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Zoomed in plots of the distributions in angular velocity and radial velocity, of electrons
and ions, in the early nonlinear stages of Expt. 3, before the loss of ions. (a) and (b)
are the angular velocity distributions of electrons and ions respectively. (c¢) and (d) are
the radial velocity distributions of electrons and ions respectively. wy. ™, wy;~, and 7 are
predefined normalising constants. Normalising velocity, v,, = 10000 m/s. ny. and ng;
represent fraction of electrons and fraction of ions corresponding to the velocity. The
velocity-intervals in which the particles are binned are indicated in the top left corners

of each plot. . . . . . . o L

Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites a dominant [ = 3 Diocotron mode in the profile (Expt. 5
of Table 4.1). Below each snap, the time elapsed is mentioned in normalised units of

electron cyclotron time, 4.e. T =1/Tpe. . .« o o o oo

Energy curves of Expt. 5: W represents the energy components in the legend, Ej is the
initial total energy, and 7 = t/T... P. and P; are the potential energies of electrons and
ions respectively. K. and K; are the kinetic energies of electrons and ions respectively.
FE is the total energy of the system. The energy components are normalised by Fy and
plotted as a function of time. The time axis is normalised by the cyclotron time period
of electrons, Tee. . .« o o 0 o e e
Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites a dominant [ = 9 Diocotron mode in the profile (Expt. 6
of Table 4.1). Below each snap, the time elapsed is mentioned in normalised units of

electron cyclotron time, 4.e. T =1/Tpe. - .« o v v v v i i

Energy curves of Expt. 6: W represents the energy components in the legend, Ej is the
initial total energy, and 7 = t/T... P, and P; are the potential energies of electrons and
ions respectively. K, and K; are the kinetic energies of electrons and ions respectively.
FE is the total energy of the system. The energy components are normalised by Fy and
plotted as a function of time. The time axis is normalised by the cyclotron time period

of electrons, Tre. . . . . . 0 o e
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Trapped electron population as a function of time for the four selected simulations of
Set 1 i.e. Expt 2,3,5, and 6 and also for the numerical Expt. 3 and 6 when performed
with Guiding Centre Drift (GCD) approximation for the electron component: N, is the
trapped electron population at a given time and N is the initial population of trapped
electrons. The time axis is normalised by the cyclotron time period of electrons, T¢e
(Here 7 = t/T,.). The corresponding value of of f for each experiment is mentioned in
the key. Inset: The trapped electron population as function of time for the extended

simulation time of Expt. 6. . . . . . . . ...

Trapped ion population as a function of time for the four selected simulations of Set 1
i.e. Expt 2,3,5, and 6: N; is the trapped ion population at a given time and N is the
initial population of trapped electrons. The time axis is normalised by the cyclotron
time period of electrons, T, (Here 7 = ¢/T,.). The corresponding value of of f for each
experiment is mentioned in the key. Inset left: The same plot with the ion popula-
tion axis normalised for each experiment by the respective value of initial trapped ion
population, fN.y. Inset right: The trapped ion population as function of time for the

extended simulation time of Expt. 6. . . . . . ... oo

Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites an [ = 1 Diocotron mode at f, = 1.0 (Expt. 9 in Table 4.1).
Below each snap, the time elapsed is mentioned in normalised units of electron cyclotron

time, d.e. T =1/Tpe. « v v v oo

Energy curves of Expt. 9: W represents the energy components in the legend, Ej is the
initial total energy, and 7 = t/T¢.. P. and P; are the potential energies of electrons and
ions respectively. K. and K; are the kinetic energies of electrons and ions respectively.
F is the total energy of the system. The energy components are normalised by Ey and
plotted as a function of time. The time axis is normalised by the cyclotron time period

of electrons, Tre. . . . . o o o e

Trapped electron (ion) population as a function of time for Expt 2 and 9: N, (V)
is the trapped electron (ion) population at a given time and Ny (N;g) is the initial
population of trapped electrons (ions) for that simulation. The time axis is normalised
by the cyclotron time period of electrons, T, (Here 7 = t/T¢). The corresponding

value of of fp for each experiment is mentioned in the key. . . . . . . . ... ... ...
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4.17 Readings of the left potential probe, V), for the f, = 0.02, f = 0.15 equilibrium at

4.18

5.1

background pressure, Py, values of 0 and 2 x 10=%Torr. V, readings of the equilibrium
at the other two simulated background pressures of 2 x 10~"Torr and 2 x 10~3Torr
(not shown here) also overlap nearly perfectly with the plotted readings in this figure.
Tpy = 300K is the chosen temperature of the background gas in this set of runs for
all P,y > 0. Normalized time, 7 is in units of electron cyclotron time, i.e. 7 = t/T.
Readings up to the growth phase (till 7 = 5000) have been zoomed in here for clarity
while the inset has the complete readings up to the end of the simulations. The other
three potential probes also recorded almost perfectly overlapping readings for all the

four values of Ppg. . . . . . ..

Comparison of diagnostic results between different background pressure, P4, for the
fy = 1.0, f = 0.1 equilibrium load: With 7 = ¢/T,, the set of plots are zoomed
in showing their respective diagnostic readings upto 7 = 8500 for clarity. T, is the
temperature of the background gas for all P, > 0. (a) The radius of the centre-of-
mass of the electron component, R.ne normalised by the wall radius Ry, is plotted
as a function of time. Inset: The same set of plots is extended upto the end of the
simulations at 7 = 22700 (b) The left potential probe’s reading, V}, as a function of time
at different background pressures. (¢) The Potential Energy of the electron component,
Je normalised by the initial total energy of the 2-component plasma, Ey is plotted as a
function of time.(d) The Potential Energy of the ion component, J; normalised by the

initial total energy of the 2-component plasma, Ej is plotted as a function of time.

Plasma profile evolution in BIEPNEX1: Snapshots of pseudo particles (electrons in
red below, and Ar™ in green on top) showing evolution of the equilibrium load of a
f» = 0.2076 pure electron plasma, in the presence background Ar atoms at pressure
Py = 2 x 10~ "Torr and temperature Tpy = 300K. The electrons undergo elastic,
excitation, and ionizing collisions with the Ar atoms. The ions undergo elastic, and
charge exchange collisions with the Ar atoms.Below each snap, the time elapsed is

mentioned in normalised units of electron cyclotron time, i.e. 7=14/Tpe. . . . . . . . .
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5.2

5.3

Diagnostic readings of BIEPNEX1.: Readings of different probes and plasma parame-
ters are plotted as a function of time. The time axes in the all 4 plots are normalised
by the electron cyclotron time, i.e. 7 = t/Te.. The vertical lines at 7 = 54000 and
7 = 206000 demarcate the initial rigid rotation phase, the middle growth phase, and
the final saturation phase of the dynamics. The top inset, and bottom inset of (a)
and (b) are zoomed in versions of (a) and (b) between 7 = 56500 to 7 = 58000, and
T = 156500 to 7 = 158000 respectively. (a) Radial location of the centre-of-mass of the
electrons (primary as well as secondary electrons that are trapped in the system), Reme
is plotted as a function of time. The y-axis is normalised by the wall radius R,,. (b)
Potential reading of the left potential probe V), is plotted as a function of time. (c¢) The
total energy F of the plasma, and its components viz., potential energy of electrons, 1,
and ions, ;, and kinetic energy of electrons, k. and ions, k; are plotted as a function
of time. The y-axis is normalised by the initial value of total energy Fy. (d) The total
number of trapped electrons, N, and total number of trapped ions, IV; are plotted as a
function of time. The y-axis is normalised by the initial population of trapped electrons,

Ne(). ..............................................
Frequency analysis of the left potential probe reading from BIEPNEXI1: (a) A FFT

is performed on the left potential probe’s readings between 7 = 83977.68 and 7 =
125966.520 (where 7 = ¢/T,.) to find the fundamental mode frequency, ws in that
interval of time. (b) wy values obtained from different time-segments of the left potential
probe’s reading through FFT analysis, are plotted as a function of time and also as
histogram showing the intervals on which the FFTs were performed. The y-axis is
normalised by w,o = 6.848 x 107 rad/sec, the natural [ = 1 mode frequency of the loaded
fv = 0.2076 pure electron cloud. (c) The time evolution of the frequency spectrum, wy,,,
of the left potential probe signal is plotted as spectrogram. Only the most relevant
range of wyp, values which include wy have been plotted in the spectrogram for better
resolution. The wy frequency has been identified within the spectrogram and its time
evolution has also been traced. (d) ws values obtained from the spectrogram, (c) and
the piece-wise FFT analysis, (b), have been plotted as functions of time. Exponential
fits have been made on different regions of the curve. The exponential fits 1, 2, and
3, yield values —5.039 x 103 rad/sec, —4.199 x 103 rad/sec, and 4.619 x 10° rad/sec
respectively, of o, the growth rates of ws. The vertical lines at 7 = 54000 and
7 = 206000 demarcate the initial rigid rotation phase, the middle growth phase, and
the final saturation phase of the dynamics. (Inset) A replot of (d) with the y-axis in

logscale used in the exponential fitting of the curve. . . . . . .. ... ... ...
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5.4  Estimation of dynamic growth rates of the fundamental mode from BIEPNEX1: (a)

5.5

(Vp — Vpo)2 is plotted as a function of time, 7 where 7 = t/T,., V) represents the left
potential probe reading, and Vo is the initial value of V,,. The y-axis is in logscale.
The three straight lines represent the exponential fits in different stages of the growth
phase. Each exponential fit has a growth rates 2 x a4 from which the oy for that
stage of the growth phase can be obtained. (b) Radial location of the centre-of-mass
of the electrons, R, is plotted as a function of time. The y-axis is in logscale and is
normalised by the wall radius R,,. The three straight lines represent the exponential
fits in different stages of the growth phase. Each exponential fit has the growth rates
a; for that stage of the growth phase. These oy values come out to be same as those
obtained from the exponential fits of (a). Obtained «a, values are, 5.0 x 10°rad/sec,

5.0 x 1O4rad/sec, and 1.3 x 1047"ad/sec from exponential fits 1, 2, and 3 respectively. .

Fundamental mode’s frequency as a function of orbital radius of the electron cloud:
This is a scatter plot of ws(T)/wao versus Reme(T)/Rw, where ws is the frequency of
the fundamental mode and R, is the radius of centre of mass of electrons. The
normalizing constants w,g and Ry are the natural [ = 1 mode frequency of the initial
pure electron cloud, and the wall radius respectively. 7 = t/T,. where T, is the electron
cyclotron time. The time co-ordinate of the scatter points have been incorporated in
the colorbar. Exponential fits have been made on different sections of the scatter plot.
The exponential fits 1,2,3 yield values —880rad/m, —16 rad/m, 10 rad/m respectively,
of v,., the exponential growth rate of the fitted ws versus Repe curve. (Insets) The left
and the right insets show the same scatter points restricted to the quiet phase, and the
growth phase respectively. The insets have their own colour code of their constrained
time axes represented as adjacent colorbars. . . . . ... ..o oL
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5.6 Comparison of diagnostic readings of BIEPNEX1 ( shown in red) with corresponding

diagnostic readings of the modified simulation wherein BIEPNEX1 is repeated with
the exclusion of the non ionizing e~ — Ar collisions (shown in green). The 4 pairs
comparative diagnostic readings are plotted as a function of time, 7, where 7 = t/Tp,.
The vertical lines at 7 = 54000 and 7 = 206000 demarcate the initial rigid rotation
phase, the middle growth phase, and the final saturation phase of BIEPNEX1 while the
vertical lines at 7 = 104000 and 7 = 206000 demarcate the initial rigid rotation phase,
the middle growth phase, and the final saturation phase of the modified experiment .(a)
Radial location of the centre-of-mass of the electrons, R¢pe, from the two experiments,
are plotted as a function of time. The y-axis is normalised by the wall radius Ry,.
(b) Potential reading of the left potential probe, Vj,, from the two experiments are
plotted as a function of time. (c¢) The Potential Energy of the electron component of
the plasma, 1, from the two experiments are plotted as a function of time. (d) The
fundamental mode frequency, ws, from the two experiments, are plotted as a function
of time. The y axis is normalized by the natural fundamental mode frequency, wqy =

6.848 x 107 rad/sec of the initial pure electron cloud. . . . . . . ... ... ... .. ..
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Introduction

1.1 Nonneutral Plasmas: A Background

Non-neutral plasmas are, in general, multi-component, or a single-component, collection of charged
particles exhibiting collective behaviour with an unbalanced net charge in the system [1]. Because
of their gross non-neutrality these plasmas are characterized by large zeroth order self electric fields
which adds unique features to their behaviour, setting them apart from quasi-neutral plasmas [1].

Since the pioneering experiments in the first half of the 20" century investigating properties of
electron gas in various early experimental configurations (for example [2]), non-neutral plasmas have
generated a lot of interest in basic, as well as applied, plasma physics. Basic plasma physics interests
in non-neutral plasmas include using low density electron plasmas as a medium for studies on 2D
vortex dynamics of incompressible and inviscid Euler fluids [3, 4], studying behaviour of astro-physical
non-neutral plasmas in neutron stars [5], studying phase transitions in strongly coupled non-neutral
plasmas [6, 7, 8] and more. Non-neutral plasmas find applications in high-intensity accelerators for
high-energy and nuclear physics studies [9, 10], development of positron [11] and antiproton [11, 12]
ion sources, coherent electromagnetic wave generation by intense electron beams as in free electron
lasers (FEL) [13, 14], to mention a few.

Depending on plasma parameters such as temperature and density, non-neutral plasmas can exhibit
a variety of behaviour that can be described either by a Guiding-Centre-Drift (GCD) approximated
flow, or a cold macroscopic fluid model, or a kinetic Vlasov model, or even as an ensemble of discrete
charged particles with interactions (the Klimontovich-type approach) [1]. Again depending on the
strength of influence of self magnetic fields generated by equilibrium plasma currents these models
may be electrostatic (requiring solving of Poisson Equation) or electromagnetic (requiring solving
of Maxwell’s Equations). Each of these models have been applied for describing a variety of non-
neutral plasma phenomena occurring in a region of the plasma’s parameter space suitable for that
model. For example, GCD approximated electron plasmas can be used to study vortex dynamics of
incompressible, inviscid Euler fluids [3, 4] as well as Kelvin-Helmholtz instabilities in annular electron

plasma profiles [1, 15], cold macroscopic fluid model aptly describes the phenomena of ion-resonance
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1. INTRODUCTION

instability in partially neutralized electron clouds [16], kinetic Vlasov model can describe kinetic
modes such as Bernstein modes in non-neutral plasmas [1, 17], and discrete particle model is useful
for studying phase transitions in strongly coupled non-neutral plasmas [6, 8].

Such interesting dynamical properties of Non-neutral plasmas motivated experiments to exclusively
study non-neutral plasmas in different regions of the parametric space. These experiments have been,
and still continue to be conducted by magnetically trapping nonneutral charge clouds in cylindrical
(Penning-Malmberg) traps [18, 19, 20, 21, 22, 23], or in fully toridal traps[24], or partially toroidal
C traps [25, 26]. In the next Section we will take a look at some of these experimental set-ups for

studying nonneutral plasmas.

1.2 Magnetic traps for conducting nonneutral plasma experiments

Fig. 1.1 shows the basic set up of the cylindrical and toroidal non-neutral plasma traps. The cylindrical
Penning-Malmberg trap consists of a hollow grounded cylinder, which serves as the trap. On the two
axial ends of the trap are two more smaller cylinders maintained at a potentials of the same sign as
as the charge of the trapped species, such that the charged particles are axially trapped in an axial
potential well. For this reason the two biased cylinders at the axial ends of the trap cylinder are
known as the electrostatic end-plugs of the trap. To confine the non-neutral plasma radially an axially
uniform magnetic field is applied as shown in the cylindrical trap of Fig. 1.1. Later in this discussion
we will explain this radial confinement with the applied axial magnetic field in more detail.

Next, let us look at an alternative way of trapping non-neutral plasma. The inset of Fig. 1.1
represents a toroidal nonneutral plasma trap. In these traps the torodicity of the trap’s geometry
(defined by its toroidal aspect ratio ), as well as the fall of the applied magnetic field with toroidal
major radius (also dependent on a ) inside the trap’s vacuum, influence the force-balance equilibrium,
plasma drift velocities, and also the poloidal modes of the toroidally trapped nonneutral plasma, in
distinctive ways, that sets them apart this arrangement form the cylindrical Penning-Malmberg (PM)
traps. Toroidal traps come in two configurations, i) complete toroid traps that do not require axial end
plugs[24] ii) partial toroid traps or C-traps that require axial end plugs similar to PM traps [25, 26].

Besides the cylindrical and toroidal set-ups depicted in Fig. 1.1, non-neutral plasma experiments
have also been conducted in other geometric configurations and magnetic field topologies, such as
stellarators [27, 28], and a quadrupole Penning trap [29].

Sourcing the nonneutral plasma in any of these traps involve placing emitters (for example thermion-
ically emitting coils in electron plasma experiments[18, 25]) at a suitable locations outside the trap’s
vacuum, near one of the end plugs. The outflux of charge from the emitter is first channeled (”at-
tracted”) into the trap by oppositely (”attractively”) biasing the electrostatic end plug near which
the source is placed. After suitable quantity of of charge builds up inside the trap’s vacuum the same

end-plug’s potential is switched back to its regular trapping (”replusive”) potential for the rest of the
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1.2 Magnetic traps for conducting nonneutral plasma experiments

Penning-Malmberg
Trap

Infinite Cylindrical
Trap

Figure 1.1: Simplified Schematic Cartoon of the Magnetic traps for confining and experimenting with

nonneutral plasmas. The figure depicts the basic set-up of a cylindrical Penning-Malmberg trap, and the
arrowed call-out demonstrates the 2D approximation of the trap often used in theoretical analysis and
numerical simulations. The bottom-left inset is a simplified schematic cartoon of a toroidal trap. Like the

cylindrical trap the toroidal trap can also be approximated by its 2D cross-section in theoretical analysis
and simulations.
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experiment. The source is turned off. Of course all of this is executed electronically[18, 25, 26, 30] in

a time-scale faster than the axial dynamics time-scale of the plasma.

1.2.1 2D approximated model of the cylindrical trap

Let us come back to the cylindrical PM trap which is the trap configuration of interest in the work of
this thesis. In these traps the trapped charged particles bounce at a high frequency (typically in the
orders of 0.1 M Hz to 1.0 M Hz), between the axial electrostatic end plugs. The high frequency axial
bouncing is mainly driven by axial electrostatic forces on the particles arising from the combination
of the nonneutral plasma’s self electric field and the applied end-plug fields. The large axially directed
velocities retained by the particles from their initial channelling into the trap also contribute to the
high axial bounce frequency of the trapped plasma.

Perpendicular to the magnetic field the motion of the charged particles is guided by the Lorentz
force of the axial magnetic field, the cross (perpendicular to the magnetic field) components of the
self-clectric field of the plasma, and the cross components of the field due to surface charges on
the the grounded conducting wall of the trap. The characteristic frequencies associated with the
cross-magnetic-field dynamics of the plasma are typically a few orders smaller than the axial bounce
frequency.

Now consider the central part of the plasma column far from the axial end plugs in which the bulk
of the charge particles are trapped (Fig. 1.1). In this portion any instantaneous axial non-uniformities
such as in axial density and velocity distributions may be time-averaged out, in the time-scale of
perpendicular dynamics. Hence while investigating cross-magnetic-field dynamics in the bulk of the
trapped plasma column, we may approximate the finite length cylindrical trap as being an infinite
length cylindrical trap, and the trapped plasma column as being infinitely long with a fixed uniform
axial current, that may be offset to zero. With the assumption of total axial uniformity, it is now
possible to think of the trap as purely 2D (circular) trap, with an applied uniform magnetic field out
of the plane of the trap, that confines the 2D profile of the non-neutral plasma (Fig. 1.1) [1]. The
out-of-plane magnetic field, and the planar electric field together guide the dynamics of the 2D plasma
profile, in the plane of the trap.

It must be mentioned here that technically such a 2D approximation is also possible for toroidal
traps with high axial velocities of the trapped charge particles.

In the past such a 2D approximation of cylindrical PM traps has been successfully used in an-
alytical, and numerical investigation of azimuthal modes (Diocotron modes) [1], rotational Kelvin-
Helmholtz instability (Diocotron instability) [1], rotational 2-stream instability (ion resonance in-
stability) [16], vortex merging processes in rotating multiple columns of electron plasma [4], and
many more phenomena. However the 2D models fails to explain purely 3D effects in finite length PM
traps, such as instabilities arising from differences in the axial profiles of each component of a multi-
component non-neutral plasma [20], the effects of axial untrapping of ions from a partially neutralized

electron cloud, trapped in PM trap with negatively biased end plugs [31], and other 3D phenomena
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1.2 Magnetic traps for conducting nonneutral plasma experiments

A ¢ LorentzForoe

wret : Equilibrium rigid
rotor frequency

Figure 1.2: Radial force balance on an infinite length i.e. 2D approximated, cold, azimuthally symmetric,
uniform density trapped electron plasma column

in PM traps. Axial velocities, because of their large magnitudes compared to cross-magnetic field
velocities, also play a lead role in the collisional interaction of the nonneutral plasma with background
neutrals in a cylindrical trap. Hence while investigating the effects of plasma particle collisions with
background neutrals on the cross-magnetic-field dynamics of the plasma [32, 33|, the axial velocities

can not be neglected.

1.2.2 Radial confinement of nonneutral plasma in cylindrical traps explained with
the 2D approximation

Using the 2D approximated model let us examine how a pure electron plasma is radially confined
inside a cylindrical trap. Fig. 1.2 shows a 2D approximation of the cylindrical trap with an azimuthally
symmetric, uniform density profile of electron plasma trapped inside it. For simplicity let us consider
the plasma to be at zero-temperature, and assume that its dynamics in purely electrostatic (i.e we
are neglecting any self-magnetic field of the plasma).

The radial force balance on the electron plasma profile is maintained by a rigid-rotation of the
plasma with it’s characterisers equilibrium rigid-rotation frequency, w,.ie [1]. As the cold uniform density
profile of pure electron plasma rigidly rotates with it’s equilibrium angular frequency, it experiences a

radially outwards self electric field force plus a centrifugal force due to its rotation. Both these radially
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outward forces are balanced at every location in the plasma profile, by the radially inward Lorentz
force arising form the rigid rotation of the plasma and the axial magnetic field. Hence the radial force
balance is maintained on the plasma profile by the rotation of the plasma at its equilibrium angular
frequency. In this respect the role of the equilibrium rotation of a single species plasma column in

analogous to the role of the opposite charged species of a quasi-neutral plasma.

1.3 Some open problems in cylindrically confined nonneutral plas-

mas

As discussed, several fundamental questions related to dissipation-less 2D fluid dynamics have been
addressed using low density, or more appropiately low Brillouin ratio, f3, zero inertia limit of electron
plasma equations in 2D (r,0) plane. However, as fj, is increased, this zero inertia approximation breaks
down and several new fundamental questions regarding instabilities in pure electron plasma in this
limit emerge.

For example, what happens if a uniform density, cold, circular patch of electrons (or a Rankine
vortex in fluid dynamics) is loaded as an initial condition at large f,? Can one address the linear
physics, its nonlinear dynamics, various resonances and the ensuing transport in this system using
unapproximated equations of motions? What would be the fate of such a system if a partially neu-
tralizing ion background is pre-loaded, again without approximating the equations of motion? Can
the effect of neutral particle collisions be included without actually writing down additional set of
equations for neutral particles, say, using a Monte Carlo Collision method for experimentally realis-
tic neutral particle pressures? Is there a way to separate out the effects of ionizing and non-ionzing
charge-neutral collisions on the dynamics of the plasma? Finally, can one simulate, a situation where a
pre-loaded electron cloud builds naturally a sizeable ion population through ionizing electron-neutral
collisions, starting from zero ions, and then make credible predictions of the ensuing dynamics at any
desired value of f; so that comparisons with experiments become a possibility?

Attempts has been made to address several of these questions in this Thesis. The following gives

a brief outline of code development and physics problems addressed.

1.4 Nonneutral plasma phenomena investigated in the work of this

thesis

This thesis is aimed at investigating dynamics of nonneutral plasmas in cylindrical traps using the
numerical technique of Particle-in-Cell (PIC) simulations. We will come back to how the PIC method
fits as a simulation tool for non-neutral plasma phenomena in cylindrical traps later in this discussion.

Let us first introduce the physics problems targeted in this thesis in bullets.

e Consider the radial force balance of the cold, uniform density electron plasma explained above.

A slight perturbation of the plasma from this equilibrium will trigger radial breathing modes
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1.4 Nonneutral plasma phenomena investigated in the work of this thesis

of the plasma. The nonlinear evolution of these radial breathing modes is the first phenomena
that is investigated with 2D PIC simulation in this thesis. As will be demonstrated from this set
of numerical experiments [34, 35] the radial breathing modes are an inertia driven phenomena,
i.e. they cease to exist under of GCD approximation of the plasma, that is valid for electron

plasmas of very low densities.

An electron plasma can also exhibit stable and unstable azimuthal modes (Diocotron modes)
in the cylindrical trap which has been well investigated in the past [1]. It had also been theo-
rized that elastic collisions of the trapped electron cloud with background neutrals can have a
destabilizing effect on the cloud and can excite an unstable fundamental dioctron mode on the
cloud [36]. Through numerical experiments performed with a 2D3v PIC code facilitated with
3D Monte-Carlo-Collisions it has now been demonstrated that contrary to existing theory, elas-
tic collisions of electron with background neutrals have no destabilizing influence on the cloud

dynamics [32]. A new theory has been put forward in support of this finding.

PIC simulation has also been used to demonstrate a novel scheme for axial heating of single
component plasmas in cylindrical traps without driving the plasma far from thermal equilib-
rium [37]. Application of this new heating scheme can be possibly extended to magnetic heating

of Tokamak plasmas, without driving them far from thermal equilibrium.

Numerical experiments have also been performed to investigate the phenomenon of ion resonance
instability [1] in cylindrically trapped, partially neutralized electron clouds. A linearised, fluid
theory of this instability had been put forward by Davidson and Uhm [16] using the 2D approx-
imation of the cylindrical trap. 2D PIC simulations of the ion resonance instability reveal that
the instability initially progresses in close adherence to the linear fluid model, but eventually be-
comes a fully kinetic, nonlinear phenomenon, exhibiting a whole palette of interesting nonlinear
dynamics and energetics that have been explained with the help of numerical diagnostics of the

simulations.

In the next set of numerical experiments on the ion resonance the simulations have been taken
a notch closer to real experiments by introducing the influence of 3D elastic and excitation
collisions of electrons with background neutrals on the progression of the 2D ion resonance
instability of a partially neutralized electron cloud [32]. These simulations performed with a
2D3v PIC code facilitated with 3D Monte-Carlo-Collisions reveal that the elastic and excitation
collisions can dynamically alter the path of progression of the ongoing ion resonance instability

by a feedback of the collisional relaxation of the electron cloud’s profile on the instability [32].

The final numerical experiment of this thesis is a very realistic simulation in which the gradual
destabilization of a cylindrically confined pure electron cloud by electron impact ionization of

background neutrals in investigated [33]. The ionizing collisions of electrons with background
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neutrals release ions, that drive the cloud unstable by means of the ion resonance instability.
The electrons also participate in non-ionizing elastic and excitation collisions with background
neutrals that influence the dynamics of the ion resonance instability through the feed back of the
collisional relaxation of the electron cloud’s profile on the instability. The 2D3v PIC code with
facility for Monte-Carlo-Collisions has been used to simulate and investigate different aspects of

this highly dynamical process.

1.5 Code development part of the thesis work

Another side of the thesis work was the development of simulation tools for carrying out the above
listed numerical experiments. The following two subsections discuss how the PIC method fits as a
simulation tool for the investigation of nonneutral plasma phenomena, and the suite of PIC codes

developed to investigate the above listed phenomena.

1.5.1 The PIC method as a simulation tool for nonneutral plasma devices

Earlier we discussed how nonneutral plasmas behave according to different theoretical models in
different regions of its parametric space. A common simulation tool that can bind all these models
is the Particle-in-Cell method. PIC simulations, in different regions of plasma’s parameter space, can
give us a kinetic Vlasov perspective, or a macroscopic fluid perspective, or even a GCD approximated
perspective of the dynamics of the plasma without having to make any changes in the internal structure
of the simulation code. However the discrete particle perspective of the plasma with microscopic inter-
particle interactions is beyond the capability of PIC simulations and specifically require Molecular
Dynamics (MD) simulation [8], which has its own limitations making it unsuitable for simulating the
macroscopic collective behaviour of the plasma that is the subject of interest of this thesis.

Another advantage of the PIC method it can easily be appended to a Monte-Carlo-Collisions
(MCC) code, to create a PIC-with-MCC code that can simulate collisionless dynamics of the plasma
in the PIC part of the code, and collisions of the plasma particles with background neutrals in the
MCC part of the code.

For these reasons the numerical simulations of the thesis have been performed using a suite Particle-

in-Cell codes.

1.5.2 The suite of Particle-in-Cell codes developed for the numerical experiments
of the thesis

The suite of PIC codes developed, and the numerical experiments from Section 1.3 that each code is
assigned to handle are enlisted below. For simplicity the names assigned to codes are not revealed in

this chapter.

e A 2D PIC code: Investigates i) radial breathing phenomena in non-neutral plasma, and ii) the

ion resonance instability in partially neutralized electron clouds.
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e A 1D PIC code: Used to demonstrate a method for axially heating single species plasmas in PM

traps without driving the plasma far from thermal equilibrium

e A 2D3v PIC-with-MCC code: i) Investigates the influence of non-ionizing collisions between
electrons and background neutrals on the dynamics of pure electron clouds, and partially neu-
tralized electron clouds. ii) Investigates the process of destabilization of a pure electron cloud

by impact ionization of background neutrals.

1.6 Thesis structure
A Drief outline of the remaining chapters of the thesis is explained in the following bullets.

e Chapter 2: Takes us through the development of the suite of PIC and PIC-with-MCC codes
used in the numerical experiments of this thesis. The numerical set up, the applied numerical
techniques, and the numerical diagnostics of the codes are all explained in detail. A set of

Benchmarks of the codes are also demonstrated.

e Chapter 3: Presents the set of numerical experiments performed with pure electron plasmas
which include, i) investigation of radial breathing modes, ii) studying the influence of elastic
and excitation collisions of electrons with background neutrals on the dynamics of pure electron
plasmas, and iii) demonstrating a novel method for axial heating of single species plasmas without

driving them far form thermal equilibrium.

e Chapter 4: Presents the set of numerical experiments performed with partially neutralized
electron clouds which include i) Investigating the linear and nonlinear dynamics of the ion
resonance instability ii) Investigating how non-ionizing collisions of electrons with background

neutrals influence the dynamics of the ion resonance instability.

e Chapter 5: Presents a numerical experiment the investigates the destabilization of a cylindri-

cally trapped pure electron cloud by the process of impact ionization of background neutrals.

e Chapter 6: Conclusions, discussions, and scope for future work make up this concluding Chap-

ter of the thesis.
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Developing the suite of PIC codes

In a 2014 paper [34] an OPEN-MP parallelized 2D Electrostatic Particle-in-cell code that simulates
2D collisionless dynamics of plasmas in cross-sections of magnetic traps with grounded (or equipotent)
boundary was introduced. The 2D PIC code is very flexible, and can simulate unapproximated 2D
dynamics (right down to Larmor motion) of multi-component plasmas of varying neutrality in traps
of arbitrary shapes and sizes, and any toroidal aspect ratio that is > 5.0. A 2D Cartesian PIC grid
spans over the cross-section of the simulated trap with grounded wall. The collisionless 2D dynamics
of the plasma are simulated on this grid. This 2D PIC code has been now named as PEC2PIC which
is short for ”Parallelized Electrostatic Cartesian 2d Particle-In-Cell code”.

In the initial papers in 2014 [34], and 2015 [38] the development of the 2D PIC code and the
numerical techniques involved were reported. Multiple benchmarks of the code were also demonstrated
in these two papers [34, 38]. Numerical experiments performed using PEC2PIC yielded interesting new
results for radial breathing modes (Bernstenin modes) of cylindrically confined pure electron plasmas
in 2014 [34, 35], and ion-resonance instabilities of ion contaminated cylindrical electron clouds in
2015 [38].

In a 2016 work [32] an upgradation of the 2D PIC code to a 2D3v PIC-with-MCC version was
reported. This upgraded code was used to investigate the role of elastic and excitation collisions
between electrons and background Argon neutrals on the stable dynamics of cylindrically confined
pure electron clouds, and unstable dynamics of ion-contaminated cylindrical electron clouds [32]. In
the same paper [32] different technical aspects of the newly introduced Monte-Carlo-Collisions (MCC)
that simulated elastic and excitation collisions between electrons and Ar neutrals, were explained. In
a later Section of the 2016 paper [32] the statistical and mechanical correctness of the e~ — Ar elastic
and excitation collision executions were validated.

In a very recent work [33] a further upgradation the 2D3v PIC-with-MCC code to include ionizing
collisions between electrons and background Argon neutrals, as well as elastic and charge exchange
collisions between Ar™ ions and background Ar neutrals was reported. Hence the new upgraded 2D3v
PIC-with-MCC code can now simulate elastic, first level excitation, and single ionization collisions

between plasma-electrons and background Ar atoms, as well as elastic and charge-exchange collisions
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Figure 2.1: Cartoon of the particle-in-cell simulation system

between plasma-Ar* and background Ar gas. This 2D3v PIC-with-MCC code has been named as
PEC2PIC-3MCC which is short for ”Parallelized Electrostatic Cartesian 2d Particle-In-Cell code with
3d Monte-Carlo-Collisions”. A validation of the mechanical and stastical correctness of the execution
of each of the 5 types of collision by the MCC scheme of the code, was also reported in the recent
paper [33]. Using PEC2PIC-3MCC the complex process of destabilization of cylindrically confined
pure electron clouds by the electron impact ionization of background Ar atoms was investigated [33].

The 2D PIC code PEC2PIC also has a 1D version PEC1IPIC which was used to demonstrate a
novel scheme of heating plasmas in a thermodynamic cycle without driving the plasma far away from
equilibrium [37]. The unique structure of 1D code to suite the intended purpose, and results of the
numerical experiments performed with it were reported in a paper [37].

In the following three sections the numerical details of the three codes are elaborated.

2.1 The 2D Particle-in-cell code PEC2PIC

A 2D Electrostatic Particle-In-Cell code has been developed in FORTRAN-90 using Cartesian co-
ordinates, and parallelized with OPEN-MP [34, 35]. It is called PEC2PIC. The code can simulate cross
sections of multi-component plasmas of varying neutrality, confined within any perfectly conducting
closed boundary curve. The size, shape, and toroidal aspect ratio (limited to > 5.0) of the boundary

can be manoeuvred as per requirements, hence easily extendible to large aspect ratio toroidal traps
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as well. To load an initial density profile or velocity distribution of the pseudo particles, the code
employs a cumulative distribution function inversion method [39] with Halton’s sequence of quasi
random numbers [40], for smooth distribution of particles under the distribution curves. First order
Cloud-in-cell scheme [39] is used to spread the discrete charges of the pseudo particles over the cell
as a continuous charge density function. Poisson equation is solved at the cell-nodes to obtain the
electrostatic fields on these nodes, with parallelized red-black Successive-Order-Relaxation (SOR)
method [41, 42]. To estimate the field at a particle’s location, the Cartesian components of the field
is first calculated at the nodes of the particle’s occupancy cell by centrally differentiating the SOR
solved potential at the nodes. These components are then individually area-weighted to the particle’s
location. The code utilizes the full mass-included equations of motion of all plasma components, to
push the particles. Chin’s exponential splitting scheme [43, 44] is applied for this purpose. The code
employs several numerical diagnostics to investigate the dynamics of the simulated plasma.

The simulation system of the code is schematically represented in Fig. 2.1. Every numerical aspect

of PEC2PIC is discussed in detail the following subsections.

2.1.1 Loading the initial conditions of the plasma

As the PIC simulation is essentially an initial value problem, the initial spatial density function
and the velocity distribution function of the plasma must be given in some analytical or numerical
form, or they may be estimated from other parameters of the plasma such as temperature. To load
the initial velocity distribution and spatial density function the method of cumulative distribution
function inversion [39] is used with Halton’s sequence of quasi random numbers [40] for obtaining

smooth distributions.

2.1.2 Charge to mesh assignment by first order Cloud-in-Cell scheme

An important aspect of the particle-in-cell method of simulation than can influence its stability and
performance, is the numerical scheme used for switching from the discrete-super-particles-picture to
the charge-distributed-over-mesh picture in every time step of the siumalation. For most simulation
systems, a very efficient and highly popular scheme that gives good performance of the code is the
first order Cloud-In-Cell (CIC) scheme. To explain the first order CIC scheme we will start with the
simplest zeroeth order interpolation scheme known as the Near grid point (NGP) scheme for charge
to mesh assgignment [39].

Initially the charge density on all inner mesh points is zero. Consider a super particle located
inside a mesh cell of area AxAy. In the NGP scheme we first identify the nearest gird point of the
super particle. Say the net charge of the super particle is q. Then we can assume that this super
particle is a uniformly charged cloud of dimensions equal to the PIC cell dimension. Hence the charge
density of the cloud is g/AzAy. In the NGP scheme we simply approximate that the geometric centre
of the charge cloud is at the nearest grid point. This amounts to adding the charge density q/AxzAy
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Figure 2.2: Cartoon of the Cloud-in-Cell (CIC) scheme for distribution of charge on the numerical mesh

to the existing charge density of the nearest grid point. Repeating this charge to mesh assignment
process for every super particle additively builds up the charge density on all inner mesh points.

A superior method of charge to mesh assignment is a first order interpolation scheme known as
the CIC scheme. In this scheme the super particle is again considered as a uniformly charged cloud
of dimensions same as that of a PIC cell and uniform charge density, p = q/AxzAy (see Fig. 2.2a).
Now the CIC scheme has two equivalent models (Fig. 2.2a and 2.2b) that, upon implementation,
effectively give the same result. In the first model (Fig. 2.2a) we begin with an assumption of zero
charge density at the centres of all PIC cells of the mesh. Consider a pseudo particle to be located at
an arbitray point in a PIC cell, marked in Fig. 2.2a with yellow filled circle. Now if the location of
the particle does not coincide with the geometric centre of its occupancy cell, then the corresponding
charge cloud, by virtue of its given dimension, will have one and only one grid point of the occupancy
cell located within it. The encompassed grid point is marked by a blue ‘X’ mark in Fig. 2.2a. Now the
intersecting mesh lines at ‘X’ divide the cloud into areas a, b, ¢, and d. There are also 4 centres of PIC
cells, A, B, C,, and D that constitute the 4 nearest centre-of-cell neighbours of the intersection point
‘X’. In the CIC scheme an area weighted first order interpolation is applied to divide the cloud charge
density p between the 4 centre of cells A, B, C,, and D. For example the interpolated charge density
at Ais pa/(a+b+c+d) = pa/(AzAy). Similarly p can be interpolated to the three remaining
centre-of-cells. The charge densities interpolated to A, B, C, and D from the super particles location
is added to the existing value of charge densities at these centres-of-cells. If the particle’s position
happens to exactly coincide with the centre of the occupancy cell (point A in Fig. 2.2a) then the the
entire charge density p is added to the existing charge density of only the occupancy cell’s centre.
Repeating this interpolation process for all super particles in the mesh will additively build up the
charge density distribution over all cell-centres of the mesh.

In the second model of the CIC scheme we begin with an assumption of zero charge density at
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all grid points. For a super particle that is located at any arbitrary point inside a PIC cell, the
interpolation of its CIC charge density p = ¢q/AzAy is made to the four corners of its occupancy
cell, A, B', C', and D’ (Fig. 2.2b). The constructed vertical and horizontal line that intersect at
the particle’s location divide the occupancy cell into 4 areas o', V', ¢/, andd’. It can be worked out
the these area segments match with the segments a, b, ¢, andd of Fig. 2.2a as ¢/ = a, b = ¢, ¢ =
b, andd = d. The cloud charge p is now divided between A’, B’, C’, and D’ by an area weighted
first order interpolation scheme. The area weight of a cell corner is taken as the fractional area
of the area segment that is not bounded by either of the two grid lines that intersect at the cell
corner under consideration. For example the charge density interpolated to the grid point A’ is
pal(a+b+c+d) = pa/(AxAy). Similar the charge density can be interpolated to the other three
corners. The interpolated charge at a grid point is added to the existing charge density at that grid
point. If the super particle happens to be located exactly at a grid point then its entire charge density
p is added to the existing charge density of only that grid point. Repeating this interpolation process
for all super particles in the mesh will additively build up the charge density distribution over of all
grid points.

