3.3) shows a linear rapid
rise in the perturbed energy which ultimately saturates in the nonlinear regime.
The growth rate estimated from the slope of this curve is 0.0431. The growth
rate has been obtained from the simulation studies of various single peak solutions

having different values of A and 3. This has been summarized in Table -3.1.
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3.3.2 Paired solitonic structures
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Figure 3.4: 1-D plot of a vector potential R, scalar potential (¢) and electron den-
sity (n) of a paired peak soliton moving with group velocity 5=0.2 and A=0.938455

at different times.

The paired structures are also observed to be stable in 1-D simulations as repre-

sented in Fig. (3.4). We have also examined their stability in the 2-D context with

the help of numerical simulations. In Fig. (3.5) we show the profile of 2 and n for a

specific paired solutions with a value of f = 0.2 and A = 0.938455. These solutions

also show a development of transverse modulations with time. In Fig. (3.6) the
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Figure 3.5: A surface plot of vector potential (R) and corresponding profile of
electron density (n) shown in “xz — y” plane at z = —2 for paired peak soliton
moving with group velocity 5=0.2 and A=0.938455 at different times.

plot of perturbed field energy has been displayed. The perturbed energy grows till
{ = 100 and ultimately shows saturation. The numerical growth rate for various

paired structures has been summarized in Table 3.2.
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Figure 3.6: Plot of a perturbed field energy vs. time for a paired peak soliton
moving with group velocity 5=0.2 and A=0.938455

3.3.3 Multiple peak structures

The evolution of multiple peak solutions have been shown in Fig. (3.8) for A =
0.714457 and § = 0.5. Unlike the single and paired solutions the multiple peak
solutions, in fact, are seen to destabilize in the longitudinal direction of propagation
in the beginning (like the 1-D evolution shown in Fig. (3.7). This is later followed
up with transverse modulations. The distinctive nature of the two destabilization

process is captured very clearly in the plot of perturbed field energy evolution
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Figure 3.7: 1-D plot of a vector potential R, scalar potential (¢) and electron den-
sity (n) of a multi peak soliton moving with group velocity 5—0.5 and \—0.714457
at different times.

shown in Fig. (3.9).

It can be seen that there is a rapid growth of energy till ¢ = 17, followed
by a saturated regime. Around ¢ = 62 another rise in energy can be clearly
seen. For comparison, the plot of perturbed field energy for the 1-D simulations
have been shown alongside. The curve corresponding to 1-D shows merely one
initial stage of increase. The second phase of an increase can, therefore, be clearly

attributed to the 2-D effects. It is also evident from the nature of profiles at the
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Figure 3.8: A surface plot of vector potential (R) and corresponding profile of
electron density (n) shown in “z — y” plane at z = —2 for multi peak soliton
moving with group velocity 5=0.5 and A=0.714457 at different times.

time corresponding to these two phases. The second step is the new instability
similar to what the single and paired structures undergo. In Table-3 we provide a

summary of our studies carried out for various multipeak solutions.
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Figure 3.9: Plot of a perturbed field energy vs. time for a multiple peak soliton
moving with group velocity 5=0.5 and A=0.714457.

3.4 Comparison of analytical and numerical growth

rates

The numerical results clearly demonstrate the presence of an instability in the
transverse direction for the single peak and the paired peak structures. For the
multiple peak solutions, the forward Raman scattering instability appears first.

The transverse filamentation instability then follows it. These instabilities have
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been extensively studied by several authors [63-68,80-82,84-90]. The analytical
expression of the growth rates for the the filamentation/modulational instability
and the forward Raman scattering (FRS) instability for the light wave is given by

the following expressions respectively [68]:

1 A2
mi = 5 g 3.1
1 4
[y = —— 3.2
f \/gw ~2 (3.2)

These expressions have been obtained for a short laser pulse (A9 ~ 1). Here,
w is the frequency of the light wave with the maximum amplitude of the vector

potential as Ag and 7 represents the relativistic factor associated with electrons.

3 A W Ao w Lana Lsim

0.05 0.93 0.9323 0.8412 56.5 0.0425 0.0431
0.07 0.95 0.9547 0.6728 66.1 0.0339 0.0315
0.1 0.967 0.9768 0.4985 83.2 0.0228 0.0230
0.15 0.96 0.9821 0.5074 81.5 0.0232 0.0235
0.2 0.975 1.0156 0.1996 1779 0.0046 0.0468
0.3 0.95 1.0440 0.1829 186.8 0.0038 0.0491
0.4 0.91 1.0833 0.2415 141.0 0.0062 0.0163
0.5 0.858 1.1533 0.2769 101.1 0.01 0.0108
0.6 0.797 1.2453 0.1744 163.3.5  0.0029 0.0181
0.8 0.599 1.6639 0.1158 175.1 0.00098  0.0261

Table 3.1: Comparison of numerical and analytical filamentation growth rates for single peak
solitary solutions.

In Table - 3.1, Table -3.2 and Table - 3.3, the analytical estimate of the growth

rate for modulational instability has been provided by the equation (3.1). It can be

52



Chapter 3. The stability of 1-D soliton in transverse direction

S A w Ao w Lana Lsim
0.05 0.91 0.9123 0.9932 137.8 0.0483 0.0431
0.1 0.93047 0.9399 0.8108 114.1 0.0410 0.048
0.2 0.92594 0.9645 0.7345 96.4 0.0366 0.0385
0.3 0.907123 0.9968 0.6896 86.1 0.0333 0.1
0.4 0.89100914  1.0607 0.4974 129.7 0.0209 0.0850
0.5 0.85014 1.1335 0.3966 140.9 0.0139 0.0559
0.6 0.794 1.2406 0.2476 162.3 0.0056 0.06
0.7 0.708993 1.3902 0.2435 187.9 0.0049 0.0768

Table 3.2: Comparison of numerical and analytical filamentation growth rates for paired peak
solutions.

observed that the analytically estimated growth rate matches fairly well with the
numerically evaluated growth rate of the instability for all the three variety of the
structures having smaller width (w) for various values of parameters 3 and A. This
confirms that the observed instability is the transverse modulational /filamentation
instability. In Fig. (3.11) we plot the analytically estimated and numerically evalu-
ated growth rates as a function of the width (w) of solitonic structures for all three
kinds of solitons. It can be observed that there is a close agreement between ana-
lytical and numerical results when the structure is narrow. The difference between
analytical and numerical values increase with increasing width of the structure.
This is reasonable as the analytical expressions for the growth rate I' in equa-
tion (3.1) is valid only for short laser pulse envelope. Ina previous study Saxena
et al. |56] has already made the comparison of numerical and analytical growth
rate for forward Raman scattering instability for the multiple peak solutions for

1-D simulations. The growth rate for the FRS instability obtained from our 2-
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3 A w Ag w Lanay;: Lsimpg Ditsana  Drgsgim
0.1 0.61440192 0.6206 7.305 34.3 0.0268 0.0364 0.0564 0.0620
0.2 0.6640659 0.6917 5.519 35.9 0.0312 0.0238 0.0673 0.0605
0.3 0.699742  0.7689 4.257 33.2 0.0352 0.024 0.0880 0.0732
0.4 0.718307 0.8553 3.338 36.7 0.0385 0.0204 0.1176 0.0907
0.5 0.714457  0.9526 2.707 34.6 0.04 0.03 0.1174 0.16
0.6 0.688022  1.0750 2.204 38.9 0.0398 0.0123 0.1317 0.0215
0.7 0.6371499 1.2493 1.77 38.1 0.0373 0.0039 0.1407 0.0768
0.8 0.554374  1.5399 1.371 32.5 0.03 0.0117 0.1338 0.082

Table 3.3: Comparison of numerical and analytical filamentation and raman forward scattering
growth rates for multi peak solitary solutions.

