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1
Introduction

1.1 Motivation and background

Collective oscillatory behavior is a common feature of many systems in nature [1], and

plays a vital role in a wide variety of systems ranging from physical and biological to

social. For instance, in biological cellular populations, collective behavior often arises

from long-range coupling mediated by electrochemical mechanisms [2, 3], or by biome-

chanical interaction between the cells and their physical environment [4]. One such ex-

ample is the “segmentation clock”, which is an oscillating genetic network that sets the

rhythm of sequential subdivision of the body axis of the vertebrate embryo into somites

[5]. Another example is the cell-to-cell communication in microorganisms, termed quo-

rum sensing [6–8]. Other biological examples include circadian rhythms [2, 9], cardiac

pacemaker cells [10], insulin-secreting cells in the pancreas [11], and neural dynamics

[12]. An important application of collective behavior in physical systems is in coupled

laser arrays, where mutual coherence allows the generation of much greater power than

1
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would be available from a single laser [13]. In social systems, an example is the “opinion

dynamics”, where individuals have opinions that change under the influence of other in-

dividuals giving rise to a sort of collective behavior [14]. In finance also, business cycles

synchronize, across regions and over time [15]. Hence, the collective oscillatory behav-

ior is a universal phenomenon and even though the above-cited systems are seemingly

very distinct from one another, the underlying principles of their collective dynamics

are quite similar.

A powerful approach to model such real-world phenomena is using a network of

coupled nonlinear oscillators [16], which has served as a useful paradigm to represent

collective phenomena in a variety of applications in physical [17], chemical [18, 19],

biological [20] as well as social sciences [21]. This is because the systems of coupled

nonlinear oscillators are known to display a wide spectrum of collective behavior rang-

ing from synchronization to spatiotemporal chaos [22, 23]. The existence and stability

of these collective states in a given dynamical system is decided by the following fac-

tors: (i) the dynamics of the individual constituent oscillator, governed by its dynamical

equation, (ii) the topology according to which the oscillators are connected to each other,

(iii) the nature and the strength of interactions between the interacting oscillators, and

(iv) the time delay in the interactions between the oscillators that results from the fi-

nite processing and transmission speed of information. It is the interplay between these

factors that decides the collective behavior shown by the dynamical system. The work

done in this thesis highlights the importance and consequences of the presence of time

delay on the system dynamics for a variety of individual component dynamics, network

topologies, and nature of interactions considered in different model systems.

In this introductory chapter, we first describe some of the interesting collective phe-

nomena observed in real systems and the model systems comprised of coupled oscilla-
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tors. Then we highlight the importance of inclusion of time delay in interactions in such

model systems and the effect its presence has on the system dynamics. At the end, we

give a brief overview of the work carried out by us in this direction.

1.1.1 Collective dynamics

Synchronization

Perhaps the most studied collective phenomenon is synchronization - “the adjustment of

rhythms of oscillating objects due to their weak interaction” [24]. The first recorded ob-

servation of synchronization is by Christiaan Huygens (1629-1695), the famous Dutch

mathematician, astronomer, and physicist who invented the pendulum clock in 1657.

This is how the story of his discovery of synchronization goes. In February 1665, Huy-

gens was confined to his room for few days because of some illness. During his confine-

ment, he observed that two pendulum clocks hanging on the wall in his room showed a

very interesting behavior. Their pendulums always moved such that when one was fur-

thest left, the other was furthest right, and vice versa, so that they always moved opposite

of one another. Huygens tested this phenomenon further by disturbing the oscillations

but found that the pendulums always came back to the same relative orientation. He

described this observation in the letter to his father dated 26 February 1665 [25] and

called this the “sympathy of two clocks”. He came up with the explanation that each

pendulum caused an imperceptible motion in the beam of the wall from which they were

hanging, which tended to force the other pendulum towards moving in synchrony with

it. Once the pendula were synchronized like this, their opposite forces would cancel and

the beam would stay still. Huygens was right [26] and this is exactly the explanation we

have today for the phenomenon of mutual synchronization [10, 24].

Examples of synchronization can be found all around us in nature. One such ex-
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ample is that of “circadian rhythms” of living beings. In 1729, Jean-Jacques d’Ortous

de Mairan (1678-1771), a French astronomer, noted that the leaves of the Mimosa plant

moved with a periodicity of 24 hours in conformity with the daily cycle of darkness and

light. In addition, he found that the leaves still move at a nearly 24-hour cycle in a dark

room without the influence of sunlight. Studies later found that these cycles, known as

circadian rhythms, are governed by an internal biological clock, which in mammals is

located in two brain areas called the suprachiasmatic nuclei [27]. Other examples of

synchronization include cardiac pacemaker cells [28], synchronous flashing of fireflies

[29], and vertebrate segmentation clock [5]. In all these examples, synchronization is

essential for the proper functioning of the biological system. However, sometimes the

synchronization of oscillations can also lead to a severe malfunction of a biological sys-

tem, such as in epileptic seizures and Parkinson’s disease [30].

Synchronization phenomena in large populations of interacting elements have been ex-

tensively studied in a wide variety of physical, biological, chemical, and social systems

for the past several decades. The individual elements or oscillators in such systems have

a common feature - they are capable of generating their own rhythm, which is main-

tained due to an internal source of energy that compensates the dissipation in the system

[24]. Such systems or oscillators are said to be self-sustained and show limit-cycle be-

havior. Limit cycle is a trajectory for which the energy of the system is constant over

a cycle, i.e., on an average, there is no loss or gain of energy. Therefore, a success-

ful approach to understand synchronization consists of modeling each member of the

population as a limit-cycle oscillator.
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Early models of synchronization

One of the earliest attempts towards understanding the collective synchronization phe-

nomena mathematically was by an American mathematician, Norbert Wiener (1894-

1964), in late 1950’s and early 1960’s. Before that, scientists had restricted themselves

to a single nonlinear oscillator being driven by an external periodic signal or to two cou-

pled oscillators. Wiener’s approach was based on Fourier integrals [31, 32], but he did

not make sufficient mathematical progress with it. Then in 1960’s, Arthur T. Winfree

(1942-2002), a theoretical biologist, became interested in the spontaneous synchroniza-

tion of populations of biological oscillators and addressed it in his first paper published

in 1967 [33]. He considered a large population of interacting limit-cycle oscillators

with the frequency of each oscillator chosen from a random distribution with a certain

mean and standard deviation. This system is very complex and intractable but Winfree

recognized that it can be rendered tractable in the limit of “weak coupling”- “weakly”

meaning relative to the attractiveness of the limit cycles. Then amplitude variations

could be neglected and the oscillators could be described solely by their phases along

their limit cycles. Winfree made a further simplification by working within the frame-

work of a mean-field model, where each oscillator is considered to be coupled to the

collective rhythm generated by the entire population. His model is [34]

θ̇i = ωi +

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

P(θ j)

⎞⎟⎟⎟⎟⎟⎟⎠Q(θi), i = 1, ....,N, (1.1)

where θi denotes the phase of oscillator i and N is the number of oscillators. The natural

frequencies ωi are distributed according to a given probability density g(ω). Each os-

cillator j exerts a phase-dependent influence P(θ j) on all the others; the corresponding

response of oscillator i depends on its phase θi, through the sensitivity function Q(θi).
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Winfree discovered that such oscillator populations can exhibit a remarkable cooper-

ative phenomenon. When the coupling strength is small compared to the variance of

natural frequencies, the system behaves incoherently, with each oscillator oscillating at

its natural frequency. As the coupling strength increases past a certain threshold value

(dependent on the variance of natural frequencies), the population of oscillators under-

goes an abrupt transition to a synchronized state, where most individuals oscillate with

the same “collective” frequency. Winfree pointed out that this phenomenon is a “tempo-

ral analog” of a thermodynamic phase transition; temporal because the oscillators align

in time, not space.

Intrigued byWinfree’s results, Yoshiki Kuramoto, a Japanese physicist, began work-

ing on collective synchronization. He simplifiedWinfree’s approach further in the model

he gave in 1975 [35], which is discussed in detail in the next section. But before that, it

is worthwhile mentioning another remarkable contribution, by Charles S. Peskin, who

modeled the synchronization of pacemaker cells with a simple physical setup consisting

of parallely connected capacitors and resistors [28].

The Kuramoto Model

Preserving the fundamental assumptions that Winfree had proposed, Kuramoto used the

perturbative method of averaging to show that the long-term dynamics of any system of

nearly identical, weakly coupled limit-cycle oscillators can be described by the phase

equations of following form [34, 36]:

θ̇i = ωi +

N∑

j=1

Γi j

(
θ j − θi

)
, (1.2)

where the interaction function Γi j determines the form of coupling between ith and jth

oscillators. The Kuramoto model corresponds to equally weighted, all-to-all coupling,
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mediated by a sinusoidal interaction function:

θ̇i = ωi +
κ

N

N∑

j=1

sin
(
θ j − θi

)
, i = 1, ....,N. (1.3)

Kuramoto further introduced an order parameter to quantify the overall synchrony of the

oscillator population. The complex order parameter

Reiψ =
1

N

N∑

j=1

eiθ j , (1.4)

is a macroscopic quantity that can be interpreted as the collective rhythm produced by

the whole population. Here 0 ≤ R(t) ≤ 1 measures the phase coherence of the oscillator

population and ψ(t) is the average phase. The Kuramoto equation (1.3) can be rewritten

in terms of the order parameter as

θ̇i = ωi + κR sin(ψ − θi). (1.5)

In this form, the interactions between the oscillators are described solely through the

mean-field quantities R and ψ. Each oscillator is coupled to the common average phase

ψ(t) with a coupling strength given by κR. For all κ less than a certain threshold κc,

the oscillators act as if they were uncoupled: the phases become uniformly distributed

around the circle. In this case, R(t) decays to a small value of O(N−1/2). This state is

called the “incoherent state”. When κ > κc, the incoherent state loses stability and R(t)

grows exponentially, thereby generating a collective oscillation. Eventually R(t) satu-

rates at some level Rt→∞ < 1 with O(N−1/2) fluctuations. In the limit of infinite number

of oscillators N → ∞, the threshold coupling strength for the onset of synchronization

is given by κc =
2

πg(0) [34]. Detailed discussions on the Kuramoto model are provided in
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the review articles by Strogatz [34] and Acebrón et al. [37].

Despite its apparent simplicity and mathematical tractability, the Kuramoto model

can exhibit quite complex non-trivial behavior displaying a large variety of synchro-

nization patterns. Therefore, the Kuramoto model and its extensions have served as a

paradigm for a variety of dynamical systems. For instance, it has been used to model

neural networks [38], systems of coupled lasers [39], Josephson junction arrays [40],

and power grid networks [41, 42]. A modified version of Kuramoto model called the

Opinion Changing Rate (OCR) model has been proposed as a framework for opinion

formation [14, 21]. An adapted Kuramoto model has also been used to study the syn-

chronization dynamics in financial market networks [43].

Amplitude Death

Another well known collective phenomenon relevant to this thesis is the “Amplitude

Death”. If the coupling between the oscillators is not weak or the attraction to the

limit cycle is not large as compared to the coupling strength, the variations in amplitude

cannot then be ignored. In that case many additional phenomena can occur, such as,

oscillators can drive one another to a state of zero amplitude - often called the amplitude

death (AD) state.

In 19th century, Lord Rayleigh (1842-1919), an English physicist, made one of the

first accounts of this phenomenon with his observation that two organ pipes standing

close to one another can almost suppress each other to silence [44]. AD was first stud-

ied in mathematical oscillators by Yamaguchi and Shimizu [45] in 1984. They found

that two ingredients are needed by AD to be stable: (i) a sufficiently strong coupling be-

tween the oscillators and (ii) a sufficiently wide distribution of natural frequencies. Sub-

sequently in 1985, Bar-Eli [46] observed AD in a system of coupled chemical oscillators
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and this phenomenon was also known as the “Bar-Eli” effect at the time. Aronson et al.

[47] verified Bar-Eli’s results in 1990 and thoroughly investigated AD in two coupled

non-identical limit-cycle oscillators having different intrinsic frequencies. They showed

that there are parameter regimes in which the interactions cause the system to stop oscil-

lating, and the rest state at zero, stabilized by the interaction, is the only stable solution.

In the same year, Ermentrout [48] extended this study to globally coupled oscillators

and Mirollo and Strogatz [49] studied AD in an array of instantaneously coupled limit-

cycle oscillators with mean field coupling and randomly distributed natural frequencies.

They showed that similar to the system of two coupled limit-cycle oscillators, when the

coupling is sufficiently strong and the distribution of frequencies has sufficiently large

variance, the system undergoes AD. Later, Reddy et al. [50] extended these studies to

the systems with time-delayed interactions and found that the presence of time delay

can lead to AD even if the oscillators have the same intrinsic frequency (i.e., they are

identical). More recently, AD has also been reported, in the absence of time-delayed

interactions, in systems of identical oscillators with dynamic coupling [51], conjugate

coupling [52], nonlinear coupling [53], and environmental coupling [54].

An important instance where the attraction to the limit cycle is not “strong” is near

a Hopf bifurcation point. In this case, the attraction to the limit cycle is proportional

to the distance from criticality. The equation considered in most of the above-cited

studies represents the normal form of a supercritical Hopf bifurcation, also known as the

Stuart-Landau oscillator. It has the amplitude as well as the phase evolution information

embedded in the time evolution of complex amplitude Z(t):

Ż(t) = (α + iω − |Z(t)|2)Z(t), (1.6)

where α, ω ∈ R and α is the bifurcation parameter. Writing Z(t) in terms of its argument
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and modulus as Z(t) = r(t)eiθ(t) with r, θ ∈ R and θ ∈ [−π, π], the amplitude and phase

evolution equations can be written as

ṙ =
(
α − r2

)
r,

θ̇ = ω. (1.7)

For α < 0, Eq. (1.6) has a stable rest state at Z(t) = 0. When α > 0, the rest state loses

stability via supercritical Hopf bifurcation and the equation shows stable oscillations

(Z(t) =
√
αeiωt) with amplitude equal to

√
α. The phase variable θ rotates uniformly in

time with an angular frequency equal to the parameter ω.

The governing set of equations for a population of N interacting Stuart-Landau oscil-

lators, with natural frequencies distributed according to a given probability distribution

g(ω), is

Żi(t) = (α + iωi − |Zi(t)|2)Zi(t) +
N∑

j=1

κi j[Zj(t) − Zi(t)], (1.8)

where i = 1, ...,N. In polar coordinates,

ṙi = ri
(
α − r2i

)
+

N∑

j=1

κi j
[
r j cos

(
θ j − θi

)
− ri

]
,

θ̇i = ωi +

N∑

j=1

κi j
r j

ri
sin

(
θ j − θi

)
. (1.9)

The Kuramoto model can be obtained from the coupled set of equations Eq. (1.9) under

the “weak coupling” approximation. As discussed before, in the weak coupling limit,

the amplitude evolution can be ignored, that means r j = ri, and for the case of mean
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field coupling (κi j = κ/N), the phase evolution equations become

θ̇i = ωi +
κ

N

N∑

j=1

sin
(
θ j − θi

)
, (1.10)

which is the governing dynamical equation of the Kuramoto model (Eq. (1.3)). There-

fore, the amplitude model (1.9) produces all the results of the phase-only models and

captures additional phenomena such as amplitude death and chaos [55].

AD has been observed in systems of coupled synthetic genetic oscillators [56],

chemical oscillators [57], electronic circuits [58], biological-electronic hybrid oscilla-

tors [59], thermo-optical oscillators [60], coupled lasers [61, 62], and very recently in

thermoacoustic oscillators [63]. AD can have both desirable and undesirable effects.

It has been proposed to utilize AD for stabilization of DC microgrids [64], which is

desirable since constant-power loads on dc microgrids create a destabilizing effect on

the circuit that can lead to severe voltage and frequency oscillations. However, AD can

also be undesirable and detrimental if it suppresses oscillations that are important for the

proper functioning of the system and therefore the revival of oscillations has also been

a focus of recent studies [65].

1.1.2 Time-delayed interactions

Time delay is ubiquitous in most natural and physical systems due to the finiteness of

the speed of propagation of electrical signals, reaction times in chemical interactions,

and the finite conductance of neuronal connections. For example, in the dynamics of

gene-regulatory networks, the time delay is caused by processes such as transcription,

translation, and transport and can have an important influence on the system dynam-

ics. The delays or lags can also represent incubation periods in the infectious disease
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dynamics. In the study of population dynamics within ecological models, delays result

from processes such as growth, maturation, and regeneration.

If the delays are small in comparison to the relevant timescales of the system dynam-

ics, they can be neglected and the dynamical equations reduce to the flow of ordinary

differential equations (ODEs). However, when delays have the same order of magnitude

as the system’s typical timescales, then the system should be modeled with delay differ-

ential equations (DDEs). DDEs come under the category of functional differential equa-

tions which have been studied for at least last 200 years. In 1908, at the International

Conference of Mathematics in Rome, Émile Picard (1856-1941), a French Mathemati-

cian, emphasized the importance of consideration of hereditary effects in the modeling

of physical systems [66]. In 1931, Volterra wrote a fundamental book on the role of

hereditary effects on models of the interaction of species. After the 1940s, the study

of DDEs gained significant momentum due to delay considerations in various areas of

applied science, particularly in control theory. An example is ground based satellite

and rocket control, where the propagation time of the command signal is far from being

negligible.

In DDEs, the derivatives not only depend on the current state of the system but also

on the state of the system in the past. The form of delay differential equations relevant

to this thesis is

ẋ(t) = f (x(t), x(t − τ)) , (1.11)

where τ is a constant delay. The most obvious difference between ODEs and DDEs is

the initial data. The solution of an ODE is determined by the value of its variable at

the initial point. For solving a DDE, we must provide not just the value of the solution

at the initial point, but also the “history”- the solution at times prior to the initial point.

To find the solution of a DDE, such as (1.11), we need to specify the initial conditions
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that provide the function values x(t) for all times between −τ and 0. Thus, the delay

systems are infinite dimensional, because we have to provide an infinite set of numbers

to specify the initial conditions. Therefore, DDEs show a wide variety of very complex

behavior.

Delay models based on DDEs have been used to describe various aspects of a very

large spectrum of problems ranging from ecology [67–69] to neurology [70]. In studies

of infectious disease dynamics, examples include primary infection [71], drug therapy

[72], and immune response [73]. Delays have also appeared in the study of circadian

rhythms [74], epidemiology [75], respiratory system [76], tumor growth [77], white

blood cells production [78], neural networks [79], and gene-regulatory networks [80].

Therefore, it is crucial to incorporate time delays while analyzing the dynamics of such

systems.

Time delay in systems of coupled oscillators

The time-delayed dynamics in this thesis focuses on the communication delays or inter-

action delays appearing in the coupling term of the equations of a network of oscillators.

Time delay introduces significant changes in the collective behavior of such systems by

influencing the onset thresholds as well as the extent of the parametric domains of vari-

ous collective regimes such as synchronization and AD.

Phase oscillators with coupling delays

Schuster and Wagner [81] were the first to introduce discrete time delays in the coupling

between limit cycle oscillators. They considered a system of two coupled oscillators
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with time-delayed phase evolution of the following form:

θ̇1(t) = ω1 + κ sin (θ2(t − τ) − θ1(t)) ,
θ̇2(t) = ω2 + κ sin (θ1(t − τ) − θ2(t)) . (1.12)

They showed that the time-delayed system has multiple synchronized solutions with dif-

ferent collective frequencies, unlike the undelayed system that has at most one solution.

This number increases either by increasing the coupling strength κ or the time delay

τ. Subsequent works extended this study to larger systems of phase coupled oscillators

and found that, similar to the system of two delay-coupled oscillators, these systems can

have multiple synchronized solutions with different collective frequencies. These stud-

ies demonstrated metastability [82], clustering behavior [83], and multistability between

synchronized and desynchronized states in such systems [84]. Yeung and Strogatz [85]

have also extensively studied time delay effects in the Kuramoto model of coupled oscil-

lators. The general form of time-delayed coupling in the Kuramoto model, considered

in the above studies, is

θ̇i(t) = ωi +

N∑

j=1

κi j sin
(
θ j(t − τ) − θi(t)

)
, i = 1, ....,N. (1.13)

Further studies on collective behavior in phase models with delays have also considered

heterogeneous coupling delays [86], and distance dependent delays [87, 88]. A delayed

coupling theory based on phase oscillators has been successfully employed as a model

of vertebrate segmentation [89].
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Amplitude oscillators with coupling delays

Reddy et al. [50] were the first to report delay induced AD in the system of two coupled

limit-cycle oscillators. They further analyzed the system of globally and diffusively

delay-coupled Stuart-Landau oscillators [90], described by

Ż j(t) =
(
1 + iω j − |Zj(t)|2

)
Zj(t) +

κ

N

N∑

k=1

[
Zk(t − τ) − Zj(t)

]
, (1.14)

and showed that time-delays can induce AD even if the frequencies of the oscillators are

identical. In these systems, AD occurs inside separate “death” islands in the parameter

space of delay τ and coupling strength κ for any number of oscillators. Reddy et al.

also gave an experimental evidence of time-delay-induced AD in two coupled nonlinear

electronic circuits [58]. Later, Atay [91] demonstrated that the presence of distributed

delays in a system of coupled oscillators can lead to the enlargement and merger of the

“death islands”. In such systems, if the variance of the distribution exceeds a threshold,

the “death” region becomes unbounded and AD can occur for any average delay value.

AD studies were further extended to the nearest neighbor coupling configuration by

Reddy et al. [92] in a ring of delay coupled oscillators. They found that the size of

“death islands” decreases with increasing number of oscillators N when N is odd but is

independent of N when N is even. For a similar system with ring topology, Zou et al.

[93] showed that delay-induced AD in the parameter space of the diffusive coupling and

time delay can be eliminated by introducing gradient coupling between the oscillators.

Recent studies include AD induced by a time-varying delay connection [94] and mixed

time delays [95], among others.

15



Chapter 1. Introduction

1.2 Aim and scope of the thesis

The aim of this thesis is to examine the effect of time-delayed interactions on the col-

lective dynamics of networks of coupled nonlinear oscillators. This theoretical study

involves extensive analytical and numerical investigations. The thesis can be broadly

divided into two parts. The first part investigates time-delay effects on the collective

behavior of those systems whose dynamics can be represented by the phase evolution

equations alone. In the second part, the complete description of the system dynamics

requires both the amplitude as well as the phase evolution considerations. The thesis is

organized as described below.

Thesis organization

Chapter 2 explores the effects of time-delayed interactions on the dynamics of those

systems in which the combination of topology and repulsive interactions manifests it-

self in the form of geometric frustration. In the absence of time delay, such frustrated

systems are known to possess a high degree of multistability among a large number

of coexisting collective states, except for the fully synchronized state that is normally

obtained for the attractively coupled systems. Time delay in the coupling is found to

remove this constraint and lead to such a synchronized ground state over a range of

parameter values. The study presented in this chapter examines three prototypical frus-

trated networks of phase-repulsive oscillators − a simple triangular unit, a triangular

configuration with six nodes enclosing a triangle within a triangle, and a 4×4 triangular
lattice. The expressions for the collective frequencies and the stability conditions for the

in-phase and out-of-phase states of the simplest three oscillator network are discussed

in detail. A systematic quantification of the network frustration is made by defining
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a suitable frustration parameter, which is a function of time-delayed phase differences

between the oscillators. It is shown that time delay significantly alters the amount of

frustration in such systems and thereby influences their collective dynamics. The most

important result is the discovery of a universal scaling relation between frustration and

time delay that is found to hold in a variety of such geometrically frustrated networks.

Chapter 3 provides a dynamical understanding of the multisensory information pro-

cessing involved in perception through a simple phase-oscillators based model. A par-

ticular focus is on explaining the principal experimental features associated with the

so-called McGurk effect and its temporal constraints that show how the audiovisual in-

tegration in speech perception starts to break down when the lag between the auditory

and visual inputs becomes too long. Such a lag is modeled in our study by an appropriate

time delay in the coupling between an oscillator representing one of the unisensory units

(auditory or visual) and the multisensory oscillator (representing the audio-visual inte-

grator such as posterior superior temporal sulcus (pSTS) or Superior Colliculus (SC)).

