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Synopsis

The dust clouds electrostatically suspended in a quasineutral plasma show char-
acteristics of various phases of matter, ranging from crystalline to fluids, depending
on the parameter of coupling between dust grains (I = Potential Energy /Kinetic
Energy) and the screening parameter (k = d/\p) which is the ratio of average inter
particles separation to the plasma Debye length [1-4]. Dusty plasmas with coupling
parameters of 10 < I' < 100 over a range of fixed screening parameter s behave
like complex fluids [4-6]. When confined by an effective potential and subjected to
external drivers of fluid flow, the suspended dust medium exhibits various self orga-
nized flow patterns like vortex and shear layer formation apart from collective dust
excitations extensively studied in the existing dusty plasma literature [7-13]. Such
patterned steady-state equilibria of the complex dust fluid represent a large cat-
egory of driven-dissipative complex dynamical systems that continuously operate
away from their thermodynamic equilibrium [14, 15]. The flow dynamics of dusty
plasmas is therefore an attractive and accessible means studying of many complex
system. This is in addition to the fact that the steady state low Reynolds number
flow of the dust medium also shares its dynamical regime with a variety of natural
flow systems, including, swimming of micro-organisms, bacterial turbulence, flow
of viscoelastic fluids [16-18|, as well as many robust life-saving biotechnology ap-
plications based on networks of microchannels to achieve enhanced rates of mixing,
reactions, and conduction of fluid flows, essentially in the absence of the macro-
scopic turbulence [19-21]. Whether the spectacular dust flow dynamics observed
in a variety of recent dusty plasma experiments, often accessible by velocimetric
techniques [12; 13|, can be employed to study complex nonequilibrium thermody-
namic systems is subject to availability of a systematic formulation of the dusty
plasma in its fluid-like dynamical regime. The focus of studies presented in this

thesis is therefore on the aspects of fluid-dynamical analysis of a driven confined
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dust fluid suspended in a quasineutral plasma.

Provided below is a more systematic chapter-wise analysis of the vortex motion

of the dust clouds and its characteristics addressed in the present thesis.

Chapter-1: Introduction

This chapter introduces the fundamental concepts of dusty plasmas which, some-
time, are also addressed as complex plasmas [22]. An overview of topics of research
in dusty plasmas, which are of close relevance to the present study, is also presented
in this part of the chapter [23]. The subsequent sections provides a detail report
of literature survey on the topics of the relevant research and general motivations
of the present study. The content of the chapter covers discussion on experimental
as well as theoretical research work on the dust flow dynamics and a road-map
for the present studies carried out on this subject. Based on the existing body of
work on the subject referred in the first part of the chapter, the conclusion of the
chapter lists certain outstanding issues in the subject and describes the issues that
are addressable within the scope of the present work. The chapter also provides
brief chapter-wise summary of the study covered in the thesis and summary of the

main results presented in rest of the chapters.

Chapter-2: Hydrodynamic formulation of dust vortex flow in plasma

In this chapter we developed and analyzed a hydrodynamic formulation, consider-
ing a more relevant cylindrical setup with boundaries in 2 direction, for the driven
flow of the dust fluid confined in an effective 2-D potential well and in dynamic
equilibrium with a combination of an unconfined streaming flow of driving fluid
and a stationary background fluid resisting the driven flow. The analytic form
of the hydrodynamic model comprising the Navier-Stokes equation [23] and dust
fluid continuity equation is provided and the conditions for its applicability are

discussed obtaining an simplified essential model for the confined dust setup [24].
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The vorticity-streamfunction formulation, suitable for analyzing vortex flows, is
introduced in curvilinear setup relevant to experimental configurations where dust
flow dynamics with a special toroidal symmetry is recovered [11, 12]. The 2D so-
lutions obtained for an azimuthally symmetric cylindrical setup are presented for
the driving flow profiles having both spatially distributed and localized flows and
their associated shear intensities. The solutions show a finite circulation in the
driven flow field of the dust coupled to a driving flow field, having finite vorticity,
via a mutual drag. The solutions of the hydrodynamic formulation are obtained
with appropriate boundary conditions applied to the confined dust fluid [24]. A
detailed analysis is presented of the dependence of dust dynamics and flow field
on the various parameters, namely, dust viscosity u, coefficient of ion drag on the

dust particles £ and the coefficient of friction between dust and the neutral gas v.

Two cases, (i) with profiles of the driving plasma flow having a nonlocal dis-
tributed shear and (ii) having a localized intensity and shear, were analyzed by
obtaining solutions that show finite circulations and boundary layer effects. The
solutions with a localized driver flow intensity are further explored to show that
the shift in the localization of the driving flow at various smaller to larger radius
features a transition from single to multiple vortex structures with due flux con-
servation properties in the cylindrical geometry [12, 24]. The cases analyzed in the
present study highlight the situations in systems where a dynamic flow equilibrium
exists in a cylindrical geometry with boundaries in the z direction. This includes
dusty plasma setups where such 2D dust confining boundaries are present due to
an effective potential, generated by a combination of gravity and electrostatic ef-
fects, and where an unbounded (streaming) driving plasma flow exists, either in
the form of a wider beam or in a filamented state, across the boundaries. The
case-wise analysis shows that the appearance and properties of boundary layers
in dust flow are subject to the structure of the boundary as well as its capacity

to interact with or influence the dust flow adjacent to the boundary and in the
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interior via the momentum diffusion.

Chapter-3: Analytic structure of confined and driven dust vortex flows

In this chapter we have addressed certain analytical aspects of the majority of
bounded setups of the dust medium suspended in the plasmas and subjected to
neutral friction. We mainly address the issues that for the dust dynamics sub-
jected to a background high Reynolds number driving plasma flow, (i) what are
the characteristic mathematical attributes of the formulation and its 2D driven
dust flow structure solutions in the linear limit which admits low to moderate dust
flow Reynolds numbers, and (ii) how do the spectral properties of the driver flow
influence equilibrium mode number spectrum of the driven dust flow when it is
subjected to important boundary phenomena. For the analysis of driven confined
dust fluid vortex flow, a boundary value problem is constructed in a nonplanar,

cylindrical geometry in terms of dust flow streamfunction [25].

The presented analytic treatment uses the description of the vorticity of both
the dust and of the driving plasma in terms of strength of eigenmodes of a curvilin-
ear bounded setup in the modenumber space. The analytic solutions for the dust
flow are obtained by treating the boundary value formulation as an eigenvalue
problem, and using the linearly independent set of Bessel functions as eigenmodes
that allows both driving and driven flows to follow valid flux conservation and
have a multiple scale vorticity spectrum [25]. This choice allows a multiple scale
plasma flow field to produce a vorticity scale spectrum for the driven dust flow
field, essentially non-identical to the driver and the one that accommodates the
effects of boundary with the stationary dust. The spectral characteristics of dust
vorticity at higher mode numbers is shown to be determined predominantly by
the boundary effects that have additional impact when combined with variation
in the usual physical parameters of the dust medium, including the kinematic vis-

cosity and the coefficients of neutral friction and ion drag acting on the dust fluid.
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Among these effects is the formation of a boundary layer whose width depends on
the viscosity and allows the dust flow to be in low Reynolds number regime up to

considerably smaller values of the coefficient of the dust viscosity.

With the effect of increasing complexity in the driver setup resolved in the or-
thogonal eigenfunctions and characterized individually with increasing mode num-
ber, the independence of effects associated with boundary could be identified and
shown to have definite exponents of variation with respect to the medium viscosity
p. While the effective boundary layer width is recovered to scale with ;/3, the
effective Reynolds number for the setup is recovered to scale with =% [25]. Both
these orderings are seen to be obscured by an increasing spatial complexity of the
driving mechanism. The degree of the impact of this complexity is estimated by
systematically characterizing the effect of individual driver flow modes in various
cases with increasing value of the cylindrical mode number. The chapter concludes
by discussing the limitations of linear solutions. Also discussed are the aspect that
how and why with the availability of the linear streamfunction formulation and its
solutions, an interesting but nontrivial extension to non-linear limit highly relevant

to a variety of natural systems, must be technically accessed.

Chapter-4: Nonlinear effects in the bounded dust vortex flow in plasma

In this chapter the nontrivial extension is made to the nonlinear regime of the
dust vortex flow formulation. By producing the nonlinear solutions using a 2D
iterative numerical procedure, the nonlinear properties of a volumetrically driven
2D dust vortex flow of a confined dust fluid suspended in a plasma are studied.
Motivated by toroidally symmetric flow formation in experiments and signatures of
nonlinear nature of poloidal flow dynamics at higher dust velocities therein [11, 12],
2D nonlinear equilibrium solutions of the vortex flow are obtained in a toroidally
symmetric domain [26]. The relevance of the nonlinear solution is described to a

large number of observations in dusty plasmas setups where a vigorous dust vortex
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flow dynamics is observed with flow velocities attaining moderate to high Reynolds
number values. The high Reynolds number limit confirms with the experiments
where localized dust vortex are seen surrounded by regions of relatively moderate
or negligible dynamical activity [26] usually absent in the linear limit of solutions

for the equivalent setups [24, 25].

In agreement to observations of a dust torus where poloidal dust flow is recover-
able with considerably uniform vorticity, the driven primary vortex in the present
solutions is formed with almost uniform vorticity in the core, surrounded by region
a strong variation of vorticity value and oscillatory nature of streamfunction. The
relationship between vorticity w and product 7 is examined in the small and large
Reynolds number regimes to recover independence of w from 7 in the uniform
vorticity core formed at large Reynolds number. In this limit, the core vorticity
follows the curvilinear form of an integral condition given by Batchelor [27] on the
regions of closed streamlines where boundary conditions are no longer usable for
determination of w in high Reynolds number regime and its analytic value remains

largely indeterminate.

In presence of 2D heterogeneous boundary conditions applied to dust flow in
a curvilinear coordinate system, the major nonlinear effects cause the boundary
layer to separate from the domain boundary [26]. This causes the vorticity gener-
ated from the interaction with the no-slip, or frictional, boundaries to be convected
away with strong flows of the primary vortices. The separation allows dynamic
isolation of the regions scaling with the dimensions of small scale features of the
boundary (e.g., spatial modulations or the sharp corners) and development of sec-
ondary vortices in these regions. The development of separated boundary layer
is investigated as a structural bifurcation [26] where the kinematic viscosity p as-
sumes the role of the bifurcation parameter and the separation coincides with the
bifurcation at a critical value p*. The bifurcation is shown to occur when the

vorticity profile approaches its first zero value along the boundary at the point
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where its minimum is located. This critical behavior and signatures of equivalent
nonlinear vortex states in experiments indicates capacity of confined dusty plasma
vortex structures to represent a class of systems that can self-stabilize by making a
critical transition to a self-similar state, for example, biophysical transition during
the biological cells undergoing mitosis [28]. The nonlinear scaling of the boundary
layer parameters with kinematic viscosity v is obtained and the critical value p*
demarcating transition to nonlinear regime is identified. These two factors are
shown to allow estimation of viscosity of charged fluids using appropriate scaling
by identifying a structural change in flow patterns in experiments. The nonlinear
dust vortex dynamics developed in this study thus offers quantitative insight and

analytic framework to a number of natural systems that dusty plasmas emulate.

Chapter-5: Co-rotating multiple vortex equilibria in nonlinear regime

This chapter explores the extendibility of nonlinear solutions produced in Chap-
ter 4 to newer regimes where the characteristics of dusty plasma flow dynam-
ics correspond to experimentally observed dynamics of the dusty plasma vortices
(13, 29, 30]. The nonlinear solutions are obtained and presented in this chapter
with variation in the aspect ratio of the cross-section of the toroidal dust confine-
ment domain (L,/L,). In another parameter variation, the Reynolds number of
the dust flow is varied by variation in the values of the dust kinematic viscosity
1. Among the most important observations made, upon increasing the domain
aspect ratio beyond L,/L, = 1 at higher Reynolds number, the smaller corotating
secondary vortex produced with a scale size ratio of 1 : v/2 — 1 with respect to
larger primary core vortex, grows in its dimension and attains a size ratio 1 : 1
as L,/L, — 2. This dynamic replication of the original vortices is noted as a
recurring process during variation of L,/L,, where a series of vortex replication
is noted with increasing value of L,/L,. The correspondence between this obser-

vation and a similar observation of series of corotating vortices forming in a very

11



recent dusty plasma experiment [13] is described. The multiplicity of corotating
vortex is discussed along with its limitation due to increasing momentum diffusion
across the streamlines by increase in the aspect ratio from smaller to larger val-
ues with respect to unity. The chapter also discusses correspondence of the linear
and nonlinear vortex solutions recovered in this work to the various natural flow
and dynamical processes ranging from microscopic to very large scale size systems
[28, 31], many of which operating away from their thermodynamic equilibrium [14]
and well represented by driven-dissipative nature of the dusty plasma systems un-

der consideration.

Chapter-6: Conclusion and future work

This chapter provides brief summary of the complete study presented in the the-
sis and main conclusions drawn from the results obtained in this study. The few
results from the linear and nonlinear regimes of the present studies are discussed
in the perspective of existing experimental and theoretical studies on the subject.
The content of this chapter further identify and describe the potential areas of
interest in which the present research can lead and contribute. The discussion also
covers possibility of extension of applied techniques and numerical approaches for
addressing more detailed and readily accessible regimes of the present formulation.
Certain experimental studies are suggested for possible experimental realization of
the predictions made in the present studies and verification of various theoretical
estimates provided in the present study using experimental means, for example,
estimate of dust dynamical viscosity using velocimetric techniques obtained in
Chapter 4. Finally, the implications of present results and their applicability to
address certain outstanding fundamental issues related to nonequilibrium systems

and a statistical approach to their study are discussed.
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Introduction

Complex systems are identified by their nonintuitive response to external stim-
uli and their capacity to adapt to their surrounding for enhanced stability and
longevity. Macroscopic behavior of most of the soft matter and fluids, having
rather intricate microscopic or molecular level structure, often displays complex
phenomena. Studies in this thesis are conducted to formulate and analyze the
fluid-like dynamics of clouds of microscopic dust particles electrostatically sus-
pended in plasmas and capable of displaying a range of complex phenomena in
various laboratory and natural settings.

Fluids, depending on their microscopic texture and constitution, let their macro-
scopic dynamics being described by formulations of increasing mathematical rigor
(related to underlying kinetic closure and subsequent moment description [33-40]).
Dust particles introduced in a plasma that tend to get heavily charged and can, in
turn, be electrostatically suspended in a plasma, constitute a range of interesting
fluid-phases where this microscopic inter-particle ordering is largely determined by
only a limited number of externally controllable parameters of the background sus-

pending plasma medium, often maintained in laboratories using ordinary electrical
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instrumentation. The dusty plasmas therefore offer a highly customizable and eas-
ily diagnosed medium (e.g., via particle imaging velocimetry [41, 42]), realizable
in rather simpler laboratory setups, for investigating many fundamental aspects of
complex fluids as well as of many other extremely exotic phases of matter in the

universe [22].

Out of these exotic and not so exotic possibilities, certain readily realizable
phases in common dusty plasma experiments already display characteristics of
many well known classes of complex systems. Apart from formulating dust vortex
flow dynamics recovered in experiments, the present thesis focuses on one such
class of systems in which the systems are driven to enduring nonequilibrium states
by a continuing source of free energy and serve as paradigm for a wide range of
living and nonliving systems [43-45]. Nonequilibrium systems of this kind form
stimulated and stable patterns, and recover, as a result of interventions from sur-
rounding to show first formal signatures of being responsive (alive) in clear dis-
tinction from their nonliving or purely entropy maximizing counterparts, like most

museum exhibits that simply follow the Clausius’ principle [45].

These responsive systems show a vast dynamic memory by their capacity and
range of response to a continuum of stimuli from their surrounding, each of which
may invoke a unique response, like making them erupt into a unique pattern. In
its simplest form, a behavioral transition to such a state occurs, for example, in
a system of Brownian particles irreversibly diffusing through a medium [46] when
they are additionally subjected to a drive by a streaming medium and simulta-
neously restricted in space by a confining potential or boundary. This results in
a variety of their particle distributions for respective combinations of potential,
boundary and flow topologies [14]. A more correlated fluid-like phase of charged
micro-particles, well represented by the dust particles suspended in the plasma
state of matter (or a dusty plasma) [3, 6, 47-49], shows an even larger range of

patterned response both in its linear [11, 12, 24, 25] and nonlinear [26, 50] regime
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of dynamics, analyzed systematically in the studies present in this thesis.

While microscopic characteristics of dusty plasmas are well-known to resemble
the crystalline [51-53] to viscoelastic fluid-like media [18, 54] the overall macro-
scopic dynamics of its fluid-like phase represents vortex activity in many volu-
metrically driven complex and biophysical fluids at much accessible scales. This
dynamical range potentially covers low Reynolds number life supporting dynamics
of intracellular fluid or microcirculation of blood in lymphatic capillaries (Re< 1)
[55], to high Reynolds number enormous scale circulations like Jovian great red
spot (Re> 10?) [31, 56]. Presented in the first part of this thesis is the first ap-
plication of a 2D hydrodynamic model to these volumetrically driven spatially
confined dust vortices [24] observable in many of the dusty plasma experiments.
The detailed hydrodynamic analysis is done to systematically formulate the vortex
dynamics of dusty plasmas observed in normal laboratory conditions (see Fig. 1.1)
as well as in microgravity condition, for example, on board the international space
station (ISS) [9] (see Fig. 1.2). The results obtained in the first, linear part, of
the study, mainly done by numerical solutions of the developed linear model, suc-
cessfully predicted and interpreted experimentally observed multiplicity of vortex
in a series of observations by M. Kaur et al. [11, 24]. A more systematic and
analytic approach to various advanced aspects of linear dust vortex dynamics also
outlines basic scaling of boundary effect at low to moderate Reynolds number [25].
The second part of the study presented in this thesis addresses a further advanced
and complete nonlinear regime of the dust vortex flows. The nonlinear studies
complement the linear studies by addressing the still left out nontrivial physics of
often noted transition to nonlinear regime of these vortices and extends the limits
of valuable analytic prescriptions of estimates and scaling recoverable from rather
easily diagnosed flow dynamics of the dust, to high Reynolds number nonlinear
regimes. The remarkable aspect of a continued stability of spatially extended

vortex structures via a structural bifurcation is analyzed by means of finding non-
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Figure 1.1: Dust clouds with poloidal cir- Figure 1.2: Vortex formation in the
culation in the laboratory dusty plasma dusty plasma cloud in microgravity con-
experiment at IPR, by M. Kaur et al., dition on board the International Space
Phys. Plasmas 22, 033703 (2015). Station (ISS) by V. N. Tsytovich et al.,
New Journal of Physics 5, 66 (2003).

linear co-rotating multiple vortex solutions of the formulation, highlighting also

their recovery in recent experiments, showing an identical transition.

Among the strong motivations for the nonlinear studies are the recently ob-
served compelling nonlinear features of dust vortex dynamics [11] which promise
to shed light on several less understood aspects of natural flows. For example, a
nearly uniform vorticity in the core of a toroidal dust cloud observed in higher
flow velocity limit resembled high Reynolds number flow phenomena at gigantic
scales, such as the anticyclonic circulation associated with the Jovian great red
spot [31, 56]. In a very distinct kind of nonlinear effect recovered in the advanced
nonlinear solutions of the present studies, and simultaneously observed in the ex-
periments, is generation of a sequence of multiple co-rotating vortex in the solu-
tions of nonlinear formulation when the dust kinematic viscosity exceeds a critical
threshold value. In the associated experiments reported by M. Choudhary et al.
[13] the phenomenon strikes when total input power to the exceeds a threshold

limit or when dust cloud is moved in a region of stronger plasma wind [13].

Most noticeable, from the view point of applicability to complex systems, is the

fact that the nonlinear phenomena of the form displayed also by the critical dust
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dynamics analyzed in this study are proving to be natural timing mechanism for
biological systems with growing evidence that processes like cell division are timed
by critical transitions on approaching a threshold size rather than a preprogrammed
linear evolution [57]. For example, the low Reynolds number intracellular mitotic
activity taking place in cytoplasmic medium examined in budding yeast shows that
the cells born smaller than normal size spend longer duration in initial G1 phase
until they reach a critical size for division, reproducing normal size offspring [58].
Nonlinear critical transitions thus provide a potential mechanism that monitors cell
size and uses this information to regulate progression through events of the cell
cycle, determining cell size and age, effectively, the fundamental limiting factors

for overall evolution of the carbon based life [57, 59].

With the prime requirement of being externally driven fulfilled, an important
class of complex systems is suitably represented by a fluid-like phase of the sus-
pended dust that obeys a rather simpler microscopic ordering, for example, the one
underlying an incompressible Navier-Stokes hydrodynamic model [23]. While this
has been the central model for the studies presented in this thesis and the basis of
successful interpretation of a series of recent experimental observations related to
dust vortex flows, in the Section 1.4 of this chapter we also introduce the essen-
tial elements of microscopic structure of the dusty plasma in other regimes of its
existence and suitable approaches to its respective dynamics in them. We begin
this chapter by presenting in the Sec. 1.1 a brief introduction to dusty plasmas
while making its sufficient detail available in Appendix B. The concept of confined
dust vortex flow as paradigm for driven complex systems, mainly explored in the
nonlinear part of the present studies, is introduced in Sec.1.2. A brief review of
the existing studies on the subject of dust vortex dynamics is presented in Sec. 1.3.
The chapter concludes by presenting, in Sec. 1.5, a chapter-wise summary of the

work presented in this thesis.

23



CHAPTER. 1. INTRODUCTION

1.1 Introduction to dusty plasmas and driven dust

vortices

Plasma is one of the four fundamental states of matter, the others being solid, lig-
uid, and gas. Most plasmas are the ionized form of the matter with three different
components, i.e, electrons, ions and neutrals. Plasmas are formally defined as par-
tially or fully ionized media which are electrically quasineutral and show collective
behavior [60]. The plasma state of matter is generally characterized by certain
parameters, such as temperature 7}, that represent the equilibrium distribution
of j™ species with average kinetic energy F ~ K g7}, the number density n; and
the mass m; associated with the different species in the system. The length scale
given by Debye length Ap; = (T}/47mn;e?)'/?, time scale given by inverse of plasma

frequency w; = (nje?/m;eo)'/?

, and a speed ¢; = Ap;w; known as speed acoustic
are rather more useful parameters and scales of a plasma system. Here e is the
electronic charge, Ap; is Debye length which is measure of distance over which the
influence of the electric field of an individual charged particle of % species is felt
by other charged particles inside the plasma. Plasma frequency indicates that the
internal space charge potential of j™ species oscillates with a characteristic fre-
quency w; by virtue of its inertia. The other important characteristic frequencies
are associated with the collisions of the plasma particles (electrons and ions) with
stationary neutrals, ¢y is the permittivity of free space. Plasmas are of various
kinds based on the properties of constituent species, namely, electrons, ions and
neutrals. When 7T, ~ T; and n. ~ n;, a plasma is classified as hot plasma (or a ther-
mal plasma) where the collisional rate between e — e, ion —ion and e —ion species
are equal and they are in thermal equilibrium with Ap. ~ Ap;. On the other hand,
plasmas with T, > T; are called cold plasmas (or non-thermal plasma) where the

collision rate among ions or among electrons (e — e, ion — ion) is larger then the
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rate of collisions between an ion and an electron (e — ion) [60, 61].

1.1.1 Dusty plasmas

Complex (dusty) plasmas are plasmas with four different components, which, in
addition to the usual plasma components i.e, electrons, ions and neutrals, contain
micron sized particles, also called grains or dust. The dust grains are intrinsically
neutral, relatively heavy and large sized particles mostly dielectric or conducting in
nature and therefore introduce many peculiar phenomena in the system. Once the
grains are introduced in a conventional electron-ion plasma, they get bombarded
with heavy flux of (highly mobile) electrons, relative to ions, on its surface. They
therefore collect a high electron population and mostly get negatively charged
[22]. In some cases, when the dust particles undergo emission of electrons because
of radiation sources like ultraviolet lights, secondary electron emission, thermionic
emission, field emission etc., and the dust grains may also be found to be positively
charged [62]. Thus, one has the possibility of having dust grains charged both
negatively and positively.

The dust particles acquire large electric charge, and exhibit many collective
phenomena through long-range coulomb interactions. The charges on dust species
can additionally fluctuated because of the electrons/ions may leave the surface of
dust grains in course of collision with other ions or dust grains, specially in stream-
ing plasma, or because of thermal effects, or other radiative processes in the plasma
[63]. A dusty plasma is significantly different from a multiple-ion-species plasma,
because the presence of massive charged dust grains it produces a new collective
phenomenon on a different time and length scale. The inclusion of charged dust
species makes the plasma becomes even richer, physically, with several additional
modes arising solely due to introduction of new scales or additional instabilities.
Thus these extra component of macro-particles increases the complexity of the

system even further. The dynamics of dusty plasma is very similar to many com-
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plex fluids that have multiple phases of dust particles introducing multiple length
and time scales in the system. This is why a dusty plasma is sometime called as

“complex plasma” [22, 64].

1.1.2 Phases of dusty plasma medium

Instead of using the multiple parameters, such as the species temperature 7}, the
number density n; and various length scales and time scales, it is possible to
represent the characteristic features of a dusty plasma in term of only two key
parameters, the screening parameter x£ and the Coulomb coupling parameter I'.
The ratio of inter-dust-particle separation to the plasma Debye length, az/\p, is
known as screening parameter x which takes care of density and shielding due to
background plasma. Coupling parameter I' measures the degree of interactions
over the thermal motion of the ensemble of dust particles for fixed inter particle
separation and background shielding  [1, 22, 65, 66]. Mathematically, I" is given
by the ratio of average coulomb potential energy (including the shielding effect) to
average kinetic energy of particle in the dust system.
2

= #jf)ﬁfd exp (—;—Z) (1.1)
where ay = (3/47ny)'/? is the Wigner-Seitz radius or mean inter-dust separation,
ng is the particle number density, Qq = Z4e is the dust particle charge, and Ty is the
equilibrium temperature. As [" increases, the dust system changes from a nearly
collisionless, or only occasionally experiencing binary collisions, to a gaseous regime
for I' <« 10, through an increasingly correlated liquid-like regime for 10 < T" < 175,
to undergoing a Wigner crystallization into a lattice near 'y, > 175, as shown in
Fig. (1.3). The high dust charge (typically Q) ~ 10°¢) even at low dust temperature
makes the coupling parameter I' > 1 even at lower dust density. Thus the dusty

plasmas could be found in gaseous, liquid as well as ordered crystalline phase.
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Figure 1.3: T and k relation show-  Figure 1.4: T' and v relation for var-
ing dusty plasma can exist at different  ious screening parameters k showing
state of matter by changing coupling  gases and liquid phases of fluids by
parameter I' and s, by S. Hamaguchi V. E. Fortov et al. Phys. Rev. Lell.
et al. Phys. Rev. E 56 4(1997). 109 055002 (2012).

The phase transitions occur under suitable physical conditions of the dust system.
Statistically, the local density around a given particle as a function of the distance
from this particle, is smooth in gaseous phase I' < 10, and rapidly vanishes for
small r because of the repulsion between the particles with same sign of charge.
As T' increases, positions of neighboring particles are more and more correlated,
leading to a modulation of local density around a given particle. At I' > T',,, the
modulation or fluctuation in local density grows spontaneously into full long-range
order, characteristic of a periodic crystalline structure [67, 68]. The kinematic
viscosity which is a fundamental property of a fluid flows, correlates with the
coupling parameters I" and screening parameter x for a dust fluid flows [5, 69, 70].
Fortunately, most of the routinely accessible dusty plasmas are in fluid regime and
thus well known fluid model can be used for their flow dynamics. As shown in
Fig. (1.4), the regions where kinematic viscosity v* increases with decreasing I, is
in gaseous regime while the regions with v* increasing with I' is in liquid state of

the dust fluid. Dusty plasma, therefore, is an attractive field of research because of
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several of its unique features, for example, its existence in various states of matter
and its ability to display the kinetic level dynamics of dust particles at easily
observable scales, that make it a versatile medium supporting various collective
phenomena as well as useful for study of many fundamental physical aspects of

the nature.

1.1.3 Occurrence and applications of dusty plasmas

Dusty plasmas are ubiquitous in different parts of our universe, such as in diffused
interstaller clouds, in the planetary ring system, in Jupiter’s moon, in the comet
tails, in circumpolar rings and interplanetary medium, in supernova remnants, and
in interstellar molecular clouds etc [71, 72]. Presence of dust particles in lower part
of Earth’s ionosphere is already known. On the Earth, the most common occur-
rence of dusty plasmas are artificial ones, whether it be in experimental laboratory,
in lighting technology, in fusion reactors and in various plasma processing tech-
niques. In many of these systems, dust can seriously disturb the system or even
change the characteristics of the system. For example, in fusion reactors, dust
can either grow inside the plasma or be evaporated or sputtered from the walls
when plasma-surface interaction take place [73-75]. On the other hand, the dust
can be radioactive and damage the reactor blanket. Presence of dust could pose
a threat to the operation of the fusion reactor by increases the plasma resistivity,
leading to increased voltages needed for start-up [76]. This might becomes a seri-
ous hindrance for the experimental or reactor grade devices, like ITER [77], which
is currently under construction in France. However proper placement of dust in
fusion reactors can be a useful tool for improving its performance. Introduction of
dust shield in SOL region can be used to protect the wall by absorbing and prevent-
ing most of convection heat flux to the wall [78]. The effect of naturally present
and externally injected dusts have been recently reported as effective controlling

edge plasma condition and mitigating disruption with comparatively higher effi-
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ciently then the conventional technique [79]. In revolution of technology, addition
of nanoparticles in manufacturing plasmas device have beneficial effects such as,
the performance of solar cells can be improved, carbon-structures can be grown in
plasmas, and the deposition rates in plasma enhanced chemical vapor deposition

and plasma surfacing can be enhanced using dust [80].

Complex plasma posses a unique combination of properties due to its rela-
tively large mass, larger size and highly charged collection compare to background
plasma. There are strong similarity and differences of dynamics between the col-
loidal dispersion, biological flows, astronomical flow systems and the dusty plasmas
[81]. Like colloids, complex plasmas form solid and liquid-like structures with long
range correlations and exhibit phase transitions and self organized patterns for-
mation like vortex or circulating flows [1, 12]. Unlike colloids, they also exhibit
a range of dynamic phenomena such as particle-mediated linear and nonlinear
waves, soliton, shocks, wake formation and instabilities etc. The dynamics of dust
particles in such system can be observed at the atomistic level [82]. Thus dusty
plasma become a versatile medium that support many fundamental physics of na-
ture. This become an excellent model system for studying phenomena such as
phase transitions, particle transport, waves, instability, collective behaviors vortex
or circulating flows etc. [24, 25, 82, 83]. It is also known that many phenom-
ena in dusty plasmas have analogues and applications in many different fields of
science and technology such as plasma physics, fusion, solid state physics, fluid dy-
namics, acoustics, optics, material science, nanoscience, nanotechnology, biological
complex flows, environment protection, space exploration and astrophysics. The
detailed study of complex flows in this system will be useful to understand various

fundamental characteristics of various relevant natural flow processes.
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1.2 Confined dust flow as driven complex system

Dust particles are heavily charged and are therefore easily confined in the localized
electrostatic potential wells (regions of low potential) present in common labora-
tory and natural plasmas [12, 13]. In laboratory dusty plasmas the bulk plasma
stays at a higher positive potential that its negatively charged confining boundaries
and provides a natural strong potential well such that dust is often seen levitated
in the bulk plasma. In many cases this levitated dust medium is additionally
observed to display a spectacular flow dynamics. When the dust clouds are ex-
tended in considerable plasma volume, they show characteristics like a fluid with
a very well defined flow field equilibrium in the region of confinement with definite

mass-density conservation.

In setups with more than one dimension, the spatial boundaries of such dust
fluid must acquire the shape of the equipotential contours (in a 2D equilibrium)
or surfaces (in a 3D equilibrium) of the potential well, and the dust thus remains
confined by the surrounding 2 or 3-dimensional potential barrier which this unper-
turbed dust fluid is unable to overcome. The dust flow along this boundary can
therefore only be parallel to the boundary. In inviscid and isolated conditions, an
isolated incompressible fluid contained in any such volume has a variety of equi-
librium flow field solutions that essentially need to satisfy only the appropriate
boundary conditions [23]. However, in the conditions where an external momen-
tum source or driver is present, specific equilibrium flow solutions are attainable
only in presence of a friction and/or viscosity, either with boundaries or with a
more spatially distributed sink of the momentum. This sink can be present in the
form, for example, of a third fluid capable of generating a friction and thereby

dissipating the energy of the driven fluid, leading the system to a dynamical equi-
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librium state. A dust fluid which is electrostatically suspended in a plasma and
confined by an effective potential well represents a setup where both of these el-
ements may be available in the form of a quasineutral plasma (ion) flow and a
stationary background of neutral gas, respectively. The confined dust flow there-
fore presents an excellent example of a complete volumetrically driven-dissipative
complex system that although stays in mechanical equilibrium (steady-state), op-

erates continuously away from a thermodynamic equilibrium.

1.2.1 Experimental recovery of driven dust vortex solu-

tions

As an important and realizable consequence of the analogy described above be-
tween driven confined dust flow and complex driven systems, the confined dust
flow structures in dusty plasmas are expected to show a range of nonlinear ef-
fects, including the robust and continued stability of solutions that destabilize by
bifurcating at critical points. A transition of this class in drives system ensures
that system simultaneously makes transition to regime of stability of an alternate
solution [84]. The temporal and spatial interval between successive bifurcations
in such system might yield the essential temporal and structural limitations for
the continued stability that appear to be the characteristics of responsive and self
replicating complex systems. In an important achievement, while the nonlinear
analysis presented in Chapter 5 of this thesis (and in Ref. [26]) recovers such dy-
namics, an identical experimental effect is simultaneously detected in a recent,
completely independent, dusty plasma experiment by another group of workers
in our laboratory [13]. The above experimental validation is apart from a series
of experimental verification of the linear results presented in Chapters 2 and 3,
describing the vortex multiplicity and counter-rotating pairing from a nonmono-

tonic drive [24, 25|, which were predicted by our analysis presented in Chapters 3
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and 4 and were simultaneous detected by a separate set of experiments examining

confined dusty plasma vortex structures in our laboratory [11, 12].

