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SYNOPSIS

A plasma is a collection of charged and neutral particles which exhibits collec-
tive behaviour. Under equilibrium condition a plasma is macroscopically neutral
or quasi-neutral ¢.e. it has an equal mix of electrons and ions which are interacting
via electromagnetic forces. Being a highly complex medium, plasma exhibits an as-
sortment of normal modes which are usually termed as plasma waves [1-3|. These
waves are often distinguished by their characteristic frequencies, the presence or
absence of magnetic fields and the plasma temperature. Waves in plasmas can
be classified as electromagnetic or electrostatic respectively, according to whether
or not there is an associated oscillating magnetic field. Under certain conditions,
mixed modes also can exist. For plane waves Faraday’s law of induction indicates
that an electrostatic wave in plasma must be longitudinal. In an unmagnetized
plasma (no external magnetic field) two types of electrostatic normal modes can
exist: (i) Electron Plasma Oscillations/Waves and (ii) Ton Acoustic Waves. Dy-
namics of electron plasma oscillation/wave depends on mass and temperature of
the electrons in the plasma, where the ions are assumed to be infinitely massive
and hence stationary. On the other side, the characteristics of the ion acoustic
mode depends on the ion mass and electron temperature; electrons are assumed to
be massless and hence follow the Boltzmann distribution. In response to a given
perturbation, the acceleration of the electron will be much greater than that of
an ion. For this reason, the characteristic frequency of electron motion is much
higher than the ion. The reciprocals of the characteristic electron frequency and
of the characteristic ion frequency determine the fast and slow time-scale respec-
tively [4]. Depending on the strength of the applied perturbation (or driver that

excites the oscillation/wave) and pattern of motion (geometry of motion) of the

ix
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oscillating species a variety of high frequency longitudinal modes can be excited
in an unmagnetized homogeneous plasma. These modes are the subject of our
present exposition.

The most simplest mode that describes the characteristics of a plasma is the
electron plasma oscillation [5,6] which is excited when the quasi-neutrality condi-
tion of the plasma is disturbed. In fact, when the electrons are instantaneously
disturbed from their equilibrium positions, the resulting self-consistent electric
field builds up to pull back the electrons in order to restore the quasi-neutrality
condition. Because of the inertia, the electrons overshoot from their equilibrium
positions and oscillate around their equilibrium positions with a characteristic fre-
quency known as the plasma frequency which mathematically can be expressed as
Wy = \/m, where ng is the equilibrium density of the electrons and e & m
respectively are the charge and mass of an electron. Here, the necessary restoring
force for oscillation is provided only by the self-consistent electric field.

The theory of cold plasma oscillation does not take into account the random
thermal motion of the electrons. If we let the electrons to have a finite temperature,
then the electron pressure also acts as a restoring force in addition to the electric
field and the oscillation propagates with a characteristic frequency greater than
the above cold plasma frequency. This was first reported by Bohm & Gross [7]
and known as Electron Plasma Wave (EPW) or Langmuir Wave.

Such space charge oscillations/waves are capable of generating very high elec-
tric fields within a short distance and under certain conditions the work done
by this self-consistent electric field E of the wave, over a distance of the order
of wavelength (),) of the wave may approach the electron rest mass energy i.e

eE\, ~ mc?. Under such conditions, the electrons quiver with a velocity which is



Contents

close to the velocity of light in free space (¢) and the oscillations/waves become
relativistically intense. Such kind of relativistically intense oscillations/waves are
usually generated by passing a high intensity laser pulse [8] (~ 10¥W att/cm? for a
1pm wavelength laser ) or an ultrarelativistic electron beam pulse through an un-
derdense plasma [9]. Apart from its great academic relevance in nonlinear plasma
theory [10-13], the study of such kind of relativistically intense oscillations/waves
has received a great deal of attention in a number of systems ranging from labo-
ratory plasmas to astrophysical plasmas [14-16]. For instance, oscillations/waves
with relativistic amplitudes are regularly encountered in laser assisted nuclear fu-
sion [17-19] and particle acceleration experiments [8,20-26]. In laser fusion ex-
periments, an intense laser pulse falls on an overdense plasma and excites plasma
waves through mode conversion [19] whereas in particle acceleration experiments,
an intense laser/beam pulse, propagating through an underdense plasma, excites a
large amplitude wakefield through ponderomotive forces/electrostatic forces, which
then traps the background plasma electrons or externally injected electrons and
accelerates them to higher energy [14-16]. Recent experiments [14, 16,2024, 26|
indicate that plasma waves excited in the wake of a laser/beam pulse could gen-
erate accelerating gradients of the order of 100GV/m in plasma-based accelerator
experiments - this is as high as 1000 times stronger accelerating field as compared
to the conventional RF accelerators. These energetic particles are useful in a wide
variety of fields, ranging from medicine and biology to high-energy physics exper-
iments. These energetic particles are also desirable for producing a hot spot to
initiate ignition in an already compressed pellet for fast ignition applications of
laser fusion [19].

It is natural to expect that, the larger the amplitude of plasma wave, the greater
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the acceleration would be. In fact, the amplitudes of these space charge waves are
limited by a phenomena called wave breaking which occurs via several nonlinear
processes. In 1959, J. M. Dawson [5] presented a pioneering work where he mod-
elled electrons as independently oscillating sheets of charges (hereinafter referred
as Dawson Sheet Model) and demonstrated that for nonrelativistic cold plasma os-
cillations (where thermal velocity is negligible with respect to the quiver velocity
of the electrons) in slab/planar geometry, the amplitude of applied perturbation
can not be increased beyond a critical limit, known as wave breaking limit, as
the trajectories of the neighbouring sheets constituting the oscillation/wave start
crossing each other beyond this limit. This results in fine scale mixing of various
parts of the oscillation which destroys the oscillation/wave within a period.
Inclusion of relativistic effects change the dynamics of these oscillations/waves
dramatically. The maximum electric field amplitude that can be sustained by
a relativistically intense non-linear wave in a cold plasma was first reported by
Akhiezer and Polovin [27], before Dawson introduced the phenomenon of “wave
breaking” [5]. Using non-linear, relativistic, cold fluid equations in one dimension,
Akhiezer and Polovin showed that, the maximum electric field amplitude ( E,uq)
that can be sustained by a relativistically intense travelling wave in a cold plasma
is given by eEu./mwyc = \/2(75 — 1), where 7, = 1/4/1— % is the Lorentz
factor associated with the phase velocity v, of the wave. However later it has been
discovered that this Akhiezer - Polovin limit does not hold for arbitrary initial con-
ditions. In 1989, Infeld and Rowlands [28] presented an exact space-time dependent
solution of the relativistic cold plasma fluid-Maxwell equations using Lagrange co-
ordinates [6]. The solution presented by them exhibits explosive behaviour for all

initial conditions, except for the one which is needed to excite Akhiezer - Polovin

xii



Contents

waves. Physically this explosive behaviour arises due to the relativistic electron
mass variation which causes the characteristic electron plasma frequency to ac-
quire spatial dependency, due to which neighbouring electrons gradually go out of
phase and eventually cross causing the wave to break at arbitrarily small initial
perturbation. This phenomena is known as phase mixing [29-32|. This mechanism
of wave breaking through gradual phase mixing is not exhibited by a pure longi-
tudinal Akhiezer - Polovin wave. In fact, longitudinal Akhiezer - Polovin mode is
a very special combination of frequency (w), wavenumber (k) and their harmonics
such that the resultant profile propagates as a coherent nonlinear structure with a
constant phase velocity [32]. In 2012 Verma et. al. [33], by performing extensive
numerical simulation, showed that even a longitudinal Akhiezer - Polovin wave
breaks through the gradual process of phase mixing at an amplitude well below its
wave breaking limit, when it is subjected to an arbitrarily small amplitude longi-
tudinal perturbation. However an analytical expression for the phase mixing time
scale of this mode as a function of it’s parameters is yet to be discovered. Further,
in relation to laser /beam driven wakefield experiments, it has been recently pointed
out that [33] if the phase mixing time (wave breaking time) is shorter than the
dephasing time of an electron in the wake wave, then the maximum energy gain
cannot be achieved as the wake wave gets damped because of phase mixing before
the dephasing time is reached. Therefore, the estimation of phase mixing time
(wave breaking time) of these relativistically intense plasma waves are relevant for
these experiments.

Now we would like to note that, in addition to the relativistic mass variation
effects, phase mixing also arises because of the geometry of oscillation (cylindrical

and spherical [5]) and/or background density inhomogeneities (either fixed |5, 34]
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or self-generated [29]). The idea of phase mixing of a wave in an inhomogeneous
medium leading to dissipation of wave energy may serve as a possible model for
coronal heating [35]. Thus from the above discussion we understand that a thor-
ough understanding of wave breaking (via phase mixing) and the estimation of
phase mixing time is a pertinent issue in nonlinear plasma physics and forms a
concrete area of research. This area is explicitly explored in this thesis.

In this thesis, by performing analytical calculations and computer simulations,
we present a thorough investigation and understanding on the formation, evolu-
tion and breaking [5, 6] of variety of relativistically intense longitudinal electron
plasma oscillations/waves that a homogeneous unmagnetized plasma can support.
We restrict our study to the one-dimensional case i.e. the variation of physical
quantities is only along the z-direction (direction of propagation). Throughout
this thesis ions are considered as positively charged background of infinite mass
and hence stationary during the fast time-scale. We start our study from rela-
tivistic cold plasma wave breaking via phase mixing and then gradually extend
our attention to the relativistic warm plasma wave breaking physics [36-44] by
including finite electron temperature.

This thesis is divided into 8 chapters. Chapter - 1 provides an introduction to
the breaking of nonlinear electron plasma oscillations/waves and their importance
in context of current research interests. Different nonlinear effects which are the
root cause of wave breaking in a cold as well as in a warm plasma are also discussed
in this chapter.

Chapter - 2 describes the simulation techniques that we have used in order to
study the breaking of relativistically intense plasma waves. In this thesis, we have

mainly used two in-house developed simulation tools viz. - Sheet Simulation [30-33]
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and Particle-in-Cell (PIC) simulation [45-49]. To study the wave breaking physics
in a cold plasma we have used Sheet Simulation code which is based on Dawson
Sheet Model [5,32] and wave breaking in warm plasmas have been studied using
one dimensional PIC code.

In Chapter - 3 we start our investigations by studying the space-time evolution
of relativistically intense wave packets specified by their amplitudes () and spectral
widths (Ak) in a cold plasma. Actually, in a typical laser /beam plasma interaction
experiment a spectrum of relativistically intense waves with an arbitrary spread in
Ak (and hence in phase velocity) is excited because of group velocity dispersion and
nonlinear distortion of light pulse near the critical layer [50-53]. Such a wave packet
exhibits phase mixing and eventually breaks at arbitrarily small amplitudes. In
order to estimate the phase mixing time scale as a function of the amplitude (J) and
dimensionless spectral width (Ak/k) of this wave packet, we first extend the Sheet
Model proposed by Dawson into the relativistic regime and derive the relativistic
equation of motion for the oscillating sheets. Then we solve this equation of motion
in weakly relativistic limit by using Lindstedt-Poincaré [54] perturbation technique
and find that the phase mixing time scale (¢,,;,) crucially depends on the ratio of
the amplitude of the wave packet (§) and dimensionless spectral width (Ak/k)
of the wave packet. We further observe that for sharply peaked wave packets
e Ak/k > 2w20%/*k?, ty, scales with ¢ as 1/6% [30], while for broader wave
packet i.e for Ak/k < 2w20%/c*k?, ty, scales with § as 1/6°. Then we verify these
theoretical results by a using a code based on Dawson Sheet Model discussed in
chapter - 2.

Next, in Chapter - 4 we bring our attention to the breaking of longitudinal

Akhiezer - Polovin mode by using Dawson Sheet Model and derive an analytical
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expression for the phase mixing time scale of this mode when it is subjected to
an arbitrarily small longitudinal perturbation of amplitude 6. As a longitudinal
Akhiezer-Polovin wave is parametrized in terms of maximum fluid velocity (u,,,
normalized to c) and phase velocity (5, = v,/c), we present analytical expression
of phase mixing time as a function of u,,, 84 and imposed perturbation ¢. First we
construct longitudinal Akhiezer - Polovin travelling wave solutions from relativistic
equation of motion of sheets and derive an expression for frequency (wg,) of a pure
(0 = 0) longitudinal Akhiezer - Polovin mode. We observe that the expression
for frequency for & = 0 does not contain any spatial dependency. This is the
reason for the fact that a pure longitudinal Akhiezer - Polovin mode does not
exhibit phase mixing. Then we calculate an approximate expression for frequency
[Qap(per)] upto first order in ¢ for perturbed Akhiezer - Polovin mode in weakly
relativistic limit. We show that, in this situation( i.e. after adding perturbation),
the frequency [€2,,(per)| indeed becomes an explicit function of the positions of
the electron sheets constituting the wave, which results in wave breaking via phase

mixing process. We also observe that as time progresses, density spikes arise in

space and the structure eventually breaks in a time scale given by ~ 2§§¢ [é - i] .
We also verify our analytical findings by Sheet simulation technique.

In Chapter - 5, another manifestation of breaking of nonlinear electron plasma
oscillations via phase mixing has been observed by changing the geometry of the os-
cillations (from planar to cylindrical and spherical). Earlier it was mentioned that
for nonrelativistic oscillations under planar geometry, the amplitude of the applied
perturbation can not be increased beyond a certain value known as wave breaking

limit [5,6]. Dawson in his paper [5] extended his nonrelativistic calculations by

including geometrical effects. He assumed that the electrons are oscillating back
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and forth along the radius either of a cylinder or of a sphere and found that even
in nonrelativistic case, oscillations having cylindrical or spherical symmetry always
exhibit phase mixing, at arbitrarily small amplitude of the applied perturbation.
In this chapter we extend Dawson’s earlier work [5] by including relativistic effects.
We first derive the expressions for the fluid variables wviz. electron density (n.),
electric field (E) and velocity (v) by respectively using the principle of conserva-
tion of number of particles, Gauss’s Law and Newton’s Law. It is found that this
method of deriving the fluid variables is easier compared to the derivation involv-
ing the definition of Lagrange coordinates used by other authors [55,56]. Then
we solve the equation of motion of the sheets in respective coordinate system by
using Lindstedt-Poincaré [54] method and derive an expression for frequency of
oscillation in the weakly relativistic limit upto third order in amplitude. We find
that, for oscillations in cylindrical and spherical geometry, the frequency acquires
spatial dependency which ultimately leads to wave breaking via phase mixing pro-
cess. Analytical expressions for this phase mixing time scale as a function of the
amplitude of the applied perturbation () have been derived which show that for
relativistic cylindrical and spherical oscillations, phase mixing time scale inversely
with the cube of the amplitude of the applied perturbation. We observe that, for
nonrelativistic case the phase mixing time scale follows the same scaling law. In-
clusion of relativistic effects [55,56| only hastens the phase mixing time (breaking
time). We also verify our analytically obtained scaling law by Sheet Simulation
code.

In the space-time evolution of the modes discussed in the previous chapters
(chapter -3, 4 and 5), we observe that as time progresses the electron density

becomes more and more spiky and eventually breaks via phase mixing. At breaking
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point the electron density becomes singular (n, — oo0). This singularity is an
artefact of cold fluid plasma model. In fact when non-linear density perturbations
are excited in a large amplitude plasma wave, thermal effects become important as
the electron thermal pressure may not allow the density compression to build up
as predicted by the simple cold plasma fluid model and in this situation a warm
plasma theory is required.

In 1971, Coffey [36] first investigated the effect of electron temperature on the
wave breaking limit for an Electron Plasma Wave in a warm plasma by using a
“water-bag” [57] distribution for electrons. Unlike the cold plasma wave breaking
which is defined by the crossing of the trajectories of the particles constituting
the wave, Coffey defined wave breaking in a warm plasma as the trapping of the
background plasma electrons at the upper boundary of the water-bag distribution
(which is at electron sound speed sy = \/m) by the wave potential. The
author also showed that maximum electric field amplitude explicitly depends on the
initial electron temperature and decreases monotonically with increasing electron
temperature. This limiting amplitude of electron plasma wave is known as Coffey’s
limit [36,39].

In 1988, Katsouleas and Mori [37,39], extended the calculations carried out by
Coffey by including relativistic effects. An analytical expression for the maximum
electric field amplitude that can be sustained by a relativistically intense electron
plasma wave was derived as a function of electron temperature and phase velocity
of the wave in the ultrarelativistic regime, which is defined as fyd%)\ >> 1, where
A = 3kgT,/mc?. In the same year Rosenzweig |38| presented another expression for
maximum electric field amplitude (in the limit v; — ¢) as a function of electron

temperature. Similar results were derived by Sheng and Meyer-ter-Vehn, using
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a different set of equations [40]. Recently Schreoder et. al. [41,42] proposed a
new model of relativistic warm fluid theory and presented fundamentally different
expressions for wave breaking amplitude in the limits %25)\ >> 1 and %25)\ <<
1 (laser wake field regime) respectively. Later Trines ef. al. [43] extended the
calculations of Katsouleas & Mori in the regime where 7(723)\ << 1. All these
theoretical results |37-43] clearly indicate that, thermal effects significantly reduces
the wave breaking limit from the cold plasma Akhiezer - Polovin limit. Physically
it is expected, because the tendency of plasma density to increase to infinity is
opposed by the pressure term and the inclusion of thermal velocity of the particles
in the direction of wave propagation (positive x axis, in our case) enables them to
get trapped at lower amplitude.

Considerable efforts have been made in this field over past two decades, mainly
focusing on theoretical analysis by assuming the wave like solutions of the rela-
tivistic Vlasov-Maxwell’s equations. However, there is no consensus on a correct
model for studying the breaking of relativistically intense waves in a warm plasma.
Therefore, it becomes imperative to conduct a numerical experiment on the space
time evolution and breaking of large amplitude relativistically intense electron
plasma waves in a warm plasma with a relativistically correct velocity distribution
function (Juttner-Synge distribution) [58].

Here we would like to note that in a cold plasma the phenomenon of wave
breaking can be understood in terms of electron orbit crossing (as shown in Chapter
-3, 4 and 5). But in a warm plasma the motion of the particles are random. As
a result the wave breaking physics in a warm plasma (which includes particle
trapping) is different and highly non trivial. Thus, in this situation, in order to

enrich our understanding on the warm plasma wave breaking physics, we first study
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the space time evolution and breaking of nonrelativistic electron plasma wave,
because inclusion of relativistic effects would make the analysis more complex.
Therefore in the next chapter we turn our attention to the space-time evolution
and breaking of nonrelativistic electron plasma wave in a Maxwellian plasma.

In Chapter - 6, by using a 1D Particle-in-Cell (PIC) simulation code (discussed
in chapter -2), we investigate the maximum electric field amplitude that can be
sustained by a “self-consistent" freely running electron plasma wave (Langmuir
wave) in a homogeneous warm plasma where electron’s velocity distribution is a
Maxwellian and also study it’s stability towards a small amplitude longitudinal
perturbation. Using a water-bag distribution for electrons, we first derive the
initial conditions (initial positions, velocities for all the particles) required to excite
a propagating wave in PIC code. In the PIC code, these initial conditions are
then loaded along with a Maxwellian distribution. From simulation we observe
that Coffey’s propagating wave solution [36|, which was derived using a “water-
bag” distribution for electrons; also represents a self-consistent propagating wave
in a Maxwellian plasma, albeit with a lower amplitude. We show that if the
amplitude of the initial perturbation exceeds Coffey’s wave breaking limit, within
a few plasma periods the initialized wave self-consistently conforms itself with the
background distribution and remains at an amplitude below Coffey’s limit for a
large period of time (~ 100 plasma periods), provided the Landau damping rate
is very weak. This final self-consistent wave amplitude does not increase even
after increasing the perturbation amplitude and thus can be taken as maximum
sustainable electric field amplitude in a Maxwellian plasma. By changing the initial
electron temperature, we find that maximum electric field amplitude, that can be

sustained by a self-consistent electron plasma wave follows a similar scaling given
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by Coffey [36] but with slightly different coefficients.

Lastly in Chapter - 7 we explore the physics of relativistically intense electron
plasma waves in a warm plasma by conducting numerical experiments, using 1D
PIC code. In order to study the space time evolution and stability of relativistically
intense electron plasma waves towards a small amplitude longitudinal perturbation
in a warm plasma, we first load Akhiezer - Polovin [27] type initial conditions in
our PIC code. Along with this, we load a finite electron temperature (Juttner -
Synge distribution) on the background. We observe that without any perturbation
the resultant structure propagates through the system for a long period of time
provided the Relativistic Landau Damping rate [59] is small. We also find that in
low amplitude limit it follows the relativistic warm plasma dispersion relation given
by Pegoraro et. al [60] and many others [59,61-63]. Further it is demonstrated
that for the phase velocities less than the velocity of light ¢, like cold plasma
case in a warm plasma, relativistically intense waves also break via phase mixing
at arbitrarily small amplitude when perturbed by a small amplitude longitudinal
perturbation. This is far below the existing theoretical results on warm plasma
wave breaking available in the literature [37-44|. Variations of phase mixing time
for a wide range of input parameters have been studied.

Finally in Chapter - 8, we consolidate our work and enumerate the major

tasks that can be undertaken for further research in this field.
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The expert in anything was

once a beginner.

- Helen Hayes

Introduction

The entire thesis presents a detailed study on the excitation, space-time evolution
and breaking of a variety of longitudinal electron modes that a homogeneous un-
magnetized plasma can support. In this chapter we give an overview of nonlinear
plasma waves and discuss some basic aspects of wave breaking. At the outset, we
introduce “nonlinear plasma waves” and the concept of “wave breaking”. In the
next section we present a review of earlier works along the motivation for such
studies where we discuss the open problems exist in this field. Finally we end this

chapter with an outline of the remaining chapters of this thesis.

1.1 Nonlinear Plasma Waves and Wave Breaking

(Overview)

Physicists have recognized that 99.999% of all the observable matter in the universe
is in the plasma state which implies that plasmas are abundant in the universe. In
general, it is thought that plasma is the fourth state of matter in order of solid,
liquid, gas and finally plasma. This order is set by the ratio of the kinetic en-
ergy of the particles to the inter-particle potential energy. For a solid this ratio is
< 1, as the temperature increases this ratio increases significantly. A plasma is
an ensemble of charged (electrons and ions) and neutral particles which exhibits
collective behaviour governed by the electromagnetic forces. Under equilibrium
condition a plasma is macroscopically neutral or quasi-neutral i.e. it has an equal

mix of electrons and ions (with some neutral particles, depending on the degree
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of ionization) which are interacting via long range Coulomb force. Being a highly
complex medium plasma can support an assortment of normal modes which are
typically known as plasma waves [1-3]. These waves are often distinguished by
their characteristic frequencies, the presence or absence of magnetic fields and the
plasma temperature. Waves in plasmas can be respectively classified as electromag-
netic or electrostatic according to whether or not there is an associated oscillating
magnetic field. Under certain conditions, mixed modes can also exist. For plane
waves, Faraday’s law of induction implies that an electrostatic wave in plasma
must be longitudinal i.e. the self-consistent electric field is along the direction of
propagation. In an unmagnetized plasma (no external magnetic field) two types of
electrostatic normal modes can exist: (i) Electron Plasma Oscillations/Waves and
(ii) Ion Acoustic Wave. The dynamics of electron plasma oscillation/wave depends
on mass and temperature of the electrons in the plasma, where the ions are assumed
to be infinitely massive and hence stationary. On the other side, the characteris-
tics of an ion acoustic mode depends on the ion mass and electron temperature;
electrons are assumed to be massless and hence follow the Boltzmann distribution.
In response to a given perturbation, the acceleration of the electron will be much
greater than that of an ion. For this reason, the characteristic frequency of electron
motion is much higher than the ion. The reciprocals of the characteristic electron
frequency and of the characteristic ion frequency determine the fast and slow time-
scale respectively [4]. Depending on the strength of the applied perturbation (or
the driver that excites the oscillation/wave) and pattern of motion (geometry of
motion) of the oscillating species a variety of high frequency longitudinal electron
modes can be excited in an unmagnetized homogeneous plasma.

The simplest electrostatic mode that describes the characteristics of a plasma
is the plasma oscillation [5,6] which arises when the quasi-neutrality condition
of the plasma is disturbed. When the electrons are disturbed from their equilib-
rium positions, the resulting self-consistent electric field builds up to pull back
the electrons in order to restore the quasi-neutrality condition. Because of inertia,
the electrons overshoot their equilibrium positions and oscillate around their equi-
librium positions with a characteristic frequency known as the plasma frequency
which is given by w, = \/W, where ng is the equilibrium density of the
electrons and e & m respectively are the charge and mass of an electron. Here, the

necessary restoring force for oscillation is provided by the self-consistent electric
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field generated due to the displacement of the electrons.

The theory of cold plasma oscillation does not take into account the random
thermal motion of the electrons. If we let the electrons to have a finite (non-zero)
temperature, then the electron pressure acts as a restoring force in addition to the
self-consistent electric field and the oscillations propagate with a frequency higher
than the cold plasma frequency (w,). This was reported first by Bohm & Gross [7|
and known as Electron Plasma Wave or Langmuir Wave.

