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Synopsis

Plasma is a quasi-neutral ionized medium consisting of charged and neutral particles

that exhibits collective behavior due to long range Coulomb forces. One of the char-

acteristics of a plasma is that it supports a variety of normal modes (plasma waves).

Plasma waves can explain several naturally occurring phenomena both in laboratory

and astrophysical scenarios, hence one is naturally prompted to investigate the behav-

ior of the waves in plasma. If source of free energy (velocity, temperature, magnetic

field etc.) is available, plasma waves may become unstable [1, 2]. Characteristics of

free energy source decides the growth, nature (electrostatic or electromagnetic) and

mechanism behind the excitation of the instability. A consequence of an instability

is a greatly enhanced level of fluctuations in the plasma associated with the unstable

mode that may elevate and/or inhibit the transport of particles and/or energy. For

example, streaming instabilities in plasma lead to the acceleration of charged particles

as observed in astrophysical shocks[3, 4, 5] , Laser Breakout afterburner [6, 7] etc.

A current carrying plasma constitutes an ideal laboratory for investigating various

kinds of streaming instabilities associated with an electron beam-plasma system

[8, 9, 10, 11, 12] viz. Buneman, Two stream, Filamentation, Weibel, and Oblique

modes. The unstable mode spectrum associated with an electron beam-plasma

system can be broadly classified into electrostatic (longitudinal) and electromagnetic

(transverse) modes. Depending on the orientation of the wave vector with respect to

electron beam velocity direction (~k.~vb), the ratio of beam to plasma electron density

(α = nb/np), Lorentz factor associated with the beam (γb) and the electron to ion

mass ratio (R = m/M), several of the above mentioned instabilities could be excited,

but the dominant one governs the dynamics in the linear phase. In the flow-aligned

direction Buneman and two stream instabilities govern the evolution of the system

whereas in the transverse direction, evolution is governed by filamenation and/or

Weibel instabilities. Also there exist a continuum spectrum of unstable oblique
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modes which bridges the gap between parallel and transverse modes.

Scope of this thesis is limited to the discussion of electrostatic or flow aligned

instabilities. We thus confine our study in flow aligned direction by choosing a

one dimensional system, which isolates only unstable flow aligned wave modes

(electrostatic modes) from the multidimensional unstable mode spectrum. In flow

aligned direction two stream and Buneman modes compete [8, 9] with each other.

In a charge and current neutralized system, two stream instability occurs between

beam and plasma electrons while Buneman instability results due to the interaction

of both beam current and plasma electron current (return current) with ions. In

the dilute beam limit α << 1, and in non-relativistic regime γb = 1, growth rate

of the most unstable mode for two stream and Buneman instability respectively

scales as ∼ α1/3 and ∼ R1/3 [9]. Thus for α ≤ R, non-relativistic beam-plasma

system is governed by Buneman/Buneman-like modes. In the symmetric beam limit

(α = 1), Buneman modes arising from the beam current-ion interaction merge with

the return current-ion modes. Also within symmetric beam limit, both two stream

and Buneman modes merge and share same unstable wavelength spectrum [9]. In

the relativistic regime or in the large γb limit and in the dilute beam limit α << 1, as

long as the inequality γ3
b ≥ α/R is satisfied, Buneman/Buneman-like modes govern

[8, 10, 11, 12] the evolution of the system. In this thesis, we study electrostatic

instabilities which arises due to relative drift between electrons and ions, the drift

velocity being larger than the thermal speeds. Our studies include both immobile

and mobile ions and extend from the non-relativistic to relativistic regimes. We

choose our system such that all the electrons are propagating as a whole through a

neutralizing background of ions so return current does not get excited and possibility

of excitation of other modes is ruled out. Such a toy model is used in textbooks to

isolate mode of interest from other modes.

We begin our investigation by studying pure electron plasma modes. In order
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to isolate electron plasma modes, ions are considered to be infinitely massive and

they merely provide a positive background. Consequently, plasma waves are solely

governed by electron dynamics. Cold relativistic electron beam can support variety

of waves in plasma. Here we study a special class of nonlinear waves called BGK

waves[13] in a cold plasma which are excited by a relativistic electron beam. In

the non-relativistic regime, and in the absence of a beam, propagating BGK waves

in a cold plasma have been derived by Albritton et. al. [14]. The BGK mode in

this case was obtained from the exact space-time dependent solution of nonlinear

plasma oscillations. Similarly propagating BGK waves in a cold relativistic plasma

in the absence of a relativistic electron beam is simply obtained by transforming

the governing equations in such a frame, where the wave is at rest, the so-called

wave frame. Verma et. al. [15] constructed such a solution for propagating BGK

waves (Akhiezer-Polovin wave [16]) from exact space-time solution of relativistic

plasma oscillation [17] by choosing a special kind of transformation[14]. Wang [18]

used similar kind of transformation for relativistic streaming plasmas and obtained a

nonlinear dispersion relation in Vlasov-Maxwell framework. In the presence of a beam

Psimpolous et. al. [19] obtained the solutions for stationary BGK waves (stationary

in lab frame) in current carrying non-relativistic cold plasmas for a wide range of

parameter (κ = Emax/(4πn0mv
2
0)1/2), where Emax is maximum amplitude of the

electric field, v0 is averaged electron beam speed and other symbols have their usual

meanings. It is found that for the range κ ≥ 1, electric field becomes discontinuous

which is equivalent to the wave breaking phenomenon in current carrying cold plasmas.

For κ < 1, similar coherent solutions which are stationary in the lab frame have been

obtained by Davidson and Schram [20] using Lagrange variables. For κ ≥ 1, this

method cannot be used as the transformation from Euler to Lagrange variables breaks

down at κ = 1. In this thesis we have extended the study of Psimopoulos et. al.

[19] by studying BGK waves in current carrying cold plasma. We have investigated

stationary solution of the relativistic fluid-Maxwell system in the presence of an
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electron beam for a wide range of value of κR (κR = Emax/(8πn0(γ0 − 1)mc2)1/2,

where γ0 is a Lorentz factor associated with the average beam speed v0) including

those for which electric field becomes discontinuous.

Further, we discuss full space-time development of electrostatic waves on a rel-

ativistic electron beam and its consequence on net current carried by the beam.

Space charge waves on relativistic electron beam plays vital role in collective accel-

eration of cosmic ray in pulsar magnetosphere [21], extragalactic jets [22] etc. In

early attempts, Chian [23, 24, 25] sought traveling wave solution for super-luminous

waves by transforming governing equations in such a frame where equations become

space independent and the solution has temporal dependence only. Nonetheless, an

exact solution exhibiting space-time evolution of relativistically intense wave in a

homogeneous current carrying plasma with fixed neutralizing positive ion background

is yet to be presented. In this thesis, we present the exact solution for space charge

waves imposed on a relativistic electron beam.

We have extended our studies for finite ion to electron mass ratio. We focus on the

instabilities occurring because of coupling between electrons and ions. It is already

mentioned in the prequel that Buneman mode under certain condition is the most

unstable mode [10] in the system. Buneman instability (BI) gets excited between

electrons and ions, when Doppler shifted electron plasma frequency (ωpe − kv0),

resonate with ion plasma frequency (ωpi) in ion rest frame; system become unstable

at the expense of electron drift kinetic energy density, provided relative drift between

electrons and ions is above the threshold v0 = 0.926(1 +R1/2)(2KBTe/m)1/2 (when

Te = Ti) [26, 27]. Below this threshold Buneman modes quenches through Landau

damping. BI is ubiquitous in laboratory as well as in astrophysical plasmas and

plays prominent role for several naturally occurring phenomena, namely, formation

of strong double layer [28, 29], shock surfing acceleration [5], inertial electrostatic

confinement[30, 31] etc. The Buneman wave particle interaction induces scattering of
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the particles which causes strong parallel heating. This novel effect widely observed

in electron acceleration [32, 4, 33, 34, 35] , ion acceleration [6, 7] etc. Moreover,

anomalous resistivity, which results from nonlinear evolution of BI, leads to strong

turbulence between thin current layers during magnetic reconnection[36, 37, 38].

After few noteworthy analytical and simulation approaches, Hirose [39] reported that

at the quasi-linear saturation (saturation of most unstable mode and its harmonics)

of the BI, electrostatic energy density varies linearly with initial drift kinetic energy

density (W0) and slope of this linear relation scales with electron (m) to ion mass

(M) ratio as ≈ (m/M)1/3. By extending [40] , Ishihara et. al. [41, 42] formulated a

nonlinear dispersion relation using quasilinear analysis in Vlasov-Poisson framework.

Ishihara’s dispersion relation successfully predicted the breakdown of the linear

growth, modulation of frequency and growth rate of the BI. It is found that electron

trapping causes the final saturation of the BI and minimum electrostatic field energy

required for quenching of the instability via electron trapping scales with initial drift

kinetic energy density as ∑k|Ek|2/16πW0 ≥ 0.11 [41, 42]. Dynamics after quenching

is strongly affected by the initial plasma parameters. If the initial drift velocity of

the electron beam is not much larger than thermal velocity, then initial drift kinetic

energy does not dissipate completely [43] and some part of it still remains with

a nonlinear coherent structure. This net drift energy of coherent structures after

quenching of Buneman instability may affect the interaction between electrons and

ions. When the initial drift velocity of the electron beam is much larger than the

thermal velocity of electrons, then initial kinetic energy dissipates completely [41,

42, 44] and a strong interaction between the nonlinear coherent structure and the

surrounding ion may result in the formation of coupled hole-soliton (CHS). Thus,

Buneman instability may decay into ion acoustic waves [45] and/or may induce [33,

44] coupled hole-solition[46].

In this thesis, by performing analytical calculations and computer experiment, we

present a thorough investigation of a variety of coherent modes that a homogeneous
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one dimensional current carrying cold plasma can support as well as instabilities

that may be excited in it.

A more systematic chapter-wise presentation of electrostatic instabilities in current

carrying plasma is presented below. Thesis consists of 7 chapters.

Chapter 1: Introduction

This chapter introduces the instabilities in current carrying plasmas in the presence

of stationary and mobile ions, and also the motivation behind the study is reported.

Generation of mono-energetic electron beam in various laboratory and astrophysical

plasmas is discussed. Natural occurrence of current carrying plasmas is also discussed

in this chapter. When ions are allowed to move, plasma supports a rich spectrum of

instabilities that is discussed along with their strength in different parameter regimes.

Relevance of these studies is also discussed in this chapter.

Chapter 2: Method of Solution (Brief Description of Numerical Schemes)

In this chapter we give a brief introduction of numerical techniques used to simulate

current carrying plasma. Computer simulation of plasmas comprises of two general

techniques based on the fluid and kinetic description. MHD equations are solved

numerically in fluid description. Most of the collective phenomena of plasma physics

are easily simulated using fluid code, however, fluid code fails to simulate phenomenon

involving wave-particle interaction, viz., dynamics of plasma after wave-breaking,

BGK modes, etc. which can be treated only via kinetic theory. Kinetic picture

considers more detailed information by simply computing the motion of charged

particles interacting through the self-consistent electromagnetic forces. Robustness

and ability to simulate real plasma if adequate number of particle trajectories can

be computed, makes Particle-in-cell(PIC) technique a powerful tool to understand

plasma behavior ranging from laboratory to astrophysical scenarios. Basic numerical
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structure, limitation and differences between fluid and PIC techniques is also discussed

in this chapter. Furthermore, codes are benchmarked against existing theoretical

results.

Chapter 3: Study of stationary BGK structures in current carrying rela-

tivistic fluid-Maxwell system

In this chapter we study stationary BGK structures in current carrying relativistic

fluid-Maxwell system using the basic set of stationary fluid-Maxwell equations.

The equation of continuity imposes the condition of having constant electron flux

throughout the plasma. First we derive an exact energy equation using pseudo-

potential (Sagdeev potential) method. Analysis of pseudo-potential shows that

BGK structures are periodic in space and, in contrast to the non-relativistic regime,

wavelength of the BGK structures varies with the variation of κR, where κR =

Em/(8πn0(γ0 − 1)mc2)1/2. It is also found that Sagdeev potential (V (Φ)) becomes

undefined at the electrostatic potential Φ = (1 − γ0)/γ0 or at the energy level

κR = κcR = 1/√γ0. Further, analysis of Φ − E phase space reveals that phase

space curves are continuous for the range 0 ≤ κR ≤ κcR, but becomes discontinuous

for the range κcR ≤ κR, i.e., electric field becomes discontinuous periodically at

some positions of space, consequently forming periodic electron sheets in the limit

κcR ≤ κR. The charge density of periodically occurring sheets scales with κR and β

as ∼ (κ2
R − (1− β2)1/2)1/2. An exact expression for electrostatic potential, electric

field, electron density and electron velocity as the function of position are derived

which describe the nonlinear BGK structures.

Chapter 4: Evolution of relativistic electron current beam in the presence

of relativistically intense space charge wave

In this chapter, we study the space-time evolution of space charge waves imposed
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on relativistic electron beam within the cold plasma model. In order to simplify

the problem, first, governing equations are transformed in Lagrangian frame using

Lagrangian transformation [47]. This transformation converts the partial differential

equation into ordinary differential equation; then an exact solution is obtained.

General solution is obtained for any initial conditions. In rest of the chapter, results

are analyzed for different relativistic intensities (eE0/mωpec) and flow velocities

(β = v0/c). It is observed that when an electron beam propagating with initial drift

velocity v0 is perturbed with relativistically intense wave, spatially averaged current

diminishes with time due to variation of relativistic mass. Furthermore, frequency of

oscillation is also obtained using Bogoliïÿăuïÿąbov and MitropolÊźski [48] method in

the weakly relativistic limit, that turns out to be space dependent, which implies

fine scale mixing of oscillations eventually leading to wave breaking. By analyzing

exact solution it is found that amount by which spatially averaged current diminishes

(∆I) increases with increasing relativistic intensity of the wave. Rate of spatially

averaged current diminishing (dI/dt) increases with increasing relativistic intensity

of the wave. This novel effect may be of relevance in fast ignition scenarios [49, 50].

Chapter 5: Nonlinear evolution of Buneman instability and excitation of

coupled hole-solitons

The general solution of Buneman instability offers great mathematical difficulty,

therefore, the computer simulation remains strongest means of exploring the inter-

esting physics and validating few existing analytic approaches [39, 41, 42, 51, 52] to

explain nonlinear dynamics of Buneman instability. Simulation is carried out using

an 1D in-house developed electrostatic particle-in-cell code. Code is initialized by

putting nonzero value of initial electron drift velocity, setting a net drift between

electrons and ions which consequently excites Buneman instability. We have followed

space-time evolution of Buneman instability beyond final saturation. Studies are

carried out for a broad range of initial drift velocities and electron to ion mass

xii



ratio and an extensive comparison is carried out between simulation and well known

theoretical fluid/kinetic models [39, 41, 42]. Linear growth rate estimated from the

simulation, agrees well with the growth rate obtained from the numerical solution

of fourth order dispersion relation [1]. Further, ratio of electrostatic field energy

to initial drift kinetic energy density at quasi-linear and final saturation stages are

compared with theoretical model and simulation results are found to be respectively

consistent with Hirose [39] and Ishihara’s [41, 42] estimation. It is observed that, in

contrast to the quasilinear saturation, the ratio of electrostatic field energy density

to initial kinetic energy density at final saturation is relatively independent of the

electron to ion mass ratio and is found from simulation to depend only on the initial

drift velocity.

Final saturation of BI leaves behind an electron hole with inhomogeneous back-

ground of ions. A strong interaction between electron phase space holes and ions

takes place; this interaction breaks the electron phase space holes into two oppositely

propagating holes each attached with an ion pulse, a coupled state of an ion acoustic

soliton and an electron phase space hole, i.e., coupled hole-soliton (CHS)[46]. The

propagation characteristics (amplitude-speed relation) of CHS (φmax) are in confor-

mity [44] with Saeki’s [46] theoretical model of CHS. These coupled hole-solitons

eventually coalesce away, finally generating a broadened electron velocity distribution

function.

Chapter 5: Quasilinear evolution of relativistic Buneman instability

When electron beam is propagating with relativistic speed, dynamics of Buneman

instability is strongly affected [7, 53, 54]. We start our analysis by deriving linear

dispersion relation for Buneman instability in weakly relativistic regime and it is

observed that relativistic effects reduces the maximum growth rate which now scales

with initial drift velocity v0 as γ/ω ≈
√

3
2γ1/2

0

(
m

2M

)1/3
, where γ0 = 1/

√
1− (v0/c)2. It

is also found that, in contrast to the non-relativistic regime, range of unstable mode
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spectrum shrinks in relativistic regime. We further analyze relativistic Buneman

instability by performing one dimensional electrostatic relativistic PIC simulation by

applying relative drift between electrons and ions. Study is carried out for a broad

range of initial drift velocities (β = v0/c) and electron to ion mass ratios (m/M).

Growth rate obtained from the simulation is in conformity with that obtained from

the numerical solution of fourth order linear dispersion relation in weakly relativistic

regime. It is found that ratio of electrostatic energy density to initial kinetic energy

density at the quasilinear saturation reduces due to relativistic effects and scales with

γ0 as ∑k|Ek|2/16πW0 ≈ 1
γ2

0
(m
M

)1/3 [55], where W0 = n0(γ0 − 1)mc2 is initial kinetic

energy density. This novel result on the scaling of energy densities has been found

to be in quantitative agreement with our theoretical back-of-the-envelope estimation,

which is obtained using fluid theory.

Chapter 7: Conclusion and Future Work

In this chapter, we conclude our results and discuss future possibilities for extending

the present work in various limits.
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tic intensity Ẽ0 = 100 and flow velocities (a) β ≈ 0.1 and (b) β ≈ 0.99.
Here dash/dot-dash line represents result of PIC/fluid simulation and
dots are taken from analytical solution. . . . . . . . . . . . . . . . . . 78

4.8 Spatio-temporal evolution of current for the parameters Ẽ0 = 10 and
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β ≈ 0.1, where dots show result of theory, dash lines show result of
fluid simulation and dot-dash lines represent result of PIC simulation. 81

4.11 Spatio-temporal evolution of current for the parameters Ẽ0 = 5 and
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Introduction

The entire thesis addresses the spatio-temporal evolution of electro-

static modes/instabilities in current carrying cold plasmas in the presence

of static and mobile ion background. Studies include both non-relativistic

and relativistic regimes. In this chapter, we provide introduction to mul-

tidimensional unstable spectrum associated with current carrying cold

plasmas and discuss the most unstable mode for different parameter

regimes. We provide motivation for our study and review earlier works.

Plasma is a quasi-neutral ionized medium consisting of charged and neutral

particles that exhibits collective behavior due to long range Coulomb

forces. One of the characteristics of a plasma is that it supports a variety

of normal modes (plasma waves). Plasma waves can explain several naturally

occurring phenomena both in laboratory and astrophysical scenarios, hence one is

naturally prompted to investigate the behavior of the waves in plasma. If source of

free energy (velocity, temperature, magnetic field etc.) is available, plasma waves

may become unstable [1, 2]. Characteristics of free energy source decides the growth,
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CHAPTER 1. INTRODUCTION

nature (electrostatic or electromagnetic) and mechanism behind the excitation of the

instability. A consequence of an instability is a greatly enhanced level of fluctuations

in the plasma associated with the unstable mode that may elevate and/or inhibit

the transport of particles and/or energy.

A current carrying plasma constitutes an ideal laboratory for investigating

various kinds of streaming instabilities [1, 2, 13] associated with an

electron beam-plasma system. In 1925, Langmuir [56] first reported

existence of electron plasma oscillations in the beam-plasma system. Bohm and

Gross [57, 58] demonstrated that two cold counter propagating electron beams

gives rise to an unstable mode spectrum and now commonly referred as two stream

instability. In 1948, Pierce [59] reported that an electron beam, moving through an

homogeneous ion background is itself an unstable current carrying system. A decade

later, in 1958, O. Buneman [60, 26] demonstrated that a relative motion between

electrons and ions give rise to an instability, known after his name as Buneman

instability, provided, electron drift velocity is much larger than electron thermal

velocity. Weibel [61] found that plasmas having anisotropic velocity distribution

(other than Gaussian distribution function) is associated with unstable transverse

waves when ion motion is neglected. A year later in 1959, Fried [62] discovered

that beam-plasma system is unstable against an electromagnetic perturbation in

the transverse direction of the flow (direction of electron beam) and this instability

tends to break up initial homogeneous electron beam profile into small scale current

filaments, so it is referred as Filamentation instability. In the vast amount of

literature, Weibel and filamentation instability have been used interchangeably but

recently Bret [63] reported that filamentation instability becomes purely transverse

mode only if both electron beam current and return current are symmetric while

Weibel instability gets excited always in a direction normal to maximum temperature

[64]. Also there exists a continuum spectrum of unstable oblique modes [65, 66]

which bridges the gap between parallel and transverse modes. This discussion shows
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that current carrying plasma is associated with multidimensional [10, 8, 11] unstable

mode spectrum.

Depending on the orientation of the wave vector with respect to electron beam

velocity direction (~k · ~vb), ratio of beam to plasma electron density(α = nb/np),

Lorentz factor associated with electron beam (γb), plasma electrons (γp) and electron

to ion mass ratio (R = m/M), several of the above mentioned instabilities could

be excited, but dominant one governs the dynamics in the linear phase. In the

flow-aligned direction electrostatic, i.e., Buneman and two stream instabilities govern

the evolution of the system whereas in the transverse direction evolution is governed

by filamentation and/or Weibel instabilities. In a plasma with thermal anisotropy

Weibel and filamentation mode can be triggered separately [67, 11] and which may

sometime merge and interact [68, 69].

In this thesis, plasma is assumed to be cold by neglecting thermal motion of

the particles when compared with speed of electron beam. Scope of this thesis

is limited to the discussion of electrostatic or flow aligned instabilities. We thus

confine our study in flow aligned direction by choosing a one dimensional system,

which isolates only unstable flow aligned wave modes (electrostatic modes) from the

multidimensional unstable mode spectrum. In flow aligned direction two stream and

Buneman modes compete [8, 9] with each other. In a charge and current neutralized

system, two stream instability occurs between beam and plasma electrons while

Buneman instability results due to the interaction of both beam current and plasma

electron current (return current) with ions. In the dilute beam limit α << 1, and in

non-relativistic regime γb = 1, growth rate of the electron two stream instability for

most unstable mode kvb ∼ ωpe [9] scales as ∼ α1/3, while growth rate of Buneman

instability (between return current and ions) for most unstable mode kvb/ωpe ∼ 1/α

[9] scales as ∼ R1/3. Thus for α ≤ R, non-relativistic beam-plasma system is

governed by Buneman/Buneman-like modes. In the symmetric beam limit (α ≈ 1),
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Buneman modes arising from the beam current-ion interaction merge [8] with the

return current-ion modes. Also within symmetric beam limit, both two stream and

Buneman modes merge and share the same unstable wavelength spectrum [9]. In the

relativistic regime and in the dilute beam limit α << 1, Buneman instability arises

because of interaction between plasma electron current and plasma ions. In this

regime, forward current is relativistic, return current however remains non-relativistic.

Growth rate of two stream instability for the most unstable mode kvb ∼ ωpe scales

with γb as ∼ α1/3/γb and growth rate of Buneman instability for the most unstable

mode kvb/ωpe ∼ 1/α is given by ∼ R1/3. Thus in this regime as long as the inequality

γ3
b ≥ α/R is satisfied, Buneman/Buneman-like modes govern [8, 10, 11, 12] the

evolution of the system. In the symmetric beam limit, return current also becomes

relativistic. As we have mentioned earlier that in this limit both two stream and

Buneman unstable modes merge with each other and share a same growth rate, which

scales with γb as ∼ R1/6/γb [10]. It must be noted here that in large γb limit coupled

two stream-Buneman/Buneman like modes outgrow [8, 10] all other unstable modes

(including transverse) and system is governed by two-stream/Buneman modes. In this

thesis, we study electrostatic instabilities which arises due to relative drift between

electrons and ions, the drift velocity being larger than the thermal speeds. Our

studies include both immobile and mobile ions and extend from the non-relativistic to

relativistic regimes. We choose a one-dimensional system such that all the electrons

are propagating as a whole through a neutralizing background of ions so return

current does not get excited and possibility of excitation of other modes is ruled

out. Such a toy model [1] is used in textbooks, which helps in isolating the mode of

interest.

We begin our investigation by studying pure electron plasma modes. In order

to isolate electron plasma modes, ions are considered to be infinitely massive and

they merely provide a positive background. Consequently, plasma waves are solely

governed by electron dynamics. In the section 1.1.1, we will discuss earlier works
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carried out for such kind of systems. Further, we extend our studies to finite ion

to electron mass ratio and focus on the instabilities occurring because of coupling

between electrons and ions, i.e., Buneman instability. It is already mentioned in

the prequel that Buneman mode under certain condition is the most unstable mode

[10] in the system. Buneman instability (BI) gets excited between electrons and

ions, when Doppler shifted electron plasma frequency (ωpe − kv0), resonate with ion

plasma frequency (ωpi) in ion rest frame; system become unstable at the expense

of electron drift kinetic energy density, provided relative drift between electrons

and ions is above the threshold v0 = 0.926(1 + R1/2)(2KBTe/m)1/2 (when Te = Ti,

where Te and Ti are electron and ion temperatures respectively) [26, 27]. Below

this threshold Buneman modes quenches through Landau damping and a current

driven ion acoustic instability may be excited in current carrying plasma provided

Te > Ti, otherwise ion acoustic modes are quenched through ion landau damping

[45, 70]. Buneman instability is one of the most fundamental instability and a well

known current dissipation mechanism in the presence of external electric field or

in the field free collision-less plasma. Buneman wave-particle interaction induces

strong particle heating during the final saturation of the instability, which occurs

via coherent electron trapping [41, 42] in large amplitude Buneman wave potential.

In section 1.1.2 we shall discuss earlier work and motivation behind the study of

Buneman instability. In section 1.2, scope of this thesis will be discussed and section

1.3 presents chapter-wise organization of the thesis.

1.1 A survey of earlier work done

In this section we present a review of earlier work on electrostatic modes and

instabilities in current carrying cold plasma in the presence of static and mobile ion

background.
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1.1.1 Electrostatic modes and instabilities in current carry-

ing cold plasmas with static ion background.

Cold relativistic electron beam can support variety of waves in plasma. A very

special class of nonlinear waves, called cold plasma form of BGK (Bernstein-Greene-

Kruskal) waves[71, 13, 20] may be excited by a relativistic electron beam. In the

non-relativistic regime, and in the absence of a beam, propagating BGK waves in

a cold plasma have been derived by Albritton et. al. [14]. The BGK mode in this

case was obtained from the exact space-time dependent solution [20] of the full

nonlinear set of fluid-Maxwell equations. Similarly propagating BGK waves in a cold

relativistic plasma in the absence of a relativistic electron beam is simply obtained

by transforming the governing equations in such a frame, where the wave is at rest,

the so-called wave frame[15]. Verma et. al. [72] constructed such a solution for

propagating BGK waves (Akhiezer-Polovin wave [16, 73] ) from exact space-time

dependent solution [17] of the full relativistic fluid-Maxwell system. Wang [18]

and Chian [23] used special transformation [14] for relativistic streaming plasmas

and obtained a nonlinear dispersion relation for propagating BGK structures in

Vlasov-Maxwell and fluid-Maxwell framework respectively. In the presence of a

beam, Psimpolous et. al. [19] obtained the solutions for stationary BGK waves

(stationary in lab frame) in current carrying non-relativistic cold plasmas for a wide

range of parameter (κ = Em/(4πn0mv
2
0)1/2), where Em is maximum amplitude of the

electric field, v0 is averaged electron beam speed and other symbols have their usual

meanings. For κ < 1, similar coherent solutions which are stationary in the lab frame

have been obtained by Davidson and Schram [20] using Lagrange variables. For

κ ≥ 1, this method can not be used as the transformation from Euler to Lagrange

variables breaks down at κ = 1. It is found that for the range κ ≥ 1, electric field

becomes discontinuous which is equivalent to the wave breaking phenomenon in

current carrying cold plasmas.
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This concept of wave breaking was originally introduced by Dawson [74] for

describing the limiting amplitude of nonlinear plasma wave. First, Dawson [74]

conceptualized the picture of wave-breaking and defined the maximum amplitude

(eEm/mωpevph = 1, where ωpe is electron plasma frequency and vph = ω/k is phase

velocity of wave) of the nonlinear electron plasma wave. Above this amplitude

fine scale mixing of the oscillations occur which in turn leads to wave breaking.

In relativistic regime, Akhiezer-Polovin [73] described the limiting amplitude of

electron plasma wave by eEm/mωpec =
√

2(γph − 1)1/2, where γph is the Lorentz

factor associated with wave phase velocity. The above wave breaking limits were

obtained in the absence of a beam. Chian [23, 25] obtained wave breaking limit for

traveling waves in the presence of a beam and showed that wave breaking scales with

initial drift velocity (β = v0/c) as eEm/mωpec =
√

2(γph(1− βphβ)− 1/γ0)1/2; where

γ0 = 1/
√

1− β2, for subluminous wave, i.e., β < 1, however, it was proven lately

that in relativistic dynamics, a wave of an arbitrary amplitude always breaks via a

phenomenon called phase mixing [75], therefore, the observation of wave breaking is

not limited by Akhiezer Polovin and Chian limit. It is also noted that Chian [25]

limit can be recovered by performing Lorentz transformation on Akhiezer & Polovin

limit [73]. In all the aforementioned references, conventional picture of wave breaking

in a cold plasma is described, i.e., at the point of breaking, the electric field becomes

multivalued at some spatial location. In Ref. [76], Sen analyzed a steady state system

composed of two electron beams with stationary ions and showed that in a streaming

plasma, electric field instead of becoming multivalued becomes discontinuous beyond

a critical amplitude, however, Sen did not elaborate more on this striking feature.