We see that the first model of the CIC scheme results in charge density distribution at the cell
centres of the mesh, whereas in the second model the charge density is distributed on the grid points.
A comparison between Fig. 2.2a and Fig. 2.2b shows that the fraction of the clouds charge density dis-
tributed to the cell centres A (maximum occupancy cell of the cloud), B (second most occupied cell),C
(third in occupancy ),and,D (minimum occupancy cell) is equal to the charge density distributed to
A" (nearest gird point),C’ (second nearest grid point),B’ (third nearest gird point),and,D’ (farthest
grid point) respectively. While working with the first CIC model, the distribution of charge density
at the cell centres is followed solving the Poisson Equation for the electrostatic potential at the cell
centres. Next the central difference formula is used to find the field component at the cell centres.
The field components from the 4 cell centres covered by the charge cloud are then interpolated to the
particles location for the trajectory progress of the particle. When using the second CIC model, first
the potential function, and then field components are determined at the gird points by the exact same
procedures as with the first CIC model. The field components from the occupancy cell’s corners are
then interpolated to the particle’s location to move the particle. An analysis of the two mumerical
procedures reveals that they are effectively same, and result in the exact same trajectories of the super
particles. While the first model (Fig. 2.2a) serves as a more effective way of understanding the CIC
schem, it is the sendond model (Fig. 2.2b) that is more convenient and less expensive to implement
in a PIC code. In our PIC code we have also worked with the second model for the CIC scheme.

An OPEN-MP parallelization of the charge-to-mesh distribution by the CIC scheme has been
implemented in the PIC code by parallelizing the process over super particles, and then using an
OPEN-MP reduction to add up the charge density distribution on the mesh obtained from the chunk
of particles in each OPEN-MP thread.
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Continuing with second model of the CIC scheme, next we need to work out a procedure to
prevent charge density from getting distributed to boundary points or points with pre-fixed potential
values, and at the same time conserve the net trapped charge in the system. To explain the numerical
procedure of dealing with charge density getting distributed to grid points with maintained potentials,
we will consider numerical methods that work for our simulation system. In our system we have a
numerical circular boundary of the trap carved out inside the Cartesian mesh (Fig. 2.1). Grid points
lying outside this circular boundary are numerically grounded, and particles that happen to touch or
cross the circular boundary in course of the simulation, are considered as lost from the system and
cease to contribute any further to plasma dynamics. However it may happen that even a trapped
particle contributes charge density to a grounded grid, if it happens to lie in a cell that is split into
two segments by a section of the circular boundary (see Fig. 2.3a). In such a scenario, the split cell
should have at least one point in the trap region of the mesh and at most three points in the grounded
region of the mesh and the trapped particle should be located in the segment of the cell that is in the
trap region.

The objective now is to re-allocate the charge density that got distributed on the grounded grid
points by CIC interpolation to grid points in the trap region. The most technically accurate and
elaborate procedure for this charge-density re-assignment is represented in Fig. 2.3a. In this method,
we examine the charge density interpolated from each trapped particle on the corners of its occupancy
cell. First, we check if any (at most three) corner of the occupancy cell lies in the grounded region. If al
teast one corner of the cell is detected to be in the grounded region, we proceed to identify that corner
of the occupancy cell which has the lowest value of grid indices. Say, the indices of this corner are
identified as (i, j;). The indices of the remaining three corners are then obviously (i;+1, j;), (i1, i +1),
and (i + 1,7, +1). We check the relative position of the grounded corner with respect to the lowest
indices of cell i.e. we identify which indices out of (i, ji), (iy + 1,71), (i, 51 + 1), and (4 + 1,5; + 1)
belongs to the grounded corner. Now for each of these 4 possibilities we know the exact translation
required to reach the other three corners of the occupancy cell from the grounded corner. For example
if the grounded corner happens to have the indices (ij,j; + 1) then we know that the remaining 3
corners can be reached by lowering the y index by 1, raising the = idex by 1, and by raising both
indices by 1. Re-allocation of the super particle’s CIC interpolated charge density from the grounded
grid point is implemented by making the following translations in order of priority:- 1) Re-allocate
the particle’s interpolated charge density from the grounded corner of the occupancy cell, to that
corner of the occupancy cell which is the x-neighbbour (neighbouring grid point along the x axis) of
the grounded grid point. For example the particle’s interpolated charge density should be transferred
from the grounded corner with indices (i, j; + 1) to the x-neighbour in the occupancy cell that has the
indices (7 + 1, j; + 1). However it may so happen that the x-neighbour itself is also another grounded
grid point. In that case we take the second option viz, 2) we re-allocate the particle’s iterpolated
charge density from the grounded corner of the occupancy cell, to that corner of the occupancy cell

which is the y-neighbbour of the grounded grid point. For example the particle’s interpolated charge
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Figure 2.3: Handling curved boundaries with a cartesian grid: A schematic cartoon demonstrating how

charge density is re-allocated from grounded grid points in the simulation.
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density should be transferred from the grounded corner with indices (ij, j; + 1) to the y-neighbour in
the occupancy cell that has the indices (i, j;). If the y-neighbour itself is also a grounded point we
take the third option viz, 3) re-allocate the particle’s charge density from the grounded corner of the
occupancy cell, to its diagonally opposite corner in the occupancy cell. For example the particle’s
interpolated charge density should be transferred from the grounded point with indices (i, j; + 1) to
the diagonally opposite corner with indices (i; + 1, 7;). In this way we re-allocate charge density from
every grounded corner of the occupancy cell to another corner of the cell that is not grounded. As
an example, in Fig. 2.3a we have schematically shown the charge density re-allocation process in an
occupancy cell that has three of its corners in the grounded region of the mess.

It is evident that the above procedure involves checking the corners of the occupancy cell of every
super particle and upon encountering any grounded corner of the cell, reallocating the particle’s inter-
polated charge desnity to another non-grounded grid of the same cell following the algorithm described
above. Such a procedure may be parallely implemented by appending it to the CIC distributor in the
code under the same parallelized loop over particles. The method is also technically the most accurate
as the charge density interpolated from a super particle occupying a cell with grounded corner(s)
gets re-distributed only among the non-grounded corner(s) of that very occupancy cell. However the
method does involve checking each of the four corners of the occupancy cell of every super particle at
every time step and carrying out any required re-allocation of interpolated charge density for individ-
ual particles. In the trap cross-section that we are simulating (Fig. 2.1) the bulk plasma remains well
confined within the numerical circular boundary and there is no other plasma dynamics taking place
at a proximity of one cell length from the circular wall, besides the eventual loss of the particles that
got transported so close to the wall. Hence for our system the above described procedure for charge
re-allocation is computationally expensive, over-exact, and too elaborate. However this charge density
re-allocation recipe should be useful for systems in which major plasma dynamics take place at very
close proximity to the wall.

We will now try to find a more practical, and computationally less expensive solution for the
charge density re-allocation from grounded grid points. Now suppose the inner circular boundary was
absent and the rectangular boundary of the mesh was the only conducting boundary of the system.
In that case an equally accurate charge re-allocation as above can be achieved by a simpler process, as
follows - 1) Let all particles distribute charge density to the corners of their respective occupancy cells
and build up the charge density distribution over the entire mesh including the grounded rectangular
boundaries 2) Now re-allocate the charge density from the grounded grid points on the first and last
column of the mesh to the corresponding neighbouring grid points on the second column and second-
last column of the mesh respectively. 3) Next, the charge density on the grounded gird points on the
first row and last row should be re-allocated to corresponding neighbouring grid points on the second
row and second last row respectively. Note in this scheme the charge re-allocation becomes a one time
procedure carried out on the rectangular boundaries after all particles have distributed charge density

on the mesh and hence is computationally much less expensive.
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Now when the circular boundary is present within the rectangular mesh it is not possible to work
out a post-CIC-distribution scheme for charge density re-allocation from grounded points that matches
exactly with the particle-wise re-allocation procedure. Let us explain with an example. Consider the
grounded point C’ in Fig. 2.3b. Let us say we carry out a post-distribution re-allocation that transfers
the total charge density at C’ to neighbouring non grounded point E’. If there is a particle in the cell
D'C’ A’ B’ which had contributed to the initial charge density at C’, then its contribution will also get
translated to the point £’ which does not belong to its occupancy cell. Hence the loss of information
about a) the occupancy cells of particles contributing to the charge density a particular grounded gird
point and b) the fraction of charge density contributed by each of them, makes a post-distribution
inequivalent and only an approximate substitute to to the particle-wise charge density re-allocation
scheme. However as explained earlier, for our simulation system a post-distribution re-allocation
procedure is more practical despite its inherent approximations, and also computationally much less
expensive. We will now discuss two such post-distribution re-allocation procedures that is suitable for
our system.

The first post-distribution scheme is schematically represented in Fig. 2.3b. In this scheme we
initially scan all the grounded grid points for non-zero charge density after the CIC distribution.
Grounded grid points that got non-zero charge density allocated to them in the CIC distribution,
are obviously also corners of a cell that is divided by a segment of the circular boundary. In the
remaining procedure we only have to re-allocate charge from these selected grounded points with non-
zero charge densities. Hence our computational work is significantly reduced. The re-allocation can
be implemented by a simple set of rules as follows - 1) We check if the left or the right neighbour of
the grounded point lies in the trap region. If so then we re-allocate the charge to the neighbour that is
non-grounded (for our system only one of these two neighbours of a grounded point has the possibility
of being non-grounded). For example in Fig. 2.3a charge density from B’ is re-allocated to A’. Now it
may so happen that both the left and right neighbour are also grounded, as we see for the point C’ in
Fig. 2.3a. In that case we take the next option ,i.e. 2) We check if the top or the bottom neighbour
of the grounded point lies in the trap region. If so then we re-allocate the charge to the neighbour
that is non-grounded (for our system only one of these two neighbours of a grounded point has the
possibility of being non-grounded). For example in Fig. 2.3a charge density from C’ is re-allocated to
A’. Again if both these two two neighbours are also grounded points, as is the case for point D’ in
Fig. 2.3b then we take the next option, viz, 3) We check the four diagonally opposite points to the
grounded point to see which of these four points is non-grounded (if we have reached option 3 then not
more than one diagonally opposite point will be non-grounded). Once the non-grounded diagonally
opposite point is identified then we re-allocate the grounded points charge density to this point. For
example in Fig. 2.3a charge density from D’ is re-allocated to A’.

The second post-distribution re-allocation scheme, schematically represented in Fig. 2.3c works on
the same principle as the first post-distribution re-allocation scheme. Infact all the steps of this scheme

is exactly the same as the former except for the last option 3. In this scheme , as a third option, we

Page 19



2. DEVELOPING THE SUITE OF PIC CODES

check the next to next left and right neighbours and the next to next top and bottom neighbours of
the grounded point to see which out of these four next-to-next neighbours is non-grounded (if we have
reached option 3 then not more than one next-to-next neighbour will be non-grounded, as is the case
with point D’ in Fig. 2.3¢). Once the non-grounded next-to-next neighbour is identified we re-allocate
the charge density of the grounded point to this point. For example in Fig. 2.3c charge density from
D’ is re-allocated to E'. There is an interesting little proof which makes this scheme work. If the cell
dimensions are very small compared to the radius of the circular boundary, then the circular segment
divding the cell can obviously be approximated as a straight line. The schematic drawing of Fig. 2.3c
is not in scale. We have constructed Fig. 2.3d with the actual dimensions of the our PIC grid and
the circular boundary for a correct visual perspective. The apparent dashed straight line in Fig. 2.3¢c
is acctually the segment of the circular boundary while the four squares in soilid lines are PIC cells.
Going back to Fig. 2.3c with the straight line approximation of the intersecting circular boundary, we
can work out that it is not possible for the boundary (approximate straight line) to cut both A’C’
and A’B’ at points other than A’ at not cut either of C'E’ or B’F’. This implies we do not have to
scan in the x and y directions beyond the next-to-next neighbours of a grounded corner of a cell cut
by the circular boundary, to reach another non-grounded point.

In the PIC code we have implemented the second post-distribution re-allocation scheme of Fig. 2.3a.

2.1.3 The SOR Poisson Solver

Consider solving a generalized form of the 2D Poisson equation with Dirichlet Boundary Conditions
by Sucessive-Over-Relaxation method. Given below is the 2D Poisson Equation in which f(z,y) is a

known function and U(z,y) is the function to be solved within the given boundaries in z and y.
Uge +Uyy = f, where 0<z<a, and 0<y<b (2.1)

The Dirichlet’s Boundary conditions in x and y for the problem can be expressed by the following

set of equations.

U(O7 y) =0 (y)7 U(CL, y) = QQ(ZJ), U(IL‘, 0) = hl(m)7 U(LL‘, b) = h2($) (2'2)

Here g1(y), 92(y), hi(x), he(x) are known functions.

Now the first step of any numerical solution of the Poisson Equation is discretization of the solvable
space into a grid system with equispaced points along each axis (Fig. 2.1), and expression of the
differentials in the equation by finite differences. For generalization let us suppose that the space
between = 0 and = = a is now divided into m +1 equal divisions of length Ax (i.e. Ax =a/(m+1))
by m + 2 number of points marked as x; where i = 0, 1, ....m, m + 1. Similarly the space between
y =0 and y = b is now divided into n + 1 equal divisions of length Ay (i.e. Ay =0b/(n+1)) by n+2
number of points marked as y; where j =0, 1, ...n, n+ 1. At each grid point the co-ordinates can be
expressed as x;,1y; while functions like U(x,y) and f(x,y) can be expressed as U;; and f;; respectively.

Similarly the boundary functions at the boundary axes points may be expressed as gi15, g2;, h14, ho;-
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Now in order to express Uy, and Uy, as finite differences we need to employ Taylor series expansions.

Let us expand U,y ; in Taylor series about the point Uy ;

Ax? Az?

Ui+1,j = Ui,j + A.’I?(UI)Z-J -+ T(U:m)i’j + T(U$zx)i’j -+ O(A'IA) (2.3)
Aa? Az?
Uic1j = Uiy — Da(Up), 5 + T(Um)m — T(Um)i,j + O(Azh) (2.4)

Performing (2.3) - (2.4) and neglecting O(Az?) terms yields

Uit1 —Ui1,

Ue)iy = — 97z

the central difference formula forU, (2.5)

Again performing (2.4)+(2.3)-2U; ; and neglecting O(Az?) terms gives the central difference for-

mula for U,, as follows
Uit1; —2U;; + U1

(U:w)w‘ = AxQ (2-6)
Applying similar Taylor series expansions of U; ;1 and U; j_1 about U; ; we can arrive at
U iz1— Ui
(Uy)i’j = % the central difference formula forU, (2.7)
and
U1 —2U;; +U; i . . .
(Uyy)ij — Zhitd ij Vi1 the central difference formula forU,, (2.8)

Ay?
Using (2.6) and (2.8) we can now express the Poisson Equation (2.1) at the interior mesh point as a

set of m x n equations as follows

Uit1j =2Uij + Uinry | Uijin = 2Ui; + Ui

N Ay = fij fori=12.m &j=12.n (29)

For solution by an iterative method we can re-write (2.9) as

1 1
Uij = 1 [sz (Uijir + Uijo1) + Ay (Ui + UFLJ)} 1 AN Fi (2.10)

The next step is to identify boundary points with given values of U; ; that may be encountered on
the RHS of (2.10). For example while solving for Us ; one will encounter the boundary point Us o (in
Ui j—1) on the RHS of (2.10). On encountering such boundary points, the RHS of (2.10) will have to
be reshuffled as demonstrated below.

First let us introduce flag functions ¢; ; and ¢; j such that ¢; ; = 0 and ¢ ;j=1lona boundary point

and ¢; ; = 1 and qz ;= 0 on an interior mesh point. In that case we can re-shuffle the RHS of (2.10) as

1
Ui ;= [Z {AxQ (¢ij+1Uij41 + @ij—1Uij—1) + Ay? (@ig1,3Uis1 + ai1,Ui—1 ) }}
(2.11)

1 p y p * * p * *
- {Z {szAyzfi,j - Azz (qi7j+1Ui,j+1 + ‘Zz‘,j—lUiJ—l) - Ayz (qi+1,jUi+1,j + qz’—l,jUz‘—l,j) }}
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The re-arrangement of the RHS in (2.11) helps in expressing the equation set (2.11) in the form of
a numerically solvable matrix equation. Notice that now the term inside the first square bracket on
the RHS contains values of U; ; on interior mesh points only, i.e. U;; values that need to be solved.
The term inside the second square bracket on the RHS all have fixed values for all U; ; on the LHS.
Now if we write down the set of m xn equations of (2.11) arranging the U; ; on the LHS in a ascending
order of j = 1,2, ....n nested within an ascending order of of ¢ = 1,2,....m, and let N = mxn, then

(2.11) can be packed into a matrix equation of the form

U=AU+F
(2.12)
or in general linear equations matrix form (I —A)U =F

In (2.12) U and F are N x1 column matrices, Iy is an N** order Identity matrix, while A is N x N
square matrix. Let us make an index transformation here. Let k = 1,2,..... N be the row index of U
such that k = (i—1)n+j. A comparison of (2.11) and (2.12) reveals that U represents the LHS of the
equation set (2.11) containing unsolved Uy, (i.e. U; ;) values on the interior mesh points. The product
AU represents in the terms in the first square bracket of (2.11). Specifically A contains the calculated
coefficients of Uy, (i.e. U; ;) in the term of the first square bracket of (2.11). From (2.11) it can be seen
that A is a sparse co-efficient matrix ideal for iterative solutions. F contains the calculated values of
the fixed terms within the second square bracket of (2.11).

The matrix equation (2.12) can also be expressed as a set of equations of its elements as follows.

N
Uk = Z Ak,k’Uk’ + Fk where k = 1,2, ,N (213)
k=1

Note that determining the matrix elements of A and F is a one time process. Next let us begin
solving for Uy iteratively. The iterative process begins with a guessed solution for every Uy. The
standard procedure is to initiate the iterative solution process with a guessed common value of U, = 0
for k =1,2,..., N. Let us introduce the iteration index [ in the superscript of U,. Hence beginning

the iteration with U, ,g = 0 we can express an iterative solution with [ as the iteration index, as follows.

o~ (2.14)

and 1 =0,1,2.....(upto total number of necessary iterations)
The above equation is the formula for an iterative solution by the Jacobian method. Every succes-
sive set of values of U ,i brings the function numerically closer to actual solution. The iterations can be
stopped when the whole set of values of Uy have converged sufficiently towards the solution or, more

practically, when in the error in successive sets of solution is sufficiently small, i.e.

Ul - ult

—6 o
i < error tolerance (e.g 107°) for k=1,2,....N (2.15)
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Now the convergence of (2.14) may be accelerated by using available iterative updates of values of
U} from the same iteration step, instead of updating the whole set of values of U together at the end

of the iteration step. This implies a tweaking of the formula of (2.14) as follows.

Uttt = ZAlk/Uk,JrFl (k=1)

k=1
h—1
U = Z Ao Upt + Z AUl + Fy (k=2,3,...,N —1)
k'=1 k'=k (2.16)
N-1
UGt =3 Anp U + By (k= N)
k=1

where | = 0,1,2.....(upto total number of necessary iterations)

Solving for Uy using (2.16) amounts to using the Gauss-Siedel Method for solution. This method
is not only more efficient than the Jacobian method (2.14) as it converges faster than the former, but
is also computationally less expensive as only last updated Uy values are retained in the memory in
every iteration step.

Now an inspection of (2.10) from which (2.16) was derived reveals that in (2.16) the term Ay =0

for all values of k. Hence we can remove terms with Ay, ;, from (2.16) as follows.

Uttt = Z AUl +F (k=1)

k.l
k—1
+1 _ I+1 —
Ut =3 AU + Z AUl + B, (k=2,3,..,N —1) 217
k'=1 k'=k+1 :
N-1
Ut => AywU +Fy  (k=N)
k'=1

where 1 =0,1,2.....(upto total number of necessary iterations)

The Subtraction (2.17)-U ,lc yields the expression for A; Uy = U,i“ -U ,i, the change in the value
of solution brought about by the (I + 1)th Gauss-Seidel iteration as follows.

N
A Ur = Z AU+ =Up (k=1)
k/
k—1
AU = ZAkk/Ulljl—F Z Akk/Uk/—FFk—Uk (k=2,3,....N —1) 91
k=1 k'=k+1 (2.18)
N-1
ApUn = AvwU + Fy Ul (k=N)
k=1

where | = 0,1,2.....(upto total number of necessary iterations)

An iterative solution procedure in which the AUy of the Gauss-Seidel iteration step (RHS of

2.18) is mathematically manipulated by scaling it by a factor a is the Successive Relaxation method
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for solution. The purpose of scaling the change A;1U by « is ofcourse a faster convergence than the

Gauss-Seidel Method. The Successive Relaxation Method solution can be expressed as follows.

N
Z Al,k’U]i’ + Fy — U{

Ut =Ul + a (k=1)
k=2
k—1 N
UM =U +a | Y AU+ > AgwUp + Fr = U (k=2,3,...,N —1)
k=1 K=k 1 (2.19)
N—1
U ' =Ux + a | > AvwU + Fy —Ug (k=N)
k=1
where | = 0,1,2.....(upto total number of necessary iterations)
Equation (2.19) can also be expressed as
N
U{_H :(1*0¢)U{ + « ZAl,k’U]é/JFFl (k'Zl)
k'=2
k—1 N
U =0-a)U; + o | Y AU+ > A4wlUf + B (k=2,3,...,N —1)
k=1 k'=k+1 (2:20)
N—1
US'=(1—a)U\ + o | Y AvpUL" + Fy (k=N)
k'=1

where 1 =0,1,2.....(upto total number of necessary iterations)

The quantity « in the successive relaxation formula (2.19) and (2.20) is called the accelerating
factor. It can be shown that the iterative solution (2.20) converges only for 0 < o < 2 [45]. The
sucessive relaxation method is further classified according to the chosen value of « for the iterative

solution.

e =0 = Stationary Solution
e 0 <a<1l = Successive Under — Relaxation
e =1 = Gauss — Siedel

o 1 <a<2 = Successive Over — Relaxation

For solving Poissons Equation Sucessive Over-Relaxation (or SOR) usually has the fastest con-
vergence among the iterative methods described, and it is the method that we have implemented in
our PIC code as the Poisson Solver. Assuming that the Gauss-Seidel iterations converge towards a
solution, the SOR accelerates this convergence by stretching the progress of the solution, AUy, in
each step to « (where 1 < v < 2) times the its value in the Guass-Siedel iteration step.

There exists an optimum value of a, 1 < oy < 2, for which the SOR solution converges fastest.

For a general system of linear equations matrix of the form Px = q there is no explicit formula

Page 24



2.1 The 2D Particle-in-cell code PEC2PIC

to determine ay,, for the SOR solution of the system in terms of properties of the system matrix
A [45]. However the special structure of the system matrix (In — A) in (2.12) resulting form the
finite difference discretization of the Poisson Equation, makes it possible to determine o, for the
system [45]. For the above problem it can shown that the optimum accelerating factor for the SOR

solution can be determined by the by the following formula [45].

2

Qop = ——F—— 2.21
"IV 22

. T , T
h =1—sin? —— —sin? ——— 2.22
where [ sin 3t 1) sin 1) (2.22)

In (2.22) § represents the value of the Spectral Radius of the Jacobian Iteration Matrix of the
given system (for definition and significance of Iteration matrices and their spectral radii for different
Tterative solution methods refer [45])

Often while simulating experimental systems as Fig. 2.1 one encounters inner mesh points where

the potential function is given and should not be solved for. For instance,

e While numerically carving out an artificial boundary shape within the natural rectangular bound-
aries of the cartesian system, one will also have to include mesh points lying outside the artificial

boundary (red grid points in Fig. 2.1) as being points having fixed values of Uj ;.

e Experimental application of potentials at any region within the solved space (blue region of the
mesh in Fig. 2.1 is achieved by fixing potentials of the grid points in that region. In that case

such grid points are also to be considered as points with fixed values of U ;.

When we encounter such inner mesh points with given potentials we supply the known value of
the potential function of that point as the initial guess for potential value at that particular point and
make sure that this value is not updated in the iterative solver. Hence taking these special inner grid

points into consideration the SOR solution can be expressed as follows

N
Ut =(1-a)U] + o | Y AUl +F (k=1)
k=2
k—1 N
UM =(0-a)U; + a | Y AU + > AewUp + Fi (k=2,3,...N —1)
k=1 k'=k+1 (2.23)
N—1
UF'=(1-a)Uk + a | Y AvpU! + Fy (k= N)
k'=1

Where | = 0,1,2.....(upto total number of necessary iterations)

And where o = 0 for pre determined Uy, and o = oy for all other Uy

Once all Uy, are solved with adequate number of Iterations they can be mapped back onto the grid

as U; ; making use of k = n(i — 1) + j.
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Now let us see if it possible to computationally parallelize the iterative process of (2.23) to save
computation time. For parallelization first we need divide (2.23) into mutually independent processes
that may be carried out parallely at the same time. Going back to the Gauss-Seidel Scheme of (2.11)
from which (2.23) is derived, we see that U;; is updated using the most recently updated values of
the potential at the nearest neighbouring grid points viz U;j_1, U; j41, Ui—1,, and U;y1 ;. Now if
(i 4+ j) of the grid point under consideration is an even number then the four nearest grid points
whose potentials are required for the updation of U; ; will all have odd values of (i + j). This implies
that for updating U; ; at any grid point with an even value of (i 4 j), no other U; ; with even value
of (i + j) is required. Using the same logic we can deduce that that for updating U; ; at any grid
point with an odd value of (i + j), no other U; ; with odd value of (i + j) is required. Herein lies the
opportunity to parallelize the iterative process of (2.23). An implication of the above deduction in
terms of k = n(i — 1) + j index can be simply put as updation of every U with odd values of k are
mutually independent, and so is updation of every Uy with even values of K. Hence one iteration step
can be divided into two parallelized halves as follows. First updation of Uy by (2.23) for every odd
value of k is executed parallely using latest available values of Uy for even k. We begin with odd k as
k =1 is odd. Next we parallely update all U with even values of k by (2.23) using latest available
values of Uy, with odd k.

The above described parallelization scheme is known as the red-black parallelization for SOR/
Gauss-Seidel. It is so named because grid points with even and odd values of (i + j) are visually
differentiated with red and black colour to explain how the parallelization scheme works. In our
code this parallelization of the SOR Poisson Solver (2.23) has been implemented using OPEN-MP

parallelization.

2.1.4 Interpolating electric field components from the mesh to the particle-positions

In PIC simulation a procedure for field interpolation to particle position that ensures stability of the
simulation, is to use the same scheme that was used to distribute charge density from the particle on
to the mesh, only this time in reverse direction 4.e. from the gird points to the particle’s position. In
our code we have used the second model of the first order CIC scheme of Fig. 2.2b for charge density
distribution on mesh . The corresponding field interpolation procedure would can be implemented as
follows.

First we need to determine the x and y components of the electric field on the mesh points by

spatially differentiating the SOR solved potential on the mesh using finite differences. To solve for the
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x component, F, on a grid point we use,

Uit1j = Ui1

(Ey)ij = — — S As (for 0 #1i+#m) = central difference for inner i indices
Uiz1i — U
(Ez)oj = — % = forward difference for s = 0
’ x
Ui — Uy . _
(Ez)m,j = — 'le = backward difference for i = m
(2.24)
Similarly to solve for the y component, £, on a grid point we use,
Uij+1—Uij— . . . . L
(Ey)ij = — T (for 0#£4#n) = central difference for inner j indices
(Ey)io=— % = forward difference for j =0 (2.25)
Yy
U i —U; i
(Ey)ijn = — ”A—ywl = backward difference for j =n

Once L, and E; are determined on all mesh points, we can interpolate the field components to
particle positions, to determine the electrostatic field acting on each particle in its current position.
To explain the field component interpolation procedure we will again use Fig. 2.2b. Now suppose the
solved values of E, on the points D'C" A" and B’ are Eypry, Eycry, Eyar), and Eypry respectively.
Then using the CIC scheme principle in the reverse direction, the interpolated value of E, at the

particle’s postion, Eg(gmt) is given by,

d Ea:(D’) +c Eac(C’) + b Ex(B’) +ad Ex(A’)

E(’Ml,t) _ 2.96
v Az Ay (2.26)
Similarly the the interpolated value of E, at the particle’s position, E;Y”” is given by,
! / / !
E@(Jmt) _ d Eypy + ¢ Eyon +0 Eyp) +a By (2.27)

Az Ay
2.1.5 Progressing the trajectories of particles in one time step

Once E, and F, are interpolated to the position of the charge particle we know the electric field E,
and the magneitc field, B (uniform axial for the cylindrical trap) at the particle’s location. Hence the

equations of motion of the particle may be expressed as

mdiv:q[E—l—v x B]
t (2.28)

vV =m—r
dt
In the above equation m and ¢ are the mass and the charge of the particle respectively. r and v are
the position vector and the velocity vector of the particle. Now, there exist several numerical schemes

to evolve the trajectory of the particle from the initial position and velocity, (rg,vg) to the new
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position and velocity, (r1,vy) in the time step At, approximately (with time-discretization) following
(2.28). We will now discuss some of these schemes and their properties from a general standpoint
(not pertaining to (2.28)) to finally arrive at the scheme that we have chosen in our simulation. The
discussion is intended to justify our choice of particle-pushing scheme.

Consider a n-dimesional Classical system governed by a known Hamiltonian function, H. The

generalized form of H for the n-dimensional system is given below.

H= H(ph D255 Pny 1y T2y ooy Tips t) (229)

Here p; and x;, with ¢ = 1, 2, ..., n, represent the generalized momentum and position co-ordinates
of the system. The Hamilton’s equations of motion of the system are,

ix =V,H

ddt (2.30)
7P = -V.H

Here x and p are the n-component position and velocity vector of the system. A unique feature of
the equations of motion (2.30) is that these equations evolve with symplecticity. A symplectic evolution
implies, among other things, that if we have an ensemble of identical non-interacting systems, each
defined by the same Hamiltonian function, and each initiated at different points in the 2n dimensional
phase space, then the ensemble of systems will evolve in such a manner that the 2n-dimensional
volume delimited by the ensemble in phase space will be conserved through the evolution of the
ensemble. This is just one way of stating Liouville’s Theorem which applies for Hamiltonian systems
that evolve symlectically. Another way of stating Liouville’s theorem is by considering a very small
volume element (analogous to a fluid element in real space) at any arbitrary initial position in the phase
space of the system. All constituent system points (analogous to point-particles in a fluid element)
within the volume element will evolve in time, changing the shape of the volume element. Liouville’s
theorem states that the 2n dimensional volume of the volume-element will remain conserved through
the evolution. The theorem holds irrespective of whether H is an explicit function of time or not.

Now that we have some understanding of how the Hamiltonian equations of motion (2.30) evolve ,
we will proceed to give a functional form to the Hamiltonian and try to solve (2.30) numerically. Let

us suppose the Hamiltonian of the system is defined as,

H = A(p17 p2, - pn) + V(Ilfl, z2, .., .’L’n) (231)

For simplicity we have considered here, a Hamiltonian that does not have explicit time dependence.
If we now numerically solve the trajectory of the system in time At, from its initial phase-space co-

ordinates (xp, po) to the final co-ordinates (x1, p1) by an explicit Euler scheme, then the trajectory
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of the numerical solution will evolve in At as follows.

0A
X1 = Xg + At (VPH)Xo,po = T1; = To; + Ata—
P4 lp=po (2.32)
ov )
pP1=po — At(VzH)y oo = D1i = Poi — Ataxi .

Now let us express (2.32) in a more compact and elegant matrix operator notation. Let the phase

space vectors 1 and 7, represent ($10, €205 -+ Tno, P105 P20; -+ pnO) and (1311, L215 -+ Tnl, P11, P21; - pnl)

respectively. Then using (2.32) 1y and 1; can be connected via a map of the following form.

m =n7" (n) (2.33)
The superscript EU in the mapping function of (2.33) stands for Euler scheme. Another way of

representing this mapping by Euler scheme is using the Jacobian Matrix Operator M¥Y to connect

the time derivatives 777 and 71 as follows.

i = M g, (2:34)
The operator elements AIZ-];; V= 3;—’;;
tation of (2.32).

Similarly an infinitesimal displacement of the actual Hamiltonian system (2.31), or for that matter

can be easily worked out from the component-wise represen-

any generalized Hamiltonian system of the form (2.29), in time dt, following the Hamilton equations
of motion (2.30) may also be represented in Matrix notation via a mapping function and also using

the Jacobian for infinitesimal transformation, M as follows.
N(t+dt) = U(t+dt)(77(t)) (2.35)

ﬁ(t—i—dt) - Mh(t) (236)
Using 74t — M) = 07Ny, the Jacobain M can be expressed as
0 00
N (t+dt) 1 M)

M My M)

As the Hamiltonian equations (2.30) evolve sympletically, the infinitesimal transformation repre-

M:

(2.37)

sented in (2.35) and (2.36) is a Canonical Transformation, and the Jacobian, M, of the Infinitesimal
Canonical Transformation (ICT), obeys the symplectic condition for a Cannonical transformation

Matrix, viz,

MIM = J (2.38)

where, J = (_(%n I{)‘) is 2n x 2n matrix and I,, is the identity matrix of order n. Note that

the sympletic condition (2.38) holds not just for the ICT (which is basically the evolution of phase
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space co-ordinates of the system in an infinitesimal length of time), but is also equally true for any
canonical transformation of co-ordinates, both restricted (where transformation mapping does not
involve time), as well as unrestricted (where transformation mapping involves time). The sympletic
property of canonical transformation will be used later in deriving sympletic integrators. From (2.38)
we can also derive that |[M|| = 1, where ||[M|| represents the absolute value of the determinant of M.
Coming back to the ICT we can show from (2.36) and (2.37) that the phase space volume elements of
the two sets of co-ordinates are related by dn(”t"fr a = [|IML|| dnzjt‘;l. Since we have ||M|| = 1 we get back
the statement of Liouville’s theorem that the sympletic evolution of Hamiltonian system preserves the
volume of the phase space volume-element.

In comparison to the Jacobian, M of ICT, the Jacobian of At transformation by the Euler scheme,
Mgy does not obey the symplectic condition, (2.38). So if we use (2.32) to numerically evolve a set of
identical non-interacting Hamiltonian systems defined by (2.31), from different starting points in the
phase space, then we will see that the volume delimited by the ensemble of systems in phase space is
not conserved in the numerical evolution of the ensemble.

Equation (2.32) actually belongs to a class of numerical solvers called non-sympletic integrators.
While (2.32) is a first order non symplectic integrator, there are also higher order non-symplectic

4" order Runge-Kutta scheme. The non-sympleticity in the transformation of

integrators like the
co-ordinates in each time-step of these numerical schemes, causes the error in the total energy of the
system to grow in an unbounded manner through the simulation. The growing errors may manifest in
the form of numerical artefacts such as artificial damping or excitation after certain number of time
steps. To overcome these drawbacks of non-sympletic integrators another class of integrators known
as sysmpletic integrators can be used to evolve systems numerically. Let us now derive a sysmplectic
integrator for the Hamiltonian system (2.31).

The procedure for obtaining symplectic integration scheme is as follows [46]. Suppose the known
coordinates + Hamiltonaian of the given system, (x, p, t, H) undergo a restricted canonical transfor-
mation to a new set of co-ordinates + Hamiltonian (x’, p’, t, H') describing the same system. Now in
time t (x, p) will evolve from its initial values (x¢, po) following (2.30) with H as their Hamiltonian
to x(t), p(t). Let us specify that the initial values of co-ordinates in the transformed co-ordinate
system, (x’, p’) are same as the initial values in the (x, p) co-ordinate system. In that case x', p’
will evolve in time t from its initial values xq, po following (2.30) with H’ as their Hamiltonian to
(x(t), p'(t)). If the Hamiltonian of the transformed coordinates, H' is a explicit function of t of the
order of k and higher i.e. H' = O(t*), then it simple to show from (2.30) that x'(t) = xo + O(tF+1)
and p/(t) = po + O(t*+1). Now if the time of evolution, ¢ is very small, then the O(t*+1) terms may
be neglected and we can approximate that x'(t) = x¢ and p’(t) = pg. This implies that for a small
enough ¢ , the (x'.p’) co-ordinate system has evolved negligibly from its initial values. Now a restricted
canonical transformation at time t from (x'(¢).p’(t)) to (x(¢).p(¢)), will have a Jacobian of transforma-
tion, that obeys the symplecticity condition (2.38), by virtue of the co-ordinate transformation being

cannonical. Now for suffiently small ¢ the transformation can also be approximated as a symplectic
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map from (xg.po) to (x(¢).p(t)). Hence we have arrived at a symplectic map for the evolution of the
(x, p) in a small time ¢ = At of the numerical integrator.

Now that we understand the principle of symplectic integrators, the next job to find a technique
for obtaining a H' = O(t*) and thereby obtaining the symplectic map from (x, p) to (x’, p’) and vice
versa. We use the method of Generating functions for this purpose. The generating function employed
is [46]

F=Fx,p,t) +xp (2.39)

where,

FB(lepvt) = _X/'p - G(Xlapvt) (240)

and the transformation equations are,

x=-V,F3=x"-V,Gx,p,t)

p/ = —Vx/ F3 =Pp— Vz’ G(Xl’pvt) (241)
OF3 oG
H =H =H +
ot ot

Suppose we want to have a H' = O(t) so that a restricted canonical transformation from (x’,p’)
to (x,p) at time t, can be approximated as a symplectic map from the initial values (xq, po) to (x,p)

correct to the order of t. In that case a suitable form of G is

G=—tH(p,x)=—t(A(p) + V(X)) (2.42)
From (2.41) and (2.42) we get the transformation equations,

p=p+tVu V()

(2.43)
x=x +tV,Alp)

Substituting from (2.43) into the H’ in (2.41) we can get the transformed Hamiltonian of the order

of 1 in t as follows

H' = A(p) +V(x) — A(p) - V(¥
=V(x) - V(x)
substituting x from (2.43)
=V +tV,A(p)) — V(X))
(2.44)
substituting p from (2.43
=V +tV,A(p -tV V(X)) - V()

Taylor expanding the first term about x

=tV V() V,AP) +0(t?)
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Hence with the knowledge of the form of function G(x', p,t) , we can get any H' = O(t*) as in (2.44)
and also derive the transformation equations as in (2.43). The next step to substitute x’ = xg + O(t?)

and p’ = po + O(t?) in (2.43) as follows

p'(t) =p(t) + (Vo V(X)) w_w)
or po=7p(t)+t(Vy V(X'))x,:xO + O(t?)
or po=Dp(t)+1(VaeV (%)), +O(t?)

2.45
and ( )

x(t) — X,(t) +1 (Vp A(p))p:p(t)
or x(t) =xo0+t(Vy AP))p_p) + 0(*)

Expressing (2.45) in the language of numerical integrators we have neglecting O(At?) terms we

have

P1 =Ppo — At (V. V(x))

e (2.46)
x1 = Xo + At (Vp A(P)) pp,
For a direct comparison with (2.32) we can express (2.46) as
oV
pP1=po— At(V,H)y oo = P1i=Poi — At~
il (2.47)
0A '
X1 =Xg + At (VPH)xl p1 = Tli = Toi + At—
" OPi | pepy
In the matrix form the symplectic map (2.47) can be expressed as
m =07 (1) (2.48)

Equations (2.47) and (2.48) are the expressions for the numerical integrator known as Symplectic
Euler Scheme (hence the superscript SEU in (2.48)).

Now, in deriving (2.45) we began with a pre-defined correct form of knowledge of G(x', p,t) such
that the expression (2.45) is correct up to first order in ¢. However, in general, the correct form of
G(x',p,t) that will give us a symplectic map correct to k" order in t has to solved, and only then can
be find the k" order symplectic map similar to (2.45). We will make use of the fact that terms of the
order t*~1 and lower should not present in H'.

Taking a cue from (2.45) the general expression for a k" order symplectic map for the given

Hamiltonian is given by

pj+1 = pj - Cj t (V.r V(X))xzx_i

xji1 = X+ d; t(V, A(p) (2.49)

)P:Pj+1
where j =0,1,..,(k — 1)
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It must be noted that in (2.49) the symplectic map is from (xg, po) to (Xk, Pk). Any intermediate
(xj, pj) are only for mathematical convenience and do not have any physical significance as coordinates.