D simulations provides similar estimates. We have also made a comparison of
the growth rate for FRS and the transverse filamentation/modulational instability
and observe that the FRS growth rate is comparatively higher. It is for this reason
that the multiple peak solutions are first unstable to FRS and after that, the 2-D

filamentation instability appears.

3.5 Nonlinear development of the instability

It is clear from our simulation and analysis that the stable solitonic structures
of 1-D are susceptible to filamentation instability in the transverse direction. For
the single peak and the paired peak structures, the filamentation instability leads
to the formation of the structures in the transverse direction which are typical of
the order of skin depth. However, these structures, subsequently, in the nonlinear
phase of the instability coalesce and form bigger structures (e.g. Fig. (3.10) ). This

phenomenon appears similar to the process of an inverse cascade that is observed
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Figure 3.10: Surface plot of vector potential R for single peak soliton moving with
group velocity f=0.05 and A=0.93 at different times.

typically in the 2-D fluid systems. It should, however, be noted that the multiple
peak solutions which suffer first the forward Raman instability and subsequently
disintegrates along the transverse direction do not seem to display the long scale
coalescence in the nonlinear regime. The fields typically in this case remain at

short scales and are fairly random in nature.
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Figure 3.11: Analytical and simulation growth rate plot vs width (w) of the soli-
tonic structures for (A)Single peak soliton (B) Paired soliton and (C) Multipeak
soliton.

3.6 Summary

The coupled light plasma system permits various kinds of localized solutions. In
particular, for the case when the ion dynamical response can be ignored ( treat-
ing ions merely as merely a neutralizing stationary background) three varieties of
solitary structures have been shown to exist. They correspond to the single peak,
paired and multiple peak structures of the light wave amplitude. The multiple peak

solutions have been shown to be unstable to forward Raman scattering instability
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in previous 1-D simulations [56]. The other two, single and paired structures, how-
ever, were found to be stable in the 1-D runs. We have shown here with the help
of 2-D simulations that these two structures are unstable when 1-D restrictions
are removed to permit 2-D perturbations. The resulting instability was identified
as the transverse filamentation instability by comparing the numerically observed
growth rate with the analytical expression for the growth rate of filamentation
instability of short pulses. The multiple peak solutions in 2-D first undergo the
forward Raman instability process. Subsequently, they destabilize in the trans-
verse direction through the filamentation instability. The growth rate of both the
instability can be identified clearly from the slope of the perturbed energy. In the
nonlinear regime, the transverse structures of the single and paired solutions show
the phenomena of merging and form longer scales solutions, akin to the inverse
cascade process. However, the multiple peak structures which suffer disintegration
both in longitudinal and transverse directions by two consecutive instabilities, in

the nonlinear regime continue to have short random scale field structure.
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Observation of time-dependent 1-D
localized structures in laser plasma

system with fluid simulations

In this chapter, we report the observation of a variety of time dependent local-
ized structures in the coupled laser plasma system through 1-D fluid simulations.
Such structures are seen to survive as coherent entities for a long time up to
several hundreds of plasma periods. A detailed study to understand the context
of their formation and their dynamical characteristic have been carried out. It is
observed that typically these structures form as a result of collision amongst cer-
tain exact solutions. The other variety constitutes of emitted remnants of unstable
exact 1-D solutions which exhibit time dependence in their shape while remain-
ing robust and preserving their identity. It is shown that such time dependence
can also be artificially recreated by significantly disturbing the delicate balance

between the radiation and the density fields required for the exact solution. The
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ensuing time evolution is an interesting interplay of plasma oscillation (associated
with electron density) and oscillations of the electromagnetic fields. However, the
plasma oscillations are invariably found to acquire high amplitude ultimately and
undergo wave breaking process with a consequent drop in total energy shown in
fluid simulations. Even after wave breaking, compact coherent structures with
trapped radiation inside high-density peaks, continue to exist. Since fluid simu-
lations cannot be trusted beyond the wave breaking point, we have in the next

chapter carried Particle - In - Cell simulations.

4.1 Introduction

As mentioned in the chapter (2) and (3), the coherent structures are important
in many ways. For instance, they can be used as a means for transporting energy
in plasma medium [91]. They can also be utilized for particle and photon accel-
eration purposes [41]. However, the precarious spatial balance of electrostatic and
electromagnetic fields required for their formation can be difficult to satisfy in a
realistic situation. It is shown in this chapter that there also exist time-dependent
localized structures which do not require any such delicate balance between the
various fields. The structures though time dependent, survive as a single entity
for a very long duration e.g. for several hundreds of plasma periods. The energy
leakage is minimal. We feel that such versatile long-lived structures are also well
suited for many applications including the transport of energy. The context of
the formation of such time-dependent structures, the behavior they exhibit during
evolution etc., has been examined in considerable detail using fluid simulation in

this chapter (4).
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This chapter has been organized as follows. The next section (4.2) contains a
description of the numerical simulation technique used to study time-dependent
localized structures in LP (laser plasma) systems. In section (4.3), we provide a
description of certain spontaneously formed time-dependent structures. For in-
stance, in the collisional interaction between high but unequal amplitude single
peak structures, the remnant structure displays interesting oscillatory behavior.
These remnants are observed to invariably have a high amplitude (exceeding the
upper limit of radiation for static single peak solutions [52]) static oscillating pro-
file. In some previous time, evolution studies of the multiple peak solutions of the
laser plasma coupled system are found to be unstable to forward Raman scattering
instability. As a result of this instability, they eject radiation and density bunches
from their wake which are found to be very robust and survive as a coherent en-
tity even though their profile changes with time. In section (4.4), we recreate the
nature of time dependence observed in these spontaneously formed structures by
deliberately disturbing the delicate balance between the radiation and the electron
density profile of exact solutions. Despite the significant disturbance, the structure
does not disintegrate but exhibits similar traits of time dependence as observed in
section (4.3) for spontaneously formed structures. A detailed study of these sys-
tem shows that the energy alternates between field and kinetic forms. The excess
radiation introduced in the system tries to leak out of the structure and in the
process excites electron density oscillations. These typically represent excitation
of plasma wave in an inhomogeneous medium which subsequently acquires large
amplitudes forming density peaks and undergoes wave breaking. The radiation
gets entrained inside two density peaks forming coherent entities with compact

support. These structures are found to retain their identity in fluid simulations for
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a long time. However, keeping in view the reservations on fluid simulations beyond
wave breaking time, PIC studies have also been performed and are presented in
the next chapter (5). The PIC study confirms the fluid simulation observations
even beyond the wave breaking phenomena. This shows that the structures with
entrained radiation inside two density peaks hovering around the wave breaking

limit are realistic. Section (4.5) contains the summary and discussion.