Our model captures the functional connectivity between the unisensory and multisen-

sory streams via the coupling parameters. The changes in the collective behavior of

our model system, as seen through the variation of the order parameter as a function of

time delay, show a remarkable qualitative agreement with the experimental observations

of the McGurk effect. In particular, our model captures the temporal binding window

of multisensory integration, and the inter-trial and inter-subject variability through the

multistability seen in the dynamical states. We also investigate the situation where the

information from either modality becomes less reliable by considering the coupling pa-

rameters between the two unisensory units (auditory/visual) and the multisensory unit

to be unequal.

In Chapter 4, an extension of the model presented in the previous chapter is pro-
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posed in order to incorporate spatial aspects of multisensory processing into the model

and to gain a better insight into the complexities involved in such processes at various

cortical levels. The model again consists of two unimodal areas (auditory and visual),

which communicate via feedforward and feedback synapses with a third multisensory

area (pSTS or SC). However, instead of a single oscillator representing the dynam-

ics of each cortical area (auditory, visual, and multisensory), here we consider a two-

dimensional network/layer of coupled phase oscillators for each area. Each oscillator

can be representative of a single neuron or a group of neurons. Inter-layer connections

are only between the oscillators at the same spatial location. Our preliminary numerical

investigation has been carried out for two types of intra-layer connections - (i) when

there is only excitatory non-local coupling between the intra-layer oscillators, and (ii)

when the intra-layer connections are arranged according to the Mexican-hat disposi-

tion. The results of the excitatory-only coupling are shown to match the results of the

previous minimalistic model in terms of the order parameter variations with the time-

delay parameter. The presence of Mexican-hat coupling with finite inhibitory strength is

shown to facilitate the presence of spatiotemporal wave-patterns and related multistabil-

ity that has been used to explain the perceptual variability in multisensory processes. We

also study the effect of explicit inclusion of stimuli into the dynamical equations of the

unisensory oscillators. The model provides a more realistic description of the cortical

architecture and a wider range of multisensory processes that can be studied by bringing

in the spatial aspects. Thus, it can act as a common framework for explaining spa-

tial audiovisual illusions like the Ventriloquism effect along with temporal audiovisual

illusions like the McGurk effect.

Chapter 5 investigates the influence of time-delayed interactions on the robustness

of the collective dynamics of a network of coupled oscillators against the deteriora-
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tion of some of its units, such as due to some elements turning non-self-oscillatory.

The increase in proportion of the inactive or damaged elements which have lost their

self-oscillatory behavior with time can be interpreted as the aging of the system. The

transition of the system from a global-oscillatory state to a non-oscillatory steady state

at a threshold proportion of such inactive elements is termed as the aging transition.

Our results show that the presence of time-delayed interactions can lower the thresh-

old of the aging transition of the system and thereby degrade its functional robustness.

We start from a simple model of two time-delay coupled Stuart-Landau oscillators that

have identical frequencies but are located at different distances from the Hopf bifurca-

tion point. A systematic numerical and analytic study delineates the dependence of the

critical coupling strength (at which the system experiences a total loss of synchrony) on

time delay and the average distance of the system from the Hopf bifurcation point. We

find that time delay can act to facilitate the aging transition by lowering the threshold

coupling strength for amplitude death in the system. We then extend our study to larger

systems of globally coupled active and inactive oscillators including an infinite system in

the thermodynamic limit. Our model system and results can provide a useful paradigm

for understanding the functional robustness of diverse physical and biological systems

that are prone to aging transitions. For example, Alzheimer’s disease and Huntington’s

disease are characterized by progressive neuron fall outs and time-delays are present in

the brain due to finite neuronal conduction.

Finally in Chapter 6, an overall summary of the problems studied in this thesis is

provided and the main results and conclusions are highlighted. Some possible future

directions emerging from the work done in the thesis are identified at the end.

Our studies, taken together, highlight the important consequences of time-delayed

coupling on the collective dynamics of oscillator networks which can have potential
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practical implications in a variety of real life applications.
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2
Collective dynamics of delay-coupled

phase oscillators in a frustrated

geometry

Frustration is generated by the competition of different kinds of interaction and/or by

the topological constraints. The concept of frustration was first introduced in spin sys-

tems by G. Toulouse [1] and J. Villain [2] in 1977 to describe a situation where a spin

(or a number of spins) in the system cannot find an orientation to fully satisfy all the

interactions with its neighboring spins [3].

Frustration arising when the topological constraints prevent the simultaneous min-

imization of the energy of all the interacting pairs of sub-units of a system, is known

as “Geometric frustration”. A well known example is that of three Ising spins that are

anti-ferromagnetically coupled to each other and placed on the corners of an equilat-

eral triangle (Fig. 2.1). It is impossible to arrive at a configuration where each pair of
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Figure 2.1: Example of a frustrated system: anti-ferromagnetically coupled Ising spins

on the corners of an equilateral triangle.

spins is anti-parallel, and as a consequence the system continually flips between differ-

ent states in trying to find a minimum energy state and thereby displays a multi-stable

behavior. A large lattice model consisting of such triangular units can therefore lead to

high ground state degeneracy and multiple phase transitions with increasing temperature

[3]. In complex systems, frustration can arise from a combination of geometry and the

nature of interaction among the subsystems, and it can give rise to a rich variety of col-

lective behavior. Frustration plays an important role in the dynamics of many complex

magnetic systems such as spin liquids, spin glasses, and a host of magnetic alloys [3–5].

Real magnetic materials are often frustrated due to several kinds of interactions. More

recently, geometrical frustration arising in neuronal networks has also been recognized

as a pivotal factor influencing the cortical dynamics of the brain, and it is believed to be

responsible for introducing metastability and variability in the brain’s collective states

[6, 7]. The existence of metastability (or multiple operating regimes) is an essential and

crucial feature for biological systems since it provides them with functional flexibility.
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Frustration and its dynamical consequences are therefore receiving a great deal of the-

oretical and experimental attention in a wide variety of physical [8–10] and biological

systems [11, 12]. Some such natural and synthetic systems, where geometric frustration

plays an important role, are colloids [8], proteins [13], and liquid crystals [14]. A very

recent application of geometric frustration is in acoustic channel lattices [15], where it

can be harnessed to form band gaps.

The intimate relation between frustration, nature of interaction, and network topol-

ogy has been well established through many past studies. When repulsive coupling is

implemented in certain geometrical configurations, it can result in frustration. Some

of the common topologies that lead to frustrated networks are triangular lattices [16],

hexagonal lattices, and more exotic configurations such as the Kagome lattice [17]. Re-

pulsive coupling is present in many real life systems, particularly in biological networks.

An example is that of gene circuits consisting of a few genes which mutually repress

each other so as to stabilize the oscillations of their protein concentrations [18]. The

introduction of repulsive coupling in an oscillator network can have a significant influ-

ence on its collective dynamics such as in the manner and the rate of synchronization

[19, 20] as well as in the stability properties of its synchronized states [21]. It has been

shown, for example, that synchronization in neuronal oscillators can be improved by a

combination of excitatory and inhibitory synaptic interactions [19, 22, 23]. The physi-

cal consequence of a repulsive coupling between two oscillators is to push them towards

an out-of-phase behavior with respect to each other. Such an anti-phase synchroniza-

tion has been experimentally observed in electrically coupled biological neurons that are

repulsively coupled [24].

Our model investigation is carried out on a system of repulsively coupled phase

oscillators that are configured in a frustrated geometry. The concept of frustration in
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oscillatory systems was first introduced by Daido [25]. Later, Zanette investigated frus-

tration in systems of phase oscillators with undirected attractive and repulsive interac-

tions [21]. He quantitatively characterized frustration in such systems in the absence of

time-delayed interactions. Recently, Kaluza et al. [26] studied frustration in directed

networks and excitable and oscillatory systems. It was shown that frustration in these

systems can lead to a considerable increase in the number of stationary states and to

multistability. Subsequent studies include the investigation of order-by-disorder in such

frustrated oscillator systems in the presence of additive and multiplicative noise [16].

One of the important factors that can influence the collective dynamics of a complex

network is the presence of time delay in the coupling between the network nodes or

between individual functional elements of the network. As discussed in Chapter 1,

time delay can significantly impact synchronization and other collective behavior in

non-frustrated systems, and therefore it is of interest to investigate its influence on the

dynamics of frustrated systems. The present chapter is devoted to such a study and is

motivated by its potential utility in diverse practical applications.

The chapter examines in a quantitative manner the variations induced in the amount

of frustration in a given system as a function of time delay in the coupling. For our

study, we have considered three geometrical configurations that are representative of

frustrated networks, namely a simple triangle, a triangular lattice with six nodes, and a

hexagonal 4 × 4 lattice. Each node in these configurations is populated by a Kuramoto

phase oscillator and the links representing the interaction between the oscillators are

repulsive in nature with an intrinsic time delay τ. Our principal findings are that time

delay can significantly influence the amount of frustration in a system and thereby con-

trol the number and nature of the equilibrium states of the system. For an amount of

delay beyond a critical value, the system can transit to an in-phase collective state − an
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equilibrium condition that is normally not possible for frustrated configurations. The

transition to such a synchronous state is found to occur with a characteristic behavior

akin to first-order phase transitions. We also find that the variation of frustration as a

function of the product of time delay and the collective frequency of the system follows

a similar pattern for all three systems studied, which is suggestive of a universal scaling

behavior.

The chapter is organized as follows. In Sec. 2.1, we present our model equations.

Then we quantify frustration by introducing a frustration parameter that is a function

of the time-delayed phase differences between the oscillators. In Sec. 2.2, we study the

variation of this frustration parameter as a function of coupling delay in a system of three

coupled oscillators repulsively linked to each other in a triangular configuration. We next

study, in Sec. 2.3, a system of six oscillators repulsively linked in a configuration that

encloses a triangle within a triangle. The study is further extended to a triangular 4 × 4

lattice of oscillators in Sec 2.4. We discuss our findings and conclude in Sec. 2.5.

Figure 2.2: Frustrated systems of oscillators. Circles on the vertices represent phase

oscillators and the edges represent repulsive coupling links between the oscillators.
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2.1 The Model

We consider a network of N delay coupled phase oscillators with the dynamics of their

phases φi governed by the equations:

dφi(t)
dt

= ωi +
κ

νi

∑

j

Ai j sin
[
φ j(t − τ) − φi(t)

]
. (2.1)

Here ωi is the natural frequency of the i-th oscillator, κ is the coupling strength, τ is

the time delay in the interactions between the oscillators, and νi denotes the number of

neighbors to which the i-th unit is connected. Ai j is the adjacency matrix with Aii = 0,

Ai j = 1 if i � j and units i and j are connected, otherwise Ai j = 0. The initial phases,

φi(0), of the oscillators are selected randomly from the interval [0, 2π]. We consider

the oscillators to be identical, therefore we set ωi = ω and the coupling between the

oscillators is nearest neighbor only. Since we are primarily interested in the dynamics

of repulsively coupled oscillators, we take κ = −|κ| unless otherwise stated.

In the case of phase-repulsive coupling, each pair of oscillators tries to attain the

maximum phase difference of π. However, the topology of certain networks does not

allow it, resulting in frustration. Previously, Zoran Levnajić investigated the collec-

tive dynamics of phase-repulsive oscillators for various network sizes and topologies in

absence of time-delayed interactions [27]. He defined the global frustration F of the

network as the average of the frustration of individual link between each pair of oscilla-

tors:

F =
1

L

∑

i> j

Ai j fi j, (2.2)

where L is the number of links or connections between the nodes of the network and fi j
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is the link frustration between ith and jth nodes/oscillators, defined as

fi j = 1 + cos(φ j − φi). (2.3)

If two oscillators synchronize anti-phase, then the repulsive link between them is not

frustrated and fi j = 0. Whereas, if the oscillators are forced to synchronize in-phase, the

link between them becomes maximally frustrated with fi j = 2.

Since we are interested in the dynamics of networks with time-delayed interactions,

we define the frustration in such systems as

F = 1 − 1∑
i νi

κ

|κ|
N∑

i, j=1

Ai j cos
[
φ j(t − τ) − φi(t)

]
, (2.4)

where we have added the quantity 1 on the right hand side so that F = 0 defines the

no frustration state. From (2.4) it is evident that 0 ≤ F ≤ 2, where F = 0 corresponds

to non-frustrated systems and F = 2 corresponds to maximally frustrated systems. In

the absence of delay (τ = 0), the definition of our frustration parameter reduces to the

global frustration defined in Eq. (2.2) [21, 27]. Next, we explore the dynamics of some

frustrated networks and investigate the role of time delay in influencing that dynamics.

2.2 Three oscillators

We first consider a system of three repulsively coupled oscillators linked in a triangular

configuration (Fig. 2.2(a)). The dynamical equations (2.1) then reduce to:

φ̇i=1,2,3 = ω +
κ

2

3∑

j=1, j�i

sin
[
φ j(t − τ) − φi(t)

]
. (2.5)
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2.2.1 Equilibrium states and their stability

In the absence of time delay, when the coupling between the oscillators is attractive,

i.e., κ > 0, the oscillators can synchronize in-phase, whereas repulsively coupled (κ < 0)

oscillators try to maximize the phase difference between them and synchronize to a state

where there is a finite phase difference between them. In the simplest case of two repul-

sively coupled oscillators, they always synchronize in an anti-phase state with a phase

difference of π between them. For three repulsively coupled oscillators (Fig. 2.2(a)), all

the pairs of oscillators cannot simultaneously attain a phase difference of π. The equilib-

rium state of this system is one in which all the oscillators are frequency-synchronized

with a phase difference of ΔΦ = 2π/3 along each link. The presence of time delay in

the coupling can significantly change this simple picture. It can make the in-phase syn-

chronous state as well as the out-of-phase synchronous state stable for both attractively

coupled as well as repulsively coupled oscillators, depending upon the choice of time

delay and other parameters.

A generalized stability criterion for the in-phase synchronous state in networks of

identical phase oscillators with delayed sinusoidal coupling has been derived by Earl

and Strogatz [28] to be

κ cos(Ωinτ) > 0, (2.6)

where the collective frequency Ωin of the in-phase synchronous state is given by

Ωin = ω − κ sin(Ωinτ). (2.7)

This stability condition holds for any network in which all the oscillators have the same

number of connections (i.e., νi = ν), independent of all other details of its topology.
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Using this criterion, we can deduce that when the coupling between the oscillators is

repulsive (i.e., κ = −|κ|), the in-phase state is stable for
(
2n + 1

2

)
π < Ωinτ <

(
2n + 3

2

)
π

such that n = 0, 1, 2, 3, ..., and when the coupling between the oscillators is attractive

(i.e. κ = |κ|), the in-phase state is stable for 2nπ ≤ Ωinτ <
(
2n + 1

2

)
π and

(
2n + 3

2

)
π <

Ωinτ ≤ (n + 1) 2π.

For a state with a finite phase difference between the oscillators, a generalized stabil-

ity analysis has been carried out by D’ Huys et al. [29], who considered the phase-locked

solutions of a ring of bi-directionally coupled oscillators. The phase-locked state can be

characterized as,

φm(t) = Ωt + mΔΦ, (2.8)

where m = 1, ...,N and ΔΦ = 2 jπ/N, j ≤ N/2. The collective frequency Ω of this state

is obtained from the expression

Ω = ω − κ sin(Ωτ) cos(ΔΦ). (2.9)

To determine the stability of these phase-locked solutions, D’ Huys et al. [29] performed

a linear stability analysis and obtained the following equation for the eigenvalue λ:

λ = κ cosΔΦ cosΩτ

[
−1 + e−λτ

(
cos

2mπ
N

+ i tanΩτ tanΔΦ sin
2mπ
N

)]
. (2.10)

The above equation can be conveniently used to determine the stability of the phase-

locked states for the simple systems of two coupled oscillators as well as our model of

three coupled oscillators. The anti-phase synchronous state of two coupled oscillators

corresponds to ΔΦ = π and will only be stable when κ cos(Ωτ) < 0, as discussed in
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[29]. For three coupled oscillators, depending upon the choice of parameters and initial

conditions, the stable equilibrium state of the system is either an in-phase synchronous

state for which the phase difference is ΔΦ = 0 or an out-of phase state with ΔΦ = 2π/3.

The collective frequency and the stability of the in-phase synchronous state are given

by Eq. 2.7 and Eq. 2.6, respectively. The collective frequency Ωout of the out-of-phase

synchronous state is obtained by substituting ΔΦ = 2π/3 in Eq. 2.9, and it reads

Ωout = ω +
κ

2
sin(Ωoutτ), (2.11)

and is stable when none of the eigenvalues obtained from Eq. 2.10 have a positive real

part. Using these criteria, we have plotted in Fig. 2.3 the variation of the stable in-

phase collective frequencies Ωin (black solid lines) and stable out-of-phase collective

frequencies Ωout (red dashed lines) as functions of the delay parameter τ for a coupling

strength κ = −2 and an intrinsic frequency ω = 6. We note that for τ = 0 one can only

have an out-of-phase state, but beyond a certain value of τ an in-phase state can also

become stable. There is also a small overlap region where both states are stable and

the initial conditions would dictate the choice of the equilibrium state. The collective

frequencies of both states decrease as a function of τ − the well-known phenomenon

of frequency suppression that has been noted before for attractively coupled oscillators

[30, 31].

2.2.2 Frustration analysis

As discussed above, the equilibrium state in the absence of time delay for the present

case of three repulsively coupled Kuramoto oscillators is one in which the phase dif-

ference along each link is 2π/3. Setting τ = 0, N = 3, κ = −2, νi = 2, and the phase
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Figure 2.3: Plot of the stable collective frequencies Ωin and Ωout of the oscillators in the

in-phase state (black solid line) and out-of-phase state (red dashed line) as functions of

the delay parameter τ.

differences to be 2π/3 in (2.4), the frustration value for such a state is seen to be F = 0.5.

In the presence of time delay, (2.4) shows that frustration can vary with τ. This variation

of F with τ is plotted in Fig. 2.4(a) for various values of the intrinsic frequencies ω of

the individual oscillators and for a fixed value of κ. In Fig. 2.4(b), we have plotted the

variation of F with τ for various values of κ and a fixed value of ω. We see that in all

cases F increases at first as a function of τ, but beyond a certain value of delay, which

changes for different values of ω and κ, there is a sudden drop in the value of F and

thereafter it starts to decrease and eventually goes to zero such that the three oscillators

become synchronized in-phase. The precipitous decrease in F beyond a critical value

of τ is suggestive of a first-order phase transition phenomenon marking the evolution of

the system from a finite phase-locked state to an in-phase synchronized state. Before the

critical delay, the oscillators are in a phase-locked state with ΔΦ = 2π/3, and beyond

41



Chapter 2. Collective dynamics of delay-coupled phase oscillators in a frustrated
geometry

the critical delay the oscillators are synchronized in-phase. This abrupt change in the

relative phase between the oscillators at a critical delay is known as a phase-flip bifurca-

tion [32] and is a general feature of time-delay coupled systems. This generic behavior

is seen for all the values of ω plotted in Fig. 2.4(a), with the curves shifted from one

another as a function of ω at a constant κ. Likewise in Fig. 2.4(b), the curves are shifted

from one another as a function of κ at a fixed ω. However, the data of the shifted curves

can be made to lie on a single universal curve if we plot F as a function of Ωτ instead

of τ as shown in Fig. 2.4(c). Note that data points representing the value of F for a

particular set of ω and κ values that disappear beyond a value of Ωτ on the left side of

the curve continue their progress on the lower half of the right side curve, reflecting the

trends seen in Figs. 2.4(a) and 2.4(b). This consolidated curve, which is common for

all ω and κ values, provides a universal scaling behavior for the variation of the frustra-

tion parameter in a time delay coupled system of three Kuramoto oscillators configured

in a frustrated triangular configuration. As we will shortly show, this scaling behavior

continues to hold for even larger systems and different geometrical configurations and

is thus of a universal nature.

The physical nature of this curve can be easily understood for the three-oscillator

case from the expression for F given by (2.4). In the presence of time delay, the phase

differences between the oscillators have two contributing factors: one is the phase shift

of 2π/3 because of the repulsive coupling, and other is the phase shift equivalent to Ωτ.

It is the interplay between these two factors that governs the amount of frustration in

the system and also determines the critical transition point. Analytic expressions for the

universal curve can be easily obtained from the general expression for F given in (2.4)

for the variation of frustration with Ωτ. As mentioned before, at τ = 0, the oscillators

have a phase difference of
(
φ j(t) − φi(t) = ±2π/3

)
between them and hence F = 0.5.
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Figure 2.4: Plots showing the variation of the frustration parameter F as a function of the

delay parameter. F is calculated using Eq. 2.4 from numerical solutions of Eq. 2.1 for

the same set of initial phases for (a) three values of intrinsic frequency ω at fixed κ = −2,
and (b) three values of coupling strength κ at fixedω = 1.2. (c) In this figure, F is plotted

against the product of collective frequency Ω and delay parameter τ for various values
of ω and κ and a given set of initial phases. Frustration values for different intrinsic

frequencies as well as coupling strengths are seen to lie on a common curve given by F1

and F2, which are obtained from Eq. 2.12 and Eq. 2.13, respectively.

When we introduce delay, the time-delayed phase differences between the oscillators

have another contributing factor of Ωτ, i.e.,
(
φ j(t − τ) − φi(t) = −Ωτ ± 2π/3

)
. Substitut-

ing these time-delayed phase differences in the expression of frustration (Eq. 2.4) gives

one branch of the analytical curve that corresponds to the out-of-phase state (shown by

the solid black line in Fig. 2.4(c)),

F1 = 1 +
1

2

[
cos

(
2π

3
−Ωτ

)
+ cos

(−2π
3

−Ωτ

)]

= 1 − 1

2
cos(Ωτ). (2.12)

At Ωτ = π/2, the frustration value reaches a maximum value of unity. Beyond Ωτ =

π/2, the stability condition for the in-phase synchronous state, namely cos(Ωτ) < 0,
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is satisfied and all the oscillators are now synchronized in-phase. The phase shift in-

troduced by the repulsive coupling vanishes and F1 is no longer a valid expression for

determining the frustration values. Since the in-phase synchronous state corresponds to

φ j(t) = Ωt, the phase differences are φ j(t − τ) − φi(t) = −Ωτ, and we get the second

half of the curve corresponding to the in-phase state (shown by the dashed blue line in

Fig. 2.4(c)),

F2 = 1 + cos (Ωτ) . (2.13)

F2 decreases with an increase inΩτ and frustration becomes 0 atΩτ = π. Therefore, the

system is most frustrated at Ωτ = π/2 with F = 1 and is least frustrated at Ωτ = π with

F = 0. BeyondΩτ = π, F increases monotonically tillΩτ = 3π/2 beyond which it starts

decreasing until Ωτ = 2π. At Ωτ = 3π/2, the system transits from an in-phase state to

an out-of-phase state. In other words, the behavior of F in the region π < Ωτ < 2π is

a mirror image of its behavior in the range 0 < Ωτ < π. The behavior of frustration

parameter F is 2π-periodic with respect to the product Ωτ. This is also apparent from

the analytic expressions for the frustration parameter and the stability conditions for the

in-phase and out-of-phase states, where Ωτ always comes in the argument of sine or

cosine, which are 2π-periodic.

To return to the analogy of a phase transition occurring at a critical value of τ = τc

where the precipitous drop in F is seen, it is instructive to look at the time evolution

of F for various values of τ and for a fixed set of values of ω and κ. We find that as

τ increases, the frustration parameter takes a longer and longer time to settle down to

a constant value corresponding to the final equilibrium state. We denote the time after

which the system settles down to the equilibrium state by tsat. As τ approaches τc, this

time increases in a resonant fashion and a graphical depiction of the saturation time

as a function of τ is shown in Fig. 2.5. The functional behavior of tsat can be closely
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represented by the following expression obtained from an analytical fit (solid line curve)

to the numerical data points (red circles):

tsat = tsat |τ=0 + τ

(τc − τ)α . (2.14)

In Fig. 2.5 we have ω = 40, for which τc = 0.0389 and α in the analytical fit curve is

1.188. The dashed line shows that tsat → ∞ as τ → τc. As we will see, this algebraic

behavior of the saturation time close to the critical value of the delay time is found in

other frustrated configurations as well with a “critical index” that is greater than unity.
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Figure 2.5: Numerical data points and analytical fit of the variation of the saturation

time tsat are plotted with time delay τ for a system of three repulsively oscillators for

ω = 40 and κ = −2, for which the critical time delay τc = 0.0389.
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2.3 Six oscillators

We next study the collective states of a network comprised of six phase-repulsive oscil-

lators configured as shown in Fig. 2.2(b). Here oscillators are distinguishable in terms

of the number of their nearest neighbors.