Such space charge oscillations /waves can generate very high electric field within
a short distance and under certain conditions the work done by the self-consistent
electric field E of the oscillation/wave over a distance of the order of wavelength
(A\p) may approach the electron rest mass energy which mathematically can be
expressed as i.e eE\, ~ mc®. Under such conditions, the electrons quiver with a
velocity close to the velocity of light in free space (¢) and the oscillations/waves are
termed as relativistically intense oscillations/waves. Such kind of relativistically
intense oscillations/waves are usually generated in laboratories by passing a high
intensity laser pulse [8] (~ 10™Watt/em? for a 1um wavelength laser ) or an
ultrarelativistic electron beam pulse through an underdense plasma [9] (0.5 GeV,
carrying 1 kA current, focussed to 3 um spot size [30]).

Apart from its great academic interests in nonlinear plasma theory [10-13],
the study of such kind of relativistically intense oscillations/waves has received a
great deal of attention in a number of systems ranging from laboratory plasmas
to astrophysical plasmas [14-16]. For instance, oscillations/waves with relativistic
amplitudes are regularly encountered in laser assisted nuclear fusion [17-19] and
particle acceleration experiments [8,20-26]. In laser fusion experiments, an intense
laser pulse falls on an overdense plasma and excites plasma waves through mode
conversion [19] whereas in particle acceleration experiments, an intense laser/beam
pulse propagating through an underdense plasma produces large amplitude wake-
field through ponderomotive forces/electrostatic forces [8,9]. A key feature of
such waves is the ability to sustain very high self-consistent electric field within
a short distance. As a result when a charged particle comes in resonance with
these plasma waves, it perceives a very high DC electric field and gets accelerated
to a very high energy within a very short distance [14-16]. The concept of gen-
erating energetic particles by trapping them in a large amplitude relativistically

intense plasma wave has opened a new era in modern plasma physics. Recent
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experiments [14,16,20-24, 26] indicate that plasma waves excited in the wake of a
laser /beam pulse could generate accelerating gradients of the order of 100GV /m in
plasma-based accelerator experiments - this is as high as 1000 times stronger accel-
erating field as compared to conventional RF accelerators. Such highly energetic
particles are useful in a wide variety of fields, ranging from medicine and biology
to high-energy physics experiments. These energetic particles are also desirable for
producing a hot spot to initiate ignition in an already compressed pellet for fast
ignition applications of laser fusion [19]. But it is also reported by several authors
that sometimes these high energetic electrons can prematurely heat the fuel in
the capsule and make efficient implosions difficult in compression applications for
inertial fusion.

Now, it is natural to expect that, larger the amplitude of the excited plasma
wave, greater the acceleration would be. But, one can not increase the amplitude
of a plasma oscillation/wave beyond a critical limit - known as “wave breaking
limit”, discovered first by J. M. Dawson in 1959 for nonrelativistic cold plasma
oscillations (where thermal velocity is negligible with respect to the quiver ve-
locity of the electrons). By treating the electrons as oscillating sheets of charges
(hereinafter referred as Dawson Sheet Model) Dawson clearly demonstrated that
when the amplitude of a coherent plasma oscillation exceeds the so called “wave
breaking limit”, the trajectories of the neighbouring electrons constituting the os-
cillation start crossing each other and the oscillation breaks within a period. This
results in fine scale mixing of various parts of the oscillation which destroys the
oscillation /wave.

Even without approaching the “wave breaking limit”, Dawson pictured a novel
phenomenon where plasma oscillations start losing it’s periodicity gradually with
time and eventually break at a particular time, provided that the frequency of oscil-
lation for some physical reasons acquires a spatial dependency. This phenomenon
is called “phase mixing”. In phase mixing, oscillations/waves break at arbitrarily
small initial amplitude far below the corresponding “wave breaking limit”. Due to
spatial dependency of the characteristic frequency, neighbouring particles gradu-
ally get out of phase and eventually cross causing the wave to break at arbitrarily
small initial amplitude. Dawson derived a general expression for phase mixing
time scale (wave breaking time) by using a physical reasoning (which is based on

out of phase motion of neighbouring oscillators separated by a distance equal to
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twice the amplitude of the oscillation /wave) and demonstrated that phase mixing
can occur if there is a density inhomogeneity or the geometry of the oscillation
changes from planar to cylindrical /spherical. However, later it has been shown by
several authors that phase mixing can also take place when the oscillations/ waves
become relativistically intense. We discuss all these works in detail in the next

section.

1.2 Review of earlier works and Motivation

Starting from Dawson’s work, which was carried out for a nonrelativistic cold
plasma oscillation, we present here all the well-known theoretical and simulation
works that has been contributed till date concerning wave breaking in cold and
warm plasma theory (nonrelativistic and relativistic) for electron plasma oscil-
lations/waves in an unmagnetized plasma. In order to present the earlier works
according to the traditional practice and also for the sake of easy reading we divide

this section in following four subsections; which are as follows:

1.2.1 Wayve breaking in a nonrelativistic cold plasma

As mentioned earlier, the concept of wave breaking of nonlinear plasma oscillations
for a cold plasma model was first introduced by Dawson [5]. Later in 1968 Davidson
and Schram [6] obtained an exact solution of nonrelativistic cold fluid - Maxwell’s
equations by using Lagrange coordinates. These authors also demonstrated that
if the minima of the normalized initial density crosses 0.5 at any point in space, it
would break with in one plasma period. The above conclusion was derived with
an initial condition where only a single well defined mode (sinusoidal mode) was
excited. However in 2012, Verma et. al. |64] figured out that the addition of a very
small perturbation to the second harmonic increases the wave breaking amplitude
significantly. These results were also verified by particle-in-cell (PIC) simulations.
Recently, Diver et. al. have derived an iterative analytical form for nonlinear
plasma oscillations in a cold plasma from which one can compute the associated
maximum density amplitude for a given value of density minimum [65].
Nonrelativistic oscillations can also break gradually via phase mixing if there is

a density inhomogeneity (fixed or self-generated) and/or if the pattern of the oscil-
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lation changes. The later case has been demonstrated by Dawson [5]. In 1973 Kaw
et. al. [66] explained the phenomenon of phase mixing as mode coupling where
energy gradually goes from longer to shorter and shorter wavelengths. Couple of
years later Infeld et. al. [67] reported an exact space time dependent solution of
nonlinear plasma oscillations in a cold plasma against a fixed ion background and
concluded that all initial conditions ultimately lead to wave breaking via phase
mixing, which was expected from Dawson’s earlier work [5]. In 1999, Sengupta
et. al. |29] considered the effect of ion motion (self-generated) on the space time
evolution of nonlinear plasma oscillations in a cold plasma and found that the oscil-
lations phase mix away at arbitrarily small amplitude of the applied perturbation.
These authors [29] also derived an analytical expression for this phase mixing time
scale and showed that phase mixing time scale depends on the mass ratio and the

amplitude of the applied perturbation.

1.2.2 Wayve breaking in a relativistic cold plasma

The analytical expression for maximum electric field amplitude that can be sus-
tained by a relativistically intense non-linear wave in a cold plasma was first de-
rived by Akhiezer and Polovin [27], before Dawson introduced the concept of “wave
breaking” [5]. Using non-linear, relativistic, cold fluid equations in one dimension,
Akhiezer and Polovin showed that, the maximum electric field amplitude ( E,pq.)
that can be sustained by a relativistically intense travelling wave in a cold plasma is
given by €Eq0/mwyc = 1/2(75 — 1), where 75 = 1/1/1 — Z—% is the Lorentz factor
associated with the phase velocity vs of the wave. However this Akhiezer - Polovin
limit does not hold for arbitrary initial conditions. In 1976 Drake et. al. [68] showed
that the inclusion of relativistic mass variation of the electrons create a spatial vari-
ation of the local frequency of the wave which leads to wave breaking. In 1989,
Infeld and Rowlands 28] presented an exact space - time dependent solution of the
relativistic cold plasma fluid- Maxwell equations in Lagrange coordinates [6]. The
solution presented by them exhibits explosive behaviour for all initial conditions,
except for the one which is needed to excite Akhiezer - Polovin waves. Physically
this explosive behaviour arises due to the relativistic electron mass variation which
causes the characteristic electron plasma frequency to acquire spatial dependency

(as pointed out by Drake et. al. [68]), due to which neighbouring electrons gradu-
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ally go out of phase and eventually cross causing the wave to break at arbitrarily
small initial amplitude via phase mixing. An analytical expression for this phase
mixing time scale as a function of the applied perturbation was first reported by
Sengupta et. al. [30] in 2009. By studying the space-time evolution of two waves,
separated by a wavenumber Ak, the authors [30] showed that the phase mixing
time scale varies inversely with the cube of the amplitude of the wave (or applied
perturbation). These authors [30] also verified their analytical results via computer
simulation. However, later we explicitly show that in Ak — 0 limit, the analytical
expression for phase mixing time presented by Sengupta et. al. [30] does not hold
and requires revisiting. Moreover, in present day laser/beam-plasma acceleration
experiments where E?/8rnT, > 1, it is natural to expect that the exciting mech-
anism i.e. laser, high energetic particle beam, electrical pulse etc. will in general
excite a wave packet with energy distributed over several modes. Therefore the
estimation of phase mixing time of such wave packets is essential from the point
of view of particle acceleration.

The mechanism of wave breaking through gradual phase mixing is not exhibited
by a pure Akhiezer - Polovin wave [27]. In fact, longitudinal Akhiezer - Polovin
mode is a very special combination of frequency, wavenumber and their harmonics
such that they propagate together as a coherent nonlinear structure with a constant
phase velocity [32]. However, in 2012 Verma et. al. [69] obtained Akhiezer - Polovin
wave solution from space time dependent solution of Infeld and Rowlands [28].
Same authors [33], by performing extensive numerical simulation, showed that
even a longitudinal Akhiezer - Polovin wave breaks through the gradual process
of phase mixing at an amplitude well below its wave breaking limit, when it is
subjected to an arbitrarily small amplitude longitudinal perturbation. Recently it
has also been observed by Bera et. al. [70,71| by performing fluid simulations that
the wake wave generated by an ultrarelativistic electron beam in a cold plasma is
nothing but longitudinal Akhiezer - Polovin mode which also breaks gradually via
phase mixing. Still an analytical expression for the phase mixing time scale of this
mode in terms of it’s parameters is yet to be discovered. Further, in relation to the
particle acceleration experiments, it is known that wake waves cannot accelerate
particles indefinitely, but give maximum acceleration only up to the dephasing
length or dephasing time. It has been recently pointed out that [33| if the phase

mixing time (wave breaking time) is shorter than the dephasing time of an electron
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in the wake wave, then the maximum energy gain cannot be achieved as the wake
wave gets damped because of phase mixing before the dephasing time is reached.
Therefore the estimation of phase mixing time of a longitudinal Akhiezer - Polovin
mode is very essential for Plasma wake wave acceleration (PWFA) mechanism in
order to achieve maximum acceleration.

In addition to this, recently the space-time evolution of relativistically intense
cylindrical and spherical waves have been respectively studied by Gorbunov [55]
and Bulanov [56|. In the former case |55], the authors observed trajectory cross-
ing of the neighbouring electrons which led to wave breaking via phase mixing.
In the latter case [56], the authors observed that after some plasma period, the
wave profile changes it’s direction of propagation which also occurs due to spatial
dependency of the characteristic frequency of the wave. This time was termed as
“turn-around time” [56]. But an analytical dependence of phase mixing time scale
as a function of the applied perturbation for these cases has not been reported
anywhere till date and thus forms an uncovered area of research which needs to be

explored.

1.2.3 Wayve breaking in a nonrelativistic warm plasma

In all the above works which we have discussed till now, thermal motions of the
electrons were neglected. In 1971, Coffey [36] first showed that the inclusion of elec-
tron temperature (7,) significantly reduces the wave breaking limit for an electron
plasma wave in a warm plasma. Using a “water-bag” [57] distribution for electrons
Coffey [36] derived an analytical expression for the maximum electric field ampli-
tude that can be sustained by an electron plasma wave propagating with a phase
velocity v, which can be written as % = (1-2pY4 4282 - %)1/2, where
8= %, T, is the electron temperature and kg — is the Boltzmann’s constant.
Unlike the cold plasma wave breaking which is defined by the crossing of the tra-
jectories of the particles constituting the oscillation/wave [5], Coffey [36] defined
wave breaking in a warm plasma as the trapping of background plasma electrons at
the upper boundary of the water-bag distribution (which is at electron sound speed
s0 = /3kpT./m) by the wave potential. This limiting electric field amplitude of
electron plasma wave is known as Coffey’s limit [36,39]. Later Infeld and Row-

lands |72] presented an exact space-time dependent solution of electron density for
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nonlinear oscillations in a warm plasma by using Lagrange coordinates [6]. Later
in 1995, Bauer et. al. [73] reported the experimental observation of wave breaking
of electron plasma wave in a radio frequency afterglow plasma and observed that
the onset of wave breaking conforms to the Coffey’s wave breaking theory [36].
In 2012, by using 1-D PIC simulation method, Verma et. al. [74] have explored
the physics beyond the breaking of nonrelativistic cold plasma oscillations [6] in
a cold plasma. These authors |74] demonstrated that in contrast to the present
understanding, after wave breaking all the initialized energy does not end up as
the random kinetic energy of the particles, but some fraction always remains with
two oppositely propagating coherent BGK [75] like modes with supporting trapped
particle distributions and further demonstrated that the amplitude of this mode
follows Coffey’s limit [36]. Recently Trines [76] has presented an analytical ex-
pression for the maximum electric field amplitude sustained by a nonquasistatic
oscillations in a warm plasma.

According to the cold plasma fluid theory, at the wave breaking amplitude,
the density becomes singular [5,6,30,33]. But in reality, the tendency of plasma
density to increase to infinity at the wave crest is opposed by the plasma pressure
and for large amplitude waves some electrons in the vicinity of the phase velocity
get trapped by the wave potential and accelerated by the wave. A self-trapped
electron is the one that already has initial velocity close to the phase velocity of
the wave and thus can see a constant DC electric field for a sufficiently large time
and get accelerated to high energies. Untrapped electrons are the slow electrons
which move with the their thermal speed in addition to taking part in the oscil-
lation/wave. At the wave breaking a large number of electrons are brought into
resonance with the wave which leads to a very strong irreversible damping of the
wave and efficient acceleration of the electrons. Thus the study of maximum elec-
tric field amplitude that can be sustained by an electron plasma wave in a warm
plasma is a key parameter of interest to other physicists studying topics in which
wavebreaking is of importance.

Here we would like to note that, the verification of Coffey’s limit for a reso-
nantly excited wave in an inhomogeneous plasma has been attempted by several
authors [77,78]. These authors [78] observed that some particles get trapped even
when there was no wave breaking and concluded that Coffey’s limit can not be

applied for a resonantly excited wave in an inhomogeneous plasma. However, the



Chapter 1. Introduction

verification of Coffey’s limit for a freely running propagating wave (for which the
theoretical limit was derived using a water-bag distribution) in a warm plasma
remains uncovered for distributions where all range of velocities exist naturally
(Maxwellian). Therefore it will be interesting to study the validity of Coffey’s
wave breaking criterion for a Maxwellian plasma over a wide range of initial elec-

tron temperature.

1.2.4 Wayve breaking in a relativistic warm plasma

Finally we have reached to a point where we discuss the effect of finite electron
temperature on the wave breaking limit for a relativistically intense wave in a
warm plasma. In 1988, Katsouleas and Mori [37, 39|, first extended the calcu-
lations carried out by Coffey [36] by including relativistic effects. An analytical
expression for the maximum electric field amplitude that can be sustained by a
relativistically intense electron plasma wave has been derived as a function of elec-
tron temperature and Lorentz factor in the ultrarelativistic regime which is defined
as 73\ >> 1, where A = 3kpT,/mc*. In the same year Rosenzweig [38] presented
another expression of maximum electric field amplitude (in the limit v, — ¢) as
a function of electron temperature. Similar results were derived by Sheng and
Meyer-ter-Vehn [40], using a different set of equations [79-81]. Recently Schre-
oder et. al. [41,42] proposed a new model of relativistic warm fluid theory and
presented fundamentally different expressions for wave breaking amplitude in the
limits 72\ >> 1 and y;A << 1 (laser wake field regime) respectively. Later Trines
et. al. |[43] extended the calculations of Katsouleas & Mori in the regime where
A << 1.

Here we would like to note that the behaviour of a relativistically intense Lang-
muir wave (electron plasma wave) in a warm plasma after its breaking regime has
been studied by Bulanov et. al. [82] and Anna Grassi et. al. [83], by carrying out
a 2D PIC simulation. The former authors [82] observed that the density distribu-
tion in a breaking wave has a typical “peakon” form and behaviour of the wave is
similar to the breaking water waves, when a symmetric Stokes profile evolves to a
skewed wave [84-86]. The latter authors [83] studied the evolution of phase-space
dynamics by using Vlasov simulation method. In addition to the above works, the

effect of ion motion on relativistic strong plasma waves in a homogeneous plasma

10
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has been studied by Khachatryan [87] in 1998. It has been shown that the wave
breaking field weakly depends on the mass of the ions, but the wavelength changes
significantly with the inclusion of ion motion.

The above discussion indicates that several theoretical models have been pro-
posed till date to find the maximum electric field amplitude that can be sustained
by a relativistically intense wave in a warm plasma. In addition to this, for rel-
ativistic warm plasma case all the theoretical limits [37-43| clearly indicate that,
thermal effects significantly reduces the wave breaking limit from the cold plasma
Akhiezer - Polovin limit and at A — 0 limit, all the results approaches the cold
plasma Akhiezer - Polovin limit. Later we will show that (in Chapter - 7) these re-
sults leads to different wave breaking limits even for same parameter domain which
lead to inconclusive results. Therefore, by carrying out a computer simulation, it
is essential to explore the effect of finite electron temperature on the cold plasma
Akhiezer - Polovin limit [27] and to verify which of the above limits [37-43| hold in
reality for studying the breaking of relativistically intense waves in a warm plasma.
In addition to this, it is also very crucial to check whether the above limits hold
in the presence of a small amplitude perturbations or do they phase mix like cold
plasma Akhiezer - Polovin wave [33], as in a realistic experiment, there will always
be some noises associated with the excited wave.

From the above review we understand that, the estimation of phase mixing time
and the calculation of maximum electric field amplitude (wave breaking amplitude)
that can be sustained by a relativistically intense plasma oscillation/wave in a cold
and warm plasma is a topic of fundamental importance from several aspects. This

topic is explicitly explored in this thesis.

1.3 Scope and outline of this thesis

This thesis explicitly presents a study on the excitation, space-time evolution and
breaking (via phase mixing) of a variety of relativistically intense oscillations/waves
in a cold and warm plasma which may throw some light on the aforementioned
issues discussed in the previous section. From the previous discussions we also un-
derstand that, several unsolved issues exist in this field even where ions were taken

as rest. Major problems in these areas need to be understood first and explored
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explicitly. With this desire, throughout this thesis the ions will be considered as
a immobile positively charged background. In this thesis attention has been given
to the longitudinal oscillations/waves in 1-D only and we assume that plasma is
homogeneous and there is no applied magnetic field. With these comments, we
now end this chapter by providing a brief outline of the next chapters.

This thesis is organized as follows: Chapter - 2 describes the simulation tech-
niques that we have used in order to study the breaking of relativistically intense
plasma oscillations/waves. In this thesis, we have used two in-house developed
simulation tools viz. - Sheet Simulation [30-33] and Particle-in-Cell (PIC) simu-
lation [45-49|. To study the wave breaking physics in a cold plasma we have used
Sheet Simulation code which is based on Dawson Sheet Model [5,32] and wave
breaking in a warm plasma has been studied using one dimensional PIC code.

In Chapter - 3 we start our investigations by studying the space-time evolution
of a relativistically intense wave packet specified by its amplitude (0) and spectral
width (Ak) in a cold plasma. Such a wave packet exhibits phase mixing and
eventually breaks at arbitrarily small amplitudes. We find that the phase mixing
time scale (t,,;;) crucially depends on the ratio of the amplitude of the wave packet
(0) and dimensionless spectral width (Ak/k) of the wave packet. We observe that
for sharply peaked wave packets i.e Ak/k > 2w’0%/¢*k?, tyi, scales with § as
1/6% [2], while for broader wave packet i.e for Ak/k < 2w?6%/c*k?, tyi, scales with
§ as 1/6°. Then we verify these results by a using a code based on Dawson Sheet
Model.

Next, in Chapter - 4, we shift our attention to the breaking of a special kind of
wave i.e. longitudinal Akhiezer - Polovin mode by using Dawson Sheet Model and
derive an analytical expression for the phase mixing time scale of this mode when
it is subjected to an arbitrarily small longitudinal perturbation of amplitude §. As
a longitudinal Akhiezer-Polovin wave is parametrized in terms of maximum fluid
velocity (u,, normalized to c¢) and phase velocity (3,,, normalized to c¢), we present
the phase mixing time as a function of w,,, Ss and imposed perturbation . We

derive that the longitudinal Akhiezer - Polovin wave breaks in a time scale given

by ~ 2§§¢ [ulz — 411] We also verify our analytical findings by Sheet simulation
technique.
Another manifestation of breaking of nonlinear electron plasma oscillations via

phase mixing is observed by changing the geometry or pattern of the oscillation
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(from planar to cylindrical and spherical). This has been illustrated in Chapter - 5.
In this chapter we extend Dawson’s earlier work [5]| by including relativistic effects.
Analytical expressions for phase mixing time scales as a function of the amplitude
of the applied perturbation (J) have been derived which indicate that for relativis-
tic cylindrical and spherical oscillations, phase mixing time scales inversely with
the cube of the amplitude of the applied perturbation. We observe that, for nonrel-
ativistic case the variation of phase mixing time with the amplitude of the applied
perturbation follows the same scaling law. Inclusion of relativistic effects |55, 56|
only hastens the phase mixing time but the scaling law remains unchanged. We
also verify our analytically obtained scaling law by Sheet Simulation code.

Here we would like to note that in a cold plasma the phenomenon of wave
breaking can be understood in terms of electron orbit crossing [5,6,29-32]. But in
a warm plasma the motion of the particles are random. As a result the wave break-
ing physics in a warm plasma (which includes particle trapping) is different and
highly non trivial. Thus, in this situation, in order to enrich our understanding on
the warm plasma wave breaking physics, we first study the space time evolution
and breaking of nonrelativistic electron plasma wave, because inclusion of rela-
tivistic effects would undoubtedly make the analysis more complex. Therefore in
the next chapter we turn our attention to the space-time evolution and breaking
of nonrelativistic electron plasma wave in a Maxwellian plasma where we verify
Coffey’s wave breaking limit [36] for a Maxwellian plasma.

In Chapter - 6, by using a 1D Particle-in-Cell (PIC) simulation code, we nu-
merically investigate the maximum electric field amplitude that can be sustained
by a “self-consistent" freely running electron plasma wave (Langmuir wave) in a
homogeneous warm plasma where electron’s velocity distribution is a Maxwellian.
We also study the stability of this wave towards a small amplitude longitudinal
perturbation. From simulation we observe that Coffey’s propagating wave solu-
tion [36], which was derived using a “water-bag” distribution for electrons, also
represents a self-consistent propagating wave in a Maxwellian plasma albeit with a
lower amplitude. We show that if the amplitude of the initial perturbation exceeds
Coffey’s wave breaking limit, within a few plasma periods the initialized wave self-
consistently conforms itself with the background distribution and remains at an
amplitude below Coffey’s limit for a large period of time (~ 100 plasma periods)

provided the Landau damping rate is very weak. This final self-consistent wave
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amplitude does not increase even after increasing the perturbation amplitude and
thus can be taken as maximum sustainable electric field amplitude. By changing
the electron temperature, we find that maximum electric field amplitude that can
be sustained by a self-consistent electron plasma wave follows a similar scaling
given by Coffey [36] but with slightly different coefficients.

Lastly in Chapter - 7 we explore the effect of electron temperature on the space-
time evolution of a relativistically intense electron plasma wave in a warm plasma
by conducting numerical experiment using 1D PIC code. In order to study the
space time evolution and stability of these waves towards a small amplitude lon-
gitudinal perturbation in a warm plasma, we first load Akhiezer - Polovin [27]
type initial conditions in our PIC code. Along with this, we load a finite elec-
tron temperature (Juttner-Synge [58]) into the background of the electrons. We
first observe that for phase velocities for which vs < 1+ kgT,/mc?, the wave
damps within a few plasma period and essentially follows the relativistic Landau
Damping rate given by Buti [59]. In the opposite regime we find that the wave
propagates through the system for a long period of time and in small amplitude
limit essentially follows the relativistic warm plasma dispersion relation [59-63].
Further we demonstrate that for the phase velocities less than the velocity of light
¢, like cold plasma case [33|, in a warm plasma also relativistically intense waves
break via phase mixing at arbitrarily small amplitude when perturbed by a small
amplitude longitudinal perturbation. This amplitude is far below the existing the-
oretical results on warm plasma wave breaking available in the literature [37-44].
Variations of phase mixing time for a wide range of input parameters have been
studied. Using our simulation results, we also show that the phase mixing time
scale in a warm plasma can be interpreted using Dawson’s formula [5| for phase
mixing time for a non-relativistic cold inhomogeneous plasma, which is based on
out of phase motion of neighbouring oscillators constituting the wave.