4.2 Numerical simulation technique

In this section, we study the properties of those structures which get ejected
from an unstable 1-D solitons and/or are remnant of various interactions amidst
the exact solutions by solving equations (2.1-2.6) by considering the case of a
laser pulse which is propagating along the x-direction inside a plasma. We have
purposefully also disturbed the precarious balance between the various fields that

the exact solutions have to satisfy and studied their evolution.

Various diagnostics such as the energies associated with field (FE) and kinetic
(KE) along with total energy (TE) of the plasma has been tracked in time. These

energies are evaluated numerically by the following expressions:

FE() = 3 SIB ) + Bi1)Ax,

3

KE(t) = Z%(t) [it) — 1]Az;
TE(t) = KE(t)+ FE(t)
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where i = 1,2,3,...N, and N, is the number of spatial grid points having a width
of Ax;. E;i(t), Bi(t), ni(t) and ~;(t) are the values of electric field, magnetic field,
electron density and relativistic factor respectively at the :—th grid point at time

t.

4.3 Evolution of spontaneously formed structures
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Figure 4.1: Vector potential (R) and density (n) for moving soliton at group ve-
locity (5=0.4) for multi peak soliton.
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In some previous studies [55,56], it was observed that the unstable multipeak
solitons emit certain structures from their rear edge as they evolve. These emitted
structures have peaked densities within which radiation is trapped. In Fig. (4.1)
such a destabilization process has been shown. An ejected structure (identified
by the green dashed lines in Fig. (4.1D)) of radiation trapped between two ad-
jacent density peaks have been chosen to study for its time evolution separately
and observed that the structure propagates in a backward direction to the original
solution from which it has been emitted. It also changes its shape with time. How-
ever, it retains its coherent identity during the entire course of evolution studied

in the present simulation.
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Figure 4.2: Vector potential (R) profile at different time -0, 12, 24, 30.

The snapshots of R = /A2 + A at different times showing various phases of

evolution has been depicted in Fig. (4.2). It is clear that the structure takes a
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series of different shapes as it propagates. Some energy also keeps getting leaked
from the structures. The density peaks at the two edge show interesting out of
phase oscillations wherein as the amplitude of the density peak at the front of the
structure diminish, the peak at the back of the structure increases and vice versa.
a closer look shows that as the density at the back of the structure increases,
it pushes the radiation towards the front. This introduces a disturbance in the
profile of R which seems to propagate from the back of the structure towards the
front. The structure seems to show many complex dynamical processes that work
simultaneously e.g. propagation, shape evolution, energy leak, electron density
oscillations etc. However, amidst all these processes the overall integrity of the

structure seems to remain intact for several tens of plasma periods.

65



Chapter 4. Observation of time-dependent 1-D localized structures in laser
plasma system with fluid simulations

y | , 15 ' '
E_— —1=780
@
1 1
o
sl { 05}
0 . 0
0 80 * >
3 ' | S
25 LT -
................ t=1000
——1=1330
........ t=2910

85

Figure 4.3: Collision of two single peak of soliton moving at group velocity f =
—0.01 and 8 = 0.05.

Another example of time-dependent robust structures are found is the case
when two high but unequal amplitude oppositely moving exact single peak struc-
tures suffer collision as shown in Fig. (4.3). It is observed that the two structures,

in this case, merge into a large amplitude non-propagating structure. The ampli-
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tude of R in this case, however, exceeds the upper permissible limit of static exact
solutions ( Esirkepov et al., [52]) for which the density is completely evacuated
from the center. The amplitude of this spontancously formed structure shows os-
cillations in time and there is also evidence of the radiation leaking out from it.
However, the overall structure seems to persist for a long time. This raises several
questions- Does the laser plasma system permit a new variety of time-dependent
solutions, where the time dependence is not merely restricted to steady propaga-
tion. There is a need to explore more to understand the complex interplay between
density and radiation fields in more detail and if possible develop a physical under-
standing of it. To gain further understanding, we explore the time dependence in
the context of stable exact solutions in the next section by deliberately disturbing

the delicate balance between the various fields by a known amount.

4.4 Evolution of significantly perturbed stable struc-

tures

We have chosen several exact single peak solutions and enhanced the radia-
tion trapped inside the density cavity significantly. For instance, we considered
enhancing the amplitude of R by a constant factor and have also considered asym-
metrically changing the value of R about the central region of the structure. In
the first case, the trapped radiation pressure is in excess than that required for the
balance. In the second case, at one of the edges the radiation pressure dominates
and at other the electrostatic force dominates. The dynamics for both kinds of
changes introduced in the initial profiles have been investigated thoroughly. Fur-

thermore, we choose to evolve both kinds of solutions (after introducing these
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significant perturbations), namely the static (for which the group velocity 8 = 0)
and propagating (for which the value of 3 is finite). The two subsections below

discuss them in detail.

4.4.1 Evolution of perturbed static structures

In this subsection, we consider the stationary solutions i.e. those with group
velocity, 3 = 0 for our studies. Esirkepov et al. [52] have obtained an exact
analytical form for the stationary solitonic structures. We take the analytical form
of the solution and express it in terms of the initial conditions for electric, magnetic
and velocity fields. These fields are then evolved in our simulations. The initial

density of the electron is chosen to satisfy the analytical form of the solution.
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Figure 4.4: Single peak soliton with group velocity § =0 and Ay = 1.
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The stationary solitary solutions in our simulation was chosen for a value of
Ag = 1; where Ay is the peak value of R of the solution. The frequency of laser
has been derived from, w = %/TA% —2/Ap ~ 0.9102. We have initiated our
simulation and followed the time evolution of this structure. In Fig. (4.4), we show
the plots of the profile of R at various times obtained from the simulation. It can
be observed that the plots even when zoomed in and expanded, fall exactly on
top of each other at various times. All other fields also show no evolution. The
kinetic and field energy associated with the structure show no variations and remain
constant throughout the period of evolution. This is exactly how the stable static
solutions obtained by Esirkepov et al. [52| are expected to behave. This validates

the numerical code and also verifies the correctness of the choice of the initial

condition.
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Figure 4.5: Vector potential (R) for stationary (5 = 0) single peak soliton of
amplitude R = 1.1R0 at different times.
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Figure 4.6: Desnity (n) profile for stationary (3 = 0) single peak soliton of ampli-
tude R = 1.1R0 at different times.