Later Psimpolous [19] extended Sen’s argument using a relatively simplified model

and reasoned that, in the presence of an electron beam or in current carrying plasma,

wave breaking does not imply electric field becoming multivalued , rather, electric

field becomes discontinuous at some singular points, resulting in the formation of

charge sheets.
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Extension of the above work to the relativistic regime and study of full space-time

development of electrostatic waves in the presence of a relativistic electron beam is

an open area of research. The latter study may be of crucial relevance to fast-ignition

scheme [50, 77, 78] of laser fusion.

1.1.2 Electrostatic instabilities in current carrying cold plas-

mas with ion motion.

Pierce [59] was first to report that the low frequency oscillatory space charge waves on

an electron beam are unstable against a neutralizing ion background, where author de-

scribed it as electron-ion streaming unstable modes. Almost a decade later, Buneman

[60] published his original paper in 1958, where Buneman successfully estimated the

linear growth rate using the resonance condition (kv0 ≈ ωpe) and instability then was

named after him as "Buneman instability". Subsequently Buneman [26] and Jackson

[79] demonstrated that thermal spread of electron beam introduces Landau damping

which can quench the linear growth of the instability unless the electron beam drift

velocity exceeds a minimum threshold value v0 = 0.926(1 + R1/2)(2KBTe/m)1/2

(when Te = Ti). Mantei et. al. [80] employed kinetic model to high density electron

beam-plasma system and derived a criteria to separate the Buneman hydrodynamic

instability from the ion acoustic kinetic instability depending on the wave energy

sign which is positive for ion acoustic kinetic instability and negative for Buneman

instability.

Several theoretical models on evolution and saturation of resonantly excited Bune-

man instability have been proposed by numerous authors. Davidson et. al. [81]

carried out 1D particle-in-cell simulation of Buneman instability. Authors modeled

two counter propagating cold ion beam moving through a cold homogeneous back-

ground of electrons and employed a quasilinear theory to understand the simulation

results. Davidson et. al. observed that early evolution of instability is dominated

8
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by fastest growing mode that leads to the formation of coherent structure (electron

phase space holes) during nonlinear evolution of the Buneman instability. Authors

argued that growth terminates abruptly as electron trapping sets in and instability

quenches when drift energy is drained out completely. Their quasilinear model does

not include mode coupling effect so estimation of electric field energy at the saturation

was rather ill defined. Ichimaru [82] used microscopic theory of transport processes

to explain Buneman turbulence and Ionson [83] treated Buneman turbulence as

normal mode fluctuations. Both authors have reported that the electrostatic field

energy associated with the instability saturates at a value comparable to that of

the initial kinetic energy of the drifting electrons, which is much larger than what

Buneman suggested. Hirose [39] employed quasilinear fluid theory to explain quasi-

linear saturation of the resonantly excited Buneman instability. Hirose[39] estimated

that quasilinear saturation of Buneman instability occurs when ratio of electrostatic

energy density(∑
k
|Ek|2/8π) to initial drift kinetic energy density W0 reaches up to

≈ 2(m/M)(1/3). Hirose’s analysis was based on the argument that, since γ(kv) curve

is very narrow around the resonant value kv0/ωpe ≈ 1, where k is the wave number

corresponding to the most unstable mode and v0 is initial drift velocity of electron

beam, so a small change in the drift velocity can substantially reduce the growth

rate of the Buneman instability. This quasilinear saturation limit derived by Hirose

is found to be independent of initial drift velocity and solely depends on electron to

ion mass ratio. Hirose’ limit for quasilinear saturation describes saturation of the

most unstable mode and its harmonics only.

Final saturation of the Buneman instability occurs via electron trapping; thus

one needs to account for kinetic effects to obtain the level of electrostatic energy

at the time of final saturation. Bartlett [40] formulated a nonlinear dispersion

relation using quasilinear kinetic theory and mode coupling effects, which successfully

predicted departure of frequency and growth rate from the linear to nonlinear regime.

Nonetheless, Bartlett’s nonlinear dispersion relation failed to predict final saturation
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of the Buneman instability because author retained the terms O(E2
k) only. Ishihara

et. al. [41, 42] derived a nonlinear dispersion relation using quasilinear kinetic

theory (extension of Bartlett’s [40] method) based on the assumption of nonlinear

coherent structure and initial delta function distribution (cold beam) that accounted

for the spreading of electron distribution function, i.e., the deceleration of initial

drift velocity and the heating of the electrons. Authors carried out 1-D kinetic

simulation of Buneman instability and compared numerical solution of the nonlinear

dispersion relation with simulation results which successfully predicted modulation

of frequency and growth rate and departure of growth rate from linear growth

period. Ishihara et. al. retained the terms O(E4
k) in nonlinear dispersion relation

which is why their dispersion relation successfully predicts final saturation of the

instability. In nonlinear stage, electron trapping and mode coupling causes final

saturation of the Buneman instability and minimum energy required for complete

quenching of the Buneman instability via electron trapping is given by inequality∑
k
|Ek|2/16πW0 ≥ 0.11. Ishihara et. al. found that electrostatic energy density at

the final saturation shows weak dependence on electron to ion mass ratio.

Recently, Yoon[51] formulated a phase and spatially averaged perturbative nonlin-

ear weak turbulence theory that involves quasi-linear velocity space diffusion and

nonlinear wave particle interaction, however, it lacks the nonlinear coherent dynamics.

Yoon’s model includes warm beam dynamics therefore it differs from Ishihara et.

al. [41, 42] model. In a companion paper[52], Yoon et. al. carried out Vlasov

simulation of Buneman instability for different electron to ion temperature ratio

and compared the simulation results with that derived weak turbulence theory[51],

which describes the nonlinear development of the Buneman instability qualitatively,

when nonlinear scattering term with wave kinetic equation is included. Results

however show difference during initial stage of nonlinear evolution because of lack of

nonlinear coherent dynamics in the model. Thus Yoon’s model is best applicable for

the problems where nonlinear coherent dynamics is absent.
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Kaw et. al. [29] employed fluid model to study non-resonant Buneman instability

in the low frequency (ω � kve), long wavelength limit (kλde � 1) and neglecting

electron dynamics (keeping electron current constant in the system). Authors have

shown that growth rate of the Buneman instability in the linear regime comes out

to be γ ∼ kv0

√
m/M instead of γ ∼ kv0(m/M)1/3 (what we found for resonant

Buneman instability). Authors obtained a wave like equation with negative ratio of

specific heat. Analysis of the wave like equation shows that the nonlinear evolution

of Buneman instability leads to the formation of double layer type structure and

its collapse. Shokri et al.[84] have investigated nonlinear dynamics of non-resonant

Buneman instability in a weakly ionized un-magnetized plasma placed in an external

electric field using hydrodynamic model. Shokri obtained a diffusion like equation

with a negative nonlinear diffusion coefficient. Authors solved nonlinear stationary

equation and showed that an initial perturbation in electron density explosively

grows with time due to the nonlinear and negative diffusion coefficient. Later

Hatami[85] solved Shokri’s [84] nonlinear time dependent equation, which shows

temporal steepening of electron density.

In the simulation works, Jain et. al.[86] modeled 1-D Vlasov simulation of Buneman

instability. He used an instantaneous linear dispersion relation (derived using a

double Gaussian distribution) to fit the electron distribution function at the different

stages of the simulation. His simulations show that along with the low frequency

Buneman mode, high frequency Langmuir mode and wave modes propagating in

the opposite direction of the wave also gets excited in the nonlinear phase of the

instability. Guo [43] has also reported presence of high frequency Langmuir waves

during the nonlinear evolution of Buneman instability using 1D PIC simulation.

Niknam[87] has carried out 1-D particle-in-cell simulation and reported steepening of

electron density with time. Authors also reported that saturation time of instability

increases with increasing ion to electron mass ratio. Che et. al. [88] described the

rapid electron heating near final saturation of Buneman instability by carrying out 3D
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particle-in-cell simulation. Authors showed that near the saturation, the process of

separatrix crossing (as electrons are trapped and de-trapped) is irreversible and leads

to the heating of plasma. It is observed that as number of trapped particles increases

(decreases), electric field energy increases (decreases), which implies that phase space

holes become narrower(flatten) in phase space. The decrement in electrostatic energy

after saturation of Buneman instability is attributed to flattening of electron phase

space holes. They confirmed the above mentioned dynamics using test particle

simulation.

Omura et al.[45, 70] have reported the role of ion temperature in the nonlinear

decay processes of electron phase space holes (electrostatic waves (ESW)), which

form during nonlinear evolution of Buneman instability. Authors argued that for a

case with hot ions when cs < vth,i < v0, ion acoustic modes are quenched through

ion Landau damping and formation of large electron holes are observed through the

coalescence of smaller electron holes. However, for a case of colder ions vth,i � v0

and cs > vth,i, electron hole decays into ion acoustic waves. Shimada et al. [33]

reported that nonlinear evolution of Buneman instability results into coupled state

of electron hole and ion acoustic soliton, known as coupled hole-solitons [89, 46].

Hashemzadeh et. al. [90, 91, 92] have carried out particle-in-cell simulation of

Buneman instability for q non-extensive distribution and in the presence of negative

ions on the Buneman instability. In the presence of negative ions, by increasing

velocity of positive and negative ions the saturation time of Buneman instability

increases and by increasing the masses of the positive and negative ions, growth rate

decreases. For q non-extensive electron velocity distribution, growth rate increases by

increasing q parameters and growth rate decreases if electron temperature increases.

Finally relativistic Buneman instability has been investigated by Haas et al.[53] using

a Klein-Gordon model for the electrons and cold ions for relativistic quantum plasmas.

Quantum effects have been found to have a stabilizing influence on relativistic
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Buneman instability. Shorbagy [93] also reported stabilizing effects of strong high

frequency electric field on the relativistic Buneman instability. Hashemzadeh et. al.

[54] have carried out 1-D particle-in-cell simulation of relativistic Buneman instability

in a current carrying plasma. Their simulations show that with increase in initial

electron drift velocity the growth rate of Buneman instability decreases.

Above cited references deals with early nonlinear dynamics or dynamics up to the

saturation of Buneman instability. Post saturation dynamics of Buneman instability

is still under scanner and to the best of our knowledge very little work has been

carried out to understand it. Further little work has been done to understand the

evolution and saturation of relativistic Buneman instability.

1.2 Scope of the thesis and Motivation

This thesis is devoted to the study of electrostatic modes and instabilities in current

carrying cold plasma for static and mobile ion background and ranging from non-

relativistic to relativistic regime. Understanding of nonlinear electrostatic coherent

modes and their evolution in current carrying cold plasmas, as discussed in the

section 1.1, are not complete yet and still have deficiencies. In prequel, we discussed

that one can obtain stationary [20, 19] and propagating [18, 23] BGK waves in

the presence of an electron beam. Model of Psimpolous et al. [19] reveals that

for the range κ ≥ 1, electric field becomes discontinuous which is equivalent to

the wave breaking phenomenon in current carrying cold plasmas. Psimpolous et

al. stressed on the fact that discontinuity in the electric field implies formation

of infinitesimally thin periodic negative charged plane in current carrying plasmas.

Ref. [18] and [23] obtained nonlinear dispersion relation for BGK structures in

relativistic regime, however, latter mentioned the possibility of wave breaking but

did not elaborate more on electric field discontinuity and formation of thin negatively
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charged plane. In the chapter 3, we present stationary solution of the relativistic

fluid-Maxwell system in the presence of an electron beam for a wide range of value

of κR (κR = Emax/(8πn0(γ0 − 1)mc2)1/2, where γ0 is a Lorentz factor associated

with the average beam speed v0) including those for which electric field becomes

discontinuous. Further, to the best of our knowledge, space-time evolution of space

charge waves propagating on an relativistic electron beam has not been studied so

far. In chapter 4, we present an exact solution exhibiting space-time evolution of

relativistically intense wave in a homogeneous current carrying plasma with fixed

neutralizing positive ion background.

Next we discuss spatio-temporal evolution of Buneman instability. Linear theory

of Buneman instability is well understood [1, 13] but it is nonlinear theory that

is still under scanner. Electrostatic energy at quasilinear saturation is estimated

successfully by Hirose [39], however, an extensive comparison between theory and

simulation results has not been attempted yet. Electrostatic energy at final saturation

is estimated by Ishihara et al. [41, 42]; their simulation correctly matches with

theoretical estimation of final saturation, although their study were carried out

only for single initial electron drift velocity. Dynamics after saturation of Buneman

instability has been a debatable issue and needs to be analyzed more. For example,

final stage of Ishihara et al. simulations shows large amplitude coherent ion oscillation,

which are indeed supported by Hirose [94] theoretical model. Ref. [45, 70, 43] show

transition of Buneman instability to ion acoustic modes. Also simulations of Shimada

et al. [33] in astrophysical scenarios reported coupled hole-soliton (CHS) after

saturation of Buneman instability, nonetheless, authors do not discuss nonlinear

processes behind the formation of coupled hole-soliton. Following questions are

addressed in the chapter 5 of the thesis (1) Development of Buneman instability

from linear stage to nonlinear stage, (2) first ever comparison of electrostatic energy

level at quasilinear saturation between simulation and theoretical results, (3) effect of

different initial drift velocities on the final saturation of the Buneman instability and
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(4) discussion of nonlinear processes behind the formation of CHSs and comparison

of propagation characteristics of CHSs obtained from the simulation to well known

Saeki’s model [89, 46] of CHSs.

Relativistic Buneman instability is studied by several authors. Haas et al. [53]

derived linear dispersion relation and shows stabilizing influence. Comparison

between growth rate obtained from solution of the linear dispersion relation is not

compared with that estimated from the simulation. PIC simulations of Hashemzadeh

[54] shows that growth rate the relativistic Buneman instability depends on initial

electron drift velocity and saturation time of instability increases with increasing

drift velocity. Although this is expected from a fluid model, a detailed comparison of

the characteristics of the instability with the fluid model has not been presented. The

above discussion indicates that there have been some work on relativistic Buneman

instability in the recent past, but to the best of our knowledge, investigation of its

evolution and saturation using particle-in-cell simulation method, and a detailed

comparison of the simulation results with a fluid model has not been attempted so

far. We address this issue in the chapter 6 of the thesis.

1.3 Thesis organization

A more systematic chapter-wise presentation of electrostatic modes and instabilities

in current carrying plasma is presented below.
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Chapter 2 : Method of solution (Brief description

of numerical schemes)

In this chapter we give a brief introduction of numerical techniques used to simu-

late electrostatic modes and instabilities in a current carrying plasma. Computer

simulation of plasmas comprises of two general techniques based on the fluid and

kinetic description. MHD equations are solved numerically using fluid description.

Most of the collective phenomena of plasma physics are easily simulated using fluid

code, however, fluid code fails to simulate phenomenon involving wave-particle inter-

action, viz., dynamics of plasma after wave-breaking, BGK modes in a warm plasma,

etc. which can be treated only via kinetic theory. Kinetic picture considers more

detailed information by simply computing the motion of charged particles interacting

through the self-consistent electromagnetic forces. Robustness and ability to simulate

real plasma if adequate number of particle trajectories can be computed, makes

Particle-in-cell(PIC) technique a powerful tool to understand plasma behavior rang-

ing from laboratory to astrophysical scenarios. Basic numerical structure, limitation

and differences between fluid and PIC techniques is also discussed in this chapter.

Furthermore, codes are benchmarked against existing theoretical results.

Chapter 3: Study of stationary BGK structures in

current carrying relativistic fluid-Maxwell system

In this chapter we study stationary BGK structures in current carrying relativistic

fluid-Maxwell system using the full set of stationary fluid-Maxwell equations. The

equation of continuity imposes the condition of having constant electron flux through-

out the plasma. First we derive an exact energy equation using pseudo-potential
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(Sagdeev potential) method. Analysis of pseudo-potential shows that BGK structures

are periodic in space and, in contrast to the non-relativistic regime, wavelength of the

BGK structures varies with the variation of κR, where κR = Em/(8πn0(γ0−1)mc2)1/2.

It is also found that Sagdeev potential (V (Φ)) becomes undefined at the electrostatic

potential Φ = (1− γ0)/γ0 or at the energy level κR = κcR = 1/√γ0. Further, analysis

of Φ− E phase space reveals that phase space curves are continuous for the range

0 ≤ κR ≤ κcR, but becomes discontinuous for the range κcR ≤ κR, i.e., electric field

becomes discontinuous periodically at some positions of space, consequently forming

periodic electron sheets in the limit κcR ≤ κR. The charge density of periodically

occurring sheets scales with κR and β as ∼ (κ2
R− (1−β2)1/2)1/2. An exact expression

for electrostatic potential, electric field, electron density and electron velocity as the

function of position are derived which describe the nonlinear BGK structures.

Chapter 4: Evolution of relativistic electron cur-

rent beam propagating through static background

of ions

In this chapter, using cold plasma model, we study the space-time evolution relativistic

electron current beam which is perturbed by a relativistically intense space-charge

waves. In order to simplify the problem, first, governing equations are transformed

in Lagrangian frame using Lagrangian transformation [47]. This transformation

converts the partial differential equation into ordinary differential equation; then

an exact solution is obtained. General solution is obtained for arbitrary initial

conditions. In rest of the chapter, results are analyzed for different relativistic

intensities (eE0/mωpec) of the imposed wave and flow velocities (β = v0/c) of the

current beam. It is observed that when an electron beam propagating with initial

drift velocity v0 is perturbed with relativistically intense wave, spatially averaged
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current diminishes with time due to variation of relativistic mass. Furthermore,

frequency of oscillation is also obtained using Bogoliïÿăuïÿąbov and MitropolÊźski

[48] method in the weakly relativistic limit, that turns out to be space dependent,

which implies fine scale mixing of oscillations eventually leading to wave breaking.

By analyzing the exact solution it is found that amount by which spatially averaged

current diminishes (∆I) increases with increasing relativistic intensity of the wave.

Rate of diminishing of spatially averaged current (dI/dt) increases with increasing

relativistic intensity of the wave. This novel effect may be of relevance to fast ignition

scenarios [30, 31, 49, 50].

Chapter 5: Nonlinear evolution of Buneman insta-

bility and excitation of coupled hole-solitons

The general solution of Buneman instability offers great mathematical difficulty,

therefore, the computer simulation remains strongest means of exploring the inter-

esting physics and validating few existing analytic approaches [39, 41, 42, 51, 52] to

explain nonlinear dynamics of Buneman instability. Simulation is carried out using

an in-house developed electrostatic 1D particle-in-cell code. Code is initialized by

putting nonzero value of initial electron drift velocity, setting a net drift between

electrons and ions which consequently excites Buneman instability. We have followed

space-time evolution of Buneman instability beyond final saturation. Studies are car-

ried out for a broad range of initial drift velocities and electron to ion mass ratio and

an extensive comparison is carried out between simulation and well known theoretical

fluid/kinetic models [39, 41, 42]. Linear growth rate estimated from the simulation,

agrees well with the growth rate obtained from the numerical solution of fourth order

dispersion relation [1]. Further, ratio of electrostatic field energy density to initial

drift kinetic energy density at quasi-linear and final saturation stages are compared
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with theoretical model and simulation results are found to be respectively consistent

with Hirose [39] and Ishihara’s [41, 42] model. It is observed that, in contrast to the

quasilinear saturation, the ratio of electrostatic field energy density to initial kinetic

energy density at final saturation is relatively independent of the electron to ion mass

ratio and is found from simulation to depend only on the initial drift velocity. Final

saturation of BI leaves behind an electron hole with inhomogeneous background of

ions. A strong interaction between electron phase space holes and ions takes place;

this interaction breaks the electron phase space holes into two oppositely propagating

holes each attached with an ion pulse, a coupled state of an ion acoustic soliton and

an electron phase space hole, i.e., coupled hole-soliton (CHS)[46]. The propagation

characteristics (amplitude-speed relation) of CHS (φmax) are in conformity [44] with

Saeki’s [46] theoretical model of CHS. These coupled hole-solitons eventually coalesce

away, finally generating a broadened electron velocity distribution function.

Chapter 6 : Quasilinear evolution of relativistic

Buneman instability

When electron beam is propagating with relativistic speed, dynamics of Buneman

instability is strongly affected [7, 53, 54]. We start our analysis by deriving linear

dispersion relation for Buneman instability in weakly relativistic regime and it is

observed that relativistic effects reduces the maximum growth rate which now scales

with initial drift velocity v0 as γ/ω ≈
√

3
2γ1/2

0

(
m

2M

)1/3
, where γ0 = 1/

√
1− (v0/c)2.

We further analyze relativistic Buneman instability by performing one dimensional

electrostatic relativistic PIC simulation by applying relative drift between electrons

and ions. Study is carried out for a broad range of initial drift velocities (β = v0/c)

and electron to ion mass ratios (m/M). Growth rate obtained from the simulation is

in conformity with that obtained from the numerical solution of fourth order linear
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dispersion relation in weakly relativistic regime. It is found that ratio of electrostatic

energy density to initial kinetic energy density at the quasilinear saturation reduces

due to relativistic effects and scales with γ0 as ∑k|Ek|2/16πW0 ≈ 1
γ2

0
(m
M

)1/3 [55],

where W0 = n0(γ0 − 1)mc2 is initial kinetic energy density. This novel result on the

scaling of energy densities has been found to be in quantitative agreement with our

theoretical back-of-the-envelope estimation, which is obtained using fluid theory.

Chapter 7: Conclusion and future work

In this chapter, we conclude our results and discuss future possibilities for extending

the present work in various limits.
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Method of Solution (Brief Description of Nu-

merical Schemes)

In this chapter, we discuss the basic numerical techniques used in differ-

ent simulation methods (fluid and particle) along with their limitations.

First we discuss fluid simulation techniques and use of LCPFCT [95]

subroutines for solving coupled generalized continuity equations. Next, we

discuss techniques used for performing Particle-in-cell simulation [96].

2.1 Introduction

It is often said that "Mathematics is the language of physics". Most of the

problems encountered in various streams of the physics has been understood

with the help of theoretical model using well established laws of physics.

However, the complex nature of the problems encountered in plasma physics makes

it difficult to do exact theoretical analysis. Computer simulation has hence paved the

way to advance the knowledge of such kind of complex systems. Computer simulation
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has attracted much attention since it was pioneered by Dawson and Birdsall in late

1950’s, due to its robustness and ability to mimic exact physical system if appropriate

spatial and temporal resolution are taken into account.

Computer simulation of plasmas comprises of two general techniques based on the

fluid and kinetic description. In section 2.2 fluid description and fluid simulation

method is discussed. Section 2.3 describes detailed particle-in-cell method [96].

2.2 Fluid Model

In fluid description, each plasma species is described by average physical quantities,

viz., number density, average velocity and average energy. These average fluid

quantities are obtained by solving continuity, momentum and energy equations.

These equations are easily deduced by taking velocity moments of the Boltzmann

equation. Coupling of fluid equations with the Maxwell equations make a complete

set of equations for describing self consistent dynamics of a plasma.

Below we describe the basic techniques required to setup an one dimensional

electrostatic relativistic two fluid code using "LCPFCT - A Flux-Corrected Transport

Algorithm for Solving Generalized Continuity Equations" [95] subroutines.

2.2.1 Basic Equations

The governing set of fluid equations required to simulate current carrying cold plasma

in one dimension can be written as

∂ns
∂t

+ ∂nsvs
∂x

= 0, (2.1)
∂ps
∂t

+ vs
∂ps
∂x

= qsE, (2.2)
∂E

∂x
= 4πe(ni − ne), (2.3)
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j + 1/2j − 1/2

jj

Figure 2.1: A schematic of computation cell used in LCPFCT package.

where s stands for species electron/ion. Here ns,vs and ps = γsmsvs respectively

represent charge density, velocity and momentum of fluid particles and E stands

for electric field. The normalization used are x→ kLx, t→ ωpet, vs → kLvs/msωpe,

ps → kLps/ωpe, n→ ns/n0, E → ekLE/mω
2
pe and , φ→ ek2

Lφ/mω
2
pe.

To carry out numerical solution of the set of fluid equations ((2.1) - (2.3)), we use

LCPFCT package [95]. LCPFCT is used for solving generalized continuity equations

in Cartesian, cylindrical and spherical co-ordinates. LCPFCT is written in Fortran

77 and comprises of multiple subroutines. LCPFCT works on the principle of flux

corrected transport scheme which is discussed briefly in following paragraph.

A schematic of the computational cell is shown in Fig. 2.1, where at each time step

in and out flow fluxes across the cell boundaries changes the total amount (mass,

momentum etc.) contained in the cell volume. It is an obvious property of a fluid

that density can never become negative anywhere regardless of the velocity field

specified. To retain positivity, some amount of flux is added whenever density is

feared to be negative, this process is called diffusion. Strong diffusion introduces the

issues of lack of monotonic solution so some fluxes are subtracted (anti-diffusion)

such that solution remains monotonic. LCPFCT is advance version of this method
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in a way that diffusion and anti-diffusion are adjusted using nonlinear flux correction

method. In LCPFCT scheme fluxes are successively added (diffusion) and subtracted

(anti-diffusion) along the array of densities {n0
j} so that the overall conservation of

mass is satisfied by construction.

The basic set of fluid equations ((2.1) - (2.3)) can be rewritten in flux conserved

form as

for electrons,

∂ne
∂t

+ ∂neve
∂x

= 0, (2.4)
∂nepe
∂t

+ ∂nevepe
∂x

= −neE, (2.5)

for ions,

∂ni
∂t

+ ∂nivi
∂x

= 0, (2.6)
∂nipi
∂t

+ ∂nivipi
∂x

= +m

M
niE. (2.7)

Equation (2.4),(2.6) and (2.5),(2.7) respectively represent no. density and momen-

tum density in flux conserved form.

Minimal number of subroutines required to advance one or more generalized

continuity equations using LCPFCT subroutines in a single time step is shown in

flow chart 2.2. Here we summarize these four subroutines and calling sequences. A

detailed description of these subroutines is given in ref. [95].

1. MAKEGRID:- This subroutine sets up the finite volume grid and must be

called at the initial stage of the simulation or when cell definition is changed

at the initial or during the simulation stage.

2. VELOCITY:- All the velocity dependent terms, i.e., diffusion and antidiffu-
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Set Velocity Related Terms

Integrate Continuity Equation

ΔT
2

ΔT

Calculate Source Term for Momentum Equation

Integrate Momentum Equation

MAKEGRID

VELOCITY

LCPFCT

SOURCE

LCPFCT

Figure 2.2: Flow chart for using LCPFCT subroutine.
sion are calculated in this subroutine.

3. SOURCE:- In this subroutine, all the source terms are set for integration of

continuity equation.

4. LCPFCT:- This subroutine integrates continuity equation and updates new

values of number and momentum density using old values at the cell centers.

All the boundary related terms goes in this subroutine.

In LCPFCT subroutine, equations (2.4)-(2.7) are integrated using predictor correc-

tor method which is second order accurate. First generalized continuity equations

are integrated for half time step and time-centered spatial derivatives and fluxes are

calculated. Then generalized continuity equations are integrated for full time step

using fluxes calculated at half time step. Electric field is determined using Gauss
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law. Gauss Law is solved using central difference method (matrix form of Gauss

elimination) (detailed discussion is presented later in this chapter).

2.2.2 Numerical Scheme for Fluid Simulation

We start the simulation by choosing appropriate system length "L". We discretize

system length in NG equidistant cells and specify initial conditions (density (n0
s)

and flux (n0
sv

0
s) ) on the cell centers. Neighboring boundary between two cells is

called interface and center of each cell is usually called grid point. In our simulation

grid number varies from 0 to NG. We choose periodic boundary condition such that

0th and NGth grid points are identical. After discretizing the system length ’L’, we

call the subroutine MAKEGRID, that sets up the finite volume grid at the initial

stage of the simulation.

} LCPFCT

E

Gauss’s Law
EE

}
∆ t/2 ∆t

0
s n s

1

n ns sn sv v vs s s
0 0 1/2 1/2 1 1

n s
1/2

1/2 10

0

n

Figure 2.3: Time step scheme for solving generalized continuity equation.

In our model, grid definition does not change during the simulation thus time looping

as shown in flow chart 2.2 is started after defining grid. First we calculate electric field
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on grid points which will be used for obtaining source term to integrate momentum

equation. Subsequently fluid velocity for a constituent species is calculated at cell

interfaces following by calling the subroutine VELOCITY which determines velocity

related terms (diffusion and anti-diffusion). Now equation of continuity is integrated

by calling subroutine LCPFCT which gives density at finite time step. We set up

source term for integrating momentum equation by calling subroutine SOURCES

and at last subroutine LCPFCT is called again which integrates momentum equation

using the source terms described in subroutine SOURCES. The sequence from

calculating fluid velocity at interfaces to integrating momentum equation is repeated

for other species also (ions).

Integration of generalized continuity equations in time stepping scheme is elucidated

more clearly in Fig. 2.3 and more elaborate description is given in following bullet

form as

1. Evaluate the electric field {E0
j } using Gauss law.

2. Calculate {v0
j} using the old values of {n0

j} known at the beginning of the time

step. Then we calculate {v0
j±1/2} to determine velocity related terms by calling

subroutine VELOCITY.

3. Convect {n0
j} at half timestep to {n1/2

j } by calling subroutine LCPFCT.

4. Evaluate source term {−n0
jE

0
j } for the momentum equation and call subroutine

SOURCES.

5. Convect {n0
jp

0
j} to {n

1/2
j p

1/2
j } using {−n0

jE
0
j } by calling LCPFCT.

6. Repeat the steps from 2 - 4 for ion species where source term is {(m/M)n0
jE

0
j }.

Now we integrate the generalized continuity equations for a whole timestep ∆t

using the half time step results.

7. Evaluate the electric field {E1/2
j } using {n

1/2
j }.
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8. Calculate {v1/2
j } using the values evaluated at half time step {n1/2

j }. Then we

calculate {v1/2
j±1/2} to determine velocity related terms by calling VELOCITY.