Let us now try to get back (2.46) from this general approach without a predefined form of the
function G. With k =1 in (2.49) we get

P1=Po— 0t (Ve V(X))yex,
form (2.46) (with At =¢) and (2.45) we can return back to
or P'(t) =p(t) + (Ve V(X)) w)
and (2.50)
x1 = xo +dot (Y A(D)),_,.,
form (2.46) (with At =t) and (2.45) we can return back to

or x(t) = x/(t) +t(V, AP)) p_per)

A comparison of (2.50) with the co-ordinate transformation equations in (2.41), shows that G(x', p, t)

should have the form

G(x',p,t) = —t(coV(x') + doA(p)) (2.51)

Using (2.51) and (2.41) we get

H' =V(x)+ A(p) — eV (x') — doA(p)

Substituting x from (2.50)

=V(x'+dotV, A(p)) — coV(x') — doA(p)

Taylor expanding first term about x’

=V() +dotV, A(p) - Vo V(X') + A(p) — coV(x') — doA(p)

= (1= c)V(x) + (1 = do)A(p) + dot V,, A(p) - Vo V(') + O(t?)
as H = O(t) we get co = 1 and dy = 1

(2.52)

Substituting the values of ¢y and dy
=tV,A(p) - VuV(X)+0(?
Hence we got back (2.44)

Now substituting the values of ¢y and dy in (2.49) we get

P1=po—t (Vﬂﬂ V(X))x:xo

(2.53)
x1 = X0 +t(V, A(p))

P=Pp1

(2.53) is again same as (2.46) as At =t.
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Now by the same procedure let us obtain a second order symplectic map. With k = 2 in (2.49) we

get

p2z =p1—at (VJE V(X))x:xl
x2 =x1 +di1t(Vy A(P))p_p,

and (2.54)
pl = pO —Co t (Vﬂ? V(X))x:xo

x1=%g +dot (Vyp AP))pp,

This second order symplectic map is from (xg,po) to (x2,p2). Hence to obtain the functional
form of G we need to find a map from (xg, po) to (X2, p2) similar to the co-ordinate transformation
equations of (2.41). We will use the shorthand representations (V, V(x)) ~ (V,V(xj)) and

X=Xj

(VPA(p))p:pj ~ (V, A(p;j)) for deriving this map function. From (2.54) we have

X9 = X1 -I-dlthA P2
=X0+d0thA(p1)+d1thA

)

p2)

=x0 +dot Vy A(p2 + 1tV V(x1)) +d1tV, A(p2)
)

)

)

(

(

(

=X +dotVy A(p2 + 1t V, {V(xo0) + O(t)}) +di1 t V, A(p2

=x0 +dot Vy {A(p2) + 1tV A(p2)- Vi Vi(x0)} +d1tV, A(p2) + 0
=X + (do + d1) t V, A(p2) + do c1 1* V3 A(pz) - Vo V(x0) + O

(t°
(t°
and
(2.55)
P2 =p1—c1tV,V(x1)
=po—cot VyV(x0) — 1tV V(x1)
=po—cotVyV(xg)— 1tV V(xo+dotV,A(p1)
=po—cotV,V(x0) —c1tV,V(xo+dotV, {A(p2)) + O(t)}
=po ot Ve V(xg) 1tV V(xe +dot Vy,A(p2)) + O(?)
=po—cot Ve V(xo) — 1tV {V(x0) +dot Vi, V(x0) - V,A(p2)} + O(t?)
) )

=po— (co+¢1)tV, V(xg) — c1dot* V2V (x0) V, A(p2 (t?

)
)
+0
+0
A comparison of (2.55) with the co-ordinate transformation equations in (2.41), with (xg, po) ~

(x/,p’) and knowing that (x2,p2) in (2.55) is actually same as the (x,p) in (2.41), reveal the form of
G(x',p,t) as

G(X,p,t) = —t(co+c1)V(X) — t(do +d1)A(P) — c1dot* V, A(p)- Vu V(X)) +0O(t3)  (2.56)
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Hence from the expression for H', (2.41) we have

H' = A(p) + V(x) = (co + ¢1)V(X)

= A(p) + V(x1 + ditV,A(p)) — (co + c1)V(X') — (do + d1)A(p

= A(p) + V(x1) + ditV,A(p)- V.V (x1) — (co + 1)V (%) — (do + d1) A(p

= A(p) + V(x1) + itV A(p): Vo V(x0) — (co + 1)V (X') — (do + d1)A(p

= A(p) + V(x1) + ditVpA(p): Vo V(x') = (co + e1)V (X') — (do + d1) A(p

= A(p) +V(xo +dot V, A(p1)) + ditV, A(

—(co+e)V(x') -
= A(p )+V(X0)+d0tv A(p1

—(co +en)V(x') -
= A(p) + V(x
—(co +en)V(x') -
=A(p) + V(x

—(Co + C1)V(X ) —

")+ dot V,, A(py

— (do + d1)A(p) — 2¢1dptV,A(p)- V. V(X') + O(?
—2¢1dptV yA(p)- ViV (x) 4+ O(#?
—2¢1dptV yA(p)- VoV (X) + O(t*
—2¢1dotV ,A(p)- VoV (x) + Ot

—2¢1dptV yA(p)- V.V (X) + O(t?
): ( (2.57)
(do 4 d1)A(P) — 2¢c1dot VpA(p)- VoV (x) + O(
)- V.V (x0) + ditV,A(p)- V.V (
(do + d1)A(p) — 2c1dot V, A(p)- Vi V(X') + O(
) VuV(X') + ditV,A(p) Vo V(X
(do + d1)A(P) — 2c1dotV A( ) VoV (x) + 0
) +dotV, Alp)- V (
(do + d1)A(p) — 2 c1dot V, A(p ) V() 4+ 02
1 (
(

= ( —CO—Cl)V(X)+(1—dO_d1)A p)

As H = O(t?) the coefficients of all terms with orders less than 2 in t must be zero (2.57). Equating

these coeflicients to zero we get

17(;0*61:0
1—dy—dy =0 (2.58)
do+dy —2c1dyg =0

The solutions to the set of equations (2.58) are ¢p =0, ¢1 = 1, dp = %, and d; = % Substituing
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the values of these coefficients in (2.54) we have

P2 = P1 — t(VfIJ V(X))xle
1
Xz =x1+ 5t (Vo A(P)) p—p,
and (2.59)
P1 = Po

1
x1 = X0 + 5 t(Vp AP)) o,

We can express (2.59) in the numerical integrator form with ¢ = At as

P1=Po = P1i = Poi

1 1 0A
X1 = XO + § At (VI)H)xl,p:[ = L1 = :I;Oi + § At% P=P1
(2.60)
R A ov
P2 = P1 — t(VmH)Xl)Pl = P2 =Pri — taxl X=X1
1 1 0A
Xy = X1 + 2 At(VpH)ypy = 2 =215 2 Atﬁ_pi p=p2

The above second symeplectic numerical integrator is known as the Leap-frog scheme. The sym-

plectic map can also be expressed in matrix form as shown below

ny =mn5" (no) (2.61)

In (2.61) the phase space vectors m, and my represent (X109, 20, -, Tnos P10, D205 -, Pno) and
(212, 29, -y Tp2, P12, P22; --» Pn2) from the component-wise representations in (2.60). The superscript
LF represents Leap-Frog scheme.

By following a similar procedure higher order symplectic numerical integrators can also be derived.
Of course it is evident form the above examples that as the order of the symplectic integrator becomes
higher, the equations involved in the derivation become more complex and numerous.

There is an alternate procedure for deriving symlectic numerical integrators without the use of
generating functions, for systems with separable Hamiltonaians as (2.31). This procedure is known as
exponential splitting [44, 47]. As we will show later exponential splitting can also be applied to derive
numerical integrators for systems with non-separable Hamiltonians like (2.28). In the latter case the
exponential splitting yields integrators that are non-symplectic but can have desired properties that
makes them accurate and efficient numerical integrators. First we will derive symplectic integrators

for a separable Hamiltonian using exponential splitting.
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In matrix notation, where n = (21, 2, .., Tn, p1, P2, .-, Pn) the Hamilton’s equations of motion (2.30)

can be expressed in a compact form using the Poisson Bracket notation as follows
n
. i on; OH  0n; OH )
n=1n, Hn); = 1= (————— 2.62
) ; Oxj Op;  Op; Ox; (262)

Infact, using the Hamilton’s equations of motion (2.30) the time evolution of any function of n

that is not an explicit function time may be expressed as

W (n) = (W (n), Hn)} = Z( o - T oY) 2:63)

Expressing (2.62) in operator form we have

- ) oV(x) o
or f = Z( Ip;j 3—%_ O @) ! (2.64)

Jj=1

where operators A = Z (p) i and B = — Z (9V(>.<) i

= ap] O’ = dxj Opj
Expressing (2.64) in its solution form we have
n(t) = " n(0) (2.65)
(2.63) can also be expressed in its solution form as
W (n () = W (0 (0) (2.66)

From (2.65) and (2.66) it is clear that e/*®) is the evolution operator of the system. e** and
e!® are components of the evolution operator. Now, as the Hamiltonian of the system is separable
and x and p are classical independent, it is possible to evaluate the operations of components of the
evolution operator in closed form as follows.

Expressing 1(0) = (39 ) we can derive

) et (19 = (%0 T AR )

and (2.67)

o () )
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Similarly expressing the function W (n (0)) as W(xg, po) we can derive

e W (n(0)) = e W (x0,p0) = W (X0 + ¢ (V) A(P))_y, + Po)
and (2.68)
e W(n(0)) = e W(x0,po) = W (%0 , Po—t(V;V(x))

x=xo)
Let us demonstrate a proof of (2.68) for a 2 dimensional system. We will prove only the first

equation of (2.68). let us start from e {W (x1, z, p1,p2)}

etA {‘/V(mhl‘valvp?)}

1
= [1 + 1A + 57&%42 - O(t?’)] w

— l1+t<a’4(p) 0, 24p) 9 )+%t2<aA(p) 9 | 94p) 9 >2+O(t3)] W

Op1 (9_331 Op2 5)_12 op1 3_231 Op2 3_332

Wi <aA(p) oW  9A(p) 8W)

(2.69)

Op1 Ory Opy 0wy
1t2< <a,4(p)>2 W (aA<p>>2 W, 0A(p) DA(R) W ) L o)

2 op1 Ox12 Opo Ox9? Opy  Opy 0x10x9

Now

0A
w <371 + t%,l’%phpz)
P1

. OAP) W, (DA(R)\? W (2.70)
= W —_—
+t op, Oas t opr 92,7 + 0O(t?)

= W' say

Hence

0A 0A
w <Il?] + t&wfbﬂ + tﬂ,pl,]h)
op1 Op2

/ 2 8277t

W t@A(p) ow L2 0A(p)\* O*W
Opa  Oxa Op2 Oxo?
substituting W' from (2.70) we will arrive at (2.71)

B 0A(p) OW  0A(p) OW
-t ( Opr Oxy  Opy Oxg

1t2<<6A(p)>282W (6A(p)>262W 9A(p) DA(p) a;

2 o(t?
2 8p1 (().”1712 8]’)2 8.7722 + (()pl (()pg 3T18T2> - ( )

1+ 0(t%)

Comparing (2.69) and (2.71) we see that coefficients of ¢ and #? are identical in the two expressions.

In fact we evaluate further it can be shown that coefficients of all higher order terms in t are also
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identical in the two expressions. Thus for the 2 dimensional system we arrive at the closed form

To +1

JA(p) 9A(p)
A W (1. 22, p1, ] W( 4t LT D1y ]
e {W (w1, w2, p1,p2)} T ap1 Ops P1,P2

2.72
or etﬂ {W(371,L172.,p1,p2) ( )

}(-110@2071710-,1720) -
0A 0A
w (l‘lo +1 (%) , oo+t <%> , P10, p20)
P1/ p=po P2/ p=po

Extending the proof (2.72) to an n dimensional system, we can arrive at the closed form for
the operation of the evolution operator component e** in (2.68). Similarly the closed form for the
operation of e!® can also be proven. From (2.68) it is simple to arrive at (2.67). From (2.68) and
(2.67) we see that the components of the evolution operator operate as simple translation operators
for the position vector and the momentum vector of the system. This is only possible because the
Hamiltonian of the system is separable. Had the Hamiltonian been inseparable then V,, A(p)p:po and
V. V(x) and V, H(p,x)

x=xo 1 (2.67) would have to replaced by V,, H (p,x)xoypo xo.po TeSPectively

in which case the resultant transformations of 1 would not be simple translations. More importantly
it would also not be possible to derive the closed form of (2.68), which classifies these operators are

translation operators.

The fact that the components of the evolution operator operate as translation operators helps in
deriving numerical integrators of any order for the system. It also turns out that a numerical integrators
of any order derived from exponential splitting of the evolution operator the system with separable
Hamiltonian is a symplectic integrators. We will now demonstrate how the numerical integrators are

derived by the exponential splitting technique.

All that is required is to approximate the evolution operator by multiple operations of the compo-

nent operators as followa

m
QlA+B) _ H el gter(B) 4 o(pm+2) (2.73)
k=0

Equation (2.73) is the exponential splitting scheme for an (m + 1)

order symplectic integrator.
The equation means that the product of the evolution component operators on the RHS is equal to
the evolution operator on the LHS correct upto order of t™*+1. The set of dj, and ¢;, are the coefficients
to determined by expanding the LHS and RHS in exponential series and matching the coefficients on

both sides of powers of ¢ upto ™. Once we evaluate the values of all dj, and ¢, we can express the
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(m + 1)* order numerical integrator as

ov
Pki1 =Pk — kAL (VV (X)) g = Plht1)i = Phi — Ck At
v IX=X)
oA (2.74)
Xict1 = X+ dp AL(VRAD)) pop, = T(er)i = Thi + di Ao~
Pi lp=py

where £k =0,1,2,..,m

It can be shown that if we evaluate the co-efficients dj and cj by the exponential series expansion of
(2.73) for a 1%t ((m+1) = 1) and 2" ((m+1) = 2) order numerical integrator then (2.74) matches with
(2.47) and (2.60) respectively. Hence with (2.74) we have arrived at general algorithm for generating
symplecitc numerical integrator of any order for an system with a separable Hamiltonaian, without
deriving Generating functions of the form shown in (2.39) or carrying out co-ordinate and Hamiltonian
transformations. The exponential splitting of the evolution operator of the system yields the required
symplectic numerical integrators.

It must be noted however that evaluating the set of ¢, and dj, from (2.73) directly as discussed
above, still invloves solving a set of nonlinear algebraic equations in ¢ and di which can get just
as complex and numerous for higher values of m as in the earlier method. However the exponential
splitting scheme has the added advantage that using the Baker-Campbell-Hausdorff (BCH) formula
it is possible to generate higher even order symplectic integrators more easily from the second order
symplectic integrator. The time reverislibility of even order symplecitc integrators is a key factor that
is taken advantage of, in this even order symplectic integrator generating scheme. We will not discuss
this method here. Intersted readers may refer [47]

So far all our derivations of symplectic integrators have been restricted to Hamiltonians that
are separable. Now consider a charge particle of charge ¢, mass m, in a magnetic field B(x). The

Hamiltonian of the system is

1 2
=—|[p—qA(x
5 [P~ aA(X)] (2.75)
where A(x) is the magnetic vector potential
The motion of the particle is governed by the Lorentz force law given below
d
m= = qv x B(x) (2.76)
dt
We may also express the Hamiltons equation of motion of the system from (2.75) as
k= = [p - gA(x)
~m P—q
and (2.77)

p=%i“wwaVMMﬂ

Page 40



2.1 The 2D Particle-in-cell code PEC2PIC

Although it is possible to obtain a symplectic integrator for a non-separable Hamiltonian such
as (2.75), the procedure is mathematically complex. Alternatively the desired result of a stable and
accurate itegrator may be obtained from the exponential splitting of the evolution operator. The
result is an Exact energy Conserving (EEC) integrator that shows greater stability and are much less
susceptible to phase errors than symplectic integrators for such systems.

From (2.76) we get the equations of motion of the system as -

B .
v="1 (X)B(X)xv
m
and
, (2.78)
Xx=v
N B
where B(x) = %
Hence the time evolution of a function W (x,v) that is not an explicit function of time, will be
given by
aw
substituting the time derivatives from (2.78) (2.79)
B N
= |v-V,— 4 n(zX) B(x) x v-V,| W

The operator solution of (2.79) can be expressed as

W (t) = TV W (0)
qB(x) ~ (2.80)

where operators T =v-V, and V = B B(x) xv-V,

Similarly the evolution of the co-ordinates from (2.78) may be expressed as

()= ()

Here e” and ¢” are the component operators of the evolution operator. Note that T and V do not
have an unmixed form as the operators A and B derived from a separable Hamiltonian in (2.64). Let
us now check if the operation of the component operators on the position and velocity co-ordinates
can be evaluated in a closed form.

The first component operator, e’ is similar in form to e”* and hence can be shown to be a translation

7))

The second component operator e”, which has a mixed form, operates on the velocity co-ordinates.

operator as follows

Let us check how it operates on a velocity co-ordinate, say vy

N A
eV = [1 + 1V + tzy - t3? - t4Z + ] vy (2.83)
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Now

B . A 0 - - d A - 0
Vo = e (Bavg — B3vg)o— + (B3v1 — Bivs)— + (Biva — Bovi)m—| v
m oy Ovg :

V2o =V {Vu}
substituting V vy

qB 2 - 2] - . 0 . . 0 . .
= g (Bovg — B3U2)a’—ul + (Bsvy — BlUB)a’—UQ + (Bivg — BQ'Ul)a/_U3 (Bavs — B3va)

= (%)2 [(Bgvl — Blvg)(—Bg) + (31112 - BQUl)(BQ)}

= <ﬁ)z [BQ(E X v)3 — B3(B x V)Q}

@) peen

Next
Vv =V{Viv}

substituting V2 v;

B\*[ - . d X . d . . d
=— (%) [(32113 - Bs’vz)a—v1 + (Bsvy — 3103)6—7}2 + (Bivg — 32’01)8—1}3]

[(3301 - 31”3)(—33) + (BWQ - 3201)(32)}

(2.84)

B\*r . X - . L . L
= — (%) [(BQ’U?, — Bg’l)g)(—B% - 322) + (Bsvy — Bivg)B1By + (Bivg — BQ“l)BlBB}

B\’ A2 h  A2A A 328, + B2B + B3]
= — (%) [03(—B§Bg — BfBQ — BS) + UZ(BfBB + B2zB3 + B;)

B\? . . .
= — (q—> |:'UQB?’ — v3 By
m i

. (@)SHE xv)1)

m

= (%) [oaBa( 55— B - B + Bl + B2 + B2)

Next
Viv =V {Viu}
substituting V3 v;
o N 1o} . . 0 . N 0 . A
= | — ) [(Bavs — B3va)=— + (B3v1 — Bivs) =— + (Biva — Bavi)=—| (=) (Bavs — B3vg)
V1 8”02 81}3
substituting form definition of V? v;

_ <ﬁ>4(_ (BB xv)] ) andsoon.

m
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Let 6(x,t) = — (tgB)/m. Then from (2.83) and (2.84) we have

W - 02 4 - 02 0% 14 -
e v = v1+0(BXV)l+§[BX(BXV)]1_§(BXV)1_I[BX(BXV)}1+“']

expressing as sin(f) and cos(f) series (2.85)

_ [U1 +sinf (B x v); + (1 — cos6) {fi x (B x v)}l]

From (2.85) we can deduce that

Vv = [v +sinf (B x v) + (1 — cos ) {]:3) x (B x V)H (2.86)

Now the operation of the second component operator on the position and velocity coordinates may

o <ir(> - (VB<>:V,1£>>

where

be expressed in matrix form as

(2.87)

vB(x,v,t> =

+(1 - cos(9(x,t))> {B(x) x (B(x) x v) }]

v + sin(6(x, ) (B(x) x v)

Hence we obtain the operation of both components of the evolution operator in a closed form.
However we have not yet physically defined the operation of e!V. Let us proceed to do so. From (2.80)

V may also be expressed as

_ By _ 1Py
V= mB(v><VU)— 1mBJ (2.88)

where J = —iv x V,, is the "angular momentum” operator in velocity space

Hence

exp(tV) = exp(if B-J) (2.89)

tV as being the rotation operator that rotates the velocity v about

From (2.89) we can recognize e
the axis B by an angle 6. The resultant velocity is then vg(x,v,t).

Now that we have obtained a closed form of the operations of both components of the evolution
operator, we can use the exponential splitting of the evolution operator to obtain algorithms of different

orders of numerical integrators for the system. The formula to be used is again

m
SlTHY) _ H el (T) gter(V) 4 O(t""JrQ) (2.90)
k=0
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Of course the solutions for dj and ¢ in (2.89) for any given order of numerical integrator will
be the same as in (2.73). With the solutions dj and ¢, numerical integrators of any order may be
constructed for the particle in magnetic field. For example a first order solution with dy = ¢y = 1 can

be expressed as

vy = VB(X(),VO,At) = V1 = ’UBZ'(XO,VO,At)

(2.91)
X1 =Xo+ Atvy = x1; = 20; + At vy
where 1 = 1,2,3
Let us now classify this type of numerical integrator. It can be easily proved that
otV o2 = 2
and e'7 v? = 2
- Y (2.92)
hence H ot (T) gler(V) 2 — 4,2

k=0

Hence numerical integrators obtained from the above procedure of energy splitting are all Exact
Energy Conserving (EEC) integrators for the charged particle in a magnetic field. When the magnetic
field B is a constant, one can go a step further and obtain the operation of the full evolution operator
¢!T+Y) on the position and velocity algorithm in a closed form. Then the integrator becomes an Exact
integrator for the system. We will not derive the exact integrator here.

This exponential splitting scheme may also be extended for a charged particle in an electric field

E(x) plus a magnetic field B(x). The force equation for this system is

dv

m— =4 [v x B(x) + E(x)] (2.93)

From (2.93) we can obtain the evolution operator of this system as e"7+VBF) where

qB(x)
m

T=v-V,and Vpp = [— B(x) x v+ %E(x)] -V, (2.94)

Now the first component of the evolution operator e’ is the translation operator. Let us check

how the second component e!VBF operates. We have

, V2 V3 %
eVEF ) = [1+t\73p+t2 SF + 13 f’lF + ¢t ZF +] vy (2.95)
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Let a1 = E1/B. Then,

4B [ - o 4 - o . - 0
VBF v = —W (Bzvg — Bgvg — al)TM + (B3U1 — Blvg — CLg)(‘)—U2 + (Bl’UQ — BQUl — ag)T% (%1

B, - . B -
= —q— (32’173 — B3’l)2 — al) = —q— (B X V)l =+ iEl
m m m
Next

V2BF v = VBF {VBF ’l,'l}

substituting Vg v1
= q—2(Bv Bsv a)i—i—(év B a)i—l—(év Byv a)i (Bavs — Bauy —ay)
= 2U3 32— a1)g 3U1 13— az) 5 102 21— a3) 5 2U3 3V2 — a1

B\* [ . . d . . d
= (q_) [(321)3 — B3y — 611)% + (Bsv1 — Bivs — a2)—
1

R X 971 . R
- J0s + (Biva — Bavy — a%)x)g} (Bavs — Bsug)

— (@)2 [(B3U1 _ BI’UB)(—BS) + (Blvg — BgUl)(Bz)] + (%)2 (ang — a3]§2)

m () oo, () 0 28)
Next

V?}’BF v = VBF {V2BF ’Ul}

substituting V% v1

B\’ - - o . - d
= — <(]_> |:(BQU3 — B3’l}2 — al)a_’l}l + (B3’U1 — Bll]3 — ag)—

+ (Bivs — Bovy —a
m vy (12 2U1 3)

{ [(331)1 — Bivs)(—B3) + (Bivz — BZ'Ul)(BZ)} + (a2B3 — a3 By) }

B\’ 4 . d . d d
=- (%) {(32?13 — Bava — al)ﬁ_vl + (Bsvy — Byvg — a2)g + (Brvz — Bovy — as 8_3}
|(Byvr = Buvg)(=Bo) + (Byva — Byvy)(By)]
@BN*[ o aan s2t L A2 L F
_ (H) [vg(—Bng — B2By — B3) + vy (B2Bs + B2Bs + Bg)}
aBN> e
_ <H> (a1 B2 + a1 B2 — as By By — a3 B, B3)

B\’ o~ a0 A
T <%> [7,'332(_B§ - B} - BQ) +”2B3(B2 + BQ + B3

m

aB\' ; a8\’
= — (H) [UQBg - 03B2:| — <—> ( BQ(B X 3)3 + B3 B x a 2

:_<%)3(_(BX;)1)+(%>2(1§X(BX%E>)1
, and so on ..
(2.96)

B 3
— (q—> ( BZ((]ZBl — a1B2 + Bg(+(]133 — a3B1 >
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Hence
A - q 6% [ - - t (s 4 63
eVEr y = o + (B x v)| +tLE +— (B x (B xv) +—9(B><—E) T Bxv)
m 2! ;2 m /1 3
+—62( B x (B X iE) +
3! m 1
62 [ - 63 ]
= v1+6(B><v)1+§<Bx( ><v)> —§(B><v)1+
! 1 !
+t iJE’lJrle(B 1E) L LB« (BxLE)) +
2! m /1 3! m 1
9 ) ) 5 (2.97)
= ’U1+9(BXV)1<6—]+ )+<BX(BXV)> (54‘ )
1
, :
+ tiE1+f(B Lp) <—+ )+t<Bx (BxiE)) <le2+ )
m m /1 \ 2! m 1\ 3!
Using sin @ and cos 6 series
= |v1 +0(B x v); (sinf) + (B x (B x v)) (1 —cos@)]
1
t /- A - sin
+ tiElJr—(Bx iE) (1—cos9)+t<B>< (Bx iE)) (1— i ﬂ
m 0 m /1 m 1 0
From (2.97) it can be deduced that
VBF v — |v 4+ 0(B x v) (sinf) + (B x (B x v)) (1-— mse)]
_ (2.98)
+ tiE+f(B x iE) (1 - cosh) +t(B x (Bx iE) p_ sind
m 0 m m 0

Now the operation of the second component operator on the position and velocity coordinates may
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2.1 The 2D Particle-in-cell code PEC2PIC

be expressed in matrix form as

ot Vsr <j> - (VB (X,v,t)XJr vr (X’t)>

where

vp (x,v,t) = |v +sin(0(x,1)) (E(x) X V)

+<1 — cos(0(x, t))) {E(x) X (E(x) % V)} (2.99)
and vp (X, t) = t%E(X) + 0(;,15) (E(X) X %E(x)) (1 —cos((x,1))) +

(860 (B6x) « L) ) (1- 24 0)

Hence we obtain the operation of both components of the evolution operator, e”, and e'VBF in a
closed form. However we have not yet physically established the operation of ¢! V87, Let us proceed
to do so. Now we know the operation of ! VB¥ can be divided into two operations. The first operation
is a rotation operation caused by the Lorentz force resulting in the velocity vector vp(x,v,t). The
second operation yields the velocity vector vp(x,t). This velocity can be shown to be the result of
the E x B drift in the plane perpendicular the magnetic field, and the translational velocity gained

by the particle due to the field E in the direction parallel to the magnetic field.

Now that we have established the operation of both components of the evolution operator in closed

form we can use this exponential splitting to obtain numerical integrators of any order using,

HT+HVEE) _ ﬁ Gt (T) lex(Var) | (ym+2) (2.100)
k=0

The resultant numerical integrators are neither symplectic , nor fully energy conserving, but they
do yield qualitatively correct trajectories of charged particles in electric + magnetic and bounded

periodic energy errors.
We should mention here that besides (2.100) given by Chin’s procedure [44] there have also been
other forms of numerical integrators developed for plasma simulation. For example, in 2008 a varia-
tional symplectic integrator for guiding center dynamics of charged particles, starting from a guiding

center Lagrangian, has also been demonstrated [48].

In the PIC code we have used the first order apporximation ef7+Vsr) ~ ¢tdo(7) gteo(Vr) {0 get
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do = cgp = 1 and the following first order numerical integrator

v1 = vB(Xo, Vo, At) + Vi (X0, Vo, At) = v1; = vpi(Xo, Vo, At) + vri(Xo, Vo, At)

(2.101)
X1 =Xg + Atvy = x1; = xo; + Atvy

where 7 =1,2,3

This popular first order scheme is very stable gives very good conservation of conserved quatities
over long periods of simulation, as we will later demonstrate in our benchmarks of the PIC code.

Now let x and y refer to the co-ordinate axes fo our simulation sytem (Fig. 2.1). In this cross-
section of the cylindrical trap we have the electric field E(x,y) = E;(x,y)X + Ey(x,y)y and the
constant magneitc field B z. Hence expressing (2.101) for each particle in the simulation system we

have

) At sin
Upl = Ugo — Uyo SINO — vy (1 — cosh) + At%Ew 7 (1 —cos®) %Ey — At (1 — T) %Ez

At sin 0
Uy1 = Vyo + VUgo Sin O — vy (1 — cos @) + At%Ey + - (1 —cos®) %Ea: — At (1 — blg ) %Ey

and
T1 = To + V1 AL
Y1 = Yo + v At
(2.102)
In the code we have OPEN-MP parallelized (2.102) over particles.

2.1.6 Diagnostics of the 2D PIC code

To investigate the dynamics of the plasma in the cylindrical trap the 2D PIC code is facilitated with a
set of numerical diagnostics that can be called upon as per requirement of the numerical experiment.

These diagnostics are described in the following bullets.

e Nonneutral plasmas are characterized by large self electric fields. Any dynamics of the nonneutral
cloud will have a signature in a modification of the toplologies of the electric field and the
electrostatic potential in the trap’s vacuum. Hence in an electrosatic simulation of a non-neutral
plasma a very useful diagnostic tool is to record the electrostatic potential at strategic locations
i.e selected mesh nodes, in the trap. This numerical diagnostic is qualitatively equivalent to the
capacitive probes used in non-neutral plasma experiments [49]. PEC2PIC has 4 such azimuthally
equispaced potential probes located at the same radial location just inside the grounded circular
boundary of the trap (Fig. 2.1). These probes pick up dynamics of the plasma such as azimuthal
modes, radial breathing modes, radial transport of the plasma. By analysing the signals of these

potential probes the frequencies and growth rates of modes of the plasma can be determined.
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2.1 The 2D Particle-in-cell code PEC2PIC

The potential probes have been extensively used to analyze plasma dynamics in all experiments

performed with the code.

In the simulations of radial breathing modes in pure electron clouds, fluctuations of charge
density at mesh nodes located within the plasma occupied region of the trap, can give information
about the frequency and growth rate of such radial breathing modes. Such density probes

(Fig. 2.1) have been utilized in the numerical experiments on radial breathing modes.

In some numerical experiments performed with PEC2PIC code, trajectories of quasi-randomly
selected tracer particles serve as useful diagnostics of the collecitve motion of the plasma. For
example if there is a rigid rotation of a uniform density electron cloud, the linear oscillations of
the Cartesian, x(t) and y(t) co-ordinates of a pseudo particle can give us information about the
angular frequency of the collective rotation of the plasma. Again when there is collective radial
breathing motion of the plasma, the radial co-ordinate 7(¢) of a pseudo particle will oscillate

with the frequency of the radial breathing mode.

A non-neutral plasma under the influence of unstable fundamental Diocotron mode can exhibit
gross radial transport of the cloud. And when an unstable fundamental Diocotron mode is
excited on a multi-component nonneutral plasma then the radial transport of different plasma
component may happen in different time-scales. It is useful in some experiments to trace such
radial transport by recording the radial co-ordinate of the centre-of-mass of each component of

the plasma. The radial co-ordinate of the centre of the mass of the i plasma component, roaz;

o) = - S 220 + 2 (0) (2.103)

J=u

is given by

where j is the particle index in the particle array while ¢; and 4, are the starting index and
ending index respectively of the it species in the array of pseudo particles. N; =4, —i; + 1 is
the total of pseudo particles representing the i" component of the plasma. x;(t) and y;(t) are

are the z and y co-ordinates of the j' pseudo particle in time t.

The potential and kinetic energy of each plasma component and the total energy of the plasma are
recorded thorough the entire length of simulations. These records not only serve as important
benchmarking tools for the code, demonstrating conservation properties wherever applicable,
but also help in understanding energetics associated with instabilities, such as potential energy
pumping from one plasma component to another during a 2-stream instability between the

components. The formula for calculating potential energy Epi and kinetic energy Exi of the it
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plasma component and the total energy E; of the plasma are given below

Epi() =0 > (), 55(0))

J=u
Eri(t) = %mi i (va;(t) +vi,(1) (2.104)
J=u

Er(t) = > (Epi(t) + Br(t))

i
In the above set of formulas, ¢; and m; is the charge and mass respectively of pseudo particles
of the " component of the plasma. vg; and vy; are Cartesian velocity components of the gth

pseudo particle at time ¢.

e The magnetic angular momentum, and the kinetic angular momentum of each component of
the plasma as well as the total angular momentum of the plasma are recorded through the
simulations. Like the energy, the angular momentum records also serve as benchmarking tools,
showing conservation where applicable. They also help in understanding the azimuthal dynam-
ics in multicomponent plasma simulations. The formulas for calculating the magnetic angular
momentum of the " plasma component L!:*’, and the kinetic angular momentum for the

plasma component, Lﬁg, and the total angular momentum of the plasma L. are given below

LZ09(6) = 5 Bas 3 (1) + 42(0)
J=u

iy

LE() = mi Y vy (03/23(0) + 43() (2.105)

j=u

Li(t) =) (L) + L5(1)

i
where vg;(t) is the azimuthal component of the linear velocity, v;(t) of the 4" pseudo-particle
in time ¢. As PEC2PIC runs on a Cartesian grid, incorporating a running calculation of vg;(t)
involves a co-ordinate transformation of the velocity of each particle from a Cartesian to Cylindri-
cal system which can significantly slow down the diagnostic part of the code. Hence calculation
of Lg and LT are carried out only for those simulations where these quantities might be essential

in describing the plasma dynamics.

e The net population of each of plasma componenet in the trap is also recorded as a functions of

time

2.1.7 Algorithm of PEC2PIC

The processes of executed within and outside the time loop of PEC2PIC may be summarized by the

followign steps
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e Load initial conditions of the plasma

e time loop starts

— Charge to mesh distribution by first order CIC scheme; OPEN-MP parallelized over parti-

cles

— Solving Poisson Equation on mesh nodes by red-black parallelized SOR; OPEN-MP paral-

lelized over mesh nodes

— Interpolating Electric field components from mesh nodes to particle positions by reverse first
order CIC scheme + particle pushing by Chin’s exponential splitting scheme; OPEN-MP

parallelized over particles

— Calculating and record diagnostics at regular intervals of say 10 simulation time steps;

OPEN-MP parallelized over particles and then assimilated with OPEN-MP Reduction

— forwarding the time by the simulation time step

e time loop ends

2.1.8 Benchmarking experiments performed with PEC2PIC

The 2D PIC code has been benchmarked by simulating, on the system of Fig. 2.1, initial plasma pa-
rameters that have known linear analytical results. The benchmarks have been achieved by extracting
linear phase results form these simulations, and matching these results with the available linear ana-
lytical results. The conservation properties of the conserved system parameters of these simulations
have also been verfied from simulation.

The benchmarking experiments described below are divided into three sets - i) A set of experi-
ments with pure electron plasmas of very low Brillouin Ratios, f; < 0.02 that verify the applicability
of the code in the Guiding centre drift approximated limit of pure electron plasmas, ii) A set of ex-
periments with electron plasmas of different Brillouin ratios distributed over the entire confineable
range of Brillouin ratio values i.e. 1 < f, < 0, which validate the extent of applicability of the code
to the limit where inertia of the plasma plays an influential role in its dynamics iii) A set of unstable
rotational equilibrium of a two-component nonneutral plasma susceptible to the rotational two-stream
(ion-resonance) instability, which demonstrate that the code is capable of handling multi-component
plasmas.

The three sets of numerical experiments were carried out for typical parameters found in experi-
ments of cylindrical traps. [18], in particular, a wall radius, R,, = 0.125m, and axial magnetic field,
B. = 0.0157. The simulation time step, 6 = 10~ !!'sec is chosen much smaller than the cyclotron time
period of electrons, T,. = 2.38 x 10~?sec, such that the code can well resolve the cyclotron motion of
electrons and ions. PIC-parameters used in these simulations are 87834 pseudo particles on a 70 x 70

grid. For the first set of benchmarking experiments with pure electron plasmas of very low Brillouin

Page 51



2. DEVELOPING THE SUITE OF PIC CODES

Table 2.1: The frequency, wg, and growth rate «; of the Diocotron modes obtained from simulation are

compared with their corresponding analytical values, w, and «, respectively.

mode fo ry/rf ws(rad/sec)  wa(rad/sec)t  as(rad/sec) ag(rad/sec)?
1 0.011 0 1.77688 x 10 1.76997 x 106
2 0.012  0.35 7.66549 x 105 7.69106 x 105 0.85 x 105  0.7965 x 106

3(and 2) 0.017 0.6  10.7694 x 10° 10.6186 x 105  2.25 x 106 2.38 x 106

ratio, 67500 electron pseudo particles were used to represent the electron cloud in the simulations. For
the second set of numerical experiments 87834 electron pseudo particles were used to represent the
electron plasma, and for the third set of simulations the ion component and the electron component
of the non-neutral plasma were each represented by 87834 pseudo particles.

Benchmark at the Guiding-Centre-Drift approximated limit of electron plasma

To benchmark the code in the low density limit of electron plasma we have reproduced several
analytical results obtained by R. C. Davidson and others for Diocotron modes in a cylindrically
confined, axially symmetric electron plasma column [1, 15]. Tt must be noted here that the analytical
results were obtained in the guiding centre drift approximation valid in the low density limit, while
our code employs the full mass-included dynamics. The experiments performed were as follows. i) We
generate a stable 15 Diocotron mode in a filled circular plasma cross section of uniform f; = 0.011
and radius, r, = 0.5 7, by loading the centre of the patch slightly shifted from the central axis by
0.05 R,,. The frequency of the mode was then calculated by Fourier analysing the potential probes’
readings and the stability of the mode was checked by letting the simulation run for 37790 T,.. ii) We
excite a pure, unstable 2"¢ Diocotron mode on an annular profile of uniform f, = 0.012, inner radius,
r, = 0.175 Ry, and outer radius rgr = 0.5 Ry. In course of the simulation over 37790 T, initially
an exponential growth of the pure 2"¢ mode was found, and then gradually higher non-linearities
came into the evolution. The potential probes’ readings were truncated to capture the pure 2"¢ mode
growth. Fourier analysis and exponential envelope fitting on these truncated readings gave the mode
frequency and growth rate respectively. iii) To excite an unstable 3" mode an annular profile of
fo = 0.017, r,” = 0.3 Ry, rgr = 0.5 R, is allowed to evolve for 377907T,. . The growth rate and
frequency of the mode is estimated in the same way as (ii). It is not possible to excite a pure 3rd
mode on an annular profile [15]. However we have chosen the dimensions of the loaded profile such
that there is only a much weaker 2"¢ mode mixed with the 3"¢ mode in the initial stages. Hence the
growth rate and frequency extracted form potential probes’ data are essentially due the 3¢ mode.

The results obtained from these benchmarking simulations demonstrate very close agreement with
analytical results. These are presented in Table 2.1 and Fig. 2.4-2.6. Table 2.1 compares the ex-
perimental frequencies and growth rates with the corresponding analytical values. Fig. 2.4 depicts
the evolution of a self-excited 3"¢ Diocotron mode in an annular profile. Fig. 2.5 show the potential

probe reading analysis to determine the frequency and growth rate for the mode. Fig. 2.6 shows the
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Figure 2.4: Snapshots of pseudo particles in the evolution of the 3"® Diocotron mode. In the snaps

T = t/T¢e, represents the number of cyclotron time periods over which the plasma has evolved.

conservation of total energy, and magnetic angular momentum of the system (The magnetic angular
momentum ~total angular momentum, for the low Brillouin ratio of f; = 0.017) during the process.

For these simulations the uniform density profiles should have ideally been loaded with their respec-
tive rigid rotor angular velocities of equilibrium. However loading the particles with zero velocities
(frozen load) gave exactly the same results because the very low value of f, makes the dynamics
essentially Guiding-centre-drift motion. Being almost devoid of inertia in this limit the plasma instan-
taneously adjusts to the exact guiding-centre drift velocity required for maintaining balance of radial
forces, as soon as the simulation starts irrespective of what rotation velocity it might be loaded with.

Benchmark with pure electron plasmas distributed over the entire confineable Brill-
louin ration spectrum

In these numerical experiments step density profiles of electron plasma in both slow mode and
fast mode of the cold rigid-rotor equilibrium were simulated. A set of step-densities spanning over the
entire range of fj (i.e. 0 < f < 1) and loaded with only their respective equilibrium angular velocities,
W, or wy, were simulated for 3779 T.. The rigid rotor frequencies obtained form simulation were then
compared with corresponding analytical values as shown in Fig. 2.7.

Step density profiles of radius, r, = 0.3 Ry loaded in the fast mode and slow mode of rigid
rotor equilibrium maintain their equilibrium rotation for the entire duration of the simulation (=

3779T,.). Fourier analysing the x(t) and y(¢) co-ordinates of three tracer particles located at radii

Page 53



2. DEVELOPING THE SUITE OF PIC CODES
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Figure 2.5: Analysis of the Potential probes’ reading for the simulation of the | = 3 Diocotron mode:
(a) Truncated readings of the four potential probes for the 3"¢ Diocotron mode simulation. (b) Fourier
spectrum obtained from the truncated readings of the potential probes for the 3"¢ Diocotron mode
simulation. (c) Logscaled plot of of the function (V, — Vgn‘"‘")2 against time, normalised by T,.. An
exponential envelope is fitted on the curve to estimate growth rate of the 3¢ Diocotron mode.
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Figure 2.6: Energy and Magnetic component of the angular momentum for the simulation of the [ =3
Diocotron mode:(a) £ is the total energy, and Ly, it’s initial value for the 374 Diocotron mode simulation.

