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SYNOPSIS

The dispersive collisionless plasma is a medium whose microscopic texture most
readily manifests itself by developing macroscopic coherent structures emerging
from balance between dispersion and a nonlinearity generated by particles. The
first evidence that there is a coupling between the particle nature of the plasma and
the routinely detectable plasma modes (of its fluid-like continuum phase) comes
from the nonlinear coherence developing in the collective plasma waves well be-
low the minimum amplitude for a nonlinearity to operate in an ideally continuous
medium [1]. Underlying this small amplitude nonlinearity is the inevitable feature
of a finite resonant charged particle population being trapped in collective potential
nonuniformity of waves. While for the cold laboratory plasmas the conventional in-
stability thresholds based on small amplitude linear waves |2| may be appropriate,
for hot stellar and interstellar plasmas, and for the plasma in fusion devices that
keeps getting ever-hotter, the instability thresholds based on small amplitude lin-
ear waves need to be obtained by revisiting the kinetic theory of collective modes
that duly accommodates the particle trapping in the collective waves. Finding
a general nonlinear kinetic description of collective structures defines the central
idea of the modern plasma theory of collective waves and instability. Apart from a
few landmark and noteworthy analytic approaches [3-7], the computer simulations
remain strongest means of exploring this interesting physics and validating few ex-
isting analytic approaches to stable nonlinear kinetic structures. This constitutes
the central motivation for studies done in the present thesis. The high resolution,
multiscale, multispecies, fully kinetic, exact mass simulations of essentially non-
linear, collective kinetic plasma response to phase-space perturbations are done in
the present study, describing: mechanism, mutual interaction, and unstable evolu-
tion of such coherent phase-space structures. In the present thesis, the nonlinear
collective structures are addressed by means of computer simulations done over
a wide regime of collective dynamics, covering ion acoustic [8], electron acoustic
[9] and electron plasma wave regimes of trapped particle structures. The study
analyzes their, development [8], mutual interaction [9] and the unstable behavior
[10] resulting from such interactions. Issues addressed include the comparison of
fundamentally nonlinear structures with their linear counterparts based on the ad-
vanced nonlinear kinetic formulations and the linear formulations of Landau [11]

and van-Kampen [12]. The results of linear simulations are presented to highlight
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the missing effects of particle trapping in essentially nonlinear structures [10].

Provided below is a more systematic chapter-wise analysis of the topics in study
of the collective plasma structures governed by kinetic trapped particle nonlinear-

ity addressed in the present thesis.

Chapter-1: Introduction

This chapter introduces the trapped particle generated nonlinear structures and
motivates the study by discussing the important formulations and main existing
results related to the plasma collective structures with particle trapping [1]. Ob-
servations of such structures in laboratory [13-15] and natural plasma conditions,
for example in space and magnetospheric plasmas [16-20], are discussed along with
their numerical simulations and corresponding results [21-24]. Standard analytic
and numerical methods to formulate and analyze the physics of coherent structures
are discussed with the challenges when trapped particle nonlinearity is present.
Various classes of solutions proposed under existing theory [25] are discussed with
regimes of their accessibility. Open problems related to collisionaless structures
with coherence generated by the kinetic nonlinearity are highlighted. The organi-
zation of the thesis work is described with capacity and limitations of the present
approach. Introduction to numerical approach and a road map of present study is

provided with a brief summary of the main results from each part of the analysis.

Chapter-2: Phase-fluid continuity of the collisionless Vlasov-Poisson sys-
tem: The numerical model

The collective dynamics of collisionless plasma in an electrostatic approximation
is governed by the Vlasov-Poisson system [26]. The fundamental properties of the
Vlasov systems and associated continuity of the plasma treated as a phase fluid is
described in this chapter and properties of its solutions are discussed. The numer-
ical scheme for implementing phase-fluid conservation [27] is described schemati-
cally and results for standard cases are presented and benchmaked against various
alternate approaches. The scheme for parallelization of the numerical technique is
described and net achievable numerical efficiency is characterized with respect to
the scale of computing architecture as well as the computing strength of the super-
computing system available at the IPR computer center [9]. Normalizations used
for the results are described and the issue of optimum resolution of the phase-space

for generating solutions with desired accuracy is discussed. Boundary conditions
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for the distribution function along both x and v dimensions are described and
their implementation in the numerical scheme is discussed. Various results show-
ing confirmation with multiple time scales resolved by the code and interaction
between processes on distinct time scales are examined. Dispersion properties of
propagating structures are verified against their standard analytic forms [28]. The
challenges associated with resolution of multiple time scales are highlighted for the
simulations performed with exact electron to ion mass ratio. Standard fluid results
like parametric coupling between two collective processes at different time scales
|29] and the standard kinetic results, like Landau damping |11] of collective plasma

perturbation are quantitatively verified.

Chapter-3: Adiabatic electron response and solitary wave generation by
trapped particle nonlinearity
In collisionless regime, the kinetic effects modify the fast electron response, in-
fluencing many collective linear and nonlinear processes that are otherwise well
described by the equilibrium hydrodynamic formulation of a collisional plasma |30—
32]. Electron distribution in the collisionless regime shows structures like phase
space vortex which can be strong enough to produce the spatial nonuniformities
in the electron density associated with them [1, 3, 33]. An electron phase space
distribution featuring such structures shows electron trapping with a robust total
energy conservation in a collisionless equilibrium set up. The species’ phase-space
distribution functions, therefore, are purely a function of total energy and thus
valid solutions of the corresponding Vlasov equations. With electron adiabaticity
resulting in modulation of the population of particles trapped in the resonance
region, these modifications in the particle distribution functions begin to affect
the collective processes, most effectively by generating additional nonlinear effects
[34]. The results of fully nonlinear simulation presented in this chapter show a
self-consistent development of such structures, and a resulting coherence, in a sit-
uation where the linear theory prescribes that a small amplitude ion acoustic wave
must grow to large enough amplitudes before showing any sign of conventional
fluid nonlinearity u - Vu in the form of growing coherence [28, 35].

The rest of the chapter presents interpretation of these results based on the
analytic formulation of trapped electron equilibria and electron phase-space holes
by H. Schamel [4]. A detailed validation of the recovered coherent structure as

collisionless trapped particle equilibria is done based on multiple cases in the simu-
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lations over a range of parameters of the analytic formulation. Multiple scenarios
with and without a perturbing potential produced by a coexisting electron plasma
wave, capable of ergodizing the separatrix region, are explored. The evolved so-
lutions are quantitatively compared with the analytic results of the electron hole
formulations in each case. The phase space distributions of electrons and ions, spa-
tial distributions of density and potential corresponding to evolved solitary wave
structures, and associated Sagdeev potential are presented systematically. The
central observations and conclusions include that the nonlinear coherent solitary
wave structures developed in the simulation follow the analytical solutions of an m-
KdV equation that accounts for the stronger nonlinearity produced by the electron
trapping in the structure [8]. In the low k regime, where the structures coexist and
interact with the undamped high frequency electron plasma waves, the nonlinear
solitary structures retain their nearly analytic form as long as the trapped electron
distribution stays in an independent (unperturbed) thermodynamic equilibrium.
In the conditions where the developing ion acoustic structures are free from time
dependent perturbations, the numerically simulated coherent structure could be
characterized analytically. Such validation involved finding, from them, the neces-
sary parameters to construct the corresponding analytic solutions and to carry out
the comparison of the simulation results with the theoretical formulation that has
a modified KdV equation with a stronger trapping nonlinearity [36]. Relatively
small amplitude coherent structures coexisting with a periodic self-consistent po-
tential perturbation are found to be most affected by the nonadiabatic response of
the electrons. Presence of a self-consistent time dependent perturbing potential,
in the form of a coexisting EPW, prevents the trapped electrons from reaching an
equilibrium and forming stable trapped particle modes that are time independent
stable solutions of the Vlasov equation. It is observed that although a coherent
solitary structures has a sizable transient fraction of trapped particle population
in the separatrix region, it remains reasonably stable as long as a finite adiabatic
fraction of the trapped population existed. Finally, the time asymptotic evolution
of the trapped particle mode structure associated with solitary structure generated
by the trapped particle nonlinearity shows a residual growth originating from the
associated trapped particle instability [37] which produces modulations in the soli-
ton amplitude with electron bounce frequency and causes a net growth in present

cases simulated using a finite current.
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Chapter-4: Nonlinearly interacting trapped particle solitons in collision-
less plasmas

This chapter deals with the issue of mutual interaction between the structures
nearly confirming with propagating solitary electron holes (SEH) solutions. The
static or time independent limit of propagating trapped particle structures con-
sidered analytically by Schamel [1]|, showed that the nonlinearity introduced by
the amplitude dependent density of trapped particles influencing the local poten-
tial can substitute the more conventional sources of nonlinearities in plasmas to
produce an alternate range of interesting nonlinear solutions. Their mathematical
forms include a potential hump or solitary electron hole (SEH), a cnoidal electron
hole wavelet (CEHWL), and a solitary potential dip (SPD) [36]. The interac-
tion between these time independent solutions though has received only limited
attention and requires a systematic analysis since such an interaction essentially
subject the structures to the effectively time varying field of each other. While
an exact analytic treatment of interaction between the SEHs involves a time de-
pendent nonlinear treatment of trapping nonlinearity, at present it is a qualitative
understanding based on the approximate models [38, 39] that two colliding SEHs
preserve their identity if their velocity separation is large enough ( Av? > 1, where
1 is the amplitude of the soliton electrostatic potential in electron thermal units
T./e). The effect of such interactions on the thermalized trapped particle distri-
bution in the SEH is still unexplored in sufficient detail. The simulations of two
nearly analytic interacting SEH structures presented in this chapter allow one to
additionally explore their adiabatic and nonadiabatic responses to a time varying
field or temporal impulse.

The simulations in this chapter explores a distinct limit of propagation and ex-
amines interaction between the faster SEH structure in regime of electron-acoustic
structures. The results from this part of the work exhibit the coexistence of linear
electron plasma mode and nonlinear electron acoustic mode with a comparable
amplitude. The additional linear fast electron plasma modes are generated in the
simulation, as a result of analytic approximations entering the SEH solutions used
as initial conditions. This EPW activity consists of a set of noninteracting lin-
ear modes. Their contribution to potential evolution is therefore found separable
from the potential data by their Fourier decomposition into constituent modes and

following their analytic time evolution [9]. However, the modes constituting slow
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coherent solitons couple nonlinearly via the strong response of the trapped electrons
in the SEH structures. The strongly electron trapping equilibrium SEH structures
are observed to interact adiabatically and preserve their identity across multiple
events of interaction, or collision, between two SEHs. The phase-space evolution
of the SEH is illustrated where a shift, mutually separating the interacting holes
along the velocity coordinates, during the interaction, is noted. This consolidated
shift of complete trapped population results in preservation of identities of the
SEH and restoration of the pre-interaction forms of the SEH following the inter-
action. The soliton velocity shows variation during the interaction such that a
slight phase-shift is visible in the soliton motion for the cases where the time of
interaction is longer. The phase-shift is larger for smaller soliton in the case of
two non-identical interacting solitons. The interacting states of the SEH are also
compared with infrequent transients observed in the magnetospheric data usually
featuring frequent SEH like bipolar electric field structures |18, 19|. Properties of
these interacting stages in simulation are found to confirm with the tripolar and
inverse tripolar pulses observed having relatively low rate of detection in the mag-

netospheric data [20].

Chapter-5: Evolving trapped particle structures with implications on
plasma stability

This chapter explores the concept of stability for small amplitude nonlinear modes
using a current-driven, 1D, collisionless plasma as a paradigm of driven intermit-
tent plasma turbulence and anomalous transport with the focus on undamped
coherent electrostatic structures. The simulation results are treated as central mo-
tivating factor to make progress along the pure nonlinear branch of the plasma
dispersion which is analytically developed and provides a general framework that
accommodates the standard linear dispersive formulation as its special case [10].
The high resolution computer simulation results presented in this chapter illustrate
an evolution of realizable phase-space perturbations, which evolve into the stable
coherent structures traveling at phase velocities far from their linear prescription
in addition to the familiar linear plasma modes located at a variety of time and
spatial scales. Analysis presented in this chapter begins with the inspection of the
plasma response in terms of a valid evolution of the Vlasov-Poisson system to a

non-topological, eddy-like, initial perturbation (a locally scarce electron population



about any velocity, preferably on the rising side of a drifting f.(v)). The simulated
response is employed to draw the general picture in the following order: we first
revisit linear fluid theory and then consider the linear Vlasov theory of Landau and
van-Kampen |11, 12]. The interpretation of the overall picture that emerged from
our simulation results is finally completed where we systematically include this
nonlinearity and develop a general Nonlinear Dispersion Relation (NDR), capable
of displaying all the observed familiar and unfamiliar responses in their corre-
sponding limits. In order to complete the analysis by simulation, we show that
a stationary hole appeared to be undamped within a full Vlasov dynamics, but
dies out completely within a linear Vlasov evolution [10]. The set of simulations
presented therefore has the consequence that in the case of coherency, the onset
of instability as described by linear theory (e.g., Landau) is generally absent when
seen realistically from the standpoint of the complete Vlasov-Poisson system. It
is replaced instead by a more complex, highly unknown destabilization process in
phase space, in which this manifold of trapped particle equilibria with their at-
tracting negative energy property together with the explicit initial perturbation
will play an important role. This renders plasma destabilization multifaceted and,

as a rule, no longer one-dimensional in terms of the parameter-space.

Chapter-6: Electron hole instability of subcritical plasma phase-space
perturbations

Turbulence in collisionless stellar and high energy space plasmas is expected to be
essentially dominated by large scale potential variations, capable of trapping large
density of charge particles. While being in equilibrium with potential of trapped
charges these structures must interact mutually as well as with the conventional
plasma modes and must get destabilized in order to be active part of the turbulent
energy cascade, transferring the large scale field energy to the heat. While the
ergodization of separatrix witnessed in Chaper 2 represents a nearly nonthermal
decay of these structures and a direct passage of energy to the heat (or smallest
accountable scale), an opposite process, where finite gain in energy of these struc-
tures results from larger scale, constitutes a sufficient condition for ensuring their
place into the spectral chain of the energy cascade [40]. Interestingly, though,
for sufficiently ergodized separatrix any such growth might additionally involve

de-ergodization of the separatrix and an associated local increase of the entropy.
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This subject therefore also opens a new dimension in the known thermodynamic
aspects of the plasma turbulence where a thermalization (or possibly reversible er-
godization) takes place at multiple stages of turbulent spectrum rather than at the
terminally smaller scales produced by the viscous dissipation [41]. Existence and
clarity of the mechanism of growth or instability of these coherent structures, via
their interaction, with each other or with conventional waves, presently remains
an open question. In this final chapter we focus on this mechanism by means of
our simulations. Seed like perturbations in the electron distribution function [1]
are analyzed below the linearly subcritical limit [2| of a current driven ion acous-
tic instability. Detailed analysis of the development of the nonlinear structures is
carried out and their evolution is examined for the cases where they are show a
multi-parameter evolution while undergoing a nonlinear electron hole instability.
Unlike the linear instability where amplitude remains the sole growth parameter,
the growth of an electron hole is characterized by the strengthening response of the
trapped particle population that reflects into transformation of an initial hole in a
multidimensional space of parameters. These dimensions in the presently consid-
ered Schamel formulation, include: the propagation velocity vy, peak potential v
and the inverse trapped electron temperature 3 of the structures, and are mutually
coupled to each other by the Nonlinear Dispersion Relation (NDR), describing a
continuum of collective nonlinear modes [1]. The parametric growth mechanism
for the electron hole instability is identified involving an extended interaction be-
tween the electron hole and a background large scale ion acoustic structure. The
mechanism is illustrated quantitatively using the simulation data from multiple
cases which show strong to weak, or nearly vanishing, growth in specific limits of

the parameters.

Chapter-7: Conclusion and future scope

This chapter provides, brief summary of the complete study presented in the thesis,
summarizes the major conclusions from the present thesis work and consolidates
these conclusions to provide the updated status of the knowledge on the issues
addressed. The major results are also discussed in the perspective of existing ex-
perimental results and a limited number of theoretical formulations of the present
problem [3—6]. Key areas are identified where the present results and conclusion

can help in introducing quantitative revisions in the existing theoretical formula-
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tions. The discussion is included on a more generalized structure of the nonlinear
stability analysis of the collective plasma response, involving kinetic trapped par-
ticle nonlinearity. The ways to address several outstanding issues requiring kinetic
inputs, e.g., plasma heating in collisionless nonthermal conditions via the gener-
alized formulations [42] and parallel heat conduction in collisional cases [43] are
considered with respect to present approaches to the issue |3-5|. The extension of
the present simulation approach to more diverse phase-space equilibria [3] and nat-
urally recovered nonlinear kinetic structures [13-20] is discussed and the possible
stages involved in making progress towards addressing them are described. Possible
scenarios leading to unstable phase-space perturbations and their analogue in other
physical setups supporting collective processes [44, 45| are considered highlighting

relevance of conclusion from the present simulation results to such alternate setups.
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Introduction

1.1 Motivation

The physics of collective structures in plasma assumes different dimensions in var-
ious regimes of its existence. Most accessible and familiar are the dispersive modes
of the collisional plasmas, validated, almost routinely, to a high degree of accuracy
in the laboratory plasma experiments. In hot collisionless plasma regime, however,
the collective behaviour is highly indeterministic or rather stochastic, such that the
statistical measures are better means to describe its highly turbulent dynamical
state. The evolution and setup of turbulent states are associated with a parameter
space of a very high dimensionality. Such states indicate a rather continuous mode
spectrum where nonlinear excitations populate scales that are otherwise forbidden
by a fundamentally discrete mode structure of the linear plasma formulation. The
nonlinearity, if exclusively tied to larger amplitudes, does not enter the operating
mechanism of the turbulence since latter must progress by growing newer scales,
essentially from small amplitude noise/fluctuations, hence purely linear and dis-
crete in their spectrum. More specifically, the microinstabilities originating from
interaction between collective structures and resonant particles are prescribed, at
such low amplitudes, to destabilize only the discrete spectrum of linear modes,
undamped under the linear Vlasov formulation.

In these terms, a host of small amplitude nonlinear structures that are also
undamped, evolve deterministically, and grow by means of mechanisms other than
linear wave-particle interaction, remain unaccounted for under the linear plasma

stability paradigm. Analyzing their physics by means of extensive, fully kinetic,
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Figure 1.1: (a) Particle denoted by red dot is trapped in the wave and the particle
denoted by the blue dot is a free particle. (b) Phase space of trapped and free
particles denoted by red and blue lines correspondingly.

computer simulations and attempting to find a general nonlinear description of
collective structures, perhaps defines a large part of the idea of the modern plasma
theory of collective waves and instability. Progress on this branch of the fundamen-
tal plasma physics is mainly concerned with the underlying physics of coherence
often observed at low amplitudes, having its origin in microscopic particle based

kinetic structure of the plasmas rather than a fluid-like continuum.

The dispersive collisionless plasma is a medium whose microscopic texture most
readily manifests itself by developing macroscopic coherent structures [24]. Under-
lying this is the inevitable feature of a finite resonant particle population being
trapped in collective potential nonuniformity of waves (see the schematic Fig. 1.1).
The fast electron response to electrostatic perturbations is inhibited, for example,
by the kinetic effects where resonant electrons are either reflected or get trapped
by even small potential nonuniformities. The oscillations of trapped particles add
to the degrees of freedom [32] and result into phase-space vortices [24] that can
modify the spatial nonuniformities associated with the vortex depending up on the
trapped particle density as well as the amplitude of nonuniformity. The analytic

structure of trapped particle equilibria is extensively analyzed in various limits,

2



Chapter 1. Introduction

e.g., where trapped particles can be maintained in isolated non-thermal states and
the exact nonlinear solutions are obtained as Bernstein-Greene-Kruskal (BGK)
modes [3], and for the cases where the trapped particles are well approximated as
having an equilibrium distribution with finite temperature |1, 25, 46]. In the later
limit, considered analytically in great detail by H. Schamel, it was shown [1] that
the nonlinearity introduced by the amplitude dependent density of trapped parti-
cles influencing the local potential, can substitute the more conventional sources
of nonlinearities in plasmas to produce an alternate range of interesting nonlinear
solutions. Their mathematical forms include a potential hump or solitary electron
hole (SEH), a cnoidal electron hole wavelet (CEHWL), and a solitary potential dip
(SPD) [1]. A large class of structures in laboratory and natural plasmas perhaps
follow this description which admits a far restricted entropy production rate and
hence displays a wider agreement with a range of structures recovered both in

experiments and in computer simulations.

The Vlasov equation, describing the plasmas in their ideal collisionless limit,
admits infinite solutions since all the functions of total energy at any phase space
location satisfy the Vlasov equation. While all of these solutions enjoy a math-
ematical equivalence, most appealing are often those that are most robust and
would satisfy also the formulations that apply to regimes of maximum contrast
with respect to the Vlasov theory. It is hence not surprising that these most suc-
cessful solutions are natural starting point for all the efforts to make progress in
the direction of other relevant solutions that are required when the horizons of
usually familiar part of the sphere of the subject are to be crossed. In this respect,
even the alternatives adopted in more general rigorous approaches to the plasma
stability theory make only a modest excursion from the conventional sphere of
knowledge, but they, fortunately, open a window to an ocean of possibilities of

new and challenging explorations in this area.

The studies in this thesis address the issues of plasma stability rather passively
but explore the kinetic nonlinearity driven structures that defy the characteristics
of linear plasma modes and therefore offer an extended set of solutions for a more
general theory of plasma stability to cover. The kinetic trapped particle equilib-
ria are a dominant category of full nonlinear solutions of Vlasov equation. They
are often encountered in laboratory and space plasmas and therefore indicate that

they are likely to be a dominant missing element from the puzzle of the plasma
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turbulence and its operating mechanism [10]. In order to further introduce the
subject of this thesis, we discuss important existing approaches to this subject in
Sec. 1.2. The contribution of the studies presented in this thesis is then briefly
described in Sec. 1.2.2. In Sec. 1.3 and Sec. 1.4 we revisit various approaches to
collective structures in plasma, beginning from the conventional linear fluid theory
which is discussed so as to point out limitation of linear approaches and their eigen-
modes in representing the coherence of the collective structures. We also provide
essential introduction to existing rigorous solutions of trapped-particle equilibria
by H. Schamel that are mainly followed in most part of the present simulations.
In its overall structures, this thesis presents simulations of development, propa-
gation and interaction of undamped trapped particle equilibria in two separate
slow and fast regimes in Chapter 3 and Chapter 4, respectively. This is followed
by exploring, in Chapter 5, their activity and possibility of their destabilization
by non-conventional means in the regime where the linear theory prescribes their
stability. In Chapter 6, they, finally, are shown to be indeed destabilized in terms
of growth in parameters other than the amplitude, which remains the sole growth

parameter for the conventional eigenmodes of the linear formulations.

1.2 Existing studies on phase-space coherence and
stability

The fundamental kinetic approach to plasma instability was given by Landau by
recovering a microinstability in linear dispersive plasma eigenmodes introduced
by their interaction with resonant particles. In contrast to this, van-Kampen [47]
acknowledged existence of trapped particles in a linearized form and recovered a
continuum, or off-dispersion range, of modes. The first two motivating factors for
the newer version of plasma stability theory involving nonlinear coherent structures
were (i) the identification of coherence in its ideal mathematical form by Zabuski
and Kruskal [48] as solutions of Kortweg-de Vries equation [49] and (ii) the pre-
scription for exact non-perturbative approach to plasma oscillation by Bernstein,
Greene and Kruskal introducing the idea of well known Bernstein-Greene-Kruskal
(BGK) modes [3]. The limitation on the stability of all classes of BGK solutions
motivated studies by H. Schamel [25] to explore more stable subclasses of BGK

modes. Schamel adopted a pseudo-potential approach to achieve more realistic
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trapped particle distributions by using additional constraints on them to satisfy
the Vlasov-Poisson system, these aspects are also reviewed recently in sufficient
detail by 1. Hutchinson [7].

First analytic exploration of electron hole-like solutions was started by H.
Schamel [25] over four decades ago. Subsequently, Schamel and coworkers also
derived the stability criteria for the holes [36, 50]. Schamel importantly intro-
duced, in 1972 [4] (see also [51]), a method to partly replace the more general
BGK method [3] for obtaining mainly the stable physical solutions. This has been
an effective method which allows to discard or avoid physically inadequate solu-
tions. Its applicability has been proven in numerous studies dealing with solitary
wave propagation, cnoidal electron and ion holes, double layers, holes of negative
energy, group velocity of periodic structures or longitudinal structures superim-
posed on coasting and bunched beams in circular accelerators, to mention a few.
Reviews on this alternative method can be found in [1, 36, 52-54] as well as in
[55, 56]. The growth of these nonlinear equilibria, possible in a subcritical plasma,
was addressed analytically in the past by Dupree [5] who concluded that the am-
plitude of these structures must grow due to scattering of particles for propagation
velocities in the range where ion and electron distribution function have opposite
signs of velocity derivatives. Solution for coherent phase space density hole using
the Sagdeev’s pseudo-potential technique were also prescribed by T. H. Dupree
[5]. Dupree provided a thermodynamic basis for the Schamel-like trapped par-
ticle distribution function. T. H. Dupree also characterized the turbulent state
of plasma by random small scale phase space granulation or formation of clumps
[46], where clumps are defined as structures originating from particle orbits that
become random and stochastic due to the presence of fluctuating electric field in a
turbulent plasma. This leads to the distribution function differing from its average
value as the regions of phase space with different density are mixed to produce
such finite granulation. A quasi-linear approach to nonlinear Landau damping was
made by Thomas O’Neil [32]. Thomas O’Neil showed that the resonant particles
are trapped in a wave after time, 75 = \/m, equivalent to inverse of bounce
frequency of the particle in the wave. After time 75 = wb_el the linear Landau
damping theory fails due to failure of linear limit dfy/0v ~ 0f;/0v. In his quasi-
linear theory, O’Neil incorporated modifications of the background distribution

fo arising from particle trapping to derive the nonlinear growth rate for ¢ > 7.
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O’Neil used a quasi-linear approximation for the resonant region and defined a
new distribution by coarse-grain averaging the actual distribution. As ¢/75 — oo,
the size of the mesh used in the coarse-grain averaging approaches zero and the
coarse-grained distribution becomes constant along the phase-space trajectories.
Therefore the distribution function becomes a constant function of time. The
growth rate y(t) oc O, fol./k therefore becomes zero as t/75 — co. The quasi-linear
treatment, however, does not recover the formation of coherent structures that

requires finite mode coupling.

1.2.1 Important experimental and simulation studies

The existence of the electron hole has been demonstrated in laboratory experi-
ments as well as space plasma observations in Earth’s ionosphere and magneto-
sphere. Sacki et al. detected electron holes in a Q-machine experiment [13] in
1979. Petraconi et al. |14] recovered strong-electron holes and double layers in a
low pressure mercury plasma column with evidence that electron-hole formation is
driven by an ion beam, hence is not possible in isolation since its formation requires
a nearby ion accelerating potential structure. Recently many studies have detected
the existence of electron holes in various experiments. Electrostatic solitary struc-
tures were generated in a quasineutral plasma in LAPD by applying an electron
beam parallel to magnetic field line [57]. Generation of phase space electron hole
has been observed during magnetic reconnection in a toroidal device [58]. Experi-
ments with non-neutral plasmas [59] in Penning-Malmberg traps have also shown
the existence of trapped particle modes and their contribution to anomalous trans-
port of the plasma particles in a perpendicular direction to magnetic field lines.
Solitary electron hole was also generated from a high voltage initial potential pulse
in unmagnetized plasma [15] at IPR, India. Generation of ion acoustic soliton
from a compressional pulse and their growth or decay in a inhomogeneous plasma
density was studied in 1976 by P. I. John and Y. C. Saxena [60]. An excitation of
holes below linear threshold was reported in the laboratory experiments by Moody
and Driscoll [61].

Among many areas of applications are particle accelerators where observations
relate to coasting and bunched beams in synchrotrons and storage rings, repre-
senting further Vlasov-Poisson systems. In the Fermi Main Ring, for example,

while operating near the stability limit [52], sharp gaps or notches have been wit-
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nessed in the response function [62|, which correspond to depletion zones in the
momentum distribution function. This is seen at the lowest measurable signal
level and sheds light on the spectrum of small amplitude perturbations, discussed
above, as the alternate modes supplementing the linear discrete eigenmodes. A
similar phenomenon, of stable, coherent, longitudinal structures superimposed on
bunched beams [63], has been observed during “rf activity” in stochastic cooling
studies [64, 65].

In 1974 detection of Broadband Electrostatic Noise (BEN), having frequency
extended up to plasma frequency, in the geomagnetic tail across the neutral sheet
was reported |[66]. This was an early observation of the signature of existence of
electron hole in space plasma which was confirmed in 1994 by Matsumoto et al.
from GEOTAIL spacecraft data [16]. They reported that most of the BEN in
the plasma sheet boundary layer (PSBL) was not a continuous broadband noise
but was composed of a series of bipolar pulsed electric fields, corresponding to
Electrostatic Solitary Waves (ESW). Observations by subsequent spacecraft mis-
sions [17-19] provide evidence of a strong electron hole activity in magnetospheric
plasma routinely attributed to these solitary structures. There are many observa-
tions in different regions by various satellites which show the existence of solitary
electron holes, e.g., in the Earth’s auroral region (FAST) [17], bow shock (Wind)
[67], magnetopause (GEOTAIL) [68], magnetosheath (Cluster) [69, 70], (MMS)
[71], plasma sheet (THEMIS) [72], (Cluster) [73], outer radiation belt (Van Allen
Probes) [74, 75| and also in the free solar wind, at interplanetary shocks, and cur-
rent sheets (Wind) [76-79]. One recent study by A. Osmane et al. [80] discovers
long-lived electrostatic coherent structures with large-amplitude electric fields in
planetary radiation belts by the Van Allen Probes. It reveals alternative routes for
nonlinear subcritical growth of electron phase space hole through which planetary

radiation belt’s acceleration can take place.

Among considerable simulation based studies, the electron holes were observed
in a kinetic computational simulation of two stream instability in 1D electrostatic
plasmas by K. V. Robert and H. L. Berk [81]. They followed the motion of the
phase space boundaries of an incompressible and constant density phase space fluid
and observed the formation phase space and condensation of electron holes. H. L.
Berk, C. E. Nielson and K. V. Robert [39] studied the formation of electron holes

and collisions between such two structures with large and small relative velocity.
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They had used water bag like distribution function in the kinetic simulation and
also compared their results with stable proton clusters which develop from the
negative-mass instability in the mirror experiment DCX-1. Formation and com-
parison of phase space eddies or electron hole in 1D, 2D and 3D simulation of two
beam plasma were studied by R. L. Morse and C. W. Neilson [82]. The reported
phase space eddies were formed in 1D, but in 2D and 3D they starts to form and
finally they disappeared. Effect of ion motion on an electron phase space hole
having phase velocity smaller than or equals to ion acoustic wave was studied by
K. Saeki and H. Genma [38] through computer simulation. They found that due
to ion motion the electron hole disrupted into two holes and formed coupled states
of electron holes and ion acoustic solitons which were explained by using Sagdeev’s
potential for a water bag like distribution function. Shakanaka [83| performed nu-
merical simulation of formation and interaction of ion acoustic solitary wave with
Vlasov equation for ions and Boltzmann distribution for electron. V. L. Krasovsky,
H. Matsumoto and Y. Omura [84| showed theoretically and by computer simula-
tion that electron holes perform inelastic collision due to a specific irreversibility
caused by the nonadiabatic modification of the internal structure of the holes which

is related with the phase mixing of trapped electron.

Simulations by Berk et al. [21] recovered spontaneous hole-clump pair creation
close to the linear threshold for instability. A well documented excitation of holes
below linear threshold could be seen also in numerical simulations of pair plasmas
[85]. Lesur et al. |22, 23, 86] in their numerical simulations of these structures
also recovered growth in subcritical regime resulting from exchange of momentum
with other species or with the wave pseudo-momentum. Similarly, the growth
of ion phase-space structures was recovered by Petkaki et al. [87] in a Vlasov
simulation generating anomalous resistivity that exceeds the quasilinear estimates
driving the reconnection. Another mechanism of subcritical hole excitation was
recently proposed by Lesur et al. [88|, augmenting the Berk-Breizman model [89],
by wave coupling with a linearly unstable (supercritical) mode. In another work,
P. H. Diamond et al. |22, 90, 91| had defined a new quantity phasestrophy to
determine the growth of unstable coherent structures in presence of dissipative
wave. B. Eliassson and P. K. Shukla [92| had studied the formation, acceleration
and interaction of phase space holes in both nonrelativistic and relativistic limit

through Vlasov simulation. Simulating SEH like structures in large amplitude
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regime (¢ > 1) that admits other nonlinearities, Eliasson et al. [93] showed that
colliding electron holes coalesce and get trapped by the ion density nonuniformities

produced by their stationary phase.

