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SYNOPSIS

In their quest to test the standard model and search for new physics beyond it,
particle physicists have sought increasingly larger and more powerful facilities for
accelerating and colliding charge particles. In conventional radio frequency linear
accelerators (RF linacs), the accelerating gradients are limited to about 100MV/m,
partly due to material breakdown which occurs on the walls of the structure. With
accelerating gradient limited by this constraint, high energy experiments required
a distance of many kilometers to accelerate the particles to ~ 100 GeV energies

for Higgs Boson detection (the energy of Higgs boson being of this order).

Another issue pertaining to the acceleration of particles is that while protons or
heavier particles can be accelerated in circular paths, lighter mass particles such as
electrons and positrons have to be accelerated in linear devices. This is to ensure
that the copious energy loss by the synchrotron radiation in the case of lighter par-
ticles gets eliminated. The 3-km linear accelerator at Stanford Linear Accelerator
(SLAC) is currently the worlds longest machine which can accelerate electrons to
~ 50 GeV energies. Clearly, for higher energies the size of the conventional elec-
tron accelerator would become increasingly unwieldy and costlier. New techniques
which can reduce the dimension are, therefore welcome. The accelerator based on
plasma medium offers such a cheaper technological alternative. Being an ionized
medium, plasma is not constrained by the material breakdown limit of voltage and
hence can support electric fields several orders of magnitude higher than that of
the conventional RF-based accelerators [1, 2]. For example, a plasma having den-

3

sity ng = 108cm 3 can sustain an electric field of the order of non-relativistic wave

MeCWpe

breaking limit, Fy ~ ~ 100GV /m, which is approximately three orders of
magnitude higher than that obtained from conventional RF linacs; where ¢ and
wpe Tepresent the speed of light in vacuum and the plasma frequency of electron
having mass m, charge e respectively. This distinct feature of plasma offers a way
to build an affordable high-performance particle accelerator of much smaller size

than the conventional devices.

In plasma-based accelerators, charge particles get accelerated by the electric
field associated with electron plasma wave or other high-gradient electric field
structures (like shock and sheath fields) in plasma medium. An intense plasma
wave is excited either using an intense laser pulse or ultra-relativistic electron

beam. When a laser beam is used, it is called laser wakefield acceleration (LWFA),
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and when a particle beam is used, it is called plasma wakefield acceleration
(PWFA) [3-5]. The charge particles ride suitably on this relativistically intense
plasma wave and get accelerated to higher energies. In LWFA, the wave can ac-
celerate the charge particles almost from rest. Therefore, this scheme offers a way
to design a “free-standing” tabletop accelerator. On the other hand, in PWFA,
both the bunches (driver and witness) must start out at relativistic energies. This
scheme is most suitable to boost the energy of the existing linacs. The success
of LWFA scheme has been demonstrated in a number of experiments by acceler-
ating charge particles to GeV energies [6-12]. A series of experiments have also
been executed at different national and international laboratories for demonstrat-
ing the success of PWFA scheme [13-18]. The most promising PWFA results were
published by Blumenfeld et al. [19] where a 42 GeV electron bunch efficiently ac-
celerates the electrons up to maximum energies of 85 GeV in a meter long plasma
( known as “energy-doubling experiment”). Recently, Litos et al. [20] designed
an experiment using a discrete trailing bunch about 74 pico-coulombs of charge
in an accelerating gradient of 4.4GV/m and minimized the energy spread hardly
2%, , and obtained the energy-transfer efficiency from the wake to the bunch that
can exceed 30 per cent (17.7 per cent on average). In terms of theoretical work,
till date, both linear and nonlinear theory has been well established to examine
LWFA and PWFA scheme for several driver configurations [21-28]. The theoreti-
cal work, under several approximations, provides for reasonable empirical guidance

for experiments.

The present thesis covers an extensive theoretical and numerical study of rela-
tivistic electron beam driven wakefield by proposing fluid depiction of the plasma
wave excitation in a cold plasma. The numerical study has been carried out using
fluid simulation techniques (fluid code) both in 1-D and 2-D. Till to date, most of
the simulations in this field have been carried out using extensive particle-in-cell
(PIC) simulations (e.g. OSIRIS, QUICKPIC, EPOCH, XOOPIC and many more)
[19, 29, 30]. These PIC simulations are computationally heavy and hence require
powerful computational facilities. Here we present that the fluid simulations which
are simpler than any sophisticated PIC simulations have been found to be pretty
adequate at representing the potential structure of the ultra-relativistic electron
beam driven wake. Further, injecting test particles (test particle simulations) in
the fluid simulations, we have examined the energy gain and focusing of the accel-
erated particles. The extensively used fluid code has been benchmarked against
the widely used PIC code OSIRIS. The technique used to develop the fluid code
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will be discussed in detail in my thesis. First, we have studied the excitation of
relativistic electron beam driven wakefield using 1-D fluid simulation techniques
for both rigid and non-rigid driver over a wide range of beam parameters (den-
sity, length and velocity). Rigid beam defines such a bunch which can penetrate
an infinite length in plasma without significant deformation, whereas a non-rigid
beam looses its identity after propagating some distance. The criteria required
for a beam to be rigid has also been checked in this thesis. Further, an earlier
1-D nonlinear analytical work given by Rosenzweig et al. [24] only for a rigid,
homogeneous beam having density less than or equal to half of the plasma density,
has been extended for an arbitrary value of beam density. The numerical and

analytical results have been compared for several plasma periods.

At later times in the simulation, it is found that the excited wake wave breaks
via phase mixing process. This is an obvious feature which arises due to the
relativistic mass variation effect[31-33]. In all earlier theoretical works [24-27],
the contribution of phase mixing on the wake wave has been ignored. In this
thesis, a characteristic study on the longitudinal wake wave breaking is presented
in detail. It is identified that the excited wake wave is nothing but an identical
Akhiezer-Polovin mode [34]. The breaking of the wake wave has been understood
in terms of phase mixing of Akhiezer-Polovin (AP) mode . Tt is also worth noting
that, in earlier works, the effect of ion motion has been neglected because of
their heavy mass. Including the effect of ion motion, the excitation of relativistic
electron beam driven wakefield has also been studied in 1-D here. It is observed
that the transformer ratio that measures the efficiency of the acceleration saturates
to unity for over-dense beam in both the electron-positron and hydrogen plasmas.
Therefore, there will be no gain for an over dense beam in 1-D. It is also seen that
the excited wake wave breaks at later times in simulation due to phase mixing
process. For the sake of understanding the wake wave breaking, it is observed
that the excited wake wave is an equivalent Khachatryan mode [35]. We have
identified that the wave breaking limit lies much below the analytical limit derived
by Khachatryan et al. [35]. This is so as they have not considered the possibility

of the phase mixing process.

Next, two-dimensional fluid simulation has been employed to study the multi-
dimensional behavior of the relativistic electron beam driven wakefield in a cold
plasma. This study shows a limit in the transverse extension of the beam when 2-D

effect must be incorporated. In the recent experiments [16, 17, 36, the wakefield
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is typically excited by a short, intense beam to create a “Blow-out” (a pure ion
channel free from cold plasma electrons) region. In the blow-out regime, the head
of a short driver ejects all the plasma electrons from its propagation channel and
most part of the beam propagates in the electron-free region (termed the cavern
or bubble henceforth). Our 2-D fluid simulation also excites blow-out structure
for a sufficiently intense beam which matches with the analytical form predicted
by Lu et al. [28], before phase mixing occurs. As phase mixing steps in, the
blow-out structure gets destroyed in the fluid simulations. However, for low beam
density (ny/no < 5), the blow-out remains intact for several hundred of plasma
periods; where n;, and ng are the beam density and plasma density respectively.
Whereas it immediately gets destroyed after the formation, for the high-density
beam (n,/ng > 5) in the fluid simulation. Further, injecting the test particles
in the simulation, we have studied the energy acquired by the test electrons and
focusing of the accelerated particles. A maximum energy gain of ~ 2.8GeV by
the electrons from the back of the driver beam of energy ~ 28.5GeV in a 10 cm
long plasma is shown to be achieved. This is in conformity with the experimental
result of ref. [37]. This shows that a fluid simulation which is much simpler than
Particle-in-Cell simulations is good enough at representing the wakefield structure
and also providing a good estimate of the acceleration. It is also observed in our
simulation that the maximum energy gain can get doubled to ~ 5.7GeV when the

bunch of test particles was placed near the axial edge of the first blowout structure.