The fractional deviation of £ from Ejy is plotted against time which is normalized by T¢.. (b) L7* is the

mag

magnetic angular momentum, and L, it’s initial value for the 37 Diocotron mode simulation. The

fractional deviation of L% from L7;" is plotted against time which is normalized by 1.

0.29 R, 0.25 R,,, and 0.18 R,,, we obtained the rotation angular frequency, wy,; of the profile. Ideally
for this particular experiment, the potential probes are supposed to record only a fixed dc-potential
but because of small inherent azimuthal asymmetry in numerical loading of the profile, the potential
probes also capture the rotation as a very small ac component which is advantage because the potential
probes’ signals can also be Fourier analysed to double check the rotation frequency in the simulations.
The frequencies obtained from both the above diagnostics agree with each other and with theoretical
values (Fig. 2.7).

For these rigid rotations E, L., L7'

are all conserved quantities as seen in Fig. 2.8. As the code
was written using cartesian co-ordinate system, incorporating a running calculation of the kinetic
part of L. increases the runtime of simulations by a large margin. For this reason we have avoided
calculating the the kinetic angular momentum here.

Benchamrking simulations of the ion resonance instability

Experiments 1 to 4 in Table 2.2 constitute the set of benchmarking experiments on ion resonance
(two-stream) instability. In this set the loading parameters fy, m;/me, and r,/R,, are fixed at the
values of 0.02, 1836, and 0.5 respectively while the fractional neutralization, f takes increasing values
in the range 0.05 to 0.4, from Expt. 1 to 7. All experiments in this set are simulated till 7 ~ 22674 .

A sample set of snapshot of the linear phase of an ion resonance instability is shown in Fig. 2.9 of
the ion resonance instability. The linear phase analysis of the ion resonance instability is performed
with the help of the potential probes (Fig. 2.10) which can pick up the frequencies of the excited
Diocotron modes in the system. A FFT performed on the potential probes’ signal in the linear phase
gives the individual frequencies, ws of the linearly growing Diocotron modes in the system (Column 9

of Table 2.2). A measure of an effective growth rate, a;ff (Column 11 of Table 1) due to all growing
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shown. L7'%9 is the magnetic angular momentum and L, is it’s initial value.
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Table 2.2: Results from different cases of equilibrium loading: The effective growth rate, a2/ for the combination of excited Diocotron modes, and
the frequencies w; of each mode, are obtained from analysis of the potential probes’ signal in the linear growth phase. These values are tabulated along
with the theoretical growth rates, a,, and frequencies, w, of the Diocotron modes. Here [, represents the theoretically predicted mode number of
cxcited modes. The cquilibrium loading parameters for cach experiment of column 1 arc tabulated in columns 2 to 6.

Expt. f F o (mi/me) 1p/Ru  wreswri lo wa(rad/sec)®  ws(rad/sec) — ag(rad/sec)® o$¥ (rad/sec)

1 0.05 0.019  1836.0 05  wo,w. 1 3505x10% 3491 x10°  0.746 x 106 0.700 x 10°
2 0.15 0.017  1836.0 05  wo,w, 1 2.827x10° 2.792 x 10° 0.947 x 108 0.96 x 106

3 0.3 0.014 1836.0 05 wo,w., 1 1.894x10% imperceptible 1.308 x 106
2 6.597 x 108 6.283 x 10° 2.540 x 108 2.100 x 10°

4 04 0.012  1836.0 05  we,w, 1 1.705x10° imperceptible 1.231 x 10°
2 5.680x10°  5.026 x 105  2.924 x 106
3 10.053 x 105 10.050 x 106 2.924 x 106 2.215 x 108

“Estimated {rom Fig. 8b and 9b of Ref. 3
"Estimated from Fig. 8a and 9a of Ref. 3
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Figure 2.9: Snapshots of the initial linear phase of an initial unstable equilibrium that excites a
dominant second Diocotron mode in the profile (3“1 experiment in Table 2.2). Ions in green are plotted
on top of the electrons in red. snapshots of the entire simulation, extending into the nonlinear phase will
be shown in a later chapter. Below each snap, the time elapsed is mentioned in normalised units of
electron cyclotron time, i.e. 7 =1/T,..

modes in the linear phase is obtained by fitting an exponential envelope on the linear growth phase
of one probe’s signal (Fig. 2.10). Wherever analytical values of excited mode frequencies and their
growth rates are available, these values (columns 7,8, and 10 of Table 2.2) have been compared with
the corresponding values obtained from simulation. It should be noted however that the analytical
values of the growth rates are for individual modes whereas the growth rate obtained from the probe
signal is an effective value for all growing modes in the system. It is interesting that for cases where
there are multiple modes excited the value of the effective growth rate comes out to be close to the
average value of individual analytical growth rates of the excited modes (as in Expt. 3 and 4 of
Table 2.2 ). For experiments 3 and 4 of Table 2.2 the frequencies of the slowest growing modes in
the system are not picked up by the probe in the short linear phase. The match of the linear phases
frequencies, and growth rates with corresponding lincar analytical values in Table 2.2 serve as the
third benchmark of the code.

Convergence tests by changinng simulation parameters Scaling studies were also performed
by repeating selected experiments from the above three sets with i) doubled pseudo particle represen-
tation on the same grid and ii) doubled pseudo-particle representation on a finer 130 x 130 grid. The
results of all scaling study simulations, matched well with the corresponding benchmarking experi-
ment, thus demonstrating that the PIC parameters chosen for our simulations give accurate results,

devoid of numerical artefacts.

2.2 The 2D3v PIC-with-MCC code PEC2PIC-3MCC

In non-neutral plasma experiments charged partciles in the trapped plasma can undergo collisions
with residual neutrals in the trap at its operating pressure [20], or with externally injected neutrals
within the trap vacuum [50]. Such charge-neutral collisions can, in turn, influence the dynamics
of the trapped plasma in different ways. For example a trapped electron plasma can ionize the
background neutrals in the trap, and thereby get destabilized through the process of ion resonance

instability [20, 50]. In order to investigate the role of charge-neutral collisions on the dynamics of
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Figure 2.10: Potential-probe signal analysis for Expt. 3: (a) V,, is electrostatic potential recorded by
innermost probe. Normalized time, 7 is in units of electron cyclotron time, i.e. 7 =t/T¢.. (b) is a zoomed
in plot of the signals of all the four probes in the initial linear growth stage. This linear growth stage is
analysed to measure the Diocotron frequency ws and the effective growth rate aeyy shown in Table I. (c)
is a FF'T plot of the readings of (b) used to determine ws. Here the x-axis is the frequency in MHz and
the y-axis is the power factor in arbitrary units. (d) is an exponential fit on the linear growth phase
readings of the inner probe used to measure css. Vpo is the initial probe reading. The y-axis is in log

scale while time is in linear scale.
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the plasma through simulation, the 2D PIC code, PEC2PIC was upgraded to a 2D3v PIC code with
Monte-Carlo-Collisions (MCC), named PEC2PIC-3MCC, which is short for (Open-mp Parallelized
Electrostatic Cartesian 2d Particle-In-Cell code with 3d Monte-Carlo-Collisions). PEC2PIC-3MCC
retains all features of PEC2PIC, and its additional feautrea are introduced explained below. For
convenience of describing the new numerical features of the upgraded code, the computational particles
of simulation will be explicitly referred to as pseudo-electrons/ions in the rest of this Section instead

of the usual practice of loosely calling them electrons/ions.

2.2.1 Giving the pseudo-electrons an axial velocity component perpendicular to
the 2D PIC plane

In addition to the 2D Cartesian components of velocity the pseudo-electrons now have a 374

velocity
component representing their axial velocities. A common fixed magnitude of this component is initially
given to all pseudo-electrons. The axially up or down direction for this component is selected randomly
using a pseudo random number generator. The axial velocity does not get modified by the 2D PIC
dynamics of the pseudo-electron. It can get modified only when the pseudo-electron is scattered by
a collisional event. Thus the extra axial component, with a suitable choice of magnitude, will have
an effect on the collisional dynamics of the pseudo-electrons in simulation, very similar to that of the

axial bouncing of electrons between electrostatic end plugs [18] in cylindrical trap experiments.

2.2.2 The MCC procedure

The MCC is a technique of making computational particles undergoing guided motion in a simulation
collide at suitable intervals (collision time step) with background neutrals (Neutral Argon in PEC2PIC-
3MCC) that is not represented in any form in the simulation [51]. The method is useful when we
are interested only in the effect (through collisions) of the latter on the former and not vice versa. To
set up the MCC within the framework of a PIC code, the computational particles (pseudo electrons/
pseudo ions) of the simulation have to be treated as real particles (electrons/ions) inside the MCC
algorithm [52]. This implies that mass of a pseudo particle entering the MCC routine gets divided
by its representation number. MCC can be implemented using a pseudo random number generator if
the collision cross-section of the charge-neutral collisions is available in analytical or numerical form
as a function of the real particle’s kinetic energy [53]. Taking the average kinetic energy of a particle
(particle here being a pseudo-electron/ion represented as an electron/ion by scaling down its mass)
in the collision time step, its collision probability in that interval is determined from the available
analytical /numerical collision cross-section. Then the pseudo random number generator churns out
a pseudo random number that decides whether the particle undergoes a collision or not based on its
collision probability (the Monte-Carlo method). If there are more than one kind of collision possible
between the particle and the background then the generated random number can also decide between
different possible types of collision and the possibility of no collision for the particle [54]. Of course

the probability of each type of collision in the collision time step should be available [53].
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2.2 The 2D3v PIC-with-MCC code PEC2PIC-3MCC

If the fate of the particle is found to be no collision then its velocity components are left untouched
else the code proceeds to the next step of the MCC which is to execute the selected collision type for the
particle. In its present version PEC2PIC-3MCC is capable of simulating 3 types of e~ — Ar collisions
viz, i) elastic, ii) first level excitation (most probable among different levels of e~ — Ar excitation
collisions), iii) and single ionization (most probable among different degrees of e~ — Ar ionization
collisions). It can also simulate 2 types of Ar™ — Ar collisions viz, iv) elastic, v) and charge exchange.
The process of execution of each of these 5 types of charge-neutral collisions will be discussed later
in this section. Presently the MCC routine in PEC2PIC-3MCC runs serially at every collision time

interval, At..

2.2.3 The collision time interval

The interval of time representing the collision step is a critical parameter which determines how closely
and how efficiently the MCC simulates the collisional interaction of particles with the background. The
first criterion the collision time step should satisfy is that its value should be so small that possibility of
simulation particles colliding more than once with the background matter in this interval is practically
removed all through the simulation [51]. Otherwise the MCC routine will overlook possible collisions
leading to divergence of the simulation from a real experiment. Now for a charged particle the net
probability of one collisions is the sum of the probabilities of each type of collisions it can participate in
with the background. Given a representative sample velocity distribution of pseudo electrons/ions for
the simulation time period, it is possible to determine a maximum probability of single collision of the
electron /ion from within this representative sample velocity distribution. If this maximum probability
of single collision for the electrons/ions remains below the value 0.095 for the chosen value of At,.,
then the first criterion for At,. is satisfied [51].

At the same time one should avoid diminishing the size of the collision time step beyond the point
at which average (over particles) probability of collision in the interval becomes less than 1/N, where
N is the size of the colliding pseudo-particle population. This is because such a choice will result
in too many executions of the MCC routine in the simulation period with zero or very few pseudo
particles actually colliding in each execution. Hence it will bring down the speed of execution of the
PIC-with-MCC code. However improving efficiency of the MCC by increasing size of the collision time
step should only be attempted as long as the primary criterion (related to accuracy of simulation) is
satisfied for all pseudo particles.

In our simulations the pseudo electrons are loaded in rigid rotor equilibrium with a fixed angular
velocity and a common fixed magnitude of the axial velocity component. Hence a pseudo electron
lying at the half-radius of the cylindrical, uniform density electron cloud will have the mean speed
and the average collision cross section for electrons in the cloud. Hence in order to ensure that the
first criterion is satisfied for our chosen collision time step we checked that the collision probability of
the pseudo electrons at half-radius of the cloud is well below the 0.095 limit [51]. This automatically

also satisfies the first criterion of the collision time step for Ar™ — Ar collisions as probability of an
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Ar™ — Ar collision in the collision time step is smaller than the probability of an e~ — Ar collision.
The Ar™T ions are themselves generated in course of the simulation from e~ — Ar ionization collisions.
Keeping the first criterion satisfied, the size of the collision time step is extended so that on a average
a fraction of =~ 0.001 from the total pseudo electron population of 87834 collides in every collision

step, thus satisfying the second criterion for e~ — Ar collisions.

2.2.4 Simulated collision types

Electron-Argon Collisions

e Elastic Collision: If the fate of the pseduo electron happens to be an elastic collision, then
using a set of numerical formulas relying on pseudo random numbers the scattered speed and
direction of the particle from the collision is determined [55, 56]. These formulas are fed with the
incident kinetic energy of the colliding particle and also the fixed temperature and pressure of
the background gas to produce the required outputs. In the MCC routine of PEC2PIC-3MCC,
the set of formulas for elastic collision execution are very realistic. They implement the change in
kinetic energy of the particle as a result of the elastic collision as well as the natural anisotropy
of the scattering with respect to the incident direction of the particle. The scattering angle
is determined from a very accurate formula for differential scattering cross section introduced
in the year 2002 [56]. This formula is actually a correction on the differential scattering cross

section formula that had been in use earlier [51, 55].

e First level excitation collision: If on the other hand, the collision happens to be a first
excitation of the background (Ar atom), then the MCC follows a two step algorithm to simulate
the collision. First the kinetic energy of the particle (pseudo electron with mass scaled down to
electron mass) is reduced by an amount equal to the first excitation energy (= 11.55 eV for Ar
atom) [51]. Next the particle with reduced velocity goes through an elastic scattering procedure
as explained above. In effect the first elevel excitation collision is the same as elastic collision.
Both produce elastic relaxation of the electron cloud. Note that in MCC, the effect on the

neutral is not of interest, unless it gets ionized and becomes part of the plasma.

e single ionization collision: If an electron with kinetic energy greater than the first ioniza-
tion energy of 15.76¢V | happens to get selected for an ionization collision with a neutral, the

implementation of the collision event is carried out in the following steps.

First we deal with the colliding electron and secondary electron that is generated by the colli-
sion. 15.76eV of single ionization energy is subtracted form the kinetic energy of the colliding
electron, and a random number based formula divides the remaining kinetic energy between the
primary and secondary electron [51]. The redistributed kinetic energies between the primary, and
secondary electron serve as incident kinetic energies for their elastic scattering by the colliding

neutral. Hence the new kinetic energies of the two electrons are independently fed as inputs into
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the elastic scattering (by neutral atom) algorithm [32]. For the elastic scattering the incident
direction of the secondary electron assumed to be same as that of the primary electron. The
elastic collision algorithm operating independently upon the parent, and the progeny electron,
scatters them and also reduces their incident kinetic energies (inputs in the elastic collision al-
gorithm) by very small fractions (for example see kinetic energy of elastically colliding electrons
before and after collision in Table II). The two electrons are then updated with their scattered
velocities, at the collision point i.e. at last updated location of the colliding electron pseudo

particle on the PIC grid, before it entered the MCC routine.

Next, with the help of random numbers the velocity of the collision generated ion has to be nu-
merically extracted from the 3D velocity distribution function of the background Ar atoms [57].
In the simulations of Sec III the Ar™ pseudo particles have a representation number that is 0.25
times the representation number of the e~ pseudo particles. This helps in adequate representa-
tion of the less dense ions in the PIC simulations. Now each e~ pseudo particle has a 4 times
greater representation value than each Ar™ pseudo particles, and each e~ pseudo particle is also
scaled down to a real electron for an e~ — Ar ionization collision inside the MCC. Hence an
ArT pseudo particle will have to scaled down to (1/4)"" of a real Ar™ ion for the same e~ — Ar
ionization collision. This implies that 4 such (1/4)" Ar* ion (Ar* pseudo particles scaled down
to (1/4)™ Art ion ) are to be generated in every e~ — Ar ionization collision to represent gener-
ation of 1 Ar™ ion. This is done simply by generating 4 velocities by numerical extraction from
the 3D velocity distribution of the Ar atoms [57], and assigning these velocities to the 4 new

(1/4)™ Ar™ ions created at the collision point.

As noted earlier there were very small fractions of kinetic energy lost by the parent, and progeny
electron, supposedly to the kinetic energy of the neutral, in their respective elastic scattering
event with the latter. This extremely small amount of kinetic energy transfer is however, ne-
glected while generating the initial kinetic energy of the ionized neutral, i.e. the four (1/4)%
Argon ions in the collision event. In the very next simulation time step the generated Ar™
pseudo particles will participate in PIC dynamics and gain much larger velocities from elec-
trostatic forces, even more so because of the large self electric field of the non-neutral plasma.
Hence we find that it is not necessary to be overtly cautious while assigning the initial thermal

velocities of the ions.

After the MCC procedure is complete the masses of the computational particles are again scaled

up to their original values for the regular PIC part of the code.

Argon ion (Art) Argon collisions
The Ar™ — Ar collision types simulated by the MCC scheme are elastic, and charge exchange
collisions. The technique used is that given by Vahedi and Surendra [51]. For Ar™ — Ar collisions

each ArT pseudo particle is scaled down in mass and charge to a real Argon ion. A formula based
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on random number, and the most recently updated velocity of the Ar™ ion is used to determine if it

undergoes a collision and if so, which type of collision it is [32].

e elastic collision: Now if the Art ion is selected for an elastic collision with an Ar atom,
then first of all the velocity of the colliding neutral Ar atom is extracted from the 3D velocity
distribution of Ar atoms using random numbers [57]. Isotropic and uniform scattering is assumed
for Ar™ — Ar elastic collisions [51]. The velocity of the Ar™ ion is then transferred to the frame
in which the the Ar atom is at rest. A set of random number based formulas determine the
scattered kinetic energy and direction of the Ar™ ion in this modified frame of reference. From
there it is a matter of simple geometric consideration to determine the scattered velocity of
the Ar™ ion in the modified reference frame. The scattered velocity of the Ar™ ion is then

transferred back to the laboratory frame.

e charge exchange collision: If the Ar" happens to undergo a charge-exchange collisions with
an Ar atom, the collision is implemented in the MCC scheme as follows. The velocity of the
colliding Ar atom is first extracted from the 3D velocity distribution of Ar atoms using ran-
dom numbers. Then the velocity of the Ar™ ion is updated with the extracted velocity of the
colliding Ar atom. This actually implies, replacing the Ar™ ion losing it’s charge in the charge
exchange collision, with the newly ionized Ar atom, in the computational array for ions within

the simulation code.

After passing out of the MCC routine the mass and charge of the Ar™ ion is again scaled up by
it’s representation number so that it can participate as an Ar™ pseudo particle in the PIC part of the

code.

2.2.5 The MCC algorithm in short

The MCC routine in PEC2PIC-3MCC may be summarized by the following algorithm.
e Scale down the mass of the pseudo electron/ion to that of an electron/ion
e Now calculate the electron’s/ion’s kinetic energy

e Calculate the probability each type of collision and probability of no collision for that kinetic

energy of the electron /ion
e Generate a pseudo random number to decide the fate of the particle

e For each type of collisions execute by the given procedures. For no collision leave the velocity

components of the particle untouched

e Scale up the mass and charge of the particle and the any new particle/s generated by the collision

to that pseudo particles for the regular PIC part of the code.
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2.2.6 Validation of the correctness of the MCC routine of 2D3v PIC-with-MCC
code

Set-up of the MCC Validation experiment:

To validate the stastical and mechanical correctness of the execution of 3 types of e~ — Ar collisions
and 5 types of Ar™ — Ar collisions, a numerical experiment has been set up as follows. Typical
parameters found in experiments of cylindrical traps [20, 58] have been chosen, in particular, a wall
radius, R, = 0.125m, and axial magnetic field, B, = 0.037T. A cylindrical (circular in 2D) pure
electron cloud with a uniformly low Brillouin ratio, f; = 0.2076, and a radial extent r, = 0.5 X R,, is
loaded symmetrically about the axis of the trap. The background Ar gas is maintained at a pressure,
Py =2x 10~7 Torr [20, 58], and temperature, Ty, = 300 K. The pure electron plasma is initially in
its slow mode of the rigid rotor equilibrium [1, 34] in the trap, rotating with an angular frequency w,,.
In the axial direction the electrons are loaded with randomly up or down directed velocities with a
common magnitude, v, = 1.02727x 107 m /s, which maintained the average collision cross section of the
electrons at moderate values of o, = 2.207 x 10720m?, o, = 2.741 x 1072 m?, o; = 1.402 x 10729 m?,
and o; = 3.883 x 10729m?2, where 0., 04, and oy, are the elastic, first level excitation, and single
ionization collision cross section for e~ — Ar collision (see Fig. 3 of Vahedi and Surendra, 1994 [51]),
and oy = 0. + 0, + 0;. is the total collision cross section for e~ — Ar collision.

The PIC simulation time step, 6¢ = 107! s is chosen much smaller than the cyclotron time period
of electron, T, = 1.191 x 10~ sec, such that the code can well resolve the cyclotron motion of both
the electrons, and the collision generated Argon ions. A common collision time step, At, = 6 x 10~ 7s
is maintained for both e~ — Ar and Ar*™ — Ar collisions in the simulation. This value of At, satisfies
the required criteria for collision time step [32] for the numerical experiment.

PIC-parameters used in the simulations are 87834 pseudo particles initially representing the loaded
electron cloud, on a 70 x 70 grid. e~ — Ar collisions create an additional 35713 e~ pseudo particles
and 35713 x 4 = 142852 Ar™t pseudo particles in course of simulation. The mass of Ar atom and
Art jon is taken as 72820.77 times the mass of an electron. The simulation is carried out till time,
t = 2.88 x 10~* s which is roughly 2.42 x 10° T.

MCC Validation results: Table 2.3 is a validation of the collision statistics for each of the
5 simulated types of collision in the experiment. As shown in Table I, this validation has been
accomplished by matching the final collision count for the 5 types of collision at the end of the
simulation, with corresponding theoretical expected values in the time-length of the simulation. To
obtain the simulation record of the number of occurrences of each type of charge-neutral collision
(column 3 of Table 2.3), we scaled up the raw counts of the 5 types of Monte-Carlo-Collision events at
the end of the simulation, by a factor equal to the representation value of the charged species (pseudo
electron/ion) involved in each type of collision [32]. This was done so that the collision statistics from

the simulation (column 3 of Table 2.3) represent values for collisions between real electrons/ions and
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Table 2.3: Collision statistics of Expt 1: The number of possible occurrences of each of the 5 types of
charge-neutral collisions in course of the simulation have been theoretically estimated. These estimated
values are compared here with corresponding collision counts obtained from the simulation. The 5 types
of collisions simulated are ELastic, EXcitation, and IOnization between electron-Argon atom (e~ — Ar)
and ELastic and Charge Exchange between Argon ion and Argon atom (Art — Ar).

Collision Theoretical Recorded

type No. Occurrence No. Occurrence

e~ — Ar EL 7.422 % 1012 7.742 x 1012
e~ — Ar EX 9.222 x 101 8.690 x 101
e — Ar 10 4.716 x 1012 4.532 x 1012
Art — Ar EL  9.872 x 10%° 7.740 x 1019
Art —Ar CE  7.966 x 1010 6.675 x 1010

neutrals, and hence are directly comparable to the theoretically expected number of occurrences of
the 5 collision types in column 2 of Table 2.3 [32].

The recorded number of occurrences of the three types of e~ — Ar collision simulated in the
simulation, are in excellent agreement with corresponding theoretical estimates in Table 2.3. The
theoretical estimates for the number of occurrences of each type of e~ — Ar collision in the duration
of the numerical experiment, are calculated using average collision cross sections for each of the 3
types of e~ — Ar collisions, and a time-averaged trapped electron population from the simulation. The
procedure for estimating average collisions cross-sections for e~ — Ar collisions in the simulation is
explained in detail in Sec V of [32]. To put it briefly, the average collision cross sections are calculated
using a representative value for the 3D speed of electrons in the simulation. It is to be noted that the
velocity component that contributes most to the magnitude of electron velocities in the simulation,
are the large axial speeds of the electrons that initially have a common value. The axial speeds are
not modified by the 2D PIC dynamics of the electron cloud, and are only updated when the pseudo
electron collides with the background gas. So the larger contribution of the axial speed to the speed of
electrons, and slower change of these axial electron speeds from their initial common value, in course
of the simulation, make the initial average speed of electrons an ideal representative value for electron
speeds throughout the simulation. The average collision cross-sections of the 3 types of e™ — Ar
collisions are now calculated from this representative speed of electrons [32]. Now, as will be seen later
when this experiment is re-examined in detail in Chapter 6, the population of trapped electrons varies
by a maximum of about 0.3 times it’s initial value in the time-length of this simulation from ionization
collisions and radial loss of electrons. This implies that the changing electron population should not
bring about very drastic changes in collision-counts of the 3 types of e~ — Ar collisions in progressive
collisions time-steps. Hence the median value of electron population in the simulation time period can
be used a good representative value for trapped electron population in the entire length of simulation.

The theoretical collision counts for the three types of e~ — Ar collisions are then calculated using

Page 66



2.2 The 2D3v PIC-with-MCC code PEC2PIC-3MCC

their respective average collision cross sections and the representative electron population. The slow
change in the 3D speeds, and the population of trapped electrons in course of the simulation, are both
contributory factors for the high accuracy in estimation of the theoretical e~ — Ar collision counts.

As compared to e~ — Ar collisions, the theoretical collision counts for the two types of Art — Ar
collisions, have greater degree of unavoidable error in their estimation. For instance there is obviously
a large percentage change in the collision generated ion population in course of the simulation, because
of its initial null value. Maximum ion population recorded in course of the simulation also 0.3 times
the initial electron population. Moreover in contrast with the electrons, the ions do not have any one
particular velocity component that contributes largely to their velocity magnitudes, and at the same
time, also changes slowly from a common initial value. In fact the three components of ion velocities
are initiated randomly from 3D e~ — Ar ionization collisions. The velocity components in the PIC
plane get updated at simulation time steps and collision time steps, while the axial velocity component
gets updated only at collision time steps. To estimate the theoretical collision count for the two types
of Ar*t — Ar collision we have used the median ion population in the simulation as the representative
trapped ion population for the duration of the simulation. The median value of total kinetic energy
of ions in the simulation was divided by the median value of the ion population in the simulation to
estimate a representative kinetic energy of the ions, and thereby their representative speed, in the
time-length of the simulation. Using the representative values for the ion speed and ion population
in the experiment, the theoretical collision counts for the Ar™ — Ar collisions were estimates using
the same technique as applied for the e~ — Ar collisions [32]. Considering the error factors involved
in estimating the theoretical collision counts for Ar™ — Ar collisions by this method, there is still
reasonable agreement of the theoretical estimates with corresponding experimental Ar+ — Ar collision
statistics.

Next, in Table 2.4 we have verified the correct implementation of collision mechanics for each of the
5 types of charge-neutral collisions simulated by the MCC scheme, in the MCC validation experiment.
Table 2.4 basically demonstrates a random check of the pre-collision and post-collision velocities and
kinetic energies of colliding pseudo particles. It can be seen from this table that for elastic collisions
between electrons and Argon atoms a tiny fraction of the incident kinetic energy of the electron is lost
to the Argon atom, and there is also a scattering of the electron. For first level excitation collisions
between electrons and Argon atoms an excitation energy of 11.55¢eV is first deducted from the kinetic
energy of the colliding electron, and then the electron undergoes a regular elastic collision process in
the MCC scheme. The correct execution of the excitation collision mechanics can also be verified from
Table 2.4. In the single ionization collisions between electrons and Argon atoms, an ionization energy
of 15.76eV is first deducted from the kinetic energy of the colliding clectron. Then the remaining
kinetic energy is divided by a random number based formula between the parent and progeny electron,
followed by independent elastic collisions of the parent and progeny electron. The correct execution
of the single ionization collision procedure can also be worked out from the details of the ionization

collision events, tabulated in Table 2.4. There are also 4 pseudo-ions generated with thermal velocities

Page 67



2. DEVELOPING THE SUITE OF PIC CODES

Table 2.4: Collision dynamics of Expt 1: Cartesian velocity components and kinetic energies of random electrons and ions just before and just after
their collision with a neutral atom are tabulated. The electrons/ions represented here are basically pseudo electrons/ions which have been scaled down
in mass to that of an electron/ion inside the MCC routine. v, , v,0. and v are the three velocity components of the colliding electron/ion just before
the collision, with v.o being the axial velocity outside the PIC plane. v,1 , v,1, and v.; are the same velocity components just after the collision. e
and €y represent the kinetic energy of the electron/ion just before and just after the collision. The time of the collision, t.,; and the collision type, C'T'
are also tabulated. The simulated collision types are ELastic or EXcitation or IOnization between electron-neutral (e~ — Ar) and ELastic or Charge
Exchange between ion-neutral (Art — Ar).

vgo(m/s) vyo(m/s) vz0(m/s) exo(€V) teor(pns) CT vg1(m/s) vy1(m/s) vz1(m/s) ex1(eV)
e~ —Ar
—4235467.64925396 21135900.8099545 8495139.13664410 1526.11593103726 36.6 EL —2906190.35215793 21038176.2849105 0261859.53146072 1526.11583873508
—4637681.88859874 6678316.25119301 —10272700.0000000 487.930236683854 108.6 EL —6788463.28086423 5807139.51985400 —9582806.63167438 487.930007888424
20205180.9989267 1203619.51235750 —10272700.0000000 1510.81253189131 36.6 EX 20113956, 1677387 36359081.93360819 —9863058.56220291 1199.29519779000
232936.068304277 —5464943.3463378% —10272700.0000000 385.054102409687 108.6 EX —472408.285572328 —4524890.63129702 —10520827.7003468 3T73.5048586067TT
—4690966.20980994 —9183481.09289777 10272700.0000000 602.306552022837 36.6 1ot —6380732.71430728 —10320915.2940663 T638654.29947009 5R4.4372T1676916
813231.577272733 08755.3815311820 —266911.287396589 2.11033857106212
—16711760.5695191 25964.1849942025 —10272700.0000000 1093.94882119745 108.6 10t —15381436.2239788 —1255280.30993793 —11798182.2387060 1072.76824441914
—T78G01.1211769516 1350743.351876G85 276771.162029079 5.12206916911836
Art — Ar

—3347.43062092832 —3505.81988283191 12.6287559118807 4.86409216254737 36.6 EL —3520.39461181783 —2027.12229928271 956.645220357786 4.52876137153578
—10395.2970239912 —83512.6572417450 —11526.9700766424 1493.68127898971 108.6 EL 17794.9480617796 —61456.4187597471 23721.2669233844 963.917830846369
—75829.6443868395 69637.1105974454 506.918203640084 2194.31045496851 36.6 CE* —224.626564122239 —146.413981386944 119.943936796727 0.01786147630003
52091.5112052929 —75380.2259107936 —39.0835075897016 1757.68960531197 108.6 CE* 200.796719119599 257.8224108738911 —13.7309213230008 0.02250318239001

 The additional row of vs1, vy1, vs1, and ¢4 belong to the secondary electron pseudo particle (scaled down to an electron in the MCC procedure) released by the

ionization process. Also (not shown in the table) 4 new ion-pseudo particles are created by the ionization.
¢ The ve1. vy1, vz1, and €xy actually belong to the neutral that got ionized by the charge exchange process. This implies that in the PIC code the charge exchange

resulted in a new ion pseudo particle (scaled down to an ion within the MCC procedure) that replaced the colliding ion pseudo particle.
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in the ionization collision event which are not tabulated in Table 2.4. A general point to be noted
about the tabulated e™ — Ar collisions is that, some of the electrons in the table share a common
magnitude of 1.02727 x 107 m /s in their pre collisional axial velocities, v.9. This common magnitude
is actually the initial common axial speeds of electrons, indicating that these particular electrons are
undergoing their first collision in the tabulated collision event.

In elastic collisions between the equally heavy Argon ions and Argon atoms there can be a signif-
icant percentage of the ion kinetic energy transferred to the thermally moving atom. There is also a
scattering of the colliding Argon ion. The charge exchange collision between Argon ions and Argon
atoms is implemented by replacing the velocity and kinetic energy of the ion that loses it’s charge by
the thermal velocity and kinetic energy of the neutral that is ionized. All these aspects of the elastic
and charge exchange Ar™ — Ar collisions can be verified from their respective examples from the MCC

Validation Experiment that are tabulated in Table 2.4.

2.3 The 1D PIC code, PEC1PIC

As this code is desgined to simulate compression-expansion cylces in quasi-neutral plasma [37], the
set up of the code has two mechanical perfectly reflecting walls at « = 0 and at « = L(t), where
L(t) is the length of the 1D plasma. The wall at & = 0 is fixed and the other wall at x = L(¢) is
movable to produce the effects of compression and expansion. The instantaneous length L(t) of the
bound plasma is divided into 100 cells for the Particle-in-cell motion in that time step. The time
step chosen is At = 10~ s. In the simulations performed with the PECIPIC the 1D quasineutral
plasma is mechanically compressed by means of the moving wall from initial length L = 0.2m to
L = 0.017m. The minimum cell length encountered by the particle in the course of simulation is
Az =0.017/100 = 1.7 x 10~* m. The velocity required by the particle to cover Az in one time step is
2 x 108 m/s. In this simulation the velocity of all particles remain well below this magnitude ensuring
thereby that at no stage of the simulation does a particle cover distance >Ax in one time step . Thus
the basic requirement of the PIC simulation is met. The boundary condition on the electrostatic
potential is that it goes to zero away from quasi neutral plasma. In the code this condition is met
by having a set of 100 extra cells on the outer sides of the two walls. These vacant cells have the
same length as the bounded cells in that time step. The first and last node of the full set of 300 cells
(100 bounded and 200 vacant) are grounded and serve as the actual electrostatic boundaries for the
potential solver of our code. The simulation is carried out with 5 x 10° electrons and 5 x 10° ions
(pseudo particles) while the number of pseudo particles per cells is 5000 which is more than adequate
for the accuracy of our PIC simulation.

This code was bench marked with numerical simulation results of Schmit et al [59] for the evolution
of 1D bump in tail instability in a similar reflecting wall system. In the benchmarking experiment
the evolution of a bump in tail instability was simulated for the parameters of Schmit et al [59]. The

evolution of the instability in the benchmarking experiment, wherein electron hole pairs form and
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merge resulting in a final state with just one BGK mode, is in very good agreement to the results of

Schmit et al [59].
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3

Pure Electron Plasma Numerical
EXperiments (PEPNEX)

Most cylindrical trap experiments on pure electron plasma are performed at a low ratio of the mean
electron number density, n. to the applied axial magnetic field, B, or for values of Brillouin fraction,
fo < 0.1 where [1] fi, = (2mene)/(e0B.?), m, is mass of an electron, and ¢ is permittivity of free
space. In this low f; limit, the relative magnitudes of terms in the equations of motion of the electron
fluid become such that, terms containing the mass of electron can be neglected, resulting in a set of
equations that make the fluid massless and hence devoid of inertia and cyclotron motion [1]. Under
this approximation known as the Guiding Centre Drift (GCD) approximation, the set of equations of
motion resemble that of an inviscid, incompressible, 2D Euler fluid, and an exact one-to-one mapping
can be done between corresponding terms in the two sets of equations. In the past, this morphological
similarity between (3.5) and (3.6) has been extensively exploited in large number of studies that
are equally applicable to both low density electron plasma as well as inviscid, incompressible, Euler
fluids under different terminologies. For example, theories on Diocotron modes [1, 15], Continuum
and quasi-discrete Diocotron modes [60], and studies on electron plasma vortex merging and vortex
crystals [3, 4] all reflect this dual application.

At the high end of the Brillouin ratio spectrum, where inertia becomes important, there has been
comparatively less work. In 1995, the stability of resonant azimuthal modes for step-like and smooth
density profiles at high f, was addressed analytically by Bhattacharyya [61]. In 1997 Goswami et al
have analytically shown the existence of a stationary (in the laboratory frame) and infinitely degenerate
azimuthal mode in a non-neutral plasma column using the mass-included model for arbitrary Brillouin
ratio [62]. There have also been some experiments performed in the high density limit. These include
studies on the modes of a spheroidal ion plasma confined in a quadrupole Penning trap [29], and
Penning Fusion experiment (PFX) [63, 64] in which electron plasma of densities beyond the Brillouin
density limit (4.e the maximum cylindrically confineable, Brillouin ratio, f, = 1.0 [1]) is successfully
confined in spherical potential well. Also, irrespective of the f3 value, the effect of mass becomes

naturally important in describing the thermodynamics of real collisional systems [1], and the transport
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caused by the thermal properties [19, 65]. In 2013, there was a numerical experiment using mass-
included dynamics to describe axisymmetric, and fully kinetic, Bernstein modes of an infinite length
non-neutral plasma of arbitrary f, [17]. The initial radial density profiles of the electron plasma used
in these simulations were thermally equilibrated profiles at a given temperature and simulation code
was a 1D PIC code [17].

PEPNEX1 (Pure Electron Plasma Numerical EXperiments 1) are a set of simulations performed
with PEC2PIC that investigate the radial breathing modes exhibited by intially cold (through this
thesis the term "cold” will mean ”zero temperature”) step density profiles of pure electron plasma,
that are not in mechanical equlibrium i.e. the balance of the inward and outward radial forces on
these profiles are systematically disturbed [34, 35]. The radial breathing modes that follow are an
effect driven by inertia of the plasma [34, 35]. As PEPNEXI simulations are 2D, the plasma is free to
exchange momentum and kinetic energy between its radial and azimuthal degrees of freedom unlike in
Ref. [17]. The numerical experiments reveal that the radial breathing mode becomes negligibly weak
in amplitude, in the limit where the plasma can be described by a guiding-centre-drift approximation
i.e. for low values of f3, (fp < 0.2). For high f;, values the profile relaxation mediated by the radial
breathing modes exhibits interesting nonlinear dynamics such as spontaneous hollow density structure
formation, excitation of poloidal modes, etc., leading finally to a monotonically falling density profile
in equilibrium [34, 35]. So PEPNEX1 venture beyond GCD approximated low f;, electron plasmas,
into the realm of inertia influenced dynamics at high f3.

In PEPNEX2 (Pure Electron Plasma Numerical EXperiments 2) electron clouds in stable | = 1
(I being the Diocotron mode number) mode orbits of very small radius we inititated, and PEC2PIC-
3MCC with ionziation collisions turned off was utilzed to simulate non-ionizing elastic and excitation
collisions of these electrons with a neutral background in course of the simulations [32]. The objective of
this set of numerical experiments was to test if such non-ionizing collisions can destabilize the stable
motion of the pure electron clouds. It had been theorized by Davidson and Chao [36] that elastic
collisions between electrons and background neutrals will not only cause relaxation of the electron
cloud’s profile but can also destabilize any small-amplitude, stable [ = 1 mode azimuthal asymmetry
present in the cloud into a growing [ = 1 mode by virtue of their capability of extracting potential
energy from the cloud. Contrary to these theoretical predictions, our simulations [32] show that such
non-ionizing collisions between clectrons and background neutrals can not by themselves destabilize a
stable configuration of the cloud. From PEPNEX2 it is now understood that this has got to do with
the manner in which potentially energy of the cloud gets reduced by such collisions. A descriptive
comparison of the potential energy extraction process between non-ionizing collisions and a resistive
wall instability [66, 67] that is known to be capable of destabilizing the cloud, will be made to make
this point clear.

PEPNEXS3 (Pure Electron Plasma Numerical EXperiments 3) technically are not simulations per-
formed with pure electron plasma. These are 1D simulations of quasi-neutral plasma performed with

PECIPIC [37]. The reason for classifying these 1D numerical experiments as pure electron plasma
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experiments is that the results of these numerical experiments, among other quasi-neutral plasma
devices, also potentially find direct application in single species plasma experiments. Hence in keeping
with the nonneutral plasma topic of thesis thesis, these experiments have aptly grouped with the other
PEPNEX.

In PEPNEX3 a new way of achieving significant heating of plasmas without driving them far away
from thermodynamic equilibrium was demonstrated[37]. The proposed adiabatic heating scheme works
by taking the plasma through a closed thermodynamic cycle comprising of a quasi-static compression,
followed by constrained non-quasi-static expansion of the plasma back to it’s initial dimensions [37].
While this kind of heating scheme is primarily targeted for fusion-grade plasmas in Tokamaks where the
compression-expansion cycle can be achieved by varying the external magnetic field of the Tokamak,
the scheme can also be extended to cylindrical non-neutral plasma traps (which is the subject of
interest of the thesis), where it can yield axial heating of trapped single species by means of controlled
variation of the electrostatic potential of the axial end-plugs of the trap. The return of the plasma to
a thermodynamic equilibrium state at a higher temperature is the motivation for applying the scheme
to such experiments.