9. Convect {n0
j} for full timestep to {n1

j} by calling subroutine LCPFCT.

10. Evaluate source term {−n1/2
j E

1/2
j } for the momentum equation and call sub-

routine SOURCES.

11. Convect {n0
jp

0
j} to {n1

jp
1
j} using {−n

1/2
j E

1/2
j } by calling subroutine LCPFCT.

12. Repeat the steps from 8 - 11 for ion species to evaluate ion density and

momentum using the source term {(m/M)n1/2
j E

1/2
j } for the full time step ∆t.

This process is repeated for thousands of time steps.

2.2.3 Limitation of Fluid Model

The fluid modeling of plasma is a very powerful technique to describe the plasma

behavior. However, fluid model fails to simulate phenomenon involving wave-particle

interaction, viz., dynamics of plasma after wave-breaking, BGK modes, etc. which

can be treated only via kinetic theory.

2.3 Particle-in-cell Model

Particle-in-cell [96] simulation is a scheme where millions of super particles are evolved

through self consistent average electromagnetic forces. Superparticles are tracked

by solving fundamental equations, viz., Newton-Lorentz equation for the motion of

charged particles coupled with Maxwell equations for the self-consistent calculation

of electric and magnetic fields. The governing equations, viz., the equation of particle

position and velocity, and the Poisson equation in normalized forms are
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for non-relativistic case,

dxs
dt

= vs, (2.8)
dvs
dt

= ±E, (2.9)
∂E

∂x
= (ni − ne), (2.10)

for relativistic case,

dxs
dt

= us
γs
, (2.11)

dus
dt

= ±E, (2.12)
∂E

∂x
= (ni − ne). (2.13)

Then normalization used are x → kLx, t → ωpet, vs → kLvs/ωpe, us → kLus/ωpe,

E → ekLE/mω
2
pe and , φ→ ek2

Lφ/mω
2
pe

Now we describe the basic module for simulating plasma using particle-in-cell

method; a typical flow chart is shown in Fig. 2.4. We consider one dimensional

system of length ′L′ of N particles interacting through self consistent electrostatic

forces. We have taken plasma to be of infinite extent which is modeled by keeping

boundary conditions periodic. The length of the system is chosen to be equal to the

wavelength of the shortest k mode supported by the system. The system is divided

into NG equidistant cells of width ∆x = L/NG, numbered from 0 to NG. The

center of the cells are known as grid points. Periodic boundary condition implies

0th and NGth being identical. All the field quantities, viz., electric field, potential,

charge and number density are determined at the grid points.

After discretizing the system into cells, particles are then loaded into continuum

phase space according to given initial density and momentum (velocity) distribution.

29



CHAPTER 2. METHOD OF SOLUTION (BRIEF DESCRIPTION OF
NUMERICAL SCHEMES)

∆
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Figure 2.4: Flow chart for particle-in-cell simulation code.

The particle positions and momenta (velocity) are obtained by inverting the required

distribution function. Once the initial conditions are specified the charge density is

calculated on the grid points using weighting scheme. Weighting is carried out from

particle positions to the grid points using some kind of interpolation scheme. In our

code we use quadratic spline weighting scheme.

In next step of the simulation, we evaluate electric field on the grid by solving

Gauss’s law using central difference scheme. After calculation of the electric field,

the forces acting on the particles are evaluated using an interpolation scheme. We

use the same interpolation scheme that was used for charge interpolation on the

grid points. One must use same interpolation scheme as has been used for charge

assignment. This is important because it can be shown [97] that for identical charge

assignment and force interpolation schemes and correctly space - centered difference

approximations for derivatives, the self force on a particle arising due to various

particles to grid and grid to particles interpolations is zero and the total momentum

of the system is identically conserved.

Now the forces have been calculated on the particle positions, in next step, we use

forces to determine new position of the particles by solving equation of motion. We

solve equation of motion using standard leap-frog scheme, which is fast and second
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order accurate.

2.3.1 Numerical Scheme for PIC Simulation

This section gives more elaborate details of the various numerical schemes used in

the particle-in-cell code. We start with the particle loading method and then go

over to charge density calculation on the grid points, solution of field equation, force

calculation on the particles and leap frog scheme for solving the equations of motion.

2.3.1.1 Particle Loading Scheme

A physical system is specified by its initially specified average density n0(x) and

momentum (velocity) f0(u)(f0(v)) profile. It is necessary to find position and

momentum (velocity) of all the particles in order to generate these profile in the

simulation model. To do this, density and momentum (velocity) profiles have to

be inverted to get required position and momentum (xi, pi) or position and velocity

(xi, vi) in phase space. In this section, we describe the method of density loading

[98] . Loading of particles in momentum (velocity) space will be discussed later. Let

n(x) be the initial density profile confined in the region a ≤ x ≤ b. The probability

of finding the particle between x and x+ dx is n(x)
N
dx, where N =

b∫
a
n(x)dx. is the

total number of particles and p(x) = n(x)
N

is the probability density. If we consider

that distribution of particles is uniform between (a, b) then the probability density

p(x) is constant and is given by p(y) = 1/(b− a).

Let y be the position of a given particles in this case. To generate p(x) from this, y

has to be moved to a different position, consider x, which is unknown. Now unknown

x is evaluated by equating the total number of particles up to y to the total number
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of particles upto x. Therefore

N

y∫
a

p(y)dy = N

x∫
a

p(x′)dx′, (2.14)

y − a
b− a

=
x∫
a

n(x′)
N

dx′, (2.15)

y − a
b− a

=

x∫
a
n(x′)dx′

b∫
a
n(x′)dx′

. (2.16)

By equating y−a
b−a to an uniform distribution of numbers Ri, where 0 < Ri < 1, and

solving the equation (2.16), xi corresponding to position yi for the ith particle can

be determined.

Using similar scheme, we do particle loading in velocity space. Maxwellian distri-

bution in velocity v is represented as exp(−v2/2v2
t ), where vt is thermal velocity of

the electrons. Consider a range of velocity vl ≥ v ≥ vu such that all particles are

confined within this range, where vu and vl respectively are upper and lower bound

on velocity. Then the probability of finding the particle within the range (vu, vl) is
vu∫
vl

exp(−v2/2v2
t )dv. Therefore cumulative distribution function for the speed is given

by

Rs = F (v) =

v∫
0

exp
(
−v2

2v2
t

)
dv

vu∫
vl

exp
(
−v2

2v2
t

)
dv
, (2.17)

where Rs is a set of quasirandom numbers ranging from 0 to 1. In our simulation

code we choose Sobol set [99] of quasirandom numbers. By solving integrals in

equation (2.17) yields following equation

Rs =
erf

(
v√
2vt

)
erf

(
vu√
2vt

)
− erf

(
vl√
2vt

) , (2.18)

where erf is an error function. By inverting equation (2.18) for quasirandom numbers
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Rs loads the required Gaussian distribution in velocity space. This method does not

only give global Gaussian, but also Gaussian locally.

2.3.1.2 Charge Density Calculation

The charge density at the grid points is evaluated by interpolating the charges from

the particle positions to the grid points. In our simulation code, we use quadratic

spline weighting scheme, which distributes the charge of a particle among three

neighboring grid points. Weighting function for quadratic spline scheme [97] is given

by

Wj(Xj − x) =
[

3
4 −

(
x−Xj

∆x

)2 ]
(2.19)

Wj±1(Xj±1 − x) = 1
2

[
2
2 ±

x−Xj

∆x

]2

. (2.20)

2.3.1.3 Solution of Field Equation

In our simulation, Gauss’s law is solved using central difference scheme as

Ej+1 − Ej−1

2∆x = ρj, (2.21)

where ρ is charge density accumulated at the jth grid point. As we are using periodic

boundary conditions, the R.H.S. of equation (2.21) is periodic ρ0 = ρNG; implies

E0 = ENG. In terms of potential, equation (2.21) can be written as

φj+1 − 2φj + φj−1

∆x2 = −ρj, (2.22)

which can be reduced in the form of tridiagonal matrix as

AΦ = ρ, (2.23)
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where

A =



−2 1 0 ........

1 −2 1 ........

0 1 −2 ........

........

........ −2 1

........ 1 −2



, Φ =



φ0

φ1

φ2

....

φNG−2

φNG−1



and ρ =



ρ0

ρ1

ρ2

....

ρNG−2

ρNG−1



,

The system of linear equations (2.23) are solved using Gauss elimination method.

After determining electrostatic potential on the grid points, electric field is calculated

very easily using following central difference scheme

Ej = −φj+1 − φj−1

2∆x . (2.24)

This field is further used for pushing the particles by solving equation of motion.

2.3.1.4 Calculation of Force

In previous section, we evaluated field on grid points. In this section we describe

the method required to calculate force on the particles. This is carried out by

interpolating the fields from the grid points to the particle positions. For this we use

similar weighting function, that we used for charge assignment as

F (xj) =
[

3
4 −

(
xi −Xj

∆x

)2]
Ej + 1

2

[
1
2 + xi −Xj

∆x

]2

Ej+1 + 1
2

[
1
2 −

xi −Xj

∆x

]2

Ej−1.

(2.25)

2.3.1.5 Leap-Frog Scheme

In this section we describe the Leap-Frog scheme, which is used for solving the

equation of motion which pushes the particles forward in space and time in single

34



CHAPTER 2. METHOD OF SOLUTION (BRIEF DESCRIPTION OF
NUMERICAL SCHEMES)

time step. The time centered difference forms of equations (2.9), (2.8) and (2.12),

(2.11) in respective non-relativistic and relativistic regimes are

for non-relativistic case,
vn+ 1

2 − vn− 1
2

∆t = En, (2.26)

xn+1 − xn

∆t = vn+ 1
2 , (2.27)

for relativistic case,
un+ 1

2 − un− 1
2

∆t = En, (2.28)

xn+1 − xn

∆t = un+ 1
2

γn+ 1
2
, (2.29)

where u = γv and γ2 = 1 + u2/c2. Superscript ’n’ represent values at integral time

steps and superscript n + 1/2 represent values at half integral time steps. Time

centering in Leap frog scheme is achieved by staggering velocities and positions of

the particles by ∆t/2. As we define the initial positions and velocities at t = 0, which

is why to fit the leap-frog scheme, velocities are move backward once by −∆t/2.

In the section 2.3, we have described all the basic numerical schemes required for

setting up an one dimensional particle-in-cell code. The process from calculation of

charge density to solving the equation of motion using leap-frog scheme is repeated

for thousands of time steps, which is also described in flow chart 2.4 .

2.4 Summary

In this chapter, we have presented a brief description of numerical schemes (fluid

and particle-in-cell model) used for simulation of current carrying cold plasmas. We

have employed LCPFCT [95] package for solving continuity and momentum equation

while Poisson equation is solved using central difference scheme. Due to limitation
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of fluid model, one requires more generalized numerical scheme and Particle-in-cell

[96] simulation indeed provides more detailed information about the dynamics of

plasmas. However, fluid models are much more cost effective than PIC models. It

must be noted here that results of fluid model could be recovered from particle

model if sufficient temporal and spatial resolution is taken into account. Results of

simulation carried out using fluid and particle-in-cell simulation code in different

parameter regime are discussed from chapter 4 onwards. Benchmarking of codes

against existing theoretical results is presented from chapter 4 onwards where an

extensive comparison is carried out between simulation and theoretical results.
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3
Study of stationary BGK structures in current

carrying relativistic fluid-Maxwell system

In this chapter, nonlinear stationary structures, formed in cold plasma

with immobile ions, in the presence of a spatially modulated relativistic

electron current beam have been investigated analytically in the colli-

sionless limit. These are cold plasma version of the relativistic BGK

waves. The structure profile is governed by the ratio of maximum elec-

trostatic field energy density to the relativistic kinetic energy density of

the electron beam, i.e., κR = Em/(8πn0(γ0 − 1)m0c
2)1/2, where Em is the

maximum electric field associated with the nonlinear structure and γ0 is

the Lorentz factor associated with average beam speed. In the linear limit,

i.e., κR � 1/√γ0, the fluid variables, viz, density, electric field, and

velocity vary harmonically in space. In the range 0 < κR ≤ 1/√γ0, the

fluid variables exhibit an-harmonic behaviour. For values of κR > 1/√γ0,

the electric field shows finite discontinuities at specific spatial locations

indicating formation of negatively charged planes at these locations. Dis-

37



CHAPTER 3. STUDY OF STATIONARY BGK STRUCTURES IN CURRENT
CARRYING RELATIVISTIC FLUID-MAXWELL SYSTEM

continuity in the electric field momentarily stops the electrons, resulting

in the formation of periodic electrostatic (BGK) structures consists of

negatively charged planes.

In this chapter we derive exact stationary solutions of BGK structures in current

carrying cold relativistic fluid-Maxwell system. An exact expression for electrostatic

potential, electric field, electron density and electron velocity as a function of position

are derived which describe the nonlinear BGK structures. It is also shown that, in

an appropriate limit, results of relativistic theory coincide with the non-relativistic

results. In section 3.1 we give an introduction of the problem. In section 3.1.1, we

derive linear results and in section 3.1.2 nonlinear theory is derived and results are

described. We end the chapter with a brief discussion in section 3.2.

3.1 Introduction

Cold relativistic electron beam can support variety of waves in plasma.

Here we study a special class of nonlinear waves called stationary BGK

waves [13] in a cold plasma which are excited by a relativistic electron

beam. In the non-relativistic regime, and in the absence of a beam, propagating

BGK waves in a cold plasma have been derived by Albritton et. al. [14]. The

BGK mode in this case was obtained from the exact space-time dependent solution

[20] of the full nonlinear fluid-Maxwell set of equations. Similarly propagating

BGK waves in a cold relativistic plasma in the absence of a relativistic electron

beam is simply obtained by transforming the governing equations in such a frame,

where the wave is at rest, the so-called wave frame [15]. Verma et. al. [72] also

constructed such a solution for propagating BGK waves (Akhiezer-Polovin wave [16])

from exact space-time dependent solution [17] of the full relativistic fluid-Maxwell

set of equations by choosing a special kind of transformation[14]. Wang [18] used
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similar kind of transformation for relativistic streaming plasmas and obtained a

nonlinear dispersion relation in Vlasov-Maxwell framework. In the presence of a

beam Psimpolous et. al. [19] obtained the solutions for stationary BGK waves

(stationary in lab frame) in current carrying non-relativistic cold plasmas for a wide

range of parameter (κ = Em/(4πn0mv
2
0)1/2), where Em is maximum amplitude of

the electric field, v0 is average electron beam speed and other symbols have their

usual meanings.

In this chapter, we study BGK structures in a relativistic electron beam propagating

through an immobile homogeneous positive background of ions. Under the influence

of applied harmonic perturbation, periodic compression and rarefaction occurs

in density, so according to equation of continuity electrons accelerate and retard

periodically in space, to maintain the constant flux throughout the system. These

periodic departures from charge neutrality induce in turn a longitudinal electric field

which produces the necessary force on the electrons so that the whole system is kept

in stationary state. It is found that the basic parameter that embodies the nonlinear

effects in the system, is a ratio of maximum electrostatic energy density to total

relativistic kinetic energy density, i.e., κR = Em/(8πn0(γ0 − 1)m0c
2)1/2, where Em is

the maximum amplitude of the electric field, γ0 is the Lorentz factor associated with

average beam speed (v0), n0 and m0 are respectively the density and rest mass of

the electron and c being the speed of light.

In the non-relativistic limit [19], it is found that if κNR → κcNR = Em/(4πn0mv
2
0)1/2 =

1, electric field gradient becomes infinitely steep, periodically in space; so according to

Poisson’s law, electron density also becomes infinitely large. In the case of a relativis-

tic beam and in the presence of relativistically intense wave, the critical parameter

κcR is modified and is found to depend on the average beam speed v0 as κcR = 1√
γ0

. If

κR � κcR, the fluid variables ve(x), ne(x), φ(x), and E(x) vary harmonically in space

in accordance with linear theory. As κR increases, and approaches ≈ κcR within the
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interval 0� κR < κcR, the above variables gradually become anharmonic in space.

In the case of κR ≥ κcR it is shown that gradient of electric field becomes infinitely

steep periodically at certain singular points which in turn implies discontinuity in

electric field and explosive behavior of electron density. This discontinuous electric

field implies formation of negatively charged perfectly conducting planes, infinitely

extended in the transverse direction. In the limit κR → ∞ the BGK structure

collapses to a 1-D crystal. It is also shown that in this limit, results of nonlinear

relativistic theory coincide with the nonlinear non-relativistic theory.

3.1.1 Linear Theory

Let us consider an infinitely long 1D system, where a relativistic electron beam of

density n0 and velocity v0 is propagating through an immobile homogeneous positive

background of ions of density n0. The basic set of governing equations required to

study nonlinear stationary BGK structures are

∂neve
∂x

= 0, (3.1)

ve
∂pe
∂x

= −eE, (3.2)

∂E

∂x
= 4πe(n0 − ne) (3.3)

where pe = γm0ve is momentum of electrons, ve is electron velocity, ne is electron

density, E is electric field and other symbols have their usual meaning.

In the linear limit κR � 1 and in the spirit of weakly relativistic flow v0 < c, fluid

variables describing the spatial profile can be obtained using linearized set of steady
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state fluid equations. The continuity equation is

n0
∂ve
∂x

+ v0
∂ne
∂x

= 0, (3.4)

the momentum equation is

v0
∂pe
∂x

= e
∂φ

∂x
, (3.5)

and the Poisson equation is,

∂E

∂x
= 4πe(n0 − ne). (3.6)

Using equations (3.4), (3.5) and (3.6), solution of stationary equations in the linear

limit can be obtained straightforwardly as

E(x) = Em sin
(
x

sR

)
,

φ(x) = φ0 + γ0m0c
2

e
κRβ

√
2γ0(γ0 − 1) cos

(
x

sR

)
, (3.7)

ve(x) = v0

1 +
κR
√

2(γ0 − 1)
βγ

3/2
0

cos
(
x

sR

) , (3.8)

and

ne(x) = n0

1−
κR
√

2(γ0 − 1)
βγ

3/2
0

cos
(
x

sR

) , (3.9)

where φ0 is an arbitrary additive potential, β = v0/c, and sR = v0γ
3/2
0 /ωpe is the

wavelength of stationary waves in the linear limit κR � κcR. It is readily seen that

in the linear limit fluid variables of stationary waves are harmonic in space. At

φ = φ0, amplitude of electric field is E = Em and fluid variables becomes equal to

their average value. Equations (3.7) - (3.9) can be rewritten in terms of normalized

parameters as

E(X) = κR sinX,
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Φ(X) = κRβ
√

2γ0(γ0 − 1) cosX, (3.10)

ve(X) = β

1 +
kR
√

2(γ0 − 1)
βγ

3/2
0

cosX
 , (3.11)

and

ne(X) =
1−

kR
√

2(γ0 − 1)
βγ

3/2
0

cosX
 , (3.12)

where X = x/sR, E → E/E0, E0 = (8πn0(γ0 − 1)m0c
2)1/2, Φ = e(φ− φ0)/γ0m0c

2,

ve → ve/c and ne → ne/n0. Fig. 3.1 and 3.2 show the potential, electric field,

velocity and density for two different average beam speeds β = 0.1 and β = 0.9

respectively and nonlinear parameter κR = 0.01. In Fig. 3.1 and 3.2 continuous

curves are obtained from the linear theory.

3.1.2 Nonlinear Theory

The set of nonlinear stationary relativistic fluid equations are

ve
∂pe
∂x

= e
∂φ

∂x
, (3.13)

∂neve
∂x

= 0, (3.14)

∂E

∂x
= 4πe(n0 − ne). (3.15)

Now integrating equation (3.13) and assuming that at φ = φ0 at v = v0, relation

between electron velocity and electrostatic potential is obtained as

m0c
2√

1− v2
e/c

2
− m0c

2√
1− v2

0/c
2

= e(φ(x)− φ0). (3.16)
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Figure 3.1: Fig shows (a) potential (b) electric field (c) velocity and (d) density for
the parameters β = 0.1;κR = 0.01. Here continuous curves are obtained from linear
theory and dashed curves are result of nonlinear theory.

Using equation (3.14), (3.15) and (3.16), gradient of electric field as a function of

potential can be written as

d2Φ
dX2 = −β2γ2

0

1− β 1 + Φ√
(1 + Φ)2 − 1 + β2

 , (3.17)

or

d2Φ
dX2 = −dV1(Φ)

dΦ , (3.18)
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Figure 3.2: Fig shows (a) potential (b) electric field (c) velocity and (d) density for
the parameters β = 0.9;κR = 0.01. Here continuous curves are obtained from linear
theory and dashed curves are result of nonlinear theory.

d

dΦ

1
2

(
dΦ
dX

)2

+ V1(Φ)

 = 0, (3.19)

or
1
2

(
dΦ
dX

)2

+ V1(Φ) = constant, (3.20)

which is an energy equation. Here V1(Φ) is a Sagdeev potential and given by

V1(Φ) = β4γ2
0

(
1 + Φ

β2 −
√

1 + 2Φ
β2 + Φ2

β2

)
. (3.21)
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Now putting dΦ/dX = −β(2γ0(γ0 − 1))1/2E in the equation (3.20), yields

E2 + V1(Φ)
β2γ0(γ0 − 1) = constant, (3.22)

or

E2 + V (Φ) = constant, (3.23)

constant in equation (3.23) can be obtained using the condition that at Φ = 0;

V (Φ) = 0 and E = κR, then equation (3.23) becomes

E2 + V (Φ) = κ2
R (3.24)

Equation (3.24) gives a family of curves in the phase space Φ−E modulated by the

parameter κR and β, where V (Φ) is defined as

V (Φ) = 1 + γ0

γ0

(
1 + Φ

β2 −
√

1 + 2Φ
β2 + Φ2

β2

)
(3.25)

In Fig. 3.3 solid blue curve shows variation of Sagdeev potential with the elec-

trostatic potential Φ for different average beam speeds β ≈ 0.1, β ≈ 0.5, β ≈ 0.9

and β ≈ 0.99. It is noticed here that Sagdeev potential becomes undefined at

Φc = −(γ0 − 1)/γ0 (below this value of potential, the square root term becomes

imaginary). Substituting this value of Φc in V (Φ), the critical value of pseudo-energy

(κR) turns out to be κcR = 1/√γ0. The κcR is the critical value of κR, above which

periodic solutions do not exist. The straight lines in Fig. 3.3 show different values

of κR . κcR for which periodic solutions exist; corresponding to these values of κR

closed orbits are seen in Φ− E space (Fig. 3.4).

In Fig. 3.4 the relation Φ − E is plotted for different values of the parameters

(κR) and relativity (β) parameters. It is readily noticed by looking at the Fig. 3.4

that the variation of β modulates the shape of phase space curves as well as changes
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Figure 3.3: In this Fig. continuous line shows Sagdeev potential for different speed
ratios (a) β = 0.1 (b) β = 0.5 (c) β = 0.9 and (d) β = 0.99 and dotted line shows
level of pseudo-energy for different value of κR.

the range of electrostatic potential Φ. It is also noticed that phase space becomes

discontinuous after a critical value of κR and this critical value as mentioned above

is κR = κcR = 1/√γ0. It is found that at the κR = κcR, gradient of electric field

becomes infinite, i.e., dE/dX →∞, which is a sign of wave breaking of stationary

BGK structures in current carrying plasmas.

The range of electrostatic potential Φ for 0 ≤ κR ≤ κcR and for κcR ≤ κR <∞, can

be obtained from equation (3.24) and are respectively given by equations (3.26) and

(3.27) below

γ0(γ0 − 1)
(
κ2
R − κRβ

√
κ2
R + 2

γ0(γ0 − 1)

)
≤ Φ ≤
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Figure 3.4: Φ−E phase space for different nonlinear parameter and ratio of average
speed of the beam to speed of light (a) β ≈ 0.1, (b) β ≈ 0.5, (c) β ≈ 0.9, (d)
β ≈ 0.99.

γ0(γ0 − 1)
(
κ2
R + κRβ

√
κ2
R + 2

γ0(γ0 − 1)

)
0 ≤ κR ≤

1
√
γ0

(3.26)

−
(

1− 1
γ0

)
≤ Φ ≤ γ0(γ0− 1)

(
κ2
R + κRβ

√
κ2
R + 2

γ0(γ0 − 1)

)
1
√
γ0
≤ κR <∞

(3.27)

In the range 0 ≤ κR ≤ κcR, curves of equation (3.24) are continuous and E is

found to be oscillating in the range −κR ≤ E ≤ κR. In the range κR ≥ κcR, E

becomes discontinuous at Φc = (1− γ0)/γ0 and jumps from E = −
√
κ2
R −

√
1− β2

to E =
√
κ2
R −

√
1− β2. This implies that E(X) is discontinuous at the positions

X satisfying the condition Φ = e(φ(X) − φ0)/γ0m0c
2 = (1 − γ0)/γ0. The critical

electrostatic potential at which its gradient (E(X)) becomes discontinuous, is not
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constant as in non-relativistic regime (Φc
non−relativistic = −1) [19], rather, relativity

brings the dependency of critical electrostatic potential on the average beam speed

by the relation e(φ(X)− φ0)/γ0m0c
2 = (1− γ0)/γ0. Figure 3.5 shows variation of

critical nonlinear parameter κcR and critical electrostatic potential Φc with respect to

ratio of average beam speed to speed of light. Potential varies from Φc = 0− (−1)

for the range β = 0 − 1; γ0 = 1 −∞. This implies E(X) is discontinuous at the

positions X satisfying e(φ(X)− φ0)/γ0m0c
2 = 0− (−1).
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Figure 3.5: Variation of (a) critical nonlinear parameter κcR = 1/√γ0 (b) critical
potential Φc = (1− γ0)/γ0 with respect to ratio of average beam speed to the speed
of light (β).

Using E = −1
β(2γ0(γ0−1))1/2

dΦ
dX

, and assuming Φ = Φu = γ0(γ0−1)
(
κ2
R + κRβ

√
κ2
R + 2

γ0, (γ0 − 1)

)
at X = 0, the energy equation (3.24) can be integrated to obtain potential as a

function of position as

β(2γ0(γ0−1))1/2
X∫

0

dX = −
Φu∫
Φ

dΦ(
κ2
R − 1+γ0

γ0

(
1 + Φ

β2 −
√

1 + 2Φ
β2 + Φ2

β2

))1/2 . (3.28)

For simplification, we assume Φ + 1 = ξ
√

1− β2, then integrand of R.H.S. of

equation (3.28) takes the form
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dΦ(

κ2
R − 1+γ0

γ0

(
1 + Φ

β2 −
√

1 + 2Φ
β2 + Φ2

β2

))1/2 =

√
1− β2dξκ2

R − 1+γ0
γ0

1 +
ξ

√
1− β2−1
β2 −

√
1− β2

β

√
ξ2 − 1

1/2 . (3.29)

For the sake of convenience, we define a new mathematical quantity α as

α = (γ0 − 1)κ2
R + 1

γ0
, (3.30)

which transforms the equation (3.29) into

dΦ(
κ2
R − 1+γ0

γ0

(
1 + Φ

β2 −
√

1 + 2Φ
β2 + Φ2

β2

))1/2 = β

(1 + γ0)1/2
dξ(

α− ξ + β
√
ξ2 − 1

)1/2 .

(3.31)

In order to further simplify the calculation of the above integral, a new variable

transformation is introduced which is defined as

√
ξ2 − 1 = χ2 − ξ, (3.32)

and

dξ =
(
χ− 1

χ3

)
dχ, (3.33)

then the integral (3.31) changes into

−
ξu∫
ξ

βdξ

√
1 + γ0

(
α− ξ + β

√
ξ2 − 1

)1/2 =

−
(

1 + β

1− β

)1/2 ( 2
1 + γ0

)1/2 χu∫
χ

(χ2 − 1/χ2)dχ
((r2 − χ2)(χ2 − s2))1/2 , (3.34)
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where r2 and s2 are function of X and are defined as

r2 =
α +

√
α2 + β2 − 1
1− β , (3.35)

s2 =
α−

√
α2 + β2 − 1
1− β . (3.36)

It must be noted here that substitution of new variable χ(X), is merely a mathemat-

ical manipulation, and does not imply any restriction on the range of the potential.

Now equation (3.34) is in standard form and can be reduced easily in the form of

elliptic integral upon using new substitution

sin2 θ = r2 − χ2

r2 − s2 (3.37)

this implies

dχ = − (r2 − s2) sin θ cos θ√
r2 cos2 θ + s2 sin2 θ

(3.38)

Thus, the exact solution of equation (3.28) can be written as

Xr3 = − (1 + β)1/4

γ0β(1− β)1/4

((
r4(k2 − 1) + 1

k2 − 1

)
E(θ, k)− k2 sin 2θ

2(k2 − 1)(1− k2 sin2 θ)1/2

)
+c1(Φ)

(3.39)

where E(θ, k) is an incomplete elliptic integral of second kind and c1(Φ) is the constant

of integration that can be obtained using the boundary condition that at positionX =

0, potential is maximum, which is Φu = γ0(γ0−1)
(
κ2
R + κRβ

√
κ2
R + (2/γ0(γ0 − 1))

)
;

then the complete solution becomes

Xr3 = − (1 + β)1/4

γ0β(1− β)1/4

[(
r4(k2 − 1) + 1

k2 − 1

)
(E(θu, k)− E(θ, k))

− k2 sin 2θu
2(k2 − 1)(1− k2 sin2 θu)1/2 + k2 sin 2θ

2(k2 − 1)(1− k2 sin2 θ)1/2

]
(3.40)
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Here the variables k, θu and θ are defined as

k2 = r2 − s2

r2 =
2
√
α2 + β2 − 1

α +
√
α2 + β2 − 1

,

sin2 θu =
r2 − γ0(1 + Φu +

√
β2 + 2Φu + Φ2

u)
r2 − s2 ,

sin2 θ =
r2 − γ0(1 + Φ +

√
β2 + 2Φ + Φ2)

r2 − s2 . (3.41)

Equation (3.40) gives implicit relation between potential and position. The potential

Φ(X) as a function of position X for different values of kR and β can be obtained by

numerical solution of equation (3.40) and (3.41).