The thesis is composed of six chapters based on above discussion and detailed
studies on the relativistic electron beam driven wakefield. Below we briefly give a

point-wise summary of these chapters.

e Chapter - I provides an introduction to plasma based acceleration schemes
and physical mechanisms behind the excitation of wakefield. It also covers
the experimental achievements and the recent challenges to build a next gen-
eration plasma based accelerator. The introduction is geared along following

points:

1. In recent years, plasma based acceleration schemes have made amazing
progress because of their wide applications ranging from medical, in-
dustry to high energy physics. The concept of plasma based accelerator
was first proposed by Tajima and Dawson [22]. The authors proposed

a useful mechanism and suggested the generation of a high longitudi-
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nal electric field (~ hundreds of GV/m) by injecting an ultra-intense
laser pulse in plasma, known as LWFA. This electric field is set up by
expelling nearby plasma electrons due to the ponderomotive force of
the laser pulse. Ions only provide a stationary neutralizing background
because of their heavy masses. As the laser propagates further inside
the plasma, the repelled electrons come back to their individual origi-
nal positions and over-shoot because of their inertia. Finally, a wave,
so-called wakefield, will be excited just behind the laser pulse, which
propagates with the group velocity of the laser pulse[5]. However, the
axial ponderomotive force from the laser pulse can not be used directly
to accelerate electrons to high energies. The ponderomotive force on
the accelerated electrons (v > 1) is smaller than that on the plasma
electrons by the factor 1/7, where  is the relativistic factor associated
with the accelerated electrons. Thus the laser pulse must first excite
the plasma wave which, in turn, can be used for acceleration. There
are two more schemes, laser beat-wave acceleration (LBWA) and self-
modulated laser wakefield acceleration (SMLWFA), are also used to
accelerate the charge particles using laser pulses [10, 21, 38]. Regard-
less of how, using these above schemes, near GeV quasi-mono-energetic
electron beam was generated by Mangles et al. [39], Geddes et al. [38§],
Kneip et al. [10] and Faure et al. [6].

. Recently, another exciting scheme, known as plasma wakefield accelera-
tor (PWFA), shows promising results on the topic of the plasma-based
accelerations which was originally proposed by Chen, huff and Daw-
son [40] in 1985 as a means of coupling between plasma wave to the
electron beam velocity. In plasma wakefield accelerator, the relativis-
tically intense wake wave is excited using a ultra-relativistic electron
or proton beam propagating inside the plasma near the speed of light.
The beam expels the nearby plasma electrons due to its space-charge
force, whereas ions remain intact. As beam propagates, the expelled
electrons will then come back to their individual equilibrium positions
and overshoot because of their inertia. As a results, a wake wave will
be excited just behind the beam having phase velocity equal to the ve-
locity of the beam [40]. Basically, in PWFA, one bunch of first particles
drives the wake wave that accelerates another bunch separated closely

from the driver beam [41]. This scheme, however, behaves as an elec-
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trical transformer which converts a large bunch (driver) of moderate
energy electrons into a small bunch (witness) at higher energy.. This
capability would be useful for particle-physics experiments, in which
high collision energies are critical. On the other hand, this scheme has
a potential to reduce the size and cost of x-ray free-electron lasers. The
first experimental demonstration of plasma wakefield acceleration was
reported by a research group at Argonne National Laboratory in 1988
[13]. After that, many experimental tests have been reported in this
way [14, 15, 18]. The most exciting result was outlined by Blumenfeld
et al. [19] in 2007. Below I directly quote the abstract from their report.

“Here we show that an energy gain of more than 42 GeV is achieved
in a plasma wakefield accelerator of 85 ¢cm length, driven by a 42 GeV
electron beam at the Stanford Linear Accelerator Center (SLAC). The

results are in excellent agreement with the predictions of
three-dimensional particle-in-cell simulations. Most of the beam
electrons lose energy to the plasma wave, but some electrons in the
back of the same beam pulse are accelerated with a field of
~ 52GVm™t. This effectively doubles their energy, producing the
energy gain of the 3-km-long SLAC accelerator in less than a meter

for a small fraction of the electrons in the injected bunch.”

In 2014, Litos et al. [20] designed their experiment using a discrete
trailing bunch surfing in an accelerating gradient of 4.4GV/m and min-
imized the energy spread of the accelerated beam to ~ 2%. These re-
sults successfully demonstrate the viability of plasma accelerators and

illuminate a path towards its high-energy applications.

. Although plasma based acceleration schemes made a strong headline
in the field of particle accelerators, it has several drawbacks for an
efficient acceleration. Among the several laser-plasma based acceler-
ation schemes, the method which has received the most attention is
the plasma beat wave acceleration (PBWA), in which a large ampli-
tude plasma wave resonantly excited by the beating of two relatively
low power, long laser beams having a frequency difference equal to the
plasma frequency. In plasma wakefield accelerator (PWFA), the wake
wave is excited by a high-current, relativistic particle beam whose cur-
rent profile of the beam is tailored to have a slow, rise and a sudden

termination. Therefore the precession engineering is required either for
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tuning these laser pulses precisely or maintaining the current profiles
in PWFA. On the other hand, for a successful operation, among the
several constraints of either the PWFA or PBWA is that the driver
must be capable of propagating a sufficiently long distance to avoid
multiple acceleration stages. As all the stages needed to be sequen-
tially synchronized, multi-staging would be impossible for an efficient
acceleration from the practical point of view. One more challenge in
the wakefield acceleration schemes is to keep the witness beam in a
right spot for a long distance in such a high field. Accelerated beam
undergoes many instabilities [16, 17] in this high field and, as a whole,
the process of acceleration fails. Therefore, a strong R&D needed to be

developed in this field for producing a high-quality energetic beam.

However, in this particluar field, the design of experimental set up is ex-
tremely guided by the simulations. As stated above, most of the simulations
in this field are performed using PIC techniques, which are computationally
heavy and time consuming. The purpose of this thesis is to investigate the
relativistic electron beam driven wakefield excitation, using fluid simulation
techniques which is computationally much simpler and faster than any so-
phisticated PIC. We have studied the excitation of wakefield for several beam
configurations both in 1-D and 2-D. A brief summary of our research work is
covered in the next four chapters. The last (sixth) chapter summarizes the

thesis work and provides some future scope of this work.

Chapter - IT presents a 1-D study of the excitation of wakefield driven
by an ultra-relativistic electron beam in a cold plasma. In 1987, Rosenzweig
et. al. [24] reported a 1-D analytical expression of electron beam driven
wakefield only for a rigid, homogeneous electron beam having the density
(ny) less or equal to half the plasma density. Relaxing the restriction on
beam parameters (density and velocity) used in the earlier analytical work,
an extensive numerical study for the excitation of relativistic electron beam
driven wakefield is performed here for arbitrary beam parameters, using 1-D
fluid simulation techniques [42]. The simulation results are found to be in
good agreement with the analytical work of Rosenzweig for a beam having
the density less or equal to half the plasma density. Besides, Rosenzweig’s
work has been analytically extended to regimes where the ratio of beam
density to plasma density is greater than half and results have been verified

using simulations. Further, in contrast to Rosenzweig’s work, if the beam
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is allowed to evolve in a self-consistent manner, several interesting features
have been observed in the simulation viz. splitting of the beam into beam
lets (for I, > ),) and compression of the beam (for [, < A,); [, and ), are
the physical length of the beam and plasma wavelength respectively. It is
also seen that beam can propagate a long distance without any significant
deformation if the velocity of the beam is larger than 0.99¢. Therefore beam

can be considered to be rigid in such limit.