Finally in Chapter - 8, we consolidate our work and enumerate the major tasks

that can be undertaken for further research in this field.
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Everyone should learn how to
code, it teaches you how to
think.

- Steve Jobs

Overview of Sheet Simulations and

Particle-in-Cell Simulations

This chapter gives a brief overview of the simulation techniques used to explore

the objectives of this thesis as discussed in Chapter-1.

2.1 Why Simulations 7

Though 99.999% of all observable matter in the universe is in the plasma state,
still the technologies required to confine and manipulate plasmas in a laboratory
are very expensive and sometimes takes a long time to develop. In addition to this,
being a highly nonlinear many body system where each particle undergoing elec-
tromagnetic interactions with each other, sometimes it is very difficult to study the
dynamics of a plasma by analytical approach. Therefore, to study the behaviour
of a plasma, one must find a easier way. Modern digital computers are one of the
logical weapons to overcome the aforementioned issues. Now a days computer tech-
nologies and sophisticated algorithms with prodigious calculating speed are cheap
and can be altered far more quickly than a physical equipment. Additionally, in a
computer simulation it is very easy to develop certain diagnostics that would be
difficult (and sometimes impossible) to install in a physical set up. Thus computer
simulations can be utilised as an indispensable tool for exploring the physics as
one wishes.

The most common methods of simulating plasmas are so called Particle-in-
Cell (PIC) methods [10, 47, 48, 88|, Molecular Dynamics (MD) methods [89, 90|
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which treat plasmas as a collection of large number of charged particles, fluid
simulations [91-93| which treat plasmas as a fluid and Vlasov simulations [48]
where one solves the distribution functions in phase space. All the simulation
methods are used successfully in studying different plasma physics problems at
different spatio-temporal scales: at the smallest scales one can use the Particle-In-
Cell method, or Vlasov simulations, while at large scales the MHD (fluid) approach
can be applied. At intermediate scales the hybrid methods are often used. Besides
the above, there also exists a simulation method which works only for 1-D problems
and was introduced by Dawson by treating the electrons as oscillating sheets of
charges - hereinafter referred as Sheet Simulation. Here, we first study the sheet
simulation method and show that the algorithm of the sheet simulation is very
easy to develop which also saves the time of computation. Later we demonstrate
that Sheet simulation method have certain limitations which we overcome by using
Particle-in-Cell simulation method. Therefore, in our study, we mainly use two in-
house developed simulation codes based on two different techniques wviz. (i) Sheet

Simulation and (ii) Particle-in-Cell Simulation.

2.2 Brief overview of Sheet Simulations

The method of solving the problems of nonlinear oscillations in a cold plasma by
treating electrons as oscillating sheet of charges was first introduced by Dawson
[5]. Later this model has been taken up by several authors for solving different
problems [30-33,69] which exhibits the versatility of this model. In the following
subsections we first discuss the electrostatic sheet model in planar geometry by
including the relativistic mass variation effects and later extend it to cylindrical

and spherical geometry [5].

2.2.1 Sheet Model in planar geometry

Fig-2.1 shows a schematic of Dawson Sheet Model in planar geometry. According to
the sheet model description of a cold plasma, electrons are assumed to be infinite
sheets of charges embedded in a cold immobile positive ion background. These
sheets are constrained to move only along x axis. Evolution of any coherent mode

can be studied in terms of oscillating motion of these charged sheets about their
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Figure 2.1: Dawson Sheet Model

equilibrium positions. Now following the above figure, let us assume that, fi(xéq, T)
and &1 (x]", 7) respectively be the displacement of the i-th and (i+1)-th electron
sheet from their respective equilibrium positions x}, and z:'. Here, 2., is the
Lagrange coordinate (equilibrium coordinate) of a sheet and 7 is the Lagrange
time, where, © = x.; + (g, 7) is the Euler position of the sheet and Euler time

is given by ¢t = 7. Thus, one can easily write

-1
0 1 0
i (mx) - Y
and 9 9 5
E — E + U% (2.2)

If n(xeq, 7) and ng respectively represent the instantaneous density and equilibrium

density, then from the conservation of the number of particles we can write,

no (zi' — al,) = n(zeq, ) (Ti1 — x3) (2.3)
e 7) = | 4 Gl -6 (24)
(l‘é_gl_l‘éq)
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Eq.(2.4) can be simplified as

No
Mgy T) = — (2.5)
L+ 5o
Now using the Gauss’s Law, the expression of the self-consistent electric field be-
comes

E(xeq, T) = 4meno&(Teq, T) (2.6)

Here we would like to mention that the similar expressions for density and electric
field can also be derived from fluid equations by using the transformations given
by Eqgs.(2.1) and (2.2). Now, the relativistic equation of motion of an oscillating
sheet can be written as

d_ms g (2.7)

Here, the dot sign represents the derivative w.r.t time. After putting the expression
for electric field the above equation can be simplified as

3 w2 =0 (2.8)

0\ 3/2 T W
(1-%)

This is the equation for a relativistic harmonic oscillator. Note that, in the non-
relativistic limit (¢ — oo) Eq.(2.8) transforms to the well known linear harmonic
oscillator equation oscillating with frequency w,. The above derived expressions
for electric field and density can be expressed in terms of Euler coordinates (z,t)
by using the transformations = = x., + {(w¢,, 7) and ¢t = 7. Thus, for any given
initial conditions, once the displacement & of a particular sheet is computed as a
function of its equilibrium position z., and time 7, by solving the sheet equation
of motion given by Eq.(2.8), the problem of spatio-temporal evolution of the whole
system is essentially solved in principle. In sheet simulation we essentially follow
the same thing. First for a given set of initial conditions, Eq.(2.8) is solved using
4th order Runge-Kutta scheme. Then density is calculated from expression (2.5)
by using the forward difference derivative scheme and electric field can then easily
be found from Eq.(2.6) as it is directly proportional to &.

Here, we would like to note that, Eq.(2.8) can also be exactly solved analytically.
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In fact, we also present an perturbative solution and an exact analytical solution of
Eq.(2.8) in Chapter-3 and 4 respectively. However Sheet simulation method is used
here to compare the analytically obtained phase mixing time (which is defined as
the crossing of adjacent sheets) scales as to compute that one has to rely either on
the weakly relativistic calculations or on the perturbative calculations. Moreover
in the next subsection, we note that it is not possible to obtain exact analytical
solution of the sheet equation (even nonrelativistic) in cylindrical and spherical
geometries. Thus, under those circumstances sheet simulation method is required

to study the evolution of a coherent mode.

2.2.2 Sheet Model in cylindrical and spherical geometry

From the above subsection, we understand that the algorithm of sheet simulation
method is very easy to develop. In fact, it is also very easy to transform the sheet
model into cylindrical and spherical geometries from the planar one. Here, we
only write down the sheet equations and the expressions of the fluid variables wviz.
density, velocity and electric field in cylindrical and spherical geometries. However,
in chapter-5, we give an explicit derivation of the fluid variables as given for planar
case.

In cylindrical geometry, the equation of motion of a sheet (by including rela-

tivistic mass variation effects) can be written as

S ) e ) et ] (2.9)
a-Zpe 21 (ro+R) |

Here, ro and R(rg, 1) respectively represent the equilibrium positions and displace-
ment from the equilibrium positions of the electron sheets. So the Euler positions
of the sheets can be written as r(ro,t) = ro + R(70,t).

The expressions for the fluid variables are as follows:

NoTo

n(ro,t) = et BT S—,ﬁ) (2.10)
v(ro,t) = R(ro, t) (2.11)
E(ro,t) = 2meny {(To(tofj_) R; TO] (2.12)
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In spherical geometry, the equation of motion of a sheet is given by

. 2 s
ﬁ v | =0 (213)
and the expressions for the fluid variables are
nore
n(ro,t) = (o BT 2E) (2.14)
v(ro,t) = R(ro,t) (2.15)
E(ro,t) = 4”;"0 {(To(:o T;)— rs’] o1

In contrast to the planar case, here Eq.(2.9) and Eq.(2.13) can not be solved exactly
by analytical approach. We will present a perturbative solution of these equations
by considering the weakly relativistic limit. In our simulation code, we solve these
equations using 4th order Runge-Kutta method and compute the fluid variables
for the cylindrical & spherical case by using the set of Eqs.(2.10) - (2.12) and
Eqs.(2.14) - (2.16) respectively.

Now it is also worth mentioning that, although the algorithm for sheet simula-
tion is very easy to develop in a modern computer and one can illustrate a number
of properties [5,30-33,69] of 1-D plasma with this model, but it also has some
limitations. As for example, after phase mixing the handling of sheet crossing
becomes very complicated in sheet simulations. In a warm plasma there always
particle crossing occurs due to the random motion of the particles. Therefore the
study of nonlinear waves in a warm plasma by sheet simulations will complicate
the picture. As we wish to explore the physics of wave breaking in a warm plasma
also, therefore we carry out sheet simulations only for the cold plasma cases (Chap-
ter -3, 4 and 5) and next, for finite temperature cases (Chapter -6 and 7), we use
Particle-in-Cell (PIC) simulation method which is more versatile and advanced as

compared to the sheet simulation method.
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2.3 Brief overview of 1-D Particle-in-Cell Simula-

tions

The Particle-in-Cell (PIC) method |10, 48, 88| is extensively used to study the
nonlinear physics of classical electron-ion plasmas. A detailed description of a 1-D
electrostatic PIC code has been given by Birdsall et. al. [48] and by Kruer [10].
Here we provide a very brief overview of this method without going into the details

of numerical algorithms that have been used in this program.

1

Weighting of the particles
to the grids — Calculations
of Charge Density

Integration of equations of motion,
move the particles

D)
Integration of Field euations
On the grid - Calculations of
Electric Field

Figure 2.2: Flow diagram of Particle-in-Cell Method

Weighting from grid to the
Particles - Calculations of
Forces on the particles

Basically a particle code numerically solves the motions of a collection of
charged particles in their self-consistent fields. The program can be summed up as
the repetition of four main operations as illustrated in Fig-2.2. Here we simulate
a 1-D plasma system; means that the variation of all the physical quantities are
allowed only along one direction (here along the z direction). We assume that
the plasma to be infinite in extent and use periodic boundary conditions. The
length of the system (say, L) is chosen to be equal to the wavelength of the lowest
mode under consideration. The whole system is divided into NG cells of width
Ax = L/NG using NG+ 1 points, known as grid points. These points are taken at
the centre of the cells. All the field quantities like electric field, potential, charge
density etc. are evaluated at the grid points.

After discretizing the system into cells, particles are then loaded in the phase
space according to given input density and velocity perturbations. As by using

PIC method, we study the space-time evolution of electron plasma waves in warm
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plasmas, a background electron temperature has also been added to the electrons.
Velocity distribution with a specific input thermal speed has been loaded randomly
in the phase space by using the “inversion of cumulative distributions” method as
follows: Let us assume that, the initial velocity distribution is given by fo(v, vsp),
where vy, is the thermal speed. The cumulative distribution function can be written

as

_ Js” fo(v, vm)dv
15 folv,vp)dv

where R, are the quasi random numbers in the range —1 < R, < 1. Thus

Ry = F(vs, v4p) (2.17)

equating F'(vg, vy,) to a quasi random distributions of numbers R, will generate
the v, corresponding to the distribution fy(v, vy,) and a specific value of vy,. Using
the positions and charges of all the particles charge densities are calculated on
the grid points by using a weighting scheme. Weighting implies some form of
interpolation from the particle positions to the grid points. In our cases, we use
Cubic spline weighting scheme.

The next step is to solve the Poisson’s equation on the grids by using the
charge on that grid. We use tridiagonal method to calculate the potential [46] and
then use central difference scheme to evaluate the electric field on the grids. The
program then uses a second weighting scheme (same as the first one) to map the
electric field from the grid on to the particles and hence the forces on the particles
are calculated.

In the next step, the forces calculated on the particles are used to push the
particles to a new position by solving the equation of motion (here, the Newton’s
equation of motion). We use the standard leap-frog scheme for this purpose. After
this the above cycle is repeated for several time steps (as per the requirements)

with a time step small enough to resolve the highest frequency in the problem.
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Mathematics is the language
in which God has written the

universe.

- Galileo Galilei

Breaking of Large Amplitude
Relativistically Intense Wave Packets in a

Cold Plasma

This chapter presents a study on the breaking of a large amplitude relativistically
intense wave packet in a cold plasma. By using Dawson Sheet Model, it has been
found that the phase mixing time (7,,;,) of this wave packet crucially depends on
the relative magnitude of the amplitude 6 and the dimensionless spectral width
Ak/k of the wave packet; for Ak/k < 2w20%/¢*k?, Tmip scales with 6 as 1/6° and
for Ak/k > 2w26%/c®k?, Tinip scales with 0 as 1/6°. We have also verified our

theoretical results using a simulation code which is based on Dawson Sheet Model.

3.1 Introduction

Study of relativistically intense plasma waves and their space-time evolution is an
area of intense research in plasma physics because of its application to a broad range
of physical problems related to laser plasma interaction, astrophysical plasmas and
inertial confinement thermonuclear fusion.

Now, in a typical laser/beam plasma interaction experiment, a spectrum of rel-
ativistically intense plasma waves with an arbitrary spread in wave number ( Ak,
and hence in v,) is excited because of group velocity dispersion and nonlinear dis-
tortion of light pulse near the critical layer. Moreover, in present day laser/beam-

plasma experiments where E?/87nT, > 1, it is natural to expect that the exciting
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mechanism i.e. laser, high energetic particle beam, electrical pulse etc. will in
general excite a wave packet with energy distributed over several modes. Such a
kind of excitation of wave packets has also been seen in the simulations presented
by several authors [50-53,94|. Therefore, from the viewpoint of experiments and
simulations both, it is of utmost importance to study the spatio-temporal evolution
of a wave packet, where the initial electrostatic energy is distributed over multiple
modes.

Now it is expected that, such an arbitrary wave packet will exhibit phase mixing
[5,28-33,68] and ultimately break at arbitrarily small amplitude. By studying the
space-time evolution of two relativistically intense waves of amplitude ¢ and having
wave numbers separated by an amount Ak, authors in Ref. [30] showed that, in
general a wave packet having amplitude § and spectral width A% will phase mix and
break in a time scale given by wyTimiz ~ { & (3w20®/2k?)[|Ak /K| /(|1 + Ak/k|)]}_1
x (14 1/|1 + Ak/k|)~*. This expression shows that in the limit Ak/k — 0,
WpTmiz — 0C 1.e a sinusoidal wave will not undergo phase mixing. This is contrary
to present understanding that relativistically intense plasma waves in a cold ho-
mogeneous plasma with immobile ions always phase mixes and breaks [28, 68| at
an arbitrary low amplitude; except for the case of longitudinal Akhiezer-Polovin
mode [27] whose amplitude is limited to % ~ V2(74 — 1)¥/? as mentioned in
the introduction.

In order to resolve this anomaly, in the present chapter we extend the calcula-
tions of ref. [30] and show that phase mixing occurs even in the limit Ak/k — 0.
In fact, we clearly delineate the regimes where the phase mixing formula presented
in Ref. [30] holds.

In Ref. [30], the relativistic equation of motion of an electron was derived
using Dawson sheet model [5, 30, 32] and solved in the weakly relativistic limit
using Krylov-Bogoliubov method of averaging [95]. The relativistically correct
frequency of oscillation was obtained upto second order in wave amplitude “¢”.
The expression for frequency thus derived, because of relativistic mass variation
effects, clearly exhibits spatial dependency, which is a signature of phase mixing.
As noted in the previous paragraph, the spatial dependency in the expression of
frequency derived in Ref. [30] vanishes in the limit Ak/k — 0, indicating that a
sinusoidal wave does not phase mix. To resolve this, in section 3.2 of this chapter,

we extend the calculations of Ref. [30] and derive an expression for frequency
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correct upto fourth order in oscillation amplitude “9” using Lindstedt - Poincaré
perturbation method [54]. This improved calculation of frequency exhibits spatial
dependency even in the limit of Ak/k — 0. Using this modified expression of
frequency and using Dawson’s argument [5], phase mixing time is estimated, both
in small and large Ak/k limit. In section 3.3, we verify the analytically derived
scalings of phase mixing time on amplitude “¢” for different values of Ak/k, using
numerical simulations based on Dawson sheet model [5,96| as described in the

previous chapter. Finally in section 3.4, we present a summary of this work.

3.2 Equation of Motion and its Solution

From Dawson Sheet Model, the relativistic equation of motion of an oscillating

sheet, in normalized form, can be written as

¢
—_— =0 3.1
i-epr .
Here, we have used the following normalization: 7 — w,7, £ — “JT”&, £ > é,
E — mef; -. An exact analytical solution of Eq.(3.1) will be presented in the next

chapter. Here, we will solve it in weakly relativistic limit. In weakly relativistic

limit, Eq.(3.1) transforms to

Ee— 26+ 266~ 0 (32

Now we solve Eq.(3.2) using Lindstedt - Poincaré Preturbation Technique [54] by
expanding the displacement &(z.,, 7) and the oscillation frequency §2(z.,) in series
as: £ =& +& + &+ and Q2 = 14wl +w?+ ... [54], where ., is the equilibrium
positions of the sheets. Initial conditions required to excite a wave packet are [30]

ne(r,0) = ng [1 + dcos (%I) cos (k: + %) flj} (3.3)

cos(k + Ak)m] (3.4)

and

ve(,0) = wpd Fcos(k::ﬂ) +

2 |k k+ Ak
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The ions are infinitely massive and provide a homogeneous neutralizing back-
ground. The zero-th order solution to Eq.(3.2) is & = &(7eq)cos[Q2 + ¢o(xeq)]
with &(z.,) being the oscillation amplitude. &(z.,) and ¢o(z.,) are respectively
given by

k> 2k

wpo N
)2 (k+ Ak)

2k [1 T Ak

1/2
E(xeq) = cas(Akxl)} (3.5)

and

cos(kxy) cos(k+Ak)x;
1 k + (k+Ak)

[ sin(kx;) + sin(k+Ak)z; :|
k (k1K)

G0(Teq) = tan™

(3.6)

where x; = 2., + £(2,4, 0), the initial position of a sheet at 7 = 0, after adding the
perturbation.
The solution to Eq.(3.2) correct upto & (xq, 7) can be written as (for complete

derivation see Appendix -A)

3
E(Teq, T) = &(Teq)cos(QT + o) + 36(1236(;(1) cos(QT + 2¢y)
_g(ﬁ—g)?)cos(ﬁf — 2¢) — éh(gsgq)gCOSQ(QT + ¢o) (3.7)

The frequency Q(z.,) is determined from the condition that there are no secular
resonant terms in the equations for &;, &... We find that the oscillation frequency
correct upto the fourth order of the oscillation amplitude ¢ is given by (for complete

derivation see Appendix -A)

Qxeg) = 1 —

3wy” i—i— 1 +2005(Alml) B 3wyd! y
64 |12 T (k£ AR)Z T R(k+ Ak) | 1024c8

cos(kx))  cos(k+ Ak)x ) * 1 1 2c0s(Aka)) >
[3{ R TSN l} - {E* CEN R (TN } ] (3:8)

cos(kx;p) + cos(Ak+Ak)x;
k (k+Ak)

from the second order correction in the Lindstedt- Poincaré series dug to the term
—(3/2)€€2 in Eq.(3.2) and the other term {1?12 + (k+1Ak)2 4 2}:(0}:9;51} comes from
to the first order correction in the Lindstedt- Poincaré series due to the next higher
order term in the series expansion of £(1 — £2)3/2, which is (3/8)&€* in Eq.(3.2).

The expression for frequency clearly shows spatial dependency (dependence on

1
As derived in the appendic A, here the term 3{ } comes
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initial position of the sheet) for arbitrary values of Ak/k. As Ak/k — 0, the
first correction term becomes independent of sheet positions whereas the second
correction term (“0%” term) still retains its spatial dependence. Because of this
space dependence different “pieces" of the wave packet slowly go out of phase as
time progresses, resulting in the phenomenon of phase mixing. Dawson argued
that [5] the time required for this phase mixing is roughly the length of time it
takes for two neighbouring sheets separated by twice the amplitude of oscillation to
become half a period out of phase. Using this argument [5], the general expression

for phase mixing time, to lowest order in the amplitude, can be written as

s 1
Tmiz ™~ § AU (zeq) (39)
fmaa:Teq

where dQ2/dz.,|calculated from Eq.(3.8)] is given by

dQ 3w20? [ 2sin(Akx) Ak 36widt (cos(kr)  cos(k + Ak)a |
dre, — 64c2 k(k + Ak) 1024ct k (k + Ak)
x {sin(kx;) + sin(k + Ak)x; }(3.10)

In the above expression the small term of order (§°Ak/k)? is neglected. Taking
Emaz = wQ—”j [1/k+1/(k + Ak)] [from Eq.(3.3)], calculating the maximum value of
%Zq and putting them in Eq.(3.9), the final expression for phase mixing time (7;,z)

stands as

T 3(,0;53 1
Tmiz = = 1+
2 | 64c2k? (1+ Ak/K)

It is clear from above expression, that for Ak/k > 2w26*/c*k?, upto leading order,

-1

Bh/k_ | OVBGR\ )
T+ ARE T sk |

the phase mixing time is given by

7w [ 3w2o? 1 Ak/k 17
Tmiz =% [64c2k2 bt (1+ Ak/E) [ |1+ Ak/k (3.12)

This is as same expression as Eq.(19) of Ref. [30]. This shows for Ak/k >
2w20%/*k?, Tinia scales with “6” as 1/6°. For Ak/k < 2w26%/c*k?, upto leading
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order, the phase mixing time is given by

T [2_7‘/§w355 {1 TR 1 } (3.13)

miz =5 | 512644 1+ Ak/k)

which shows that for broadly spread wave packets (since Ak is small), the phase
mixing time 7., scales with “8” as 1/6°. In the next section, we verify these

scalings using a code based on Dawson sheet model [5,30,32,96].

3.3 Results from Sheet Simulations

Using a code based on Dawson sheet model (as discussed in chapter 2), in this
section we numerically verify the process of phase mixing of a large amplitude
longitudinal wave packet, described by it’s two parameters, amplitude ¢ and spec-
tral width Ak/k. For this purpose we have used a one - dimensional (1D) sheet
code based on Dawson Sheet Model of a 1D plasma. In this code we have fol-
lowed the motion of an array of ~ 10000 electron sheets. Using initial conditions
given by Eqgs. (3.3), (3.4) and using periodic boundary conditions, the equation
of motion for each sheet is then solved using fourth order Runge-Kutta scheme.
Density and electric field have been calculated by using the following expressions
n(Teq, t) = no/(1+ aﬁme—q) and E(z.,,t) = 4meno€ respectively (as derived in chapter
-2).

Moreover, to obtain the exact phase mixing time (wave breaking time), at
each computational time step, the ordering of sheets is checked for sheet crossing
(electron trajectory crossing) [96]. If the algorithm finds that such a crossing has
taken place, it displays the time of crossing and stops running further. Phase
mixing time is measured as the time taken by any two adjacent sheets to cross
over. We terminate our code at this time because the expression for self-consistent
electric field (E = 4meng€) used in equation of motion becomes invalid beyond this
point [5,30,32,96]. Now we verify the phase mixing time obtained from simulation
data with our analytical prediction which has been derived in weakly relativistic
limit.

Figs. 3.1 - 3.3 respectively show the dependence of phase mixing time with
amplitude 0 for three different values of |Ak/k|; |Ak/E| = 0.1, 0.2 and 0.5. In all
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Figure 3.1: Phase Mixing Time (wpTmiz) as a function of amplitude ¢ for |[Ak/k| = 0.1.

the figures points represent the simulation results and the blue line is the complete
formula given by Eq.(3.11). Comparing figure 3.3 with figure 10 in ref [30], we note
that the improved formula [Eq.(3.11)] shows a much better fit to the simulation
results. The vertical dashed magenta line separates the two regimes viz. Ak/k >
2w20%/c®k* and Ak/k < 2w26%/c*k®. In the regime Ak/k > 2w?0?/c’k?, the
dependence of phase mixing time on ¢ is predominantly ~ 1/6% (black line) whereas
the regime Ak/k < 2w’6?/c’k?, the dependence of phase mixing time on ¢ is
predominantly ~ 1/6” (red line). We observe, that as |Ak/k| increases, the vertical
dashed line shifts towards the right as expected from theoretical analysis. For
sinusoidal case (|Ak/k| = 0), the phase mixing time scale is given by 7T, =
z [%} _1, obtained by putting |Ak/k| = 0 in Eq.(3.13). In Fig.3.4 we have
shown the variation of phase mixing time scale as a function of § for |[Ak/k| = 0.
Here the points are simulation results and the continuous line represents the scaling
obtained from Eq.(3.13). In this case phase mixing time scale is always proportional
to 1/6°. In all the cases shown above, the analytical expressions presented by
Eqgs.(3.11) and (3.13) are showing a good fit to the observed numerical results,
thus vindicating our analytical results.