1.2.2 Contribution of the present study

The studies in this thesis explored the kinetic particle trapping driven coherence
and its impact on stability using high resolution Vlasov simulations. In the simu-
lations of driven ion acoustic instability, we have (D. Mandal et al. [8]) presented
early signs of coherence in growing ion acoustic wave structures where electron
trapping nonlinearity begins to introduce solitary attributes in the potential pro-
files. There we have showed increasing agreement with solutions of a modified
Kd-V equation obtained by H. Schamel for the cases with stronger trapping and
less modification in the phase-space separatrix by perturbation from a coexist-
ing trapped particle structures on the electron plasma wave branch. The stable
propagation and identity preserving mutual interactions of phase-space structures
proposed by H. Schamel [1| were simulated by us (Mandal et al. [9]). In this
study we showed activity of solitary solutions of the modified Kd-V incorporating
electron trapping nonlinearity on the faster electron acoustic branch. We showed
that modes with smaller spatial scales couple by means of trapped particles to
produce coherence and defy the linear dispersive propagation as followed by rest
of the coexisting linear modes of equivalent amplitude at larger spatial scale. We
also interpreted the bipolar and, somewhat less frequent, tripolar pulsed electric
field variations measured in magnetosphere by a cluster of four spacecraft [18, 19],
as electron-hole waveforms with similar proportion of probability of their detec-
tion in an ensemble of interacting coherent structures with a localized source.
In a dual set of high resolution simulations performed to illustrate the distinct
evolution of undamped plasma modes predicted by linear and nonlinear stabil-
ity models, respectively, both linear and nonlinear versions of Vlasov simulations
were performed using non-conventional phase-space perturbations as presented by
us (Schamel, Mandal and Sharma [10]). Adopting a pseudo-potential approach,
this study elaborated that the coherence is inaccessible under the linear model as
a result of failure in achieving a pseudo-potential to construct a potential struc-
ture with time-stationary phase velocity. As a direct consequence of this, the

coherent structures are absent from the linear version of simulations as well. The
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linear simulation additionally validates absence of any fluid nonlinearity at this
small amplitude in nonlinear simulations. The linear eigenmodes thus cease to
represent solutions of the full Vlasov-Poisson system and intrinsically nonlinear
solutions emerge. Construction of phase-space perturbation with limited entropy
production then allows construction of valid pseudo-potential that leads to highly
stable nonlinear solutions representing a newer level of coherent mode structures
recovered in the nonlinear simulations. This work highlighted, in turn, the non-
linear modes that participate in small amplitude noise like activity must grow by
mechanisms independent of those driving the linear instabilities (linear or Landau
growth and damping). These processes which might involve their growth in terms
of parameters other than amplitude, such as phase velocities that are no longer
fixed during the growth unlike those of the eigenmodes of linearized Vlasov Poisson
system.

In the final part of this thesis, the full nonlinear simulations, once again per-
formed in the regime where linear theory predicts no growth, show evidence of
initial perturbations that produce undamped modes of both the classes, namely,
the conventional linear eigenmodes and coherent trapped particle structures closely
described by electron hole formulations. In the cases of localized phase space per-
turbations, seeded at small phase velocity, the initially developed nonlinear struc-
tures are shown to accelerate and mode-convert. The destabilization is shown both
by an intrinsic hole instability as well as a parametric-like instability of the holes
where holes transform by interacting with background plasma nonuniformities gen-

erated from linear structures.

1.3 Useful notions and formulations

We now introduce some useful notions which were discussed qualitatively in the
motivation in the view of their more quantitative forms frequently applied in the

interpretation of the simulation results.

1.3.1 Coherence and linear (fluid) description

A mutually exclusive relationship between coherence and linearity can be illus-
trated by means of a 1D linearized fluid treatment of the collisional plasmas. As

derived in sufficient detail in Appendix A, linearized version of plasma fluid equa-
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tions, apart from yielding the linear dispersion relation can be rearranged to obtain
the variable ® (potential) which executes a simple harmonic motion with amplitude
1 in a pseudo potential,

V(@) - ’%@w %), (1.1)

thus representing the standard expression of a single harmonic wave of wave num-
ber k,

Oy (z,t) = %(cos[kw Fuwrt] + 1>, (1.2)

which is essentially an expression for two Langmuir waves propagating in oppo-
site direction, where wy, = /1 + 3k? = wy (k) is the k-dependent Langmuir wave

frequency.

Note that when we attempt to construct coherent composite solutions by super-
position of distinct eigenmodes, the time dependence cannot be contained in the
phase part of the propagating waveform, as required, and instead a time dependent
amplitude emerges. Existence of a characteristic time independent V(@) is there-
fore ruled out. In the case, for example, of two superimposed counterpropagating
modes, ®(z,t) = %[cos(th) cos(kz) + 1], and the V() is

—V(®) = %@(w - ) - % [% sin(th)] : (1.3)

i.e., no time-independence in the frame of the propagating structure ®(x,t), which
itself is oscillatory, is possible. This gives us the opportunity to postulate an
intimate relationship between the physical phenomenon “coherency” and its math-
ematical analogue “V(®)”. In rest of this chapter we shall denote, by ®(z), the
solutions for which a consistent, i.e., valid V(®) exists and call them “coherent”
structures, whereas we term solutions for which such a property is missing “in-
coherent” and denote them by ¢(x). However in rest of the thesis @ is used as
argument of V, i.e., V(®) for representing the pseudo potential corresponding to

coherent structures only.
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1.3.2 Coherence from dispersion and nonlinearity

In the plasma waves represented by (1.2), the propagation velocity w/k of each
mode depends on its wave number k, these waves are therefore called the linear
dispersive waves. During propagation of a group of waves (wave packet) with
different k;, the modes disperse or spread and therefore the wave packet diminishes
over distance. If the dependence of frequency wy on the amplitude (i.e, w;, =
w(k,a), where a is the amplitude of the wave), neglected in the linear formulation
(Appendix A), is retained, the plasma equations no longer remain linear. However,
the change in the phase velocity with changing k, present in linear approach, can
be compensated by appropriate change in the amplitude such that modes with
different £ can propagate coherently. The essential form of an equation that allows
introduction of such a co-operative nonlinearity can be obtained by allowing, in a

simple wave equation
— +c=—=0 (1.4)

satisfying ¢ = cos(x — cpt), a nonlinear dispersion w = cok + ¢1k* and an ampli-
tude nonlinearity co¢0,¢, that preserve the nondissipative character of the wave

equation, yielding,
0t¢ + C(Jam(b + CQ(bam(b + Clai)(b = 0. (]_5)

In a more refined form, (1.5) is the well known wave equation for nonlinear disper-

sive waves, namely, the Korteweg-de Vries (Kd-V) equation,
Los
¢ + 90, + 53,,¢ = 0. (1.6)

Transforming plasma fluid equations, (A.1)-(A.3) in the from of (1.6) under rele-
vant approximations successfully provides the explanation of large amplitude non-
linear coherent structures [94] in plasmas where the nonlinearity wd,u, of the
Eq. (A.2) is significantly large. Due to this nonlinear term in a wave equation,
higher harmonics (2w, 2k) couple to the original wave (w, k). The appearance of
shorter wavelengths means steepening. If the higher harmonics travel at the same
velocity as the fundamental the coupling becomes stronger. But if the higher

harmonics travel with a different velocity than the fundamental, the coupling be-
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comes weaker and steepening stops. Due to the dispersive property of the medium,
the higher harmonics with higher wave numbers (2k, 3k, ...) have different phase
velocities than the fundamentals. Therefore there is a competition between the
steepening and dispersion. Solitary wave solution is a special type of nonlinear so-
lution in which these two terms balance with each other. Hence the solitary wave
solution is a remarkably stable nonlinear solution. Therefore in the formation
of any coherent stable structure in plasma, both the nonlinearity and dispersive
property plays an important role.

In this thesis however the coherence is explored for the regime where an alter-
nate nonlinearity, arising from particle trapping, replaces the nonlinearity in a set

of kinetic equations of hot collisionless plasma at much lower amplitudes.
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Figure 1.2: (a) Electron distribution function, (b) electron density, (c) electrostatic
potential and (d) electric field corresponding to a coherent phase-space electron
hole is generated by kinetic trapped particle nonlinearity during study of the cur-
rent driven ion acoustic instability.
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1.3.3 Fluid and trapped particle nonlinearities

In a macroscopic fluid picture of plasmas, the nonlinearity is incorporated by the
nonzero value of the v - Vv term, which is applicable at large amplitude limit.
However, in microscopic kinetic picture nonlinearity is introduced by wave particle
interaction and the particle trapping in the wave potential. Particle trapping is a
nonlinear phenomenon. The background distributions of the particles are essen-
tially modified by the particle trapping such that the trapped particle distribution
can satisfy both the Vlasov equation and the Poisson equation. An example of
an electron distribution function modified by a hole as simulated in this work is
presented in Fig. 1.2(a). The corresponding electron density, potential ¢ and elec-
tric field F are plotted in Figs. 1.2(b), (c¢) and (d) respectively. Such equilibrium
cannot be recovered by disallowing the modification in the background distribution
function, hence, the nonlinear term FJ,f in the electrostatic Vlasov equation,

of | df  a,0f

A 8 1)
8t+U 8:c+m OV,

0, (1.7)

must be accounted for. The linear Vlasov theory that must use a linear form,
E0, fo, of this term, must therefore ignore the trapped particle density and cannot
find an equilibrium with respect to the change in the trapped particle density. This
fundamentally kinetic nonlinearity involves a small resonant region of the phase
space and therefore begins to act from very small level of amplitude, rather than

the fluid effects that involve mobilization of entire distribution.

1.4 Kinetic descriptions of the collective plasma

phenomena

The microscopic kinetic description of plasmas is obtained using the Vlasov equa-
tion. The response of a plasma to an initial perturbation is treated both under
the linear and nonlinear formulation of Vlasov theory. In the following, we first
introduce the existing linear approaches following Landau and van-Kampen. The
nonlinear or approaches prescribed by Bernstein, Greene and Kruskal and that

given by H. Schamel are discussed subsequently.
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1.4.1 Linear Landau approach

The linearized form of the Vlasov equation (1.7) is rather easy to solve and has been
basis of most of the plasma kinetic theory. The solutions of this linearized Vlasov
equation were presented by L. D. Landau [11] in 1946. The theory investigates
evolution of the perturbation in the equilibrium distribution function f, and the
electric field E, as

f()(($,7.),t) - frx()(x7vat)+€1 ful(xa'l),t),
E(z,t) = Eo(a.t) + e Bi(z,t) (1.8)

obtaining the linearized form of Vlasov equation,

atfozl + Uma fal + Ela faO =0. (19)

Here, ¢; is amplitude of the perturbation and ¢; << 1. F; can be calculated from

the linearized Poisson’s equation

0, F1 = 47Tan/fa1 dv. (1.10)

Eq. (1.9) is a linear partial differential equation. The validity of the linearized
Vlasov approach demands the smallness of the velocity gradient of fi: |0, f1] <<
|0y fo|. Treating (1.8)-(1.10) as an initial value problem it was solved by the Fourier-
Laplace transform and a complex integral along the Landau contour to obtain

time-asymptotic linear dispersion relation (LDR),

1—2 i koo g, (1.11)

w—kv

Considering the unperturbed distribution fy as Maxwellian, and by defining the

plasma dispersion function Z(() as,

1 < e’
Z(C) = m/ se—( ds,

o
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the dispersion relation (1.11) can be written as,

w2oly <—‘” - k”’) ~0. (1.12)
2 V2k

The real part of the dispersion relation (1.12) gives the normal modes of plasma
and the imaginary part gives the growth rate or damping rate of the amplitude
of the wave. The growth rate or damping rate is proportional to 0, fy. Due to
the wave-particle interaction, the resonant particles having lower velocity than
the wave, gain energy from the wave and the particles having higher velocity lose
energy to the wave. If the number of resonance particles having higher velocity is
more compared to the particles having lower velocity, then the wave grows.

In Landau approach f; always remains fixed, which is also used in fluid descrip-
tion of plasma (where fj is additionally Maxwellian obtained in the maximum en-
tropy limit, although Landau’s f; evolves conserving entropy |28]). Therefore, the
number density of the resonant particles does not change with time. Further, the
growth /damping rates are evaluated at the poles of the integrand that essentially
represent the discrete linear modes of the plasma, hence displaying no coherence,
as discussed in Sec. 1.3.2. This theoretical model does not account for trapped
particles and an equilibrium with respect to them. It can, therefore not, explain

the existence of continuum plasma modes.

1.4.2 Linear van-Kampen approach

Under the van-Kampen approach [47], the solutions of linearized Vlasov equa-
tion can be derived, after making Fourier transformation of the linearized Vlasov
equation (1.9) in both space and time, as,

8772(]2

L PM+)\6(UJ—I<IU) . (1.13)

w— kv

fiv) =

Here, P indicates that the first term within the square bracket is to be interpreted
as a principal value, A is an arbitrary function of w and k and ¢ denotes the
Dirac delta function at v = vg = w/k, where vy is the phase velocity of a wave.
Therefore, for each value of vy there is a different solution for f;. These are

called van-Kampen modes. The van-Kampen modes are singular functions that do
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not represent a physically meaningful perturbation. Therefore, to study the time
dependence of a physical initial perturbation, one should consider a superposition
of infinitely many van-Kampen modes. Although each mode is undamped, the
total perturbation will show Landau damping because the various modes get out
of phase with one another.

Here the arbitrary function A is used to introduce the trapping phenomena.
Only the particles with v = vy are trapped. The van-Kampen approach can
explain the existence of continuum plasma modes, which are not be explainable by
linear Landau approach. More detailed comparison of Landau and van-Kampen

approaches is discussed in chapter-5.

1.4.3 Nonlinear BGK waves

In linear Landau description of plasma by neglecting the term 0, f; and considering
Oyfo = 0 at v = vg, both, the amplitude dependent macroscopic fluid nonlinear-
ity and the microscopic trapped particle nonlinearity are not considered. The
nonlinear collective coherent stable structures can be explained only by complete
nonlinear solutions of the Vlasov equation (1.7). A steady state solution of non-
linear Vlasov equation is found by considering df, /0t = 0 in Eq. (1.7) written for

species . In one dimension, the equation for f, is,

Ofa  Ga 09 0fq

), — - —

Ve ox Me 0T OV, -

(1.14)

The total energy, € = %1)2 — ¢, remains constant on particle orbits. The general

solution can be represented as,

foa = Ja <v§ + Q(J—O@) = f(e). (1.15)
Ma
These types of stable solutions having trapped and free particles were first given
by I. B. Bernstein, J. M. Greene and M. D. Kruskal in 1957 [3]|. According to their
names these types of solutions are called BGK modes. There are two different ways
to obtain these types of coherent structures as defined by Bernstein, Greene and
Kruskal. One is the integral equation and another is differential equation technique.
The integral approach is well known as BGK approach and the differential approach

is well known as Sagdeev or Schamel approach [7].
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In integral or BGK approach, from the knowledge of potential ¢(z) and the
background distribution f(v,x = 00), the trapped particle distribution f; and the
free particle distribution f; at any point = can be derived. The only constraint is
that f; can not be negative. One noticeable thing in this technique is that, any
monotonic potential (¢(x)) structure can be constructed. There is no restriction on
the shape of trapped particle distribution function. That is why all the solutions of
BGK theory are not stable physical solutions. For an example, the trapped particle
distribution function for a linear Langmuir wave is a delta function which also has
been introduced previously in van-Kampen approach. Another example is phase-
space electron holes. Phase-space electron hole of any length can be constructed
according to BGK theory. But after a maximum length, the slope singularity of the
trapped particle distribution function (0f/0v — o) appears [7| at the separatrix

(v = V).

1.4.4 Schamel’s nonlinear model

After Bernstein, Greene and Kruskal’s (BGK) formulation, H. Schamel in 1971 [25]
provided a formulation to explore more stable subclasses of BGK modes. Schamel
used in the formulation for trapped particle distribution function the differential
equation technique [25]. In this technique, the total distribution function is written

by joining trapped and free particle distribution functions in corresponding regions,

1+ k)2 1 )
f(z,v) = W (9(6) exp[—ﬁ(a\/Q_e — )] +
0(—e) exp(—%o) exp(—ae)). (1.16)

Function (1.16) is a formal solutions of the Vlasov equation since it is function
only of total energy e. Here, § is the trapping parameter. The first exponential
term within the bracket represents the free particle expression which is valid for
e > 0 and the second exponential terms together represent the trapped particle
distribution which is valid for ¢ < 0 where ¢ = v?/2 — ¢(x).

The density obtained from the distribution function (1.16) is used to derive
potential ¢(z) by solving the Poisson equation using the Sagdeev potential or
pseudopotential V(¢) technique. The boundary conditions applied on values of

V(¢) at two extreme values of ¢ (¢ = 0 and ¢ = @, where ¢ is the maximum
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value of ¢) determine a Nonlinear Dispersion Relation (NDR) Eq. (5.13) and the
choice of value k produces various classes of coherent nonlinear solutions, apart

from producing linear eigenmodes in a limiting case. These classes of nonlinear
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Figure 1.3: Phase diagram of the trapped particle nonlinear structures in the
parameter space k3-B, presented by Schamel [1] as obtained from the nonlinear
dispersion relation (NDR). Here, D = B — k2 and the velocities vos and vgs are the
velocities of slow and fast branches, respectively. More detailed description about
B is given in Chapter-5.

mathematical forms include a potential hump or solitary electron hole (SEH), a
cnoidal electron hole wavelet (CEHWL), and a solitary potential dip (SPD) [1].
The velocity vy of the structures are determined by a nonlinear dispersion relation
(NDR) Eq. (5.13). The potential expression for the case of a stable solitary electron
hole (SEH), according to this model is, ¢(x) = 9 sech®(z:/4). Schamel [1] identified
a parameter B whose value demarcates harmonic waves and the coherent solutions
in the formulation. A phase diagram as produced by schamel in the parameter
space k2-B, reproduced here in Fig. 1.3, describes regimes of existence of the
above branches of solutions. As seen from the phase-diagram, the solutions with
B = 0 are harmonic waves while solutions with finite B correspond to coherent

structures. Similarly identifiable in the phase-diagram are the solitary structures
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or SEH having k2 = 0. One most important characteristic of this solution is that
the shape of the potential ¢(z) approximately follows the Debye shielding property
ne x exp(¢) — 14 ¢ [7]. A more detailed discussion about the Schamel’s model
and NDR is given in Chapters 4-6.

1.4.5 Entropy of hole equilibria: Dupree and Lynden-Bell

approaches

T. H. Dupree gave solutions for coherent phase space density hole [5] using, once
again, the Sagdeev potential or pseudo-potential technique. In respect to entropy,
both Schamel’s and Dupree’s model consider entropy maximization for construct-
ing the trapped particle distribution function. They have used Maxwell-Boltzmann
statistics to calculate the entropy, therefore this hole velocity distribution function
is addressed by Dupree as Maxwell-Boltzmann hole. The entropy is defined quan-

titatively by Dupree as,

—0 = —n/dw/dvflnf, (1.17)

where n is the average number density and f contains an average over microstates,
while mentioning that the proper choice of ¢ for the Vlasov system is not a well
understood problem. Highlighting its relevance to the collisionless Vlasov plas-
mas, for example, D. Lynden-Bell in 1967 [6] found the equilibrium distribution
in an encounterless relaxation by use of a fourth type of statistics related to both
Fermi-Dirac statistics and equipartition of energy per unit mass. In the limit of dis-
tinguishable micro-particles and no exclusion of micro-cells by them, this statistics

becomes Maxwell’s distribution but with temperature proportional to mass.

1.5 Content of the thesis and major results

The studies presented in this thesis analyze the issues discussed in the above section
mainly by the means of kinetic Vlasov simulation. Here we highlight the contents
and important results from the chapters of this thesis.

Chapter 2 presents a numerical technique for solving the Vlasov-Poisson equa-
tion in 1D case for electrostatic plasmas. The fundamental properties of the Vlasov

systems and associated continuity of the plasma treated as a phase fluid is described
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in this chapter and properties of its solutions are discussed. The numerical scheme
for implementing phase-fluid conservation is described schematically and results
for Landau damping of electrostatic Langmuir waves are presented and bench-
marked. The scheme for parallelization of the numerical technique is described
and net achievable numerical efficiency is characterized with respect to the scale of
computing architecture as well as the computing strength of the supercomputing
system available at IPR. Boundary conditions for the distribution function along
both  and v dimensions are described and their implementation in the numeri-
cal scheme is discussed. Various results showing confirmation with multiple time
scales resolved by the code and interaction between processes on distinct time
scales are examined. Dispersion properties of propagating structures are verified
against their standard analytic forms. The challenges associated with resolution
of multiple time scales are highlighted for the simulations performed with exact
electron to ion mass ratio. Standard fluid results like parametric coupling between
two collective processes at different time scales and the standard kinetic results,
like Landau damping of collective plasma perturbation and particle trapping in
electron plasma wave and ion acoustic wave are quantitatively verified. Conser-
vation of different norms, total energy, entropy and momentum are also verified

during the simulation.

Chapter 3 presents shelf consistent generation of solitary ion acoustic wave due
to electron trapping in a current driven electrostatic plasma through kinetic Vlasov
simulation. The results of fully nonlinear simulation presented in this chapter
show a self-consistent development of electron trapping in waves, and a resulting
coherence, in a situation where the linear theory prescribes that a small amplitude
ion acoustic wave must grow to large enough amplitudes before showing any sign

of conventional fluid nonlinearity u - Vu in the form of growing coherence [28, 35].

The rest of the chapter presents interpretation of these results based on the
analytic formulation of trapped electron equilibria and electron phase-space holes
by H. Schamel [4]. A detailed validation of the recovered coherent structure as
collisionless trapped particle equilibria is done based on multiple cases in the sim-
ulations over a range of parameters of the analytic formulation. Multiple scenarios
with and without a perturbing potential produced by a coexisting electron plasma
wave, capable of ergodizing the separatrix region, are explored. The evolved so-

lutions are quantitatively compared with the analytic results of the electron hole
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formulations in each case. The phase space distributions of electrons and ions, spa-
tial distributions of density and potential corresponding to evolved solitary wave
structures, and associated Sagdeev potential are presented systematically. The
central observations and conclusions include that the nonlinear coherent solitary
wave structures developed in the simulation follow the analytic solutions of an m-
KdV equation that accounts for the stronger nonlinearity produced by the electron
trapping in the structure [8|. In the low k regime, where the structures coexist and
interact with the undamped high frequency electron plasma waves, the nonlinear
solitary structures retain their nearly analytic form as long as the trapped electron
distribution stays in an independent (unperturbed) thermodynamic equilibrium.
In the conditions where the developing ion acoustic structures are free from time
dependent perturbations, the numerically simulated coherent structure could be
characterized analytically. Such validation involved finding, from them, the neces-
sary parameters to construct the corresponding analytic solutions and to carry out
the comparison of the simulation results with the theoretical formulation that has
a modified KdV equation with a stronger trapping nonlinearity. Relatively small
amplitude coherent structures coexisting with a periodic self-consistent potential
perturbation are found to be most affected by the nonadiabatic response of the
electrons. Presence of a self-consistent time dependent perturbing potential, in
the form of a coexisting EPW, prevents the trapped electrons from reaching an
equilibrium and forming stable trapped particle modes that are time independent
stable solutions of the Vlasov equation. It is observed that although a coherent
solitary structures has a sizable transient fraction of trapped particle population
in the separatrix region, it remains reasonably stable as long as a finite adiabatic
fraction of the trapped population existed. Finally, the time asymptotic evolution
of the trapped particle mode structure associated with solitary structure generated
by the trapped particle nonlinearity shows a residual growth originating from the
associated trapped particle instability [37] which produces modulations in the soli-
ton amplitude with electron bounce frequency and causes a net growth in present

cases simulated using a finite current.

Chapter 4 deals with the issue of mutual interaction between the structures
nearly confirming with propagating solitary electron holes (SEH) solutions. The
simulations in this chapter explores a distinct limit of propagation and examines

interaction between the faster analytic SEH solutions [1] in regime of electron-
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acoustic structures [9]. The results from this part of the work exhibit the coexis-
tence of linear electron plasma mode and nonlinear electron acoustic mode with
a comparable amplitude. The additional linear fast electron plasma modes are
generated in the simulation, as a result of analytic approximations entering the
SEH solutions used as initial conditions. This EPW activity consists of a set of
noninteracting linear modes. Their contribution to potential evolution is therefore
found separable from the potential data by their Fourier decomposition into con-
stituent modes and following their analytic time evolution [9]. However, the modes
constituting slow coherent solitons couple nonlinearly via the strong response of
the trapped electrons in the SEH structures. The strongly electron trapping equi-
librium SEH structures are observed to interact adiabatically and preserve their
identity across multiple events of interaction, or collision, between two SEHs. The
phase-space evolution of the SEH is illustrated where a shift, mutually separat-
ing the interacting holes along the velocity coordinates, during the interaction, is
noted. This consolidated shift of complete trapped population results in preser-
vation of identities of the SEH and restoration of the pre-interaction forms of the
SEH following the interaction. The soliton velocity shows variation during the in-
teraction such that a slight phase-shift is visible in the soliton motion for the cases
where the time of interaction is longer. The phase-shift is larger for smaller soliton
in the case of two non-identical interacting solitons. It is observed that in the limit
of larger relative velocity between the SEH structures (Av, compared to square
root of their amplitude, \/2) the solutions show identity preserving interaction,
however in the cases of Av ~ /% the structures undergo a strong modification
and coalesce after a few events of interaction. The interacting states of the SEH
are also compared with infrequent transients observed in the magnetospheric data
usually featuring frequent SEH like bipolar electric field structures [18, 19]. Proper-
ties of these interacting stages in simulation are found to confirm with the tripolar
and inverse tripolar pulses observed having relatively low rate of detection in the

magnetospheric data [20].

Chapter 5 explores the concept of stability for small amplitude nonlinear
modes using a current-driven, 1D, collisionless plasma as a paradigm of driven
intermittent plasma turbulence and anomalous transport with the focus on un-
damped coherent electrostatic structures. The simulation results in this chapter

are treated as central motivating factor to make progress along the pure nonlinear
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branch of the plasma dispersion which is analytically developed and provides a gen-
eral framework that accommodates the standard linear dispersive formulation as
its special case [10]. The high resolution computer simulation results presented in
this chapter illustrate an evolution of realizable phase-space perturbations, which
evolve into the stable coherent structures traveling at phase velocities far from
their linear prescription in addition to the familiar linear plasma modes located
at a variety of time and spatial scales. Analysis presented in this chapter begins
with the inspection of the plasma response in terms of a valid evolution of the
Vlasov-Poisson system to a non-topological, eddy-like, initial perturbation (a lo-
cally scarce electron population about any velocity, preferably on the rising side of
a drifting f.(v). The simulated response is employed to draw the general picture
in the following order: we first revisit linear fluid theory and then consider the
linear Vlasov theory of Landau and van-Kampen [11, 12]. The interpretation of
the overall picture that emerged from our simulation results is finally completed
where we systematically include this nonlinearity and develop a general Nonlin-
ear Dispersion Relation (NDR), capable of displaying all the observed familiar
and unfamiliar responses in their corresponding limits. In order to complete the
analysis by simulation, we show that a stationary hole appeared to be undamped
within a full Vlasov dynamics, but dies out completely within a linear Vlasov evo-
lution [10]. The set of simulations presented therefore has the implications that in
the case of coherency, the onset of instability as described by linear theory (e.g.,
Landau) is generally absent when seen realistically from the standpoint of the
complete Vlasov-Poisson system. It is replaced instead by a more complex, and
general destabilization process in phase space, in which this manifold of trapped
particle equilibria with their attracting negative energy property together with
the explicit initial perturbation will play an important role. This renders plasma
destabilization multifaceted and, as a rule, no longer one-dimensional in terms of

the parameter-space.

Chapter 6 Turbulence in collisionless stellar and high energy space plasmas is
expected to be essentially dominated by large scale potential variations, capable of
trapping large density of charge particles. While being in equilibrium with poten-
tial of trapped charges these structures must interact mutually as well as with the
conventional plasma modes and must get destabilized in order to be active part of

the turbulent energy cascade, transferring the large scale field energy to the heat.
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While the ergodization of separatrix witnessed in Chapter 3 represents a nearly
nonthermal decay of these structures and a direct passage of energy to the heat
(or smallest accountable scale), an opposite process, where finite gain in energy
of these structures results from larger scale, constitutes a sufficient condition for
ensuring their place into the spectral chain of the energy cascade [40]. Existence
and clarity of the mechanism of growth or instability of these coherent structures,
via their interaction, with each other or with conventional waves, presently remains
an open question. In this final chapter we focus on this mechanism by means of
our simulations. Seed like perturbations in the electron distribution function [1]
are analyzed below the linearly subcritical limit [2]| of a current driven ion acous-
tic instability. Detailed analysis of the development of the nonlinear structures is
carried out and their evolution is examined for the cases where they are show a
multi-parameter evolution while undergoing a nonlinear electron hole instability.
Unlike the linear instability where amplitude remains the sole growth parameter,
the growth of an electron hole is characterized by the strengthening response of the
trapped particle population that reflects into transformation of an initial hole in a
multidimensional space of parameters. These dimensions in the presently consid-
ered Schamel formulation, include: the propagation velocity vy, peak potential v
and the inverse trapped electron temperature 3 of the structures, and are mutually
coupled to each other by the Nonlinear Dispersion Relation (NDR), describing a
continuum of collective nonlinear modes [1]. The parametric growth mechanism
for the electron hole instability is identified involving an extended interaction be-
tween the electron hole and a background large scale ion acoustic structure. The
mechanism is illustrated quantitatively using the simulation data from multiple
cases which show strong to weak, or nearly vanishing, growth in specific limits of

the parameters.

Chapter 7 provides, brief summary of the complete study presented in the
thesis, summarizes the major conclusions from the present thesis work and con-
solidates these conclusions to provide the updated status of the knowledge on the
issues addressed. The major results are also discussed in the perspective of ex-
isting experimental results and a limited number of theoretical formulations of
the present problem [3-6]. Key areas are identified where the present results and
conclusion can help in introducing quantitative revisions in the existing theoret-

ical formulations. The discussion is included on a more generalized structure of
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the nonlinear stability analysis of the collective plasma response, involving kinetic
trapped particle nonlinearity. The ways to address several outstanding issues re-
quiring kinetic inputs, e.g., plasma heating in collisionless nonthermal conditions
via the generalized formulations [42| and parallel heat conduction in collisional
cases [43] are considered with respect to present approaches to the issue [3-5]. The
extension of the present simulation approach to more diverse phase-space equi-
libria [3| and naturally recovered nonlinear kinetic structures [13-20] is discussed
and the possible stages involved in making progress towards addressing them are
described. Possible scenarios leading to unstable phase-space perturbations and
their analogue in other physical setups supporting collective processes [44, 45| are
considered highlighting relevance of conclusion from the present simulation results

to such alternate setups.
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Phase-fluid continuity of the
collisionless Vlasov-Poisson system:

The numerical model

2.1 Introduction

In the essential kinetic description of plasmas in their collisionless regime, the evo-
lution of collective processes are governed by the Vlasov equation [26, 28]. The
linearized Vlasov theory, which addresses the small amplitude regime of potential
perturbations, is obtained by linearization of Vlasov equation. The linear theory
successfully recovers the standard linear dispersive wave that, under the kinetic the-
ory, additionally interact with resonant particles and result in damping or growth
of the perturbations. The majority of collective processes in hot collisionless plas-
mas however involve finite and large amplitude plasma structures. The analytic
approach to growth/damping of presents the complex analytic challenge and an
area of active research as introduced in detail in Chapter 1. The presently active
efforts for develop more general nonlinear version of plasma theory of waves and
turbulence is greatly aided by the numerical simulations with pure nonlinear and
fully kinetic approach. In order to perform the kinetic simulations customized for
exploring fundamental physics of the subject of nonlinear plasma stability, a high
resolution Vlasov simulation procedure is first developed in these studies. This
simulation procedure is systematically described and validated in this chapter.

The exact nonlinear solutions desired in in this study of kinetic equations
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governing collisionless plasmas include those finite amplitude where particles are
trapped by the perturbations. The linear results, that neglect trapping, are, in
turn, recovered as their limiting cases of this general evolution. The various nu-
merical methods [95, 96| underlying the simulation procedure therefore essentially
implement the fundamental conservation properties described by the collisionless
Vlasov equations, without using any linear approximation, in order to simulate the
realistic evolution of distributions in the species phase-space.

In the present studies, the fundamental “Flux Balance” |27] method is applied
to simulate the evolution of both electrons and ion phase-space distributions gov-
erned by the 1-D Vlasov equation in an electrostatic case using the numerical
procedure as presented in Sec. 2.2 of this chapter. The full set of electrostatic
effects observable in these limits are recovered, as analyzed in Sec. 2.4, including
the well known effects identified under the conventional linear theory, for exam-
ple, the high-frequency electrostatic Langmuir waves, ion acoustic waves, and their
corresponding collisionless Landau damping or growth. In addition to these read-
ily identifiable processes, a host of nonlinear effects and structures, as originally
intended, emerge allowing their in depth analysis in rest of this thesis. The sim-
ulation results are compared to the analytic value and also have the signature of
existence of trapped particle modes, while limiting the study to the small amplitude

limit where the conventional fluid nonlinearities have a negligible role.

2.2 Evolution of a collisionless phase-fluid: The nu-

merical scheme

The Vlasov equation signifies the fundamental conservation of the flux of the prob-
ability density in the phase-space. The components of its characteristics are canon-
ical conjugates, coupled to each other by means of Hamilton’s equations of motion.
The transport of probability density f of species o having charge ¢ and mass m in
the phase-space (z,v) is hence purely deterministic and the Vlasov equation takes
the form of a continuity equation for the net probability flux. In the Eularian
representation of phase-space coordinates, for example, its total time derivative of
J must vanish in absence of any source (or sink) of the probability density,
of

S, Tu V=0 (2.1)
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where u is a hyper-velocity field in the phase-space (z,v), having the components,
u=ai+ 00 = zv+ 0(F/m) (2.2)

such that the component along v is the acceleration F'/m in the configuration space.
For electrically charged fluids, F' is the Lorentz force, or the electric field force qF

acting in the electrostatic limit, that appropriately yields the Vlasov equation,

of 91, ab of

o V9 T av—O. (2.3)

With the above interpretation, all the usual methods for solving PDE’s apply to
Eq. (2.1). The numerical procedure adopted here to solve Eq. (2.1), by splitting it

in two ODEs, is described in the following section.

2.2.1 Split time evolution

The transformation (spectral) schemes [97] and the splitting scheme [27, 95, 96| are
commonly used in Vlasov simulations. The splitting scheme is widely used because
of the simplicity of its algorithms. Under the splitting scheme, the integration of
distribution functions reduces to a numerical interpolation. However, to maintain
the energy and mass conservation and to suppress numerical diffusion a large num-
ber of grid points are needed in both configuration and velocity dimensions. The
flux balance method is used in the present simulations based on splitting the ana-
lytic form of the Vlasov equation along the configuration and velocity dimensions
in the phase space and applying a flux corrected time evolution to both of them
as discuss bellow:

When the lengths, time and potential are normalized to electron Debye length
Ap, inverse electron plasma frequency wpe, and the electron thermal energy, kg7, /e,
respectively, the Vlasov equation (2.3) for the species under consideration can be
written as,

% + v% + nE(:c,t)% =0 (2.4)
where, the dimensionless factor 7 scales the electrostatic force produced by the
electric field F(z,t) on the species depending up on the ratios of its charge and

mass with the electron. The electric field E(x,?) can be calculated using the
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Poisson equation for a single ion species plasma,

+oo +oo
Cea | swod—a [ g (2:5)

Using time splitting method the Vlasov equation Eq. (2.4) for each species can be

split into two similar linear advection equations as:

of  of
o TV

= 0 (2.6)

which is evolved to obtain f*(z,v,t = nAt) using f* = f*(x,v,t = (n — 1)At),
and

T +nE(x,l = nAl) 5 = 0; (2.7)

which is evolved to obtain f**(z,v,t = nAt) using f* = f*(z,v,t = nAt).
Egs. (2.6) and (2.7) are solved simultaneously. As indicated, in each time step
the time evolved f from one of the equations is being used as the initial condition
for the other. Electric field is calculated by solving the Poisson Eq. (2.5) once
when [ for all species become available. We have used a leap-frog type scheme for

splitting the time, which is second order and symmetric in time [27].