1.2.2 Dynamical equivalence with natural complex flows

A drive by streaming fluid relates the confined dusty plasma vortex flow motion to
many other natural flow setups of high importance. Consider that a typical lab-
oratory dusty plasma setup has an assembly of negatively charged dust particles
electrostatically levitated against the gravity by the electronegative sheath formed
on the electrode at the bottom (e.g., see Fig. 4.1), allowing a supersonic plasma
to continuously filter through it in order to let the latter reach the electrode. This
arrangement, given a much slower time scale of response of the dust in comparison
to plasma species and very low Reynolds number of dust flow, resembles a number
of physical and bio-physical set ups, for example, a microscopic semipermeable
mixing chamber that allows a colloidal solute to gradually dissolve into a solvent
filtering through it at a comparatively high Reynolds number. Another example
is a developing, localized, artery/vessel congestion by a cohesive lipid (e.g., choles-
terol), producing blockade to a cardiac passage that would permit the blood flow
of only higher Reynolds number [85]. The lipid must steadily dissolve in the blood
flow in order to check the blockade growth. As one of its significant related effects,
atherosclerosis, a leading cause of death from myocardial infarction (heart attack),
remains a geometrically focal disease, preferentially affecting the outer edges of
vessel bifurcations. In these predisposed areas, hemodynamic shear stress, i.e.,
the frictional force acting on the endothelial cell surface as a result of blood flow,
is weaker than in protected regions, rendering endothelium (interior surface of
blood vessels) more susceptible to pathogenic stimuli of injury, cell adhesion, cell

proliferation, and lipid uptake [86].
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1.3 Briefreview of studies of existing dust vortex

flow in plasma

A wealth of theoretical and experimental knowledge is available from a variety
of dusty plasma experiments performed, analyzed and reported in the present
literature where dust circulation or dust vortex formation is observed. Vortex or
circulation is among the self organized patterns or collective behaviors other then
crystallization, waves and instability, shokes or soliton formed in dusty plasma due
to its long range coulomb interactions. Vortex or circulation of dust in plasma
has been observed in various laboratory experiments and computation simulations

either in presence or absence of magnetic field.

The experiment by Y. Saitou et al. [8] and M. Puttscher et al. [87] in RF
discharge plasma demonstrated the dust circulation in presence of magnetic field.
Subsequent analysis by P. K. Kaw et al. [88] proposed a theoretical model that
explained the causes of dust vortex in magnetized dusty plasma as a spontaneous
response to ion rotation generated by the electromagnetic field. There have been
investigations in magnetized dusty plasmas where electromagnetic Lorentz force
induces ion species rotation, which, in turn, causes the levitated dust particles to
circulate in azimuthal direction [89-91]. The main difficulty realized in such cases
is that the dust grains are relatively heavy and require strong magnetic field (B >
3 Tesla) to get magnetized in a plasma. A Magnetized Dusty Plasma Experiment
(MDPX) achieving this limit is presently being developed by E. Thomas et al. [92,

93] to perform some of interesting experiment in magnetized dusty plasma regime.

Dust vortex in absence of magnetic field are also observed in various experi-
ments, for example, dust vortex are observed forming in laboratory dusty plasmas
by Vaulina et al. [7], Saitou et al. [8], and in microgravity conditions (space station,

ISS) in a dust cloud surrounding a void as reported by H. M. Thomas et al. [9].
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Experimental observations include a very recent observation, in our laboratory
by M. Kaur et al. [11], of the formation of a complete toroidal dust structure in
a glow discharge plasma with a poloidal dust flow, and steady equilibrium co-
rotating vortex system by M. Choudhary et al. [13]. The mechanisms underlying
the vortex motion in these experiments include a range of possibilities that re-
sult into nonuniform forces on the suspended dust clouds, either from its direct
or indirect interaction with the surrounding plasma as reported by H. M. Thomas
et al. [9] or by external means including boundaries as reported by G. Uchida
et al. [94], by radiation using two laser beams that apply variable torque on a
dust cluster in experiment studies by M. Klindworth et al. [95] and T. Miksch
et. al. [96]. Further, the momentum transfer from drifting ions to gas molecules
and resulting compact vortex structures containing a large number of coagulating
dust particles and dense dust clouds evolving in time are studied in experiment
by V. L. Vladimirov et al. [97]. In the experiment the motion of ions is induced
by the external electric field as well as by the intense recombination of ions and
electrons on dust particles, which might cause the emergence of large concentra-
tion gradients and additional flows of plasma particles. Also, the dust rotation in
dusty plasma experiment was observed to be induced by a biased probe immersed
in plasma by Law et al. [98]. The origin of the circulation are attributed to the
formation of a nonuniform electric field in the crystal region by the induced probe.
In inhomogeneous plasmas, dust charge gradient can drive instabilities that lead to
the vortex formation as reported in some of the theoretical and numerical studies
by O. S. Vaulina et al. [99-101]. Further, in a dc glow discharge plasma, a two-
dimensional dust vortex flow near the edge of a metal plate could be generated
due to an unbalanced ion drag force near the metal plate as observed by G. Uchida
et al. [94]. Tt has also been observed that convection of neutral gas by thermal
creeping exhibits a global convective motion of dusts as similar to Rayleigh-Benard

convection of fluids in various experimental work by M. Schwabe et al. [102], V.N.
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Tsytovich et al. [103] and S. Mitic et al. [104]. Moreover, the role of a drag force
from sheared flow of ions in the formation of dust vortices is discussed in T. bock-
woldt et al. [105], Laishram et al. [24-26] and M. Kaur et al. [11, 12]. In these
various works, self-excited large-scale vortices are observed due to non-zero curle

of various forces such as the ion drag force.

Among some of the recent investigations of vortex flows in dusty plasmas is
experimental work by Kil-Byoung Chai et al. [106] where dust grain poloidal vor-
tices with two adjacent co-rotating poloidal vortices have been observed due to ion
density gradient and the gradient of the magnitude of the ion ambipolar velocity.
In another recent experiment carried out at our Institute (IPR) by M. Choudhary
et al. [13], it has been observed that steady equilibrium dust flow undergoes a
transition from a single to multiple co-rotating vortices with varying input power.
The occurrence of these vortices is explained on the basis of the charge gradient of
dust particles, which is orthogonal to the ion drag force.

The observed or analyzed vortices in the above dusty plasma studies are also
relevant to various natural processes involving rotational flow of matter, other than
in laboratory dusty plasmas, ranging from those at the astronomical scales, like
galactic star formation [107], Great Red spot and white ovals of Jupiter [31, 56],
Saturn’s ring, nebulae [108] to small-scale natural fluids including colloidal suspen-
sions, emulsions, foams, polymer melts and solutions, liquid crystals, swimming of
bacteria or microorganism and whole blood samples etc. [109-111] as well as at
the micro- or nano-scales like mixing/separation of heterogeneous fluids, biological
flows [112, 113]. Thus, besides the central objectives of this thesis, i.e., develop-
ing a working approach for analyzing dust vortex dynamics in experiments and
its application to complex systems, the study of dust vortices and determining its
characteristics have multiple alternate applications. This subject therefore contin-
ues to be an active area of research for understanding a host of relevant physics of

many natural flow systems.
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1.4 The hydrodynamic approaches to dust-fluid
dynamics

Limited to a normal fluid limit I' < 100, suitably represented by the Navier-Stokes
regime of the hydrodynamic model, the present studies are done in this simplis-
tic regime considering the incompressible and normal fluid-like characteristics ob-
served of the dust fluid in the parameter regime of interest. Below, we however
introduce both, the Navier-Stokes hydrodynamic model, mainly applicable to the
laboratory dust under analysis, and the viscoelastic fluid model, applicable largely
to more exotic, strongly coupled phase of the dusty plasmas. Additional detail of
formulation in these regimes are described further in Appendix A and B, respec-

tively.

1.4.1 Governing equations in the Navier-Stokes fluid regime

The macroscopic fluid dynamics description is based on some fundamental laws of
nature that essentially take into account the conservation of mass (continuum flow),
conservation of momentum (Newton’s second law of motion) and conservation of
energy (first law of the thermodynamics). Following these fundamental laws in a
fixed volume of the space occupied by the fluid (Eulerian approach), the governing
differential equations representing the complete dynamics of a fluid flow system
can be derived using a rather simple diffusive transport modelled by Gaussian

processes in the species phase space [114, 115],

dp
hullad . — 1.2
4V (pu) = 0, (1.2)
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Here p, u, p and p are the dust density, velocity, pressure and kinematic viscosity
of the dust. Quantities g and fiiction Tepresent gravitational and frictional forces
acting on the dust. e, T', and ® are internal energy, Temperature and viscous
dissipation rate of the flow system [114, 115]. These coupled differential equations
of fluid dynamics, representing the above fundamental laws, are known as the
Navier-Stokes equations. In the above set of equations however has larger number
of unknowns variables than the numbers of equations and therefore require more
equations for perfect closure of the set. Generally, the density(p) relates to pressure
and temperature, my means of a relationship given by the so called equation of
state p = ¢p”, where v = ¢,/¢,. Its simplest form is p = pRT (ideal gas equation).
Quantities dh = c,dT" and de = c,d1" allow expressing enthalpy and internal energy,
respectively, in terms of temperature. The equation of state provides the required
closure for normal fluids, allowing to solve the set for generating solutions, in a

bounded region by additionally prescribing the boundary conditions.

1.4.2 Governing equations in the viscoelastic fluid regime

The strongly couple complex fluids, such as biological systems or dusty plasmas
having coupling parameter in the range (100 < I" < T'.), behave like visco-elastic
fluids. For such flows, both the viscous and elastic effects need to be effectively
incorporated in the flow characteristics. One of the means to achieve this is via aug-
menting the usual hydrodynamic description by a phenomenological visco-elastic
term to account for the strong coupling correlations. A generalized momentum
balance equation obtained by this approach in the regime of its applicability is

written as follows [116],

0 0
{1+Tm<a+u-v>} {(a—l—u-V)u%—%—VV] =nViu

+ (g + c) V(V - u), (1.5)
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where 7, is the newly introduced relaxation parameter, V is potential and (
is bulk viscosity of the dusty plasma. The evolution of u in (1.5) incorporates
characteristic traits associated with strongly coupled matter through a relaxation
parameter 7,,. For time scales longer than 7, the medium behaves like a viscous
liquid, whereas at shorter time scales the memory effect persists and the system
shows solid like elastic properties. A detailed description of dusty plasma’s physical
structure and regimes of its operation corresponding to a complete range of in key
parameters is provided in Appendix B.

Considering the intended regime of present study to be weakly coupled and
normal fluid-like, the present time independent approach to steady-state vortex
flows is limited to making use of the model (1.3) for first application of velocity
potential based 2D hydrodynamics to bounded and driven dust vortex flow de-
scribed in further detail in Chapter 2 and 3. The general introduction to features

of 2D hydrodynamics relevant to present study are detailed in the Appendix A.

1.5 Thesis outline

The description provided in the preceding sections indicate the great variety of dy-
namics exhibited by the dusty plasmas and its potential to display characteristics
of various states of matter in the nature depending on largely externally control-
lable parameter in simple laboratory experiments. Whether the spectacular dust
flow dynamics observed in a variety of recent dusty plasma experiments, often
accessible by velocimetric techniques [117], can be employed to study complex sys-
tems operating far from thermodynamic equilibrium, is subject to availability of
a systematic formulation of the dusty plasma in its simplest, fluid-like, dynamical
regime. The focus of studies presented in this thesis is therefore on the aspects of
fluid-dynamical analysis of a driven confined dust fluid suspended in a quasineutral

plasma.
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Presented in the first half of this thesis is the first application of a 2D hydro-
dynamic model to these volumetrically driven spatially confined dust vortices [24]
observable in many of the dusty plasma experiments. Besides predicting and inter-
preting experimentally observed multiplicity of vortex in a series of observations
by means of numerical solutions, a more systematic and analytic approach to var-
ious advanced aspects of linear dust vortex dynamics also outlines basic scaling of
boundary phenomena at low to moderate Reynolds number [25]. The second part
of the study presented in this thesis addresses a further advanced and complete
nonlinear regime of the dust vortex flows. Besides interpreting nontrivial physics
of often noted transition to nonlinear regime of these vortices in the recent exper-
iment the nonlinear analysis extends the limits of valuable analytic prescriptions
of estimates and scaling recoverable from rather easily diagnosed flow dynamics
of the dust, to high Reynolds number nonlinear regimes. The remarkable aspect
of a continued stability of spatially extended vortex structures via a structural
bifurcation is analyzed by means of finding nonlinear co-rotating multiple vortex
solutions of the formulation, highlighting also their recovery in recent experiments

showing an identical transition.

Provided below is a systematic chapter-wise analysis of the vortex motion of

the dust clouds and its characteristics addressed in the present thesis.

In chapter 2, addressing the requirement of a formulation for study of vortices
forming in dusty plasmas as motivation, the first application of 2D hydrodynamic
formulation is done in the linear, low Reynolds number, limit to confined dust
clouds electrostatically suspended in a laboratory plasma. As a first approxima-
tion, the nearly incompressible dust flow dynamics is treated as governed by the
2D Navier-Stokes equations in which the drive produced by the ion drag and the
friction produced by the stationary neutral fluid can be suitably accounted for in
a steady-state. The dust vortex formulation is developed based on the stream-

function approach in fully curvilinear setup which inherently accounts for the in-

39



CHAPTER. 1. INTRODUCTION

compressibility of the dust flow and produces characterizable solutions in terms
of dust streamlines, as functions of measurable parameters and relevant boundary
conditions. In the applicable regime of interest, the formulation produces scaled
solutions with system relevant normalizations allowing to obtain and characterize
the Bounded dust flow equilibria. The formulation modelling an open system ad-
mits dust drive by a number of external sources of vorticity by allowing to specify
them by means of a source term. The dust flow equilibria are analyzed in two
important cases of sheared ion flow profiles, first in the where the driving ion flow
field is considered having a monotonic profile with shear, and in the second case
with a nonmonotonic variation in the flow profile, having a localized shear. The
solutions relevant to observation of dust vortex flow in many experiments are recov-
ered, including a prescription to obtain counter-rotating multiple vortices within

the linear limit as subsequently recovered in the experiments.

In chapter 3, we have continued exploring the linear regime of the dust flow by
analytically addressing the issues that in presence of a background high Reynolds
number driving plasma flow, what are the characteristics of the 2D driven flow
structure, and how do the spectral properties of the driver flow influence equilib-
rium mode number spectrum of the driven flow when it is subjected to important
boundary phenomena. For the analysis of driven confined dust fluid vortex flow
a boundary value problem is constructed in a nonplanar, cylindrical geometry in
terms of dust flow streamfunction. The analytic solutions for the dust flow are ob-
tained by treating the boundary value formulation as an eigenvalue problem, and
using the linearly independent set of Bessel functions as eigenmodes that allows
both driving and driven flows to follow valid flux conservation and have a multiple
scale vorticity spectrum. The spectral characteristics of dust vorticity at higher
mode numbers is shown to be determined predominantly by the boundary effects
that have additional impact when combined with variation in the usual physical

parameters of the dust medium, including the kinematic viscosity and the coeffi-
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cients of neutral friction and ion drag acting on the dust fluid. Both the boundary
layer thickness and the dust Reynolds number are shown to have definite exponents
of variation with respect to the medium viscosity p. While the effective boundary

1/3

layer width is recovered to scale with ;'/°, the effective Reynolds number for the

~2/3_ Both these orderings are seen to be ob-

setup is recovered to scale with p
scured by an increasing spatial complexity of the driving mechanism. The degree
of the impact of this complexity is estimated by systematically characterizing the
effect of individual driver flow modes in various cases with increasing value of the

cylindrical mode number.

In chapter 4, the nonlinear properties of a volumetrically driven 2D dust vor-
tex flow of a confined dust fluid suspended in a plasma are studied. Motivated by
toroidally symmetric flow formation and signatures of nonlinear nature of its flow
dynamics at higher dust velocities, 2D nonlinear equilibrium solutions of the vor-
tex flow are obtained in a toroidally symmetric domain. The solutions obtained in
present treatment are relevant to a large number of observations in dusty plasmas
setups where a vigorous dust vortex flow dynamics is observed with flow velocities
approaching the nonlinear limit. In presence of 2D heterogeneous boundary condi-
tions applied to dust flow in a curvilinear coordinate system, the major nonlinear
effects cause the boundary layer to separate from the domain boundary. This
causes the vorticity generated from the interaction with the no-slip, or frictional,
boundaries to be convected away with strong flows of the primary vortices. The
development of separated boundary layer is investigated as a structural bifurcation
where the kinematic viscosity assumes role of the bifurcation parameter and the
separation coincides with the bifurcation. The bifurcation is shown to occur when
the vorticity profile approaches its first zero value along the boundary at the point
where its minimum is located. This critical behavior and signatures of equivalent
nonlinear vortex states in experiments indicates capacity of confined dusty plasma

vortex structures to represent a class of systems that can self-stabilize by making a
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critical transition to a self similar state, for example, biophysical transition during
cells undergoing mitosis. The nonlinear scaling of the boundary layer parameters
with kinematic viscosity p is obtained that shows a velocity independent linear
estimate of kinematic viscosity to modify and additionally depend up on the flow
velocity and its gradient scale length along the streamlines as p = AT%LLH' Simi-
larly existence of a critical values p* demarcating transition to nonlinear regime is
identified. These two factors allow estimation of viscosity of charged fluids using
appropriate scaling by identifying a structural change in flow patterns in experi-

ments.

In chapter 5, we present the solutions of 2D nonlinear hydrodynamic formula-
tion of confined, volumetrically driven dust cells with variation in the confinement
domain’s aspect ratio and its impact on the formation of vortices and their number.
The bifurcation predicted in Chapter 4 for a dusty plasma 2D flow cell is discussed
in the light of its close resemblance to bifurcation transition in more complex bio-
physical processes, for example, in certain approaches to model the process of cell
division or mitosis. The advanced numerical analysis done examined more diverse
aspect ratio values, including those exceeding 2 and smaller than unity. It is dis-
cussed that the cases with aspect ratio larger than 2 and more, a complete sequence
of identical co-rotating vortices is recovered with number of identical vortices equal
to the value of the aspect ratio. This result is discussed in the light of recovery
of similar results in the dusty plasma experiments by M. Choudhary et al. [13]
where, in close agreement with our nonlinear results;, a dust cloud with aspect
ratio exceeding unity is indeed seen to develop a series of multiple co-rotating vor-
tices with stronger drive, or larger Reynolds number. It is formally shown that
achieving a periodic frequency of bifurcation in autonomously growing vortex flow
cells might be possible by introducing an dependence of the a cell dimension via
a time-integral relationship with the increasing area of an unsaturated vortex cell.

The possibility of an exact implementation and solution of the prescribed model is
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highlighted as a future extension of the present model and computational analysis,
for recovering a nonlinearity controlled continued replication and generation of a
spatially periodic sequence of vortex structures.

Finally, chapter 6.1 provides brief summary of the overall study presented in
the thesis and main conclusions drawn from the results obtained in this research
work. Few results from the linear and nonlinear regimes of the present studies
are discussed in the perspective of existing experimental and theoretical studies on
the subject. The content of this chapter further identify and describe the poten-
tial areas of interest in which the present research can lead and contribute. The
discussion also covers possibility of extension of applied techniques and numeri-
cal approaches for addressing more detailed and readily accessible regimes of the
present formulation. Options to explore certain statistical aspects related to dust
vortex equilibria are also suggested. Certain experimental studies are suggested
for possible experimental realization of the predictions made in the present stud-
ies and verification of various theoretical estimates provided in the present work,
for example, estimate of dust dynamical viscosity using velocimetric techniques

obtained in chapter 4.
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dust vortex flow in plasma

2.1 Introduction

The systematic analysis of complex systems in nature essentially requires inves-
tigating their less complex and more accessible forms to serve as paradigm. The
simple driven systems that display a range of stable states away from thermody-
namic equilibrium form attractive models to study the behavior their more complex
driven counterparts exhibit. Vortex structures forming in various dusty plasma
present such an example which have also shown their accessibility in very simpler
systems, at much realistic scales and via equally simple forms of diagnostics. In a
wide variety of laboratory experiments involving dusty plasma, the levitated dust
medium is observed to display a spectacular flow dynamics. In many cases the
dust clouds are extended in considerable plasma volume and show characteristics
like a fluid with a very well defined flow field equilibrium in the region of confine-

ment with definite mass-density conservation. Such fluid-like dynamic equilibria
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indicate applicability of the hydrodynamic approach to the dust medium within
a finite range of its phase-diagram. The physical regime for the dusty plasma to
be in a normal Navier-Stokes like fluid regime is determined specifically by such a

phase-diagram presented in Chapter 1.

As already discussed in larger detail in Chapter 1, the main objective of this
first part of study is to model the basic behavior of dust flow dynamics in a range
of experiments where a vortex-like dust flow is observed. Such observations are
available in the experiments performed both in normal laboratory Dusty plasma
[7,8, 11] and in microgravity conditions, for example in International Space Station
(ISS) where the vortex formed in the dust cloud surrounding a void [9]. Keeping
in view the above observations, it is quite relevant to consider situations where, a
high enough dust particle population, localized in a limited volume by an effective
confining potential, strongly interacts with, and comes to an equilibrium with, the
effective confining potential. The dust particles must uniformly fill the region of low
potential, or the bottom of the potential well. For the cases in which the average
kinetic energy of the dust particles either exceeds or is comparable to the energy
of their mutual interaction [118], this formation of a dust cloud can suitably be
treated by an incompressible hydrodynamic formulation. The corresponding fluid
equations can be employed as a first approximation for obtaining time independent
flow-field distributions in space or for analyzing processes with the characteristic

timescales longer than the inverse of dust acoustic frequency, w; ' [119].

In setups with more than one dimension, the spatial boundaries of such dust
fluid must acquire the shape of the equipotential contours (in a 2D equilibrium)
or surfaces (in a 3D equilibrium) of the potential well, and the dust thus remains
confined by the surrounding 2 or 3-dimensional potential barrier which this un-
perturbed dust fluid is unable to overcome. The dust flow along this boundary
can therefore only be parallel to the boundary. In inviscid conditions, an isolated

incompressible fluid contained in any such volume has a variety of equilibrium
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flow field solutions that essentially need to satisfy only the appropriate boundary
conditions [23]. However in the conditions where an external momentum source
is present, specific equilibrium flow solutions are attainable only in presence of a
friction, either with boundaries or with a more spatially distributed sink of the
momentum. This sink can be present in the form, for example, of a third fluid
capable of generating a friction and thereby dissipating the energy of the driven
fluid, leading the system to an equilibrium dynamical state. A dust fluid which
is electrostatically suspended in a plasma and confined by an effective potential
well represents a setup where both of these elements may be available in the form
of a quasineutral plasma (ion) flow and a stationary background of neutral gas,

respectively.

The setup considered in this chapter, and throughout this thesis, is there-
fore highly relevant to a dust fluid suspended in the plasma which is spatially
confined /localized, effectively by a combination of electrostatic and gravitational
fields. A 2D or 3D conservative field F, = —VV confining the dust fluid can how-
ever be produced by various means as achieved in many complex plasma setups.
For example, by using an electrode with parabolic trough to achieve the required
horizontal confinement that results in a parabolic potential well [95]. The other
means include potential caused by special geometry of the containing surfaces
[30, 120, 121] or even the effect of thermophoretic force due to heated electrodes
which in combination with other factors could generate a 3D harmonic confining
potential [122]. Since the boundary provided by an effective potential may be
structureless (k) — 0, where the subscript || represents direction parallel to the
boundary) the friction with the boundary may vanish preventing the microturbu-
lence at the boundary and the associated entropy production [123]. The considered
boundaries can therefore be treated with various boundary conditions, namely, no-
slip, complete slip or partial slip boundary flow of the dust, providing a finite or

zero boundary layer width, respectively, though the dust fluid has a finite viscos-
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ity and flows with very small Reynolds number. In the present analysis we have
used a combination of no-slip and complete-slip dust flow at various sections of
the enclosing boundary, motivated by situations of more practical interest.

In this chapter the dust fluid setup described above are analyzed by means of a
hydrodynamic formulation and its solutions. Various flow equilibria are obtained
between a dust fluid confined by an effective confining potential and a streaming
plasma flow, in presence of a stagnant neutral fluid in the background providing a
frictional resistance to the dust motion. For most of the practical cases of interest
the effective confining potential is likely to have spatial nonuniformities and flux
conservation in the Cartesian coordinates may be valid only locally, making it
difficult to include effects of the boundaries which essentially have global character,
as they must enclose the entire volume of the interest. The formulation and the
solutions here therefore are worked out in a cylindrical setup that allows to account
for finite curvature and nonlinearity in the spatial configuration of the setup and the
boundaries. In this chapter, in Sec. 2.2 we present the hydrodynamic formulation
in a 2-dimensional, cylindrical set-up. In Sec. 2.3 the solutions of the model are
presented and discussed, including a detailed characterization of the dust flow in
terms of the basic parameters, namely, dust viscosity, coefficient of ion drag on
the dust particles and the coefficient of friction between dust and the neutral gas.
Two cases, with profiles of the driving plasma flow having a monotonic variation
(modelled by a cosine radial distribution) and a non-monotonic variation (modelled
by a spatially localized Gaussian radial distribution), are presented in Sec. 2.3.1

and Sec. 2.4, respectively. Summary and conclusions are presented in Sec. 2.5.

2.2 2-D Hydrodynamic formulation

The geometry of confined dust fluid considered in present formulation is identical

to the recent experiments in the laboratory at Institute for Plasma Research (IPR-
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Figure 2.1: Toroidal dust cloud with Figure 2.2: Schematic representation of
poloidal circulation in the laboratory dust confined toroidally by V(r, z) and
dusty plasma experiment by M. Kaur driven by shear flow field vs(r) through
et al. Phys. Plasmas 22, 033703 (2015).  the domain.

India) where a toroidal dust structure forms having a poloidal circulating flow in a
glow discharge plasma [11] as shown in Fig. 2.1. The steady-state nature of dust-
fluid flow this such experiments indicate an almost time-independent distribution of
electrostatic potential in the plasma which could subsequently be measured by the
careful probe diagnostics in absence of dust. In order to treat these quite realizable
driven dust vortex structures as a paradigm for natural driven-dissipative complex
systems their dynamics is modelled by a simplistic limit of the hydrodynamic
approach in the relevant curvilinear coordinate system introduced in the following

sections.

2.2.1 Model setup relevant to laboratory dusty plasma ex-

periments

For theoretical formulation, we consider a setup where dust fluid is confined by
an effective potential V,, and its associated conservative force field F. = —VYV,
as shown in Fig. 2.2. The confined dust cloud is in dynamic equilibrium with

an unbounded streaming flux of ions which drives the dust fluid dynamics and a
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stationary neutral fluid that resists the dust flow. In the associated azimuthally
symmetric experimental setup Fig. 2.1, the dust fills volume of a torus which
generally acquires a non-regularly shaped cross-section determined by the effective
confining potential. For analytic or computational simplicity, however, this cross
section of the torus is approximated in the present treatment as a rectangle, as
illustrated schematically in Fig. 2.2. Accordingly, using cylindrical co-ordinates
to accommodate the azimuthal symmetry, the toroidal dust fluid is considered
confined by the effective potential Vj(r, z) within the boundaries of a finite section
of an infinite cylinder of flowing plasma, or in the region where 0 < r/L, < 1 and
—1 < z/L, < 1, with no variation along the azimuthal dimension 0 < ¢ < 2.
The potential at the boundary of this region jumps to a very high value at the
r and z boundaries of this region, producing a high barrier for the dust particles
to ensure a zero flow across this boundary. Since in the limit of dust parameters
considered here the dust fluid tends to settle at the bottom of the potential well,
and for smaller quantity of the dust fluid the boundary should assume the shape
of equipotential contours in the 7-z plane while continuing to have a periodic
structure along gE For the present treatment, however, the dust fluid is assumed
to fill the complete region covering the volume up to the outermost contour and

the intersection of the dust volume by an r-z plane is a rectangle.

2.2.2 Conservation equations in 2D cylindrical setup

For the azimuthally symmetric bounded dust flow that follows incompressibility
condition and has a finite viscosity, the dynamics is governed by the 2D Navier-
Stokes equation in which the drive produced by the ion drag and the friction

produced by the stationary neutral fluid can be suitably accounted for,

G = TSV Vs gy v W), (2)
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where u is the dust flow velocity, v is the ion flow velocity and w is the flow velocity
of the neutral fluid. P and p are the pressure and mass density of the dust fluid,
V is the effective confining potential, u is kinematic viscosity, & is coefficient of ion
drag acting on the dust and v is the coefficient of friction with the neutral fluid
[124-126]. Accordingly, the components of flow equation (2.1) in the r-z plane are

written as follows [23],

ou, ou, ou,  10P OV 9
5 + u, 5 +u, 5. oor  or + uVou, — E(up — ) — v(u, —w,), (2.2)

ou, ou, Ou,  10P 0V 9
T —i—u,nﬁ—i-uzg— 0o: +uVou, —E(u, —v,) —v(u, —w,), (2.3)

along with the equation of continuity for the incompressible dust fluid, V- u =0,

written in r-z plane following the cylindrical coordinates as,

19(ru,) N ou,
ro or 0z

~0. (2.4)

A more detailed description of these simplified conservation equations is provided in
Sec. 1.4 and in appendix A. In the limit of small Reynolds number (Re &~ Lu/u <
1), the nonlinear advective transport in the left hand sides of Eq. (2.2) and (2.3) are
negligible compared to the diffusive transport in the right hand side. Further in the
steady-state equilibrium flow limit, the first term comprising the time derivative
is also negligible and the ions and neutral flows maintain equilibrium distribution
over the duration where fluctuations have a vanishing average over the slow dust
time scale. Assuming this linear, or low Reynolds number, steady flows limit, and
operating (2.2) and (2.3) with 0/0z and 0/0r, respectively, both equations can

be combined to yield dynamic equation in term of dust vorticity, w = V X u, as
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follows,
V3w — (€ + v)w + Ews = 0, (2.5)

where wy is the vorticity of the source, or that of the driving fluid (plasma ions)
in the present case. The coefficient of various terms i,e., &, v and pu are generally
functions of system parameters as in standard dusty plasma modelling procedures,
for example that presented by Barnes and Kharapak [124-126]. Note that the
source of vorticity ws in Eq. 2.5 might account for a variety of sources arising from
various finite contributions in circulation (curl operating on a momentum source),
for example, ion or neutral drag (V x v;,), nonuniformity of dust charge density
(VQq x E), nonuniformity of plasma/neutral flow and density (Vv;,, x Vn,;,,) and
nonuniformities of the ion or neutral temperatures (V1;, x Vn,,) are among the
possible mechanisms in many dusty plasma systems. For simplicity, however, we
treat the source of vorticity from ion drag ws = (V X v;) as the representative

source mechanism among these possible sources, for the present study.

2.2.3 The streamfunction formulation in curvilinear setup

For the subsonic dust flow (u/c; < 1), where ¢, is dust acoustic velocity, the
flow field is considered incompressible in nature, or satisfying V- u = 0. This
allows introducing a velocity potential or streamfunction ¥ such that u =V x ¥
satisfies the incompressibility condition. However, for azimuthally symmetric flow
system the dust motion can suitably be treated in the 2-dimensional r-z plane
such that the dust vorticity vector w = V x u is directed purely along gg Then the
streamfunction and vorticity behave as a scalar potential giving two dimensional

flow velocity as u = V x (1M3) Thus the r and z components of the velocity
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become expressible in term of scalar streamfunction as,

oY _10(ry)
N (2:6)
and the corresponding vorticity w in term of ¢ is given by,
dz¢+1%_£+02_’;/) (27)
o2 ror  r?2  022)° '

The advantage of such potential instead of dealing with vector field of of system
has discussed explicitly in section 2.2.3. Now using (2.5) and (2.7) we obtain the

equation governing streamfunction of the dust fluid as

oy 20 (3 N\ 20°] % K\ 2000
W*F%‘[(ﬁ““) 82} T <§_7>+7’822 ar
3 K 2 > 84

where Ky = (§+v)/pand Ky = €/u. The coeflicients in (2.8) are independent of z,
we therefore treat dependence on z in ¢ via a separable function v,(z) that allows
1 to be expressed in the form of the product ¢ = v,(r)1,(z) and the Eq. (2.8) to

be written as,

a4¢r 283¢r 3 2¢;/ 821/}7‘ 3 I{l 21/}” a¢r
ort +; ord K_Q—FKl) R } or? i {(___) r;bj

7’3
JEE) G- Fo o v

where prime denotes differentiation with respect to z. Based on the homogeneous

boundaries along axial direction, the same consideration further allows us to resolve
the z dependent factor of the function, 1,(z), in its Fourier components along 2.

The choice of axial scale k, set as the scale length associated with the confinement
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domain,
Y, = a, cos(k,z), k, = (m/2L,). (2.10)

This chosen scale enables 1) to satisfy the boundary conditions at the top and
bottom boundaries (2 = +L,), ensuring no dust flow across these boundaries. The
ion flow however is unbounded and allowed to be an arbitrary function of r and
z, therefore encompassing all possible length scales in w,. The associated stream
function for ions thus has a wider spectrum of Fourier modes with an arbitrary

range of k,, values, and is expressible more generally as,

l/)s - i bnwsr Cos(ksznz)- (211)

n=1

Then, substituting (2.10) and (2.11) in (2.9) and using (2.7) couples vorticity of
the dust to any arbitrary scale of the vorticity of the driving fluid. The coupling
between individual Fourier modes of variation along axial 2 of the vorticities of the
two fluids is linear and effectively corresponds to the choice k., = k. for which

Eq. (2.9) reduces to a simpler form, independent of .,

Mp. 203, B {(i +K1) B 21/;;'} O, N K 3 K1> N gz/é} N,
2

ort "y o’ WV, | Or? r3 r ra,| or
3 K, 9 ’7/);/ w;///
— |:<7_4_7_2> + <T—2+K1>E_ 1/]2:| - — Kowg, = 0, (212)

where the prime denotes integration with respect to z. Eq. 2.12 represents the
equations to be solved for the dust flow system in order to recover the basic char-
acteristics of the dust circulations as functions of parameters &, u and v motivated
by the dusty plasma experiments. For its simpler numerical solutions using stan-
dard numerical procedures [127-129], the fourth order differential equation (2.12)

can be resolved into four coupled first order linear ordinary differential equations
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as follows,

opefor = P,
WV for = o,
@ jor = ¥,
and o jor = f (g/)r,z/)ﬁl),1/)7(,2),;/)£3),wsr>. (2.13)

Here, the source vorticity ws, is determined by the form of the 2-D external un-
bounded background driver velocity field vs(r, z). Thus, the Eq. (2.13) couples
circulations in the unbounded ion flow with finite vorticity on scale L, to that of
the dust fluid confined within the boundaries —L, < z < L, and 0 < r < L,
while allowing the existence of ion flow circulations of varying scales along both
along r and z. The above set of coupled linear partial differential equations is
solved numerically by applying boundary conditions described below, obtaining

2D equilibrium flow field for the dust fluid in the region of confinement.