29



Chapter 3. Breaking of Large Amplitude Relativistically Intense Wave Packets

10’

10”

[AKK| =0.2

in a Cold Plasma

m— LOrmula,
O Simulation

—_—

—— | /55

5 —

10°

Figure 3.2: Phase Mixing Time (wpTmiz) as a function of amplitude 6 for |Ak/k| = 0.2.
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Figure 3.3: Phase Mixing Time (wpTmiz) as a function of amplitude 0 for |Ak/k| = 0.5.
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Figure 3.4: Phase Mixing Time (wyTmiz) as a function of amplitude ¢ for |Ak/k| = 0.

3.4 Summary

The breaking of relativistically intense longitudinal wave packets in a cold plasma
has been studied. It is shown that the phase mixing time scale ,,;, crucially
depends on the relative magnitude of the amplitude of the wave packet ¢ and
dimensionless spectral width of the wave packet |Ak/k|. It is found that, for
broadly spread wave packets i.e for Ak/k < 2w20%/c*k?, Ty, scales with 6 as 1/0°.
For a sharply peaked wave packet i.e for Ak/k > 2w26%/c*k?, Tpip scales with § as
1/63.
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Everything is theoretically
impossible, until it is done.

- Robert A. Heinlein

Analytical Estimate of Phase Mixing
Time of Longitudinal Akhiezer - Polovin
Wave

This chapter presents a study on the breaking of a very special kind of wave -
the Akhiezer - Polovin mode [27]. It is mentioned in chapter -1, that a longi-
tudinal Akhiezer - Polovin mode have a very special combination of frequency,
wave-number and their harmonics such that they propagate together as a coherent
nonlinear structure with a constant phase velocity. The electric field amplitude of
this wave is limited by the wave breaking limit given by W& — /2(ry, — 1)1/ 2,

mwpc
In this chapter, it has been shown that, a longitudinal Akhiezer - Polovin mode

can break via the process of phase mixing at an amplitude which is far below
its wave breaking limit, when it is perturbed by a small amplitude longitudinal
perturbation [33]. Using Dawson Sheet Model [5,32], an analytical expression
for the phase mixing time has been derived. It has been found that, the phase
mixing time scales with maximum fluid velocity (u,,) and phase velocity (5,) as
WpTmiz ™~ %ﬁ [1%2 — }1]; where ¢ is the amplitude of the applied velocity perturba-
tion (here ,,, ﬁ¢mand 9 all are normalized to the velocity of light ¢). This numerical
dependence of phase mixing time on u,,, 3, and ¢ has been verified using a code

based on Dawson Sheet Model [96].
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4.1 Introduction

In 1956, Akhiezer and Polovin [27] obtained an exact one-dimensional longitudinal
travelling wave solution in a cold plasma, including relativistic mass effects of elec-
trons. The authors [27] demonstrated that the maximum electric field amplitude
(Ewp) that can be sustained by this wave is limited by the wave breaking limit
which is given by % =V2(vs — 1)" [11]. However this Akhiezer-Polovin limit
does not hold for arbitrary initial conditions. In 1989, Infeld and Rowlands [28]
presented an exact space - time dependent solution of the relativistic cold plasma
fluid- Maxwell equations in Lagrange coordinates |3,6|. The solution presented by
them [28] shows explosive behaviour for all initial conditions except for the one
which are needed to excite Akhiezer - Polovin waves. Physically, this explosive
behaviour arises due to relativistic variation of electron mass 68|, which causes
the characteristic electron plasma frequency to acquire a spatial dependency. Due
to this neighbouring electrons gradually move out of phase and eventually cross,
causing the wave to break, a phenomenon known as phase mixing [29-33|. This
process of wave breaking through gradual phase mixing is not exhibited by a pure
Akhiezer - Polovin wave.

Recently Verma et al. [69] constructed a longitudinal Akhiezer - Polovin trav-
elling wave solution from the exact space time dependent solution of Infeld and
Rowlands [28|, using appropriate choice of initial conditions. It was further shown
by the same authors [33], by performing extensive numerical simulations [96], that
even a longitudinal Akhiezer - Polovin wave breaks through the gradual process
of phase mixing at an amplitude well below its wave breaking limit, when it is
subjected to arbitrarily small longitudinal perturbations. It was observed through
simulations that phase mixing time decreases with increasing wu,,( for a fixed ¢ )
and increasing o( for a fixed u,, ), where u,, and § are respectively the maximum
fluid velocity of the Akhiezer - Polovin wave and the amplitude of the applied
perturbation.

In this chapter we present a weakly relativistic calculation which analytically
brings out the dependence of phase mixing time of a longitudinal Akhiezer - Polovin
mode on it’s parameters and the amplitude of velocity perturbation 0. We further
verify the analytically obtained scaling numerically, using a code based on Dawson
sheet model [30,32,33,96].
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In section 4.2, we construct a longitudinal Akhiezer - Polovin travelling wave
solution using Dawson Sheet Model [32,69]. Section 4.3 is devoted to weakly
relativistic calculations which are required for an estimation of phase mixing time
of longitudinal Akhiezer - Polovin wave subjected to a small amplitude sinusoidal
perturbation. In section 4.4 analytical predictions are compared with numerical

findings. Finally section 4.5 contains a discussion and a summary of this work.

4.2 Relativistic Travelling Wave Solution

Like the previous problem, here also we use the same normalisations and start

from the relativistic equation of motion of an oscillating sheet which is given by,
-+&=0 (4.1)

In the previous chapter we have given a perturbative solution of Eq.(4.1). Here
we give an exact analytical solution of the above equation in the following way :
Multiplying Eq.(4.1) by &, we get

1 2

7z + 5 = a(xeq) (4.2)

(1-¢)

Here “a(z.,) corresponds to the total energy of a sheet. Substituting
& =+/2(a—1)sina (4.3)
in Eq.(4.2), solution of Eq.(4.3) becomes

2 Blayr) = ' Fla, 1) + () (4.4)

=y
which gives v as an implicit function of 7 and z.,, where r = [(a — 1)/(a + 1)]?
and 7' = /1 —72 E(a,r) and F(a,r) are incomplete elliptic integrals of second
and first kind [97] respectively and ¢(z.,) is an integration constant. Eq.(4.3)
along with Eq.(4.4) describes the motion of an electron sheet about its equilibrium

position for a given set of initial conditions ®(z.,) and r(z.,). Frequency  of
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an electron sheet is obtained by integrating Eq.(4.2) between two turning points
(£ = 0) and is given by

T r’

4= S REG) - K 0) (45)

where E(r) and K(r) are complete elliptic integrals of second and first kind [97]

respectively. It is evident from Eq.(4.5) that for arbitrary set of initial conditions,

“(Y” is in general a function of “z.,”.

Since any coherent mode is made up of a
large number of electron sheets oscillating about their equilibrium positions, this
spatial dependency of ) causes the neighbouring electron sheets to gradually go
out of phase with time [5,30-32, 68|, which eventually leads to crossing of electron
sheet trajectories resulting in singularities in the electron density profile. This
is the phenomenon of phase mixing leading to wave breaking [5,28-32,68|. For
a sinusoidal initial density profile and for wave like initial conditions, the phe-
nomenon of phase mixing leading to wave breaking is convincingly demonstrated
in the previous chapter and in references [28, 30,31, 68].

As stated in the previous section, in Ref. [69] it is shown that it is possible
to choose a special set of initial conditions which excites a propagating solution
with phase velocity (3, which does not phase mix and break. This propagating
solution is nothing but a longitudinal Akhiezer - Polovin wave [27]. Absence of
phase mixing implies, from Eq.(4.5), that “a”(energy of an oscillating sheet) should
be independent of “z.,”and propagation with a fixed phase velocity [, fixes the
functional form of ®(z.,) as ®(xe;) = weq/By . This form of ®(x,) is obtained by
choosing & ( hence « ) to be entirely a function of ¢ = Q(t — x/5,). Thus the
initial conditions for exciting a longitudinal Akhiezer - Polovin wave are

2
éap(xeq: 0) = r—TSinOé (46)

2r cosay/1 — r2sin?a

.0, eq» € 4.;
5 p(m q> ) ) 1 3,;220 9 ( )
along with a(z.q, 0) implicitly given by
—E(a,r) —1r"Fla,r) = -1 (4.8)
1 ! ’ ’ ﬁ¢ ’

Following Akhiezer - Polovin’s work [27|, we now choose u,,(maximum fluid veloc-
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ity) and S, as independent parameters instead of a(or r) and By. a and u,, are
related to each other through Eq.(4.1) and Eq.(4.2) as a = 1/4/1 — u,,2. In the
next section we add a small perturbation to &4 (2eq, 0) and &up(2,, 0) which leads

to phase mixing and subsequent breaking of longitudinal Akhiezer - Polovin wave.

4.3 Estimation of Phase Mixing Time

Adding a small amplitude sinusoidal perturbation with velocity amplitude ¢ and

wavelength k,, (same as the longitudinal Akhiezer - Polovin wave) to &,, and &,

we get
o
Eper = Eap — sin(kapTeq) (4.9)
ap
Eper = Eap + 0 cO8(KapTeq) (4.10)

where &,, and éap are the required initial conditions for exciting a longitudinal
Akhiezer-Polovin wave [69] and &, fper are the initial conditions after adding
the perturbation. Here w,, is the frequency (normalized to nonrelativistic plasma
frequency w,) of the Akhiezer - Polovin wave. The perturbed initial conditions are
equivalent to adding a small amplitude sinusoidal density perturbation propagating
with phase velocity B4, to longitudinal Akhiezer - Polovin wave. In the weakly
relativistic limit, keeping terms linear in J, the energy associated with an electron

sheet becomes

gapé

Wap

Aper = + {— sin(KapZeq) + 0Eap Cos(kapmeq)} (4.11)

where a /~ 1+ £2/2 + £2/2. This in turn gives

Ty = ——— R 17—

P e+ 1 a? —1

- sin(KapZeq) — Eap cos(kapmeq)] (4.12)
ap

Now using Eq.(4.5), and expanding the complete elliptic integrals upto order ~

rfm,, the frequency of oscillation in the perturbed case can be approximately written
as 42
,
Wper ~ 1 — % (4.13)
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Finally substituting rger in the above equation, the frequency of oscillation in the

weakly relativistic limit stands as

3r? 3r? £
PR . I U
“p 5 2@ 1) |w

sin(kapTeq) — fap cos(kapTeq)|  (4.14)

It is clear from the above expression that the frequency of the wave is depen-
dent on the equilibrium position of the electrons which leads to the phenom-
ena of phase mixing as shown in Ref.( [33]|). Following Dawsons’ argument [5],
the phase mixing time (7,,;;) depends on the spatial derivative of frequency as

Timiz = T/ 26 max (dwper /dxeq). Differentiating Eq.(4.14) w.r.t z., we get

dw, 3r? 1 dé,, . dé
= = o|— - ka eq) — ka e
dxeq 2(@2 _ 1) Wap Aeq Sln( pL q) dxeq COS( pT q)
L 3 LT Kapap sin(k 4.15
+2(a2 —1) 5_¢ co8(kapTeq) + Kapap Sin(kapTeq) (4.15)

Now respectively using Eqs.(4.6), (4.7), the derivatives df,,/daey , d€ap/daeq be-

come

d&ap 21 do
== 4.16
dre, 7' cosadxeq (4.16)
Ay  2r . (1—7%sin’q)Y? da r? cos® o 472 cos® o
dre, 7' (1+ %2 cos? ) dieg (1—r2sin®a) 72 (1+ ?f,"j cos? av)?
(4.17)
The derivative do/dz., can be calculated by using Eq.(4.8)
d 1
a 5 (4.18)

deq {(T—'m — %(1 — r2sin? a)l/z}

1-r2sin® a)

Now, using Egs.(4.16), (4.17) and (4.18) in Eq.(4.15), the maximum value of

dwper/deq (at oo ~ 7/2) can be written as

dwpe, _ 657° 1
dxeq - Bgr'a?—1

(4.19)

Finally substituting the above expression in Dawson formula and using &,,., =

2r/r" in Eq.(4.19), (at o ~ 7/2), the formula for phase mixing time (7, ), correct
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upto order ~ u2,, stands as,

27Tﬁ¢ 1 1
Pl . 4.20
! 30 lu?n 4] (4.20)

It is clear from the above expression that phase mixing time scales directly with
s, inversely with § and has a u.,> dependence on .
In the next section we verify these predictions numerically using Dawson sheet

simulation.

4.4 Results from Sheet Simulations

Using a code based on Dawson sheet model (as described in chapter -2), in this sec-
tion we numerically verify the process of phase mixing of a large amplitude Akhiezer
- Polovin wave perturbed by a small amplitude sinusoidal perturbation. We first
load Akhiezer - Polovin type initial conditions with a sinusoidal perturbation of
velocity amplitude § in a one-dimensional relativistic sheet code [30,32,33,96] con-
taining ~ 10000 electron sheets. Using these initial conditions and using periodic
boundary conditions, the equation of motion for each sheet is then solved using
fourth order Runge-Kutta scheme. At each time step, ordering of sheets is checked
for sheet crossing (electron trajectory crossing). Phase mixing time is measured
as the time taken by any two adjacent sheets to cross over as mentioned in the
previous chapter.

Figs 4.1 and 4.2 respectively show the space time evolution of the electron den-
sity profile of an Akhiezer - Polovin wave without and with perturbation. From
Fig-4.2 we observe that as time progresses, the density profile becomes more and
more spiky as energy is irreversibly transferred to higher and higher harmonics.
Due to longitudinal perturbation, the energy which was initially loaded on the
Akhiezer - Polovin mode goes to higher harmonics, then partially returns to the
original mode, again goes to higher harmonics and so on. This partial back-and-
forth sloshing of energy between different harmonics eventually results in accu-
mulation of energy at higher harmonics. But such phenomenon does not occur
in Fig-4.1 (without perturbation) and the amplitude does not change even after

several plasma periods. A manifestation of this process is also seen in the Fourier
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Figure 4.1: Space-time evolution of the electron density (3D up, 2D down) for an Akhiezer
- Polovin wave with velocity amplitude u,, = 0.55 and 4 = 0.9995, without perturbation
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Figure 4.2: Space-time evolution of the electron density for an Akhiezer - Polovin wave
with velocity amplitude u,, = 0.55, B4 = 0.9995 and with perturbation amplitude ¢ —
0.1

spectrum where we see a broadening of the spectrum as time progresses(Fig-4.3,
here the £ is the mode number corresponding to longest wavelength supported by
the simulation box size). Thus the energy which was loaded in the primary mode
eventually distributes over higher modes. Interaction of these high “ £’ modes with
the particles (sheets) accelerates the particles, causing the initial delta-function
momentum distribution to spread. Fig-4.4 shows that as time progresses, the mo-
mentum distribution function gradually spreads generating multi-stream flow; a
clear indication of phase mixing leading to breaking. Figures. 4.5 - 4.7 respec-
tively show the variation of phase mixing time with respect to d, u, and S, for
fixed values of the other two parameters. In all the cases points represent the sim-
ulation results and the solid line represents our scaling obtained from Eq.(4.20).

We note here that our analytical expression for phase mixing time has been derived
in the limit of weak relativistic effects. As a result we have kept terms which are
linear in ¢ and in addition have neglected terms which are of order higher than
u? . Thus the expression for phase mixing time is approximate in ¢ and wu,,, but
exact in Jy. Therefore the numerical results in Fig. 4.5 (variation of 7, with
9) for small values of § (upto ~ 0.12) and in Fig. 4.7 (variation of 7,,;, with §;)
fit the analytical expression quite well, whereas the numerical result in Fig. 4.6
matches the analytical expression reasonably upto w,, ~ 0.4. Hence in all the cases,
the analytical expression [Eq.(4.20)] shows a reasonably good fit to the observed

numerical results, thus vindicating our weakly relativistic calculation.
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Figure 4.3: Fourier spectrum of an Akhiezer - Polovin wave with velocity amplitude .y,
= 0.55, By = 0.9995 and with perturbation amplitude 4 = 0.1 at different time steps.
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Figure 4.4: Momentum distribution of an Akhiezer - Polovin wave with velocity amplitude
Um = 0.55, By = 0.9995 and with perturbation amplitude 6 = 0.1 at different time steps.
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Figure 4.5: Analytical (solid) and numerical (circles) scalings of the phase mixing time
for a finite amplitude Akhiezer - Polovin wave for u,, = 0.20(4.5a), 0.55(4.5b) and By —
0.9995 as a function of perturbation amplitudes (0)
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Figure 4.6: Analytical (solid) and numerical (circles) scalings of the phase mixing time
as a function of the amplitude of Akhiezer - Polovin wave (u,,) in the presence of a finite
perturbation(d) = 0.01(4.6a),0.1(4.6b) and B, = 0.9995.
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Figure 4.7: Analytical (solid) and numerical (circles) scalings of the phase mixing time
as a function of the phase velocity 3, for a fixed amplitude of Akhiezer - Polovin wave
U = 0.2, § = 0.01(4.7a) and u,, = 0.1, § = 0.1(4.7b)

4.5 Discussion and Summary

The phenomenon of phase mixing is a manifestation of spatially-dependent plasma
frequency [30]. It is well known that a large amplitude longitudinal Akhiezer -
Polovin wave breaks via the process of phase mixing at an amplitude well below the
breaking amplitude for Akhiezer - Polovin wave (y/2 \/%57—1 ), when subjected to
an arbitrarily small longitudinal perturbation [33]. We have derived an expression
for phase mixing time which brings out its dependence on w,,, 3, and 6. Our
weakly relativistic calculation indicates that the phase mixing time scales linearly
with B4, inversely with § and has 1/u? dependence on w,. We have verified
this scaling using numerical simulations. We note here that, the dependence of

phase mixing time on density amplitude A [(0n/10)maz = (/1o — 1)maz | can

2
be obtained from Eq.(4.20) as 7., ~ 2§§¢ (ﬁ) — }1 by eliminating wu,, using

n = nofy/(Bp — v). This shows that for A > 1, 7,,;, is essentially independent of
A and for A < 1, 7,4, scales as ~ 1/8,0A?. Fig- shows the dependence of phase
mixing time on A. We emphasize here that for A < 1, for a given §; and 6 ~ A,
our expression for phase mixing time exhibits ~ 1/A? scaling, in conformity with
the results presented in references [30, 55].

Some evidences of our analytical results have also seen in the simulation results
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Figure 4.8: Analytical (solid) and numerical (circles) scalings of the phase mixing time
as a function of the density amplitude of the Akhiezer - Polovin wave (dn/ng ~ An) in
the presence of a finite perturbation (6) = 0.01(4.8a),0.1(4.8b) and B4 = 0.9995

obtained by Bera et. al.. [70,71] In their numerical experiment the space-time
evolution of a relativistic electron beam driven wake-field in a cold, homogeneous
plasma is studied using 1D-fluid simulation techniques. It is observed that the wake
wave gradually evolves and eventually breaks, exhibiting sharp spikes in the density
profile and sawtooth like features in the electric field profile. It is demonstrated
that the excited wakefield is a longitudinal Akhiezer-Polovin mode which breaks
via phase mixing. By changing the beam density and beam velocity,the variation
of phase mixing time is studied for a wide range of input parameters and it is

observed that, the breaking time scale follows the scaling given by Eq.(4.20).

45



Chapter 4. Analytical Estimate of Phase Mixing Time of Longitudinal Akhiezer
- Polovin Wave

46



He needs ‘"space" and
"time," as if this were
physics and not a human
relationship.

- Robert A. Heinlein

Nonlinear Dynamics of Relativistically
Intense Plasma Waves in Cylindrical and

Spherical Geometry

This chapter presents the study on the space-time evolution and the breaking
of relativistically intense cylindrical and spherical plasma oscillations via phase
mixing process [5,28-33,68|. Analytical expressions for phase mixing time scales
as a function of the amplitude of the applied perturbation have been derived for
relativistically intense cylindrical and spherical oscillations which indicate that
phase mixing time scales inversely with the cube of the amplitude of the applied
perturbation. We also observe that, for nonrelativistic case the variation of phase
mixing time scale follows the same scaling law. Inclusion of relativistic effects
only hastens the phase mixing time but the scaling law remains unchanged. We
also verify our analytically obtained scaling law by Sheet Simulation code [96] by

extending it to cylindrical and spherical geometry.

5.1 Introduction

It is well known that Dawson [5| was the first to discover the fact that for a
nonrelativistic cold plasma, oscillations in a slab/planar geometry would be stable
below a critical amplitude called wave breaking limit given by eE/mw,vs, = 1.
Beyond this limit multi-stream flow or fine scale mixing develops which destroys

the collective motion of the plasma electrons.
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Dawson [5] further extended his nonrelativistic calculations by changing the
pattern of motion such that electrons are oscillating back and forth along the
radius of either a cylinder or a sphere and demonstrated that in nonrelativistic
case, oscillations having cylindrical or spherical symmetry always break at arbi-
trarily small amplitude of the applied perturbation. This breaking occurs via phase
mixing [5,28-33,68|. Later it has been shown by several authors that plasma os-
cillations/waves in a slab geometry can also break in the similar fashion, if the
electron’s quiver velocity becomes relativistic [28, 30-33, 68| and/or there exists
background density inhomogeneities (either fixed [67] or self-generated [29]). In
the later case, the authors [29] have found that phase mixing time scale crucially
depends on the amplitude of the applied perturbation as shown in the previous
two chapters.

In the last few years much attention has been paid to the study of relativis-
tically intense cylindrical and spherical plasma oscillations/waves, both theoreti-
cally [55,56, 98] and experimentally [99,100]. For example, Gorbunov et. al. [55]
and Bulanov et. al. [56] respectively studied the evolution of cylindrical and spher-
ical plasma waves analytically by using Lagrange coordinates [3,6]. These authors
respectively derived the equation of motion of an electron oscillating along the
radius of a cylinder [55] and sphere [56]. The frequency of oscillation correct upto
second order in oscillation amplitude were derived for cylindrical and spherical
case, which turned out to be same. In the former case [55], the authors observed
trajectory crossing of the neighbouring electrons which leads to wave breaking
via phase mixing. In the later case [56], the authors observed that after some
plasma period, the wave profile changes it’s direction of propagation which also
occurs due to spatial dependency of the characteristic frequency of the wave. This
time was termed as “turn-around time” [56]. But, an analytical expression for
phase mixing time as a function of the amplitude of the applied perturbation for
cylindrical and spherical plasma oscillations/waves were not presented. Though
Gorbunov et. al. [55] attempted to predict a phase mixing time by using Dawson’s
argument [5], still the verification of their prediction was never shown explicitly.
Therefore the space time evolution of relativistically intense cylindrical/spherical
plasma oscillations/waves, estimation of phase mixing time and their variation
with the amplitude of the applied perturbation has been explicitly explored in this
chapter.
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In this chapter we extend Dawson’s earlier work [5] by including relativistic
effects. An important feature of cylindrical and spherical oscillations is that it’s
parameters vary only with the distance from the source i.e they depend only on the
radial coordinate of the oscillating electrons. Therefore we limit our study to one
dimensional case only. In section 5.2 we extend Dawson Sheet Model from planar
to cylindrical and spherical geometry and also include the relativistic mass varia-
tion effects. We first derive the expressions for the fluid variables viz. density (n),
electric field (E) and velocity (v) by respectively using the principle of conservation
of number of particles, Gauss’s Law and Newton’s Law. We find that this method
of deriving the fluid variables is easier compared to the derivation involving the
definition of Lagrange coordinates used by other authors [55,56]. Then we solve the
equation of motion in respective coordinate system by using Lindstedt-Poincaré
perturbation method [54] and derive an approximate expression for frequency of
oscillation in the weakly relativistic limit upto fourth order in oscillation ampli-
tude. We observe that in general the expressions for frequencies acquire spatial
dependency which ultimately lead to breaking via phase mixing [5,28-33,68]. In
section 5.3 we study the dynamics of cylindrical and spherical plasma oscillation
and derive analytical expressions for (cylindrical and spherical) phase mixing time
scales as a function of the amplitude of the applied perturbation by using Daw-
son’s argument |5, for all the cases under consideration. Further, we verify this
scaling by performing numerical simulations, using a code based on Dawson Sheet
Model [96] by extending it to cylindrical and spherical geometry. Finally in section

5.4 we summarize this work.

5.2 Governing Equations

According to Dawson Sheet Model, cylindrical and spherical oscillations arise re-
spectively due to cylindrical and spherical sheet of charges [Fig-(5.1)] oscillating
about their equilibrium positions. These sheet of charges are embedded in a ho-
mogeneous background of immobile ions. Unlike the slab geometry, in these cases
the electric field gets tweaked by the geometrical effects and for same displacement
amplitude the electric field amplitude becomes different for different equilibrium

positions of the sheets which in turn makes the frequency of oscillation space de-
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pendent. This is reason why phase mixing and wave breaking in these cases is an

inherent phenomena, arising due to geometry of the problem.