The half wavelength (spatial variation between maxima to minima of the elec-

trostatic potential) of the BGK structures can be obtained for the range κR ≤ κcR and

κR ≥ κcR by putting the minimum values of Φ ( Φl = γ0(γ0−1)
(
κ2
R − κRβ

√
κ2
R + (2/γ0(γ0 − 1))

)
and Φl = Φc = (1 − γ0)/γ0 respectively) in the equation (3.40). In the range

0 ≤ κR ≤ κcR wavelength turns out to be

λ = 2µsR, (3.42a)

where

µ = − (1 + β)1/4

γ0β(1− β)1/4

[(
r4(k2 − 1) + 1
r3(k2 − 1)

)
(E(θl, k)− E(θu, k))

− k2 sin 2θu
2r3(k2 − 1)(1− k2 sin2 θu)1/2 + k2 sin 2θl

2r3(k2 − 1)(1− k2 sin2 θl)1/2

]
(3.42b)

and for the range κcR ≤ κR <∞ it becomes

λ = 2µcsR, (3.43a)
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where

µc = − (1 + β)1/4

γ0β(1− β)1/4

[(
r4(k2 − 1) + 1
r3(k2 − 1)

)
(E(θc, k)− E(θu, k))

− k2 sin 2θu
2r3(k2 − 1)(1− k2 sin2 θu)1/2 + k2 sin 2θc

2r3(k2 − 1)(1− k2 sin2 θc)1/2

]
. (3.43b)

Here wavelengths µ(κR, β) and µc(κR, β) are explicit functions of nonlinear parameter

κR and speed β. Corresponding non-relativistic expression for wavelength can be

found in reference [19]. For the non-relativistic case, in the linear limit 0 ≤ κNR ≤

1, Psimpoulous’ observed that wavelength of the BGK structure is constant and

independent of κNR, however, in the limit 1 ≤ κNR < +∞, wavelength becomes a

function of κNR and wavelength increases with increasing nonlinear parameter κNR.

In the relativistic regime, it is readily seen that wavelengths (equation (3.42b) and

(3.43b)) are not only a function of nonlinear parameter (κR) but also has dependence

on ratio of average beam speed to the speed of light (β) through the variable k;

where k is defined by equation (3.41). In the relativistic regime, within the range

0 ≤ κR ≤ κcR, it is found that wavelength depends on β as well as on κR (wavelength

turns out to be independent of κNR in non-relativistic regime as long as κNR lies

within the range 0 ≤ κR ≤ 1). Figure 3.6 shows variation of wavelength of the BGK

structure with the nonlinear parameter (κR) for two different average beam speeds,

i.e., β = 0.1 (3.6a) and β = 0.9 (3.6b). In fig 3.6 for the speed β = 0.1 (Fig. 3.6a),

in the range 0 ≤ κR ≤ κcR (blue color curve), wavelength is almost constant or in

other words, in the range β � 1 wavelength of relativistic BGK structure turns out

to be independent of κR, a feature which is seen in the non-relativistic case also [19].

However, for the speed β = 0.9 (Fig. 3.6b), wavelength increases with increasing κR

as shown in Fig. 3.6b, i.e., wavelength shows strong dependence for large values of β.

Therefore, dependence of wavelength on average beam speed is purely a relativistic

effect. In the highly nonlinear limit κcR ≤ κR < ∞, wavelength for all value of β

increases with increasing κR (orange curve in Fig. 3.6). The dashed vertical line
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in Figs. 3.6a and 3.6b separates the regime 0 ≤ κR ≤ κcR and κcR ≤ κR <∞. The
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Figure 3.6: Variation of wavelength of relativistic BGK structure for the speed ratio
(a) β = 0.1 and (b) β = 0.9.

rate of increase of wavelength with κR increases with increasing β. Fig. 3.7 shows

wavelength as a function of nonlinear parameter κR for different value of β ≈ 0.1, 0.9,

0.99 and 0.999. It is clearly seen that slope (dλ/dκR and dλc/dκR) of wavelength

increases with increasing β.
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Figure 3.7: Comparison of wavelengths with a range of nonlinear parameter κR for
different values of β.

The potential Φ(X) for two different speeds β ≈ 0.1; β ≈ 0.9 and for a wide range

of nonlinear parameter (κR) is plotted in figure 3.8 and 3.9. Maxima and minima of

electrostatic potential for both the range of κR, i.e., 0 ≤ κR ≤ κcR and κcR ≤ κR <∞,

coincide with the range of electrostatic potential (equation (3.26) and (3.27) ) obtained
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using Φ− E relation. In first case, when β ≈ 0.1 is considered, plot (Fig. 3.8a ) of

potential Φ(X) is shown for nonlinear parameter kR ≈ 0.1, 0.3, 0.5, 0.7, 0.9. As it has

already been discussed that for β ≈ 0.1, wavelength of the BGK structure remains

independent of κR (β � 1) as shown in Fig. 3.6a(blue color curve), therefore, minima

of the potential occurs at X ≈ π for the nonlinear parameter range 0 ≤ κR ≤ κcR,

that is clearly illustrated in Fig. 3.8a. In second case when β = 0.9 is considered

(Fig. 3.8b), wavelength increases with increasing nonlinear parameter (see orange

curve in Fig. 3.6) so the position of minima of the electrostatic potential occurs

at X = µ as can be seen in Fig. 3.8b. In the limit κcR ≥ κR, the minima of the

electrostatic potential Φ(X) is manifested at X = µc ≈ 3.18 for speed ratio β ≈ 0.1,

as it is shown in figure 3.9a, and for the speed ratio β ≈ 0.9, Fig. 3.9b illustrates

that minima of Φ(X) is manifested at X = µc ≈ 4.59.
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Figure 3.8: Plot of electrostatic potential Φ(X) for (a) κR ≈= 0.1, 0.3, 0.5, 0.7, 0.9
and β ≈ 0.1, (b) κR ≈ 0.1, 0.3, 0.5 and β ≈ 0.9

We can derive electric field in terms of position X by solving equation (3.24) and

considering two branches depending on the sign of potential Φ

Φ > 0; Φ = γ0(γ0 − 1)(E2 − κ2
R)
1 + β

(
1 + 2

γ0(γ0 − 1)(E2 − κ2
R)

)1/2


Φ < 0; Φ = γ0(γ0 − 1)(E2 − κ2
R)
1− β

(
1 + 2

γ0(γ0 − 1)(E2 − κ2
R)

)1/2
 (3.44)
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Figure 3.9: Plot of electrostatic potential Φ(X) for (a) κR ≈ 0.7 and β ≈ 0.1;µ ≈ 3.18,
(b) κR ≈ 0.7 and β ≈ 0.9;µ ≈ 4.59

Range of E can be estimated using equation (3.24):(i) if 0 ≤ κR ≤ κcR, we have

0 ≤ E ≤ κR for both branches; (ii) if κcR ≤ κR < +∞ we have 0 ≤ E ≤ κR for

Φ > 0 and
√
κ2
R −

√
1− β2 ≤ E ≤ κR for Φ < 0. We observe that in the linear

limit κR � κcR, results obtained from nonlinear theory coincide with the harmonic

solution obtained from the linear theory. Fig. 3.1 and 3.2 show the fluid variables

in the linear limit for the speed β ≈ 0.1 and β ≈ 0.9 respectively, where continuous

curves show results obtained from the linear theory and dashed curves show results

obtained from the nonlinear theory in the linear limit. Both continuous and dashed

curves clearly coincide on each other for both value of β. In the range 0 ≤ κR < κcR,

we obtain that at X ≈ µ implies E = 0 and

dE

dX
=
(
γ0(γ0 + 1)

2

)1/2 (
1− β(Φ + 1)

(Φ2 + 2Φ + β2)1/2

)
, (3.45)

is always negative if Φc < Φ < 0. A gradual steepening of wave form occurs as

Φ→ Φc. If Φ = Φc, κR becomes κcR that implies E = 0; dE/dX = −∞ at X = µc. If

κR > κcR, E becomes discontinuous at X = µc and E jumps from −
√
κ2
R −

√
1− β2

to
√
κ2
R −

√
1− β2. This jump in electric field implies the formation of negatively
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charged plane at X = µc. The surface charge density ρ of these planes is defined as

ρ = ∆E/4π = ∆E = E0

2 (κ2
R −

√
1− β2)1/2. (3.46)

Fig. 3.10a and 3.10b show spatial variation of electric field for two particular case

β ≈ 0.1 and 0.9. In first case when β ≈ 0.1 in Fig. 3.10a, gradual steepening of

electric field is seen at X ≈ π as κR → κcR;Φ → Φc. Similar dynamics follows for

the second case when β ≈ 0.9, where gradual steepening of E occurs at X = µ as

shown in Fig. 3.10b. When κR > κcR, a discontinuity of E is seen to be manifested

at the position X ≈ 3.17 for β ≈ 0.1 and at X ≈ 4.59 for β ≈ 0.9 as shown in

Fig. 3.11a and 3.11b respectively. It is also found that in the range β → 0 and/or

κR →∞ range, electron beam is transformed into a crystal of "negatively charged

plane" with inter-distance λ0 = Em/2πn0e having surface charge density ∼ Em/2π,

which matches with the results found in non-relativistic regime [19].
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Figure 3.10: Plot of electric field for (a) β = 0.1;κR = 0.1, 0.3, 0.5, 0.7, 0.9 at X = π
(b) β = 0.9;κR = 0.1, 0.3, 0.5 at X = µ.

The gradual steepening and discontinuity of the electric field modulates the electron

speed profile. The E − ve phase relation can be constructed using equation (3.16)

and (3.24) as

E2 − κ2
R = 1

γ0(γ0 − 1)

1− γ0 (1− βve)√
1− v2

e

 (3.47)
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Figure 3.11: Plot of electric field for (a) β ≈ 0.1;κR ≈ 1.1 at X ≈ 3.17 and (b)
β ≈ 0.9;κR ≈ 0.7 at X ≈ 4.59.
Fig. 3.12 shows E − ve phase space modulated by the nonlinear parameter κR
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Figure 3.12: Plot E − ve phase space for different nonlinear parameter and ratio of
average beam speed to the speed of light (a) β ≈ 0.1, (b) β ≈ 0.5, (c) β ≈ 0.9, (d)
β ≈ 0.99.
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and ratio of average beam speed to the speed of light β. It is readily seen that in

the range κR > κcR, E − ve phase space becomes discontinuous and E jumps from

−
√
κ2
R −

√
1− β2 to

√
κ2
R −

√
1− β2 at the potential satisfying Φ = Φc.

The fluid velocity as function of position can be obtained using equation (3.16)

ve = ±
(

Φ2 + 2Φ + β2

Φ2 + 2Φ + 1

)1/2

(3.48)

Equation (3.48) gives the relation between velocity and self consistent electrostatic

potential. Since we strictly exclude the existence of trapped electrons in the system

therefore +ve sign of the velocity is taken in the account. As κR → κcR;Φ→ Φc at

the position satisfying X = µ, numerator of equation (3.48) tends to zero in the limit

Φ→ Φc, thus, a gradual decrement in electron velocity occurs at the position X = µ.

If κR ≥ κcR then Φ = Φc at the position X = µc, this implies that numerator of the

equation (3.48) becomes zero at that position, in other words velocity becomes zero.

This means electrons stop momentarily at the position X = µc and then continue

their motion in +x direction. This short time rest of the electrons, consequently,

leads to the accumulation of the charge particles at the position X = µc that is

further manifested in density burst or, in other words, in order to maintain the

electron current, electron density has to increases at the positions where electrons

speed decreases. Fig. 3.13a and 3.13b show electron velocity for the speed ratios

β ≈ 0.1 and 0.9 respectively, and a gradual decrement of electron velocity can be

seen clearly at the position X = π for β ≈ 0.1 and at X = µ for β = 0.9. Fig. 3.14a

and 3.14b illustrates that in the limit κR ≥ κcR;Φ = Φc, velocity becomes zero at the

position satisfying X = 3.17 for β = 0.1 and X = 4.59 for β = 0.9.

The electron density can be written as

ne(X) = 1−
(

2
γ0(γ0 − 1)

)1/2
∂E

∂X
. (3.49)
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Figure 3.13: Plot of electron velocity for the parameters (a) β ≈ 0.1;κR ≈
0.1, 0.3, 0.5, 0.7, 0.9 at X ≈ π (b) β ≈ 0.9;κR ≈ 0.1, 0.3, 0.5 at X = µ.
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Figure 3.14: Plot of electron velocity for the parameters (a) β ≈ 0.1;κR ≈ 1.1 at
X ≈ 3.17 and (b) β ≈ 0.9;κR ≈ 0.7 at X ≈ 4.59.

Using equation (3.45), the electron density is therefore may be reduced to a function

of electrostatic potential

ne(X) = β(Φ + 1)
(Φ2 + 2Φ + β2)1/2 , (3.50)

equation (3.50) gives implicit relation between electron density and spatial position

by eliminating electrostatic potential using equation (3.40) and (3.41). As it has

already been discussed that in the range 0 ≤ κR < κcR, Φ approaches to Φc and

modulation of the electrostatic potential leads to the steepening of the density which

can be clearly seen in the Fig. 3.15a for β ≈ 0.1 at X = π and in Fig. 3.15b for
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β ≈ 0.9 at X = µ. When κR ≥ κcR then Φ = Φc and denominator of the equation

(3.50) vanishes. This explosive behavior beyond κcR can be clearly seen in Figs. 3.16a

and 3.16b, where density burst is manifested at X ≈ 3.17 for β ≈ 0.1 (in Fig. 3.16a)

and at X ≈ 4.59 for β ≈ 0.9 (in Fig. 3.16b) respectively.
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Figure 3.15: Electron density modulation (a) β ≈ 0.1;κR ≈ 0.1, 0.3, 0.5, 0.7, 0.9 at
X ≈ π (b) β ≈ 0.9;κR ≈ 0.1, 0.3, 0.5 at X = µ.
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Figure 3.16: Electron density for (a) β ≈ 0.1;κR ≈ 1.1 at X ≈ 3.17 and (b)
β ≈ 0.9;κR ≈ 0.7 at X ≈ 4.59.

It must also be noticed from equations (3.48) and (3.49) that product of electron

density and velocity ( electron flux ) remains constant for each value of κR, i.e.,

neve = β.
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3.2 Conclusion

An analytical study is carried out for stationary BGK structures in relativistic

current carrying fluid-Maxwell system. It is observed that nonlinear BGK structures

is governed by the nonlinear parameter κR = Em/(8πn0m0(γ0 − 1)c2)1/2. Critical

nonlinear parameter scales with average beam speed v0 as κR = 1/√γ0. Amplitude of

nonlinear parameter (κR) embodies the nonlinear effects in the problem. In the linear

limit κR � 1/√γ0, fluid variables vary harmonically in space and results of nonlinear

theory coincides with the results of linear theory in this range. As κR → 1/√γ0

fluid variables gradually begin to shown anharmonic features. In the nonlinear limit

κR ≥ 1/√γ0, electric field becomes discontinuous at certain singular points in space.

Average beam speed decreases at the position of electric field discontinuity, so to

keep the current constant, density has to shoots up. This process manifests as a

density burst periodically in space. These density burst may approach finite values

on inclusive of thermal effects. It is found that in the β → 0 and/or κR → ∞

range, electron beam is transformed into a crystal of "negatively charged plane"

of inter-distance λ0 = Em/2πn0e having surface charge density ∼ Em/2π, which

matches with the results found in non-relativistic regime [19]. Study of excitation

and stability of these BGK structures using a PIC/fluid code is left for future studies.
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Evolution of relativistic electron current beam

moving through a fixed homogeneous back-

ground of ions

In this chapter, an analytical study of evolution of relativistic electron

beam propagating through a cold homogeneous plasma with immobile ions

has been carried out by employing the method of Lagrange transformation.

It is found that beam current when longitudinally perturbed by an elec-

trostatic wave, diminishes with time due to phase mixing effects arising

because of spatial variation of relativistic mass. Study has been conducted

for various flow velocities (v0/c) and relativistic intensities ( eE0
mωpec

) of the

perturbed wave. It is found that the rate of decrease of current decreases

with increasing flow velocity and increases with increasing wave intensity.

Analytical results are compared with that obtained from simulations.

In previous chapter, we studied stationary BGK structures in a current carrying

relativistic Fluid-Maxwell system. In this chapter, we carry out full spatio-temporal
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study of the effects of a relativistically intense wave on the relativistic electron beam.

An exact solution for density and momentum has been derived by transforming

the governing equations into Lagrangian co-ordinates. In section 4.1, we give an

introduction of the problem. In section, 4.2.1 we first present exact solution for

the corresponding problem, i.e., non-relativistic electron plasma waves propagating

on non-relativistic electron beam and section 4.2.2 presents the exact solution for

relativistically intense wave propagating on relativistic electron beam. Next, in the

section 4.3, we discuss results obtained from the analytical solution and compare

with that obtained from simulations. We end this chapter by summarizing the results

in the section 4.4.

4.1 Introduction

The problem of nonlinear electron plasma oscillation in a nonrelativistic

cold plasma was solved exactly by Davidson [20, 47] by employing the

method of Lagrange transformation, which converts partial differential

equations into ordinary differential equations. Author showed that any initial periodic

profile with wavelength 2π/k leads to a well defined oscillation, provided that electric

field does not exceed a critical value which is ekLE/mω2
pe = 0.5. Above this threshold

wave breaks and coherent motion of the particle changes into random motion. The

space time development of nonlinear electron plasma oscillation in a relativistic

cold plasma has been addressed exactly by Infeld [17] using method of Lagrange

transformation. In relativistic regime, wave breaking is not limited by finite amplitude

of electric field as found in nonrelativistic regime. Drake et. al. [100] and Sengupta

et. al. [75] have shown that in a cold plasma due to relativistic dynamics, a wave

always phase mix away for any arbitrary initial condition, thus leading to wave

breaking. Highly energetic particles produced via wave breaking process have been

observed in several plasma based particle acceleration schemes [101, 102].
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In this chapter, we extend our consideration to current carrying plasmas. To the

best of our knowledge, very little work has been carried out to understand spatio-

temporal evolution of space charge waves on relativistic electron beam propagating

through a plasma. In some early attempts, Chian et. al. [23, 24] obtained a

nonlinear dispersion relation for subluminous waves in such a frame where governing

equations become space independent. Chian [25] obtained wave breaking limit for

subluminous waves as Em =
√

2(mωpec/e)[γph(1− βphβ0)− 1/γ0]1/2, where γph and

β0 are respectively the Lorentz factor associated with wave phase velocity vph and

velocity of electron beam v0. Study by Chian et. al. was limited to seeking travelling

wave solution and authors sole purpose was to obtain wave breaking limit in current

carrying plasma. We obtain exact analytical solution for space charge wave in

relativistic current carrying cold plasma.

4.2 Theory

We consider one dimensional infinitely long physical system, where a relativistic

electron beam of density n0 and velocity v0 is propagating through an immobile,

homogeneous, neutralizing background of ions. The basic set of governing equation

required to study the spatio-temporal evolution of relativistically intense wave in the

presence of a beam propagating through an immobile background of ions are

∂ne
∂t

+ ∂neve
∂x

= 0, (4.1a)

∂pe
∂t

+ ve
∂pe
∂x

= −eE, (4.1b)

∂E

∂x
= 4πe(n0 − ne) (4.1c)

∂E

∂t
= 4πeneve − 4πen0v0 (4.1d)
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where ne, pe = γmve, ve are density, momentum and velocity of the electrons

respectively, E is electric field. Other symbols have their usual meaning.

Before carrying out exact solution of space charge wave in the presence of a

relativistic electron beam, we first solve the corresponding set of non-relativistic

nonlinear equation and in a later section relativistic effects on the space charge wave

will be discussed.

4.2.1 Evolution of non-relativistic electron beam in the pres-

ence of non-relativistic electron plasma wave

We consider an infinite system where an electron beam of density n0 with non-

relativistic speed v0 � c is propagating through an immobile homogeneous neutraliz-

ing background of ions of density n0. Thus, in the non-relativistic limit, the set of

governing fluid equations (4.1a) - (4.1d) is reduced to

∂ne
∂t

+ ∂neve
∂x

= 0, (4.2a)

∂ve
∂t

+ ve
∂ve
∂x

= −eE
m
, (4.2b)

∂E

∂x
= 4πe(n0 − ne), (4.2c)

∂E

∂t
= 4πeneve − 4πen0v0, (4.2d)

An exact solution for above set of equations (4.2a) - (4.2d), can be obtained using

Lagrangian co-ordinates (x0, τ), where Lagrangian transformation is defined as

x = x0 +
τ∫

0

v(x0, τ)dτ, τ = t, (4.3a)
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∂

∂x
≡

1 +
τ∫

0

dτ
′ ∂

∂x0
v(x0, τ

′)
−1

∂

∂x0
, (4.3b)

∂

∂t
≡ ∂

∂τ
− v(x0, τ)

1 +
τ∫

0

dτ
′ ∂

∂x0
v(x0, τ

′)
−1

∂

∂x0
. (4.3c)

The basic set of equations (4.2a) - (4.2d) using Lagrangian transformation can be

written as,
∂ve
∂τ

= −eE/m, (4.4)

∂E

∂τ
= 4πen0ve − 4πen0v0, (4.5)

which can be combined to give,

∂2ve
∂τ 2 + ω2

peve = ω2
pev0. (4.6)

Solution of equation (4.6) using following initial conditions,

ne(x0, 0) = n0(1 + ∆ cos kx0), (4.7a)

ve(x0, 0) = v0, (4.7b)

can be written as

ne(x0, τ)
n0

= 1 + ∆ cos kx0

1 + ∆ cos kx0(1− cosωpeτ) , (4.8)

kve(x0, τ)
ωpe

= kv0

ωpe
+ ∆ sin kx0 sinωpeτ, (4.9)

ekE(x0, τ)
mω2

pe

= −∆ sin kx0 cosωpeτ, (4.10)
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where relation between Euler and Lagrange co-ordinates is defined as

kx = kx0 + kv0τ + ∆ sin(kx0)(1− cos(ωpeτ)), (4.11)

where ∆ is an amplitude of initial density perturbation and k is the wave number.

Equation (4.8), (4.9) and (4.10) respectively exhibit space-time evolution of density,

velocity and electric field of fluid variables associated with the electron beam, when

a nonlinear perturbation is applied longitudinally. Equation (4.11) gives relation

between Eulerian (x) and Lagrangian (x0) position co-ordinates. Electron density is

ekLE0/mω2
pe = 0.45, kLv0/ωpe = 0.5
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Figure 4.1: Spatio-temporal evolution of (a) electron density and (b) electron velocity
for the parameters ekLE0/mω

2
pe = 0.45 and initial drift velocity kLv0/ωpe = 0.5.

Here continuous line represents result of PIC simulation and dots are obtained from
analytical solution.

plotted in Fig. 4.1a at different time steps for the parameters ekLE0/mω
2
pe = 0.45

and kLv0/ωpe = 0.5, where continuous lines are the result of PIC simulation and

dots are taken from analytical solution. The observed nonlinear oscillations are

maintained indefinitely and wave breaking does not take place as long as amplitude

of initial density perturbation is less than wave breaking limit for cold un-magnetized

plasma, i.e., ekLE0/mω
2
pe ≤ 0.5. In Fig. 4.2a average current is plotted with time,

where continuous line shows result of simulation and dots are a result of analytical

solution. It is clear from Fig. 4.2a that current remains constant with time. In
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non-relativistic regime the beam merely provides a drift to background electron fluid.

This can also be seen by transforming the governing equations to another Galilean

frame propagating with velocity v0.
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Figure 4.2: Temporal evolution of spatially averaged current for (a) ekLE0/mω
2
pe =

0.45; kLv0/ωpe = 0.5 and (b) ekLE0/mω
2
pe = 0.6; kLv0/ωpe = 0.5. Here continuous

line represents result of PIC simulation and dots are obtained from analytical solution.

We now perturb the electron beam with an electrostatic wave having an amplitude

more than wave breaking limit, i.e., ekLE0/mω
2
pe > 0.5, which leads to wave breaking

within a plasma period. We found in our simulation that drift energy of electron

beam does not play any pivotal role in breaking of wave. Spatially averaged current

for the parameters ekLE0/mω
2
pe = 0.6 and kLv0/ωpe = 0.5 is plotted in Fig. 4.2b,

which clearly illustrates that current remains constant with time even after wave

breaking has taken place.

4.2.2 Evolution of electron beam in the presence of relativis-

tically intense electron plasma wave

In this section, analysis is generalized to describe the nonlinear behaviour of rela-

tivistically intense space charge wave on relativistic electron beam. We consider a

similar physical system, where a relativistic electron beam of density n0 and initial
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drift velocity v0 is propagating through a neutralizing immobile background of ions

of density n0. System is governed by the equations (4.1a), (4.1b), (4.1c) and (4.1d).

The electron beam is perturbed with a relatively high amplitude, which excites

large amplitude relativistically intense (eE0/mωpc) electron plasma wave. Using

aforementioned Lagrangian hydrodynamics, set of nonlinear equation (4.1a) - (4.1d)

can be transformed in the Lagrangian frame as,

∂pe
∂τ

= −eE, (4.12a)

∂E

∂τ
= 4πen0ve − 4πen0v0, (4.12b)

which can be combined to give,

∂2pe
∂τ 2 + ω2

pe

pe√
1 +

(
pe
mc

)2
= mω2

pev0. (4.13)

Here pe is a function of Lagrangian co-ordinates x0 and τ . Equation (4.13) is a

second order differential equation in time, which closely resembles the governing

equation of a forced driven relativistic harmonic oscillator, which is often encountered

in nonlinear mechanics, however, here applied external force (R.H.S. of equation)

is constant with time. Equation (4.13) can be reduced to a first order differential

equation by multiplying with ∂pe

∂t
on both side and integrating once with respect to

time,

∂pe
∂τ

= ±
√

2ωpemc
a+

(
v0

c

)
pe
mc
−
√

1 + p2
e

m2c2

1/2

(4.14)

where a is a first integration constant and is a function of x0. For simplicity, we write

equation in terms of dimensionless parameter (pe → pe/mc, β → v0/c and τ → ωpeτ)
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as
∂pe
∂τ

= ±
√

2
(
a+ βpe −

√
1 + p2

e

)1/2
. (4.15)

Equation (4.15) corresponds to the conservation of energy in nonlinear mechanics

and contains two turning points, namely pe/mc = (aβ ±
√
a2 + β2 − 1)/1− β2.

Equation (4.15) can be solved by defining the new variables r, κ and θ through

r2 =
a+

√
a2 + β2 − 1
1− β , (4.16a)

κ2 =
2
√
a2 + β2 − 1

a+
√
a2 + β2 − 1

, (4.16b)

sin2 θ =
a+ (a2 + β2 − 1)1/2 − (1− β)

(
pe/mc+

√
1 + (pe/mc)2

)
2(a2 + β2 − 1)1/2 , (4.16c)

then the solution of equation (4.15) upon integrating with time again can be written

as

± (1− β)1/2ωpeτ = ∓
(
r4(κ2 − 1)− 1

(κ2 − 1) E(θ, κ) + κ2 sin 2θ
2(κ2 − 1)(1− κ2 sin2 θ)1/2

)
+φ(x0)

(4.17)

where E(θ, κ) is incomplete integral of second kind and φ(x0) is a secondary arbitrary

function of x0. A detailed solution of equation (4.15) is presented in appendix B.1.

A complete solution of the set of equations (4.1a) - (4.1c) is obtained for arbitrary

initial conditions. We choose the similar initial conditions as we used in non-

relativistic case, i.e.

ne(x0, 0) = n0(1±∆ cos kx0), (4.18a)

pe(x0, 0) = p0, (4.18b)
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where p0 is the initial momentum of relativistic electron beam. Now arbitrary

integration constant φ(x0) is obtained using initial conditions specified by (4.18);

then complete solution can be written as

(4.19)(1− β)1/2ωpeτ = r4(κ2 − 1)− 1
r3(κ2 − 1) (E(θ0, κ)− E(θ, κ))

+ κ2 sin 2θ0

2r3(κ2 − 1)(1− κ2 sin2 θ0)1/2 −
κ2 sin 2θ

2r3(κ2 − 1)(1− κ2 sin2 θ)1/2

where

sin2 θ0 =
a+ (a2 + β2 − 1)1/2 − (1− β)

(
p0/mc+

√
1 + (p0/mc)2

)
2(a2 + β2 − 1)1/2 (4.20)

Further, electron density n can be obtained in terms of elliptic functions, and θ, κ

and r as the basic parameters by eliminating Lagrangian variables, then electron

density in parametric form ne(x, t) is given by (for detailed calculation see appendix

B.2.)

ne(x, t) = n0(1±∆ cos kx)
D

, (4.21)

where D is defined as

D = 1∓
∆′2 kc

√
1− β sin 2kx0

ωpe
[A1 + A2− A3] , (4.22)

and

A1 = 1
4rκ2(1− β)

[((1− κ2 sin2 θ)(2− κ2) + 2(1− κ2)
)

sin 2θ

(1− κ2 sin2 θ)3/2 (4.23a)

−

(
(1− κ2 sin2 θ0)(2− κ2) + 2(1− κ2)

)
sin 2θ0

(1− κ2 sin2 θ0)3/2

]
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A2 =
(

4(κ2 − 1)(cos 2θ + κ2 sin4 θ)
4(r4(κ2 − 1)− 1)(1− κ2 sin2 θ)2 + κ4 sin2 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ)

)

(4.23b)[
− 3r2τ

2κ2(1− β) + (r4(κ2 − 1)− 1)
(1− β)r3(κ2 − 1)

{(
κ2 + 1

κ2(κ2 − 1)

)(
E(θ0, κ)− E(θ, κ)

)
+ F (θ0, κ)

− F (θ, κ)
}

+

(
κ2(κ2 + 1) sin2 θ0 − 2

)
sin 2θ0

2r(1− β)(1− κ2 sin2 θ0)3/2 −

(
κ2(κ2 + 1) sin2 θ − 2

)
sin 2θ

2r(1− β)(1− κ2 sin2 θ)3/2

+
{(

p0

mc
+ γ0

) (
1 + β + (1− β)r4

)
+ 2r6κ2(κ2 − 1)(1− β)2

}
{4
(
r4(κ2 − 1)− 1

)
(1− κ2 sin2 θ0)2 + κ4 sin2 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)

4 r7 κ6 (1− β)3 (κ2 − 1) sin 2θ0(1− κ2 sin2 θ0)3/2

}]
,

A3 = (cos 2θ0 + κ2 sin4 θ0)
(1− β)3r7κ6 sin 2θ0(1− κ2 sin2 θ0)3/2

[
2r6κ2(κ2 − 1)(1− β)2 +

{
(1 + β)

(4.23c)

+ (1− β)r4
}( p0

mc
+ γ0

)]
.