We now take the same solution, keep all the fields identical but enhance the
trapped radiation inside by a multiplicative factor of 1.1. This disturbs the balance
between the electrostatic and ponderomotive forces leading to time dependence.
The question is how the trapped excess radiation readjusts, whether it simply
tries to leak out of the structure to retain its original identity or does it evolve
towards some other coherent localized form or does it simply disintegrate? The
evolving profiles for R and n are shown in Fig. (4.5) and Fig. (4.6) respectively.
Both show regular oscillations. In one of the subplots of Fig. (4.6), we show the
evolution of the peak of both density n and R fields. It should be noted that the
oscillations of the two fields are always out of phase in time. It can be understood

by realizing that the excess radiation trapped inside the structure offers excess
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ponderomotive pressure due to which the electron density is pushed out and starts
getting enhanced at the edge. As the density cavity gets deeper at the center,
the radiation expands and its peak starts dropping down. This explains the out
of phase changes in the oscillations corresponding to radiation and density peaks.
The electron inertia leads to the excitation of plasma oscillations of the density
perturbations that get forced due to excess radiation pressure. These oscillations
are of forced character as the oscillation frequency evaluated from the plot ( time

period T' ~ 6.98) closely corresponds to the frequency of laser w ~ 0.9 for the

solution.
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Figure 4.7: Density peak n,.. oscillation as a function of time ¢.
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Figure 4.8: Kinetic energy (K E), field energy (F'F), total energy (T'E) as a func-

tion of time t for fluid.

From the time evolution of the peak of the radiation field R, it can be ob-

served that it steadily decreases. This happens as a result of steady leakage of

the radiation from the edges (see inset of Fig. (4.5), where the edge portion of

the structure has been zoomed in at ¢t = 40) indicating clearly that the density

profile is unable to confine the excess radiation. The peak of density oscillations,

however, are observed to steadily increase with time. In fact, the density profile is

observed to generate several peaked sharp structures. The excess radiation puts a
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ponderomotive pressure on the electrons and triggers plasma oscillation. The elec-
tron density peaks monotonically increase with time. Around ¢t ~ 216 as shown
in Fig. (4.7), the density acquires a very spiky form. This, in fact, is a signature
of wave breaking phenomena. We have tracked the total energy (TE) evolution in
Fig. (4.8) which is conserved all throughout but shows a very small dip exactly at
t ~ 216, when the density spike is observed to form. Despite changing the grid size
the energy dip typically occurs around the same time. In the next chapter (5), it
is reported that in the PIC simulations too exactly around this time the density
spikes appear. At the wave breaking point in the fluid code, there is a loss of small
amount of energy to the grid. In PIC simulations where the total energy incorpo-
rates the individual particle energy, the energy remains constant but shows up as
particle heating with the width of the distribution increasing. It is interesting to
note that the FE and KE continue to remain out of phase before as well as after
and also during the wave breaking process as can be viewed from the enhanced

inset of the Fig. (4.8)

The radiation profile has also been perturbed asymmetrically about the center
so as to have excess radiation at one of the edge and a reduced value at the other.
The objective being to basically mimic the 'out of phase oscillations’ of the density
peaks observed in the context of structures emitted spontaneously from an unstable
multi-hump solution discussed in section (4.3). Thus one chooses the perturbed

profile as-

R = Ry + Rampsin k(z — )

For a typical width of Ly, of the soliton, k = 27/Ly, was chosen, z, is the
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location of the center of the structure. Furthermore, the perturbation was chosen to
be finite over only one wavelength adjusted within the structure. Thus R, = 0.1
if | # — x |< Lw, otherwise Rgp, = 0. This choice ensures that at one of the
edges radiation pressure dominates whereas at the other edge scalar potential is

the dominating force.
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Figure 4.9: Vector potential (R) for stationary (5 = 0) single peak soliton of

amplitude R = RO + 1.1sin(kx) at different times.

As from Fig. (4.9), one observes that the structures show asymmetric oscilla-
tions with one edge expanding while the other contracts. Basically, the edge where
the radiation pressure exceeds the equilibrium value, the radiation tends to expand
out. At the other edge, where the R is lower than equilibrium value, it is pushed

in. Some amount of radiation is observed again to leak out.
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Figure 4.10: Desnity (n) profile for stationary (5 = 0) single peak soliton of
amplitude R = RO+ 1.1sin(kx) at different times.

The plasma oscillations also get excited and the amplitude of density keeps
growing as can be seen from Fig. (4.10). Ultimately wave breaking occurs at
about ¢ ~ 184 which is tracked by the formation of density spikes (see Fig. (4.11))

and a dip in the value of the total energy which can be seen from Fig. (4.12).
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Figure 4.11: Density peak ny.q oscillation as a function of time ¢ after incorpora-
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Thereafter one again ends up with structures in which radiation trapped be-
tween density peaks survives for a long duration. It should be noted that the
oscillatory phase of structures (in both cases when the trapped radiation is en-
hanced and/or it is asymmetrically perturbed), resembles the structures which
form as an aftermath of a collisional interaction of two unequal high amplitude
solitons discussed in section (4.3). However, subsequent to wave breaking, the
resultant form wherein trapped radiation between sharp density peaks evolves re-
sembles the emitted structures observed during the destabilization process of the

Raman forward instability.

4.4.2 Evolution of perturbed propagating structures

20 60 100 140

Figure 4.13: Vector potential (R) profile of moving single peak soliton with group
velocity (8 = 0.3) with excess perturbation in vector potential of form R = 1.1Ry
at different times.
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Figure 4.14: Density (n) profile of moving single peak soliton with group velocity
(6 = 0.3) with excess perturbation in vector potential of form R = 1.1R, at
different times.