Figure 5.1: Crross-sectional view of Dawson Sheet Model in Cylindrical and Spherical
Coordinates

In the following subsections we separately derive the expressions for the fluid
variables and derive the equation of motion for cylindrical & spherical oscillations
considering relativistic mass variation effect of the electrons. Let o and R(ro,t)
respectively be the equilibrium positions and displacement from the equilibrium
positions of the electron sheets. So the Euler positions of the sheets can be written
as r(ro,t) = ro + R(ro, t).

5.2.1 Fluid Variables in Cylindrical Geometry
In cylindrical geometry, the conservation of the number of particle yields
2mngrodrg = 2mnrdr

where, ng and n be the equilibrium and instantaneous density respectively.

noTo

(7”0 + R)(l + g_ﬁ)

n(re,t) = (5.1)

Now using Gauss’s Law in cylindrical geometry, we have

%%(TE) = 4mwe(ng —n)
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Substituting the value of n, from Eq.(5.1), the electric field stands as

(5.2)

2 _ .2
E(ro,t) = 2meng [(TO + ) TO]

(ro+ R)

Now the relativistically correct equation of motion of electron sheet can be written

as '
d R
m— |————| = —eE
dt | (1— Ij_j)m
putting the value of E from Eq.(5.2), we get
R w? R)? — r2
——— = __p |:(T0 + ) T0:| (53)
T T T

Here w, = 4mnge?/m is the nonrelativistic plasma frequency. Taking R/ry = p,
Eq.(5.3) modifies as

4 wp [(L+p)* =17 _
T rht e ”

In nonrelativistic limit (¢ — o0), we get the same Eq. obtained by Dawson [5]

et

Here dot sign represents the derivative w.r.t time. In the weakly relativistic limit
and small amplitude oscillations Eq.(5.4) can be simplified as [55] (expanded upto
the third order of p and second order of p)

Lo3rdw? w? w?
P PP Fwp— 0+ 5 =0 (5.5)

Now, by using Lindstedt - Poincare perturbation method [54], the expression for
frequency correct upto the fourth order of oscillation amplitude can be written as
[derivation given in Appendix-(B)]

3w, r3p0(ro)® | polro)?

- -

oy (rel) = wp |1 = 555 12 512

(5.6)
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Here py(ro) is the displacement amplitude of the electrons, which in general depends
on their equilibrium positions 7. In nonrelativistic limit ¢ — oo, Eqgs.(5.5) and

(5.6) respectively become

wQ

Pt [2o=p"+p"] =0 (5.7)

e (r0)* | polro)*
PolTo PolTo
Qey(nonrel) = w, |1+ TS (5.8)

5.2.2 Fluid Variables in Spherical Geometry

Now following the same procedure in spherical geometry the same fluid variables

can be penned as

n(ro,t) = Ul (5.9)
T e+ RPLH Y |
1 I(r’E)
=5 dmre(ng — n)
dmeng [(ro+ R)? — 1§
Blro. 1) = = { T T (5.10)

Now the relativistically correct equation of motion of an electron oscillating sheet
along the radius of a sphere is given by,
R w2

- Epe 3

R 61y

In nonrelativistic limit, the above Eq. transforms to [5]

. w) [(ro+R)® —rd
“p | (o 0| _
R+3{ (o + R)? 1 0

In terms of p, Eq.(5.11) becomes

.. 2
p Wp

m + 3 [w} =0 (5.12)
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In weakly relativistic limit and small amplitude oscillation, the above Eq. takes
the form [56]

. 3Towy 4wy

p=3 Czppr +wlp—wip’ + Tppg =0 (5.13)

And frequency of oscillation stands as [derivation given in Appendix-(B)]

3w, 7”3,00(7“0)2+P0(7‘0)2 po(ro)*

14
16 c? 12 72 (5.14)

Qspn(rel) = wy, |1 —

In non relativistic limit, the equation of motion for small amplitude oscillation

becomes [5]
2

w
P+ gp [30—3p* +4p°] =0 (5.15)
And the frequency of oscillation inclines as

2 1
Qspn(nonrel) = w, |1+ /)0(17;)) + 00(77”20) (5.16)

Here we want to note that Eqs.(5.5) and (5.13) respectively are the same equa-
tion derived by Gorbunov [55] and Bulanov [56]. In the expressions of Q.,(rel)
and Qg (rel) the second term represents correction due to the relativistic effects
and other terms represent additional anharmonicity introduced by cylindrical and
spherical geometry respectively. In addition to this, it should be noted from the
expressions of the electric field [Eqgs.(5.2) and (5.10)| that, even for the same dis-
placement amplitude, the electric field depends explicitly on the equilibrium posi-
tions of the electrons (unlike the planar geometry case) which results in a position
dependent restoring force. Therefore the frequency of oscillation depends on the
equilibrium positions of the sheets which leads to wave breaking via phase mixing.

In the next section we present a scaling law for this phase mixing time.
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5.3 Dynamics of Nonlinear Cylindrical & Spherical
Plasma Oscillations and Calculation of Phase
Mixing Time

In this section we describe the dynamics of relativistically intense cylindrical and
spherical plasma oscillations and calculate their phase mixing time. In order to
study the space-time evolution and breaking of cylindrical and spherical oscilla-
tions, we first load the initial conditions needed to excite axisymmetric cylindrical
and spherical oscillations respectively in one dimensional (along the radius) sheet
code (based on Dawson Sheet Model) containing ~ 10000 cylindrical and spheri-
cal surfaces of charges. In this code the density and electric field are respectively
calculated from Eqs.(5.1) & (5.2) (for cylindrical oscillations) and from Eqgs.(5.9)
& (5.10) (for spherical oscillations) (as mentioned in chapter -2).

Now for cylindrical and spherical oscillations, its parameters depend only on the
radial coordinate of the oscillating species (here the electron sheets) i.e. they are
radially symmetric in nature. As Bessel functions and Spherical Bessel functions
[97] respectively form a complete orthogonal set (basis functions) in cylindrical and
spherical coordinate systems, then any arbitrary radial perturbation imposed in
these systems can be written as a superposition of these basis functions (Fourier
Bessel Series) in their respective coordinate system [101,102|. Therefore to excite
an oscillation in cylindrically and spherically symmetric system we respectively use
Bessel functions and Spherical Bessel functions as an initial perturbation. Here, we
want to note that, the structure and propagation of nonrelativistic axisymmetrical
waves in linear and nonlinear regime using such type of initial conditions has been
studied first by Travelpiece & Gould [103]| for a cylindrical plasma column and later
continued by several authors [104-106]. Using these type of initial conditions the
equation of motion for each electron sheet is solved using fourth order Runge-Kutta
scheme. At each time step, ordering of the sheets are checked for sheet crossing.
Phase mixing time is measured as the time taken by any two of the adjacent sheets
to cross over (similar to previous two cases).

In the following subsections we study the space-time evolution & derive the

expressions for phase mixing time as a function of the amplitude of the applied

54



Chapter 5. Nonlinear Dynamics of Relativistically Intense Plasma Waves in
Cylindrical and Spherical Geometry

perturbation for cylindrical and spherical plasma oscillations respectively.

5.3.1 Breaking of Cylindrical Plasma Oscillations

The relativistic equation of motion of an electron sheet along the radius of a cylin-
der is given by Eq.(5.3). This equation can be solved numerically with the help
of two initial conditions R(rg,t = 0) and R(ro,t = 0). Here we consider plasma
oscillations localized in space in the vicinity of the axis r = 0 [55]. We assume that

electron velocity at t = 0 is zero : R(ro,t = 0) = 0. We also assume that at ¢ = 0
the oscillations are excited by an electric field of the form [104-106]

_ eE(ro,t =0) QT (10, 0)
E(TOJ = 0) = W =AJ, [T (5'17)

where X is given by Ry/um, Jy, is n-th order Bessel function and «y,, is the m-th
zero of n-th order Bessel function [101,102]. A is the amplitude of applied electric
field perturbation and Ry is the maximum value of the radius of the cylindrical
system under consideration. We consider that at initial time, the electric field
E(r0,0) at the boundaries of the simulation are zero i.e E(rq = 0,t =0) = 0 and
E(ro = Ry,t =0) = 0.

In the above scenario satisfied by the all initial conditions the lowest order
mode is n = 1 and m = 1 (As E is zero on the axis at ¢ = 0 so n = 0 cannot be
taken as lowest order mode as Jo(ap7/Ro) # 0 at r = 0). Therefore, here we study
the space-time evolution of the lowest order mode A.J;(ay17/Rp). The length of
the system R, is taken upto the first zero of the Bessel function.

To solve Eq.(5.3) we first numerically calculate the initial profile of R(rg,t = 0)
in the following way: At initial instant of time ¢ = 0, the electrons are at their
equilibrium position 7 and radially displaced by an amount R(rg,0) by adding the
perturbation given by Eq.(5.17). So the Euler positions of the electrons at ¢t = 0
become 7(rg,0) = ro + R(r0,0). All the particles at their initial position produce
an electric field of the form E(rq,t = 0) = AJi[a117(r0,0)/Rg]. On the other hand
from Gauss’s Law the electric field E(rg,0) is given by

[r0 + R(rg,0)]* — rd
[TO + R(T()? 0)]

E(ro,0) = 2weng (5.18)
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Comparing Eqgs.(5.17) and (5.18) we can find R(ro,0) for given values of 7.
Based on the scheme described above, numerical computations have been car-
ried out and the spatial variation of electric field and electron density with time
have been shown. The results of relevant simulations are illustrated in Figs-5.2
and 5.3. Figs- 5.2 and 5.3 respectively show the show the snapshots of the electron
density and electric field profiles for the value A = 0.5. Fig-5.2 shows that, as
time progresses, the density maxima increases gradually and shows a high spike
at wyt = 314.2221 which is a signature of wave breaking via the process of phase
mixing [5,28-33,68]. From Fig- 5.3 we observe that, as time goes on, the radial
profile of electric field becomes steeper and acquires a jump at the off-axis radial

point, where electron density spikes.
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Figure 5.2: Snapshots of density profile of relativistic cylindrical oscillation at different
time steps for amplitude A = 0.5.

Now we present a scaling for phase mixing time scale in the following way:
Equating the electric field given by Eq.(5.17) with Eq.(5.18) and in the small
amplitude limit A << 1, we can write

To To

}pg(ro) ~ AJl |:0611E:| (519)

Now putting the value of py(ry) from above, the expression for frequency of rel-

ativistic cylindrical plasma oscillation [from Eq.(5.6)] modifies to (correct upto
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wpi =0.0

Figure 5.3: Snapshots of electric field profile of relativistic cylindrical oscillation at dif-
ferent time steps for amplitude A = 0.5.

A?)

3 wiX2A? To X2A? To
Qcy(rel) ~ Wp 1-— TGPTJIQ {@11F0} + TT%JIQ {@11F0}] (520)

According to Dawson’s argument, the phase mixing time (w,7,,;) depends on the
spatial derivative of frequency as wpTmiz ~ 7/[2Rmas(dSY/dro)]. Differentiating
Eq.(5.20) w.r.t 7o and noting R4, is proportional to A, the phase mixing time

scale can be written as )

A3

Here, we have omitted the proportionality constant which is a function of rg.

(5.21)

WpTmigz ™~

This proportionality constant only gives the position of breaking, which generally
depends on the profile of the initial perturbation and is not of general interest. In
the similar manner using Eq.(5.8), we can find that, for nonrelativistic cylindrical
oscillations also, phase mixing time scale follows the same scaling law given by
Eq.(5.21).

In order to verify this scaling expressed by Eq.(5.21) we repeat our numeri-
cal experiment for different values of A. The variation of phase mixing time as

function of the amplitude of applied perturbation are shown in Figs-5.4 and 5.5
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Figure 5.4: Variation of phase mixing time of relativistic cylindrical oscillation as a
function of amplitude of applied perturbation A.
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Figure 5.5: Variation of phase mixing time of nonrelativistic cylindrical oscillation as a
function of amplitude of applied perturbation A.



Chapter 5. Nonlinear Dynamics of Relativistically Intense Plasma Waves in
Cylindrical and Spherical Geometry

respectively for relativistic and nonrelativistic cases. In the figures points represent
the simulation results and the solid line represents our theoretical scaling obtained
from Eq.(5.21). By comparing these two figures, we understand that for a fixed
value of the applied perturbation, relativistic effects hastens the phase mixing time,
which is expected. Here for cylindrical oscillations, the controlling parameter is
Xw,/c, which is respectively zero for nonrelativistic case and chosen to be ~ 1 for

relativistic case.

5.3.2 Breaking of Spherical Plasma Oscillations

In this subsection we present the space-time evolution of spherical plasma oscilla-
tions and estimate the phase mixing time in the similar fashion described in the
above subsection.

Here the spherical oscillations have been excited by electric field E(r,t) of the
form

_ eB(ro,t =0) _ Aj, |:ﬁumT(T070):| (5.22)

E(ro,t =0) = me?y o
where Y is given by Ro/f,m and j,(x) is the Spherical Bessel function of order v and
defined as j,(x) = \/WJ,,H /2(x). Bym is the m-th zero of v-th order Spherical
Bessel function [101,102]. We have computed the value of R(rg,0) by comparing
Eq.(5.10) and (5.22) in the similar fashion described in the previous subsection.
Here we have taken the lowest order mode Aj,(f31,7/Ry) and the length of the
system Ry is taken upto the first zero of the Spherical Bessel function. Then
we have solved Eq.(5.11) numerically and calculated the density and electric field
profile respectively from the expressions 5.9 and 5.10. The snapshots of density
and electric field profile at different time steps have been shown in Figs-5.6 and
5.7 respectively. Like cylindrical waves here also it is observed that phase mixing
leading to wave breaking is manifested by a density burst and a sharp gradient in
the electric field profile.

Now to present a scaling law for this spherical oscillation, we again follow the
same fashion. For a small amplitude perturbation A <<'1, $po(ro) ~ Aji[Su 7]

and the frequency of spherical oscillation correct upto second order in A for rela-

59



Chapter 5. Nonlinear Dynamics of Relativistically Intense Plasma Waves in
Cylindrical and Spherical Geometry

wpt:O.U wpt=283

©.

u.'pt = 565.49 .u.'pt = 898.49

400
200

Figure 5.6: Snapshots of density profile of relativistic spherical oscillation at different
time steps for amplitude A = 0.5.
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Figure 5.7: Snapshots of electric field profile of relativistic spherical oscillation at different
time steps for amplitude A = 0.5.
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Figure 5.8: Variation of phase mixing time of relativistic spherical oscillation as a function
of amplitude of applied perturbation A.
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Figure 5.9: Variation of phase mixing time of nonrelativistic spherical oscillation as a
function of amplitude of applied perturbation A.
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tivistic & nonrelativistic case respectively can be written as,

3 W2Y?2A? To Y2A? r
Q. ~wy |1 T T g2 - —j? = 2
on(rel) ~ wy 6 2 {ﬁuRO} + 12,2 I {ﬁllRO (5.23)
and
XQAZ To
Qepn(non —rel) ~ w, [1 + Tr%jf {511%” (5.24)

Again following Dawson’s argument, one can easily arrive at the same scaling law
given by Eq.(5.21) for both relativistic and nonrelativistic case. The variation of
phase mixing time (7,,;,) as a function of applied amplitude A for relativistic and
nonrelativistic spherical oscillations are respectively shown in Figs-5.8 and 5.9. In
the figures numerical results have been displayed by dotted lines and the solid lines
representing the scaling given by Eq.(5.21). Like cylindrical oscillations here the
controlling parameter is Yw,/c which is respectively zero for nonrelativistic case
and chosen to be ~ 1 for relativistic case.

In all these cases we observe that, the analytical scaling law given by Eq.(5.21)
shows a very good fit to the observed numerical results, thus vindicating our weakly

relativistic calculations.

5.4 Summary

In this chapter, we have demonstrated analytically and numerically the behaviour
of nonlinear and relativistically intense cylindrical and spherical plasma oscillation
using Dawson sheet model. Initial conditions are taken in terms of Bessel func-
tions and Spherical Bessel functions to excite cylindrical and spherical oscillations
respectively. This is because, as Bessel functions and Spherical Bessel functions
are respectively the normal modes in cylindrical and spherical coordinate systems,
thus any arbitrary perturbation in these systems can be written as a superposition
of these basis functions in their respective coordinate systems. Fluid variables have
been derived in a very straightforward way. The expressions for frequencies are
given for both the cases and is found to be an explicit function of the equilibrium
positions of the electron sheets. By performing numerical simulations it has been
shown that the radial electron density of cylindrical and spherical plasma oscilla-

tions grows sharply with time and after some periods the density shows explosive
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behaviour due to the crossing of neighbouring electron sheets which leads to wave
breaking via phase mixing. Analytical expression for the phase mixing time scale
has been derived and it is observed that for both cases (cylindrical and spherical)
phase mixing time scales with the cube of the amplitude of the applied perturba-
tion which indicates that “in general scaling of phase mixing time with amplitude
is independent of geometry of oscillation”. Further we have found that inclusion of
relativistic effects does not change the scaling of phase mixing time with amplitude

of perturbation; it only hasten the process as compared to the nonrelativistic case.
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Nothing ever becomes real
till it is experienced.

- John Keats

Wave Breaking Amplitude of a
Self-consistent Electron Plasma Wave in a

Maxwellian Plasma

In 1971 using a “water-bag” distribution for electrons, Coffey [36] showed that the
wave breaking amplitude of an electron plasma wave in a warm plasma explicitly
depends on the electron temperature. In this chapter, we revisit Coffey’s criterion
and test its applicability for a Maxwellian plasma using a 1-D Particle-in-Cell
(PIC) simulation code. We find that Coffey’s propagating wave solution, which
was derived using a “water-bag” distribution for electrons, also represents a self-
consistent propagating wave in a Maxwellian plasma, albeit with a lower amplitude.
Moreover, we find that the maximum electric field amplitude that can be sustained
by a self-consistent electron plasma wave in a Maxwellian plasma follows a similar

scaling with temperature as given by Coffey but with slightly different coefficients.

6.1 Introduction

In the previous chapters we have seen that oscillations/waves break via phase
mixing (except pure Akhiezer - Polovin wave) at amplitudes far below their wave-
breaking limit when the electrons quiver with a speed close to ¢ (velocity of light
in vacuum) and/or the geometry of the oscillation changes. In such cases breaking
occurs gradually with time and follows the time scale presented in earlier chapters.

Moreover we have observed that, as time progress density spikes arise in space and
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at the breaking point density becomes singular. Actually, this density singularity is
an artefact of cold fluid plasma model. In fact, for non-linear density perturbations
associated with a large amplitude plasma wave, electron pressure (as pressure
P ~ n3) and hence thermal effects become important as the electron thermal
pressure will not allow the density compression to build up to such high values as
predicted by the simple cold plasma fluid model. Therefore, under this condition
a warm plasma theory is required.

In 1971, Coffey [36] investigated the phenomenon of wave breaking for an
electron plasma wave (nonrelativistic) in a warm plasma by using the simplest
distribution i.e. “water-bag” distribution [39, 57| for electrons. Unlike the cold
plasma wave breaking which is defined by the crossing of the trajectories of the
oscillating particles constituting the wave, Coffey defined wave breaking in a warm
plasma as the trapping of oscillating background plasma electrons which are at the
upper boundary of the water-bag distribution (which is at electron sound speed
vy = \/m) by the wave potential and showed that maximum electric field
amplitude explicitly depends on the electron temperature and decreases monoton-
ically with increasing electron temperature. This limiting amplitude of electron
plasma wave is known as Coffey’s limit.

Verification of this effect of electron temperature in reducing the wave breaking
amplitude had been attempted by Kruer [77] and Bergmann et al. [78,107], using
1D Vlasov simulations, for resonantly driven plasma waves in an inhomogeneous
plasma. The results presented by Bergmann et al. [78| clearly show that, when a
small fraction of electrons are trapped in the wave potential, the periodic structure
of the wave is still unaffected and wave does not break. This periodicity dies
out when a large number of particles are get trapped. The authors in Ref. [78]
concluded that Coffey’s limit can not be applied for resonantly excited waves. Here
we emphasize that Coffey’s limit was derived for a freely running propagating wave
in a homogeneous plasma, and to the best of our knowledge verification of Coffey’s
limit for a freely running electron plasma wave in a homogeneous plasma where
electron velocity distribution is Maxwellian has never been attempted.

In this present chapter, we revisit Coffey’s criteria for a freely running electron
plasma wave in a Maxwellian plasma. First, in section 6.2 we derive an equation
for an electron plasma wave in its own rest frame by considering water-bag dis-

tribution for electrons. We also derive an expression for maximum electric field
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amplitude (FE,,,.) as a function of electron temperature (7;) using particle trapping
condition. Next, in first portion of section 6.3 we compute the initial conditions
needed to excite a propagating wave in a warm plasma from the equation of mo-
tion. In the second portion of section 6.3 we observe that Coffey’s propagating
wave solution, which was derived using a “water-bag” distribution for electrons,
also represents a self-consistent propagating wave in a Maxwellian plasma, albeit
with a lower amplitude. By adding an external perturbation we further show that
if the initial resultant amplitude of the wave exceeds Coffey’s wave breaking limit,
within a few plasma periods the initialized wave self-consistently conforms itself
with the background Maxwellian distribution and settles down to an amplitude
below Coffey’s limit and propagates for a large period of time (~ 100 plasma pe-
riods) provided the Landau damping rate is very weak. We found that the final
self-consistent wave amplitude does not increase even after increasing the pertur-
bation amplitude and thus can be taken as maximum sustainable electric field
amplitude. By varying the initial electron temperature, we show that maximum
electric field amplitude that can be sustained by a self-consistent electron plasma
wave in a Maxwellian plasma follows a similar scaling given by Coffey but with

slightly different coefficients. Finally we summarize in section 6.4.

6.2 Theoretical Model (Using “Water-Bag”)

In this section we derive an expression for maximum electric field amplitude that
can be sustained by a electron plasma wave using the framework of coupled Vlasov-
Maxwell equations which can be written as

of =~ df eEIf

a_E
ox

where the symbols have their usual meaning. An exact analytical solution of the

= 4mwe(ng — n) (6.2)

above equations using a Maxwellian distribution for electrons is mathematically
complicated. Therefore, here we start from a water-bag distribution | f(x,v)] as
used in the Refs. [36,39]. According to the water-bag model, electron distribution

function is constant in a bounded region (—vy < v < wgatt =0, v < v < vy
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at t # 0 ) of phase space and is zero outside this region. Therefore it is sufficient
to solve the equations for the boundaries of the phase space. The constant value
of f is determined by ffooo fdv = ng, which gives f = ng/2vy and the value of
vg is determined by requiring that the second order moment of water-bag distri-

bution be same as that for a Maxwellian distribution i.e [ /fooo v? fdv] =
' water—bag

[ ffooo v? fdv] which yields, vy = /3kgT./m. Now the electron density
Mazwellian
and fluid velocity at any instant are respectively given by [39]
o) no
n(z,t) = / fdv=—(vy —v_) (6.3)
— 0 2U0
> fodv
(e, t) = S fvdv (v +0) (6.4)

75, fdv 2
Solving Eqs.(6.3) and (6.4), v and v_ can be written in terms of fluid velocity

u and density n as [39]

n
Ve = U £ vg—
o

The evolution equations satisfied by n and u are obtained by taking the zero-th

and first order moment of the Vlasov equation which respectively give 39|

ou ou el kgT. O n?
o e T T T m o (6.6)

For a water-bag distribution the heat flux is zero [3| so that there is a closure
to the hierarchy of the moments of the Vlasov equation. From the above equation
it is clear that pressure P = kgT.n?/ng. So the adiabatic equation of state is valid
here. As we are looking for wavelike solutions, all fluid variables viz. density(n),
fluid velocity(u) and electric field( E) are functions of a single variable ¢ = t—x /vy,
where v, is the phase velocity of the wave. Substituting 0/0x = —(1/v,)d/dy and
/0t = (d/dy) in Eqgs. (6.5), (6.6) and (6.2) the continuity, momentum equation

and Gauss’s Law respectively become,

(6.7)
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d u? B1
S S 6.8
a2 T 21— (6:8)
and B
u
R 6.9
dp 1—u (6.9)
where we have used the normalizations, n — n/ng, ¥ — wy, , u = ufvg, E —
3kpTe

2
eE/mwyv, and = = z—%, where the expression for n has been used in

m'l)2
5
the momentum equation and Gauss’s Law. Differentiating the above Eq.(6.8) and

using Gauss’s Law, we get
d*x u
S 6.10
dp? 1—u (6.10)

where x = [u—%—%ﬁ

wave in its own rest frame when the electron distribution is taken as water-bag

]. This equation [39] describes the electron plasma

distribution. This equation can not be solved analytically. The numerical solution
of this equation with proper choice of initial conditions is presented in the next
section.