2.2.4 Boundary conditions

The boundaries for the dust flow in the present treatment are defined by the ef-
fective potential that allows no dust flow across a sharp potential step where the
potential Vj, for dust jumps from a small accessible value to a large value at the
boundaries. Thus the dust velocity normal to the boundaries is zero (u; = 0),
consequently the dust is well confined in a finite section of a cylinder that accom-
modates the torus having a rectangular cross-section in r-z plane with azimuthally
symmetry. For a boundary with no spatial structures or roughness (k — 0), the
dust fluid can be considered to flow with arbitrary velocity along the boundary us-
ing a perfect slip boundary flow, free from a dissipation or entropy generation. The

flow parallel to the boundary in such cases is determined purely by the driving ion
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flow. On the other hand, when the boundary is considered to produce a frictional
dissipation in the flow, a partial or no-slip boundary flow (u = 0) needs to be
imposed and a boundary layer is expected to result in the solutions of Eq. (2.13).
The boundary conditions are motivated by the experimental configurations where
the driver is localized in a narrow region of the domain, and in the region of domain
far from the influence of the driver the dust experiences strong friction such that
velocities there are considerably small Ref. [11]. Depending on the above factors,
various categories of solutions are obtained using the corresponding boundary con-
ditions that are expressed in term of value of the streamfunction potential at the
boundaries. Since the velocity is described by spatial derivatives of the stream-
function ¢ as determined by Eq. (2.6), gradients of v is controlled along r and z
directions at the boundaries. Clearly, fixing an equal velocity potential along any
boundary section ensures flow purely along the boundary. Accordingly, a constant
value 1) = 0 is set along the entire confining boundary of the domain. Further,
the gradient normal to the boundary is set equal to zero along the sections of the
boundary where no slip, or zero parallel velocity needs to be set. Such boundaries
include all the sections of boundary with r > 0, namely, the top, right and bottom
sections of the boundary. On the left boundary, on the other hand, which is the
boundary section having » = 0, no control of the normal gradient of 1 is used,
effectively allowing purely the driver to determine the flow velocity at the center

of the domain.

2.2.5 Normalization, Scaling and Parameter regimes

Identifying the radial width of the region L, and the ion flow velocity at the center
Uy as the ideal normalization for the lengths and velocities in our system, respec-
tively, the quantities in governing fluid dynamic Eq. (2.13) is nondimensionalized
and normalized in the present approach. We have thus used the transformations,

Y = Y/[UoL,], w = w/[Uo/Ly], u = u/[Uo], ws = ws/[Uo/Ly|, p = p/[UoL,],
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& —&/[Up/Ly) and v — v/[Uy/L,]. These normalization factors serve as the units

in our numerical solutions presented in the following sections.

Considering a typical laboratory glow discharge argon plasma with micron size
dust and the plasma parameters, n = 102 cm™3, T, = 3 eV, T; = 1 eV, we
assume the conditions where ions are streaming into the bottom electrode with a
flow velocity Uy equivalent to fraction of the ion acoustic velocity ¢, = \/m )
For such plasma conditions the value of ion drag coefficient is estimated to be
€~ 1.0 x 1075 Uy/L, and neutral collision frequency to be v ~ 1.0 x 107% Uy /L,..
[124-126]. For a typical system size, L, ~ 10 cm, the range of kinematic viscosity
p can similarly be chosen p ~ 1 x 107% Uy L, which corresponds to small Reynolds
number (Re ~ 1) of the dust flow, consistent with many dusty plasma experiments
and simulations results [4, 130]. The variation in ranges about these values of
parameters is therefore made in the present treatment for the characterization of

the dust flow dynamics relevant to various experiments.

2.3 Bounded dust flow equilibria: monotonic drive

The Eq. (2.13) is solved numerically obtaining the 2-D distribution of the stream-
function 1 of the dust flow in the confined region 0 < /L, < land —1 < z/L, < 1
using a range of system parameters, with fixed boundaries and the driving fluid’s
vorticity ws. In this and the following section, we have analyzed dust flow equi-
librium in two important cases of sheared ion flow profiles, first in the subsection
2.3.1 where the driving field is considered having a monotonic profile with shear,
using a cosine like radial variation in velocity at z = 0 that peaks at the center
(r = 0) but drops to minimum value at the boundary at » = L,. In the follow-

ing section 2.4, the driving field is considered having a localized shear where flow
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velocity value has a narrow peak at an intermediate radial location and remains
minimum both at the center and at the boundary r = L,. The nature of dust
flow field and its characterization with respect to various system parameters is

described systematically in the following subsections.

2.3.1 Dust circulation driven by cosine flow field of the ions

For simple flow structure, let us consider the shear driver velocity profile as a single
cosine mode for radial as well as axial direction such that the intensity of ion flow is
maximum at the center but drops to minimum value at the outer boundary r = L,..
We begin by choosing the driver velocity profile corresponding to the single axial
Fourier mode of the vorticity coupling to the confined dust fluid dimension as

follows,

v,(r, 2) = Ay, cos (QWLT ) cos <27TLZ > (2.14)

Here A,, are magnitude of the sheared streaming external driving fields. For
obtaining the corresponding source function wy,., we adapt the stream function for

the ions in the following form as desired,

Tz
s — Wsr 5 2.15
s =P COS(2LZ>, (2.15)
The corresponding velocity component v, = —dib/0z can readily be written as,
T Tz
(7, 2) = | = Vg Si . 2.1
v (1, 2) <2Lz>@/} sin <2Lz) (2.16)

58



CHAPTER 2. HYDRODYNAMIC FORMULATION OF DUST VORTEX
FLOW IN PLASMA

which, upon using (2.14) and (2.16), yields,

2
TN\ . [ 7T T

Wer :Am<2LT>Sln <2L7’> + <2Lz) V. (2.17)

Now, using v, = %%, the unknown function v, can be determined by using v,

from (2.14) which yields a linear equation,

8/1/}57' wsr
or + r

r
= A,, cos <2L7‘>7 (2.18)

that can be solved analytically to obtain,

Ysr = ﬁ {7’ (2—27) sin (;IZ) + cos <27TL7;> — 1} .

Substituting the above expression for ¢, in (2.17) we obtain the value of wy, as,

() )+ () {r () ) e (o) = o
Wor = Am i\ or, )M o, ) T e\,) U \ar, ) M e, ) T o, ‘

The value of wy, is used in Eq. (2.13), which couples circulations of an un-

bounded ion flow with finite vorticity of axial scale L, to that of the confined
dust fluid. The solutions in terms of dust streamfunction ) = 1), are now deter-
mined using (2.19) as the known driver vorticity consistent with the monotonically

varying cosine radial profile (2.14) of the driver flow velocity.

2.3.2 Dust Streamfunction and streamlines

The advantage of employing with scalar potential streamfunction, ¢, instead of the
vector fields in two dimensional flow problem is already introduced in sec. 2.2.3.
The complete 2D solution of the formulated numerical model yielding the stream-
function 9 (r, z), and its corresponding streamlines, i.e., the contours of the product

r1 are presented in Fig. 2.3 (a) and (b), respectively, for a set of relevant system
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Figure 2.3: (a) Streamfunction potential and (b) corresponding streamlines or contours
of r of the driven dust flow in rz-cross section of aspect ratio L,/L, = 5.

parameters = 103Uy L,, £ = 107°Uy /L, and v = 10~'Uy/ L, in the linear viscous
regimes of the confined dust flow described by the Eq. (2.12). The streamlines
show characteristic features of flow circulations confirming to the boundary geom-
etry in the linear regimes when the Reynolds number approaches zero (Re < 1).
The radial profile of the sheared driver flow field is shown in Fig. 2.4(a), and that
of streamfunction ) through the axial center of circulation z; on one of the az-
imuthally symmetric r-z planes is shown in Fig. 2.4(b). The resulting radial and
axial profiles of the dust flow velocity, i.e., u.(r, z9) and u,(rp,z) on this plane
through the corresponding centers of the circulation zy and ro of the 2D r-z plane
are shown in Fig. 2.4(c) and (d), respectively. The variations in cross-section
profile of streamfunction and velocity profiles for two different types of boundary
conditions, namely no-slip (v = 0) and perfect slip applied at the outer radial
boundary r = 1, are compared in the figure 2.4(c) to (d). Note that the no-slip
boundary introduces friction between the stationary dust at the boundary and the
internal dust flow field such that a strong shear develops allowing the velocity at
the boundary to drop to zero at r = 1. This finite region adjacent to the external
boundary where a strong viscous diffusive stress develops is seen extended up to
certain characteristic radial width that can be identified as the boundary layer

thickness. This thickness of the boundary layer is seen depending systematically
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Figure 2.4: Radial profiles passing through center of circulation (rg,2p) for (¢) Driver
cosine ion flow velocity v,, (d) Dust stream-function , (e) Dust flow velocity u, and (f)
Dust flow velocity u, for no-slip and perfect-slip boundary conditions.

on various system parameters, and is discussed in further detail in the analysis

presented in the section 2.3.6.

2.3.3 Effect of ion drag coefficient £ on the dust circulation

strength

The dynamics of a confined dusty cloud in a sheared streaming plasma depends on
changes in many system parameters such as the kinematic viscosity u, coefficient
of ion drag force on the dust &, the neutral-dust collision frequency v, the form
v(r, z) of the unbounded driver field and the nature of the confining boundaries. In
the present analysis the effect of ion drag co-efficient &, on the equilibrium between
the two flows is explored by fixing the other system parameters in the linear or
small Reynolds number (Re < 1) regimes of the dust flow and varying the value

of ion drag coefficient to take the values £ = 0.1, 0.4, 0.7 and 1.0 x 107U, /L, .
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Figure 2.5: Radial profiles at z = 2y for Figure 2.6: Streamlines for the dust
(a) Driver cosine ion flow velocity v,, (b) fluid flow in r-z cross section for varying
Corresponding vorticity ws, (¢) Varying dust ions dragging frequency £ = (a) 0.1, (b)
stream-function 1 and (d) Dust flow velocity 0.4, (¢) 0.7, and (d) 1.0x107°Uy/L, and
u, for £ = 0.1, 0.4, 0.7 and 1.0x107°Uy/L,. fixed p = 102UyL,, v = 10~ Uy/L,.

The used radial profile of the flow velocity of the driver fluid, ions, is plotted in
Fig. 2.5(a) at z = z, along with the corresponding source vorticity w; in Fig. 2.5(b).
The resulting radial profiles of the stream-function ¢ and the dust flow u, for above
values of ¢ are presented in Fig. 2.5(c) and (d) respectively. As seen in Fig. 2.5(a)
and 2.5(d), when the unbounded ion fluid flows from the top to bottom (i.e., along
—%) at all r values with a monotonic shear, the net flux of confined dust across the
location z = zy remains zero since the dust flow, driven by the ion drag, undergoes
only a circular flow in the volume as it is confined by the boundaries of the region
satisfying the continuity equation (2.4). Across the location z = zj, the direction
of the dust flow is downward (i.e., —2) at all radial locations up to r = rg. The
dust flow however changes sign at an intermediate radial location(r > ) in order
to satisfy the continuity of the dust flow, Eq. (2.4). The downward flowing flux of
dust at small r < ry values balances the upward flowing dust flux at large r > 7.
Clearly, the dust flow is along the ion flow where ion flow is stronger and is capable

of dragging the dust along, while the flow of dust fluid is against the ion flow at
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the large r locations where the downward ion flow is rather weak. As plotted in
Fig. 2.5(d), at small values of drag coeflicient £ the radial profiles of dust flow is
almost uniform, it however tends to acquire the radial variation (or shear) almost
identical to that of the driver fluid when a larger drag coefficient is present with
appropriate modification near the external boundaries to satisfy imposed boundary
conditions. The corresponding streamline patterns are plotted in Fig. 2.6(a)-(d)
for the values of £ = 0.1, 0.4, 0.7 and 1 x 107°Uy/ L, showing the characteristics
changes in flow patterns. For a small value of ion drag co-efficient &, the local
loss of momentum to neutral is equalized with the local momentum gain from
interaction with ions without requiring significant transport across streamlines
and thus the dust circulation is negligible or cease in the recovered steady-state
equilibrium. However, the gradual strengthening of the dust circulation is observed

with increasing £ and fixed value of p and v.

2.3.4 Effect of neutral friction v on dust circulation

The background neutral medium acts as a volumetric sink of the momentum or
vorticity in the system of dust driven by ions and maintain a dynamic equilibrium
steady-state flow of the dust fluid. To study the effect of dust-neutral collision
frequency v, the equilibrium flow is explored for a wide range of this frequency,
v = 0.5, 2.0, 3.5 and 5.0 x 107Uy /L,, respectively. The above flow character-
istics in terms of resulting variation in the dust streamfunction (7, zg) are pre-
sented in Fig. 2.7(c) while the corresponding velocity profiles u,(r, z9) are plotted
in Fig. 2.7(d). These flow characteristics show significant reduction in the strength
of flow potential and corresponding flow velocities with increasing neutral colli-
sions coefficient v. Note that neutrals are uniformly distributed through out the
confined flow domain and act against the flow, thus affecting the Reynolds num-
ber indirectly through collisions. The effect on the strength of the circulations of

the confined dust driven by unbounded sheared driving field Fig. 2.7(a) and (b),
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Figure 2.7: Radial profiles at z = 29 for Figure 2.8: Streamlines for the dust

(a) Driver cosine ion flow velocity v, (b) fluid flow in 7-z plane for varying neu-

Corresponding vorticity ws, (¢) Varying dust tral collision frequency v = (a) 0.5, (b)

stream-function 1) and (d) Dust flow velocity 2.0, (c) 3.5, and (d) 5.0x10~'Uy/L, and
u, for v = 0.5, 2.0, 3.5 and 5.0x10"'Uy/L,. fixed p = 1072UyL,, £ = 107°Uy/L,..

are again characterized in term of changes in streamlines patterns with increasing
neutral collision frequency, as presented in Fig. 2.8.

The weakening of strength of streamline patterns with increasing neutral colli-
sion frequency v shows the characteristics changes of dust circulations with varying
neutral collision frequency. Dust dynamics can cease at extremely high neutral col-
lision frequency. In both sets of characterization, namely, by changing & as shown
in Fig.2.5 and by changing v as shown in Fig.2.7, the center of circulation remains

fixed at a particular location (7, 29).

2.3.5 Effect of kinematic viscosity x on dust vortex motion

In order to study the effect produced by changing kinematic viscosity u, the dy-
namic equilibrium of the dust flow is again explored for a finite ranges of dust
kinematic viscosity j, while fixing the other parameters, including the strength of
unbounded driving field, as presented in Figs. 2.9(a) and 2.9(b). The correspond-

ing variations in cross-section profiles for streamfunction and velocity profiles are
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shown in Fig. 2.9(c) and (d), showing a negligible reduction in flow strength, but
change in position of the center of circulation and increase in the width of the
boundary layer, Ary, developed on the boundaries with increasing dust viscosity
using the values p = 0.1, 0.4, 0.7 and 1.0 x 103Uy L,. This shows that the diffusive
stress at the boundaries is distributed over a larger radial extension with increasing
viscosity of the fluids. The characterization also reveals that more viscous fluid
develops slightly smaller flow velocity than the less viscous fluid under same exter-
nal driving field. The variations in streamlines as shown in Fig. 2.10 reveal that
any change in kinematic viscosity p in linear (low Re) regime, although has no
strong effect on the overall strength of the circulations of the confined and driven
dust flows but strongly affects its spatial distribution close to the boundaries. The
characteristic effects of change in kinematic viscosity are quite different from that
of ion drag co-efficient £ and neutral collision frequency v. The central circulations
appear with same level of strength at all possible g values and the p-variation
shows only small change in nature of the core region while significant changes ap-
pear in boundary regions. The effect of kinematic viscosity in the boundary region
in linear (low Re) regimes is further discussed in following sections. Although
not representable in the limit of linear solutions presented in this and the next
chapter, it is clear that effect of kinematic viscosity will be an important factor in
nonlinear (high Re) flow regimes where the relative strength of advective transport
and diffusive transport depends mainly on kinematic viscosity p. These effects of
system parameters i, £ and v at nonlinear (high Re) flow regime are addressed in

sufficient detail in complete nonlinear treatment done in chapters 4 and 5.

2.3.6 Dust boundary layer and its characterization

The dust flow at the boundary remains parallel to the boundary surface, however
the flow velocity parallel to the boundary changes in magnitude depending on the

nature of boundary. Considering the no-slip boundary condition applied at the
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Figure 2.9: Radial profiles at z = 29 for Figure 2.10: Streamlines for the dust
(a) Driver cosine ion flow velocity v, (b) fluid flow in r-z plane for varying kine-
Corresponding vorticity ws, (¢) Varying dust matic viscosity p = (a) 0.1, (b) 0.4,
stream-function 1) and (d) Dust flow velocity (c) 0.7, and (d) 1.0x1072Uy L, and fixed
u, for = 0.1, 0.4, 0.7 and 1.0x1073UyL,. & =10"°Uy/L,, v =10"'Uy/L,.

external cylinder surface r = L, and a perfect-slip at the boundary at » = 0,
the dust flow velocity the latter is determined purely by the driver flow and the
dust viscosity p. As plotted in Fig. 2.3(f), the dust flow velocity w is obtained
to be maximum at r = 0 and along the direction of the driving flow. At large
r (r — L,) it changes sign and the dust flows against the driving field. Further,
after attaining a maximum value against the ion flow at large r, it again drops
to zero at its approach to outer radial boundary r = L, of the confined domain.
The region near the boundaries where the viscous shear introduced by the no-slip
boundaries is significant is identified as a boundary layer. Since the velocity at the
boundary must drop to zero because of no-slip boundary condition, a maximum
value appears in the velocity profiles close to the boundary and the separation of
this maximum from the boundary, Ary, can be a good measure of the boundary
layer thickness in most cases of interest. We analyze dependence of this separation
both on the dust viscosity 1 and coefficient of ion drag force £ as shown in Fig. 2.11.
We note that this characteristic length scale Ary increases with increasing viscosity

Lb.
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Figure 2.11: Dependence of the separation Ary, on the parameter p for (a) & = 0.2,
0.4, 0.6, 0.8 and 1 Uy/L, and (b) £ = 0.2, 0.4, 0.6, 0.8 and 1.0 x 107U,/ L,..

The dependence on £ over a wide range of small values of ¢ is negligible. How-
ever, in the cases with large enough & values plotted in Fig. 2.11(b), Ar, value
is sensitive to £ and relatively smaller for higher ion drag coefficients &, therefore
effectively smaller for larger dust flow velocities. The above dependence shows
increasing impact, in the interior, of the boundaries that resist the dust motion
at larger dust viscosity with &. Dependence on ¢ indicates that this impact of
boundary reduces at higher dust velocity in the interior. The complementary ef-
fects of these two quantities thus relate to the scale independence of the dust flow
setup analogous to flow with a particular Reynolds number, Re = Lu/u, given a
combination of velocity in the interior, u(r = 0), and the length scale L,. The
dependence of Ary, on various system parameters is different for different regime of
the flows based on combination of the various system parameters. This correlation

will be discuss in detail in the following chapters 3 and 4.
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2.4 Bounded dust flow equilibria: non-monotonic

drive

The solutions discussed in Sec. 2.3 presented the cases where an uncomplicated
monotonic shear is present in a system with sufficiently large size which also de-
termines the upper limit on the structure size. Presence of multiple driver length
scales however generalizes this setup where structures of multiple scales might ap-
pear allowing to determine the lowest structure size that may be allowable by the
diffusion process. Self-consistent appearance of the multiple scale structures is
however not expected in the present linear regime of the formulation. This aspect
is addressed in Chapter 3 and 4 where the nonlinear regime of the setup is ana-
lyzed. The numerical solutions with non-monotonic driver presented in this section
however addresses the linear counter-rotating class of the system of multiple vor-
tices and highlights the rich analytic character of this class, addressed further, in

Chapter 2, using and analytic approach to the linear solutions presented

2.4.1 Drive by a localized Gaussian plasma stream

In order to use driver having scales distinct from the radial dimension L,, we now
examine the dust flow characteristics in the cases where ion flow is localized in the
region around a fixed value of the radius, » = ry and therefore the associated shear
is also confined to thin layers surrounding this region. A profile of the driving ion

flow has been chosen for this purpose having the following form,

v,(r, 2) = A exp {— <TA_I7:O)T cos <27TI1) (2.20)

Here A,, is magnitude of the streaming sheared driving fields, and AL is the

width of the localized flow velocity profile. Following a procedure similar to that
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in Sec. 2.3.1 results into a linear equation analogous to Eq. (2.18),

81% ’@/)sr o T —To 2
B o~ Amew H AT )} (22

that has the following solution for the ),

oA f (=L / (5=l AL (L’
2 P AL o, P AL TR RV V)

where s is the spatial variable of integration from the inner boundary to the

Ve = A_m
T

location r. The radial dependence of ion vorticity, ws,, in the region is thus obtained

in this case as,

B (r —ro) <'r — 719\ ? T \2
Wer = 24, N AN 7 ) + <2Lz) Vs (2.22)

The value of wy, is used in Eq. (2.13), which couples circulations of an un-
bounded ion flow with localized sheared vorticity to that of the confined dust fluid

and solved for streamfunction of the dust flows.

2.4.2 Multiple counter-rotating dust vortex formation

The radial profiles for the dust flow driven by the sheared ion flow localized at a
radial location g = 0.5L,, or the center of the zone, are presented in Fig. 2.12
with values of drag coefficient £ = 0.1, 0.4, 0.7 and 1.0 x 102U/ L,, respectively,
where the normalized parameter & = £/(107°Uy/L,) is used for simplicity of the
representation. The corresponding change in streamline patterns are shown in
Fig. 2.13. By choosing the width of ion flow profile AL = 0.1L, the solutions
are obtained where the dust flow profiles in the interior r < L, as well as the
center r = 0 are determined by the driving ion flow. At the outer boundary
r = L, the dust flow velocity is however set to be zero. The solutions for the dust

streamfunction in this case are seen divided, about the location r = rq ~ 0.5L,.,
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Figure 2.12: Radial profiles at z = 29 for Figure 2.13: Streamlines for the dust
(a) Driver cosine ion flow velocity v,, (b) fluid flow in r-z plane for varying ions
Corresponding vorticity ws, (¢) Varying dust dragging frequency & = (a) 0.1, (b) 0.4,
stream-function 1 and (d) Dust flow velocity (c) 0.7, and (d) 1.0x10~°Uy /L, and fixed
u, for £ = 0.1, 0.4, 0.7 and 1.0x10~°Uy/L,. p = 10"3[UyL,], v = 10~ Uy/L,.

in two separate zones, forming two counter-circulating dust flow vortex. A finite
asymmetry in the two zones corresponding r < ry and r > ry, results from, (i)
the boundary in the outer zone where u, must approach to zero in contrast to
that at 7 = 0, and (ii) from the characteristics of the cylindrical setup where
smaller area is available at smaller radius and flow velocity must increase in order
to balance the upward directed flux at the larger radius as the net flow across
z = 0 for the confined dust must be zero unlike the ion fluid. Note that though
the depth of streamfunction curve is higher for the outer zone r > rg, the peak
value of u, in this zone is smaller than that in the inner zone at r < rq for all the
values of £ as seen from Fig. 2.12(c) and 2.12(d) respectively. This observed flow
characteristics are very relevant to the vortices observed in laser heating driven
dust flow in laboratory experiments [131]. This prediction of multiple vortices [24]
also motivated the recovery of similar kind of multiple counter-rotating vortices
in laboratory dusty plasma experiment at IPR-India by Manjit et al. [12], where

non-monotonic radial density profile was introduced in the background ions. This
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was achieved experimentally by a specially designed cathode structure that has a
concentric metallic disk and ring of different radii on the bottom electrode (see

Fig. 2.1) acting as cathode.

2.4.3 Radial shift and emergence of a counter rotating vor-

tex

Further we have analyzed the cases where we varied the value of ry in order to
examine the effect of radial location of the peak of the localized source profile
and its impact in the present cylindrical geometry where the flux associated with a
constant density has a natural r dependence. These results in term of cross section
profile are presented in Fig. 2.14 and streamline patterns in Fig. 2.15 respectively.
This can be seen that the localization of the driving flow at various small to large
radial values features a transition from single to multiple vortex structures. In the
cases presented here, the driving flow is considered localized at larger to smaller
radius, including at the center ro = 0. In the case where source is localized at the
center (ro = 0) the strong downward driven flux of dust fluid present at the center
is balanced by a less stronger upward directed flux at the large r locations. A single
dust vortex with strong downward directed flow, concentrated close to the center
r = 0 can be seen in this case while the flow away from the center and in the region
close to outer boundary has negligible intensity. It can however be noted that a
visibly larger area under the negative part of the flow velocity curve contributes an
equivalent downward flux close to the » = 0 due to reduction in the area element
27rdr with reducing r in the present cylindrical geometry. When the location of
the driving flux peak is moved at larger r values the downward directed dust flux
at the center gradually reduces in the magnitude and at a sufficiently large rq the
flow at the center changes the sign by producing a net upward flow. Emergence of

this new route in the flux conserving flow set up corresponds to a transition from
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Figure 2.14: Radial profiles at z = zy for Figure 2.15: Streamlines for the dust
(a) Driver cosine ion flow velocity v, with fluid flow in -z plane for localized Gaus-
various peak locations rg. (b) Correspond- sian ion flow at ro = (a) 0.0, (b) 0.24,
ing vorticity ws. (c) Varying dust stream- (c) 0.42, and (d) 0.60[L,] for fixed u =
function ¢ and (d) Dust flow velocity u, for 1073UgL,, ¢ = 107°Uy/L,, and v =
o = 0.0, 0.24, 0.42 and 0.60 L,. 10710y /L,

a single to multiple vortex regime where the upward moving dust flux balances
the downward driven flux via two disjoint regions in the r-¢ plane, producing two
counter circulating vortex in the r-z plane as visible in the streamlines presented in
Fig 2.15(a)-(d) that feature such a transition beyond ro = 0.24, between Fig 2.15(b)
and Fig 2.15(c). Although the solutions with a single localized flow structure are
presented here, the multiple vortex solution must emerge when a complex source
structure with multiple localized shear layers is used as external driver. For a fixed
system size, however, the radial scale length of the vortices must reduce in such
situation allowing the details of viscous dissipation or nonlinear effects of vorticity
convection to become important at sufficiently larger k values, where a viscous
cutoff, kg, may exist and determine the smallest sustainable spatial scale of the

observable vortex [132, 133].
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2.5 Summary and conclusions

The dust vortex structures, routinely recovered in dusty plasma experiments in
normal laboratory conditions and in microgravity conditions present an attractive
and accessible paradigm for a range of driven-dissipative complex system apart
from numerous small Reynolds number natural flow systems that can be modelled
by dusty plasma vortices on much more accessible scales. With requirement of
a formulation for study of vortices forming in dusty plasmas as motivation, the
first application of 2D hydrodynamic formulation is done to confined dust clouds
electrostatically suspended in a laboratory plasma. As a first approximation, the
nearly incompressible dust flow dynamics is treated as governed by the 2D Navier-
Stokes equations in which the drive produced by the ion drag and the friction
produced by the stationary neutral fluid can be suitably accounted for in a steady-
state. The dust vortex formulation is developed based on the streamfunction ap-
proach in fully curvilinear setup which inherently accounts for the incompressibility
of the dust flow and produces characterizable solutions in terms of dust streamlines,
as functions of measurable parameters and relevant boundary conditions.
Beginning from the conservation equations in 2D cylindrical setup the formu-
lation introduces the dust streamfunction and its relationship with the 2D dust
flow field components. Reducible in to a set of multiple coupled first order partial
differential equations, the model can be suitably solved for dust streamfunction,
subject to appropriate boundary conditions that are transformed in terms of the
dust streamfunction and its derivatives. In the applicable regime of interest, the
formulation produces scaled solutions with system relevant normalizations allow-
ing to obtain and characterize the bounded dust flow equilibria. The formulation
modelling an open system admits dust drive by a number of external sources of
vorticity by allowing to specify them by means of a source term. Describing a

number of possible sources, the solutions obtained here consider the vorticity sup-
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plied by a streaming sheared flow of ions, exerting a drag force on the dust, as a
representative driving mechanism. The dust flow equilibria are analyzed in two
important cases of sheared ion flow profiles, first in the case where the driving ion
flow field is considered having a monotonic profile with shear, using a cosine like
radial variation in velocity at z = 0 that peaks at the center (r = 0) but drops to
minimum value at the boundary located at » = L,. In the second case, the driving
field is considered having a localized shear where flow velocity value has a narrow
peak at an intermediate radial location and remains minimum both at the center
and at the boundary r = L,.

By means of treatment in the first monotonic drive case, a detailed character-
ization was done in terms of the effects of (i) ion drag coefficient &, (ii) neutral
friction v and (iii) kinematic viscosity p, on the dust circulation or dust vortex
structure properties. Demonstrating the desired applicability to the dust vortex
formation observed in a number of experimental conditions, this first characteriza-
tion in terms of dust streamfunction solutions yielded the following characteristic

observations and conclusions:

e The complete 2D profiles of the dust streamfunction ¢ (r, z) produce corre-
sponding streamlines, represented, in the present curvilinear geometry, by

the contours of the product ¢ in the domain of the solutions.

e The no-slip boundary used at finite boundary section introduces friction be-
tween: the stationary dust medium it represents at the boundary, and the
internal dust flow field, such that a strong shear develops allowing the veloc-
ity at the boundary to drop to small values at the corresponding boundary

sections.

e This finite region adjacent to the resisting boundary where a strong viscous
diffusive stress develops is seen extended up to certain characteristic width

that can be identified as the boundary layer thickness.
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The net flux of confined dust across the vertical symmetry location z = 2z
remains zero since the dust flow, driven by the ion drag, undergoes only a
circular flow in the volume as it is confined by the boundaries of the region

satisfying the continuity equation.

For the ion flow profile which is unidirectional, because of the confinement
the dust flow is along the ion flow where ion flow is stronger and is capable of
dragging the dust along. It however turns against the ion flow at the large r
locations where the downward ion flow is rather weak, resulting in its steady

circulation.

At small values of drag coefficient £ the radial profiles of dust flow at symme-
try plane is almost uniform, it however tends to acquire the radial variation
(or shear) almost identical to that of the driver fluid when a larger drag coef-
ficient is present with appropriate modification near the external boundaries

to satisfy imposed boundary conditions.

For a small value of ion drag co-efficient ¢ the dust circulation is negligible.
However, the gradual strengthening of the dust circulation is observed with

increasing ¢ and fixed value of p and v.

The weakening of strength of streamline patterns with increasing neutral col-
lision frequency v shows the characteristics change of dust circulations with
varying neutral collision frequency. Dust dynamics can cease at extremely

high neutral collision frequency.

Increase in the dust viscosity coefficient ;1 although results only in a negligible
reduction in the flow strength, it changes position of the center of circulation
and increases the width, Ary, of the boundary layer developed on the resisting

boundaries with increasing dust viscosity
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e The dust flow at the boundary remains parallel to the boundary surface,

however the flow velocity parallel to the boundary changes in magnitude

depending on the nature of boundary.

Since the velocity at the boundary with stationary dust must drop to zero
(the no-slip boundary condition), a maximum value appears in the velocity
profiles close to the boundary and the separation of this maximum from the
boundary, Ary, can be a good measure of the boundary layer thickness in
most cases of interest. As already noticed, this characteristic length scale

increases with increasing viscosity .

The dependence of Ar, on £ over a wide range of small values of £ (~
104Uy /L,) is negligible. However, in the cases with large enough ¢ values
(~1Uy/L,), the Ary value is sensitive to £ and relatively smaller for higher

ion drag coefficients &, and therefore smaller for larger dust flow velocities.

The streamfunction solutions were presented in additional cases of nonmono-
tonic shear in the streaming plasma flow. When a narrow stream of plasma
AL = 0.1L, is used as a driver localized at radial center r = L, /2 of the do-
main, the dust streamfunction presents a solution that divides the domain in
two separate zones, forming two counter-circulating dust flow vortices about

the location of the stream.

The flow characteristics recovered for the case of monotonic driver are found
quite relevant to the vortices observed in the experimental setups where local-
ized source of momentum is present, e.g, in the laser heated driven dust flow
in a laboratory experiments [131]. This prediction of multiple vortices [24]
also motivated the subsequent recovery of similar multiple counter-rotating
vortices in laboratory dusty plasma experiment at IPR-India by Manjit et al.

[12], up on introducing non-monotonic radial density profile of the back-
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ground ions.

e Gradual development of a counter-rotating vortex was studied by introducing
an increasing shift in the localized stream of ions. Transition from a single
to multiple vortex regime is recovered where the upward moving dust flux
balances the downward driven flux via two disjoint regions in the r-¢ plane,

producing two counter circulating vortex in the -z plane.

e With respect to multiple vortex solutions it is generally noted that they must
emerge when a complex source structure with multiple localized shear layers
is used as external driver. For a fixed system size, however, the radial scale
length of the vortices must reduce in such situation allowing the viscous
dissipation or nonlinear effects of vorticity convection to become important
at sufficiently larger k values, where a viscous cutoff, kg, may exist and
determine the smallest sustainable spatial scale of the observable vortex [132,

133].