2.3.1 Frustration and equilibrium states

This configuration is one among a host of repulsive networks that can exhibit multiple

final dynamical states characterized by different values of frustration, as discussed in

[27]. The difference between the different frustration states generally lies in the com-

petition between the constituent links in trying to minimize frustration by attempting

to stretch to the maximal attainable phase difference. The final dynamical state of the

system is decided by the choice of initial phases. In the absence of time delay, while the

network of three oscillators studied in the previous section shows only one equilibrium

state, the present configuration of six oscillators has two equilibrium states character-

ized by different values of the frustration parameter. In reference [27], the frustration

values F for this network were computed for 104 different initial phases in the absence

of time-delayed interactions. The author has reported that 42% of the initial phases re-

sulted in the equilibrium state with F = 0.5, and for the remaining 58%, the system

settled to an equilibrium state with F = 0.5505. In an equilibrium state, the oscilla-

tors are frequency-synchronized with phase-locked motion. The oscillators sharing the

same phases are considered to form a cluster. The oscillators in different clusters have

the same frequency but different instantaneous values of phases. The equilibrium state

with F = 0.5 corresponds to the three-cluster pattern with two oscillators in each cluster.

This is shown in Fig. 2.6(a), where the time evolution of the phases of all six oscillators
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are plotted together. The equilibrium state corresponding to F = 0.5505 exhibits the

six-cluster pattern where the instantaneous values of individual phases of all six oscilla-

tors are different, and it is plotted in Fig. 2.6(b). The existence of multiple equilibrium

states makes this system an interesting candidate to study how frustration evolves with

time delay for different initial conditions for such systems.
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Figure 2.6: The phase patterns corresponding to the two equilibria of the six-oscillator

network shown in Fig. 2.2(b) in the absence of time delay. In this figure, the phases

of all six oscillators are plotted together. Part (a) is obtained from an initial condition

that settles to the equilibrium state with F = 0.5. This equilibrium state corresponds

to a three-cluster pattern such that there are two oscillators in each cluster, and the

oscillators in same cluster share the same phase evolution. Part (b) is obtained from an

initial condition whose equilibrium state corresponds to F = 0.5505. This equilibrium
state has a six-cluster pattern, i.e., the instantaneous values of individual phases of all

six oscillators are different. We have taken ω = 0.7 and κ = −2 to get this figure.

We find that this six-oscillator network shows a similar tendency for the F vs τ and

F vs Ωτ variation as seen for the simpler three-oscillator system. In Fig. 2.7, we have

plotted F against Ωτ. For some values of Ωτ, frustration F has two values. The value
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of F switches between these two values depending upon the choice of the initial phases.

In the left half of Fig. 2.7, the lower curve corresponds to the three-cluster equilibrium

state and the upper curve corresponds to the six-cluster equilibrium state. The universal

scaling behavior, where the variation in frustration with Ωτ is seen to lie on a common

curve for all ω and κ values, holds for this six-oscillator configuration also. Even though

the frustration for some values of Ωτ depends on the choice of initial phases, for a given

initial condition the frustration values for different intrinsic frequencies lie on the same

curve. Just like the case with three coupled oscillators, the system is most frustrated at

Ωτ = π/2 with F = 1 and non frustrated at Ωτ = π. The functional behavior of tsat
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Figure 2.7: In this figure, F is plotted against the product of collective frequency Ω and

delay parameter τ for the network of six oscillators. This system shows the existence of

multiple equilibrium states characterized by different values of the frustration parameter

for some values of delay, and therefore frustration F can have multiple values at some

values of Ωτ. Depending on the choice of initial phases, the system can settle down to

any of these equilibrium states.

for the lower branch of F variation with τ is similar to the three-oscillators system with
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α = 1.325 and τc = 0.0384 in Eq. 2.14.

2.3.2 Basins of attraction

In Fig. 2.8, we have shown the variation in the sizes of the basin of attraction of different

equilibrium states of the six-oscillator network with time delay parameter. The results

have been obtained by evolving the system for 104 different initial phases. We find that

in the absence of delay (τ = 0), similar to the results obtained in [27], about 42% of

the initial conditions settle to the equilibrium state with F = 0.5, and the remaining

58% settle down to the final state with F = 0.5505. When we introduce time delay, the

value of the frustration parameter of these equilibrium states and the size of their basins,

changes. For comparatively small values of time delay, the out-of-phase equilibrium

state with higher value of frustration parameter has a larger basin of attraction. After

a certain critical value of time delay, the in-phase state also becomes a stable state of

the system, and therefore for some initial conditions, the system settles down to the in-

phase state instead. Around this delay value, the basin of attraction of the equilibrium

state with the lower value of F becomes larger than that of the equilibrium state with the

higher value of F. With further increase in delay, the basin of attraction of the in-phase

state increases, whereas the basin of attraction of the out-of-phase states decreases.

2.4 Triangular Lattice

We now investigate an extended network consisting of a triangular lattice formed by

joining triangles along the edges thereby forming a multi-unit system whose basic unit

cell is the system of three oscillators which we have studied in detail in section 2.2. We

consider a 4 × 4 triangular lattice with a hexagonal coupling configuration as shown
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Figure 2.8: The blue dashed line with squares shows the percentage of initial phases

that lead to equilibrium state with a lower value of F denoted by FLower. The red dashed

line with diamonds shows the percentage of initial phases that lead to the equilibrium

state with a higher value of F denoted by FHigher. The black dashed line with triangles

shows the percentage of initial phases that lead to the in-phase equilibrium state labeled

by In-Phase, and the magenta dashed line with circles shows the percentage of initial

conditions for which the system has not settled to any stable equilibrium state even for

a very large time span (tspan = 2000 in simulations), and it is labeled as Unsteady.

in Fig. 2.2(c). Repulsive coupling in combination with the hexagonal coupling pattern

turns all bonds into frustrated ones. Since frustration leads to the growth of the number

of coexisting attractors, this system is highly multistable [16] even in the absence of

time delay. Boundary conditions also play an important role in determining the final

frustration states of the network.

2.4.1 Periodic boundaries

When the boundaries are periodic, then each oscillator has the same number of nearest

neighbors (νi = 6 in Eq. 2.1). When the interactions between the oscillators are instan-

taneous (τ = 0), the system exhibits a variety of cluster patterns [16] but never goes to
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a single cluster state where all the oscillators are synchronized in-phase. Upon intro-

ducing time delay in the coupling between the oscillators, they are able to synchronize

in-phase when time delay exceeds a critical value. Starting from the same set of initial

phases if we keep on varying the value of the delay parameter τ, the cluster pattern ex-

hibited by the system also varies as shown in Fig. 2.9. Beyond a certain value of delay,

all the oscillators are synchronized in-phase into a single cluster. Since this system is

highly multistable even in the absence of delay, the system can go to different cluster

states at a given value of delay for different choices of initial conditions. Hence the

critical value of delay at which the system first goes to the single cluster state can also

be different depending upon the choice of initial conditions. The collective frequency

of the in-phase state and its stability condition obey the same expressions (Eq. 2.7 and

Eq. 2.6 respectively) as the system of three coupled oscillators. The phase-locked equi-

librium states exhibiting different cluster patterns at a given value of Ωτ correspond to

the same value of frustration parameter F. This network seems to have a unique value

of frustration at each value of time delay parameter. In the absence of time delay, the

value of frustration for this system is F = 0.6667. The variation of F with τ and Ωτ

is similar to the systems of three repulsively coupled oscillators. The universal scaling

behavior continues to hold for the sixteen-oscillator triangular lattice, too (Fig. 2.10(a)).

2.4.2 Free boundaries

If the boundaries of the triangular lattice are free, then the oscillators are distinguish-

able in terms of the number of their nearest neighbors, unlike the lattice with periodic

boundaries where each oscillator has six neighbors. Hence this system exhibits dis-

tinct equilibrium states corresponding to different values of frustration parameter F and
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Figure 2.9: The figure shows the variation in the cluster pattern exhibited by the 4 × 4

lattice of repulsively coupled oscillators with change in the time delay parameter τ for
a given set of initial phases. At a certain value of delay, the system starts exhibiting the

single cluster in-phase state. The collective frequency of the in-phase state decreases

with further increase in delay. We have taken ω = 0.7 and κ = −2.
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Figure 2.10: This figure shows the universal scaling behavior in the variation of F with

the product of collective frequency Ω and delay parameter τ for 4 × 4 triangular lattice

with (a) periodic boundaries, and (b) free boundaries.

cluster patterns. In the absence of delay (τ = 0), the system exhibits five equilibrium

states − S 1, S 2, S 3, S 4, and S 5 − with corresponding frustration values F(S 1) = 0.4779,
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F(S 2) = 0.5037, F(S 3) = 0.5249, F(S 4) = 0.5263, and F(S 5) = 0.5502, respectively.

The histogram plotted in Fig. 2.11 shows the sizes of the basin of attraction of these equi-

librium states for 103 initial conditions. The equilibrium state S 1, with F(S 1) = 0.4779,

has the largest basin of attraction. In the presence of time delay, similar to the six-

oscillator network presented in the previous section, this system also exhibits multiple

equilibrium states characterized by different values of frustration for some values of τ

or Ωτ, as shown in Fig. 2.10(b). The universal scaling behavior continues to hold. The

system can switch between these equilibria, corresponding to the different F values,

depending upon the choice of initial phases. For each value of time delay, we have ob-

tained the values of frustration parameter by evolving the system for 500 different initial

conditions. In addition to the equilibrium states shown in Fig. 2.10(b), there might be

other equilibrium states also but with the basins of attraction so small that it becomes

extremely difficult to observe them numerically.

2.5 Summary and Discussion

In this chapter we have studied the effect of time-delayed coupling on the collective

dynamics of various frustrated systems of repulsively coupled Kuramoto phase oscilla-

tors. For our study, we have chosen three typical frustrated configurations, namely (i) a

set of three oscillators in a triangular configuration that represents the simplest possible

two-dimensional frustrated geometry, (ii) a set of six oscillators configured as a triangle

within a triangle that presents a slightly more complex geometry and, (iii) a set of sixteen

oscillators in a hexagonal lattice geometry representing a generalization of the basic tri-

angular configuration of three oscillators. The three configurations also have distinctly

different characteristics in the absence of time delay, e.g., (i) has a single equilibrium

state with a unique value of the frustration parameter, (ii) has two equilibrium states (and
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Figure 2.11: Histogram showing the sizes of the basins of attraction of the equilibrium

states of 4 × 4 lattice with free boundaries for 103 initial conditions in the absence of

time delay.

hence two different frustration values) that the system can go to depending upon the ini-

tial conditions, and (iii) has multiple frustration states when open-boundary conditions

are applied to the lattice, and hence it displays multistable behavior that is dependent on

the initial conditions. We study the dynamical behavior of these prototypical systems by

a quantitative investigation of a suitably defined generalized frustration parameter that

is a function of the time delay. Our numerical investigations reveal a generic behavior in

all the systems where we observe that the frustration parameter initially increases with

delay and then precipitously falls after a critical value to a much lower value and then

decays to zero, thereby transitioning to an in-phase synchronous state. Thus the pres-

ence of a time delay in the coupling that is larger than a critical value removes a basic

constraint of frustrated systems and permits them to attain a synchronous state. This

happens due to the interplay between the phase-difference contributions arising from
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the geometry and the time delay. We also find that this behavior can be characterized

by a single universal curve representing the variation of F with the product of the col-

lective frequency Ω of the synchronous state and the time delay parameter τ. The curve

is common for all values of natural frequencies ω of the individual oscillators as well

as the coupling strength κ between the oscillators. An analytic description of this curve

is given for three coupled oscillators. The nature of the transition is seen to have the

characteristics of a first-order phase transition whose behavior near the transition point

can be expressed in terms of an algebraic relation that has a “critical exponent” that is

larger than (but close to) unity.

The universal scaling behavior of F with Ωτ that holds for all three systems is the

most significant finding of our investigation and underscores the important role that time

delay can play in the dynamics of frustrated systems. In particular, it shows that time

delay can serve as a tuning parameter to steer the system towards different values of the

frustration parameter and hence to different collective multistable states. This property

can be exploited in physical systems in which time delay can be varied by changing the

media characteristics to change the speed of signal propagation. In biological systems,

e.g., in neuronal networks where frustration and time delay are coexistent, our results

may prove useful in gaining a better understanding of their underlying dynamical be-

havior. A possible application of our work can be in vertebrate segmentation. Verte-

brate segmentation has been successfully modeled using the Delayed Coupling Theory

(DCT) [33], a phase oscillator model with discrete delays. The DCT models the patterns

of cyclic gene expression on the tissue level by a system of two-dimensional hexagonal

lattice of phase oscillators, which is often frustrated. In the DCT, discrete delays in the

coupling function account for the communication delays due to finite signal transmis-

sion time in complex biochemical signaling pathways. Since this system has hexagonal
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coupling configuration and communication delays, it would be really interesting to do a

systematic frustration analysis by applying DCT and our definition of frustration F using

the experimentally obtained parameters (such as given in [34]) to study how frustration

relates to and influences the spatiotemporal dynamics of vertebrate segmentation.
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3
A dynamical framework to relate

perceptual variability with

multisensory information processing

Multisensory signals seamlessly enrich our knowledge of the world [1]. For example,

while driving a car or attending to a vocalizer in a noisy background we cannot rely

on only one sensory modality, be it visual or auditory, rather a harmonious interac-

tion of visual and somatosensory or visual and auditory systems is required. In recent

years, multisensory nature of perception has been the focus of much behavioral and

neuroscientific research [2]. Merging information from different senses confers distinct

behavioral advantages, for example, identification of audio-visual (AV) objects is more

rapid [3] than with unimodal stimuli [4–9], especially when the signals are ambiguous

[10–14]. To realize these advantages, the brain continually coordinates sensory inputs

across the audiovisual [15–18], visual-tactile [19–22], and audio-somatic [23] domains
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and combines them into coherent perceptual objects. However, operational principles of

how environmental and neural variables modulate multisensory processing underlying

perception are poorly understood [24]. In this chapter we propose a theoretical frame-

work that explains the empirical observations from a paradigmatic framework widely

acknowledged to be an entry point in studying multisensory processes.

An experimental realization of the underlying complexity involved in multisensory

processing is captured by the “McGurk-effect”, where incongruent auditory and visual

stimuli elicit the perception of illusory speech sounds. In 1976, McGurk and MacDon-

ald [25] demonstrated that the sound of articulating /pa when superimposed on a video

of lip movement during articulation of /ka, resulted in an illusory experience of /ta for

the perceiver. Similar triads were also reported, such as, auditory /ba and visual /ga re-

sulted in the perception of /da. Several researchers have used this paradigm to study the

key behavioral and neural variables that can modulate perception [26–28]. Ambiguity

in one of the sensory streams, arising from noisy stimuli, affects the neuronal processing

of multisensory stimuli [26]. For example, adding white noise to the auditory stimuli

resulted in an enhanced functional connectivity between the visual cortex and the poste-

rior superior temporal sulcus (pSTS), a brain area populated with multisensory neurons

[26]. On the other hand, an increase in ambiguity of visual stimuli (e.g., blurry video)

resulted in an enhanced functional connectivity between auditory cortex and pSTS. The

relative timing of different sensory input signals is another important factor in multisen-

sory information processing [27, 29]. Temporal proximity is a critical determinant for

cross-modal integration by multisensory neurons [2, 30]. For instance, the audiovisual

integration of speech breaks down if the asynchrony between the visual lip movements

and the auditory speech sounds becomes too long [16, 20, 27, 29, 31]. However, a large

temporal window exists over which successful integration may occur [27, 32–34]. The
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McGurk illusion, for example, persists even when the visual information leads (by up-

to 240 ms), or lags (by up-to 60 ms) the auditory input [27, 29]. In fact, Munhall and

colleagues reported that the peak of illusory response happens when the visual stimulus

leads the auditory stimulus by 180-200 ms [27]. One possible explanation proposed

for this asymmetrical range of temporal synchrony refers to the natural timing relations

between the audio and visual events in the real world. Since the visible byproducts of

speech articulation, including posturing and breath, almost always occur before acous-

tic output, Grant et al. [35] suggested that the human perceptual system might have

adapted its processing to anticipate and tolerate multisensory events where visual in-

put leads auditory input while maintaining the perception that the two events are bound

together.

One important component not much explored in the literature is that of an integra-

tive framework/model that can elucidate the dynamic interactions among the environ-

mental and neural variables underlying multisensory processing of stimuli that shapes

perception. The existing computational modeling literature addresses the spatial and

temporal integration of incoming multisensory stimuli either at the behavioral level or

at the neural level [36–42]. Typically most models have three components, two unisen-

sory and one multisensory. They attempt to address the integration mechanisms either

at the level of single units or populations at the neural level (inspired by the presence

of multisensory neurons) [43] for constructing a model. Nonetheless, the modeling ap-

proaches can be broadly classified into two classes. A Bayesian framework was used

by some researchers to explain how unisensory streams of audition and vision can in-

tegrate to facilitate perception by solving the spatial localization problem [36, 37]. The

second approach uses dynamic models of underlying neural systems that can be fur-

ther subdivided into two subclasses. The first subclass is that of biologically inspired
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models of neural dynamics, proposed to understand the role of predictive coding [38] as

well as spatial and temporal aspects of multisensory processing [39, 42]. For a review

on neurocomputational approaches to modeling multisensory integration in the brain,

see [44]. The second subclass uses minimal models with least amount of parameters

and variables to identify the key variables affecting the dynamic changes in behavior.

For non-speech sounds and multisensory processing, a dynamic model was introduced

by Dhamala and colleagues [34] that explained the phenomenon of drift for slightly

asynchronous audio-visual stimuli. The study presented in this chapter incorporates the

key environmental variables affecting the McGurk paradigm in a minimal model to un-

derstand their relationships with neurally relevant parameters such as the connectivity

between the unisensory and multisensory systems and their potential role in oscillatory

brain dynamics.

Electrophysiological signals can be conceptualized into patterned oscillations and

decomposed into five frequency bands that are physiologically meaningful, delta (0.5 −
3.5 Hz), theta (4−7 Hz), alpha (8−12 Hz), beta (13−30 Hz), and gamma (> 30 Hz) [45].

Beta band power is enhanced in fronto-parietal areas in trials where subjects perceive

McGurk illusion accompanied by a reduction in theta power [28]. In general, beta band

synchronization has been associated with audio-visual stimulus perception [46]. Phase

synchrony and phase modulation of oscillations across the different frequency bands

have been suggested to play a key role in the organization of cortical networks engaged

in complex cognitive functions such as speech processing [47] and constitute a criti-

cal component of auditory-articulatory alignment [48]. There is a mounting evidence

that the coherence of oscillatory neural signals across cortical areas might be a crucial

mechanism involved in multisensory processing [45, 49–51]. Theta rhythms have been

particularly associated with the auditory perception of syllabic speech [52]. A recent
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article emphasizes the role of coherence between lip movement and brain oscillations at

low frequency for the intelligibility of speech stimuli [53]. Nonetheless, how perceptual

categorization parametrically varies with the window of temporal integration and how

oscillatory cortical activity observed by EEG/MEG studies using the McGurk-paradigm

[3, 28, 54] relates to perception, is unclear.

The Kuramoto model [55] of coupled phase oscillators is commonly used for con-

structing the theoretical models of neurobiological networks with oscillatory dynamics

[56, 57]. In this model, the phase of an oscillation exhibited by any node of a net-

work becomes the key variable of interest, affected by free parameters such as cou-

pling/connectivity terms. Thus, each Kuramoto oscillator can depict the oscillatory

state of a sub-network (e.g., sections of cortical columns), captured by its circular phase

alone and the overall synchronization states can capture the collective dynamics of the

network. A network of Kuramoto phase oscillators provides a dynamic framework to

explain the functional connectivity changes in the brain electromagnetic data [58]. The

original Kuramoto model and its extensions have been used to explore mechanisms un-

derlying oscillations in the human cortex [56]. In this chapter we propose a dynamical

model comprising of three coupled Kuramoto oscillators, coupled via electric coupling

and time delay. Electric coupling captures the physiological constraints of the audio-

visual system and time delay captures the environmental factor of temporal asynchrony

[59]. Empirically such networks can be imaged non-invasively from EEG/MEG studies

[60]. As discussed in Chapter 1, the presence of time-delays enriches the attractor space

of a dynamical system [61]. Our proposed model predicts the behavior of McGurk per-

ceivers reported under ambiguous stimuli scenarios as well as during variation of AV

onset lags. The rest of the chapter is organized as follows. In Sec. 3.1, we first present

the behavioral experimental paradigm using McGurk-like stimuli where one can study
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the relationship between perceptual experience and psychophysical parameters such as

audio-visual onset lags. Then we propose a theoretical model of multisensory perception

using symmetry arguments. In Sec. 3.2, we present the results of the statistical analysis

on the behavioral data and the analytical and numerical results of the dynamical model

under various parameter set-ups. Finally in Sec. 3.3, we discuss the theoretical results in

the context of the experimental paradigm and argue how this modeling framework cap-

tures the key features of complex multisensory integration processes and can potentially

be helpful for explaining other experimental paradigms as well.

3.1 Methods

In the McGurk illusion, a unitary percept emerges as a result of the integration of clearly

incongruent auditory and visual information. Hence, the formation of an illusory percept

corresponds to successful integration and a construction of auditory, visual or other

stimuli as percept corresponds to the breakdown of audio-visual integration. Therefore,

the McGurk illusion permits one to quantify the degree of integration that has taken

place by evaluating the percentage of illusory responses. The behavioral experimental

study presented in 3.1.1 allows us to take advantage of the McGurk illusion to explore

the temporal boundaries of AV integration in speech.

3.1.1 Experimental paradigm

The experiments were conducted in the National Brain Research Centre (NBRC), Haryana,

India by our collaborators Arpan Banerjee and Abhishek Mukherjee.
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3.1.1.1 Subjects and stimuli

Fifty-two healthy right-handed adult participants (25 female, 27 male) of age range

20-35 years (mean age = 24.5 years, SD = 3.12) participated in a behavioral study of

duration of about 45 minutes. The undertaken study design was approved by Institu-

tional Human Ethics Committee (IHEC), National Brain Research Centre (NBRC) and

the study was carried out in accordance with the guidelines set by IHEC, NBRC and

in strict adherence to the declaration of Helsinki. All participants provided written in-

formed consent in a format approved by IHEC, NBRC and reported normal vision and

hearing and no history of neurological disorders. 7 video stimuli, each of 2 seconds(s)

duration were prepared, of which 6 were incongruent audio-visual objects where audio

recordings of a human speaker vocalizing /pa were dubbed on the lip movements of vo-

calization /ka (/pa-/ka) and 1 was a congruent audio-visual object /ta (/ta-/ta). The gap in

the onset of auditory and visual streams was varied from −300 to 450 ms in steps of 150

ms in the 6 incongruent videos. Negative sign implies that the auditory stimulus onset

preceded the lip movement onset and positive implies that lip movement starts before

the sound. An asymmetric range of AV lags was chosen for incongruent trials, because

a previous study by Munhall and colleagues [27] reported that the dominance of illusory

perception was skewed towards positive lags where the start of lip movement precedes

sound onset. The congruent /ta-/ta video had a synchronous onset of AV stimuli. The

male speaker’s lips were in a neutral closed position when not engaged in utterance of

the syllables /ka or /ta and the articulation always started from a neutral position. Videos

were created/ edited using VideoPad video-editing software (NCH Software, CO) at a

frame rate of 25 frames/second and a resolution of 1280 × 720 pixels. The auditory

/pa and /ta syllables were of 0.549 s and 0.531 s duration and were edited in Audacity

software (Sourceforge.net) to minimize the background noise. The audio sampling rate
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was 44 kHz and had a bit rate of 128 kbps. The study was done inside a 3T MRI scanner

as part of a brain imaging investigation.

3.1.1.2 Task

The task design is illustrated in Fig 3.1. Inside the MR scanner, the stimuli were pre-

sented in a block design with 20 s activation blocks consisting of 10 videos of one kind

of AV lag. In total there were 28 activation blocks in the whole experiment inclusive

of 4 activation blocks for each stimuli category (AV lag). There were alternating 28

resting blocks, each of 20 s duration. The order of presentation of activation blocks was

randomized and the same kind of block never appeared consecutively. Within a block,

the trial videos comprised of one kind of lag, and this is a limitation of the fMRI block

design. AV stimuli were presented through an INVIVO MR - compatible CRT screen

attached to the head-coil and MRI-compatible headphones (Philips, The Netherlands).