/

Now multiplying both side of Eq.(6.10) by x' and using x' = —F (where

represents the derivative w.r.t 1.), we get

1dE? Lu du
i | = 6.11
2 d { “ﬂl—u)‘*]dw (6:11)
Integrating Eq.6.11, the expression for electric field E as a function of u can be
written as
g 26 1

EQ:—U,Q_ (1_u)2+?(1—u)3 +Cl (612)

Here (' is the integration constant which we find out by using particle trapping

condition in the following way:

Using ' = —Y/, the wave potential may be written as
d=—xy+0Cy (6.13)

where, ® — e®/muv; and C, is another integration constant.
Now from the definition, when a particle at the upper boundary of the water-
bag distribution gets trapped by the wave potential (i.e. particle at the “water-bag”

boundary with velocity v, at the crest of the wave potential reaches v, at the trough
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of the wave potential [Bauer et. al. [73]]), the wave breaks |as shown in Fig.(6.1)].

Now following the Fig.(6.1) the energy conservation can be written as

Figure 6.1: Potential energy vs position diagram

%(UA — v¢)2 —eDar = %(UB — v¢)2 —eDin (6.14)

Mathematically in unnormalised unit, the above equation can be simplified as (in

our case vy = vg and vg = vy)

1

5(”0 - 1)2 = _(q)min - (I)ma:r) (615)
AMMu=0 &=, = g + Cy, and at u = u,, (maximum value of the oscillating
fluid velocity), ® = @5, = — [um — E;ﬂ — %ﬁ] + C5. Now substituting the

values of ®@,,;,, and D4, in Eq.(6.15), the expression for the maximum value of
the fluid velocity required to trap the particles which are at the boundary of the
water-bag distribution stands as

Uy = 1 — B4 (6.16)

Now, noting that, at u = u,,, ® reaches its extreme value and thus £ = 0. Using
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this condition in Eq.6.12, the final form of electric field E as a function of u becomes

1/2
E=|-u® - (1 _BU)Q + ; (1 _ﬁu)?) +(1- 61/4)2 + 51/2 - 251/4} (6.17)

Now, from Gauss’s Law F is maximum when u = 0. Therefore,

3 3 1/2
Ermaz = (1 - 551/4 + 28342 — 5) (6.18)

which is Coffey’s wave breaking limit.

6.3 Particle-In-Cell Simulation

Here we carry out a 1D PIC simulation with periodic boundary conditions in order
to study the maximum electric field amplitude that can be sustained by a large

amplitude freely running electron plasma wave in a Maxwellian plasma.

6.3.1 Simulation Model

Before starting simulation, in this section, we first compute the initial profiles
needed to excite a freely running electron plasma wave in a Maxwellian plasma.
As mentioned in the previous section, the equation representing the evolution of

electron plasma wave in its own rest frame is given by

dzx__ u
oz 1—u

(6.19)

To solve Eq.(6.19) two initial conditions i.e x|y—o and x'|y—¢ are required. We
compute these two values by respectively substituting u = 0 (at b = 0) in the
expressions for x and x’ (i.e E). These two values respectively can be written
as X|yp=o = —g and dl|¢:0 = —AF4.- Here, A = E/E, 4, decides the initial
amplitude of the wave. As expected from Coffey’s theory [36,39], the wave should
propagate without any damping or distortion for all values of A < 1. By using
these two initial conditions, Eq.(6.19) has been solved numerically for different
values of A and 3. Once y and Y’ are solved, all the fluid variables viz. u, E and

n can be computed by respectively using the expression for x, x’ and Eq.(6.7).
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As for example, in Figs.(6.2) and (6.3) we have presented the profile of the fluid
variables for two different values of A and (5 as a function of ¢ upto one wavelength
(Lyp, here the wavelength L, has been found by measuring the distance between two
consecutive peaks in the density amplitude). For a known A (< 1) and S value, we
load these initial density and velocity profile in our PIC code. Here the wavelength
L, explicitly depends on A and . Thus by changing the values of § and A different
initial profiles required to excite a freely running large amplitude electron plasma
wave in a warm plasma have been generated. In the next subsection we load
these profiles along with a Maxwellian distribution (with same  value) in our
code. We note that although this method of initialization loads a wave that is
consistent with the water-bag distribution, we find that within a wave period the
wave self-consistently conforms itself with the background Maxwellian distribution

supported by trapped and untrapped particle distributions. Further, we also study
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Figure 6.2: Initial profile for 5 = 0.1 and A = 0.98

the stability of these waves (even increasing their initial amplitude beyond Coffey’s

limit) towards a small amplitude longitudinal perturbation given by

Eper = d cos(kyrx) (6.20)
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Figure 6.3: Initial profile for § = 0.2 and A = 0.3

Here, k,, is the primary wave number (which contains the highest amplitude) of
the initialized wave and 0 is the amplitude of the applied perturbation of order
/A ~ 1072 to 107!, This method of studying the stability by using a small
amplitude sinusoidal perturbation only to the primary wave number has also been
used by other authors [33].

Our simulation parameters are as follows: total number of particles N, = 40000,
number of grid points Ng = 500, time step 6t = 7/160 and system length L = L,,
wavelength of the system, which depends on both A and . Here we use periodic
boundary conditions. The normalisations are chosen to be z — zw, /vy, t = wpyt,
n—n/ng, v = 0/Vg, Uy, = V[V, B — eE/mwyvgs and & — e®/mu].

6.3.2 Results from Simulation and Its Interpretation

In this subsection, we verify Coffey’s wave breaking limit in a Maxwellian plasma
by loading the initial profile as computed above.

In Figs. 6.4 - 6.7 we have shown the space time evolution of electric field of
a freely running electron plasma wave in a Maxwellian plasma for different values

of A for a long period of time by keeping /3 fixed at 0.1. In Figs. 6.4 and 6.6
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the values of A are respectively taken as 0.5 and 0.98. Their response to a small
amplitude longitudinal perturbation given by Eq.(6.20) are respectively presented
in Figs. 6.5 and 6.7. In these figures, the electric field profile at t = 0 without
perturbation is presented by the blue line and red lines are showing the electric
field profile with perturbation. ¢ is taken as 0.05. The Figs. 6.4 - 6.7 clearly
show that the wave is propagating without any breaking and loosing periodicity
throughout the system for a large period of time (~ 100 plasma periods) even
after adding perturbation. From all these figures, we observe that, the maximum
amplitude of the initialized wave at ¢ = 0 decreases by a small fraction from its
initial value. This is due to the fact that, the initial conditions that we have
used in order to carry our numerical experiment to study the evolution of electron
plasma wave, are consistent with water-bag distribution. Therefore the initial
perturbation takes some time (~ few plasma period) to get adjusted with the
background Maxwellian distribution. Now, for the value of A = 0.5, though the
wave is perturbed by a small amplitude longitudinal perturbation, the maximum
electric field amplitude after adding perturbation remains below the Coffey’s limit
(€Emaz/mwyv, = 0.3155 from Eq.6.11), as for example, e, /mw,vs = 0.2564
(measured from Fig. 6.5, at ¢ = 0). But, in Fig. 6.7 the response to a small
amplitude perturbation for A = 0.98 shows that, even the maximum electric field
amplitude after adding the perturbation becomes greater than Coffey’s limit at
t = 0 (eEpaa/mwyvs = 0.3649, measured from Fig. 6.7), within ~ 1 plasma
periods the wave self-consistently adjusts itself by reducing the maximum electric
field amplitude below Coffey’s limit and propagates through the system. After
adjustment, the amplitude of the maximum electric field amplitude changes hardly
with time. This can be observed explicitly in Figs. 6.8 and 6.9, where we have
shown the time evolution of Fourier spectrum of the electric field for A = 0.98
without and with perturbation respectively at the same instants. The figures
clearly indicate that, there is hardly any differences between them after the time
wpt = 27 and the maximum amplitude remains nearly constant. We have verified
our results by changing the amplitude § from 0.05 to 0.1. It is observed that
after adding perturbation at ¢ = 0, the amplitude of the initialized wave may go
beyond the Coffey’s limit, but after ~ 1 plasma period the amplitude goes below
the Coffey’s limit and saturates at an amplitude which does not increase even after

increasing the amplitude of the applied perturbation §. This amplitude is strictly
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Figure 6.4: Space-time evolution of electric field (3D up, 2D down) for 8 = 0.1 and A =
0.5 without any perturbation [eEp,q./mwpvy at t = 0 is below Coffey’s limit (0.3155)].
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Figure 6.5: Space-time evolution of electric field (3D up, 2D down) for f = 0.1 and
A = 0.5 with a small amplitude perturbation [eE,q./mwpvg at t = 0 is below Coffey’s

limit (0.3155)].

76



Chapter 6. Wave Breaking Amplitude of a Self-consistent Electron Plasma Wave
in a Maxwellian Plasma

0.4 -

600

[

p

eE/mw v, —

_0.4 1 1 1 1
0 1 2 3 4 5 6

Xw VN —
p @

Figure 6.6: Space-time evolution of electric field (3D up, 2D down) for 8 = 0.1 and
A = 0.98 without any perturbation [eEq./mwyvs at t = 0 is below Coffey’s limit
(0.3155)].
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A = 0.98 with a small amplitude perturbation (eEy,qz/ mwyvy at t = 0 is beyond Coffey’s
limit, 0.3155).
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decided by the background electron’s distribution which are making the wave and
can be taken as the maximum electric field amplitude FE,,,, that can be sustained

by a freely running electron plasma wave in a Maxwellian plasma.  We next
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Figure 6.8: Snapshots of Fourier spectrum for § = 0.1 and A = 0.98 without any
perturbation [eLp,qp/mwpvy at t = 0 is below Coffey’s limit (0.3155)].

perform a thorough scan over vy, /v by varying the value of §(= 3vg,/v7) from
0.1 to 0.25. The value of A in each case is kept close to Coffey’s wave breaking
limit. As examples we present the wave profile (Figs. 6.10 - 6.13) for g = 0.15
& B = 0.2 without and with perturbation. For each value of 5 we have measured
the maximum electric field amplitude F,,,, from our simulation results at a time
when the wave self-consistently conforms itself with the background distribution.
The magenta points in Fig. 6.14 show the values of FE,,,, for different values of
measured from simulation. To compare our simulation results with Coffey’s wave
breaking limit (Eq.6.11), the maximum electric field amplitudes (without applied
perturbation) at ¢ = 0 are also plotted with red dots. These red dots are basically
the numerical solution of Eq. 6.19. We observe that, the maximum electric field
amplitude sustained by a electron plasma wave in a Maxwellian plasma is not as
large as predicted by Coffey for a water-bag distribution. But it follows the same
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Figure 6.9: Snapshots of Fourier spectrum for 5 = 0.1 and A = 0.98 with a small
amplitude perturbation (eFEpqx/mwpvy at t = 0 is beyond Coffey’s limit, 0.3155).

scaling of § with different coefficients, which can be written as
Entazwetiian = (1 — 2.848Y4 +2.065/% — 0.075)"/? (6.21)

These coefficients have been obtained by performing a least square fit of the
simulation data.

Here, we would like to mention that, as A and ( change, frequency changes
accordingly (as all velocities are normalized to v,), which results in different system
length (plasma wavelength L,). Therefore Landau Damping rate of these waves
also changes with A and 3. For a given § (say 5 = 0.1), as A varies from 0.2
to 0.98, kAp varies from 0.191 to 0.199. Therefore Landau damping rates (v/w,)
respectively range from 6.24 x 107° to 1.62 x 10~%. For higher values of 3 (say
f =0.3), as A varies from 0.1 to 0.88, kAp varies from 0.3777 to 0.3932. Landau
damping rates for these wave range from 0.2174 to 0.2536, resulting in decay of
wave in ~ 5-6 plasma periods. Thus to verify Coffey’s limit, we have limited our
values of 8 to 5 < 0.3. For clarity in Fig.(6.15) we have shown the time evolution
of electrostatic energy of an electron plasma wave for § = 0.35 and A = 0.1.

From the figure we observe that, the energy decreases exponentially with time and
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Figure 6.10: Space-time evolution of electric field (3D up, 2D down) for 8 = 0.15 and
A = 0.965 without any perturbation [eE,,q./mwyve at t = 0 is below Coffey’s limit

(0.2510)].



Chapter 6. Wave Breaking Amplitude of a Self-consistent Electron Plasma Wave
in a Maxwellian Plasma

eE/m(npvq) -

800

_0.4 1 1 1 1 1
0 1 2 3 4 5 6

Xw IV —
p ¢

Figure 6.11: Space-time evolution of electric field (3D up, 2D down) for 8 = 0.15 and
A = 0.965 with a small amplitude perturbation [eEmM/mwp% at t = 0 is beyond
Coffey’s limit (0.2510)].
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Figure 6.12: Space-time evolution of electric field (3D up, 2D down) for = 0.2 and
A = 0.9455 without any perturbation [eE,qr/mwpvg at t = 0 is below Coffey’s limit
(0.2054)].
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Figure 6.13: Space-time evolution of electric field (3D up, 2D down) for f = 0.2 and
A = 0.9455 with a small amplitude perturbation (eEpqz/mwpvy at t = 0 is beyond

Coffey’s limit, 0.2054).
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Figure 6.14: Epq. as a function of 3

follows the theoretical Landau damping rate (shown by blue line) [1].

6.4 Summary

The maximum amplitude sustained by a large amplitude electron plasma wave in a
Maxwellian has been studied using a Particle-in-Cell code. It is shown that Coffey’s
propagating wave solution which was derived by using a Water Bag distribution
for electrons also represents a propagating wave albeit with a lower amplitude in a
Maxwellian plasma. The stability of these waves towards a small amplitude longi-
tudinal perturbation has been studied and it is observed that if the maximum am-
plitude of the initial perturbation exceeds [Fy qzwenian [given by Eq.(6.21)], within
~ few plasma period the initialized wave self-consistently conforms itself with the
background distribution and propagates with an amplitude given by Eq.(6.21) for
a large period of time (~ 100 plasma periods). This amplitude does not increase
even after increasing the amplitude of the applied perturbation. By varying the
initial electron temperature it has been found that the maximum electric field am-

plitude sustained by a self-consistent electron plasma wave in a Maxwellian plasma
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Figure 6.15: Time evolution of electrostatic energy for 5 = 0.35 and A = 0.1

follows the similar scaling with electron temperature § given by Coffey but with

different coefficients.
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Not only is the Universe
stranger than we think, it is
stranger than we can think.

- Werner Heisenberg

Breaking of Large Amplitude
Relativistically Intense Electron Plasma

Waves in a Warm Plasma

In this chapter, by performing Particle-in-Cell (PIC) simulations, we explicitly il-
lustrate the effect of finite electron temperature on the space-time evolution and
breaking of a large amplitude relativistically intense electron plasma wave. For this
purpose we load a Juttner-Synge [58| velocity distribution along with a Akhiezer -
Polovin [27] type (travelling wave) initial condition in our code. We first show that

for phase velocities for which v4 <1+ knfg;e, the wave damps within a few plasma

period and essentially follows the relativistic Landau Damping rate predicted by

Buti [59]. In the opposite regime (i.e. for v, > 1 + %L} we find that waves

mc?
propagate through the system for a long period of time and in small amplitude

limit follow the relativistic warm plasma dispersion relation [59-63]. Further we

kB Te
mc?

demonstrate that in the same regime (i.e. for v4 > 1+ ), for the phase ve-
locities less than the velocity of light ¢, like the cold plasma Akhiezer - Polovin
wave [33], in a warm plasma also, relativistically intense waves break via phase
mixing when perturbed by an arbitrarily small amplitude longitudinal perturba-
tion. Using our simulation results, we also show that the phase mixing time scale
in a warm plasma can be interpreted using Dawson’s formula [5] for phase mixing
time for a non-relativistic cold inhomogeneous plasma, which is based on out of

phase motion of neighbouring oscillators constituting the wave.
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7.1 Introduction

This is the last topic that we explore in this thesis. In the previous chapter we have
verified Coffey’s [36] wave breaking limit for a Maxwellian plasma. Here we extend
our previous study in the relativistic regime where the relativistic mass variation
effects of the electrons are taken into account. Unlike the nonrelativistic warm
plasma case, where Coffey’s limit is the one and only existing theoretical wave
breaking limit available in the literature (till date), the relativistic counterpart
contains several theoretical results given by several group of authors in last three
decades. These are as follows:

In 1988, Katsouleas and Mori [37,39], first extended the calculations carried out
by Coffey [36] by including relativistic mass variation effects. By using a relativistic
water bag model, an analytical expression for the maximum electric field amplitude
(Ekar) that can be sustained by a relativistically intense electron plasma wave in a
warm plasma has been derived as a function of electron temperature and Lorentz

factor (74), which can be written as

eBxm _ \—L/A4 [ln(Q,y;/QﬁlM)] 1/2 (7.1)
MW,C

where A\ = 3kgT./mc? is the normalised electron temperature. The authors [37,
39| strictly mentioned that the above expression [Eq.(7.1)] is valid only in the
ultrarelativistic regime which is defined as 73&\ >> 1. In the same year Rosenzweig
[38] presented another expression of maximum electric field amplitude ( Eros, in
the limit vy — ¢) as a function of electron temperature. The analytical expression

for Eros is given by

s _[1]" .

MWy oA
Similar wave breaking limit [same as Eq.(7.2)] was obtained by Sheng and Meyer-
ter-Vehn [40] in 1997, using a different set of equations [79-81|. Recently Schroeder
et. al. [41,42] proposed a new model of relativistic warm fluid theory and derived
the following two expressions for wave breaking amplitude (Fgpg) in the limits
YA >> 1 and v\ << 1 (laser wake field regime) respectively. These expressions
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respectively can be written as

BN ONONEEN o

{QEEES}Q==2(7¢-1)—“%¢{%(vﬁA)”4——(7§A)”2] (7.4)

mwpyC

Later Trines ef. al. [43] extended the calculations of Katsouleas & Mori [37,39] to

the regime ﬁ/i)\ << 1 and derived the following expression of wave breaking limit

[eETN

MWpC

]2 =203 — 1) = 27 | (12N = (131" (7.5)

All these theoretical results [37-43] clearly indicate that, thermal effects signifi-
cantly reduces the wave breaking limit from the cold plasma Akhiezer - Polovin
limit [27] (E4p). Physically it is expected, because the tendency of plasma density
to increase to infinity at the breaking point is opposed by the thermal pressure
term and the inclusion of thermal velocity of the particles in the direction of wave

propagation enables them to get trapped at a lower amplitude of the wave.
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Figure 7.1: Wave breaking limit as a function of A in laser wake field regime
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Figure 7.2: Wave breaking limit as a function of A in ultrarelativistic regime

It should be noted here that, considerable amount of work has been contributed
by several authors [37-43] to this subject over past three decades, mainly focusing
on the theoretical analysis by assuming wave like solutions of relativistic Vlasov
- Maxwell’s equation and these results sometimes lead to different conclusions
[43,108,109]. As for example, in Figs.(7.1) and (7.2) we have shown the variation
of wave breaking limits derived by different authors (as discussed above) as a
function of electron temperature A\(= 3kgT,/mc?) for a fixed value of Lorentz factor
(75 = 10). These figures clearly show differences in results obtained by different
authors [37,39,41-43] even in the same parameter domain. The only similarity is
that all the expressions in the regime ’y;)\ < 1 approach the cold plasma Akhiezer
- Polovin [11,27] limit (E4p) in the limit A — 0. Here we would like to mention
that although Trines et. al. [43,108,109] have made some attempt to resolve the
above differences by giving mathematical arguments which are essentially based
on Taub’s inequality [110] and closure of the hierarchy of the relativistic fluid
equations, but to the best of our knowledge, till date there is no consensus on a
suitable theoretical model expression for studying the breaking of relativistically
intense electron plasma waves in a thermal plasma. So at this present situation, it

is imperative to conduct a numerical experiment on the space-time evolution and
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breaking of a large amplitude relativistically intense plasma wave in a warm plasma
with a relativistically correct velocity distribution. Thus, finally in this last chapter
we carry out Particle-in-Cell (PIC) simulations in order to investigate the effect of
electron temperature on the breaking of a relativistically intense electron plasma
wave in a warm plasma where electron’s velocity distribution is a Juttner [58].

Our first aim would be to excite a travelling wave with relativistic speed in a
Juttner -Synge [58] plasma which propagates without damping for a large period
of time and next to check its sensitivity towards a small amplitude longitudinal
perturbation. Because it is also very crucial to check whether the above limits hold
in the presence of a small amplitude perturbations or do they phase mix [29-33] like
cold plasma Akhiezer - Polovin wave; as in a realistic experiment, there will always
be some noises associated with the excited wave. From the present understanding
it is expected that due to the applied perturbation, the characteristic frequency
would acquire a spatial dependency which would lead to phase mixing [29-33|.
Therefore, we measure the characteristics frequency of the wave at each position
in space, for both the cases without and with the external perturbation.

Thus in order to reach our goal, in section 7.2, we first load Akhiezer - Polovin
type initial conditions (parametrized by amplitude w,, and phase velocity ;) in
our PIC code. Along with this, we also load a finite electron temperature (Juttner
- Synge distribution) to the background. Here we note that, the inclusion of
non-zero electron temperature would try to damp the excited wave within a few
plasma period by relativistic Landau damping effect - which would swamp out
the wave breaking physics. This damping rate crucially depends on the phase
velocity of the wave and the background electron temperature. It is expected
that damping would be negligible for phase velocities near the velocity of light c.
Therefore at the beginning we clearly delineate parameter regimes where either
the phenomenon of Relativistic Landau Damping (regime 1) or the phenomenon
of wave breaking (regime 2) would be dominant. In regime 1, we observe that
the damping rate essentially follows the relativistic Landau damping rate derived
first by Buti [59] in 1962. In the opposite regime (regime 2), we find that without
any external perturbation the resultant wave propagates through the system for a
long period of time and, in the low amplitude limit, it follows the relativistic warm
plasma dispersion relation first given by Buti [59] and later derived by several
other authors [60-63]. Further we find that, like a cold plasma Akhiezer - Polovin
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wave, in a warm plasma also relativistically intense wave breaks when perturbed
by an arbitrarily small amplitude longitudinal perturbation. Breaking occurs at
an amplitude far below the existing theoretical limits [37-43] presented in the
literature. We demonstrate that this breaking is a manifestation of the phase
mixing phenomena [29-33], as mentioned above. We clearly show that after adding
the external perturbation the characteristic frequency of the wave indeed becomes
an explicit function of space which lead to wave breaking via phase mixing at an
amplitude which is well below the existing theoretical limits. Further in section 7.3
we show that the results obtained from simulation indicate that the phase mixing
time scale in a warm plasma can be interpreted using Dawson’s formula [5] for a
non-relativistic cold inhomogeneous plasma, which is based on out of phase motion
of neighbouring oscillators constituting the wave and separated by a distance equal
to twice the amplitude of the oscillation/wave. Finally in section 7.4 we summarize

this work and conclude.

7.2 Relativistic Particle-in-Cell Simulations Result

In this section we perform PIC simulations (method discussed in chapter-2) with
periodic boundary conditions in order to study the effect of finite electron tem-
perature on the maximum electric field amplitude that can be sustained by a
relativistically intense electron plasma wave in a warm plasma. For this purpose
we first load Akhiezer - Polovin [27] type initial conditions in our relativistic PIC
code. Along with this a finite temperature is also added to the electrons by loading
a Juttner - Synge [58] velocity distribution which can be expressed as (loaded using

inversion method [48], discussed in chapter -2):

2

mc p?
— 1 7.6
kgT. * m2c? ] (7.6)

1

B 2mcK1(k“;‘£)

f(p) exp

Here K is the modified Bessel function of second kind [97]. In terms of A, Eq.(7.6)

can be written as

—) exp [—; 1+ P ] (7.7)

S
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Ions are assumed to be infinitely massive providing a neutralizing positive
background. Our simulation parameters are as follows: total number of parti-
cles N, = 80,000, number of grid points N = 500, time step At = 7/160. We use
periodic boundary condition where the wavelength L depends on the amplitude of
the Akhiezer - Polovin wave which in turn is decided by its input parameters u,,
and (4. Normalizations are as follows: © — zw,/c, t = wpt, ne — ne/ng, v = v/c,
p — p/me, E — eE/mwyc. In the following two subsections, we present the results
obtained from the relativistic PIC simulations carried out in the respective regimes
where the relativistic Landau damping (regime 1) & wave breaking (regime 2) are

dominant.