In conclusion, the hydrodynamic formulation developed in this chapter has allowed
modelling the basic characteristics of the laboratory dusty plasma vortices. A
more analytic approach to solutions of the formulation might allow investigating
the scalings and spectral properties of the dust vortices within the linear regime of
their dynamics. Such an analytic approach is presented in the next chapter with
a discussion on its application to many natural flow set ups and driven complex

systems.
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and driven dust vortex flows

3.1 Introduction

A number of low Reynolds number flow processes in nature involving flow relative
to boundaries share dynamical regime with fluid-like phase of electrostatically sus-
pended highly charged dust particles in plasmas. Some examples of them include,
swimming of microorganisms [16], bacterial turbulence [17], flow of viscoelastic
fluids [18], as well as many robust life-saving biotechnology applications based
on network of microchannels to achieve enhanced rates of, mixing, reactions and
conduction of fluid flows [19, 20] essentially in the absence of the usual macro-
scopic turbulence [21]. A distinct mathematical structure is also associated with
the dynamics of confined dust fluid which is driven, volumetrically, by a streaming
unbounded plasma fundamental to a different class of flow setups. Consider that
a typical laboratory dusty plasma setup has an assembly of negatively charged

dust particles electrostatically levitated against the gravity by the electronegative
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sheath formed on the electrode at the bottom, allowing a supersonic plasma to
continuously filter through it in order to let the latter reach the electrode. This
arrangement, given a much slower time scale of response of the dust in comparison
to plasma species and very low Reynolds number of dust flow, resembles a number
of physical and bio-physical set ups, for example, a microscopic semipermeable
mixing chamber that allows a colloidal solute to gradually dissolve into a solvent
filtering through it at a comparatively high Reynolds number. Another example
is a developing, localized, artery congestion by a cohesive lipid (e.g., cholesterol)
producing blockade to a cardiac valve that would permit the blood flow of higher
Reynolds number [85]. The lump, in the latter, must steadily dissolve in the
blood flow in order to check the blockade growth. As one of its significant re-
lated effects, atherosclerosis, a leading cause of death from myocardial infarction
(heart attack), remains a geometrically focal disease, preferentially affecting the
outer edges of vessel bifurcations. In these predisposed areas, hemodynamic shear
stress, the frictional force acting on the endothelial cell surface as a result of blood
flow, is weaker than in protected regions, rendering endothelium (interior surface
of blood vessels) more susceptible to pathogenic stimuli of injury, cell adhesion,

cell proliferation, and lipid uptake [86].

Under a systematic hydrodynamic formulation of the dust medium suspended
in the plasma, studying the analytic structure of the dust vortex flow equilibria
driven, volumetrically, by a high Reynolds number plasma flow (Re~ 10° and
above [134]), allows addressing many issues [24] relevant to above categories of
complex fluid flow systems, including certain subtle implications of interaction of
dust flow with limiting boundaries. The fact that though such boundary phenom-
ena are essential to many natural dynamical processes but difficult to analyze in
ordinary laboratory experiments, given the complexity or the inaccessible scale of
original set up, makes the dusty fluid suspended in a plasma an ideal means of

their study apart from being a complex medium often displaying spectacular flow
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dynamics in various laboratory experiments. Harnessing this considerable analytic
potential of the emerging field of dusty plasmas requires more accessible analytic
version of the characterization done in Chapter 2 of this thesis and presented by
Laishram et al. [24] with rather simple motivation of obtaining first 2D solutions
to describe the dust vortex flow observed in the experiments carried out in normal
laboratory conditions e.g., Ref. [11]) as well as in the international space station
(ISS) under microgravity conditions [9]. These first systematic numerical solutions
of the formulation, apart from describing the observable basic dynamics, demon-
strated that various fundamental analytic aspects of the dust flow dynamics can
indeed be exploited or examined more deterministically by means of the adopted
formulation if the analytic version of such solutions presenting the vortex flow can
be obtained. For example, the scale of the shear observable in the dust vortex
motion relates to the (often overlooked) physics of the boundary phenomena and
must follow a definite scaling with respect to the fundamental parameters of the

dynamics, e.g., the kinematic viscosity p of the medium displaying them.

Unlike the usual driven flow setups, the boundaries confining dust in plasma are
exclusively seen by the dust medium while the medium providing the direct volu-
metric drive is allowed to have a global flow profile. This unique physics aspect of
the dusty plasma systems, apart from making it relevant to numerous microscopic
semipermeable flow setups in the nature, defines the basic mathematical structure
of the formulation. Its solution, in turn, encompass the inhomogeneity introduced
by the driver modes that are not essentially the eigen modes of the confined dust
flow. The analytic characteristics of the solutions recovered in this chapter show
that the shear in the dust vortex flow observable in the experiments follows a def-
inite scaling with respect to the kinematic viscosity of the dust medium over a
substantially wide range of the latter. This quantifies the considerable capacity of
the dusty plasma setups to represent a wide range of low Reynolds number of nat-

ural flow processes with sufficient flexibility. It is additionally shown here that the
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driven flow of the dust medium in a plasma conveniently lies in the linear regime
(Re<1) of the formalism over a substantially wide parameter range. This property
is usually desired in the microscopic flow systems where the fundamental processes
of mixing, reactions and convection must take place with sufficient efficiency with-
out a turbulent dynamics [21] that necessitates dominance of the nonlinear effects
and introduces interaction between the normal modes of the dynamics.
Addressing the above analytic issues in this chapter, in Sec. 3.2 we revisit the
hydrodynamic formulation introduced in Chapter 2 highlighting the analytic eigen-
value structure of the problem and its solutions. In Sec. 3.2.1 the boundary value
problem is constructed for a dust flow driven by a background plasma flow field
having a prescribed eigenmode spectrum of the flow shear. The analytic solutions
of the hydrodynamic model are obtained in Sec. 3.3 by treating the boundary value
formulation as an eigenvalue problem and by expressing the eigenmodes in terms
of linearly independent set of Bessel modes where both driving and driven flows
follow valid flux conservation. The solutions that admit use of a driving plasma
flow field with a multiple scale vorticity spectrum allow coupling of a multiple scale
plasma flow field to produce an associated, but essentially non-identical, vorticity
scale spectrum for the driven dust flow field. The deviation of spectral character-
istics of dust vorticity from that of the driver is analyzed as determined largely by
the boundary effects and a set of physical parameters, including the dust kinematic
viscosity, the coefficient of neutral friction, and that of the ion drag acting on the

dust fluid. The results and conclusions are summarized in Sec. 3.5.

3.2 2D hydrodynamic dust vortex formulation

We once again consider the dust dynamics within the Navier-Stokes regime and
begin from using the momentum and particle conservation equations (2.2) and

(2.4), respectively. The problem is once again best described by the curvilinear
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Figure 3.1: Schematic of the setup in the cylindrical geometry. Surface plot of an
example effective confining potential V (r, z) for the dust fluid (surface) is presented
along with the flux conserving velocity field vector v of the unconfined driving fluid
in the 7-z plane (arrows) and radial profile of its z-component v, (r) (2D plot).

set up similar to the schematic 2.2 presented in Chapter 2, we however reproduce
it here in Fig. 3.1 to additionally emphasize on the structure of the driver flow
expressible rather in terms of the appropriate radial eigenmodes of the system as
considered in the this chapter and schematically drawn in Fig. 3.1 in the left-hand

side rectangular cross-section of the toroidal dust cloud.

Following the streamfunction formulation provided in Sec-2.3.2; the dust vor-
ticity w is expressed in term of streamfunction 1 in the azimuthally symmetric

cylindrical set up as,

P 10y Y P
=—|=— — . 3.1
<6r2+r8r r2+822 (3:1)
Based on the spatial independence of coefficients of the governing Navier-Stokes
equation (2.1), when ¢ is assumed separable in r and z with its z-dependence

described by a single Fourier mode v, = cos (k,z), a single vortex along z in agree-
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ment with experiments [11, 12| represented by the choice k, = (27/L,) and
is expressible in the form of the product ¢ = ¥,(r),(z) [24]. When the effec-
tive coupling between individual Fourier modes of 1, with the axial mode of the
driver vorticity ws is considered over the region, the Eq. (2.9) reduces in a form

independent of 1, [24],

O 20 /3 %0 [/3 K\ 2k2] 9y,
ort i roord Kﬁ * Kl) a Zkz} or? * (ﬁ a 7) * ro| or
3 K 2 )
- [(ﬁ - r—;> + (ﬁ + A1> K- kﬁ} Uy — FKowey = 0 (3.2)

where K| = (£ +v)/p, Ky = (§/p) and the source vorticity wg, is determined
by the form of the 2-D velocity field v(r, z) of the background ion flow. The
contribution from the modes other than the axial eigenmodes, due to its origin in
the inhomogeneity of the formulation, is recoverable as a particular integral over
the continuum of the Fourier modes for the cases where the circulations with scale
larger than L, are accounted for. This continuum contribution must however drop
very fast in the interior when a sufficiently large number of Fourier eigenmodes
are included. The Eq. (3.2) thus couples circulations in an unbounded ion flow of
finite vorticity on scale L, to that of the dust fluid confined within the boundaries
—L, < z< L,and 0 < r < L, while allowing the existence of ion flow circulations
of scales larger than L.. Limiting the analysis to (k,) > (k.), however, a single
axial mode is assumed in present solutions providing a purely downward streaming
driver plasma flow at z = 0 allowing it to turn radial at the distant top and bottom
boundaries because of L, > L,. A complete multiple radial mode analysis is done

as presented in rest of this chapter.
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3.2.1 Construction of analytic boundary value problem

In order to construct the radial solutions bounded in the region 0 < r < L, we
begin by casting the Eq. (3.2) as an eigenvalue problem, with an associated set
of eigenfunctions ¢,, which satisfy the desired boundary conditions and can be
assembled in linear combinations to construct the radial parts of the driven fluid

streamfunction and the driving fluid vorticity or corresponding streamfunction,

U = Y ampm  and  we = Y by, (3.3)
m=1 m=1

respectively, such that the Eq. (3.2) is transformed into

F Z AmPm — K2 Z bmSDm» (34)

m=1 m=1

with the operator F' representing,

4 3 2 2
F:8—+28 [(%"—Kl)—2k§]8—+|:<i—ﬁ>+2kzj|8

ort  rors or? 73 r r | Or

_ Ki _ I:;) + (i 4 Kl) k2 k;‘} . (3.5)

Note that since the driver vorticity ws, is prescribed, the coefficients b, are known.
Hence, if the eigenvalues of the operator F' corresponding to functions ¢,, are
known, the coefficients a,, can be determined from (3.4), producing, in turn, the

desired solution (3.3).

3.2.2 Boundary conditions and appropriate eigenvectors

The solution procedure requires (i) selection of appropriate of eigenvectors ¢,
that satisfy the boundary conditions as well as continuity equation for both, the

dust and the ion fluid, and (ii) subsequent expansion of the prescribed source
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Figure 3.2: Bessel function reconstruction of a known function ws,(r) with increas-
ing number m of modes.

vorticity ws, in the linear combination of eigenvectors ¢,,. Note that, however, the
solutions are sought for the streamfunction 1, the physical boundary conditions
are essentially defined on the w, i.e., the z component of the flow velocity field in

the dust confinement domain, obtainable from the relation,

L Lo0e)

o or

(3.6)

The relation (3.6) ensured that the radial gradient of the eigenfunctions can govern
the value of the u, at the boundaries while in the interior 0 < r < L, it is governed
by the source, effectively via the Eq. (3.2). From physical considerations, in absence
of any physical boundary at » = 0 the flow velocity value there is again determined
by the driver and only its gradient can be set to zero by symmetry argument. On
the other hand, at the outer boundary (r = L,) the choice, for example, of a no-slip
flow can be made by setting u,(r = L,) = 0. This latter choice is made in the
present analysis in order to allow and study the formation of a boundary layer at
this boundary.

For most suitable imposition, as discussed below, of the above physical bound-
ary conditions in the present cylindrical setup, we choose to express the streamfunc-

tion of both the dust and the background ion flow in terms of linear combinations
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of functions ¢, that represent to a set of Bessel functions,

% = mzz:l amJn <am%> ) Wsr = mzzjl bmJn (am%> . (37)

The set J,(a,,r/R) can additionally be a diagonalized set of eigenvectors by en-
suring that the o, are Bessel zeros, such that the functions ,, satisfy the orthog-

onality condition,

/RT'J (aL)J <a7—> dr = ;; (3.8)
.0 n ZR n JR - 1] J.

Further, since the radial boundary must confine the dust with vanishing velocity
normal to the boundary, v, = 0, the relation (2.6) prescribes that streamfunction
1 must be a constant along boundaries at r = L,, while the radial derivative of
the streamfunction can be controlled to impose an appropriate boundary value of
the velocity u, at this boundary using (3.6). Accordingly, we choose the set of
first order Bessel functions J; (i.e., n = 1) as eigenfunctions ¢, that satisfy the
Jn(amr/R) = 0 at both the radial boundaries, r ~ 0 and r & R(= L,) while its
derivative J; can be determined under the following formulation to achieve the
solutions with desired boundary flow values. The optimum number of modes m in
Bessel series expansion of the desired solutions and source must be used in Eq. (3.7)

for computational efficiency as shown via a representative example in Fig. 3.2.

3.2.3 Eigenvalues of the operator F'

In order to evaluate the eigenvalues A,, of F' we write the associated eigenvalue

equation,

(£ = Am)J1(2m) = 0, (3.9)
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where z,, = a,,r/R. Substituting F' from (3.5) in Eq. (3.9) we get,

T I () + 205 T () — [3 4 Kir® = 20°k2] 22,0 (@) + 3 = K1r? + 20°k2 ] 2 ] ()

+ [—3 + Kt — 2/t 4 KK+ 7'4k;1] Ji(2m) = r* A1 (z,),  (3.10)

where the prime denotes differentiation with respect to r. Eq. (3.10), up on using
the appropriate recurrence relations for the Bessel derivatives and eliminating .Jy
and .J5, yields the desired eigenvalues of the operator F'
am\? am\ 2 am\ 2
Am = <—m) + K <—m> -2 <—m) + Ky | k2 + k2. 3.11
m R 1 R R 1 z z ( )
Combining Eq. (3.4), (3.9) and (3.11) produces the equation for the unknown

coefficients a,, required for the solutions for the dust flow field in terms of the

radial dust streamfunction v, given by Eq. (3.7),

N Ot — Kby ) () — 0. (3.12)

m=1

Representing sufficiently small scales of the radial variation requires a large number
m = M of the eigenfunctions J,(z,,) for the streamfunction t,. For the choice of
orthogonal set of finite number of eigenvectors satisfying (3.8) and a common, non-
zero boundary condition for Ji, the coefficients a,, can be determined generally

as,

Kby,
Uy = ;m 3 (3.13)

whereas the particular boundary conditions can be applied by substituting the
value of x,, corresponding to the boundary in the Eq. (3.12). For the general set of
eigenfunctions, independent of condition (3.8), it is however clear that substituting

a chosen value r = r; in Eq. (3.12) produces a single equation containing total
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M unknown coefficients a,,. A set of minimum M values, r;, must therefore be
selected to construct a complete set of M simultaneous equations for obtaining the
coeflicients a,,,,

3" At — Kobpn) Jn(amr1/R) = 0,

m=1
Z (A — Kaby) Jp(amra/R) = 0,

The set of Egs. (3.14) can be rearranged in a more familiar form,

An A ... A ap B,
Ay Am ... Aoy CL.2 _ ?2 (3.15)
i A Amz . Aum 1| am | i By ]
where,
Aij = NJn(ayri/R) (3.16)
and B, = K, f: bjJn(ayri/R). (3.17)
j=1

The value a,, determined by solution of the set (3.15) corresponds to the weight

th

of the contribution of m™ Bessel mode to the eigenmode spectrum of the dust

streamfunction .
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3.2.4 Analytic form of the boundary conditions and spec-

tral limit

Since the fourth order Eq. (3.4) is solved in terms of eigenfunctions that already
satisfy two of the required boundary conditions v, = 0 at the boundaries » = 0 and
r = R of the cylindrical region, the rest of the procedure clearly admits only two
additional boundary conditions which need to be specified in terms of the radial
derivatives of the streamfunction ¢, at the two radial boundary locations. Note
that the cylindrical symmetry of the present setup also results in the eigenmodes
J1 which naturally obey the condition that the radial derivatives of all the physical
variables, e.g. that of the velocity u,, must vanish at r = 0. With dust flow velocity
at r = 0 purely determined by the driving source no conditions are imposed at this
boundary on the u, value and, in turn, the only remaining boundary condition is
applied at r = R. Imposing the latter as a no-slip boundary condition, such that
the dust flow velocity u, = 0 at » = R, and requiring that the solutions must show
no oscillations at the scales comparable to the grid resolution, Ar (> d, where d is
the average particle separation), effectively produces the following two additional
equations to replace two equations from the set of Egs. (3.14), corresponding,

respectively, to ry; 1 and ryy,

M M 5
QXm TA— m s [
mzzjl CLm?mJn—l <Oém—R 1) . ng:l [e7%% (%) X (T‘M — rM—l)Jn (amTl) — 0(518)

M
Qo M
d g MY —0, (3.19
an Tgla Rnl(amR> ( )

with the corresponding matrix coefficients,

Qi rar_ I 2 _—
A]U_l’j - (#) Jn’_l (QJ%> - (Ej) (TJW - 7(’J\[—I)Jn (Oéj ]\_[R 1) ,

Buy-1 = 0, (3.20)
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and

Qs 83
A]\/[’j = <§]> Jn—l (aj§)7 (321)
By = 0. (3.22)

The desired matrix of Bessel coefficients a for v, can thus be evaluated as,
a=A"'B. (3.23)

Determination of a for a flux conserving plasma flow, which in the present analytic
formulation can be prescribed in terms of the source streamfunction 1, or the
vorticity ws,, is thus possible by simply ensuring that the source flow velocities are

pure eigenfunctions of the geometric setup.

3.3 Solutions of the flow field eigenvalue problem

The analytic solutions in terms of linear combinations of orthonormal Bessel modes
representing the dust streamfunction can now be obtained provided that the pre-
scribed driving plasma flow field wg,(r) is expressed in terms of the same set of
orthonormal functions such that the known coefficients b,,, determine the matrix
B in Eq. (3.23). The present analytic formulation reproduces the arbitrary source
vorticity functions as a linear combination of the eigenmodes .J;(z,,) represented
by Eq. (3.7). Considering that for a known function ws,(r), the set of coefficients
b, can be obtained using the Orthonomality condition (3.8) of the Bessel functions

as,

2

by —— 2" J ") a 3.24
" R2 (ot (O ]2/0 TWsr(T) n(amﬁ) T, (3.24)
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once the co-efficient b, are known, the corresponding set of desired coefficients a,,
can be determined using (3.23) for recovering, for example, the solutions with two
kinds of driver velocity profiles presented in sections 2.3 and 2.4, respectively, and

in Ref. [24]

3.3.1 Radial eigenmodes of the driver field

In the present analysis, however, we limit ourselves to the source velocity v, (r, 2)
that are pure eigenfunctions of the cylindrical setup, i.e., the Bessel mode with

monotonic shear as follows,

v,(r,z) = %:Amjo <Ozm%) COS <22Z z) (3.25)

Here A,, is magnitude and «,, are the zeros of corresponding Bessel eigenmodes
Jo(amr/R) of the ion velocity profile, such that the outermost zero coincides with
the external boundary location L, = R. Note that using a single radial eigenmode
driver field might still produce a multiple mode radial structure of the dust vorticity
field in the confinement zone as the resulting dust flow must additionally satisfy
the no-slip boundary condition at the boundary r = R, requiring additional short
scale radial eigenmodes to be excited in order to accommodate a sharper boundary
layer structure. The signatures of an associated multiple vorticity scale eigenmode
spectrum of the dust flow generated in the resulting boundary layer can thus be
analyzed effectively by means of the present analytic eigenmode solutions. In this
bounded setup the diffusive effects included in Egs. (2.2) and (2.4) cause a finite
magnitude of the dust flow velocity u in the bulk to reduce in the boundary region
and approach zero at the boundary r = R. This is despite the flow velocity v of
the driving plasma which is finite at the boundary. The corresponding solutions
for Eq. (3.23), in terms of coefficients a,,, using this unbounded external field ws,

allow examining the spectral properties of the dust flow fields.
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3.3.2 Dust streamfunction and streamlines

The present cases with single, I*", eigenmode structure of the driving plasma flow
vorticity ws, correspond to the choice, in Eq. (3.25),

p, - ) A m=1l (3.26)

0 ifm#I,

of the ion velocity while the use of a large number (m = 200) of eigenmodes is
made to express the resulting dust streamfunction (¢)). The first set of analytic
solutions in term of the streamfunction potential, streamlines in the axis sym-
metric cylindrical r-z cross-section and its corresponding profiles for two different
boundary conditions (no-slip and perfect-slip) are presented in Fig. 3.3 as similar
to Sec.2.3.2. Here the driver as plotted in Fig. 3.3(b), corresponds to the choice
I = 1 such that the boundary r» = R of the confinement zone corresponds to the
first zero «a; of the single eigenmode Ji(ayr/R) chosen to represent the vorticity
(and streamfunction) field of the driver. The scales in Fig. 3.3(a) to Fig. 3.3(e) are
based on the system size L, = R and fraction of ion acoustic velocity Uj as units
of lengths and velocities, respectively. The results with variation of parameters
&, v, p are discussed further in Sec.2.2.5, and the corresponding results as rele-
vant to the experimental observations [11] where a toroidal dust structure having

a poloidal circulating flow are observed.

For the parameter values, u = 0.1 UyL,, £ = 10 °Uy/L, and v = 0.1 Uy/L,,
the 2D solution in terms of dust streamfunction 1 (r, z) (in the form of colorbar)
and corresponding streamlines, effectively the contours of the product ri, are pre-
sented in Fig. 3.3(a) which show characteristic features of the linear streamline
flow aligned with the boundaries in the low Reynolds number regime (Re < 1).
The radial profiles of the stream function ¢ through the central axial location z

of the circulation on one of the r-z planes of the azimuthally symmetric toroidal
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Figure 3.3: (a) 2D dust streamfunction #(r, z) (colorbar), and corresponding dust flow
streamlines, or the contours of the product r¢. (b) Driver velocity v, and corresponding
Driver vorticity ws for single eigenmode source vorticity with 7 = 1. (¢) Dust streamfunc-
tion v, (d) dust flow velocity u, and (e) dust flow velocity u, for set of fixed parameters
pw=0.1UyL,, £ =10"5Uy/L, and v = 0.1 Uy/L,.

dust cloud are shown in Fig. 3.3(c) for the cases of no-slip and perfect-slip bound-
ary conditions. The corresponding profiles of the » and z components of the flow
velocity of the dust, u, (1o, ) and u,(r, z9) are plotted in Fig. 3.3(d) and (e) respec-
tively. Considering a set of plasma parameters described in Sec.2.2.5 such that the
streaming ion flow velocity is of the order of ion acoustic velocity (Up ~ 2.5 x 10°
cm s 1), the resulting profiles of components of dust velocity are presented in
Fig. 3.3(d) and (e) which agree with observation of u ~ 0.1 - 1 mm s~ in a typical

dust vortex flow experiment [11].

The no-slip boundary condition with zero dust flow velocity at the outer radial
boundary, u.(R) = 0, is ensured by the Eqgs. (3.18) and (3.19), as plotted in the
Fig. 3.3(e). This boundary condition directly corresponds to the vanishing radial
derivative of dust streamfunction, as plotted in Fig. 3.3(c), that approaches zero

at the boundary r = R for the no-slip case. The variations in the radial profile of
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streamfunction and velocity profiles for two different boundary conditions, no-slip
and perfect slip cases are compared in the figure 3.3. No-slip boundary introduces
additional shear with the flow and strong shear developed so that the velocity at
the boundary reduce to zero. In analysis of boundary flow, as originally introduced
in Sec. 2.3.6, the regions of radially decreasing flow velocity magnitude near the
boundaries where the viscous diffusive stress is very high, is identified as boundary
layer. Its thickness here is further recovered to have a definite analytic form as

discussed in detail in Sec. 3.4 of this chapter.

3.3.3 Dust vortex flow with increasing radial driver mode

number

The expression of the driver flow field in the form of system eigenmodes (3.26)
allows studying the dynamic equilibrium between the two flows with increasing
radial mode number of the driving field. This is observed to introduce smaller
scales in the dust flow and a corresponding limit on the smalless of the vortex flow
scale. The 2D streamfunction solutions are presented in Fig. 3.4(a), (c) and (e) for
the radial mode-numbers I = 1,3 and 5 of the driving plasma vorticity ws. These
values correspond to the cases where the first, third and fifth zeros of the chosen
eigenmode, Jp, coincide with the boundary location L,, respectively.

Note that similar to I = 1 case presented in Fig. 3.3, while the radial derivative
of the dust streamfunction also approaches zero ensuring a zero z-component of
the dust flow velocity, u, = 0, at the boundary for all I values, a uniform boundary
value of the v along Z also ensures a zero r-component for them, such that the dust
fluid does not cross the radial boundary and is confined in the domain » < L,. The
confinement in the region —L, < z < L, is similarly ensured by the uniformity
of ¢(~ 0) along r at the top and bottom boundaries, z = £L,, respectively.
The alternate depression and bulges in the surface plots in Fig. 3.4(a), (¢) and
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Figure 3.4: 2D dust streamfunction ¢ (r, z) for single eigenmode source vorticity with
(a) I =1 (c) I =3 and (e) I =5. Dust flow streamlines, or the contours of the product
r1, for single eigenmode source vorticity with (b) I =1 (d) I =3 and (f) I = 5.
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Figure 3.5: Source flow velocity profile at 2 = 0 for (a) I =1 (d) I =3 and (g) I = 5.
Dust flow velocity profile at z = 0 for (b) I =1 (e) I = 3 and (h) I = 5. Intensity
spectrum for the range of mode-number m at z =0 for (¢) I =1 (f) I =3 and (i) I = 5.

96



CHAPTER 3. ANALYTIC STRUCTURE OF CONFINED AND DRIVEN
DUST VORTEX FLOWS

(e) indicate development of multiple vortices structure in the flow field of the dust
fluid. These vortices correspond to appearance of circulations in the corresponding
streamlines of the dust flow given by the contours of the quantity riy that are

presented for these cases with I = 1,3 and 5 in Fig. 3.4(b), (d) and (f), respectively.

3.3.4 Radial mode spectrum and its characteristics

The radial profiles of the driver and the dust velocities at z = zy with increasing
value of individual driver mode-number [ are plotted in Fig. 3.5 in the left and the
middle columns, respectively. This variations of velocities profile near the external
no-slip boundary show that the dust dynamics involved new scale introduced by
the boundaries other then the driving external fields. The range of scales present
in the system can be visualized from the corresponding intensity spectrum of the
constituent modes of the driven dust flow vorticity profiles, Int(m) = a2, which is
plotted in right most column of Fig. 3.5 as a function of the corresponding mode
number m. Although a most dominant mode, with the mode-number m = I of the
driver vorticity ws, can be seen in the dust fluid mode-number spectrum in each
of the cases with I = 1, 3 and 5 of the source plotted in Fig.3.5(c), (f) and (i),
respectively, a finite intensity at other m values is also recovered in the spectrum
of the dust flow. This finite intensity for m # I dust modes, unlike source intensity
Int(m) = &1, originates from the additional spatial variation of the dust velocity
profiles (b), (e) and (h) introduced by the no-slip boundary condition, forcing the
dust flow velocity to drop to zero at » = L,. The influence of increasing spatial
variation, related to the appearance of a boundary layer, on the dust vorticity
spectrum Int(m) characterizes the correlation between the dust parameters and
the intensity of the additional modes with a range of length scales.

The width of boundary layer, effectively the radial interval between the dust
flow velocity maximum and the boundary location, reduces gradually with reducing

value of dust viscosity u as visible in the radial variation of the dust flow velocity
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Figure 3.6: Radial profiles of dust velocity Figure 3.7: Intensity spectrum for the
u normalized to the corresponding max- solutions with I = 1, normalized to
imum values wuyax appearing at the the the intensity a% of the dust vorticity
edge of the boundary layer whose width mode-number m = 1 for the cases with
shrinks with decreasing p values, ranging the value of viscosity coefficient p =
from 10~! to 107Uy L, arranged on a log- 1071,1072,107° and 10~ "UyL,.
arithmic scale.

profile plotted in Fig. 3.6 for I = 1 and wide range of kinematic viscosity p. The
location of the maximum of the normalized velocity is accordingly seen shifting
close to the radial boundary r = L, for the smaller pu, indicating that the bound-
ary layer region shrinks and becomes steeper at smaller values of pu, presented in
Fig. 3.6 using a logarithmic scale variation. The complete intensity spectrum of the
constituent modes and effect of shrinking width of the boundary layer associated
with additional short scale modes, that it generates in the intensity spectrum, can
now be analyzed explicitly. The intensity spectrum Int(m) is plotted in Fig. 3.7 for
the case I = 1 and values of coefficient of viscosity g = 107%,1073,107° and 1077
UoL,. As seen from Fig. 3.6 and Fig. 3.7, steepening of the flow velocity variation
near the boundary with decreasing p corresponds to an increase in the contribution
of the radial modes with higher mode number m in the vorticity spectrum. Note,
for example, that for the case with g = 0.1 (plotted with “*” in Fig. 3.7), where
the width of the boundary region approximately corresponds to the scaled interval

between the zeros of m = 2 mode, there is a considerable intensity of m = 2 mode

98



CHAPTER 3. ANALYTIC STRUCTURE OF CONFINED AND DRIVEN
DUST VORTEX FLOWS

in the spectrum. This intensity of m = 2 mode however can be seen to drop with
reduction in the p values, whereas the corresponding intensity of the modes with
large m (> 10) increases. This transition is seen accompanied by a proportional
reduction in the width of the boundary layer that rather corresponds to the shorter
scale lengths associated with the large m modes (m > 10) whose intensity, relative
to m = 2 mode, indeed grows for smaller p values. The mode-number spectrum
for varying values of pu, displaying a dominant intensity of resonant scale and a
continuum of small scales, features a single exponent for large values of u but
two distinct exponents for small p values. This indicates that in the regime when
boundary layer is wider and has scale length comparable to that of the driver flow,
the driver flow introduces a set of structures in the flow having a definite power
law with single exponent. However, in the regime where and a thin boundary layer
emerges, the boundary may introduce a set of intermediate scales with an expo-
nent which can be significantly different from that of the set of modes generated
by the driver flow. Very small length scales, that are either comparable or finer
than the average inter-dust-element separation, d, are obviously disallowed in the
existing macroscopic model by the conditions (3.18) and (3.19). In presence of
viscoelastic effects, with possibility of finite stochasticity at microscopic level, such
finer scales are likely to be populated by modes with a power-law that in the recent
first-principle computer simulations have been predicted to follow a Kolmogorov
like turbulent scaling [135]. However, how these resulting finer-scales structures
must interact with the boundary layer that forms at the similar scales, remains
an interesting question for analytically determining the nature of the spectrum at
such finer scales. Correctly addressing this region of spectrum under the hydro-
dynamic formulation would therefore require extending the present Navier-Stokes
model to a generalized hydrodynamic model by including the essential viscoelastic

effects.
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Figure 3.8: (a) Width Ar, of the boundary layer and (b) values of the Reynolds
number Re, for I = 1 and the cases with various values of .

3.4 Dust boundary layer and parameters affects

The dependence of both, the boundary layer width Ar, and the dust flow Reynolds
number Re on various system parameters such as & and p introduced and discussed
in Sec. 2.3.6 is further examined here for specific radial mode numbers of the driver

and over wider range of the parameters.

3.4.1 Characterization of dust boundary layer width

As obtained from the variation in velocity profile with system parameters shown in
Fig. 3.6, the width of the boundary layer Ary is plotted as function of u for a wide
range of & values in Fig. 3.8(a) and the corresponding dependence of an effective

Reynolds number, discussed further below, is plotted in Fig. 3.8(b). The boundary
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layer thickness for this wide range of y value is also found to be almost independent
of the coefficient of ion drag & ( or v) as evident from Fig. 3.8(a) where profiles of
Ary(p) evaluated with various £ values are seen to be overlapping. The shear scale
length is, in turn, not sensitive to the £ (or v) and the driver strength remains
largely decoupled with the characteristics of the dust dynamics in the linear (low
Re) flow regimes. This behavior shows the neutrality of the dust dynamics with
respect to the driving mechanism and its strength. However for very large value of
£, the increase in flow strength were observed as similar to the numerical results

discussed in chapter 2, section 2.3.6.

3.4.2 Characterization of the Reynolds number

Another important quantity that can additionally be estimated and examined as
function of p and ¢ is the Reynolds number (Re). Considering the recovery of
boundary layer width as effective characteristic length Ary, that allows defining
and estimating the effective Reynolds number, Re = w,Ary/u for various cases,
where u, = u(r ~ L. — Ary). In view of the large range of the parameter p
(1 < p < 107"UgL,) explored in the present analysis covering the low Re flow
regimes, the ratio upAr,/p might shoot up unless a corresponding variation is
recovered in the product u,Ar, appearing in the numerator. Using the values of
up and Ary, both of which are the output of the present analysis, it can now be
examined whether the values of Re associated with the results presented above are
well within the linear limit Re < 1 of the Eqs. (2.2) and (2.4) as required in order to
re-confirm the applicability of the analysis to the considered low Reynolds number
setups. The estimated values of Re are plotted in Fig. 3.8(b) for the range of the
parameters p and & relevant to the general laboratory dusty plasma and other low
Reynolds number setups considered in the present analysis. The domain Re < 1
in Fig. 3.8(b) can thus be considered representing to the linear limit, suitably

covered by the present analysis. While sufficiently large values of drag coefficient
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¢ are admissible at large p without losing the self-similarity of the solutions, for
smaller value of p a corresponding limiting £ value can be estimated by finding the

curve Re(u) that intersects the horizontal line Re = 1 at the chosen p.