Similar observations are made when the delicate balance between radiation and
the electrostatic field is disturbed for a propagating structure with a group speed
of . We have chosen moving single peak soliton with the parameters (A = 0.94,
3 = 0.3) to illustrate this, where A = w(1 — 3%). This is a stable single peak
propagating structure as shown by Vikrant et al [55]. We perturb this structure
by increasing the amplitude of vector potential with a multiplicative factor so that
R = 1.1Ry. The results are plotted in Fig. (4.13) and (4.14) in terms of vector

potential and density respectively.
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Figure 4.15: Density peak ny.q; oscillation as a function of time ¢ after incorpora-
tion of symmetric perturbation R = 1.1 R0 in vector potential.
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In the case of moving structures, we observe that the excess radiation intro-
duced in perturbation gets emitted from its trailing edge. The finite group velocity
ensures that the emitted radiation gets separated from the original structure which
continues to propagate stably. The emitted structure left behind shows signatures
of formation of peak density perturbations eventually suffering wave breaking (see
Fig. (4.15)) at t = 247 process which shows up in the evolution of energy (See
Fig. (4.16)). On the other hand, the original structures after emission keep propa-
gating ahead. A comparison of the original structure with the perturbed structure
at various times have been shown in Fig. (4.17). While at ¢ = 0, the amplitude
of the perturbed profile of R (shown by the solid brown line) is higher than the

original solution (shown by *) the scenario changes at later times after emission.
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Figure 4.17: The Localized structure get accelerated from 5 = 0.3 to B,e = 0.301,
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For instance, the zoomed in plots comparing original and the evolved structures
at t = 400 and t = 800 show that at these times the amplitude of R is smaller
than the original stable structure. The structure undergoes very little change
between ¢ = 400 to ¢t = 800 and seems to asymptotically approach another stable
solution. a numerical estimate of the group velocity 3 for the new solution has
been made and is seen to be higher than the group speed of the original structure.
It thus appears that a propagating perturbed stable solution after emission seems
to approach another stable form. Basically, a finite propagation speed helps to
get the structure separated from the emitted fields. This insulates the structure
from the disturbances which are left behind in the form of emitted fields and their
evolution. On the other hand, the static structure which is fixed in space continues
to remain the part of the disturbance. The plot of kinetic energy, field energy and
total energy with time is shown in Fig. (4.16). Similar to the non-propagating
structures, here too there is an exchange between kinetic and field energies. The
total energy of the system, however, remains conserved. At ¢t ~ 247 the wave
breaks and the total energy shows a dip and the density profile becomes spiked
(see Fig. (4.15)).
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4.4.2.1 The frequency Spectra
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Figure 4.18: Frequency spectrum for the moving localized structure, 5 = 0.3.

The regular oscillations observed in the field and kinetic energies prompted us

to study their frequency spectra. In Fig. (4.18), we have plotted one such power

spectrum in the frequency domain for the field and kinetic energies of one of

the cases. As expected, the power spectra for field and kinetic energy show a

perfect overlap (yellow dashed line and brown solid line in the color plot of this

figure). The exchange between kinetic and field energies thus decides the entire

dynamical process. The power spectrum shows a zero frequency part along with

two additional peaks. The second peak appears to be at twice the frequency of the

first. We also investigated the division between electrostatic (ES) (line with *) and
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electromagnetic (EM) (line with diamond) parts of the field energies. Interestingly,
the ES and EM spectra show differences. The peak at the higher frequency is at
twice the frequency of the lower one. But the peaks in the spectra of EM and ES
fields are located at different frequencies. The EM peaks occur at light frequency w
and its harmonic at 2w. The presence of these frequencies in EM field energy clearly
shows that the light field in the disturbance does not remain circularly polarized
anymore. The peaks occurring in ES spectra, however, can be identified with the
plasma frequency and its harmonic evaluated from the minimum density n,,;,. The
zero frequency DC part, in this case, has much smaller power compared to the EM
energy. The dynamics thus constitutes of an evolution of clearly identifiable and
distinguishable electrostatic and electromagnetic disturbances. There can also be
some amount of coupling between the ES and EM modes as the spectral peaks in
ES and EM disturbances appear broadened and overlap with each other although

their maxima are clearly distinguishable.

4.5 Summary and Discussion

We report observations of a variety of time-dependent (in addition to mere prop-
agation) localized structures in the 1-D fluid simulations of coupled laser plasma
system. Interesting variations in the shape of the profile of radiation has been
observed. Despite such a time dependence the structures are found to be fairly
robust in a sense that they survive by retaining their identity for several hundred
of plasma periods.

Such time-dependent structures can form either spontaneously or can also be
recreated by disturbing the delicate balance between various fields required in the

context of exact solutions. For instance, the emitted radiation from the wake of
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the unstable multiple peak exact solutions shows interesting shape evolution along
with propagation. The collision amidst two high but different amplitude exact so-
lutions also leads to the formation of a static structure with oscillating amplitudes.
When deliberately excess radiation is introduced in a structure, tries to shed it by
triggering electromagnetic and electrostatic oscillations in the medium. Propagat-
ing structures often shed the excess part and move away evolving into other stable
structures. The static structures, on the other hand, remain embroiled with the en-
suing evolution of the disturbances which is constituted of very regular oscillations
in R and density fields. These oscillatory disturbances can be clearly identified
in terms of their associated frequencies in electrostatic and electromagnetic parts.
The electrostatic plasma oscillations typically acquire high amplitudes with time
in the presence of underlying density inhomogeneity of the structure which ulti-
mately leads to wave breaking phenomena. These time-dependent structures have
also been observed in Particle - In - Cell (PIC) simulations. These will be presented
in the next chapter 5.

It should be noted that while the exact solutions require a very delicate bal-
ance between the radiation and density fields for the time-dependent structures,
it is not necessary to satisfy such a stringent condition. Thus while it would
be rather difficult to form the exact solutions experimentally for implementing
any application. We feel that in contrast, these time-dependent structures which
form spontaneously and retain their identity for a long time would be more easily

amenable in experimental observations and hence suitable for applications.
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Time-dependent 1-D localized structures
in laser plasma system: Insight from

particle-in-cell simulations

The existence of time-dependent robust 1-D localized structures was shown in
a chapter (4), with the help of fluid simulations. These structures are important
as they do not require the delicate balance between the spatial profiles of various
fields to be satisfied as in the case with exact solitonic structures. It was shown
in a chapter (4) that such time-dependent structures can be deliberately created
by disturbing the precarious balance of the exact solutions significantly. They are
also observed to form spontancously as an aftermath of an instability which the
exact solutions undergo, and/or when certain exact solutions suffer collisional in-
teraction. The time dependence was primarily identified as an interplay between
field and kinetic energy of the coupled laser plasma system. The light and the

plasma waves excitation around the background of exact solution were observed.
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The inhomogeneity of the background structures was seen to invariably lead to
plasma wave breaking through phase mixing process. The fluid simulations, how-
ever, shows that even after the wave breaking process interesting time-dependent
structures with radiation trapped between two high-density peaks are observed
to survive. Fluid simulations, however, cannot be relied for understanding the
existence of such structures dithering around the wave breaking amplitude. We,
therefore, employed Particle - In - Cell (PIC) simulations in this chapter for study-

ing the time-dependent structures.