2.2.2 The flux balance scheme

Fig. 2.1 schematically explains the flux balance technique using a model of three
adjacent cells, (i —1)*, i*" and (7 +1)* having width Az each, with X as the cor-
responding position. Assuming that the distribution function f is smooth in each
elementary cell and velocity is positive, in the Fig. 2.1 the upper grid represents
f at time ¢t and the lower grid at time ¢ + At, where At is the time step. For At
sufficiently small, the fluid or the distribution function f(¢) within the length vA¢
from one cell moves to the next cell at time ¢ + At¢. In the Fig. 2.1 the region
shaded with horizontal lines represents fluid loss, F} ., from " cell to (i+ 1) cell
from (i —1)"

cell to i*" cell. The new value of f at the it cell at time ¢ + At is therefore,

and the region shaded with vertical lines represents fluid gain, Fgam,

fz(t + At) = fl(t) + F_gam - F}i)ss' (28)
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Values of Ffoss and F?

gain

can be obtained from the Eq. (2.6) as,

vAt vAt
~_ .
IHOR ! IlIIIIIII = !

Xi-1 N \\ X; \\ \\ Xit1
\ \ \ \
\ Y \ AN
\ F lg}(in \\F llo§s
\‘ \‘ \ \\
fE+40) | I [[111111] N =N |
I v J\ v J\ v J
Xi—1 Xi Xitq

[ F'gain = Fluid gain to the " cell= F=1,
=] Fijoss = Fluid loss from the /" cell = Fi*t ;0

Fi(t +AE) = Fi(8) + (FLgin — Flogs)

Figure 2.1: Block diagram of the Flux Balance Technique. The fluid element of
length vAt from x;_;th cell of f(¢) (vertical shaded region) moves to the z;th cell
of f(t+ At), is denoted by gain of fluid flux to i’ cell. Similarly, fluid element of
length vA¢ from z;th cell of f(t) (horizontal shaded region) moves to the x;th
cell of f(t + At), is denoted by loss of fluid flux from " cell.

) 1 CEi+A1‘/2
Fow = 32 | (=) dh
Az zi+Az/2—vAt
) 1 i 1+Ax/2
Faw = 75 [ F(h— i) dh:
e Az Ti—1+Az/2—vAt '
where h is an integration variable. Similar expressions of Fj, ., and F},  are ob-

tainable for negative velocities and are applicable to both parts of the splitted

equations.

2.2.3 Characterization of the numerical procedure

In order to preserve the positivity of the distribution function, the velocity range of

the species phase space needs to be chosen carefully in combination of the time step.
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The required temporal and spatial resolutions thus determine the limiting values
of the species velocity space. The variations or fluctuations of many conserved
quantities are monitored during the evolution for the validation of the numerical
procedure using an exact mass ratio of electrons and ions, m./m; = 1836 for
hydrogen plasma. These quantities include, total electrostatic field energy &, total
kinetic energy &, total energy &, momentum M, entropy S, volume or L1 norm
L1, L2 norm L5, maximum value of distribution function F,.x and minimum value
of distribution function F;,. Table 2.1 represents the name of these quantities,
their expressions and values of their fluctuation/variation from their corresponding
initial values in a simulation for excitation of electrostatic modes from a small
amplitude cosine density perturbation to both electrons and ions in a hydrogen
plasma (described in Sec.2.4.1.1). The difference of these quantities from their
initial (¢ = 0) values are denoted by A.

Fig. 2.2 presents the time histories of difference of these quantities from their
corresponding initial values. The variation in quantities &, &, S, L1, Lo and Fas
are normalized by their initial values, while that in M and & are normalized to
the thermal velocity and thermal energy of the electrons, respectively. As seen
from Fig. 2.2(a), the electrostatic energy corresponding to electron plasma wave
is Landau damped due to high damping rate (estimated in Sec. 2.4.1.1) and the
residual oscillations seen are due to excitation of multiple ion acoustic modes. The
Fig. 2.2(b) presents the total energy, denoted by red solid line, that is seen to show
a residual oscillation, within the tolerance, because of finite dimensions of the
velocity space covered. The frequency of the two counter-propagating structures
to cover the box length agrees with the frequency of the wave because of the
wave length of the standing mode is chosen equal to box length. The total energy
fluctuation is only in the form of kinetic energy of ions because of uncovered part of
distribution due to rather limited velocity boundary values for ions. This frequency

appears in rest of the norms presented which are well within the desired tolerance.

The Fig. 2.2(c) presents the normalized volume of electron and ion phase space
that oscillates about a constant value because of finite velocity space boundaries
for both distributions. Note that the exact magnitude of fluctuation with the same
frequency for both electrons and ions may differ because of independent choice of
the velocity space boundaries for both. Figs. 2.2(d)-(e) present the fluctuation

of L2 norm of electron and ion distribution functions which are limited within a
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Table 2.1: Variation/fluctuation of different quantities in simulation.

Name of quantities

Expressions

Value of
fluctuation /variation

Potential Energy (&)

/ |E,Pde

gf—i-gk ~Ep =+ 106

Kinetic energy (&)

Z//qﬂfj dvdzx

gf—i-gk ~Er =+ 107¢

AEp(t) _
Total Energy (&7) Er=E +& 5=0) ~ 1076
Momentum (M) //wfj dvdzx AM(t) ~ 1075

A .
Entropy (S) / / o] In(1fy)) dvde S®) g0

S(t=0)
Volume ) AL (1) 6
or L1 norm (£;) //fj dvde Ly(t =0) ~ 10

ALy(t) _
L2 norm (L) // |f;|? dvdx Li=0) ~ 107
Maximum value of AFax(t) 3
distribution function Finax = max[fe] Fmax(t = 0) 10
Minimum value of .
distribution function Fnin = min{fe ] Fmin 2 0

fraction ~ 107% of its initial value. In Fig. 2.2(f) the electron entropy is denoted

by blue line and that of ion distribution by red line. Remarkably, the entropy
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Figure 2.2: Time evolution of fluctuation of (a) potential energy, (b) sum of kinetic
energy of electron and ion (black line) total energy (red line), (¢) L1 norm of
electron (blue solid line) and ion (red solid line), (d) L2 norm of electron, (e)
L2 norm of ion, (f) ion entropy (red solid line) and electron entropy (solid blue
line), (g) maximum value of electron distribution function, (h) maximum value
of ion distribution function and (i) electron momentum (solid blue line) and ion
momentum (solid red line). All the quantities are plotted as deviation from their
initial values. The quantities KE = &, Eiota = Er, S, L1, Lo and free = Fmaz
are normalized by their initial values and M and PE are normalized to thermal
velocity and thermal energy of electron.
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has no significant change during the initial Landau damping phase of the electron
plasma wave in agreement with the theory. The entropy subsequently increases
signifying the slow numerical diffusion of poorly resolved fine structures created
in the electron phase-space by the process of Landau damping of the wave due
to presence of highly oscillating ballistic term (~ exp(—ik.vt)) [28] in velocity
space, which can not be resolved with finite grid size. It is however conserved and
oscillates about a constant value with transit frequency ion acoustic structures once
macroscopic structures (significantly larger compared to grid size) are formed and
are studies in the evolution. In the regime where Landau damping is not significant
we however recover an undamped trapped particle structure in the simulation
which is not predicted by the linear Landau theory that ignores particle trapping.
Example of such small k evolution is presented and discussed in Sec. 2.4.

The Figs. 2.2(g)-(h) present maximum value of electron and ion distribution
functions respectively Which also stay in required tolerance limit. The maximum
of ion distribution function shows increasing magnitude of variation signifying
slow evolution of structures propagating with slightly different phase velocities.
Fig. 2.2(i) presents variation of momentum of electrons and ions, denoted by solid
blue and red line, respectively, which also remain bounded for both species through
out the simulation. We have additionally monitored the minimum value of electron
and ion distribution function which remain positive everywhere in their respective

phase-spaces.

2.3 Parallelization using MPI and Open-MP

The numerical operation Fig. 2.1 constitutes a standard procedure to be performed
over a large number of phase-space cells and for each of the species in the simu-
lations. It is therefore possible under the present scheme to efficiently distribute
these large number of identical operations to be performed parallely by a large
number of computational achieving a greater numerical efficiency and speed up.
This parallelization of computational procedure is achieved systematically by im-
plementing the standards of the Message Passing Interface library and those of the
Open-MP parallelization scheme for the numerical procedures. The General paral-
lelization scheme implemented in present computations is presented schematically

in Fig. 2.3(a) and the effective speedup generated by these schemes as a function
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of increasing number of computing nodes is characterized in Fig. 2.3(b). The in-

(a) Load initial parameters (L, T /T,, No. of X and (b)
V grid points, m/m,, Perturbation amplitude, At)

MPI
Node-0 Node-1 =i
(Electron) (Ton) E
=,
Core Core had
Open-MP
1" DE
Open-MP
Density
I—
Density send

Open-MP
|
E send
2 DE Open-MP ’:F‘ l
—

Figure 2.3: (a) Block diagram of the parallelization scheme. (b) Variation of time
taken for 1000 time steps in (4096 x8192) grid with different no. of Processors.
Number of processor 1 for the serial code and 2 for only 2 MPI nodes, 4 (2 x2) for
2 MPI nodes and 2 Open-MP cores in each MPI node, 8 (2 x4) for 2 MPI nodes
and 4 OpenMP cores in each MPI node. The subplot shows the time taken for
2,4,8 and 16 processors.

ternal computations associated with both the species are distributed on four cores
using the OpenMP scheme. Fig. 2.3(b) presents the computation time for the 1000
time step in a (4096 x8192) dual mesh grid with increasing number of processor
showing that a computational speed up of about 2 times was achievable up on
an optimization and implementation of MPI to use minimum two MPI nodes as
compared to the time taken for a single processor (serial) execution represented by
the bar at number of processors = 1. The bars at even larger number of proces-
sors (4 and more) represent only the effect of adding more OpenMP cores while
using only two MPI nodes. This parallelization scheme also helped in generating
a considerable speed up for rather small number of grid points. The efficiency of
the parallel scheme compared to a serial one increases with the increase of number
of grid points. The characterization presented in Figs. 2.4 and 2.2 are for studying
the Landau damping and generation of trapped particle nonlinearity generated
coherent structures with sufficiently long spatial scales that are well resolved by
a minimum grid resolution of 512x512. Higher grid resolutions are required for

studying time evolution of spatially smaller structures.
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2.4 Benchmark using standard analytic results

The numerical procedure developed and presented in Sec. 2.2 is validated by sim-
ulating the standard results for plasmas involving both electron and ion response
to desired accuracy before its application to exploring more fundamental physics

of trapped particle structures and the associated nonlinearity |7, 53].

2.4.1 Recovery of electrostatic plasma modes

The Vlasov theory of plasma waves prescribes two most dominant electrostatic
eigenmodes of plasma, namely, electron plasma waves (EPW) and ion acoustic
waves (IAW) |28]. The phase velocity of the waves can be calculated using the
corresponding linear dispersion relations. According to linear Vlasov theory the
dispersion relation for electron plasma waves having phase velocity w/k >> vy,
is,

w2 = w2 (14 3k°A%,). (2.9)

r

kT,
eone?

where, w, is real part of the frequency, k is wave number, A\p, = is the

Debye length and wy, = \/;‘Tmi is the electron plasma frequency. In the warm,
finite species temperature plasmas, however, the resonance particles additionally
exchange energy with the wave and therefore wave has a finite damping or growth
rate w; [28]. If there are more resonant particles moving slightly slower than the
wave than those moving slightly faster than the wave, then the slower particles take
energy away from the wave hence cause the wave energy to damp. Conversely,
a growth must be recovered if the number of faster moving particles are larger
than the slower moving particles. According to linear Landau theory the linear
damping rate w; x dfe/0v and the damping rate under the approximation of a
Maxwellian electron equilibrium distribution is obtained from the imaginary part

of the dispersion relation as,

T Whpe 1 3
. \/;w%ef"p (%2%8*2) (2.10)

Similarly, the dispersion relation for ion acoustic wave in terms of real part of
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its frequency, w,, is given by,

T, k2 T,
= = — + k= 2.11
T <1+/<;2A%e TN (2.11)

Here, v; = 3. m; is mass of ion. In the following analysis we have present recovery

of these analytic results in our numerical simulations.

2.4.1.1 Numerical Results: dispersion and collisionless Landau damp-

ing

In order to study of Langmuir wave in a collision-less plasma in 1D electrostatic
simulations a stationary Maxwellian velocity distribution function is used for both

electrons and ions.

m;(v;)*
fi(x,v;,t =0) = foj(x)exp {—T} (2.12)
where the subscript j = e and ¢ correspond to electron and ion, m;, T}, and v; are
the mass, temperature, and velocity co-ordinate of the species j respectively. The
quantity fo; is the normalization constant.

The other standard normalization used here are given in the Table 2.2, where
ADe, Uthe and wy, are the plasma Debye length, electron thermal velocity and elec-
tron plasma oscillation frequency, respectively. In rest of this thesis the symbols
with sign ~ for the normalized quantities are replaced by normal symbols for the
simplicity. Initially, a cosine density perturbation is applied to both electron and
ion such that total density can be written as, n; = n, = ng + n cos(2mx/L), where
ny and ng are the amplitude of the density perturbation and the background den-
sity, respectively. In present simulation a 512 x512 dual-mesh grid in phase-space
and periodic boundary condition at the end of simulation zone L in x is used for
both electron and ion for solving Vlasov equation for the initial parameter n,=0.01,
T; =0.05 and the exact species mass ratio m;/m, = 1836. The distributions f; . are
evolved in time according to Vlasov equation for two different k values of initial
perturbation, Case-I: k& = 0.209 (L=30 Ap.) and Case-II: k = 0.314 (L=18 Ap,).
This density perturbation generates high frequency electron plasma wave and slow
frequency ion acoustic wave in both the cases. The frequency of the EPW and the

IAW follow corresponding dispersion relations given by Eqgs. (2.9) and (2.11), re-
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Table 2.2: List of normalized quantities.

| Name of quantities | Expressions

Potential (¢) ¢ =ed/T,
Length () T =ua/Ape
Time () t = twpye
Velocity (v) D = V/Vtpe
Temperature (7}) Ty =T;/Te
Mass (1) m; =m;/m,
Charge (g;) 4 = q;/4c

spectively. In case-II with L = 20Ap,., the Landau damping rate is higher compare
to the case-I with L = 30Ap.. Fig. 2.4(a) presents temporal evolution of potential
at middle of the simulation box for case-I. The subplot shows the evolution up
to 15 wpe. The frequency of the high-frequency wave structure agrees well with
EPW frequency Eq. (2.9) (w, = 1.032w,, and w; = —1.7 x 107%). For case-II we
estimate w; = —0.0284 that also agrees well with simulation result as shown in the
subplot of Fig. 2.4(b), where time average of potential fluctuation is removed from

the original data to bring the potential fluctuation about zero.

In both the Figs. 2.4(a) and (b), the low frequency waves are the IAW. The
Figs. 2.4(c) and (d) additionally present the ion and electron phase-space distri-
butions in the region of the ion acoustic phase velocity and electron plasma wave
phase velocity. For the set of parameters used, the phase velocity of electron plasma

wave w/k =~ 5uy,. and that of ion acoustic wave w/k = 0.023v;.. Since, bounce
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Figure 2.4: (a)-(b) Temporal evolution of potential at the middle point of the
simulation box for a perturbation for two different box length L = 30 and L =
20\ p, respectively. The subplot shows the evolution up to ¢t = 15wpe. (c)-(d)
Ton and electron distribution functions near phase velocity of ion acoustic wave
and electron plasma wave respectively. Ions are trapped in ion acoustic wave and
electrons are trapped in electron plasma wave.

frequency of particles is greater than the damping frequency (w, = % >> w;),
they are trapped in the corresponding potential structures. The Fig. 2.5 presents
Fast Fourier Transformation (FFT) of the potential fluctuations in the simulation.

Observable in Fig. 2.5 are two fundamental modes, the one at the higher frequency
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Figure 2.5: Fast Fourier transformation (FFT) of potential fluctuation.

corresponds to the electron plasma wave of frequency w/w,. = 1 while the other
one, corresponding to ion acoustic wave of frequency 0.023wpe. Other small ampli-
tude peaks are seen generated due to the parametric coupling between EPW and

IAW resulting into multiple side-bands about these fundamental frequencies [29].

2.5 Summary and Conclusion

We have described the basic structure of the dynamics of the Vlasov plasmas
where they are treatable as an incompressible phase-fluid that fallows an associ-
ated phase-space flux conservation. An algorithm based on the flux balance of this
phase-fluid in a localized, Eularian, phase-space volume element, undergoing the
time evolution, is described. The numerical procedure involving splitting of the
Vlasov equation along the configuration and velocity dimensions is presented and
its implementation to a multispecies plasma is described. The characterization of
the numerical procedure is done by computing a series of conserved quantities and
norms for the distribution defined under the framework of the Vlasov theory. For
typical phase-space grid resolutions and plasma parameters, the time evolution
of conserved quantities are characterized describing their observed variation with
respect to the tolerance specified for the set of parameters. Standard electrostatic

plasma modes and their dispersion properties are shown to be successfully recov-

41



Chapter 2. Phase-fluid continuity of the collisionless ...

ered by performing test runs of the simulation with typical plasma parameters and
system size. The adopted numerical procedures is additionally shown to have high
potential for an efficient parallelization and the detailed scheme for the paralleliza-
tion based on the MPI and Open-MP standards is described with the achieved

effective speed up as a function of increasing number of computing nodes.

The numerical characterization and physical validation of the procedure using
electrostatic plasma mode simulations are resulted in the following conclusions. For
the cases where the electrostatic energy corresponding to the electron plasma waves
damps with a faster Landau damping rate, the residual oscillations in the conserved
quantities correspond to the periodic displacement of the distribution function
in the phase-space, arising from the periodic interaction of counter-propagating
collective ion acoustic wave structures. The displaced distribution function yield
displacement dependent values of velocity integral performed with limited velocity
space boundaries as opposed to those ideally located at infinity. For physically
acceptable numerical solutions, the oscillations in the conserved quantities and
norms are suitably ensured within a tolerable limit by choice of the velocity space

boundaries for the individual species.

The agreement of simulation results with standard analytic physical results
is successfully recovered for typical plasmas for which standard sinusoidal per-
turbation was used to excite 1D electrostatic modes in a finite electron and ion
temperature Maxwellian distribution of both the species. Apart from recovering
the real frequencies of the electrostatic electron plasma and ion acoustic modes
to a sufficient accuracy, the implemented simulation procedure also recovered the
fundamental kinetic characteristics like collisionless Landau damping of these elec-
trostatic modes. In the low k regime of weak Landau damping, the examination
of regions of ions and electron phase-space close to the phase velocity of the re-
spective modes reveals the existence of highly stable trapped particle equilibrium
structures arising from trapping of charged species resonant with the phase veloc-
ities of the recovered electrostatic modes. These trapped particle equilibria and
the nonlinearity associated with them are further analyzed in sufficient detail by

means of the developed simulation procedure in rest of this thesis.

We have used the general flux balance technique for solving Vlasov equation
numerically including both electrons and ions are mobile. Standard fluid results like

parametric coupling between two collective processes at different time scales and
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the standard kinetic results, like Landau damping of collective plasma perturbation
are quantitatively verified. All the norms, total energy, entropy and momentum
remain conserved through out the simulation. Their fluctuation are in required
tolerance limit. The presented simulations resolve a large range of time scales
including fast electron plasma waves, an intermediate electron bounce frequency
and a much smaller ion acoustic frequency with exact mass ratio between electrons
and ions, highlighting nonlinear effects produced by trapping of resonant electrons

in slower ion acoustic waves at very small amplitudes.
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Adiabatic electron response and
solitary wave generation by trapped

particle nonlinearity

3.1 Introduction

A variety of effects emerge in collisionless plasmas when the fast electron response
is impeded by trapping in potential structures, influencing many collective linear
and nonlinear processes otherwise well described by the equilibrium hydrodynamic
formulation of a collisional plasma |3, 30-32]. The phase-space distributions of
trapped species in such collisionless cases show structures like phase-space vor-
tex which can be strong enough to produce the spatial non-uniformities in density
profiles obtained from their velocity integration [1, 33]. In equilibrium with macro-
scopic potential structures, the species distributions featuring such trapped zones
display a robust total energy conservation where they are purely functions of total
energy and therefore valid solutions of the corresponding Vlasov equations that
couple to each other via macroscopic fields. For stronger trapping the modifica-
tions in the particle distribution functions begin to affect the collective processes,
most effectively by generating additional nonlinear effects |1, 36| since the trapping
strength is intrinsic function of the amplitude, unlike the amplitude independent
results of the linear theory.

The coherent structures serve as very effective first signature of the nonlinear-

ity in collective modes as discussed in Chapter 1. Among the electrostatic plasma
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modes the ion acoustic response shows most visible signature of nonlinearity by
readily producing ion acoustic solitons and solitary waves for finite amplitudes.
The ion acoustic structures therefore serve as an ideal paradigm for nonlinearity
produced coherence in the plasma theory. Finite amplitude ion acoustic waves
(IAW) are known for many decades to posses multiple regimes and origins of the
underlying nonlinearity [4]. They enter into the nonlinear regime by a combined
effect of the nonlinearities that originate from multiple sources and are often dom-
inated by the strongest of them at the onset of their nonlinear regime, as well
as various stages of its evolution. In case of ion acoustic waves, the set of these
nonlinear effects includes the one that has a pure hydrodynamical origin and the
another one which is somewhat less discussed in the available literature on coher-
ent structures and has its origin in the vortex like phase-space structures discussed
above [1], and in preceding chapters. The nonlinearity of the latter class in an
ion waves appears in the regime of collisionless adiabatic response of the electron
species whose pressure must provide the necessary restoring force for the perturbed
ion fluid density. This picture acquires additional complexity in the regimes where

ion response is also adiabatic |34].

Displaying its underlying correlation with emergence of coherence, the nonlin-
earity, in an exact non-perturbative treatment, causes the effective wave potential
¢(z) to have a spatial variation governed by a Sagdeev’s pseudo potential V(P)
[98], consistent with the solitary solutions that correspond to the familiar notion of
the motion along its separatrix for a Hamiltonian system H (¢, ¢) with the nonlin-
ear potential V(®). The solitary solutions vary accordingly in their shape, velocity
and width, depending on the type and strength of the effective nonlinearity and
its multiple underlying sources. In the cases where a source of free energy, capable
of driving a microinstability [99], is available, it is of interest to investigate that
(i) whether a nonlinear saturation occurs due to resonant processes modifying the
particle distribution leading to the formation of undamped coherent structures,
and (ii) to which regime of nonlinearity such saturation is likely to be reached,
in case, for example, of an ion acoustic instability. Given the complexity of com-
bined effect of these nonlinearities, such a time evolution is best analyzed by means
of numerical simulations as done in the present study. The simulations adopted
by us also allow examining the impact of other self-consistently excited multiple

timescale plasma modes on the electron-ion trapped particle equilibrium forming
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in such saturated states. The time evolution of the species distribution function
is analyzed by means of a multiple scale numerical simulation procedure, covering
a range of time scales from electron to ion response times with an exact mass
ratio (m;/m. = 1836). The simulations results presented here additionally allow
analysis of the nonlinear regimes of collective ion waves with an adiabatic elec-
tron response. Similar to the effect of a sufficiently higher electron collisionality
which can prevent particle trapping in a wave and consequently the development
of undamped BGK structures [30], for a collisionless Vlasov plasma our simula-
tions indicate that the presence of a high frequency undamped electron plasma
mode can be one of the factors that affect the process of electron trapping in the
solitary structures, reducing the effect of a stronger, particle trapping generated

nonlinearity.

In an approximate analytic approach addressing the saturated stationary struc-
tures in the limit of cold ions, H. Schamel |4] discussed that the ion acoustic solitons
[100] are generally governed by the Kortweg-de Vries (KdV) equation [48, 94] which

gets modified by the presence of trapped electrons as [4],

9 B o9  19°¢
El ( \/‘“b1 +¢> Y (3:1)

where ¢ is the wave amplitude and 5 a measure of inverse temperature of the
trapped electrons. Note that the nature of the nonlinearity in Eq. (3.1) is sensitive
to the variation in the inverse temperature 5 from 1, which effectively results in ap-
pearance of a stronger nonlinearity. In the limit 5 — 1, however, the equation with
its usual nonlinearity produces the Sagdeev’s original soliton solutions. Effects of
the stronger nonlinearity thus appear in the stable soliton structures and modify
their form from the standard solitary solutions obtained in the limit 5 — 1. Results
form the present simulation enable us to analyze the structure of self-consistently
generated stable solitons in the nonlinearly saturated state of a current driven mi-
croinstability [99] and study the stronger trapping nonlinearity. The solitons, and
the electron response associated with them modify the distribution at the wave
phase velocity and lead the microinstability to a nonlinear saturation. In the sat-
urated states recovered in our simulations they exist in equilibrium with a drifting
electron distribution and therefore effectively in a setup with a finite current. The

stable saturated solutions are analyzed further as the BGK-like equilibrium struc-
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tures in the electron phase-space, thereby obtaining from them a set of parameters
necessary to benchmark them against the special solutions of the existing analyti-
cal formulation, essentially in the presence of a finite current. In the final part of
the study we present a useful analysis where we compare the relative strengths of
the kinetic nonlinearity generated by the trapped particles with the conventional
fluid nonlinearity by means of the solutions of the m-KdV equation (3.1) for the
recovered solitary electron hole parameters. This analysis concludes that at small
amplitude regime the trapped particle nonlinearity does dominate over the fluid
nonlinearity.

The present simulations take into account the adiabatic response of both elec-
trons and ions by considering both the species to be hot and collisionless. The
analysis presented is however, limited to the response of a current carrying plasma
to small sinusoidal density perturbations in short systems (L < 30\p) and ex-
cludes more complex initial conditions representing adiabatically generated ion
phase-space holes that develop into stationary negative potential solitary-wave
structures [101], and in presence of a finite current, reflect the drifting electrons,
leading to the formation of ion acoustic double layers [53, 102].

In this chapter, in Sec. 3.2 we introduce methodology adopted for exploring
the characteristics of kinetic nonlinearity using the Vlasov simulations and main
results recovered. In Sec. 3.2.1 the multispecies computational setup is described
as applied in order to simulate the evolution of the current driven ion acoustic mi-
croinstability in above conditions. The self-consistent generation of stable solitons
in the regime of stronger nonlinearity, produced by a large trapped electron popula-
tion, is studied and characterized using the corresponding analytical formulation in
Sec. 3.3. A comparison between the strength of kinetic and hydrodynamic nonlin-
earity for the investigated regime of parameters is presented based on the solitary
solutions of the m-KdV equation (3.1) in Sec. 3.4. The results are summarized and

conclusions are presented in Sec. 3.5.

3.2 Vlasov simulations of the current driven IAW

In the following sections we present the simulation results showing that in a cur-
rent carrying hydrogen plasma the microinstability associated with the resonant

electrons drives the ion acoustic mode unstable. In small %k regime the high fre-
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quency electron plasma waves (EPW) also form undamped BGK-like equilibrium
and can coexist with the ion acoustic waves. Cases with such a combination are
additionally included in the analysis. The EPW is however, heavily damped in the
regime of large k and the evolution of ion acoustic mode is free from its effects. In
both these cases, the soliton structures appear following a nonlinear saturation of
the resonant microinstability. The saturation approaches following the entry of the
wave into a nonlinear regime governed predominantly by a stronger nonlinearity,
having its origin in the kinetic effects. The observed stable solitary structures are
characterized using the solutions of the modified KdV equation, showing that the
structures follow the analytical solutions in cases where the electrons trapped in
them are in a local thermodynamic equilibrium. In absence of effects like electron
collisionality or high frequency fluctuations, the trapped electrons have a largely
unperturbed distribution. Consequently, all the observed coherent structures obey
this condition and are therefore comparable to the nonlinear solutions of the mKdV

equation.

3.2.1 Simulation setup, normalizations and phase-space per-

turbation

In order to represent a current carrying plasma in the 1D electrostatic simulation
setup, an initial stationary Maxwellian velocity distribution is used for the ions
while the initial electron distribution is a shifted Maxwellian. This is consistent
with a drift in the average velocity of electrons with respect to ions. Accordingly,

the initial electron and ion distribution functions are chosen of the following form:

2

fi(z,v,t =0) = fo;(z)exp {—%] , (3.2)
where the subscript 7 = e and ¢ correspond to electrons and ions, m; is the mass, v;
is the velocity coordinate and wu; is the drift velocity of the species j. The quantity
foj(x) is a constant that normalizes the value of velocity integration of (3.2) to
the density value n;(z) at ¢ = 0. The present simulations are performed in the
frame of ions and therefore a zero ion drift velocity, u; = 0, is used. In order to
consider a current carrying plasma, the electron drift velocity u, may be set to a
finite value. The time evolution of the distribution is done following a flux-balance

algorithm [27], as developed in Chapter 2, in the phase-spaces of electrons and
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hydrogen ions with m;/m, = 1836 and using a periodic boundary condition as the
ends of the simulation zone of length L. Setting the ion temperature 7; = ©T,
determines the choice of normalization for the species temperature in the system
as electron temperature T,, the other normalized quantities used for the purpose of
numerical simulations are as given in the Table 2.2, i.e., the potential (;3 =e¢/T,,
the length along &, & = x/Ap, time t = tw,., velocity ¥ = v/(vy, = \/m)
and the electric field £ = eF /T \p, where A\p = \/W is the plasma Debye
length and w, = \/m is the electron plasma frequency. In order to explore
the ion wave growth by the current driven microinstability, a finite electron drift
Ue > u; = 0 is used in combination with a cosine initial perturbation in the density

distribution of both the species in the space, n;(z), such that,
n; = ne = ng + ny cos (2nz /L), (3.3)

where [ is the length of the simulation zone and ng is the unperturbed average
density of the background plasma. Various cases with finite range of the electron
drift velocity u, and simulation zone dimension I, are explored by simulating the
time evolution of an initial perturbation in the electron and ion distribution func-
tions on a 512 x 512 node dual-mesh in the phase-spaces of both electrons and

10ns.

3.2.2 Ion acoustic instability of the collisionless plasma

The time evolution of the electron distribution and the potential profile in one
of these cases, case-1 with (u, L) = (0.8v;,, 15A\p) is presented in Fig. 3.1, where
© = 20 and n; = 0.008 are used. The region of the electron phase-space is zoomed
about the phase-velocity ¢, of the ion acoustic wave where the effects of electrons
resonant with the ion acoustic wave appear prominently. The distribution in rest
of the phase-space remains nearly Maxwellian, except the presence of modulations
in average values due to the collective plasma modes. The initial and a late time
(t > 2.5 x 10%w,") electron distributions are discussed in greater detail in Sec. 3.3
for various cases examined, including a case with (ue, L) = (0.8vy,, 30Ap) where
multiple solitons are generated. Note that with a finite initial drift velocity u, =
0.8vyy, for case-I, the electron distribution function f, at the value of the ion acoustic

velocity ¢ ~ 0.02v4, has a finite gradient and, as a result, the perturbation at ion
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acoustic velocity experiences a Landau growth from the resonant electrons.

For the case-I with (ue, L) = (0.8vs, 15\p), the potential profiles at various
times during the evolution are plotted in the Figs. 3.1(b), (d), (f), (h) and (j), along
with the contours of electron phase-space distribution function at the correspond-
ing time steps during the various stages of the evolution, plotted in Figs. 3.1(a),
(¢), (e), (g) and (i). The time evolution of the ion acoustic wave amplitude in
this case is plotted in Fig. 3.2 where the data from two additional cases, case-II
with (u., L) = (0.8vi,,30Ap) and case-III with (u, L) = (1.2v4, 15\p) is also in-
cluded. In case-II the ion acoustic wave grows and coexists, additionally, with an
EPW identified by the presence of a high frequency temporal fluctuation whose
impact is discussed later in the analysis. As seen from Fig. 3.2, in the case-I,
(te, L) = (0.8v,, 15Ap), following a very brief interval that scales with the in-
verse linear Landau damping rate ! [28] and lasts a few electron plasma periods,
an initially excited EPW is completely damped and a linear ion acoustic wave is
excited whose growth confirms with the linear Landau growth rate wy [28]. The
excited IAW maintains a nearly sinusoidal form (Fig. 3.1(d)) for a period scaling
with the electron bounce frequency w;,' ~ \/m./k2¢ [32], beyond which it begins
to steepen and deviate from its sinusoidal potential profile as seen in the profiles
from and beyond ¢ = 31w, plotted in Fig. 3.1(f).

3.2.3 Development of nonlinear ion acoustic wave

The next phase of the evolution of the IAW indicates the entry of wave into a strong
nonlinear regime where it begins to develop coherent potential structures. The cor-
responding electron distribution function shows presence of vortex like structures
developing at the ion acoustic velocity in the electron phase space, as visible in
contour plots presented in Fig. 3.1(e) and beyond. A remarkable modification
in the distribution function is visible at the ion acoustic velocity. Since genera-
tion of vortex like structures in electron phase space distribution results in the
diminishing gradient of the electron distribution function df./dv. at the resonant
velocity which must be nonzero for the linear growth in the ion acoustic wave,
the evolution and the observed saturation in wave growth indicates a nonlinear
saturation of the growth where the resonant particles act to flatten the zero order
electron distribution, allowing Jf./Jv. — 0 at the phase velocity of the wave. Note

that at an amplitude quite comparable to its initial sinusoidal stage at t = 10%;1
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Figure 3.1: Temporal evolution of the electron distribution function f.(z,v,t) (left)
and the wave potential ¢(x,t) (right) for the simulation box size L = 15Ap (wave-
length of the initial linear IAW ~ kAp = 27/15) and the electron drift velocity,
U, = 0.8vyy,.
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Figure 3.2: Temporal evolution of the wave amplitude 1 for the case-I, IT and III
corresponding to, (ue, L) = (0.8vy,, 15Ap), (ue, L) = (0.8v4,30\p) and (ue, L) =
(1.2v4, 15Xp), respectively. The subplot shows evolution up to ¢t = 100w, in
detail.