3.4.3 Scaling laws for dust boundary phenomena

In contrast to absence of its sensitivity to variation in £ visible from Fig. 3.8(a),
the shear scale length does however show a strong response to the non-uniformity
or the presence of spatial stochasticity in the plasma. This is further examined us
by means of characterizing the boundary layer width in the cases of higher driver
mode numbers, I = 3 and 5, besides the smallest value I = 1 as plotted using
logarithmic scale in Fig. 3.9. It is evident that the regions of separate exponents
of u are present in every case. The boundary layer width is recovered clearly
following a definite exponent Ar, o< 1'/? in the small to intermediate orders of p
values, e.g., ranging from 107% 107?[UyL,] for the case of I = 1. The range of p
exhibiting this definite power law is however found to be rather limited in the cases
of higher driver mode numbers, for example in the cases I = 3 and 5 presented in
Fig 3.9(b) and (c), respectively. The origin of the observed scaling lies in the dust
momentum diffusivity largely balancing the momentum source from the driver in
the narrow boundary layer, in which the net dissipation via neutrals approaches
marginal values. The Eq. (2.5) at the boundary layer therefore takes the following

limiting form,
uViH(V xu) ~ €V xv. (3.27)

Considering, for I = 1 for example, that in the boundary layer region the radial
scale length of variation in the driver plasma velocity is comparable to system size,
[v|/|V x v| = v, /v ~ L, while that of the dust velocity variation approaches the

effective boundary layer width, |u|/|V xu| = u/u’ ~ L, ~ Ary, in order to achieve
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Figure 3.9: (a) Dependence on p of width Ar, of the boundary layer with various values
of £ for the cases with the driver mode number (a) I =1 (b) I =3 and (¢) I = 5. The
broken line represents the dependence Ary oc pt/3.
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Figure 3.10: (a) Dependence on pu of the Reynolds number Re with various values of
¢ for the cases with the driver mode number (a) I =1 (b) I =3 and (c) I = 5. The
broken line represents the dependence Re ,u_2/ 3,
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the dust flow velocity w, ~ ug at the onset of boundary layer using (3.27) requires,

Therefore, treating the quantities &, ug,v and L, as parameters would yield the

scaling observed in the above characterization,
Ary o~ 3, (3.29)

Estimated for I = 1, the scaling (3.29) is however obscured by an increasing value
of I as seen from Fig. 3.9, mainly because of the reduction in the values of wu,
in comparison to ug for I > 1 (see Fig. 3.5 (b), (e) and (h) for example). The
mode-wise dependence of (3.29) on u obtained in the present analysis makes it
convenient to determine, from the spectral properties of the driver flow spatial
variation present in a particular case, the range in which a corresponding modi-
fication of the scaling (3.29) must be applied. In simpler terms, the considerable
range of driven setups where the driver background remains largely free of spa-
tial nonuniformities corresponds to class of systems analytically more tractable by
(3.29) in comparison to those where the flows may rather be driven by autonomous
mechanisms for the vortex dynamics, for example those involving temperature or
charge density variations within the structure region with sharper gradients. The
regime of (3.29) suitably covers alternate drivers like a thermophoratic force, trans-
lating into a force ~,w, by the neutral vorticity field which frictionally couples to
dust particles via coefficient ~,,, and other generic mechanisms [29] that effectively
yield a non conservative force field capable of entering Eq. (2.5).

A corresponding dependence is recovered in Re < 1 profiles over the viscosity
1 with a definite exponent where Re o< ;1= /3 that suitably follows from the scaling
(3.29), as Re = upAry/p, hence Re ~ p~%/3. This dependence, as presented in

the logarithmic plots in Fig. 3.10, is once again pronounced in a longer range of p
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values for the small mode numbers (e.g., I = 1) and the profiles show this definite
ordering to be obscured by the increasing spatial fluctuation in the driver for larger
1 values, for example in the cases of [ = 3 and 5. A rather step-wise change in the
profiles at small and large ;4 values in Fig. 3.9 are caused by the spatial resolution,
which is analytically limited by the maximum number M of the dust eigenmodes
in use, getting highlighted over the logarithmic scale. It is estimated that for the
cases of relatively higher dust charge densities (~ 4 x 10%~) and moderate dust
flow velocities (~ 0.5 cm s7') achievable in the existing systems displaying vortex
dynamics, the lowest p value used in the present analysis (10~7Uy L, = 0.26 cm?s™1)
approaches the results of the computer simulations yielding the shear viscosity n
for the Yukawa systems (e.g., u = n/mn ~ 0.5v/3wga® = 0.21 cm?s™! 69, 130],
where m and n are dust mass and particle density, respectively, wy is the Einstein
frequency, and a, the average inter-dust separation) using the present dusty plasma
parameters [11]. For these p values, the effective Re = upAry /i ~ 1 (using 7, = 0.5
cm and u, = 0.5 cm s71) indicates that the associated cases having Re < 1 can

suitably be treated with the present results.

Although a very rich nonlinear regime is excluded by the linear treatment
presented in this chapter, as a lowest order approach already implemented with
appropriate set up and boundary conditions and characterized, the present linear
treatment highlights a relatively straight but non trivial extension of the present
treatment to nonlinear regime. This is possible, for example, by inclusion of
the originally existing nonlinear convective terms that are excluded from the the
present model for simplicity, for the similar flow, boundary and driver configura-
tion, but exploring them over an enhanced, nonlinear, parameter regime. Such
first nontrivial extension to nonlinear limit, for investigating advanced aspects of
the confined dust vortex flow is step-wise implemented and presented in following

Chapters 4 and 5 of this thesis.
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3.5 Summary and conclusions

For the majority of bounded setups of the dust medium suspended in the plasmas
with boundaries and friction, we have analytically addressed the issue that in
presence of a background high Reynolds number driving plasma flow, what are the
characteristics of the 2D driven flow structure, and how do the spectral properties
of the driver flow influence equilibrium mode number spectrum of the driven flow
when it is subjected to important boundary phenomena. For the analysis of driven
confined dust fluid vortex flow a boundary value problem was constructed in a
nonplanar, cylindrical geometry in terms of dust flow streamfunction.

The presented analytic treatment used the description of the vorticity of both
the dust and of the driving plasma in terms of strength of eigenmodes of a curvi-
linear bounded setup in the mode number space. The analytic solutions for the
dust flow are obtained by treating the boundary value formulation as an eigenvalue
problem, and using the linearly independent set of Bessel functions as eigenmodes
that allows both driving and driven flows to follow valid flux conservation and have
a multiple scale vorticity spectrum. This choice allows a multiple scale plasma flow
field to produce a vorticity scale spectrum for the driven dust flow field, essentially
nonidentical to the driver and the one that accommodates the effects of boundary
with the stationary dust. The spectral characteristics of dust vorticity at higher
mode numbers is shown to be determined predominantly by the boundary effects
that have additional impact when combined with variation in the usual physical
parameters of the dust medium, including the kinematic viscosity and the coef-
ficients of neutral friction and ion drag acting on the dust fluid. Among these
effects is the formation of a boundary layer whose width depends on the viscosity
and allows the dust flow to be in low Reynolds number regime up to considerably

smaller values of the coefficient of the dust viscosity.

The adopted analytic approach involving definition of a radial eigenvalue prob-
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lem for the 2D confined dust fluid setup essentially outlined that, (i) with pre-
scribed boundary conditions and known analytic structure of the driver field, a set
of orthogonal eigen functions can represent both driver and dust solutions allowing
to determine desired coefficients to determine the dust streamfunction solutions in
the confinement domain. (ii) Although the solutions are sought in terms of the
streamfunction 1, the physical boundary conditions can be defined on the velocity
components and their gradients based on the symmetry of the set up and the as-
sociated eigenfunctions. (iii) For the hydrodynamic formulation the spectral limit
associated with shorted scale length resolved is determined by the condition that
the spatial resolution of the solution, Ar, must exceed the average dust particle

separation d over which a valid continuum dust density can be defined.

With respect to the solutions of the 2D formulation obtained here, the first
set of dust vortex flow solutions obtained for the characterization show that for a
typical set of laboratory dusty plasma parameters described in Sec.2.2.5, where the
streaming ion flow velocity is of the order of ion acoustic velocity (Uy ~ 2.5 x 10°
cm s71), the magnitude of resulting profiles of components of dust velocity agrees

1

with observation of v ~ 0.1 - 1 mm s in a typical dust vortex flow experiment

[11].

The expression of the driver flow field in the form of system eigenmodes (3.26)
allows studying the dynamic equilibrium between the two flows with systematically
increasing radial mode number of the driving field. This increase is observed to
introduce smaller gradient scales in the dust flow and yield a corresponding limit
on the smallness of the vortex flow scale, effectively because of the presence of

finite dust viscosity.

The variation of the dust velocity profile near the external no-slip boundary
shows that the dust dynamics involved new scale introduced by the boundaries
other then the driving external fields. The range of scales present in the system can

be visualized from the corresponding intensity spectrum of the constituent modes
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of the driven dust flow vorticity profiles, Int(m) = a2, (where a are the coefficients
of the dust eigenmodes). This spectral dependence could be characterized in the
analysis as a function of mode number m for increasing value of radial mode number

of source vorticity I.

In respect to the smallest scale analyzable by the largely macroscopic hydrody-
namic formulation, very small length scales in the boundary layer, that are either
comparable or finer than the average inter-dust-element separation, d, are obvi-
ously disallowed in the existing macroscopic model by the special conditions used
for limiting the minimum scale of flow gradients in the present solution procedure.
With finite possibility of finite stochasticity at microscopic (molecular) level, such
finer scales are likely to be populated by modes with a power-law that in the
some of the first-principle computer simulations have been predicted to follow a
Kolmogorov-like turbulent scaling [135]. However, how these resulting finer-scales
structures must interact with the boundary layer that forms at the similar scales,
remains an interesting question for analytically determining the nature of the spec-
trum at such finer scales. Correctly addressing this region of spectrum under the
hydrodynamic formulation would therefore require extending the present Navier-
Stokes model to a generalized hydrodynamic model, by including the essential

viscoelastic effects [116].

The boundary layer thickness for a wide range of u value is found to be almost
independent of the coefficient of ion drag & such that profiles of Ary(u) evaluated
with various & values are seen to be overlapping. The shear scale length is, in
turn, not sensitive to the £ and the driver strength remains largely decoupled with
the characteristics of the dust dynamics in the linear (low Re) flow regimes. This
behavior shows the neutrality of the dust dynamics with respect to the driving
mechanism and its strength.

With the effect of increasing complexity in the driver setup resolved in the

orthogonal eigenfunctions and characterized individually for increasing value of
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radial mode number, a scale independence of effects associated with boundary
could be identified. Both the boundary layer thickness and the dust Reynolds
number are shown to have definite exponents of variation with respect to the
medium viscosity p. While the effective boundary layer width is recovered to

13 the effective Reynolds number for the setup is recovered to scale

scale with p
with p=%/3. Both these orderings are seen to be obscured by an increasing spatial
complexity of the driving mechanism. The degree of the impact of this complexity
is estimated by systematically characterizing the effect of individual driver flow
modes in various cases with increasing value of the cylindrical mode number.

We conclude by discussing that while the regime relevant to present results
includes the low Reynolds number processes driven by the factors involving spa-
tial complexity and the microscopic setups that are dominated by the boundary
effect, following the present implementation of the 2D model, the analysis of ad-
ditional regimes covered by dusty plasmas must now be more accessible. This is
possible, for example, by inclusion of the originally existing nonlinear convective
terms (that are excluded from the the present model for simplicity) for the similar
flow, boundary and driver configuration, but exploring them over an enhanced,
nonlinear, parameter regime. Such first nontrivial extension to nonlinear limit, for
investigating advanced aspects of the confined dust vortex flow is systematically

implemented and presented in following Chapters 4 and 5 of this thesis.

109



Nonlinear effects in the bounded

dust vortex flow in plasma

4.1 Introduction

The driven-dissipative systems show a vast dynamic memory by their capacity and
range of response to a continuum of stimuli from their surrounding, each of which
may invoke a unique response, like making them erupt into a unique pattern. In
its simplest form, a behavioral transition to such a state occurs, for example, in
a system of Brownian particles irreversibly diffusing through a medium [46] when
they are additionally subjected to a drive by a streaming medium and restricted
in space by a confining potential or boundary. This results in a variety of their
particle distributions for respective combinations of potential, boundary and flow
topologies [14]. The fluid-like phase of dust particles suspended in plasma [3, 6, 47—
49], which is subject of the present study shows an even larger range of patterned
response already in the linear regime of its dynamics [11, 12, 24, 25] as a more

realistic and rich nonlinear regime of it remains yet unexplored [50].
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While the results of the linear studies presented in Chapter 2 and 3 successfully
predicted the multiplicity of vortex [12; 24] and outlined basic scaling of boundary
effect at low to moderate Reynolds number [25], exploring the nonlinear regime of
this system can potentially address the nontrivial physics of often noted transition
from linear to nonlinear regime of these vortices. Recently observed compelling
nonlinear features of dust vortex dynamics [11] promise to shed light on several
less understood aspects of the dusty plasmas as well as a variety of dynamically
equivalent natural flows. For example, a nearly uniform vorticity in the core of a
toroidal dust cloud observed in higher flow velocity limit resembled high Reynolds
number flow phenomena of the Jovian great red spot [31, 56]. More noticeably,
nonlinear phenomena, displayed also by dust dynamics, are proving to be natural
timing mechanism for biological systems with growing evidence that processes like
cell division are timed by critical transitions on approaching a threshold size rather
than a preprogrammed linear evolution [57]. For example, the low Reynolds num-
ber intracellular mitotic activity taking place in cytoplasmic medium examined
in budding yeast shows that the cells born smaller than normal size spend longer
duration in initial G1 phase until they reach a critical size for division, reproducing
normal size offspring [58]. Nonlinear critical transitions thus provide a potential
mechanism that monitors cell size and uses this information to regulate progres-
sion through events of the cell cycle, determining cell size and age, namely, the

fundamental limiting factors for overall evolution of the carbon based life [57, 59].

Equating the influence of chemical inhibitors of protein synthesis and poly-
merization by that of the inertial flow in a dusty plasma vortex, both of which
must undergo criticality for continued stabilization by diffusion dominated viscous
transport at optimum scale, one gets a very primitive model for size regulation
of a biophysical cell via a nonlinear threshold [28]. The equilibrium dusty vortex
dimension in nonlinear operating regime are similarly asserted by the dynamics

at a critical separation threshold rather than governed by the boundary geometry.
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Such a meaningful isomorphism between complex systems and suspended dust-
fluid is however quantifiable only by a systematic nonlinear formulation of the
dusty plasma vortex dynamics. The present Chapter approaches this advanced
objective by extension, to nonlinear regime, of the hydrodynamic formulation de-
veloped and applied to linearly regime in preceding chapters. In the Chapter in
Sec. 4.2 we have revisited the essential two dimensional toroidally symmetric, ax-
ially and radially bounded setup considered in the present formulation from the
view point of nonlinear treatment. The methodology of nonlinear solutions is pre-
sented in Sec. 4.3, followed by the characterization of solutions in Sec 4.4. The
signature of nonlinearity in the form of uniform vorticity in the vortex core is
discussed in Sec 4.4 where this uniformity is additionally shown confirming with
gigantic scale circulations like the great Jovian red spot. In Sec. 4.4.3 the phenom-
ena of the boundary layer separation is investigated as a structural bifurcation of
the 2D nondivergent vector fields with kinematic dust viscosity p acquiring the
role of a bifurcation parameter. Sec. 4.4.4 provides a nonlinear scaling, allowing
to estimate p using velocimetric parameters of dust vortex flow. Summary and

conclusions are presented in Sec. 4.5

4.2 2D nonlinear hydrodynamic approach to dust

vortex flow

The definition of toroidal dust-fluid set up considered both in Chapter 2 and 3,
confirming with the experimental arrangement, is further enriched for the treat-
ment presented in this chapter in order to address the signatures of nonlinearity
noticed in the dust vortex flow experiments in the plasma. Figure 4.1(a) shows
a pair of counter-rotating dust circulations developed by a special arrangement

of the bottom electrodes producing a non-monotonically sheared density profile
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correlated to the vortex pair location. As recovered in a post-experimental par-
ticle image velocimetry analysis of the dust vortex flow field by M. Kaur et al.,
the 2-dimensional, azimuthally symmetric, poloidal dust vortex flow displays an
almost circular region of nearly uniform dust flow vorticity as shown in Fig. 4.1(c).
The associated dust flow velocity, as plotted in Fig. 4.1(b), is clearly seen having a

corresponding nearly linear radial drop, with reference to the vortex center (7o, zo).

4.2.1 Definition and mapping of the boundary segments

In order to describe the results of the formulation more systematically, the schematic
of dust vortex flow set up geometry presented in Fig. 4.1 is provided in this chapter
with additional definition of the all the four boundary segments of the rectangular
dust confinement domain. Accordingly, using cylindrical co-ordinates to accom-
modate the azimuthal symmetry, as used in Chapters 2 and 3, the toroidal dust
fluid is considered confined by an effective potential V(r, z) within the bound-
aries defined by points ABC'D of a finite section of an infinite cylinder of flowing
plasma. The boundary ABC'S thus encloses the region where 0 < r/L, < 1 and
—1 < z/L, < 1, with no variation along the azimuthal dimension 0 < ¢ < 2.
More specifically, the curved boundary segments AB, BC, C'D and DA, of the
cloud are schematically indicated to map to the, bottom, inner radial, top and
outer radial boundaries of the rectangular domain ABC D, respectively, as drawn
in Fig. 4.2 using line segments of the corresponding colours surrounding both the
domains. It is once again assumed that the confining potential jumps from a con-
stant value Vj to a very high value at the rectangular boundary ABC'D providing

a rectangular contour for perfect confinement.

114



CHAPTER 4. NONLINEAR EFFECTS IN THE BOUNDED DUST VORTEX
FLOW IN PLASMA

5 mm

Vorticity (per s) Velocity (cm/s)

1 1
600 800
X pixels

Figure 4.1: (a) Toroidal dust cloud with poloidal circulation in the laboratory
dusty plasma experiment by M. Kaur et al. Phys. Plasmas 22, 093702 (2015).
(b) the dust flow velocity distribution and (c) the dust flow vorticity distribution,
obtained from the Particle Imaging Velocimetry (PIV) analysis of the image data.
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Figure 4.2: Schematic representation of the toroidal dust cloud with vortex mo-
tion and mapping of the boundary of its cross-section to a toroidal domain of
rectangular cross-section accommodated in the cylindrical geometry of the present
nonlinear solutions. Segments AB, BC, CD and DA, of the cloud map to the
corresponding sides of the rectangle ABC'D.
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4.2.2 Nonlinear conservation equations in curvilinear set

up

For the dust flow that follows incompressibility condition and has a finite viscosity,
the dynamics is governed by the Navier-Stokes equation in which the drive pro-
duced by the ion drag and the friction produced by the stationary neutral fluid

can be suitably accounted for [23],

%—?%—(u-V)u:—%—VV%—MVQu

—(u—v) —v(u—w). (4.1)

Here u, v and w are the flow velocities of the dust, ion and neutral fluids, respec-
tively. P and p are the pressure and mass density of the dust fluid, respectively,
V(r, z) is the confining potential, j is kinematic viscosity, £ is coefficient of ion
drag acting on the dust and v is the coefficient of friction generated by the sta-
tionary neutral fluid [124-126]. The overall combination of charged dust and back-
ground plasma is quasineutral and the electrons are in thermal equilibrium with
the streaming ions and the confined dust. The incompressibility of the confined

dust component is enforced by the expression
V-ou=0, (4.2)

which allows defining a streamfunction 1 such that u = V x (L/Jgg), with corre-

sponding velocity components,

_ 1olry) (4.3)

U, = —0/0z and wu, = o

In case of an azimuthally symmetric dust flow the dust motion can suitably be

treated in the 2-dimensional r-z plane such that the dust vorticity vector & = V xu
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is directed purely along ¢. Using these definitions in Eqs. (4.1)- (4.2) and stationary
neutrals (w = 0), we obtain for a time independent force equilibrium of dust flow

field,

V& = —w, (4.4)
(u- Vo = puViw— (£+v)w + Ews, (4.5)

where wy is the vorticity of the ion fluid. In Chapter 2 and 3 the 2D solutions
of (4.4)-(4.5) were obtained in the linear regime, or the low Reynolds number
regime (Re = Lu/pu — 0) where the the inertial effects are dominated by the dif-
fusive transport and nonlinear term in the left hand side of the Eq. (4.5) could
be neglected. Among the additional approximations, a separable streamfunction
dependence on the orthogonal directions r and z was used with a single mode anal-
ysis along the axial direction while doing a multiple mode analysis only along the
radial dependence via Bessel eigenfunction representation. These approximations
forced an up-down symmetry of the vortex structure about the center Z; of the
domain and also disallowed use of an axially uniform driver field since an identi-
cal axial mode structure (single mode) was implemented for both driving ion and
driven dust vorticities, valid for cases with k., < k, in which the top and bottom
boundaries are at sufficiently large distances from the center. The linear results
thus allowed analysis of the almost laminar dust vortex structures involving slow
dust motion in the recent laboratory experiments where various single and multi-
ple dust vortex form driven by nonuniformity of the plasma flows and parameters.
Interestingly, a detailed nonlinear regime of strong dust vortex flow is routinely
observable in these experiments where driven vortices with strong circulations are
surrounded in the region of weak drive either by secondary vortices that are co-
and counter-circulating, or the stagnant regions of almost no circulation such that

very sharp and localized flow velocity gradients are maintained inside the dust vol-
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ume [11]. Usually termed as more complex dust flow patterns and excluded from
the simpler interpretations, we show that these configurations are well represented
by the nonlinear solutions of the system (4.4)-(4.5) as obtained in the following

section.

4.3 Iterative numerical solution procedure

The Eqgs. (4.4)-(4.5) are solved in the present work by retaining the nonlinear term
in the left hand side of the Eq. (4.5) which becomes comparable to the source
and diffusion terms in the right hand side in the limit of large flow velocity. The
Eq. (4.5) in linear limit admits standard solution procedures where integration is
possible for individual modes of the dust vorticity interacting with those of the
driver. As presented in Chapter 3 and Ref. [25], such first 2D linear solutions
excluding the nonlinear term were obtained by constructing an eigenvalue problem
and representing the dust and source streamfunctions in terms of a set of orthogonal
eigenfunctions that satisfy the appropriate boundary conditions. Free from most
of the approximations made in Chapter 3, the Eqs. (4.4)-(4.5) in this chapter are
solved rather exactly (limited by the finite spatial resolution) with explicit effect of
multiple axial mode structure of downstreaming flow of both, the streaming driver
and the confined dust. The nonlinear solutions are however nontrivial and even a
numerical approach to them in 2-dimensions must involve an iterative procedure

as adopted in the present study.

4.3.1 The technique of successive over-relaxation

In the first step, Eqgs. (4.4)-(4.5) written using the appropriate dimensionless vari-

ables and parameters, introduced in section 2.2.5 and adopted in Chapter 2 and
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3, are rewritten in the following equilibrium representation,

0 = V% +uw, (4.6)
0 = VQw—l(u-V)w—(ngV)w—Fgws. (4.7)
[ [ [

They can now be cast in the form suitable for obtaining numerical solutions with
enough accuracy. This objective is achieved by beginning with an approximate
solution 1Y, w® (where superscript corresponds to the number of iterations finished)

and ensuring that the two residues, R; and Ry, defined, respectively, as,

~ A’(/) B ,(/Jn+1 _ d)n

~ _ _ 2. n n 4.

Ry INE INE Ve +w", (4.8)
Aw W™ — DI A n EFv) €

RQ ~ AL2 = A2 = V" — ;(u : V)w — Tw + /_Lwy (49)

are sufficiently smaller than a physically determined tolerance after n+1 successive
iterations. Considering once again the bounded set up described in Fig. 4.2 that
uses azimuthally symmetric cylindrical coordinates (r, ¢, z) having all variations

only in the 7-z plane, the equations (4.8) and (4.9) reduce to,

”? 10 1 0
AL (G - T VAT (410

o2 " ror 2 922
AL? ow
I 0z

2 2 2 n
W't =W+ AL? (8— + 19 1,09 ) W' — AL (urﬁ—w>
L or
>—Aﬁmw+AHm%, (4.11)

where Ay = " —y" Ky = (E+v)/p and Ky = £/ and the integer n represents

the index of the iteration. Since ¥"*! — 9" for the steady equilibrium solution,
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the above equations can be rearranged as follows,

? 10 o? AL?
o 2 - — n+l _ n 2, n n
{1 AL <8r2+r8r+322>]w Yr A ALw r? v
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{1 AL (07‘2 A ror + 8,22)} “ ~ L (ur 87‘) L (uz 82)
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D) w" —ALzKlw +AL2K2(,US (412)
r

Again for numerical efficiency and suitable for iterative determination for 1) and
w, the above equations are split into two operator form where each operators has

only one directional derivatives as follows,

’ 2
S

P10\ [* ‘
+AL* (d -+ rdr) (0%) Y (4.13)
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In order to compute the solutions on a two dimensional grid, an initial guess 1/} and
w}j is made for streamfunction and vorticity respectively, by additionally imposing
the desired boundary conditions. In each iteration with index n, beginning from
n = 1, the Eq. (4.13) is first solved for radial (r-operator) part on A,?JCH which

formally represents the result of the second factor (z-operator) in the LHS of
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Eq. (4.13) operating on the desire updated streamfunction values ¢!, i.e.,
2 0 +1 +1

The computed radial (r-operator) part AZ-H values allow determination of wffl
by solving axial (z-operator) part, i.e., by inverting, in Eq. (4.15), the matrix

operating on 1/);}"’1, where AZ—H are known from the similar inversion of the original
equation (4.13) solvable for A?j“ using the known source at the right hand side.

An identical procedure is applied for determining w?fl from Eq. 4.14 by defining,

022 pu\ Or r ) Oz K

and first solving Eq. (4.14) for B{;*! with known source, which allows Eq. (4.16) to

n+1

be solved for w;;"". The updated Z»“ values are used in second half of the iteration

to compute B,}’j’-ﬂ and w,ﬁ}“, rather than the old values ¥, which concludes the n'®

n
iteration. The iterations are made updating the w and 1 fields until the maximum
values of the residues Ry and R below a reasonable tolerance are achieved. The
iteration parameter AL? and grid size Ar are the parameters which affects the

speed of convergence and numerical stability. It is important to follow CFL [129],

condition AL? < Af, as stability criteria for 2D numerical solution, also larger

values of AL? cause the iterations to become unstable and diverge.

4.3.2 Benchmark of the numerical formulation

The capacity of the fully nonlinear 2D numerical procedure developed is utilized in
rest of the analysis in this chapter and in Chapter 5 for the characterization of the
nonlinear effects in the 2D dust vortex solutions. We however begin this analysis
by benchmarking this procedure to recover from it the solutions in the limiting
case of the low Reynolds number, linear regime.

For the ready comparison with the analytic solutions presented in Chapter 3,
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we have used the identical conditions, specifically a driver vorticity with a sin-
gle axial mode as well as a single radial Bessel mode corresponding to I = 1 in
Eqgs. (3.25)-(3.26). At axial location z = zy = 0, the chosen radial profile of the
z-component of the driver velocity, v,, is presented in Fig. 4.3(a) showing that
the radial variation of v, confirms with a natural eigenmode of the set up, i.e.,
a single Bessel function mode. This dependence ensures that the corresponding
streamfunction and vorticity profiles approach zero value at the radial boundaries
of the domain at the location zy. Note that further choosing a single separable
axial mode of the vorticity requires the streamfunction to drop to zero also at the
top and bottom boundaries, requiring that the source streamfunction be zero along
the entire boundary ABC'D of the domain. The vortex flow solutions for this set
up in the low Reynolds number obtainable by both, the previous linear approach
as well as the present nonlinear numerical approach, can now be compared to check
the reduction of the numerical solutions in to the analytic (series) solutions in the
appropriate low Reynolds number limit. For typical system parameters considered
in Sec. 2.2.5, we have plotted the numerically converged dust streamfunction and
streamlines in Fig. 4.3(b) and Fig. 4.3(c), respectively. It can be noticed that
the main characteristic features of the linear model are recovered in this limit as
expected in a single axial mode driven set up used for the benchmark. These
characteristics include the vortex flow where (i) streamlines for this low Reynolds
number case remain aligned to the boundary in the region adjacent to boundaries
(ensuring vorticity transport purely by diffusion orthogonal to the streamlines) and
(ii) a top-bottom symmetry of the single vortex flow, are recovered as expected in

this single axial mode driven set up.

A more quantitative validation is possible by comparing the flow velocity com-
ponent profiles obtained numerically and those obtained by means of analytic so-
lutions in linear regime in Chapter 3. The flow solutions from both numerical and

analytic approaches are compared by varying p while using the same set of system
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Figure 4.3: (a) Single axial mode driver velocity profile Jy(aqr/R) at z = 0, (b) 2D
dust streamfunction ¢ (r, z), and (c¢) Corresponding streamlines for the dust fluid flow in
-z plane with g = 1 x 1073UgL,, € = 1 x 107°Uy/L, and v = 1 x 107U/ L,.
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Figure 4.4: Comparison between Analytic and Numerical results of u,(rg, 2), u.(r, 29)
for fixed system parameters, £ = 1 x 107°Ug/L,, v = 1 x 107U/ L, fixed single axial
mode radial I = 1 driving field and varying ;¢ = 107! to 107°UyL, in low Reynolds
numbers linear regime Re< 1.
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parameters, L,/L,, , v and the same single axial mode driver field v, = Jy(o7/R)
with / = 1, as shown in Fig. 4.3(a). Note that the value I =1 corresponds to the
case where zero of the corresponding streamfunction/vorticity coincides with the
outer radial boundary located at » = L,. The kinematic viscosity is varied from
i = 1071 to 10750y L, producing the flow over a large range of different Reynolds
number from Re ~ 107° to 10~ which is well with in the linear viscous regimes (Re
< 1). The profiles of the dust flow velocity components, u,(r, zo) and u,(ro, ),
are plotted in Fig. 4.4 top and bottom rows, respectively, as obtained from both

the approaches for comparison by varying kinematic viscosity value p.

The numerical profiles of the velocity show only a slight deviation from ana-
Iytic results at highly viscous regime up to p = 1073UyL, or more as shown in
Fig. 4.4(a), (d) and Fig. 4.4(b), (e). However the deviation is negligibly small at
lower viscous regimes as shown in Fig. 4.4(c), (f). Thus the analytic and numerical
results are recovered to be in good agreement with each other, validating the nu-
merical method and motivating the analysis of the dust flow for higher Reynolds
numbers nonlinear flow regimes which is inaccessible by the analytic linear ap-

proach.

The varying in velocity profile for u,(rq, z) and w.(r, zp) near the boundaries
shows the impact of difference in boundary conditions and demonstrated the
boundary layer formation take place near the no-slip boundaries. Boundary layers
are formed due to effective viscous stress of the flow near the boundaries. The
thickness of the boundary layer is decreasing with decrease in kinematic viscosity
as shown in Fig. 4.4(d)-(f). Thus at higher Reynolds number, the thickness of
boundary layer formed is negligibly small, follows Ar, ~ /3, and reduces to very
thin layer giving sharp deviation in velocity profile as shown in Fig. 4.4(f). There
are no boundary layers formation near other confining boundaries where perfect
slip is used as boundary conditions which does not introduce any additional viscous

stress on the bounded dust flow.
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Figure 4.5: (a) Single axial mode driver velocity profile Jy(a;r/R) at z = 0. And
corresponding streamlines for the dust fluid flow in -z plane with aspect ratio (L./L, =
2) for (b) p = 1 x 1073UgL, and (c) u = 3 x 107°UyL,, having fixed other system
parameters at £ = 1 x 107°Uy/L, and v = 1 x 107Uy /L,.

4.3.3 Emerging nonlinear characteristics of the vortex flow

The above analysis of the bounded driven dust dynamics is extended in to high Re
regime where the nonlinear convective transport (u - V)u is either equivalent or
dominant over the diffusive transport process. The flow structure of the confined
dust fluid which is symmetric about z, in the low Reynolds number (Re < 1)
regime as shown in Fig. 4.5(b) begins to turn asymmetric about z, in higher
Reynolds number (Re > 1) regime as shown in Fig. 4.5(c). The flow struc-
ture in nonlinear (high Re) regime is also found to be dependent on the aspect
ratio (L,/L,) of the dust confinement domain. In the following analysis, the con-
verged solutions are obtained for the confined dust in the toroidal domain having
a rectangular cross-section with aspect ratio of unity (L,/L, = 1) while a detailed
analysis of cases with aspect ratio other than unity is done in Chapter 5. Certain
remarkable impacts of these nonlinear characteristics on the physics of dust vortex
flow and other dynamically identical natural systems are analyzed in the following

sections.
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4.4 Nonlinear dust vortex flow solutions

The converged solutions are obtained for the confined dust in the toroidal domain
having a rectangular cross-section where the driving plasma flow velocity v is
directed along —Z and has only a radial variation of the form of Bessel function jg
as presented in Fig. 4.6(a) with associated source vorticity wy plotted in Fig. 4.6(b).
Driven by this plasma flow field in the domain of confinement, the dust stream
function is determined iteratively by imposing the boundary conditions such that
the dust velocity normal to the boundaries is zero. Consequently, the dust is well
confined in a finite section of a cylinder that accommodates the torus having a
rectangular cross-section in r-z plane. The boundary conditions are motivated by
the high shear experimental configurations where the driver is localized in a narrow
region of the domain and in the region of domain far from the influence of the driver
the dust experiences strong friction such that velocities there are considerably small
(see schematic Fig. 4.2 and Ref. [11]). Accordingly, the dust velocity follows
no slip boundary conditions for all the physical boundaries confining the dust.
However, at the vertical boundary imposed by symmetry at the cylinder center
(r — 0), where the driving ion flow velocity is strongest, the magnitude of the
dust velocity is not controlled by the boundary condition. A governing factor, all
the derivatives at r = 0 vanish owing to the cylindrical symmetry of the domain
and radial component of the dust velocity vanishes at this boundary by natural
symmetry of the cylindrical setup.

The complete nonlinear solutions describing the driven dust dynamics in terms
of 2D flow streamlines and corresponding v and w fields are presented for small to
high Reynolds number regimes in Fig. 4.7. The length and velocities in the present
analysis are scaled to the system length or the domain dimension L = L, = L,
and vertically downward streaming ion velocity magnitude Uy, respectively. The

parameters &, p and v accordingly have units derived from these scales. The entire
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Figure 4.6: Profiles of the (a) driver velocity v, and (b) driver vorticity w, which
are uniform along 2 and ¢.

analysis is done using a common combination of driver velocity and corresponding
vorticity profiles presented in Fig. 4.6(a) and (b), respectively. Considering a typi-
cal laboratory glow discharge argon plasma with micron size dust with parameters,

n~10° cm ™3

, 1, ~ 3eV, T; >~ 1€V, largely at the sheath entrance where ions are
streaming with a flow velocity Uy equivalent to the a fraction of the ion acous-
tic velocity cg = \/m The value of ion drag coeflicient can be estimated as
&€ ~107* Uy /L , neutral collision frequency can be v ~ 1072 Uy /L [124-126]. For a
typical system size, L ~ 10 ¢m, the range of kinematic viscosity p can similarly be

chosen p ~ 6 x 10~ UyL which correspond to small Reynolds numbers (Re ~ 1)

of the dust flow consistent with the linear viscous regime.