To prove that this plasma heating scheme is viable, PECIPIC was used to perform 1D PIC
simulations of quasineutral plasma, in which the propsed cycle was executed mechanically (as opposed
to magnetically in Tokamaks, and electrostatically in nonneutral plasma traps) with rigid reflecting

walls [37].

3.1 PEPNEXI1: Inertia driven radial breathing and nonlinear relax-

ation in cylindrically confined pure electron plasma

A concise theoretical background for numerical experiments, the numerical experimental setup, results
of the simulations with coherent figures, and convergence tests with changed PIC parameters, are

discussed in the subsections below.

3.1.1 Theoretical Background

Radial force balance equation of a fluid element, in a cold, collisionless electron plasma, magnetized

in a cylindrical trap of infinite length, is given under the 2D, electrostatic approximation is given as

1]

M — eB,(r) — ev(r)B, = 0, (3.1)
where the first term is the centrifugal force, the second term is the dispersing Electric field force, and
the third term is the confining Lorentz force which balances the first two terms to achieve equilibrium.
Here m. and —e are the electron mass and electron charge respectively, r and v.g are the radial location
and azimuthal velocity of the fluid element, F,. is the radial electric field acting on the element, B, is

the applied uniform axial magnetic field. The quadratic equation (3.7), directly derived form equations
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(3.2) by a change of co-ordinates, can be easily solved to obtain the equilibrium angular velocity of

the fluid element, wye(r) = veg(r)/r as [1]

‘-’Jre(r) = %wce 1+ (1 - %> ' . (3.2)

We
Here wy(r) = e2n(r)/egme and w., = eB./m, are the electron plasma frequency, and cyclotron
frequency respectively, n. is the number density of the plasma, and ¢ is the permittivity of free
space.The quantity in the parenthesis, nge Jw2, = fr = (2mene)/(e0B.?), [1] measures the relative
strength of the dispersing space charge force and the focusing magnetic force. Now, if the radial
density profile is a step function of the form n.(r) = n. for » < r, and and n.(r) = 0 for » > r,
(where r, < R,,) then the r-dependencies in the solution are removed and it reduces to two rigid-rotor

frequencies given by [1]

1
2\ 2
wi = %wce 1+ (1 — 2:5) . (3.3)
The solutions w, and w,, can be termed as the fast rotor mode and slow rotor mode respectively.

In PEPNEX1 step density profiles of different f;, distributed over the entire confineable range,
were initialized away form equilibrium by cold-loading them with the off-equibrium rigid rotation
frequencies, i) zero (frozen load) and ii) we (cyclotron frequency load), and the evolution of the
plasma towards a new equilibrium was studied with the help of several diagnostics. From Fig. 2.7 it
can be seen that that the separation between the w = wee line and the w = w;, curve is the same
as that between the the w = 0 axis and the w = w,_ curve. Hence it is intuitively clear that the
frozen load and cyclotron frequency load for a given value f; are equally removed the slow rigid rotor
equilibrium and fast rigid rotor equilibrium, and so the comparisons can be made between the two

loads.

3.1.2 Numerical Setup

PEPNEXI1 were carried out for typical parameters found in experiments of cylindrical traps. [18], in
particular, a wall radius, R,, = 0.125m, and axial magneitc field, B, = 0.0157". The simulation time
step, 0t = 10~ sec is chosen much smaller than the cyclotron time period, T,. = 2.38 x 10 %sec,
such that the code can well resolve the cyclotron motion. PIC-parameters used in the simulations of
sections IV and V are 87834 pseudo particles on a 70 x 70 grid. Convergence of simulation results

have also been tested systematically by varying the grid size and total number of pseudo particles .

3.1.3 Off-equilibrium loading of the step density profiles

When the step density profiles are loaded with the non-equilibrium angular frequencies we. and zero,
and allowed to evolve till t = 37797, the plasma profile is seen to evolve to a new equilibrium through

three phases. In the first phase there is steady radial expansion and contraction, or radial breathing
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(a) 7 =0.00 (b) 7 =0.63 (c) T =1.26 (d) 7 =2.20

(h)

T = 283.42

(e) T=2.83 (f) 7 =13.46

(i) 7= 472.37 6); (k) )
7 =1039.22 T = 2361.86 7 = 3684.51

(m)

Figure 3.1: 2D density contour of n. (in m~=3) showing evolution for the frozen load of f, = 0.6. (a-f),
(g-i), (j-1) roughly represent the 15¢, 274 and 37% phase respectively. m is density the colour code in uits
of m=3. 7= t/Tee. For clarity radius only up to 0.57 R, is depicted in these density plots, while the wall

at radius R, is grounded.
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of the plasma profile ( Fig. 3.1a-f). We call this the Steady Breathing Phase. The second phase is
called the Growth Phase because in this phase, the plasma is seen to gradually expand and contract
by larger radial distances beyond the loaded radius ( Fig.3.1g-i). Finally in the third phase the radial
oscillations decay and saturate as the plasma settles down to a equilibrium state with a monotonically
falling density profile having a larger radius than it’s initial. (4th row of Fig.3.1j-1).

All the three phases of the profile evolution were observed to vary with change in f; of the loaded
step density function. For the lowest density loads (0 < f; < 0.1) the entire radial breathing phe-
nomenon remains negligibly subdued and the profile continues to rotate nearly rigidly. Around f;, = 0.1
observable radial breathing sets in, and with further increase in fj; the radial breathing of the first two
phases increase in amplitude. Growth and saturation of the breathing motion also set in faster with
increase in f,. During the 2" phase of profiles loaded with f, > 0.6, the growing radial oscillations
lead to spontaneous formation of a density-void structure at the centre of the profile, which then ex-
cites unstable azimuthal modes [1, 15]. Weaker flute modes are also observed during the growth phase
of 0.2<f,<0.5. These too are excited by the formation of a density maximum, at some intermediate
radius within the profile’s radial extent [68].

The radial breathing phenomenon is driven by the inertia of the electrons. If we neglect the mass
term in Eq. (3.1) then the radial forces would always balance, with the v.y adjusting instantaneously
(no inertia) to the exact Ex B drift velocity required for radial force balance. That is why the lowest f3
systems, remain very close to a rigid rotor state even for the off-equilibrium loads. As we move towards
larger fp, inertia gains importance and the radial breathing phenomenon becomes more pronounced.
Another important parameter influencing the motion is, how far removed from equilibrium the system
was loaded. In our experiment, the chosen off-equilibrium angular frequencies are such that, with
increase in fp of the loaded step density profile the initial shift from equilibrium also increases. This
factor further enhances the contrast in the magnitude of the radial breathing phenomenon as we move
from the lowest to the highest fj.

The onset of breathing motion happens with the radial inward and outward forces in the L.H.S.
of Eq. (3.1) not balancing because of the choice of veg loaded. This causes a collective motion of the
plasma in the direction of the resultant radial force, and a new density profile n.(r, 8, t) takes shape,
which in turn changes the radial electric field function, E,.(r, 6,t). The modified E,.(r,6,t) now changes
the E x B drift velocity. The resulting vqg(r, 0, t) along with the present E,.(r,6,t) set up new radial
forces. Depending on the direction of the resultant force the plasma again moves radially outward or
inward. The dynamics work out in such a way that the resultant radial force switches direction after
exactly equal time intervals, thus sustaining linear breathing oscillation of the first phase. It should
be emphasized that the model put forward here is very simplistic. In reality the above quantities are
not modified sequentially as described but evolve dynamically in unison, maintaining the collective
breathing motion.

In the limit of low amplitude as seen for smaller fp, the steady breathing oscillations of the first

phase are the collective Bernstein modes of a zero temperature electron plasma [1, 17], all of which have
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the same frequency, wy,;, = \/m , known as the coriolis-shifted upper hybrid frequency [17]
(see Fig. 3.2c-d). In this respect the radial breathing phenomenon in higher f; can be alternatively
described as the full nonlinear dynamics of high amplitude Bernstein modes in cold electron plasma,
set up by the significantly off-equilibrium loading of the high f;, profiles.

We analysed the evolution of the non-equilibrium loads with three types of diagnostic probes,
namely, the potential probes, a density probe located at a radius of 0.75r, = 0.225R,,, and the x(t) ,
y(t), and r(t) co-ordinate traces of the three particles located at radii 0.29 R,,, 0.25 R,,,, and 0.18 R,,.
For step-densities of f;, > 0.1 the readings of all the probes could be separated into an initial steady
oscillation region, followed by an algebraically growing oscillation region, followed by a decay and
saturation of the oscillation. The radial breathing motion was detected by the potential probes, the
density probe, and the r(¢) co-ordinate traces. The rotational motion of the plasma was detected
by the z(t) and y(t) co-ordinate traces and also by the potential probes (because of small inherent
azimuthal asymmetry in numerical loading of the profile as explained earlier in Subsection 2.1.8).

Through Fourier analysis of the full simulation time-range as well as only the initial steady oscil-
lation time-window of different probe data we extracted exact values of radial oscillation frequency,
wrqqg and rotation frequency wyo¢ of the plasma profile in the steady breathing phase. All probes
corresponding to either frequencies yielded perfectly matching frequency values indicating that in the
steady phase there is a fixed rotation frequency and a fixed radial oscillation frequency of the plasma
profile. The obtained frequencies have been plotted as a function of f; of the loaded step density
profile in Fig. 3.2c-d and Fig. 3.2c . From these plots it is observed that for frozen loads the radial
oscillation frequency curve skirts the w;’, curve from above remaining below we. line for all f;, values,
while the rotation frequency curve skirts the w,,_ curve from below remaining above the zero frequency
line for all f; values. For the cyclotron frequency loads the rotational motion and radial breathing
of the plasma profile happen at the same frequency which skirts the w;, line with nearly the same
values as the radial breathing frequency for the frozen loads. For both the loads the breathing fre-
quency is almost equal to the coriolis-shifted upper hybrid frequency wyy for f < 0.4 and deviates
above and away form the w, curve for higher values of f (Fig. 3.2¢c-d). The percentage fluctuations
in density in the initial phase (Fig. 3.3b), for the high f; values, indicates that in the high density
limit radial breathing takes place at a high amplitude from the onset of the relaxation process. Thus
terms containing higher powers of these quantities, cannot be neglected in an analytical study of these
oscillations. So the first order perturbation recipe used in the Diocotron mode analysis [1, 15], is not
applicable here.

To obtain an average measure of the algebraic growth in the next phase, we fitted a straight line
envelope on the growing oscillations of one potential probe’s reading (Fig. 3.2a), and measured it’s slope
as the rate of growth (Fig. 3.2e). Comparison of FFT analysis of potential probe date in the growing
phase time window, steady breathing phase time-window, and the full simulation time-range indicates
that there is frequency chirping in radial oscillation and rotational motion occuring in the growing

phase followed by gradual transition of the collective motion to a nonlinear phase. The breaking of
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Figure 3.2: Potential probe data analysis for the off-equilibrium loads: (a) is a single Potential probe’s
reading for frozen load of f = 0.6 shown here till £ = 10007, for clarity. V}, is the probe reading and Vy,
it’s initial value. The time axis is normalized by T,.. A straight line envelope is fitted on the growing part
to estimate the steady growth rate. (b) is a zoomed-in plot of the initial readings of (a) showing that in
the steady breathing phase the potential probe captures two frequencies; one for the slower rotation, and
the other for the faster radial breathing. (c¢) is a plot of the rotation frequency, wro, and radial breathing
frequency, wrqq of the steady phase as a function of fp, for the frozen loads. (d) is the same as (c), except
that it is for the cyclotron frequency loads. In (e) the steady growth rate, a obtained as the slope of the
normalized readings in (a) is plotted as a fundagg d8 f, for both the off-equilibrium loads.



3.1 PEPNEXI1: Inertia driven radial breathing and nonlinear relaxation in cylindrically
confined pure electron plasma
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Figure 3.3: Density probe data analysis for the off-equilibrium loads: (a) is the Density probe readings
for frozen load of f, = 0.6 shown here till ¢ = 10007, for clarity. p is the probe reading, and po, it’s
initial value. (b) is a zoomed-in plot of the most initial readings of (a) showing that in the steady phase
the density probe captures only the frequency of radial oscillations, wyqq. (¢) is a plot of the obtained

Wrads as a function of fp, for the two off-equilibrium loads.
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Figure 3.4: Velocity distributions at the end of simulation at ¢t = 37797T,.: Radial velocity and angular
velocity distributions for the frozen loads are in (a) and (b) respectively. (¢) and (d) are radial velocity
and angular velocity distributions for cyclotron frequency loads. Here NNy is the fraction of total number

of pseudo particles present at, the velocity value. ¢ is the velocity of light in free space.
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Figure 3.5: Fourier transform of < n.(r,0,t) >, over §-space at different times: m is azimuthal mode
number. P is the power-value for the mode. The power-values have been normalized by their maximum
value Ppqz in the plot. 7 = t/T... Here (a) belongs to 1! phase, (b) and (c) are in the 2" phase, while
(d) is in the 37¢ phase.

f-symmetry of the f, = 0.6 profile due to excitation of a transient, small amplitude fundamental
dioctron mode, during the growth phase, is studied by Fourier transforming the r-averaged number
density function < n.(r,0,t) > over the f-space (Fig. 3.5). The Fourier spectra obtained from the
density profile of Fig. 3.1a in the steady breathing phase (Fig. 3.5a), and the density profile of Fig. 3.11
in the saturation phase (Fig. 3.5d) have no exceptionally large peaks. This confirms that the motion
is azimuthally symmetric at these times. The spectra corresponding to the profiles of Fig. 3.1h-i
(Fig.3.5b-c), in the growth phase however show a sharp peak at mode number, m = 1, indicating
the #-symmetry has been broken here by the combination of the azimuthal instabilities and radial
breathing. In the plots of Fig. 3.5 we have deliberately not chosen the same normalization constant
for the power-values, P in each of the plots as quantitative comparison between the spectra is not
possible because large scale variation in the overall averaged density < n.(r,0,t) >, ¢ due to radial
breathing scales the power-values differently in each spectrum.

The simulations of the off-equilibrium loads also showed good energy conservation with maximum
fluctuation from initial value being 0.12% for frozen load of f, = 0.6. However here unlike the
rigid rotor equilibrium, the total angular momentum and its magnetic component are not conserved
quantities because of momentum exchange between the two degrees of freedom of the system, radial
and azimuthal. The maximum fluctuation in L. and L7'* from their initial values went up as far as
45% and 80% for frozen load of f, = 0.6. This non-conservation is also in contrast with the Diocotron

mode simulations in the low density limit, (Sec II) where L, = L;'* is a conserved quantity.
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The spread in the distribution of radial velocities, v,, and angular velocities, df/dt of the pseudo
particles (Fig. 3.4), at the end of the simulation (at ¢ = 37797, ) give a measure of the remoteness of the
eventual plasma profile from the rigid rotor state that the it was initially loaded in. A collisionless rigid
rotor should have no spread in radial and angular, velocities of constituent particles, but a collisional
electron plasma profile in rigid rotor equilibrium can acquire a spread in these velocity distributions
through microscopic Coulomb collisions. A profile loaded off-equilibrium can gain an even larger
velocity spread through macroscopic phenomena like radial breathing, azimuthal modes, and their
associated non-linearities along with the microscopic collisions. The PIC code we have used does not
have an additional collision term or random walk incorporated in the pseudo particles’ motion to
simulate microscopic collisions. However it does reproduce the collisionless velocity spreading caused
by macroscopic phenomenon and also to some extent, large scale Coulomb interactions, at ranges
greater than grid size. So these distribution curves can only be used qualitatively, to compare the gain
in entropy between different f; values, as a result of macroscopic phenomena.

For the comparative distribution curves of Fig. 3.4a-d only f;, > 0.2 have been used, as these high
density profiles are well into their 37 phase of evolution at t = 37797T,.. Having undergone all the
macroscopic collisionless processes mentioned above, these profiles have reached a state of equilibrium.
It is observed in Fig. 3.4a-d that with increase in fj, of the loaded step-density profile, the spread in
the final v, and df/dt distributions also increase. This can be understood on the grounds that the
non-linear radial breathing phenomenon, causing this entropy gain, also acquires greater amplitude
and growth rate with increase in f;. The peaks of angular velocity distributions have a gradual shift
with increase in Brillouin ratio. For the frozen loads higher f; have larger magnitudes of peak angular
velocity (Fig. 3.4b) similar to the w,, versus f; curve (see also Fig. 3.2d). In contrast peak angular
velocities for cyclotron frequency loads are shifted towards lower magnitudes of df/dt for higher f;
(Fig. 3.4d), similar to the w;, versus f, curve (see also Fig. 3.2c). The negative sign of df/dt values
indicating clockwise E x B rotation, is a result of the axial magnetic field acting into the plane of the
paper.

It must be emphasized again, that the the velocity distribution curves obtained here are only useful
for studying trends of how the magnitude of the breathing phenomenon and the degree of disorder
brought in by them vary, with change in f;, of the loaded step density profile. It cannot be determined
whether any of the profiles have attained thermal equilibrium (at ¢ = 37797,.), though profiles with
fp > 0.2 are all well into their saturation phase. Also because of reasons mentioned earlier, neither
can these distribution curves be used quantitatively to measure the temperature of the plasma. The
peak angular velocity values are a measure of the mean rotation frequency of the plasma profile at
t = 37797, and their gradual shift with increase in f; indicates how the mean rotation frequency of

the plasma profiles vary with increase in Brillouin ratio at this stage.
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Figure 3.6: Results of convergence tests between the two PIC parameters for the cyclotron frequency

load of f, = 0.3. In (a)-(b) Energy, £, and Magnetic Angular Momentum, L7 are compared between

the two PIC parameters. Ey, L7;", are the initial values of energy and magnetic angular momentum, for

the < 87834 particles - 70 x 70 grid> simulation. (c¢) compares the radial velocity distributions at

t = 377971, between the two PIC parameters, and (d) does the same for the angular velocity

distribution. Again c is the velocity of light in free space.
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3.2 Convergence test with changed simulation parameters

As a further check for the accuracy of the above simulations, we repeated some of the simulations from
PEPNEXI on a 130 x 130 grid with 87834 x 2 = 175668 particles and compared the corresponding
diagnostic readings between the two PIC parameters. The results of the convergence test is shown
here for the cyclotron frequency load of f; = 0.3 (Fig. 3.6). Energy and magnetic angular momentum
diagnostic data are in very close agreement (Fig. 3.6a-b). The convergence test also shows about 10%
variation in the growth rate with the change in the PIC parameters. The difference in the spread of
the velocity distributions at ¢t = 3779 T, obtained from the two simulation parameters (Fig. 3.6¢c-d),
indicates the sensitivity of this diagnostic to grid size and pseudo particle number, and exemplifies

why we have studied these curves only qualitatively.

3.3 PEPNEX2: Dynamics of [ = 1 perturbed pure electron clouds

in presence of collisional background

The set-up of the numerical experiment, its results are discussed below.

3.3.1 The numerical setup

The PEPNEX2 simulations were performed with the 2D3v PIC-with-MCC code PEC2PIC-3MCC
with ionization collisions turned off for typical parameters found in experiments of cylindrical
traps [18, 69], in particular, a wall radius, R,, = 0.125m, and axial magnetic field, B, = 0.015T, and
radial extent of the uniform density plasma, 7, = 0.5 x Ry, . The simulation time step, 5t = 10~11sec
is chosen much smaller than the cyclotron time period, T, = 2.38 x 10~ sec of electrons, such that the
code can well resolve the cyclotron motion of both ions and electrons. The collision time step At, is
adjusted according to the chosen pressure and temperature of the background gas. The magnitude of
axial velocity with which the electrons are loaded (to mimic their bouncing motion in an experimental
cylindrical trap) is 1.02727 x 107ms~! which implies that for a typical cylindrical plasma column of
length of 60cm [58] the bounce frequency of electrons is roughly 8.5 MHz. This value of the axial
bounce frequency is higher than the typical experimental bounce frequency (< 0.2 MHz [58]) of a
60cm long cylindrical plasma column. By loading the electrons with high axial speeds we have made
the electrons more energetic and thereby maintain the average total non-ionizing (elastic + excitation)
collision cross section between the moderate orders of 10721 m? and 10722 m? (see Fig. 3 of Reference
30 [51]) in PEPNEX2. It must be re-emphasized here that the loaded value of the axial velocity of
electrons in the simulations serves only to adjust the collisional probabilities and does not partake in
any of the regular PIC dynamics of the plasma.

PIC-parameters used in PEPNEX2 are 87834 pseudo electrons on a 70 x 70 grid. The background

atom (Ar atom) is taken as 72820.77 times heavier than an electron.
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Figure 3.7: Potential probe data for the perturbed load (off-axis by 0.1 x Ry ) of the f, = 0.02 and
thef, = 0.9 pure electron clouds at a common background pressure, I, = 2 X 10=5Torr: V) is the reading
of the left potential probe and V), represents its corresponding initial value in the two simulations. The y
axis is plotted in logscale for clarity. T3, = 300K is the temperature of the background gas in this set of
runs. Normalized time, 7 is in units of electron cyclotron time, i.e. 7 =1t/1.. Hence it is clear from the
potential probe’s data that there is no growth of the initially implanted [ = 1 mode in the simulation.
The other three potential probes also gave similar results for this set of simulations.

3.3.2 Results

Two uniform density cylindrical pure electron profiles were loaded with a very small [ = 1 perturbation
seeded from the outset i.e. the profiles’ central axis were shifted from the trap’s central axis by a very
small distance of 0.1 x Ryy. The Brillouin ratios of the profiles chosen were f;, = 0.9 and f;, = 0.02.
It is well understood that in the absence of any other influence these profiles will continue to make
stable [ = 1 orbits at their preset orbital radius with their characteristic I = 1 mode frequency [1, 34].
In PEPNEX2 we loaded these profiles at background pressure P, = 2 x 10~5Torr of the Ar neutrals.
Most present day electron plasma traps operate at background pressures below 1078 Torr wherein
H;r is the predominant background gas [20]. The purpose of choosing a higher background pressure
than experiments In PEPNEX2 was to ensure greater exposure of the profiles to elastic and excitation
collisions and their effects. However both simulations revealed no destabilization of the stable orbital
motion caused by the collisions for both the high and the low Brillouin ratios. Fig. 3.7 shows the
squared and logscaled plot of the reading of the left potential probe for these two simulations. The
signals have been plotted in such a manner for accurate exponential fitting of any observable growth
of the signals (see also Fig. 3d) and also for the purpose of depicting on the same graph the two
signals with vast difference in their mean values as well as their amplitudes. Fig. 3.7 shows that both
the signals remain perfectly stable throughout the simulations.

The PEPNEX2 simulation results also contradict a theoretical model by Davidson and Chao [36]
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for the effects of electron-neutral elastic collisions on the dynamics of the cloud. This model predicts
that the non-ionzing collisions should destabilize the initially stable [ = 1 orbital motion in the above
two simulations into a growing [ = 1 mode with growth rate, v = 27vepwo/wee [36], where vey, wee,
and wy are the non-ionizing collision frequency in s, cyclotron frequency in rad/s and characteristic
frequency of the | = 1 mode [1] in the loaded electron cloud expressed in rad/s.

The actual theory considered only electron-neutral elastic collisions contributing to the collision
frequency v, . Excitation collisions between electrons and neutrals are also in effect elastic collisions,
as these collisions also elastically scatter the electrons. Only the kinetic energy lost by the colliding
electrons is greater in excitation collisions than in elastic elastic collisions. So in principle excitation
collisions behave very much like elastic collisions with respect to their influence on cloud dynamics. As
we already have e~ — Ar first level excitation collisions taking place in PEPNEXZ2, it is only logical to
modify vg, by the addition of the first level excitation collision frequency to it. The resultant theoretical
growth rate v may then be directly compared to any growth rate obtained from the simulations of
PEPNEX2.

It must be noted that the theoretical model [36] considers a low f3 electron plasma for which the
massless fluid approximation is valid. PEPNEX2 on the other hand simulates both low and high f;
profiles, which are, f, — 0.02 and f; = 0.9. As the ojective of PEPNEX2 is to test the influence of
non-ionizing collisions at all f, as opposed to modelling its effects only in the limit of low f; [36],
it is only logical to calculate a theoretical v even at f, = 0.9 from Davidson and Chao’s model as a
reference, to compare with any growth rate obtained form the simulation at f;, = 0.9. Evidently if the
non-ionizing collisions can destabilize the cloud, the inclusion of mass in modelling its effects should
only alter the value of the growth rate from the value obtained neglecting mass effects.

The model also assumed a constant temperature of the plasma profile maintained by electron-
electron collisions in the derivation of the above expression for the growth rate, v due to electron-
neutral collisions. There are no electron-electron collisions happening in PEPNEX2. But the plasma
is loaded at zero temperature and does not undergo any collsionless heating process, although there
is some amount of heating by the non ionizing electron-neutral collisions. So applying the above
expression for v to the numerical experiments will include the approximation of a constant temperature
of the plasma profile.

The procedure for obtaining the growth rates from Davidson and Chao’s [36] model when applied
to PEPNEX2 is as follows: From the initial cold loads of the plasma profiles it is simple to find an
average velocity magnitude of electrons which would approximate as the average velocity magnitude
of all electrons through the simulation. The total non-ionizing (elastic + excitation) collision cross-
section can then be estimated using this average velocity magnitude, which leads to a value for the
collision frequency ve,. This value comes out to be 2.3985 x 10* per sec for the f, = 0.02 load and
1.7548 x 10* per sec for the f, = 0.9 load. Plugging in the other fixed frequencies in the above
expression for the growth rate, 7, the growth rate from Davidson and Chao’s model can be estimated
to be 1.8838 x 102 rad/sec for the f, = 0.02 load and 6.2021 x 10 rad/sec for the f, = 0.9 load.
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These growth rates imply that at the end of the simulations period of 5.4 x 10~ seconds, the [ = 1
orbital radius should have increased by 1.02% for the f, = 0.02 load and by 39.78% for the f, = 0.9
load according to the model of Davidson and Chao [36]. Even if we neglect the theoretical small
increase in orbital radius for the f, = 0.02 load, the theoretically predicted increase in orbital radius
is substantial for the f, = 0.9 load and should be detected by the simulation diagnostics. However as
we discussed earlier using the potential probe diagnostic (Fig 6) the stability and initial amplitude of

the [ = 1 mode remains completely unaltered in both the simulations, f, = 0.02 and f;, = 0.9.

It must be emphasized here that the results of the PEPNEX2 stand independently, irrespec-
tive of whether the approximations and assumptions of Davidson and Chao’s theoretical model[36] are
fully or partially satisfied by the simulations. We have obtained from the 2D electrostatic simulations
with 3D collisions (using PEC2PIC-3MCC) that the stability of electron plasma profiles of both low
and high Brillouin ratio is not affected in an way by the ongoing non-ionizing collisions between the
plasma and the background. A new theoretical explanation in support of this finding of PEPNEX2

results is provided below.

The electron plasma in Diocotron motion, e.g. a stable [ = 1 orbit, can be thought of as having
its electrostatic potential energy in two parts. The first part is the electrostatic energy of the profile
without the surface wave/ Diocotron mode and the other part which is a negative quantity is the
electrostatic energy associated with the Diocotron mode. Any process that further draws out energy
from the mode i.e. makes the mode’s electrostatic energy even more negative and thereby also reduces
the total potential energy of the profile, will bring about growth of the mode. A process that only
reduces the first part of the potential energy i.e. the profile’s electrostatic energy by virtue of its
internal configuration without any surface wave, can not cause growth of the Diocotron mode. Through
our simulations we found that the elastic and excitation collisions can only reduce this first part of the
potential energy by means of profile relaxation. However these collisions can not directly influence the
energy associated with Diocotron mode. On the other hand a process like a resistive wall instability
can directly takes away energy from the Diocotron mode by changing surfaces charge configuration
on the grounded wall (or alternatively the virtual image charge configuration) that interacts with
the Diocotron mode of the plasma. So while a resistive wall may cause growth of negative energy
Diocotron modes on the electron plasma the elastic and excitation collisions can not directly influence
Diocotron motion by virtue of their potential energy reduction capability. Hence contrary to the theory
by Davidson and Chao [36] which predicts that elastic collisions can reduce both parts of the potential
energy of an electron cloud and destabilize them, our simulations show that elastic (and excitation)
collisions can only cause reduction in the first part of the potential energy through relaxation of the

profile.
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3.4 PEPNEXS3: Significant Heating of electron/quasi-neutral plasma

without driving the plasma far away form equilibrium

Averaging the equilibrium density function of a cylindrically trapped electron plasma over r and
0 leaves an axial density profile distributed between the electrostatic end plugs of the trap. It is
possible to further heat up this  and 6 averaged axial profile in equilibrium by additional quasi-static
electrostatic compression from the end plugs. Of course, once the compression is released quasi-
statically, the profile relaxes back to its initial thermal equilibrium. PEPNEX3 are a set up numerical
experiments that demonstrate a new way of compressional heating of plasmas, in which the plasma
retains most of heat it gained during compression even after the compression is relaxed, and the
same time quickly attains a new thermal equilibrium after the compression is relaxed. To numerically
demonstrate this heating in a PM trap would require full 3D simulation of the trap. Alternately one
can demonstrate the working principle of the heating scheme using movable 1D reflecting walls that
can compress a 1D quasineutral plasma confined within them. This is basically what has been done
in PEPNEX3. However as PEPNEX3 only demonstrate a principle, care should taken while applying
the principle for electrostatic heating of single species plasmas in PM traps, or magnetic heating of
quasi-neutral plasmas in toroidal traps.

The following subsections discuss the theoretical background, numerical set-up, and results of
PEPNEXS.

3.4.1 Theoretical Background based on Thermodynamic Principles

In PEPNEXS3 the 1D PIC code PECIPIC is used to perform two simulations- (i) the proposed ther-
modynamic cycle involving quasi static compression of a quasi-neutral plasma followed by a non quasi
static expansion back to its initial dimension, and (ii) a control experiment in which a fully quasi static
compression-expansion cycle was simulated as reference for the proposed cycle for net temperature
gain. The movable rigid wall of PECIPIC at x = L(t), L(t) being the instantaneous confinement
length of the plasma, is used to carry out the compression and expansion of the plasma. In PEPNEX3
the non-quasi-static expansion part of (i), the proposed cycle, was executed as a free expansion of the
plamsa, i.e., where plasma is initially in equilibrium with P = P,;; and then P, is suddenly (i.e.,
in a span of time that is much smaller than the plasma timescales) reduced to zero. This is achieved
by moving the rigid wall back to its original position in a time-scale much faster than the plasma’s
response time-scale. As the free expansion is a zero work process at Pe;; = 0, the internal energy and
temperature of the plasma remain conserved at their respective values attained at the end of the com-
pression, thus ensuring the free expansion will retain all the heat gained in the compression phase of
the cycle. In contrast, in a constrained non-quasi-static expansion (equivalent to relaxing the magnetic
field in Tokamak plasmas, and relaxing end plug electric field in electron plasmas), the plasma will lose
some of the energy gained in the compression phase to the expanding wall. A freely expanding plasma

should also undergo maximum deviation from equilibrium during relaxation as compared to any form
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of constrained or controlled expansion. The nonlinear dynamics of the plasma associated with an
electrostatic free expansion of the plasma in the simulation (very similar to diffusive free expansion
of gases) should also be far more turbulent that in a constrained non-quasi-static expansion. Hence,
if we can show through simulation of the free expansion that the plasma attains a final Maxwellian
equilibrium after the turbulent processes have completely damped, it will ensure that attainment of a

final equilibrium Maxwellian is guaranteed for any form of controlled expansion as well.

3.4.2 Numerical Set-up

For simulations of the temperature gaining cycle as well as the reference experiment of the fully quasi
static cycle, we consider a hot plasma with number densities n, = n; = 3142 x 10® m =3, plasma
frequencies, wpe = Wy = 10 rad/s (i.e Tpe = Tpi = 6.28 X 10" 5), and temperatures T, = T; =
T = 2.198 keV. The PEPNEX3 simulations have been carried out for different values of the ion to
electron mass ratio m;/me., the selected values being 1, 10, and 100. The details of the PIC simulations
parameters are as follows. The quasi neutral electron-ion plasma is bounded by two perfectly reflecting
walls with which electrons and ion undergo elastic collisions. The wall at = 0 is fixed and the other
wall at = L(t) is movable to produce the effects of compression and expansion. The instantancous
confinement length L(t) of the bound plasma is divided into 100 cells for the Particle-in-cell motion
in that time step. The time step chosen is ¢ = 1074 5. The simulation is carried out with 5.0 x 10°
pseudo electrons and 5.0 x 10° pseudo ions which implies a more than adequate 5000 particles per cell

for each component of the plasma throughout the simulation.

3.4.3 Results

For the simulation of the quasi static compressionfree expansion cycle, we consider the plasma in
an initial equilibrium state A where the electron and ion velocity distribution functions (f, f;) are
Maxwellian (with common temperature T4 = 2.198 keV') and the plasma length is L4 = 0.02m. The
first part of the cycle consists of quasi static adiabatic compression of the plasma from state A to B
where Lp = 0.017m. This part was simulated by moving the wall inwards with a very slow velocity
Viv = 1.510° m/s which is two orders smaller than the thermal speeds of electrons and also much
smaller than the ion thermal speeds (for all the three values of ion mass used in simulation) throughout
the compression. Hence, the distribution function (f., f;) remained very close to Maxwellian at all
times and the temperature increased according to the quasi static adiabatic law T'L?! = constant,
where T and L are the instantaneous temperature and length of the plasma and v = 3 for 1D plasma
(see Fig. 3.8), thus T = T'4(La/Lg)*3.042keV. Adherence of the plasma compression to the above
law and final temperature to the theoretical prediction is verified from simulation (Fig. 3.8). After
the quasi static compression, the wall is kept static for short time lasting 5 x 10° 6t to make sure
that the plasma returns to equilibrium. The cycle is then closed by free expansion of plasma from
Lp = 0.017m to Ly = 0.02m. The free expansion of plasma was initiated by moving the wall at
x = 0.017m to the final location at = 0.02m in just 3000 dt (i.e., with a velocity V,, = 108m/s).
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Figure 3.8: Taking m; = m,. the instantaneous thermal velocities of electrons vype and ions vype during
the quasi-static compression is plotted a function of the length L(t) of the plasma column. Here Lg is the
initial lenght of the plasma column and vy is initial common thermal velocity of electrons and ions. The
instantaneous thermal velocities are obviously proportional to the square root of the instantaneous
temperatures, T, = T;. Hence the linear variation of the thermal velocities vs L(t) verifies the adiabatic

quasi-static law.

This expansion of the reflecting wall system is instantaneous in comparison the time scales of electron
and ion motion. Once the wall is moved to 0.02m, it is kept static for another 2.497 x 10° 6t during
which the plasma expands freely and quickly relaxes to a new Maxwellian. However, during the
relaxation, the simulations show that plasma becomes turbulent and distribution functions (fe, f;)
deviate considerably from Maxwellian.

We find that in the simulations with different ion masses, the dynamics of the plasma is typically
similar. At the end of the expansion phase of the cycle, the plasma attains equilibrium by turbulent
relaxation which is dominated by two stream and bump-in-tail instabilities. Fig.3.9 shows some
snapshots of the plasma in phase space for the simulation with equal electron and ion masses, the
case which relaxes the quickest. From Fig.3.9c we see that immediately after the removal of the wall
to z = 0.02m, there is a flux of electrons and ions from x = 0.017m towards the shifted wall by
the process of free expansion. As the particles in the freely expanding front no longer encounter a
rigid wall to reflect them back into negative velocity space, a vacant region is created in the negative
velocity space to the left of x = 0.017m while the flux particles fill up a new region in the positive
velocity space to the right of = 0.017m (Fig. 3.9(c)). This process of removal of particles from the
negative velocity space to the left of the & = 0.017m and the accumulation of other particles in the
positive velocity space to the right of x = 0.017m continues till the expanding front hits the wall at
x = 0.02m (Fig.3.9(d)). These particles then get reflected by the wall at 2 = 0.02m and form a beam
that partially fills up the vacuum that had been created in the negative velocity space (Fig.3.9(e)).
The beam then undergoes a second reflection at the wall at z = 0.0 m only to form a positively directed

beam on top of the main distribution in phase space (Fig.3.9(f)). Formation of striations in the phase
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Figure 3.9: Snapshots of the ions (green) and electrons (red and underneath the ions) at different stages
of the quasi static compressionfree expansion cycle for the m; = m. case. The spatial axis, x, is
normalized by L, = 0.02m while the velocity axis, v, is normalized by the common initial thermal
velocity of electrons and ions, v¢pg. T = t/7, represents the normalized time corresponding to the
snapshot. (a) Initial state with Maxwellian distribution of electrons and ions, (b) at the end of quasi
static compression and rest, (¢) rearrangement of the phase space distribution due to free expansion, (d)
expanding front hitting the wall at x = 0.02m, (e) formation of reflected beam and triggering of
anomalous processes, (f) formation of holes and BGK modes, (g) phase mixing and coalescence of
structures, (h) final relaxed state with almost Maxwellian electrons and ion.
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Figure 3.10: Velocity distributions of (a) electrons and (b) ions for quasi static compression free

expansion and quasi static compression quasi static expansion cycles with m; = m.. There is net heating
in the former and no heating in the later cycle as evident from the respective final velocity distributions of
electrons and ions in the two cycles. The electron and ion velocities are normalized by the common initial
thermal speed of the two species. The quantity on y axis represents the distribution functions of electrons

and ions. 7 = 1/7p is the normalised time.

space distribution leads to excitation of anomalous processes such as bump-in-tail instabilities and
two stream instabilities in the plasma (Fig.3.9(e)). The excitation of the instabilities is accompanied
by electric field generation in the plasma. The ensuing turbulence manifests itself in the form of large
number of electron and ion phase space holes and BGK modes (Fig.3.9(f)). Subsequently, the BGK
modes and the phase space holes coalesce typically on time scale of 3007, to 400 7, accompanied by
simultaneous decay of the electric field (Fig.3.9(g)). Eventually, the plasma relaxes to a quiescent
equilibrium with electron and ion distribution functions returning to Maxwellian and the electric
field decaying to zero (Fig.3.9(h)). Phase mixing and Landau damping are the important dissipating
mechanisms here. It is seen that at the end of free expansion and relaxation, the temperature T,
of plasma remains same as what it was at maximum compression, i.e., T4; ~ T = 3.042keV. This
implies a gain of 1.384 (= T'4;/T4) in temperature in the cycle.

To verify that the gain is indeed a result of the non quasi static nature of the expansion phase, the
expansion to x = 0.02m was also carried out in quasi static manner in the control simulation. For
this simulation, we get 7'4;/7'4, implying that plasma loses all the energy it gained in the compression
phase. Fig.3.10 shows the electron and ion distribution functions corresponding to T4, T4, and Tp
for the quasi static compression-free expansion and quasi static compression-quasi static expansion
cycles.

Fig.3.11, shows a comparison of the turbulent relaxation processes in one and two step free expan-
sion simulations. FEg, which is the total electrostatic potential energy in the cycle, remains small in the
quasi static phase but increases rapidly in the non quasi static phase immediately following removal

of the wall. It should be noted that the peaks of Eg in the two step free expansion are significantly
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Figure 3.11: Comparison of relaxation processes in one and two step free expansion for the m; = m,
case. The total electrostatic energy Fq is normalized by its initial value Fy while the time axis is
normalized by 7,. In two step expansion, the peaks in Eq/FEy are smaller indicating that anomalous

processes in this case are weaker.

smaller, nearly half of that in single step free expansion indicating that anomalous processes in two
step expansion are weaker as compared to those in one step expansion. The simulation results in Figs.
3.10(a), 3.10(b), and 3.11 thus establish two important points: (a) the anomalous processes excited in
non quasi static expansion can indeed lead to turbulent relaxation of plasma to equilibrium and (b)
anomalous processes are weaker in multi step expansion as compared to one step expansion. We have
shown that the plasma relaxes to equilibrium in the most turbulent case of free expansion; hence, re-
laxation is most likely for the proposed constrained expansion where turbulent relaxation processes are
relatively weaker. Multiple applications of such quasi-static compression : non-quasi-static expansion

cycles can raise the temperature of the plasma significantly.

3.5 Conclusions and discussions on PEPNEX

In PEPNEX1 we investigated using the 2D PIC code PEC2PIC, the inertia driven electrostatic re-
laxation process of a pure electron plasma from a state of non-equilibrium. A step density profile
of high Brillouin ratio loaded off-equilibrium with unbalanced radial forces relaxes to a stable equi-
librium state, through a radial breathing process comprising of three phases, namely an azimuthally
symmetric steady breathing phase, an algebraic growth phase with non linearly triggered azimuthal
modes, and finally a decay and saturation phase leading to steady equilibrium state. Unlike Diocotron
modes in low density electron plasma, the radial breathing phenomenon is driven by inertia of the
plasma, and hence can be considered more of a high Brillouin ratio phenomenon. For low Brillouin

fractions (fp < 0.1) growing Diocotron modes in their initial stages have been successfully described
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by a first order perturbation analysis [1, 15]. A similar analytical treatment may not be possible
for the breathing oscillations because even in the steady phase of the evolution, density fluctuations
within the plasma have been observed to be as much as 50% for the higher f;, values (Fig. 3.3a-b).
Tt is interesting that in spite of particles oscillating radially with large amplitudes about their mean
positions the collective oscillatory motion remains totally coherent with a sharp frequency peak, in
the initial steady breathing phase of the motion. These breathing oscillations are basically collective
Bernstein modes of a cold electron plasma excited by the off-equilibrium loading of the profiles. Their
frequencies match well the Bernstein mode frequency of a zero-temperature electron plasma predicted
by linearized theory in the limit of small amplitude as seen for low f;, values, and deviate away form
the theoretical curve for higher amplitudes.