Chapter - III covers a complete study on the space-time evolution of
relativistic electron beam driven wake wave in a cold plasma. It is observed
that the wake wave gradually modifies with time and eventually breaks,
exhibiting sharp spikes in the density profile and sawtooth-like features in
the electric field profile after several plasma periods. This is a clear indication
of wake wave breaking [31, 33] of relativistic electron beam driven wake-field
in a cold, homogeneous plasma. This study is also carried out using fluid
simulation techniques. In the simulation, it is observed that the structure
of wake wave gradually modifies The simulation has been performed for a
long enough time for the excited wave to break. The wave breaking process,
however, helps to self-inject the plasma electrons into acceleration phase,
a complete knowledge on the wake wave breaking is therefore required for
controlling and stabilizing the acceleration process [12]. In this chapter, a
detailed characteristic study on the breaking of longitudinal wakefield has
been investigated. It has been found here that the excited wakefield before it
breaks is identical to longitudinal Akhiezer-Polovin (AP) mode excited using
the same value of 3,, (phase velocity) and u,, (maximum fluid velocity) of
the wake wave [34]. However, the steepening (breaking) of this wake has been
understood in terms of phase mixing of the AP mode, which arises because
of relativistic mass variation effects. The phase mixing time (breaking time)
is studied as a function of beam density and beam velocity and, interestingly,

is found to follow the well known scaling presented in ref. [43]

Chapter - IV addresses the role of ion motion on the relativistic electron
beam driven wakefield in a cold plasma. In plasma-based accelerators, the
charge particles get accelerated using the huge electric field (~ GeV/cm)
associated with the wake wave. In 1998, Khachatryan et al. [35] reported
in the study of strong plasma waves (i.e. 7 > 1) that plasma ions (even
for heavy ions) make an essential contribution to the process of charge sep-

aration under the influence of such a strong field where maximum relativis-
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tic wavelength and amplitude of the wave grow in proportion to 7. Here,
v = (1 —v2/c®)~Y2 is the Lorentz factor associated with the velocity of the
electrons v. The study of relativistic plasma waves, including ion motion, is
also important for some astrophysical scenarios. In the polar region of the
pulsars, it is considered to be filled with electron-positron plasma and ener-
getic charged particles are being generated from the plasma waves. Therefore
it is important to incorporate the dynamics of ion in these studies replicat-
ing the structure of the wakefield in such applications. In this thesis, with
the help of the fluid simulation, the excitation of relativistic electron beam
driven wakefield is studied where the effect of the ion motion is included. In-
cluding ion motion, Rosenzweig et al. [44] presented a semi-analytical form
of the electron beam driven wakefield and estimated the approximate value
of transformer ratio (for mass ratio u = m./m; < 1) only for beam density
equal to half the plasma density using multiple-fluid (ion and electron fluid)
model, where m, and m,; are the mass of electrons and ions respectively.
For further extension of Rosenzweig’s work [30], fluid simulation has been
executed for arbitrary mass ratios and beam densities using a rigid, homo-
geneous beam. As described in chapter II, the beam can be considered to
be rigid if and only if the velocity of the beam exceeds 0.99c. In all our
simulations, the excitation is driven by the rigid beam to avoid the defor-
mation in beam density. It is shown that simulation results match with the
semi-analytical results given by Rosenzweig et al. [30] for different beam
density and mass ratio. The transformer ratio, which determines the gain
in the acceleration process, is also studied as a function of mass ratio and
beam density. For overdense beam, the transformer ratio saturates to unity
for both the electron-positron p (e.g. p = 1) and hydrogen (e.g. ;1 = 1/1836)
plasma. We have also seen that he excited wave also breaks via the gradual
process ofphase mixing after several plasma periods, exhibiting sharp spikes
in the density profile. The corresponding electric field profile turns into the
sawtooth form which is a clear signature of wave breaking. This particular
feature observed in the present simulation has been found to be absent in the
analytical calculations given in ref.[44]. However, it is shown that the wake
wave, before it breaks, is an identical mode corresponding to the Khacha-
tryan mode which is excited using the same parameter values of wake wave
i.e. mass ratio, phase velocity and maximum value of electric field. The
physical mechanism behind the wave breaking has been understood in terms

of phase mixing process of the Khachatryan’s mode. It is seen here that the
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numerically obtained wave breaking limit lies much below the analytically

estimated value given in ref. [35].

Chapter - V: presents a study of 2-D wakefields driven by a rigid, ultra- rel-
ativistic electron beam in a cold homogeneous plasma using fluid simulation
techniques. In our earlier work, the study of relativistic driven wakefield ex-
citation was restricted to 1-D. However, in recent experiments, the wakefield
is excited for a short, intense beam, which leads to “Blow-out” structure,
which is an ion cavity totally free from cold plasma electrons [15, 16, 36].
Therefore a 2-D or even 3-D study is required for explaining the excitations
in these regimes. For a short, ultra-intense bunch, the space charge force is
large enough to expel all the nearby electrons, an ion channel just behind
the beam is thereby formed. This ion channel so-called “Blow-out” structure
is shielded by a narrow sheath of dense repelled electrons. For sufficiently
intense beam the ion channel can have a spherical shape i.e. bubble or cav-
ern. In recent experiments, bubble regime has been used for generating good
quality beams. We have developed fluid code in 2-D geometry which solves
fluid-Maxwell equations using flux corrected transport scheme [42, 45]. The
numerical technique will be described in detail in the thesis. In simulation, it
is observed that for both underdense and overdense rigid, bi-Gaussian beams,
in the limit when transverse dimensions are greater than their longitudinal
extension, the axial profile (integrated in the transverse directions) of the
excited wakefield shows a good agreement with the 1-D results of Ratan et
al. [27]. In the other limit i.e. when the transverse dimensions of the beam
are smaller than the longitudinal extension, the 2-D simulation results de-
viate from 1-D results. Using a rigid, bi-parabolic beam profile, it is shown
that simulation results also show a good agreement with 2-D linear theory
only for Z—g < 1. For a short, overdense beam, the excited wakefield exhibits
blowout formation. The radius of the blowout structure matches with the
analytical form given by Lu et al. [28], before phase mixing occurs. The
phase mixing process is identified by steepening in the density profile which
is accompanied by sawtooth structure in electric field profile. It is also seen
that the total energy starts to decrease as soon as the wave breaks in the
fluid simulation. Further, in our simulation, it is confirmed that, when the
wake wave breaks the excursion length of the electrons in the wake exceeds
the radius of curvature of the blow-out [46]. A detailed study on beam fo-

cusing, efficiency of acceleration is also analyzed in this chapter by injecting
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the test particles in the simulations. It is observed in our simulation that
the maximum energy gain of 2.8 GeV by the electrons from the back of the
driver beam of energy 28.5 GeV in a 10 cm long plasma, matches with the
experimental results given by Hogan et al. [37]. Our simulation shows that
the maximum energy gain can be doubled to 5.7 GeV when the bunch of

test particles was placed near the axial edge of the first blowout.

e Chapter - VI summarizes thesis work and recapitulate the salient points
of this thesis. We then provide a over-view of the future research problems

which can be carried out in continuation of the work described here.

The detailed investigations made in this thesis contribute significantly to the the-
oretical understanding of relativistic electron beam driven wakefield excitation in
a cold plasma and the fluid code, which has been developed and used in this work

extensively, sets a milestone in this particular field by giving satisfactory results.
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Introduction

“God was invented to explain the mystery.
God is always invented to explain those things
that you do not understand.”

-Richard P. Feynman

Introduction

This thesis is devoted to the studies of the relativistic electron beam driven wake-
field excitation in a cold plasma. The wakefield structures are the basis for plasma
based acceleration, which holds a great promise for high quality acceleration of
charged particles over short distances. In this chapter we provide for the moti-
vation, basic concepts and underlying principle of plasma wakefield acceleration.
This chapter also includes the review of earlier works and a brief summary of the

important results obtained in this thesis.