The dust flow streamlines, which in cylindrical setup are the equal height con-
tours of the product 71 in the r-z plane, are plotted in the first column of frames
in Fig. 4.7 for the parameters & = 0.001Uy/L and v = 0.01Uy/L. The effect of
change in the dust kinematic viscosity, from a higher value p =1 x 103Uy L to a
lower value p = 8 x 107 "UyL is visible on examining the results plotted from top
to bottom row of frames in Fig. 4.7 where p reduces taking the values 1 x 1073,
1 x107%, 1 x 107° and 8 x 10~ "UyL, respectively. Also shown in the second and
third columns of Fig. 4.7 are the strengths of most dominant term V2w and the
nonlinear term —u - Vw/pu, respectively, showing the increasing strength of the

nonlinearity which is increasingly balanced by the viscous diffusion at decreasing
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Figure 4.7: (a) Dust flow streamlines, strength of (b) diffusive term V2w and (c)
nonlinear term u - Vw plotted from top to bottom for the values of dust viscosity
p=1x10731x10"% 1 x 107° and 8 x 10~ "UyL,, respectively, where the values
v =10.01 Uy/L, and £ = 0.001Uy/ L, are used for other fixed parameters.
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Table 4.1: Parameters p and resulting values of uy,, Ar, and Re in the analysis.

w [UoLy,] wp (U] Ary [L,] Re
1x107° 0.0024 0.1387 0.336
1x107* 0.0116 0.1030 11.961
1x107° 0.0217 0.0456 99.141
1x 1076 0.0254 0.0198 503.705
8 x 1077 0.0252 0.0178 561.600

i values. For example, as clearly visible from Fig. 4.7 the diffusive term is much
larger and entirely uncorrelated to nonlinear terms for large p values, or in the
frames (b) and (c). For small p value cases presented in frames (k) and (1) the
most interesting variation is present in boundary regions of the solution of the
Eq. (4.5) which is produced entirely by the balance V?w — u - Vw/u ~ 0 as the
contribution of other terms remains nearly negligible. As we analyze in the follow-
ing sections, the boundary in this regime provides the strongest source of vorticity
at smaller scales which can be dissipated in the domain volume at a relatively
slower rate than linear case after being convected away in the interior along the
streamlines.

For the system (4.4)-(4.5) with applied boundaries, the values of width Ary, of
boundary region, bulk flow velocity u, and Re are provided in Table 4.1 in the
range of transition corresponding to the range of u values used in the present anal-
ysis. Note that the saturation of the width Ar, is in departure from the linear
boundary layer scaling Ar, oc p'/? [25] and relates to nonlocal diffusion of vortic-
ity convected along streamlines. This convection governs a number of nonlinear
aspects of the dust vortex flow addressable under the present formulations. The
dominant nonlinear features of high Re solutions described below include, (i) a
persistent uniform vorticity core of the vortex, (ii) development of separated con-
vective boundary layer via a critical phenomenon analogous to certain biophysical
processes, and (iii) a nonlinear boundary layer scaling prescribing velocimetric

determination of the dust viscosity.
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4.4.1 Persistent uniform vorticity solutions at high Re

The strength of the nonlinear term u - Vw in Eq. (4.11) can be examined for
our solutions based on the properties of dependence w(t)) in a 2D setups. For w
purely a function of ¢ the term must vanish as can be shown by substituting the

definitions u = V x ¢¢ and a formal solution w = f(¥) of V2 = —w in u- Vuw,

u-Vw = (¢ x Vib) - V(£(1)). (4.17)

Note that the right hand side represents a dot product of two orthogonal vectors
which must vanish for all 4, implying that the nonlinear term u - Vw must van-
ish where w is either a pure function 1 or uniform. For application to present
cylindrical set up where the contour parameter is r¢ rather than i, this result
readily transforms in the condition that the nonlinear convection vanishes when w
is purely a function of r¢. For our solutions it is noted that at high p, although
the nonlinear term has a small magnitude it remains finite since w shows a depen-
dence on the product 7 as well as on r and z. For the low p (high Re) solutions,
however, the vorticity w remains almost independent of » and z in the interior and
is purely a function of 7, except in (and beyond) a thin boundary layer region.
This dependence is characterized in Figs. 4.8 and 4.9 for high and low u cases,
respectively. The contours of ri are plotted in subplot (a) of Figs. 4.8 and 4.9.
The dependence w(riy) is examined by plotting variation of w in space both when
r1p is allowed to change (across streamlines, by following the solid lines, in subplot
(b)) and when 7 is kept constant (along streamlines, by following the dashed
contours, in subplot (c)). The strong variation in boundary region of low p case
(Fig. 4.9) shows that the function of nonlinear term is to prevent the diffusion of
externally produced large vorticity to the interior region, by convecting it away
along the streamlines in the boundary layer. The constant net vorticity of the core

region is hence conserved. This nonlinear balance allows setup of a nearly rigid
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body like motion of the vortex core with v o r and a constant vorticity both in
laboratory experiments and in natural flows.

We are now in position to compare both low and high p limits accessible in a
laboratory experiments with vortex formation in nature at phenomenally different
scales than those of ordinary dusty plasma experiments. Highly persistent vortex
structure like the Jovian great red spot (GRS), Jupiter’s largest anticyclonic vor-
tex, measuring approximately 22,000 by 11,000 km, for example, displays zonal
eastward velocity velocity profiles [31] in close agreement with the large Re (small
) case plotted in Fig. 4.9 where a uniform vorticity core is surrounded by zones
of sharp vorticity gradients. The similar velocity profiles are observed in rela-
tively younger, year 1939 originated, pair of anticyclonic Jovian white ovals that
are separated by teardrop shaped cyclonic vortex. In the interior region of closed
streamlines the additional uniformity of w with respect to the product ri in low
w case (Fig. 4.9) is in confirmation of a toroidal analog of the integral condition

obtained by Batchelor [27],

Ow
o(ry)

fr(u,f ud)-dl=0,

which applies to the streamlines in the interior region as the integral evaluated
along these closed streamlines vanishes for these solutions requiring w to be inde-

pendent of the product rw in the core.

4.4.2 Boundary layer separation and secondary vortices

For our high y case solutions, the boundary layer forms all along the domain bound-
ary where no slip condition is applied and 1 remains monotonic in the direction
orthogonal to streamlines. In low p cases, however, the flow in the regions of sharp
corners features an arrangement of smaller co- and counter-rotating vortices and

1) shows oscillatory spatial variation orthogonal to streamlines with a variety of
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Figure 4.8: (a) Dust flow streamlines su-
perimposed by straight lines and contours
used to draw profiles of w as function of ry
(b) vorticity w as function of r along the
straight line segments joining vortex cen-
ter to domain vortices and (c) that along
the indicated contours. The profiles corre-
spond to = 1073 UyL,, £ = 0.001 Uy /L,
and v = 0.01 U()/L7-.
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Figure 4.9: (a) Dust flow streamlines su-
perimposed by straight lines and contours
used to draw profiles of w as function of rv
(b) vorticity w as function of r along the
straight line segments joining vortex cen-
ter to domain vortices and (c) that along
the indicated contours. The profiles cor-
respond to = 8 x 1077 UpL,, £ = 0.001
U()/Lr and v = 0.01 U()/L»,..
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scales as highlighted in the subplot drawn in Fig. 4.9(b). When driven at the
same scale, the scale length of the largest vortex in this regime is still determined
by the dimension L of the domain while the surrounding secondary co-rotating
vortex have a smaller spatial scale length ~ (v/2 — 1)L. This factor corresponds
to the corner zones of a square domain which accommodates a primary vortex of
diameter ~ L. The region between two co-rotating vortices is further populated by
somewhat elongated and weak counter-rotating teardrop-like vortices as shown in
Fig. 4.9(a). The strength of the secondary small scale vortex structures is however
subject to the magnitude of the dust viscosity. At higher dust viscosity the large
momentum diffusivity begins to prevent the formation of small scale structures as
presented in Fig. 4.8(a) and (b) where the dust flow streamlines and w values are

plotted, respectively, using p = 103U, L.

For a low p case Fig. 4.10(a) and 4.10(b) present strengths of diffusive and
nonlinear source terms for vorticity, respectively, in a set of solutions obtained for
a confinement domain limited to larger r values (0.5 < r < 0.1) for clarity. The
interface of the central vortex with the domain boundary is strongly localized at a
few points (indicated as a, b and c¢) of closest approach from the center, (~ L/2).
while elsewhere it is only via a nearly circular shear layer running along the rest
of the boundary of the strongest vortex. The vorticity generated by interaction
of the central vortex with the no-slip domain boundary is being convected away
from points a, b and c along the streamlines in Fig. 4.10(b) as the convective
nonlinear term has large positive value along these streamline. This convected
vorticity is, in turn, diffused away steadily across the streamlines, owing to sharp
velocity gradient, by the diffusion term which displays an identical variation but
with negative magnitude. Although the velocity gradients and diffusion are higher
along the shear layer they are relatively much moderate as compared to the those
required in the linear model where convection channel is unavailable and a sharp

boundary layer must exist in order to diffuse the vorticity generated at the no-slip
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Figure 4.10: (a) Magnitude of the diffusion term and (b) Magnitude of the non-
linear term plotted for = 8 x 1077 UyL,, £ = 0.001 Uy/L, and v = 0.01 Uy/L,
in a domain confinement limited to larger r values.
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Figure 4.11: The vorticity surface plots for values of parameter (a) u = 1073, (b)
1074, (¢) 107° and (d) 107°UyL,.. The developing points of separation are indicated
by arrows on segments AB and BC.

boundary purely across the streamlines.

4.4.3 Boundary separation as structural bifurcation

We now address the nonuniformity of the flow structure along the domain boundary
at high . Although the ideas related to Prandtl-Batchelor boundary flows and
their breakdown in various limits long existed and thoroughly reviewed [136], it is
only somewhat recently that development of such nonuniformity and transition to
a separated boundary layer was shown to be a structural bifurcation of the 2D flow
characteristics [137, 138]. For time dependent or turbulent flows this bifurcation
was identified to take place at a critical value of time ¢ = T™ that corresponds to
the breakdown of monotone vorticity profile in the boundary layer. We note that
in our steady-state flow formulation the kinematic viscosity p assumes the role of

bifurcation parameter and this transition in our solutions takes place at a critical
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i value. This criticality allows the bounded dust vortex setup to represent a class
of systems that can self-stabilize by making a critical transition to a self-similar

state [28].

As discussed in [137] the solutions of the set formed by the Navier-Stokes and

the incompressibility condition,

ou

. — 4.1

and  V-u=0 (4.19)

with a no-slip boundary OM of a compact manifold M can be viewed as one-
parameter families of divergence-free vector fields with parameter ¢t. For such a
family of divergence-free vector fields u(t) a structural bifurcation, or a change in
topological equivalence class, occurs at a point in the spatial and parameter space
if the normal derivative of the velocity field u,, = du/0n has a degenerate singular
point, on the boundary segment dM such that u, there is a finite function of the
parameter ¢, or du, /0t # 0. Since the point of separation is also a spatially local
extremum for the vorticity, it was concluded by applying the Hopf Lemma that the
vorticity gradient is directed outward or inward at this point. The presence of an
adverse pressure gradient required for the separation in such divergence-free field
systems follows directly from the fact that the tangential derivative of the pressure
is exactly the normal derivative of the vorticity. Based on this relationship, the
above bifurcation condition was shown in [137] to translate in terms of vorticity at
the boundary dM, which essentially required that the vorticity profile must reach
its first zero value along M at a local minimum point while evolving with respect

to the bifurcation parameter.

In Fig. 4.11 where w is plotted for range of ;1 examined in our analysis we
show that this condition holds for our solutions at the frictional boundaries OM =

AB, BC, and CD (indicated by arrows at two of the boundaries visible in the
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Figure 4.12: (a) The normalized vorticity profile along the no-slip boundary BC' for
various values of parameter . The point of separation and associated bifurcation is
indicated by an arrow where profile corresponding to critical value p* ~ 107°UyL,
has a single degenerate singular point. (b) The nonlinear boundary layer scaling
with dust viscosity p. The profile shows a change of regime at the critical p*.

figure) where such boundary layer separation takes place following interaction with
boundary of the primary vortex at points a, b and ¢ in our solutions (as marked in
Fig. 4.10). For clarity, in Fig. 4.12(a) we present the profiles of vorticity along the
boundary segment BC' for various values of u where the first zero value of vorticity
coincides with the local minima of vorticity at a critical value p* ~ 1 x 107Uy L for
our analysis. This location, z ~ 0.29, at the boundary BC'is indicated by an arrow
in Fig. 4.12(a). At this value p = p* the profile has a degenerate singular point that
bifurcates, at lower u values, into a set of two isolated points since the profile begins
to intersect the axis w = 0 at two points above its minimum. Similarly, the values
for p* for the separation at the boundaries, AB and C'D were noted to be ~ 3 x
107°UpL and =~ 2 x 1075y L, respectively, meaning that the separation is triggered
at the highest p value at the boundary AB, followed by the boundaries BC' and
C'D. These values demarcate the range beyond which nonlinear prescription needs
to be applied for the local estimates. This critical behavior, accompanied by
emergence of self-similar secondary structures, highlights capacity of confined dusty

plasma vortex structures to represent the complexity of biophysical processes where
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replication must follow a bifurcation [57]. The transition in our square shaped
setup produces an identical structure only with a scale ratio of ~ 1 : (v/2 —
1). Interestingly, a recent experiment [13] with dust vortices has indeed shown a
transition resulting into secondary dust vortices with scale ratio of unity, which is
isomorphic to the process of cell mitosis triggered by a bifurcation and is being

addressed by a distinct parameter regime of our formulation.

4.4.4 Velocimetric prescription of the dust viscosity

We finally note that beyond the boundary layer separation (BLS) transition at u*,
a very simple relationship exists between the velocimetrically obtainable quanti-
ties and dust viscosity. This should allow one to estimate the dust viscosity using
velocimetry techniques, for example computer aided particle imaging velocimetry
(PIV) which provides local velocity and vorticity in the vortex [11, 41, 42]. Since
we observe from the characterization of nonlinear solution that the vorticity diffu-
sion across the streamlines is nearly balanced by the nonlinear convection of the

vorticity, the balance (4.5) in the convection dominated boundary layer reads,
uViw =u- Vw. (4.20)

Note that the right hand side involved convective derivative of the vorticity w
parallel to streamlines while the left hand side has a diffusion purely orthogonal
to the streamlines. At any given point in the boundary layer the balance (4.20)

therefore has a simple form,

w w

— = U 4.21

where Ary is the velocity gradient scale length, or approximately the boundary

layer width, and L = wu/u’ is the gradient scale length of the velocity along
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Figure 4.13: characterization of p dependence on the boundary layer flow velocity u
and the characteristic length scale along the streamlines Lj.

the streamlines (with prime indicating derivative along the streamlines). This
readily provides the nonlinear version of the boundary layer width scaling with the

viscosity 4 as,

p=Ar2 (4.22)
L

indicating that in the BLS regime, the dust viscosity may be evaluated from the
experimentally determinable quantities, namely, boundary layer width, dust veloc-
ity and its gradient length along the streamlines. In Fig. 4.12(b) we have plotted
the quantity Arfu/ Ly as a function of viscosity p showing that beyond the BLS
transition (u < p* ~ 1 x 107°UpL on segment BC) this quantity is equal to the
viscosity p. However the a clear disagreement is triggered below the critical BLS
transition and at larger p the linear scaling [25] can be recovered.

The scaling (4.22) is further characterized for various parameters in Fig. 4.13
for the typical experimental conditions outlined in Sec. 4.4 for estimation of the
kinematic viscosity p which is normalized to the product UyL,. The formal depen-
dence of ;1 on the boundary layer width Ary,, flow velocity « and the characteristic
length scale of variation along the streamlines L is described further in Fig. 4.13(a)

and Fig. 4.13(b), respectively, to indicate the sense of its variation with respect to
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these two parameters.

4.5 Summary and conclusions

In this chapter, the nonlinear properties of a volumetrically driven 2D dust vortex
flow of a confined dust fluid suspended in a plasma are studied. Motivated by
toroidally symmetric flow formation and signatures of nonlinear nature of its flow
dynamics at higher dust velocities, 2D nonlinear equilibrium solutions of the vortex
flow are obtained in a toroidally symmetric domain. The solutions obtained in
present treatment are relevant to a large number of observations in dusty plasmas
setups where a vigorous dust vortex flow dynamics is observed with flow velocities
approaching the nonlinear limit. The solutions are in confirmation with a variety
of characteristics observed in the experiments, for example observation by M. Kaur
et al. [11], where localized dust vortex with relatively uniform core vorticity are seen
surrounded by regions with strong variation, featuring very vigorous to relatively
moderate or negligible dynamical activity.

In terms of completeness of the solutions as compared to the linear regime
explored in Chapter 2 and 3, free from most of the approximations involved in
the analytic approach presented in Chapter 3, the governing flow equations in this
chapter are solved rather exactly (limited only by the finite spatial resolution) with
explicit inclusion of multiple axial mode structure of downstreaming flow of both,
the streaming driver and the confined dust. The approach to nonlinear solutions is
shown to be nontrivial where even a numerical approach to them in 2-dimensions,
as adopted in this work, must involve an iterative procedure. The vortex flow
solutions for the identical set up in the low Reynolds number obtainable by both,
the previous linear approach as well as the present nonlinear numerical approach,
are comparable as the numerical solutions for standard parameters reduce in to

the analytic (series) solutions in the appropriate low Reynolds number limit.
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The emerging distinct nonlinear characteristics of the dust vortex flow are noted
in numerical solutions where the circulation originally symmetric about zy in the
low Reynolds number begins to turn asymmetric about zy in higher Reynolds num-
ber (Re > 1) regime. The flow structure in the nonlinear (high Re) regime is also
found to be dependent on the aspect ratio (L, /L,) of the dust confinement domain,
an effect which is analyzed in more detail in following Chapter 5. Among one of
the most fundamental nonlinear characteristics which is quantitatively recoverable
from the nonlinear vortex flow equilibrium solutions with decreasing p (or increas-
ing Re), the strength of the nonlinear term —u - Vw/u is seen to increase and
this nonlinear convection of the vorticity, in turn, is found duly balanced by the
viscous diffusion represented by the term V2w, introducing the convective mode
of the vorticity transport in the set up. For small 1 value cases presented, the
most interesting variation is present in boundary regions of the solution which is
produced entirely by the balance V%w —u-Vw/u ~ 0 as the contribution of other
terms remains nearly negligible. The boundary that provides the strongest source
of vorticity which in the nonlinear regime can be dissipated orthogonal to stream-
lines much deeper in the domain volume at a relatively slower rate than linear case

after being convected away in the interior along the streamlines.

Similar to observations of a dust torus where poloidal dust flow is recoverable
with considerably uniform vorticity, the driven primary vortex in the present solu-
tions is formed with almost uniform vorticity in the core, surrounded by region of
a strong variation of vorticity value and oscillatory nature of streamfunction. The
relationship between vorticity w and product 7 is examined in the small and large
Reynolds number regimes to recover independence of w from ¢ in the uniform vor-
ticity core formed at large Reynolds number. In this limit the core vorticity follows
the curvilinear form of an integral condition on the regions of closed streamlines
where boundary conditions are no longer usable for determination of w in high

Reynolds number regime and its analytic value remains largely indeterminate.
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In presence of 2D heterogeneous boundary conditions applied to dust flow in
a curvilinear coordinate system, the major nonlinear effects cause the boundary
layer to separate from the domain boundary. This causes the vorticity generated
from the interaction with the no-slip, or frictional, boundaries to be convected
away with strong flows of the primary vortices. The separation allows dynamic
isolation of the regions scaling with the dimensions of small scale features of the
boundary (e.g., spatial modulations or the sharp corners) and development of
secondary vortices in these regions. The development of separated boundary layer
is investigated as a structural bifurcation where the kinematic viscosity assumes
role of the bifurcation parameter and the separation coincides with the bifurcation.
The bifurcation is shown to occur when the vorticity profile approaches its first
zero value along the boundary at the point where its minimum is located. This
critical behavior and signatures of equivalent nonlinear vortex states in experiments
indicates capacity of confined dusty plasma vortex structures to represent a class
of systems that can self-stabilize by making a critical transition to a self similar
state, for example, biophysical transition during cells undergoing mitosis. The
nonlinear scaling of the boundary layer parameters with kinematic viscosity p is
obtained that shows a velocity independent linear estimate of kinematic viscosity
to modify and additionally depend up on the flow velocity and its gradient scale
length along the streamlines as u = A’rgLiH. Similarly, existence of a critical values
©* demarcating transition to nonlinear regime is identified. These two factors allow
estimation of viscosity of charged fluids using appropriate scaling by identifying
a structural change in flow patterns in experiments. The nonlinear dust vortex

dynamics thus offers quantitative insight and analytic framework to a number of

natural systems that dusty plasmas emulate.
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Co-rotating multiple vortex

equilibria in nonlinear regime

5.1 Introduction

A remarkable property of the nonlinear solutions presented in previous Chapter 4
has been that the geometry and dimensions of the dust-fluid vortex structure in
nonlinear operating regime are asserted by the dynamics rather than governed by
the boundary structure [26]. Unlike the linear vortex flow solutions [24, 25], nearly
circular multiple co-rotating vortices emerge in the nonlinear regime with virtual
boundary separated from the domain boundary as the dust flow streamfunction
(1) which is allowed to be multivalued in its dependence on the vorticity (w). This
partial freedom from the boundary geometry in a dust vortex is facilitated by the
essential nonlinear effects that ensure a steady state transport of vorticity, via a
newer convective mode of transport, from its sources to a homogeneous sink present
in the form of the neutral fluid. The nonlinear dust flow dynamics achieves this by

balancing the net source of vorticity to be diffused as well as convected flux of the
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vorticity rather than pure diffusion across the streamlines in the nonlinear regime
requiring a boundary layer having sharp gradient along the domain boundary.
The solutions corresponding to this newer set up develop branch-like regions in
the interior where the gradient of the vorticity can have a projection on the normal
to physical boundary with a positive sign. This means that the vorticity can now
diffuse even in the direction directed exactly towards the the physical boundary
rather than essentially away from it as allowed in the purely diffusive linear regime.
The regime prior to this transition sees almost zero diffusive flux of vorticity normal
to the physical boundary in the separation region and therefore no strong vortex
activity in this region and dust flow that is almost stagnant. One therefore watches
the sign of the normal component of the gradient of the vorticity at the separation
location as a function of the parameter p and identifies its critical value p* at
the bifurcation point in the functional space corresponding to a change in sign.
The solutions beyond the critical value u* serve as natural equilibria that must
be approached asymptotically by beginning from any arbitrary initial flow field
arrangement. The fact that these equilibria show a critical transition to maintain
its stability represents a large class of system where a critical transition must
occur and where the properties like the maximum structure size are determined by
this critical limit. The factors determining the nonlinear solutions in the present
nonlinear driven Navier-Stokes system are diffusivity and inertia that control the
dimension of the vortex structure, presenting no possibility of equilibrium with

larger or smaller structures.

In this chapter, the same driven-dissipative bounded dust flow system in an un-
bounded flowing plasma is reconsidered from previous Chapter 4 as shown schemat-
ically in Fig. 5.1. Then in Section 5.2 we first present the results with variation
in the domain aspect ratio and its impact on the formation of vortices and their
number. The case of bifurcating flow solutions with domain aspect ratio 2 is dis-

cussed first where vortex replication with nearly a dimension ratio 1:1 is recovered
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Figure 5.1: Schematic representation of the toroidal dust cloud with vortex mo-
tion and mapping of the boundary of its cross-section to a toroidal domain of
rectangular cross-section accommodated in the cylindrical geometry of the present
nonlinear solutions. Segments AB, BC, CD and DA, of the cloud map to the
corresponding sides of the rectangle ABC'D.

in comparison to 1 : (v/2 — 1) as recovered while analyzing flow in a square shaped
domain in Chapter 4. Such a bifurcation predicted for a dusty plasma 2D flow
cell is discussed in the light of its close resemblance to bifurcation transition in
more complex biophysical processes, for example, in certain approaches to model

the process of cell division or mitosis.

In Section 5.3 we examine more diverse aspect ratio values, including those
exceeding 2 and smaller than unity. It is discussed that the cases with aspect
ratio larger than 2 and more a complete sequence of identical corotating vortices
is recovered with number of identical vortices equal to the value of aspect ratio.
This result is discussed in the light of recovery of similar results in the dusty
plasma experiments by M. Choudhary et al. [13] where a dust cloud with aspect
ratio exceeding unity is indeed seen to develop a series of multiple corotating
vortices at stronger drive, or larger Reynolds number. In the cases of aspect
ratio smaller than unity, the vortices are seen to show a transition to a diffusion

dominated single vortex state, even at much smaller kinematic viscosity values.
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The solutions correspond to no exact balance between nonlinear convection and
diffusive transport terms in the model. Summary and conclusion from the above

studies are presented in Section 5.6.

5.2 Vortex flow at higher domain aspect ratio

While diffusion in a dust cloud under the model (4.4)-(4.5) is active in all the lim-
its, the convection channel additionally becomes available in the nonlinear cases.
The two effects compete in this regime and the convective transport gets to de-
cide the flow topology when the flow velocity rises above a threshold. Below this
threshold the diffusion across the streamlines is the dominant mechanism of the
vorticity transport and the convection channel is secondary. The sharp gradients
at the boundary that decay into the interior with a monotonic streamfunction
(or vorticity) variation is therefore the characteristics of the linear solutions. In
the nonlinear regime, on the other hand, a nonmonotonic spatial variation of the
streamfunction characterizes development of localized regions where the vortic-
ity transport along the streamline is stronger and therefore the vorticity brought,
convectively, along the streamlines diffuses in both the directions about the car-
rier streamlines owing to the developed gradients with drop in vorticity in both
the directions about them, as clear from the vorticity plots in Fig. 4.11 over this
transition. The diffusive transport of the vorticity to core, or to the exterior re-
gion, is still small and most of the vorticity flux is dissipated by the means of sink

(neutrals) well within in the separated boundary layer itself.
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5.2.1 Vortex structure replication for domain aspect ratio

L.:L.=2

Note that the central, uniform-vorticity circulation visible in the nonlinear limit,
Fig. 4.11(d) is isolated from the boundaries. Given its isotropy, a single scalar
parameter, or its radius, is limited by the radius of curvature of the flow that
must reverse within minimum separation between two boundaries. With explicit
presence of dust inertia, at larger flow velocity the turning of flow sets up a macro-
scopic mode of circulation scaling with separation between two boundaries in the
incompressible dust flow. Interesting vortex flow structure develop following a BLS
transition in case the axial dimension of the confinement domain is longer than
the separation between the radial boundaries determining the turning radius of the
inertial flow. A case with aspect ratio L,/L, = 2, driven with ion flow of I = 1,
is examined in Fig. 5.2 with € = 1074Uy/L, and v = 103Uy /L., for a wide range
of Reynolds number Re ~ 0.01 to 100. It is seen that a secondary vortex identical
to the first forms in the region further upstream (of the driving ion flow) if the
viscosity p is reduced further. This results from the sharp separated boundary
of the first vortex extending deeper in to the domain interior along the boundary
of the primary vortex and beginning to act as a virtual domain boundary for the
upper region, providing a vanishing flow velocity boundary condition identical to
the original domain boundary. It can be well predicted that this might trigger for-
mation of a sequence of identical vortices for even larger aspect ratios as discussed

in more detail in Sec. 5.3.

The transition in terms of axial and radial flow velocity profiles is presented in
Fig. 5.2(f) and (g), respectively. The impact of the nonlinearly developed extended
virtual boundary can be seen deep into the interior where, in a quite counter-
intuitive observation from Fig. 5.2(f), the magnitude of the dust flow velocity w,

begins to drop (red profile with u = 3x 105Uy L,.) with decrease in the p (increasing
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Figure 5.2: [Effect of varying viscosity at L, : Lr = 2] Streamlines for the dust fluid flow
in r-z plane for varying (a) u = 1073UgL,, (b) pn = 3 x 107U L, (¢) p = 1.8 x 107Uy L,
and (d) u = 9 x 107Uy L, respectively having fixed other parameters £ = 107*Uy/L,.,
v =10"3Uy/L,. The corresponding cross-section profiles for (e) 7 (r, 20), (f) u.(r, 20)
and (g) u,(ro, 2) passing through the center of the primary vortex (rg, 29)-

Reynolds number) in the region close to  — 0. The u, value at » = 0 drops below
its value in the interior despite that the driver strength approaches its maximum
at r = 0. The downward directed dust flow velocity at » = 0 which thus shows
a maximum as a function of y at the critical value p = pu* ~ 1073UyL as seen in
Fig 5.2(f). Similarly, the radial component of the dust flow velocity wu, is clearly
seen in Fig. 5.2(g) to vanish at z ~ 0 such that the line z = 0 begins to resemble a
domain boundary (at least for large 7). Note that transition in a domain of aspect
ratio L, : L, = 1, as addressed in Chapter 4, produced a dynamically identical
structure only with a scale ratio of 1 : (v/2 — 1) as opposed to the scale ration
nearly 1:1 as recovered in the case of domain aspect ratio 2. Whether this scale

ratio 1:1 is general for all the values of the domain aspect ratio larger than unity
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Figure 5.3: [Shifting effect in (79, 20) with varying &, v and p] Shifting in center of
circulation (rg,zo) with changes in (a) ion dragging co-efficient &, (b) neutral collision
frequency v. And (c) Shifting in center of circulation (79, zp), and changes in boundary
layer thickness Ary, with varying kinematic viscosity p.

(2 or more) is investigated in the next section.

5.2.2 Ciritical topological modification of 2D vortex struc-

tures

We now examine the magnitude of topological change in the vortex flow struc-
tures during the critical BLS transition and present comparison between the mod-
ifications along axial and radial dimensions for the case of domain aspect ratio
L,/L, = 2. The Fig. 5.3(a). (b) and (c) present the shift with respect to change
in &, v and p, respectively, in the radial and axial locations of the primary vortex

ro and zg, respectively. In the observed variations in each case, a larger shift is
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generally noticed in the axial location z, of the vortex in comparison to the radial
location rg with respect to change in all the parameters. The variation in both
ro and zg are also relatively simpler and monotonic with respect to variation in &
and v. However, with respect to the viscosity p the shift in 2z, shows a complex
nonmonotonic behavior and shows that the system undergoes a critical change at
about p = 1-2 x 10° UyL, and shows a relaxation like behavior at a critical value
1" comparable to this value. Among another noticeable effect, the amount of shift
both in the dust boundary layer width and in the primary vortex center (triangles
and boxes in Fig. 5.3(¢) are found to be complementary to each other showing that
the effect of critical BLS transition has been uniform and global rather than being

limited to the boundary layer structure.

5.3 Generation of co-rotating vortex sequence for

higher aspect ratio

The dust vortex flow analysis is extended further in this subsection to confinement
domain aspect ratio L,/L, > 2. Variation in the vortex flow structure topology
is analyzed with external driver flow vorticity mode index I = 1, £ = 107Uy /L,,
v = 10730y /L, and varying kinematic viscosity from pu = 1073 to 107Uy L, such
that the corresponding effective Reynolds number varies up to the nonlinear regime
from Re ~ 0.1 to 100. The series of structural changes for wide range of Re or that
of the kinematic viscosity p is shown in Fig. 5.4(a) to (¢), in term of streamlines
of dust circulation in an r-z plane of the toroidally symmetric confined domain.
In the linear regime (1 = 1073UL, or Re < 1), dominated by pure viscous
transport, the flow in the confined domain is characterized by single vortex with
boundary aligned flow streamlines, and a boundary layer that runs along the no-

slip boundary and has sharp velocity gradient in the direction orthogonal to the
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Figure 5.4: [Effect of varying viscosity at L, : Lr = 3] Streamlines for the dust fluid
flow in 7-z plane, correspond to varying (a) p = 1073UgL,, (b) = 104Uy L,, (c) u =
105Uy L, respectively having fixed other parameters &€ = 104Uy /L,., v = 103Uy / L,..

boundary. The vortex flow follows these linear characteristics up to Re < 5 as
shown in Fig. 5.4(a). However, up on increases in Re from 5 to 20, the flow
patterns is no longer symmetric about the center-line of the confined region and the
center of the vortex drifted axially downward and radially outward and the vortex
flow converges to a new equilibrium flow structure as shown in Fig. 5.4(b). Further
increase in Reynolds number or y ~ 107°U, L, produced the spontaneous structural
change by the nonlinear structural bifurcation at a critical kinematic viscosity
" [26]. As predicted and discussed in Sec. 5.2.1 the vortex flow pattern makes
spontaneously transition to a sequence of three separated co-rotating vortices, each
having a nearly uniform vorticity core region with dimension of the smallest scale
available (L, < L) in the system, and bounded by a virtual boundary and a
shear region as shown in Fig. 5.4(c). For the confining system having aspect ratio of
L, : L, = 3, the radial shear scale of the background streaming plasma (driver) flow
remains L,, but the axial interactions range of the driver with the confined dust is

extended up to longer extension L, > L,. Thus the background ions transfer larger
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momentum to the confined dust and nonlinear structural bifurcation is observed
to take place at a relatively lower critical Reynolds number Re* & 60, or at critical
kinematic viscosity p* &~ 8 x 107°UyL,., while Re* ~ 80 or p* &~ 1 x 107°[UyL,] in
case of confining system having aspect ratio of L, : L, = 2.

For the dimensions where L, > L, but not an integer multiple of L,, a partially
developed vortex at the upstream ion-flow end of the cell is visible in addition to

an integer number of fully grown vortex as seen in Fig. 5.4.