It is clear that the amplitude of the breathing oscillations in the first phase depends on the inertia
i.e. fp of the plasma and also on the strength of the applied perturbation from equilibrium i.e.
the magnitude of difference between the equilibrium rigid rotor frequency and the loading angular
frequency. Hence it would be an interesting numerical experiment to tune the loading frequencies in
such a way that only one of these two parameters varies and see how the breathing oscillations respond
in terms of frequency and amplitude. A comparison of the deviation of the breathing frequency from
the coriolis-shifted upper hybrid frequency, w,;, produced as a result of these two controlled parameter
variation would also be relevant and informative about the nature of these oscillations. Also studies
on the effect of loading the plasma at varying temperatures on the dynamics of radial breathing would
be in line with the kinetic model of Bernstein modes [17]. It could also be interesting to study the
influence of elastic collisions of the electrons with background neutrals, on the dynamics of radial
breathing modes, using the 2D3v PIC-with-MCC code PEC2PIC-3MCC.

In PEPNEX2 it is demonstrated that contrary to an existing theory [36] on influence of elastic
collisions between electrons and background neutrals, the collisions themselves can not destabilize an
otherwise stable electron cloud. This has been explained to be caused by the nature of extraction
of potential energy from the cloud by the collisions. However the fact that the e™ — Ar elastic and
elastic-like excitation collision can not be the source of destabilization of the cloud does not imply that
they can not influence other ongoing instabilities of the cloud. In fact in the very next chapter it will
shown how non-ionizing collisions of electrons with background neutrals influence the dynamics of an
ongoing ion resonance (two-stream) instability, through a feedback mechanism. It would also bee an
interesting pure electron plasma numerical experiment to study the influence of electron-background
non-ionizing collisions on the dynamics of the Kelvin-Helmholtz instability in an annular cylindrical
electron cloud.

From the 2D cross-sectional dynamics of trapped pure electron plasmas in PEPNEX 1 and 2 we
shifted focus to the axial dynamics of electron plasmas in finite length traps in PEPNEX3. PEPNEX3
demonstrates a scheme for controlled heating of a plasmas without driving the plasma far away from
thermal equilibrium. The proposed scheme may be applied for axial heating of electron plasmas or

other single species plasma in cylindrical traps by controlled variation of the end-plug potentials of
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the trap. When the plasma is composed of two species with significant mass difference the scheme
may be tweaked so that the cycle is quasi-static compression : non-quasi-static expansion for heavier
species, and quasi-static compression : quasi-static expansion for the lighter species. In that case the
heating scheme gives preferential heating of one species over the other. It may be interesting to carry
out a 1D simulation of such a differential heating scheme with PEC1PIC.

So far we have discussed the numerical experiments performed with pure electron plasmas. In the
next chapter the focus will be on numerical experiments performed with partially neutralized electron

clouds, 7.e 2-component nonneutral plasmas.
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Partially Neutralized Electron Plasma
Numerical EXperiments (PNEPNEX)

In the 2D numerical experiments of the previous Chapter, collisionless processes in pure electron
plasma were investigated together with the influence of non-ionizing electron-background collisions
on some of these processes. Purely 2D collisionless processes were simulated with the 2D PIC code
PEC2PIC, and the 2D dynamics influenced by 3D non-ionizing electron-neutral collisions were simu-
lated with the 2D3v PIC-with-MCC code PEC2PIC-3MCC. In this Chapter we propose to carry out
simulations of collisionless dynamics, with, and without the influence of non-ionlzing electron-neutral
collisions for a cylindrically trapped, partially neutralized electron cloud. The instability of interest
in this set of simulations is the ion resonance instability.

The ion resonance instability is one of the fundamental instabilities of partially neutralized electron
plasmas in cylindrical and toroidal magnetic traps. The first analytical model for this instability was
developed by Levy et al in 1969 [70]. They showed that, under certain conditions, a stable equilibrium
of a cylindrically confined electron cloud can be driven unstable by the addition of a certain fraction
of ions resulting in excitation of an exponentially growing [ = 1 Diocotron mode, where [ is mode
number. However this model is only applicable for equilibria in which a cylindrically trapped electron
cloud of low Brillouin ratio is weakly neutralized by ions. A more generalized linear model for the ion
resonance instability in cylindrical traps, was developed by Davidson and Uhm [1, 16] who described it
as a rotating two-stream instability, in which the differential rotation between the electrons and ions in
equilibrium, drove the instability; the rotation itself being a result of the radial self-electric field of the
nonneutral plasma. This linearised model of the instability works for any cold equilibrium of the two
component plasma in cylindrical confinement. The model shows that depending on the equilibrium
parameters, one or more exponentially growing Diocotron modes may be excited on the plasma profile
with the equilibrium condition determining the fastest growing Diocotron mode in the system. In the
limit of low Brillouin ratio of electrons and weak neutralization by ions, the model produces results
consistent with the resonance model by Levy et al [70], with the [ = 1 Diocotron being the fastest

growing mode. The model can also be extended to two stream instabilities between two cylindrically
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confined plasma components having the same sign of charge [1]. Davidson and Uhm [71] further
generalised this linear model, to include the effects of finite ion Larmor radius on the ion resonance
instability. In this, more generalised version, the cold fluid model for the two components was replaced
by a hybrid Vlasov-fluid model where the ions, at a certain temperature, are described by the Vlasov
equation and the electrons are described as a cold fluid. Another analytical model for the instability
induced by untrapped ions on a trapped electron cloud was introduced by Fajans [31]. This model
describes the instability of an electron cloud in a Penning-Malmberg trap, caused by the presence of
axially drifting ions that are produced by ionization of the background gas by the hot electrons; the
drift of ions being towards the negatively charged electrostatic end-plugs. The model shows that in
these conditions the instability of the electron cloud, grows algebraically rather than exponentially.
The cold fluid, two-stream instability model [1, 16] was later numerically investigated by Chen [72]
for a wide range of equilibria, which helped in comprehending the dependencies of the instability, in
its linear phase, on the equilibrium parameters. The ion resonance instability in a modified Betatron
accelerator, has also been modelled by Uhm and Davidson within the framework of Vlasov-Maxwell
equations [73].

There have been extensive experimental investigation of the ion resonance instability in different
configurations of electron plasma traps. In all these experiments, the ions were formed through
ionization of the background gas by the heated electrons. In 1980, evidence of the instability in an
electron cloud trapped in a magnetic mirror, was reported by Eckhouse et al [74]. Peurrung et al [75],
Bettega et al [76], and Kabantsev and Driscoll [20] studied the instability in Penning-Malmberg trap
experiments with electron plasmas. An experimental technique to control the growth of the ion-
resonance instability in cylindrical traps, and thereby improve confinement of the electrons, has also
been proposed by Bettega et al [77]. The proposed method involves application of axisymmetric ion
removing fields, by methodically biasing separated, inner longitudinal sections of the cylindrical trap.
Ton resonance instability has been observed and investigated in a nonneutral stellarator by Marksteiner
et al [27]. Tt has also been studied in a partial toroid configuration of the electron trap by Stoneking
et al [78] and Lachvani et al [25]. The latter have proposed ways to improve vacuum in the trap, in
order to reduce creation of destabilizing ions by electron impact ionization of the background gas, and
thereby enhance confinement of the electron plasma in the partial torus [25].

PNEPNEX1 (Partially Neutralized Electron Plasma Numerical EXperiments 1) aims to investigate
the ion resonance instability in its nonlinear phase, with the help of numerical experiments using
the 2D PIC code PEC2PIC [38]. A cylindrically confined nonnenutral cloud, composed of electrons
partially neutralized by an ion species of single ionization and realistic mass, is simulated from different
initial conditions in these numerical experiments. The initial conditions are a set of parametrically
different unstable equilibria of the cloud, that excite different Diocotron modes in the evolution of the
ion resonance instability. As all the initial equilibria are cold, the linear phase (or pure exponential

growth phase) results of these simulations demonstrate an excellent agreement with the linearised cold
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fluid, two stream instability model [1, 16](see Table I). The results obtained from the nonlinear phase
of these simulations will constitute the main subject of PNEPNEX1 [38].

These ion resonance instability simulations of the PNEPNEX1 [38] were performed in an ideal
scenario with a perfect vacuum as a background. In PNEPNEX2 [32] (Partially Neutralized Elec-
tron Plasma Numerical EXperiments 2) we have taken these simulations a notch closer to a usual
experimental scenario by including the effect of elastic and excitation collisions of the electrons with
background neutrals that could be present at experimental low pressures inside the trap. PNEP-
NEX2 are 2D3v PIC-with-MCC simulations, performed with PEC2PIC-3MCC, that investigate how
collisional relaxation of the electron cloud’s profile can influence dynamics of the ion resonance in-
stability happening due to the ion contamination of the cloud [32]. It must be mentioned here that
the collisionless dynamics of the ion resonance (two-stream) instability simulated in PNEPNEX1 and
PNEPNEX2, is adopted from Davidson and Uhm’s model [16] described above, wherein the source
of the two-stream instability, 7.e. the differential rotation between the components, is a direct conse-
quence of the mutual equilibrium of the two components in the 2D cross-section of the cylindrical trap.
In electron-trap experiments there may be other mechanisms producing differential rotation between
electrons and ions and thereby driving the two-stream instability. For instance in cylindrical traps the
electrons and the ions can have different axial profiles which can result in differential rotation between
the two components [75], while in toroidal traps the curvature drift can cause differential rotation
between electrons and ions [78]. However irrespective of the source of the two-stream instability, the
elastic and excitation collisions between electrons and background neutrals will influence it’s dynamics

through collisional relaxation of the electron cloud’s profile.

4.1 PNEPNEX1: Linear and nonlinear evolution of the ion reso-

nance instability in cylindrical traps

The theoretical background, numerical set-up, and results of the PNEPNEX1 are presented in the

following subsections.

4.1.1 Background Formulation

The equilibrium of a cold (implying zero-temperature), collisionless, multispecies plasma magnetized
in a cylindrical trap of infinite length is considered as the starting point of the analysis. Assuming
the equilibrium properties to be axially uniform and azimuthally symmetric and approximating that
the plasma evolves only electrostatically, the equilibrium can be described by the radial force balance
on each component of the plasma. In general the force balance equation can be written for the ;%
component fluid element as, [1]

miv2,(r
! 39( ) +e;E.(r) 4 ejvja(r)B, = 0, (4.1)
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where the first term is the centrifugal force, the second term is the electric field force, and the third term
is the Lorentz force. Here m; and e; are respectively the mass and the charge of the §t species, r is the
radial co-ordinate, vjg is the azimuthal velocity of the fluid element, E, is the radial electric field acting
on the element, and B, is the applied uniform axial magnetic field. The given quadratic equation can be

solved for the equilibrium angular velocity of the j component fluid element, wy;(r) = v;(r)/r as, [1]

(NI

r

Wej€j ejey N
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i) = -2 60@53%%/ () (12)
Here the indices j and k denote plasma component, €; is the sign of e;, we; = |ej|B./m; is the

cyclotron frequency of the j** component, nj is the number density of k" component, and e is the
permittivity of free space. Now, if the radial density profile of every component is a step function to
the same radial extent having the form, n;(r) = n; for » < r, and and n;(r) = 0 for r > r, (where
rp < Ry), then the r-dependencies in the solution are removed and it reduces to two rigid-rotor

frequencies given by [1]
1

B
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The solutions w v and w,_. pj Canl be termed as the fast rotor mode and slow rotor mode respectively.

In the present study a two-component nonneutral plasma having this kind of a step density profiles
is considered. The plasma is made up of a major component of electrons of density, n., and a
minor component of ions of single ionization having a density, n; = fn., where f is a constant
fraction measuring the fractional charge neutralization provided by the ions. For this special case of

equilibrium, the rigid rotor frequencies of Eq. (3) reduce to, [1]

ce

2 3
Wi = e |4 (1 - 2‘”2”6(1 - f)) : (4.4)

N[

2
wi:—% 1i(1+2w2”i(1;f)> . (4.5)

ci

Here the subscript 7 has been replaced by e and 7 to denote electron component, and ion component
respectively. Given that 0 < f<1 the quantity ' = 2w£e( f)/w? has a similar significance as the
Brillouin fraction, f, = 2w§e Jw?, in pure electron plasma. This can be understood from Eq.(4), which
shows that for the range of f-values given by 0 < f<1, the condition 0< F'<1 should be satisfied
for a real solution for wt. Hence F can be termed as the modified Brillouin fraction for the above
equilibrium. An analysis of this pair of solutions shows that for 0 < f < 1 (implying 0<F<1) and
any given ratio of the masses i.e. 0 < (m;/m,.) < 0o, the solutions w . and w,; have the same sense of

rotation with their magnitudes ordered as w;, > w; >w,. (with w;, = w,, only for f = 1.0) while w;
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has the opposite sense of rotation and a greater magnitude than w_;,. The important conclusion here
is that for 0 < f < 1 (meaning 0 < F'<1), and 0 < (m;/me) < oc, the solutions satisfy the inequality
wrii #wfe, which implies that such a two-component step density profile of nonneutral plasma should
always have a differential rotation between its components in equilibrium. This differential rotation
makes the equilibrium susceptible to a rotational form of the two-stream instability known as the ion
resonance instability, which under suitable conditions can produce exponentially growing Diocotron
mode(s) in the system. A linearised stability analysis of the equilibrium [1, 16] reveals that for a given
combination of the equilibrium solutions (wi,wi) certain equilibrium points in the parametric space
of f, F', m;/me, and r,/R,, (within their respective range of values) can be unstable and excite one or
more growing Diocotron modes in the system while other points in the same parametric space can be
stable. The growth rates and frequencies of the unstable modes can be determined by applying a first
order perturbation analysis at the unstable equilibrium point [1, 16]. The set of numerical experiments
described in Section 4.1 are simulations of the evolution of such a two-component step density profile
loaded at different equilibrium points in the parametric space. For stable equilibrium loads the plasma
components simply continue to rotate rigidly with their respective equilibrium angular velocities, as
expected. For unstable equilibrium loads however, the differential rotation excites the same azimuthal
mode(s) on both components, but with a phase difference. During the initial exponential growth
phase of the mode(s), their frequencies and growth rates are found to be consistent with linearised
calculations [1, 16]. In the nonlinear phase the plasma shows some interesting dynamics such as
wave breaking on the ion cloud followed by substantial loss of heated ions to the wall through radial
transport, and pinching of the peaks of the dominant azimuthal mode on the electron cloud followed
by azimuthally symmetric tearing across the pinches into [ sections where [ is the mode number of
the dominant mode. Late nonlinear phase dynamics include an inverse cascade of the torn sections of
the electron cloud into a single cloud, and general phase mixing of the modes leading to the formation
of a diffused profile from the initial step function. In Subsection 4.1.3 all the linear and nonlinear

dynamics of the ion resonance instability are investigated.

4.1.2 Numerical Setup

All simulations of PNEPNEX1 were carried out for typical parameters found in experiments of cylin-
drical traps. [18], in particular, a wall radius, R,, = 0.125m, and axial magnetic field, B, = 0.0157T".
The simulation time step, 6t = 107!'sec is chosen much smaller than the cyclotron time period,
T.. = 2.38 x 10~ ?sec of electrons, such that the code can well resolve the cyclotron motion of both
ions and electrons. PIC-parameters used in the simulations are 87834 pseudo particles for each plasma
component, on a 70 x 70 grid. As the actual population of the ions is a fraction, f of the electron
population, the number of real ions represented by each ion pseudo-particle has also been scaled down
to a fraction, f of the representation value of electron pseudo-particles.

The initial condition of the set of simulations are two-component step density profiles loaded with

both the electron and ion component in the slow mode of rigid rotor equilibrium (w;,,w,;) at nine
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different points in the parametric space of f, F, m;/m., and r,/R,,. The exact values of the loading
parameters for each experiment are tabulated in columns 2 to 6 of Table 4.1. Based on these parameters
the nine experiments have also been divided into two sets within the table. All experiments in a set
have common values of the loading parameters f, = F'/(1 — f), m;/m., and r,/R,,, and are arranged
in ascending (descending) order of the parameter f (F') (see Table 4.1). These two sets of simulations

will be discussed separately in the following two subsections.

4.1.3 Results from two-component equilibrium loads at low f,

Experiments 1 to 7 constitute the first set of Table. 4.1. In this set the loading parameters fp, m;/me,
and r,/R,, are fixed at the values of 0.02, 1836, and 0.5 respectively while the fractional neutralization,
f takes increasing values in the range 0.05 to 1.0, from Expt. 1 to 7. All experiments in this set besides
Fxpt. 6, are simulated till 7 ~ 22674 . The simulation time for Expt. 6 is extended upto 7 = 56685.
The linear phase analysis of the ion resonance instability is performed with the help of the potential
probes (Fig 4.1) which can pick up the frequencies of the excited Diocotron modes in the system. A
FFT performed on the potential probes’ signal in the lincar phase (Fig. 4.1c) gives the individual
frequencies, wy of the linearly growing Diocotron modes in the system (Column 9 of Table 4.1). A
measure of an effective growth rate, a;°/f (Column 11 of Table 4.1) due to all growing modes in the
linear phase is obtained by fitting an exponential envelope on the linear growth phase of one probe’s
signal (Fig. 4.1d). Wherever analytical values of excited mode frequencies and their growth rates are
available, these values (columns 7,8, and 10 of Table4.1) have been compared with the corresponding
values obtained from simulation. It should be noted however that the analytical values of the growth
rates are for individual modes whereas the growth rate obtained from the probe signal is an effective
value for all growing modes in the system. It is interesting that for cases where there are multiple
modes excited the value of the effective growth rate comes out to be close to the average value of
individual analytical growth rates of the excited modes (as on Expt. 3 to 5). Precisely for this reason,
the period of effective exponential growth of the probe signal due to multiple excited modes is not
necessarily the extent of the actual linear phase of the profile evolution. Pure linear dynamics of
the profile lasts only up to the time till which the fastest growing mode is linear, whereas the probe
signal, growing at averaged growth rate, remains linear for typically longer periods due to the slower
growing modes. However the energetics of the profile evolution gives an accurate measurement of the
extent of the linear phase. The start of the energy exchange process between the components marks
the beginning of the actual nonlinear phase of the system. This can also be verified by comparing
the snapshots of the profile just before, and just after this point. Hence for all the experiments the
extent of the linear phase is determined from the energetics of the system. For experiments 3 to 5 the
frequencies of the slower growing modes in the system are not picked up by the probe in the short
linear phase. In Experiment 6 the linear growth phase of the probe signal is too short-lived for an
effective FFT to be performed for obtaining frequencies of excited modes. Experiment 7 has been

loaded at a stable equilibrium point in the parametric space where there is no differential rotation
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Figure 4.1: Potential-probe signal analysis for Expt. 3: (a) V}, is electrostatic potential recorded by the
left probe. Normalized time, 7 is in units of electron cyclotron time, i.e. 7 =1t/Te. (b) is a zoomed in
plot of the signals of two probes in the initial linear growth stage. This linear growth stage is analysed to
measure the Diocotron frequency w, and the effective growth rate aery shown in Table I. In (c) an FFT is
performed on the readings of the four probes in the linear growth stage to determine w,. Here the x-axis
is angular frequency normalised by the analytical angular frequency of the | = 2 mode, w, = 6.597 x 10°
rad/sec, and the y-axis is the power factor in arbitrary units. It is seen that the FF'T plots of all the four
probes are quite overlapped and peak at the same frequency. (d) is an exponential fit on the linear growth

phase readings of the left probe used to measure a.ss. Vjo is the initial probe reading. The y-axis is in
log scale while time is in linear scale.
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Table 4.1: Results from different cases of equilibrium loading: The effective growth rate, a%// for the combination of excited Diocotron modes, and
the frequencies wy of each mode, are obtained from analysis of the potential probes’ signal in the linear growth phase. These values are tabulated along
with the theoretical growth rates, a,, and frequencies, w, of the Diocotron modes. Here [, represents the theoretically predicted mode number of
excited modes. The equilibrium loading parameters for each experiment of column 1 are tabulated in columns 2 to 6. The table is also segmented by a
horizontal line into two sets, in each of which all experiments have a common value of the secondary parameter, f, = F/(1 — f).

Expt. f F (mi/me) 1p/Ry  Wre wri la wa(rad/sec)® ws(rad/sec) ag(rad/sec)® oS (rad/sec)

L 005 0019 1836.0 05 Wre.wy; 1 3.505 x 10° 3.491 x 10° 0.746 x 105 0.700 x 10°
2 015 0.017 1836.0 0.5 wrewy, 1 2.827 x 100 2.792 x 10° 0.947 x 106 0.96 x 106
3 0.3 0.014  1836.0 0.5 Wpewy; 1 1.894 x 106 imperceptible 1.308 x 106
2 6.597 x 10° 6.283 x 10° 2.540 x 108 2.100 x 10°
4 04 0.012  1836.0 0.5 Wres Wy 1 1.705 x 108 imperceptible 1.231 x 108
5.680 x 106 5.026 x 100 2.924 x 100
10.053 x 10° 10.050 x 10° 2.924 x 10° 2.215 x 10°
5 0.5 0.0l  1836.0 05w, w,; 1 0.770 x 109 imperceptible 1.077 x 106
2 4.233 x 106 imperceptible 2.771 x 100
: 8.466 x 10° 8.375 x 10° 3.386 x 10° 2.450 x 10°
6 0.85 0.003  1836.0 0.5 wp,w,; multiple values too short values 3.500 x 10°
unavailable lincar phase unavailable
7 1.0 0.00 1836.0 0.5 Wre, Wy 10 mode noue noue no growth no growth
8 0.1 0.9 1836.0 0.5 Wye, Wy 110 mode noue 2.713 x 107 (I =1)  no growth 0.040 x 107
9 0.15  0.85  1836.0 0.5 wrewy, 1 5.387 x 107 5.236 x 107 1.89 x 107 1.80 x 107

4. PARTIALLY NEUTRALIZED ELECTRON PLASMA NUMERICAL

EXPERIMENTS (PNEPNEX)

“Estimated from Fig. 8b and 9b of Ref. 3
"Estimated from Fig. 8a and 9a of Ref. 3
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4.1 PNEPNEX1: Linear and nonlinear evolution of the ion resonance instability in
cylindrical traps

between the components (w,,

ye = w,; = 0), and as such there are no unstable modes excited in this

experiment throughout the simulation.

The full linear and nonlinear evolution of the ion resonance instability in this set of simulations will
be described in detail for four selected profiles out of the seven, viz. Experiments: 2, 3, 5, and 6, as
each of these profiles’ evolutions is dominated by a different Diocotron mode. Snapshots of the selected
profiles, at different stages in their evolution, will be used as illustrations for the plasma dynamics being
described (Figures 4.2, 4.4, 4.8, and 4.10). It is to be noted that in these snapshots both components
are represented by the same number of pseudo-particles, but ratio of the number of real particles of
each component depends on f. To understand the energetics of the process of instability, the potential
and kinetic energies of the two plasma components have been plotted as a function of time for each
of these profiles, along with their total energies (Figures 4.3, 4.5, 4.9, and 4.11). Plots showing the
population of trapped electrons and ions as a function of time for all simulations in Set 1 (Fig. 4.12
and 4.13) will be useful in comprehending the mechanism of particle loss for the two components and
understanding how fractional neutralization parameter, f influences cross-field transport of electrons
and ions in these simulations. Experiment 3 will be described with help of some additional diagnostics
such as a plot of the magnetic and kinetic, angular momentum of both components as a function of
time along with the total angular momentum of the system (Fig. 4.6), and a set of plots showing the
variation in the radial and azimuthal velocity distribution functions with time in the early nonlinear
stages of the instability (Fig. 4.7). Besides these diagnostics, an example of the potential probe data
analysis in linear phase, has also been shown earlier using the probe signal of Expt. 3 (Fig. 4.1).

In Expt. 2 the differential rotation between the two components makes the equilibrium unstable,
and leads to the growth of an [ = 1 mode in the system. Analysis of the energetics (Fig. 4.3) shows
that the energy exchange process between the two components begins roughly from 7 =~ 4000 which
also marks the end of the linear phase of the evolution. Analysis of the potential probe signal in
the linear phase shows that the [ = 1 mode has an angular frequency of 2.792 x 10° rad/sec and a
growth rate of 0.96 x 105 rad/sec. Fig. 4.2 shows selected snapshots of the profile at different stages
of the simulation. Of these, Fig. 4.2a-b can be considered to be in the linear phase while the rest are
in the nonlinear phase of the evolution. Unlike higher modes of the two stream instability that are
excited with a phase difference of m between the two components, the [ = 1 mode is initially excited
on both components at the same phase i.e. without any azimuthal separation between the two clouds.
However the initial phase synchronization is lost as the two clouds move increasingly out of phase in
their [ = 1 orbits, evident from the increasing azimuthal separation between them (Fig. 4.2b-e). The
evolving phase difference between the two components during the linear and early nonlinear stages of
the instability, is also a unique feature of the I = 1 mode. In the nonlinear phase the ion profile also
undergoes a growing surface filamentation at the end farthest from the electron cloud (Fig. 4.2d-i).
100% particle confinement lasts only up to 7 ~ 4500 after which the ion concentration is drastically
reduced by their thermal transport to the grounded walls (Fig. 4.13), while the electron population

remains conserved till the end of the simulation (Fig. 4.12). The loss of ions can be understood from
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Figure 4.2: Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites a dominant [ = 1 Diocotron mode in the profile (Expt. 2 of Table 4.1). Below

each snap, the time elapsed is mentioned in normalised units of electron cyclotron time, i.e. 7 =t/T,..
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Figure 4.3: Energy curves of Expt. 2 of Table 4.1 : W represents the energy components in the legend,
Ey is the initial total energy, and 7 = t/T,.. P, and P; are the potential energies of electrons and ions
respectively. K, and K; are the kinetic energies of electrons and ions respectively. F is the total energy of
the system. The energy components are normalised by Fy and plotted as a function of time. The time
axis is normalised by the cyclotron time period of electrons, T,.. Inset: Zoomed-in snaps of initial
sections of these curves are shown here for clarity.
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4.1 PNEPNEX1: Linear and nonlinear evolution of the ion resonance instability in
cylindrical traps

the energetics of the instability (Fig 2). Between 7 = 4000 and 7 = 4500 of the nonlinear phase
(Fig. 4.2d-f), the initially cold ions not only gain potential energy but also thermal kinetic energy at
the expense of potential energy of the electrons. The gain in thermal energy of heavier ions increases
their Larmour radii that results in their radial transport and eventual loss to the grounded wall. The
transfer of potential energy from the electrons to the ions continues till 7 =~ 6000 but after 7 ~ 4500
the total kinetic energy of ions drops due to heavy loss of particles between 7 = 4500 and 7 =~ 6000
(Fig. 4.2g-m). At 7 ~ 6000 the ion concentration reduces to 3.7% of its initial value (Fig. 4.13). At
this point the energy exchange process ceases and the electron cloud now continues to make stable
nonlinear [ = 1 orbits very close to the circular boundary; its profile shape having become elliptical
due to close proximity to the grounded wall (Fig 4.2n-r). By the end of the simulation all ions have
been lost while electron population remains intact at 100% of its initial value.

In Expt. 3 the initial unstable equilibrium conditions are such that the ion resonance instability is
dominated by a I = 2 mode in the linear growth phase which lasts up to 7 =~ 1400. As with the other
experiments, the end of the linear phase is marked by the start of the energy exchange process in the
energetics of the simulation (Fig. 4.5). Fig. 4.1 shows the potential probe analysis for this experiment.
It can be seen from Fig. 4.1c-d that during the linear growth phase the [ = 2 mode has an angular
frequency of 6.283 x 10° rad/sec and there is a effective growth rate (mainly due the | = 2 mode) of
2.1 x 10° rad/sec in the system.

Fig.4.4 shows the evolution of the profile through the simulation. Fig. 4.4a-d are in the linear
phase while the remaining snapshots of Fig. 4.4 are in the nonlinear phase of the evolution. The [ = 2
mode is excited with a phase difference of m between the two components which implies an azimuthal
separation, Af = /2 between the peaks of the mode on the two components (as [Af = 7). Hence
the two clouds acquire ellipticity in perpendicular direction to each other (Fig. 4.2b-c). The phase
difference between the two components is maintained through the linear and early nonlinear stages
of the simulation (Fig. 4.4b-e) before the ion profile gets diffused through cross-field transport and
phase mixing. In the nonlinear phase the elliptical ion cloud undergoes wave breaking at its radially
stretching vertices while the elliptical electron cloud undergoes a gradual pinch from its radially
stretching vertices towards the centre, along its major axis (Fig 4.4d-e).

Fig. 4.12 and Fig. 4.13 shows that 100% particle confinement lasts up to 7 ~ 1650 after which
the ion count plummets because of their radial transport to the walls while the number of electrons
remain nearly conserved up to 7 & 5000. The energetics of the system (Fig. 4.5) show that from the
start of the nonlinear phase at 7 ~ 1400 up to 7 = 1650 (Fig. 4.4e) the initially cold ions not only gain
potential energy but also thermal kinetic energy at the expense of the potential energy of electrons.
The increase in thermal energy of the heavier ions results in their radial transport and eventual loss
to the wall as in Expt. 2 (Fig. 4.13). The transfer of potential energy from the electrons to the ions
continues till 7 =~ 6000 but after 7 ~ 1650 the total kinetic energy of ions drops due to heavy loss of
ions between 7 & 1650 and 7 &~ 6000 (Fig. 4.4f-w). At 7 = 6000 the ion concentration reduces to 2.9%
of its initial value (Fig 13).
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Figure 4.4: Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites a dominant [ = 2 Diocotron mode in the profile (Expt. 3 of Table 4.1). Below
each snap, the time elapsed is mentioned in normalised units of electron cyclotron time, i.e. 7 =1t/Tp..
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Figure 4.5: Energy curves of Expt. 3: W represents the energy components in the legend, Ej is the
initial total energy, and 7 = ¢/7,.. P. and P; are the potential energies of electrons and ions respectively.
K, and K are the kinetic energies of electrons and ions respectively. £ is the total energy of the system.
The energy components are normalised by Fy and plotted as a function of time. The time axis is
normalised by the cyclotron time period of electrons, 1¢.. Inset: Zoomed-in snaps of initial sections of

these curves are shown here for clarity.
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Figure 4.6: Angular Momentum curves of Expt. 3: M represents the angular momentum components in
the legend, L is the initial total angular momentum, and 7 = ¢/7T,.. The magnetic component of the

angular momentum L, of both species, and the kinetic component of the angular momentum, L., of
both species, are plotted as a function of time along with the total angular momentum of the plasma, L.

Inset: Zoomed-in snaps of initial sections of these curves are shown here for clarity.
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Figure 4.7: Zoomed in plots of the distributions in angular velocity and radial velocity, of electrons and

ions, in the early nonlinear stages of Expt. 3, before the loss of ions. (a) and (b) are the angular velocity

distributions of electrons and ions respectively. (¢) and (d) are the radial velocity distributions of

electrons and ions respectively. wy. ™, wr;~, and 7 are predefined normalising constants. Normalising
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of each plot.
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4.1 PNEPNEX1: Linear and nonlinear evolution of the ion resonance instability in
cylindrical traps

Between the start of the nonlinear phase at 7 ~ 1650 and the time, 7 =~ 5000, up to which the total
number of electrons is nearly conserved (Fig. 4.12), there are some interesting dynamics of the electron
cloud. During this interval the electron cloud first gradually pinches off into two identical clouds
arranged axisymmetrically (Fig. 4.4f-n), and then gradually there is a shift from the axisymmetry in
the arrangement of the two electron clouds as they come closer azimuthally (Fig. 4.40). With this
axially asymmetric arrangement the centre of mass of electrons gets displaced from the central axis,
indicating that an [ = 1 mode is now dominant. From 7 =~ 5000 to 7 =~ 6000 the electron population
drops to 83% of its initial value (Fig. 4.12), as the two electron clouds undergo a complex inverse
cascading process that results in their recombination to a single cloud configuration (Fig. 4.4p-w).
7 &~ 6000 marks the end of the significant loss period of electrons and also the end of the energy
exchange processes in the system (Fig 4.5).

Beyond 7 =~ 6000 up to the end of the simulation the electron population remains nearly stable
(Fig. 4.12) as the recombined electron cloud makes stable nonlinear | = 1 orbits close to the wall
(Fig. 4.4x-z). The protruding filaments on the surface of the electron cloud that are reminiscent of the
merging process that led to its formation also get diffused through Kelvin-Helmholtz instability. At
the end of the simulation, electron and ion populations decrease to 75.51% and 0.3% of their respective
initial values (Fig. 4.12 and Fig. 4.13).

Fig. 4.6 shows the variation of the different angular momentum components of the system as a
function of time. Because the direction of the axial magnetic field, B, is chosen into the plane of
the paper the equilibrium rigid rotations in the slow mode of both components has a clockwise sense.
Hence the initial kinetic angular momentum for both components (Eq. 2.105) is a negative quantity
in Fig. 4.6 . For the same reason the magnetic angular momentum of electrons is a positive quantity
while that of ions is a negative quantity. From the start of the nonlinear phase till the time, 7 =~ 1650,
up to which there is 100% conservation of both components (Fig. 4.12 and Fig. 4.13), the magnitudes
of the magnetic angular momentum of both components increases because the pinching of the electron
cloud as well as the combined effect of wave breaking of the ion cloud and ion heating, results in a
net radial transport of particles of their respective components. The magnitude of magnetic angular
momentum of electrons continues to increase till 7 ~ 5000 as the pinching process continues while the
magnitude of magnetic angular momentum of ions drops after 7 ~ 1650 because of particles loss.

To show that the ion resonance instability causes collisionless heating of the plasma, the distribution
of radial and azimuthal velocities of both components has been plotted in the early nonlinear stages
of the instability before the loss of ions commences (Fig. 4.7). As both components are initially cold
the value of the distribution functions at 7 = 0 is a delta function. Again the negative values of the
angular velocities in Fig. 4.7a-b is because of the chosen direction of B..

Expt. 5 has a dominant [ = 3 mode excited by its loading parameters. The energetics (Fig. 4.9)
and the potential probe analysis reveals that the linear phase lasts till 7 ~ 1130 during which the
mode has a frequency of 8.375 x 105 rad/sec and the effective growth rate rate of the instability
(mainly due to the [ = 3 mode) is 2.450 x 10° rad/sec. Among the snapshots of Fig. 4.8, Fig. 4.8a-c
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Figure 4.8: Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable

equilibrium that excites a dominant ! = 3 Diocotron mode in the profile (Expt. 5 of Table 4.1). Below

each snap, the time elapsed is mentioned in normalised units of electron cyclotron time, i.e. 7 =t/T..
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Figure 4.9: Energy curves of Expt. 5: W represents the energy components in the legend, Iy is the
initial total energy, and 7 = t/T,.. P. and P; are the potential energies of electrons and ions respectively.
K, and K are the kinetic energies of electrons and ions respectively. £ is the total energy of the system.
The energy components are normalised by Fy and plotted as a function of time. The time axis is

normalised by the cyclotron time period of electrons, T¢,.

are in the linear phase, while the remaining snapshots are in the nonlinear phase of the instability.
In the linear phase there is steady equilateral-triangulation of the two clouds at a phase difference
of m which implies an azimuthal separation, A§ = 7/3 between the peaks of the | = 3 mode on
the two components (Fig. 4.8b-¢). The mode continues to evolve with this phase difference between
the components through the early nonlinear stages (Fig. 4.8d-e) before the ion profile gets diffused
through cross-field transport and phase mixing. In the nonlinear phase there is also wave breaking at
the stretching vertices of the ion cloud, and a gradual pinch from the stretching vertices of the electron
cloud towards the centre (Fig. 4.8d-e). 100% particle conservation lasts up to 7 ~ 1280 after which
there is rapid fall in ion population (Fig. 4.13). Electron population remains conserved up to 7 ~ 1680
alter which there is loss of electrons right up to the end of the simulation (Fig. 4.12). The energetics of
the simulation (Fig. 4.9) shows that from the start of the nonlinear phase up to 7 ~ 1280 (Fig. 4.8d)
the potential energy of the electrons gets transferred into the potential and kinetic, energy of the ions,
through the instability. After 7 &~ 1280 the heated ions undergo rapid radial transport and loss to the
grounded wall, as explained in Expt. 2. Potential energy from electrons continues to be pumped into
the potential energy of ions up to 7 =~ 5000, but after 7 ~ 1280, the total kinetic energy of ions falls
due to rapid loss of ions. At 7 ~ 5000 the energy exchange process ceases and all energy components
stabilize, with the electron and ion populations at 73.01% and 15.22% of their initial values (Fig. 4.12
and Fig. 4.13). The dynamics of the electron cloud from the start of the nonlinear phase up to 7 ~ 7000
(Fig. 4.8d-r) involves pinching off into three identical daughter clouds (Fig. 4.8d-k), after which the

three electron clouds merge through an inverse cascading process (Fig. 4.81-u). After 7 =~ 7000 the
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Figure 4.10: Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites a dominant [ = 9 Diocotron mode in the profile (Expt. 6 of Table 4.1). Below

each snap, the time elapsed is mentioned in normalised units of electron cyclotron time, i.e. 7 =t/T,..

merged cloud continues to make nonlinear [ = 1 orbits close to the wall, till the end of the simulation
(Fig. 4.8v-x). By the end of the simulation electron population decreases to 55.81% of its initial value
(Fig. 4.12), while the ion population is reduced to 2.51% of its initial value (Fig. 4.13).

In Expt. 6, the loading parameters are such that the two-stream instability grows in the system
via multiple Diocotron modes. The energetics (Fig. 4.11) and the potential probe analysis shows that
the linear growth phase lasts up to 7 = 730, during which the instability grows in the system at
an effective growth rate of 3.5 x 105 rad/sec. The linear phase of the probe signal is too short for
determining frequencies of the linear modes. Among the snapshots of Fig. 4.10, Fig. 4.10a-b are in
the linear phase while the rest are all in the nonlinear phase of the evolution. In the snapshots of the
linear and early nonlinear stages (Fig. 4.10b-g), a growing [ = 9 mode, excited with a phase difference
of m between the two components ( i.e. an azimuthal separation of 7/9 between the modal peaks on
the two components), is the only mode that can be visibly distinguished. 100% particle conservation
lasts up to 7 =~ 1400, after which the ions are first to be lost while the electron population continues
to be conserved up to 7 &~ 1870 (Fig. 4.12 and Fig. 4.13). The energetics of the simulation (Fig. 4.11)
shows that from the start of the nonlinear phase up to 7 &~ 1400 the potential energy of the electron
component is transferred to the ion component in the form of ion potential energy and ion thermal
energy. During this interval (Fig. 4.10c-g) the nonlinear growth of the I = 9 mode on the ion cloud

produces wave breaking at the 9 azimuthal peaks of the cloud, as the peaks continue to attain greater
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Figure 4.11: Energy curves of Expt. 6: W represents the energy components in the legend, Iy is the
initial total energy, and 7 = t/T,.. P. and P; are the potential energies of electrons and ions respectively.
K, and K are the kinetic energies of electrons and ions respectively. £ is the total energy of the system.
The energy components are normalised by Fy and plotted as a function of time. The time axis is

normalised by the cyclotron time period of electrons, T¢,.

radial amplitude. On the electron component, the nonlinear growth of the same mode, causes a
gradual pinch from the 9 radially stretching peaks towards the centre. After 7 ~ 1400 there is loss
of heated ions to the walls, as in the above experiments. This causes the kinetic energy of ions to
fall, but the ion potential energy continues to rise at the expense of the potential energy of electrons
up to 7 &~ 15000 (Fig. 11). 7 = 15000 marks the end of the energy exchange process (Fig. 4.11),
with the electron and ion populations having reduced to 46.91% and 29.82% of their respective initial
values (Fig. 4.12 and Fig. 4.13). The dynamics of the electron cloud between 7 ~ 1400 and 7 ~ 15000
(Fig. 10h-q) involves fragmentation at the constrictions into 9 smaller clouds followed by inverse
cascading of the fragmented clouds into a single cloud. During this interval the remaining confined
ions gradually diffuse to form a positively charged background. After 7 ~ 15000 the merged electron
cloud continues to make stable nonlinear [ = 1 orbits through the ionic background till the end of the
simulation (Fig. 4.10r). At 7 &~ 22674, which is the point upto which the other experiments of this
set were simulated, electron and ion populations for this experiment reduces to 40.06% and 25.08%
of their respective initial values (Fig. 4.12 and Fig. 4.13). On further extending the simulation till
T =~ 56685 it is found that the loss rate for electrons and ions slows down further in this extended
period as the nonliner [ = 1 orbital motion of the fused electron cloud continues within the slowly
diminishing background population of ions. At the end of the simulation electron and ion populations
go down to 27% and 11% of their initial values (Fig. 4.12 and Fig. 4.13).