Presentation software (Neurobehavioral Systems, CA) was used to display the stimuli.

Participants were presented with the stimuli (Fig. 3.1) and asked to indicate their re-

sponse based on their perception via three buttons designated for /ta, /pa, and for “any

other” perceptual categories. They were instructed to attend to the audio-visual stimuli

and watch the speaker at all times. A fibre-optic button-pad by Curdes (Current Designs,

PA, USA) was used to record the responses of the participants.

3.1.2 Theoretical framework

Multisensory systems research has been built on analogies drawn from constituent unisen-

sory processing modules. For example, multisensory processing of audio-visual inputs

was studied in comparison to standalone auditory and visual processing [3, 43, 62].

However, increasing evidence suggests that a network of unisensory and multisensory
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Reaction time (RT)

/ka

a) b)

Figure 3.1: (a) Stimuli videos are created using visual lip movement of /ka superimposed

on auditory /pa. Participants reported the auditory object they heard while watching the

video using a button press response box. (b) Stimuli videos were created at different

audio-visual lags τ, the timing difference between the onset of sound and lip movement,

with values ranging from [−300, 450] ms.

systems may be involved in multisensory task processing [26, 28, 34]. Thus, it is reason-

able to assume that the most elemental model of multisensory perception will involve at

least two unisensory systems and one multisensory system [22, 36, 38, 39] even though

a recent hypothesis suggests two unisensory streams can in principle give rise to mul-

tisensory effects [24]. Furthermore, the changes in oscillatory brain rhythms such as

pre-stimulus enhancement of beta power and post-stimulus depreciation of theta band

power have been identified as the hallmarks of illusory perception in pre-stimuli or post-

stimuli regimes [28, 63], respectively.

As discussed before, the Kuramoto model [55, 64] is increasingly becoming a handy

tool to model oscillatory brain dynamics. In our model, we exploit the mathematical

tractability and dynamical complexity of Kuramoto model by considering a system of

three coupled Kuramoto phase oscillators configured in the manner shown in Fig. 3.2.

The phase of the oscillator A representing the auditory system is θ1, the phase of the
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oscillator V representing the visual system is θ2, and the phase of the oscillator AV rep-

resenting the multisensory system is θ3. Each oscillator has a distinct natural frequency

of oscillation, denoted byω1, ω2, andω3 respectively. Our model captures the functional

connectivity between unisensory systems such as auditory, visual cortices and the multi-

sensory system, e.g., posterior superior temporal sulcus (pSTS), that has been observed

in functional imaging studies [26], via the coupling parameters κ1 and κ2.

Furthermore, our experimental results as well as those from Munhall and colleagues

[27] indicate that a crucial parameter in the creation of perceptual states is the AV lag

which we capture through the time delay parameter τ. In normal hearing and visual cir-

cumstances, one can expect the coupling between individual sensory systems and mul-

tisensory system to be balanced. However, perturbations to one of the sensory streams,

such as unreliable visual or auditory signals, can lead to a situation of unbalanced cou-

pling as shown by Nath and Beauchamp [26]. There is no direct coupling between A

and V oscillators in our model, though in the neural system there is evidence of connec-

tivity between the primary auditory and visual areas A1 and V1 [65]. This is primarily

because we are interested in understanding the key symmetries of the most simple mul-

tisensory dynamical model catered towards understanding oscillatory states of the brain.

Nonetheless, A and V do interact functionally in our model, since they are both coupled

to AV, the functional unit of multisensory system. To model the experimental situation

of positive AV lags between the audio and visual stimuli, the coupling between the os-

cillators V and AV is time delayed by a parameter τ. When the visual stimulus precedes

the auditory stimulus (positive lag), the dynamics of phase oscillators is expressed as

θ̇1(t) = ω1 + κ1 sin (θ3(t) − θ1(t)) ,
θ̇2(t) = ω2 + κ2 sin (θ3(t − τ) − θ2(t)) ,
θ̇3(t) = ω3 + κ1 sin (θ1(t) − θ3(t)) + κ2 sin (θ2(t − τ) − θ3(t)) ,

(3.1)

70



Chapter 3. A dynamical framework to relate perceptual variability with
multisensory information processing

where κ1 is the strength of interaction between the auditory (A) and the AV oscillator

and κ2 is the coupling strength between the visual (V) and the AV oscillator. When

the auditory stimulus precedes the visual stimulus (negative lag), one can consider the

possibility of τ being negative. However, physically it does not make sense to make the

present dynamics dependent on the future. Alternatively, one can intuitively relate the

situation of negative τ to a situation where oscillator A has a time delayed coupling with

oscillator AV while the visual oscillator V is instantaneously coupled. Hence, when the

auditory stimulus precedes the visual stimulus, the dynamics of phase oscillators can be

represented as

θ̇1(t) = ω1 + κ1 sin (θ3(t − τ) − θ1(t)) ,
θ̇2(t) = ω2 + κ2 sin (θ3(t) − θ2(t)) ,
θ̇3(t) = ω3 + κ1 sin (θ1(t − τ) − θ3(t)) + κ2 sin (θ2(t) − θ3(t)) ,

(3.2)

Equations 3.1 and 3.2 are similar in form but are not mirror images due to the differ-

ences in the individual frequencies of the oscillators that give rise to asymmetry. When

the oscillators are allowed to interact, the frequencies of oscillations of all three units

synchronize with various phase relationships (analytically derived in section 3.2 for a

simple case) for sufficiently strong strengths of interactions.

States of synchronized oscillations across a chain of phase oscillators can be mathe-

matically identified by defining a complex order parameter Z, which gives a quantitative

measure of the synchronization among the oscillators and can be expressed as

Z = ReiΦ =
1

3
[eiθ1 + eiθ2 + eiθ3]. (3.3)

Here the amplitude R(t) is a measure of both, the synchronization of the frequencies of
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Figure 3.2: The dynamical model of multisensory speech perception for positive AV

lags (i.e., when visual stimulus leads auditory stimulus). Oscillators A, V, and, AV rep-

resent the auditory, visual, and multisensory systems, respectively. Their corresponding

intrinsic frequencies are ω1, ω2, and ω3, and the respective phases are θ1, θ2, and θ3. The
coupling between A and AV is instantaneous and its strength is κ1, whereas the coupling
between V and AV is time delayed by the parameter τ and its strength is κ2. There is no
direct coupling between oscillators A and V.

the three oscillators as well as the phase coherence of the oscillators, and Φ(t) measures

the average phase of the system. The system can get synchronized in frequency as

the coupling strengths κ1 and κ2 are increased but the oscillators can still be separated

in their mutual phases while oscillating at the same frequency. For such a frequency

synchronized state, a value of R = 1 represents maximum synchronization (0 phase

difference) among the oscillators and R = 0 means maximally separated phases among

individual oscillators.

Earlier studies have proposed that the perceptual experience can be qualitatively
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conceptualized as attractor states of a dynamical system [34, 66]. Stable synchronization

patterns at certain relative phase relationships are attractors in a dynamical system, and

instabilities signify switches in the perceptual state. In this framework, the state of

the order parameter or the collective variable R can be representative of the overall

perceptual categorization and can be studied as a function of the interactions among

constituent psychophysical variables, coupling strengths, the spread in the frequencies

of the oscillators as well as the time delay parameter τ. Time delay τ can be interpreted

as the temporal window over which the integration of AV information takes place.

3.2 Results

3.2.1 Behavior

The button press responses to perceptual experience collected from each participant dur-

ing the experiment were analyzed offline using customized MATLAB codes. A max-

imum of 40 responses were expected for each AV lag condition. Tasks with less than

35 responses were rejected since estimates of perceptual categorization may be biased

during the computation of percentage responses. No subject had to be rejected based on

this criteria. Behavioral responses of attempted trials of each participant were converted

into percentage measures for each perceptual category, /pa, /ta or “other” corresponding

to AV lags over a range [−300, 450] ms. Subsequently, 34 participants who reported

perceiving /ta for at least 60% of the total responses at any AV Lag are defined as the

“McGurk-perceivers” and simply referred to as perceivers.

We observed that perceivers report /ta maximally at an AV lag of 0 ms when the

lip movement of the speaker is synchronous with the onset of the auditory stimulus

(Fig. 3.3). Conversely, /pa perception was reported the least number of times at AV lag
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of 0 ms. Analysis of Variance (ANOVA) was performed over the percentage responses

(without repetitions) in each category, /pa, /ta and “other”, with lags and subjects treated

as factors. For threshold of statistical significance set at p = 0.001, there was a signifi-

cant change in /ta responses across lags (F(5, 165) = 24.46, p < 0.001), but not across

subjects (F(33, 165) = 1.72, p = 0.0141). /pa responses significantly varied across

lags (F(5, 165) = 12.57, p < 0.001) as well as across subjects (F(33, 165) = 5.43, p <

0.001). The “other” responses also significantly varied across lags (F(5, 165) = 7.11, p <

0.001) and subjects (F(33, 165) = 4.25, p < 0.001).

%
 r

es
po

ns
e

 

/pa

/ta

other

AV Lags (ms)
Figure 3.3: Normalized behavioral responses from 34 subjects. Mean response for each

perceptual category is presented as a function of AV lag τ. The error bars reflect 95%
significance thresholds.
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3.2.2 Dynamical model of multisensory processing

We have investigated the system of equations 3.1 and 3.2 numerically and analytically

to gain insight on how time-delays may influence the stability of perceptual states. We

have studied the model under two scenarios, one with balanced coupling (κ1 = κ2) and

the other with unbalanced coupling (κ1 � κ2). For the sake of simplicity, the analytical

derivations are done for the balanced coupling conditions only, but we do investigate

the unbalanced coupling scenario numerically. All numerical simulations have been

performed using the customized MATLAB (www.mathworks.com) codes and delay-

differential equation solver dde23. We are interested in the collective behavior of the

system of oscillators (Fig. 3.2, equation 3.1), in particular the dynamics of the order pa-

rameter that quantifies the synchronized states as a function of time-delay and coupling

parameters.

3.2.2.1 Balanced coupling

We have solved the system of equations 3.1 and 3.2 for a range of κ = κ1 = κ2 values

from 3− 20 and for various values of the time delay (τ). In Fig. 3.4, we have plotted the

time series of the phases θ1, θ2, and θ3 at two delay values when the coupling strength

is κ = 5. At delay τ = 0.07, all three oscillators are almost synchronized in-phase

and hence the order parameter R = 0.9995. However, at delay τ = 0.95, auditory

A and multisensory AV oscillators are oscillating almost in-phase whereas the visual

oscillator V is out-of-phase and the order parameter R = 0.3326. Hence, the transition

from almost complete synchronization to a lower degree of synchronization occurs at a

critical value of τ. To explore the parameter space further, we have computed the order

parameter for various time delays (τ) and coupling strengths (κ) (Fig. 3.5). The right

halves of the curves correspond to the “positive” audio-visual lags (where the visual
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stimulus precedes the auditory stimulus) and are obtained from the numerical integration

of equation 3.1. The left halves of the curves correspond to “negative” audio-visual lags

(where the auditory stimulus precedes the visual stimulus) and are obtained numerically

from equation 3.2. In Fig. 3.5(a), the intrinsic frequencies are set at ω1 = 3, ω2 = 4, and

ω3 = 5. This is roughly in the θ frequency range (3 − 5 Hz) which was earlier shown to

be relevant for the existence of perceptual states [28]. The initial phases for simulations

are randomized to span all possible relative phase states. For weak coupling κ < 1,

the existence of synchronization states is not possible consistently and R oscillates with

time. For κ ≥ 1, a clear synchronization state appears at least for a range of τ values. Two

stable states of the order parameter emerge, one synchronization state around R ≈ 1, and

the other around R ≈ 0.33. Furthermore, we have also observed that the critical value of

τ increases with an increase in κ. In other words, the island of synchronization expands

with increasing κ. For example, for κ = 10, a transition happens for a high value of τ

(not shown in Fig. 3.5(a)), that is not behaviorally relevant. On the other hand, we have

also observed that higher intrinsic frequencies of the oscillators can recede the island of

synchronization. For example, if the intrinsic frequencies are set to ω1 = 15, ω2 = 16,

and ω3 = 17 (beta band frequency), we see that the transition from the synchronization

state occurs at a lower values of τ, and the extent of synchronization regime decreases

(Fig. 3.5(b)). An important point to note here is that the critical transition value of τ

may not be the same for “positive” and “negative” audio-visual lags. This stems from

the disparity in the intrinsic frequencies of the oscillators.

Multistability and analytical solutions Multistable states of a dynamical system can

be relevant for describing the perception and the action, in particular, the inter-trial and

inter-subject variability. We have investigated the existence of such states in our dy-

namical model. The presence of a time-delayed coupling provides for a rich collective
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Figure 3.4: The time series of phases θ1(t), θ2(t), and θ3(t) of the three Kuramoto os-

cillators having intrinsic frequencies ω1 = 3, ω2 = 4, and ω3 = 5 respectively, (a) at

delay τ = 0.07, and coupling strength κ1 = κ2 = 5. At this value of delay, all three

oscillators are almost synchronized in-phase and hence the order parameter R = 0.9995.
(b) Delay τ = 0.95, and coupling strength κ1 = κ2 = 5. At this value of delay, auditory

A, and multisensory AV oscillators are oscillating almost in-phase, whereas the visual

oscillator V is out-of phase with the other two. Hence the order parameter R = 0.3326.

dynamics, including the existence of multiple collective states and the possibility of

coexistence of some of these states. We have looked at this possibility by theoreti-

cal and numerical investigation of the model equations over a wide range of parameter

values and randomized initial conditions in Figs. 3.5 and 3.6. The figures show that

our system is multistable, i.e., the order parameter can have multiple values at a given

value of τ and it can take any of these values depending on the choice of initial phases

(Fig. 3.6). The multistability seen in this model system may be related to the multi-

stability seen in the speech perception in terms of different responses registered as /pa

and “others” (Fig. 3.3). The synchronized state (where all the oscillators oscillate with

the same frequency Ω) is given by θi(t) = Ωt + ψi, where ψi’s are constants. Let the

phase shift between the auditory and AV oscillator be θ3 − θ1 = ψ3 − ψ1 = φ1 and the
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Figure 3.5: The variation of the order parameter (R) of the system of oscillators with

delay (τ) for the case of balanced coupling (κ1 = κ2 = κ), when the intrinsic frequencies
are (a) ω1 = 3, ω2 = 4, and ω3 = 5, and (b) ω1 = 15, ω2 = 16, and ω3 = 17. We have

obtained the above curves for various κ values for the same set of initial phases.

phase shift between the visual and AV oscillator be θ3 − θ2 = ψ3 − ψ2 = φ2. This gives

θ2(t − τ) − θ3(t) = −φ2 − Ωτ and θ3(t − τ) − θ2(t) = φ2 − Ωτ. Using these expressions,

system of equations 3.1 can be written as

Ω = ω1 + κ sin φ1, (3.4a)

Ω = ω2 + κ sin(φ2 −Ωτ), (3.4b)

Ω = ω3 − κ sin φ1 − κ sin(φ2 + Ωτ). (3.4c)

On summing the equations 3.4a, 3.4b, and 3.4c, we obtain

Ω = ω̄ − 2κ

3
cos φ2 sin(Ωτ), (3.5)
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Figure 3.6: The blue circles show the order parameter (R) as a function of time delay

(τ) for ω1 = 3, ω2 = 4, ω3 = 5 and coupling strengths κ1 = κ2 = κ = 5, computed

using the analytical expression Eq. 3.14. Red dotted curve is obtained by numerically

integrating the model equations (Eqs 3.1 and 3.2) to get the individual phases and then

using Eq. 3.12 to get R, for one set of initial conditions IC1. The green and black

dotted curves are obtained numerically from different sets of initial phases, IC2 and IC3,

respectively. We see that the system is multistable, i.e., the order parameter can have

multiple values at a given value of τ. The analytical results are in great agreement with

the numerical values of the order parameter.

where ω̄ = ω1+ω2+ω3

3
is the average frequency. From Eq. 3.4a, we obtain φ1 = sin−1

(
Ω−ω1

κ

)

and from Eq. 3.4b, we have φ2 = Ωτ+sin−1
(
Ω−ω2

κ

)
. Eq. 3.5 gives the collective frequency

Ω as a function of delay τ when we have “positive” audio-visual lags. Since it is a tran-

scendental equation, we get multiple values of collective frequency Ω as the solutions

of Eq. 3.5 at a given value of delay. To determine which of these solutions correspond

to a stable synchronization state, one has to do a stability analysis.

To obtain the expression of collective frequencies for the “negative” audio-visual

lags, one has to do the same analysis as above using Eq. 3.2. For “negative” audio-
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visual lags, we have

Ω = ω̄ − 2κ

3
cos φ1 sin(Ωτ), (3.6)

where ω̄ is the same as above but φ1 = Ωτ + sin−1
(
Ω−ω1

κ

)
and φ2 = sin−1

(
Ω−ω2

κ

)
.

Derivation of the stability condition We perform a linear stability analysis to deter-

mine the local stability of the synchronization state by adding a small perturbation

θi(t) = Ωt + ψi + εξi(t), (3.7)

where 0 < ε << 1. Taking ψ3 − ψ1 = φ1, and ψ3 − ψ2 = φ2 gives

θ3(t) − θ1(t) = ε
[
ξ3(t) − ξ1(t)] + φ1,

θ3(t − τ) − θ2(t) = ε
[
ξ3(t − τ) − ξ2(t)] + φ2 −Ωτ,

θ2(t − τ) − θ3(t) = ε
[
ξ2(t − τ) − ξ3(t)] − φ2 −Ωτ.

(3.8)

On substituting these phase differences in equations 3.1, we obtain

Ω + εξ̇1(t) = ω1 + κ sin
[
ε (ξ3(t) − ξ1(t)) + φ1] ,

Ω + εξ̇2(t) = ω2 + κ sin
[
ε (ξ3(t − τ) − ξ2(t)) + φ2 −Ωτ

]
,

Ω + εξ̇3(t) = ω3 − κ sin [
ε (ξ3(t) − ξ1(t)) + φ1]

−κ sin [
ε (ξ3(t) − ξ2(t − τ)) + φ2 + Ωτ

]
.

(3.9)

Linearizing the set of equations 3.9, and using equations 3.4a, 3.4b, and 3.4c, we obtain

ξ̇1(t) = κ
[
ξ3(t) − ξ1(t)] cos φ1,

ξ̇2(t) = κ
[
ξ3(t − τ) − ξ2(t)] cos (φ2 −Ωτ) ,

ξ̇3(t) = −κ [ξ3(t) − ξ1(t)] cos φ1 − κ[ξ3(t) − ξ2(t − τ)] cos (φ2 + Ωτ) .

(3.10)
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On taking ξi(t) = νieλt, where λ is the set of eigenvalues and νi are the corresponding

eigen-vectors, and substituting in the system of linear equations 3.10, we obtain the

characteristic polynomial

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−A − λ 0 A

0 −B − λ Be−λτ

A Ce−λτ −A −C − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (3.11)

where A = κ cos φ1, B = κ cos (φ2 −Ωτ), and C = κ cos (φ2 + Ωτ). The stability of the

synchronization state having frequency Ω, for a given value of κ and τ, can be checked

using equation 3.11 by looking at the sign of the eigenvalues λ. The frequency synchro-

nized state having frequency Ω is stable if none of the eigenvalues has a positive real

part.

Analytical expression for order parameter The order parameter of our system is

defined as

ReiΦ =
1

3

3∑

j=1

eiθ j . (3.12)

After a little algebra, we can express R in the form

R =
1

3

√
3 + 2 cos(θ1 − θ2) + 2 cos(θ3 − θ2) + 2 cos(θ3 − θ1). (3.13)

For a phase-locked synchronization state, θi(t) = Ωt + ψi, we have taken θ3 − θ1 =

ψ3 − ψ1 = φ1 and θ3 − θ2 = ψ3 − ψ2 = φ2. Therefore the analytical expression of the

order parameter R becomes

R =
1

3

√
3 + 2

[
cos(φ1 − φ2) + cos(φ2) + cos(φ1)

]
. (3.14)
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For an in-phase synchronization state: ψ1 = ψ2 = ψ3. Therefore, φ1 = ψ3 − ψ1 = 0,

φ2 = ψ3 − ψ2 = 0 and hence R = 1. We already have the analytical expressions for φ1

and φ2 for positive lags: φ1 = sin−1
(
Ω−ω1

κ

)
, and φ2 = Ωτ + sin−1

(
Ω−ω2

κ

)
. For a given

set of κ, τ, and intrinsic frequencies, the collective frequency Ω is obtained from the

transcendental equation Eq. 3.5 by a numerical root finding method and the stability of

the corresponding state is then checked using Eq. 3.11. Ω values corresponding to the

stable states are substituted in the expressions of φ1 and φ2 and the values of the order

parameter R are then obtained from Eq. 3.14. For “negative” audio-visual lags, R follows

the same Eq. 3.14 but here Ω is given by Eq. 3.6 with φ1 = Ωτ + sin−1
(
Ω−ω1

κ

)
, and φ2 =

sin−1
(
Ω−ω2

κ

)
. In Fig 3.6 we have plotted the analytical as well as the numerical values

of the order parameter (R) at the corresponding values of time delay (τ) for intrinsic

frequencies ω1 = 3, ω2 = 4, ω3 = 5, and coupling strength (κ1 = κ2 = κ = 5) for

three different sets of initial phases/conditions, labeled IC1, IC2, and IC3. The order

parameter R can have more than one value at a given value of delay, giving rise to

multistability and hysteresis. Fig. 3.6 shows that the critical value of τ (for both positive

as well as negative lags) can be different for different initial conditions. It means that

the range of delay values for which the degree of synchronization, R, has a high value,

can vary depending upon the choice of initial phases. This result can be related to the

observation of individual differences in the width of the multisensory temporal binding

window [67]. Fig. 3.6 shows that the analytical results are in excellent agreement with

the numerical values of the order parameter. The analytical expression for R, given by

Eq. 3.14, holds when all the oscillators are frequency synchronized and oscillating with

the synchronization frequency Ω.
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3.2.2.2 Unbalanced coupling

We have investigated the unbalanced coupling scenario following two routes. First we

have kept κ1 fixed at the value 3 and varied κ2 between [0.5, 5] (Fig. 3.7(a)). κ2 < κ1 is

equivalent to the situation where ambiguity is introduced in the visual stream because of

which the coupling changes, e.g. in the Nath and Beauchamp study [26]. κ2 > κ1 is the

situation where the visual coupling is increased, auditory being unreliable. When κ1 is

fixed, the island of synchronization increases with increasing value of κ2, indicating that

time-delayed interactions with the visual-multimodal system are crucial for perception.

For negative AV lags, i.e., when auditory precedes the visual stimulus, no drastic change

in critical delay value occurs when κ1 is unchanged.
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Figure 3.7: The figure shows the variation of the order parameter (R) with delay (τ) for
intrinsic frequenciesω1 = 3, ω2 = 4, andω3 = 5 when (a) the coupling strength between

A and AV (κ1) is kept constant at 3 and the coupling between V and AV (κ2) is varied
from 0.5 to 5, and (b) the coupling strength between V and AV (κ2) is kept constant at 3
and the coupling between A and AV (κ1) is varied from 0.5 to 5.
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Second we vary κ1 while keeping κ2 constant. Here we see that the critical delay

value, for the transition from phase-synchronous to non-phase-synchronous state, shifts

such that the regime of synchronization increases for negative AV lags corresponding to

the scenario where auditory stimulus precedes the visual stimulus (Fig. 3.7(b)). Multi-

stable states are possible and the possibility of existence of two states, one synchronous

and one non-synchronous, is critically dependent on κ1 (Fig. 3.7(b)).

Overall we find that the time delay and coupling strength facilitate the existence

of synchronous states and the intrinsic frequency of oscillations reduces the temporal

window over which AV signals can integrate. Thus, the synchronization window can

extend over an entire range of AV lags. This is in a qualitative agreement with the trend

seen for the McGurk stimuli (Fig. 3.3). The existence of multistability is demonstrated

in Fig. 3.6 explicitly, but it is also observed for the coupling scenarios discussed in

Fig. 3.5 and Fig. 3.7. Small amount of perturbation from numerical instabilities was

sufficient to generate transitions between the stable states of the order parameter.