5.1 Introduction

In chapter (4), we have investigated the behavior of the localized structures using
1-D numerical fluid simulation techniques where the delicate balance between the
outward ponderomotive force and inward electrostatic force was significantly dis-
turbed. For instance, an excess and/or modified radiation profile was introduced
as an initial condition and its evolution was studied numerically via fluid simula-
tions. The excess and/or asymmetrical profile of the radiation induces oscillations
in vector potential at the light frequency. As the radiation tries to leak out from
the density cavity, it pushes the electron density at the edges triggering plasma os-
cillations in the system. The interplay of light and plasma oscillations then define
the subsequent evolution. The plasma wave is ultimately seen to keep achieving
higher amplitude and subsequently shows signatures of wave breaking phenomena.
This has been identified by the drop in total energy when spiked density structures
appear. Since fluid simulations cannot be trusted after wave breaking, we have in
this chapter studied the phenomena through Particle - In - Cell (PIC) simulation.

It has been shown that the PIC studies compare exactly with the fluid simulations
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prior to the wave breaking point. Thereafter the PIC studies show quantitative
deviation from the fluid results, though the qualitatively, the observations remain
similar. Furthermore, the total energy, in this case, remains conserved all through-
out the simulation as expected. The energy loss in the system observed in the case

of fluid simulation, observed as particle heating in PIC.

The chapter has been organized as follows. Section (5.2), present a brief de-
scription of PIC simulation techniques. Section (5.3 ) covers numerical results
obtained from particle-in-cell simulation. Here, we have also provided a compari-
son between the results obtained from fluid and PIC simulations. Finally, section

(5.4) provides the brief summary of this chapter.

5.2 Description of PIC Simulation for 1-D study

We have developed 1-D particle-in-cell (PIC) simulation code to understand the
evolution of the coupled laser plasma structures. The PIC essentially uses the
equation of motion (Lorentz force equation) for the evolution of particle velocity
and position. The Maxwell’s equations are used to evolve electric and magnetic
fields self-consistently. The methodology of the PIC simulations has been described
in detail in many review articles [92] and books [93].

The box length of the system (L, ), cell size (Az) and time step (At) are chosen
similar for both fluid and PIC simulations. The time step fulfills the Courant-
Friedrich-Levy condition, [94]. We have chosen to consider only the evolution of
electrons. Ions provide, merely, a smooth neutralizing background. The particle
positions initially are chosen in such a fashion as to define the requisite electron

density of the structure of choice. There are well-known prescriptions for the
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same [95]. The charge density and the current density defined at the grids are
used for evolving the electric and magnetic fields. The electric and magnetic fields,
in turn, are interpolated at the particle locations for advancing the velocity and
the location of the particles by well-known schemes [93]. The results from PIC
simulations are in general quite noisy. A choice of about 50 to a maximum of
about 250 particles per cell in our simulations showed a considerable reduction
in noise. We present the results in terms of same normalizations as adopted in
Chapter (4). The boundary condition of the system has been taken to be periodic

to perform this simulation.

We have initiated our simulation using the profiles of density, velocity, electric
field and magnetic field for various kind of structures that were experimented
within Chapter (4). The profiles of density, velocity, electric field and magnetic
field with time is recorded. The total field energy (FE) and total kinetic energy

(KE) as a function of time for the system is evaluated as follows:

FE() = %Z(Ef + BY)Ax (5.1)

1

KE(t) = > — 1) (5.2)

Where ¢ = 1,2, ...N,, representing the index associated with the cell. Here N, is

the number of grids.
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5.3 Results

The PIC code has been verified by reporducing the observations of exact solu-
tions. For instance, we chose the analytical form of the exact solution with g = 0,
provided by Esirkepov et al. [52]. We have plotted the profiles of these solutions
in terms of vector potential and density in Fig. (5.1) and (5.2) respectively at dif-
ferent times obtained from the PIC studies. It is clear from these figures that the
solutions are stable and long-lived. The plots of kinetic energy (KE), field energy
(FE) and total energy (TE) with time from the particle-in-cell simulation has been
shown in Fig. (5.3). The energies show no variation with time. It also matches

well with the fluid observations.
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Figure 5.1: Vector potential (R) for stationary (=0) single peak soliton of ampli-
tude Ay = 1 at different times.
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Figure 5.2: Density (n) for stationary (5=0) single peak soliton at different times.
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Figure 5.3: Kinetic energy, Field energy, Total energy as a function of time ¢ for
fluid (marker)and PIC(solid line) for stable stationary single peak soliton.
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Figure 5.4: Distribution function for stable soliton solution at time ¢ = 0 and
t = 200.

In Fig. (5.4), we present the velocity distribution of the particles at time t=0
and 200. There occurs no broadening in the velocity of the particles. Thus the
choice of temperature; T' = 0 initially continues to be satisfied subsequently. We
also performed other preliminary tests to reproduce the known observations with

the help of PIC studies. These tests verify the correctness of the code.

We next take up the problem of investigating time dependence in structures.
Various cases of significantly modified static as well as moving solutions have been

chosen for the study.
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5.3.1 Time dependent observations for stationary localized

structure in Particle-in-cell simulation

We now choose to enhance the radiation trapped inside the 5 = 0 solutions
provided by Esirkepov et al. [52] by a certain factor (say 1.1). The space-time
evolution of the vector potential and density profiles of these structure illustrated

in Fig. (5.5) and (5.6) respectively.
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Figure 5.5: Vector potential (R) for stationary (=0) single peak soliton of ampli-
tude R = 1.1Ry, confine an excess radiation 10% of Rg in electron density cavity
at different times.
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Figure 5.6: Plot of density (n) for stationary (/5=0) single peak soliton associated
with an excess radiation of amount 10% of Ry at different times.

It is clear that the amplitude of the structure oscillates with time. Basically

as explained in Chapter (4), the excess radiation tries to leak out and in an ef-

fort pushes out the two density peaks at the edge triggering plasma oscillations.

Fig. (5.7), represents the variation of the field energy (FE), the kinetic energy (KE)

and the total energy (TE) as a function of time t. We have provided a comparison

with the evolution of energies in the fluid simulation for the identical case.
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Figure 5.7: Kinetic energy (KE), Field energy (FE) and total energy (TE) for
the confinement of a symmetric excess radiation (of amount 10%) of stable vector