The numerical experiments of Set 1 are simulations of the same electron cloud for different per-

centages of a heavier ion species uniformly mixed with it. Hence it is relevant to make a generalized as
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Figure 4.12: Trapped electron population as a function of time for the four selected simulations of Set 1
i.e. Expt 2,3,5, and 6 and also for the numerical Expt. 3 and 6 when performed with Guiding Centre
Drift (GCD) approximation for the electron component: N, is the trapped electron population at a given
time and N.g is the initial population of trapped electrons. The time axis is normalised by the cyclotron
time period of electrons, Tee (Here 7 = t/T,.). The corresponding value of of f for each experiment is
mentioned in the key. Inset: The trapped electron population as function of time for the extended
simulation time of Expt. 6.

well as comparative analysis of this set of experiments. For equilibria where the differential rotation
between the two components triggers an [ # 1 mode on them, the mode is excited at a phase difference
of ™ between the the two components. This implies that the peaks of the mode on the two components
have an azimuthal separation , A@ = 7/l between them. This phase difference of the excited | # 1
mode on the two components, is maintained throughout the linear phase and early nonlinear phase
of the instability before the ion profile gets diffused through thermal cross-field transport and phase
mixing of the mode. The [ = 1 mode is however excited without any phase difference between the two
components. But as the mode grows on the two clouds they increasingly move out of phase in their
orbital motion which is evident form the increasing azimuthal separation between them.

The evolution of all I # 1 modes also follow a general pattern in the nonlinear phase. There is wave
breaking at the modal peaks on the ion cloud and a pinching from the modal peaks of the electron
cloud towards its centre followed by symmetric tearing of the electron cloud. At later stages of the
nonlinear phase, the fragmented sections of the electron cloud merge to form a single electron cloud
which makes nonlinear [ = 1 orbits very close to the wall up to the end of the simulation.

Fig. 4.12 shows how the total population of trapped electrons varies with time for the four selected
equilibrium loads of Set 1, namely Expt. 2, 3, 5, and 6 which have loading f values of 0.15, 0.3, 0.5,
and 0.85 respectively. The two dashed electron population curves in Fig. 4.13 are for the equilibrium
loads of Expt. 3 and 6 simulated with Guiding Centre Drift (GCD) approximation for the electron

component. In Expt. 2 the loaded population of electrons remains confined for the entire length
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Figure 4.13: Trapped ion population as a function of time for the four selected simulations of Set 1 i.e.
Expt 2,3,5, and 6: N; is the trapped ion population at a given time and N is the initial population of
trapped electrons. The time axis is normalised by the cyclotron time period of electrons, 1. (Here

7 =1/1¢e). The corresponding value of of f for each experiment is mentioned in the key. Inset left: The
same plot with the ion population axis normalised for each experiment by the respective value of initial
trapped ion population, fNgg. Inset right: The trapped ion population as function of time for the
extended simulation time of Expt. 6.

of simulation. In Expt. 3, 5, and 6 100% confinement of electrons lasts till 7 &~ 5000, 7 =~ 1680,
and 7 = 1870 respectively, after which the the three populations follow different loss curves. The
snapshot of the plasma profile nearest to the time of commencement of electron loss in Expt 3, 5, and
6 (Figures 4.4p, 4.8i, and 4.101) shows that the loss process is initiated shortly after the fragmented
electron clouds have begun the process of merging (inverse cascade) in these simulations. The fact
that the dynamics of Expt 2 (Fig. 4.2) does not involve any fragmentation of the electron cloud is the
reason why this simulation is free from electron loss. Coming back to Expt. 3, 5, and 6, snapshots
(Figures 4.4q-u, 4.8j-u, and 4.10j-0) between the time of commencement of electron loss and the time
of completion of the merging process (at 7 ~ 5570, 7 ~ 7000, and 7 ~ 15000 for Expt 3, 5, and 6
respectively) reveal the actual mechanism of loss of electrons during the merging process. It is seen that
when fragmented electron clouds undergo an inverse cascade in the presence of radially transported
heavier ions, portions of the surface, and surface filaments of the merging clouds repeatedly come in
contact with the conducting boundary all through the merging process. Evidently such contacts lead
to untrapping of electrons from these surfaces to the conducting wall. The longer the duration of the
merging dynamics, higher is the loss of electrons incurred by the end of this process. Once the electron
clouds have completely merged to a single cloud configuration there is much less contacts of the fused
cloud surface and its diffused tail with the wall in the nonlinear I = 1 orbits (Fig. 4.4v-aa, 4.8v-x, and
4.10p-r). Hence the rate of electron loss reduces significantly after completion of the merging process

in the three simulations. The two additional plots with GCD approximation for electrons in Expt. 3
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Figure 4.14: Snapshots of pseudo particles (electrons in red and ions in green) for an initial unstable
equilibrium that excites an [ = 1 Diocotron mode at f; = 1.0 (Expt. 9 in Table 4.1). Below each snap, the

time elapsed is mentioned in normalised units of electron cyclotron time, i.e. 7 =t/T¢e.

and 6 also closely follow the corresponding curves with mass included dynamics for electrons. This
indicates that the it is the kinetic effects of the heavier ions still trapped in the system that makes the
electron clouds drift on to the wall surface, and that loss of electrons is not simply a case of electrons
from a confined cloud hitting the wall because of Finite Larmor Radius (FLR) effect.

Fig. 4.13 shows how the total population of trapped ions varies with time for the same four
experiments. 100% confinement of the loaded ion populations lasts till 7 ~ 4500, T ~ 1650, T ~ 1280,
and 7 = 1400 in Expt. 2, 3, 5, and 6 respectively. In these simulations the snapshot that is closest
to the time of commencement of the ion loss process (Figures 4.2f, 4.4f, 4.8e, 4.10g) clearly shows
that untrapping of ions begins as soon as the modal peaks of the stretching ion cloud touch the the
conducting wall, or in case of Expt. 2, the filamental tail of the orbiting ion cloud touches the wall.
In all the four simulations the rate of ion loss is highest at the time of first contact with the wall
and reduces gradually after that. The ion loss curves depend on the mode number, [ of the excited
Diocotron mode. For lower azimuthal modes, a larger fraction of the loaded ion population is radially
transported in regions of the cloud that make contact with the wall i.e. the wave-breaking peaks of
I # 1 modes and the filamental tail of the cloud in [ = 1 orbits (compare spatial distribution of ions
in Fig. 4.2g, 4.4f, 4.8, and 4.10h). As a result the simulations with lower azimuthal modes loose
ions more rapidly (Fig. 4.13). Quantitatively, in Expt. 6 which has a dominant [ = 9 mode, the ion
population drops to 10% of its initial value at 7 =~ 56750, while in Expt. 2, 3, and 5 which excite a
dominant [ = 1, [ = 2, and [ = 3 mode respectively, the same percentage reduction in ion population

is reached before 7 =~ 7500.

4.1.4 Two-Component Equilibrium loads at high f,

Experiments 8 and 9 constitute the second set of Table 1. In this set the loading parameters fp, m;/me,

and /Ry, are fixed at the values of 1.0, 1836, and 0.5 respectively while the fractional neutralization,
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Figure 4.15: Energy curves of Expt. 9: W represents the energy components in the legend, Fj is the
initial total energy, and 7 = ¢/T¢.. P and P; are the potential energies of electrons and ions respectively.
K, and K, are the kinetic energies of electrons and ions respectively. E is the total energy of the system.
The energy components are normalised by Fy and plotted as a function of time. The time axis is
normalised by the cyclotron time period of electrons, 7.
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Figure 4.16: Trapped electron (ion) population as a function of time for Expt 2 and 9: N, (N;) is the
trapped electron (ion) population at a given time and Ngo (Njo) is the initial population of trapped
clectrons (ions) for that simulation. The time axis is normalised by the cyclotron time period of electrons,
Tee (Here T = t/T¢.). The corresponding value of of f;, for each experiment is mentioned in the key.
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f has a value 0.1 in Expt. 8 and 0.15 in Expt. 9. These two experiments are simulated till 7 ~ 22674.
The same diagnostics and data analysis methods that are used in the simulations of Set 1 are also
applied here.

The equilibrium loads of both these experiments excite an [ = 1 mode on the two components.
But while the I = 1 mode in Expt. 9 has a growth rate (5.236 x 107 rad/sec) and a frequency
(1.89 x 107 rad/sec) which match with corresponding analytical values, the excitation of the [ = 1
mode in Expt. 8 is a discrepancy from analytical results. Linearised theory [1, 16] predicts that the
rigid rotor equilibrium of Expt. 8 should be stable. But the simulation reveals that the differential
rotation between the two components excites an [ = 1 mode of frequency 2.713 x 107 rad/sec and a
growth rate of 4 x 10° rad/sec. Even though the equilibrium points of Expt. 8 and 9 are located quite
close in the parametric space differing only in the value of f, the growth rate of the mode in Expt. 8
has a value that is two orders smaller than that of Expt. 9. This indicates that the discrepancy from
linearised theory in Expt. 8 is only a small nonlinear correction to the zero growth rate (no mode)
obtained from linearised theory. To rule out the possibility that the discrepancy is a numerical error,
Expt. 8 was repeated on the same grid with doubled computational particles (175668 per component)
to check whether changing the weight of the pseudo particles modified the growth rate and frequency
of the [ = 1 mode. However even these repeated experiments yielded almost exactly the same results
for the excited [ = 1 mode, showing that it is indeed a physical effect.

The full linear and nonlinear dynamics of the instability will be described in detail for Expt. 9.
Fig. 4.14 shows some selected snapshots of this simulation. From the energetics of the simulation
(Fig. 4.15) it can be seen that the energy exchange process of the instability begins at 7 ~ 220 which
also marks the end of the linear phase. Hence among the snapshots, only Fig. 4.14a-b are in the
linear phase while the rest are in the nonlinear phase of the instability. It is worth investigating the
dynamics of the | = 1 mode, and other results such as particle loss (Fig. 4.16) of this experiment
comparatively with that of Expt. 2, which has the same loading values of the parameters f, m;/me,
and r,/R,, for a smaller value of f; (see Table 1). In Expt. 9 the [ = 1 mode on the two components
start off in phase, but acquire an increasing phase difference as the mode grows in the linear and
early nonlinear stages of the instability (Fig. 4.14a-d). A similarly evolving phase difference has been
described earlier for Expt. 2. But in stark contrast with Expt. 2, the instability of Expt. 9 radially
transports electrons more efficiently than ions (Fig. 4.14e-i). This difference is also reflected in the
energetics of the two experiments. While Fig. 4.3 of Expt. 2 shows ions gaining thermal kinetic energy
from the instability during the energy exchange phase, Fig. 4.15 shows the same process happening
for clectrons in Expt. 9. In Fig.4.16 the electron and ion, population curves of Expt. 9 are plotted
with the corresponding curves of Expt. 2 for comparison. These population curves show that the
equilibrium at higher Brillouin ratio <.e. Expt. 9, has better conservation of the initial neutrality level
of the plasma. At the end of Expt. 9 (at 7 = 22674) the electron and ion, populations drop to 92%
an 78% of their respective initial values while at the end of Expt. 2 (also at 7 &~ 22674) the electron

and ion populations, are at 100% and 0% of their respective initial values.
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In the next set of numerical experiments PNEPNEX2, we will investigate the influence of non-
ionzing collisions between electrons and background neutrals on the dynamics and energetics of the

ion resonance instability.

4.2 PNEPNEX2: Ion resonance instability in presence of electron-

neutral elastic collisions

The theoretical background, numerical set-up, and results of PNEPNEX2 are presented in the following

subsections.

4.2.1 Theoretical Background

Davidson and Uhm’s linear analytical theory [16], when applied to Expt. 2 (f, = 0.02, f = 0.15) at
zero background pressure (absence of neutrals) predicts growth of an unstable | = 1 azimuthal mode (I
being the mode number) on both components with angular frequency 2.827 x 105rad/sec and growth
rate 9.47 x 10°rad/sec. Our simulation of the same equilibrium sans neutrals, in PNEPNEXI, are
in excellent agreement with the linearised theory in the linear phase of the instability. We get an
unstable [ = 1 mode with angular frequency 2.792 x 10rad/sec and growth rate 9.6 x 10°rad/sec (see
Table 4.1). A linear perturbation analysis of the high f, Equilibrium, Expt. 8 (f, = 1.0, f = 0.1)
at zero background pressure predicts that this equilibrium should be stable [16]. However we have
seen in PNEPNEX1 that this equilibrium infact destabilizes very slowly in the the form of a nonlinear
I = 1 mode accompanied by a few higher weaker modes [38]. A linearly fitted growth rate of the
impure (mixed with a few higher weaker modes) I = 1 mode is obtained as 4.0 x 10°rad/sec while
its angular frequency comes out to be 2.733 x 107rad/sec [38] (see Table 4.1). The slower nonlinear
destabilization of the second equilibrium in absence of neutrals is attributed to nonlinear terms in the
perturbed equations of motion that have been neglected in its linear analysis.

We now subjected these two unstable equilibria to three different values of neutral background
pressures, I%,. The values of P, chosen are 2 x 1078Torr, 2 x 10~ "Torr, and 2 x 10~ %Torr at
a common fixed background temperature T3, = 300K. The collision time step, At. for the lowest
background pressure was chosen as 6 x 10 %sec and it was reduced by an order of magnitude and two
orders of magnitude for the 2 x 107" Torr and 2 x 10-5Torr background pressures respectively. This
kind of scaling of At. between the three background pressures helped in maintaining uniformity of
the MCC routine’s collision resolving capacity among the different experimental pressures. Of course
all the three values of At, satisfy the two criteria for collision time interval in their corresponding
experiments (discussed in Chapter 2). With the help of these PIC-with-MCC simulations we were able
to study the effect of electron-neutral elastic (and exciting) collisions on two ion resonance instabilities
that are growing via the fundamental I = 1 mode at different rates. A point to be noted here is that
in these sets of experiments the loaded ions are not of the same species as the background gas while in

typical electron plasma traps the destabilizing ions are created from the ionization of the background
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atoms by electrons. The background gas with which the electrons make non-ionizing collisions is
Argon. As the MCC is constrained to only execute non-ionizing e~ — Ar collisions in PNEPNEX2, the
Ar background will only influence the instability through collisional relaxation of the electron cloud’s
profile. So the experiments of this Section can be described as a qualitative investigation of how such
a process of profile relaxation of the electron cloud due to an arbitrary neutral species influences the

ion-resonance instability due to an arbitrary ion contaminant mixed in the electron cloud.

4.2.2 Numerical Setup

In PNEPNEX2 Expt. 2 and 8 of Table 4.1 are repeated (with PEC2PIC-3MCC), in the presence
of Background Ar neutrals that are constrained to make only non-ionizing elastic, and excitation
collisions with the electrons of the two-component (¢~ and H ™) non-neutral plasma. Hence the basic
numerical set-up and PIC parameters of PNENX2 are the same as in PNEPNEX1. The only additional
features are that of the constrained MCC operating on the plasma. The collision time step At is
adjusted according to the chosen pressure and temperature of the background gas. The values of I,
chosen are 2 x 10~8Torr, 2x 10~ Torr, and 2 x 10~ 5T orr at a common fixed background temperature
Ty, = 300K. The magnitude of axial velocity with which the electrons are loaded is 1.02727 x 107ms1
which implies that for a typical cylindrical plasma column of length of 60cm [58] the bounce frequency
of electrons is roughly 8.5 MHz. This value of the axial bounce frequency is higher than the typical
experimental bounce frequency (< 0.2 MHz [58]) of a 60cm long cylindrical plasma column. By loading
the electrons with high axial speeds we have made the electrons more energetic and thereby maintain
the average total non-ionizing (elastic + excitation) collision cross section between the moderate orders
of 1072 m? and 10729 m? (see Fig. 3 of Ref [51]) in PNEPNEX2. It must be re-emphasized here that
the loaded value of the axial velocity of electrons in the simulations serves only to adjust the collisional

probabilities and does not partake in any of the regular PIC dynamics of the plasma.

4.2.3 Results

The unstable two-component (¢~ — H™T) equilibrium of Expt. 2 in Table 4.1 i.e with f, = 0.02,
f =0.15, is loaded in the presence of an Ar neutral background at the three experimental background
pressures. For the three PIC-with-MCC simulations the electrons are also loaded with an added axial
velocity component enabling them for 3D elastic and exciting collisions with background neutrals.
What we observe from our diagnostics comprising of potential probes (Fig 1), radius of centre-of-
mass of the electron component, and the potential energy of the electron component, is that there
is negligible variation in the dynamics of this instability brought about by the electron-neutral non
ionizing collisions for the above set of background pressures. The diagnostics record values with
progression of the simulation that are identical to the zero pressure experiment for all the three
experimental background pressures. More specifically for all the experimental P, values including
Pyy = 0, the potential probes record a similar exponential growth and saturation of [ = 1 mode,

the potential energy of the electron cloud decreases and saturates similarly with time, and the radial
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Figure 4.17: Readings of the left potential probe, V), for the f;, = 0.02, f = 0.15 equilibrium at
background pressure, Py, values of 0 and 2 x 10~%Torr. V, readings of the equilibrium at the other two
simulated background pressures of 2 x 10~ "T'orr and 2 x 10~8Torr (not shown here) also overlap nearly
perfectly with the plotted readings in this figure. 7, = 300K is the chosen temperature of the
background gas in this set of runs for all Py, > 0. Normalized time, 7 is in units of electron cyclotron
time, i.e. 7 =t/T... Readings up to the growth phase (till 7 = 5000) have been zoomed in here for clarity
while the inset has the complete readings up to the end of the simulations. The other three potential

probes also recorded almost perfectly overlapping readings for all the four values of Pyg.

location of the electron cloud also increases and saturates similarly with time. As a illustrative
example, we have shown in Fig. 4.17 the left potential probe’s reading for the lowest and the highest
background pressures (P, = 0 and Py, = 2 x 107%Torr). It can bee seen that the the two signals
lie nearly on top of one another. All these diagnostic results bring us to the conclusion that for
this particular equilibrium at the chosen set of background pressures the electron-neutral elastic and
exciting collisions can not influence the evolution of the ion resonance instability on the e- H+ cloud.
We will get back to reason for this in a later comparison with the results for the second equilibrium.

Next we come to the set of MCC simulations performed on equllibrium of Expt. 8 in Table 4.1
fo =10, f =0.1. Loading this equilibrium at zero pressure produces a slower growing [ = 1 mode
than the f;, = 0.02, f = 0.15 equilibrium of Expt. 2 as seen in PNEPNEX1. Now the f; = 1.0,
f = 0.1 equilibrium is loaded at the three selected background densities of Ar. The electron now have
cylindrical trap like axial velocities and are capable of 3D elastic and excitation collisions with the
background neutrals. The collisions relax the profile of the electron cloud and the resultant changes
in the electron density profile influences the ongoing collisionless ion resonance instability. Specifically
collisional relaxation of the electron cloud reduces the average density of the electron cloud and thereby
increases the fractional density of the ions mixed in it. The dynamically changing electron density
and fractional density of ions feed back on the ongoing ion-resonance (two-stream) instability between

the two components of the nonneutral cloud and produce deviations in the paths of progression of

Page 123



4. PARTIALLY NEUTRALIZED ELECTRON PLASMA NUMERICAL
EXPERIMENTS (PNEPNEX)

the instability that are uncorrelated at different background gas pressures. As the variations in the
path of evolution of the plasma at the experimental background pressures are small in comparison to
average evolution over time it is sufficient to identify and discuss these variations only qualitatively
without quantifying their magnitudes with direct measurements. We will discuss these variations with
the help of the diagnostic results of Fig. 4.18.

First let us look at radial location of the electron component as a function of time which directly
shows how the I = 1 mode grows in orbital radius and saturates at different background pressures for
the electron component (Fig. 4.18a). It can be seen from Fig. 4.18a that the P, = 0 load has the
slowest increase in orbital radius of the electron cloud with the growth rate increasing the in the order
of Py =2 x 10~ "Torr, Py =2 x 10~%Torr, and Py =2 x 10~8Torr. After the growth period the
I = 1 mode for the lower background pressures of Iy, = 0 and I, = 2 x 10~ 8T orr saturate at slightly
smaller orbital radii as compared to the two higher background pressures of Py, = 2 x 10~ "Torr and
Py = 2 % 10 %Torr (see inset of Fig. 4.18a). The potential probe readings also mirror the same
information about the growth of the mode (Fig. 4.18b).

Next we have also compared the time evolution of two energy components between the different
background pressures, viz the potential energy energy of the electron cloud and the potential energy
of the ion cloud. We know form our eaRlier experiments PNEPNEX1 that for the %, = 0 load the
potential energy of the electron component decreases while that of ion component increases during
the growth of the instability. Fig. 4.18c and 5d show the potential energies of the electron component
and ion component respectively up to the the growth phase of the instability for the experimental
background pressures. It can be seen from Fig. 4.18c-d that the rates of decrease/increase in potential
energy of electrons/ions increases with increase in background pressure.

Hence we can conclude that changing the collisionality of the electron cloud by changing the
background gas densities has brought about interesting subtle variations in the dynamics of the ion-
resonance instability that are unique to each experimental background gas pressure. It is also to be
noted that once the growth of the collisionless ion resonance instability saturates there is no further
destabilization caused by the continuing collisions (see inset of Fig. 4.18a) which further emphasizes
that the collisions are only influencing the dynamics of the cloud through feedback of electron cloud’s
profile relaxation on the growing ion resonance instability.

We have seen that elastic and excitation collision of electrons with background neutrals influence
the dynamics of the ion resonance instability for the f, = 1.0, f = 0.1 equilibrium while they have
no effect on the instability dynamics for the f, = 0.02, f = 0.15 equilibrium. From the nature of the
growth of instability in the two equilibria it is evident that this is a due to the different lengths of growth
phase in the two equilibria. The excited | = 1 mode in the f, = 0.02, f = 0.15 equilibrium (Expt 2
in Table 4.1) grows faster and saturates quicker than the f; = 1.0, f = 0.1 equilibrium (Expt. 8 in
Table 4.1). So at a particular background pressure there will be more elastic and excitation collisions
occurring during the growth phase of the instability for the f, = 1.0, f = 0.1 equilibrium as compared
to the f = 0.02, f = 0.15 equilibrium. Hence there is more feedback on the instability by the collisional

Page 124



4.2 PNEPNEX2: Ion resonance instability in presence of electron-neutral elastic

collisions

0.04

0.035

0.025

0.02

Rcme / RW

0.015

(a)
0.036
0.035
0.034

0.033

Jo! Eg

0.032

0.031

0.029

(c)

T T T T T T T T -950 T T T T T T T
Py =_g Torr —— Py =_g Torr ——
- =2.0X107 Torr —— =2.0X10° Torr ——
=2.0X 107 Torr —— -1000 =2.0X 107 Torr ——
Ppg = 2.0 X 10°® Torr —— Ppg = 2.0 X 10°® Torr ——
[ Tpy=300Kforall Py, >0
bg bg
| ooe r -1050 Tog = 300 K for all Py > 0
i2}
S
3 z oo
0.02 =
-1150
o L
0 11350 -1200
-1250
0 1000 2000 3000 4000 5000 6000 7000 8000 0 2000 3000 4000 5000 6000 7000 8000
T T
(b)
| T T T T T T T T -0.003 T T T T
[ -0.0031 |
| Pig _0Torr— _0Torr—
Pbg_20><10 Torr —— .0.0032 F Pbg _20><10 Torr ——
Pog = 2.0 X 107 Torr —— Pb =2.0X 107 Tor —
| Pb9720X10 Torr —— Pb9720X10 Torr ——
o
u
< -0.0033 |
a2 =l
-0.0034 |
Tpy =300 K for all P, > 0 Tpy =300 K forall P, >0
- b b -0.0035 | bg by
. N N L . N . N .0.0036 L N N L L N .
0 1000 2000 3000 4000 5000 6000 7000 8000 0 2000 3000 4000 5000 6000 7000 8000
T T
(d)

Figure 4.18: Comparison of diagnostic results between different background pressure, g, for the

J» = 1.0, f = 0.1 equilibrium load: With 7 = ¢/T,, the set of plots are zoomed in showing their respective

diagnostic readings upto 7 = 8500 for clarity. T34 is the temperature of the background gas for all

Pyg > 0. (a) The radius of the centre-of-mass of the electron component, Ry, normalised by the wall

radius Ry is plotted as a function of time. Inset: The same set of plots is extended upto the end of the

simulations at 7 = 22700 (b) The left potential probe’s reading, V}, as a function of time at different

background pressures. (¢) The Potential Energy of the electron component, J. normalised by the initial

total energy of the 2-component plasma, Fy is plotted as a function of time.(d) The Potential Energy of

the ion component, .J; normalised by the initial total energy of the 2-component plasma, Fjy is plotted as

a function of time.
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relaxation of the electron cloud for the f, = 1.0, f = 0.1 equilibrium. The feedback process brings
about the subtle changes in the evolution of this equilibrium at the experimental background pressures.
Furthermore we have already seen that once saturation of the mode is achieved, the ongoing collisions
can not further destabilize the cloud. Hence a smaller time window of influence of the electron-neutral
collisions for the f, = 0.02, f = 0.15 equilibrium is the precise reason why we do not observe any

deviation in dynamics at different experimental background pressures for this equilibrium.

4.3 Conclusions and Discussions on PNEPNEX

In PNEPNEXI the ion resonance instability in cylindrical traps has been investigated with emphasis
on the Diocotron frequency, growth rate, and phase difference between the two components in the
linear phase, and the nonlinear dynamics, energetics, cross-field transport, and loss of electrons and
ions in the nonlinear phase. Several new results have been obtained from all these aspects of the
instability. The low Brillouin ratio simulations of (Expt. 1-7 of Table 4.1) have been carried out
for a wide range of fractional neutralizations spanning between the values 0.05 and 0.85. All these
simulations have cold starts of the plasma. Similar zero temperature loads of higher values of f which
are less than 1.0 (specifically 0.9 < f < 1.0), are numerically difficult to simulate. From the linearised
cold fluid model [1, 16] it can be seen that cold starts of the equilibria at 0.9 < f < 1.0 will trigger
very high modes of the plasma (the triggered mode numbers get higher the closer the equilibrium is to
f = 1.0, falling abruptly to zero modes triggered at f = 1.0). Very high modes may cause numerical
instability in the simulation because of the finite grid size. In actual experiments however, there is a
cut-off for the highest mode that the system can support, because of thermal effects of the plasma.
So it would be more meaningful as well as numerically easier to study this range of f values with a
warm load of the plasma. In fact carrying out simulations of the ion resonance instability, in general,
with warm loading conditions is an interesting avenue to take this work further. In relation to this
point, it was reasonable to perform an extra check of the numerical stability of the simulation with
the highest value of f in in Experiments 1 to 7, i.e. Expt. 6 with f = 0.85. A check was performed
by the repeating the the numerical experiment on a finer 100 x 100 grid. This test produced highly
convergent results with the original Expt. 6, thus verifying its numerical stability.

In PNEPNEX2 we have addressed how the dynamics of a trapped electron cloud is influenced by
elastic collisions with an inert neutral gas that is always present in an experimental trap, usually at
very low pressures. Our simulations reveal the true nature of the interaction of the electron-neutral
elastic collisions with the dynamics of the cloud. We have investigated how a ongoing collisionless
ion-resonance instability due to ion impurities mixed with the cloud is dynamically influenced by the
feedback of the electron cloud’s collisional profile relaxation on the instability. The effect of feedback
is visible in the energetics and growth rate of the instability. As this feedback is a highly dynamical
nonlinear process it effects also do not follow any particular trends with increase/decrease of the

background gas pressure. We also observed that the feedback can influence a growing ion resonance
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instability but can not alter the stable dynamics of the cloud once the instability has saturated. So
if the period of growth of the instability is very short, then there may not be sufficient number of
collisions in the short growth phase to influence the dynamics of the instability. Such a case of a
quickly saturating ion resonance instability being unaltered by the elastic collisions was also shown in
our simulations.

Earlier In PEPNEX2 of Chapter 2 we had also demonstrated that contrary to an existing theory [36]
on influence of elastic collisions between electrons and background neutrals, the collisions themselves
can not destabilize an otherwise stable electron cloud. This wa shown to be a result of the nature
of extraction of potential energy from the cloud by the collisions.Hence through PEPNX2 of Chapter
3, and PNEPNEX2 of this Chapter we have built some understanding of the effects of elastic and
excitation collisions of trapped electrons with background neutrals. In the next Chapter we will explore
how ionizing collisions of electrons with background neutrals together with elastic and excitation

collisions influence the dynamics of a trapped electron cloud [33].
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Background Ionization by Electron

Plasma Numerical EXperiments
(BIEPNEX)

In PNEPNEX1 of Chapter 4 the liner model of the ion resonance instability given by Davidson and
Uhm [16] was presented. Using the 2D PIC code PEC2PIC the collisionless linear and nonlinear
dynamics, and the energetics of the ion-resonance instability was investigated for a range of unstable
equilibrium of a 2-component non-neutral plasma [38]. In PNEPNEX2 simulations with the 2D3v
PIC-with-MCC code PEC2PIC-3MCC revealed how elastic and excitation collisions of electrons with
background neutrals influence the dynamics of an ongoing ion-resonance instability through feedback
of collisional relaxation of electron cloud’s profile on the instability [32]. Further in Chapter 3 it was
demonstrated through PEPNEX2, performed with PEC2PIC-3MCC, that the non-ionizing elastic and
excitation collisions of electrons with background neutrals can not be the source of destabilization of
the plasma [32]. Such collisions can only influence other destabilization processes like the ion resonance
instability. There is still one very crucial collisional mechanism that neeeds to be investigated when
it comes to destabilization of electron plasmas by the ion resonance instability.

Pure electron clouds confined in magnetic traps can get destabilized by the accumulation of ions in
the cloud, through the process of electron-impact ionization of background neutrals. Most present day
electron plasma traps operate at background pressures below 1078 T'orr wherein H;r is the predomi-
nant background gas [20]. Experiments have also been conducted where an inert neutral species such
as He has been injected into the background of an electron plasma trap to produce destabilization
of the electron cloud [50]. In cylindrical Penning-Mamlberg traps there is sustained axial motion of
electrons through their bouncing at the electrostatic end plugs of the trap and in toroidal traps an
electron cloud will be in stable fundamental Diocotron mode orbits about the toroidal axis. Such mo-
tion of the trapped electrons can cause ionization of the neutrals that they collide with, along the way.
The ionizing collisions will release ions and secondary electrons into the cloud. As the ions accumulate

in the potential well of the electron cloud, they gradually form an ion cloud that will have its own
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collective motion in the cross sectional plane of the trap in response to the electric field of the grossly
nonneutral plasma and trap’s magnetic field. The result is always a differential rotation between the
electron component and the ion component of the plasma. The differential rotation excites the ion
resonance (two-stream) instability described in Chapter 4, on the ion contaminated electron cloud.
The ion resonance instability manifests in the form of a growing I = 1 (I being the Diocotron mode
number) mode on both components of the plasma [16].

While the above described form of instability of an electron cloud caused by contaminant ions
is the 2D ion resonance instability [16], ions in electron plasma traps can also get involved in 2-
stream instabilities with the electron cloud from other causes. For instance, in cylindrical traps, the
electrons and the ions can have different axial profiles which can result in differential rotation between
the two components [75], while in toroidal traps the curvature drift can cause differential rotation
between electrons and ions [78]. Describing these other forms of 2-stream instabilities between ions
and electrons, which are also often referred to as ion resonance instabilities, requires a 3D perspective
of the trap. In BIEPNEX we have restricted our investigation using PEC2PIC-3MCC, to axially-
averaged 2D differential rotation between the two components of the nonneutral cloud. Speicifically
in BIEPNEX we have investigated, through simulation, the process of destabilization of a cylindrically
confined electron cloud due to the presence of a single species of neutral atoms, Ar in the background
of the trap at a pressure relevant to experiments. The destabilization occurs because of a gradual
accumulation of Ar™ in the cloud by the electron-impact ionization of the background neutrals.

BIEPNEXT1 is constituted by two sets of simulations BIEPNEX1 and BIEPNEX2. BIEPNEX1
is a numerical experiment that simulates the evolution of an initial stable trapped electron cloud
that is interacting through ionizing and non-ionizing collisions with background Ar maintained at
an experimental pressure. The products of ionizing collisions, Ar™ also undergo elastic and charge
exchange collisions with the background neutrals. In BIEPNEX2 the simulation of BIEPNEX1 is
repeated with i) the non-ionizing elastic and excitation collisions between electrons and background
neutrals turned off, and ii) the elastic and charge exchange collisions between the Ar* and background
neutrals turned off. The objective of BIEPNEX2 is to investigate the role of the two turned-off collision
types on the dynamics of BIEPNEX1. BIEPNEXI1 and BIEPNEX2 obviously have same numerical
set-up except for the turned off collision types in BIEPNEX2. The common numerical set-up is
described in Section 5.1 . Sections 5.2 and 5.3 present the results of BIEPNEX1 and BIEPNEX2
respectively. Conclusions and Discussions on BIEPNEX make up the last section of the Chapter,

Section 5.6 .

5.1 Setup of BIEPNEX and its PIC parameters

BIEPNEX was carried out for typical parameters found in experiments of cylindrical traps [20, 58],
in particular, a wall radius, R,, = 0.125m, and axial magnetic field, B, = 0.037. A cylindrical

(circular in 2D) pure electron cloud with a uniformly low Brillouin ratio, f, = 0.2076, and a radial
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extent 7, = 0.5 X R,, is loaded symmetrically about the axis of the trap. The background Ar gas
is maintained at a pressure, P, = 2 X 10~" Torr [20, 58], and temperature, T} by = 300K. The
chosen pressure of the background gas is higher than background pressures in most modern-day traps
where background pressures generally vary between 10~% T'orr and 1072 T'orr. The higher value of Py
of our simulation is still experimentally relevant, and serves to accelerate the progression of the ion-
resonance instability and enhances its effects, which is suitable for our simulation. The same numerical
experiment progressing at lower background pressure would show more subdued, and delayed effects

of the ion resonance instability.

The pure electron plasma is initially in its slow mode of the rigid rotor equilibrium [1, 34] in the trap,
rotating with an angular frequency w,,. In the axial direction the electrons are loaded with randomly
up or down directed velocities with a common magnitude, v, = 1.02727 x 107 m /s. This choice of
axial speed of electrons implies that for a typical cylindrical plasma column of length of 60cm [58]
the bounce frequency of electrons is roughly 8.5 M Hz. This value of the axial bounce frequency is
higher than the typical experimental bounce frequency (< 0.2 MHz [58]) of a 60cm long cylindrical
plasma column. By loading the electrons with high axial speeds we have made the electrons more
energetic and thereby maintained the average collision cross section of the electrons at moderate values
of o, = 2.207 x 1072 m?, 0, = 2.741 x 1072V m?, 0; = 1.402 x 107 m?, and o; = 3.883 x 10729 m?,
where ¢, 0., and o;, are the elastic, first level excitation, and single ionization collision cross section
for e — Ar collision (see Fig. 3 of Vahedi and Surendra, 1994 [51]), and o, = 0. + 0, + 0y, is the
total collision cross section for e~ — Ar collision. These moderate values of the above collision cross
sections is suitable for our simulation. It must be re-emphasized here that the loaded value of the
axial velocity of electrons in the simulation serves only to adjust the collisional probabilities and does

not partake in any of the 2D PIC dynamics of the plasma.

The PIC simulation time step, 6¢ = 107! s is chosen much smaller than the cyclotron time period
of electron, T, = 1.191 x 10~ ?sec, such that the code can well resolve the cyclotron motion of both
the electrons, and the collision generated Argon ions. A common collision time step, At, = 6 x 10~ 7s
is maintained for both ¢~ — Ar and Art — Ar collisions in the simulation. This value of At, satisfies

the required criteria for collision time step [32] for the numerical experiment of Section III.

PIC-parameters used in BIEPNEX1 and BIEPNEX2 are 87834 pseudo particles initially repre-
senting the loaded electron cloud, on a 70 x 70 grid. e~ — Ar collisions create an additional 35713 e~
pseudo particles and 35713 x 4 = 142852 Ar™ pseudo particles in course of simulation. The mass of

Ar atom and Ar™ ion is taken as 72820.77 times the mass of an electron. The numerical experiments

BIEPNEX1 and BIEPNEXZ2 is carried out till time, ¢ = 2.88 x 10™* s which is roughly 2.42 x 10° 7.
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Figure 5.1: Plasma profile evolution in BIEPNEX1: Snapshots of pseudo particles (electrons in red
below, and Ar™ in green on top) showing evolution of the equilibrium load of a f, = 0.2076 pure electron
plasma, in the presence background Ar atoms at pressure Ppy = 2 x 10~ "T'orr and temperature

Tyg = 300K. The electrons undergo elastic, excitation, and ionizing collisions with the Ar atoms. The

ions undergo elastic, and charge exchange collisions with the Ar atoms.Below each snap, the time elapsed
is mentioned in normalised units of electron cyclotron time, i.e. 7 =1t/Tee.
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5.2 BIEPNEX1: PIC-with-MCC simulation of the destabilization

of a pure electron cloud

The initial condition for BIEPNEXT1 is an electron cloud of moderately low Brillouin ratio, f; = 0.2076,
rotating rigidly with angular frequency w,, in its slow mode of rigid rotor equilbrium [34]. The evo-
lution of the plasma profile thereafter till the end of the simulation in depicted in the snapshots of
Fig. 5.1. We observe from Fig. 5.1 that the Ar™ ions formed by impact ionizations of the background
Argon neutrals initially accumulate in the cross-sectional potential well formed by the electron cloud
(Fig. 5.1a~g). As the ion cloud grows in size, it starts engaging in an ion-resonance (2-stream) instabil-
ity with the electron cloud. The result is the excitation of an | = 1 dioctron mode on both components
of the plasma (Fig. 5.1h-1). With nonlinear growth of the fundamental mode, a gradual radial sepa-
ration between the centres of mass of the electron cloud, and the ion cloud, is observed (Fig 5.1m-u).
Newly formed ions from electron impact ionization of neutrals still continue to accumulate at the
centre of the electron cloud’s profile, but they remain connected to the radially transported ions, so
that all the ions collectively form a single cloud without any discontinuity in its profile (Fig. 5.1m-u).
The electron cloud takes up a higher radial position than the ion cloud in their expanding | = 1 orbits
(Fig. 5.1m-u). The electron cloud’s profile also becomes more and more elliptical in shape as it moves
closer to the grounded wall [79] (Fig. 5.1m-u). In Fig. 5.1v-dd, the mode has saturated and there is no
further increase in the [ = 1 orbital radius of the 2-component plasma profile. The elliptical electron
cloud has now moved very close to the grounded wall (Fig. 5.1v-dd). The 2-component non-neutral
plasma continues to make stable [ = 1 orbits in this configurations. But there are distinctly observable
fluctuations in the radial separation between the electron cloud and ion cloud happening alongside
the saturated I = 1 orbital motion at this stage (Fig. 5.1v-dd).

The dynamics of the instability was investigated with the help of several numerical diagnostics as
shown in Fig. 5.2. Fig. 5.2a is a plot of the radial location of the centre of mass of the electron cloud
(composed of the loaded electron population and the additional electrons generated from ionizing
collision) as a function of time. The dynamics of the fundamental mode on the electron component
can be directly followed from this plot. In Fig. 5.2a the vertical lines at 7 = 54000 and 7 = 206000
(7 here being the normalised time, ¢/T,.) approximately divide the evolution of the electron cloud’s
profile into 3 phases: i) the initial quiet phase ii) the middle nonlinear growth phase and iii) the final
saturation phase.