(Fig. 3.1(d)), the strong nonlinear effects begin to appear in the IAW at ¢ = 31w, !
(Fig. 3.1(f)) and beyond. We explore this dominant nonlinearity in IAW more
quantitatively in Sec. 3.3.

3.2.4 Coherent structures formation by electron trapping in
TAW

Analyzing further the amplitude evolution presented in Fig. 3.2, in the cases where
the EPW is absent or quickly damped following an initial short phase, an interme-
diate phase (15 < twy. < 25) follows where the ion acoustic wave experiences an
exponential growth from the resonant electrons since df,/0v, is finite at the ion
acoustic velocity ¢,. It is in this secondary phase that the growing nonlinear wave,
depending on the allowable k values in the simulation, either develops into a train

of solitons of various heights and speeds, or produces a single soliton structure.
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The parametric growth rate of ion acoustic wave (IAW) from coupling to EPW in

case 11

k202 1/3
- (M) (3.4)

memiwpe

has a negligible value, ~ 1.5 x 10~%w,, isolating the constant EPW energy from

the energy balance.

The amplitude evolution at longer times shows that the growth of this nonlinear
wave or structures is arrested as the structures begin to trap the resonant electrons
and, in turn, their amplitudes begin to approach corresponding saturation values.
The nonlinear growth in this saturation phase remains considerably smaller for
the cases with smaller drift in the electrons (u. < vy,). In this saturated phase a
trapped particles (electrons) instability [37] is the mechanism responsible for the
observable residual growth in the nearly saturated soliton amplitude that shows a
modulation with the frequency equivalent to the electron bounce frequency wy,, as
visible in the evolution at longer time for the case-I with (u., L) = (0.8v4,, 15Ap)
presented in Fig. 3.2. Note that in current-free cases the trapped particle insta-
bility must result in a nonlinear Landau damping of the wave, unlike the present
current driven cases where it produces a residual nonlinear growth of the nonlinear
solitary ion acoustic structures. The process in the latter case results in gradual
strengthening of the structure amplitude and should enable them to trap (or ex-
pel) larger population of resonant electrons with time. However, the capability of
structures to trap particles is affected by the growing modulation associated with

the instability.

3.2.5 Electron trapping structure of EPW

For case-II the undamped EPW is well resolved in our simulations and visible as a
well developed undamped BGK-like structure at the electron phase velocity vppage

in the electron distribution function plotted in Fig. 3.3(a) in the region around

e

Uphase at a long time ¢ = 2.52 x 102wp_ !, The EPW is verified to be standing in

nature whose Doppler shifted frequency is given by
3 242 =
w+ uk = wpe(1 + §k AD) + uck, (3.5)
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Figure 3.3: (a) Electron phase-space distribution at EPW phase velocity vphase =
5.87 vy for case-Il and t = 2.52 x 102%;61. Here, the phase velocity of the EPW
is Doppler shifted. (b) Ion phase-space distribution at ion acoustic velocity ¢ for
case-II and ¢ = 2.52 x 10%w, .

hence vppase = 5.87vy, [28] in very good agreement with our simulations, where
kAp = 2m/30, wpe = 1 and the drift value u, = 0.8vy, are used in accordance
with case-II. The formation of a trapped particle mode in EPW indicates that for

case-1I where the electron bounce frequency exceeds the Landau damping rate of
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the EPW, w,. > 71, a stable BGK mode develops and arrests the linear Landau
damping of the EPW, unlike the cases I and III where wy. < 71, and a linear
landau damping of EPW must result. Note that the electron distribution function
at this velocity location however has a vanishingly low magnitude and effect of
this marginal trapped electron population is unlikely to affect the ion waves. The
ion phase-space distribution function f;(z,v) is also plotted in Fig. 3.3(b) in the
region of ion acoustic velocity c, that shows the effect of the presence of solitons
at t = 2.52 x 102%;1' The ion distribution function however appears as a sharp
delta-function like structure on the scales of electron thermal velocity, as visible in
Fig. 3.7(c).

3.2.6 Effect of EPW potential on electron trapping in IAW

The further analysis shows that despite the presence of two major destabilizing
factors (i) a fast EPW and (ii) a large current, most of the features of nonlinear
ion acoustic wave may be preserved, including the formation of ion acoustic solitons
due to a stronger nonlinearity that originates from the particle trapping in the finite
amplitude ion waves rather than purely due to the conventional hydrodynamical
nonlinearity in the dynamics of relatively less warmer ions. Among the noticeable
effects of the additionally present EPW | it can strongly perturb the trapped particle
population by subjecting it to a fast adiabatic process due to its periodically time
varying large perturbing potential, effectively driving the trapped electrons away
from their thermodynamical equilibrium state. Since the trapped particles no
longer have an equilibrium phase-space distribution, the structures with such a
transient trapped particle population are likely to show deviation from the results
of the analytic kinetic model which assumes trapped particle in a thermodynamical
equilibrium. The nonlinear structures with sufficiently large amplitude, satisfying
Y > Yppw, (or with a possibility of being in a phase-locked state with the EPW)
however show a good agreement with the analytical results in the same case, as

discussed in Sec. 3.3 in further detail.

3.2.7 Charge density associated with coherent structures

We conclude this section by presenting the profiles for the density difference An =

(ne—n;) from the cases I and II and their relation with the analytical classification
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Figure 3.4: Temporal evolution of the profile for the density difference, An =
ne — ny, for case-I (left) and case-II (right).

of the solutions [4] in Fig. 3.4. The potential profiles at time ¢ = 10w, " for both the
cases (e.g., for the case-I plotted in Fig. 3.1(d)) appear almost sinusoidal however
the nonlinear effects already begin to appear in the density profiles in the case-I at

this early stage as clear from the evolution of the density difference An = (n, —n;)
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plotted in Fig. 3.4(b) where the wave clearly shows signs of deviation from the
sinusoidal form due to the particle trapping at the potential maximum which is
free from any potential perturbation. The An profiles show that for sinusoidal wave
like profiles the ideal background plasma parameters correspond to the locations
where ¢ = —An — 0 and the ¢” oscillates periodically about this mean value in
the space. The maximum value of An (i.e., minimum ¢") is also much larger than
0 and equal to its minimum value in magnitude. However, for the long time soliton
like profiles, An no longer oscillates periodically in space about a mean value. The
maximum An value for long time structures approaches a background value of
about zero that corresponds to a value for the unperturbed plasma parameters.
This essentially implies that in comparison to the small time profiles, for the long
time profiles the parameter kg, defined as the difference between the minimum value
of ¢" and the value of ¢” corresponding to the background plasma parameters,
approaches zero. This is as required, analytically, for the pure soliton solutions [4]

and is discussed further in Sec. 3.3.

3.3 Soliton generation by trapping nonlinearity

The coherent structures form at relatively smaller amplitudes as compared to the
soliton formation with isothermal electron response with Boltzmann distributed
electrons and where the trapped particle effects are ignored. Whether the ob-
served solitons are governed by the stronger nonlinearity originating from the large
trapped particle density rather than the nonlinearity present in the conventional
hydrodynamic model, needs to be determined by analysis of the simulation results
by benchmarking them against the well-known fully kinetic analytical formulation

by Schamel |4] as described in the following sections.

3.3.1 A pseudo-potential based approach to trapped parti-
cle generated coherence

Note that in the presence of trapped electrons the density of electrons is function

of wave potential additionally via the trapped particle density n:(¢). Therefore,

by introducing the appropriate corrections in the electron distribution function

in order to accommodate also the trapped particles, the integration of this modi-
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fied distribution can be made to produce a net density that includes the effect of
trapped particles. The net density, in turn, is a more complex function of the po-
tential than the conventional Boltzmann relationship in absence of trapping. When
this modified density expression is substituted in the Poisson’s equation instead
of Boltzmann electrons, a nonlinear relationship between potential and trapped
particle parameters is obtained. The resulting equation can be cast in the form
prescribed by Sagdeev where the potential variation in the space is determined by
a modified Sagdeev potential V(®). When the amplitude of the potential variation
¢(z) is large and it explores the region where V(@) is no longer parabolic, the wave
must show a deviation from the usual sinusoidal waveform, indicating its entry to
the nonlinear regime. When the variation of ¢(z) extends up to the boundary of
the barrier created by V(®), the potential ¢(z) varies along the separatrix of the

system,

Po OV

@ = —a—q). (36)

Since the right hand side is a known function of ¢ considering the Poisson’s equa-

tion,

0%¢
E)_xf — /fz(xvv) — fe(x, U)d?), (3'7)

where the ¢ dependence enters the right hand side via the trapped particle dis-
tribution function, the Sagdeev potential V(®) can be derived and the analytical
form of ¢(z) is obtainable, in terms of plasma and trapped particle parameters
entering V(®), by integrating (3.6). Note that the normalized variables are used

in Egs. (3.6) and (3.7) as well as in the analysis that follows.

Following the above methodology, the electron distribution function obtained
from the saturated stages of the present simulation, where the stable solitonic
structures are recovered, is compared and fitted with the following form of the
distribution function parameterized at the location of the trapping potential [4],

1+ kg2

) = 2 o) exp {302 -

Ho-0pexp (=158 ) exp (=50 (33)
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where 6(¢) represents the Heaviside step function, o = sg(v) is the sign of velocity,
Ueff := Up — Vg, Where vp = wu, is the drift velocity between electrons and ions
existing in unperturbed state and vy is the phase velocity of the wave/hole with
respect to ion distribution function and ) is the wave amplitude in terms of poten-
tial. kg is the parameter determining the character of the potential variation such
that k2 > 0 and k3 = 0 correspond to a sinusoidal wave and a soliton solution,

respectively. The solution (3.8) satisfies the Vlasov equation,

of  dodf

an—Faav— 5 (39)

given that the variable ¢ is constant of motion for collisionless electrons and there-

fore most suitably ¢ = % — o(x).

3.3.2 Characterizing coherent structures as trapped particle

equilibria

Table 3.1: The parameters obtained from best fit of the simulated distribution
function to the analytical function (3.8).

Cases (u., L) | 3 P Voff = Ue — Cs
I(0.8, 15) -7.5 1 0.02137 0.78
IT (0.8, 30) -6.1 | 0.02988 0.78
T (1.2, 15) | -1.62 | 0.09720 118

The values of parameters i, 3, and the effective velocity vy = u, — ¢, were
obtained by making a best fit of the function (3.8) to the simulated electron distri-
bution function at the trapping location such that (vphase — Vsep)? = 2¢0, where vgep,
is the location of the separatrix on the velocity axis. For the cases I, IT and III, we
have compared the simulated electron distribution function at soliton locations,
in the nonlinearly saturated phase of the microinstability where strong vortex like
structures appear in the phase-space, with the expression (3.8), obtaining a best
fit of (3.8) to the simulation results with respect to variation in the parameters
3, 1 and veg. This exercise, in turn, produces the optimum values of the fit pa-
rameters in the each of the cases presented in Fig. 3.2. While the results of this

optimization are presented graphically in Figs. 3.5(a), (¢) and (e) for the cases I,
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IT and III, respectively, the corresponding values of parameters recovered from the
simulation data using the best fit to the analytical results for all the three cases

plotted in Fig. 3.5 are provided in Table 3.1. A more detailed graphical analysis of
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Figure 3.5: (Left) Best fit of the simulated electron distribution function f.(v) to
the analytical function (3.8). Subplots (a), (¢) and (d) correspond to the cases-I,
IT and III, respectively. (Right) Comparison of the simulated potential profile ¢(z)
with the soliton solution (3.11) with the parameters obtained from the simulated
distribution function with trapped electrons. Subplots (b), (d) and (f) correspond
to the cases-I, IT and III, respectively.

the simulation result using the best fit for an example case, case-1I with L = 30Ap
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and u, = 0.8vy,, is done and presented using Figs. 3.7(a)-(d). With the param-
eters 3, ¥ and v.g determined from the parametric fit of the simulation data to
(3.8), the soliton like spatial variation of the potential of the structures recovered
in the simulation can be verified against the analytical results. In order to do
this, imposing the necessary condition that n;(¢)u; — n.(0)u. = j/e (where j is
the saturated current density) and seeking the bounded solutions for the potential
such that ¢(zmin) = 0 and @(max) = ¥ (where zpay and Ty, are the locations
of the minimum and maximum of the potential profile forming the structure), the
modified Sagdeev potential V(®) is obtained in the form [4],

-vie) = P - )+ 5 e/ - va)
+(1 + k2)? — 1/3(1)

. (p — ®). (3.10)

Substituting (3.10) in Eq. (3.6) and a subsequent integration in the limit k3 — 0,
applicable to the existence of the solitary solution, leads to the following solutions

for the potential structure ®(x) in terms of the parameters obtainable from the fit,

" (1-5) [v
O(x) = 1) sech (1—5 ;)T . (3.11)
The simulated soliton potential profiles from three different cases are plotted in
Figs. 3.5(b), (d) and (f) at nonlinearly saturated state of the ion acoustic resonant
microinstability superimposed by the corresponding analytical profiles of trapping
nonlinearity generated solitons drawn using (3.11) and the parameter values re-
sulting from the fit. With inclusion of case-II in the analysis the presented data
includes the cases of trapping nonlinearity generated solitons both with and with-
out the presence of a high frequency EPW. The presence of an EPW in case-1I does
not show any noticeable impact on the accuracy of agreement with the analytical
solutions at the soliton location, provided that the structures with ¢ > ¥gpw are

considered.
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Figure 3.6: (a) Profiles for the simulated wave potential ¢(z) for the cases-I, II,
and III, at ¢ = 257,252 and 199 w, . (b) Modified Sagdeev potential (3.10)
for the corresponding cases plotted using trapping parameters obtained from the
simulations.

3.3.3 Pseudo-potential V(®) associated with solitary elec-

tron holes

The modified Sagdeev potential V(®) for all the three cases are plotted in Fig. 3.6(b)
using the expression (3.10). It can be noted from the corresponding plots of ¢(z) in
Fig. 3.6(a) that in agreement with Eq. (3.6) the potential ¢(z) has a vanishing sec-
ond derivative at its minimum value, ¢ = 0, which also coincides with the vanishing
derivative of the modified Sagdeev potential, 9V/0® = 0. This is the analytical
requirement for the soliton solution according to the definition k% = 0 [4], where
k2 is defined as the difference between the potential at the point where 9V /0% = 0
(¢ turning point in Fig. 3.6(a)) and the value of the unperturbed potential (set
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to be zero in Fig. 3.6). Note that the additional peak in the profile of the case II
does not satisfy ¢ > ygpw and therefore the potential profile corresponding to this
structure is difficult to be verified against the expression (3.11) since an accurate
value of 3 could not be determined in absence of a well-defined concave shape of
the distribution about c¢,. However, the taller structure that obeys 1) > ¥gpw is
in a very good agreement with (3.11) highlighting that the presence of an EPW in
case-II does not show any noticeable impact on the accuracy of agreement with the
analytical solutions (3.11) as long as the trapped particles are in an isolated (micro-
canonical) equilibrium as a result of the fact that the condition ¥ > ¢gpw is well

satisfied and the minimum of the trapping potential is largely time independent.

3.3.4 Impact of EPW perturbation on trapped distribution
adiabaticity

As described above, the electron plasma wave in the case-II has smaller Landau
damping and a high frequency potential fluctuations persist due to its presence in
the background. This fast potential variation, if larger than ), can subject the
density of the trapped particles to an adiabatic variation, preventing the popula-
tion of the trapped electrons form reaching a thermal equilibrium and a stable 3
value to develop, as essential for characterizing the equilibrium using (3.1). Exis-
tence of strong EPW affects the agreement of observed variation of ¢(z) from the
analytical results unless v > ¥gpw. Applying this to the case-II (presented in more
detail in Fig. 3.7), among the two solitary structures present at = = 9.57A\p and
x = 22.7\p, the conditions applicable to (3.1) are well satisfied for the relatively
stronger second solitary structure located at x = 22.7Ap making it to be a suitable
choice for the comparison with analytical results. The simulated electron distri-
butions corresponding to locations of both these solitons is plotted in Fig. 3.7(d)
where the f. for the second soliton at x = 22.7\p (dark blue line) is clearly seen
to have a thermalized trapped particle distribution with 5 = —6.1 while the f,
for the first soliton at z = 9.57\p (light gray line) has a transient nonequilibrium
population of trapped particles which is partly renewed in every cycle of the EPW
due to stochastic nature of trajectories in the separatrix region and therefore fails
to attain an equilibrium temperature, or a time independent /3 value. Further-
more, for the second soliton in case-II and those in each of the cases-I and III,
kAp > 1, such that a strong Landau damping of EPW is present the EPW excited
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initially damps away in the period of few w1, therefore the agreement of simulated

pe ?
structures in these cases with the analytical results remain much more robust and

unambiguous as presented above.
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Figure 3.7: (a) Electron distribution function f(z,!) at time ¢ = 0. (b) Electron
distribution function at time ¢ = 2.52 x 10°w,'. (d) The electron distribution
featuring the electron trapping in the ion acoustic solitons located at = = 8.9 and
22.7\p. (c) Electron and ion distribution f(v) at ¢ = 0 at the first soliton location
& = 22.7A\p. (d) Electron and ion distribution f(v) at ¢ = 2.52 x 10%*w,.". The
electron distribution is additionally plotted at first soliton location z = 9.57\p
(light gray line), at second soliton location 22.7Ap (dark blue line) and using the
analytical function (3.8) (dotted line) with the parameters obtained from the best
fit to the simulated electron distribution function at the location of the second

soliton x = 22.7Ap, where 5 = —6.1, 1 = 0.02988 and veg = 0.78vyp,.

The irregularity of the phase-space contours of electron distribution function

corresponding to the smaller peak in comparison with those corresponding to the
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taller soliton in case-II, as seen in Fig. 3.7(b), is a visibly strong sign of larger
degree of ergodization of the separatrix (curve dividing trajectories of trapped and
streaming electrons in the phase space) by a regular or stochastic (noise-like) per-
turbation. For the distribution at the location of taller soliton (plotted with darker
solid line in Fig. 3.7(d)) this destruction of the separatrix is limited to the outer
boundary of the vortex while the trapped particles in the vortex interior are largely
unaffected by the perturbation and have stable closed phase-space trajectories. In
contrast to this, the distribution at the location of smaller soliton with ¥ < ¥gpw
(plotted with a lighter solid line) has a flat profile at the resonant velocity, in-
dicating that the high frequency EPW perturbation is capable of ergodizing the
separatrix such that the width of ergodic region covers the complete vortex region
in the phase-space. The trajectories up to the center of the vortex are chaotic and,
given the flatness of the distribution that still evolves at the finer scales, show a
continuity with streaming trajectories via the ergodized separatrix. This dynamics
corresponds to a transient population of resonant particles which strongly inter-
acts with the EPW and is unable to reach its own thermodynamical equilibrium in
a collisionless Vlasov plasma. The non-equilibrium distribution effectively trans-
lates into the difficulty in finding a well defined and stable 5 value from the present

simulation results for the cases with ¥ < ¥gpw.

3.3.5 Regime of stronger EPW and trapped particle inter-

action

We now discuss the relevance of the above analysis to the cases where the properties
of the population trapped in the coherent structure are such that the associated
trapped particle density modes have a finite temporal correlation with main or
additional wave processes like EPW (or a rather low frequency process than the
EPW [103]). This might allow the former to enter into a mutually phase-locked
state with the wave processes leading to a potentially stable (undamped) perturbed
BGK solutions, though with a complex collective dynamics of the trapped particle
density [104, 105]. This highlights the possibility of formation of time dependent
trapped particle equilibrium where an adiabatic version of the trapped particle
generated nonlinear structures can arrive at an equilibrium with another periodic
process by means of a mutual phase-locking. An analogous mechanism is discussed

in the cases of waves that stably trap the particles in an anharmonic potential or
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in presence of a low frequency applied ponderomotive field [103] in a process that
has a close relationship with the mechanism of Negative Mass Instability (NMI)
[106]. In the present cases of valid trapped particle solitons, however, the EPW
because of its high frequency has a considerable mismatch with a rather low elec-
tron bounce frequency wy. and its effect is limited to perturbing the separatrix
of the BGK structures and triggering additional trapped particle modes. These
modes, owing to large df /v at resonant location, result in a residual growth of the
structures as well as that of the perturbation. Finally, at sufficiently longer times
(t ~ 103wp_e1 and beyond) when the amplitude modulation due to trapped particle
instability grows sufficiently large, it begins to destroy the separatrix by allowing
larger fraction of the trapped particles to escape via the fluctuating potential bar-
riers. The agreement with the model Eq. (3.1) at longer time, when the separatrix
is sufficiently ergodized, is therefore found to be limited only in an increasingly
narrow region about the location (peak) of the coherent structure where a small
trapped electron density may still have a local equilibrium. A large bunching of
the trapped particles is seen at the same time, which is responsible for the growing
amplitude of modulations as observable in Fig. 3.2 at later times. In this respect
we note that the frequency of the slowly growing modulations in the long time
evolution of wave amplitude, observable in Fig. 3.2 for case-I and III, shows a good

agreement with the electron bounce frequency for the respective cases.

3.4 Comparison between kinetic and hydrodynamic

nonlinearity

Finally, it is useful to compare the relative strengths of the kinetic nonlinearity
generated by the trapped particles with the conventional fluid nonlinearity by
means of the solutions of m-KdV equation 3.1 for the recovered solitary electron
hole parameters, as presented below. We begin by the well known solitary solution
of the Kd-V equation Eq. (1.6) [49],

$(z) = A sech? [\/% (x — wﬁ)] , (3.12)
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Figure 3.8: The solid blue line represent the solution for the soliton considering only
the hydrodynamic nonlinearity Eq. (3.12), and the solid green line represent the
soliton considering only the trapping nonlinearity Eq. (3.17) with 5 = —7.078 and
all the dashed lines represent the soliton having both hydrodynamic and trapped
particle nonlinearity Eq. (3.19) for different value of trapped particle parameter [.

where, A is the amplitude of the wave. Propagation velocity of the solitary wave
is v = A/3. Instead of hydrodynamic nonlinearity, considering only the contribu-
tion of trapped particle nonlinearity the Kd-V equation is modified to an mKd-V

equation [45].

a,¢+—fa ¢+ = 0. (3.13)

3.4.1 Solution for trapped particle solitary waves

For solving Eq. (3.13) we substitute T’B =m and ¢ = f(§) = f(x — vt), where

™

¢ = x — vt. Therefore, 2 % = é(% =— aﬁ nd %E% = a%' Using these values
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and then integrating ones, the above equation can be written as,

2 < "
Y L T (3.14)
3 2
where c is a constant of integration. Multiplying (3.14) by f and integrating with
respect to & once, produces,
—v ) 4m ,5/2 f/2 .
— — — = : 3.15
sl = (3.15)
For solitary wave like solution, the boundary conditions are f(¢) = f'(€) — 0 as
& — £o0, which gives ¢ = ¢y = 0. Substituting these values and considering only

the solution with negative sign it can be written as,

f=—f\foo- =2 (3.16)

The velocity of the solitary wave is obtained by applying the initial condition
f(0) = Aand f(0) = 0 as, v = %m A, where A is amplitude of the soliton.

Above first order nonlinear differential equation (3.16) can be solved by considering
f(&) = Asech®d. Hence, f£(0) = A, £(0) = 0and £'(£) < 0for € > 0. Additionally,
df = —4A sech*@tanh @ df. Substituting these values in the above equation and
integrating, we get, 6 = %‘K ¢. Using the value of 6, m and &, the final solution
becomes

(1-5)VA

f = A sech’ (x — vt) (3.17)

3.4.2 General solution

The general mKd-V equation, including both the hydrodynamic and trapped par-

ticle nonlinearity, is,
1-p Los,
O + [ 7 \/5+¢] 0:0 + 50%6 =0 (3.18)

Eq. (3.18) can be solved similarly as Eq. (3.13). After the essential co-ordinate

transformation and integrating twice with respect to &, we get the first order
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nonlinear differential equation equivalent to Eq. (3.16),

p 16m 2
= = — 2 - 1/2__
/ f\/ v 2=,

which can be solved by substituting

A(bm —1)°
(bm cosh? 9 — 1)2'

f() =

Where b is a constant and A is the amplitude of the solution. Therefore, f(0) = A,
F(0)=0and f(£) <0 for &€ >0. The final solution of Eq. (3.18) becomes,

A(D—-1)°
2
{Dcosh2 {;11\/ —16"1?/2 + % (x — Ut)} — 1]

where D = (2 + 8—’“), m = 2 and v = <1%m A+ %) is the velocity of the

/=

(3.19)

5VA e
wave. All the three solutions, i.e., those of Egs. (3.12), (3.17) and (3.19) are plotted

at t=0 in Fig. 3.8 using the solitary wave parameters recovered in the simulations.
The solid blue and green lines correspond to the solitary solutions of Egs. (1.6)
and (3.13), respectively. All the dashed lines correspond to the solitary solutions of
Eq. (3.18) with different value of trapping parameter 5 which is varied from value
1.0 to —7.078. The value § = 1 corresponds to no trapping. This can be seen
that with increase in the value of the coefficient (1 — /) of the trapping nonlinerity
in Eq. (3.18), the solution modifies from soliton having only fluid nonlinearity
Eq. (3.12), to the soliton having only the trapped particle nonlinearity Eq. (3.17).
The present simulation of generating of IA-solitary waves in presence of current,
we have recovered the solitary soliton of amplitude ¢ = 0.097 and § = —7.078
for drift velocity of electron distribution function vp, = 1.2. Therefore, it can be
suitably concluded that at small amplitude regime the trapped particle nonlinearity

dominates over the fluid nonlinearity.

3.5 Summary and conclusions

The coherent structures provide very effective first signatures of the nonlinearity

in collective modes as discussed in Chapter 1. Among the electrostatic plasma
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modes the ion acoustic response shows most visible signature of nonlinearity by
readily producing ion acoustic solitons and solitary waves for finite amplitudes.
The ion acoustic structures therefore serve as an ideal paradigm for nonlinearity
produced coherence in the plasma theory and their growing phase is investigated

in this chapter.

We have presented results of a two species Vlasov simulation featuring self-
consistent generation of solitons produced from a stronger nonlinearity originating
from the kinetic effects of trapped electron population in a finite amplitude ion
acoustic wave driven unstable by a current driven microinstability. The numerical
simulations presents a general time dependent evolution of the particle distribu-
tion functions that obey the collisionless Vlasov equation. The simulations are
motivated by solitary structures predicted by nonlinear nonperturbative formula-
tion based on the Vlasov-Poisson system that reduces into a m-KdV equation. In
order to effectively compare the evolution usually recovered by conventional linear
procedure using harmonic (cosine) density perturbations, the investigation is done

by selecting this class of perturbations as initial conditions.

In the initial phase of evolution, a remarkable modification in the distribution
function is visible at the ion acoustic velocity. Since generation of vortex like
structures in electron phase space distribution results in the diminishing gradient
of the electron distribution function df./dv. at the resonant velocity which must
be nonzero for the linear growth in the ion acoustic wave, the evolution and the
observed saturation in wave growth indicates a nonlinear saturation of the growth
where the resonant particles act to flatten the zero order electron distribution,
allowing 0 f./0v. — 0 at the phase velocity of the wave. We have noted that at an
amplitude quite comparable to its initial sinusoidal stage at ¢t = 10wp_el, the strong
nonlinear effects begin to appear in the IAW at ¢ = 31%;61 and beyond. In the
secondary phase the growing nonlinear wave, depending on the allowable k values
in the simulation, either develops into a train of solitons of various heights and
speeds, or produces a single soliton structure. The amplitude evolution at longer
times shows that the growth of this nonlinear wave or structures is arrested as the
structures begin to trap the resonant electrons and, in turn, their amplitudes begin
to approach corresponding saturation values. In this saturated phase a trapped
particles (electrons) instability [37] is the mechanism responsible for the observable

residual growth in the nearly saturated soliton amplitude that shows a modulation
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with the frequency equivalent to the electron bounce frequency wy,.

The nonlinear coherent soliton structures developed in the simulation are shown
to follow the analytical solutions of mKdV equation that accounts for the stronger
nonlinearity produced by the electron trapping in the structure. In the low k&
regime where the structures coexist and interact with the undamped high fre-
quency electron plasma waves, the nonlinear soliton structures retain their mod-
ified nonlinear analytic structure as long as the trapped electron distribution is
allowed to be in a thermodynamical equilibrium. For the the structures where as-
sociated trapped electron equilibrium is perturbed by a time dependent variation
of the trapping potential, it is difficult to characterize the trapped electron distri-
bution using the equilibrium parameters. In the conditions where the developing
ion acoustic structures are free from time dependent perturbations, the numeri-
cally simulated coherent structure could be characterized analytically, by finding
from them the necessary parameter to construct the corresponding analytical so-
lutions and carry out the comparison of the simulation results with the theoretical
formulation that leads to a modified KdV equation with a stronger nonlinearity.
The modified Sagdeev potential, V(®), corresponding to the numerically simulated
solutions is also constructed and verified to confine the electrostatic potential ¢(z)

in the limits of the observed soliton structures.

Relatively small amplitude coherent structures coexisting with a periodic self-
consistent potential perturbation are found to be most affected by the adiabatic
response of the electrons. Presence of a self-consistent time dependent perturb-
ing potential, present in the form of an EPW in the simulations, prevents the
trapped electrons from reaching an equilibrium and forming stable BGK modes
that are time independent stable solutions of the Vlasov equation. Although the
coherent ion acoustic solitary structures with such a transient trapped particle
population are observed and found to be reasonably stable. In the cases where
EPW is undamped, it is well resolved in our simulations and visible as a well de-
veloped undamped BGK-like structure at the electron phase velocity vphase in the
electron distribution function. This indicates that for the cases where the electron
bounce frequency exceeds the Landau damping rate of the EPW, wy. > 71, a stable
BGK mode develops and arrests the linear Landau damping of the EPW, unlike
the cases where wy, < 71, and a linear landau damping of EPW must result. We

also compared the relative strengths of the kinetic nonlinearity generated by the
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trapped particles with the conventional fluid nonlinearity by means of the solutions
of m-KdV equation (3.1) for the recovered solitary electron hole parameters. It
is seen that with increase in the value of the coefficient (1 — /) of the trapping
nonlinerity, the solution modifies from soliton having only fluid nonlinearity to the
soliton having only the trapped particle nonlinearity. In the present simulation
of generation of [A-solitary waves in presence of current, we have recovered the
solitary soliton of sufficiently small amplitudes within the regime of trapped par-
ticle nonlinearity. Therefore, it can be suitably concluded that at small amplitude
regime the trapped particle nonlinearity dominates over the fluid nonlinearity.
Finally, the time asymptotic evolution of the BGK structure associated with
soliton generated by the trapped particle nonlinearity shows a residual growth
originating from the nonlinear trapped ion instability which produces modulations
in the soliton amplitude with electron bounce frequency and causes a net growth

in present cases simulated using a finite current.
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Nonlinearly interacting trapped
particle solitons in collisonless

plasmas

4.1 Introduction

Solitary structures indeed governed by the trapping nonlinearity were presented
in Chapter 3 as recovered in the simulation of an ion acoustic microinstability.
These structures were identified by their characteristic steeper analytic form, hav-
ing origin in a the microinstability that saturated into a coherent state by the
trapped-particle nonlineairty. The functional structure of the self-consistently gen-
erated SEH was analyzed in Chapter 3 and shown to confirm with the analytic
coherent SEH solutions corresponding to ion acoustic branch [1]. These slow SEH
structures also stably coexisted with high frequency electron plasma waves that
showed signs of supporting another set of trapped particle structures on the elec-
tron plasma wave (EPW) branch. The SEH activity is presented in this chapter
on a distinct electron acoustic branch of a drift-free stable plasma, involving their
multiple identity preserving collisions or overtake. In the analysis present in this
chapter, we present Vlasov simulations |8 of the interacting SEH solutions in the
limit of large enough separation of their velocities Av? > 1) as well as relatively
small Av? ~ @ (where 9 is the amplitude of the soliton electrostatic potential
¢(z) in electron thermal units, T, /e), however at their smaller amplitude (¢ < 1)

as compared to earlier studies [93]. The coherent evolution of analytic solutions
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as initial conditions in our case therefore displays their mutual interactions free
from any destabilizing ion response chaotic movement, breaking or coalescence.
Exploring this regime thus offers us an opportunity to carefully investigate their
interaction and interpret some experimental observations based on this process.

The identity preserving multiple interactions of SEH resulting in the cases with
Av? > 1), display an adiabatic trapped particle response, and also open up many
interesting physical possibilities, for example, formation and existence of a system
of multiple solitons interacting weakly via exchange of trapped particle bunches or
macro-particles [104, 106, 107], and perhaps a distinct statistical mechanics associ-
ated with thermodynamic limit of such a system |[108|. From analytic view point,
their stability might qualify them as an alternate set of nonlinear eigenmodes for
such systems during their quasi-stationary equilibria [109, 110]. As an immediate
application, By applying it to the observation of magnetospheric potential struc-
tures, present simulations enable us to address the origin of somewhat infrequent
tripolar electric structures besides a frequent bipolar variation already interpreted
as SEH in the magnetospheric wideband data (WBD) of the four spacecraft Cluster
quartet |18, 19].

The chapter is organized in as follows, in Sec. 4.2, the analytic SEH formulation
relevant to the electron acoustic regime explored in the present work is discussed
and the cases considered in the present study are described with corresponding pa-
rameters. In Sec. 4.3, the evolution of SEH is presented in the present Vlasov sim-
ulations beginning from the equilibrium analytic solutions of the Vlasov-Poisson
set of equations in the phase-space. Characterization of the results and corre-
spondence of their spatiotemporal form with the observations in magnetospheric

plasmas is also discussed. Summary and conclusions are presented in Sec. 4.6.