potential in electron cavity as a function of time ¢ from fluid(marker with dashed)
and PIC(solid line).
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Figure 5.8: Distribution function of the particles for the confinement of a symmetric
excess radiation (of amount 10%) of stable vector potential in electron cavity at
time ¢ = 0 and ¢ = 225.
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In the PIC simulation, it can be observed that the total energy remains con-
served throughout the simulation. The TE for the fluid simulation, however, shows
a dip at around ¢ = 216 which is the signature of the wave breaking phenomena.
In PIC, the energy remains conserved as wave breaking leads to increase in the
thermal energy of the particles. The FE and KE show out of phase oscillation
which is identical in both fluid and PIC till the wave breaking time, ¢t = 216.
Thereafter, there appears a slight phase shift in the FE and KE oscillations for
fluid and PIC simulations. However, the character of the two oscillations contin-
ues to remain identical. For instance, even after wave breaking, the KE and FE
oscillations remain out of phase. We have plotted the particle velocity distribu-
tion function at time ¢ = 0 and ¢ = 225 respectively. It can be seen from the
Fig. (5.8) that though initially there was no width in the velocity distribution of
the particles corresponding to T=0. However, after the wave breaking particles get
randomized. The full width at half maxima provides an estimate of the effective
temperature T, at time ¢ = 225. This thermal kinetic energy is acquired by the
particles during wave breaking phenomena due to which the TE in PIC simulation
remains conserved. In fluid simulations, on the other hand, there is no way to keep
track of the effective heating that a wave breaking phenomena would cause. The
grid dissipation is, therefore, responsible for the task. We have also chosen to add
an asymmetric perturbation in the radiation so as to enhance the radiation at one
edge and diminish the radiation at the other edge of the solutions as done in the

fluid case in the chapter (4).
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Figure 5.9: Vector potential (R) profile having an asymmetricity of 10% in the
laser pulse from its stable solution.
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Figure 5.10: Density (n) for stationary (5 = 0) single peak soliton associated with
an asymertic radiation at different times.

The profiles of vector potential (R) and density (n) have been plotted at various
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times in Fig. (5.9) and (5.10) respectively. They behave again identical to the
fluid simulations (see Fig. (4.9) and (4.10) of Chapter (4)). The time evolution
of field energy (FE), kinetic energy (KE) and total energy (TE) of the localized

structure with time ¢ have been shown in Fig. (5.11).
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Figure 5.11: Kinetic energy (KE), Field energy (FE) and total energy (TE) for the
confinement of a asymmetric excess radiation (of amount 10% ) of stable vector
potential in electron cavity as a function of time ¢ obtained from fluid(marker with
dashed)and PIC(solid line).
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Figure 5.12: Distribution function of the particles for the confinement of a asym-
metric excess radiation (of amount 10%) of stable vector potential in electron cavity
at time { = 0 and ¢ = 212.

Here too, the total energy estimated from the fluid simulation and from the
PIC simulation matches well till (¢ ~ 180), the wave breaking time where the fluid
simulation shows a drop in TE. The temperature of the random kinetic energy
attained by the particles has been estimated again by the FWHM of the velocity

distribution function. This is about arise at time ¢t = 212 (see Fig. (5.12)).
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5.3.2 Time dependent observations for moving localized struc-

ture in Particle-in-cell simulation

We now consider moving single peak solutions which are known to be stable. We
have initiated the profiles obtained by solving equation (2.14-2.17) for the param-

eters, A = 0.94 and $ = 0.3 in our PIC simulation.
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Figure 5.13: Vector potential (R) for moving single peak soliton for group velocity
f = 0.3 and A = 0.94 having an 10% excess radiation confinement in electron
density cavity at different times.
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Figure 5.14: Density (n) for moving single peak soliton for group velocity 5 = 0.3
and A = 0.94 having an 10% excess radiation confinement in electron density cavity
at different times.

We have shown the time evolution of the spatial profile of such structures in
terms of vector potential (R) and density (n) as given in Fig. (5.13) and (5.14)
respectively. It is observed that the perturbed soliton moves forward as a stable
form and tries to get rid of the excess radiation as it evolves. In this case, since the
disturbances are left behind, the structure appears to evolve towards a new stable

solution in the neighborhood.
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Figure 5.15: Kinetic energy (KE), Field energy (FE) and total energy (TE) for
the confinement of a symmetric excess radiation (of amount 10% ) of stable vector
potential in electron cavity for moving single peak soliton with group velocity
B = 0.3 and A = 0.94 as a function of time ¢ for fluid(marker with dashed)and
PIC(solid line).
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Figure 5.16: Distribution function of the particles for the confinement of a symmet-
ric excess radiation (of amount 10%) of stable vector potential in electron cavity

at time t = 0 and ¢ = 290.

This is also evidenced from the time evolution of the energy as shown in the
Fig. (5.15). The dip in total energy for the moving single peak soliton at a time,
t = 247 is extremely small. When the results obtained from the fluid and PIC
simulations compared, even after this dip, there is almost negligible phase shifts
occurs in the oscillations of the FE and KE. The acquired random thermal energy

of the particles are also quite small as evidenced from the plot of the distribution

function as shown in the Fig. (5.16).
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In the fluid simulations, we had chosen to evolve a remnant that was ejected out
of the multiple peak solitonic structures while they underwent for the forward Ra-
man scattering instability. They had a compact support as radiation was trapped
inside two high-density peaks and the evolution displayed complex interesting fea-
tures. We explore the evolution of these structure through PIC simulation. It can
be seen from the Fig. (5.17) that the complex features observed in fluid simula-
tions in the evolution of these structures are also reproduced in the PIC studies.
The energy evolution also shows out of phase oscillations amidst KE and FE (see

Fig. (5.18) ).
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Figure 5.17: Vector potential for self generated compact localized solution moving
in -ve x direction.
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Figure 5.18: Kinetic energy, field energy and total energy as a function of time for
localized compact structure.

It is, therefore, clear that structures showing complex time dependence are
permitted by the coupled laser plasma set of equations. It would be worthwhile if

one could provide a simplified analytical description of the same.

5.4 Summary

In this chapter (5), we presented the observation of the time-dependent localized
structure by using PIC simulation in 1-D. We have introduced time dependence
by significantly modifying the delicate balance of these structures. It is observed
that the PIC observations support the inferences gathered from fluid simulations
as presented in chapter 4. There is total agreement in fluid and PIC observations
till the time, density acquires sharp form and reaches wave breaking point which
can be discerned from a drop in total energy TE of the fluid simulations. In

the PIC simulations, the energy gets irreversibly converted into random thermal
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kinetic energy of the particles. One observes out of phase oscillations in the field
and kinetic energies in both kinds of simulations. Even after wave breaking, the
differences between fluid and PIC, observations are minor and in terms of a phase
shifted oscillations amidst field and kinetic energies.

Some spontaneously formed structures have been observed to display complex
time evolution and are yet found to remain robust and preserve their identity. For
instance, the ejected structures from the multiple peak solutions as an aftermath
of Raman forward scattering instability shows many compact structures with ra-
diation trapped inside two high-density peaks. Their evolution in fluid simulations
had displayed complex shape variations with time. We reproduced those complex

behavior using PIC studies in this chapter.
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This chapter summarizes the main observations of the thesis. A few salient features
pertaining to the coherent 1-D solutions of the coupled laser plasma system has
been investigated in this thesis. These include: (i) A suitable analytical description
of the cusp solitonic structures formed at the ion wave breaking point. (ii) A 1-D
evolution study showing the destabilization process of cusp structures. (iii) Trans-
verse destabilization of solitonic structures by carrying out 2-D simulations. For
this thesis, we restricted to that class of solutions for the study of transverse desta-
bilization which comprises of electron dynamical response only (iv) An entirely new
variety of robust time-dependent (apart from mere propagation) structures were

shown to exist both with the help of fluid and PIC simulations in 1-D.