3.3 Discussion

The main purpose of this work is to conceptualize the observations from an experimental

paradigm, that has been over the years a bedrock to study multisensory information pro-

cessing, with a simple dynamical model to illustrate the role of environmental variables

and connectivity topologies between neural subsystems in the shaping of perceptual

states. The Kuramoto framework provides the added advantage of linking the percep-

tual states to simultaneously observed neuronal oscillations from EEG/MEG data. The

perceptual dynamics observed for /ta response by Munhall and colleagues [27] and our

behavioral recordings (Fig. 3.3) are in complete agreement with the order parameter

dynamics observed in our model (Figs. 3.5, 3.6, and 3.7). We see that the illusory per-
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ception is reported maximally within a range of lags [−150, 300] ms. Beyond this range,

the auditory /pa response dominates for both positive and negative AV lags. We have

considered a system of three coupled phase oscillators for representing the dynamics

of auditory, visual, and multisensory systems. Superior colliculus (SC) and posterior

superior temporal sulcus (pSTS) are two structures at the sub-cortical and cortical level

respectively that can get representation in the multisensory system. SC is known to

have bimodal neurons that can receive inputs from both the auditory and visual systems

[68]. Similarly, pSTS has been established by several researchers as the locus of corti-

cal processing of multisensory integration [26, 69–72]. Thus a network comprising of

auditory, visual, and pSTS (with contributions from SC) areas can form the most ele-

mental network for multisensory processing. Experimental validation of the presence of

such networks has been provided by earlier studies such as Nath and Beauchamp [26]

using a fMRI paradigm. An important parameter in our model is the coupling between

AV - A and AV - V oscillators. Careful design of such coupling parameters, motivated

from the experimental studies, can capture how the biophysically realistic symmetry

that exists in the underlying neural system can influence behavior [59]. Broadly, the

multisensory functional unit can represent qualitatively the composite contributions of

all structures such as superior colliculus, pSTS, and other areas. In our model, the sig-

nals from A and V are conveyed to the multisensory oscillator (AV) where information

from the two modalities is integrated. The feedback connections from the pSTS to the

unimodal areas are directly considered in the form of a bidirectional coupling between

pSTS and auditory and visual areas. Nevertheless, the weighted contributions of direct

coupling between A1-V1 [65, 73, 74], and their interplay with the coupling between

multisensory to unisensory areas can be studied in the dynamical framework. In future,

a corresponding behavioral paradigm needs to be developed to test the predictions of
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such a model.

The coupling parameter in our model helps in two ways, first in the explanation of

the existence and destabilization of perceptual states upon the variation of time delay and

second to provide a link between observed perceptual dynamics and neuronal oscilla-

tions. It is well-known that environmental demands modulate the effective connectivity

dynamics among individual sensory systems and multisensory system [26]. The infor-

mation from the more reliable modality is given a stronger weight [75]. For the McGurk

paradigm, Nath and colleagues [26] found that the STS was connected more strongly to

a sensory cortex when the corresponding sensory modality was reliable (less noisy). In

our model, κ1 > κ2 may correspond to a scenario of increased functional connectivity

between the STS and the auditory cortex when the auditory modality is more reliable,

and κ2 > κ1 can be realized as increased functional connectivity between the STS and

visual cortex when the visual modality is more reliable. Since there are both top-down

and bottom-up connections throughout the cortical processing hierarchy [76, 77], we

have incorporated bidirectional connections into our dynamical model. Importantly, for

unbalanced coupling scenarios also, the synchronized states exist indicating that the illu-

sory experience is possible in presence of noisy stimuli. Electrophysiological studies in-

dicate that a pre-stimulus theta band activity primes the network for multisensory infor-

mation processing towards illusory perceptual categorization [28]. Our results indicate

how the intrinsic frequencies of oscillators, set at theta regime, can support the percep-

tual dynamics as observed by varying the AV lag in the multisensory stimulus (compare

Fig. 3.5 to Fig. 3.3). We predict that the tuning of oscillators at higher frequency band

may shorten the window of temporal integration. In other words, a narrower window of

temporal integration will require phase synchrony at a higher frequency such as beta and

gamma. Interestingly, our results suggest that the coupling strength has to be relatively
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high if temporal integration is facilitated by beta band synchrony to produce the cross-

modal percepts for a wider value of AV lags (Fig. 3.5(b)). This is in-line with the propo-

sition of Luo and Poeppel [52], who proposed a low and high frequency segregation

of auditory processing. From our study, we can predict that low frequency processing

(e.g. syllabic speech) may be carried out by relatively weakly coupled unisensory and

multisensory systems whereas high frequency processing e.g., diphonic speech/ tones

require more stronger connectivity strengths among sensory systems. In summary, the

minimal model of multisensory integration is geared towards linking the symmetries in

neuronal connectivity and dynamics with environmental demands and behavior.

The existing models of multisensory integration are mostly based on the Bayesian

framework and neural networks. These studies consider different kinds of interactions

among multisensory and unisensory areas. One category of models considers that the

unisensory stimuli are processed separately in the primary cortices, without a significant

cross-modal interaction, and multisensory integration takes place in higher associative

cortical areas, such as SC, via feedforward convergence from multiple unimodal areas

[78]. The second category of models assumes only direct lateral connections between

the two unimodal areas [41, 42] and excludes the involvement of multisensory regions.

They argue that the direct connections among early processing areas (modality-specific

areas such as visual and auditory cortices) play a pivotal role in multisensory integration.

These models are based on recent anatomical tracing studies in monkeys (macaque) and

human subjects that have shown direct connections between auditory and visual areas

including primary cortices (V1 and A1) [65, 73]. Similar studies have also reported

projections to/from somatosensory cortex from/to auditory and visual areas [79]. The

heteromodal connections between the primary somatosensory cortex and the primary

auditory cortex were also reported in the gerbils [80]. In marmosets, projections from
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the retroinsular area of the somatosensory cortex to the caudomedial belt of the audi-

tory area were also observed [76] in line with a similar observation in the Old World

monkeys [81]. The third category of models excludes direct connections between the

unimodal areas but considers both a feedforward connection to a multisensory area,

and a feedback from the multisensory area to the unisensory ones [40]. Finally, the

fourth category of models incorporates all the connections together, i.e., the feedback

and feedforward connections between unimodal and multimodal systems along with

the direct connections between the unimodal systems [22, 82]. Most of these studies

do not consider the processing of temporal relationships among the unimodal stimulus

components, e.g., AV lags [27] and gap duration in speech perceptual categorization

[66]. Our dynamical model (which comes under the third category), comprising of

three Kuramoto oscillators, attempts to do so in a minimalist manner. An earlier at-

tempt in this direction was made by Dhamala and colleagues [34], who modeled the

rhythmic multisensory paradigm in the audio-visual domain by considering the phase

dynamics of two interacting periodic oscillators and investigated the behavioral effects

of relative timings of different sensory signals. In their rhythmic paradigm, temporally

congruent multisensory stimuli were expected to cause a percept of synchrony. On the

other hand, incongruent stimuli could cause a percept of asynchrony or another possi-

ble state, the non-phase-locked state (drift or neutral percept) because it represented a

failure in multisensory integration. The non-phase-locked state was qualitatively dif-

ferent from the percept of asynchrony. Dhamala and colleagues then used fMRI and

simultaneous behavioral recordings to confirm the involvement of a distributed brain

network for the multisensory processing of periodic auditory-visual stimuli. The study

proposed that the solution space of a hypothetical system of two coupled oscillators

corresponded to the perceptual solution space of human multisensory integration and to
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selected activation of brain regions. Though the authors propose that their results indi-

cate a definite involvement of superior colliculus in the perception of synchrony, they

have not captured the dynamics of the multisensory system as a functional unit directly

in the theoretical model, rather emphasizing on the periodicity as the source of catego-

rization. Nonetheless, the rhythmic paradigm is somewhat unrealistic in the context of

multisensory speech stimuli. Hence, a broader dynamical framework for multisensory

perception is warranted. A key difference between our model and that of Dhamala et

al. [34] is that they have not incorporated the time lag or asynchrony between the audio

and visual stimuli explicitly in their theoretical model. In our model, we capture the AV

lag by introducing a time delay τ between the multisensory (AV) and unisensory (V/A)

oscillators and study the variation in perceptual stability as a function of this parameter.

Subsequently, we propose that the order parameter or the collective variable R of the

oscillator system can be representative of the overall perceptual categorization.

Multistability is a key aspect of perceptual behavior and in general biological sys-

tems [83]. In the McGurk paradigm, the presence of responses registered as /ka (the vi-

sual stimulus) or fused percepts such as /pa-ka in addition to illusory /ta or auditory /pa

can be conceptualized within the framework of multistability. We propose that the dif-

ferent responses registered as /pa, /ta, and “others” in the behavioral data can be related

to the multistability in the final dynamical state of our coupled oscillator system. The

advantage of a dynamical systems approach is that the presence of multistability can be

very elegantly explained [84]. Detailed analysis of multistability can be extended to psy-

chophysics of speech perception studies [66] in future as well as with other paradigms.

As we have shown in Sec. 3.2, the presence of time delay makes our dynamical system

highly multi-stable. For different choices of initial conditions, the system can go to dif-

ferent stable synchronization states. We propose that the multistability in the final state
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of the dynamical system can be related to the variation observed in the responses of the

participants to the same stimuli.

The significant achievement of our model is that it captures the key features of com-

plex multisensory integration processes at the level of behavior and links the structural

and functional constraints in the underlying neural systems to ongoing behavioral states.

Our results show that our model successfully simulates the temporal constraints on the

McGurk effect and the variation in the responses to the same stimuli. Any multisensory

behavior can be broken into combinations of individual unisensory and multisensory

systems. One can then map the constraints posed by the environmental variables onto

the parameter space of a dynamical system and study the emerging perceptual states.

For example, recent studies question the idea of multisensory awareness stemming from

a mere integration of unisensory systems [24, 85]. This is a challenge to the traditional

way of looking at a multisensory task from the perspective of serial or parallel unisen-

sory processes. Dynamical systems offer an attractive approach to test the environmental

constraints on a hypothesized multisensory pathway using modeling, behavior, and brain

mapping tools. Here, the integration is not identified as a separate process but rather an

outcome of the dynamical interactions among unisensory and multisensory neuron pop-

ulations. In fact, the role of factors like attention can be incorporated in the dynamical

model by introducing more mathematical complexity, either by coupling parameter or

introducing a separate module, and presents a scope of future work. Experimentally

this will require recording and analyzing eye-tracking data to monitor and parametrize

attentional factors. Nonetheless, new experimental paradigms have to be developed to

eventually test the predicted outcomes from modeling approaches such as ours.
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4
An extended model for perceptual

variability and multisensory

information processing

Even though the minimalistic model presented in Chapter 3 can explain various essen-

tial features of the temporal processing involved in multisensory integration, it does not

accommodate the description of the spatial aspects of multisensory processing due to its

simple architecture. In this chapter we propose a more detailed model as an extension

of the previous model. The model again consists of two unimodal areas (auditory and

visual), which communicate via feedforward and feedback connections/synapses with

a third multisensory area (pSTS or SC). However, instead of a single oscillator repre-

senting the dynamics of each area (auditory, visual, and multisensory), here we consider

a two-dimensional network of coupled phase oscillators for each cortical area. Each

oscillator can be representative of a single neuron or a group of neurons. The extended
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architecture also allows the inclusion of the physiologically plausible inhibitory inter-

actions into the model, which was not possible under the minimalistic framework of

our previous model. We consider every oscillator in each layer to be connected to all

the other intra-layer oscillators according to Mexican Hat disposition. The Mexican-

hat connectivity architecture is widely used in cortical neural network models [1, 2].

A recent analysis of the networks of phase-coupled oscillators with Mexican hat con-

nectivity, by Heitmann and Ermentrout [3], showed extensively that the Mexican hat

connectivity supports a broad range of spatially synchronized wave solutions. In our

model, the inter-layer connections are only between the oscillators at the same spatial

locations in different layers. Previously, in 2008, Magosso et al. [1] studied a neu-

ral network model of similar architecture but they only addressed the spatial aspects of

multisensoy integration and did not consider the temporal aspects.

The aim of this extension is to provide a common theoretical framework to under-

stand the spatiotemporal properties and complexities of multimodal integration that can

not only explain temporal audiovisual illusions like the McGurk effect but also demon-

strate spatial audiovisual illusions like the Ventriloquism effect [4]. The networks of

phase-coupled oscillators are ideal for modeling the cortical oscillatory activity in a sim-

plified mathematical framework [5]. The advantage of such models is that they show a

very rich dynamical behavior that can be used to model multiple aspects of brain dy-

namics. Such phase-oscillator based models have been employed previously to explain

bistability and traveling waves in motor cortex [6] and collective oscillations in visual

cortex [7]. These studies have demonstrated that the networks of phase-coupled oscilla-

tors can be very efficient models of cortical dynamics. Our proposed model is a step in

this direction, where we study the interactions between different cortical areas involved

in multisensory processing.
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The rest of the chapter is organized as follows. In Sec. 4.1, we present our model

architecture and dynamical equations in detail. The numerical results are presented and

discussed in Sec. 4.2. Finally, in Sec. 4.3, we summarize our results and discuss future

work.

4.1 The model

To simulate each layer, we consider a two-dimensional N×M lattice of phase oscillators

connected via Mexican-hat connectivity (shown in Fig. 4.1). The inter-layer connections

are only between the oscillators at the same spatial location in different layers. To cap-

ture the positive audio-visual lags, we again consider the inter-layer connections of the

oscillators of AV layer (multisensory area) with the oscillators of V layer (visual area)

to be time-delayed. The dynamics of the oscillators in the three layers is governed by

the following set of equations

dφA
i j(t)

dt
= ωA

i j + FA
∑

hk

GA
i j,hk sin

[
φA
hk(t) − φA

i j(t)
]

+KAV→A sin
[
φAV
i j (t) − φA

i j(t)
]
, (4.1)

dφV
i j(t)

dt
= ωV

i j + FV
∑

hk

GV
i j,hk sin

[
φV
hk(t) − φV

i j(t)
]

+KAV→V sin
[
φAV
i j (t − τ) − φV

i j(t)
]
, (4.2)

dφAV
i j (t)

dt
= ωAV

i j + FAV
∑

hk

GAV
i j,hk sin

[
φAV
hk (t) − φAV

i j (t)
]
+ KA→AV sin

[
φA
i j(t) − φAV

i j (t)
]

+KV→AV sin
[
φV
i j(t − τ) − φAV

i j (t)
]
, (4.3)
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where i = 1, ...,N, j = 1, ...,M, and the superscripts A, V, and AV represent auditory,

visual, and audiovisual/multisensory respectively. The variable φm
i j is the phase and the

parameter ωm
i j is the intrinsic frequency of the i jth oscillator in the layer m : {A,V, AV}.

The second term on the right-hand side of Eqs. 4.1-4.3 corresponds to the contri-

bution a neuron/oscillator receives from the intra-area neurons/oscillators. Gm
i j,hk is the

strength of the synaptic connection from the neuron belonging to the area m at the posi-

tion hk to the neuron at the position i j of the same area. The spatial coupling kernel for

the intra-layer connections, G, is defined by the Mexican hat function

G = Dex e
− (dx

2+dy2)
2σ2ex − Din e

− (dx
2+dy2)
2σ2in , (4.4)

where σex and σin represent the spread of the excitatory and inhibitory connection den-

sities, respectively. Parameter Din controls the contribution of the inhibitory coupling,

while the contribution of the excitatory coupling is controlled by manipulating Dex. We

have,

dx =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|i − h| Lx
N if |i − h| ≤ N/2

(N − |i − h|) Lx
N if |i − h| > N/2

and

dy =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

| j − k| Ly

M if | j − k| ≤ M/2

(M − | j − k|) Ly

M if | j − k| > M/2,

where dx and dy represent the distance between the pre-synaptic and post-synaptic neu-

rons/oscillators in the horizontal and vertical coordinates respectively and Lx and Ly rep-

resent the spatial length of the cortical area in the corresponding coordinate. The bound-

aries of each area are considered to be periodic in order to avoid undesirable boundary

effects. Fm is the normalization factor for the modality m and can be different for the
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Figure 4.1: The extended model of multisensory integration consisting of three layers of

40 × 40 oscillators/neurons, representing the two unimodal areas (auditory and visual)

and the multimodal area (pSTS or SC) involved in audio-visual integration.

excitatory and the inhibitory part of the interactions. The normalization factor for the

excitatory part is given by the expression:
LxLy

NM2πσ2
exErf

[
Lx√
2σex

]
Erf

[
Ly√
2σex

] and for the inhibitory

part is given by:
LxLy

NM2πσ2
inErf

[
Lx√
2σin

]
Erf

[
Ly√
2σin

] . The normalization factors are chosen such that

the contribution from each of the excitatory and inhibitory part of the total intra-layer

contribution is 1. Erf is the error function that comes because of the Gaussian nature of

the excitatory and inhibitory connectivity.

The last term on the right-hand side of Eq. 4.1 and Eq. 4.2 is the feedback of strength

KAV→A/V that the unisensory areas (A and V) receive from the multisensory area (AV).

The last two terms on the right-hand side of Eq. 4.3 give the contribution of the feed-

forward connections from auditory and visual area respectively to the multisensory area

and KA/V→AV is the corresponding strength of the connections.
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We define the global order parameter of the total system consisting of the three layers

as

Rtotal =

∣∣∣∣∣∣∣
1

Ntotal

Ntotal∑

j=1

eiφ j

∣∣∣∣∣∣∣ , (4.5)

where Ntotal is the combined total of the number of oscillators in the three layers. The

order parameter of each layer is defined as

Rm =

∣∣∣∣∣∣∣
1

Nm

Nm∑

j=1

eiφ j

∣∣∣∣∣∣∣ , (4.6)

where Nm is the number of oscillators of the modality m : {A,V, AV}.

4.2 Results

The set of the delay differential equations 4.1-4.3 has been numerically solved using the

Fortran 90 solver DDE_SOLVER_M.F90 written by S. Thompson and L.F. Shampine

[8]. We have taken a N × M = 40 × 40 lattice of phase oscillators for each cortical

layer. Hence, there are Nm = 1600 oscillators in each layer and Ntotal = 4800 oscillators

overall. We consider Lx = Ly = 20 in the simulations. To compare the numerical

simulation results of the extended model with the results of the model presented in

Chapter 3, we have taken oscillators within each layer to be identical. The intrinsic

frequency of all the oscillators in the auditory layer is ωA
i j = ωA, in the visual layer is

ωV
i j = ωV , and in the multisensory layer is ωAV

i j = ωAV .

4.2.1 Excitatory coupling only (Dm
in = 0; m = {A,V&AV})

We first consider the intra-layer coupling to be only excitatory so as to compare the nu-

merical results with the results of the previous model. We study the effect of the audio
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and visual stimuli on the system under two scenarios. The first scenario does not con-

sider the stimuli to be explicitly present in the dynamical equations but considers the

final dynamical state of the unisensory systems to be the implicit result of the presence

of stimuli. This scenario was considered in the model presented in the previous chap-

ter. The second scenario considers the stimuli to be explicitly present in the dynamical

equations of the unisensory oscillators. In the first scenario, because of the excitatory

intra-layer coupling, all the oscillators within a layer/cortical area synchronize in-phase,

i.e., a spatially uniform pattern is the stable state of each layer. Therefore, each layer

becomes equivalent to a single oscillator and the extended model becomes equivalent to

the minimalistic model and can reproduce its results. The results obtained by consid-

ering the first scenario in the model are shown in Fig. 4.2. The global order parameter

variation of the total system matches the variation seen in the previous model for the

case of balanced coupling with K = 5. The order parameter maintains a high value for

a certain range of delay, implying successful multisensory integration within the tempo-

ral binding window. This integration breaks down as the delay or lag exceeds a certain

critical value as shown by the transition of the dynamical system to a state with a small

value of order parameter. In the second scenario, we consider the stimuli to be explicitly

present in the dynamical equations of the model. In this case, the dynamical equations

of the oscillators in the unisensory areas become

dφA
i j(t)

dt
= ωA

i j + FA
∑

hk

GA
i j,hk sin

[
φA
hk(t) − φA

i j(t)
]

+KAV→A sin
[
φAV
i j (t) − φA

i j(t)
]
+ S A (4.7)

107



Chapter 4. An extended model for perceptual variability and multisensory
information processing

dφV
i j(t)

dt
= ωV

i j + FV
∑

hk

GV
i j,hk sin

[
φV
hk(t) − φV

i j(t)
]

+KAV→V sin
[
φAV
i j (t − τ) − φV

i j(t)
]
+ S V , (4.8)

where S A and S V respectively are the auditory and visual stimulus. In our simulations,

they have the form of uniformly distributed random numbers chosen from the interval

[0, 2] and are given in a 5×5 patch at a central location. The order parameter variation of

this system, as a function of delay, is plotted in Fig. 4.3. Here again, the order parameter

maintains a high value for a range of time delay parameter signifying the successful

audio-visual integration and beyond a critical value, the audio-visual integration breaks

down, shown by the low value of the order parameter Rtotal. In Fig. 4.4(a)-(c), we have

plotted the spatial phase distribution in the auditory, visual, and multisensory layer for

τ = 0. For this case, the system has a high degree of synchronization shown by the

high value of Rtotal and signifying successful AV integration for 0 lags. We find the

phase incoherence patch to be present only at the location of presentation of stimuli in

the plots, with other locations maintaining phase coherence. In Fig. 4.4(d)-(f), we have

plotted the spatial phase distribution for τ = 0.6. Here system shows a low degree of

synchronization shown by the low value of Rtotal and signifying the breakdown of AV

integration for large AV lags. In these plots, we see patches of different phase values in

locations other than the location of the stimuli which can be interpreted as confusion in

the perception leading to the breakdown of multisensory integration.
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Figure 4.2: The variation of the global order parameter Rtotal as a function of the time

delay parameter τ for the case of excitatory-only intra-layer coupling. The value of the

parameters are : KAV→A/V = KA/V→AV = 5, Dm
ex = 1, Dm

in = 0, σm
ex = 1, σm

in = 2, ωA = 3,

ωV = 4, and ωAV = 5; m : {A,V, AV}. These results mimic the results of the previous

model under balanced-coupling scenario with K = 5.

4.2.2 Finite inhibitory coupling

Spatial wave patterns and perceptual variability

The main advantage of the dynamical oscillator-based models is that the multistability

is a common occurrence in such systems. Previous studies [3, 6] have shown that, for a

certain range of inhibition, a two-dimensional layer of phase-coupled oscillators shows

self-organized patterns of waves. In their study on motor cortex, Heitmann et al. [6] have

posited that the morphology of wave patterns may be used to encode distinct movement

states in motor cortex. In this subsection, we consider a finite inhibitory coupling in

the intra-layer connections of the three layers. These layers can show spatiotemporal
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Figure 4.3: The variation of the global order parameter of the system as a function of

the time delay parameter when audio and visual stimuli are included explicity in the

dynamical equations. The parameters are KAV→A/V = KA/V→AV = 5, Dm
ex = 1, Dm

in = 0,

σm
ex = 1, σm

in = 2, ωA = 3, ωV = 4, and ωAV = 5; m : {A,V, AV}.

wave patterns for certain range of inhibition parameter Dm
in. For a detailed discussion

on this range, see [3]. Building on Heitmann et al.’s hypothesis, we propose here that

different patterns of waves in auditory, visual, and multisensory area correspond to the

different perceptual states of the brain. To support this hypothesis, we have shown in

Fig. 4.5 that, for the same value of parameters but different sets of initial phases, the

structure of wave patterns can vary in these layers. In Fig. 4.5(a)-(f), we have plotted

the spatial phase distribution in each layer for the first set of initial conditions IC1. In

Fig. 4.5(a)-(c), we have kept the inter-layer coupling to be zero to show the different

dynamical states of the uncoupled auditory, visual, and multisensory layers. We couple

them in Fig. 4.5(d)-(f), and because of the feedforward and feedback connections, the

three layers synchronize and show a similar pattern. This can be related to the formation
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Figure 4.4: In this figure, we have plotted the spatial phase distribution in the auditory,

visual, and multisensory layer at (a)-(c) τ = 0 for which the system shows high degree

of synchronization shown by the high value of Rtotal = 0.9527 and signifying success-

ful AV integration. The phase incoherence is present only at the location of stimuli in

the plots, with the other locations maintaining a phase coherence. Figures (d)-(f) show

spatial phase distributions for τ = 0.6. The system has a low degree of synchronization

shown by the low value of Rtotal = 0.2408 and signifies the breakdown of AV integration

for large AV lags. In these plots we see patches of different phases in locations other

than the location of stimuli. This can be interpreted as confusion in perception lead-

ing to breakdown of multisensory integration. The color-bar indicates the value of the

oscillator phases φi j ∈ [−π, π].

of a coherent percept due to multisensory integration. In Fig. 4.5(g)-(l), we have plotted

the spatial phase distribution in each layer for the second set of initial conditions IC2.