Chapter 1. Introduction

Motivation

High energy accelerators are one of the most versatile inventions in physics which
produce a beam of energetic charge particles that can be used for various purposes
ranging from medical, industry to high energy physics [1-5]. In the high energy
physics studies the accelerated charge particle beam offers the possibility of an
ultimate microscope as it can reveal fundamental forces and particles in the uni-
verse at the energy frontier. They also provide for powerful radiation sources (e.g.
"X- rays" and beyond). These radiation sources have tremendous use in medical
science. Millions of patients receive accelerator based diagnosis and therapy each
vear in hospitals and clinics around the world. In industries, particle accelerators
are used in hundreds of industrial processes ranging from the manufacturing of
computer chips to the cross-linking of plastic for shrink wrap and beyond. Particle
accelerators also have a great impact in applications related to national security, in-
cluding cargo inspection, stockpile stewardship, and material characterizations etc.
Thus energetic charged particles created by accelerators touch nearly every part
of our daily lives. Since the early days of the cathode ray tube in the 1890s, parti-
cle accelerators have made important contributions to scientific and technological
innovation. Today, there are more than 30,000 particle accelerators in operation

around the world.

High energy physicists use particle accelerators to answer most profound ques-
tions about the nature of the universe. They accelerate charged particles near the
speed of light in particle accelerators and then smash them together, recreating

the conditions that existed when our universe was cataclysmically born in the big
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bang. By analyzing the debris of the collisions, physicists then understand how
the seemingly disparate forces and particles can be connected by universal laws.
Hence, with a deep understanding of the intrinsic nature of the forces and particles,
they try to decipher the most fundamental building blocks (sub-atomic particles) of
matter. The wavelength (\y) of matter-wave associated with the particle having
energy F/, momentum p and rest mass my is related as, Ay = % = \/%m%& [6].
Therefore, as the energy of the particle increases the wave number associated with
it decreases. Thus to resolve smaller dimensions we keep requiring increasingly
higher energy particles. This implies that physicists need particle accelerators
which can produce increasingly higher energy particles. This in turn increases the
size as well as the cost of the accelerator, making it formidable. At present, the
most powerful accelerator is the Large Hadron Collider (LHC) at CERN which is
a circular tunnel of diameter 8.6 km. This giant accelerator is capable of produc-
ing a proton beam of energy ~ 3.5T¢eV [4,7,8]. However, the operation of this
bulky machine is too costly and time-consuming. The total operating budget of
Large Hadron Collider (LHC) at CERN runs about ~ 1 billion per year. One is,
therefore, seeking newer techniques which can reduce the size and the cost of the

machine.

Over two decades, high energy particle colliders including LHC, CERN have
been using microwave cavities to propel the particle beams near the speed of light.
In these cavities, electric fields spaced around the accelerator switch from positive
to negative at a given frequency (~ M Hz), creating radio waves that acceler-
ate particles in bunches. The approach has been applied by the 8.6-kilometer-

diameter Large Hadron Collider (LHC), CERN, which reaches it’s technological
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and economic limits [8]. This is due to the fact that the accelerating gradient in
conventional RF (microwave) based linear accelerators is presently limited to 100
MYV /m, partly due to material breakdown limit which occurs on the wall of the
acceleration tube. With the accelerating gradient limited by this constraint, high
energy experiments required a distance of many kilometers to accelerate the par-
ticles to high energies (~ 100GeV') and beyond energies for Higgs Boson detection
(the energy of Higgs boson being of this order). Therefore, physicists designed cir-
cular devices instead of linear machines to enlarge the effective acceleration path
by turning the beam many times along the device until it reaches to the desired
energy level. However, classically, any charged particle which moves in a curved
path or is accelerated in a straight-line path will emit electromagnetic radiation.
Particularly, in the circular particle accelerators where charged particles are accel-
erated to very high speeds, the radiation is referred to as synchrotron radiation.
The classical formula for the radiated power ( P) from a charge particle accelerated

in a circular device of radius r is,

Px 1 (1.1)

where v = (/1 —v2/c?)~" is the Lorentz factor associated with the particle of
velocity v [9]. Since the velocity becomes nearly constant for highly relativistic
particles, the factor 4* becomes the dominating variable in determining loss rate.
Therefore, the issue pertaining to the acceleration of particles is that while protons
or heavier particles can be accelerated in circular paths, lighter mass particles such
as electrons and positrons have to be accelerated in linear devices. The 3-km
linear accelerator at Stanford Linear Accelerator (SLAC) is currently the world’s

longest machine which can accelerate electrons to ~ 50GeV energies. Clearly, for
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higher energies the size of the conventional electron accelerators would become
increasingly unwieldy and costlier. The major reason is the very large cost of
building and maintaining particle accelerators due to their complicated structure
and large sizes. New techniques which can shrink the size and hence expense of
these new generation high energy colliders are, therefore welcome. The accelerators

based on plasma offer such a cheaper technological alternative |10, 11].

Plasma Based Acceleration

One important potential application of the physics of a short pulse laser or charged
particle beam interacting with a plasma is plasma based acceleration. By defini-
tion, plasma is a collection of unbound charge particles having equal number of
positively and negatively charged species, which exhibits quasi-neutrality and col-
lective behavior [12]. Being an ionized medium, plasma is not constrained by
the material breakdown limit of voltage and hence can support electric fields sev-
eral orders of magnitude higher than that of the conventional RF-based accelera-
tors [10,13-15]. For example, a plasma having density no = 10'®c¢m? can sustain an
electric field of the order of Ey ~ mecwye/e = 100GV /m. Here ¢ and w,,. represent
the speed of light in vacuum and the plasma frequency of electron having mass
me, charge e. The strength of the electric field is more than 1,000 times higher
than the accelerating gradient of a typical conventional accelerator powered by
microwaves. The remarkable point is that the wavelength of a plasma wave is typ-
ically of the order of 30 microns, whereas the typical microwave wavelength is 10
centimeters. This exceptional feature of plasma offers a way to build an affordable
high-performance particle accelerator of much smaller size than the conventional

devices [10,15,16].
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In plasma-based accelerators, charge particles get accelerated by the electric
field associated with the relativistically intense electron plasma wave or other high-
gradient accelerating structures (like shock and sheath fields) [15,17-20]. Typically,
these intense plasma waves are excited either using an intense laser pulse or ultra-
relativistic electron beam propagating inside a plasma with a velocity close to the
speed of light. When a laser beam is used, it is called Laser Wakefield Acceleration
(LWFA) |15,1724] and when a particle beam is used, it is referred to Plasma
Wakefield Acceleration (PWFA) [16,17,25-33]. If the charge particles ride suitably
on the plasma wave, they get accelerated to higher energies. The basic principle
of acceleration is similar to “boat-wake-surfing”, in which a rider trails behind a
boat and gets accelerated by the wake of the boat without being directly pulled by
the boat. In plasma based accelerators, the charge particles gain energy by surfing
on a plasma wave. We briefly discuss in the following subsections the two major

mechanisms, LWFA and PWFA for generating high energetic beams.

Laser Wakefield Acceleration (LWFA)

In laser wakefield acceleration technique, a short, ultra-intense laser pulse (TW
scale) is injected into the plasma which creates a large electric field by separating
the electrons and ions in a plasma. When a short, intense laser pulse is injected
into the plasma, the pulse expels plasma electrons from its vicinity due to pondero-
motive force [22,34-36|. Tons do not respond because of their heavy mass. They
only provide neutralizing background. When the pulse moves ahead, the repelled
electrons try to return back to their original location. However, they overshoot due
to their inertia and continue their oscillations around the ions. Hence, a plasma

wave gets established just behind the pulse. The phase velocity of the generated
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plasma wave is found to match with the group velocity of the laser pulse. This
is known as “wake wave", and the electric field associated with the wake wave is
called “wakefield". Therefore, when the charge particles (either injected externally
or trapped within) ride on such a wake field at an appropriate phase, they get
accelerated to high energies. This scheme was first proposed by Tajima and Daw-

son |21] in 1979. A schematic diagram of LWFA scheme is shown in Fig. (1.1).

trapped electrons T ~357s

3 * - Laser pulse

- / = € /
vV =~

-

A,~10—30pm wake wave

Figure 1.1: A schematic diagram of Laser wakefield Acceleration (LWFA).