The relation between Eulerian and Lagrangian co-ordinates is given by,

kx = kx0 +kv0t∓
kc r κ2

√
1− β

2ωpe

(
sin 2θ

(1− κ2 sin2 θ)1/2 −
sin 2θ0

(1− κ2 sin2 θ0)1/2

)
. (4.24)

The set of equations (4.22) - (4.24) gives the exact solution of electron density in

Eulerian co-ordinates and governed by the dimensionless parameters ∆, β = v0/c and

Ẽ0 = eE0/mωpec. When the elliptic integrals in A2 are extended beyond π/2, secular

behavior is observed and denominator of equation (4.22) vanishes. This secular

behavior can be explicitly seen if solution is obtained for set of equations in the

weakly relativistic limit. We use Krylov-Bogoliubov-Mitropolskii [48] perturbation
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technique to solve the second order equation (4.14), which yields

ne = n0(1 + ∆ cos kx0)
D1 (4.25a)

D1 = 1−∆ cos kx0

[
p2

0
m2c2a2

0
(1− cos ω̃peτ) + ∆′2

a2
0

sin2 kx0

(
1− cos ω̃peτ −

3
8a

2
0 ωpeτ sin ω̃peτ

)

+3
8
p0

mc
ωpeτ∆′ sin kx0 cos ω̃peτ

]
,

(4.25b)

ω̃pe = ωpe

[
1− 3

16

(
p2

0
m2c2 + ∆′2 sin2 kx0

)]
, (4.25c)

kx = kx0 + kv0τ + kp0

ωpe
sin ω̃peτ −∆ sin kx0(1− cos ω̃peτ), (4.25d)

a0 = ±
(

p2
0

m2c2 + ∆′2 sin2 kx0

)1/2

. (4.25e)

(See appendix B.3 for detailed calculation.) In equation (4.25c), first term represents

the plasma frequency and second term represents the nonlinear frequency shift due to

variation of relativistic electron mass and depends on the initial amplitude of density

perturbation ∆, initial position x0 of the electron fluid and initial momentum p0 of

the electron beam. So under very general initial conditions, a relativistic wave will

always break at arbitrarily low amplitudes via a phenomenon called phase mixing.

Secular terms can be explicitly seen in the denominator of equation (4.25b), which

implies that electron oscillations become aperiodic with time and denominator of

equation (4.25b) vanishes, exhibiting a density burst.

4.3 Discussion of results

In the previous section, we obtained analytical solution for spatio-temporal evolution

of relativistically intense wave propagating on relativistic electron beam. In this

section, we compare results obtained from analytical solution with results obtained
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from one dimensional particle-in-cell and fluid simulation using initial density per-

turbation (∆), relativistic intensity (eE0/mωpec) and flow velocity (β = v0/c) as

input parameters. Table 4.1 shows the simulation parameters used for carrying out

PIC/fluid simulations.

Table 4.1: List of physical parameters used in our PIC/fluid simulations.
Parameter Symbol Value
No of grid points NG 1024
System Length L 2π
Time step ∆t 0.0196349ω−1

pe

Grid Spacing kL∆x L/NG = 0.006
Total no of electron Ne 102400
Electron Plasma Frequency ωpe 1
Amplitude of Density Perturbation ∆ 0.3
Initial electron drift velocity v0/c 0, 0.1, 0.99
Relativistic Intensity eE0/mωpec 5, 10, 100
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Figure 4.3: Snaps of space-time evolution of electron number density for the parame-
ters ∆ ≈ 0.3, Ẽ0 = 10 and β = 0. In this Fig., dots represent result of our theory,
dashed line is a result of Infeld theory and dot-dashed line represents result of PIC
simulation.

Infeld [17] obtained an exact analytical solution describing nonlinear plasma oscil-
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Figure 4.4: Snaps of space-time evolution of electron velocity for the parameters
∆ ≈ 0.3, Ẽ0 = 10 and β = 0. In this Fig., dots represent result of our theory,
dashed line is a result of Infeld theory and dot-dashed line represents result of PIC
simulation.

lations in a relativistic cold plasma. As a check, we reproduce nonlinear oscillations

for stationary electron plasma (Infeld theory) by putting initial drift velocity equal

to zero in our solution. Fig. 4.3 and 4.4 show evolution of electron number density

and velocity at different time for ∆ ≈ 0.3, Ẽ0 = 10 and β = 0. Here continuous line

is a result from our theory, dash line is a result of Infeld [17] theory and dot-dash

line represents result of PIC simulation. A very good match between both theories

and simulation shows the validity of our analytical solution.

In Fig. 4.5, we have plotted space-time evolution of electron number density for

the parameters ∆ ≈ 0.3, Ẽ = 100 and β ≈ 0.99, where dash line is a result from PIC

simulation, dash-dots line represents result of fluid simulation and dots represent

result obtained from analytical solution. Fig. 4.5 clearly shows the appearance of

spike which signifies wave breaking via phase mixing of relativistic intense wave. For

similar parameters, electron velocity is plotted in Fig. 4.6.
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Figure 4.5: Snaps of space-time evolution of electron number density for the pa-
rameters ∆ ≈ 0.3, Ẽ0 = 100 and β ≈ 0.99, where dots are a result of theory and
dash/dot-dash line represents result of fluid/PIC simulation respectively.
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Figure 4.6: Snaps of space-time evolution of electron velocity for the parameters

∆ ≈ 0.3, Ẽ0 = 100 and β ≈ 0.99, where dots are a result of theory and dash/dot-dash

line represents result of fluid/PIC simulation respectively.
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Figure 4.7: Temporal evolution of spatially averaged current for ∆ ≈ 0.3, relativistic
intensity Ẽ0 = 100 and flow velocities (a) β ≈ 0.1 and (b) β ≈ 0.99. Here dash/dot-
dash line represents result of PIC/fluid simulation and dots are taken from analytical
solution.

In Fig. 4.7 we have plotted spatially averaged current for the parameters Ẽ0 = 100

and β ≈ 0.1 and β ≈ 0.99, where dash/dot-dash lines are a result of PIC/fluid

simulation respectively and dots represent analytical solution. Fig. 4.7 shows

that spatially averaged current diminishes with time, which is in contrast with the

results in non-relativistic regime, where spatially averaged current always remains

constant. Thus, current decay is purely a relativistic effect, attributed to phase

mixing phenomena, occurring because of variation of relativistic mass.

In Figs. 4.8 and 4.9, space-time evolution of current has been plotted for Ẽ0 = 10

and β ≈ 0.1, 0.99, where dot represents result of theory, dash/dot-dash represents

result of fluid/PIC simulation respectively. In Figs. 4.10 and 4.11 space-time

evolution of current has been plotted for Ẽ0 = 5 and β ≈ 0.1, 0.99.
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Figure 4.8: Spatio-temporal evolution of current for the parameters Ẽ0 = 10 and

β ≈ 0.1, where dots show result of theory, dash lines show result of fluid simulation

and dot-dashed lines represent result obtained from PIC simulation.
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Figure 4.9: Spatio-temporal evolution of current for the parameters Ẽ0 = 10 and

β ≈ 0.99, where dots show result of theory, dash lines show result of fluid simulation

and dot-dash lines represent result obtained from PIC simulation.
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Figure 4.10: Spatio-temporal evolution of current for the parameters Ẽ0 = 5 and

β ≈ 0.1, where dots show result of theory, dash lines show result of fluid simulation

and dot-dash lines represent result of PIC simulation.
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Figure 4.11: Spatio-temporal evolution of current for the parameters Ẽ0 = 5 and

β ≈ 0.99, where dots show result of theory, dash lines show result of fluid simulation

and dot-dashed lines represent result obtained from PIC simulation.
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In Fig. 4.12 spatially averaged currents are compared for different value of Ẽ0 and β,

where continuous blue, green and pink lines are plotted for the parameters β ≈ 0.99

and Ẽ0 = 5, 10 and 100 respectively and dash blue, green and pink lines are plotted

respectively for β ≈ 0.1 and Ẽ0 = 5, 10 and 100. Fig. 4.12 clearly demonstrates

that as the relativistic intensity of wave is increased, slope of continuous lines and/or

dash lines increases and as the flow velocity increases, slope of two similar color

continuous and dash line decreases. Thus it is found that the rate of decrease of

current decreases with increasing flow velocity and increases with increasing wave

intensity. It is also seen that amount by which spatially averaged current diminishes,

increases with increasing relativistic intensity.
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Ẽ0 = 5,β = 0.1
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Figure 4.12: Comparison between temporal evolution of spatially averaged current
for relativistic intensities Ẽ0 = 5, 10, 100 and for β ≈ 0.1 and 0.99.

4.4 Summary

In this chapter, we present exact space-time solution for relativistically intense

wave propagating on an electron beam. It is found that when an electron beam is
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perturbed with relativistically intense wave, spatially averaged current diminishes

with time. This novel effect is attributed to phase mixing effects arising because

of variation of relativistic mass. It is also found that amount by which spatially

averaged current diminishes (∆I) increases with increasing relativistic intensity of

the wave and rate of decrease of current decreases with increasing flow velocity and

increases with increasing wave intensity.

Our findings may be of relevance in fast ignition scenarios [77, 78]. Fast ignition is

a novel variant of inertial confinement fusion, which has shown promising results [77,

78]. In fast ignition scenarios [30, 31] , the relativistic electron beam is generated

by direct interaction of the laser pulse with the coronal plasma and reaches the

precompressed fuel core after propagating in the dense plasma region. In dense

plasma region, forward moving relativistic electron beam current is compensated

by backward moving coronal plasma electron current (return current) [50]. This

current neutralization is satisfied on global scale rather than on local, subsequently

introducing several beam-plasma instabilities (filamentation and/or Weibel) in the

system. Owing to that energy transport is inhibited and coupling of energy from

laser to precompressed target is hence compromised. Efficiency of energy transport

is also a key factor in alternative fast ignition schemes. Increment in the efficiency of

energy transport through relativistic electron beam is currently a hot issue and needs

to be addressed in order to achieve inertial fusion confinement using fast ignition

schemes. When there is no return current present, self consistent electric field of

beam can reach up to 1012V/m [50] in 1 fs. According to our findings on effects of

space charge waves on relativistic electron beam, this self consistent electric field

may modulate electron beam and total spatially averaged current may be diminished

which would inhibit the excitation of other beam-plasma instabilities.
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5
Nonlinear evolution of Buneman instability and

excitation of coupled hole-soliton

In this chapter we have numerically followed spatio-temporal evolution of

Buneman instability till its quasilinear quenching and beyond, using an

in-house developed electrostatic 1D particle-in-cell ( PIC ) simulation code.

For different initial drift velocities and for a wide range of electron to ion

mass ratios, growth rate obtained from simulation agrees well with the

numerical solution of the fourth order dispersion relation. Quasi-linear

saturation of Buneman instability occurs when ratio of electrostatic field

energy density to initial electron drift kinetic energy density reaches up to a

constant value, which as predicted by Hirose [39], is independent of initial

electron drift velocity but varies with electron to ion mass ratio (m/M) as

≈ (m/M)1/3. This result stands verified in our simulations. Growth of

the instability beyond the first saturation (quasilinear saturation ) till its

final saturation [41] follows an algebraic scaling with time. In contrast to

the quasilinear saturation, the ratio of final saturated electrostatic field
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energy density to initial kinetic energy density, is relatively independent

of electron to ion mass ratio and is found from simulation to depend

only on the initial drift velocity. Beyond the final saturation, electron

phase space holes coupled to large amplitude ion solitary waves, a state

known as coupled hole-soliton, have been identified in our simulations.

The propagation characteristics ( amplitude - speed relation ) of these

coherent modes, as measured from present simulation is found to be

consistent with the theory of Saeki et. al. [46] . Our studies thus represent

the first extensive quantitative comparison between PIC simulation and

fluid/kinetic model of Buneman instability..

In chapter 3 and 4 pure electron plasma modes have been discussed by considering

infinitely massive ions. In this chapter, we have extended our studies for finite ion

to electron mass ratio. We focus on the instabilities occurring because of coupling

between electrons and ions. It is already mentioned in chapter 1 that Buneman

mode under certain condition is the most unstable mode in the system. Buneman

instability (BI) gets excited between electrons and ions, when Doppler shifted

electron plasma frequency (ωpe − kv0), resonate with ion plasma frequency (ωpi) in

ion rest frame; system become unstable at the expense of electron drift kinetic energy

density, provided relative drift between electrons and ions is above the threshold

v0 = 0.926(1+(m/M)1/2)(2KBTe/m)1/2 (when Te = Ti, where Te and Ti respectively

are electron and ion temperatures). Below this threshold Buneman modes quenches

through Landau damping. We report quantitative effects of initial drift velocity on

the space-time evolution and saturation of linear and nonlinear phase of Buneman

instability. We study spatio-temporal evolution of Buneman instability using an

in-house developed 1-D electrostatic particle-in-cell code. We have performed four

simulation runs for various initial drift velocities kLv0/ωpe ≈ 1, 0.5, 0.33, 0.1 and

observed the effect of initial drift velocity on the growth, quasilinear saturation, final

saturation and post saturation dynamics of the Buneman instability. In section 5.1,
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we give an extensive introduction to the problem. For the sake of completeness in

section 5.2 we revisit the linear theory of Buneman instability. Section 5.3 presents a

brief description of method of solution. Section 5.4.1 describes evolution of instability

upto the quasi-linear saturation. Section 5.4.2 reports evolution of instability upto

final saturation and formation of couple hole-soliton after quenching of the instability.

We end this chapter with a summary of our results in section 5.5.

5.1 Introduction

Streaming plasmas plays a key role in the generation of shock waves [103],

enhances turbulence in tokamaks [104], induces anomalous resistivity [37,

38] and used in astrophysical scenarios, viz., shock surfing acceleration [33],

formation of strong double layer [28, 29] , generation of broadband electrostatic noise

[45] etc. Instabilities[1, 2] associated with streaming plasmas are well known current

dissipation mechanism in the presence of external electric field or in the field free

collision-less plasma. Being a fundamental current carrying instability, Buneman [60,

26] instability has been the center of attraction for decades. Buneman instability

gets excited when relative drift velocity between electrons and ions is sufficiently

larger than thermal velocity of electrons. Buneman wave particle interaction induces

scattering of the particles that causes strong parallel heating [88]. This novel effect

is widely observed/used in electron acceleration [5, 34, 35, 105], ion acceleration [6,

7] and in inertial electrostatic confinement [30, 31, 106] etc.

Since the pioneering work of Oscar Buneman [60, 26]; a lot of work has been

done to understand linear and nonlinear evolution of Buneman instability in the

non-relativistic[82, 83, 39, 41, 42, 51, 52, 86, 85, 107, 87, 108, 88, 109, 91, 90] and

relativistic [6, 7, 110, 54, 55] regime. Various approaches are attempted by several

authors[82, 83, 39] to estimate the saturation value of the Buneman instability; among
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them Hirose’s[39] model successfully predicted that at the quasilinear saturation

(or first saturation) the ratio of electrostatic energy density (∑
k
|Ek|2/8π) to initial

kinetic energy density (W0 = (1/2)n0mv
2
0) varies with electron to ion mass ratio as

∼ (m/M)1/3. Ishihara et. al.[41, 42] derived a nonlinear dispersion relation using

quasi-linear analysis for initial delta function distribution (cold beam) for electrons.

Ishihara et. al. carried out 1-D kinetic simulation of Buneman instability and

compared numerical solution of the nonlinear dispersion relation with simulation

results that successfully predicted the breakdown of the linear growth, frequency

and growth rate modulation. These authors observed that electron trapping causes

the final saturation of the Buneman instability and estimated minimum electrostatic

field energy required for quenching of the instability via electron trapping and found

that it scales with initial kinetic energy density as ∑
k
|Ek|2/16π ≥ 0.11W0.

Yoon[51] has formulated a phase and spatially averaged perturbative nonlinear weak

turbulence theory that involves quasi-linear velocity space diffusion and nonlinear

wave particle interaction. In the companion paper[52], Yoon carried out Vlasov

simulation of Buneman instability for different electron to ion temperature ratio and

compared the simulation results with that derived using weak turbulence theory[51].

Their theory successfully predicted nonlinear development of the Buneman instability

qualitatively, when nonlinear scattering term with wave kinetic equation is included .

In recently carried out simulation works, Jain et. al.[86] and Guo [43] have carried

out 1-D Vlasov and particle-in-cell simulation respectively. Their simulations show

that along with the low frequency Buneman mode and high frequency Langmuir

mode; wave modes propagating in the opposite direction of the Buneman wave also

gets excited in the nonlinear phase of the instability. Niknam[87] has carried out

1-D particle-in-cell simulation and reported density steepening at late times as well

as dependence of time development of electrostatic energy densities with a range of

mass ratios. Hashemzadeh [90, 91, 92] has carried out particle-in-cell simulation of

Buneman instability for q non-extensive distribution and effect of negative ions on
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the Buneman instability. There is ample amount of other simulation works dealing

with Buneman instability in various applications in space and laboratory plasmas

that are too numerous to cite.

Above cited references deal with early nonlinear dynamics or dynamics up to the

saturation of Buneman instability. Post saturation dynamics of Buneman instability

is still under scanner and to the best in our knowledge very little work has been

carried out to understand it. Dynamics after quenching is strongly affected by initial

plasma parameter. If initial drift velocity of the electron beam is not much larger

than thermal velocity, then initial drift kinetic energy does not dissipate completely

[43] and some part of it still remains with nonlinear coherent structure. This net

drift energy of coherent structures after quenching of Buneman instability may affect

interaction between electrons and ions. When initial drift velocity of the electron

beam is much larger than thermal velocity of electrons, then initial kinetic energy

dissipates completely [41, 42] and a strong interaction between nonlinear coherent

structure and surrounding ion may result into formation of coupled hole-soliton [89,

46]. Thus, Buneman instability may decay into ion acoustic wave [70] and/or may

induce coupled hole-solition [89, 46, 33].

5.2 Theory

Consider a cold electron beam of density n0 and velocity v0 moving through a

homogeneous background of ions of density n0. Buneman instability gets excited

when initial electron drift velocity is sufficiently larger than electron thermal velocity,

i.e., v0/vth � 1. The basic set of fluid equations governing the space-time evolution

of Buneman instability in one dimension system can be written as

The continuity equation is
∂ns
∂t

+ ∂ (nsvs)
∂x

= 0, (5.1)
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The momentum equation is

∂vs
∂t

+ vs
∂ (vs)
∂x

= qs
E

ms

, (5.2)

Poisson equation can be written as

∂E

∂x
= 4πe(ni − ne), (5.3)

where s stands for species electron/ion, e is charge of electrons and ions and, vs, ns,qs

and ms are velocity, density, electrostatic charge and mass of respective species and

E is self consistent electric field. Hereinafter we use me = m; qe = −e and mi = M ;

qi = e.

5.2.1 Derivation of linear dispersion relation

For electrons, linearized continuity and momentum equations become

− ιωδne + ιkn0δve + ιkv0δne = 0, (5.4)

− ιωδve + ιkv0δve = −eE
m
, (5.5)

where δne and δve are respectively the perturbed density and velocity. Eliminating

δve from equation ((5.4)) and ((5.5)), perturbed electron density is

δne = −ιekn0

m(ω − kv0)2E. (5.6)

Following a similar procedure as above, the linearized perturbed ion density is given

by

δni = ιekn0

Mω2 E. (5.7)
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Now linearized Poisson equation can be written as

ιkE = 4π(δni − δne). (5.8)

Using equation (5.6),(5.7) and (5.8), we get linear dispersion relation as

1 =
ω2
pi

ω2 +
ω2
pe

(ω − kv0)2 , (5.9)

where k is a wave number, ωpi =
√

4πn0e2

M
and ωpe =

√
4πn0e2

m
are ion and electron

plasma frequencies, respectively. The linear dispersion relation is a fourth degree

polynomial in the wave frequency ω.

5.2.2 Estimation of the linear growth rate

Growth rate for the most unstable mode (resonant mode) can be estimated by

putting the resonance condition kv0 ≈ ωpe in equation (6.11), gives

1 ≈
ω2
pi

ω2 +
ω2
pe

(ω − ωpe)2 . (5.10)

Roots of above written fourth order polynomial presents normal modes of the

Buneman instability. A general solution of linear dispersion relation is presented in

appendix. Now by expanding the denominator using ω/ωpe � 1, gives the following

relation

ω3 = − m

2Mω3
pe, (5.11)

which is a cubic equation.

Complex roots of cubic equation can be written as

Ω = ω + ιγ = (1± ι
√

3)
(

m

16M

)(1/3)
ωpe, (5.12)
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where taking only positive sign gives the growth rate of the most unstable mode as

γmax =
√

3
(

m

16M

)(1/3)
ωpe. (5.13)

Even though the relative drift velocity between electrons and ions is the key factor

which excites the instability, nevertheless, maximum growth rate still turns out to

be independent of the initial drift velocity and merely depends on the electron to

ion mass ratio. Above described method only yield three roots of equation (5.9); see

appendix C, where we have estimated all four roots of equation (5.9).

5.3 Method Of Solution

In order to understand the spatio-temporal evolution of Buneman instability beyond

the linear stage, we use an in-house developed one dimensional electrostatic particle-

in-cell simulation code. The governing equations, viz., the particle position and

velocity equations and Poisson equation in normalized forms are

dx

dt
= vs (5.14)

dvs
dt

= ±E(x, t) (5.15)
∂E

∂x
= (ni − ne) (5.16)

Then normalization used are x → kLx, t → ωpet, vs → kLvs/ωpe, E → ekLE
mω2

pe
and

φ → ek2
Lφ

mω2
pe
, where kL is the wavenumber corresponding to the longest wavelength

supported by the simulation box.

Parameters used in the numerical experiment of Buneman instability are written

in table 5.1. System length is chosen to be equal to longest mode(L = 2π/kL, kL=1)

supported by the system. System length is divided in NG equidistant cells, so field

quantities electric field, electron/ion density are calculated at the cell center(grid
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Table 5.1: List of physical parameters used in our simulations.
Parameter Symbol Value
No of grid points NG 1024
System Length L 2π
Time step ∆t 0.0196349ω−1

pe

Grid Spacing kL∆x L/NG = 0.006
Total no of electron Ne 102400
Total no of ion Ni 102400
Mass ratio M/m 500, 1836, 18360
Electron Plasma Frequency ωpe 1
Ion Plasma Frequency ωpi (m/M)1/2 ω−1

pe

Initial electron drift velocity kLv0/ωpe 0.1, 0.33, 0.5, 1.0
Initial ion drift velocity kLvi0/ωpe 0.0
Electron thermal velocity vth,e/v0 0.003
Ion thermal velocity vth,i/v0 0.0

points) and particle quantities like velocities are calculated at the particle positions.

Periodic boundary conditions are used that allows only integer mode as k = 1,2,3...512

in the system. A small thermal spread < [v(0)− V (0)] >= 3× 10−3 added to the

electron beam to avoid nonphysical cold beam instability [96]. Plasma is cold

(v0/vth ≈ 1000) with a very small thermal spread that fulfills necessary condition

vdrift � vthermal, so system has favorable condition for excitation of Buneman

instability.

In this simulation, we have followed the ion and electron trajectory in the self

consistently generated electric field. Initially electrons and ions are placed in phase

space with their respective position and velocity. Then for a given ion and electron

density, electric field is calculated on the grid points by solving Poisson’s equation.

Using this electric field, force is calculated on the grid points and then interpolated

on particle positions. Further ion and electron momentum equations are solved

using this force that yields a new position and velocity. This new particle position is

weighted on the grid points to estimate density over the grid points using second

order polynomial interpolation. This process is repeated for thousands of time steps.
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5.4 Results and Discussion

We begin our simulation from an initial state where all the electrons are flowing

as a whole with a single velocity (delta-function velocity distribution) against a

homogeneous background of stationary, cold ions. This initial state is unstable to

longitudinal perturbations, and as time progresses, small amplitude density (electron

and ion density) and velocity oscillations arise from background noise. Since the

system is unstable, as the electron beam provides free energy, these small oscillations

begin to grow at the expense of the initial beam kinetic energy. In 5.4.1, we discuss

the evolution of the instability till the quasilinear saturation and in 5.4.2 we present

the evolution after quasilinear saturation till the final saturation and beyond.

5.4.1 Linear growth and quasilinear saturation

Initially, the growth of the instability is dominated by the most unstable mode

and its harmonics; the most unstable mode being given by the resonance condition

kv0/ωpe ≈ 1. Therefore for electron beam velocities kLv0/ωpe ≈ 1, 0.5, 0.33, 0.1,

the corresponding most unstable modes are respectively given by k/kL ≈ 1, 2, 3, 10

where the normalizing wave number kL is associated with the longest wavelength

that can be supported by the simulation box size.

Fig. 5.1 shows the evolution of electric field amplitude in Fourier space for the

mass ratio M/m = 1836 and for the initial electron drift velocity kLv0/ωpe ≈ 0.33.

For these parameters, the most unstable mode turns out to be k/kL ≈ 3 whose

growth rate is given by γmax/ωpe ≈ 0.054. Fig. 5.2 shows the temporal evolution of

different Fourier modes for the same set of parameters. The violet, yellow and red

line respectively show the growth of the most unstable mode and its first and second

harmonic. Growth rates are obtained by measuring the slope of the curves in Fig.
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Figure 5.1: Evolution of electric field amplitude in Fourier space for kLv0/ωpe ≈ 0.33
and M/m = 1836.
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Figure 5.2: Temporal evolution of Fourier modes for kLv0/ωpe ≈ 0.33 and M/m =
1836.
5.2 from initial stage of the instability to quasilinear saturation. Most unstable mode

grows with the growth rate γmax/ωpe ≈ 0.054 and its first and second harmonics,

which appear later in time, respectively grow with twice and thrice the growth rate

of the most unstable mode. Fig. 5.3 shows the growth rate (γ/ωpe) as a function of

mode number for different initial drift velocities (kLv0/ωpe ≈ 0.1, 0.2, 0.33) and for

a fixed mass ratio (M/m = 1836). The continuous line curves show the theoretical

growth rate as a function of mode number obtained from numerical solution of the

linear dispersion relation, i.e. the solution of the fourth degree polynomial (equation
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Figure 5.3: Comparison between theoretical growth rate (points) and growth rate
obtained from the simulation (continuous line) as a function of mode number (k/kL)
for the initial drift velocities kLv0/ωpe ≈ 0.1, 0.2, 0.33 and mass ratio M/m = 1836.

(5.9)) while the dots show the growth rate obtained from simulations; which show a

reasonably good match between fluid theory and simulation. Fig. 5.3, also shows

that the growth rate of most unstable mode (maxima of the curves) is independent

of the initial electron drift velocity, and with increasing kLv0/ωpe the most unstable

mode shifts towards shorter wavenumbers; these are in conformity with equation

(5.13). In Fig. 5.4, we show the dependence of growth rate of the most unstable

mode (γmax/ωpe) on the electron to ion mass ratio (m/M) for a fixed initial drift

velocity kLv0/ωpe ≈ 0.33. The dots represent the simulation points and continuous

line is a fit through the points. The linear variation of γmax/ωpe with (m/M)1/3

again confirms equation (5.13). Quasi-linear growth of the instability ceases when

exponential growth of the most unstable mode and its harmonics terminate. Fig. 5.5

and 5.6, respectively show the temporal evolution of the electrostatic field energy

density for different initial electron drift velocities kLv0/ωpe ≈ 0.1, 0.33, 0.5, 1 , for

two different mass ratiosM/m = 500, 1836. At quasilinear saturation, time evolution

of electrostatic energy density shows a hiccup as shown in inset of Fig. 5.5 and 5.6.