5.3.1 Recovery of multiple co-rotating vortices in the ex-

periments

In many dusty plasma experiments displaying fluid-like dust phase and its rel-
evant flow dynamics, the structure of the boundary of the confining domain is
an important factor allowing to identify the dynamical regime of the flow. For
example in many confinement domain with noncircular boundaries the boundary
layer separation takes place as the separated boundary layer forms along a nearly
circular boundary of a dominant vortex. Either a stagnant flow or a secondary
vortex activity, similar to secondary vortex formed in solutions in Fig. 4.10, must
be observed in such cases in the region between the separated and physical do-
main boundary. In a very close observation experimental results of M. Kaur et al.
[12] showed that when the confinement domain in highly non-circular a nearly
uniform vorticity circular vortex forms in the core of the domain while a clearly
separated weaker flow activity is observed in the region between the boundary of
the core vortex and noncircular boundary of the domain (see, for example, the
dust cloud geometry in Fig. 2.1 and 5.5). Clearly with small volume of the region
between vortex boundary and domain boundary the secondary vortex formed in
such setup is inhibited by the strong viscous diffusion and the dimension of the

secondary vortex formed remain smaller than the primary vortex, for example, the
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Figure 5.5: Uniform vorticity core region surrounded by very sharp and localized
shear flows observed in toroidal dust cloud with poloidal circulation in the lab-
oratory dusty plasma experiment by M. Kaur et al. Phys. Plasmas 22, 033703
(2015)[12].

smaller dimensions of the secondary vortices forming in the corner of the square
shaped domain of the solutions in Fig. 4.10. The large aspect ratio cases present
special cases of domains where primary vortex formed may have adequate volume
of the dust fluid outside the primary vortex boundary for another vortex of the
similar dimension to form and develop into a corotating replica of the primary
vortex, as represented by large domain aspect ratio solutions, for example, those
for case L,/L, = 2 presented in Fig. 5.7 of the Sec 5.2.1 and its general form with
L,/L, = 3 presented in Fig. 5.7 of the Sec. 5.3.

Interestingly, a recent experiment carried out by M. Choudhary et al. [13],
who analyzed dust dynamics in domain of higher aspect ratio L,/L, ~ 2-3, has
indeed shown a similar structural transition from a single dust vortex structure to
a state of multiple co-rotating dust vortices. Transition by observed by Choudhary
et al. resulting from a variation in input power to the plasma discharge and in the
location of the dust cloud in the background plasma as described in Fig. 5.6 adopted
from [13]. In another recent experimental work Kil-Byoung Chai et al. [106],
reported recovery of dust grain poloidal vortices with two adjacent co-rotating

poloidal vortices. The vortex formation in the observations by Chai et al. is
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Figure 5.6: Steady equilibrium co-rotating vortices observed in dusty Phys. Plasmas
24, 033703(2017) [13]. The number of vortex structures depends on the position of the
observed cross-section away from the source region and the variation in input power as
shown in upper and lower rows.

reported in presence of ion density gradient and the gradient of the magnitude of

the ion ambipolar velocity.

The close agreement between the dust dynamics described by our nonlinear
formulation and the driven dust flow dynamics experiments carried out quite inde-
pendently by Choudhary et al. [13], incorporating also the complex phenomenon
(critical transition) of development of multiple corotating vortices from a single
vortex, indicate that the laboratory dusty plasma show strong signatures of flow
activity with access to nonlinear regime of the dust flow. The agreement further
motivates the idea that dusty plasma experiments can be one of the easily realiz-
able prototypes for the study of the complex systems which additionally tend to
follow a definite analytic prescription, although with a certain number of underly-

ing simplifications.
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5.4 Characteristics of driven dust flow with frac-

tional domain aspect ratio

For the curvilinear setup as considered in the present studies, the characteristics
of dust dynamics is very different when the aspect ratio of the confining system is
less then unity, (L./L, < 1). We once again examine such cases for the vertically
streaming (z-directed) driving ions field having a monotonic shear consistent with
I = 1 over the radial scale L, which however interacts with the confined domain
only over a relatively much shorter axial length L,(< L,). In such confined do-
mains, even with stronger coupling £ the ions might transfer a relatively very less
momentum to the confined dust in comparison with the case of large aspect ratio
L, > L, and dust mainly requires to flow along a longer radial dimension of the
domain L, > L,. The major effect in this regime is increasing dominance of diffu-
sive transport of vorticity along the direction of drive when dust is flowing along
radial direction rather than the axial direction. The regime sees a strong effect and
interaction between the boundary layers forming along the radial boundaries (top
and bottom boundaries in Fig. 5.1). Among one of the characteristics observations
in this regime, the nonlinear structural bifurcation takes place at very high critical
Reynolds number Re® or small critical kinematic viscosity of the dust p* depending

on the aspect ratio of the confinement domain.

5.4.1 Dependence on changing domain aspect ratio

The series of structural changes for wide range of Re or kinematic viscosity is shown
in Fig. 5.7, in term of streamlines patterns of dust circulation in the r-z plane of
confined domain. Although the fundamental dependence of flow structures on the
variation of Reynolds number is very similar to the case of aspect ratio L,/L, = 2

as discussed in section 5.2.1, there is considerable difference in critical parameter
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Figure 5.7: [Effect of varying viscosity at L, : Lr = 0.5] Streamlines for the dust fluid
flow in » — 2 plane, correspond to varying (a) u = 1073UyL,, (b) p = 107°UyL, and
(¢) = 3 x 105Uy L, respectively having fixed other system parameters & = 104Uy /L,,
v =10"3Uy/L,.

values p* for the nonlinear structural bifurcation of the flow field in comparison to

the large aspect ratio cases. In the case of viscous linear regime up to u = 107Uy L,

or Re &~ 20, the flow confirms with basic characteristics of the linear vortex flow

as visible in Fig. 5.7(a). When the Re increases up to 30 — 100, the flow patterns

is no longer symmetric about z = 0 and the center of the vortex is shifted radially

outward and develops an equilibrium structure with an almost uniform vorticity
Ow

core, i.e., a region with u - Vw = 0 and 5745 = 0, as shown in Fig. 5.7(b). Further

rise in the Reynolds number up to Re ~ 150 by using jt = 3x 105Uy L,., the shifting

effect strengthens and a structural bifurcation take place through the critical p*

(=5 x 107°UyL,), as visible from Fig. 5.7(c).

We now examine the effect of reduction in domain aspect ratio from 0.5 by
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Figure 5.8: [Effect of varying system size L, : L,| Streamlines for the dust fluid flow
in 7-z plane, correspond to fixed u = 3 x 107Uy L,, £ = 10_4U0/Lr, v = 10_3U0/L7n
and varying aspect ratio (a) L, : L, = 0.25, (b) L, : L, = 0.2 and (¢) L, : L, = 0.125
respectively. The corresponding cross-section profile for (d) ry(r, z9), (e) u(r,20) and
(f) ur(ro, 2) passing through the center of primary vortex (rg, o).
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fixing the kinematic viscosity to the value ;1 = 3x 10~°U, L, for which the nonlinear
flow is already recovered with aspect ratio L,/L, = 0.5 in Fig. 5.7(c). When the
aspect ratio is further reduced to values L, /L, = 0.25, 0.20 and 0.125 as shown in
Fig. 5.8(a), (b) and (c), respectively, a transition back to almost a linear regime is
recover for L,/L, = 0.125 because of dominance of diffusive transport along z, or
in the direction orthogonal to the streamlines that are largely aligned to top and
bottom boundaries.

This transition is presented in terms of and profiles of streamfunction plotted
as function of r at z = 2y and radial and axial profiles of the velocity components
u, and wu,, respectively, along the line segments passing through the center of the
primary vortex as shown in Fig. 5.8 resulting from the variation in the values of
the aspect ratio, L,/L,=0.25 (blue), 0.20 (green) and 0.125 (red). The transition
is identified by a nonmonotonic streamfunction profile for L,/L,=0.25 and 0.2
becoming monotonic for L./L,= 0.125 in Fig. 5.8(d). The velocity component
u, plotted in Fig. 5.8(e) similarly shows transition of the profile from a double
bipolar structure to a single bipolar structure. The Fig. 5.8(f) shows a weakening
flow velocity (reduction of Re) with the shrinking z dimension of the region with

reducing aspect ratio.

5.5 Continued stability by structural bifurcation

Many complex systems operate with an underlying nonlinear mechanisms where
the point in the parameter space at which the stability of one solution is lost
is precisely the point where another solution bifurcates from it [84]. The struc-
tural bifurcation at p* highlighted in an electrostatically suspended dust vortex

flow cell is one such phenomenon in a driven system that, apart from produc-
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Figure 5.9: Schematic of an autonomous system with vortex nonlinearity controlled
periodic replication and growth of vortex.

ing dynamically active and physically realizable 3D entities, generates physical
near-replicas of parent entities which grow unstable by their changing physical at-
tributes. From above analysis one notes that a dynamical system where the aspect
ratio L[V (r, z,t)]/L, is a slowly varying function, via the confinement domain
potential V' (r, z,t), of time, it is possible to recover a frequency of structural bifur-
cations and rate of generation of, say, the dusty plasma cells populating an axially

elongating confinement domain.

In order to achieve a quantitative correlation with bifurcation based evolution
of certain biophysical microsystems [28, 57] within the present approach, it might

be of more interest to consider a rather complex but more realistic autonomous
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state of the set-up. As described schematically in Fig. 5.9, this objective can
formally be achieved by allowing dependence on time to enter only via a function
of vortex area A. ~ L, xS, (where S, < L, is the axial dimension of a growing
vortex) of a growing of n'® vortex, given by a time integral over an area dependent

(linear) rate ay of the change of axial dimension S,

s.0= [ " oA ()] dt (5.1)

tn—1

with a results that a bifurcation must takes place periodically at,
L,=(n—-1)L,+ S, =nL,. (5.2)

where n is a positive integer. The model (5.1)-(5.2) provides a prescription for a
partially developed cell which must grow until it undergoes a structural bifurcation,
seeding another partially grown cell in the setup. A detailed characterization of the
formal model (5.1)-(5.2) is however subject of a potential future work, involving
computations of isothermally growing equilibria at prescribed rate ag, by treating

S, as a parameter.

5.6 Summary and conclusions

In this chapter, we presented the solutions of 2D nonlinear hydrodynamic formula-
tion of confined, volumetrically driven dust cells with variation in the confinement
domain’s aspect ratio and its impact on the formation of vortices and their num-
ber. The case of bifurcating flow solutions with domain aspect ratio 2 is discussed
first where vortex replication with nearly a dimension ratio 1:1 is recovered in
comparison to 1 : (v/2 — 1) as recovered while analyzing flow in a square shaped
domain in Chapter 4. Such a bifurcation predicted for a dusty plasma 2D flow cell

is discussed in the light of its close resemblance to bifurcation transition in more
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complex biophysical processes, in certain approaches, for example, to model the
process of cell division or mitosis [28, 57].

In the context of pure laboratory dusty plasma experiments, the formulation
predicted a class of nonlinear multiple-co-rotating vortex solutions which were
experimentally recovered in almost simultaneously conducted laboratory dusty
plasma experiments. The advanced numerical analysis done examined more di-
verse aspect ratio values, including those exceeding 2 and smaller than unity. It is
discussed that in the cases with aspect ratio larger than 2 and more, a complete
sequence of identical corotating vortices is recovered with number of identical vor-
tices equal to the value of the aspect ratio. This result is discussed in the light
of recovery of similar results in the dusty plasma experiments by M. Choudhary
et al. [13] where a dust cloud with aspect ratio exceeding unity is indeed seen
to develop a series of multiple corotating vortices with stronger drive, or larger
Reynolds number. In the cases of domain aspect ratio smaller than unity, the
vortices are seen to show a transition to a diffusion dominated single vortex linear
state, even at much smaller kinematic viscosity values. The solutions correspond
to no exact balance between nonlinear convection and diffusive transport terms in

the model.

In the linear limit the diffusion across the streamlines is the dominant mech-
anism of the vorticity transport and the convection channel is secondary. The
sharp gradients at the boundary that decay into the interior with a monotonic
streamfunction (or vorticity) variation is therefore the characteristics of the linear
solutions. In the nonlinear regime, on the other hand, a nonmonotonic spatial vari-
ation of the streamfunction characterizes development of localized regions where
the vorticity transport along the streamline is stronger and therefore the vorticity
brought, convectively, along the streamlines diffuses in both the directions about
the carrier streamlines by means of the developed gradients, with drop in vorticity

in both the directions, about them. The diffusive transport of the vorticity to core,
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or to the exterior region, is still small and most of the vorticity flux is dissipated
by the means of sink (neutrals) well within in the separated boundary layer itself.
It is noted that while the transition in a domain of aspect ratio L,/L, = 1, as
addressed in Chapter 4, produced a dynamically identical structure only with a
scale ratio of 1 : (v/2 — 1) the structure scale ratio nearly 1:1 is recovered in the
case of domain aspect ratio 2.

Critical topological modification of 2D vortex structures are noted where the
variation in both r and z coordinates of vortex location show a monotonic shift with
respect to variation in £ and v. However, with respect to the viscosity p the shift in
axial location of the vortex showed a complex non-monotonic behavior indicating
that the system undergoes a critical change in dynamics at certain specific p* value

and shows a relaxation like behavior at this value.

The close behavioral agreement between the dust dynamics described by our
nonlinear formulation and the driven dust flow dynamics in a number of dusty
plasma experiments, incorporating also the complex phenomenon (critical transi-
tion) of development of multiple corotating vortices from a single vortex, indicates
that the laboratory dusty plasma show strong signatures of flow activity extending
into the nonlinear regime of the fluid-like dust flow. The agreement further moti-
vates the idea that dusty plasma experiments can be one of the easily realizable
prototypes for the study of the complex systems which additionally tend to fol-
low a definite analytic prescription, although with a larger number of underlying
simplifications.

In the regime of fractional domain aspect ratio L,/L, < 1, the major effect is
noted to be the increasing dominance of diffusive transport of vorticity along the
direction of drive when dust is flowing along radial direction rather than the axial
direction. This regime sees a strong effect and interaction between the boundary
layers forming along the radially extended axial boundaries (or top and bottom

boundaries). Among one of the characteristics observations in this regime, the
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nonlinear structural bifurcation takes place at very high critical Reynolds number
Re" or small critical kinematic viscosity of the dust p* depending on the aspect
ratio of the confinement domain.

Interesting vortex flow structure develop following a BLS transition in case the
axial dimension of the confinement domain is longer than the separation between
the radial boundaries determining the turning radius of the inertial flow. It is
seen that a secondary vortex identical to the first forms in the region further
upstream (of the driving ion flow) if the viscosity p is reduced further. This
results from the sharp separated boundary of the first vortex extending deeper in
to the domain interior along the boundary of the primary vortex and beginning to
act as a virtual domain boundary for the upper region, providing a vanishing flow
velocity boundary condition identical to the original domain boundary.

As discussed in the final part of this chapter, we suggested an elementary
prescription in order to correlate the present treatment to bifurcation based evo-
lution of certain biophysical microsystems [28, 57]. A possible approach in this
direction is to consider a rather complex but more realistic autonomous version
of the present setup to formally replace non-self-consistent constraints in terms of
prescribed confining potential and driving background plasma flow. Achieving a
periodic frequency of bifurcation in autonomously growing vortex flow cells might
be possible by introducing a dependence of the cell dimension via a time-integral
relationship with the increasing area of an unsaturated vortex cell. Although an
exact implementation and solution of the prescribed model remains subject of a
future extension of the present computational analysis, the formally introduced
model highlights a prescription for a partially developed cell which must grow un-
til it undergoes a structural bifurcation, seeding another partially grown cell in the
setup providing a nonlinearity controlled periodic sequence of physical structure

generation.
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Conclusion and future work

This thesis addressed the problem of flow structures in the spatially confined fluid-
like phase of the dusty plasma, or the cloud of heavily charged dust particles
electrostatically suspended in the plasma. Apart from systematically formulating
and analyzing dust vortex flow dynamics recovered in many recent dusty plasma
experiments, the studies presented in this thesis additionally focused on a special
class of driven complex systems formally representable by the confined, steadily and
volumetrically driven flow of the dust-fluid in the routine experiments and many
natural circumstances. The central conclusion from this study highlights that,
while microscopic characteristics of dusty plasma are well-known to resemble the
crystalline [51-53] to viscoelastic fluid-like media [18; 54], the overall macroscopic
dynamics of its fluid-like phase represents vortex activity in many volumetrically
driven complex and biophysical fluids at much accessible scales.

The results obtained in the first half of the study, mainly done by numerical
solutions in the linear limit of the developed 2D hydrodynamic formulation [24],
successfully predicted and interpreted experimentally observed multiplicity of vor-
tex in a series of observations by M. Kaur et al. [11, 24]. A more systematic and

analytic approach to various advanced aspects of linear dust vortex dynamics also
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outlines basic scaling of boundary effect at low to moderate Reynolds number [25].
The second half of the study similarly addressed a further advanced and complete
nonlinear regime of the dust vortex flows. The nonlinear studies extended the
limits of valuable analytic prescriptions of estimates and scaling recoverable from
rather easily diagnosed flow dynamics of the dust, to high Reynolds number nonlin-
ear regimes. The remarkable aspect of a continued stability of spatially extended
vortex structures via a structural bifurcation is analyzed by means of finding and
presenting nonlinear co-rotating multiple vortex solutions of the formulation, while
also highlighting their recovery in a recent independent set of experiments where
the recovered series of co-rotating structures additionally show an identical tran-

sition.

6.1 Main conclusions of the thesis

The following discussion further highlights various noticeable, observations, find-
ings and conclusion from the entire length of the present study.

In Chapter 1 it is shown that beginning from the conservation equations in
2D cylindrical setup a formulation can be developed for the dust streamfunction to
yield the 2D dust flow field components. Reducible in to a set of multiple coupled
first order partial differential equations, the model can be suitably solved for dust
streamfunction, subject to appropriate boundary conditions that are transformed
in terms of the dust streamfunction and its derivatives. Describing a number of
possible sources, the solutions obtained here consider the vorticity supplied by a
streaming sheared flow of ions, exerting a drag force on the dust, as a representa-
tive driving mechanism. Demonstrating the desired applicability to the dust vortex
formation observed in a number of experimental conditions, this first characteriza-
tion in terms of dust streamfunction solutions yielded the following characteristic

observations and conclusions:
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e The complete 2D profiles of the dust streamfunction 1 (r, z) produce corre-
sponding streamlines, represented, in the present curvilinear geometry, by

the contours of the product r in the domain of the solutions.

e The no-slip boundary used at finite boundary section introduces friction be-
tween: the stationary dust medium it represents at the boundary, and the
internal dust flow field, such that a strong shear develops allowing the veloc-
ity at the boundary to drop to small values at the corresponding boundary

sections.

e This finite region adjacent to the resisting boundary where a strong viscous
diffusive stress develops is seen extended up to certain characteristic width

that can be identified as the boundary layer thickness.

e The net flux of confined dust across the vertical symmetry location z = 2
remains zero since the dust flow, driven by the ion drag, undergoes only a
circular flow in the volume as it is confined by the boundaries of the region

satisfying the continuity equation.

e For the ion flow profile which is unidirectional, because of the confinement
the dust flow is along the ion flow where ion flow is stronger and is capable of
dragging the dust along. It however turns against the ion flow at the large r
locations where the downward ion flow is rather weak, resulting in its steady

circulation.

e At small values of drag coefficient £ the radial profiles of dust flow at symme-
try plane is almost uniform, it however tends to acquire the radial variation
(or shear) almost identical to that of the driver fluid when a larger drag coef-
ficient is present with appropriate modification near the external boundaries

to satisfy imposed boundary conditions.
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For a small value of ion drag co-efficient £ the dust circulation is negligible.
However, the gradual strengthening of the dust circulation is observed with

increasing ¢ and fixed value of p and v.

The weakening of strength of streamline patterns with increasing neutral col-
lision frequency v shows the characteristics change of dust circulations with
varying neutral collision frequency. Dust dynamics can cease at extremely

high neutral collision frequency.

Increase in the dust viscosity coefficient p although results only in a negligible
reduction in the flow strength, it changes position of the center of circulation
and increases the width, Ary, of the boundary layer developed on the resisting

boundaries with increasing dust viscosity

The dust flow at the boundary remains parallel to the boundary surface,
however the flow velocity parallel to the boundary changes in magnitude

depending on the nature of boundary.

Since the velocity at the boundary with stationary dust must drop to zero
(the no-slip boundary condition), a maximum value appears in the velocity
profiles close to the boundary and the separation of this maximum from the
boundary, Ary, can be a good measure of the boundary layer thickness in
most cases of interest. As already noticed, this characteristic length scale

increases with increasing viscosity .

The dependence of Ar, on & over a wide range of small values of £ (~
107*Uy/L,) is negligible. However, in the cases with large enough ¢ values
(~1Uy/L,), the Ary value is sensitive to ¢ and relatively smaller for higher

ion drag coefficients £, and therefore smaller for larger dust flow velocities.

The streamfunction solutions were presented in additional cases of nonmono-

tonic shear in the streaming plasma flow. When a narrow stream of plasma
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AL = 0.1L, is used as a driver localized at radial center r = L,./2 of the do-
main, the dust streamfunction presents a solution that divides the domain in
two separate zones, forming two counter-circulating dust flow vortices about

the location of the stream.

e The flow characteristics recovered for the case of monotonic driver are found
quite relevant to the vortices observed in the experimental setups where local-
ized source of momentum is present, e.g, in the laser heated driven dust flow
in a laboratory experiments [131]. This prediction of multiple vortices[24]
also motivated the subsequent recovery of similar multiple counter-rotating
vortices in laboratory dusty plasma experiment at IPR-India by M. Kaur
et al. [12], up on introducing non-monotonic radial density profile of the

background ions.

e Gradual development of a counter-rotating vortex was studied by introducing
an increasing shift in the localized stream of ions. Transition from a single
to multiple vortex regime is recovered where the upward moving dust flux
balances the downward driven flux via two disjoint regions in the r-¢ plane,

producing two counter circulating vortex in the -z plane.

e With respect to multiple vortex solutions it is generally noted that they must
emerge when a complex source structure with multiple localized shear layers
is used as external driver. For a fixed system size, however, the radial scale
length of the vortices must reduce in such situation allowing the viscous
dissipation or nonlinear effects of vorticity convection to become important
at sufficiently larger k values, where a viscous cutoff, k;, may exist and
determine the smallest sustainable spatial scale of the observable vortex [132,

133).

In Chapter 3, the presented analytic treatment used the description of the vortic-

ity of both the dust and of the driving plasma in terms of strength of eigenmodes
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of a curvilinear bounded setup in the mode number space. The analytic solutions

for the dust flow are obtained by treating the boundary value formulation as an

eigenvalue problem, and using the linearly independent set of Bessel functions as

eigenmodes that allows both driving and driven flows to follow valid flux conser-

vation and have a multiple scale vorticity spectrum.

Following are among the main conclusions from this analytic description and

its solutions, in terms of orthonormal set of radial basis functions.

e The expression of the driver flow field in the form of system eigenmodes (3.26)

170

allows studying the dynamic equilibrium between the two flows with system-
atically increasing radial mode number of the driving field. This increase
is observed to introduce smaller gradient scales in the dust flow and yield
a corresponding limit on the smallness of the vortex flow scale, effectively

because of the presence of finite dust viscosity.

The variation of the dust velocity profile near the external no-slip boundary
shows that the dust dynamics involved new scale introduced by the bound-
aries other then the driving external fields. The range of scales present in
the system can be visualized from the corresponding intensity spectrum of
the constituent modes of the driven dust flow vorticity profiles, Int(m) = a?,
(where a are the coefficients of the dust eigenmodes). This spectral depen-

dence could be characterized in the analysis as a function of mode number

m for increasing value of radial mode number of source vorticity I.

In respect to the smallest scale analyzable by the largely macroscopic hydro-
dynamic formulation, very small length scales in the boundary layer, that are
either comparable or finer than the average inter-dust-element separation, d,
are obviously disallowed in the existing macroscopic model by the special con-
ditions used for limiting the minimum scale of flow gradients in the present

solution procedure. With finite possibility of finite stochastic at microscopic
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(molecular) level, such finer scales are likely to be populated by modes with
a power-law that in the some of the first-principle computer simulations have
been predicted to follow a Kolmogorov-like turbulent scaling [135]. However,
how these resulting finer-scales structures must interact with the bound-
ary layer that forms at the similar scales, remains an interesting question
for analytically determining the nature of the spectrum at such finer scales.
Correctly addressing this region of spectrum under the hydrodynamic for-
mulation would therefore require extending the present Navier-Stokes model
to a generalized hydrodynamic model, by including the essential viscoelastic

effects [116].

The boundary layer thickness for a wide range of p value is found to be al-
most independent of the coefficient of ion drag & such that profiles of Ary(pu)
evaluated with various £ values are seen to be overlapping. The shear scale
length is, in turn, not sensitive to the ¢ and the driver strength remains
largely decoupled with the characteristics of the dust dynamics in the lin-
car (low Re) flow regimes. This behavior shows the neutrality of the dust

dynamics with respect to the driving mechanism and its strength.

With the effect of increasing complexity in the driver setup resolved in the or-
thogonal eigenfunctions and characterized individually for increasing value of
radial mode number, a scale independence of effects associated with bound-
ary could be identified. Both the boundary layer thickness and the dust
Reynolds number are shown to have definite exponents of variation with re-
spect to the medium viscosity p. While the effective boundary layer width is

1/3 the effective Reynolds number for the set-up is

recovered to scale with p
recovered to scale with ;~2/3. Both these orderings are seen to be obscured
by an increasing spatial complexity of the driving mechanism. The degree of

the impact of this complexity is estimated by systematically characterizing
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the effect of individual driver flow modes in various cases with increasing

value of the cylindrical mode number.

In Chapter 4, the obtained complete 2D nonlinear solutions are shown rele-

vant to a large number of observations in dusty plasmas setups where a vigorous

dust vortex flow dynamics is observed with flow velocities approaching the non-

linear limit. The nonlinear solutions are also in confirmation with a variety of

characteristics observed in the experiments, for example observation by M. Kaur

et al. [11], where localized dust vortex with relatively uniform core vorticity are

seen surrounded by regions with strong variation, featuring very vigorous to rela-

tively moderate or negligible dynamical activity.

Following are among the main conclusions from the analysis of the nonlinear

structure of the problem and its 2D solutions.

e The emerging distinct nonlinear characteristics of the dust vortex flow are

noted in numerical solutions where the circulation originally symmetric about
2o in the low Reynolds number begins to turn asymmetric about 2y in higher
Reynolds number (Re > 1) regime. The flow structure in the nonlinear (high
Re) regime is also found to be dependent on the aspect ratio (L,/L,) of the

dust confinement domain.

With decreasing ;o (increasing Re) the strength of the nonlinear term —u -
Vw/p is seen to increase and this nonlinear convection of the vorticity, in
turn, is found duly balanced by the viscous diffusion represented by the
term VZw, introducing the convective mode of the vorticity transport in the
set up. For small p value cases presented, the most interesting variation is
present in boundary regions of the solution which is produced entirely by
the balance V2w — u - Vw/p ~ 0 as the contribution of other terms remains

nearly negligible.

e The boundary that provides the strongest source of vorticity which in the
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nonlinear regime can be dissipated orthogonal to streamlines much deeper
in the domain volume at a relatively slower rate than linear case after being

convected away in the interior along the streamlines.

Similar to observations of a dust torus where poloidal dust flow is recoverable
with considerably uniform vorticity, the driven primary vortex in the present
solutions is formed with almost uniform vorticity in the core, surrounded by
region of a strong variation of vorticity value and oscillatory nature of stream-
function. The relationship between vorticity w and product ri is examined
in the small and large Reynolds number regimes to recover independence of

w from 7 in the uniform vorticity core formed at large Reynolds number.

In the above limit, the core vorticity follows the curvilinear form of an integral
condition, originally indicated by Batchelor [27] for such flows, on the regions
of closed streamlines where boundary conditions are no longer usable for
determination of w in high Reynolds number regime and its analytic value

remains largely indeterminate.

In presence of 2D heterogeneous boundary conditions applied to dust flow in
a curvilinear coordinate system, the major nonlinear effects cause the bound-
ary layer to separate from the domain boundary. This causes the vorticity
generated from the interaction with the no-slip, or frictional, boundaries to
be convected away with strong flows of the primary vortices. The separa-
tion allows dynamic isolation of the regions scaling with the dimensions of
small scale features of the boundary (e.g., spatial modulations or the sharp

corners) and development of secondary vortices in these regions.

Advancing a somewhat recent identification of a strong nonuniformity of
vorticity developed along the boundary discussed by M. Ghil et al. [137,
138] in the context of time dependent turbulent flows, the development of

separated boundary layer is investigated as a structural bifurcation. It is

173



CHAPTER. 6. CONCLUSION AND FUTURE WORK

highlighted that in the confined dust vortex flows, the kinematic viscosity
assumes role of the bifurcation parameter instead of time and the separation
coincides with the bifurcation. The bifurcation is shown to occur when the
vorticity profile approaches its first zero value along the boundary at the
point where its minimum is located. This critical behavior and signatures
of equivalent nonlinear vortex states in experiments indicates capacity of
confined dusty plasma vortex structures to represent a class of systems that
can self-stabilize by making a critical transition to a self similar state, for

example, biophysical transition during cells undergoing mitosis [26].

e The nonlinear scaling of the boundary layer parameters with kinematic vis-
cosity p is obtained that shows a velocity independent linear estimate of

kinematic viscosity to modify and additionally depend up on the flow ve-

2 u

locity and its gradient scale length along the streamlines as p = Arj I

Similarly, existence of a critical values p* demarcating transition to nonlin-
ear regime is identified. These two factors allow estimation of viscosity of
charged fluids using appropriate scaling by identifying a structural change in

flow patterns in experiments.

The nonlinear dust vortex dynamics thus offers quantitative insight and analytic
framework to a number of natural systems that dusty plasmas emulate.

In Chapter 5, we presented the solutions of 2D nonlinear hydrodynamic for-
mulation of confined, volumetrically driven dust cells with variation in the confine-
ment domain’s aspect ratio and its impact on the formation of vortices and their
number. The structural bifurcation originally identified and predicted Chapter 4
for a dusty plasma 2D flow cell is discussed in the light of its close resemblance to
bifurcation transition in more complex biophysical processes, in certain approaches,
for example, to model the process of cell division or mitosis [28, 57].

Following are among the main conclusions from the studies presented in this

part of the studies.
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e In the context of pure laboratory dusty plasma experiments, the formulation
predicted a class of nonlinear multiple-co-rotating vortex solutions which
were experimentally recovered in almost simultaneously conducted labora-
tory dusty plasma experiments. It is shown that in the cases with aspect
ratio larger than 2 and more, a complete sequence of identical corotating
vortices is recovered with number of identical vortices equal to the value of
the aspect ratio. This result is discussed in the light of recovery of similar
results in the dusty plasma experiments by M. Choudharyet al. [13] where a
dust cloud with aspect ratio exceeding unity is indeed seen to develop a series
of multiple corotating vortices with stronger drive, or larger Reynolds num-
ber. In the cases of domain aspect ratio smaller than unity, the vortices are
seen to show a transition to a diffusion dominated single vortex linear state,
even at much smaller kinematic viscosity values. The solutions correspond to
no exact balance between nonlinear convection and diffusive transport terms

in the model.

e In the nonlinear regime of solution analyzed, a nonmonotonic spatial vari-
ation of the streamfunction characterizes development of localized regions
where the vorticity transport along the streamline is stronger and therefore
the vorticity brought, convectively, along the streamlines diffuses in both the
directions about the carrier streamlines by means of the developed gradients,
with drop in vorticity in both the directions, about them. The diffusive trans-
port of the vorticity to core, or to the exterior region, is still small and most
of the vorticity flux is dissipated by the means of sink (neutrals) well within
in the separated boundary layer itself. It is noted that while the transition
in a domain of aspect ratio L,/L, = 1, as addressed in Chapter 4, produced
a dynamically identical structure only with a scale ratio of 1: (v/2 — 1) the
structure scale ratio nearly 1:1 is recovered in the case of domain aspect ratio

2.
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e (Critical topological modification of 2D vortex structures are noted where the

variation in both 7 and z coordinates of vortex location show a monotonic
shift with respect to variation in £ and v. However, with respect to the
viscosity p the shift in axial location of the vortex showed a complex non-
monotonic behavior indicating that the system undergoes a critical change
in dynamics at certain specific ©* value and shows a relaxation like behavior

at this value.

The close behavioral agreement between the dust dynamics described by
our nonlinear formulation and the driven dust flow dynamics in a number of
dusty plasma experiments, incorporating also the complex phenomenon (crit-
ical transition) of development of multiple corotating vortices from a single
vortex, indicates that the laboratory dusty plasma show strong signatures of
flow activity extending into the nonlinear regime of the fluid-like dust flow.
The agreement further motivates the idea that dusty plasma experiments
can be one of the easily realizable prototypes for the study of the complex
systems which additionally tend to follow a definite analytic prescription,

although with a larger number of underlying simplifications.

In the regime of fractional domain aspect ratio L, /L, < 1, the major effect is
noted to be the increasing dominance of diffusive transport of vorticity along
the direction of drive when dust is flowing along radial direction rather than
the axial direction. This regime sees a strong effect and interaction between
the boundary layers forming along the radially extended axial boundaries (or
top and bottom boundaries). Among one of the characteristics observations
in this regime, the nonlinear structural bifurcation takes place at very high
critical Reynolds number Re™ or small critical kinematic viscosity of the dust

u* depending on the aspect ratio of the confinement domain.

e Interesting vortex flow structure develop following a BLS transition in case
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the axial dimension of the confinement domain is longer than the separation
between the radial boundaries determining the turning radius of the inertial
flow. It is seen that a secondary vortex identical to the first forms in the
region further upstream (of the driving ion flow) if the viscosity p is reduced
further. This results from the sharp separated boundary of the first vortex
extending deeper in to the domain interior along the boundary of the primary
vortex and beginning to act as a virtual domain boundary for the upper
region, providing a vanishing flow velocity boundary condition identical to

the original domain boundary.

e The dynamical structure of the bifurcation suggests a quantitative correla-
tion with bifurcation based evolution of certain self-replicating biophysical
microsystems can be achieved by defining an autonomous evolution of the
domain boundaries. This is indicated to be possible by allowing a slow de-
pendence on time to enter only via a function of vortex area of a growing n'"
vortex, given by a time integral over an area dependent (linear) rate of the

change of axial dimension S,.

6.2 Future work

Some of the immediately visible goals set by the existing conclusions of the present

studies are enlisted as below.

1. As the next step of validation of the results by observation in the existing
experiment, where predicted multiplicity (in linear regime) and sequence of
co-rotating vortices (in nonlinear regime) were both successfully observed, a
quantitative validation of the linear and nonlinear boundary layer scalings
prescribed by the respective formulations is proposed as a useful future study
in collaboration with dusty plasma experiments. Performing advanced PIV

diagnostics of dust circulation for obtaining flow velocity and its gradients can
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perhaps additionally identify the transition caused by structural bifurcation
and validate respective scalings above and below such transition. Prediction
of the kinematic viscosity from the experiments might allow exploring the

microscopic/molecular level structure of the strongly charged dust medium.