The initial phase from 7 = 0 to 7 = 54000 (Fig. 5.1a-g) is the quiet phase in which the electron
cloud continues to be in a symmetric configuration about the central axis as the collision generated
ions accumulate in its cross sectional potential well. The centre of mass of the electron cloud remains
very close to the centre of the trap’s cross section in this phase (Fig. 5.2a). Between 7 = 54000 to
7 = 206000 (Fig. 5.1h-u) the radial location of the centre of mass increases from nearly zero to about
0.375 times the wall radius, Ry (Fig. 5.2a). Hence this period is the nonlinear growth phase of the
[ = 1 mode on the electron cloud. From 7 = 206000 till the end of the simulation at 7 = 242000
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Figure 5.2: Diagnostic readings of BIEPNEX1.: Readings of different probes and plasma parameters are
plotted as a function of time. The time axes in the all 4 plots are normalised by the electron cyclotron
time, i.e. 7 =1/T,.. The vertical lines at 7 = 54000 and 7 = 206000 demarcate the initial rigid rotation
phase, the middle growth phase, and the final saturation phase of the dynamics. The top inset, and
bottom inset of (a) and (b) are zoomed in versions of (a) and (b) between 7 = 56500 to 7 = 58000, and

7 = 156500 to 7 = 158000 respectively. (a) Radial location of the centre-of-mass of the electrons (primary
as well as secondary electrons that are trapped in the system), Reme is plotted as a function of time. The
y-axis is normalised by the wall radius R,,. (b) Potential reading of the left potential probe V}, is plotted
as a function of time. (¢) The total energy E of the plasma, and its components viz., potential energy of
electrons, 1, and ions, ¥;, and kinetic energy of electrons, k. and ions, r; are plotted as a function of
time. The y-axis is normalised by the initial value of total energy Ey. (d) The total number of trapped
electrons, N, and total number of trapped ions, IV; are plotted as a function of time. The y-axis is

normalised by the initial population of trapped electrons, Neg.
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(Fig. 5.1v-dd), the expansion of the [ = 1 orbits of the electron cloud attains an average saturation,
although there are now very high amplitude fluctuations in the radial location of the electron cloud
( saturation phase of Fig. 5.2a). This period is the saturation phase. The radius of the electron
cloud fluctuates between values of 0.05 Ry and 0.55 Ry in the saturation phase (Fig. 5.2a). The high
amplitude radial fluctuations of the orbiting electron in the saturation phase, can be associated with
the observed fluctuations in the radial separation between the electron cloud and ion cloud in the
snapshots of Fig. 5.1v-dd.

In fact a close inspection of the curve of Fig. 5.2a (see insets of Fig. 5.2a) reveals that the radial
fluctuations in the electron cloud’s position begin with very small amplitude in the growth phase itself.
The radial fluctuations steadily gain amplitude through the growth phase, and then suddenly burst
into very high amplitude in the saturation phase (Fig. 5.2a). Although some degree of fluctuations is
expected in any nonlinear growth and saturation process, the fact that there is a steady increase in
the amplitude of these fluctuations in the growth phase and then a sustained burst in their amplitude
in the saturation phase (Fig. 5.2a), indicate that these fluctuations are the response of the nonlinearly
growing [ = 1 mode to the changing population of trapped electrons and ions in these two phases. We
will come back to this explanation for the radial fluctuations in the positions of the orbiting electron
cloud (Fig. 5.2a and Fig. 5.1v-dd), and ion cloud (Fig. 5.1v-dd) later in this discussion.

Fig. 5.2b is a plot of the signal of the left potential probe through the simulation period. The
signals of the other 3 potential probes that are not shown here, also echo the same information about
the dynamics of the instability. The potential probe signal of Fig. 5.2b aided by the dotted vertical
lines at 7 = 54000 to 7 = 206000 in the figure, clearly captures exactly the same three phases of the
dynamics of the plasma as the radius of the centre of mass of electrons in Fig. 5.2a. We will later show
how we used Fig. 5.2a and Fig. 5.2b to estimate average growth rates of the nonlinear [ = 1 mode, at
different time intervals in its evolution. The potential probe signal of Fig. 5.2b also holds information
about the frequencies dynamically attained by the [ = 1 mode in course of its growth and saturation.
This information will also be extracted from the potential probe reading of Fig. 5.2b. The insets of
Fig. 5.2b, are zoomed-in portions of the left potential probe’s signal at different time-segments in its
growth phase. A comparison of the number of crests of the signal in the two zoomed-in time segments
of equal lengths of time, indicate that there must be a chirping of [ = 1 mode’s frequency occurring
with the nonlinear progress of the instability.

Now the pair of zoomed-in plots within Fig. 5.2a are at the same intervals of time as those within
Fig. 5.2b. A comparison of the corresponding zoomed in time-segments between Fig. 5.2a and 5.2b
reveal an interesting correlation between the two diagnostic readings: Although the oscillations in
the radial location of the electron cloud are fluctuations, while the potential probe has a pure signal
originating from the ongoing [ = 1 motion of the plasma, the most dominant frequency of the radial
fluctuations is nearly equal to the frequency of the potential probe’s signal in the corresponding time
segments (insets of Fig. 5.2a and 5.2b). Infact, as will be verified later, the close correlation between

the dominant frequencies of Fig. 5.2a and 5.2b (the correlation being their nearly equal values) exists
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throughout the simulation. The implications of this close correlation between the two diagnostic
readings will also be discussed later.

Fig. 5.2c and 5.2d depict the energy components of the plasma, and the trapped particle population
respectively, as a functions of time. The vertical lines at 7 = 54000 to 7 = 206000 in these two figures
again divide these curves into the above mentioned three phases. Now consider the potential energy
curves of the electron component, ., and ion component, ; in Fig. 5.2c. The electron/ion cloud’s
potential energy will directly depend on the temporal evolutions of i) the spatial electrostatic potential
function, ii) the net population of trapped electrons/ions in the system which is shown in Fig. 5.2d.
In the quiet phase the electron cloud continues to remain nearly in the loaded symmetric configuration
about the axis, as equal number of ions, and secondary electrons accumulate within it, conserving the
net charge of the cloud. So it can be assumed that the spatial electrostatic potential function will not
vary much during this phase. So an almost unchanging electrostatic potential function with linearly
increasing electron and ion population (Fig. 5.2d) results in an approximately linear increase of the
positive quantity . and a linear decrease of the negative quantity ¢; in the quiet phase (quiet phase of
Fig. 5.2¢). In the growth phase, as typical of the ion-resonance instability [32, 38], there is a potential
energy transfer from the electron component to the ion component (Fig. 5.2¢) in correspondence to the
dynamics of the instability in this phase (Fig. 5.1h-u). In other words the spatial electrostatic potential
is so modified by the instability in the growth phase, that part of the electron component’s potential
energy gets transferred to the potential energy of the ion component [32, 38]. This instability driven
potential energy transfer, curbs the linear increase/decrease of v /1; due to increasing population of
electrons/ions and brings about a saturation of the . /1; curve. (growth phase of Fig. 5.2¢). Again
as typical of an ion resonance instability [32, 38], part of the potential energy of electrons is also used
up by instability for collisionless heating of the plasma components, especially the electrons as evident
from the sudden rise in the net kinetic energy of electrons, k., in the growth phase over and above its
regular steady increase form the addition of electrons to the system (growth phase of Fig. 5.2c).

In the saturation phase the potential energy curves of both electrons, and ions in Fig. 5.2c, show
large amplitude fluctuations, similar to the fluctuations of the saturation phase observed in the radial
location of the centre of mass of electrons (saturation phase of Fig. 5.2a) as well as the potential probe
signal (saturation phase of Fig. 5.2b). The saturation-phase fluctuations in the diagnostic signals of
Fig. 5.2a-¢ are commonly linked to the radial fluctuations in the positions of the orbiting electron,
and ion clouds observed in the saturation phase (Fig. 1v-dd).

We have earlier shown that these radial fluctuations actually originate with much smaller amplitude
in the growth phase (insets of Fig. 5.2a), and hinted that the radial fluctuations are the response of the
I = 1 mode’s dynamics in the growth, and saturation phases, to the changing populations of electrons
and ions in these phases (Fig. 5.2d). Now Fig. 5.2d shows that there is a steady increase in the electron
and ion population in the growth phase. Corresponding to this steady increase in trapped particle
population, are the small amplitude radial fluctuations of the expanding orbits of the electron, and

ion clouds in the growth phase, which are diagnostically picked up by the radial trace of centre of
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mass of the electron cloud (growth phase of Fig. 5.2a). From the diagnostic readings of Fig. 5.2a and
Fig. 5.2d we can decipher that during the growth phase, as the orbits of the electron cloud become
larger (growth phase of Fig. 5.2a), the amplitude of the radial fluctuations also gradually increase
(growth phase of Fig. 2a), in response to the steadily increasing electron and ion populations in this
phase (growth phase of Fig. 5.2d).

In the saturation phase we observe a dip in the electron population curve and a saturation of the
ion population curve (saturation phase of Fig. 5.2d). It must be understood that the sudden variation
of the progress of the trapped particle population curves in the saturation phase is the result of radial
transport, and loss of particles from the orbiting plasma to the grounded wall, which is in very close
proximity to the plasma in this phase (Fig. 5.1v-dd). So there are electrons and ions being created
from ionizing collisions, as well as electrons and ions getting radially untrapped in the saturation
phase. The two competing processes of trapping, and untrapping of particles in the saturation phase
cause the saturated [ = 1 mode to respond with high amplitude radial fluctuations observable in
Fig. 5.1v-dd, and the region beyond 7 = 20600 in Fig. 5.2a-c.

Next, in Fig. 5.3 we have estimated the frequencies that are dynamically, and nonlinearly attained
by the [ = 1 mode in course of the instability. We utilized the left potential probe signal of Fig. 5.2
for the frequency analysis procedure. The signals of the other three potential probes also convey the
same information regarding the frequency of the mode.

First, to get an idea of the progressive changes in frequency, wg, of the I = 1 mode, we sampled
different segments of potential probe signal of Fig. 5.2b and performed a piece-wise FFT on each
segment to estimate the frequency of the fundamental mode in that segment of time. As an example
we have shown in Fig. 5.3a, an FFT performed on the potential probe signal (Fig. 5.2b) in the
time-segment between 7 = 83977.68 and 7 = 125966.520. In this particular time-segment of the
potential probe signal (Fig. 5.2b) we obtain a frequency ws = 2.953 x 107 rad/sec, of the | = 1
mode. The progressive change in the value of ws, sampled at different time-segments of Fig. 5.2b, is
shown in Fig. 5.3b. The rectangular bins in Fig. 5.3b represent the segment of time for which the
potential probe signal (Fig. 5.2b) was Fourier analysed to obtain each plotted value of ws. We can
see from Fig. 5.3b that the initially the value w, is nearly equal to the natural [ = 1 mode frequency,
Wao = 6.848 x 107 rad /sec, of the initial pure electron cloud [1]. As the instability progresses, the value
of ws shows a decreasing trend which saturates at a value of about 0.4 w,g in the saturation phase of
the instability. As depicted by the time-segment bins of Fig. 5.3b, FFT analysis were performed for
narrower time-segments of Fig. 5.2b in the quiet phase, in order to trace the rapid fall in the value
of wg in this phase. It is to be noted that although there are sharp fundamental mode frequencies
obtained in the quiet phase (Fig. 5.3b), from an amplitude perspective the mode is still negligibly
weak in this phase ( see quiet phase of Fig. 5.2b) indicating that the plasma is still in a symmetric
configuration about the trap’s axis with the ions and electrons accumulating within the cloud in a net

charge conserving manner (Fig. 5.1a-g). Yet there is a rapid fall in the value of ws in the quiet phase!
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Figure 5.3: Irequency analysis of the left potential probe reading from BIEPNEX1: (a) A FFT is
performed on the left potential probe’s readings between 7 = 83977.68 and 7 = 125966.520 (where

T =1/T,.) to find the [undamental mode [requency, w, in that interval of time. (b) w, values obtained
from different time-segments of the left potential probe’s reading through FF'T analysis, are plotted as a
function of time and also as histogram showing the intervals on which the FFTs were performed. The
y-axis is normalised by wqq = 6.848 x 107 rad/sec, the natural [ = 1 mode frequency of the loaded

f» = 0.2076 pure electron cloud. (c¢) The time evolution of the frequency spectrum, wypp, of the left
potential probe signal is plotted as spectrogram. Only the most relevant range of wjp, values which
include wg have been plotted in the spectrogram for better resolution. The w; frequency has been
identified within the spectrogram and its time evolution has also been traced. (d) ws values obtained from
the spectrogram, (c¢) and the piece-wise FF'T analysis, (b), have been plotted as functions of time.
Exponential fits have been made on different regions of the curve. The exponential fits 1, 2, and 3, yield
values —5.039 x 103 rad/sec, —4.199 x 103 rad/sec, and 4.619 x 103 rad/sec respectively, of a,, the
growth rates of wy. The vertical lines at 7 = 54000 and 7 = 206000 demarcate the initial rigid rotation
phase, the middle growth phase, and the final saturation phase of the dynamics. (Inset) A replot of (d)

with the y-axis in logscale used in the exponential fitting of the curve.
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To verify the correctness of our our piece-wise FFT analysis in Fig. 5.3b and gain more insight into
the time evolution of the fundamental mode’s frequency, we also performed a spectrogram analysis of
the left potential probe’s signal (Fig. 5.2b). The spectrogram method performs Short-Time-Fourier-
Transforms (STFT) on consecutive overlapped time-segments of the signal and hence gives a much
more continuous scan of the signal’s frequency components over time. The resultant spectrogram,
zoomed in on a relevant range of the frequency spectrum of the signal, wyp,, is shown in Fig. 5.3c. A
branch of frequencies corresponding to the fundamental mode frequency, ws, is clearly distinguishable
in Fig. 3c. The exact frequency values at the peaks of this fundamental mode branch have also been
traced out with a line in Fig. 5.3c. Frequency branches corresponding to the first two harmonics
of wy are also distinguishable in Fig. 5.3c. The two harmonic frequency branches are detectable in
the spectrogram (Fig. 5.3¢) only after the potential probe signal (Fig. 5.2b) has transitioned into the
growth phase. This indicates that harmonics of the fundamental mode’s frequency, ws, come into
the signal’s frequency spectrum due to nonlinear growth of amplitude of the signal (growth phase of
Fig. 5.2b).

In Fig. 5.3d we have plotted the ws versus time curve as extracted form the spectrogram (Fig. 5.3c).
The ws values obtained from piece-wise FFT analysis of Fig. 5.3b have also been plotted with points
in Fig. 5.3d. As expected, these two sets of data for w, versus time are in very good agreement with
each other. The vertical lines in Fig. 5.3d at 7 = 54000 and 7 = 206000 divide the plot into the quiet
phase, growth phase, and saturation phase. Three exponential fits for the growth rate, a,,, of ws, in
three time-segments of the ws versus time curve (extracted from the spectrogram of Fig. 5.3c) are also
shown in Fig. 5.3d. The inset of Fig. 5.3d is a replot of Fig. 5.3d with its y-axis in logscale which was
utilized for the exponential fitting of the curve.

Fig. 5.3d shows that there is a rapid fall in the value of ws in the quiet phase of the instability. Its
value decreases from w9 at 7 = 0 to 0.7Twyo at 7 = 54000, which marks the end of the quiet phase.
The exponential fit 1 (Fig. 5.3d) of the quiet phase shows that ws has decayed with growth rate,
a,, = —5.039 x 103 rad/sec in this phase. The rapid fall in the fundamental mode’s frequency in the
quiet phase can only be due to increasing inertia of the plasma, caused the accumulation of collisions
generated Ar™ ions in an electron cloud. This is because the plasma maintains its shape (Fig. 5.1a-g),
net charge (quiet phase of Fig. 5.2d), and near symmetric distribution about the trap’s axis (quiet
phase of Fig. 5.2a) in this phase. The only influential parameter that changes in the quiet phase is
the inertia of the plasma.

Just after the transition from the quiet phase to the growth phase there is downward jump in the
value of wg. The sudden jump takes the value of wy form wg = 0.7wyg at 7 = 54000 to ws = 0.58 wy at
7 = 56435. This jump corresponds to the initial burst in the amplitude of the potential probe’s signal
(Fig. 5.2b) observed around the same time. Thereafter the nonlinear dynamics of the instability in the
growth phase counteracts the effect of the increasing inertia of the plasma on the time evolution of ws.
The instability dynamics first relaxes the decay in the value of wg caused by the building inertia of the

plasma. This is evident from the exponential fit 2 (Fig. 5.3d) which yields ay,, = —4.199 x 10° rad/sec.
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Falling at this modified rate from 7 = 56435, w; reaches a minimum value of 0.37 wyo at 7 = 147635.
Beyond this point the balance tips over in favour of instability dynamics causing an exponential rise
of ws at ay,, = 4.619 x 10° rad/sec (exponential fit 3 of Fig. 5.3d) up to 7 = 206000 which marks the
end of the growth phase.

In the saturation phase ws also saturates at an average value of about 0.4wgy, with fluctuations
between values of 0.34w,q and 0.46 w,g. The fluctuations of wy in the saturation phase can be linked
to the radial fluctuations in the saturated orbits of the two components in this phase (Fig. 5.1v-dd
and saturation phase of Fig. 5.2a), and its underlying cause (saturation phase of Fig. 5.2d) that has
been explained earlier.

Turning our attention back to the spectrogram of Fig. 5.3c, it must be mentioned that a similar
spectrogram analysis was performed for diagnostic reading of Fig. 5.2a. The purpose here was to check
if the dominant frequency of the radial fluctuations in Fig. 5.2a remains close to the evolving values of
ws throughout the simulation, as indicated by the insets of Fig. 5.2a and Fig. 5.2b. Interestingly the
spectrogram analysis of the diagnostic readings of Fig. 5.2a also showed a more diffused wy branch, as
well as diffused branches of the first two harmonics of ws. Now the radial fluctuations are themselves a
consequence of changing populations of trapped electrons and ions. Hence it may be possible to develop
a linear theoretical model for an ion-resonance-instability-driven, linearly-growing [ = 1 mode, that
connects the evolving frequency of the mode, to the evolving frequency of orbital-radius oscillations
(or fluctuations), via a net-charge-conserving, linear-algebraic increase of electron and ion populations.
This proposed model is however, beyond the scope of this paper.

As the radial fluctuations are driven by the changing populations of electrons and ions (Fig. 5.2d),
it is also necessary to verify that these fluctuations are not completely or partially numerical effects,
arising from the discrete collision-steps in which collision generated particles are added to the plasma.
This was verified by searching for a (At.)™! frequency (At. being the collision time step) in the
spectrogram of the radial trace of the centre of mass of the electron cloud (Fig. 5.2a). The radial
fluctuations did not have any tell-tale signature of the (At.)~! frequency in their spectrogram, which
proves beyond doubt that the fluctuations are indeed a physical phenomenon and not numerical effects.
In fact, as discussed earlier, the dominant frequency of the radial fluctuations dynamically emulates
the chirping frequency of the [ = 1 mode all through the simulation.

In Fig. 5.4 we have estimated the growth rate, ay, of the excited [ = 1 mode at various stages its
growth phase, using the left potential probe signal of Fig. 2b, as well as the radial trace of the centre
of mass of electrons of Fig. 5.2a. Fig. 5.4a and Fig. 5.4b have exponential fits on logscaled plots of the
squared left potential probe signal (original signal in Fig. 2b), and the radial trace of the centre of
mass of the electron cloud ( original curve in Fig. 5.2a) respectively. The three exponential fits on both
Fig. 5.4a and Fig. 5.4b have been made at the exact same time-segments of these readings. The three
exponentially fitted time-segments of Fig. 5.4a and Fig. 5.4b have distinguishable temporal variation
in the growth trend of these two curves. The exponential fits Fig.5.4a yield growth rates 2 ag while

those on Fig.5.4b yield growth rates as. It turns out that the exponential fits on the two diagnostic
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Figure 5.4: Estimation of dynamic growth rates of the fundamental mode from BIEPNEX1: (a)

(Vp — Vp0)2 is plotted as a function of time, 7 where 7 = t/T,., V,, represents the left potential probe
reading, and V) is the initial value of Vj,. The y-axis is in logscale. The three straight lines represent the
exponential fits in different stages of the growth phase. Fach exponential fit has a growth rates 2 x as
from which the ay for that stage of the growth phase can be obtained. (b) Radial location of the
centre-of-mass of the electrons, R.nm. is plotted as a function of time. The y-axis is in logscale and is
normalised by the wall radius R,,. The three straight lines represent the exponential fits in different
stages of the growth phase. Each exponential fit has the growth rates a; for that stage of the growth
phase. These ag values come out to be same as those obtained from the exponential fits of (a). Obtained
as values are, 5.0 x 10°rad/sec, 5.0 x 10*rad/sec, and 1.3 x 10%rad/sec from exponential fits 1, 2, and 3
respectively.
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Figure 5.5: Fundamental mode’s frequency as a function of orbital radius of the electron cloud: This is
a scatter plot of ws(T)/wao versus Reme(T)/Rw, where ws is the frequency of the fundamental mode and
Reme is the radius of centre of mass of electrons. The normalizing constants w,o and Ry are the natural
I = 1 mode frequency of the initial pure electron cloud, and the wall radius respectively. 7 = t/T¢. where
T¢e is the electron cyclotron time. The time co-ordinate of the scatter points have been incorporated in
the colorbar. Exponential fits have been made on different sections of the scatter plot. The exponential
fits 1,2,3 yield values —880 rad/m, —16 rad/m, 10 rad/m respectively, of 7,_, the exponential growth rate
of the fitted ws versus Repme curve. (Insets) The left and the right insets show the same scatter points
restricted to the quiet phase, and the growth phase respectively. The insets have their own colour code of
their constrained time axes represented as adjacent colorbars.

readings actually yield the exact same values of «a; for the identified three stages of the growth phase.
These values g, are obtained as 5.0 x 10°rad/sec, 5.0 x 10*rad/sec, and 1.3 x 10*rad/sec for the first,
second, and third stage of growth respectively.

We have analysed the evolutions of wg with time in Fig.5.3d, and R¢pe with time in Fig.5.4b. Now
Fig.5.5 is a scatter plot of ws versus Repye that depicts the dynamic dependence of the frequency of
the fundamental mode on the orbital radius gained by the electron cloud in the course of the mode’s
growth. A scatter plot has been preferred over a line plot because R, has considerable fluctuations
with time (Fig.5.2a). The time co-ordinate of the plotted scatter points are incorporated in the color
scheme, depicted in the colorbar. Scatter-points constrained to the quiet phase, and growth phase
are plotted as insets on the left and right, respectively inside Fig.5.5. Each inset figure has its own
color scheme of its constrained time axes, depicted as adjacent colorbars. Exponential fits have been
made on the scatter plot of Fig.5.5 to quantify the dependence of wy on R, at different stages of the

simulation.

We know that in the quiet phase wy rapidly falls with time (Fig.5.3d) while Repne remains almost
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stationary very near to zero (Fig.5.2a). Hence ws is a very steeply falling function of Repe in the
quiet phase (quiet phase inset of Fig. 5.5). The exponential fit 1 (Fig.5.5) in the quiet phase yields
a growth rate, v, = —880rad/m. In the growth phase ws has qualitatively a similar dependence
on Repme (growth phase inset of Fig.5.5) as it has with time ( growth phase of Fig.5.3d). Tt first
decreases to a minimum value of 0.37wy9 at Repe = 0.24 Ryy. The associated growth rate of this fall
is Yw, = —16rad/m (exponential fit 2 of Fig.5.5). Note that this minimum value attained by w; is the
same minimum that was observed in the ws versus time curve (Fig.5.3d) at 7 = 147635. Thereafter
ws increases to a value of 0.37wq at Reme = 0.4 Ry with a growth rate v,,, = 10rad/m (exponential
fit 3 of Fig.5.5). In the saturation phase there are fluctuations of wy about a average value of 0.4 wgg,
while R..,. fluctuates about an average value of 0.35 R,,. These fluctuations are seen as scattering of
points around the point, (0.35 Ry, , 0.4wy), in the saturation phase of Fig.5.5.

The evolution of the growing fundamental mode’s frequency with time (Fig.5.3d) and its depen-
dence on the [ = 1 orbital radius of the electron cloud (Fig.5.5), in this numerical experiment is very
unique to chosen pressure, P, = 2 X 10" Torr of the Argon background. In fact at the regular
background pressures, 1077 T'orr, found in experimental traps [50] there is much less contamination
of the electron cloud by impact ionization of neutrals. When a growing [ = 1 mode is excited on such
an almost pure electron cloud, by say, a resistive wall instability [80], then the frequency of the mode
shows an algebraic increase with increase in orbital radius of the cloud [79, 80, 81]. Hence the unique
evolution of wy in our numerical experiment is the result of setting the background gas pressure to a

higher value, P, = 2 X 10~ Torr.

5.3 BIEPNEXZ2: Influence of the non-ionizing ¢~ — Ar collisions on
the instability

Now we turn our attention to the role played by the elastic, and excitation collisions between electrons
and Ar atoms, on the instability dynamics of the plasma in Expt.1. In our previous work [32] we had
established that such non-ionizing collisions can not, solely by themselves, be responsible for the
destabilization of trapped electron clouds. However by virtue of the relaxation of the electron cloud’s
profile caused by these collisions, they can influence the dynamics of collisionless instabilities of the
electron cloud [32]. In BIEPNEX1 the electron cloud is involved in an ion resonance instability which
is influenced by the non-ionizing e~ — Ar collisions taking place in the background. In order to
distinguish the effects of the non-ionizing collisions on the complex dynamics of the plasma in this
simulation, we had to re-simulate the numerical experiment with one modification in its set-up, viz.
elastic and excitation collisions between electrons and background Argon atoms were turned off in the
new modified simulation, BIEPNEX2. The resultant changes in the evolution of the plasma were then
compared with the earlier experiment to understand the role played by non-ionizing e~ — Ar collisions

in the former experiment.

Page 143



5. BACKGROUND IONIZATION BY ELECTRON PLASMA NUMERICAL

EXPERIMENTS (BIEPNEX)

06 - 500 - -
non-ionizi;ng collisions excluded = non-ionizing ;collisions includ;ed —
non-ionizing collisions included —— 0 non-ionizing collisions excluded ——
05 F : 1=54000 : 1=54000
1=104000 7=104000
7=206000 -+ 2 500} T=206000 -+
04 g ;
<
n':; —. -1000
~ 8
qE> 03 | o
= g— -1500 |
2
02| =
> -2000
ot -2500 |
0 v i i P -3000 i i M M
0 50000 100000 150000 200000 0 50000 100000 150000 200000
(a) (b)
0.034 1
0.032 |
08 | L -
non-ionizing collisions excluded ——
0.03 }F non-ionizing collisions included ——
i 1=54000
» 06 b 7=104000 -
L oo} ) =206000 -+++eree
3 8
£ 002 g
o .| B -
=> 0.4
0.024 non-ionizing collisions excluded ——
non-ionizing collisions included —— o2 b
: 7=54000 - ’
0.022 p t=104000 -+
7=206000 -+
0.02 N e N it 0 e N N L
0 50000 100000 150000 200000 0 50000 100000 150000 200000
(c) (d)

Figure 5.6: Comparison of diagnostic readings of BIEPNEX1 ( shown in red) with corresponding
diagnostic readings of the modified simulation wherein BIEPNEXT1 is repeated with the exclusion of the
non ionizing e~ — Ar collisions (shown in green). The 4 pairs comparative diagnostic readings are plotted
as a function of time, 7, where 7 = t/1.. The vertical lines at 7 = 54000 and 7 = 206000 demarcate the
initial rigid rotation phase, the middle growth phase, and the final saturation phase of BIEPNEX1 while
the vertical lines at 7 = 104000 and 7 = 206000 demarcate the initial rigid rotation phase, the middle
growth phase, and the final saturation phase of the modified experiment .(a) Radial location of the
centre-of-mass of the electrons, Reme, from the two experiments, are plotted as a function of time. The
y-axis is normalised by the wall radius R,,. (b) Potential reading of the left potential probe, V},, from the
two experiments are plotted as a function of time. (¢) The Potential Energy of the electron component of
the plasma, 1, [rom the two experiments are plotted as a function of time. (d) The fundamental mode
frequency, ws, from the two experiments, are plotted as a function of time. The y axis is normalized by
the natural fundamental mode frequency, wqo = 6.848 x 107 rad/sec of the initial pure electron cloud.
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Fig. 5.6 shows a comparison of relevant diagnostic readings between the earlier simulation BIEP-
NEX1 and the modified simulation BIEPNEX2 with the non-ionizing e~ — Ar collisions turned off.
The radial trace of the centre of mass of the electron cloud, the left potential probe signal, the potential
energy of the electron component, and the variation of the fundamental mode’s frequency with time
are compared between the two experiments in Fig. 5.6a-d respectively. The first striking difference
between the two sets of diagnostic data (Fig. 5.6a-c) is observed in the time of onset of the growth
phase in the two sets of plots. Transition from the quiet phase to the growth phase happens around
7 = 54000 in BIEPNEXI1, and around 7 = 104000 in the modified experiment. A second distinct
difference between the two simulations is observed specifically in the compared radial traces of the
centre of mass of the electron cloud in Fig. 5.6a. BIEPNEX1 has more subdued radial fluctuations
of the orbiting electron cloud in the growth phase as compared to the modified simulation. Again
Fig. 5.6d shows that the exclusion of the non-ionizing collisions from the simulation results in ws ac-
quiring slightly lower values in the growth phase of the instability. This can be attributed to the fact
that excluding the non-ionizing collisions delays the onset of the nonlinear dynamics of the growth
phase that tends to raise the value of wg, as explained in Sec 5.2.

Hence we can conclude that non-ionizing e~ — Ar collisions, by virtue of their feedback on the
ion resonance instability through the collisional relaxation of the electron cloud’s profile, cause an
early transition of the plasma dynamics from the quiet phase to the growth phase. The non-ionizing
e~ — Ar collisions also make the growing [ = 1 orbital motion of the electron cloud profile in the
growth phase a less noisy (in terms of radial fluctuations), and a slightly higher frequency (in terms of
the | = 1 mode’s frequency), process. We must emphasize here that we are making these observations
about the effects of the non-ionizing e~ — Ar collisions as specific to the present set of plasma, and
background gas parameters and not drawing any generalized conclusions about their influence in any
other experimental condition. We had, in fact, shown in our previous work [32] how the influence of
non-ionizing e~ — Ar collisions on evolution of the plasma, is too dynamic, and too nonlinear a process
for any such generalized deductions about their effects.

Another similar modified simulation was carried out eliminating only the elastic and charge ex-
change collisions between Argon ions and Argon atoms from the original simulation BIEPNEX1. This
was done in order to understand the role played Ar* — Ar collisions, on the dynamics of the plasma.
However this modification didnot make any difference to the outcome of the numerical experiment,
indicating that for the present set of plasma, and background gas parameters, Ar™ — Ar collisions

have negligible influence on the evolution of the plasma.

5.4 Conclusions and Discussions

We can sum up the results obtained from BIEPNEX as follows.
In BIEPNEXI1 cylindrically confined pure electron cloud, was loaded in the presence of Argon

background neutrals at pressures relevant to experiments, and the process of the destabilization of the
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electron cloud through collisional interaction with the background atoms was simulated using a 2D3v
PIC-with-MCC code, and investigated with an array of numerical diagnostics. We have seen that
the Ar™ ions formed through impact ionization of the background Ar atoms first accumulate in the
cross-sectional potential well of the electrons and then gradually start engaging an ion-resonance/two-
stream instability with the electron cloud. The instability excites a nonlinear fundamental Diocotron
mode on both components, of the mixed non-neutral plasma. Associated with the growth of the
fundamental mode is a transfer of potential energy from the electron component to the ion component
of the plasma as well as collisonless heating of electrons and ions by the instability at the cost of the
potential energy of the electrons.

The growth phase of the fundamental mode is also characterized by small amplitude radial fluc-
tuations in the expanding the orbits of the electron, and ion clouds. These radial fluctuations are the
response of the growing fundamental Diocotron mode to the increasing electron and ion populations
from impact ionization of neutrals.

The mode finally saturates with the electron cloud orbiting very close to the grounded wall of the
trap, and the partially overlapped ion cloud orbiting at a slightly lower radius. In the saturation phase
some loss of trapped particles of both species is incurred through their radial transport to the grounded
wall. The particle loss process of the saturation phase together with the continued generation of new
electrons and ions from impact ionizations, vary the electron, and ion populations of the plasma in
such a manner, that the fundamental mode responds with high amplitude radial fluctuations of the
saturated orbits of the electron, and ion clouds. These high amplitude radial fluctuations are actually
observable in the simulation as fluctuations in the radial separation between the electron and ion cloud
in the saturation phase.

Through the three phase of the instability there is a chirping of the excited fundamental mode’s
frequency with time. In general the fundamental mode’s frequency versus time curve falls rapidly in
the quiet phase, passes through a minimum in the growth phase, and fluctuates about a certain mean
value in the saturation phase. This kind of chirping of the fundamental mode’s frequency is unique to
the background pressure of the Argon atoms being set at 2 x 10~ Torr.

By repeating the simulation with the non-ionizing elastic and excitation collisions between the
electrons and Argon atoms turned off, BIEPNEX2, we could understand how these non-ionizing
e~ — Ar collisions influenced the dynamics of the plasma in the original simulation. The collisional
relaxation of the electron cloud’s profile brought about the non-ionizing ¢~ — Ar collisions cause an
early transition from the initial quiet phase to the growth phase of the ion resonance instability and
also subdue the radial fluctuations of electron cloud in the growth phase. Similarly repeating the
simulation with Ar™ — Ar elastic, and charge exchange collisions turned off did not result in any
significant difference in the outcome of the numerical experiment, indicating that for the present set
of plasma, and background gas parameters Ar™ — Ar collisions are unimportant.

Possible directions in which this work may be extended are i) including the 3D effects of axial

untrapping of ions in the simulation of the ion -resonance instability ii) introducing a toroidal aspect
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ratio to the simulated trap cross-section (in 2D as well as 3D simulations) and investigating how the
ion resonance instability evolves in a toroidal trap, iii) simulating an experiment in a cylindrical or
toroidal trap wherein the background pressure varies as a function of time, and understanding its
effects on the dynamics of trapped plasmas.

In the next Chapter we will the discuss and conclude the thesis work presented in Chapters 1 to 5.
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Conclusions

The very simple arrangement of trapping an electron gas in a cylinder, the Penning-Malmberg trap,
amazingly produces a plethora of plasma phenomena, that can be experimented with, analysed and
modelled, and investigated with computer simulations. A solid understanding of such non-neutral
plasma behaviour in cylindrical traps can find application beyond the PM trap, in other other scientific
and commercial devices, such as antiproton ion sources and free electron lasers, to name a few. A
more direct extension of the physics developed from PM traps is the physics of toroidally trapped
nonneutral plasmas.

PIC simulation can be a very useful tool to understand the dynamics of non-neutral plasmas in
PM traps, especially since PM trap arrangement allows an 2D approximation of the trap for some
selected plasma phenomena in the trap. This thesis was an attempt to investigate open physics
problems in cylindrically confined nonneutral plasmas using the method of particle-in-cell simulation.
In the endeavour to study non-neutral plasmas using simulations, the first challenge was to develop
accurate and efficient electrostatic PIC codes, that could tackle non-neutral plasma dynamics for any
given plasma, and PM trap, parameters. Roadblocks such as the problem of inclusion of collisions
between plasma and background neutrals in the simulations to study the effect of such collisions, were
faced, and overcome with suitable modification and upgradations to the code. Every time we had an
efficiently working, benchmarked code, ready, numerical experiments were conducted to study selected
open problems in cylindrically trapped nonneutral plasmas with the code. When a planned numerical
experiment posed challenges beyond the capability of the code/s at hand, upgradations to the code
were developed so that the planned numerical experiment could be undertaken. In this way the studies
on nonneutral plasma and development of simulation techniques progressed in an integrative manner
to result in this thesis.

The following subsections outline, in bullets, the highlights of results of the thesis, and the scope

for future work.
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6. CONCLUSIONS

6.1

Highlights of results

The highlights of the thesis are systematically categorized under computational aspect and nonneutral

plasma physics aspect.

6.1.1 Computational aspect

Development of the flexible 2D Electrostatic PIC code, PEC2PIC, that can handle any regular

or odd size and shape of the 2D trap boundary because of its inherent Cartesian grid
parallelization of PEC2PIC, including parallelization of the SOR Poisson Solver
Benchmark of PEC2PIC by matching simulation results with theoretical calculations

Development of the parallelized 2D3v PIC-with-MCC code PEC2PIC-3MCC, that along with
the 2D PIC dynamics on a Cartesian grid, can also simulate collisional interaction of plasma
with an Argon background. Specifically e~ — Ar and Ar™ — Ar collisions can be handled by the
MCC part of the code.

Validation of the correctness of collisions statistics and collision mechanics of the collisions

executed by the MCC scheme of PEC2PIC-3MCC

Development of the parallelized 1D PIC code PECIPIC that can handle a moving, reflecting
wall system, and also maintain a constant resolving power for a system that changes its length

during the simulation.

Benchmark of the PEC1PIC by matching its results with results from other 1D PIC simulations

in a reflecting wall system.

6.1.2 Nonneutral plasma aspect

Simulations of the inertia driven radial breathing in pure electron plasmas revealed interesting
nonlinear dynamics of the radial breathing modes such as spontaneous formation of density voids
within the profiles of high f;, electron clouds, which in turn triggered transient azimuthal modes

on these clouds.

The nonlinear phase of the ion resonance instability in partially neutralized electron clouds,
was the highlight of these simulations. The nonlinear phase not only revealed a characteristic
potential energy pumping form the electrons to the ions, but also displayed an array of nonlinear
dynamics such as the radial ballooning of Diocotron mode crests on ion cloud and simultaneous
azimuthal pinching of the Diocotron mode crests on the electron cloud, the breaking up of the
electron cloud into I daughter clouds, where [ is the mode number of the excited Diocotron mode,

the re-merging of the daughter electron clouds in a reverse cascade process, and many more.
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6.2 Scope for future work

e Simulation of a stable fundamental Diocotron mode on a electron cloud, in the presence of non-
ionizing e~ — Ar collisions revealed that contrary to existing theory the non-ionizing collisions
are incapable to drawing energy from the negative energy Diocotron mode of the cloud and

hence can not destabilize the stable [ = 1 mode.

e Simulations of the ion resonance instability in the presence of non-ionizing e~ — Ar collisions,
revealed that the non-ionizing background collisions can bring about variation in the path of pro-
gression of the ion resonance instability, via the dynamical feedback of the collisional relaxation

of the electron cloud’s profile on the instability.

e The highlight of the simulation of the destabilization of a trapped electron cloud by impact
ionization of background Argon, was the curve of [ = 1 mode frequency as a function time. The
fundamental mode’s frequency is observed to fall rapidly in the linear phase of the instability,
then decrease at a slow rate, pass through a minimum value, and then increase in the nonlinear
growth phase of the instability. Finally in the saturation phase the fundamental mode’s frequency
oscillates about a mean value. This unique curve traced by the fundamental mode’s frequency
has been explained to be caused by opposing effects of increasing inertia of the 2-component
plasma that tends to bring down the value of the frequency and the nonlinear dynamics of the

instability that tends to raise the value of the fundamental mode’s frequency.

e Simulation performed with the 1D PIC code demonstrated a new scheme for axially heating
single species plasmas without driving them far away from thermal equilibrium. The results
of the 1D simulations have further reaching consequences, as the the heating scheme can be

applied, in principle, to magnetically heat toroidally confined quasi-neutral plasmas.

6.2 Scope for future work

There are several directions in which the work of this thesis can be taken which fall broadly under
computational aspect, non-neutral plasma numerical experiment aspect. These avenues of future
research are enlisted under these two categories.

6.2.1 Computational

e Further parallelization of PEC2PIC and PEC2PIC-3MCC by using an OPEN-MP parallelization
nested within an MPI parallelization or alternatively the codes may be parallelized on a GPU

platform
e With higher parallelization implemented these codes may be upgraded to 3D PIC codes

e Inclusion of background collisions in PEC2PIC-3MCC for an Helium or Hydrogen Background

Page 151
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Upgrade PEC2PIC and PE2PIC-3MCC so that these codes can also handle toroidal cross sections
of arbitrary aspect ration - this may involve switching from a fixed grid size to a varying grid size
along the direction of the toroidal major radius and/or using a higher order version of Chin’s

exponential splitting scheme [44] for particle pushing

The PEC2PIC and PEC2PIC-3MCC are flexible enough to be used as simulation tools in other

devices such as plasma thrusters, and Q-devices.

6.2.2 Numerical Experiments on nonneutral plasmas

Studies on the effect of loading the plasma at varying temperatures on the dynamics of radial
breathing would be in line with the kinetic model of Bernstein modes [17]. It could also be
interesting to study the influence of elastic collisions of the electrons with background neutrals,
on the dynamics of radial breathing modes, using the 2D3v PIC-with-MCC code PEC2PIC-
3MCC.

It could be an interesting pure electron plasma numerical experiment to study the influence of
electron-background non-ionizing collisions on the dynamics of the Kelvin-Helmholtz instability

in an annular cylindrical electron cloud.

The heating scheme demonstrated by PEC1PIC simulations may be tweaked so that it pro-
duces preferential heating of the heavier of the two components of the quasi-neutral plasma.
Numerical experiments demonstrating such a preferential heating scheme could have interesting

applications.

A complete 3D simulations of a PM trap, investigating the destabilization of an electron cloud
by impact ionization of background neutrals would be very interesting. 3D effects such as the
instability caused by differences in the axial profiles of the electron density and the ion density,

and the axial untrapping of ions could then be simulated.

Destabilization of electron clouds by impact ionization of background Helium or Hydrogen could

also be interesting numerical experiments.

The simulation based investigation of nonneutral plasma phenomena may be extended to finite

aspect ratio traps, using a 2D/3D PIC code.
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