4.2 Analytic structure of electron acoustic SEH

In Chapter 3 the simulated structures were recovered to confirm with the solu-
tions of the electron hole formulation prescribed by H. Schamel |36]. The analysis
therefore indicated that in system free from any free-energy source (e.g, electron
drift/current) the analytic electron hole solutions should be stable and can be used
as an ideal initial condition to avoid an initial transient. This a-prior: assumption

is tested in this chapter and initial condition of the studied structures are chosen
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to be SEH solutions [1]| obtained in the desired electron-acoustic regime. For a
formal introduction to our initial condition and its origin, below, we present the
necessary analytic prescription for SEH solutions in the electron acoustic regime

following Schamel [1].

The analytic SEH solutions of the Vlasov Plasma system essentially involve ion
mobility in the low frequency regime where the ions can additionally be trapped
in the potential nonuniformity besides electrons. Coherent SEH solutions in the
electron acoustic velocity regime lying between the electron plasma wave and ion
acoustic wave phase velocities, vy, < v, < vy, are obtainable in slow ion re-
sponse limit for simplification. Although these solutions are used in the present
simulations as initial conditions, the evolution of interacting structures is done in
presence of fully mobile ions in the numerical scheme in order to study the stability
of SEH structures with respect to the ion response. Among the cases examined
here are: (I) two identical electron holes, counter-propagating in the reference
frame of the uniform plasma, colliding, (IT) two non-identical counter-propagating
solitons having unequal phase velocities, colliding, (ITII) two non-identical solitons
co-propagating with a finite relative velocity where the faster soliton overtakes the
slower one and (IV) two non-identical solitons co-propagating with a finite relative
velocity, such that Av3 < 1), where ¢ is the potential amplitude of the structures.
In all the first three cases (Case I- III) the relative velocity, Av3 is greater than 1,
(Avg > ).

4.2.1 Electron distribution for stable electron acoustic SEH

The initial analytic solutions adopted for all the cases presented in this chapter
belong to solitary solutions in electron acoustic regime are consistent with un-
perturbed ions and a solitary electron hole phase-space distribution, as already
discussed in Chapter 3 [33],

fentie, ) = 202 Lot exp { 0B — v

+o-cpexp (=158 ) exp (50 (1)
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where, as originally introduced in Sec. 3.2, the lengths and velocities are normal-
ized to A\p = \/W and vy = \/m, respectively, 6(¢) represents the
Heaviside step function, o = sg(v) is the sign of velocity, ver = v, — vy, where
the quantities v, and vy are the velocities of the Maxwellian (with respect to the
plasma) and the velocity of the electron acoustic solitary hole (with respect to the
plasma ), respectively. Note that in absence of drift, v, = 0 and the first term in
(4.1) is a Maxwellian shifted by the hole velocity where the positive and negative
values of vy correspond to forward and backward propagating holes seen by the
Maxwellian, respectively. The choice of parameter ko allows using (4.1) to obtain
various categories of potential solutions having special values of potential gradients
at the points where ¢ approaches its unperturbed value, conventionally chosen as
¢ = 0. For example, the variations with k2 > 0 and k2 = 0 correspond to an
oscillatory solution and a SEH solution, respectively. The variable ¢ = %2 — ¢(2)
is constant of motion for collisionless electrons, such that fgry satisfies the Vlasov

equation obeyed by electrons and ions,

8fe,i 8fe,i d_(bafe,i
ot T ox idx ov

~0. (4.2)

Accordingly, the initial electron distribution for present cases is set as f; = fgn,
while the initial ion distribution is set to be Maxwellian f; = fy given by (3.2),
and although the analytic electron acoustic SEH formulation summarized below
assumes negligible ion participation in the electron acoustic regime, the evolution

of ion distribution in the numerical simulation is fully enabled.

4.2.2 Solitary solutions and Nonlinear Dispersion Relation

In order to obtain a Nonlinear Dispersion Relation for electron acoustic SEH the
Poisson equation is to be solved using a non-perturbative approach requiring den-
sities of electron and ions from the above distributions. A Taylor expansion of
Eq. (4.1) followed by a velocity integration produces, in the limit ¢ < 1, the total

electron density density (omitting the subscript e),
k3 1 4
n(9) ~ 14 8 2 2w/ V36— $H(5, )6 (4.3
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Table 4.1: Parameters 1, vg and S in various cases.

Cases  (11,12) (vor,v02) (B, B2) Avg
T (0.04,0.04) (0.4,-0.4) (-6.7947, -6.7947)  0.64
I (0.02,0.04) (0.4,-0.4) (-9.957L,-6.7947)  0.64
I (0.04,0.02) (0.6,0.3) (-6.1263,-10.3071) 0.09
1A% (0.04, 0.02) (0.4,0.3) (-6.7947, -10.3071) 0.01

which excludes the square nonlinearity term and has the nonlinearity ()((b3/ %) pro-
duced exclusively by the trapped particles. Here Z,(z) = —2e~*" fom dt exp (t?) is
the real part of the plasma dispersion function and b(/3, vg) = \/i%(l — B —vd)e /2,

The potential ¢(z) is also required to satisfy the Poisson equation,

i

ke [fen(z,v) — fi(z,v)]dv, (4.4)

with f;(z,v) uniform. The parameter ky relates to rest of the parameters in
Eq. (4.1) via a Nonlinear Dispersion Relation (NDR) [4]. However, for the pure
soliton solutions A2 = 0, such that the other variables relate to each other via the
NDR independent of kg and the NDR takes the form,

. 16,
- §Zr(v0/\/§) ~ 1—55(371’0)\/_7 (4.5)

prescribing the analytic solitary form of the ¢,(z) as,

¢a(z) = 1) sech? [\/ <b(ﬁl—5”0) ﬂ) x] . (4.6)

While v, = 0 for stationary distribution for all the above cases examined, the

values of v, B and vy for the soliton pairs in them are provided in Table 4.1.

4.2.3 The pseudo-potential for electron acoustic SEH solu-

tions

The Sagdeev pseudo potential V(®) associated with the Poisson equation (4.4) in
the electron acoustic regime can additionally be defined describing the soliton spa-

tial potential structures as the motion along the separatrix of the pseudo-potential
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Figure 4.1: (a) Analytic solitary potential solutions ¢,(x) located at x = z; and
(b) associated Sagdeev potential V(®) corresponding to the initial phase-space
structures implemented in the cases I, II, III and IV of the present simulations.
Evolution of a pair of two solitons, selected from the initial profiles S, Sy, S3 and
Sy plotted in (a), is simulated in each of the four cases. The pair of soliton profiles
chosen in each case is listed in (a).

V(@) in the regime of electron acoustic perturbations (treating ions to be infinitely

massive)

= V(®,) = %b(ﬁ, )2 (V¥ = V/®a). (4.7)

The potential V(®,) and the associated spatial profile of the soliton electrostatic
potential ¢,(x), located at x = x, are plotted in Figs. 4.1(b) and (a), respectively.
The four profiles marked as S;, Sy, S3 and S, for the SEH solutions are used
as initial conditions in the present simulations corresponding to the parameters
provided in Table 4.1.

80



Chapter 4. Nonlinearly interacting trapped particle ...

4.3 Vlasov simulations of interacting SEH struc-

tures

In the regime applicable to Eqs. (4.1)-(4.6) the time evolution of initial EH dis-
tribution (4.1) is investigated by solution of Eqs. (4.2) and (4.4) on a 1536 x 512
dual z-v mesh for case (I-III) and 2048 x 1024 dual z-v mesh for case (IV), using
the generalized flux balance method, discussed in Chapter 2, for both electron and
ion phase space [8, 27| of a hydrogen plasma (m;/m, = 1836) with T./T; = 20.
In Figs. 4.2(a), (c), (e) and (g), the profiles of analytic distribution frp(z,v) used
as initial condition, are plotted for the cases I-IV, respectively. These profiles are
featuring two initial solitons at x = 8 and 40 in cases I and II, x = 10 and 40 in
case III and = = 16 and = = 48 in case IV (in order to prevent the wider first

soliton in case III and case IV from interfering with the boundary).

4.3.1 Recovery of stably propagating SEH structures

As the very first and important observation, the analytic form of electron distri-
bution (4.1) chosen as initial conditions for the simulations shows a propagation
without much distortion or radiation unless perturbed by other structures, validat-
ing the a-priori adoption of them as most suitable initial conditions. Although the
evolved stable SEH in the simulations have additional attributes when compared
to rather approximate analytic solutions given by (4.6), they show only reason-
able deviations from the analytic structure (largely related to numerical aspects),
not detrimental to their analytically predicted stability under the adopted SEH
formulation [1]. The physics of this a-posteriori validated stability is discussed in
more detail in Chapter 6 where the aspects related to EH stability are addressed

by means of simulations.

4.3.2 Electron distribution during SEH interaction

The time evolved versions of the electron distribution function at instantaneous
hole locations are also presented in Fig. 4.2 where a distribution profile, nearly
unperturbed by the introduced hole, as extracted from location x = 0 is plotted for
the reference (dashed line) in the periodic simulation zones with 0 < x < L = 48

for cases I-III and with 0 < x < L = 64 for case-IV. While the ion velocity
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distribution f; is largely unaffected, the time evolved f, for the cases I, II, and III
are plotted at the time and location t. and z., of passage through each other of
these propagating holes, in Figs. 4.2(b), (d) and (f), respectively. In Fig. 4.2(h)

), i.e., during the time when

the time evolved f, in case-1V is plotted at time ¢t = tf,?’
two holes pass through each other for the 3 time. After which these two holes
merge into one (where the superscripts of ¢, and ., wherever displayed, correspond
to index of consecutive crossings of the holes through each other in the periodic
setup). Note that while cases I and II have counter-propagating holes, both the
holes propagate in same direction in the cases III and I'V. Initial relative velocity,
Auyg, between two holes is 0.8 in cases I and II, 0.3 in case-III and 0.1 in case-IV.
The initially trailing faster soliton in case III and IV therefore takes a longer time,
te ~ 1528w ! and ~ 475w, respectively, to approach the leading slower soliton
and overtake it, showing lower collision frequency between structures than that in
I and II.

As observed from Figs. 4.2(e) and (f), although the holes in case-III have a
noticeable overlap in the intervals of velocity space they initially occupy, they shift
suitably away from each other, avoiding this usual overlap, temporarily during
their passage through each other. But in case IV, where the velocity difference
between two propagating holes is smaller than /21, the stronger hole causes the
weaker hole to partially decay each times they pass through each other. Finally,
after about their third interaction, or at t = tf’), the smaller one almost merges
with the larger one to form a single solitary structure, as observed in Figs. 4.2(g)

and (h).

4.3.3 Multiple interactions of propagating SEH

The density profiles for ¢ > 0 are also plotted in Figs. 4.3(a), (¢), (e) and (g)
showing propagation of these solitons and their first collision or overtake for all
the four cases (seen in fifth profile from the bottom in cases I, IT and IV, and seventh
profile from the bottom in case III). In Fig. 4.3(g) the tenth profile (¢ = 105.99) is
showing the smaller soliton loosing its strength after first collision as compare to
the first profile at (¢ = 0). A long time evolution of density profile is shown using
color scale in Figs. 4.3(b), (d), (f) and (h) for case I-IV showing multiple passage
of the original solitons through each other. The time between interaction of holes

for smaller relative velocity is much longer which is evident from the observation,
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Figure 4.2: Profiles of initial electron distribution fgg(z,v) plotted at the loca-
tions of the first and second holes (solid lines with separate shades), and at an
unperturbed location x = 0 (dashed line), for the cases (a) I, (¢) II, (e) III and (g)
IV. Profiles of f. at t. and z., time and location of passage through each other of
two holes, for the cases (b) I, (d) IT and (f) IIL. In (h) f. for case IV is plotted at
the time when the two propagating holes pass through each other 3rd times.

for example, in case III and IV where the faster soliton, chasing the smaller one,
passes more than once through its initial location (2 = 10 in case III and = = 16
in case IV) before crossing the slower one. This coherent propagation of the initial
structures in the system is visible in Figs. 4.3(b), (d), (f) and (h) where a much

longer time sequence of the spatial density distribution is plotted using color scale
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Figure 4.3: Time evolution of the density difference profiles in cases I-IV at (left)
short and (right) long times (values on color scale). Subplots in (h) present time
evolution of density in case-IV during the 1st (¢, = 47), 2nd (t» = 194) and 3rd
(te3 = 442) times of passage of two holes through each other.
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for the density in cases I-IV, respectively. Since the collisions in cases [-IV take
place at the boundary, the original data is repeated in these figures in the region
48 < x < 96 in cases I-IIT and 68 < = < 136 in case IV, for clarity. In Fig. 4.3(h)
there are three subplots showing the time evolution during their first (¢ = 20 to
60), second (¢ = 170 to 210) and third (¢ = 426 to 465) overtake. In each event of
overtaking, the slower soliton partially decays and loses a part of its total strength.
The deformation starts from its separatrix region of the structure. Finally after
third collision (t((;?’) = 442) it merges almost completely with the stronger/faster
one. While in cases I-III the two solitary electron holes survive their multiple

collisions.

4.3.4 Phase shift introduction during SEH interaction

Effects of nonlinearity and amplitude mismatch are visible in case II (III and IV)
where the smaller soliton accelerates (slows down) by an amount more than the
taller does during the interaction. For the interactions in cases III and IV where
the time of interaction are longer, the smaller soliton is seen to re-emerge from the
interaction region in a time slightly longer than what is estimated using its velocity
of propagation during the non-interacting phase. Such a time delay is observable,
for example, from the space-time trajectory of the smaller soliton in Figs. 4.3
(f) and (h) that shows a slight bend while entering and leaving the interaction
process during each of the interactions. This time delay corresponds to a phase-
shift incurred by the solitons during their interaction. This delay is also noted
to be smaller for the larger soliton during an interaction between two unequal
solitons. This dependence shows the asymmetry of the process with respect to
strength of the interacting solitons and also indicates that an equal phase-shift
will be produced in the case of two identical solitons interacting, as observed in
case I. This can however be noted that given a larger relative velocity between
solitons in cases I and II, the time of interaction remains considerably smaller in
cases I and II, resulting in a relatively smaller phase-shift for them in comparison
to cases III and IV.
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4.3.5 Phase-space evolution of interacting SEH and entropy

production

The time evolution of the electron velocity distribution in the phase-space for
cases I-IV is presented in Fig. 4.4 covering the time and the region of phase-space
around the nonlinearly interacting electron holes. In the cases I-IV the profiles in
the third column from left correspond to time t. of the solitons passage through
each other. While in the cases I and II the phase space holes appear largely
disjoint, the adiabatic mechanism |111, 112|, preserving their identity becomes
clear from case I1I where 1) ~ Av and their trapped particle distributions overlap
on the velocity axis. Moreover, the trapped populations in case III are collectively
pushed away from each other on the velocity scale during the interaction process.
In a qualitative sequence, the particles trapped in the slower moving soliton, when
approached from behind by a larger net potential dip, lose their kinetic energy,
while those trapped in faster moving solitons see a net potential dip ahead and
get accelerated, only to return to their original velocities following the interaction.
Mutually opposite shifts along the velocity axis is thus noted in the interacting
co-moving solitons in each case at ¢.. This elegant symmetry of the process is seen
preserved irrespective of the amplitude and speed of the interacting solitons as the
comoving solitons additionally satisfy 1) ~ AvZ for an overlap in trapping region

on the v axis.

A very distinct phase-space evolution, as compared to cases-I to III, is however
observed in the case-IV. In case-IV where Av2 < 1), the adiabaticity of their in-
teraction mechanism does not remain intact and an irreversible deformation of the
structure starts from the separatrix region with each event of interaction. The sep-
aratrix region of the smaller soliton shows strong distortion and a partial merger
with the separatrix of bigger one during the period of interaction. Many parti-
cles originally trapped in smaller soliton are seen to irreversibly join the trapped
population of the stronger soliton. As a result, the smaller soliton periodically
undergoes a larger readjustment in its parameter, including the propagation ve-
locity and amplitude. It therefore gradually losses its strength and finally merges
completely with the bigger one. A net modification in the stronger soliton is also
observed. Initially, they both move with different velocities given by the NDR 4.5,

this initial relative velocity Awvg, however, decreases during each interaction. Note
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Figure 4.4: Time evolution of the electron holes in the electron phase-space for all
the four cases, including t =0, t =t.—0t,t =t., t = t.+ 0t and t > t.+ 0t, where
0t is the small intervals about ¢ = t.. In case-IV the last subplot at ¢t > ¢. + 0t is
plotted after crossing the holes through each other three times.

that because of this change in relative velocity, the time difference between two
successive collision increases from (¢ @ _ = 147) to (te B _ ¢ = 248), which is

clearly noticeable in Fig. 4.3(h) also.

The above phase-space evolution Fig. 4.4 illustrates that the formation of fine
structures in the phase-space during the interaction is responsible to production
of entropy in numerical evolution and its analogous in associated experimental
conditions. The present simulations show that the structures well separated by
a relative velocity along the velocity dimension (e.g., cases-I-IIT Av2 > 1) have
only an adiabatic modification in the trapped particle distribution, not resulting

in fine structures in the phase space. The cases of structures separated by smaller
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relative velocity (e.g., case-IV Av? < 1), on the other hand, show generation of
substructures (unresolved by coarser resolutions) in the trapped particle popu-
lations because of longer time of the interaction. Sharper phase-space gradients
existing over longer duration results in larger diffusion in the phase-space, indicat-

ing a larger rate of entropy production.

4.4 Characterization of trapped particle nonlinear-
ity

The simulated solitons in their initial arrangement are in well separated and nonin-
teracting state. A near recurrence of this initial soliton arrangement can be noted
in each case due to the periodicity used at the system boundaries. This recurrence
allows one to readily determine the preservation of the soliton attributes by com-
paring the time evolved soliton structures at the time of recurrence, t,., with their
initial forms at ¢ = 0. Such a comparison is done and displayed in Fig 4.5. The
comparison between potential profiles where the high frequency EPW oscillations
are exclusively seen, additionally allows us to carry out a Fourier decomposition
based analysis to identify and characterize the kinetic nonlinearity underlying these
small amplitude solitary structures and isolating them from a coexisting set of high

frequency, nearly decoupled, linear modes that follow superposition principle.

4.4.1 Coexisting linear and kinetically-coupled nonlinear

modes

The spatial profiles of the density, obtained from the initial distribution frp(z,v)
integrated with respect to the velocity, correspond to the profiles marked with
t = 0 plotted in Figs.4.5(a), (c) and (e), featuring two holes at = 8 and 40 in
the cases I, IT and x = 10 and 40 in the case III. The density profiles evolved
past the time of their interaction and at the time ¢, where they nearly exhibit a
recurrence of their initial arrangement are also shown for all these cases. While
these time evolved forms of the electron density profiles are readily comparable
with their initial forms, a similar comparison of the evolved states of the analytic
initial solitary electrostatic potential is complicated due to an additional poten-

tial variation present as a result of the approximations entering in the analytic
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density and potential expression used for generating the initial conditions for the

simulations.
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Figure 4.5: Profiles of the computed plasma density at ¢ = 0 (solid red line) and
at = (, (dashed line) plotted in frames (a), (c¢) and (e), for the cases I, IT and
I11, respectively. Profiles of the computed potential ¢ at ¢ = 0 (thick solid blue
line) in frames (b), (d) and (f) for the cases I, IT and III, respectively. The Fourier
modes of the plasma oscillations (thin dotted lines), the evolved potential profiles
after eliminating the oscillating Fourier modes at ¢ = 0 (thick dotted black line)
and t = ¢, (thick dot-dashed green line) are also shown in (b), (d) and (f) for the
cases I, IT and III, respectively.

The profiles of electrostatic potential computed at initial time ¢ = 0 and at

the time of recurrence ¢ = ¢, are plotted for cases I, II and III in Figs. 4.5(b),
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(d) and (f), respectively. Use of exact velocity integration of fry to obtain initial
potential in the simulations, in combination with approximate forms of certain
analytic expressions from (4.3)-(4.6), seeds additional fast electron plasma oscil-
lations in the set up at ¢ = 0. While these oscillations have a passive presence
and only cause appearance of a finer texture with frequency ~ w,. in the density
evolution presented in Figs. 4.3(b), (d) and (f), their visibility is rather pronounced
in the potential profiles. As visible from Figs. 4.5(b), (d) and (f), the potential
¢ computed at ¢ = 0 in the simulations (plotted using thick solid blue line) by
using the Poisson equation has an additional potential modulations superimposed
on the analytic potential ¢, given by the expression (4.6) (plotted using thick solid
red line). The simultaneous evolution of this additional potential modulation in
time makes it difficult to easily follow the evolution of the solitary structures and
requires additional efforts for separating the two from this modulation described

as follows.

4.4.2 Separation and spectral reconstruction of linear mode

evolution

When decomposed in its Fourier modes, ¢;,, the additional potential modulation
superimposed on soliton potential structure in the computed potential shows a
simpler composition that includes a dominant m = kL /27 = 1 mode and a series

of small amplitude higher m modes,

== bm= anpm (4.8)
m m
where ¢,,, are the elements of the orthogonal Fourier basis and a,, are the cor-
responding Fourier coeflicients. The first four of these linear Fourier modes,
m = 0,1,2 and 3, at t = 0 are plotted (using dotted lines) in Figs. 4.5(b), (d)
and (f) for cases I, IT and III, respectively. As can be noted from the three cases,
the initial arrangement of these plasma modes at ¢ = 0 is mainly determined by
the locations of larger amplitude solitons, since the strongest m = 1 mode always
has its minimum around the location of the larger soliton showing maximum corre-
lation with it. For example, in case I, where there are two identical large solitons,
the minimum of m = 1 is generated equally close to the two solitons, whereas, in

the rest two cases where the other soliton is smaller in amplitude the minimum
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Figure 4.6: Time evolution of the potential profiles in cases I-III at (left) short and
(right) long times (values on color scale).

of m = 1 mode is nearly at the location of the larger soliton, indicating that the
soliton having smaller amplitude has relatively smaller contribution to this addi-
tional mode structure by being in better agreement with the analytic expression
for potential.

Considering the smallness of the amplitudes of these additional Fourier modes

of the potential (either comparable or below the already small amplitudes of soli-
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tons), evolution of these modes can be treated as multiple linear plasma oscillations
at frequency w,. Assuming that at this small amplitude they do not nonlinearly
couple, either with each other or with small amplitude solitons, allows their os-
cillatory time evolution to be analytically eliminated from the entire time evo-
lution of the potential profile to obtain a clearer soliton evolution. Accordingly,
the compensated potential ¢ — > ¢,,, featuring only solitons, can be obtained
at all times from Eq. (4.8) by subtraction of the summation in the right hand
side from the computed potential ¢ which includes this additional contribution
from the oscillation. Result of this elimination at ¢ = 0 and ¢ = ¢, is presented
in the Figs. 4.5(b), (d) and (f) using dashed line and dotted-dashed line which
correspond to the potential profile with such compensation at ¢ = 0 and ¢ = ¢,,
respectively. These compensated profiles showing presence of only two propagat-
ing soliton structures indicate that the superposed fast modulations are indeed
well modeled by the systematic mutually noninteracting linear plasma oscillations
which also do not interact strongly enough with the solitons of nearly same am-
plitude. Since the equally small amplitude solitons propagate coherently without
oscillations at velocity much smaller than the phase velocity of the electron plasma
wave, their constituent modes are clearly coupled via the alternate means provided
by the strong trapping of a large density of resonant particles within these localized

structures.

The detailed time evolution of the compensated electrostatic potential, ¢(x,t)—
> Om(2,t), plotted in Fig. 4.6 features, in addition to featuring the soliton so-
lutions (4.6), the standing electron plasma modes with k& ~ m2w/L (e.g., profile
marked with ¢ = 0 in Fig. 4.6(a)). In the short range evolution presented in
Figs. 4.6(a), (c¢) and (e), the solitons show a robust presence despite their interac-
tion with this wave activity and frequent passage through the other soliton. The
contribution from small amplitude large m modes also shows weak signs of tem-
poral dependence of frequency and wavelength on the slowly time varying soliton
separation Az. The possible origin of this dependence is in the relatively large
amplitudes of the solitons as compared to waves. The barrier produced by soli-
tons generates reflected and transmitted parts of the faster Fourier modes (usually
neglected in the linear regime). The temporal variation in the wave parameters
results from the changing separation between solitons and leaves the residual noise

in the Fourier reconstructed form of the solitons at larger times. Also presented
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in Figs. 4.6(b), (d) and (f), is the long time potential evolution showing multi-
ple crossings of the solitons, using the compensated potential profiles obtained by
eliminating the small m oscillations from the simulated potential ¢, for cases I-II1,

respectively.

4.5 Comparison to interacting SEH in laboratory

and space plasmas

We finally discuss and present some of very long standing and rather recent exper-
imental observations directly relevant to the simulation results presented in this
chapter. While the observations of two holes attracting each other like particles
of negative mass are long identified as mutually merging phase-space structures
in laboratory plasmas, a strong evidence of two holes interacting via an identity
preserving interaction in space (or magnetospheric) plasma might have been only
very recent. The profiles from our simulations highlight the characteristics of such
identity preserving interaction in magnetospheric data which has been largely un-
derstood since their recent observations, in the form of a tripolar pulse of electric
field, measured by a cluster of spacecrafts. We have summarized these two cate-

gories of experiment and their relevance to our data in the following subsections.

4.5.1 Interacting SEH in Q-machines and magnetic mirrors

A number of observation exist where the interaction of holes and their subsequent
merger is observed and interpreted in term of a negative-mass like instability of
the attracting phase-space holes. In the single ended () machine experiments by
Saeki et al. [13] two holes close to each other and having almost equal velocity
were excited from an electric pulse. These holes merge or coalesce in a collision
process described by Saeki et al. as inelastic. Among similar observations, Berk
et al. |39, 81| in a mirror experiment performed in DCX-1 reported development
of stable proton clusters as a result of the negative mass instability. The time of
coalescence of the electrostatic signals from DCX-1 was found to be explainable by
phase-space evolution of two coalescing electrons holes under a simplistic water bag

model indicating that the electrostatic signals do correspond to coalescing trapped-
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electron structures.

4.5.2 Interacting SEH in magnetospheric plasmas

Recently the electric field data from the Wideband Plasma Wave Receiver located
on each of four Cluster spacecraft, as reported by Pickett et al. [18, 19], showed
existence and interaction-like activity of the SEH in the magnetospheric plasma
including certain poorly understood features routinely observed in our data [9)].
We present the potential and electric field profiles in Fig. 4.7 from various cases
at selected stages of evolution showing that while the non-interacting solitons cor-
respond to a bipolar electric field variation as seen in Figs 4.7(a) and (b) for case
III, the pairs of dissimilar solitary electron holes in cases II and III produce, dur-
ing the initial phase of their passage through each other, a tripolar (two smaller
positive pulses separated by a large negative pulse) electric field pulse, as seen in
Figs. 4.7(c)-(d) from case-IT and (e)-(f) from case-III, respectively. Additionally,
an inverted tripolar electric field pulse (i.e., two small negative pulse separated by a
larger positive pulse) reported in many observations by Pickett et al. [18, 19] is re-
covered in the events when the solitary phase space holes separate after completing

their nonlinear interaction, as plotted in Figs. 4.7(g)-(h) for case-III. Within the
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Figure 4.7: (left) Potential and (right) electric field, £ = —0d¢/0x, profiles for
indicated, cases, times and phases of SEH interaction.
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band resolved by the spacecraft data the reported ratio of bipolar to tripolar pulse
length (760 ps to 2 ms, [20]) is in reasonable agreement with the spatial tripo-
lar pulse width ~ 2-3 times the bipolar pulse width in the present simulations.
The ratio of frequency of detection of these two events of about an order, e.g.,
2199:248 from 17:00-17:40 hrs on February 10, 2002 or 872:80 from 08:31-08:57 hrs
on May 26, 2002 [20], indicates the expected skewed probability of detecting them
in random sampling of a large collection of interacting solitary structures studied
as above. For a localized or inhomogeneous source, say at upstream locations in
the magnetosphere, the majority of interactions sampled would be of case-III type

where the frequency of the observed tripolar pulses is expected to be even lower.

4.6 Summary and conclusions

The phase-space vortex structures, or SEH, seen in chapter 3 to be generated from
unstable plasma modes that grow in amplitude, trap particles, and subsequently
enter a trapped particle governed nonlinear limit, motivated studies in this chapter.
The stable propagating analytic solutions of a long existing formulation of such
structures are used in this chapter as a means of studying the interaction between
the SEH structure in a distinct regime of relatively faster, electron acoustic modes,
where the ion participation in SEH dynamics remains negligible. The theoretical
results, neglecting ion mobility, are treated as initial conditions for the simulations
that fully account for evolution of both electron and ion kinetic distributions. It is
understood that in the absence of external driving, the structures tend to develop
isolated, near equilibrium, trapped particle distributions and therefore are well de-
scribed by the SEH formulations based on this approach. The present simulations
suggest that such model for the trapped particle distributions remains largely valid
for the laboratory and natural plasmas, including those in magnetospheric plasmas
that could be well described by the present simulations.

The motivation that the stable analytic SEH solutions must propagate as nat-
ural nonlinear excitations of the collisionless plasma is validated based on the
understanding that the numerical simulation indeed evolve a near thermodynam-
ically equilibrated population of the particles trapped in the coherent structures.
This population produces a strong trapped particle nonlinearity arising from its

sensitivity to wave/structure amplitude, bringing, in turn, an amplitude depen-
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dence in its dispersion, characteristic of nonlinear waves and coherent structures.

The main conclusions in this relation from the present chapter are as following.

The analytic form of electron distribution implemented as initial conditions
for the SEH simulations shows propagation without much distortion or radiation
unless perturbed by other structures, validating the a-priori adoption of them as
most suitable initial conditions. Although the evolved stable SEH in the simu-
lations have additional attributes when compared to rather approximate analytic
solutions given by (4.6), they show only reasonable deviations from the analytic
structure (largely related to numerical aspects), not detrimental to their stability

predicted under the adopted analytic SEH formulation [36].

The formation of fine structures in the phase-space during the interaction is
responsible to production of entropy in numerical as well as is associated exper-
imental condition. The present simulations show that the structures well sepa-
rated by a relative velocity along the velocity dimension (Av2 > 1)) have only
an adiabatic modification in the trapped particle distribution, not resulting in fine
structures in the phase space. The cases of structures separated by smaller relative
velocity (Av3 < 1), on the other hand, show generation of substructures in the
trapped particle populations because of longer time of the interaction. Sharper
phase-space gradients existing over longer duration results in larger diffusion in
the phase-space, indicating a larger rate of entropy production.

A comparison between the initial and time evolved states of SEH is possible
because of a near recurrence of the former in our periodic system. This comparison
between potential profiles showing high frequency EPW oscillations additionally
allows us to carry out a Fourier decomposition based analysis to identify and
characterize the kinetic nonlinearity underlying the small amplitude solitary struc-
tures and isolating them from a coexisting set of high frequency, nearly decoupled,
linear modes that follow superposition principle. A successful elimination, using
the Fourier reconstruction, of the high frequency linear modes from the solitary
wave data, indicates that the superposed fast modulations are indeed well mod-
eled by the systematic mutually noninteracting linear plasma oscillations which
also do not interact strongly enough with the solitons of nearly same amplitude.
Since the equally small amplitude solitons propagate coherently without oscilla-
tions at velocity much smaller than the phase velocity of the electron plasma wave,

their constituent modes are clearly coupled via the alternate means provided by
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the strong trapping of a large density of resonant particles within these localized
structures.

The reasonable agreement of electron hole observations in nature and labora-
tory experiments with both kinds of interactions, where the structures interaction
produces minimum modification to individual solitons and where the solitons are
fast modified and merge, is noted in respective regimes. These comparisons must
allow quantitative determination of thermodynamic regimes of the finite amplitude
plasma structures, or the plasma turbulence at large, in specific cases of interest in
advanced studies of plasma waves, instabilities and turbulence. In two sets of the
relevant comparisons we have shown in the first set: that in the cases of the first
kind of interaction (identity preserving), the electric field profiles from selected
stages of evolution show the non-interacting solitons correspond to a bipolar elec-
tric field, while the pairs of dissimilar solitary electron holes produce, during the
initial phase of their passage through each other, a tripolar (two smaller positive
pulses separated by a large negative pulse) electric field pulse. In the second set
of comparison with various existing observations in laboratory plasmas it is high-
lighted that, as seen in second kind of interaction (non-identity preserving) at small
relative velocity between two coherent structures two holes attract each other like
particles of negative mass and coalesce, for example, in () machine experiment by
Saeki et al. [13]. In another example, the stable proton cluster developed from
the negative mass instability, experimentally observed in Oak Ridge DCX-1 mirror
machine, were compared to two-stream instability simulated by Berk et al. |39, 81|

showing the similar merger using a simplistic water bag model.

97



Evolving trapped particle structures
with implications on plasma
stability

5.1 Introduction

The investigations in this chapter are motivated by the strong presence of un-
damped coherent structures in finite amplitude collective activity in plasmas, rou-
tinely detected such as in space, laboratory and fusion plasmas where coherence is
identified by its robustness and stationarity. In this study such coherence arising
from underlying kinetic characteristics of warm plasmas, witnessed in preceding
chapters, leads us to further exploration of possible alternate regimes of instability
of an ideal, nondissipative plasma. The concept of essentially linear nature of evo-
lution at small amplitude governs the approach to plasma stability, thereby only
linear modes that follow the superposition principle, are recovered and understood
to grow by sources of free energy. The linear thresholds are therefore tied to the
conventional discrete plasma modes, and, in turn, do not cover the stability of
small amplitude nonlinear modes that might follow more general or independent
growth mechanism in such, otherwise, subcritical or linearly stable regimes. The
presence of equally small amplitude nonlinear structures, validated by both the
kinetic simulations and analytics, therefore highlights an alternate mechanism for
the turbulence to operate in the collsionless plasmas. It is thus essential to explore

the evolution of such small amplitude nonlinear structures in the linearly subcrit-
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ical regime and investigate their characteristics with respect to the well explored

linear eigenmodes of the collisionless plasma.