The structures of the wave patterns obtained from IC2 in Fig. 4.5(g)-(l) are different

from the corresponding wave patterns obtained for IC1 in Fig. 4.5(a)-(f), even though the

parameters are the same. This multistability seen in the dynamical system can be used to
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explain the perceptual variability originating from the variability in the dynamical states

of the brain that results in different responses to the same stimulus.

Stimuli at different locations

We next study the case where the auditory and visual stimuli are provided simultane-

ously at two different spatial locations. The audio and visual inputs, S A and S V respec-

tively, are again given in the form of the uniformly distributed random numbers chosen

from the interval [0, 2] and are given in a 3 × 3 patch. Fig. 4.6 shows the spatial phase

distribution in each layer (auditory, visual, and multisensory) for four different distances

between the two stimuli. Stimuli are always presented at the same vertical coordinate but

different distances, ds, along the horizontal coordinate. We have chosen the parameters

of the three layers such that each layer shows uniform synchrony in the absence of the

stimuli so that we can observe the effect of the presentation of stimuli on their dynamics

clearly. We observe that, in addition to generating an incoherent patch or response at

the location of its presentation in the corresponding unimodal area, each stimulus results

in a response/activation at the same location in the other modality and the multisensory

area also. This is because of the feedback and feed-forward connections between the

unimodal areas and the multisensory area. Because of the feedback connections, the

two unimodal areas are indirectly connected to each other and therefore influence each

other’s dynamics. The variation of the global order parameter of the total system, along

with the global order parameters of each layer, as a function of the distance between the

stimuli, is shown in Fig. 4.7. We see that the order parameter is highest when the stimuli

are at the same spatial location, representing the highest degree of multisensory inte-

gration. Though interestingly, the lowest value of order parameter is not at the largest

distance between the stimuli but in-between. This may be because of the presence of
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inhibitory surround in the interactions as mentioned by Magosso et al. (Fig. 4 in [1]).

4.3 Discussion

This chapter gives a general idea of the study we have undertaken, where we propose an

extension of the dynamical model presented in the previous chapter by simulating the

auditory, visual, and multisensory area as a two-dimensional network of phase-coupled

oscillators. The two unimodal areas (auditory cortex and visual cortex) are coupled to

the third multimodal area via feedforward and feedback connections. We propose that

the spatial and temporal aspects of multisensory integration can be explained within this

framework and the synaptic strengths of the model connections and the time-delay pa-

rameter can be suitably tuned to model a variety of multisensory phenomena observed

in the physiological literature. In addition, this framework can also be applied to other

multisensory processes such are audio-tactile and visual-tactile multisensory interac-

tions.

Our numerical investigation has been carried out for two main scenarios - first, when

there is no inhibitory coupling in the intra-layer connections and second, when the in-

hibitory strength is finite in the intra-layer connections. The excitatory-only coupling

is investigated for two cases - (a) when the stimuli influence the system dynamics im-

plicitly, and (b) when the stimuli are explicitly present in the dynamical equations of

the unisensory oscillators. The case (a) mimics the results of the dynamical model pre-

sented in the previous chapter. In this case, the stable state of all three layers is uniform

synchrony but the global order parameter of the total system shows finite variation with

the time delay parameter resulting from the inter-layer phase differences. Here each

layer can be considered equivalent to a single oscillator. For a range of delay values, the

order parameter maintains a high value representing successful audio-visual integration
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but beyond a certain value of delay, this AV integration breaks down, signified by a low

value of the order parameter. When we explicitly introduce the stimuli in the dynamical

equations, which is our case (b), we see a similar variation in the order parameter with

time delay. Here the breakdown of audio-visual integration is signified by the appear-

ance of patches of different phases at locations other than the location of stimuli in the

spatial-phase-distribution plots. When there is a finite inhibitory coupling in the intra-

layer connections of the three layers, they can show spatiotemporal wave patterns. The

structure of these wave-like patterns in the three layers can depend on the initial condi-

tions. This multistability in the wave-patterns can be related to the perceptual variability

observed in the multisensory processes. We have also studied the case where the audio

and visual stimuli are presented at different spatial locations. We find that, in addition to

generating a response/activation at the location of its presentation in the corresponding

unimodal area, each stimulus also results in a bump or response/activation at the same

location in the other modality and the multisensory area. Also, the order parameter is

highest when the stimuli are at the same spatial location, representing the maximum

amount of multisensory integration for spatially congruent audiovisual stimuli.

Phase-coupled-oscillator based network can be a very powerful tool in understand-

ing and modeling different aspects of cortical processing such as multisensory integra-

tion and perceptual variability, but making the model as physiologically plausible as

possible can be quite challenging. The cortex has a very complex structure and the mul-

tisensory processing involving the participation of multiple such structures is even more

complicated. The task of making a model more “physiologically precise” also leads to

an enormous increase in the variables and parameters that one must take into account

and properly tune, making a systematic study of the dynamics a daunting challenge.

An important goal of the undertaken study is to one by one incorporate some of such

114



Chapter 4. An extended model for perceptual variability and multisensory
information processing

physiological complexities into the model while keeping the overall dynamics tractable.

Some aspects that we have not yet incorporated into the model but plan to, are

1. For now we have not connected the unisensory layers directly with each other,

though they do interact indirectly via the the feedback projections from the mul-

tisensory area. We do plan to add direct connections in the future since there is

neurophysiological evidence of projections to/from auditory cortex from/to visual

cortex, as discussed in the previous chapter.

2. We have not taken into account the individual receptive fields of auditory and vi-

sual neurons. Studies have reported that auditory processing has a higher temporal

resolution, while visual processing has a higher spatial acuity [2].

3. For simplicity, we have simulated stimuli as a uniform distribution of random

numbers. We would like to conduct our future studies with a more realistic space-

time varying form of external stimuli.

4. The time delay parameter in our equations represents the lag between the onset

of audio and visual stimuli. However, we have not yet incorporated the time

delay arising from the finite axonal transmission in neuronal systems, which is

dependent on the inter-areal distance. So another factor that can make the model

more physiologically plausible is the inclusion of distance dependent time delays

between the intra-layer neurons/oscillators.
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Figure 4.5: The spatial phase distribution in the three layers for the set of parameters:

ωA = ωV = 5, ωAV = 4, Dm
ex = 1, DA

in = 0.5, DV
in = 0.7, DAV

in = 0.2, σm
ex = 1, and σm

in = 2

for (a) - (c) the first set of initial phases IC1 in the absence of inter-layer coupling, i.e.,

KAV→A/V = KA/V→AV = 0, (d) - (f) the first set of initial phases IC1 in the presence of

finite inter-layer coupling, i.e., KAV→A/V = 0.5, KA/V→AV = 1, (g)-(i) the second set of

initial phases IC2 in the absence of inter-layer coupling, i.e., KAV→A/V = KA/V→AV = 0,

and (j) - (l) the second set of initial phases IC2 in the presence of finite inter-layer

coupling, i.e., KAV→A/V = 0.5, KA/V→AV = 1. These results show that the three layers

can have different wave patterns for different sets of initial phases and this can be related

to the perceptual variability observed in the multisensory processing. The color-bar

indicates the value of the oscillator phases φi j ∈ [−π, π].
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Figure 4.6: The spatial phase distribution in each layer for four different values of dis-

tance, ds, between the two stimuli presented at different spatial locations. In addition to

generating an incoherent patch or response at the location of its presentation in the cor-

responding unimodal area, each stimulus also results in a bump or response/activation

at the same location in the other modality and the multisensory area. The parameters

used to generate these results are : ωA = ωV = 5, ωAV = 4, KAV→A/V = 1, KA/V→AV = 2,

Dm
ex = 1, Dm

in = 0.2, σm
ex = 1, and σm

in = 2; m : {A,V, AV}. The color-bar indicates the
value of the oscillator phases φi j ∈ [−π, π].
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Figure 4.7: The variation of the global order parameter of the total three-layer system,

along with the global order parameters of each layer as a function of the distance be-

tween the stimuli, ds.
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5
Time-delay effects on the aging

transition in a population of coupled

oscillators

Populations of coupled oscillators in biological and physical systems must be robust

against damages and deterioration as it might happen that some elements turn non-self-

oscillatory over time which has been termed as the “aging” of the system by Daido and

Nakanishi [1]. The collective dynamics of such a collection of coupled oscillators in

which a fraction of the oscillators are non-self-oscillatory or inactive can show very in-

teresting behavior. In particular, for a fixed value of the coupling constant, the system

may totally lose its synchronous behavior (i.e., suffer an amplitude death (AD)) as the

ratio of the inactive oscillators to the active ones is progressively raised. This has been

termed an aging transition and the phenomenon has been studied in the past for vari-

ous model systems as a paradigm for understanding the functional robustness of diverse
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physical and biological systems [1, 2]. It was recently proposed [3] that a similar ag-

ing mechanism might be responsible for the deterioration of global electrical activity of

micro-organs called the pancreatic inlets of Langerhans, which can result in diabetes.

Among the other possible biological applications of this model system are in mam-

malian circadian clocks, which are known to consist of both active and inactive clock

cells [4], heart pacemakers [5], and neurodegenerative diseases, such as Alzheimer’s dis-

ease, since such diseases are characterized by progressive neuron fall out and also the

connections between neurons are time-delayed [6]. Besides considering a mixed popu-

lation of active and inactive oscillators, other forms of mixed populations such as that

of passive, excitable, and oscillatory cells [7, 8] and that of two types of self-oscillatory

elements with different periods [9] have also been studied. In Ref. [10] the authors pre-

sented an extension of the aging transition that takes place in a class of systems in which

the oscillatory behavior is lost in a saddle-node bifurcation. Dynamical robustness has

been further investigated in multilayer networks [11], weighted complex networks [12],

a network of synaptically coupled quadratic integrate-and-fire neurons [13], and net-

works under targeted attacks [14]. The area of recovery of dynamic behavior in coupled

oscillator networks is explored in Ref. [15] by providing new intact oscillators to the

network. Recently, Zou et al. provided another mechanism for restoration of rhythmic-

ity in diffusively coupled dynamical networks by introducing a feedback factor in the

diffusive coupling [16].

None of the previous studies on aging transition and functional robustness considers

interaction delays. Since the connections between neurons and the interactions in other

real systems are often time-delayed, this chapter presents the effect of time delay on

the aging transition phenomenon in a mixed population of active and inactive Stuart-

Landau oscillators that are globally coupled to each other. In the simplest situation of
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just two coupled oscillators, one active and the other inactive, we find that time delay

can significantly influence the critical coupling strength at which the system experiences

amplitude death. For a population of such oscillators, the nature of the aging transition

is delineated in terms of the variation of the order parameter as a function of the mean

distance of the system from the Hopf bifurcation point [17]. The changes brought about

by the introduction of time delay are studied both analytically and numerically. We

find that time delay can hasten the process of aging by lowering the threshold coupling

strength for amplitude death. These results are also found to hold for larger systems of

coupled oscillators including an infinite system that is analyzed in the thermodynamic

limit.

The chapter is organized as follows. We start in Sec. 5.1 by analyzing in detail the

influence of time delay on the dynamics of two coupled Stuart-Landau oscillators [18]

that have the same frequency but are at different distances from the Hopf bifurcation

point. In Sec. 5.2, the study is extended to a large population of globally coupled oscil-

lators where first we consider a relatively simple case of a mix of identical active and

identical inactive oscillators interacting via time-delayed coupling. We then analyze a

system in which an arbitrary distribution of bifurcation parameters is chosen to represent

the mix of active and inactive oscillators. As a special case, the thermodynamic limit of

such globally coupled oscillators is taken and analytic results are obtained for a model

of a uniform distribution of the bifurcation parameter. Our results are summarized and

discussed in Sec. 5.3.

5.1 Two coupled oscillators

To understand the fundamentals of a phenomenon occurring in a system of a large num-

ber of oscillators, it is often useful to analyze the dynamics of a smaller and simpler

123



Chapter 5. Time-delay effects on the aging transition in a population of coupled
oscillators

system like that of two coupled oscillators. The two oscillator model has been used in

the past to explain phase transitions in human hand movements [19], circadian rhythm

[20], and other collective phenomena in systems such as coupled lasers [21, 22], cou-

pled magnetrons [23], and coupled chemical oscillators [24]. The amplitude effects in

the system of two coupled limit cycle oscillators were studied in detail by Aronson et

al. [25]. They found that amplitude effects introduce additional collective states in the

system, most notably the amplitude death state. Later, Reddy et al. [26, 27] extensively

studied the collective dynamics of such systems in the presence of time-delayed inter-

actions. The limit cycle oscillators investigated by these previous studies are described

by the Stuart-Landau equation which incorporates both phase and amplitude dynamics

of individual oscillators. As discussed in Chapter 1, Stuart-Landau equation is a normal

form of supercritical Hopf bifurcation given by

Ż(t) = (α + iω − |Z(t)|2)Z(t), (5.1)

where Z(t) = reiθ is the complex amplitude, ω is the intrinsic frequency, and α is the

bifurcation parameter specifying the distance from a Hopf bifurcation. The oscillator

exhibits periodic limit-cycle oscillations with amplitude r =
√
α if its bifurcation pa-

rameter α > 0. In this case the oscillator is said to be active. It settles down to the trivial

fixed point Z = 0 if α ≤ 0 and is considered inactive. The fixed point loses stability via

supercritical Hopf bifurcation as shown in Fig. 5.1. Most of the past studies consider

the bifurcation parameter α to be the same for both oscillators and usually set α = 1. To

understand the phenomenon of the aging transition we need to study the collective be-

havior of two oscillators that are at different distances from the Hopf bifurcation point.

We investigate this by considering two coupled Stuart-Landau oscillators.
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Figure 5.1: Supercritical Hopf bifurcation

5.1.1 No delay (τ = 0)

The model equations for two coupled Stuart-Landau oscillators having different bifur-

cation parameters, represented by α1 and α2, respectively, in the absence of time delay

are

Ż1(t) = (α1 + iω − |Z1(t)|2)Z1(t) + κ [Z2(t) − Z1(t)] , (5.2)

Ż2(t) = (α2 + iω − |Z2(t)|2)Z2(t) + κ [Z1(t) − Z2(t)] , (5.3)

where κ is the coupling strength, ω is the intrinsic frequency of the oscillators, and

Z1,2 are the complex amplitudes. The origin Z1,2 = 0 is always the fixed point of the

system although it is not always stable. Therefore, we would like to find out the stability

boundary of this non-oscillatory steady state, i.e., the amplitude death (AD) state. For

that we carry out a linear perturbation analysis around the origin for the coupled system

to obtain the characteristic equation

det(H − λI) = 0, (5.4)
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where H is the linearized matrix of the Eqns. (5.2) and (5.3) and is given by

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
α1 − κ + iω κ

κ α2 − κ + iω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

I is the identity matrix. Assuming that the perturbations vary as eλt, the characteristic

eigenvalue equation Eq. (5.4) takes the following form

(α1 − κ + iω − λ) (α2 − κ + iω − λ) − κ2 = 0, (5.5)

where λ = λR + iλI is the eigenvalue, and λI , λR are real. The AD region corresponds to

the region in which λR < 0. Separating the real and imaginary parts gives

(ᾱ − κ − λR)
2 − (Δα)2

4
− (ω − λI)

2 − κ2 = 0, (5.6)

(ω − λI)(ᾱ − κ − λR) = 0, (5.7)

where ᾱ = (α1 + α2)/2 is the average distance from the Hopf bifurcation point and

Δα =| α1 − α2 |. From Eq. (5.7) one gets λI = ω, which upon substitution in Eq. (5.6)

results in a quadratic equation in λR whose solutions are

λR = ᾱ − κ ∓
√
κ2 +

(Δα)2

4
. (5.8)

To obtain the marginal stability curves one can set λR = 0 and solve for ᾱ as a function

of κ. These curves are plotted in Fig. 5.2 for a fixed value of Δα = 1. Here λR is positive

above each of these curves and becomes negative below them. Thus the region below

the lower curve (solid curve) is the only region where the real parts of both roots of the

characteristic equation are negative. This is the AD region labeled II in the figure. The

126



Chapter 5. Time-delay effects on the aging transition in a population of coupled
oscillators

other regions marked I show oscillatory behavior. Thus, the lower marginal stability

curve marks the aging transition from a dynamic state where both oscillators show os-

cillatory behavior to a non-oscillatory AD state. From the figure it is also evident that

in the absence of time delay, AD can only take place if ᾱ < 0. This can be physically

understood as follows. Suppose one of the oscillators is active and the other is inactive

when the oscillators are uncoupled. When we couple them together, the inactive oscil-

lator will try to suppress the oscillations of the active oscillator and the active oscillator

will try to induce oscillations in the inactive oscillator. Whether the combined system

will assume a stable phase-locked state or a stable AD state will depend on which of

the two oscillators wins. The active oscillator will win when it is at a larger distance

on the positive side from the Hopf bifurcation point α = 0 and will make the inactive

oscillator active. That would be the case of the average bifurcation parameter ᾱ > 0 and

the system will be in an oscillatory state. If the inactive oscillator is at a larger distance

from the Hopf bifurcation point on the other side (which means ᾱ < 0), then it will win

and the system will go into the (non-oscillatory) AD state. We next see how time delay

can influence this scenario.

5.1.2 Finite delay

In this section we examine the influence of time-delayed coupling on the collective

behavior discussed previously for two coupled Stuart-Landau oscillators. We confine

ourselves to finite, constant, and discrete time delay. In the presence of time delay τ, the

model equations (5.2) and (5.3) take the form

Ż1(t) = (α1 + iω − |Z1(t)|2)Z1(t) + κ [Z2(t − τ) − Z1(t)] , (5.9)
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Figure 5.2: Variation of ᾱ with κ at a fixed value of Δα = 1 obtained from Eq. (5.8) on

setting λR = 0. Region I corresponds to the phase-locked region and region II corre-

sponds to the AD region.

Ż2(t) = (α2 + iω − |Z2(t)|2)Z2(t) + κ [Z1(t − τ) − Z2(t)] . (5.10)

The origin is still a fixed point of the system for any finite value of delay τ. A linear

stability analysis of Eqs. (5.9) and (5.10) about the origin (Z1 = Z2 = 0) now gives a

characteristic eigenvalue equation of the form

(α1 − κ + iω − λ) (α2 − κ + iω − λ) − κ2e−2λτ = 0, (5.11)

where the presence of time delay introduces an exponential term and makes the equation

a transcendental one. The complete set of eigenvalues also includes those arising from

the conjugate of Eqs. (5.9) and (5.10). Setting λR = 0 and separating the real and

imaginary parts, we get the following marginal stability equations

(ᾱ − κ)2 − (Δα)2

4
− λ12 = κ2 cos [2(ω − λ1)τ] , (5.12)
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2λ1(ᾱ − κ) = −κ2 sin [2(ω − λ1)τ] , (5.13)

where λ1 = ω − λI . Defining γ = 2λ1, Eq. (5.13) can be rewritten as

γ(ᾱ − κ) = κ2 sin(γτ − 2ωτ). (5.14)

Squaring and adding Eqs. (5.12) and (5.13) we get a biquadratic equation in λ1 that can

be solved to yield

λ1 = ±P, (5.15)

where

P =

√√
κ4 + (Δα)2(ᾱ − κ)2 − (Δα)2

4
− (ᾱ − κ)2. (5.16)

Substituting for λ1 in (5.14), we numerically determine the phase-space diagram in the

parameter space of ᾱ − κ for various values of τ. The results are plotted in Fig. 5.3 for

Δα = 1 where the lowest curve is for τ = 0 and corresponds to the marginal stability

curve shown in Fig. 5.2. As can be seen, in the presence of time delay the domain of AD

region is expanded and even extends to the region of positive-ᾱ values for certain values

of time delay. The result is a direct consequence of the stabilizing influence of time

delay, which now aides the force exerted by the inactive component to lead the system

towards the AD state. We can further mark out the death-island region in the κ− τ space
and assess the influence of ᾱ on it. Rewritting Eq. (5.12) as

(ᾱ − κ)2 − (Δα)2

4
− λ12 = κ2{2 cos2 [(ω − λ1)τ] − 1}, (5.17)

and rearranging the terms in the above equation, we have

cos [(ω − λ1)τ] = ±Q, (5.18)
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Figure 5.3: Marginal stability curves giving the AD region in κ− ᾱ parametric space for

some finite values of delay τ and ω = 10. With an increase in delay τ, AD region is seen

to expand and move into the space of positive ᾱ.

where

Q =

√
1

2κ2

(
(ᾱ − κ)2 − (Δα)2

4
− λ2

1
+ κ2

)
. (5.19)

From (5.18) we obtain a set of two critical curves

τ1(n, κ) =
nπ + cos−1Q

ω − P
, (5.20)

and τ2(n, κ) =
(n + 1)π − cos−1Q

ω + P
, (5.21)

where n = 0, 1, 2, .... These curves mark the boundary of the AD region. The death

island in Fig. 5.4 (shown as a shaded region) is obtained using Eqs. (5.20) and (5.21).

The further determination of the nature of the transition of pairs of eigenvalues as it

crosses these curves is done by examining the sign of d Re(λ)/d τ at the crossing. For

130



Chapter 5. Time-delay effects on the aging transition in a population of coupled
oscillators

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

150

200

κ

τ

τ1(0,κ)

τ1(1,κ)

τ2(1,κ) τ2(2,κ)τ2(0,κ)

τ2(3,κ)

(a)

Figure 5.4: Death island obtained from Eq. (5.20) and Eq. (5.21) for two delay coupled

oscillators having different bifurcation parameters α1 = −0.5 and α2 = 1.0 but identical

frequencies ω = 10.
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Figure 5.5: Death islands for two delay coupled oscillators at different values of the

average bifurcation parameter ᾱ for fixed Δα = 0.2 and ω = 10. It can be seen that as ᾱ
decreases, the area of the death-island region increases.

this we rewrite the characteristic equation (5.11) in the form

λ2 − 2(ᾱ − κ + iω)λ + i2ω(ᾱ − κ) + (ᾱ − κ)2

− (Δα)2

4
− ω2 − κ2e−2λτ = 0. (5.22)
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Differentiating with respect to τ, we get

2λ
dλ
dτ

− 2(ᾱ − κ + iω)
dλ
dτ

= κ2e−2λτ
[
−2λ − 2τ

dλ
dτ

]
(5.23)

and on rearranging the terms we obtain

dλ
dτ

=
−κ2λe−2λτ

λ − (ᾱ − κ + iω) + κ2τe−2λτ
. (5.24)

Considering the real part of the above equation, we get, at λR = 0,

dλR

dτ

∣∣∣∣∣∣
λR=0

=
λI(λI − ω)c1

c2
, (5.25)

where

c1 = (ᾱ − κ)2 + (Δα)2

4
+ (λI − ω)2

and

c2 = [κ2τ cos(2λIτ) − (ᾱ − κ)]2

+ [(λI − ω) − κ2τ sin(2λIτ)]
2, (5.26)

which are real positive. Therefore, we have

dλR

dτ

∣∣∣∣∣∣
λR=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0 on τ1 if ω > P

> 0 on τ1 if ω < P

> 0 on τ2.
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Thus, on a τ1 curve, a pair of eigenvalues transits to the left half plane provided the in-

trinsic frequency of the oscillators is greater than P and to the right side if the frequency

is smaller than P. On a τ2 branch of the critical curves, however, a pair of eigenvalues

always crosses into the right half of the complex plane. Thus, for a finite region of the

AD to exist in the κ − τ plane it needs to be bounded by appropriate branches of the τ1

and τ2 curves and the condition ω > P should hold. For ω < P, there would be no AD

region at all. Finally, to see the impact of the average bifurcation parameter on the AD

region, we have also plotted death islands for different values of ᾱ in Fig. 5.5. As can be

seen, when the value of the average bifurcation parameter ᾱ > 0 is increased, the area

of AD region in κ − τ parametric space decreases since the active oscillator now has a

higher amplitude and tends to dominate over the inactive one. A decrease in the value

of ᾱ, i.e., moving closer to the bifurcation point, increases the size of the death island.