This hiccup represents the first saturation (termination of exponential growth) of
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Figure 5.5: Temporal evolution of ratio of electrostatic energy density to different
initial drift kinetic energy density for the mass ratio M/m = 500.

the Buneman instability. Since the growth rate of the most unstable mode in the

linear regime is independent of the initial electron drift velocity, the “hiccups” in

electrostatic field energy, for different initial drift velocities appear nearly at the

same time. This first saturation occurs when the ratio of electrostatic energy density

(∑
k
|Ek|2/16π) to initial drift kinetic energy density (1

2n0mv
2
0) reaches a constant value

≈ (m/M)(1/3) i.e ∑
k

|Ek|2

16πW0
≈
(
m

M

)(1/3)
(5.17)
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Figure 5.6: Temporal evolution of ratio of electrostatic energy density to different
initial drift kinetic energy density for the mass ratio M/m = 1836.

where W0 is the initial drift kinetic energy density of electrons. The reason for

quasilinear saturation of the instability at this low value of the ratio, is because of

the narrow width(FWHM) of the growth rate (γ/ωpe) vs mode number (kv0/ωpe)

curve around the resonance point kv0 ≈ ωpe (see Fig. 5.3). This figure shows a

drastic drop in the growth rate of the instability for any small change in the electron

drift velocity. When change in drift velocity (∼ k∆v0/ωpe) becomes comparable to

FWHM (∼ ∆(kv0/ωpe) of the γ/ωpe vs kv0/ωpe curve i.e.(k∆v0/ωpe ≈ ∆(kv0/ωpe))

then exponential growth of the instability terminates [39]. Based on this argument

and a quasilinear calculation, Hirose et. al. [39] showed that at the first saturation,

electrostatic field energy density scales linearly with the initial electron drift kinetic

energy density with a slope which depends on the electron to ion mass ratio as

(m/M)1/3 (equation (5.17) above). This result is verified in our simulation as shown

in Fig. 5.7, where we have plotted the electrostatic field energy density at the first

saturation point vs. initial drift kinetic energy density for different mass ratios 500,

1836 and 18360. The linear variation is in conformity with Hirose’s scaling [39]. To

the best of our knowledge, this is the first verification of Hirose’s scaling using a PIC

code.
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Figure 5.7: Figure shows variation of electrostatic energy density with different initial
kinetic energy density for the mass ratios M/m = 500, 1836, 18360.

5.4.2 Beyond quasilinear saturation: Formation of Coupled

hole solitons

Termination of quasi linear growth does not imply complete saturation of the

instability. Beyond this point the instability evolves with algebraic growth up to

the final saturation [41]. This algebraic growth stage (time between quasilinear

saturation and final saturation) decreases with the decreasing ion to electron mass

ratio as shown in fig 5.8b and 5.8a where we have plotted the temporal evolution of

electrostatic field energy density for kLv0/ωpe ≈ 0.33 and kLv0/ωpe ≈ 1 respectively,

for different mass ratios.

As mentioned earlier, the resonant mode (i.e. the most unstable mode) and its

harmonics govern the evolution of the instability up to the quasi-linear saturation.

Beyond the quasilinear saturation, the evolution of the instability is governed by the

rapid growth of the non-resonant modes (see Fig. 5.2). Evolution of the instability in

this regime has been studied by several authors [85] who have predicted steepening

of electron density profile at late times (i.e. beyond quasilinear saturation). Figure

5.9 and 5.10 respectively show the time development of electron and ion density
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Figure 5.8: Time development of ratio of electrostatic energy density to initial
kinetic drift energy density with various mass ratio for the initial drift velocities (a)
kLv0/ωpe ≈ 0.33 and (b) kLv0/ωpe ≈ 1.
profiles at different time steps. Both electron and ion density show small oscillations

growing out of background noise; these oscillation eventually steepen and gain large

amplitude at late times.
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Figure 5.9: Evolution of electron density at different time instances for kLv0/ωpe ≈
0.33 and M/m = 1836.

When the wave potential becomes large enough, some electrons are trapped in

this self consistently generated nonlinear wave potential well; these trapped particle

population generate a counter streaming population of electrons in the plasma (see
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Figure 5.10: Evolution of ion density at different time instances for kLv0/ωpe ≈ 0.33
and M/m = 1836.
figure 5.12). This counter streaming population excites electron-electron two stream

instability that leads to the formation of holes in electron phase space.
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Figure 5.11: Phase reversal of electrostatic potential during particle trapping for
kLv0/ωpe ≈ 0.33 and M/m = 1836.

When large number of electrons are trapped in the wave potential well, the

instability saturates abruptly. After completion of trapping, instability is quenched

and potential shows sudden phase reversal[41] at the time of trapping. Fig. 5.11

shows the evolution of the potential profile beyond the quasilinear saturation upto

the final saturation (ωpet/2π ∼ 45 − 55) for kLv0/ωpe ∼ 0.33 and M/m = 1836.
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Phase reversal of potential is clearly seen at ωpet/2π ∼ 53. Around the same time the

electron phase space plots (see figure 5.12) ) also show enhanced trapping (phase space

holes). Based on the argument that the final saturation of the instability is caused

by electron trapping, Ishihara[41] et. al. calculated the ratio of electrostatic field

energy density to initial electron drift kinetic energy density at the final saturation

point and showed that ∑
k

|Ek|2
16πW0

≥ 0.11. Thus in contrast to quasilinear saturation,

this ratio is independent of mass ratio (equation (5.17)). Our simulations show, that

this ratio is not very sensitive to the mass ratio but depends on the initial electron

drift velocity. For the mass ratio M/m = 1836, the ratio of electrostatic field energy

density to initial electron drift kinetic energy density at the final saturation varies

with initial drift velocities as

∑
k

|Ek|2

16πW0
≈ 0.11(kLv0/ωpe = 0.1) ∼ 0.18(kLv0/ωpe = 1) (5.18)

This is in conformity with Ishihara’s[42] inequality. Equation (5.18) shows that the

field energy required for complete trapping depends on initial drift velocity and

increases with increasing initial drift velocity. We have performed simulations with

wide range of initial drift velocities and mass ratios ( see figures (5.5 and 5.6) which

respectively show final saturation level for two different mass ratios (M/m = 500 &

1836) and different initial drift velocities; and in each case it is found that the ratio

of electrostatic field energy density at the final saturation to the initial electron drift

kinetic energy density follows Ishihara [41] inequality, i.e., (∑
k

|Ek|2
16πW0

≥ 0.11).

Figure (5.12) shows snapshots of electron phase space at different times. As

mentioned above, around ωpet/2π ∼ 55 phase space holes are seen in the electron

fluid, the number of holes being equal to the most unstable wavenumber (k/kL = 3

for kLv0/ωpe ≈ 0.33). At this time i.e. ωpet/2π ∼ 55 the time of final saturation,

the mean electron drift velocity nearly goes to zero. The electron phase space holes

are thus almost stationary, resulting in strong interaction with the surrounding ions.
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Figure 5.12: Evolution of electron phase space at the different stages of simulation
for kLv0/ωpe ≈ 0.33 and M/m = 1836.

This strong interaction of the electron phase space holes with the surrounding ions

exhibits very interesting dynamics involving both electrons and ions. To begin with,

the positive potential associated with an electron phase space hole starts reflecting

the surrounding ions causing compression in the ion fluid on both sides of the electron

hole. This compression induces ion pulses close to the edges of the electron hole which

in turn pulls electrons from the edges resulting in disruption of the hole itself. As a

consequence, each electron hole (mother hole) is elongated and gets divided into two

holes (daughter holes; see time frames between ωpet/2π ∼ 65− 70 in Figure (5.12)).
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The resulting daughter holes which are accompanied by ion pulses start propagating

in directions opposite to each other. Each of these new coherent structure thus

formed, is a combination of an electron hole and an ion pulse. Below we identify them

as coupled hole-soliton (CHS) as described by Saeki at. al. [89, 46]. For a better

visualization of the entire process of breaking of electron phase holes into daughter

holes ultimately leading to the formation of coupled hole-solitons, we present the

electron phase space, the ion phase space and the associated potential profile, at

various time steps for a different initial electron drift velocity (kLv0/ωpe ∼ 0.5; see

figure 5.13).
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Figure 5.13: Breaking of electron hole and generation of CHS for kLv0/ωpe ≈ 0.5 and
M/m = 1836.

Figure (5.13) shows evolution of electron phase space and ion phase space along

with the potential profile at different instances, for kLv0/ωpe ∼ 0.5 and M/m = 1836.

At ωpet/2π ≈ 63.0 the electron phase space shows two holes corresponding to the

most unstable wave number, which in this case is k/kL = 2. These phase space holes

are nearly stationary. As time progresses, the dynamics described in the previous
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paragraph is seen, i.e. each hole interacts with the surrounding ions, becomes

elongated and eventually breaks into two holes which start propagating in opposite

directions (see time frames between ωpet/2π = 63 − 67.6 in figure (5.13)). The

associated potential profile also evolves starting from two peaks at ωpet/2π ∼ 63.0

(corresponding to mother holes) to four peaks at ωpet/2π ∼ 67.6 (corresponding to

daughter holes). As mentioned above, each daughter hole is accompanied by an ion

pulse and the resultant coherent structures propagate in opposite directions (see

time frames between ωpet/2π = 67.6 − 69.4 in figure (5.13)). We now compare

the relation between the measured speed ( Mach number M ) and the associated

potential maximum (φmax) for a daughter hole having phase space area (S) with

the theoretical relation amongst the same quantities for coupled hole solitons as

proposed by Saeki et. al. [46]. According to the model proposed by Saeki et. al.

[46] the phase space area (S) of a coupled hole-soliton is related to the associated

potential maximum φmax and its speed (Mach no. M), through the integral

S = 4
∫ φmax

W 2
0 /2

( −W 2
0 + 2φ

−2V (φ,M,W0, α))1/2dφ (5.19)

where S is normalized to (kLλD)2 and φmax is the normalized maximum potential

eφmax/Te. α2 is the electron to ion mass ratio (m/M) and W0 is a parameter which

is related to φmax,M and α through the equation V (φmax,M,W0, α) = 0, where

V (φ,M,W0, α) is the Sagdeev potential which is given by the expression

V (φ,M,W0, α) = −1
6{[(1− αM)2 + 2φ]3/2 + [(1 + αM)2 + 2φ]3/2 − (1− αM)3

−(1 + αM)3}+ 1
3θ(−W

2
0 + 2φ)[−W 2

0 + 2φ]3/2 +M[M− (M2 − 2φ)1/2]

(5.20)

Saeki’s [46] model for coupled hole-solitons is based on water bag distribution for

electrons where the velocity distribution at the position of the hole vanishes. The

electron velocity distribution function measured around the holes (shown in red and
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blue in figure (5.14a)), is shown in figure (5.14b); it shows a reasonable approximation

to the theoretical distribution.
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Figure 5.14: Electron distribution function for a CHS which closely resembles to the
water bag distribution.

The measured phase space area S is similar for the red and blue holes and is

around ∼ 1.9. The respective Mach numbers and the potential maximum are

M ≈ 2.01 , φmax ≈ 0.47 and M ≈ 3.1 , φmax ≈ 0.342. These points (shown in

red and blue dots) lie very well on the continuous φmax −M curve generated for

S ≈ 1.9 using Saeki’s [46] theory (equation (5.19) and (5.20), figure 5.15). The

black dot shown in the same figure (Fig. 5.15) is for another coupled hole soliton

(S ≈ 3.4) which is excited using a different set of initial conditions ( kLv0/ωpe ∼ 1

and M/m = 1836); thus our simulation results show good agreement with the theory

of coupled hole solitons.

After final saturation electrostatic field energy density decreases sharply (see figure

(5.6) which is plotted for M/m = 1836 with different initial electron drift velocities )

and exhibits oscillatory behaviour with a frequency which is approximately twice

the ion plasma frequency. Decrease in electrostatic field energy is accompanied by

stretching of phase space holes, formation of coupled hole solitons ( as described

above) and finally detrapping of electrons. This trapping and detrapping of electrons
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Figure 5.15: TheoreticalM−φmax curve for the mass ratio M/m = 1836. Lines show
theoretical relation for a fixed area of the CHS while dots are taken from simulation.
results in heating of electrons at late times ωpet/2π ∼ 100 through the process of

separatrix crossing, as discussed in Che et. al., [109]. At around ωpet/2π ≈ 100

electron phase space holes coalesce away. Figure (5.16) shows the spatially averaged

electron distribution function at different times which clearly show broadening of

distribution function at late times.

5.5 Summary

In this chapter, we have studied spatio-temporal evolution of Buneman instability us-

ing an in-house developed 1-D particle-in-cell simulation code. Quasilinear saturation

(or first saturation) occurs when the electrostatic energy density becomes ∼ (m/M)1/3

times the initial drift kinetic energy density, i.e. ∑
k
|Ek|2/16π ≈ (m/M)(1/3)W0; the

ratio of electrostatic field energy density to the initial drift kinetic energy density at
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Figure 5.16: Evolution of electron distribution function at the time ωpet/2π ≈ 0, 55
and 100 for kLv0/ωpe ≈ 0.5 and M/m = 1836.
the quasilinear saturation point is independent of the initial drift velocity. Further,

electron trapping and nonlinear mode coupling leads to the final saturation of the

instability. In contrast to quasilinear saturation, at the final saturation the ratio

of electrostatic field energy density to initial kinetic energy density depends on the

initial drift velocity but is independent of the mass ratio. The above mentioned ratio

follows the inequality suggested by Ishihara et. al. [41], i.e., ∑
k

|Ek|2
8πW0

≥ 0.11. To the

best of our knowledge, this is the first verification of Hirose’s [39] and Ishihara’s [41,

42] results using a PIC code.

After final quenching of Buneman instability, strong interaction between electron

phase space holes and surrounding ions is observed; this interaction breaks the

electron phase space holes into two oppositely propagating holes each attached with

an ion pulse. These oppositely propagating coherent structures have been identified

as coupled hole-solitons using the theory of Saeki et. al. [46]. These coupled hole

solitons eventually coalesce away finally generating a broadened electron velocity

distribution function.
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6
Quasilinear evolution of relativistic Buneman

instability

In this chapter, spatio-temporal evolution of the relativistic Buneman

instability has been investigated in one dimension using an in-house

developed particle-in-cell simulation code. Starting from the excitation of

the instability, its evolution has been followed numerically till its quenching

and beyond. The simulation results have been quantitatively compared with

fluid theory and are found to be in conformity with the well known fact

that the maximum growth rate (γmax) reduces due to relativistic effects

and varies with γe0 and m/M as γmax ∼
√

3
2
√
γe0

( m
2M )1/3, where γe0 is the

Lorentz factor associated with the initial electron drift velocity (v0) and

(m/M) is the electron to ion mass ratio. Further it is observed that in

contrast to the non-relativistic results [39] at the saturation point, ratio

of electrostatic field energy density (∑
k
|Ek|2/8π) to initial drift kinetic

energy density (W0) scales with γe0 as ∼ 1/γ2
e0. This novel result on

scaling of energy densities have been found to be in quantitative agreement
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with the scaling derived using fluid theory.

In the previous chapter, we studied spatio-temporal evolution of Buneman instabil-

ity, when electron beam is propagating with the non-relativistic velocities. However,

when electron beam propagates with relativistic velocities, dynamics of Buneman

instability (relativistic Buneman instability) is affected strongly. In this chapter,

we study spatio-temporal evolution of Buneman instability in weakly relativistic

regime. In section 6.1, we give a thorough introduction to the problem along with

the parameter domain, where Buneman/Buneman like modes dominate the evolution

of the system [10] . In section 6.2, we present the dispersion relation for relativistic

Buneman instability in the weakly relativistic limit; section 6.2.1 presents an estimate

of the maximum growth rate and its comparison with the numerical solution of the

dispersion relation. In section 6.3, we give a brief description of the particle-in-cell

simulation scheme. Section 6.4, contains a presentation and discussion of our results

on evolution and quasilinear saturation of relativistic Buneman instability. Finally

we end our chapter with a summary of our results in section 6.5.

6.1 Introduction

A current carrying plasma constitutes an ideal laboratory for investigat-

ing various kind of streaming instabilities associated with a relativistic

electron beam-plasma system viz. Buneman, Two stream, Filamentation,

Weibel and Oblique modes [9, 111, 8, 10, 12, 11, 112, 113, 114]. The unstable mode

spectrum associated with an electron beam-plasma system can be broadly classified

into electrostatic (longitudinal) and electromagnetic (transverse) modes. Depending

on the orientation of the wave vector with respect to electron beam velocity direction

(~k · ~vb), ratio of beam to plasma electron density(α = nb/np), Lorentz factor asso-

ciated with beam (γb) and electron to ion mass ratio (m/M), several of the above
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mentioned instabilities could be excited, but dominant one governs the dynamics in

the linear phase. In the flow-aligned direction Buneman and two stream instabilities

govern the evolution of the system whereas in the transverse direction evolution is

governed by filamentation and/or Weibel instabilities. In a plasma with thermal

anisotropy Weibel and filamentation mode can be triggered separately [67] and which

may sometime merge and interact [8, 69]. Also there exists a continuum spectrum

of unstable oblique modes which bridges the gap between parallel and transverse

modes. A detailed discussion of the growth rate of various instabilities and their

dependence on the parameters (~k · ~vb), α = nb/np, γb and m/M is given in references

[9, 111, 8, 10, 12, 11]. It turns out that in the dilute beam (α� 1) and large γb limit

(γb ≥ αM
m
), Buneman/Buneman like modes dominate the evolution of relativistic

electron beam-plasma system [8, 10, 12]. The simplest way in which electrostatic

Buneman [60] instability gets excited is when all the plasma electrons drift as a

whole and the relative drift velocity between the electrons and ions exceeds the

electron thermal velocity. It is associated with novel physical effects like anomalous

resitivity [39, 115, 116], double layer formation [28, 29] etc. Buneman instability is

of importance in many laboratory plasma experiments with intense parallel electric

fields (such as in turbulent tokamaks) [30, 31, 106] and in astrophysical situations

with relativistic jets [117]. Recent interest in studying space time evolution and

eventual saturation of Buneman instability is due to its application to a number of

physical scenario’s of practical interest viz. laser driven ion acceleration[6, 7], strong

double layer formation [28, 29], acceleration of charged particles [5, 34, 35, 105] etc.

Since the pioneering work of Oscar Buneman [60, 26] a lot of work has been done

to understand the linear and nonlinear evolution of Buneman instability[82, 83, 39,

41, 42, 51, 52, 86, 85, 107, 87, 108, 88, 109, 91, 90] in the non-relativistic regime [118].

Saturation of Buneman instability in the non-relativistic regime has also been studied

by numerous authors [82, 83, 39]. Hirose[39] reported that quasilinear saturation of

Buneman instability occurs when the ratio of electrostatic energy density(∑
k
|Ek|2/8π)
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to initial drift kinetic energy density W0 reaches up to ≈ 2(m/M)(1/3). Using

quasilinear theory, Ishihara et. al. [41] derived a nonlinear dispersion relation

which they verified by performing a 1-D Vlasov simulation. They further reported

that quasilinear saturation of the Buneman instability in non-relativistic regime is

consistent with the Hirose’s [39] scaling.

Recently some authors have attempted to understand the mechanism of Buneman

instability in the relativistic regime. Using particle-in-cell simulation, Yin et. al.

[6] have found a new laser driven ion-acceleration mechanism viz. laser break-out

afterburner (BOA) for production of mono-energetic ion beams in the Gev energy

regime. The underlying mechanism of production of such energetic ion beams has been

attributed to relativistic Buneman instability. This has been further confirmed by

Albright et. al. [7] by matching the results of numerical solution of dispersion relation

for relativistic Buneman instability with the modes found from BOA simulation.

References [34, 35, 105] have investigated the acceleration of electrons via their

interaction with electrostatic waves, driven by the relativistic Buneman instability,

in a system dominated by counter-propagating proton beams. Haas[53] et. al. has

investigated quantum relativistic Buneman instability using a Klein-Gordon model

for the electrons and cold ions. Recently Hashemzadeh et. al. [54] have carried

out 1-D particle-in-cell simulation of relativistic Buneman instability in a current

carrying plasma. Their simulations show that with increase in initial electron drift

velocity the growth rate of Buneman instability decreases. Although this is expected

from a fluid model, a detailed comparison of the characteristics of the instability with

the fluid model has not been reported. The above discussion indicates that there has

been some work on relativistic Buneman instability in the recent past, but to the best

of our knowledge, investigation of its evolution and saturation using particle-in-cell

simulation method, and a detailed comparison of the simulation results with a fluid

model has not been attempted so far.
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6.2 Derivation of Linear Dispersion Relation

In this section we present a derivation of linear dispersion relation for relativistic

Buneman instability. Consider a cold relativistic electron beam of density n0 and

velocity v0 propagating through a homogeneous background of ions of density n0.

Buneman instability occurs when relative drift velocity between electron and ion is

sufficiently larger than electron thermal velocity i.e. v0 � vth,e. The basic equation

governing the space-time evolution of Buneman instability in 1D are as follows.

The continuity equation for electrons and ions

∂ns
∂t

+ ∂ (nsvs)
∂x

= 0 (6.1)

The relativistic momentum equation for electrons and ions

∂ps
∂t

+ vs
∂ (ps)
∂x

= qsE (6.2)

and the Poisson equation

∂E

∂x
= 4πe(ni − ne) (6.3)

where s stands for the species(electron and ion) and ps = msvs√
1− (vs

c
)2

is the

relativistic momentum for species s. Here we use me = m; qe = −e and mi = M ;

qi = e as the rest mass and electrostatic charge of electron and ion respectively; other

symbols have their usual meaning.

For electrons linearized continuity and momentum equation becomes

− ιωδnex + ιkn0δvex + ιkv0δnex = 0 (6.4)

γ3
e0(−ιωδvex + ιkv0δvex) = −eE

m
(6.5)
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where γe0 is a Lorentz factor associated with the initial electron drift velocity. Elimi-

nating δvex from equation (6.4) and (6.5), perturbed electron density is

δnex = −ιe
mγ3

e0(ω − kv0)2E (6.6)

Again linearized continuity and momentum equation for ions can be written as

−ιωδnix + ιkn0δvix = 0 (6.7)

− ιωδvix = eE

M
(6.8)

eliminating δvix from equation (6.7) and (6.8), gives linearized perturbed ion density

as

δnix = ιekn0

Mω2 E (6.9)

Substituting from equation (6.6) and (6.9), Poisson equation gives

ιkE = 4π(δnix − δnex) (6.10)

Using equation (6.6),(6.9) and (6.10), we get the dispersion relation for Buneman

instability in the weakly relativistic limit as

1 =
ω2
pi

ω2 +
ω2
pe

γ3
e0(ω − kv0)2 (6.11)

where k is the wave number, ωpi =
√

4πn0e2

M
and ωpe =

√
4πn0e2

m
are ion and

electron plasma frequency respectively.
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6.2.1 Estimation of the growth rate of the instability

Equation (6.11) is a fourth order polynomial equation in ω. The growth rate of

the relativistic Buneman instability is given by the complex root of the equation

(6.11) with positive imaginary part. We first give an approximate estimate of the

growth rate and then compare it with that obtained using direct numerical solution

of the dispersion relation. Following Haas et. al.[53] we use the resonant condition

kv0 ≈ ωpe

γ
3/2
e0

; substituting this condition in the dispersion relation and using ω � kv0 ,

leads to the following cubic equation in ω.

ω3 = − m

2Mγe0
−3/2ω3

pe (6.12)

Two complex roots of cubic equation can be written as

ω = (1± ι
√

3)
√
γe0

(
m

16M

)1/3
ωpe (6.13)

The positive sign gives the growth rate of the most unstable mode as

γmax =
√

3
√
γe0

(
m

16M

)1/3
ωpe (6.14)

Here γ−1/2
e0 is a relativistic correction to the growth rate which explicitly shows

that as γe0 increases, growth rate decreases. Most unstable k mode depends on the

initial drift velocity, for example, for kLc/ωpe ≈ 1 to be the most unstable mode,

initial electron drift velocity turns out to be v0/c ≈ 0.65586. Table 6.1 shows the

comparison between estimated (using equation (6.14)) and numerically calculated

growth rate, for the most unstable mode i.e. kLc/ωpe ≈ 1. Good matching is seen

between growth rate, estimated using resonance condition (equation (6.14)) and the

growth rate obtained from numerical solution of dispersion relation.

The physics underlying the resonance condition may be illustrated as follows; When
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Table 6.1: Table shows comparison between estimated and numerically calculated
growth rate

M/m
√

3√
γe0

(
m

16M

)1/3
ωpe Numerical solution

1836 0.04855 0.04664
5× 1836 0.0247 0.0278
10× 1836 0.02258 0.02214
20× 1836 0.0156 0.1553
40× 1836 0.01422 0.01405

electrons and ions are perturbed longitudinally by very small(linear) perturbation(∝

expι(kx−ωt)), both species start to oscillates around their mean position with the

frequency ω̃pe and ωpi in their respective frame of reference, where ω̃pe = ωpe

γ
3/2
e0

is the

relativistically correct electron plasma frequency and ωpi is ion plasma frequency. The

Doppler shifted electron plasma oscillation can resonate with ion plasma oscillation

(ω̃pe − kv0 ≈ ωpi); in the limit of heavier ions ( ωpi

ωpe
→ 0), this leads to the resonance

condition as kv0 ≈ ωpe

γ
3/2
e0

; This resonance can make ions unstable at the expense

of electron drift kinetic energy and this instability is called Buneman instability.

Since we get the resonance condition in the limit of heavier ions so the growth rate

estimated using equation (6.14) and the one calculated numerically come closer as

the mass ratio increases.

6.3 Method of solution

The basic set of equations, required to study the evolution of relativistic Buneman

instability in 1-D, using a particle-in-cell code[96], are the momentum and Poisson’s

equation. Ions are assumed to be at rest to begin with, and provide a neutralizing

background while all the electrons are flowing with a single velocity v0. The governing

equations in normalized form are

dx

dt
= vs(x, t) (6.15)
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dγsvs
dt

= ±E(x, t) (6.16)
∂E

∂x
= (ni − ne) (6.17)

All physical quantities are used in normalized units. The normalization used are

k → kLx, t → tωpe, v → kLv/ωpe, ns → ns/n0, E → ekLE
mω2

pe
, where kL is the wave

number corresponding to the longest wavelength, which is the system length. Here

γs is a Lorentz factor and s denotes the species electrons/ions.

Parameters used in the numerical experiment of relativistic Buneman instability

are written in table 6.2. System length is divided into 1024 equidistant cells; field

quantities viz. electric field and particle density are calculated at the cell center(grid

points) and particle quantities like velocities are calculated at particle positions.

Each species has 102400 particles spread within 1024 grid cells, so each cell contain

100 particles. Periodic boundary conditions are used that allows only integer mode

numbers as k = 1,2,3...512 in the system. Time step is taken to be ∆t = 0.0196349ω−1
pe

(∆t is chosen such that ωpe∆t� 1; we have chosen 320 time steps in a plasma period).

A small thermal spread vth,e/v0 = 3× 10−4 is given to the electron beam in order to

avoid nonphysical cold beam instability [96]. Plasma is cold(vth,e/v0 ≈ 0.0003) with

a very small thermal spread that fulfills the necessary condition vdrift � vthermal, so

system has favorable condition to excite Buneman instability.

In this simulation we have followed ion and electron trajectories in the self consis-

tently generated electric field. Initially electrons and ions are placed in phase space.

For a given ion and electron density, electric field is calculated on the grid points

by solving Poisson’s equation. Using this electric field, force is calculated on the

grid points; this force is then interpolated on the particle positions. Then ion and

electron momentum equations are solved using this force that yields new position

and velocity. This new particle position is weighted on the grid points to evaluate

density over the grid points using second order polynomial interpolation scheme
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Table 6.2: List of physical parameters used in our simulations.
Parameter Symbol Value
No of grid points NG 1024
System Length L 2π
Time step ∆t 0.0196349ω−1

pe

Grid Spacing kL∆x L/NG = 0.006
Total no of electron Ne 102400
Total no of ion Ni 102400
Mass ratio M/m 500, 1000, 1836, 18360
Electron Plasma Frequency ωpe 1
Ion Plasma Frequency ωpi (m/M)1/2 ω−1

pe

Initial electron drift velocity kLv0/ωpe 0.1, 0.31, 0.66
Initial ion drift velocity kLvi0/ωpe 0.0
Electron thermal velocity vth,e/v0 0.003
Ion thermal velocity vth,i/v0 0.0

which is further used to calculate the new force. This process is then repeated for

thousands of time steps.

6.4 Results and Discussion

In this section we present results carried out using 1D particle-in-cell simulation code.

Section 6.4.1 presents the discussion on quasilinear evolution of relativistic Buneman

instability and section 6.4.2 contains discussion about quasilinear saturation of

relativistic Buneman instability.

6.4.1 Evolution of relativistic Buneman instability

We start our simulation when the plasma is in equilibrium i.e. electrons are flowing

with a single velocity, like a cold electron beam (delta function distribution) with

respect to a uniform homogeneous background of ions, resulting in an uniform electron

current to begin with. Specifically the initial conditions of our PIC simulation may

be described as

ne(x, 0) = n0 ni(x, 0) = n0 kLve(x, 0)/ωpe = v0/c kLvi(x, 0)/ωpe = 0
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As time progresses, small amplitude electron, ion density and velocity oscillations

evolve from background noise. Since the system is unstable and beam energy provides

free energy, these small perturbations start to grow at the expense of initial beam

kinetic energy density. Different modes grow at different rates.
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Figure 6.1: Evolution of k spectrum of electric field for the velocity v0/c = 0.3105
(γ0 = 1.052) at different time steps.

Figure (6.1,6.2) show evolution of amplitude of electric field in Fourier space for

the mass ratio M/m = 1836 and for initial electron drift velocity v0/c ≈ 0.3105. For

these parameters, the most unstable mode number turns out to be k/kL ≈ 3. This

can be seen from the resonance condition kv0 ≈ ωpe

γ
3/2
e0

=⇒ k/kL ≈ 3. As expected it is

observed that the most unstable growing mode supported by the system grows faster

than the other modes. Temporal evolution of different Fourier modes is shown in

figure (6.2). The black line shows the evolution of the most unstable mode and, green

and brown lines respectively show the evolution of the first and second harmonic

of the most unstable mode. Growth rates are obtained by measuring the slope of

the curves in Fig. 6.2 from initial stage of the instability to quasilinear saturation.