It is to be noted that the axial ponderomotive force Fiong = |e|V¢y exerted
by the laser pulse on plasma cannot be used directly to accelerate electrons to
high energies; where ¢, = —mgc?a? /2|e| is the ponderomotive potential. The
ponderomotive force on the accelerated electrons is smaller than that on the plasma
electrons by the factor 1/v, where ~ is the relativistic factor associated with the
accelerated electrons [34]. Therefore, the laser pulses must first excite a plasma
wave which, in turn, can be used for the acceleration process. However, in LWFA,

the wakefield is driven most efficiently when the pulse length L, ~ %; where A,
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is the plasma wavelength. Prior to 1998, due to the absence of the technologies
for generating ultra-intense picosecond laser pulses, the electrons are accelerated
using the concept of PBWA (Plasma Beat-Wave Accelerator), in which a large
amplitude plasma wave is resonantly excited by the beating of two relatively low-
power laser pulses having frequencies w; and wy [37-39]. The condition required
for large amplitude excitations in PWBA is w; — wy = wpe; where w,. is the
plasma frequency. Clearly, this scheme requires a fine-tuning of frequencies in
laser pulses to achieve the resonance condition for high-density plasmas. Another
challenge is to hold the long driver for a sufficient time inside a plasma. The pulse
undergoes many instabilities during the propagation inside the plasma [40, 41].
The successful demonstration of LWFA has been demonstrated in a late 90’s when
chirped-pulse amplification was applied to compact solid-state laser and table-
top tera-watt (TW) lasers. In LWFA, an ultra-intense, short laser pulse with a
single frequency is injected into the plasma which utilizes the relativistic optical
guiding [23,34,42] mechanism for the long distance propagation in the plasma. The
pulse creates the charge separation and generates wake wave. In this scheme, the
wake wave can accelerate particles almost from rest. Hence this scheme offers a way
to design a self-contained tabletop accelerator for moderate-energy applications,

such as medicine and materials science [2,11,33].

Recently, one more scheme known as self-modulated LWFA (SMLWFA) [43-45]
has been received considerable interest in the filed of plasma based acceleration
for accelerating electrons to the high energies (~ GeV). The SMLWFA scheme
uses a single short (~ 1ps) ultrahigh intensity (~ 10™W/cm?) laser pulse, as in

the standard LWFA, but operates at higher densities than the standard LWFA
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such that the laser pulse length becomes long compared to the plasma wavelength
and the laser power is somewhat larger than the critical power for relativistic
guiding. In this high-density regime, the laser pulse undergoes a self-modulation
instability which causes the pulse to become axially modulated at the plasma
period. Hence a large amplitude wake wave can be resonantly excited associated
with the modulated pulse structure. The self-modulation instability resembles
a highly 2-D version of a forward Raman instability [40,41]. Forward Raman
scattering occurs simultaneously, adding to the modulation, and in the 1-D limit,

pulse modulation can occur via forward Raman scattering alone.

However, in terms of theoretical work, the nonlinear theory of the LWFA in
one dimension was developed by Sprangle et al. [23], Ting et al. [46] and Berezhi-
ani and Murusidze [35]. A fully two-dimensional nonlinear theory of the LWFA,
including the self-consistent evolution of the laser pulse, was analyzed by Sprangle
et al. [47]. In LWFA, the excitation of blow-out has also been well examined both
theoretically [48] and numerically [49,50] for self-generating high quality electron
beam of high energies. In terms of experimental studies, the success of LWFA
scheme was demonstrated by several authors by accelerating electrons to higher
energies [22,51-62|. There are now more than 20 active laboratories performing
laser wakefield acceleration experiments. A typical experimental set-up of LWFA

is shown in Fig. (1.2).

Plasma Wakefield Acceleration (PWFA)

Another scheme of wakefield accelerations is known as Plasma Wakefield Accelera-

tion (PWFA) in which, instead of laser pulses, the energetic particle beam is used
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Figure 1.2: A schematic diagram of a typical experimental set-up for LWFA which
has been designed at the Center for ultra-fast Optical Science (CUOS), University
of Michigan.

to drive the wake wave inside the plasma. During the last two decades of research,
the Plasma Wakefield Acceleration (PWFA) has achieved many significant mile-
stones including the demonstration of ultra-high gradient acceleration of electrons
over meter-scale plasma, efficient acceleration of a narrow energy spread electron
bunch at high gradients, positron acceleration using wakes etc. PWFA uses an
ultra-relativistic beam of charge particles (electrons or protons) terminated in a
time shorter than the plasma period, wp‘el for driving an extremely large electric
field as a form of wake inside a plasma |13, 16,17, 27,29, 30, 32, 33,63, 64]. The
basic mechanism of PWFA was first proposed by Chen, Huff, and Dawson [26]
as a means of coupling the relativistic electron beam to the phase velocity of the
plasma wave. When an ultra-relativistic, short electron beam is injected into a
plasma, the space charge force or Coulomb force displaces the nearby plasma elec-
trons. Being heavy species, ions do not respond in the time scale of electron. They
only provide a neutralizing background. For the beam driven plasma wake field

or so-called plasma wakefield accelerator (PWFA), the electromagnetic force from
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the beam charge and current plays a similar role as the ponderomotive force does
in laser wakefield acceleration (LWFA) scheme. However, as the beam propagates
further inside the plasma, the expelled plasma electrons try come back to their
equilibrium positions. But, due to their inertia, they finally overshoot and thereby
oscillate at a frequency close to the plasma frequency [27,30,31,64]. Hence, a wake
wave will be established just behind the beam. It has to be remembered that the
the phase velocity of the wake wave is equal to the velocity of the beam, and is
independent of the plasma density. Therefore, if another bunch of electrons having
velocity close the phase velocity of the wake rides the wave, it can be accelerated

to high energies. A schematic picture of PWFA is shown in Fig. (1.3).

Accelerating field Decelerating field

Witness beam
Focusing field Driver beam

Figure 1.3: A schematic picture of electron beam drven PWFA.

In LWFA, the excited wake the wave can accelerate the charge particles al-
most from the rest. Therefore, this scheme offers a way to design self-contained
tabletop accelerators which is much suited for moderate-energy applications such
as medicine and materials sciences |65]. On the other hand, in plasma wakefield

acceleration, one bunch of ultra-relativistic particles drive the plasma wave which
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is then used to accelerate another late coming bunch placed at an appropriate lo-
cation in the wake. However, both the bunches must start out at ultra-relativistic
energies traveling so close to the speed of light that their separation does not
change even as the first bunch loses energy and the second gains energy. The
scheme is therefore not suitable for free-standing accelerators. It is most likened
to an electrical transformer in which a large bunch of moderate energy can be con-
verted into a smaller bunch at much higher energies. Hence this is most suitable
to boost the energy of the existing linacs. The capability of PWFA would be more
useful for particle-physics experiments, in which high collision energies are critical
in the search for new particles and forces. It also has the potential applications in

reducing the size and cost of x-ray free-electron lasers (XFEL).

The success of plasma wakefield acceleration was demonstrated by several
groups by accelerating electrons to high energies [29,63,66-71]. In terms of ex-
periments, there are far fewer PWFA experiments than LWFA experiments being
performed worldwide. This is because there are far fewer facilities that can pro-
vide the high-current, highly relativistic charged particle beams that are needed
for such experiments. However, there are now several laboratories world wide ded-
icated for demonstrating the success of PWFA scheme. A schematic diagram of a

typical experimental design of PWFA is shown in Fig. (1.4).

Recently, a collaboration involving UCLA, USC and SLAC has achieved many
milestones towards the demonstration of the key physics of a plasma afterburner
|68-70|. The most striking result in PWFA was published by Blumenfeld et al. |72]
in 2007, where an energy gain of more than 42GeV is achieved in a plasma wakefield
accelerator of 85¢m. Most of the beam electrons lose energy to the plasma wave,

but some electrons in the back of the same beam pulse are accelerated with a field
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Figure 1.4: A generic experimental set up for the PWFA experiment. Experimen-
tal parameters mentioned in this picture have been taken from SLAC National
Accelerator Laboratory, USA.

of ~ 52GVm™~!. This effectively doubles their energy, producing the energy gain
of the 3-km- long SLAC accelerator in less than a meter for a small fraction of the
electrons in the injected bunch. In 2014, Litos et al. [73] designed their experiment
using a discrete trailing bunch surfing in an accelerating gradient of 4.4GV /m.
The idea of using discrete trailing bunch in the wake is to make the electric field
profile flat inside the witness beam so that the witness electrons can be accelerated
uniformly. Using a discrete trailing bunch, Litos et al. [73] minimized the energy
spread of the accelerated beam to ~ 2%. These exciting results are now pushing
accelerator physicists to seriously consider the possible application of plasmas in

high energy-physics.