In order to achieve the above objective, we consider a current-driven, 1D, colli-
sionless plasma as a paradigm of driven intermittent plasma turbulence and anoma-
lous transport with the focus on undamped coherent electrostatic structures. The
study explores the concept of plasma instability in terms of more general fundamen-
tally nonlinear structures, outside the conventional linear regime which is limited
to covering largely the collisional plasma eigenmodes, additionally subjected, by
use of Vlasov equation, to interaction with resonant particles. Simulations are
once again employed to explore evolution of more relevant forms of perturbations
in the species phase-space producing undamped collective structures. In the anal-
ysis of simulation output, however, a wave description is employed which in its
fundamental form is maintained through all stages of sophistication, allowing also
a direct comparison with the already vast literature on the underlying trapped

particle modes.

Although a wealth of literature is available dealing with the topic of current-
driven plasma and the ion-acoustic instability, only a few examples are mentioned
here and attempt is made to cite and discuss many of them later, during the analy-
sis. The growth of these nonlinear equilibria, possible in a subcritical plasma, was
addressed analytically in the past by Dupree [5] who concluded that amplitude of
these structures must grow due to scattering of particles for propagation velocities
in the range where ion and electron distribution function have opposite signs of
velocity derivatives. Simulations by Berk et al. |21] recovered spontaneous hole -
clump pair creation close to the linear threshold for instability. Lesur et al. [22, 23]
in their numerical simulations of these structures also recovered growth in subcrit-
ical regime resulting from exchange of momentum with other species or with the
wave pseudo-momentum. Similarly, the growth of ion phase-space structures were
recovered, by Petkaki et al. [87] in a Vlasov simulation, generating anomalous
resistivity that exceeds the quasilinear estimates driving the reconnection. An-
other mechanism of subcritical hole excitation was recently proposed by Lesur et
al. |88], augmenting the Berk-Breizman model [89], namely, by wave coupling with

a linearly unstable (supercritical) mode.

The high resolution computer simulation results presented in this chapter il-

lustrate an evolution of realizable, but rather noise-like, phase-space perturbations
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which excite undamped coherent structures traveling at phase velocities far from
their linear prescription, and simultaneously excite the familiar undamped linear
plasma modes located at a variety of time and spatial scales. Keeping the regime of
our multispecies, exact-mass-ratio, and fully kinetic computer simulations in view,
we hence treat a current-driven, two-component plasma, which in the unperturbed
background state is characterized by a drift between electrons and ions (vp), a
temperature ratio (0 = T,./T;) and a mass ratio (6 = m./m;). Throughout this
chapter vp is chosen below the linear critical drift velocity v}, such that a linear

instability |2| is excluded from the outset.

We begin this chapter by presenting the results of our computer simulations,
recovering the evolution of a non-topological initial perturbation that evolves into
a variety of normal modes as well as coherent phase-space structures, forming the
basis of our subsequent general analytic formulation. In the first part of analytic
description of our simulation, we mainly show that how Landau’s formulation
deviates from van-Kampen’s one. This discussion brings nonlinear trapping in
attention and shows the close correlation between coherency and trapping, which
defy both these linear approaches. We identify, within the linear Vlasov approach,
the parameter A which is responsible for the appearance of the well known van-
Kampen continuum and, on the other hand, the rise of discreteness of the plasma
normal mode spectrum. In the second part of analytic description of results, we
further replace A by an appropriate nonlinear trapping parameter B (see Sec. IV).
The separatrix B = 0 represents then, in this extended description, the famil-
iar undamped dispersion relation (dispersion branch), which must however to be
understood as a nonlinear trapped particle mode, while B # 0, i.e. the region
surrounding the separatrix, is populated by a continuum of nonlinear structures
(non-dispersion branches). Showing existence of a pseudo-potential V(®), that
allows charge separation to be representable by its derivative 0V(®)/0®, the co-
herence of nonlinear structures with a single phase velocity, unlike and independent
of linear fluid-modes resonating with particles at their individual phase velocities, is
highlighted. This illustrates a mechanism provided by trapping that synchronizes
the phases at small amplitudes and therefore allows growth of resulting coherent
structures by unusual mechanism, independent of the linear Vlasov stability theory,
and in terms of the parameters other than the sole linear parameter, namely, the

wave amplitude. As a main outcome, we reconcile our observations, of structures
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having such unusual propagation velocity, with the collective structures located on
a common, general Nonlinear Dispersion Relation (NDR) [36] featuring regions of
separate fast and slow branches. This essentially indicates the presence of kinetic
nonlinearity driven collective structures, perhaps ready to grow and drive most of
the hot plasma turbulence (see Chapter 6), besides the linear set of eigenmodes of
an essentially collisional (Maxwellian) plasma.

We concentrate on weak excitations and assume that without loss of generality
the electrostatic potential ¢ satisfies 0 < ¢ < ¢ < 1, where ¢ is the amplitude
of the perturbation and serves as a smallness parameter. An ideal beginning is
the inspection of the plasma response in terms of a valid evolution of the Vlasov-
Poisson system to a non-topological, eddy-like, initial perturbation (a locally scarce
electron population about any velocity, preferably on the rising side of a drifting
Je(v)), as presented in Sec. 5.2. The simulated response is employed to draw
the general picture in Sec. 5.3 and 5.4 in the following order: In Sec. 5.3 we
consider the linear Vlasov theory of Landau and van Kampen. The latter two,
however, cannot provide an adequate description due to their limitations, namely,
(i) a subtle non-resolution of a velocity interval resonant with a coherent unstable
structure (indeed present at the arbitrarily chosen velocity) and (ii) the neglect
of nonlinearity introduced by the amplitude dependent final strength of the stable
trapped particle population remaining therein. The interpretation of the overall
picture that emerged from our simulation results is finally completed in Sec. 5.4
where we systematically include this nonlinearity and develop a general Nonlinear
Dispersion Relation (NDR), capable of displaying all the observed familiar and

unfamiliar responses in their corresponding limits.

5.2 Development of undamped collective structures

in a subcritical plasma

Having examined the destabilization of solitary holes by a large electron drift in
Chapter 3, and evolution of stably propagating and mutually interacting solitary
structures in a plasma free from any source of free energy (drift) in Chapter 4,
we now examine the evolution of perturbations in a subcritical plasma, or in the
conditions where the drift is below the minimum strength prescribed by the linear

stability theory of the collisionless plasmas [28]. This is the limit where the initial
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small amplitude perturbations must stay at their noise level without developing
larger amplitudes to enter into their nonlinear stage. We however seed a rather
unconventional phase-space-eddy-like small amplitude perturbations in these con-

ditions.

5.2.1 Plasma distributions for simulations in subcritical

regime

In order to represent a current carrying plasma in the 1D electrostatic simula-
tion set up of present study, an initially stationary Maxwellian velocity distribu-
tion is used for the ions, while the drifting electrons are represented by a shifted

Maxwellian velocity distribution. The amount of current present in the system is
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Figure 5.1: Plot of electron (dashed line) and ion (solid line) distribution func-
tion at ¢ = 0. Subplot (a) presents f. at @ = 15Ap.. Subplot (b) presents ion
distribution function f;.

then determined from the drift velocity of the electrons. In terms of normalized

variables introduced in Sec. 3.2, the initial electron and ion distribution functions
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Figure 5.2: The threshold drift value for linear stability (dotted line) as a function
of temperature ratio § = © as originally obtained by Fried and Gould [2]. The
addition curves represent nonlinear stability threshold for solitary electron holes
obtained by Griessmeier et al. [113] for the indicated values of parameter B.

in this setup are thus represented by,

_o) = L o)) exp |- (L 00)
ot =0) = <=t flnaen|-C2E] 6
: 1 u’ .
and  fi(z,u,t =0) = ﬁexp [—?], (5.2)

respectively. In this study we evolve distributions, by implementing flux balance,
of both electrons and the hydrogen ions with their exact mass ratio m;/m, = 1836
and have again used a periodic boundary condition at the ends of the simulation

zone of length L.

At t = 0 the following eddy-like seed perturbation is given to the electron

distribution function,

Ly

f1(z,v) = —e; sech {U Ul] sech®(kx), (5.3)

where L1 and v; determine the width and position, respectively, of the perturba-
tion along the velocity dimension. The quantity k& determines the width of the

perturbation in the z direction. In order to avoid the (questionable) presence of
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an instability given in the linear sense by linear Landau theory [2, 28], for our
parameters (T, = 107;), v; = 0.03, L; = 0.003, k¥ = 27/0.3 and the length of
the simulation box 30, the drift velocity of electrons is chosen below the linear
threshold v}, = 0.056 given by vp = 0.05 < v}, with a perturbation strength
€1 = 0.06. As reproduced from Griessmeier et al. [113], Fig. 5.2 presents the curve
representing threshold drift value vp for linear stability (dotted line) as a func-
tion of temperature ratio § = ©, originally obtained by Fried and Gould [2]|. The
addition curves corresponding to the alternate, nonlinear stability threshold, for
solitary electron holes as obtained by Griessmeier et al. for the values of parameter
B = 0.01, 0.7 and 0.9, respectively. In our present 1D simulation 16384 x 32768
dual z — v mesh grid is used for solving Vlasov equation numerically for both
electrons and ions. The phase space resolution is selected such that structures
with sharpest gradient are well resolved. It has been ensured that increasing the
resolution further does not allow appearance of newer and sharper structures. Re-
quired number of grid points have been calculated by implementing dv < f/V,f
and dxr < [/V, [, where dv and dx are the grid sizes along v and x dimensions
respectively. While the time step for the evolution during ¢ > 0 in the simulation
is At = 0.02, Fig. 5.1 presents the initial electron and ion distribution functions
at t = 0. Subplot (a) presents the electron distribution function at the middle of
the simulation box x=15 and at the velocity location of the velocity perturbation
vy = 0.03.

5.2.2 Time evolution of initial phase-space perturbations

The time evolution of the electron distribution function and the densities of both
electrons and ions is presented in Fig. 5.3. The perturbation f; applied at ¢ = 0 to
the equilibrium distribution f; is visible at the velocity location 0.03 and has an
associated electron density dip at x=15. Since no structuring occurs in ion phase
space due to the relatively fast electronic perturbation, an ion density plot suffices
to exhibit the macroscopic ionic response. The corresponding initial electric field
localized at this position produces an electron plasma oscillation and a localized ion
density modulation consisting of a dip surrounded by two smaller humps. While
the dip propagates with ion acoustic phase-velocity, the trailing hump breaks into
two structures which also propagate with the ion acoustic velocity in backward

and forward directions, respectively, without any visible growth in their initial
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Figure 5.3: Time evolution of electron phase-space (in a, ¢, e, g, i and k) where
frames correspond to indicated times and dotted and dashed horizontal lines mark
the seed velocity and ion acoustic velocity, respectively. Corresponding electron
density (solid line) and ion density (dashed line) (in b, d, f, h, j and 1) at indicated
times. The forward and backward propagating IAW structures visible in frames
(h) and (j) are indicated as IAW ; and TAW,, respectively.
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amplitude. However, the leading ion hump forms an attractor for the surviving
fraction of the initial electron density dip as they are seen to accelerate together
to the same phase velocity (about 50 % larger than the ion acoustic velocity) with
a visible growth in their amplitudes over a significant duration, before attaining a
near saturation at this higher phase velocity. This phase of evolution corresponds
to frames (g)-(1) of the Fig. 5.3. The electrons that are trapped in this grow-
ing coherent structure, visibly create a stable undamped electron phase-space hole
structure. The final propagation velocity of this coherent wave/structure is 0.033
which is greater than the velocity v; = 0.03 chosen for seeding initial scarcity of
the electrons (upper, dotted line in left frames of Fig. 5.3). While the fast electron
response and slow ion responses are readily identifiable as the conventional elec-
tron plasma wave (EPW) and Solitary Ion Acoustic Waves (IAW), respectively, to
accuracy of finite thermal corrections in its characteristic dispersion parameters,
the saturation velocity 0.033 of the undamped fast coherent structure far exceeds
the ion acoustic velocity (cs ~ 0.023, lower, dashed line in left frames of Fig. 5.3).
Thus, the coherent structure with propagation velocity 0.033 can not be suitably
located on the conventional discrete spectrum of the linear plasma modes. More-
over, its phase-velocity value depends on the strength of the initial perturbation,
exhibiting a fundamental departure from the linear character of any underlying
instability. The similar undamped coherent structures with almost no ion partic-
ipation can be excited as well [9], although by growing/propagating at somewhat
higher velocity, essentially in presence of even higher drift velocities, they may not

be ideal examples of a growth below the linear threshold value of the drift velocity.

The time evolution of the simulated potential and electric field is presented
in Fig. 5.4. The potential structure corresponding to the nonlinear structure is
visible more clearly when the counter-propagating components of the standing
EPW are in the opposite phase and correspond to a flat EPW potential profile,
e.g., at the time ¢ = 95 as shown in Fig. 5.4(k). The corresponding electric
field shows a bipolar profile at structure location as visible in Fig. 5.4(k). The
initial perturbation has thus produced, asymptotically, a combination largely of
two undamped structures, namely, a conventional high frequency electron plasma
oscillation (EPW) and a slow coherent structure with trapped electrons whose

dispersion characteristics are yet to be ascertained in the conventional framework of
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Figure 5.4: Time evolution of potential (in a, ¢, e, g, i and k) and electric field (in
b, d, f, h, j and 1) at indicated times.
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the plasma instability allowing no growth below the linear threshold of the electron
drift. This identification procedure is undertaken in a comprehensive three-level
development of a generalized dispersion framework of plasma instability made in
the following sections. Before discussing this generalized dispersion framework,
we present the evolution of the same initial perturbation using a linear Vlasov

simulation code, yielding a very dissimilar evolution.

5.2.3 Evolution using linearized Vlasov simulation proce-

dure

In order to investigate the evolution that the linear Vlasov theory [28] would
produce, we simulate the phase-space evolution of the perturbation (5.3) using
a linearized simulation procedure that implements the flux balance only for the

perturbed part of the distribution
filz,v,t) = f(z,v,t) — fo(v). (5.4)

Therefore simulating, effectively, the evolution of f; according to the linearized

Vlasov equation,
O f1 +v0, f1 — F10, fo = 0, (5.5)

where the information of initial unperturbed distribution function fy is preserved
by this procedure and is used at all future times in the form of 0, f, appearing
in the Eq. (5.5). Note that the total distribution function f(z,v,t¢) in (5.4) at all
t > 0 in this procedure is essentially dissimilar to that in the full nonlinear Vlasov
procedure described in Chapter 2 where instead of 0, fy, the full 0,f determines
the evolution of f, conserving, in turn, each of the norms listed in Chapter 2.
The corresponding evolution obtained by a linear Vlasov code implementing the
above procedure under identical initial conditions is seen in Fig. 5.5. It essentially
exhibits the undamped electron plasma oscillations (EPO) associated by a ballistic
electron motion but no electron hole generation. The initial seed density dip
is simply transformed into the two oppositely propagating Langmuir waves. In
the nonlinear run, Fig. 5.3, instead the initial seed is deformed by the nonlinear

trapping effect and settles within a few plasma periods into a nonlinear hole like
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Figure 5.5: Time evolution of electron phase-space and corresponding electron
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linear Vlasov code.
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structure, self-consistently. There is no trace of Landau damping/growth or phase
mixing of this structure unlike 5.5. Note that the slight increase of its phase
velocity by a slight increase of its amplitude is in close agreement with theory (see
Fig. 3 of [114], where vy has to be replaced by op, being quantities to be defined
later) provided that the fast trapping process is more or less terminated and hence

[ nearly constant.

5.2.4 Requirement of a general description of nonlinear equi-
libria

Since nonlinear collective structures of much smaller amplitudes are shown to ex-
ist at the noise level that follow independent growth mechanism of more general
kind, the linear growth mechanism remains a rather non-unique mechanisms for
the collisionless plasma turbulence to operate. The focus in rest of the analysis
therefore is on the nonlinear structures recovered above and their interpreting their
dispersive properties as well as their stability which is discussed in more detail in
Chapter 6.

An identification procedure for the nonlinear structures recovered above is un-
dertaken in following analysis in a comprehensive three-level development of a
generalized dispersion framework of plasma instability. The structures are finally
located on a nonlinear dispersion relation which has the well-known discrete struc-
ture of undamped linear plasma modes seamlessly embedded in its nonlinear con-
tinuum. In order to achieve this it is desired to introduce the conventional linear
approaches within this generalized description, beginning from more familiar lin-
ear formulations, namely, Landau and van-Kampen. Having covered in Chapter 1
the most primitive first level description where electrons and ions are described
by fluid equations, we now describe the kinetic Vlasov formulations in their linear

and nonlinear regimes.

5.3 Linear Vlasov descriptions for structures and
stability

Let us begin with the linear descriptions which would recover the more familiar

linear structures, e.g., the electron plasma oscillations/waves or EPW generated in
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the above simulations [10]|. In this next step of sophistication we describe the elec-
trons as an incompressible, 2D phase space fluid, the density (distribution function)
of which being governed by the normalized Vlasov equation (2.3) with 7 = . = 1.
In this mean field approach, where discreteness effects are suppressed, the mean
electric field I is represented by: F(x,t) = —0,¢(x,t), which is again assumed to
be small and self-consistently coupled with the immobile ions through Poisson’s
equation (2.5). If fo(v) represents the homogeneous background distribution we
can split [ into f(x,v,t) = fo(v) + fi(z,v,t) and linearize (2.3) with respect to f;
to get the linearized form of the Vlasov equation (5.5). Mathematically speaking,
(5.5) is an inhomogeneous, linear partial differential equation of first order, the
characteristics of which being straight lines. The unperturbed distribution fy(v) is
generally assumed arbitrary, sufficiently smooth and normalizable. The additional
constraint, that its slope vanishes at phase velocity, i.e., fj(vo) = 0, as imposed
in Landau’s approach (see later), is, however, not considered generic by us. An
unperturbed distribution can logically not anticipate the action of a perturbation
i.e. one should not confuse cause with effect.

In our present current-carrying case [o(v) is given by the shifted Maxwellian

2
_ 1+k 1/)/26_%(1)_”13)27
V2

where we have already anticipated the presence of a periodic structure analogous

fo(v) (5.6)

to (A.4). The validity of the linearized Vlasov approach demands the smallness of

the velocity gradient of f:
|a?'f1| < |8lf()|7 (57)

which has to be satisfied in the entire phase space and during the whole time span

of evolution, which includes the initial condition f;(z,v,0).

5.3.1 van-Kampen’s linear dispersion relation

It is worth mentioning and almost trivial that (5.7) can be violated despite the
smallness of the initial perturbation, |fi| << |fo|. A stationary solution of (5.5),
traveling with v, can easily be found by the Ansatz fi(z — vot, v), d(z — vot). Its

insertion into (5.5) immediately gives: (v—uvg)d,f1+¢'0,fo = 0, which is generally
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solved by

/
fi(x — vot,v) = — P% + Xo(v — )| d(x — wvot). (5.8)
— Vo
In the last step we used the two well known expressions: a:P% =1 and xd(z) =0,
where /” is Cauchy’s principle value and d(x) the delta function distribution. To
establish self-consistency we solve (2.5) by inserting f = fo+ fiinn = [dv(fo+ /1)

and get with (5.8),

B k%
2

[P miﬁi+ﬁ¢:—va (5.9)

UV — Vo

¢//:n_1

where the term £%¢/2 of fy in (5.6) is negligible here being of higher order. The
pseudo-potential then becomes: —V(¢) = szw(ﬁ - [P il dv%’i% + )\} $?/2, from
which we get by the obvious demand, V(i) = 0, the linear dispersion relation
(LDR):

!
iop [ apfo® — e 1

Vo — UD
zZ =A 5.1
S SZU(R=2) = (5.10)

V2

where Z,.(z) is the real part of the complex plasma dispersion function [115] for
real arguments. This is the van-Kampen relation [12|, which can be considered as
a linear dispersion relation (LDR) since it determines the phase velocity vy = w,/k
in terms of k£, A and vp. The general equilibrium solution within the linearized
Vlasov description is hence given by the LDR (5.10) and the pseudo-potential V(¢),
given by (A.10). The LDR could be analyzed in more detail already here but we
postpone it to the next section where a similar, however better founded dispersion

relation arises.

5.3.2 Landau’s linear dispersion relation

The reason why we have to discard the linear solutions, given by van-Kampen
description, everywhere respected solution (5.8) is its invalidity. The underlying
prerequisite, namely (5.7), is massively violated in the resonant region due to the
two singularities of f; in (5.8), the giant principal value singularity (see in case of
doubt Fig. 2 of [1]) and the delta-function singularity. Moreover, even within the

linear Vlasov approach there are contradicting aftermath, as there is a discrepancy
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between the van-Kampen approach, presented here, and the Landau approach [11].
Whereas van-Kampen’s approach holds for any fy(v), Landau needs for his analysis
an additional zero slope at the phase velocity. He solves the initial value problem
by the Fourier-Laplace technique and justifies the use of the Landau contour in his

analysis to obtain time-asymptotically the LDR

1 w — kvp
B--7—=) =0. 5.11
2 ( V2k ) (511

In doing so he uses continuity of the solution when the pole in the complex v-
plane, v = ip/k, where p is the Laplace variable p = —iw, transits from p > 0 to
p < 0 corresponding to v > 0 to v < 0, respectively, where v = I'mw. It should,
however, be mentioned that the involved perturbed distribution f; is by no means
better suited than the van-Kampen one, as it shows through the use of the Landau
contour, and of the Sokhotskyi-Plemelj formula, the same type of non-acceptable

singularities (for more details see e.g. [28]).

5.3.3 Coincidence between van-Kampen and Landau LDR:

recovery of fluid limit

Through his procedure Landau achieves a unique expression for ~, namely ~ ~
[i(w,/k), valid for |y] < w, and for both signs, v > 0 (growth) and v < 0
(damping). From this, one immediately recognizes that there is a coincidence
between van-Kampen and Landau only when A\ = 0 in (5.10) and f§(vy) = 0 are
satisfied simultaneously, otherwise they disagree. This is mainly the reason why
in van-Kampen’s theory the continuous spectrum, being associated with A # 0
and giving rise to a continuum of modes with arbitrary vy = w,/k, is sometimes
called "off-dispersion spectrum" since it is not included in (5.11). In other words,
Landau misses by his procedure the van-Kampen continuum and needs a zero slope
of fo(vo) to describe his stationary solution, and with it his threshold for instability.
The general resolution of this discrepancy is of course that none of them are valid
unless A = 0 and vy > 1, such that f{(vo) — 0. In this limit, however, we are set

back to our previous fluid solution of no resonant particles at all. Indeed, using

1 1 3
Sl (a) = —— 14+ 2+ 12
5%r(®) 2:,;2( Toe T ) (5.12)
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valid for |x| > 1, one can easily see that (5.10) with A = 0 and (A.8) are identical,
still leaving the phase velocity vy ~ 0.033 < 1 of the structure recovered in
simulation unexplained.

Finally, we emphasize that van-Kampen’s and Landau’s undamped solutions
cannot be distinguished microscopically, i.e. by the use of ¢(z) and of the LDR
alone. One has to go into the microscopic phase space to see the difference between
both. As we shall show in the next section, this property will be strengthened since
there is in fact an infinity of infinitesimal, but nonlinear wave solutions (like the
one recovered by us in the simulation at vy ~ 0.033 < 1), all being governed by the
same macroscopic dispersion relation. We also note that although it is so simple
to recognize the inconsistency of the van-Kampen and Landau solutions in case of
resonant particles, it will be rather difficult to assess its repercussion on plasma
stability.

5.4 Nonlinear Vlasov description for coherence at

small amplitude

The fully nonlinear pseudo-potential method introduced in Chapter 4, acknowledg-
ing the finite trapped particle population is shown here to lead also to a general
nonlinear dispersion relation (NDR) that accommodate, among its various limiting
cases, both the linear dispersive and the nonlinear trapped-particle structures re-
covered in the simulations. Besides these recoveries, it allows the understanding of
linear Vlasov description and its relation to particle trapping regime in a common
framework. Here, following Schamel’s [1] pseudo-potential based nonlinear method
introduced in Chapter 4 we treat in the following the two cases with immobile and

mobile ions, respectively.

5.4.1 Immobile ion regime: NDR for electron response and
trapping

Considering first the fast propagating coherent structures (vg > ¢,) we then treat
ions as immobile and use, for the electron distribution, the formal solution of their
time-independent Vlasov equation written in the structure’s frame given by (4.1)

with veg = vp — vg and k replaced by a more specific symbol ky;. We note that
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f(z,v) is a function of two constants of motion, ¢ and o, which is a necessary

requisite for the propagation of a wave, when veg > 0.

The first part in (4.1) represents the free, the second part the trapped electrons.
Although their distribution can in principle be chosen arbitrarily, see |45], we
prefer here a distribution, which is continuous at the separatrix ¢ = 0 and has
regularly trapped electrons. The trapping parameter 5 turns out to be decisive
for getting physically meaningful equilibria and should not be replaced simply by
zero (corresponding to a plateau-like trapped particle distribution). The reason,
why we have replaced k by ko in the normalization of f(z,v), is that in case of
more complex periodic solutions, deviating from a single harmonic wave and being
cnoidal in character (see later), ko is no longer the correct wave number k (but
is of course related to it). For more details we refer to Sec. VIL.C. of [36]. To
get a better intuitive feel for the Ansatz (4.1) please note that in the limit of a
vanishing perturbation, » — 0, it holds o0v/2¢ — v such that f(z,v) becomes a
shifted Maxwellian, as it should.

The density (4.3) obtained by a velocity integration of (4.1) under the approxi-
mation of the small amplitude produces, on its insertion in into Poisson’s equation

(4.4) (considering n; = 1), a nonlinear dispersion relation,

K2 — %Z; (%) - B (5.13)
and a general version of the pseudo-potential (4.7) as below for a nonharmonic
potential that we represent by ® rather than ¢ used for harmonic (dispersive) cases
following superposition (for which no single V(®) can be constructed associated
with an aggregate structure obtained by their instantaneous superposition, i.e.,
the curvature/charge-separation ¢”(x) is no longer representable by a V'(¢), or

the coherent character of ¢ is lost),

—V(®) = %gtb(z/) —d) + gqﬂ (1 - %) : (5.14)
where
16
B= 1—E,)b(/ﬁ,ueﬁ)\/i (5.15)
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and

b3, vert) = %(1 — B — 02) exp(—12y/2). (5.16)

There are two noteworthy improvements with respect to van-Kampen’s treat-
ment and van-Kampen LDR (5.10): firstly, the parameter A is replaced by B,
which results from trapping, and secondly, an additional, solitary-like term ap-
pears in the modified pseudo potential V(®) (5.14), which reflects the trapping
nonlinearity (TN) and introduces non-harmonic contributions to ®. As shown
more explicitly in [1], the potential ®(z) itself becomes cnoidal in character, i.e.,

it is generally described by Jacobian elliptic functions [116].

5.4.2 Locating simulated structures on the NDR

To be a valid solution, B has to satisfy —2k2 < B, coming from (-V'(0) > 0,-

V'(¢) < 0), which affects, for a given ko, the trapping parameter 3. The nonlinear
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0.5 L
SEAW
05 02 04 06 08 10 12 14
koV2

Figure 5.6: The nonlinear dispersion relation (NDR) Equation (5.13) for constant
B with wg := kgug and vp = 0.

dispersion relation (NDR) (5.13) looks similar to van-Kampen’s LDR but is now
well founded. Its exploration - see Fig. 5.6, which is identical with Fig. 5 of [1]
and is presented for vp = 0;v9 = wp/ko - exhibits (i) a one-parametric continuum

of fast and a slow wave branches, the slow ones being associated with the slow
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electron acoustic waves (SEAWs) and the fast ones with high frequency (hf) waves
among which is the Langmuir wave with B = 0, ky < 1, (ii) a line wy ~ 1.5v/2k,
where both sets of branches meet and (iii) a lower cut-off in &y for the hf branches
: VB < ko in case of B > 0). As a consequence there is a continuum of phase
velocities vy (analogous to the van-Kampen continuum) a stationary structure can

attain, and not only the “dispersion branch” B = 0 with its thumb-like shape.

5.4.3 Relationship between linear and nonlinear Vlasov equi-
libria

We are now in the position to clarify the relationship between linear and nonlin-
ear Vlasov equilibria. We do this by asking the question as to whether there is,
for a given k2 > 0, a harmonic wave limit B — 0 in (5.13)-(5.14) which can be
interpreted in the linear sense as ¢» — 07, namely that at least one of the linear
solutions are accessed. A positive answer could then be interpreted as a justifica-
tion of the standard wave description which forms basis for linear threshold based
operating mechanism of plasma instability.

Assuming for the sake of simplicity, which does however not affect the outcome,

a non-drifting electron species, vp = 0, we can write

16
B= m(l — 3 — ) exp(—12/2)\/ ¥ (5.17)

and see that there are three factors which can account for a zero B.

1. One solution for ¢ =€ > 0 is vy > 1, which is however nothing else but our
previous fluid-like Langmuir wave solution where resonant particle effects are

negligible. This yields no new information.

2. A second zero is provided for ¢ = ¢ > 0 by the first bracket, and becomes
—f3 = vg — 1. This is clearly a trapped particle equilibrium with a tiny width
of the trapping region, 2v/2¢, in which the trapped electron distribution
fi(z,v) is depressed (concave) since v > (1.307)* ~ 1.71 and consequently

[ negative.

3. The only possibility left over of getting a linear limit is by letting ¢ = ¢ — 07,

in which case the third, the square root of the amplitude ¢ would become
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responsible for the harmonic wave limit. In this case, however, we are still
confronted with trapped particle equilibria since the trapping width, 21/2¢
is still non zero as long as ¢ # 0. But then we have an infinity of nonlinear
solutions since 3 can attain any value. All of them belong to the same NDR
(5.13) which is formally equivalent with (5.10) in the limit vp = 0,A = 0 or
with (A.8) in the limit w = wy, k = ko.

In other words, the dispersion relation is shared by an infinity of extremely small
amplitude wave solutions which are well-behaved as long as trapping is an admitted
physical process. Hence, up to infinitesimal amplitudes nonlinear trapping remains
a vivid process regularizing singularities in the phase space. A plasma has an
infinity of nonlinear choices of circumventing singular solutions and it would be

rather unnatural to ignore them.

5.4.3.1 Solitary nonlinear equilibria without linear analogue

We can deepen and support this conclusion by considering, in addition, the lo-

calized perturbations. Indeed, assuming 0 < B < 1 but k2 = 0, we find solitary

VBz
4

being given by the solution of (5.13) (with vp = 0 for simplicity) lying in the
range 0 < vy < 1.307. For small B satisfying 0 < B < 1 the latter becomes

electron holes of the form ®(z) = ¥ sech4( ), the phase velocity of which

vo = 1.307(1 — B). A non-zero value of B in the infinitesimal amplitude limit
¢ — 07 is easily compensated and achieved by —/3 oc B/+/3) representing a tiny

density dip in phase space at resonant velocity [33].

5.4.3.2 Independence of fluid and kinetic wave equilibria

The analysis based on above model suggests that coherent wave equilibria are either
fluid-like (such as Langmuir waves) or kinetic hole equilibria with a non-ignorable
trapped particle component |1, 36, 45, 54]. Moreover, since Landau’s solution cou-
pling them fails, in turn, for v = 0 we have to accept by employing continuity that
the whole Landau scenario of growth or damping near threshold becomes ques-
tionable as well, at least, as long as tiny seed fluctuations are present to trigger
the hole evolution, rather the characteristics of noise in most plasmas generated
via nonequilibrium processes. This can happen well below linear threshold, and

happen in terms of parameters other than amplitude (which is sole growth pa-
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rameter in linear approximation), as discussed further based on additional cases

in Chapter 6.

5.4.4 Mobile ion regimes: NDR accommodating ion trap-
ping
In our simulations we witness a finite ion mobilization, especially for the perturba-
tions at slow velocities from noise, equally probable in an ideal noise, such that the
ion response is essentially present. In order to accommodate our present simula-
tions that addressed such seed-like perturbation of low velocity with drift, we may
give up the fixed ion approximation and replace it in Eq. (4.4) by the ion density,
which is related to the ion Vlasov equation. (Note that fixed ions are reproduced
in the following equations by the limit © — 0 or T; — oo). We shorten, however,
the incorporation of ions by referring to Sec. IV of [36], which itself rests on [4],
and also in favor of the simulations in this regime discussed in the next Chapter.
When ion trapping is acknowledged, the two important relations, the NDR and

V(®), respectively become,

k= 520~ S = B+ B (518
Kk B. . d
“V(®) = J0(Y - D) + 7<I>2(1 — E) +
% <<I)(3<I> — 5¢) + 24%[1 — (1 — %)5/2]). (5.19)

In these expressions the following abbreviations have been used: ug = (©/6)"uy,

B. is identical with B, defined above, and B; is given by,

B, = gb(a,uo)@?’/?\/i, (5.20)

a being the ion trapping parameter corresponding to the electronic one 5. We
mention here that due to ion mobility a second discrete mode, the ion acoustic
mode, enters in the picture which however may operate in absence of ion trapping.
Such structures, recovered by the additional cases simulated, are presented in the
next chapter along with the associated effects and aspects related to stability of

nonlinear structures.
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5.5 Summary and conclusions

In this chapter, a current driven, 1D, collisionless plasma is considered as a paradigm
of driven intermittent plasma turbulence and anomalous transport with the focus
on additionally excited undamped coherent electrostatic structures excited along-
side the familiar undamped linear plasma modes. The simulation presented have
thus explored the concept of plasma instability in terms of more general fundamen-
tally nonlinear structures, outside the conventional linear regime which is limited
to covering largely the undamped collisional plasma eigenmodes, that are addition-
ally subjected, by means of Vlasov equation, to interaction with resonant parti-
cles. Simulations explore evolution of more relevant forms of perturbations in the
species phase-space and display activity of undamped structures that are small
amplitude trapped particle equilibria existing alongside the conventional collective
linear wave equilibria of the thermalized plasmas recovered in collisional fluid-like
limit. In the analysis of simulation output, a wave description is employed which,
in its fundamental form, accommodates the nonlinear aspects arising from the ki-
netic effects like particle trapping and recovers the linear Vlasov descriptions as

one of its limiting cases.