Around ωpet/2π ≈ 4, the most unstable mode (k/kL = 3) starts to evolve with

growth rate γmax ≈ 0.0529ωpe. It is observed that higher harmonics (2k/kL & 3k/kL)

of the most unstable mode (k/kL = 3) appear at later times (ωpet/2π ≈ 25 and 35
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Figure 6.2: Temporal evolution of kth mode of electric field for the velocity v0/c =
0.3105 (γ0 = 1.052).
respectively) and are found to grow at twice and thrice the growth rate of the most

unstable mode. For the above parameters linear growth of relativistic Buneman

instability saturates at ωpet/2π ≈ 46.6.

k/k
L

0 2 4 6 8 10 12

γ
/ω

pe

0

0.01

0.02

0.03

0.04

0.05

0.06
M/m = 1836

v0/c = 0.1
v0/c = 0.1
v0/c = 0.1955
v0/c = 0.1955
v0/c = 0.3105
v0/c = 0.3105

Figure 6.3: Comparison between theory and simulation dispersion relation. Here line
curves shows numerical solution of dispersion relation and dots shows growth rate
taken from simulation

Figure (6.3) shows the growth rate (γ/ωpe) as a function of mode number for

different initial electron drift velocities and for a fixed electron to ion mass ratio. The

continuous lines are obtained by numerically solving the dispersion relation (equation

(6.11)) and the dots represent the simulation points; which shows a reasonably
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good match between theory and simulation. We see that range of unstable mode

numbers increases as the initial electron drift velocity decreases. It is also clear from

figure (6.3) that with the increase in velocity (relativistic effects), the peak growth

rate (growth rate corresponding to the most unstable mode) reduces for a fixed

electron to ion mass ratio (m/M). This is in contrast to the non-relativistic result

where the maximum growth rate corresponding to the most unstable mode number

is independent of the initial electron beam drift velocity. Figure (6.4) shows the

variation of maximum growth rate with electron to ion mass ratio for different initial

electron drift velocities. It is observed that the maximum growth rate (γmax/ωpe)

varies linearly with (m/M)(1/3) and decreases with increasing v0(γe0) is conformity

with equation (6.14). Thus the above results show that relativistic effects have a

stabilizing influence on the Buneman instability.

(m/M)1/3
0.08 0.1 0.12

γ
m
a
x
/ω

pe

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

v
0
/c = 0.1,  k/k

L
 = 10

v
0
/c = 0.31, k/k

L
 = 3

v
0
/c = 0.66, k/k

L
 = 1

γ
e0

Figure 6.4: Comparison of growth rate for different velocity with mass ratios from
left to right M/m = 1836, 1000 and 500.

As mentioned in the last paragraph with the increase in initial electron drift velocity,

growth rate decreases due to relativistic effects, so saturation time of instability

increases. Figure (6.5) and (6.6) respectively show the temporal evolution of the

electrostatic field energy for different initial electron drift velocity v0/c ≈ 0.1, 0.3105,

0.66 for two different mass ratios M/m = 500 and 1836. These figures clearly
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show that as the initial electron drift velocity increases, the saturation time also

increases. This is in contrast to the non-relativistic case, where the saturation time

is independent of the initial electron drift velocity, and depends only on the electron

to ion mass ratio (m/M). Using the saturation time for the non-relativistic [44] case

and taking tsat ∼ 1/γmax, we may estimate the saturation time in the relativistic

case, for a fixed mass ratio (m/M) and for different initial electron drift velocities

as trelsat ≈ (1 + ∆γ/γrelmax)tnon−relsat , where trelsat and tnon−relsat are the saturation times of

Buneman instability for the relativistic and non-relativistic case respectively and

∆γ = γnon−relmax − γrelmax is the difference in growth rate of the most unstable mode in

the non-relativistic and relativistic case. For example, for mass ratio M/m = 1836

and for initial electron drift velocity (v0/c = 0.3105), the growth of the most unstable

mode (in the case k/kL ≈ 3) in the non-relativistic case is γnon−relmax /ωpe = 0.054 (This

may be estimated either by putting γe0 = 1 in the relativistic dispersion relation; or

by performing 1-D non-relativistic particle-in-cell simulation (see section 5.4.1)) and

tnon−relsat ωpe/2π ≈ 44.46. For the above parameters, the growth rate in the relativistic

case turns out as γrelmax/ωpe ≈ 0.0525 (estimated using equation (6.14)). Thus the

estimated saturation time in the relativistic case is trelsatωpe/2π ≈ 45.73 which is close

to that observed in simulations (figure 6.5b). Similar estimates of trelsat can be made

for other initial electron drift velocities and mass ratios which also show a good

match with that observed in simulation.

6.4.2 Quasilinear Saturation of the Instability

Quasilinear saturation of the Buneman instability occurs when the most unstable

growing mode saturates along with its harmonics. At the saturation point, electro-

static energy density shows a hiccup as shown in the figure (6.5) and (6.6) (see inset),

this hiccup represents the breaking of exponential growth or linear saturation of the

instability.
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Figure 6.5: Figure shows temporal evolution of ∑
k
|Ek|2/16πW0 for different initial

drift velocities (6.5a) 0.1 (γ0 = 1.005), (6.5b) 0.31 (γ0 = 1.052), (6.5c) 0.66 (γ0 = 1.33)
for mass ratio M/m = 1836.

The scaling of electrostatic field energy density at the saturation point with initial

beam kinetic energy density may be derived by an analysis similar to Hirose’s [39]

for the non-relativistic case. We first reproduce Hirose’s [39] argument here for the

sake of continuity. Analysis of non-relativistic Buneman instability shows that for

a given initial electron drift velocity v0, the growth rate (γ/ωpe) maximizes at the

resonant wave number given by kv0 ∼ ωpe and sharply drops for small changes in

the drift velocity; the width of the γ/ωpe vs kv0/ωpe curve scales with electron to ion

mass ratio as ∆(kv0/ωpe) ∼ (m/M)1/3. Thus any small change in the electron drift

velocity drastically reduces the growth rate resulting in quenching of the instability.

This idea has been used by Hirose[39] to estimate the saturated electrostatic field
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Figure 6.6: Figure shows temporal evolution of ∑
k
|Ek|2/16πW0 for different initial

drift velocities (6.6a) 0.1 (γ0 = 1.005), (6.6b) 0.31 (γ0 = 1.052), (6.6c) 0.66 (γ0 = 1.33)
for mass ratio M/m = 500
energy density for a given initial beam kinetic energy density. Based on a quasi-linear

calculation, Hirose [39] has shown that the ratio of k∆v0/ωpe (where "k" is the

resonant wave number and ∆v0 is the difference between the drift velocity at the

saturation time and the initial time) and ∆(kv0/ωpe) (the width of γ/ωpe vs kv0/ωpe

curve) is given by

k∆v0

∆(kv0) ≈
∑
k

|Ek|2

16πW0

(
M

m

)1/3
≈ Field energy density

Initial beam kinetic energy density

(
M

m

)1/3

(6.18)

where W0 is the initial beam kinetic energy density. In the non-relativistic case

Hirose [39] argued that this ratio at the saturation time should be of order unity and

therefore the electrostatic field energy density at the saturation point scales linearly
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with initial beam kinetic energy density, with a slope which depends on electron to

ion mass ratio as (m/M)1/3 (we have verified this scaling in previous chapter).
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Figure 6.7: Figure shows scaling of k∆v
ωpe

with γe0 in log-log plot, it follows (6.7a)
γ−2.55
e0 (6.7b) γ−2.6

e0 and (6.7c) ∼ γ
−14/5
e0 scalings.

Following an argument similar as above, in the relativistic case the growth rate

(γ/ωpe) maximizes at the resonant wave number given as kv0 ∼ ωpe/γ
3/2
e0 , which

also sharply drops for small changes in the drift velocity; the width of the γ/ωpe

vs kv0/ωpe curve may be estimated by replacing electron mass m by meff = mγ3
e0

and ωpe by ω
′
pe = ωpe/γ

3/2
e0 in the weakly relativistic dispersion relation (equation

(6.11)) which leads to ∆(kv0/ωpe) ∼ 1
γ

1/2
e0

(
m
M

)1/3
. Further the change in electron

drift velocity at the saturation point may be estimated from the resonance condition

as k∆v0
ωpe

∼ −3
2

1
γ

5/2
e0

∆γe0 implying that k∆v0
ωpe

scales with relativistic factor γe0 as
k∆v0
ωpe
∼ 1

γ
5/2
e0
∼ 1

γ2.5
e0
. We have verified this scaling in our simulations. Figure (6.7)
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shows the variation of k∆v0/ωpe with γe0 for different mass ratios. The dots represent

the points obtained from simulation and the straight line fit shows a scaling as

k∆v0 ∼ 1
γ2.8

e0
(for M/m = 1836, see Fig. 6.7c) which closely agrees with our back-

of-the envelope estimate. Therefore the ratio k∆v0
∆(kv0) scales with γe0 as k∆v0

∆(kv0) ∼ γ−2
e0 .

Now assuming Hirose’s [39] [equation (6.18)] holds in the weakly relativistic limit,

we note that the ratio of electrostatic field energy density at the saturation point to

initial electron drift kinetic energy density scales with γe0 as

|E|2

16πW0
∼ k∆v0

∆(kv0)

(
m

M

)1/3
∼ 1
γ2
e0

(
m

M

)1/3
(6.19)

We have verified the above scaling in our simulations. Figure (6.8) shows the variation

of electrostatic field energy density at the saturation point with initial beam kinetic

energy density for different mass ratios. The Yellow curve shows ∼ 1
γ2

e0
scaling and

the blue straight line shows the scaling for the non-relativistic case (presented here

for comparison [44] ). Figure (6.9) shows the variation of the ratio of electrostatic

field energy density at the saturation point to initial electron beam kinetic energy

density with electron to ion mass ratio for different initial electron drift velocities.

The linear variation with (m/M)1/3 again confirms equation (6.19).

6.5 Summary

In this chapter, we have studied the evolution and saturation of the relativistic

Buneman instability in 1-D using an in-house developed particle-in-cell simulation

code. Our results clearly show that relativistic effects have a stabilizing influence on

the instability. The growth rates of unstable modes as measured from simulation

show a good match with that obtained from fluid model. Further at the saturation

point the electrostatic field energy density scales with the initial electron drift kinetic

energy density as ∼ 1
γ2

e0
, where γe0 is the Lorentz factor associated with the initial
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Figure 6.8: Evolution of electrostatic energy density with initial drift kinetic energy
density for the mass ratio (6.8a) 500, (6.8b) 1000, (6.8c) 1836, (6.8d) 18360

.

electron drift velocity. This scaling closely matches our back-of-the envelope estimate

based on Hirose’s [39] analysis. Similar calculations for two-stream instability and

filamentation/Weibel instability have been carried out by several other authors [12,

119, 120, 121], whose results we quote here. For relativistic two-stream instability

the growth rate and the ratio of electrostatic field energy density to initial beam

kinetic energy density at the saturation point scales with γe0 as γ−1
e0 and γ

−3/2
e0

respectively (this is derived in the weak beam limit i.e ratio of beam to plasma

density nb/n0 � 1)[12, 119] whereas for filamentation / Weibel instability, the

growth rate scale as γ−1/2
e0 and the ratio of energy densities at the saturation point

is independent of γe0 [120, 121]. We note that our simulation being 1-D in nature

has limitations as compared to a full 3-D EM PIC simulation. In a pure 1-D system
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Figure 6.9: Figure shows variation of ∑
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initial drift velocities for mass ratios from left to right M/m = 1836, 1000 and 500.

such as the one considered in this work, where there is no variation in the transverse

directions (the transverse size of the beam is infinite) and all the plasma electrons

are drifting as a whole with respect to ion background, no return current gets excited.

In such a case because of interaction between the electron beam and background

ions, Buneman is the only instability which gets excited. Such a toy mode is used in

textbooks [1] which helps in isolating Buneman from other beam-plasma instabilities.

In order to simulate higher dimensional effects such as finite beam width (that leads

to excitation of return current) one needs to carry out 3-D EM PIC simulations.

Depending on the values of the parameters such as orientation of the wave vector with

respect to beam direction (~k · ~vb), beam to plasma electron density ratio (α = nb/np),

Lorentz factor associated with beam electrons (γb) and electron to ion mass ratio

(m/M), several longitudinal and transverse instabilities may be excited. As shown

in references [8, 10, 12] in a cold plasma, in the dilute beam limit (α� 1) as long

as the inequality γbR ≥ α (R = m/M) is satisfied Buneman/Buneman like modes

govern the evolution of relativistic electron beam-plasma system. For our choice of
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parameters γbR ranges from 5.5× 10−4 − 2.7× 10−3. Therefore for values of α lower

than the above thresholds, Buneman/Buneman like modes dominate the evolution of

the relativistic electron beam-plasma system. In this chapter, we have emphasized

only on the linear evolution and saturation of the relativistic Buneman instability.

In the linear stage, Buneman is the dominant mode, although in the nonlinear stage

of the evolution, it may couple to oblique modes [122] and excite Weibel instability

after nonlinear saturation [123].
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Conclusion & Future Work

In this chapter, we summarize the important results obtained in various

chapters of this thesis. We also discuss possible extension of present work

in various limits later in this chapter.

The main focus of this thesis has been on the study of electrostatic modes and

instabilities in current carrying cold plasmas with static and mobile ion background

ranging from non-relativistic to relativistic regime. We present here a brief overview

of the work carried out and summarize the results which have been presented in

detail in various chapters of this thesis.

The thesis work begins with the brief overview of numerical techniques used

for simulating current carrying cold plasmas. Chapter 2 presents two generalized

techniques based on the description of fluid and particle picture of plasma. Fluid code

uses LCPFCT [95] subroutines to solve generalized flux conserved fluid equations.

Particle-in-cell [96] solves the basic Newton-Maxwell set using time centered finite

difference schemes. The codes are benchmarked in the following chapters where an

extensive comparison between the theoretical and computational results has been
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carried out.

In chapter 3, we present an analytical study, carried out for stationary BGK struc-

tures in relativistic current carrying fluid-Maxwell system. This study is motivated by

the investigation carried out in the ref. [19], where author found that in the presence

of a non-relativistic electron beam with average speed v0, electric field becomes

discontinuous for κ ≥ 1 (where κ = Em/(4πn0mv0)1/2, Em is maximum amplitude of

electric field), which is equivalent to wave breaking in current carrying cold plasmas.

This chapter presents an extension in relativistic regime of the work carried out in the

aforementioned ref. [19]. In this chapter, we show that relativistic BGK structures

are governed by the nonlinear parameter κR = Em/(8πn0m(γ0− 1)c2)1/2, where γ0 is

the Lorentz factor associated with the average beam speed and other symbols have

their usual meanings. We have derived an energy equation using pseudo-potential

(Sagdeev potential) method. Analysis of pseudo-potential (Sagdeev potential) shows

that BGK structures are periodic in space and, in contrast to the non-relativistic

regime, wavelength of the BGK structures varies with the variation of κR. It is

also observed that pseudo potential (V (φ)) becomes undefined at the electrostatic

potential Φc = (1 − γ0)/γ0 or at the pseudo-energy level κR = κcR = 1/√γ0, thus

method of pseudo potential becomes invalid for the values of pseudo-energy κR ≥ κcR.

Therefore, analysis of BGK structures is carried out by studying Φ− E phase space,

which reveals that phase space curves are continuous in the range 0 ≤ κR ≤ κcR, but

becomes discontinuous in the range κcR ≤ κR, i.e., electric field becomes discontin-

uous periodically at some positions of space, thus forming periodic electron sheets

(negatively charge plane). The charge density of periodically occurring electron

sheets scales with κR and β as ∼ (κ2
R − (1− β2)1/2)1/2. It must be noted here that

in the limit β → 0 and/or κR →∞, electron beam is transformed into a crystal of

"negatively charged plane" with inter-distance λ0 = Em/2πn0e having surface charge

density ∼ Em/2π. Further, a relation between electron velocity and position shows

that as κR → κcR, electron velocity decreases and for the range κR ≥ κcR, electron
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velocity vanishes at the positions where electron sheets are formed. In order to keep

current constant, density burst occurs at the similar positions where electron velocity

is vanished or electron sheets are formed. These density burst may approach finite

values on inclusion of thermal effects.

Full space-time evolution of relativistic current carrying fluid-Maxwell system

with static ion background is studied in chapter 4. We obtained an exact solution

using method of Lagrangian transformation, describing spatio-temporal evolution of

relativistically intense space charge waves propagating on relativistic electron beam.

We found that when a relativistic electron beam is perturbed longitudinally with

relativistically intense wave, the spatially averaged current diminishes with time due

to variation of relativistic mass. By analyzing solution it is found that amount by

which spatially averaged current diminishes (∆I) increases with increasing relativistic

intensity of the wave. It is found that the rate of decrease of current (dI/dt) decreases

with increasing flow velocity and increases with increasing wave intensity.

Our findings may be of relevance in fast ignition [77, 78] of laser fusion. In fast

ignition scenarios [30, 31] , the relativistic electron beam is generated by direct

interaction of the laser pulse with the coronal plasma and reaches the precompressed

fuel core after propagating in the dense plasma region. In dense plasma region,

forward moving relativistic electron beam current is compensated by backward moving

coronal plasma electron current (return current) [50]. This current neutralization is

satisfied on global scale rather than on local, subsequently introducing several beam-

plasma instabilities (filamentation and/or Weibel) in the system. Owing to which

energy transport is inhibited and coupling of energy from laser to precompressed

target is hence compromised. Efficiency of energy transport is also a key factor in

alternative fast ignition schemes. Increment in the efficiency of energy transport

through relativistic electron beam is currently a hot issue and needs to be addressed

in order to achieve inertial fusion confinement using fast ignition schemes. When
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there is no return current present, self consistent electric field of beam can reach up

to 1012V/m [50] in 1 fs. According to our findings on effects of space charge waves

on relativistic electron beam, this self consistent electric field may modulate electron

beam and total spatially averaged current may be diminished which would inhibit

the excitation of other beam-plasma instabilities.

Further, we have extended the scope of our thesis for electrostatic instabilities

occurring because of coupling between electrons and ions. Buneman mode under

certain condition turns out to be the strongest unstable mode. General solution of

Buneman instability offers great mathematical difficulty so computer simulation is

needed to understand nonlinear dynamics of Buneman instability. In chapter 5, we

present nonlinear evolution of Buneman instability, which is carried out using 1-D

particle-in-cell simulation code. For different initial drift velocities and for a wide

range of electron to ion mass ratios, the growth rate obtained from simulation agrees

well with the numerical solution of the fourth order dispersion relation. The time

when linear growth rate saturates along with its harmonics is known as quasilinear

or first saturation time and can be identified as first hiccup in time evolution of

electrostatic energy density. We have found that quasilinear saturation (or first

saturation) occurs when the electrostatic energy density becomes ∼ (m/M)1/3 times

the initial drift kinetic energy density, i.e. ∑
k
|Ek|2/16π ≈ (m/M)(1/3)W0, which is

estimated analytically by Hirose[39]. The energy level at the time of quasilinear

saturation is observed to be independent of the initial drift velocity. Further, electron

trapping and nonlinear mode coupling leads to the final saturation of the instability.

In contrast to quasilinear saturation, at the final saturation the ratio of electrostatic

field energy density to initial kinetic energy density depends on the initial drift velocity

but is independent of the mass ratio. The energy level at the time of final saturation

follows the inequality suggested by Ishihara et. al. [41], i.e., ∑
k

|Ek|2
16πW0

≥ 0.11. To the

best of our knowledge, this is the first verification of Hirose’s [39] and Ishihara’s [41,

42] theoretical scaling using a PIC simulation.
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The most interesting feature that has emerged from this chapter is, after final

quenching of Buneman instability, strong interaction between electron phase space

holes and surrounding ions leads to the breaking of the electron phase space holes into

two oppositely propagating holes each attached with an ion pulse. We have identified

these oppositely propagating coherent structures as coupled hole-solitons (CHSs). A

very good match is found between computational and theoretical amplitude-speed

relation, where theoretical amplitude-speed relation is taken from theoretical model

of Saeki et. al. [46]. Specifically, this is first ever confirmation which shows explicit

formation and identification of CHSs after saturation of Buneman instability. These

coupled hole-solitons eventually coalesce away finally generating a broadened electron

velocity distribution function.

In chapter 6, we have extended our study on Buneman instability for the cases,

when electron beam is moving with weakly relativistic speed. Simulation is carried

out using 1D relativistic particle-in-cell code. In the relativistic regime, dynamics

of Buneman instability (also known as relativistic Buneman instability) is strongly

affected[7, 53, 54]. It is observed that growth rate is reduced in relativistic regime and

maximum growth rate now scales with initial drift velocity v0 as γ/ω ≈
√

3
2γ1/2

e0

(
m

2M

)1/3

(where γe0 is the Lorentz factor associated with the initial electron drift velocity),

consequently, relativistic effects have a stabilizing influence on the instability. The

growth rates of unstable modes as measured from simulation show a good match with

that obtained from the numerical solution of fourth order dispersion relation. Further

at the time of quasi-linear saturation, the ratio of electrostatic field energy density

to initial kinetic energy density is found to be depending of initial drift velocity and

scales as∑
k
|Ek|2/16πW0 ≈ 1

γ2
e0

(
m

2M

)1/3
, whereW0 = (γe0−1)n0mc

2. This novel result

on the scaling of energy densities has been found to be in quantitative agreement

with our theoretical back-of-the-envelope estimation, which is based on Hirose’s [39]

analysis.
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We end this section by making a comment that in our thesis we have studied several

electrostatic modes and instabilities with static and mobile background occurring

in current carrying cold plasmas. In next section we discuss possible extension of

present work in various limits.

7.1 Future Scope

The results presented in this thesis illustrate several interesting physical phenomena

and provide a basis for further investigations as direct extensions to this work. In

this section, we discuss some open problems, which can be attempted in future.

1. In chapter 3, stationary solutions for relativistic BGK structures are obtained

for the range κR ≥ κcR. Study of excitation and stability of these BGK

structures using a PIC/fluid code needs to be carried out.

2. In chapter 4, we studied effect of relativistically intense wave on homogeneous

relativistic electron beam. This study must be extended for in-homogeneous

relativistic electron beam propagating through homogeneous background of

ions and for homogeneous relativistic electron beam propagating through in-

homogeneous background of ions. These studies may shed new light in fast

ignition scheme, relativistic jets etc.

3. In chapter 5, we found coupled-hole solitons after quenching of Buneman

instability, which eventually phase mix away. However, this is not the complete

relaxation of the system thus long time simulation must be carried out to know

final relaxation stage after saturation of the Buneman instability. It would also

be interesting to carry out PIC simulation of non-resonant Buneman instability,

which is expected to follow growth rate obtained by Kaw et al. [29] in linear

regime.
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4. An analytical model for nonlinear evolution of relativistic Buneman instability

must be developed using quasilinear kinetic theory. This analytical model will

help to estimate energy scaling for quasilinear and nonlinear saturation of the

relativistic Buneman instability.
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A
Estimation of interdistance (wavelength) be-

tween the crystals in the limit κR →∞

In this appendix, we estimate the wavelength for the crystal formation in the range

κR → ∞ and/or β → 0. First we will reduce all the variables in above described

range as,

α = (γ0 − 1)κ2
R + 1

γ0
,

α = (γ0 − 1) κ2
E

(γ0 − 1) + 1
γ0
,

α = κ2
E + 1, (A.1)

where κE = Em/(8πn0mc
2)1/2.

r2 =
α +

√
α2 + β2 − 1
1− β = α +

√
α2 − 1, (A.2)

s2 =
α−

√
α2 + β2 − 1
1− β = α−

√
α2 − 1, (A.3)

k2 = 2
√
α2 − 1

α +
√
α2 − 1

. (A.4)
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Maximum value of the potential reduces into

Φu = γ0(γ0 − 1)
(
κ2
R + κRβ

√
κ2
R + 2

γ0(γ0 − 1)

)
,

Φu = γ0(γ0 − 1)
(

κ2
E

(γ0 − 1) + κE
(γ0 − 1)1/2β

√√√√ κ2
E

(γ0 − 1) + 2
γ0(γ0 − 1)

)
,

Φu = γ0

(
κ2
E + κEβ

√
κ2
R + 2

γ0

)
,

Φu = κ2
E = α− 1. (A.5)

sin2 θu =
r2 − γ0(1 + Φu +

√
β2 + 2Φu + Φ2

u)
r2 − s2 ,

sin2 θu =
α +

√
α2 − 1− (1 + α− 1 +

√
2α− 2 + (α− 1)2)

2
√
α2 − 1

,

sin2 θu = α +
√
α2 − 1− (α +

√
α2 − 1)

2
√
α2 − 1

,

sin2 θu = 0,

sin θu = 0. (A.6)

Critical value of the potential becomes

Φc = (γ0 − 1)
γ0

,

Φc = 0. (A.7)

sin2 θc =
r2 − γ0(1 + Φc +

√
β2 + 2Φc + Φ2

c)
r2 − s2 ,

sin2 θc = α +
√
α2 − 1− 1

2
√
α2 − 1

,

sin2 θc = 1
2

1 +
√
α− 1
α + 1

 ,
sin θc = 1√

2

1 +
√
α− 1
α + 1

1/2

,
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cos θc = 1√
2

1−
√
α− 1
α + 1

1/2

. (A.8)

1− κ2 sin2 θc = 1−
(

2
√
α2 − 1

α +
√
α2 − 1

)(
α +

√
α2 − 1− 1

2
√
α2 − 1

)
,

1− κ2 sin2 θc = 1− 1 + 1
r2 ,

1− κ2 sin2 θc = 1
r2 . (A.9)

E(θc, κ2) =
θc∫

0

√
1− κ2 sin2 θc dθc,

E(θc, κ2) = 1
r

θc∫
0

dθc,

E(θc, κ2) = θc
r
. (A.10)

r4(k2 − 1) + 1
r4(k2 − 1) = 1 + 1

r4(k2 − 1) ,

r4(k2 − 1) + 1
r4(k2 − 1) = 1 + 1

r4
(
r2−s2

r2 − 1
) ,

r4(k2 − 1) + 1
r4(k2 − 1) = 1− 1

r2s2 ,

r4(k2 − 1) + 1
r4(k2 − 1) = 1− 1

(α +
√
α2 − 1)(α−

√
α2 − 1)

,

r4(k2 − 1) + 1
r4(k2 − 1) = 0. (A.11)

From the equation , wavelength in the limit κR ≥ κcR written as

ωpeλ0

v0γ
3/2
0

= − 2(1 + β)1/4

γ0β(1− β)1/4

[(
r4(k2 − 1) + 1
r3(k2 − 1)

)(
E(θc, k2)− E(θu, k2)

)

− k2 sin 2θu
2r3(k2 − 1)(1− k2 sin2 θu)1/2 + k2 sin 2θc

2r3(k2 − 1)(1− k2 sin2 θc)1/2

]
,
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eliminating variables using the equations (A.1) - (A.11), yields

ωpeλ0

c
= −2

[
0
(
θc
r
− 0

)
− 0 +

2
√
α2 − 1

α+
√
α2 − 1

2 1√
2

(
1 +

√
α− 1
α + 1

)1/2
1√
2

(
1−

√
α− 1
α + 1

)1/2

2(α +
√
α2 − 1)

(
2
√
α2 − 1

α+
√
α2 − 1

− 1
) ]

,

ωpeλ0

c
= −2

[ 2
1+α

√
α2 − 1

(α +
√
α2 − 1)

(
−α +

√
α2 − 1

)],

ωpeλ0

c
= 4
√
α− 1,

ωpeλ0

c
= 4κE,

λ0 = Em
2πn0e

. (A.12)

Thus in the limit β → 0, the beam is transformed into a "crystal" of negatively

charged planes with interdistance λ0.
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B
Solution for spatio-temporal evolution of rel-

ativistic electron beam

B.1 Detailed calculation for obtaining exact solu-

tion in Lagrangian frame

To find the exact solution of equation (4.14), first, we introduce a new variable ξ

through, √
1 + p2

e = pe − ξ2, (B.1)

where ξ is a function of x0 and τ . It must be noteworthy here that substitution of

new variable ξ is merely a mathematical manipulation and does not put any limit

on the range of momentum (pe), instead, just eases up the calculation to find the

exact solution.

pe =ξ
4 − 1
2ξ2 ,
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dpe =
(
ξ + 1

ξ3

)
dξ. (B.2)

Using relation (B.2), equation transforms into

1
(1− β)1/2

∂ξ

∂τ
=± ξ2

1 + ξ4

[
2a

1− β ξ
2 − 1− β2

(1− β)2 − ξ
4
]1/2

,

1
(1− β)1/2

∂ξ

∂τ
=± ξ2

1 + ξ4

[
2a

1− β ξ
2 − ξ4 − 1 + a2 − a2 − β2

(1− β)2

]1/2

,

1
(1− β)1/2

∂ξ

∂τ
=± ξ2

1 + ξ4

[
2a

1− β ξ
2 +

√
a2 + β2 − 1

1− β ξ2 −

√
a2 + β2 − 1

1− β ξ2 − ξ4

−
a−

√
a2 + β2 − 1

(1− β)
a−

√
a2 + β2 − 1

(1− β)

]1/2

,

1
(1− β)1/2

∂ξ

∂τ
=± ξ2

1 + ξ4

[
a+

√
a2 + β2 − 1
1− β ξ2 − ξ4 +

√
a− a2 + β2 − 1

1− β ξ2

−
a−

√
a2 + β2 − 1

(1− β)
a−

√
a2 + β2 − 1

(1− β)

]1/2

. (B.3)

We define new variables r and s as,

r2 =
a+

√
a2 + β2 − 1
1− β , (B.4)

s2 =
a−

√
a2 + β2 − 1
1− β , (B.5)

which reduces equation (B.3) written in the standard form,

1
(1− β)1/2

∂ξ

∂τ
=± ξ2

1 + ξ4

{
r2ξ2 − ξ4 + s2ξ2 − r2s2

}1/2

,

1
(1− β)1/2

∂ξ

∂τ
=± ξ2

1 + ξ4

{
(r2 − ξ2)(ξ2 − s2)

}1/2

,

(1− β)1/2dτ =± ξ2dξ{
(r2 − ξ2)(ξ2 − s2)

}1/2 ±
dξ

ξ2
{

(r2 − ξ2)(ξ2 − s2)
}1/2 . (B.6)
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Now, we introduce a new transformation through variables θ and κ

sin2 θ =r
2 − ξ2

r2 − s2 ,

cos2 θ =ξ
2 − s2

r2 − s2 , (B.7)

κ2 = r2 − s2

r2 =
2
√
a2 + β2 − 1

a+
√
a2 + β2 − 1

, (B.8)

where θ is a function of x0 and τ and κ is a function of x0 only.

dξ =∓ r

2
κ2

(1− κ2 sin2 θ)3/2dθ, (B.9)

This substitution of equations (B.7), (B.8) and (B.9) into equation (B.6), yields,

± (1− β)1/2dτ = ∓
r (1− κ2 sin2 θ

)1/2
dθ + dθ

r3 (1− κ2 sin2 θ)3/2

 . (B.10)

By integrating equation (B.10), the solution of equation (4.14) can be written as

± (1− β)1/2τ = ∓
(
r4(κ2 − 1)− 1
r3(κ2 − 1) E(θ, κ) + κ2 sin 2θ

2r3(κ2 − 1)(1− κ2 sin2 θ)1/2

)
+ φ(x0),

(B.11)

where E(θ, κ) is incomplete integral of second kind and φ(x0) is secondary arbitrary

coefficient, which is a function of x0.