Although plasma based acceleration schemes made amazing headlines in the
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field of particle accelerators, there are several issues which have routinely been
encountered for an efficient acceleration process. Particularly, in plasma wake-
field accelerator (PWFA), the wake wave is excited by a high-current, relativistic
particle beam whose current profile is tailored to have a slow-rise and a sudden
termination. On the other hand, the driving beam must be terminated in a time

shorter than the plasma period, w !, for an efficient acceleration process. There-

pe >
fore a precision engineering is required either for profiling and maintaining the
current profiles of the beam. Moreover, for a successful operation, among the
several constraints of PWFA is that the driver must be capable of propagating a
sufficiently long distance to avoid multiple acceleration stages. As all the stages
needed to be sequentially synchronized, multi-staging would be impossible for an
efficient acceleration from the practical point of view. In addition, another issue
in the plasma wakefield acceleration is to keep the witness beam in a right spot
for a long distance in such a high field. The accelerated beam undergoes many
instabilities [74-77] in this high field and, hence, the process of acceleration fails.
Therefore, a complete characterization of the electron beam driven wakefield ex-
citation is needed to build a stable and efficient plasma based accelerator. This
dissertation analyze through theory and simulation the excitation of relativistic
electron beam driven wakefield in a cold plasma for several beam configurations
over a wide range of beam parameters. In the following sections, we provide a brief

review of earlier works in this area and scope of this dissertation.

Review of Earlier Works on PWFA

In this section, we provide a review of earlier investigations which are found to be

relevant to the problems discussed in this thesis. The major topic of this disser-
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tation is focused on the excitation of relativistic electron beam driven wakefield
in a cold plasma. In past, the generation of wakefields using an ultra-relativistic
electron beam propagating in a plasma has been extensively studied by several au-
thors, both theoretically as well as numerically. Simultaneously, a large number of
experimental effort has also been done in this direction demonstrating the viability

of plasma based accelerators for high-energy physics applications.

Theoretically, the 1D excitation of wakefield has been well established both in
the linear and non-linear regime for several driver configurations over a wide range
of beam parameters [26,27,30,31,78-80]. First and foremost, the theoretical struc-
ture of the linear wakefields in 1-D for a series of relativistic bunch was given by
Chen, Huff, and Dawson |26]. Later, many theoretical works have been reported in
this way for several driver configurations in the linear regime in 1D [27,30,78,79]. In
1987, Rosenzweig et al. [31] presented an analytical solution of relativistic electron
beam driven wakefield in a cold plasma in the non-linear regime for a beam having
density smaller or equal to half the equilibrium background plasma density. Their
analytical analysis was based on Akhiezer-Polovin [81] treatment. Later, many
theoretical and numerical works have been reported in the non-linear regime for
several driver configurations. However, these analytical works have been made
in the quasi-static framework where the slow-evolution of physical quantities are
ignored. In these analytical works, the self-consistent evolution of the beam has
been ignored considering the velocity of the beam equal to the speed of light. The
beam behaves as a rigid piston and propagates with a constant velocity. These
theoretical treatments are also limited by a number of approximations on driver

parameters and configurations. Therefore, a full nonlinear theory of PWFA tak-
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ing account of the self-consistent evolution of the driver beam for arbitrary beam
parameters is still largely an unexplored area of research even in 1-D. In this disser-
tation, we have studied through theory and simulation the excitation of relativistic
electron beam driven wakefield in a cold plasma over a wide range of beam param-
eters. With the help of numerical techniques, we have also studied the excitation
where the self-consistent evolution of the beam is included. We have expressed the
exact analytical form of the wakefield for an arbitrary beam density. In addition,
we have also analyzed many important aspects of electron beam driven wakefield
including the complete characterization of the breaking of longitudinal wake wave

which was not discussed in the earlier theoretical studies.

However, in all these earlier works, the excitation of relativistic electron beam
driven wakefield has been studied where the ion motion was completely neglected.
In 1998, Khachatryan et al. [82] reported in the study of strong plasma waves
(v > 1) that plasma ions (even heavy ions) can make an essential contribution to
the process of charge separation under the influence of such a strong field; where
v = (1 —=v?/c?)~? is the Lorentz factor associated with the velocity (v) of the
electrons. Later in 2005, Rosenzweig et. al. |[83] reported that the motion of
ions plays an important role in PWFA which produces large perturbations in ion
density, giving rise to transverse fields that in turn disrupt the motion of the beam.
Recently, Vieira et al. [84] showed that ions can essentially affect the future proton
driven plasma wakefield acceleration. Their motion can limit the energy transfer
from the driver to the accelerated particles by reducing the accelerating gradient
which is a result of early saturation in the self-modulation instability (SMI). The

ion motion also affects the generation of electron jets in astrophysical scenarios. In

18



Chapter 1. Introduction

the polar region of the pulsars, it is considered to be filled with electron-positron
(equal mass species) plasma and energetic charged particles are being generated
from the plasma waves. Therefore, including the effect of ion motion, the study
of PWFA or the excitation of strong plasma waves is important. Including the
effect of ion motion in PWFA concept, Rosenzweig et al. [80] reported a semi-
analytical study in 1-D and provided the form of transformer ratio only for the
beam density equal to half the plasma density and mass ratio (ratio of electron
to ion mass) much less than unity. In this thesis, we have examined the effect
of ion motion on the relativistic electron beam driven wakefield in a cold plasma,
both theoretically and numerically in 1D, over a wide range of beam parameters
and mass ratios. The study also includes the understanding and analyzing of the
breaking of a relativistic electron-ion wake wave (i.e. Khachatryan mode [82]) in a
cold plasma. A new limit of wave breaking for a relativistic Khachatryan mode [82]
has been found, which lies much below the conventional theoretical limit given in
the ref. [82]. This is due to the possibility of phase mixing process [85-88] which

was ignored in ref. |82].

For practical reasons, in experiments for both PWFA and LWFA, the drivers
are tightly focused to achieve a large enough intensity for exciting large plasma
wake. The narrow spot sizes of the drivers induce forces in the transverse dimen-
sions that are comparable to those in the longitudinal direction. This leads to
significant multidimensional effects that are absent in one-dimensional theories. In
such configurations, the beam expels all the plasma electrons nearby due to high
space charge force and creates a pure ion channel just behind which propagates

with a velocity equal to the velocity of the beam. When wakes are excited in this
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manner it is called the blowout regime. For sufficiently intense beams, the struc-
ture of the blow-out can have a spherical in shape which is known as ‘bubble" or
“cavern” [25,49,89,90]. This regime was first identified by Sun et al. [91] in 1987
where they have derived the equilibrium profiles of both a laser and plasma density
for a self-guided laser pulse sufficiently short that the ions do not move but suffi-
ciently long that no wake is excited. As this analysis was for relatively long pulses
where wakefields are not excited, its implication for plasma-based acceleration was
not appreciated immediately. A few years later in 1991, Rosenzweig et al. [90]
found an interesting regime for electron beam driven plasma wakefield through 2D
fluid and PIC simulations. In this regime, a short ( about plasma wavelength) and
narrow (spot size smaller than plasma skin depth) electron bunch with sufficient
charge can expel (blows out) the plasma electrons away from its path to form a
pure ion region around and behind it. This phenomenon is very similar to what
Sun et al. found for a laser. Most importantly, Rosenzweig et al. pointed out the
major advantages for working in this regime. They are, i) the accelerating gradient
is nearly constant throughout the structure which accelerates the witness bunch
uniformly, ii) the focusing fields are linear inside the bubble which produces the
energetic beam with low emittance, iii) the beam can propagate many betatron
wavelengths without any significant diffraction as the energy loss is minimum for
an electron beam propagating inside an ion channel. Thereafter, similar wakes have
been excited using a short laser driver. It was shown that LWFA in this regime
had the advantages of a uniform accelerating field and a linear focusing force [92].
Later on in 2002, with the help of three-dimensional (3D) particle-in-cell (PIC)
simulations, Pukhov et al. [49] reported the excitation of “bubble" like wake struc-

ture for ultrarelativistic, ultra-intense laser pulses having a length shorter than A,.
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For such cases, the excited wake wave eventually breaks just after the formation of
first buckets. Afterwards, due to the breaking of wake wave, the plasma electrons

near the edge of the bubble get self-trapped and accelerated in the wake [93].