The simulations, beginning from small amplitude phase-space eddy like initial
perturbations realizable in a nonthermal noise, evolve the distributions to show un-
damped coherent structures, apart from the well known linearly undamped modes
of the thermal plasmas, namely the electron plasma and ion acoustic waves. Nu-
merically, a rapid relaxation within about 100 plasma periods is seen, released
by an eddy-like initial fluctuation, in which both types of structures emerge time
asymptotically. The additional undamped structures traveling at an unusual phase
velocity (about twice ¢s) disagree with linear description and are absent from the
simulations performed using a linear Vlasov simulation procedure.

In our analytic description based on three different levels, we have constructed
stationary electrostatic structures, which constitute a continuous spectrum, de-
termined by electron trapping. Members of this mode continuum are the well
known discrete modes (Langmuir, ion acoustic), which arise in the limit of van-
ishing trapping at high phase velocities (with respect to electron thermal and ion
thermal velocity, respectively), and the cnoidal electron and ion holes, which are

entirely due to trapping and belong to the non-dispersion branches of the non-
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linear dispersion relation. There is no general way to establish a link between
the linear discrete mode spectrum, being masked by singularities in the associated
distributions, and the class of well-behaved nonlinear trapped particle structures
even in the infinitesimal amplitude limit. This has the consequence that in case of
coherency the onset of instability as described by Landau is generally absent when
seen realistically from the standpoint of the complete Vlasov-Poisson system. It
is replaced instead by a more complex, highly unknown destabilization process in
phase space, in which this manifold of trapped particle equilibria with its attract-
ing negative energy property together with the explicit initial perturbation will
play an important role. This renders plasma destabilization multifaceted and as
a rule - no longer one-dimensional in parameter-space, i.e., involving growth not

only in the amplitude that remains sole parameter in all linear theories.

Based on the above simulating results and multilevel analysis this can be con-
cluded that the perturbative linear and nonlinear treatments of plasma instability
can be generalized to include the contribution of nonlinear small amplitude coher-
ent structures. A limited number of existing studies, e.g., Dupree [5] and Tetreault
[117] proposed the coherent modes as possible candidates as growing structural
elements, in addition to linear eigenmodes. In our study, the coherent structures
are characterized in the stationary regime by the existence of a pseudo-potential
V(®). This means that 9,,®(x) = —J3V(P) holds, or the curvature of ® (or charge
separation) can be expressed by ® again through the pseudo-potential V(®). For
a composite superposition of linear eignemodes (e.g., Landau or van-Kampen), on
the other hand, 0,,¢(z) is no longer representable by a 9,V(¢), i.e., the coherent
character of ¢ is lost. An additional singular limit encountered under the linear
theory in the limit of zero damping rate is further discussed in detail in final con-
clusions of the thesis presented in Chapter 7 with reference to relevant work in this
subject by Mouhot and Villani [118, 119], Wesson [120] and Belmont et al. [121].
The non-uniqueness of the linear asymptotic solutions was indicated by Belmont et
al. [121] however by ignoring nonlinear trapped particle effects. This effect is cap-
tured more strongly by general B # 0 solutions of the presented analytic approach
[1]. The relevance of the linear Landau approach thus emerges to be limited to
special parameter and temporal regimes where deviations from the prerequisites
of nonlinear theory can reestablish the standard linear wave concept as discussed

in broader detail in Chapter 7.
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We conclude this chapter by providing examples of observations of subcritical
plasma instabilities associated with structure formation in, simulations of driven
plasmas [22, 54, 85, 122—124], in space or laboratory observations, such as [15, 125]
and also in particle accelerators where its signatures are noted in the form of
coasting and bunched beams in synchrotrons and storage rings, well represented
by Vlasov-Poisson systems. In the Fermi Main Ring, for example, operating near
stability limit [52], sharp gaps or notches have been witnessed in the response
function [62], which correspond to depletion zones in the momentum distribution
function. This is seen at the lowest measurable signal level and sheds light on the
spectrum of small amplitude perturbations, proving the incompleteness of linear
and associated nonlinear wave theories in the kinetic regime [54, 113, 126-128].
A similar phenomenon, namely stable, coherent, longitudinal structures superim-
posed on bunched beams [63], has been observed during “rf activity” in stochastic
cooling studies [64, 65]. A well documented excitation of holes below linear thresh-
old could be seen also in numerical simulations of pair plasmas in [85] as well as
in the laboratory experiments of Moody and Driscoll [61]. And finally, it would
be an intriguing task for future investigations to link the present nonlinear desta-
bilization mechanism with the observed reorganization into coherent structures of

driven collisionless magnetospheric plasmas at increasing turbulence levels [129].
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Electron hole instability of
subcritical plasma phase-space

perturbations

6.1 Introduction

The stability of plasma state is determined by the capacity of a free energy source
to grow small amplitude perturbation into larger amplitude collective structures
that are usually recovered as undamped eigenmodes of linearized plasma equations.
These small amplitude solutions follow the principle of superposition, eliminating
the amplitude as an active parameter of the dynamics such that the instability
thresholds are recoverable purely in terms of the driver strengths. Results in Chap-
ter 5 importantly concluded that the amplitude itself is a threshold parameter since
the modes might couple at a threshold amplitude to produce an alternate set of
undamped solutions of the exact equations having an independent destabilization
mechanism, capable of replacing the mathematical eigenmodes of the linearized
approximate equations that are ideal and hence must follow the superposition
principle when used for analytic convenience. The destabilization mechanism of
the plasmas can therefore fundamentally differ from what prescribed by the lin-
ear stability, with profound implication for the plasma turbulence theory and its
underlying, presently linear, operating mechanism.

A threshold in terms of amplitude is shown in the preceding analysis, strongly

aided by computer simulations, to depends on more complex factors, like rate of en-
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tropy increase, however, for the perfectly collisionless Vlasov plasmas this threshold
must approach the zero amplitude, hence ruling out any equivalent linear regime.
Moreover, even for the cases with finite rate of entropy production, the thresh-
old are no longer tied to discrete eigenmodes of the linearized Vlasov equations
and rather to a continuum of trapped particle equilibria that are exact coherent
undamped eigenmodes of collisionless plasmas. The latter, fundamentally nonlin-
ear modes, are however destabilized by radically nonconventional means, e.g., by
defying the (de)stabilizing strength of velocity derivative 9, f(vo) (i.e., drifts) in
favor of alternate factors like coupling with other unstable modes/nonuniformities
of the plasma, and, more remarkably, displaying destabilization in terms of the
parameter (like phase velocity) other than the structure amplitude, that remained

sole parameter representing destabilization in linear cases.

The results of next set of high phase-space resolution simulations [8-10] eluci-
date these growth mechanisms where the infinitesimal amplitude trapped-particle
equilibria, or phase-space holes, subcritically grow in amplitude, and mode convert.
Quite analogous to the linearly undamped eigenmodes ¢(z) contained in an initial
perturbation that get destabilized by phase-mixing-away the unsupported transient
in the linear Vlasov evolution (shown in Fig. 5.5), the destabilization here is shown
to take place of the undamped mode-coupled nonlinear structures ®(x) contained
in an initial small amplitude phase-space eddy-like perturbation. When the latter
are evolved in a linearly subcritical plasma, we see additionally undamped struc-
tures that obey the existing analytic description of such mode-coupled structures
prescribed to replace discrete eigenmodes of the linearized approximate Vlasov
equation in a nonperturbative exact plasma stability analysis. The coherent ®(x)
generated at a slower phase velocity is further seen to be destabilized by defy-
ing the sign of d,f(v) and grow, rather in their phase-velocity dimension than
amplitude, to effectively mode convert into a more stable, ion acoustic electron
hole. The linearly undamped modes, namely, the EPW and IAW modes excited
by the initial perturbation are duly recovered stable because of the evolution done
in a subcritical drift regime, unlike the strong drift cases where ion acoustic mode
displayed stronger growth while no phase-space eddy perturbation were seeded

preventing independent electron hole structures to grow.

Among most successful analytic models of small amplitude trapped particle

undamped equilibria are Schamel structures [1, 36] which are solitary in nature
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because they incorporate and combine the essential dispersive and nonlinear at-
tributes. Although purely ideal in their treatment (obeying zero amplitude thresh-
old) of the phase-space separatrix, they are employed here as basis for generating
and interpreting the simulation results, allowing to explain the tolerable deviation
of simulations from the ideal electron-hole model they represent, to the order of

the complex (irreversible) physics which the latter excludes at the separatrix.

In the present chapter, we present in Sec. 6.2, the analytic expressions for non-
conventional phase-space perturbations for exciting a combination of linear plasma
modes and the mode-coupled undamped structures at two distinct spatial scales.
The evolution of both kinds of undamped structures as simulated by these ini-
tial perturbations are presented in Sec. 6.3. Two distinct regimes of instability of
small amplitude undamped nonlinear plasma equilibria are identified qualitatively
in Sec. 6.4, while their operating mechanism is discussed more quantitatively in
Sec. 6.5 based on flux and electrostatic energy conservation in the simulations.
The analytic basis of the observed growth mechanism is described by employing
the general nonlinear dispersion relation involving both electrons and ion response
which is discussed in Sec. 6.5.2 and summary and main conclusions from the chap-

ter are presented in Sec. 6.6.

6.2 Perturbations for mode-coupled undamped

structures

The study in this chapter is based on results of two cases of high-resolution Vlasov
simulations with two small phase-space perturbations, developing into stable and
unstable hole structures depending on the initial set of parameters. The instability
recovered in the latter case is combination of (i) an intrinsic hole instability arising
from the initially developed hole being a less negative energy structure and (ii)
a parametric instability arising from coupling of the electron hole to a plasma
nonuniformity created by the initial perturbation. The evolution shows that the
electron holes can be destabilized by coupling to conventional collective modes of
collisionless plasmas.

For the present simulations we have once again used a well localized initial

phase-space perturbation in the electron distribution function of the following an-
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alytic form,

v — U

fi(z,v) = —¢; sech { ] sech®[k(z — z,)] (6.1)

1
where €, is the amplitude of the perturbation, L, is the width of the perturbation in
the velocity dimension and k~! is its spatial width. The background equilibrium
velocity distribution of the electrons and ions are thermalized Maxwellian with

finite temperatures T, and Tj;, respectively,

2
foj(z,v) = Fyjexp [—%] (6.2)
where subscripts 7 = e, 7 correspond to electron and ion species, respectively, and
appropriate Fp; ensures net charge neutrality in the simulation box.

In this study we include evolution of total electron distribution f. = fo. + f1
in two cases with different values of the parameter set (v.,v;) given below. It is
expected in each case that out of the continuum of solutions, the initial perturba-
tions must excite the closest undamped trapped electron equilibrium. We use the
Debye length Ap, electron plasma frequency wy. and electron thermal velocity v,
as normalizations for length, time and velocities, respectively. In a plasma with
T;/T. = 10 and m;/m, = 1836, considering the linear instability threshold drift
velocity, vZ = 0.053, we have selected two subcritical combinations of electron drift
and perturbation velocity, (ve,v1) = (0.052,0.05)vs, and (0.01,0.01)vee. In both
these cases the perturbation is chosen to be located at the center, x = 15\p, of the
simulation box having dimension . = 30Ap. The phase-space widths of the per-
turbation is chosen as L; = 0.01vy,e along the velocity dimension and £~ = 10\p

along the spatial dimension z in the expression (6.1).

6.3 Evolution of undamped potential structures

The corresponding outputs of above two cases in terms of time evolution of f,
in the phase-space and associated density profiles are presented in Fig.6.1 and
Fig.6.2, respectively. Unlike their evolution in the linearized Vlasov regime where
the electron holes get treated as transient and immediately buried, the two identical

initial perturbations, differing merely in the initial velocity of their launch, show
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a remarkably distinct evolution in which the latter case undergoes a set of strong

nonlinear hole instabilities.

6.3.1 Stable evolution of faster perturbation

For the first perturbation case at v; = 0.05v,, the time evolution of the contours of
electron distribution function f(x,v) in phase-space is presented in left column of
Fig. 6.1, showing that the core of the initial phase-space cavity like perturbation is
largely intact and after a marginal readjustment of its phase-space widths continues
its propagation with nearly the original velocity, 0.05v,. of the perturbation. For
the second slower perturbation case at v; = 0.01vy,., however, the phase-space
structure presented in left column of Fig. 6.2 is seen accelerating to a higher velocity
after a noticeable change in its topology in the phase-space. While we expect the
initial positive potential structure setup by the electron deficient perturbation to
decay gradually by expelling ions over ion response time ~ wp_il = \/Wwp‘el we
see a distinct response of plasma in each of these two cases. In a simpler looking
first case, we witness a much faster saturation of this ion expulsion (potential
decay) and an immediate set up of a coherent propagation of the structure via the
following mechanism.

The local scarcity of electrons from the phase-space (f1 < fo) in a small veloc-
ity interval translates in an electron density dip (potential hump) at z;, instantly
introducing a phase-space separatrix about (zq,v1). A slowly varying separatrix
corresponds to an adiabatic invariant, with a response time (time for the separatrix
to modify) longer than that of untrapped ions (Tagiabatic => wi;yl). In order to restore
the quasineutrality on a faster time scale, therefore, the initial non-equilibrium
perturbation structure begins to expel ions. An inward flux of ions is expected,
on the other hand, driven by deficiency in thermal (streaming/untrapped) elec-
tron population at the hole location that causes lower streaming electron pressure
[(nsTs)in < (nsTs)out] and motivates the surrounding ions to bunch at the hole lo-
cation [130]. Clearly, in a stably propagating solitary electron-hole structure, these
two fluxes must balance and a comoving ion density hump must exist, as seen in
Fig. 6.1(j). More noticeably, supplementing the response of ions that bunch cre-
ating a central positive charge, the cold trapped electron population dispels itself
away from the center, strengthening this net central charge density, as again seen

in Fig. 6.1(j). This imparts the structure an electron acoustic element. Moreover,
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the faster structures are increasingly electron acoustic in nature as ions get smaller

time to bunch strongly enough.

6.3.2 Unstable evolution of slow perturbation

The evolution of initially slower perturbation of the second case with (v, v) =
(0.01,0.01)vpe, presented in Fig. 6.2, clearly shows a rather distinct two-phase evo-
lution. The initial perturbation in this case remains unshielded for a considerably
longer time and thus manages to expel a large ion density out of the slowly moving
perturbation cavity before forming a slow electron hole structure. The passage of
this saturated slow electron hole through the initially created ion nonuniformity
further generates a strong acceleration of this and slowly converting it into an
supersonic ion acoustic electron hole where ions can effectively participate in its

dynamic shielding process.

6.4 The electron hole instabilities

The above two evolutions allow us to identify, qualitatively, two unstable SEH
growth regimes where a perfect shielding of propagating electron hole structures
can not be achieved and the structures contained in the initial perturbation must
make an approach to their corresponding stable states, including an electron hole
and the conventional linear plasma modes. In the secondary stage of evolution the
structures interact with each other and further destabilize each other, parametri-
cally. These two unstable phases are described as two distinct instabilities of the

electron hole contained in the perturbation, as below.

6.4.1 Electron hole instability: hole formation

The initial phase where the perturbation develops into an undamped stable hole
by the action of both streaming and trapped electrons. sees ions to be expelled
from the initial electron cavity while the streaming electrons to bunch at the cav-
ity location. The process leads to creation of the electron hole and achieves its
shielded form without significant modification of the separatrix. This phase is
therefore identified as an electron hole instability, because, although it uses the

initial field energy contained in the perturbation to create an electron hole, the
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final state is a lower free energy state resulting into a stably propagating electron
hole equilibrium structure, besides, of course, the conventional ion acoustic and
electron plasma wave equilibria. We note that this unstable phase for the first case
of faster initial perturbation lasts for shorter period. However, in the second case
of slower perturbation it lasts for a considerably long duration, involving greater

ion expulsion.

6.4.2 Parametric electron hole instability: hole mode con-

version

This phase corresponds to the second phase of electron hole evolution after its
formation by electron hole instability. For the present slow perturbation case, this
phase sees an increase in the strength of electron acoustic characteristics of the de-
veloped electron hole while decrease in the strength of its ion acoustic character. In
this unstable phase, the electron hole is destabilized, parametrically, by interaction
with the plasma uniformity present, e.g., in the form of the ion acoustic wave such
that the electron hole accelerates and gains higher phase velocity, characteristics
of the electron acoustic hole regime examined in Chapter 3, rather than the slow
ion acoustic regime examined in Chapter 2. This parametric instability phase can
be seen in second case to last over a considerably longer period as compared to the

first, electron hole instability phase.

6.5 The instability mechanism

Both these unstable phases of evolution are absent from the first case (Fig. 6.1), but
visible in the second case presented in Fig. 6.2, where a slow perturbation, unshield-
able for a longer period (see below) is able to create a wider plasma nonuniformity
before a charge flux balance is achieved, forming an initially weak SEH (phase-1:
Figs. 6.2(a) to (d)) via a hole instability. The SEH then traverses the originally
created plasma nonuniformity to grow in its strength, and thereby in velocity

(phase-2: Figs. 6.2(e) to (j)), via the parametric version of the hole instability.
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6.5.1 Flux and energy balance in simulation data

The growth in the net electrostatic energy in non-oscillatory modes for two cases
can be identified from that plotted in two cases in Figs. 6.3(b) and (d). A clear
partition of initial total energy of the perturbation between that of the coherent
modes (bottom level) and the oscillatory modes (high frequency oscillating top)
is identifiable by the plots of the total electrostatic energy in both figures. While
in case-I (Fig. 6.3(b)) the energy in coherent (non-oscillatory) mode is nearly con-
stant, in case-II (Fig. 6.3(d)) the initially weak coherent mode formed in phase-1
(t < 8wp_el) gains the energy, parametrically, by an unstable evolution triggered by
a pressure imbalance of streaming electrons (50 < ¢t < 120w,.'). To substantiate
presence of this mechanism we have presented, in Figs 6.3(a) and (c), the profiles
of net electron density (dashed gray line) and streaming electron density (blue
line). While the net density shows a dip, the streaming density is recovered to
still have a peak in accordance with conventional variation, n. = exp (¢), (dashed
dotted red line) for an acoustic mode [28|. This means that the streaming elec-
tron pressure in the unstable phase of SEH is highly imbalanced across the SEH
(Fig 6.3(c)) leading to a net growth in the hole amplitude until this imbalance is
removed and the growth saturates. During the saturated stable phase, however,
the electron pressure profile shows a state of equilibrium (Fig 6.3(a)) and hence a
stably propagating SEH.

We now show that via (i) the non availability of SEH solutions at smaller
velocities and (ii) a SEH amplitude-velocity relationship, both well accommodated
in Schamel’s nonperturbative SEH approach [1], the unstable phase-1 and phase-2
of case-II, are categorically explained. They, respectively, correspond to the (i)
initial failure of plasma in shielding the slow SEH-like perturbation and (ii) a
subsequent growth and acceleration of the small amplitude SEH structure with

changing ambient density.

6.5.2 Unstable regions of EH parameter space

The growth of the electron hole structures can be predicted by a nonlinear analytic

model based on formal solutions of Vlasov equation, given by H. Schamel [1]. The
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unstable growing hole. (b) Total electrostatic energy of the system for the case
v1 = 0.05vgpe and (d) for vy = 0.01vpe.

expression for distribution functions for electrons and ions are [1]:
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In these equations K and A, are the normalized constant for electron and ion

distribution function respectively. o, = sg(v) is the sign of electron velocity,
o; = sg(u) is the sign of ion velocity, ¢, := %2 — ¢(x) is the single particle energy
for electron, ¢; := “72 + O(p(x) — 9) is the single particle energy for ion and

Vof = Up — Vg, where vp describes a given constant drift between electron and ion
existing already in unperturbed state. The unperturbed distributions, (6.3)-(6.4),
are assumed to be shifted Maxwellian formulated in a frame moving with vy in
the electron phase space and with ug in the ion phase space. ug = pvy, where
p = (m;T./m.T)"? = (©/8)"/2, T, and T; are the electron and ion temperatures,
respectively, © and 0 are the temperature and mass ratios, respectively. Using these
two distribution functions in the Poisson equation one can derive the nonlinear
dispersion relation (NDR) [1],

]. ! !
i = 12 (na3) - 22 )
16 |3 3/2 1/2
= E 5()(0[, UO)@ + b(,@, 'Ueﬂ‘) T,ZJ = B, (65)
where, Z,(x) is the real part of the plasma dispersion function. The quantities
b(a, up) and b(3, veg) are given by,

b(ar, ug) = (1 —a— ug) exp(—u%/Z)

“5i-

b(B, verr) = 7 (1= 3 = up) exp(—viy/2)

where 8 and « are the trapping parameters for electrons and ions, respectively,
a = 1, corresponding to no trapping of ions. The NDR (6.5) determines the phase
velocity of structures (vo and ug) in terms of vp, k2, ©, ¢, a and 3. Depending
upon the values of k2 and B, four type of solutions are possible: solitary electron
hole (SEH) (k3 = 0), harmonic wave (B = 0, k% > 0), solitary potential dip (SPD)
(B < 0 and k2 > 0) and cnoidal electron holes (CEH) (B > 0 and k2 > 0). In
present simulation o = 1, since ions are not trapped in the coherent structures
) ~ 1071 vp = 0.05 and © = 10. Using these values in NDR, v, can be obtained
as a function of ¢ for fixed values of k3 and 3. Solid lines in Fig. 6.4 present this
relationship using k2 = 0 (required for SEH solutions) and 3 = —60, —80, —100,
—120 and —140, respectively.

136



Chapter 6. Electron hole instability of subcritical ...

%10

31 8 =—-300,k =0
= —2030, k3 =

B8 = -2500, k3 = 618
68— —350,k} — 0

—400,k¢ =0

8= —2030,k3 =0

0 I
0.01 0.03 0.05 0.07 0.09 0.11
V[Vthe]

Figure 6.4: Plot of maximum potential v of electron hole vs. velocity v for vp =
0.05v4e and © = T, /T; = 10. Contours of k3 = 0 (SEH) are plotted for different
value of /3 value.

Two additional curves in Fig. 6.4 present this relationship for CEH-like solu-
tions with k2\3 = 6.18 (dashed line) and k2\% = 5.18 (dotted line). Each curve
corresponding to k = 0 starts with a minimum velocity 0.03v;,. showing that no
SEH (k2 = 0) solutions are possible bellow this velocity at this temperature. The
region below the solid curves presents the solution for k3 > 0 (providing harmonic
waves and CEHs solutions) while the region above them is unstable with k3 < 0, or
imaginary values of k¢ (providing only monotonic or shock-like solutions) meaning
unstable evolution of SEH-like initial conditions, as in phase-1 of case-II. Note that
for each curve the velocity of the structure (with fixed 3 and k2) increases with in-
creasing 1), also explaining the phase-2 of parametrically unstable evolution where
a net pressure imbalance results in higher v, thereby accelerating the structures
to higher velocities.

We note that the coherent structures in our simulation have 5= -2030 and -2500
for v; = 0.01vge and 0.05v4,, respectively, but they correspond to kA3 = 5.18
and 6.18, respectively, rather than k3 = 0 expected of ideal SEH solutions. The
two simulated cases are marked by square boxes at their respective velocities and

amplitudes. Considering that the parameters from the center of the simulated
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Figure 6.5: Schematic of structure in simulation and model

structure are substituted, this discrepancy can be traced in the ideal nature of
the separatrix in the used SEH model. We find that despite the visible solitary
nature of the simulated structures, they are associated with finite &2 class of ideal
solutions. Due to presence of a nonideal separatrix, these ideal high |3], finite
k3 solutions misread the background plasma potential as rather deeper than 1 in
simulation. In simulations, 1 is smaller when measured with respect to the value
¢ = 0 of the plasma background. An ideal background plasma, as perceived by
the model for the ideal finite k2 solutions is shown schematically by dotted line
in Fig. 6.5. The ideal SEH model nevertheless analytically describes the unstable
evolution of the SEH in the simulations, and perhaps in nature, with sufficient

clarity, identifying their growth as driving turbulence in the collisionless plasmas.

6.6 Summary and conclusion

The results and analysis in this chapter numerically verified key predictions of
Chapter 5 based, themselves, on results of Chapter 3 and 4 where the trapped
particle equilibria in ion acoustic and electron acoustic regimes were examined,
respectively. The simulations using two cases of initial conditions are used to
verify the conclusions from Chapter 5, that the plasma stability is rather defined
by nonlinear structures that might destabilize by non-conventional means. The

growth could appear, for example, in terms of parameters other than amplitude of
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the eigenmodes of linearized Vlasov equation or by an effective mode conversion

from ion dynamics dominated regime to electron dynamics dominated regime.

Analogous to the linearly undamped eigenmodes ¢(z) contained in an initial
perturbation that get destabilized by phase-mixing-away the unsupported transient
in the linear Vlasov evolution, the destabilization here is shown to take place of the
undamped mode-coupled nonlinear structures ®(z) contained in an initial small
amplitude phase-space eddy-like perturbation. When the latter is evolved in a
linearly subcritical plasma, we see additionally undamped structures that obey
the existing analytic description of such mode-coupled structures prescribed to
replace discrete eigenmodes of the linearized approximate Vlasov equation in a
nonperturbative exact plasma stability analysis. The coherent ®(x) generated
at a slower phase velocity is further seen to be destabilized by defying the sign of
Oy f(vg) and grow, rather in their phase-velocity dimension than in their amplitude,
to effectively mode convert into a more stable, ion acoustic electron hole. The
linearly undamped modes, namely, the EPW and IAW modes excited by the initial
perturbation are duly recovered to be stable because of the evolution done in a
subcritical drift regime, unlike the strong drift cases where ion acoustic mode
displayed stronger growth while no phase-space eddy perturbation were seeded

preventing independent electron hole structures to grow.

Unlike their evolution in the linearized Vlasov regime where the electron holes
get treated as transient and immediately buried (or damped), the two identical
initial perturbations, differing merely in the initial velocity of their launch, show
a remarkably distinct evolution in which both the cases evolve not only to show
electron holes as undamped structures alongside the undamped linear eigenmodes,
the latter, slow initial perturbation cases undergoes a set of strong nonlinear hole

instabilities as well.

Among two kinds of unstable evolution identified in the simulation at a faster
and slower rate, respectively, in the first unstable phase the perturbation makes
and approach to a set of undamped modes including an electron hole and the con-
ventional linear plasma modes, namely the EPW and IAW. In the secondary stage
of evolution these undamped structures interact with each other and further desta-
bilize each other, parametrically. These two unstable phases of nonlinear structure
growth /mode-conversion are described as two distinct instabilities, namely, the

electron hole instability and a parametric instability arising from mutual coupling
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between the undamped linear and nonlinear structures.

In analytic description of the observed growth of undamped structure is pro-
vided where the basis of the mechanism is analyzed by employing the general
nonlinear dispersion relation involving both electrons and ion response. It is quan-
titatively displayed that in a graphical characterization of the NDR, each curve
corresponding to k3 = 0 starts with a minimum velocity 0.03v,. showing that no
SEH (k2 = 0) solutions are possible bellow this velocity at corresponding tem-
perature. The region below the curves representing solitary solutions of the for-
mulations presents the solution for k2 > 0 (providing harmonic waves and CEHs
solutions) while the region above them is unstable with k3 < 0, or imaginary values
of ko (providing only monotonic or shock-like solutions) meaning unstable evolu-
tion of SEH-like undamped structures, as recovered in the later phase of slowly
propagating initial perturbations.

The discrepancy of evolution in simulation visible with respect to the analytic
characterization is traced in the ideal nature of the separatrix in the used SEH
model. We find that despite the visible solitary nature of the simulated structures,
they are associated with finite k3 class of ideal general solutions. Due to pres-
ence of a nonideal separatrix, these ideal high |3], finite k2 solutions misread the
background plasma potential as rather deeper than % in simulation. In simula-
tions, 1 is smaller when measured with respect to the value ¢ = 0 of the plasma
background. The ideal SEH model nevertheless analytically describes the unstable
evolution of the SEH in the simulations, and perhaps in nature, with sufficient clar-
ity, identifying their growth as driving major part of turbulence in the collisionless

plasmas.
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The collective excitations and structures are at the heart of the physics of the
plasma state of matter. They fundamentally characterize any quasineutral collec-
tion of charge particles as plasma [28, 131-135]. The character of collective activity
in plasmas as well as complexity and rigor of the formulations that describe these
collective plasma excitations assume quite different dimensions depending upon
the parameter regime of the plasma, especially the parameters that determine its
collisionality. In collision-less regime the long range coulomb force is much more
important than the interaction with near neighbours or collisions. This is mostly
in terms that hot collisionless plasmas do not admit many routine assumptions
that can generate extensive simplification to produce a certain standard order in
the nature of collective structures in collisional plasmas where species distribution
functions are highly thermalized and have a common equilibrium form [28].

The strong collisionality allows use of fluid theory and the features like nonlin-
earity appear only at large amplitudes that are sufficient to affect full thermalized
distribution function, or entire population of species at any given spatial location
of interest. As opposed to this, nonthermal distributions allow resonant effects
where only a resonant part of population of species, within certain small velocity
interval, can cause spatial nonuniformities that persist and evolve deterministically
over longer times due to adiabaticity of the species distributions. While formula-
tions based on thermalized or equilibrium distributions remain applicable to the
majority of collision-dominated plasmas, more general notions and formulations
based on kinetic or nonthermal distributions apply to physics of collective struc-

tures in hot collisionless plasmas, as addressed in the studies presented in this
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thesis. Apart from dynamical properties of collective structures, these generaliza-
tions have implications for many conventional aspects of basic plasma theory of
collective structures and plasma stability. Below we present a brief specific discus-

sion on them, followed by more general conclusions from individual chapters.

The central conclusions from this work relate to the advanced structure of the-
ory of plasma collective structures and stability. The simulation results and their
analysis done here highlighted that although the linear kinetic approaches adopted
by Landau [11] and van-Kampen [47] presented an apparent contrast in their con-
clusions, they addressed two fundamental aspects of equal importance. While the
linear approach proposed by L. D. Landau usefully provided a prescription, and
an essential set of elements, for development of a stability theory for the plasmas,
the van-Kampen’s conclusions hinted about the prescription for the generalization

of the same plasma stability theory.

As it is clear from the aspects related to entropy in collisionless system briefly
discussed in Sec. 1.4.1 and 1.4.5, the Landau theory admitted thermalization, via
entropy maximization, of the entire equilibrium distribution fo by considering lim-
ited number of poles corresponding to the discrete normal modes of this ther-
malized distribution. The Landau theory approximated further evolution via an
entropy conserving process, and by considering finite number of modes (poles) of a
thermalized distribution at fixed phase velocities, limited the possibility of modifi-
cation of the collective structures by kinetic nonlinear effects that would essentially
modify the poles by modifying the phase velocities. The attempt, by H. Schamel,
to develop a more advanced theory of plasma collective structures, and therefore
of the plasma stability, extended the realistic idea of thermalized distributions, by
entropy maximization, to the next higher level of the particles trapped in the collec-
tive structures. Admission, by Schamel, of an explicit and parametrized trapped
particle distribution, achieved once again by entropy maximization at trapped
particle level, effectively fixed the shortcomings of two most important alternate
futuristic models of plasma collective structures, namely, the linear van-Kampen
model and the fully nonlinear BGK model. The Schamel structures are rather
closer to small amplitude constituents of the noise required by the turbulence to
operate. It is hence expected that their destabilization mechanism must also be
closer to fundamental operating mechanism of the turbulence and would generalize

the linear Landau theory based threshold nature of the plasma stability paradigm.
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These general destabilization mechanisms predicted by Schamel [25] however re-
main largely unfamiliar at the present stage of the plasma stability theory. In this
respect, the simulations in the present thesis have attempted to illustrate their
limited examples (e.g., in Chapter 6), once again by making only little excursion
out of the boundaries of strongly thermal equilibria considered for both streaming
and trapped particle distributions, and in a limited range of plasma parameters.
Coincidentally, the same limitations apply to more generalized approaches, e.g.,
Schamel, which therefore find excellent agreement with both simulations and ac-

cessible classes of laboratory and natural plasmas.

In the following text we present a chapter wise description of conclusions from

the individual chapters of the thesis.

The Introduction of the thesis, or the first chapter, reviewed important as-
pects of the plasma physics in the light of existing formulations of plasma collective
structures and theories of plasma stability in collisionless plasmas. The content of
Introduction mainly highlight the physics that, the fast electron response to electro-
static perturbations is inhibited, for example, by the kinetic effects where resonant
electrons are either reflected or get trapped by even small potential nonuniformi-
ties. The oscillations of trapped particles add to the degrees of freedom [32] and
result into phase-space vortices [24] that can modify the spatial nonuniformities
associated with the vortex depending up on the trapped particle density as well as
the amplitude of nonuniformity. The analytic structure of trapped particle equi-
libria is extensively analyzed in various limits, e.g., where trapped particles can
be maintained in isolated non-thermal states and the exact nonlinear solutions are
obtained as Bernstein-Greene-Kruskal (BGK) modes [3], and for the cases where
the trapped particles are well approximated as having an equilibrium distribution
with finite temperature |1, 25, 46]. In the later limit, considered analytically in
great detail by H. Schamel, it was shown [1] that the nonlinearity introduced by
the amplitude dependent density of trapped particles influencing the local poten-
tial, can substitute the more conventional sources of nonlinearities in plasmas to
produce an alternate range of interesting nonlinear solutions. Their mathematical
forms include a potential hump or solitary electron hole (SEH), a cnoidal electron
hole wavelet (CEHWL), and a solitary potential dip (SPD) [1]. A large class of
structures in laboratory and natural plasmas perhaps follow this description which

admits a far restricted entropy production rate and hence displays a wider agree-
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ment with a range of structures recovered both in experiments and in computer

simulations.

The phase-fluid continuity of the collisionless Vlasov-Poisson system,
forming the basis of the numerical model developed and implemented to carry out
present studies, is described in Chapter 2. Standard electrostatic plasma modes
and their dispersion properties are shown to be successfully recovered by perform-
ing test runs of the simulation with typical plasma parameters and system size.
The adopted numerical procedures is additionally shown to have high potential for
an efficient parallelization and the detailed scheme for the parallelization based on
the MPI and Open-MP standards is described with the achieved effective speed

up as a function of increasing number of computing nodes.