7.2.1 Regime 1 - Relativistic Landau Damping

We have already mentioned that our goal is to verify the existing theoretical re-
sults [37-43| on the maximum electric field amplitude that can be sustained by
a relativistically intense wave in a warm plasma. For this purpose at the outset
we should ensure ourself that the other effects would not interfere with the wave
propagation. As the plasma under investigation contains a non-zero electron tem-
perature, therefore it is possible that the temperature effect would try to damp
the wave. As the waves are relativistically intense, here the reason for damp-
ing would be Relativistic Landau damping - first discovered by Buti [59] in 1962.
By linearising relativistic Vlasov - Poisson’s equations Buti [59] first wrote down
the relativistic Landau damping rate (¢), which in the limit kg7, > mc? can be

expressed as [59|

1 3\
€= —Zﬂck [1 - Z} (7.8)

The author [59] also mentioned that, “the damping is very strong in the case
where phase velocity is small compared to ¢”. In Fig.(7.3), we have shown the time
evolution of electrostatic energy obtained from simulation for 3, = 0.5, u,, = 0.1,
A = 3 in magenta colour. The blue line is the relativistic landau damping rate
derived by Buti [59]. This figure shows that the damping rate follows the theoretical
predictions made by Buti [59] which is given by Eq.(7.8). This damping rate
decreases significantly as [, increases. From the complete analysis of relativistic

Landau damping rate it is shown that the damping rate is very small for wave
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Figure 7.3: Time evolution of electrostatic energy at a fixed grid point for B4 = 0.5,
Upm =01, A=3

Lorentz factor v, > 1+ X/3 [59,63]. When this inequality is reversed the damping
becomes very strong and swamps out the wave propagation and hence the wave
breaking physics.

For the sake of clarity, here we have shown a schematic diagram of relativis-
tic velocity distribution function [Fig.(7.4)] where we have roughly depicted the
parameter regimes (for A = 1) where either relativistic Landau damping or wave
breaking would be dominant. From this figure we understand that to study wave
breaking we need to work in the regime between the vertical black (corresponding
to B, = 0.68, for 7, = 1+ A/3) and the red line (corresponding to f, = 1) where
wave particle interaction is almost negligible. Therefore in the next subsection to
explore the wave breaking physics, we keep the phase velocity of the Akhiezer -
Polovin waves 3, = 0.95 such that the relativistic Landau Damping rate remains

small for the entire range of A\ where we carry out the numerical experiment.
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Figure 7.4: Parameter domains exhibiting relativistic Landau damping and wave breaking

7.2.2 Regime 2 - Wave breaking (via phase mixing)

Here, in all simulation runs we keep the phase velocity of the Akhiezer - Polovin
wave at (3, = 0.95. Thus the relativistic Landau damping rate is negligible and
the wave should propagate for a long period of time without damping or loosing
the periodicity. Figs.(7.5) and (7.6) respectively show the space time evolution
of the electric field profile of a relativistically intense wave for A = 5 x 10~* and
A = 1072, The value of u,, is taken as 0.30. From these figures we see that the
wave propagates through the system without any damping and without loosing
periodicity for a large period of time. In Figs.(7.7) and (7.8), we have also plotted
the time evolution of the electric field & density at a fixed grid point for two
different initial temperature and observe that both are oscillating with a nearly
constant amplitude. By measuring the time difference between two consecutive
peaks from Figs.(7.7) and (7.8) we find that when a finite temperature is added with
the pure Akhiezer - Polovin wave, the frequency does not remain €, (frequency
of the pure Akhiezer - Polovin wave propagating in a cold plasma, as studied in
chapter - 4). In the small amplitude limit, we can estimate this characteristic
frequency from the relativistic warm plasma dispersion relation [59,61-63] which

is followed by a relativistically intense electron plasma wave in a warm plasma. In
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the limit kpT,/mc* << 1 this dispersion relation can be written as

)
2 _ 2, 122 2
Q —wp-l—kc)\—gwp)\ (7.9)
An elementary derivation of this dispersion relation is given in Appendix - C.
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Figure 7.5: Space-time evolution of electric field for 85 = 0.95, uy, = 0.3, A =5 x 1074
and 6 = 0.0
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Here, we verify this dispersion relation for two different amplitudes u,, = 0.1 &
0.3 by changing the values of A and k. In Figs.(7.9) and (7.10), we respectively
show the variation of frequency 2 as a function of A and & for fixed value of other
parameters. In these figures the points are obtained from PIC simulations and
the continuous lines are the theoretical relativistic dispersion relation given by
Eq.(7.9). Note that, for amplitude u,, = 0.1 we see a better matching as compared
to u,, = 0.3. This is expected, as this dispersion relation is obtained by linearising
the Valsov - Poisson’s equations, the excited wave is supposed to follow it only in
the low amplitude limit.

Now we add a very small amplitude sinusoidal velocity perturbation with a
maximum amplitude § to this large amplitude Akhiezer - Polovin wave with same

mode number as the large amplitude Akhiezer - Polovin wave (kqp). In Figs.(7.11)
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and (7.12) we show that the space -time evolution of the resultant electric field of
the perturbed wave for two different values of A and 0. Similarly, in Figs.(7.13) and
(7.14), we have plotted the time evolution of the perturbed electric field and density
at a fixed grid point for the same parameters. Both the figures are exhibiting
gradual deformation of the wave electric field and density profile which show that
as time progresses the wave profile deforms and after a certain time (decided by u,,,
By, A and 0) the wave amplitude becomes modulated. We define wave breaking
time (phase mixing time) as the time when the “first dip” appears in the time
evolution plot [Figs.(7.13) and 7.14)]. We expect that this breaking is manifested
via the process of phase mixing, as after adding the perturbation the characteristic
frequency could become a function of space. To confirm our prediction we have
measured the initial total energy (“a”) of each particle (electron sheet) for both
the cases without and with perturbation. Then the characteristic frequencies of
the motion of the particles have been evaluated by using the general expression

of frequency for a relativistic harmonic oscillator, which is given by (derived in
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Chapter-4)
7,,I

m
~ P REr) — K ()]
where E(r) and K(r) are complete elliptic integrals of second and first kind [97]
respectively, 72 = (a — 1)/(a + 1) and 7' = (1 — 7?)"/2, In Figs.(7.15) and (7.16)

we have respectively plotted the frequency (averaged over a cell) as a function of

Q (7.10)

space for the cases without and with perturbation for a fixed electron temperature
(A = 0.01). We observe that in Fig.(7.16), after adding the perturbation, the
frequency indeed becomes a function of position as the total energy “a” becomes
an explicit function of the space; this is absent in Fig.(7.15) as for 6 = 0 the energy

of each particle remains independent of their respective equilibrium position.
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Figure 7.15: Frequency of the wave as a function of the position for 34 = 0.95, uy, = 0.3,
A=0.01 and 6 = 0.0

The occurrence of phase mixing has been again confirmed by plotting the
Fourier spectrum of electric field amplitude (Ej) at different instants of time for
both the cases without (left) and with perturbation (right). Compare these two
figures (blue and red) in Fig.(7.17). It shows that, after adding the perturbation,
as the time progresses the amplitude of the primary mode (k,,) reduces signifi-
cantly (red curves) with the simultaneous growth in higher order modes. It is clear

from the Fig.(7.17) that a significant amount of energy has been transferred to the
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Figure 7.16: Frequency of the wave as a function of the position for S5 = 0.95, u,, = 0.3,
A=0.01 and 6 =0.01

higher harmonics which is another signature of wave breaking via phase mixing
process reported by other authors [29-31]. As a consequence some of the electrons
will acquire energy from the wave and accelerate to much higher energies.

A clear manifestation of the phase mixing process i.e generation of energetic
electrons can be seen by plotting the evolution of electron phase - space. In
Figs.(7.18) and (7.19) we have respectively plotted the evolution of electron phase
space for the cases without and with perturbation. From these figures we observe
that in the presence of a small amplitude perturbation, the number of energetic
particles increases significantly after wave breaking and thus confirms wave break-
ing via the gradual process of phase mixing which had been reported earlier by
several authors in different contexts [14,16,20,22,111]. We also note that the phase
space plots for the unperturbed case remain unchanged from the initial stage of

excitation.

7.3 Estimation of Phase Mixing Time

As we have found that after adding a small amplitude sinusoidal velocity perturba-
tion the characteristic frequency acquires a spatial dependency, therefore we also
expect that in a warm plasma the wave breaking time (phase mixing time) can

also be estimated from Dawson’s formula [5] for phase mixing time given for a non-
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relativistic cold inhomogeneous plasma. This formula was based on out of phase
motion of neighbouring sheets constituting the wave and separated by a distance
equal to twice the amplitude of the oscillation/wave. Now in order to calculate the
phase mixing time scale using Dawson’s formula we first measure the derivative
dQ)/dx from Fig.(7.16)and note its maximum value. &4, is calculated by measur-
ing the initial displacement of all the particles from their respective equilibrium
positions at ¢ = 0. Thus by measuring the values of d2/dz and &4, from simu-
lation data, we calculate the phase mixing time scale by using Dawson’s formula
which is wptip ~ m. Now in order to verify this scaling on the amplitude
of the perturbation (d2/dx depend on the amplitude of the perturbation J) we
repeat the above numerical experiment such that the maximum velocity ampli-
tude of Akhiezer - Polovin wave is kept fixed at w,, = 0.30 and amplitude of the
perturbation ¢ is varied from 0.01 to 0.1. Fig.(7.20) shows the variation of phase
mixing time as a function of the amplitude of the applied velocity perturbation ¢
for two different values of A = 5 x 107 and 1072. The simulation results clearly
indicate that as the amplitude of the perturbation is increased, phase mixing time
decreases. Next we vary the electron temperature keeping the values of w,, and ¢
fixed. Fig.(7.21) shows the variation of phase mixing time as a function of elec-
tron temperature for two different values of fixed § = 0.01 and 0.02. This figure
indicates that the phase mixing time decreases with increasing the electron tem-
perature A. In both two figures blue points are the phase mixing time measured
by observing the appearance of first dip of the wave electric field, while the green
squares are the phase mixing time scale estimated by using Dawson’s formula.
These figures show that Dawson’s phase mixing time formula clearly captures the
underlying physics. The close match between simulation and analytical results
(Dawson’s phase mixing time formula) supports the role played by phase mixing
process in the breaking of relativistically intense electron plasma waves in a warm

plasma.

7.4 Summary and Discussions

In summary, the breaking of a large amplitude relativistically intense electron

plasma wave in a warm plasma has been studied by loading a Juttner - Synge
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distribution along with a Akhiezer - Polovin type initial conditions in a relativistic
Particle-in-Cell code. It has been observed that in the regime where wave Lorentz
factor 74 < 1+ /3, the wave damps in a few plasma period and swamps out the
wave breaking physics. The results obtained from simulations indicate that the
damping rate essentially follows the relativistic Landau damping rate predicted
by Buti [59]. In the opposite regime we have found that the wave propagates
through the system for a long period of time and in the small amplitude limit, the
frequency of the resultant mode follows the relativistic warm plasma dispersion
relation * = w? + k**A — 5w2)\/6. Next we have shown that when a small
amplitude longitudinal sinusoidal velocity perturbation is added to this Akhiezer
- Polovin wave, the wave breaks via the process of phase mixing at an amplitude
far below its conventional theoretical breaking limits that exist in the literature
[37-43|. As for example, in Figs.(7.11) and (7.12), the wave breaks at an amplitude
el /mwyc ~ 0.3, which is far below the wave breaking limits obtained from the
models given by Katsouleas-Mori [37] & Trines et. al. [43] (eE/mwyc ~ 1.8033),
Rosenzweig [38] and Sheng et. al. [40] (eE/mwyc ~ 8.1648) and Schroeder et. al.
[41,42] (e E/mw,c ~ 1.6137). Here we have explicitly shown by carrying out a PIC
simulation that, relativistically intense plasma waves in a warm plasma breaks via
the process of phase mixing even at eE/mw,c ~ 0.3 when perturbed longitudinally
by a small amplitude perturbation. Therefore in experiments it is impossible to
reach eE/mw,c ~ 1, as in a realistic experiment, it is natural to expect some noise
which would break the wave via phase mixing. We have also illustrated that this
phase mixing time can be predicted from the Dawson’s formula [5] for phase mixing
time scale for a non-relativistic cold inhomogeneous plasma, which is based on out
of phase motion of neighbouring oscillators constituting the wave and separated

by a distance equal to twice the amplitude of the oscillation /wave.
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There is no real ending. It's
Just the place where you stop
the story.

- Frank Herbert

Conclusion and Future Scope

This chapter contains conclusions and summary of our work studied in this thesis.

Directions for further research are also enumerated.

8.1 Conclusions and Summary

In this thesis, by performing analytical calculations and computer experiments, we
present a thorough investigation and understanding on the formation, evolution
and breaking of variety of relativistically intense longitudinal electron plasma os-
cillations/waves that a homogeneous unmagnetized plasma (cold and warm) can
support. We have started our research from the cold plasma wave breaking (via
phase mixing) physics, both analytically and numerically, by using Dawson sheet
model. Then we have gradually extended our focus of attention to the wave break-
ing physics in a warm plasma by using Particle-in-Cell (PIC) simulation method
because sheet simulation method has some limitations here. A detailed description
of Sheet simulation method and a brief overview of PIC simulation method have
been given in Chapter -2.

Then in chapter -3, we have studied the space-time evolution and breaking (via
phase mixing) of a large amplitude relativistically intense wave packet (specified
by it’s amplitude ¢ and spectral width Ak) in a cold plasma by using Dawson sheet
model. The equation of motion of a sheet has been solved and an expression for
frequency correct upto fourth order of the oscillation amplitude has been derived
by using Lindstedt - Poincaré perturbation method (for complete derivation see

Appendix -A). Then an analytical expression for phase mixing time scale has been
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obtained by using Dawson’s reasoning [5] and it has been found that the phase
mixing time (7,,;;) of this wave packet crucially depends on the relative magnitude
of the amplitude ¢ and dimensionless spectral width Ak/k of the wave packet; for
Ak/k < 2w20% /K2, T, scales with § as 1/6° and for Ak/k > 2w20° /K>, Tinia
scales with ¢ as 1/, We have also verified our theoretical results by a simulation
code which is based on Dawson Sheet Model for three different values of Ak.
In this code, at each time step we have carefully checked the particle crossing
condition and the phase mixing time has been measured as the time taken by any
two adjacent sheets to cross over. In every case we have found a reasonably good
fit between the theoretical and simulation results.

Next, in chapter -4, we have studied the space-time evolution and breaking
of a very special kind of wave - longitudinal Akhiezer - Polovin mode in a cold
plasma. A longitudinal Akhiezer - Polovin mode actually represents a travelling
wave in a cold plasma parametrized by it’s maximum fluid velocity (w,,) and
phase velocity (8,), studied first by Akhiezer and Polovin in 1956 by including
the relativistic mass variation effect of the electrons. The authors found that, the
maximum electric field amplitude that can be sustained by this wave is given by
Eup = \/m However, in 2012 Verma et. al. by performing extensive
numerical simulation, showed that even a longitudinal Akhiezer - Polovin wave
breaks through the gradual process of phase mixing at an amplitude well below
its wave breaking limit, when it is subjected to an arbitrarily small amplitude
longitudinal perturbation. Here we have presented an analytical expression for
the phase mixing time scale for this longitudinal Akhiezer - Polovin mode by
using Dawson sheet model. At first, we have given an exact analytical solution
of equation of motion of a sheet and found the initial conditions needed to excite
Akhiezer - Polovin mode having a characteristic frequency wg, independent of
space. Then we have perturbed these initial conditions with a small amplitude
external perturbation with a velocity amplitude 0 & wavelength k,, (same as the
longitudinal Akhiezer - Polovin wave) and derived an expression for frequency
Qper in weakly relativistic limit. We have observed that, in this situation, the
characteristic frequency of the wave explicitly contains a space dependent term
due to which neighbouring electrons (which govern the wave motion) gradually
go out of phase and eventually cross causing the wave to break via phase mixing

at arbitrarily small initial perturbation. By using Dawson’s argument, we also
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obtained an analytical expression for this phase mixing time scale which shows
that the longitudinal Akhiezer - Polovin wave breaks in a time scale given by ~
ng‘b [i - l]. Next, in order to verify our theoretical results, we have numerically

u2, 4
followed the space-time evolution of longitudinal Akhiezer - Polovin wave, by using

a code based on Dawson sheet model. We have observed that, without any external
perturbation (6 = 0), the wave propagates through the system without any change
in it’s amplitude. But, when it is perturbed by a small amplitude perturbation,
we have found that as time progresses, the density profile becomes more and more
spiky as energy is irreversibly transferred to higher and higher harmonics. Due to
longitudinal perturbation, the energy which was initially loaded on the Akhiezer -
Polovin mode goes to higher harmonics, then partially returns to the original mode,
again goes to higher harmonics and so on. We have explicitly shown that this
partial back-and-forth sloshing of energy between different harmonics eventually
results in accumulation of energy at higher harmonics and interaction of these high
harmonics with the particles (sheets) accelerates the particles, causing the initial
delta-function momentum distribution to spread. We have also found that the
analytical expression derived by us shows a reasonably good fit to the observed
numerical results, thus vindicating our weakly relativistic calculation.

Another manifestation of breaking of nonlinear electron plasma oscillations via
phase mixing have been observed by changing the geometry or pattern of the
oscillation (from planar to cylindrical and spherical) and explicitly illustrated in
Chapter -5. In this chapter we have extended Dawson’s earlier work [5] by including
relativistic mass variation effects. First, we have extended the Dawson sheet model
from planar to cylindrical and spherical geometry and derived the fluid variables
by using the conservation of number of particles and Gauss’s Law. The equation of
motion of a sheet has also been derived and has been solved in weakly relativistic
limit using a perturbative method wiz. Lindstedt - Poincaré perturbation method
upto fourth order in oscillation amplitude (for complete derivation see Appendix
-B). We have observed that in general the expressions for frequencies acquire spa-
tial dependency which ultimately lead to breaking via phase mixing [5,28-33,68|.
Analytical expressions for phase mixing time scales as a function of the amplitude
of the applied perturbation (A) have been derived which indicate that for both
relativistic cylindrical and spherical oscillations, phase mixing time scales inversely
with the cube of the amplitude of the applied perturbation. We observe that, for

113



Chapter 8. Conclusion and Future Scope

nonrelativistic case also the variation of phase mixing time with the amplitude
of the applied perturbation follows the same scaling law. Inclusion of relativistic
effects |55, 56| only hastens the phase mixing time but the scaling law remains
unchanged. We also verify our analytically obtained scaling law by Sheet Simu-

lation code. For cylindrical and spherical oscillations, fluid variables depend only

on the radial coordinate of the oscillating species (here the electron sheets) i.e.

they are radially symmetric in nature. As Bessel functions and Spherical Bessel
functions [97] form a complete orthogonal set (basis functions) in cylindrical and
spherical coordinate systems respectively, then any arbitrary perturbation imposed
in these systems can be written as a superposition of these basis functions (Fourier
Bessel Series) in their respective coordinate system [101,102]. Therefore to excite
an oscillation in cylindrically and spherically symmetric system we use Bessel func-
tions and Spherical Bessel functions respectively as an initial perturbation. Here
also we have found that, as the time progresses, the density becomes more and
more spiky and at the time of breaking the density becomes singular.

Here we would like to note that the density singularity is an artefact of cold
fluid plasma model. In fact, when non-linear density perturbations are excited
in a large amplitude plasma wave, electron pressure and hence thermal effects
may become important as the electron thermal pressure may not allow the density
compression to build upto such high values as predicted by the simple cold plasma
fluid model. Therefore, under this condition a warm plasma theory is required.
In 1971, Coffey [36] investigated the phenomenon of wave breaking for an electron
plasma wave (nonrelativistic) in a warm plasma by using the simplest distribution
i.e. “water-bag” distribution [39,57] for electrons and showed that maximum elec-
tric field amplitude explicitly depends on the electron temperature and decreases
monotonically with increasing electron temperature which is typically known as
Coffey’s limit.

In Chapter - 6, by using a 1D Particle-in-Cell (PIC) simulation code, we have
numerically investigated the maximum electric field amplitude that can be sus-
tained by a “self-consistent" freely running electron plasma wave (Langmuir wave)
in a warm plasma where electron’s velocity distribution is a Maxwellian. We
have also studied the stability of this wave towards a small amplitude longitudinal
perturbation. From simulation we have observed that Coffey’s propagating wave

solution [36], which was derived using a “water-bag” distribution for electrons, also
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represents a self-consistent propagating wave in a Maxwellian plasma albeit with
a lower amplitude. In addition to this we have shown that if the amplitude of
the initial perturbation exceeds Coffey’s wave breaking limit, within a few plasma
periods the initialized wave self-consistently conforms itself with the background
distribution and settled at an amplitude below Coffey’s limit for a large period of
time (~ 100 plasma periods) provided the Landau damping rate is very weak. We
have found that this final self-consistent wave amplitude does not increase even
after increasing the perturbation amplitude and thus can be taken as maximum
sustainable electric field amplitude. By changing the electron temperature, we
have repeated our experiment and found that maximum electric field amplitude
that can be sustained by a self-consistent electron plasma wave in a Maxwellian
plasma follows a similar scaling given by Coffey [36] but with slightly different
coefficients.

Finally in Chapter -7, we have explored the effect of electron temperature on
the space-time evolution of a relativistically intense electron plasma wave in a
warm plasma by conducting numerical experiment using 1D PIC code. In order
to study the space time evolution and stability of these waves towards a small
amplitude longitudinal perturbation in a warm plasma, we have loaded Akhiezer
- Polovin [27] type initial conditions in our PIC code. Along with this, a finite
electron temperature (Jattner-Synge distribution [58|) has been added. At first,
we have observed that for phase velocities for which v < 1+ kgT,/mc?, the wave
damps within a few plasma period and essentially follows the relativistic Landau
Damping rate given by Buti [59]. In the opposite regime (v > 1 + kgT./mc?)
we have found that the wave propagates through the system for a long period of
time and in small amplitude limit essentially follows the relativistic warm plasma

dispersion relation [59-63] (an elementary derivation is given in Appendix-C). Fur-

kpTe
mc?

velocities less than the velocity of light ¢, like the cold plasma Akhiezer - Polovin

ther we demonstrate that in the same regime (i.e. for 4 > 1+ ), for the phase

wave [33], in a warm plasma also, relativistically intense waves break via phase mix-
ing when perturbed by an arbitrarily small amplitude longitudinal perturbation.
This is far below the existing theoretical results on warm plasma wave breaking
available in the literature [37-44]. By measuring the characteristic frequency of
the wave (by measuring the initial energy of the particles constituting the wave)

at each position, we have found that after adding the external perturbation the
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characteristic frequency of the wave becomes a function of space which ultimately
breaks the wave via phase mixing. Here the phase mixing time (wave breaking
time) has been defined when the “first dip” appears in the time evolution plot of
the perturbed electric field. Like the cold plasma case, here we have also seen the
generation of higher and higher harmonics and as a consequence the generation of
energetic particles with the progress of time. Variations of phase mixing time for
a wide range of input parameters have been studied. Using our simulation results,
we also show that the phase mixing time scale in a warm plasma can be inter-
preted using Dawson’s formula [5] for phase mixing time for a non-relativistic cold
inhomogeneous plasma, which is based on out of phase motion of neighbouring

oscillators constituting the wave.

8.2 Future Scope

As the present thesis focuses on the formation, evolution and breaking of variety
of relativistically intense longitudinal electron modes that a homogeneous unmag-
netized plasma (cold and warm) can support, one can think of several possible
improvements in the present study. In the following we enumerate some of the

possible future directions leading from the present study.

1. First of all, here it should be noted that, the present study explores the
physics of the breaking of longitudinal waves in a cold & warm plasma and
the study has been carried out in one - dimension (1-D) where the variables
are allowed to vary only along one direction (the direction of propagation).
In 2D, relativistically intense plasma waves excited by a finite width, short
laser pulse or by a pulse with a sharp leading edge in an underdense plasma
has a specific horseshoe (or “D shape”) structure where the curvature of
the constant phase surfaces increases with the distance from the pulse. The
curvature radius decreases until it is comparable to the electron displacement
in the nonlinear plasma wave leading to a new type of self-intersection of the
electron trajectories. This is called transverse wave breaking which occurs at
much lower wave amplitudes than the conventional 1-D wave break, studied
first by Bulanov et. al. [112]. The inclusion of transverse direction yields

interesting consequences on the space - time evolution of the oscillation /wave
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and thus will be interesting to explore in future.

. We understand that phase mixing leading to wave breaking occurs at ar-
bitrarily small amplitude in a homogeneous plasma, provided (i) the back-
ground ions have a finite mass and/or (ii) the excited plasma wave is rela-
tivistically intense because in these cases the characteristic frequency acquires
a spatial dependency. In this thesis, we have focused our attention only on
the relativistically intense oscillations/waves in a homogeneous plasma where
ions are at rest. In the very ultrarelativistic regime (7, very high), when the
mass of the electron becomes extremely high, the effect of ion motion can
be important. Therefore it will be interesting to explore the effect of self-
consistent ion motion (which arise because of low frequency ponderomotive
forces) on the space-time evolution of relativistic intense waves in a cold and
warm plasma. Moreover, an analytical expression for the phase mixing time
scale for relativistically intense oscillations/ waves as a function of the mass
ratio and amplitude of the applied perturbation is yet to be discovered. To
derive an analytical formula for this phase mixing time scale (as a function of
the mass ratio and amplitude of the applied perturbation) and its verification

by Particle-in-Cell method will be an interesting future work.