In 2-D, the analytical structures of the excitation of relativistic electron beam
driven wakefield are mostly studied in the linear regime (beam having the density
much less than the background plasma density) for special beam profiles [28,94,95].
In the non-linear regime, there is no exact analytical expression of 2-D wakefields.
There exist an analytical model given by Lu et al [96]alone to predict the form of 2D
wakefields for an arbitrarily shaped beam profile. They assumed that all electrons
within a blowout radius are completely expelled. These radially expelled electrons
form a narrow sheath just beyond the blowout radius which is surrounded by a
region which response weakly. This assumption is reasonable when the spot size of
the electron beam and laser are substantially less than the blowout radius. They
modeled the profile of surrounding electron sheath by a step function (see Fig. (1)
in ref. [96]). They also considered the thickness of the sheath is constant throughout
the blowout. By using this theory one can predict the wakefield amplitudes and
blowout radius in terms of the electron beam or laser beam parameters, as well as

predict the nonlinear modifications to the wakes wavelength and waveform.

However, all these linear and non-linear analytical works have been derived
from the quasi-static framework where the evolution of driver in a self-consistent
manner has been ignored. Moreover, for sufficiently intense beams, the model of
Lu et al. [96] also fails to predict the exact structure of blowout and the strength of

the electric field near the edge of the blowout where the self-injection takes place.
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Therefore, relaxing all these assumptions included in the theory, extensive numer-
ical simulations have been performed to provide a reasonable empirical guidance
in multi-dimensional, non-linear PWFA regime. However, most of these simula-
tions have been carried out using particle-in-cell (PIC) simulation techniques (e.g.
OSIRIS, QUICKPIC, EPOCH, XOOPIC and many more) [64,72,73,84,96-99].
These PIC simulations which compute the motion of billions of charge particles in
the electromagnetic field for a long time at a microscopic level are computationally
heavy and time-consuming.Therefore we require powerful computation facilities
for the simulation purpose. Therefore we seek the possibility of fluid simulation
(macroscopic) as a simplification to PIC simulation for analyzing and providing
a reasonable empirical guidance in PWFA concept. We have developed and em-
ployed a fully explicit, relativistic, electromagnetic, 2-D fluid code to study the
relativistic electron beam driven wakefield in cold plasma over a wide range of
beam parameters for several beam configurations. We have studied the structure
of wakefield ranging from linear to non-linear (blow-out) regime. A characteristic

study of 2-D phase mixing of wake wave is also presented.

Plan of the Thesis

The present thesis is devoted to an extensive theoretical and numerical study of
relativistic electron beam driven wakefield with the help of a fluid depiction. The
beam and the background electron system are treated as two different fluid sys-
tems which are coupled through the Maxwell’s equations. The numerical study has
been carried for such a system using fluid simulation techniques (fluid code) both
in 1-D and 2-D. Presently, the simulations in this area have been carried out using

extensive particle-in-cell (PIC) simulations (e.g. OSIRIS, QUICKPIC, EPOCH,
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XOOPIC and many more) [64,72,73,84,96-99|. These PIC simulations compute
the trajectories of billions of particles at the most fundamental level (microscopic).
The evolution of the position and momentum components of billions of particles
in a self consistent electromagnetic field requires powerful computational facilities.
On the other hand, the fluid approach is a macroscopic description where the in-
dividual particle is not evolved. It involves the average response of fluid elements
which are essentially the moments of particle distribution functions. Ideally, fully
kinetic descriptions are the more appropriate description for describing the phys-
ical phenomena in a system. But, due to their complexity, the use of such an
approach is impractical. Furthermore, in comparison to kinetic simulations, the
fluid approximation is much simpler to implement and solve. It can be used to
describe complex phenomena in multi-dimensional geometry with realistic bound-
ary conditions. The main drawback of fluid descriptions, as already stated , is
their inability of describing the phenomena where information at particle level are
desirable. Phenomena involving non-local transport or heating are some examples
specially when the fluid depiction has been closed at the momentum transport
level. In this thesis, we seek the possibility of fluid simulations as a simplified
alternative for sophisticated PIC simulations. It is shown that many information
with regards to the wakefield excitation can be recovered rather accurately from
this simplified treatment. Furthermore, we have also shown by injecting test par-
ticles in the fluid simulations, the energy gained by them when they are placed at
appropriate location of the wakefield structure, this being one of the prime objec-
tive of the particle acceleration process. We provide a brief summary of the salient

observations carried out in each of the chapters.
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In the second chapter (chapter-2), we have studied the excitation of relativistic
electron beam driven wakefield using 1-D fluid simulation techniques for both rigid
and non-rigid driver over a wide range of beam parameters (density, length, and
velocity). Rigid beam defines such a bunch which can penetrate an infinite length
in a plasma without any significant deformation, whereas a non-rigid beam loses
its identity after propagating some distance. The criteria required for a beam to
behave rigidly has also been identified and checked in this thesis. Further, an
earlier 1-D nonlinear analytical work of Rosenzweig et al. [31] which was reported
only for a rigid, homogeneous beam having density less than or equal to half of the
plasma density, is extended for an arbitrary value of beam density. The numerical
and analytical results have been compared for several plasma periods. Interesting
features which arise when the self-consistent evolution of the beam is considered
has also been reported. A summary of these results has been published in Physics
of Plasmas 22, 073109 (2015), Title: Fluid simulation of relativistic electron beam
driven wakefield in a cold plasma, Authors: Ratan Kumar Bera, Sudip Sengupta

and Amita Das.

In the third chapter in the thesis (chapter-3), with the help of fluid simulation
technique, we analyze the space-time evolution of relativistic electron beam driven
wakefield in a cold plasma. We have found that the excited wakefield obtained from
simulation deviates from the analytical structure after several plasma periods. The
plasma density profile gradually modifies with time and exhibits sharp spikes after
several plasma periods in the simulation. The corresponding electric field acquires
sawtooth-like structure after several plasma periods. This is a clear signature of

wake wave breaking [85-88,100| . Before wave breaking, it is observed that the wake
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wave is identical to the corresponding Akhiezer-Polovin mode [81|. The breaking of
the wake wave has been understood in terms of phase mixing of Akhiezer-Polovin
mode [88]. A summary of these results has been published in Physics of Plasmas
23, 083113 (2016), Title: Relativistic electron beam driven longitudinal wake-wave
breaking in a cold plasma, Authors: Ratan Kumar Bera, Arghya Mukherjee, Sudip

Sengupta and Amita Das.