. A more self-consistent treatment of the steady-state dust vortex flows needs

to incorporate an equivalent flow model for the the driver of the vortex
dynamics which presently has a prescribed form. Introducing a fluid equation
based model for the sheared flow of ions, presently used as a passive driver
of the dust dynamics, is proposed as the first possibility for a more self

consistent study.

. For extending the applicability of the result to strongly coupled regime of

the complex dust-fluid, an advanced version of the formulation, based on a
generalized fluid model might be implemented. The corresponding results
should allow exploring a strong-coupling version of the boundary layer scal-
ings in such conditions applicable to the strongly coupled media and their

interaction along the interfaces.

The topology of the confined dust clouds in the present formulation is as-
sumed to be simple rectangular where dust is confined by a uniform potential
well. However, the more realistic topologies relevant to real natural systems
or experimental setups are non-uniform irregular structures. A possible im-
mediate extension is to end this geometrical restriction within present set of
assumptions for the model to explore effects of a wider range of boundary

structures on the existing solutions.

. We have observed that steady equilibrium flow structure is rather sensitive

to change in the parameter p about its critical value in the nonlinear regime.

The structural transition about this critical parameter and their stability in



this parameter region are yet to be understand more systematically. This

constitutes a potential future study.

6. The steady-state dynamical equilibria recovered in terms of solutions essen-
tially correspond to thermodynamic non-equilibrium states of the systems.
Moreover, they are unique, irrespective of the initial conditions in terms of
the relevant microscopic variables. The working principle for such driven-
dissipative systems to converge to a unique solution must involve an associ-
ated statistical approach when a stochasticity or noise is involved. A critical
level of this noise must affect the ability of the system to converge to the
existing solutions that formally correspond to a thermodynamic limit. An
associated stochastic treatment of our approach presents an interesting pos-

sibility in terms of a future study.

Finally, as discussed in the final part of Chapter 5, from the view point of a stronger
applicability to driven complex systems, we suggested an elementary prescription
in order to correlate the present treatment to bifurcation based evolution of certain
biophysical microsystems [28, 57]. A possible approach in this direction is to con-
sider a rather complex but more realistic autonomous version of the present setup
to formally replace non-self-consistent constraints in terms of prescribed confining
potential and driving background plasma flow. Achieving a periodic frequency of
bifurcation in autonomously growing vortex flow cells might be possible by intro-
ducing a dependence on the cell dimension via a time-integral relationship with
the increasing area of an unsaturated vortex cell. An exact implementation and
solution of the prescribed model remains subject of a useful future extension of
the present computational analysis. The formally introduced model highlights a
prescription for a partially developed dust cell which must grow until it undergoes
a structural bifurcation, seeding another partially grown cell in the setup providing

a nonlinearity controlled periodic sequence of physical structure generation.



Introduction to relevant fluid and

flow properties

A fluid is a state of matter which deforms continuously under the influence of shear
stress, no matter how small. For example, liquids and gases. The applied shear
stress is proportional to its strain rate giving shear stress 7, = 1(9u,/dy+0u,/0x).
Here, 7,, is stress along x-direction and on surface perpendicular to y-direction,
( Ju,/dy is shear rate along y-direction) and 7 is proportional constant called
viscosity. Those fluids having constant 7 are known as Newtonian fluids and those
fluids with varying n are known as Non-Newtonian fluids. However, in case of
solid state, the applied shear stress proportional to its strain (not the strain rate)
giving o,, = €(0z/dy + dy/0x)/2. Here € is the elasticity or rigidity modulus of
the system. The deformation stop at a critical fixed strain angle and return to
its initial state when we remove the stress applied on it. In fluid dynamics the
identity of individual particle is neglected and only the motion of fluid elements
is considered assuming statical averaging in a fluid elements is already perform.
This approximation is called continuum hypothesis and valid for those fluid

having very small Knudsen number Kn = (\/L,). The Knudsen number (Kn) is a
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dimensionless number defined as the ratio of the molecular mean free path length
A to a representative physical length scale L,. When the Knudsen number is small,
say of the order of Kn < 1072, the fluid can be treated as a continuous medium and
the associated macroscopic variables: velocity, density, pressure, and temperature

etc can be treated as continuous fields (vector or scalar) in the flow system.

Now the dynamics of fluid system can be analyzed by tracking the motion of
each fluid elements (small region of control mass) instead of following every indi-
vidual particles. Every fluid elements are marked and followed in the flow domain.
The independent variables are initial position of fluid particle and varying time.
Most of the physical laws like Newton law of motion are applicable to see the dy-
namics of these fluid elements. This approach of flow analysis is called Lagrangian
approach, but it has been very challenging to follow each of these fluid elements
if it follows complicated trajectories. However, in case of experimental analysis
of fluid flow observer is fixed at certain position and fluid allows to flow through
various observation points. Considering various fixed point (small region of control
volume) in space, and observed fluid flows passing these points can reflect the same
characteristics of the flows. This approach is known as Eulerian approach, and
very relevant to many experimental flow analysis. The independent variables are
space coordinates and time. However, in general both the Lagrangian and Eulerian
specification of the flow field can be applied in any observer’s frame of reference,
and in any coordinate system used within the chosen frame of reference. These
two concepts are relate to each other by a relation called Material Derivative

shown in equation (A.1).

I
De () uve (A1)
( Dt Lagrangian ot Euler

In the following thesis work, the Eulerian approach which is also very relevant to

experimental observations is used throughout the flow analysis.
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A.1 Equations for fluid dynamics

The whole theory of fluid dynamics are base on some fundamental laws of nature
such as conservation of mass (continuum flow), conservation of momentum (New-
ton 2nd law of motion) and conservation of energy (1st law of thermodynamics)
of an isolated system. Following these fundamental laws at a control volume of
the fluid (Eulerian approach), one can derive governing differential equations that
represent the whole dynamics of a fluid flow system. The set of equations are

comes out as follows,
dp

2
a_u +u-Vu= qg— @ + ,u,vzll — —LL(V : (v : U—)I) + ffriction87 (A?))
ot P 3
Oe 2

These set of differential equations which represent the whole fluid dynamics sat-
isfying the above fundamental laws are known as the Navier-Stokes equations. In
the above set of equations, it has more unknowns variables then the numbers of
equations. So, it require more equations for closure the set of couple differential
equations.

Generally density(p) can relate to pressure and temperature, and this relation
is given by a special equation called equation of state p = ¢p”, v = ¢,/¢,. The
simplest form is p = pRT (ideal gas equation). And dh = ¢,dT or de = c,dT allows
to express enthalpy or internal energy in terms of temperature. Now, overall we
have 6 scalars unknowns variables (density, pressure, 3-velocity components and
temperature T) and 6 scalar equations (conservation of mass, 3-components of
conservation of momentum, conservation of energy and equation of state). All
three conservation equations (conservation of mass, momentum and energy) and

equation of state are coupled and closure, now all the equation can to be solved
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simultaneously using proper boundaries or initial conditions base on the nature of

flow system.

A.2 Viscoelastic fluids

For strongly couple complex fluids such as biological systems, dusty plasma having
coupling parameter in the range (100 < T" < T.), the system behave like viscous-
elastic fluid. For such flows, both the viscous and elastic effect are effectively
involve in the flow characteristics. Thus, the momentum conservation equation
is modified into more generalized manner including the elastic effect as a new
time scale introduced by the elasticity called memory effect [139]. The generalized
equation can be written as follows,

[1+Tm <%+u-v)] {(%+u-V)u+%—VV} :nv2u+(§+g>V(v-ugA.5)

Here, p, u, p, V are dust density, velocity, pressure and potential of the dust flow
field respectively. And 7, is the newly introduced memory relaxation time scale
due to elastic effect, p is kinematic viscosity, ¢ is bulk viscosity of the dusty plasma.
In the limit Tma% < 1, the equation is reduce to standard Navier-Stokes momentum
equation shown in Eqn.(A.3). On the other limit Tm% > 1, the equation is more

complex with multiple time scales involve in the system.

A.3 Incompressible hydrodynamics

Incompressibility is an approximation which is well satisfied by slowly moving
flows which are subsonic in nature, i.e., Mac number (u/cy << 1). Here ¢ is
the acoustic velocity in the fluid medium. In other words, a flow is assumed to be

incompressible if relative changes in density Ap/p due to change in Ap is negligible.
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This approximation can be represent by a general equation as follow,

02

5 (VoW =SV, e =/ (A.6)
This equation demonstrates that any divergence in the flow field is part of sound
wave, and will propagate away at the acoustic speed(c). Thus for flow without

any sound waves (u < ¢s),

V.-u=0. (A.7)

Thus, the smaller is the Mach number (M = u/c;), the better will be the approx-
imation of incompressible flow nature. For incompressible flows, the density of a
fluid elements has a known value (almost constant), i.e., it is no longer an un-
known parameter. Therefor, there is no equation of state for incompressible flows
that relate pressure in term of density. Considering this simplification together
with isothermal viscosity (Newtonian fluid), then the set of equation Navier-Stokes

equations becomes,

V.-u=0, (A.8)
0 v
0—1; +u- Vu =g — 7p + ,uvzu + ffTiCti0n87 (Ag)
o1
pes ((g—t tu. VT> ~EVRT 4 @, (A.10)

Now for the incompressible flows, the continuity and momentum equation are de-
couple from the energy equation. This is the reason why the energy equation is not
important in the incompressible (u/c; < 1) flow system. Therefore we can first
solve continuity and momentum equations to find the unknown velocity and pres-
sure distribution without knowing the temperature. After finding the velocity and
pressure fields, energy equation can be used to find the temperature distribution
of the flow system. Heat transfer and therefore the energy equation is not always a

primary concern in an incompressible flow. Thus, energy equation (and therefore
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temperature) can be dropped for isothermal (constant temperature) incompress-
ible flows and only the mass and momentum equations are solved to obtain the
velocity and pressure fields. Therefor, incompressibility is an appropriate limit for

simplifying almost all the modelling and characterization of fluid dynamics.

A.4 Vortex structures and vorticity

A vortex is a kind of flow fields in which the flow is swirling around an axis,
which may be straight or curved line. Vortex motion occurs in a wide range of
physical phenomena in nature. For examples, Smoke rings, whirlpools, tornadoes,
hurricanes, the Great Red Spot of Jupiter and Saturn’s hexagon formed at its north
pole ete. It is important to distinguish between circular motions of fluid in a close
orbit and the spinning of the fluid elements. For visualization, the spinning could
be observed by placing a tiny object on the concern flow element, and observe
how it move freely in the flow field. Therefore, vorticity(@) as well as concept of

circulation (I';) are used to characterize spinning of flows field. Here,

I‘c:j{Cu.dl://S(Vxu)‘dS:'//ScU-dS, G=(Vxu (A1)

Circulation is the line integral around a closed curve of the velocity field. And
vorticity is defined as local rotation or spin of a fluid element about an axis
through the element, i,e the circulation per unit area of the flow. Vortices are of
two main kinds. If the vorticity or circulation is zero along any close loop away from
the swirling axis, then such flow is called irrotational vortices or free vortices
(w = 0). Circulation is always non-zero if inclose the center of vortex system.
On the other, those flow having non-zero vorticity or circulation away from the
swirling axis, are known as rotation vortices (w # 0). Thus, a flow with circular
streamlines may have zero vorticity, and a flow with straight streamlines may have

non-zero vorticity.
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A.5 Potential flow and streamfunction.

The velocity field of a continuum flow, as discussed above, can have different
characteristics in a flow system. Then base on Helmholtz’s theorem also known as
fundamental theorem of vector calculus, the velocity field can be decomposed into
the sum of irrotational part (V x u = 0), and a solenoidal part (V - u = 0)[23].
Thus,

u=Vo+VxWw, (A.12)

This is very general expression of a vector field in terms of some potential which are
not unique and allows gauge transformations. Now for irrotational flow (V x u =
0), this implies existence of a scalar potential ¢ such that u = V¢. Considering a

purely two-dimensional flow fields, in which velocity takes the form
u(x,y,t) = iy, y,t) +j wy(x,y,1). (A.13)

Again assuming the flow is irrotational, the velocity components in terms of scalar
potential ¢ can be written as follows,
9o 9¢
Uy ,t — '/d £y ,t = - A14
ug(x,y,t) e an wy(,y. 1) 3y ( )
Moreover, if this potential flow is incompressible in nature (V - u = 0), then the

new condition for irrotational and incompressible flows becomes,

V-u=0,
V- (Vo) =0,
Vip = 0. (A.15)

This equation must be supplemented by the boundary conditions of the flow do-

main.
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Now, for a general incompressible flows V - u = 0, this implies the existence of

a vector potential ¥, such that u = V x W. Then vorticity is given by,
O=VxuxVx((Vx®) ~VV- ¥ -V (A.16)

The streamfunction vector potential is quite complicated in real 3D space, however
it is very useful specially for two dimension or axis symmetric three dimensional
system where, ¥ — (0,0,7) and & — (0,0,w), giving (V- ¥) = 0 and u =
(Vip x 2) ~ (V x 9z). Then the velocity components for incompressible flow in

2D flow can be express in terms of streamfunction as follows,

0 0
ug(x,y,t) = d—q!/; and uy(z,y,t) = _d_zf (A.17)
Then the vorticity for the two dimensional incompressible flows become,
w=-V%4% (A.18)

Now, for irrotational incompressible flow, the equation is reduce to V21 = 0, sat-
isfying Laplacian as the case of velocity potential ¢ in Eqn.(A.15). The velocity
potential and streamfunction give us the two alternatives representations of veloc-
ity as shown in Eqn.(A.14) and Eqn.(A.17). By comparing these expressions, we
found that ¢ and 1 satisfy the following conditions.

__%

_ 90 _
Y= 9r By

Uy = 9y~ or (A.19)

These relations are recognized as the Cauchy-Riemann conditions for a complex
expression w(z) = ¢(x,y) + i(x,y) to be analytical function of the complex

argument z = x + 4y. Thus we can express a complex potential,

w(z) = o(x,y) +ip(x,y) (A.20)

188



APPENDIX A. INTRODUCTION TO RELEVANT FLUID AND FLOW
PROPERTITES

which is a homomorphic function of complex argument z = x + iy, in a complex
plain and it has a well defined derivative (Ow/0Jz), called the complex velocity
which is independent of the direction of differentiation in the complex plane.
Equations in term of scalar potential are easier to solve than the nonlinear Euler
or Navier-Stokes equations in vector field. Once we have solved for the potential
¢, the characteristics of the flow system can be visualized in term of the velocity
components recovered from Eqn.(A.17), and the pressure found using Bernoulli’s
Theorem. Moreover stream function can express many characteristics of a flow
systems in term of streamlines patterns as well as mass flow rate of the system.

Streamlines ;- Streamlines are lines that are instantaneously tangent to

the velocity vector of the flow. Streamlines pattern shows the direction in which

fluid element will travel at any instant point of time. Mathematically,

%dy + %d:r> ~ di (A.21)

0= (uxdl)~ (updy — u,dr) ~ (81/ e

Contours of stream function i,e lines of equal 1 values gives the streamlines in a
two dimensional flows. Different streamlines in a flow, at a same instant time do
not intersect, because a fluid particle cannot have two different velocities at the
same location in a flow field.

Mass flow rate ;- The rate of fluid flow passing through an area element

per unit time is an important quantity in flow system. It can be express as ,

b b b
M = [ pu-adS = [ pluady +ude) = [Cdp == va (A22)

Hence, the mass flow rate or mass flux between any two streamlines is given by
the different of their stream function values. Closer is the streamlines, smaller is

the flow rate and vice versa.
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Overview of complex (dusty)

plasmas

Plasma is one of the four fundamental states of matter, the others being solid,
liquid, and gas. Plasmas are considered as the forth state of matter with three
different components, i.e, electrons, ions and neutrals. Literally plasmas are de-
fined as partially or fully ionized medium which are electrically quasineutral and
shows collective behaviors [60]. The plasma state of matter is generally character-
ized by certain parameters such as temperature 7j, that represent the equilibrium
distribution of j—species with average kinetic energy F., ~ KpgTj, and the num-
ber density n;, the mass m; associated with the different species in the system.
However, instead of directly talking about these many parameters, someone can
express certain length and time scales which depend on these parameters and rep-
resent the characteristic features of the plasma. Generally length scale such as
Debye length A\p; = (T}/4mn;e®)!/?, time scale with respect to plasma frequency
w; = (n;e?/m;eo)'/?, and acoustic speed ¢, = Ap;w; are very useful scales of a
plasma system. Here e is electronic charge, Ap; is Debye length which is measure
of distance over which the influence of the electric field of an individual charged

particle j—species is felt by other charged particles inside the plasma. Plasma
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frequency indicates that the internal space charge potential of j—species oscillates
with a characteristic frequency w; by virtue of its inertia. The other important
characteristic frequencies are associated with the collisions of the plasma particles
(electrons and ions) with stationary neutrals. The plasma oscillations will persist
only when the collision frequency are smaller than plasma frequency, i,e v, < w;.
Plasmas are of various kind base on the properties of constituent species electrons,
ions and neutrals. When T, ~ T; and n., ~ n;, those plasmas are classified as hot
plasma (or thermal plasma) where the collisional rate between e — e, ion — ion
and e — ion species are equal and maintain a common thermal equilibrium with
Ape ~ Ap;. While for T, > T; those plasmas are called cold plasma (or non-thermal
plasma) where the collision rate among ions or among electrons (e — e, ion — ion)
themselves is larger than the rate of collisions between an ion and an electron

(e —ion) [60, 61].

Complex(dusty) plasmas are consider as the forth state of matter with four
different components, which in addition to the usual plasma components i.e., elec-
trons, ions and neutrals, it contain micron sized particles, also called grain or dust.
The dust grains are intrinsically neutral, relatively heavy and large sized particles
mostly dielectric or conducting in nature and so it introduce many peculiar phe-
nomena in the system. Once the grains are introduced in conventional electron-ion
plasma, it faces heavy flux of (highly mobile) electrons relative to ions over its sur-
face and collect more electrons and gets negatively charged at most of the time [22].
In some occasions, when the dust particles undergo emission of electrons because
of radiation sources like ultraviolet lights, secondary electron emission, thermionic
emission, field emission etc., and the dust grains may also be found to be positively
charged [62]. Thus, one has the possibility of charging dust grains both negatively

and positively.

These particles acquire large electric charges and masses, and exhibit many
collective behaviors through long-range coulomb interactions. The charges on dust

species can be fluctuated because the electrons/ions may leave the surface of dust
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grains in course of collision with other ions or dust grains specially in streaming
plasma, or because of thermal effects, or other radiative processes in the plasma
[63]. A dusty plasma is significantly different from a multi-ions plasma, because
the presence of massive charged dust grains produces new collective phenomena
on a different time and length scales. The inclusion of charged dust species makes
the plasma becomes even richer with several additional new modes arising solely
due to introduction of new scales or due to additional instabilities. Thus this extra
component of macro-particles increases the complexity of the system even further.
The dynamics of dusty plasma is very similar with many complex fluids that has
multiple phases of particles that introduce multiple length and time scales in the
system. This is why dusty plasma is sometime called as “complex plasma” [22, 64].

The new equilibrium quasi-neutrality condition for the ionized state in the

presence of negatively charged dust grains is given by
Zmi = Ne + Zdnd, (Bl)

where Z; is the number of ion charge state, n, is the unperturbed number density
of the plasma species s (s equals i for ions, e for electrons and d for dust grains),
and Z; is the number of charges on the dust grain surface. When most of the
electrons from the main plasma are attached onto the dust grain, i,e Z;n; ~ Zyng,
the dusty plasma may be regarded approximately as a two-component plasma
composed of negatively charged dust grains and the ions, the latter shield the
negative dust grains [140]. Such a situation is common in the Saturn rings as
well as in low-temperature laboratory discharges. However in positive charged
grain as in thermal or radiated dusty plasma, the shielding take place by electrons
and hence at equilibrium we have Zyng ~ n. since the ion number is completely
depleted in the system.

For dusty plasma, the length scale and time scale which represent the char-
acteristic features of the system are base on Debye length Apy, plasma frequency

1/2

wq = (nqge®/mgeo)'/?, then corresponding acoustic speed supported in the system
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is csg = Apawq etc. The dusty plasma Debye length Ap, is given by

1 1 1

N . (B.2)
Mba Abe  Abi

where Ap. = (T,/4mn.e*)"/? and A\p; = (T;/4mne?)'/? are the electron and ion
Debye length respectively. T, and T; are the electron and ion temperature in the
energy unit, n, and n; etc are the unperturbed electron and ion number density, and
e is the magnitude of the electron charge. The other scales such as, dust radius (),
inter-dust separation (a,) also have significant role for classification of dusty system
into various groups. If r; < Ap < a4, the dust grains get shielded by opposite
charge species and do not participate in collective dynamics of dust. Such types
of dust system are known as “Dust in plasma”, here one can treat the dust from
a particle dynamics point of view [22, 141]. However for rqy < Ap > aq, the effect
of neighboring dust particles are significant and interactions is very significant.
When these additional species behave in a collective fashion the dust system is
known as a “Dusty plasma”, here one can treat the system as fluid of dust grains
because the rate of momentum exchange through interactions between the micro
particles are much larger than that through other means like in between dust-
neutral or dust-ions etc. The ratio ay/Ap which signify how dense is the shielded
dust system in a plasma is called screening parameters x. Smaller the value of
screening parameter x, the density of the dust system get increase and get more
interactions with the neighboring dust particles. We know that potential on a
shielded sphere is ¢(r4)/¢0 =~ Ap/(ra + Ap), so the potential of the shield sphere
will be greatly depressed from its vacuum value if 4 > Ap. It indicates that being
highly charged is not sufficient for a dust grain to have a large potential, it also

require 4 < Ap [141].

Now instead of using all the multiples parameters such as the temperature 77,
the number density n;o and various length scales and time scales, it is possible to

represent the characteristic features of dusty plasma in term of only two parame-
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ters, screening parameter x and Coulomb coupling parameter I'. The ratio aq/A\p
is known as screening parameter x which takes care of density and shielding due
to background plasma. Coupling parameter I' measures the degree of interactions
over the thermal motion of the ensemble of dust particles for fixed inter particle
separation and background shielding « [1, 22, 65, 66]. Mathematically I' is given
by the ratio of average coulomb potential energy (including the shielding effect) to
average kinetic energy of particle in the dust system.

(Zde)2 aq

= ———exp(——). B.3
47T€adeTdeTp( >\D) ( )

where ag = (3/4mnq)'/? is the Wigner-Seitz radius or mean inter-dust separation,
ng is the particle number density, ()y = Zze is the dust particle charge, and T}
is the equilibrium temperature. As I' increases, the dust system changes from a
nearly collisionless or only occasional binary collisions, gaseous regime for I' << 10
continuously through an increasingly correlated, liquid-like regime 10 < T" << 175
to the Wigner crystallization into a lattice near I';, > 175 as shown in Fig. (1.3).
The high dust charge (typically @ ~ 10%°¢ ) even at low dust temperature makes
the coupling parameter I' > 1 even at lower dust density. Thus the dusty plasmas
could be found in gaseous, liquid as well as ordered crystalline phase. The phase
transition occur under suitable physical conditions of the dust system. Statically,
the local density around a given particle as a function of the distance from this par-
ticle, is smooth in gases phase I' << 10, and rapidly vanishes for small r because of
the repulsions between the particles. As the I' increases, positions of neighboring
particles are more and more correlated, leading to a modulation of local density
around a given particle. At I' > I',,,, the modulation or fluctuation in local density
grows spontaneously into full long-range order, characteristic of a periodic crys-
talline structure [67, 68]. The kinematic viscosity which is system property of a
fluid flows, can correlate with the coupling parameters I' and screening parameter
k for a dust fluid flows [5, 69, 70]. It is very fortunate that most of dusty plasma

are in fluid regime and thus well known fluid model can be used for flow dynamics
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intuitively. As shown in Fig. (1.4), the regions where kinematic viscosity v+ in-
crease with decreasing I' is in gases regime while the regions with vx increase with
I' is in liquid state of the dust fluid. Dusty plasma is attractive field of research
because of its unique features, i.e., existence in various states of matter and the
dynamics of dust particles can observed at kinetic level. This become a versatile
medium which support various collective phenomena and useful for study of many
fundamental physics of nature. Dusty plasma has been using as a strong medium
(model system) to conduct computation and real experiments and visualized for
many relevant flow process of complex flows of nature which are inherently difficult

in the actual system.

B.1 Various forces on dust particles

The dynamics of charged dust clouds in a plasma are seem to account for the com-
bined effects of various forces acting on the dust particles. Some of the dominant
forces are the force due to gravity, the electrostatic and electromagnetic forces, the
thermophoretic force and the ions and neutrals drag forces etc. As the scope of
present thesis is to study the dynamics of a dust clouds in a shear plasma and thus
the analysis of effect of various interactions with the background fields, the explicit
analysis of the behavior of macroscopic particles under the action of various forces
are important to characterized the dust dynamics. When several dust grains are
inserted into the plasma, they are charged strongly and equally in polarity and
thus repel each other. The situation, however, can be more complicated, it has
been shown theoretically that at larger distances, there can be long range attrac-
tive force between the particles [6]. Thus there are a number of forces that control
the dynamics of dust grains in a plasma. Some of the most important dominant

forces are discussed briefly as follows.

196



APPENDIX B. OVERVIEW OF COMPLEX (DUSTY) PLASMAS

B.1.1  Force of gravity

The dust grains introduced in plasma are relatively heavy and large sized particles
compare to plasma components electrons, ions and neutral particles. Thus dust
particles (with radius larger than micron 1pm) in the plasma experience consider-
able gravity and grain to grain self-gravitational forces which are proportional to
the mass density py of the dust grains. The gravity force can be written as

F, = gm"gpdg (B.4)
The force of gravity scales with the volume of the microparticle, and thus F}, o< r3.
For a microparticle made of melamine-formaldehyde often used in complex plasma
experiments with density ( pg = 1510 kg/m?) and radius ( r4 = 3.4 pum), the
strength of the force of gravity is F, = 2.49x 107N [142, 143]. The force of gravity
is always directed toward the center of concern planets and conservative in nature.
One way to eliminate the influence of gravity on Earth is letting the whole setup
drop. Drop towers (like the one available at the University of Bremen) provide
microgravity for about five seconds. Again On parabolic flights, a plane performs
a flight maneuver resulting in tens of seconds of weightlessness. In Europe, an
Airbus A300 is used to achieve up to 22 seconds of low gravity (£ 0.05 g). The
best way to perform experiments eliminating the influence of gravity is to use the
International Space Station(ISS), where good microgravity conditions are realized

[3, 47, 144].

B.1.2 Thermophoretic Force

One of the possible ways to increase the upwards force against the gravity acting
on the micro particles is to maintain a temperature gradient in the plasma system.
In the presence of any temperature gradient V' of the neutrals or ions gas, the
dust system feel a force Fp in the direction of —VT', which is referred to as the

thermophoretic force. The thermophoretic force acting on a spherical dust particle
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Figure B.1: Various forces on a dust particle [32].

in a monatomic gas can be written as

8R*\/2m
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where vy, = (T, /m,,)'/? is the average thermal speed of the neutral particles, p
is the translational part of the thermal conductivity. The thermophoretic forces
experienced by the dust particles for a temperature gradient of VT,, ~ 1 K/cm is of
the order of 1.0x 1073V [142, 143], which is bit weaker then the gravitational force.
It is found that the thermophoretic force plays an essential role in the formation
of different shapes of plasma-dust structures. The thermophoretic force can easily

lift up micron-sized dust particles in plasmas under microgravity conditions.

B.1.3 TIon-Dragging Force

The ion-drag forces Fy; in a plasmas arises due to collisions between (highly mo-
bile) streaming ions and (weakly mobile) charged dust grains. The force basically

describes the momentum transfer from the streaming ions to the dust particles.
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Since the momentum transfer is in between the charged particles, the interac-
tions cross section is larger than any other interactions such as charged-neutral
or neutral-neutral interactions. Thus the ion-drag force is the sum of the collec-
tion and Coulomb forces, i,e Fy, = Fgeltection 4 fpCoulomb = Agquming that the dust

particles are at rest, the collection force is given by
Fréetiection — 2 b vgu; (B.6)

where p; = m;n; is the ion mass density, u; is the ion streaming velocity, v, =
(u? + 8T;/mm;)*/? is the mean speed of ions approaching the dust particle, and
be = R(1-2Z;e¢p;/m;v?)*/? is the maximum impact parameter for dust-ion collision
from the orbital motion limited probe theory. And ¢y is the floating potential of

the dust particles. The Coulomb force is written as
Fgoomt — Azb? oL pivgu; (B.7)

where brjp = gae/m;v? and T' = (1/2)in[(\}, + bfr/Q)/(b(Zj + 6727/2)] are the impact
parameters for 90° deflection and Coulomb logarithm respectively. For a dust
particle with charge Q ~ 4 x 10%e, radius r ~ 5um in plasma with n; ~ 10 em =3,
v; ~ 10* m/sec, the ion dragging force is of the order of 1.0 x 10712N [142, 143].
This is among the dominant forces act on the dust clouds. This theory has been

modified with more correction factors day by days.

B.1.4 Neutral-Collision Force

Assuming that the neutral molecules are at rest, the neutral drag force arises
when the microparticles are moving relative to the neutral background gas, so
that the momentum transferred from the grains to the neutral backgrounds. Thus
the neutral drag force act as dissipating forces directed oppositely to the direc-

tion of motion of the microparticles. The neutral collision force for a Maxwellian
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distribution of neutral gas molecules is approximated as follows.
8 2
Fy = —5\/ 27 R pr g (ug — wy,) (B.8)

where p, = n,m, is the mass density of the neutral molecules, and w, is the
velocity of the neutral molecules. For a dust particle with velocity of 4 em/sec,
and neutral gas density of 3 x 10% em ™! at a pressure of 134a, the neutral friction
is of the order of 1.4 x 107N [142, 143] which is one order less then the ion

dragging forces in most of the systems.

B.1.5 Electromagnetic Force

In the presence of an electric field ' and magnetic field B in the plasma, the force

acting on a conducting dust particle is
F,., = Qd(E + vg X B) (BQ)

The charge of the microparticles is proportional to their radius, and therefore
Fop o< rg. Inside the bulk of the discharge, the electric fields are much weaker,
as they are screened by the plasma. However, the electric field is much larger
in sheaths and pre-sheaths regions adjacent to the plasma wall boundaries. The
electric force acting on a negatively charged dust grain is upward, away from the -ve
electrodes that is on the bottom in the plasma sheath, and thus dust grains can be
levitated on account of a balance between the upward electric force and downward
various forces. The strength of the electrostatic forces can varies externally base
on the requirement for dust confinement in the system.

For micron particles in a plasma, the dominant forces are electric forces, ther-
mophoretic force, ion-drags force and gravity. A force balance is achieved in the
plasma sheath above the electrodes where the electric field is strong enough to lev-
itate the particles against the gravity as shown in Fig. (B.1). For larger electrodes,

horizontal extended dust clouds are observed and allow to localized by extra po-
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tential such that the whole system behave like a potential well for dust system. For
examples, arising a groove in the electrode[145], or electrode having a parabolic
trough[146], the equipotential lines in the plasma sheath are distorted, thus yield-
ing an additional horizontal component of the electric field force that leads to a
confinement also in the horizontal plane. The self sustain plasma potential also

support horizontal confinement of these negative charge particles in a plasma.

B.2 Descriptive methods for dusty plasma

The dusty plasmas, as described earlier could be found in gaseous, liquid or solid
phase depending upon the combination of screening parameter x and coupling
parameter I The weakly coupled dusty plasma regime (I' < 10) are close to
collisionless fluid(gases), the strongly couple dusty plasma with (I"' < 100) behave
like dense fluids(liquid), and strong couple dusty plasma having (100 < T' < T',)
behave like viscous-elastic fluid, then elastic dust crystalline for (I' > T'.). At
strongly coupling regime the collective motions are more often important than in-
dividual dynamics. As the state of dusty plasma is changing for different screening
parameter £ and coupling parameter I', the system characteristics has to analysis
in various possible ways. Therefor, it is important to choose appropriate model
for analysis the characteristics of the dust flows depending ranges of £ and I" and
nature of studies. There are certain positive significance as well as limitations in
all descriptive model.

In Molecular Dynamic (MD) simulations model, the exact dynamics of
each particles in a system is analyzed assuming that electrons and ions are inertia
less compare to heavy dust, that produce only shielding background to the dust
particles. Thus dust are considered to be interacting each other through Yukawa
potential[4].

(Zg4e)? r

V(r)= . exp(—g) (B.10)

This model is useful in all state of dusty plasma, however it is very significant for
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strongly couple regimes I' ~ I'.(175), where dust crystalline are formed and affect
of streaming ions are not much concerned in the system. There is no other model
or methods better then Molecular Dynamic (MD) simulations in these regimes.
However a typical dusty plasma density might be ng ~ 10° per em?. It will require
few thousands of dust particles and hence are expensive in computation. Moreover,
it would be very difficult or nearly impossible to see dynamics of all the constituent
particles if dust particles follows a complicated nonlinear trajectories.

In few analysis where the effect of background plasma (streaming ions or neu-
trals) are very effective, Particle In Cell (PIC) simulations model is used
assuming the background plasma is system of a number of fluid-elements. The
charge and mass of these fluid-elements are proportionally larger than that of orig-
inal plasma particles, but the ratio of charge to mass remains the same. In this
model, the resolution of time scales, length scales suitable for all the multicompo-
nent species having different mass and size are very challenging.

Fortunately, most of the dusty plasma observed in real experiments and in
nature are in fluid regime, and can be explained intuitively by Generalized Hy-
drodynamics model. In the fluid model, identity of individual particle is ne-
glected, and only the motion of fluid elements is taken into account. For dust
system having wide range of coupling parameter I' < I'., the simple fluid model
is applicable, even up to visco-elastic regime 100 < I' < I'., where the solid like
elastic properties have been coupled with viscous nature of dust fluid. It has been
assumed that complex plasma is composed of two or more inter-penetrating fluids,
one for each concern species. Each fluid will interact each other through collisions
or Coulumbic interactions. Fluid model is explicitly used in this thesis work. So
more detail description of this model and application in dusty plasma is explicitly

discussed as follows.
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