B.2 Calculation of Electron Density

In this appendix, we present thorough calculation to obtain electron density in terms

of Eulerian co-ordinates. First, we obtain derivatives of some variables, which will

be used for easing up the calculations.

a = ∆′2

2 sin2 kx0 − β
p0

mc
+
√

1 + p2
0

m2c2 , (B.12)
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differentiate the equation (B.12), gives the relation

da

dx0
= k∆′2

2 sin 2kx0. (B.13)

Taking the derivative of (B.4) with respect to x0 gives,

dr

dx0
= 1
rκ2(1− β)

da

dx0
,

dr

dx0
= k∆′2 sin 2kx0

2rκ2(1− β) (B.14)

Again taking the derivative of κ, yields

κ2 =
2
√
a2 + β2 − 1

a+
√
a2 + β2 − 1

,

dκ

dx0
= 1
κ

a−
√
a2 + β2 − 1√

a2 + β2 − 1
(
a+

√
a2 + β2 − 1

) da

dx0
,

dκ

dx0
= −k∆′2(κ2 − 1) sin 2kx0

r2κ3(1− β) . (B.15)

Now we calculate dθ/dx0 using the equation

sin2 θ0 =
a+

√
a2 + β2 − 1− (1− β)

(
p0
mc

+ γ0
)

2
√
a2 + β2 − 1

,

sin2 θ0 = 1
κ2 −

(1− β)
(
p0
mc

+ γ0
)

2
√
a2 + β2 − 1

, (B.16)

as

sin 2θ0
dθ0

dx0
= − 2

κ3
dκ

dx0
+
a(1− β)

(
p0
mc

+ γ0
)

2(a2 + β2 − 1)3/2
da

dx0
,

sin 2θ0
dθ0

dx0
= −2k∆′2(1− κ2) sin 2kx0

r2κ6(1− β) +
a(1− β)

(
p0
mc

+ γ0
)

2(a2 + β2 − 1)3/2
k∆′2 sin 2kx0

2 ,

sin 2θ0
dθ0

dx0
= −2k∆′2(1− κ2) sin 2kx0

r2κ6(1− β) + k∆′2(1− β) sin 2kx0

(
p0

mc
+ γ0

) (1 + β + (1− β)r4)
(1− β)3r8κ6 ,
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dθ0

dx0
= k∆′2 sin 2kx0

r8κ6(1− β)2 sin 2θ0

{(
p0

mc
+ γ0

) (
1 + β − r4(1− β)

)
− 2r6(1− β)(1− κ2)

}
,

(B.17)

where we have used the relations

a = 1 + β + r4(1− β)
2r2 ,

(a2 + β2 − 1)3/2 = r6κ6(1− β)3

8 . (B.18)

Now differentiating complete solution (equation (4.19)) with respect to x0, yields,

(1− β)1/2τ3r2 dr

dx0
=
{

4r3 dr

dx0
+ 2κ

(κ2 − 1)2
dκ

dx0

}
{E(θ0, κ)− E(θ, κ)}+

(
r4 − 1

κ2 − 1

)
{
E(θ0, κ)− F (θ0, κ

2)
κ

− E(θ, κ)− F (θ, κ2)
κ

}
dκ

dx0
+
(
r4 − 1

κ2 − 1

){√
1− κ2 sin2 θ0

dθ0

dx0

−
√

1− κ2 sin2 θ
dθ

dx0

}
−
{

κ sin θ0

(κ2 − 1)2
√

1− κ2 sin2 θ0

− κ sin θ

(κ2 − 1)2
√

1− κ2 sin2 θ

}
dκ

dx0

+ κ2 sin 2θ0

2(κ2 − 1)(1− κ2 sin2 θ0)3/2

(
κ sin2 θ0

dκ

dx0
+ κ2

2 sin 2θ0
dθ0

dx0

)
− κ2 sin 2θ

2(κ2 − 1)(1− κ2 sin2 θ)3/2(
κ sin2 θ

dκ

dx0
+ κ2

2 sin 2θ dθ
dx0

)
+ κ2 cos 2θ0

(κ2 − 1)(1− κ2 sin2 θ0)1/2
dθ0

dx0
− κ2 cos 2θ

(κ2 − 1)(1− κ2 sin2 θ)1/2
dθ

dx0
,

(B.19)

after rearranging some terms and doing some simple algebraic manipulation, gives

3r2τ(1− β)1/2 dr

dx0
= 4r3

{
E(θ0, κ)− E(θ, κ)

}
dr

dx0
+ 2κ

(κ2 − 1)2

(
E(θ0, κ)− E(θ, κ)

)

+
(
r4 − 1

κ2 − 1

){
E(θ0, κ)− F (θ0, κ

2)
κ

− E(θ, κ)− F (θ, κ2)
κ

}
dκ

dx0

+ κ3(κ2 + 1) sin2 θ0 − 2κ
2(κ2 − 1)2(1− κ2 sin2 θ0)3/2 sin 2θ0

dκ

dx0
− κ3(κ2 + 1) sin2 θ − 2κ

2(κ2 − 1)2(1− κ2 sin2 θ)3/2 sin 2θ dκ
dx0

+4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ0)2 + κ4 sin 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)
4(κ2 − 1)(1− κ2 sin2 θ0)3/2

dθ0

dx0

−4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ)2 + κ4 sin 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ)
4(κ2 − 1)(1− κ2 sin2 θ)3/2

dθ

dx0
,

(B.20)
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then ∂θ/∂x0 is obtained as

∂θ

∂x0
= 4(κ2 − 1)(1− κ2 sin2 θ)3/2

4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ)2 + κ4 sin 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ)[
− 3r2τ(1− β)1/2 dr

dx0
+ 4r3

{
E(θ0, κ)− E(θ, κ)

}
dr

dx0
+ 2κ

(κ2 − 1)2

{
E(θ0, κ)

− E(θ, κ)
}
dκ

dx0
+
(
r4 − 1

κ2 − 1

){
E(θ0, κ)− F (θ0, κ

2)
κ

− E(θ, κ)− F (θ, κ2)
κ

}
dκ

dx0

+ κ3(κ2 + 1) sin2 θ0 − 2κ
2(κ2 − 1)2(1− κ2 sin2 θ0)3/2 sin 2θ0

dκ

dx0
− κ3(κ2 + 1) sin2 θ − 2κ

2(κ2 − 1)2(1− κ2 sin2 θ)3/2 sin 2θ dκ
dx0

+ 4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ0)2 + κ4 sin 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)
4(κ2 − 1)(1− κ2 sin2 θ0)3/2

dθ0

dx0

]
,

(B.21)

now eliminating all the derivatives dr/dx0, dκ/dx0 and dθ0/dx0 using equations

(B.14), (B.15) and (B.17) respectively, ∂θ/∂x0 becomes

∂θ

∂x0
= 4k∆′2 sin 2kx0(κ2 − 1)(1− κ2 sin2 θ)3/2

4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ)2 + κ4 sin 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ)

[
− 3rτ
κ2(1− β)1/2

+ 2r2

κ2(1− β)

{
E(θ0, κ)− E(θ, κ)

}
− 2
r2κ2(1− β)(κ2 − 1)

{
E(θ0, κ)

− E(θ, κ)
}
−
(
r4(κ2 − 1)− 1
r2κ3(1− β)

){
E(θ0, κ)− F (θ0, κ

2)
κ

− E(θ, κ)− F (θ, κ2)
κ

}

− κ2(κ2 + 1) sin2 θ0 − 2
2(κ2 − 1)(1− κ2 sin2 θ0)3/2

sin 2θ0

r2κ2(1− β) + κ2(κ2 + 1) sin2 θ − 2
2(κ2 − 1)(1− κ2 sin2 θ)3/2

sin 2θ
r2κ2(1− β)

+ 4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ0)2 + κ4 sin 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)
4(κ2 − 1)(1− κ2 sin2 θ0)3/2{

1
r8κ6(1− β)2 sin 2θ0

{(
p0

mc
+ γ0

) (
1 + β − r4(1− β)

)
− 2r6(1− β)(1− κ2)

}}]
,

(B.22)

∂θ

∂x0
= 4k∆′2 sin 2kx0(κ2 − 1)(1− κ2 sin2 θ)3/2

4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ)2 + κ4 sin 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ)

[
− 3rτ
κ2(1− β)1/2

+
(
r4(κ2 − 1)− 1
r2κ4(1− β)

){
κ2 + 1

κ2(κ2 − 1)
(
E(θ0, κ)− E(θ, κ)

)
+ F (θ0, κ

2)− F (θ, κ2)
}

− κ2(κ2 + 1) sin2 θ0 − 2
2(κ2 − 1)(1− κ2 sin2 θ0)3/2

sin 2θ0

r2κ2(1− β) + κ2(κ2 + 1) sin2 θ − 2
2(κ2 − 1)(1− κ2 sin2 θ)3/2

sin 2θ
r2κ2(1− β)
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+ 4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ0)2 + κ4 sin 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)
4(κ2 − 1)(1− κ2 sin2 θ0)3/2{

1
r8κ6(1− β)2 sin 2θ0

{(
p0

mc
+ γ0

) (
1 + β − r4(1− β)

)
− 2r6(1− β)(1− κ2)

}}]
,

(B.23)

Now the electron density can be written as

ne(x0, τ) = n(x0, 0)
D

, (B.24)

where D is defined by

D =1 + k
∂

∂x0

τ∫
0

ve(x0, τ
′)dτ ′

,

D =1 + k
∂

∂x0

τ∫
0

pe√
1 +

(
pe
mc

)2
dτ

′
,

D =1 + k
∂

∂x0

τ∫
0

(
− 1
ω2
pe

∂2pe
∂τ 2 + v0

)
dτ

′
,

D =1− k

ω2
pe

∂

∂x0

[
∂p

∂τ
− ∂pe
∂τ

∣∣∣∣∣
τ=0

]
,

D =1∓
√

2kc
ωpe

∂

∂x0

[a+ β
pe
mc

+
√

1 +
(
pe
mc

)2
1/2

−

a+ β
p0

mc
+
√

1 +
(
p0

mc

)2
1/2 ]

,

(B.25)

D =1∓
kc
√

1− β
ωpe

∂

∂x0

[
rκ2 sin 2θ

2(1− κ2 sin2 θ)1/2 −
rκ2 sin 2θ0

2(1− κ2 sin2 θ0)1/2

]
,

D =1∓
kc
√

1− β
ωpe

[(
κ2 sin 2θ

2(1− κ2 sin2 θ)1/2 −
κ2 sin 2θ0

2(1− κ2 sin2 θ0)1/2

)
dr

dx0
+
{

rκ sin 2θ
(1− κ2 sin2 θ)1/2

+ rκ3 sin2 θ sin 2θ
2(1− κ2 sin2 θ)3/2 −

rκ sin 2θ0

(1− κ2 sin2 θ0)1/2 −
rκ3 sin2 θ0 sin 2θ0

2(1− κ2 sin2 θ0)3/2

}
dκ

dx0

+
{

2rκ2 cos 2θ
2(1− κ2 sin2 θ)1/2 + rκ4 sin2 2θ

4(1− κ2 sin2 θ)3/2

}
∂θ

∂x0
−
{

2rκ2 cos 2θ0

2(1− κ2 sin2 θ0)1/2
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+ rκ4 sin2 2θ0

4(1− κ2 sin2 θ0)3/2

}
dθ0

dx0

]
, (B.26)

by carrying simple algebraic calculation gives

D =1∓
kc
√

1− β
ωpe

[(
κ2 sin 2θ

2(1− κ2 sin2 θ)1/2 −
κ2 sin 2θ0

2(1− κ2 sin2 θ0)1/2

)
dr

dx0

+ rκ
dκ

dx0

{
(2− κ2 sin2 θ) sin 2θ
2(1− κ2 sin2 θ)3/2 −

(2− κ2 sin2 θ0) sin 2θ0

2(1− κ2 sin2 θ0)3/2

}

+ rκ2 ∂θ

∂x0

{
cos 2θ + κ2 sin4 θ

(1− κ2 sin2 θ)3/2

}
− rκ2 dθ0

dx0

{
cos 2θ0 + κ2 sin4 θ0

(1− κ2 sin2 θ0)3/2

}]
, (B.27)

now eliminating dr/dx0, dk/dx0, dθ/dx0 and ∂θ0/∂x0 using the equations (B.14),

(B.15), (B.17) and (B.27), yields

D =1∓
∆′2 kc

√
1− β sin 2kx0

ωpe

[{
{4− 3κ2 + κ2(κ2 − 2) sin2 θ} sin 2θ

4rκ2(1− β)(1− κ2 sin2 θ)3/2

− {4− 3κ2 + κ2(κ2 − 2) sin2 θ0} sin 2θ0

4rκ2(1− β)(1− κ2 sin2 θ0)3/2

}

+ 4rκ2(κ2 − 1) (cos 2θ + κ2 sin4 θ)
4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ)2 + κ4 sin 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ){
− 3rτ
κ2(1− β)1/2 + 1 + r4 + κ2(1− r4)

r2κ4(1− β)(κ2 − 1)

{
E(θ0, κ)− E(θ, κ)

}
+
(
r4(κ2 − 1)− 1
r2κ4(1− β)

)
(
F (θ0, κ

2)− F (θ, κ2)
)
− (κ2(κ2 + 1) sin2 θ0 − 2) sin 2θ0

2r2κ2(1− β)(κ2 − 1)(1− κ2 sin2 θ0)3/2

+ (κ2(κ2 + 1) sin2 θ − 2) sin 2θ
2r2κ2(1− β)(κ2 − 1)(1− κ2 sin2 θ)3/2

+ 4{r4(κ2 − 1)− 1}(1− κ2 sin2 θ0)2 + κ4 sin 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)
4r8κ6(1− β)2(κ2 − 1) sin 2θ0(1− κ2 sin2 θ0)3/2((

p0

c
+ γ0

) (
1 + β − r4(1− β)

)
− 2r6(1− β)(1− κ2)

)}

− cos 2θ0 + κ2 sin4 θ0

r7κ4(1− β)2 sin 2θ0(1− κ2 sin2 θ0)3/2

{(
p0

c
+ γ0

) (
1 + β − r4(1− β)

)
(B.28)

− 2r6(1− β)(1− κ2)
}]
.
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Equation (B.28) can be rewritten as

D = 1∓
kc
√

1− β
ωpe

∆′2 sin 2kx0
(
A1 + A2− A3

)
, (B.29)

where

A1 = 1
4rκ2(1− β)

[((1− κ2 sin2 θ)(2− κ2) + 2(1− κ2)
)

sin 2θ

(1− κ2 sin2 θ)3/2 (B.30a)

−

(
(1− κ2 sin2 θ0)(2− κ2) + 2(1− κ2)

)
sin 2θ0

(1− κ2 sin2 θ0)3/2

]
,

A2 =
(

4(κ2 − 1)(cos 2θ + κ2 sin4 θ)
4(r4(κ2 − 1)− 1)(1− κ2 sin2 θ)2 + κ4 sin2 2θ + 4κ2 cos 2θ(1− κ2 sin2 θ)

)

(B.30b)[
− 3r2τ

2κ2(1− β) + (r4(κ2 − 1)− 1)
(1− β)r3(κ2 − 1)

{(
κ2 + 1

κ2(κ2 − 1)

)(
E(θ0, κ)− E(θ, κ)

)
+ F (θ0, κ

2)

− F (θ, κ2)
}

+

(
κ2(κ2 + 1) sin2 θ0 − 2

)
sin 2θ0

2r(1− β)(1− κ2 sin2 θ0)3/2 −

(
κ2(κ2 + 1) sin2 θ − 2

)
sin 2θ

2r(1− β)(1− κ2 sin2 θ)3/2

+
{(

p0

mc
+ γ0

) (
1 + β + (1− β)r4

)
+ 2r6κ2(κ2 − 1)(1− β)2

}
{4
(
r4(κ2 − 1)− 1

)
(1− κ2 sin2 θ0)2 + κ4 sin2 2θ0 + 4κ2 cos 2θ0(1− κ2 sin2 θ0)

4 r7 κ6 (1− β)3 (κ2 − 1) sin 2θ0(1− κ2 sin2 θ0)3/2

}]
,

A3 = (cos 2θ0 + κ2 sin4 θ0)
(1− β)3r7κ6 sin 2θ0(1− κ2 sin2 θ0)3/2

[
2r6κ2(κ2 − 1)(1− β)2 +

{
(1 + β)

(B.30c)

+ (1− β)r4
}( p0

mc
+ γ0

)]
.
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The relation between Eulerian and Lagrangian co-ordinate is given by,

kx =kx0 + k

τ∫
0

ve(x0, τ
′)dτ ′

,

kx =kx0 + k

τ∫
0

pe√
1 +

(
pe
mc

)2
dτ

′
,

kx =kx0 + k

τ∫
0

(
− 1
ω2
pe

∂2pe
∂τ 2 + v0

)
dτ

′
,

kx =kx0 + kv0τ −
k

ω2
pe

[
∂pe
∂τ
− ∂pe
∂τ

∣∣∣∣∣
τ=0

]
,

kx =kx0 + kv0τ ∓
√

2kc
ωpe

[a+ β
pe
mc

+
√

1 +
(
pe
mc

)2
1/2

−

a+ β
p0

mc
+
√

1 +
(
p0

mc

)2
1/2 ]

,

kx =kx0 + kv0τ ∓
kc
√

1− β
ωpe

[
rκ2 sin 2θ

2(1− κ2 sin2 θ)1/2 −
rκ2 sin 2θ0

2(1− κ2 sin2 θ0)1/2

]
,

kx =kx0 + kv0τ ∓
kc rκ2

√
1− β

ωpe

[
sin 2θ

2(1− κ2 sin2 θ)1/2 −
sin 2θ0

2(1− κ2 sin2 θ0)1/2

]
.

(B.31)

B.3 Solution Obtained Using Bogliubov-Mitropolaskii

Method

In this appendix, we solve of equation (4.13) in the weakly relativistic limit using

Bogoliubov-Mitrapolaskii [48] perturbation technique.

By Taylor expansion of denominator of second term of equation (4.13), yields

∂2pe
∂τ 2 + ω2

pepe

(
1− p2

e

2m2c2

)
= mω2

pev0, (B.32)

∂2pe
∂τ 2 + ω2

pepe =
ω2
pe

2m2c2p
3
e +mω2

pev0. (B.33)
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Solution for homogeneous part of the equation (B.33) can be written as

pe(x0, τ)
mc

= a cos(ωpeτ + φ), (B.34)

and the derivative w. r. t. time is given by

1
mc

∂pe
∂τ

= −aωpe sin(ωpeτ + φ). (B.35)

We employ Bogoliubov-Mitropolaskii [48] perturbation technique to the solve the

equation (B.33) by considering that a and φ are considered to be slow function of

time, then the equations (B.34) and (B.35) can be rewritten in the normalized form

as

pe = a cos(ωpeτ + φ) = a cosψ, (B.36)
∂pe
∂τ

= −a sin(ωpeτ + φ) = −a sinψ, (B.37)

where ψ = ωpeτ + φ. The normalization is followed as pe → pe/mc, τ → ωpeτ ,

β → v0/c.

Now the coefficient a and phase φ can be obtained [48] as follows

da

dτ
= − 1

2π

2π∫
0

(
p3
e

2 + β

)
sinψdψ, (B.38)

da

dτ
= − 1

2π

2π∫
0

(
a3

2 cos3 ψ + β

)
sinψdψ,

da

dτ
= 0

a = a0. (B.39)

153



APPENDIX B. SOLUTION FOR SPATIO-TEMPORAL EVOLUTION OF
RELATIVISTIC ELECTRON BEAM

dφ

dτ
= − 1

2π

2π∫
0

(
p3
e

2 + β

)
cosψdψ, (B.40)

dφ

dτ
= − 1

2π

2π∫
0

(
a3

2 cos3 ψ + β

)
cosψdψ,

dφ

dτ
= − 3

16a
2
0,

φ = − 3
16a

2
0τ + φ0. (B.41)

By eliminating a and φ using equations (B.39) and (B.41) from the equations (B.36)

and (B.37) yields

pe = a0 cos
(
τ − 3

16a
2
0 + φ0

)
,

pe = a0 cos (ω̃pe + φ0) , (B.42)
∂pe
∂τ

= −a0 sin (ω̃pe + φ0) , (B.43)

where ω̃pe = 1− (3/16)a2
0.

Initial conditions are defined as

ne(x0, 0) = n0(1 + ∆ cos kx0), (B.44)

pe(x0, 0) = p0. (B.45)

Using the initial conditions (B.44) and (B.45), a0 and φ0 and ω̃pe are determined as

a0 = ±
√
p2

0 + ∆′2 sin2 kx0, (B.46)

φ0 = cos−1
(
p0

a0

)
, (B.47)

ω̃pe = 1− 3
16
(
p2

0 + ∆′2 sin2 kx0
)
, (B.48)
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then the spatial derivatives of a0 and φ0 and ω̃pe is given by

da0

dx0
= ∆′2

2a0
sin 2kx0, (B.49)

dφ0

dx0
= ∆′

p0

a2
0

cos kx0, (B.50)

dω̃pe
dx0

= − 3
16∆′2 sin 2kx0. (B.51)

Electron density can be obtained as follows

ne(x0, τ) = n(x0, 0)
D1 , (B.52)

where

D1 = 1 + ∂

∂x0

τ∫
0

ve(x0, τ
′)dτ ′

,

D1 = 1− ck

ωpe

∂

∂x0

(
∂pe
∂τ
− ∂pe
∂τ

∣∣∣∣∣
τ=0

)
,

D1 = 1− ck

ωpe

∂

∂x0
(−a0 sin(ω̃peτ + φ0) + a0 sinφ0) ,

D1 = 1− ck

ωpe

[
− da0

dx0
sin(ω̃peτ + φ0)− a0 sin(ω̃peτ + φ0)

{
τ
dω̃pe
dx0

+ dφ0

dx0

}

+ da0

dx0
sinφ0 + a0 cosφ0

dφ0

dx0

]
, (B.53)

eliminating da0/dx0, dφ0/dx0 and dω̃pe/dx0 using equations (B.49), (B.50) and (B.51),

then equation (B.52) becomes

D1 = 1−∆ cos kx0

[
p2

0
a2

0
+ ∆′2

a2
0

sin2 kx0 −
∆′

a0
sin kx0 sin(ω̃peτ + φ0)− cos(ω̃peτ + φ0){

p0

a0
− 3

8∆′
a0τ sin kx0

}]
, (B.54)

D1 = 1−∆ cos kx0

[
p2

0
a2

0
(1− cos ω̃peτ) + ∆′2

a2
0

sin2 kx0

(
1− cos ω̃peτ −

3
8a

2
0τ sin ω̃peτ

)
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+ 3
8∆′

p0τ sin kx0 cos ω̃peτ
]
. (B.55)

The relation between Eulerian x and Lagrangian x0 position co-ordinates is given by

kx = kx0 + k

ωpe

τ∫
0

ve(x0, τ
′)dτ ′

,

kx = kx0 + k

ωpe

τ∫
0

pe√
1 +

(
pe
mc

)2
dτ

′
,

kx = kx0 + kv0τ −
kc

ωpe

[
− a0 sin(ω̃peτ + φ0) + a0 sinφ0

]
,

kx = kx0 + kv0τ + ∆p0

c
sin ω̃peτ −∆ sin kx0(1− cos ω̃peτ). (B.56)

156



A
p

p
e

n
d

ix

C
Solution of fourth order dispersion relation for

Buneman instability

Linear dispersion relation can be written as

x4 − 2x3 − αx2 + 2αx− α = 0, (C.1)

where x = ω/ωpe and α = m/M . Equation is a fourth order polynomial. In

this appendix we shall solve fourth order polynomial (C.1), using method given in

Abramowitz & Stegun [124]. Coefficients of the quartic equation are written as

a0 = −α, a1 = 2α, a2 = −α, a3 = −2 and a4 = 1. Quartic equation can be reduced

in cubic equation as

z3 + αz2 + 4α = 0, (C.2)

or

b3z
3 + b2z

2 + b0α = 0, (C.3)
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where coefficients of cubic equation (C.2) are b0 = 4α, b1 = 0, b2 = α and b3 = 1.

For finding the roots of equation (C.2), lets consider

q = b1

3 −
b2

2
9 = −α

2

9 ,

and

r = 1
6(b1b2 − 3b0)− b3

2
3 = −2α− α3

27 .

Then roots of equation (C.2) can be written as

z1 = (s1 + s2)− b2
3 ,

z2 = −1
2(s1 + s2)− b2

3 + ι
√

3
2 (s1 − s2),

z3 = −1
2(s1 + s2)− b2

3 −
ι
√

3
2 (s1 − s2), (C.4)

where s1 and s2 are given by

s1 = [r + (q3 + r2)1/2]1/3 = 0, (C.5)

s2 = [r − (q3 + r2)1/2]1/3 = (−1)1/3 22/3 α1/3, (C.6)

taking only real root of s2

s2 = −22/3 α1/3. (C.7)

Then roots of the cubic equation (C.2) can be written as

z1 = −22/3 α1/3 − α

3 , (C.8)

z2 = α1/3

21/3 −
ι
√

3
21/3 α

1/3 − α

3 , (C.9)

z2 = α1/3

21/3 −
ι
√

3
21/3 α

1/3 − α

3 . (C.10)
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Now the four roots of quartic equation (C.1) can be determined by the solution of

following two quadratic equations,

y2 +
[
a3

4 ∓
(
a2

3
4 + z1 − a2

)1/2 ]
y + z1

2 ∓
[ (

z1

2

)2
− a0

]1/2

= 0. (C.11)

First, taking positive sign gives the equation,

y2 +
[
a3

4 +
(
a2

3
4 + z1 − a2

)1/2 ]
y + z1

2 +
[ (

z1

2

)2
− a0

]1/2

= 0, (C.12)

elimination of a3 and z1 from the equation (C.12), yields

y2 +
[
− 1 +

(
1− 2α

3 − 22/3 α1/3
)1/2 ]

y − α1/3

21/3 −
α

6 +
[(

α1/3

21/3 + α

6

)2

+ α

]1/2

= 0,

(C.13)

assuming α << α1/3 ≤ 1, equation (C.13) takes the form

y2 +
[
α

3 −
α1/3

21/3

]
y − α1/3

21/3 −
α

6 +
[(

α1/3

21/3 + α

6

)2

+ α

]1/2

= 0, (C.14)

neglecting the terms O(α2) and above, we get

y2 +
[
α

3 −
α1/3

21/3

]
y + α2/3

22/3 −
α

6 = 0. (C.15)

Then the two roots of above written quadratic equation are given by

y1,2 = 1
2

[(
− α

3 + α1/3

21/3

)
±
{(
−α3 + α1/3

21/3

)2

− 4
(

+α
2/3

22/3 −
α

6

)}1/2]
,

= 1
2

[(
− α

3 + α1/3

21/3

)
±
(

2α
3 −

3α2/3

22/3

)1/2 ]
,

= −α6 + α1/3

24/3 ± ι
√

3α1/3

24/3 ∓ ι α2/3

322/3
√

3
,

y1,2 = (1± ι
√

3) α
1/3

24/3 , (C.16)
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Taking negative sign of equation (C.11), gives,

y2 +
[
a3

4 −
(
a2

3
4 + z1 − a2

)1/2 ]
y + z1

2 −
[ (

z1

2

)2
− a0

]1/2

= 0, (C.17)

now putting the values of a3 and z1, yields,

y2 +
[
− 1−

(
1− 2α

3 − 22/3 α1/3
)1/2 ]

y − α1/3

21/3 −
α

6 −
[(

α1/3

21/3 + α

6

)2

+ α

]1/2

= 0,

(C.18)

y2 +
[
− 2 + 2α

3 + α1/3

21/3

]
y − 22/3α1/3 − α2/3

25/3 −
α

6 = 0, (C.19)

then the two roots of the above written quadratic equation are given by

y3,4 = 1
2

[
− 2 + 2α

3 + α1/3

21/3 ±
{(
−2 + 2α

3 + α1/3

21/3

)2

− 4
(
−22/3α1/3 − α2/3

25/3 −
α

6

)}1/2]
,

y3,4 = 1
2

[
− 2 + 2α

3 + α1/3

21/3 ±
(

2− α + α2/3

28/3 + α1/3

21/3

)]
, (C.20)

which turns out to be real always.

Thus the roots of the quartic equation (C.1) can be written as

ω = (1± ι
√

3)
(

m

16M

)1/3
ωpe,

ω = ωpe
2

[
− 2 + 2

3

(
m

M

)
+
(
m

2M

)1/3
±
(

2− m

M
+
(
m

4M

)2/3
+
(
m

2M

)1/3
)]

.

(C.21)
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