. In chapters -3, 4 and 5 we have explored the wave breaking physics in a cold
plasma by using the sheet simulation method [96]. All the modes have been
studied up to the phase mixing time. Physics of these modes beyond wave
breaking (phase mixing) needs to be explored as it may have direct rele-
vance in particle acceleration experiments. It is also interesting to know the
type of distributions that will be formed after the breaking of these waves.
In Ref. [74] it has been demonstrated that for nonrelativistic cold plasma
oscillations, after wave breaking all the initialized energy does not end up
as the random kinetic energy of the particles, but some fraction always re-
mains with two oppositely propagating coherent BGK [75] like modes with
supporting trapped particle distributions and further demonstrated that the
amplitude of this mode follows Coffey’s limit [36]. Therefore one question
naturally comes. Do the relativistically intense oscillations/waves lead to co-
herent structures after long time evolution (breaking) 7 If they do, then what

is the maximum electric field amplitude of these modes 7 These questions
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are unanswered yet and will be exciting to explore in future.

4. In chapter - 5, we have mentioned about “turn around time” [56]| for spherical
wave - the time at which the wave changes its direction of propagation. It
has been strictly mentioned that the turn around occurs when the frequency
of the wave acquires a spatial dependency [56] and an analytical expression
for this turn around time has also been derived by the authors of Ref. [56].
But, the verification for this time scale by changing the amplitude of the
perturbation has never been attempted. In this thesis, we have shown that,
for oscillations in cylindrical geometry the characteristic frequency acquires
a spatial dependency. Therefore it is expected that, cylindrical waves will
also turn around after a certain time scale. In future, we wish to estimate
the turn around time theoretically and by using the sheet simulation code

we wish to verify them.

Q/kvs M3for [ = 0.95

1.2
115 _g_PICforum=O.1 |
T 1.1 -s-PICforu =0.3 N
X L oap | [ O /K= |
S 1.05 /Hgﬁb
1 llllllllllllllllllllllllll L.l.m.,’:.'éz‘...‘ -

kT /mc 2
e

Figure 8.1: Q/k as a function of A, for B4 = 0.95, uy, = 0.10,0.30, 6 = 0.0

5. In chapter - 7, simulations have been performed for a relatively small range
of A = 107* — 1072, In fact, we have found that, in higher temperature
limit, the phase velocity of the wave exceeds the velocity of light ¢ and

thus becomes superluminal. In Fig.(8.1), we have shown the variation of
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the phase velocity of the resultant wave (Akhiezer - Polovin [27| with a
Juttner-Synge distribution |58|) as a function of electron temperature A. This
figure indicates that in higher temperature limit, the phase velocity exceeds
the velocity of light ¢. Moreover we have found that, these superluminal
waves do not exhibit phase mixing even under the application of the external
perturbation. As for example, here we have shown the space-time evolution of
the electric field profile & snapshots of electron phase space without [Fig.8.2
and Fig.8.3] and with perturbation [Fig.8.4 and Fig.8.5] respectively.

B, =095u =030, A=0.90
é m

p

eE/mw ¢c —

Figure 8.2: Space-time evolution of electric field for B4 = 0.95, uy, = 0.3, A = 0.90 and
0=0.0

From Fig.(8.2), we observe that, the wave propagates even under the external
perturbation without any breaking. Moreover, from Fig.(8.4) and Fig.(8.5),
we find that there is no symptom of wave breaking via phase mixing. Our
study indicates that, for superluminal waves, the characteristic frequency
does not acquire any spatial dependency when it is subjected by an external
perturbation and thus does not exhibit phase mixing. We wish to analyse

the reason behind this further in the future.
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Figure 8.3: Snapshots of electron phase space for 35 = 0.95, u;, = 0.3, A = 0.90 and
6 = 0.0 at different time steps
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Figure 8.4: Space-time evolution of electric field for B4 = 0.95, up = 0.3, A = 0.90 and
0=0.1
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Figure 8.5: Snapshots of electron phase space for 34 = 0.95, u,, = 0.3, A = 0.90 and
0 = 0.1 at different time steps
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Lindstedt - Poincaré Perturbation

Technique (In Planar Geometry)

Here we give a solution of the equation of motion of a sheet (derived in chapter
-3) and derive the expression for frequency € in the weakly relativistic limit. We
essentially follow the Lindstedt - Poincaré perturbation technique [54] and take a
general wave packet like initial condition specified by it’s amplitude ¢ and spectral
width Ak (same as in chapter -3). The equation of motion of a sheet including the

relativistic mass variation effect can be written as

+wX=0 (A1)

In weakly relativistic limit (& < 1), the above equation can be approximated as

. A
£ ute - Suets v B o (A2)

The above equation can be separated into following two equations:

E+wi+eaf2=0 (A.3)
E+wpf + et ~ 0 (A4)
where, €, = —%%5’23 and ey = %%}123 In the following two sections, we respectively

solve Egs.(A.3) and (A.4) by Lindstedt - Poincaré perturbation technique [54].
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The initial conditions are as follows:

_ w0l 1
&(x,0) » {kcos(k‘x) + . Akcos(k + Ak)x] (A.5)
and
v(z,0) = w0 lsm(lm:) + sin(k + Ak)x (A.6)
’ 2 |k k+ Ak

Eq.(A.5) represents the position perturbation of the sheets due the density
perturbation of the form n(z,0) = ng [1 + dcos (3Ex) cos (k + &) z].
A.1 Perturbative Solution of £ +w’>¢ + €62~ 0 :

The equation is
€+ w + 6662 ~ 0

Now we expand the displacement ¢ and the oscillation frequency €(z.,) in series
as: £ =&+ e+ €&+ ... and Q% = w? + wi + €jw; + ... [54]. Therefore

E=bteali+eb+.. (A7)

and
E=boteabi+eb+ .. (A.8)

Using the series expansions of &, § , f and Q?, Eq.(A.3) can be re-framed as

(Co+ &+ it .) +(Q —awi —fws — )G+ abi +ebo+..) =—
e+ a& + b+ )b+ aé + b+ ..)* (A9)

Equating the coefficients of €} from the both side of Eq.(A.9), we get
So+ 0% =0 (A.10)
The solution of the above equation is

o = Acos(Qt + ¢o) (A.11)

126



Appendix A. Lindstedt - Poincaré Perturbation Technique (In Planar Geometry)

Using the initial conditions given by Eqs.(A.5) and (A.6), the value of A and ¢y

come out respectively as

5 k2 2k V2
Alr) = = |1 Ak A12
() =5 { T an T e an e x)} (A-12)
and
cos(kx) cos(k+Ak)x
+
do(x) = tan™* | SN | (A.13)
[szn(k:v) + szn(k—l—Ak)r]
k (k+Ak)
Now equating the coefficients of e} from the both side of Eq.(A.9), we get
€+ Q%6 = wito — &€ (A.14)

Using the expression for &, from Eq.(A.11), Eq.(A.14) becomes

€ + Q%) = w?Acos(U + ¢o) — A3Q% cos(Qt + ¢y) sin?(Q + ¢p) (A.15)

302 302

&+ Q% = <w%A _A ) cos(Qt + ¢g) — A cos 2(Q2t + ¢o) (A.16)

The equations for & and &, should not contain any secular terms. Therefore

A2Q)?

w? = 1 (A.17)
Now, we have
0~ w) + ew;
Putting the values of ¢; and w?, we get
3w A20?
2 2 P
3 w2A?

Putting the value of A from Eq.(A.12), the expression for frequency finally becomes

3w?s?
0 % w, [1 _ {i L Zos(Akz) H (A.20)

642 \ k2 ' (k+ Ak)2 ' k(k + Ak)
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Now from Eq.(A.16), we can write

. 3002
&+ 0% =

cos 2(2t + ¢o) (A.21)

The solution of Eq.(A.21) can be written as

3
&1(Xeq, 7) = 3§(ng) cos(Q2T + 2¢y)
—g(ig])gcos(ih — 2¢g) — @(3052(&27’ + ¢o) (A.22)

Now equating the coefficients of €2 from the both side of Eq.(A.9), we get
& + D& = wity + wilh — && — 26616 (A.23)

Substituting the values of & & & from Eqs.(A.11) & (A.23) respectively and
following the similar way as above (vanishing the resonant term), the expression

for 2 becomes,

9wt o* {cas(kxz) COS(k+Ak):cl}4] (A.24)

~ 1-—
“ ”p[ 024\ & (h+ AR

Thus, using Eqgs.(x20) and (x22b), the expression for frequency € can be written

as

3w20” [ 1 N 1 N 2cos(Akx;)
64c | k2 (k+ Ak)?  k(k+ Ak)
B Iwnd? (cos(kz;)  cos(k + Ak)a "
102461 |k (k + Ak)

(A.25)

A.2 Perturbative Solution of & + w]%f + 62554 ~ 0 :

Now the second equation is

€+ w2 + 664 ~ 0
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Like the previous subsection, here also we expand the displacement & and the
oscillation frequency Q(z.,) in series as: & = & + €& + €3& + ... and Q? =
w? + €awi + €3w3 + ... [54]. Therefore

£ = o+ ey + €2s + ... (A.26)

and
=6 +edi+ 6352 + .. (A.27)

Using the series expansions of &, &, £ and Q?, Eq.(A.4) can be written as

(€0 + eaby + €aba + ) + (0 — eqw? — 2wl — ) (& + €261 + €26a +..) = —
€2(&o0 + €261 + & + )(fo + 6251 + e%& +...)tA.28)

Equating the coefficients of €} from the both side of Eq.(A.28), we get
o+ =0 (A.29)

The solution of the above equation is same as Eq.(A.11), where A and ¢ are
respectively given by Eq.(A.12) and Eq.(A.13) Now equating the coefficients of €}
from the both side of Eq.(A.28), we get

£+ Q%6 = wito — &€ (A.30)
Using the expression for &, , Eq.(A.30) becomes

€1 + Q26 = w? A cos(Qt 4 ¢g) — APQ* cos(Qt + ¢) sin (Qt + ¢y) (A.31)

504

§+Q% = (W%A - AT) COS(QH'%)_A

50)4

16

{3cos3( + ¢o) — cos 5(Q + ¢o)}

(A.32)
The equations for & and &, should not contain any secular terms. Therefore

e A4
! 8

(A.33)
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Now, we have

0 ~ wﬁ + €qw?

Putting the values of €3, w? & A and solving for €2, we get

3wyot (1 1 2c0s(Akzy) ) °
Q= 1 — A34
w”[ +1024c4{k:2+(k:+Ak)2+ k(k—f—Ak)} (A.34)
Now, taking all the terms [from Eqs.(A.25) and (A.34)], the final expression for

the frequency stands as (this is because at each step of the perturbation technique

one is solving a linear equation driven by solution obtained from the previous step)

Q 3wy 1 N 1 N 2cos(Akx;) w0’ y
o S e Tt Ak T R AR | 1021

[3 {cas(k’xl) N cos(k + Ak)x } { 1 2cos(Akay) }2

A,
k (k + Ak Y T aran f | A

cos(kx;) + cos(Ak+Ak)x; 4
k (k+AK)

comes from the second order correction in the Lindstedt- Poincaré series due to
the term —(3/2)£€2 in equation € + & — 3¢€% + 2¢¢* ~ 0 and the other term

As mentioned in chapter- 3, now it is clear that the term 3 {

2cos(Akx;

2
{k—lz + (k+M)2 + SRR } comes from to the first order correction in the Lindstedt-

Poincaré series due to the next higher order term in the series expansion of (1 —
£€2)3/2, which is (3/8)£€" in the above equation.
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Lindstedt - Poincaré Perturbation
Technique (In Cylindrical and Spherical
Geometry)

Here we respectively derive an expression for cylindrical and spherical oscillations
from the equation of motion of a sheet in their respective coordinate system. We
essentially follow the Lindstedt - Poincaré perturbation technique [54] and solve
the equations in weakly relativistic limit.

For cylindrical and spherical oscillations, the equation of motion of an oscil-
lating sheet in weakly relativistic limit can be written in the following generalized

form

ptwip+eipp’ + exp” +eap’ =0 (B.1)
This equation can be separated in to the following two equations :
ptwip+epp’ =0 (B.2)
and
ptwip+ep’ +ep’ =0 (B.3)

Here Eqgs.(B.2) and (B.3) are respectively indicate the correction for relativistic
effects and geometrical effects. Eq.(B.3) can again be separated in to following
two equations

ﬁ+w§p+ 20> =0 (B.4)
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and
p+wip+esp’ =0 (B.5)

We take the following initial conditions : at ¢t = 0, p = Ap and p = 0. The solution
of Eq.(B.4) and an expression for frequency have been given in Appendix- A. This
frequency of oscillation (£2) correct upto the second order of oscillation amplitude

can be written as

2
Q0 =uw, {1 + 61%] (B.6)

2
Here the term 61%, arises due to the relativistic correction. In the following two
subsections we respectively solve Eqgs.(B.4) and (B.5) and derive an expression for

frequency.

B.1 Perturbative solution of j+w’p + exp* = 0

Like previous case, here also we proceed in the same manner. First we expand p

and ) in the following way :

p = poT+€p+ €§P2 + ...
0 = wf) + €ow? + eaws + ...

p=po+ €p1+ €rpr+ ...

and

p = po+ €2p1 + €xp2+ ...

Using the series expansions of p, p, p and 92, Eq.(B.4) can be written as

(Po + €2p1 + €3pa + ...) + (2 — eaw? — 2wl — ..)(po + €ap1 + €apa +...) = —

e2(6o + €261 + 656 + ...)*(B.7)

Equating the coefficients of €} from the both side of Eq.(B.7), we get
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Using the initial conditions, the solution can be written as
po = Ag cos(§2t) (B.9)
Now, equating the coefficients of €} from the both side of Eq.(B.7), we can write
1+ Qo1 = —p 4+ wipo (B.10)

Putting the value of pg, the above equation transforms to
2

A
prL+ Q%p = —70(1 + cos 20t) + w? Ag cos Ot (B.11)

The term with frequency Q on the R.H.S of Eq.(B.11) causes a spurious res-
onance in the system. This would cause p; to diverge. In order to have a finite
p1, we need to remove the resonance causing term from the R.H.S of Eq.(B.11),

removal of this requires w; = 0. Thus

A2
pL+ Qo = —70(1 + cos 202t) (B.12)

The solution can be written as

A A2 A}
= ——— + —5cosQt + — cos 2Q) B.1
p1 50z T a2 008U + £z cos 20 (B.13)

Now, equating the coefficients of €3 from the both side of Eq.(B.7), we can write

pa + Q2py = —2pop1 + wipo (B.14)

Putting the values of py and p; respectively from Eqs.(B.9) and (B.13), we get

A} A} A}
po + Q2py = _6_902 cos 30t — 3—902(1 + cos 2Qt) + <w§A0 + %) cosQt (B.15)

Removing the resonant term, we get

543

ngo = —@

(B.16)
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Now using the series expansion of (2, we can write

2 _ 2 2, 2 2
O =w, + ewy + €w;

The above equation can be simplified to

5 e3 A2
0= 20 B.17
“r { 12wy ] ( )
B.2 Perturbative solution of j + w2p + e3p® = 0
Using the series expansions of p, p, p and Q% Eq.(B.5) can be written as
(Po + €3p1 + €302 + ...) + (0 — 3w — 3wz — ...) X
(po + e3p1 + €3pa + ...) = —€3(& + €36 + 36 + ...)° (B.18)

The zeroth order solution is as same as Eq.(B.9). Equating the coefficients of €}
from the both side of Eq.(B.18), we can write

1+ Qpr = —p; + wipo (B.19)

Putting the value of pg, the above equation transforms to
‘ A3 ‘ 3A3
pL+ Q%p = _IO cos 30 + (widg — TO) cos (B.20)

As before, there is a resonating term on the R.H.S and

3A}
W%Ao — TO =0

Now using the series expansion of (2, we can write

0 = w2 + e3w]
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The above equation can be simplified to

3 63142
= 14+ - B.21
0=, 1+ 520 (B:21)
Now, Eq.(B.20) becomes
AB
P+ QP = _IO cos 382t (B.22)
The solution of p; is given by
3
=33 Qz (cos 3Qt — cos Q) (B.23)

Now, equating the coefficients of €3 from the both side of Eq.(B.7), we can write
po+Q%py = =3pgp1 +wipr +wipo (B.24)

Now putting the expression of p; in the above equation and following the same
procedure, we get

A4
0 =uw, [1 + €2 1282)4} (B.25)
p

Combining Eqgs.(B.21) and (B.25), the expression for frequency can be penned as

4
3 6314 AO :| (B26)

Q:wp{Hé ERREIvT

p

Finally combining Eqs.(B.26) and (B.17), the final expression for frequency
stands as

1 0 Z
TS T W TR w 72801

P p

Q=uw,

l A2 5 EZAQ N §€3A(2) 9 Aé ] (B.27)
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B.3 Frequency of Oscillation in Cylindrical Geom-
etry:

In cylindrical geometry, the equation of motion of an oscillating sheet (in weakly

relativistic limit) is given by

L 3raw? w? w?

Comparing Eq.(B.28) with Eq.(B.1), we get € = —%T(Z)C;J’%, € = —%’g and e3 =

Putting these values in Eq.(B.27), the expression for frequency of an oscillating

€
Ml’@w

sheet in a cylindrical geometry can be written as (this is because at each step of the
perturbation technique one is solving a linear equation driven by solution obtained

from the previous step)

32 r3po(ro)®  polro)® . polro)®
O, (rel) — 1 _ ¥ opolro 0(To 0(T0 B.9
y(rel) ”pl 6 2 12 1 512 (B-29)
In nonrelativistic limit ¢; — 0 and the above expreesion stands as
/90(7’0)2 /?0(7’0)4
Qey(nonrel) = w, ll—i— 12 + 12 (B.30)

B.4 Frequency of Oscillation in Spherical Geome-
try:

In cylindrical geometry, the equation of motion of an oscillating sheet (in weakly

relativistic limit) is given by

Y A2
p— é%pr + wzp — wf}pQ + Tppg =0 (B.31)
Similarly, comparing Eq.(B.31) with Eq.(B.1), we get ¢ = —%%é, € = —w

2
and €3 = 4%. Putting these values in Eq.(B.27), the expression for frequency of

an oscillating sheet in a spherical geometry can be written as (this is because at

each step of the perturbation technique one is solving a linear equation driven by
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solution obtained from the previous step)

302 r3po(ro)®  polro)®  po(ro)!
Qe (rel) = ] — 2 0f0 0 010 00 B.32
a(rel) “pl 6 < 12 o (B32)
In nonrelativistic limit €; — 0 and the above expression becomes
2 4
ot~ 1200 2020 B2
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Derivation of Relativistic Warm Plasma

Dispersion Relation

Here we give an elementary derivation of the dispersion relation followed by a rel-
ativistically intense wave in a warm plasma. We follow the steps used by Pegoraro
and Porcelli [60].

C.1 Derivation of Linear Dispersion Relation

We start from the 1-D relativistic Vlasov equation which can be written as

Ofr . Ofr Ofr
— el
ot v 0z © op.

—0 (C.1)

fr is the relativistic distribution function. We separate the distribution function fg
into an equilibrium part fro which is in the equilibrium rest frame and a perturbed
part fri, where we assume that | fr1| < |fro|.- We also take fro to be given by the
Jiittner-Synge distribution

fro(p) = no exp [—a(l —l—pz/mz)l/z} (C.2)

.
Am3 Ky (o)

_m_
kgTe

equilibrium density in the proper frame. As we are looking for the wave like solution

where, a = is the inverse of the relevant temperature (¢ = 1), ng is the

of the form exp ¢(kz — wt) (propagating wave along the z-direction), therefore we
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can put % = —w and % = —uk. Therefore linearising Eq.(C.1), we get
0
—wfp + tkfr = eFy ( afR())
Pz

E5 is the perturbed electric field.

= () (F2) -5

Now, from Poisson’s equation

OF
— = —4meny

0z

ny is the perturbed electron density.

kB, = —4r / frd®p

From Eq.(C.2), we can write

p./m
(1+ p?/m2)t/2

Ofro _ _ a’ng
Op.  4mmiAKy(a)

exp [—oz(l +p2/m202)1/2]

Now, putting the value of fr; from Eq.(C.4) in Eq.(C.6), we get

_Ane Ifro kp. -
e w / ( Ip. ) {1 a mw(1 4 p2/m2c2)1/2 d’p

_ dme? O fro : p./m i
= w /(8pz>3 ( ) [ 1+ p?/m2c2)1/? d’p

5,
2 (Z> i1 [(1 +p1;?/7$62)1/2]j d*p

W2 —471’62/ <5fRo>

(C.4)

(C.9)
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Taking p, = pcosf, d*p = 47p? sin 0dfd¢ and using Eq.(C.7), the above equation

modifies to
2 9 j=1 am - »
y  Wpa <k) / (41 s / 12 2
w’ = — cos 8T sin OdO x exp [—a(l + z7) —
QKz(a); “ 0=0 2=0 | ](1+x2)“¥)
(C.10)

where = p/m. The above equation can again be simplified as

2 9 j—1 41
) Wy k / G+ gy | T o
_ L3 s 11
W 2K () <w) [ y:_ly Y| livagn(@) ( )

J=0

(]

where,
Lpn(a) = / exp [—a(1+2%)"/?] S —

and by putting y = cosf
™ ) +1 )
/ cos 09TV sin 0df = / yU Tt dy
6=0 y=—1

Now for
+1
j=0, / y T Hdy =0

y=—1

+1 )
j=1, / yUtdy =2/3
)

=—1

J
=1

+1 )
2, / yItdy =2/3
Y

+1 ]
j=3, / yUdy =2/5
Y

=1

To first order in (k/w)?, Eq.(C.11) can be expanded as

W = k@) EL"Q(O‘) +§ (g)z LSA(Q)]

o Wt 1L RN
W = KQ(Og) [3[472( )+5 <w) 16,4( )] (012)
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C.2 Case 1: a> 1, Weakly Relativistic limit

For n > 2, the integrals I,, ,(a) can be evaluated for large values of « using the

saddle point method, which is given by [60]

o 12 (m4 D! (m+1)
Innla) = [mmﬂ} 1) () % {1 + =) —4(n— 1)
(C.13)
Using the above expression, we get
m q1/2 )
Iio(a) =3 [ﬁ] exp(—a) [1 - %} (C.14)
and 1o 49
51 _ _ =
Iss(a) =15 [2@7} exp(—a) [1 8041 (C.15)

For large «, the modified Bessel function can be written as

K, (a) = \/QZae:Ep(—a) {1 Bk S | 9)] (C.16)

8y 2!(8a)?

Now substituting the values of I, »(«v), I4(cr) and Ky(a) respectively using Eqns.(C.14),
(C.15) and (C.16) in Eq.(C.12), the dispersion relation becomes

2
w? = w? (1 - i) + ?)k— (C.17)

«

This is the dispersion relation followed by a relativistically intense electron plasma
wave in a warm plasma having nonrelativistic initial temperature. The similar

dispersion relation has also been derived rigorously by several authors [59,61-63].

C.3 Case 2: a < 1, Strongly Relativistic limit

We know that [60]
Imyn(Oé) = m_g)n_g(a) — Im_gm(O&) (018)

142



Appendix C. Derivation of Relativistic Warm Plasma Dispersion Relation

Therefore, the integral I, o can be simplified as
[472(04) == IO’_Q(OZ) — 2[070((1) -+ 1072((1) (Clg)

Now we note that Iy,+1(a) = Ki,(a), where Ki,(«) is the repeated integral of
Modified Bessel function defined as

K%@%:Ameqmﬂw

with Kig(a) = Ko(a). Therefore, Eqn.(C.19) becomes

1472(01) = K’i_g(&) - 2[070(01) + KZI(O[) (C20)
Now, Ki_,(«) = (—1)"= Ko() and in the limit o << 1, Ko(w) = —In(a). Thus,
Kia(a) = (<1~ [~in(a)) = = 1)
A dod a8 '
Next, for a << 1,

Kmmz/ m@ﬁwg (C.22)

and - .
Ino(a) = / exp[—a(l+t3)]dt = Ki(a) ~ - (C.23)

0

where we have used K, (o) ~ iT'(v)2™" for o << 1. Thus the final form of the

integral can be written as

2 7
— — 4+ — .24
= (C.210)

)
a3 2

[42(0[) = o

since a << 1, only the first term will contribute and the above Eqn. becomes

2
Lip(a) ~ = (C.25)

Similarly using Eqn.(C.18), the integral Is4(«) can be modified as

1674(0’) = [()y_g(af) — 3]&0(@) + 3[0@(&) — [074(04) (026)
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Tsa(a) = % - g + 3%(0@ — Kis(a) (C.27)
Now,
oo ,—acosht
Kis(a) = /0 — (C.28)
In the limit o << 1, the value of above integral is given by ~ 7. Thus, from
Eqn.(C.27), the final form of the integral Is 4(cr) becomes
Lsa(er) = % - % +35(0) = (C.29)

We see that, here also the first term on the R. H. S of the above Eqn. will
contribute in the limit o« << 1. Thus using Eqns.(C.25) and (C.29), Eqn.(C.12)

can be simplified as

212
9 20 Wk«
W wp§ + ?F (030)
which finally gives
5 2 3.,

This is the dispersion relation followed by a relativistically intense electron plasma

wave in a warm plasma having relativistic initial temperature.
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