5.2 Globally coupled oscillators

After studying the basic effect of time delay on the aging transition in a simple model

of two coupled Stuart-Landau oscillators, we now extend our investigation to a larger

system of oscillators. We first consider the case where the entire population of oscillators

can be divided into subpopulations of identical active and identical inactive oscillators.

This study is motivated by the earlier work of Daido and Nakanishi [1] who had studied

such a system in the absence of time delay. We start by discussing their results first

and then we extend their study by incorporating time delay in the interaction between

the oscillators. We are thus able to compare our results with theirs and identify the

influence of time delay in a clear fashion.
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5.2.1 No delay

Robustness of the dynamic activity of a large population of coupled oscillators was

first addressed by Daido and Nakanishi [1]. They considered a population of globally

coupled nonlinear oscillators with a fraction p of them being inactive, i.e., non-self-

oscillatory, while the rest (q = 1 − p) being active, i.e., self-oscillatory. The systems

dynamics is governed by the following set of coupled Stuart-Landau equations

Ż j(t) = (α j + iω − |Zj(t)|2)Zj(t) +
κ

N

N∑

k=1

[Zk(t) − Zj(t)] (5.27)

for j = 1, ...,N, and coupling strength κ. They assumed aging of the system to proceed

in such a way that an active oscillator with α j = a > 0 turns inactive with α j = −b < 0.

The population of oscillators is thus composed of two sub-populations: a sub-population

of qN active oscillators with bifurcation parameter α = a and a sub-population of pN

inactive oscillators with α = −b. The system with p = 0 and κ > 0 attains perfect

synchronization, in which each element oscillates with amplitude
√
a and frequency ω.

If κ is greater than a threshold value κc, then when the inactive oscillator ratio p exceeds

a critical value, pc, the system makes a transition from a global oscillatory state to a

non-oscillatory quiescent state. This transition was termed an aging transition by Daido

and Nakanishi and the parameter they used to monitor this transition was the global

order parameter Z̄ =
∑N

j=1 Zj/N. Their results are reproduced in Fig. 5.6 for N = 500

and ω = 10. They further assumed all elements in each group to be in an identical state

in order to simplify the problem and obtain the pair of critical values pc and κc. Setting

Zj = A for all active elements and Zj = I for all the inactive oscillators in Eq. (5.27),

one gets

Ȧ(t) =
(
a + iω − κp − |A(t)|2

)
A(t) + κpI(t) and (5.28)
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İ(t) =
(
−b + iω − κq − |I(t)|2

)
I(t) + κqA(t). (5.29)

The critical fraction pc can be obtained from a linear stability analysis of the steady state

A = I = 0 of this system:

pc =
a (κ + b)
(a + b) κ

. (5.30)

This result gives κc = a. The critical ratio pc plays the role of a measure of the robustness

of the system’s dynamic activity against deterioration of elements. The larger the value

of pc, the more robust is the system’s oscillatory activity. Fig. 5.6(a) indicates that the

robustness of the system tends to weaken as the coupling strength increases since the

critical value of p decreases with increasing κ. In Fig. 5.6(b), κ − p phase diagram

has been plotted that clearly shows the aging transition from dynamic oscillatory state

(unshaded region) to non-oscillatory steady state (shaded region).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

R

(a)

κ=1
κ=2
κ=3
κ=5
κ=8

0 10 20 30
0

0.2

0.4

0.6

0.8

1

κ

p

(b)κc

Figure 5.6: (a) Aging transition (for τ = 0) in the coupled Stuart-Landau equations

is represented by the variation of normalized order parameter R = |Z̄(p)|/|Z̄(0)| as a

function of the fraction of inactive oscillators p. The results are plotted for various

values of coupling strength κ for N = 500 oscillators and parameter values a = 2,

b = 1, and ω = 10. The critical value of p decreases with increase in coupling strength.

(b) Phase diagram in κ − p phase space. In the shaded gray region, the oscillators show

non-oscillatory behavior, i.e., suffer AD. The dashed line corresponds to the critical

fraction of inactive oscillators, pc, and marks the aging transition from global oscillatory

state to non-oscillatory steady state.
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5.2.2 Finite delay

Next we examine the influence of time-delayed coupling on the aging phenomenon dis-

cussed in the previous subsection. The system of N globally coupled oscillators with a

linear time-delayed coupling can be described by the following set of model equations:

Ż j(t) =
[
α j + iω − |Zj(t)|2

]
Zj(t) +

κ′

N

N∑

k=1

[
Zk(t − τ) − Zj(t)

]

− κ′

N

[
Zj(t − τ) − Zj(t)

]
, (5.31)

where κ′ = 2κ and the last term on the right hand side has been introduced to remove

the self-coupling term. Following Daido and Nakanishi [1], we set Zj = A for all active

elements and Zj = I for all inactive oscillators to get

Ȧ(t) =
[
a + iω − κ′

(
1 − 1

N

)
− |A(t)|2

]
A(t)

+κ′pI(t − τ) + κ′
(
q − 1

N

)
A(t − τ),

(5.32)

İ(t) =
[
−b + iω − κ′

(
1 − 1

N

)
− |I(t)|2

]
I(t)

+κ′qA(t − τ) + κ′
(
p − 1

N

)
I(t − τ).

(5.33)

These equations are solved numerically for a collection of 500 oscillators (N = 500)

for various values of p. The results are shown in Fig. 5.7, where the normalized order

parameter R = |Z̄(p)|/|Z̄(0)| is plotted against p for various values of τ and for a fixed

value of κ′. As can be seen, for a given value of coupling strength κ, the critical value

of the fraction of inactive oscillators p at which the transition from global oscillatory

to non-oscillatory quiescent state takes place decreases with an increase in delay τ. In

other words, the system becomes less robust and ages faster than it would in the absence
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of delay.

As before, we can also carry out a linear stability analysis of Eqs. (5.32) and (5.33)

around the origin to obtain a characteristic equation for the eigenvalues. Setting the real

part of the eigenvalue to zero such that λ = iλI , we get the characteristic eigenvalue

equation

[
a − κ′

(
1 − 1

N

)
+ i(ω − λI) + κ

′
(
q − 1

N

)
e−iλIτ

]

×
[
−b − κ′

(
1 − 1

N

)
+ i(ω − λI) + κ

′
(
p − 1

N

)
e−iλIτ

]

−κ′2pqe−i2λIτ = 0.

(5.34)

On separating the real and imaginary parts, we get the following set of coupled equations

[ω − λI − B sin(λIτ)] [ω − λI −C sin(λIτ)]

− [
g1 + B cos(λIτ)

] [
g2 +C cos(λIτ)

]

= −D cos(2λIτ), (5.35)

[ω − λI −C sin(λIτ)]
[
g1 + B cos(λIτ)

]

+ [ω − λI − B sin(λIτ)]
[
g2 +C cos(λIτ)

]

= −D sin(2λIτ), (5.36)

where g1 = a − κ′
(
1 − 1

N

)
, g2 = −b − κ′

(
1 − 1

N

)
, B = κ′(q − 1

N ), C = κ′(p − 1
N ), and

D = κ′2pq.

From this coupled set of equations, we can obtain death islands in the κ − τ plane (dis-
played in Fig. 5.8), which shows that the region of AD of the system increases as more
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and more oscillators turn inactive. As discussed for the simpler model calculations in

the previous sections, this is a reflection of the fact that in the absence of time delay an

aging transition takes place as a result of a competition between the force by inactive

oscillators to suppress oscillations of active ones and the force by active oscillators to ex-

cite inactive ones. Time delay enhances the tendency to suppress the oscillations. Note

that in the presence of time delay there exists a death island even for p = 0 (i.e., when

we have no inactive element in the absence of coupling). This is a consequence of the

delay-induced death in identical oscillators that has been demonstrated in the past [27].

In Fig. 5.9, p − τ phase diagram has been plotted, with the unshaded region represent-

ing the dynamic oscillatory state and the shaded region representing the non-oscillatory

steady state. The dashed curved on the left-hand side of the figure corresponds to the

values of pc and represents the aging transition from the global oscillatory state to non-

oscillatory steady state. The figure also shows that beyond a certain value of delay, the

value of pc again starts to increase (dashed curve on the right-hand side), indicating

the increase in dynamical robustness of the network with a further increase in the delay

until it again starts to decrease. But the value of pc at a finite delay never exceeds its

value at zero delay demonstrating that the presence of time delay leads to the reduction

in the robustness of the dynamical activity of the network. These results highlight the

point that in order to correctly determine the robustness of a network, time delay effects

should be taken into account.

5.2.3 Arbitrary distribution of bifurcation parameters α j

Considering the population of oscillators to be composed of identical active and identical

inactive oscillators is a very simple realization. There can be many real systems where

the population can be heterogeneous in the distribution of control parameters. Dynami-
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Figure 5.7: Variation of the normalized order parameter R = |Z̄(p)|/|Z̄(0)| with the frac-

tion of inactive oscillators p for various values of delay τ for N = 500 oscillators con-

sidering a = 2, b = 1, and ω = 10 at κ′ = 5. The critical value of p decreases with an

increase in time delay.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

5

10

15

20

25

30

τ

κ

p = 0.4

p = 0.2

p = 0.0

Figure 5.8: Amplitude death islands in κ − τ parameter space at different values of

p (fraction of inactive oscillators) for N = 500 oscillators with a = 2, b = 1, and

ω = 10. We can see that the death island increases with an increase in the fraction

of inactive oscillators, i.e., with decrease in the average bifurcation parameter of the

coupled oscillators.
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Figure 5.9: Phase diagram in the space of fraction of inactive oscillators p and delay

parameter τ for N = 500 oscillators, a = 2, b = 1 and ω = 10 at κ′ = 5. The system’s

behavior in the unshaded region is oscillatory, while in the shaded region, the system is

in a steady amplitude death state.

cal robustness of such a system of heterogeneous oscillators in the absence of time delay

has been studied recently in Ref. [28]. We wish to examine the influence of time delay

on such a system. The model equation for the case when we have a distribution of the

bifurcation parameters α j is

Ż j(t) = (α j + iω − |Zj(t)|2)Zj(t) +
κ′

N

N∑

k=1

[Zk(t − τ) − Zj(t)]

−κ
′

N

[
Zj(t − τ) − Zj(t)

]
.

(5.37)

In terms of the order parameter Z̄ =
∑N

j=1 Zj/N, we have

Ż j(t) = (α j − κ′d + iω − |Zj(t)|2)Zj(t) + κ′Z̄(t − τ) − κ′

N
Zj(t − τ), (5.38)
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where d = 1 − 1/N. The eigenvalue matrix from a linearized stability analysis around

the origin for Eq. (5.37) is given by

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l1 f f · · · f

f l2 f · · · f

f f l3 · · · f
...

...
...

. . .
...

f f f · · · lN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ln = αn − κ′d + iω and f = κ′e−λτ/N. Let us define another matrix M such that

M = S + (κ′d − iω)I, where I is the identity matrix. If μ is the eigenvalue of M, then it

is related to λ by the relation μ = λ + κ′d − iω. The matrix M is given by

Mmn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αm if m = n

f if m � n.

The eigenvalues are obtained by solving the eigenvalue equation det (M − μI) = 0. This

eigenvalue equation can be compactly expressed as a product of two factors

⎡⎢⎢⎢⎢⎢⎣
N∏

k=1

(αk − μ − f )

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣1 + f

N∑

j=1

1

α j − μ − f

⎤⎥⎥⎥⎥⎥⎥⎦ = 0, (5.39)

where the first factor in the Eq. (5.39) represents the continuous spectrum of the system

and the second factor corresponds to the discrete part of the spectrum [27, 29, 30]. It

is difficult to solve the characteristic equation analytically (or even numerically) and

therefore we simplify the analysis by taking the thermodynamic limit of this system.

As pointed out in [31], the infinite system provides a fairly accurate description of the

stability scenario for a large finite system. This argument is further backed by a strong

confirmation obtained by numerically solving Eq. (5.37) to check the analytical results.

141



Chapter 5. Time-delay effects on the aging transition in a population of coupled
oscillators

Taking the thermodynamic limit N → ∞, the discrete equation can be written as

h(λ) =
∫ ∞

−∞

g(α)
λ + κ′ − α − iω

dα =
1

κ′
eλτ, (5.40)

where g(α) denotes the distribution of the bifurcation parameters. The continuous spec-

trum is given by

λ = α − κ′ + iω, (5.41)

where α ∈ g(α). From the above equation we can see that one of the critical curves

is κ′ = α. The AD region should lie to the right of it in order for the eigenvalues to

have negative real parts. The critical curves from the discrete spectrum can be obtained

on substituting λ = λR + iλI , rationalizing the denominator, and equating the real and

imaginary parts to zero to obtain at λR = 0,

I1 =
∫ ∞

−∞

κ′ − α
(κ′ − α)2 + (λI − ω)2g(α)dα =

1

κ′
cos(λIτ), (5.42)

I2 =
∫ ∞

−∞

ω − λI

(κ′ − α)2 + (λI − ω)2g(α)dα =
1

κ′
sin(λIτ). (5.43)

These two relations define the other critical curves and along with κ′ = α, for a given

g(α), provide a complete analytic description. We next take a simple form of g(α),

namely, a uniform distribution given by

g(α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
Δ

if α ∈ [−σ,Δ − σ]

0 otherwise.

For a constant positive Δ, σ = 0 signifies that all oscillators are active andσ = Δ signifies

that all oscillators are inactive. The values in between provide a measure of how many
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oscillators are active and how many are inactive. For this distribution, the integrals I1

and I2 can be explicitly carried out to obtain

ln

(
(κ′ + σ)2 + (λI − ω)2

(κ′ − Δ + σ)2 + (λI − ω)2
)
=

2Δ

κ′
cos(λIτ) (5.44)

and

tan−1
(
κ′ + σ
ω − λI

)
− tan−1

(
κ′ − Δ + σ

ω − λI

)
=

Δ

K′ sin(λIτ). (5.45)

The above set of coupled transcendental equations, along with the curve obtained from

the continuous spectrum, provides a complete description of the critical curves for AD

in the thermodynamic limit.

For τ = 0, Eq. (5.44) reduces to

ln

(
κ′ + σ

κ′ − Δ + σ

)
=
Δ

κ′
(5.46)

and gives the marginal stability curve in the absence of time delay.

In Fig. 5.10, stability curves at different values of τ are plotted by a numerical solu-

tion of Eq. (5.44) and (5.45). The regions above the curves correspond to death regions

and below them the system is in an active state. Note that close to the origin (κ′ = 0),

the curve obtained from the continuous spectrum determines the stability boundary. As

we move to higher values of κ′ the curve obtained from the discrete spectrum defines

the marginal boundary. We thus see that, consistent with the previous simpler models,

the effect of time delay is to expand the death region. Above a certain value of τ the

curves touch the σ = 0 axis, implying AD for the system even when all oscillators are

active. In Fig. 5.11 we have plotted the normalized order parameter against σ for vari-

ous values of τ at a given value of coupling strength to examine the effect of time delay

on the critical fraction of inactive oscillators at which the system collapses to the death
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Figure 5.10: Marginal stability curves at various values of delay τ for Δ = 1 and ω = 10.

The regions below the curves represent oscillatory states, while the death region lies

above the curves. As the delay parameter τ is increased, the AD region increases and

at a certain value of τ it touches the σ = 0 axis, implying the AD state for the system

consisting of all active oscillators.
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Figure 5.11: Normalized order parameter given by R ≡ |Z̄(σ)|/|Z̄(0)| (for N = 1000 and

ω = 10) is plotted against σ at κ′ = 2 for various values of τ. Finite τ is seen to lower

the threshold for AD and thereby hasten aging.

state. The results of this figure are a generalization of those shown in Fig. (5.7), where

we have moved away from a simple model to the distribution of bifurcation parameter
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α and also taken the limit of N → ∞. In all cases we see that time delay enlarges the

AD domain and also speeds up the aging process. We have checked the analytic plots

shown in Figs. 5.10 and 5.11 by carrying out numerical integration of the equations of

system composed of a large number of oscillators (N = 1000) for some values of κ′ and

σ. The numerical results confirm the analytic description.

5.3 Summary and Discussion

In this chapter we have presented a detailed study of the effect of time delay on the

aging of a large ensemble of globally coupled Stuart-Landau oscillators that have a mix

of active (α > 0) and inactive (α ≤ 0) oscillators where α is the bifurcation parameter.

To understand the impact of the variation of the distance from the Hopf bifurcation point

on the collective dynamics of the system, we considered a simple case of two coupled

Stuart-Landau oscillators having different bifurcation parameters α. The parameter α

controls the strength of attraction to the stable rest state. When there is no time delay

in the system, the two coupled oscillators can show amplitude death only when their

average bifurcation parameter ᾱ < 0. This is because, for ᾱ > 0, the active oscillator is at

a larger distance from the Hopf bifurcation point (α = 0) on the positive side compared

to the distance of the inactive oscillator on the negative side. Therefore, instead of

getting damped by the inactive oscillator, it induces oscillations in the inactive oscillator.

On introduction of time delay, the amplitude-death region extends to positive-ᾱ values

and the region of amplitude death increases with an increase in delay. As the average

bifurcation parameter ᾱ moves towards the Hopf bifurcation point from the positive

side, the domain of the amplitude-death region in κ − τ parametric space also increases.

We then further extended our study to a large population of globally coupled oscillators

with pN of them being inactive and qN = N − pN being active (where N is the total
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number of oscillators). In this case we find that as the fraction of inactive oscillators

p increases, ᾱ of the system decreases, resulting in an increase in the range of κ − τ
values (i.e., the size of the death-island region) for which the system exhibits a stable

rest state. At a given value of coupling strength κ, the critical value of the fraction of

inactive oscillators, pc, at which the transition from global oscillatory to non-oscillatory

quiescent state takes place decreases with an increase in delay τ. This signifies a larger

domain of the amplitude-death region at higher values of time delay and also a speeding

up of the aging process.

We have also analyzed the aging transition for the case of an arbitrary distribution

of bifurcation parameters for the globally coupled system in the thermodynamic limit.

As an example, we considered a uniform distribution of α. There again we see the

expansion of the amplitude-death region with delay. All the results clearly show that

the time delay enhances the domain of amplitude death and hastens aging. Thus, in a

physical sense, time-delayed coupling decreases the functional robustness of the system

by decreasing its tolerance to component deterioration. We find that the infinite system

gives a fairly good description of the behavior of a large finite system, which we have

confirmed by the numerical simulation of a large number of oscillators (N = 1000).

This study can be further extended to various distributions of the bifurcation parame-

ter in global, local, and nonlocal configurations for a variety of network topologies. It

would also be interesting to investigate the effects of time-delayed interactions on the

robustness of other forms of mixed populations such as that of excitatory and oscillatory

elements.
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6
Summary and Conclusion

The focus of this thesis has been the investigation of the dynamics of networks of cou-

pled nonlinear oscillators that interact via time-delayed coupling and some model appli-

cations of such systems. The oscillator units used in our study are limit-cycle oscillators

that are coupled to each other in a variety of configurations. The main assumption

followed throughout this work is that the time delay is uniform and discrete for all os-

cillators. In this final chapter, we summarize the problems and the results that we have

presented in the thesis, draw some general conclusions based on them, and discuss some

future problems emanating from the work done in this thesis.

6.1 Summary and Conclusion

The work done in this thesis can be broadly divided into two parts depending upon

whether the coupling between the oscillators is “weak” or not. When the coupling be-

tween the oscillators is weak, in the sense that each individual oscillator nearly maintains
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its original amplitude as defined by its limit cycle, then the coupling only influences the

phases of the interacting oscillators. In this “weak coupling” limit, the amplitude effects

are neglected and the model simplifies to a system of coupled phase oscillators. Our first

two model problems are based on such a reduced description of the coupled oscillators

and are described in Chapters 2, 3, and 4. The problem addressed in Chapter 5 requires

the consideration of the amplitude variations along with the phase evolution. In each

of these studies, extensive analytical and numerical investigations have enabled a deep

understanding of the related collective dynamics.

The first phase-oscillator based problem is presented in Chapter 2. Here we have

examined the time-delay effects on the collective dynamics of geometrically frustrated

networks of phase-repulsive oscillators. The amount or degree of frustration in such sys-

tems is quantified by a suitably defined frustration parameter. The chapter investigates

in a systematic manner the variations induced in the amount of frustration in a given

system as a function of time delay in interactions and the resulting system dynamics.

We have thoroughly investigated three geometrical configurations - a simple three-unit

triangle, a six-unit triangular network and a sixteen-unit 4 × 4 triangular lattice, that are

representative of frustrated networks. The results show that time delay can act as a tun-

ing parameter to significantly influence the amount of frustration in these systems and

thereby control the number and nature of their equilibrium states. We find that for an

amount of delay beyond a critical value, the in-phase state which is normally unstable

for frustrated phase-repulsive configurations becomes a stable equilibrium state of the

system. The transition to such a synchronous state is found to occur with a characteristic

behavior akin to first-order phase transitions. The variation in frustration as a function

of the product of time delay and the collective frequency of the system is seen to lie on a

characteristic curve that is common for all values of natural frequencies of the identical
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oscillators and coupling strengths. This universal scaling behavior is found to hold in

all networks irrespective of the coupling topology and the system size. The three-unit

network and the 4×4 triangular lattice with periodic boundaries appear to have a unique
value of frustration at each value of delay, whereas the six-unit network and the 4 × 4

triangular lattice with free/open boundaries have multiple final frustration states. The fi-

nal dynamical state exhibited by such multistable networks is determined by the choice

of initial conditions. Multistability seems to become more common with the increase in

the network size but an extension of this work to larger systems is required to clearly

understand the dependence of multistability on the system size. A generalization of this

work can be in the networks with nonidentical oscillators and variable coupling. We

propose that our results can be of potential importance in a host of practical applications

in physical and biological systems in which frustrated configurations and time delay are

known to coexist. One such possible application is related to the dynamics of the verte-

brate segmentation clock which is often modeled by employing the Delayed Coupling

Theory on hexagonal-coupling configuration of phase oscillators, which can often be

frustrated.

We further explore the applications of the phase-oscillator based models in Chapter

3, where we propose a minimalistic model to capture the underlying principles of mul-

tisensory information processing in our brain. A particular focus is on explaining the

principal experimental features associated with the McGurk effect and its temporal con-

straints that demonstrate how the audio-visual integration of speech breaks down when

the lag between auditory and visual stimuli (AV lag) becomes too long. The proposed

model consists of the basic ingredients of any multisensory processing - two unisensory

and one multisensory subsystem, each of which is represented by a phase oscillator.

The oscillators are connected such that the biophysically inspired coupling parameters
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and time delays become key parameters of this network. AV lag is captured by the

time-delayed interaction between the oscillators and we study the variation in percep-

tual stability as a function of this parameter. The extent of the multisensory integration is

quantified by the degree of synchronization of the dynamical system, given by its order

parameter. We find that for a range of time delay values, the dynamical system remains

in an almost completely synchronized state. This result corresponds to the experimental

observation of a temporal binding window within which the successful AV integration

can take place. We also find that at a critical value of time delay, the model system

makes a transition to a state with a lower degree of synchronization represented by a low

value of order parameter, demonstrating the break-down of AV integration for large AV

lags. The main advantage of the dynamical systems approach presented in this chapter

is that the presence of perceptual variability observed in the behavioral experiments can

be very elegantly explained. The presence of time delay makes this dynamical system

highly multistable and this multistability can be related to the inter-trial and inter-subject

variability in the responses to the same stimuli. The model also captures the effect of

an unreliable auditory or visual sensory stream on the multisensory integration by con-

sidering a lower value of the coupling parameter between the oscillator associated with

the unreliable modality and the multisensory unit. In this unbalanced coupling scenario

also, we observe the existence of synchronized states in the dynamical system indicating

that the illusory experience is possible even in the presence of noise. By a systematic

comparison of the results from the behavioral experiments with the analytic and nu-

merical results obtained from our dynamical model, we find that despite its simplicity

our model explains many basic properties of multisensory integration observed in the

physiological literature such as individual differences in multisensory temporal binding

window and the effect of unreliable auditory and visual stimuli on multisensory integra-
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tion. Thereby, the proposed dynamical model presents a simple yet elegant quantitative

framework for understanding the multisensory information processing.