The numerical characterization and physical validation of the procedure using
electrostatic plasma mode simulations are resulted in the following conclusions. For
the cases where the electrostatic energy corresponding to the electron plasma waves
damps with a faster Landau damping rate, the residual oscillations in the conserved
quantities correspond to the periodic displacement of the distribution function
in the phase-space, arising from the periodic interaction of counter-propagating
collective ion acoustic wave structures. The displaced distribution function yield
displacement dependent values of velocity integral performed with limited velocity
space boundaries as opposed to those ideally located at infinity. For physically
acceptable numerical solutions, the oscillations in the conserved quantities and
norms are suitably ensured within a tolerable limit by choice of the velocity space

boundaries for the individual species.

The agreement of simulation results with standard analytic physical results
is successfully recovered for typical plasmas for which standard sinusoidal per-
turbation was used to excite 1D electrostatic modes in a finite electron and ion
temperature Maxwellian distribution of both the species. Apart from recovering
the real frequencies of the electrostatic electron plasma and ion acoustic modes
to a sufficient accuracy, the implemented simulation procedure also recovered the
fundamental kinetic characteristics like collisionless Landau damping of these elec-
trostatic modes. In the low k regime of weak Landau damping, the examination
of regions of ions and electron phase-space close to the phase velocity of the re-
spective modes reveals the existence of highly stable trapped particle equilibrium

structures arising from trapping of charged species resonant with the phase veloc-
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ities of the recovered electrostatic modes. These trapped particle equilibria and
the nonlinearity associated with them are further analyzed in sufficient detail by

means of the developed simulation procedure in rest of this thesis.

The adiabatic electron response and process of solitary wave gen-
eration by trapped particle nonlinearity are presented in Chapter 3. The
coherent structures provide very effective first signatures of the nonlinearity in col-
lective modes as discussed in Chapter 1. Among the electrostatic plasma modes
the ion acoustic response shows most visible signature of nonlinearity by readily
producing ion acoustic solitons and solitary waves for finite amplitudes. The ion
acoustic structures therefore serve as an ideal paradigm for nonlinlinearity pro-

duced coherence in the plasma theory and their growing phase is investigated.

We have presented results of a two species Vlasov simulation featuring self-
consistent generation of solitons produced from a stronger nonlinearity originating
from the kinetic effects of trapped electron population in a finite amplitude ion
acoustic acoustic wave driven unstable by a current driven microinstability. The
numerical simulations presents a general time dependent evolution of the particle
distribution functions that obey the collisionless Vlasov equation. The simulations
are motivated by solitary structures predicted by nonlinear nonperturbative formu-
lation based on the Vlasov-Poisson system that reduces into a m-KdV equation. In
order to effectively compare the evolution usually recovered by conventional linear
procedure using harmonic (cosine) density perturbations, the investigation is done
by selecting this class of perturbations as initial conditions.

In the initial phase of evolution, a remarkable modification in the distribution
function is visible at the ion acoustic velocity. Since generation of vortex like
structures in electron phase space distribution results in the diminishing gradient
of the electron distribution function df,/0v. at the resonant velocity which must
be nonzero for the linear growth in the ion acoustic wave, the evolution the ob-
served saturation in wave growth indicates a nonlinear saturation of the growth
where the resonant particles act to flatten the zero order electron distribution, al-
lowing df./0v. — 0 at the phase velocity of the wave. We have noted that at an
amplitude quite comparable to its initial sinusoidal stage at ¢t = 10w1;1,
nonlinear effects begin to appear in the IAW at ¢ = 31%;1 and beyond. In the

the strong

secondary phase the growing nonlinear wave, depending on the allowable &k values

in the simulation, either develops into a train of solitons of various heights and
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speeds, or produces a single soliton structure. The amplitude evolution at longer
times shows that the growth of this nonlinear wave or structures is arrested as the
structures begin to trap the resonant electrons and, in turn, their amplitudes begin
to approach corresponding saturation values. In this saturated phase a trapped
particles (electrons) instability [37] is the mechanism responsible for the observable
residual growth in the nearly saturated soliton amplitude that shows a modulation

with the frequency equivalent to the electron bounce frequency wy,.

The nonlinear coherent soliton structures have developed in the simulation
are shown to follow the analytical solutions of mKdV equation that accounts for
the stronger nonlinearity produced by the electron trapping in the structure. In
the low k regime where the structures coexist and interact with the undamped
high frequency electron plasma waves, the nonlinear soliton structures retain their
modified nonlinear analytic structure as long as the trapped electron distribution
is allowed to be in a thermodynamical equilibrium. For the structures where asso-
ciated trapped electron equilibrium is perturbed by a time dependent variation of
the trapping potential, it is difficult to characterize the trapped electron distribu-
tion using the equilibrium parameters. In the conditions where the developing ion
acoustic structures are free from time dependent perturbations, the numerically
simulated coherent structure could be characterized analytically, by finding from
them the necessary parameter to construct the corresponding analytical solutions
and carry out the comparison of the simulation results with the theoretical formu-
lation that leads to a modified KdV equation with a stronger nonlinearity. The
modified Sagdeev potential, V(¢), corresponding to the numerically simulated so-
lutions is also constructed and verified to confine the electrostatic potential ¢(x)

in the limits of the observed soliton structures.

Relatively small amplitude coherent structures coexisting with a periodic self-
consistent potential perturbation are found to be most affected by the adiabatic
response of the electrons. Presence of a self-consistent time dependent perturb-
ing potential, present in the form of an EPW in the simulations, prevents the
trapped electrons from reaching an equilibrium and forming stable BGK modes
that are time independent stable solutions of the Vlasov equation. Although the
coherent ion acoustic solitary structures with such a transient trapped particle
population are observed and found to be reasonably stable. In the cases where

EPW is undamped, it is well resolved in our simulations and visible as a well de-
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veloped undamped BGK-like structure at the electron phase velocity vphase in the
electron distribution function. This indicates that for the cases where the electron
bounce frequency exceeds the Landau damping rate of the EPW, w;,. > 71, a stable
BGK mode develops and arrests the linear Landau damping of the EPW, unlike
the cases where wp, < 71, and a linear landau damping of EPW must result. We
also compared the relative strengths of the kinetic nonlinearity generated by the
trapped particles with the conventional fluid nonlinearity by means of the solu-
tions of m-KdV equation 3.1 for the recovered solitary electron hole parameters.
It is seen that with increase in the value of the coefficient (1 — ) of the trapping
nonlinerity, the solution modifies from soliton having only fluid nonlinearity to the
soliton having only the trapped particle nonlinearity. In the present simulation
of generation of IA-solitary waves in presence of current, we have recovered the
solitary soluitons of sufficiently small amplitudes within the regime of trapped par-
ticle nonlinearity. Therefore, it can be suitably concluded that at small amplitude

regime the trapped particle nonlinearity dominates over the fluid nonlinearity.

The physics of nonlinearly interacting trapped particle solitons in col-
lisonless plasmas is presented in Chapter 4. The phase-space vortex structures,
or SEH, seen in chapter 3 to be generated from unstable plasma modes that grow
in amplitude, trap particles, and subsequently enter a trapped particle governed
nonlinear limit, motivated studies in Chapter 4. The theoretical results of Schamel
[1], neglecting ion mobility, are treated as initial conditions for the simulations that
fully account for evolution of both electron and ion kinetic distributions. It is un-
derstood that in the absence of external driving, the structures tend to develop
isolated, near equilibrium, trapped particle distributions and therefore are well de-
scribed by the SEH formulations based on this approach. The present simulations
suggest that such model for the trapped particle distributions remains largely valid
for the laboratory and natural plasmas, including those in magnetospheric plasmas

that could be well described by the present simulations.

The motivation that the stable analytic SEH solutions must propagate as natu-
ral nonlinear excitations of the collisionless plasma is validated based on the under-
standing that the numerical simulation indeed evolve a near thermodynamically
equilibrated population of the particles trapped in the coherent structures. This
population produces a strong trapped particle nonlinearity arising from its sensi-

tivity to wave/structure amplitude, bringing, in turn, an amplitude dependence in
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its dispersion, characteristic of nonlinear waves and coherent structures.

The analytic form of electron distribution implemented as initial conditions
for the SEH simulations shows propagation without much distortion or radiation
unless perturbed by other structures, validating the a-priori adoption of them as
most suitable initial conditions. Although the evolved stable SEH in the simu-
lations have additional attributes when compared to rather approximate analytic
solutions given by (4.6), they show only reasonable deviations from the analytic
structure (largely related to numerical aspects), not detrimental to their stability

predicted under the adopted analytic SEH formulation [36].

The present simulations show that the structures well separated by a relative
velocity along the velocity dimension (Av3 > 1) have only an adiabatic mod-
ification in the trapped particle distribution, not resulting in fine structures in
the phase space. The cases of structures separated by smaller relative velocity
(Av? < 1)), on the other hand, show generation of substructures in the trapped
particle populations because of longer time of the interaction. Sharper phase-space
gradients existing over longer duration results in larger diffusion in the phase-space,

indicating a larger rate of entropy production.

A successful elimination, using the Fourier reconstruction, of the high frequency
linear modes from the solitary wave data, indicates that the superposed fast mod-
ulations are indeed well modeled by the systematic mutually noninteracting linear
plasma oscillations which also do not interact strongly enough with the solitons
of nearly same amplitude. Since the equally small amplitude solitons propagate
coherently without oscillations at velocity much smaller than the phase velocity
of the electron plasma wave, their constituent modes are clearly coupled via the
alternate means provided by the strong trapping of a large density of resonant
particles within these localized structures.

The reasonable agreement of electron hole observations in nature and labora-
tory experiments with both kinds of interactions, where the structures interaction
produces minimum modification to individual solitons and where the solitons are
fast modified and merge, is noted in respective regimes. These comparisons must
allow quantitative determination of thermodynamic regimes of the finite amplitude
plasma structures, or the plasma turbulence at large, in specific cases of interest in
advanced studies of plasma waves, instabilities and turbulence. In two sets of the

relevant comparisons we have shown in the first set: that in the cases of the first
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kind of interaction (identity preserving), the electric field profiles from selected
stages of evolution show the non-interacting solitons correspond to a bipolar elec-
tric field, while the pairs of dissimilar solitary electron holes produce, during the
initial phase of their passage through each other, a tripolar (two smaller positive
pulses separated by a large negative pulse) electric field pulse. In the second set
of comparison with various existing observations in laboratory plasmas it is high-
lighted that, as seen in second kind of interaction (non-identity preserving) at small
relative velocity between two coherent structures two holes attract each other like
particles of negative mass and coalesce, for example, in () machine experiment by
Saeki et al. [13]. In another example, the stable proton cluster developed from
the negative mass instability, experimentally observed in Oak Ridge DCX-1 mirror
machine, were compared to two-stream instability simulated by Berk et al. |39, 81|

showing the similar merger using a simplistic water bag model.

The physics of evolving trapped particle structures and its impli-
cations on plasma stability are discussed in Chapter 5. In this chapter, a
current-driven, 1D, collisionless plasma is considered as a paradigm of driven in-
termittent plasma turbulence and anomalous transport with the focus on addi-
tionally excited undamped coherent electrostatic structures excited alongside the
familiar undamped linear plasma modes. The simulation presented have thus ex-
plored the concept of plasma instability in terms of more general fundamentally
nonlinear structures, outside the conventional linear regime which is limited to
covering largely the undamped collisional plasma eigenmodes, that are addition-
ally subjected, by means of Vlasov equation, to interaction with resonant parti-
cles. Simulations explore evolution of more relevant forms of perturbations in the
species phase-space and display activity of undamped structures that are small
amplitude trapped particle equilibria existing alongside the conventional collective
linear wave equilibria of the thermalized plasmas recovered in collisional fluid-like
limit. In the analysis of simulation output, a wave description is employed which,
in its fundamental form, accommodates the nonlinear aspects arising from the ki-
netic effects like particle trapping and recovers the linear Vlasov descriptions as

one of its limiting cases.

The simulations, beginning from small amplitude phase-space eddy like initial
perturbations realizable in a nonthermal noise, evolve the distributions to show un-

damped coherent structures, apart from the well known linearly undamped modes
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of the thermal plasmas, namely the electron plasma and ion acoustic waves. Nu-
merically, a rapid relaxation within about 100 plasma periods is seen, released
by an eddy-like initial fluctuation, in which both types of structures emerge time
asymptotically. The additional undamped structures traveling at an unusual phase
velocity (about twice ¢y) disagree with linear description and are absent from the

simulations performed using a linear Vlasov simulation procedure.

In our analytic description based on three different levels, we have constructed
stationary electrostatic structures, which constitute a continuous spectrum, de-
termined by electron trapping. Members of this mode continuum are the well
known discrete modes (Langmuir, ion acoustic), which arise in the limit of van-
ishing trapping at high phase velocities (with respect to electron thermal and ion
thermal velocity, respectively), and the cnoidal electron and ion holes, which are
entirely due to trapping and belong to the non-dispersion branches of the non-
linear dispersion relation. There is no general way to establish a link between
the linear discrete mode spectrum, being masked by singularities in the associated
distributions, and the class of well-behaved nonlinear trapped particle structures
even in the infinitesimal amplitude limit. This has the consequence that in case of
coherency the onset of instability as described by Landau is generally absent when
seen realistically from the standpoint of the complete Vlasov-Poisson system. It
is replaced instead by a more complex, highly unknown destabilization process in
phase space, in which this manifold of trapped particle equilibria with its attract-
ing negative energy property together with the explicit initial perturbation will
play an important role. This renders plasma destabilization multifaceted and as
a rule - no longer one-dimensional in parameter-space, i.e., involving growth not

only in the amplitude that remains sole parameter in all linear theories.

Under these premises plasma stability theory is still in its infancy. Publications
on this subject usually rest on perturbative nonlinear models in which linear wave
theory provides the lowest order approximation (such as in |88, 89]). The impact
of the trapping nonlinearity is typically not allowed for. An exception is the work
of Dupree |5] in which, as described in the Introduction, the stability of a solitary
ion hole in a current carrying plasma is investigated (see also [117]), however
with a limited rigor. Especially his (and Tetreault’s) very first questioning of the
role of linear instability together with the discovery of a nonlinear threshold well

below the linear one, must be considered are remarkable results. If approved by a
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more straightforward stability strategy [136] they may pave the way for a better
understanding of plasma stability. A new horizon for plasma stability may hence
be seen, for example, by considering the whole family of cnoidal hole modes as
potential candidates for growing structural elements. This would keep the demand
that in the collisionless plasma limit the trapping nonlinearity has to be taken into

account from the outset, or from their presence in initial nonthermal plasma noise.

In our study, the coherent structures are characterized in the stationary regime
by the existence of a pseudo-potential V(®). This implies that if the structure
has a higher harmonic content ®(z) = Y Cy expli(kx + ¢)] + c.c., such as for a
true cnoidal wave solution, the phase ¢ is common for all subharmonics and it
holds for the whole wave packet 0,,®(z) = —0sV(®P), i.e. the curvature of ¢
(or charge separation) can be expressed by ® again through the pseudo-potential
V(®). This is different to the common linear superposition of harmonics in the
linear framework, such as van-Kampen or Landau modes, ¢(z) = > Cy exp[i(kx +
¢r)]+c.c., in which each individual mode has its own phase ¢y, independent of each
other. Although, through the linearity of the solution for which the superposition
principle holds, the composite solution remains a solution, the curvature (charge
separation) ¢”(x) is no longer representable by a V'(¢), i.e. the coherent character
of ¢ is lost.

One underlying reason of incoherency is of course that within the linear ap-
proach a mechanism which can synchronize the phases is missing. For such a
perturbation the only fate is damping due to phase mixing as proposed by Landau
[11], as recently taken up again by Wesson [120]. For a perturbation with a spec-
trum of individual modes one can hence distinguish already on the macroscopic
level the structureless perturbation ¢(z), such as in a quasi-linear evolution, from
the coherent structure ®(z), see also [137-139]. In the latter, the kinetic trap-
ping nonlinearity does the job of phase locking. Another verbal expression of the
failure of linear wave theory in describing stationary coherent structures is sim-
ply its inability to describe with its straight line characteristics the curved orbits
stemming from the wave-particle interaction process, a property being true up to

infinitesimal amplitudes.

We mention that John Wesson [120] in his alternative treatment of the Lan-
dau approach, where he used real variables and straightforward algebra, nicely

explains Landau damping by phase mixing of ballistic particles. The latter have
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to be incorporated in order to get within the transition from damping to growth
an identical expression for the growth- and the damping-rate, respectively, a con-
straint, which however lacks necessity and is simply imposed artificially. The well
known expression, v ~ fi(vp), is then obtained by setting the out-of-phase part
of the density perturbation equal to zero. It should be noted, however, that his
analysis faces the same problem than Landau’s one, namely that as v — 0 the
distribution function becomes inevitably singular. In other words, the underlying
linear Vlasov approach suffers a breakdown near v = 0 in a manner such that
the transition (in combination with coherency and resonant particles, the essential
ingredients in case of zero damping or growth) is no longer feasible in the context

of the full Vlasov equation.

On the other hand, this breakdown of the linear Vlasov approach is absent as
long as one stays well in the damped region, as mathematically shown by Mouhot
and Villani in their pioneering work [118, 119]. And indeed, in an another linear
treatment, Belmont et al. [121] could find non-Landau solutions by essentially re-
placing van-Kampen modes through non-singular, decaying wave packets in their
linear superposition procedure. As a result a weaker damping scenario could be
achieved. Vanishing damping (or growth), however, was not contained and admit-
ted in their wave spectrum. This is, however, not surprising because zero damping
demands nonlinearity by which Landau’s scenario of destabilization is generally
abolished. Its correction by lifting the scenario on a higher, nonlinear level is,
however, somewhat more intricate as plasma destabilization especially in the sub-
critical region will not only depend on the variety of hole modes (of negative energy
modes preferably) but also on the initial perturbation. A threshold criterion de-
pending on a single parameter, such as the drift velocity vp, will as a consequence
no longer exist or may exist only under very specific conditions, the latter being

an open issue is investigated partially in Chapter 6

It is of interest to mention further that Belmont et al. [121] already found at the
linear Vlasov level a sensitive dependence of the evolution on the initial conditions,
implying a non-uniqueness of the linear, asymptotic solution, as we have discovered
from the difference between a A = 0 van Kampen and a v = 0 Landau solution
(ignoring their invalidity). Their prospect of “a change in our understanding of
the role of the resonant particles” would have been complete, however, only if

they had considered additionally nonlinear trapped particle effects. In case of
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coherency the latter have a stronger, more profound influence than prognosticated
by the authors. This is especially evident through our non-dispersive, B # 0 modes

of the continuous spectrum.

Does this now mean that the concept of growth based on Landau’s theory is
completely out of the game? The short answer is no, only its validity is limited
to special parameter and temporal regimes. In more detail, however: it does
remain relevant as deviations from the mentioned prerequisites can reestablish the
standard wave concept. If, for example, the plasma is sufficiently quiet and the
initial fluctuation spectrum essentially broad band harmonic, uncorrelated and
of topological type (i.e. (5.7) holds) then linear Vlasov description will be valid
for some time and with it - the Landau’s theory. In case of an unstable plasma,
the growth (and damping) of modes will take place as in the linear sense up to
the bounce time after which the saturation of the most growing mode by particle
trapping will terminate the linear phase, initiating a delayed structure formation
process. Time-asymptotically, an intermittent, steady state plasma turbulence
will then arise being characterized by a collection of trapped particle and allied
structures. An initial single harmonic and hence coherent perturbation, however,
is already sufficient to invalidate the linear growth scenario, for trapping and the
associated nonlinearity will dominate the evolution from the very beginning, as
seen in the recent numerical simulations of Hou et al. [140, 141]. The adaptation
of the system to a non self-consistent initial perturbation introduces particles that
are in phase with the wave and undergo a resonant interaction and subsequent

trapping process from the outset.

It is worth mentioning that subcritical plasma instabilities, being associated
with structure formation and hence beyond any Landau scenario, are meanwhile
omnipresently observed in plasma simulations of driven plasmas [22, 54, 85, 122
124], in space or laboratory observations, such as [15, 125] and last, but not least,
in particle accelerators. This latter area of applications refers to coasting and
bunched beams in synchrotrons and storage rings, represented by Vlasov-Poisson
systems. In the Fermi Main Ring, for example, operating near stability limit [52],
sharp gaps or notches have been witnessed in the response function [62], which cor-
respond to depletion zones in the momentum distribution function. This is seen at
the lowest measurable signal level and sheds light on the spectrum of small ampli-

tude perturbations, proving the incompleteness of linear and associated nonlinear
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wave theories in the kinetic regime [54, 113, 126 128]. A similar phenomenon,
namely stable, coherent, longitudinal structures superimposed on bunched beams
[63], has been observed during “rf activity” in stochastic cooling studies [64, 65].
A well documented excitation of holes below linear threshold could be seen also
in numerical simulations of pair plasmas in [85] as well as in the laboratory ex-
periments of Moody and Driscoll [61]. And finally, it would be an intriguing task
for future investigations to link the present nonlinear destabilization mechanism
with the observed reorganization into coherent structures of driven collisionless

magnetospheric plasmas at increasing turbulence levels [129].

The electron hole instability of subcritical plasma phase-space per-
turbations, as recovered in the simulations, are elaborately presented Chapter 6.
The results and analysis in Chapter 6 numerically verified key predictions of Chap-
ter 5, based, themselves, on results of Chapter 3 and 4 where the trapped particle
equilibria in ion acoustic and electron acoustic regimes were examined, respec-
tively. The simulations using two cases of initial conditions are used to verify the
conclusions from Chapter 5, that the plasma stability is rather defined by non-
linear structures that might destabilize by non-conventional means. The growth
could appear, for example, in terms of parameters other than amplitude of the
eigenmodes of linearized Vlasov equation or by an effective mode conversion from

ion dynamics dominated regime to electron dynamics dominated regime.

Analogous to the linearly undamped eigenmodes [¢(x)|, contained in an initial
perturbation that get destabilized by phase-mixing-away the unsupported transient
in the linear Vlasov evolution, the destabilization here is shown to take place of
the undamped mode-coupled nonlinear structures [®(z)] contained in an initial
small amplitude phase-space eddy-like perturbation. When the latter are evolved
in a linearly subcritical plasma, we see additionally undamped structures that
obey the existing analytic description of such mode-coupled structures prescribed
to replace discrete eigenmodes of the linearized approximate Vlasov equation in
a nonperturbative exact plasma stability analysis. The coherent ®(x) generated
at a slower phase velocity is further seen to be destabilized by defying the sign of
Oy f(vo) and grow, rather in their phase-velocity dimension than in their amplitude,
to effectively mode convert into a more stable, ion acoustic electron hole. The
linearly undamped modes, namely, the EPW and TAW modes excited by the initial

perturbation are duly recovered to be stable because of the evolution done in
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a subcritical drift regime, unlike the strong drift cases of Chapter 3 where ion
acoustic mode displayed stronger growth while no phase-space eddy perturbation
were seeded preventing independent electron hole structures to grow.

Unlike their evolution in the linearized Vlasov regime where the electron holes
get treated as transient and immediately buried (or damped) in Sec. 5.2.3, the two
identical initial perturbations of Secs. 6.3.1 and 6.3.2, differing merely in the initial
velocity of their launch, show a remarkably distinct nonlinear evolution in which
both the cases evolve not only to show electron holes as undamped structures
alongside the undamped linear eigenmodes, the latter, slow initial perturbation

case, undergoes a set of strong nonlinear hole instabilities as well.

Among two kinds of unstable evolution identified in the simulation at a faster
and slower rate, respectively, in the first unstable phase the perturbation makes
and approach to a set of undamped modes including an electron hole and the con-
ventional linear plasma modes, namely the EPW and IAW. In the secondary stage
of evolution these undamped structures interact with each other and further desta-
bilize each other, parametrically. These two unstable phases of nonlinear structure
growth /mode-conversion are described as two distinct instabilities, namely, the
electron hole instability and a parametric instability arising from mutual coupling
between the undamped linear and nonlinear structures.

In analytic description of the observed growth of undamped structure is pro-
vided where the basis of the mechanism is analyzed by employing the general
nonlinear dispersion relation involving both electrons and ion response. It is quan-
titatively displayed that in a graphical characterization of the NDR, each curve
corresponding to k% = 0 starts with a minimum velocity 0.03v,. showing that no
SEH (k2 = 0) solutions are possible bellow this velocity at corresponding tem-
perature. The region below the curves representing solitary solutions of the for-
mulations presents the solution for & > 0 (providing harmonic waves and CEHs
solutions) while the region above them is unstable with k2 < 0, or imaginary values
of ko (providing only monotonic or shock-like solutions) meaning unstable evolu-
tion of SEH-like undamped structures, as recovered in the later phase of slowly
propagating initial perturbations.

The discrepancy of evolution in simulation visible with respect to the analytic
characterization is traced in the ideal nature of the separatrix in the used SEH

model. We find that despite the visible solitary nature of the simulated structures,
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they are associated with finite k2 class of ideal general solutions. Due to pres-
ence of a nonideal separatrix, these ideal high |3], finite k2 solutions misread the
background plasma potential as rather deeper than ) in simulation. In simula-
tions, v is smaller when measured with respect to the value ¢ = 0 of the plasma
background. The ideal SEH model nevertheless analytically describes the unstable
evolution of the SEH in the simulations, and perhaps in nature, with sufficient clar-
ity, identifying their growth as driving major part of turbulence in the collisionless

plasmas.

7.1 Future work

As mentioned in the Introduction, despite the non-conventional evolution and an-
alytic formulation of the present study, the examples presented here make only a
moderate excursion from the highly thermalized free and trapped particle distri-
butions. The present study therefore suggest a large scope for future studies. A

few of these relevant future problems are listed as below.

7.1.1 Advanced analytical model for Vlasov equilibria

Most of the nonlinear analytical models of stable trapped particle structures, for
example those given by H. Schamel, T. H. Dupree and Lynden Bell [5, 6, 25],
invoke the entropy maximization at various stages. While the first two follow
Maxwellian-Boltzmann distribution, the third proposes a distinct statistics for the
trapped particle distribution. A common factor in them,is that all the microstates
of trapped particles corresponding to a most probable equilibrium state are in-
distinguishable. Therefor, the reversibility from a final state to initial state is
generally disallowed. The coherent structures, observed in laboratory plasmas and
space plasmas where entropy increases due to the collisions, are coincidentally well
modeled by these approaches. However, nearly ideal collisionless Vlasov systems
(pure Hamiltonian system), e.g., very hot stellar plasmas, conserve entropy, and
therefore must show reversibility between initial and final states. The pure Vlasov
equilibria may evolve like FPU (Fermi-Pasta-Ulam) phenomena [48] where instead
of equipartition of energy from a large amplitude initial perturbation to its fun-
damental modes, they exhibit a rather unexpected recurrence phenomena to the

initial structure after a certain time, unless the pool of microstates with identi-
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cal looking macrostates are really large. This feature must affect the evolution
of the structures such that two similar structures might respond differently to a
single perturbation. Therefore, the stability of the kinetic collective structure is an
important open question and better analytic models are needed for quantitative

studies for the systems in the class of hot plasma turbulence.

7.1.2 Entropy of a phase space hole: a statistical approach

The deterministically evolving trapped particle distribution functions in computer
simulations present a paradigm for the systems that approach a thermodynamical
equilibrium by alternate means. Their isolated state or a weakly open dynam-
ics with slow rate of entropy generation determines whether their final unique
equilibrium-like state in each case results from a thermodynamical process or a
reversible deterministic evolution. This aspect in the simulations needs to be ex-
plored by an ensemble based statistical approach where an entire ensemble with
distinct initial conditions is subjected to a unique dynamical evolution and devel-
opment of their macroscopic features is to be studied. This constitutes a potential

future study for evolving Vlasov Poisson systems and their possible analogues.

7.1.3 Extended study of collective structures in 2D and 3D

geometries

All the results presented in this thesis are outcome of 1D electrostatic Vlasov simu-
lations. An extended version of this procedure is to be applied to multi dimensional
(2D and 3D) study of the issues that are addressed here. In this relation, formation
and comparison of phase space eddies or electron hole in 1D, 2D and 3D simulation
of two beam plasma were studied by R. L. Morse and C. W. Neilson [82]. They
reported that phase space eddies are formed in 1D, but in 2D and 3D they begin to
get destabilized and disappear. More detailed studies are required to explore the
evolution and interaction of coherent structures and their impact on turbulence in
2D and 3D cases, allowing to study its implications on the stability paradigm.
Study of wave particle interaction in relativistic limit through Vlasov approach
remains an interesting and widely open area that can be studied using rather
extensive simulations. The present explorations that make only a little excursion

out of the conventional equilibrium limits present a large scope of advanced studies,

157



Linear fluid description of the

plasma modes

A mutually exclusive relationship between coherence and linearity can be illus-
trated by means of a 1D linearized fluid treatment of the collisional plasmas. In
this most primitive description ions are treated infinitely massive and therefore
fixed (m; — oo or 6 = T;/T. = 0), and the electrons are described by their fluid
equations, namely, the continuity, momentum balance (with an adiabatic pressure

law) and Poisson’s equation, which are in normalized form given by

o + 0z(nu) =0 (A.1)
Oy 4+ udyu = Op@ — 30,1 (A.2)
¢ =n-—1. (A.3)

For the background, i.e. without any excitation (amplitude ¢ = 0), we assume,
n=1, w=wvp; ¢=0.

For the case with excitation (¢ > 0) we solve the linearized version of (A.1)-(A.3)

by the following Ansatz:

n=1+k/2+ Nz —wt); u=uvp+U(x—uvot);
¢ = O(x — vot) (A.4)
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where the (k?1/2)-term in n stems from the normalization constant. It accounts
for a positive curvature of ®(z) at potential minimum ® = 0 (as seen later from
(A.5)) and is tailored such that to establish contact with linear wave theory in the
harmonic wave limit. A more general discussion of the normalization constants in

connection with the choice of the extrema of ®(x) can be found in [36].

We then get from the continuity and momentum equation, respectively, U =

(vo —vp)N and U = ;I’D_EN from which follows by equality of both expressions:

vp ?

N = m. The insertion of N into Poisson’s equation then yields

(//“7]{7277& o V(4
Vi) = g V@) (A.5)

where we have introduced in the last step the pseudo-potential V(®), which has

been introduced to plasma physics presumably at first by |142| (see also |4, 98|).

It allows one to integrate Poisson’s equation directly resulting in the pseudo-

energy
' (x)?/2+V(®) =0 (A.6)

which yields by a quadrature ®(z) whence V(®) is known. In the present case we

have

I r (AT

B V((I)) 2 (UO - UD)2 - 37

where we have assumed without the loss of generality V(0) = 0. The existence of

a solution then demands V(v)) = 0, which gives

1
2 _—— =
k (o — o) =3 0. (A.8)

This is the linear dispersion relation (LDR) since it determines the phase velocity
of the structure vy in terms of k (and of vp). Setting vy = w/k one has then two

solutions
W4+ = k”UD + wr, (Ag)

where wy, := /1 + 3k? = wy (k) is the k-dependent Langmuir frequency.
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With the help of LDR the pseudo-potential simplifies to

k2
—V(®) = E@(w — D), (A.10)
being the standard expression of a single harmonic wave of wave number k. The

corresponding wave solutions are hence given by
v
Oy (z,t) = 5 coslk(x — Vpt) Fwrt] +1 |, (A.11)

which represent two Langmuir waves propagating in opposite direction in the frame
moving with vp. Time dependent solutions can be obtained by a linear superpo-
sition of such modes with in general different k, v and phases. The particular
solution of two equally intense Langmuir waves counterpropagating against each
other in the frame moving with vp yields the well-known plasma oscillation

Dpse(m,t) i = =[P (2 —vout) + P_(x — vo_t)] =

N | —
CIRSS

(cos(th)cos[ki(:L“ —opl)] + 1), (A.12)

which is oscillating in time with Langmuir frequency and non-propagating in the
vp-shifted Galilean frame. The corresponding pseudo-potential of this composite
single harmonic wave with time-oscillatory amplitude becomes
k2 1Tk 2

— V((posc) = ?q)osc(w — (posc) — 5 |:78ZR(WLt) . (Alg)
The coherent nature of this solution is again expressed by the standard harmonic
expression for V, whereas the time dependent amplitude results in a time dependent
base of V. The field energy in one wavelength A = 27 /k of this solution is then
found to be,

02

o ki
w(t) == /0 §Egscdx _ Sw cos*(wrt), (A.14)

which is oscillating in time and has a first maximum at w;t = 7. As a supplement

we mention that the superposition of two unequal counterpropagting waves of
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Appendix A. Linear fluid description of the plasma...

different amplitudes 1 = 1 &= A yields
1
oz, t) = 5 (w(cosXcosT + 1) + At sin X sin T), (A.15)

with X = k(x —vpt) + ¢/2 and T := wyt + ¢/2, where ¢ is the phase difference

between both waves. The field energy for this wave is found to be
LTI 2.2
w(t) = §[’L/J cos”T + (AyY)“sin“T, (A.16)

and shows non-zero minima of w(t¢). However, such a composite perturbation with
a small amplitude mismatch already shows features of incoherency as a correspond-
ing V(®) does not exist. This gives us the opportunity to postulate an intimate
relationship between the physical phenomenon "coherency" and its mathematical
analog on “V(®)”".

In rest of this thesis we shall denote, by ®(x), the solutions for which a consis-
tent, i.e. valid V(®) exists and call them “coherent” structures, whereas we term
solutions for which such a property is missing “incoherent” and denote them by
¢(z). Other, more intricate, time-dependent solutions could be investigated as
well by superposition of undamped modes of different wavelengths, intensities and
phases with the ultimate goal of studying phase mixing and/or recurrence phe-
nomena in such highly incoherent wave packets, for example. We note also that it
would not be very difficult to consider nonlinear effects with ¢ > O(1), too, but
this is not pursued further here because we put a limit on weak perturbations. In
a perturbative treatment, valid under ¢ < 1, nonlinearity would appear in O(?)
and therefore the more negligible the smaller ).

We close this subsection by mentioning that wave-particle resonance effects were
omitted which implies large phase velocities vy = wy/k >> 1 or small k << 1.
To incorporate shorter wavelengths we have hence to leave the macroscopic fluid

description and enter into the kinetic Vlasov description.
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