A brief summary of main observations on these issues has been provided in this
chapter which is then followed up by the future scope of the research work in the

area.
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6.1 Salient features of the thesis

This thesis is dedicated to the study of the localized structures in a coupled laser

plasma system. The formations and existence of such structures for longer dura-

tions are important from various perspectives. These solutions and their evolution

can be described by the coupled set of relativistic fluid Maxwell equations. The

existence of many varieties of localized structures and the stability studies in 1-D

of some of them have been explored earlier. In this thesis, we have addressed the

following specific issues pertaining to them

6.1.1 Cusp solitary structure

e Variety of new soliton structures were found to exist in the system once the
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ion dynamical response included. On the basis of the shape of the poten-
tial, these solitary structures are classified as- single peak, paired peak, high
amplitude, flat top, multipeak and cusp. Detailed investigation of the single
peak, paired peak and the multipeak soliton has been performed by Saxena
et al. [55,56]. The semi-analytical model of the flat-top soliton has been
given by Sundar et al. [58]. They have also mentioned that theses flat top

structures suffers through Brillouin’s scattering which makes them unstable.

In chapter 2, we have derived an analytical expression for the scalar potential
in terms of group velocity 4 and the maximum amplitude of vector potential
Apaz for the cusp structure (which forms at the ion wave breaking limit).
The analytical expression shows good agreement with the exact solution, for
the given value of a group velocity (), frequency (\) and vector potential

(R).
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e Stability of a cusp solution has been studied by evolving it in a fluid-Maxwell
model based on the flux corrected scheme. These cusp structures found
to be unstable as they start emitting radiation from the trailing edge of
the cusp soliton. The origin of such a radiation is found to be due to the
forward Raman scattering and is eventually responsible for destabilizing the

structure.

6.1.2 Stability of 1-D soliton in transverse direction

e The stability of a variety of one-dimensional solitons were discussed earlier.
The single peak and paired peak solitons are found to be stable. Whereas,
multipeak solitary structures are emitting radiation due to the Raman for-
ward scattering. The typical time-scale for the growth of the instability is
of the order of a few hundred of plasma period. To visualize the effect of
the 2-D on the evolution of theses 1-D structures, we extended the geome-
try from one to two dimensions. At the moment we have concentrated only
on studying the transverse stability of the structures with electron response

only.

e In chapter 3, we have shown that the single peak and paired peak solitons
ultimately get destabilized by the filamentation instability in the transverse
direction. The transverse profile gets gradually modulated and finally breaks
into filamentary structures. We have also calculated the numerical growth
rate from the fluid simulations and found them to be matching well with the

analytical value of the filamentation instability.

e Multiple peak solutions in two-dimension first undergo the regular one-dimensional
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forward Raman scattering instability. The filamentation instability with a
slower growth rate has been shown to appear at a later stage of the evolution

for the multipeak solutions.

6.1.3 Observation of time-dependent localized structures in

a one-dimensional laser plasma system.

e Soliton forms due to the precarious balance between the ponderomotive force

110

and the electrostatic force which finally leads to a configuration where the
electrons are piled up at the edge and prevents the leakage of radiation.
in chapter 4, we have investigated the time-dependent behavior using 1-
D numerical fluid simulation for structures in which the delicate balance

between the ponderomotive and electrostatic forces has been disturbed.

It has been observed that despite significantly altering the delicate balance
of the two forces, the structure continues to retain its identity and does not

get disintegrated.

The time-dependent structures have also been observed to form sponta-
neously. For instance, it was shown that when a multiple peak solitonic
structures evolve, they undergo a destabilization due to forward Raman scat-
tering process. As a result of this instability, some structures get ejected from
the trailing edge of the solutions. The ejected structures essentially have a
compact spatial profile of radiation trapped inside two high electron den-
sity peaks. These structures have been shown to display interesting complex

shapes during evolution.

Another variety of structures which were observed to form spontaneously
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during the course of collisional interaction of certain exact solutions. They are
essentially non-propagating, have oscillatory amplitude and a small amount

of radiation is observed to leak out of the structures.

e Such time-dependent structures can also be recreated by introducing excess
radiation inside an exact solution. The excess radiation puts pressure at
the edge densities and triggers plasma oscillations. An interesting interplay
between field and kinetic energies are observed. These two energies oscillate
out of phase. Against the inhomogeneous background, the plasma oscillations
ultimately get phase mixed and generate density spikes resulting into wave

breaking.

e Even after wave breaking, the structures have been observed to retain their
identity. However, keeping in view that kinetic effects would be important

after wave breaking, PIC simulations have been performed.

6.1.4 Kinetic studies of time-dependent localized structures

in a one-dimensional laser plasma system.

e The PIC studies quantitatively reproduce the fluid simulations prior to the
wave breaking phenomena. This includes the exact reproduction of the spa-

tial profiles and the energy evolution.

e The wave breaking point in fluid simulations of the time-dependent structures
are discerned by a small dip in the total energy which happens as the density
acquires a very sharp form. Thereafter, the PIC and fluid studies show a
slight difference. There appears a slight phase shift between the fluid and

PIC observations in the oscillatory behavior of field and kinetic energies.
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The total energy remains conserved all throughout the PIC simulations. It
is observed that the wave breaking leads to acquiring a random thermal

kinetic energy of the particles.

e The estimation of the drop in the total energy in the fluid simulation has

been found to typically compare well with the thermal spread acquired by

the particles in the PIC studies.

6.2 Future directions

The thesis covers certain aspects pertaining to localized structures in the coupled

laser plasma medium. Some directions in which further explorations can be carried

out have been listed below.

e We have provided an analytical description of the cusp structures which form

112

at the ion wave breaking point. A PIC study aimed at understanding their

role in ion acceleration would be important.

The transverse destabilization has been investigated in the context of solu-
tions having only the electron dynamical response in the present thesis. The
role of transverse dimension for the other variety of solutions which form in

the presence of ion response need to be carried out.

An extension of evolution studies to a full 3-D geometry would be fruitful.

It may lead to the final 3-D form of the light plasma structures.

In the present thesis, observations pertaining to the existence of robust yet
complex time-dependent structures have been made. An analytic model

description of such structures needs to be carried out.
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e The role of inhomogenecous densities in the propagation of many of these

structures can be investigated.

e The application of these solutions for energy transport can be investigated

in detail.

e The upcoming advancements in laser system would soon push the regime of
laser intensities in the domain where novel effects such as radiation reaction,
pair production etc., would become important. It would be, therefore, an
important exercise to seek possible localized solutions in the presence of these

effects.
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