Even though our minimalistic model presented in Chapter 3 can explain various

temporal aspects of multisensory integration via time-delayed dynamics, its simple de-

sign does not accommodate the description of the spatial aspects of multisensory in-

tegration. We overcome this constraint in Chapter 4 by proposing an extension that

has a more detailed architecture so as to better understand the complex spatiotemporal

processes involved in the multisensory processing at various cortical levels. The model

again consists of two unimodal areas (auditory and visual), which communicate via

feedforward and feedback synapses with a third multisensory area. Each cortical area

is represented by a two-dimensional layer of phase-coupled oscillators connected ac-

cording to either (i) non-local excitatory-only coupling or (ii) Mexican-hat connectivity.

Inter-layer connections are between the oscillators located at the same spatial position.

For excitatory-only coupling, each layer exhibits an equilibrium state of uniform syn-

chrony for a sufficiently strong strength of intra-layer connections. In this case, each

cortical area can be considered to be equivalent to a single oscillator and the variation

of the order parameter of the total system dynamics with time delay/AV lag is shown to

match the results of our previous model. The inclusion of the inhibitory coupling into

the intra-layer connections, in form of the Mexican hat connectivity, leads to spatiotem-

poral wave patterns in each layer for certain values of inhibition. The multistability

observed in these wave patterns can be used to demonstrate perceptual variability in the

multisensory processes. Stimuli are also explicitly included in the model and the effect

of their presence is studied when the auditory and visual stimuli are presented at the (i)

same spatial location, and (b) different spatial location. Our results indicate that the mul-

tisensory integration is highest when the stimuli are present at the same spatial location,
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represented by the higher value of the order parameter for spatially congruent audio and

visual stimuli. The aim of this extension is to provide a common theoretical framework

to understand the spatiotemporal properties and complexities of multimodal integration

that can not only explain the temporal illusions like the McGurk effect but also demon-

strate spatial audio-visual illusions like the Ventriloquism effect. The further inclusions

that we would like to make in this model involve (i) direct connections between audi-

tory and visual area, (ii) individual receptive fields of auditory and visual neurons, (iii)

space-time varying and physiologically inspired form of auditory and visual stimuli, and

(iv) distance dependent communication delays between intra-layer oscillators/neurons.

If the coupling between the oscillators is not weak or the attraction to the limit cycle

is not large as compared to the coupling strength, the variations in amplitude cannot

then be ignored. In this case, the oscillators can drive each other to the state of zero

amplitude, known as the amplitude death (AD) state. AD state is an essential part of

the study presented in Chapter 5. This chapter presents the effect of time-delayed in-

teractions on the robustness of the dynamical systems measured by the aging transition

phenomenon in a mixed population of active and inactive Stuart-Landau oscillators that

are globally coupled to each other. Stuart-Landau equations are chosen because they

have the information of both the phase as well as the amplitude evolution in them and

they can be active or inactive depending upon their distance from the Hopf bifurcation

point, characterized by their bifurcation parameter α. In the simplest situation of just

two coupled oscillators, one active and other inactive, we find that in the absence of

time-delay, AD can only take place when the average bifurcation parameter ᾱ of the two

oscillators is less than zero. This is because, for ᾱ < 0, the inactive oscillator is at a

larger distance from the Hopf bifurcation point on the negative side than the distance of

active oscillator on the positive side. Therefore, the inactive oscillator dominates and
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suppresses the oscillations of the active oscillator, thus stabilizing AD. For ᾱ > 0, the

active oscillator dominates and induces oscillations in the inactive oscillator, thus desta-

bilizing AD. We find that in the presence of time-delayed interactions, AD can become

stable even for ᾱ > 0. This result is a direct consequence of the stabilizing influence

of time delay which aides the force exerted by the inactive element to lead the system

towards a non-oscillatory AD state. We also find that time delay can significantly influ-

ence the critical coupling strength at which the system experiences AD, demonstrated

by the presence of “death-islands” in the coupling-delay parameter space and the size

of these islands increases with a decrease in ᾱ. We have extended this study to a large

population of globally coupled oscillators with a fraction of them being inactive. For a

population of such oscillators, the nature of aging transition is delineated in terms of the

variation of the order parameter as a function of time delay parameter. The results show

that at a given value of coupling strength, the critical value of the fraction of inactive

oscillators at which the transition from global oscillatory to non-oscillatory quiescent

state takes place, decreases with an increase in time delay. This signifies a larger do-

main of amplitude death region at higher values of time delay and also a speeding up

of the aging process. Here again, we see “death islands” in coupling-delay parameter

space and their size increases with an increase in the fraction of inactive elements. We

have also analyzed the aging transition for the case of an arbitrary distribution of bifur-

cation parameters for the globally coupled system in the thermodynamic limit. There

again we see the expansion of the amplitude death region with an increase in time de-

lay. Therefore, the main conclusion of this work is that the time delay enhances the

domain of amplitude death and hastens aging transition; thereby decreasing the func-

tional robustness of the system by decreasing its tolerance to component deterioration.

Among the possible biological applications of this model system are in mammalian cir-
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cadian clocks, which are known to consist of both active and inactive clock cells, heart

pacemakers, and neurodegenerative diseases, such as Alzheimer’s disease, since such

diseases are characterized by progressive neuron fall out.

The general conclusion that can be drawn from this thesis is that the presence of

time delay significantly influences the collective dynamics of all the model systems

investigated in this thesis, shown explicitly by the variation of their respective order

parameters with time delay parameter. In frustrated networks, delay acts as a tuning

parameter to steer the system towards different frustration values and hence different

dynamical states. In the model of multisensory integration, it controls the degree of

synchronization of the dynamical system that represents the amount of audio-visual

integration. Time delay is also shown to have a significant effect on the functional

robustness of a network of oscillators characterized by its aging transition.

All the studies presented in the thesis together highlight the significance of time-

delay effects on the collective dynamics of oscillator networks and the diverse model

applications these studies offer in real systems.

6.2 Future scope

In the following we list some of the possible future directions emanating from the work

done in the present thesis.

• In this thesis we have restricted ourselves to a single, discrete, and constant delay.

While modeling real systems, such as neural dynamics, where the axonal conduction

delays [1] are proportional to the distance between the pre-synaptic and post-synaptic

neurons, it is more realistic to consider distance dependent delays.

• In the study of the collective dynamics of frustrated networks of delay-coupled os-

158



Chapter 6. Summary and Conclusion

cillators, we have restricted ourselves to the systems of repulsively coupled oscillators.

This study can be extended to the time-delayed networks with the attractive coupling be-

tween the components and to the networks having a combination of attractive as well as

repulsive coupling links. An important example of such systems is the cortical dynam-

ics, where the excitation and inhibition are coexistent [2]. Also, we have concentrated

only on the topologies with triangles as the elemental units. Our study can be extended

to other geometrical configurations as well.

• As mentioned in Chapter 2, in the Delayed coupling theory of vertebrate segmen-

tation clock where time delay parameter models the signaling delays, Herrgen et al. [3]

have considered the phase oscillators representing the segmentation clock’s cells to be

arranged in a hexagonal lattice configuration. It will be very interesting to do a system-

atic study of frustration in this system by taking into consideration the experimentally

observed parameters. It can serve as a good experimental test for our theoretical results.

• In addition to the possible future inclusions to the dynamical model for multisen-

sory perception discussed at the end of Chapter 4, some further interesting aspects that

can be looked into are (i) role of attention in multisensory processing [4], (ii) plasticity

in multisensory integration [5], and (iii) audiovisual integration in patients with visual

deficit [6] and hearing loss [7]. In addition, one can also try to incorporate predictive

coding mechanisms into the model.

• In the study of the time-delay effects on the robustness of oscillator networks, we

have restricted ourselves only to the globally coupled oscillators. This study can be

extended to systems of oscillators with local and non-local coupling and even to ran-

domly connected networks. Daido et al. [8] have studied the robustness of the networks

of chaotic oscillators in the absence of time delay. Their study can be extended to the

chaotic systems with time-delayed interactions. This is something that we have not
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explored in our studies.

• Neurodegenerative diseases are marked by progressive neuronal death and axonal

conduction delays are unavoidable. Extensive studies on the robustness of the models

of populations of neurons with time-delay considerations can provide some clues re-

garding the onset of neurodegenerative diseases such as Parkinson’s, Alzheimer’s and

Huntington’s disease.

• One can also combine the frustration analysis presented in Chapter 2 and the ro-

bustness analysis presented in Chapter 5 with the extended model of multisensory per-

ception presented in Chapter 4. Considering each cortical area as a two-dimensional

layer of oscillators is a very simple realization. In reality, each cortical area consists

of a three-dimensional complicated network of neurons. Since inhibitory interactions

and time delays are part of the cortical dynamics, there is a possibility that the cortical

network or parts of it are frustrated. That can also explain perceptual variability and

metastability in brain states. In addition, it might happen that some of the neurons form-

ing these cortical networks die because of some disease or accident. What happens to

the robustness of the cortical dynamics and the multisensory integration is such a sit-

uation is an interesting question and would be very relevant to investigate in future. It

would also be interesting to investigate how the deterioration of certain elements of a

frustrated network affects its global frustration.
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SYNOPSIS

This thesis investigates the dynamics of coupled nonlinear oscillators that interact

via time-delayed coupling and discusses some model applications of such systems. A

network of coupled nonlinear oscillators [1] can display a wide spectrum of collec-

tive behavior ranging from synchronization to spatio-temporal chaos, and has therefore

served as a useful paradigm to represent collective phenomena in a variety of applica-

tions in physical [2], chemical [3], biological [4] as well as social sciences [5]. When

the interactions between the interacting units are not instantaneous but are time-delayed,

there can be significant changes in the onset thresholds or parametric domain of collec-

tive states such as synchronized oscillations or amplitude-death state. Time delay is

inevitable in real life systems due to finite interaction times between coupled units aris-

ing due to the propagation speed of signals, for instance, due to finite reaction times

in chemical interactions or the finite conductance of neuronal connections. It is im-

portant therefore to include time-delayed interactions for realistic model applications.

The work reported in this thesis presents the consequences of such time-delayed inter-

actions in three model systems that can be potentially important in realistic applications.

In the first model problem, time-delay effects on the collective dynamics of a ge-

ometrically frustrated network of phase oscillators are investigated. Such frustrated

networks of oscillating units are frequently used in material science (e.g. spin liquid

studies) as well as biological applications (e.g. to model the dynamics of the vertebrate

segmentation clock in zebrafish). A systematic quantification of the frustration of such

a time-delayed network is made and it is shown that time delay significantly alters the

amount of frustration in the system and thereby influences its collective dynamics. An

important result is the discovery of a universal scaling relation between frustration and

time delay that is found to hold in a variety of such geometrically frustrated networks.

The next study aims to provide a dynamical understanding of the multisensory in-

formation processing involved in perception through a simple coupled-phase-oscillator

based model. A particular focus is on explaining the principal experimental features as-

sociated with the so-called McGurk effect and its temporal constraints that show how the

audio-visual integration in speech perception starts to break down when the lag between

the onset of audio and visual inputs becomes too long. Such a lag is modeled in our
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study by an appropriate time delay in the coupling between an oscillator representing

one of the unisensory units (auditory or visual) and the multisensory oscillator (repre-

senting the audio-visual integrator such as posterior Superior Temporal Sulcus (pSTS) or

Superior Colliculus (SC)). The changes in the collective behavior of our model system,

as seen through the variation of the order parameter as a function of time delay, show

a remarkable qualitative agreement with the experimental observations of the McGurk

effect. An extension of this model is also discussed that incorporates the spatial aspects

of multisensory processing into the model.

The final model study addresses the question of the effect of time delay on the ro-

bustness of the collective dynamics of a network of coupled oscillators against deteri-

oration of some of its units, such as due to some elements turning non-self-oscillatory.

Such a process can be interpreted as the aging of the system. Our results show that the

presence of time-delayed interactions can lower the threshold of the aging transition of

the system from a global oscillatory state to a non-oscillatory (amplitude death) state

and thereby degrade its functional robustness. The coupled-oscillator model used for

this investigation can serve as a simple paradigm for modeling the progress of neuro-

degenerative diseases due to progressive fall out of individual neurons. Our results on

time-delay-induced effects (that can arise due to finite neuronal conduction) can thus

have important consequences for such aging dynamics.

Thus, our studies taken together highlight the important consequences of time-delayed

coupling on the collective dynamics of oscillator networks which can have potential

practical implications in a variety of real life applications.

A more detailed description of the thesis in terms of chapter-wise summaries is provided

below.

Chapter-1: Introduction
The introductory first chapter of the thesis outlines the motivation behind the study and

defines the aim and scope of the thesis. It also provides a brief history of past syn-

chronization studies and the background leading to the development of the Kuramoto

model [6] that has been successfully applied as a paradigm to study a variety of col-

lective phenomena ranging from synchronization to exotic states such as chimeras in

physical and biological systems. Another collective phenomenon, relevant to this the-

sis, is the “amplitude death” state and is discussed in detail in this introductory chapter.
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The chapter also highlights the importance and effects of the time-delayed interactions

on the dynamics of coupled oscillator systems through real life examples and discusses

the mathematical modeling of such phenomena using delay differential equations. A

systematic literature survey of past studies on the amplitude death and the time-delay

effects is also provided. The chapter ends with a brief outline indicating the chapter-

wise organization of the contents of the thesis.

The oscillator units used in our study are based on limit-cycle oscillators that are coupled

to each other in a variety of configurations. When the coupling between the oscillators is

weak in the sense that each individual oscillator nearly maintains its original amplitude

as defined by its limit-cycle then the coupling only influences the phases of the inter-

acting oscillators. In this “weak coupling” limit, the amplitude effects can be neglected

and the model simplifies to a system of coupled phase oscillators - the original model

introduced by Kuramoto. Our first two model problems are based on such a reduced

description of the coupled oscillators and are described in Chapters 2, 3, and 4.

Chapter-2: Frustrated systems of coupled oscillators
This chapter explores the effect of time-delayed interactions on the dynamics of those

systems in which the combination of topology and nature of interaction manifests it-

self in the form of geometrical frustration. Geometrical frustration is a condition that

occurs when the topological constraints prevent the simultaneous minimization of the

energy of all the interacting pairs of sub-units of a system. A well-known example is

that of three Ising spins that are anti-ferromagnetically coupled to each other and placed

on the corners of an equilateral triangle. It is impossible to arrive at a configuration

where each pair of spins is anti-parallel and as a consequence, the system continually

flips between different states in trying to find a minimum energy state and thereby dis-

plays a multi-stable behavior. A large lattice model consisting of such triangular units

can therefore lead to high ground state degeneracy and multiple phase transitions with

increasing temperature [7]. In complex systems, frustration can arise from a combi-

nation of geometry and the nature of interactions among the sub-units and can give

rise to a rich variety of collective behavior. Frustration plays an important role in the

dynamics of many complex magnetic systems such as spin liquids, spin glasses and a

host of magnetic alloys. More recently, geometrical frustration arising in neuronal net-

works has also been recognized as a pivotal factor influencing the cortical dynamics of

the brain and is believed to be responsible for introducing metastability and variability
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in the brain’s collective states. The existence of metastability (or multiple operating

regimes) is an essential and crucial feature for biological systems since it provides them

with functional flexibility. The study of frustration and its dynamical consequences are

therefore receiving a great deal of theoretical and experimental attention in a wide vari-

ety of physical and biological systems. Motivated by the consequences of frustration on

the collective dynamics of real systems, this chapter examines in a quantitative manner,

the variations induced in the amount of frustration in a given system as a function of time

delay in coupling between the interacting units and the resulting system dynamics. For

our study, we have considered three geometrical configurations that are representative

of frustrated networks, namely, a simple triangle, a configuration enclosing a triangle

within a triangle, and a triangular lattice. Each node in these configurations is populated

by a Kuramoto phase oscillator and the links representing the interactions between the

oscillators are repulsive in nature with an intrinsic time delay. We quantify the amount

of frustration in the system by defining a frustration parameter which is a function of

time-delayed phase differences between the oscillators. A quantitative study of the vari-

ation of frustration with the amount of time delay has been made and a universal scaling

behavior is found. The variation in frustration as a function of the product of time delay

and the collective frequency of the system is seen to lie on a characteristic curve that

is common for all values of natural frequencies of the identical oscillators and coupling

strengths. This universal scaling behavior holds in all networks irrespective of the cou-

pling topology and the system size. Our principle finding is that the time delay can act

as a tuning parameter to significantly influence the amount of frustration in a system and

thereby control the number and nature of the equilibrium states of the system. These re-

sults can be of potential use in a host of practical applications in physical and biological

systems in which frustrated configurations and time delay are known to coexist. As an

illustration, one such possible application related to the dynamics of the zebrafish seg-

mentation clock is briefly discussed at the end.

Chapter-3: Multisensory perception: A minimalistic model
This chapter proposes a minimalistic model to capture the underlying principles of mul-

tisensory information processing in our brain. Multisensory processing involves the

integration of inputs from individual sensory streams, e.g., visual, auditory, and so-

matosensory to facilitate perception of environmental stimuli. Merging information

from different senses confers distinct behavioral advantages, for example, identifica-

tion of audio-visual (AV) objects is more rapid than with unimodal stimuli, especially
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when the signals are ambiguous. An experimental realization of the underlying com-

plexity is captured by the “McGurk-effect” [8], where incongruent auditory and visual

stimuli elicit the perception of illusory speech sounds. A key variable that modulates

perception is the time lag between the onset of auditory and visual streams. For in-

stance, the audio-visual integration breaks down if the asynchrony between the visual

lip movements and the auditory speech sounds becomes too long [9]. However, a large

temporal window exists over which successful integration may occur. In this chapter we

present a dynamical systems model consisting of the basic ingredients of any multisen-

sory processing, two unisensory and one multisensory subsystem (represented by phase

oscillators in our model), as reported by several researchers. The oscillators are con-

nected such that the biophysically inspired coupling parameters and time delays become

key parameters of this network. The unimodal areas (auditory and visual) communicate

via feedforward and feedback synapses with a third multimodal area (pSTS or Superior

Colliculus). Audio-visual (AV) lag is captured by the time-delayed interactions between

the oscillators. The extent of multisensory integration is quantified by the degree of syn-

chronization of the dynamical system represented by its order parameter and its variation

with time-delay parameter (representing the AV-lag) is systematically studied. The work

has been done in collaboration with Dr. Arpan Banerjee and Abhishek Mukherjee from

National Brain Research Centre (NBRC), Haryana, India, who provided us with the re-

sults of the behavioral study experiments conducted by them at NBRC and the expertise

in this field. In the behavioral experiments, 52 healthy participants were presented with

video stimuli of audio recordings of a human speaker vocalizing /pa dubbed on the lip

movement of vocalization /ka. The gap in the onset of auditory and visual streams was

varied from -300 to 450 ms in steps of 150 ms. The results of the behavioral study

and the experimental procedure are included in the chapter. This chapter systemati-

cally compares the results obtained from the dynamical model with the experimental

results and shows that despite its simplicity, our model explains many basic properties

of multisensory integration observed in the physiological literature such as the temporal

constraints on multisensory perception, individual differences in multisensory temporal

binding window, and the effect of unreliable auditory and visual stimuli on multisensory

integration. Thereby, the proposed dynamical model presents a quantitative framework

for understanding multisensory information processing.

Chapter-4: Multisensory perception: An extended model
Even though our minimalistic model presented in the previous chapter can explain vari-
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ous temporal aspects of multisensory integration, it does not accommodate the descrip-

tion of the spatial aspects. To overcome this constraint, this chapter proposes an exten-

sion that has a more detailed architecture. The model again consists of two unimodal

areas (auditory and visual), which communicate via feedforward and feedback synapses

with a third multisensory area (pSTS or SC). However, instead of a single oscillator rep-

resenting the dynamics of each area (auditory, visual, and multisensory), here we con-

sider a two-dimensional layer of coupled phase oscillators for each cortical area. Each

oscillator can be representative of a single neuron or a group of neurons. Inter-layer

connections are only between the oscillators at same spatial location and intra-layer

connections are arranged either according to excitatory non-local coupling or according

to Mexican hat disposition. For excitatory-only coupling, the results are shown to match

the results of the minimalistic model. Mexican hat coupling is shown to facilitate the

presence of spatiotemporal wave-patterns and multistability that has been related to per-

ceptual variability in multisensory processes. Stimuli are also explicitly included in the

dynamical equations and effects of their presence are studied when the audio and visual

stimuli are at the (i) same spatial location, and (ii) different spatial locations. This model

provides a wider range of multisensory phenomena that can be studied under a common

framework, for example, spatial audiovisual illusions like the Ventriloquism effect and

temporal audiovisual illusions like the McGurk effect.

Chapter-5: Delay effects on Aging transition
In contrast to the models discussed in previous chapters, if the coupling between the

oscillators is not weak or the attraction to the limit cycle is not large as compared to

the coupling strength, variations in amplitude cannot then be ignored. An important

instance where the attraction to limit cycle is not “strong” is near a Hopf bifurcation

point. In this case, the attraction to the limit cycle is proportional to the distance from

criticality. If we assume that such systems are coupled with a strength of the same mag-

nitude, it is no longer possible to assume that the trajectories of the system stay in a

small neighborhood of the limit cycle. In such cases, many additional phenomena can

occur such as oscillators can drive one another to a state of zero amplitude - often called

amplitude death (AD) which was discovered by Yamaguchi and Shimizu [10] in 1984.

Amplitude death state is the main focus of the study presented in this chapter.

Populations of the coupled oscillators in biological and physical systems must be

robust against damages and deterioration as it might happen that some elements can
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turn non-self-oscillatory over time which has been termed as the “aging” of the system

by Daido and Nakanishi [11]. The collective dynamics of such an ensemble of coupled

oscillators in which a fraction of the oscillators are non-self-oscillatory or inactive can

show very interesting behavior. In particular, for a fixed value of coupling constant,

the system may totally lose its synchronous behavior (i.e. suffer an amplitude death) as

the ratio of the inactive oscillators to the active ones is progressively raised. This has

been termed as an aging transition and the phenomenon has been studied in the past

for various model systems as a paradigm for understanding the functional robustness of

diverse physical and biological systems [11], but none of the previous studies considers

interaction delays. Since the connections between neurons and interactions in other real

systems are often time-delayed, this chapter presents the effect of time delay on the ag-

ing transition phenomenon in a mixed population of active and inactive Stuart-Landau

oscillators that are globally coupled to each other. In the absence of coupling, whether

a Stuart-Landau oscillator is active or inactive is decided by its distance from the Hopf

bifurcation point, represented by the bifurcation parameter α. If the bifurcation param-

eter α < 0 (i.e., it is on the left side of Hopf bifurcation point α = 0), the oscillator is

inactive, i.e., its rest state is stable. If it is on the right side of the Hopf bifurcation (i.e.,

α > 0), then the oscillator exhibits stable oscillations of fixed amplitude equal to
√
α

and is considered active. In the simplest situation of just two coupled oscillators, one

active and other inactive, we find that time delay can significantly influence the critical

coupling strength at which the system experiences amplitude death. We then extend our

study to a large population of globally coupled oscillators with a fraction of them being

inactive. Through analytical linear stability analysis of the governing equations and nu-

merical solutions, we find that at a given value of coupling strength, the critical value of

the fraction of inactive oscillators at which the transition from global oscillatory to non-

oscillatory quiescent state takes place, decreases with an increase in time delay. This

signifies a larger domain of amplitude death region at higher values of time delay and

also a speeding up of the aging process. We have also analyzed the aging transition for

the case of an arbitrary distribution of bifurcation parameters for the globally coupled

system in the thermodynamic limit. There again we see the expansion of the amplitude

death region with an increase in time delay. All the results clearly show that the time

delay enhances the domain of amplitude death and hastens aging transition. Thus in a

physical sense, time-delayed coupling decreases the functional robustness of the system

by decreasing its tolerance to component deterioration. Among the possible biological

applications of this model system are in mammalian circadian clocks which are known
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to consist of both active and inactive clock cells, heart pacemakers, and neurodegen-

erative diseases, such as Alzheimer’s disease, since such diseases are characterized by

progressive neuron fallout.

Chapter-6: Summary and Conclusion
This is the concluding chapter of the thesis and provides a chapter-wise summary and

conclusions of all the research problems addressed during this thesis work. The chapter

also discusses some possible future directions emanating from the work done in the

thesis.

All the studies presented in the thesis together highlight the significance of time-

delay effects on the collective dynamics of oscillator networks and the diverse model

applications these studies offer in real systems.
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