In the fourth chapter of this dissertation (chapter-4), the excitation of rela-
tivistic electron beam driven wakefield in a cold plasma has been investigated where
the effect of ion motion is included. We have examined the structure of wakefields
for different beam parameters and mass ratios (electron’s to ion’s mass) using 1-D
fluid simulation techniques. It is observed that the transformer ratio that mea-
sures the efficiency of the acceleration saturates to unity for an over-dense beam in
both the electron-positron and hydrogen plasmas. Therefore, there will be no gain
for an over-dense beam in 1-D. It is also seen that the excited wake wave breaks
exhibiting sharp density spikes in the simulation at later times. For the sake of
understanding the wake wave breaking, it is also observed that the excited wake
wave is equivalent to Khachatryan mode [82], before it breaks. We have, however,
shown that the wave breaking limit lies much below the analytical limit derived
by Khachatryan et al. The breaking of a wake wave or an equivalent Khachatryan
mode has been understood in terms of phase mixing process [85-88|. A summary
of these results are ready for submission Title: Accessibility and stability of an
electron-ion mode in plasma wakefield acceleration, Authors: Ratan Kumar Bera,

Sudip Sengupta and Amita Das.
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In the fifth chapter (chapter-5), a two-dimensional fluid simulation has been
employed to study the multidimensional behavior of the relativistic electron beam
driven wakefield in a cold plasma. It is observed that for both under-dense as well
as over-dense beams having large transverse extent compared to its longitudinal
length, the axial profiles of the excited wakefield obtained from our simulation
matches with the 1-D results of presented in Chapter 2 and reported in our publi-
cation Ratan et al. [101]. In the other limit i.e. when the transverse dimension of
the beam is smaller or equal to its longitudinal extension, the simulation results de-
viate considerably from the 1-D results. A 2-D analytical study of the linear wake
structure is also presented and compared with the simulations for the condition of
small amplitude excitations. Our 2-D fluid simulation exhibits the blow-out struc-
ture for an intense beam that have been reported in PIC simulations and modelled
by the prescription of Lu et al. [25,96], before phase mixing occurs. A method of
estimating phase mixing time in the fluid simulations is also presented. Further,
injecting the test particles in the simulation, we have studied the energy acquired
by the test electrons. A maximum energy gain of ~2.6GeV by the electrons from
the back of the driver beam of energy ~ 28.5GeV in a 10 cm long plasma is shown
to be achieved. This is in conformity with the experimental results of ref. [69].
This shows that the fluid simulations which are much simpler and faster compared
to Particle-in-Cell simulation techniques can in fact depict the wake structure rea-
sonably well and also provide good estimate for particle acceleration. We have
also experimented with the location of the injection of test particles and show that
maximum energy gain can get doubled ~ 5.2GeV, when the bunch of test particles
are placed near the axial edge of the first blowout structure. A summary of these

results are available as a per-print arXiv: 1808.00300, Title: 2-D fluid simulation
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of a rigid relativistic electron beam driven wakefield in a cold plasma, Authors:

Ratan Kumar Bera, Amita Das, and Sudip Sengupta.

Finally, in the last chapter (chapter-6), we present the conclusions of the
work reported in the present thesis. We then provide a glimpse of the possible
future research problems which can be carried out as direct extension of the results

reported in this thesis.
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Excitation of relativistic electron beam

driven wakefield in a cold plasma in 1-D

The objective of this chapter * is to investigate the structure of 1-D wakefields
excited by injecting a relativistic electron beam in a cold plasma. By proposing a
two-fluid description of plasma wave excitation, the structure of wakefield has been
studied using fluid simulation techniques over a wide range of beam parameters.
An analytical work in a quasi-static framework, for an arbitrary beam density, is

also presented.

Introduction

In plasma wakefield acceleration (PWFA), the wakefield is created using an ultra-
relativistic electron beam propagating inside a plasma medium. The injected elec-

tron beam behaves like a trigger for the residual electron oscillation leading to a

* Ratan Kumar Bera, Sudip Sengupta, and Amita Das, Fluid simulation of relativistic electron
beam driven wakefield in a cold plasma, Physics of Plasmas 22, 073109 (2015).
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plasma wave which has a phase velocity equal to the beam velocity. Similar to
two-streamn instability, here the driver beam loses its energy to the background
plasma electrons to produce wake (behind the beam) wave. Hence if a late coming
electron beam rides on this wake in a proper phase, it can be accelerated to higher
energies. Therefore, for an efficient and useful acceleration process, a complete
characterization of the excited wakefield over a wide range of beam parameters is
required. A substantial amount of theoretical investigations in the linear regime
of PWFA has been made by several authors. One-dimensional theory of PWFA in
the non-linear regime has also been reported by several authors viz. Rosenzweig et
al. [31], Ruth et al. [78] and Amatuni et al. [79] based on the Akhiezer-Polovin [81]
treatment. Such theoretical treatments are limited by a number of approximations.
A full nonlinear theory of PWFA taking account of the self-consistent evolution of

the driver beam is still largely an unexplored area of research.

In this chapter, we present the excitation of wakefield driven by a relativistic
electron beam in a cold plasma, proposing a two-fluid description of plasma wave
excitation in 1-D. We have studied the excitation over a wide range of beam param-
eters, using fluid simulation techniques. In this study, the generation of wakefield
has been investigated considering a homogeneous beam (rectangular profile). In
the first set of simulations, we have examined the formation of wakefield consider-
ing a relativistic, pulsed electron beam where the self-consistent evolution of the
beam is excluded. The simulation results have been compared with the analytical
work of Rosenzweig et al. [31] and verified in the limit of beam density lower than
or equal to half the plasma density. The analytical work given by Rosenzweig et

al |31] has been extended to beam density larger than half of plasma density, and
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the results have been compared with the simulation results. The efficiency of the
excitation is measured by Transformer ratio ( R), which is defined by the ratio of the
maximum accelerating field (£, ) at the wake to the maximum decelerating field
(E_) inside the driver bunch. It is seen that transformer ratio varies with the beam
pulse length (I,) and density of beam (n;) and becomes maximum when the beam
density is exactly equal to half of the plasma density. Interestingly at late times
of simulation, we have observed that the wake-field structure in all cases exhibits
spiky features which cannot be described by Rosenzweig’s theory. In the second set
of simulations, we have included the beam evolution in the self-consistent electric
field. In this particular case, we observe many interesting features. Depending on
the beam pulse length compared to plasma wavelength, the electron beam may ei-
ther split into many parts or may get compressed. Below we present the governing

equations for the electron beam driven wakefield excitations in a cold plasma.

Governing Equations

The basic equations governing the space-time evolution of a relativistically intense
wakefield excited by an ultra-relativistic electron beam propagating through a cold
homogeneous demagnetized plasma, are the relativistic fluid-Maxwell equations.
These are the continuity equations and the relativistic momentum equations for
both plasma and beam electrons, and Poisson’s equation for the wake electric
field. Since ions do not respond in these time scales, equations describing ion
dynamics are hence neglected. Ions are assumed to provide a stationary positively
charged neutralizing background. Assuming the plasma parameters do not vary

in the transverse direction ( transverse to the beam propagation direction ), the

31



Chapter 2. Excitation of relativistic electron beam driven wakefield in a cold
plasma in 1-D

governing equations in 1-D, are

% + ’U% = ¢l (2.2)
% + a(gl’;”) —0 (2.3)
% + fub% = —eF (2.4)
or _ dre(ng — n — ny) (2.5)

0z
where p = meyv and p, = m.v,v, are the z-component of momentum of plasma
electrons and beam electrons of mass m, having z-comp20nent of velocity v and
vy respectively. v = (1 — 2—2)71/2 and v, = ( — 2—32) o are the relativistic fac-
tors for plasma electrons and beam electrons having density n and n, respectively.
E and ng represents self-consistent electric field and equilibrium plasma density
respectively. Equations (2.1) - (2.5) are the key equations required to investi-
gate relativistic electron beam driven wakefield excitation in a cold unmagnetized
plasma. Although the equations look simple, it is difficult to obtain exact ana-
lytical expression of the excited wakefield by directly solving them. In the rigid
beam limit ( 7.e. in the limit v, — 1, equations (2.3) and (2.4) are neglected), the
stationary wave frame solution of equations (2.1), (2.2) & (2.5) has been given by

Rosenzweig et al. |[?]. Their solution is valid in the limit of beam density smaller
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than or equal to half the plasma density (a = n,/ng < 1/2). In his paper, we have
extended the Rosenzweig solution to arbitrary ratios of beam to plasma density
( d.e. arbitrary values of a ). We have further simulated equations (1)-(5) (i.e
including beam evolution) using a 1-D fluid simulation techniques (discussed later

in detail).

1-D Fluid Simulation of electron beam driven wake-

field excitation

In this section we present the methodology of fluid simulation techniques for the
excitation of wakefield. Physical quantities can be expressed in dimensionless units
by making the following replacements for the density, velocity and electric field:

WpeZ
c

el
MeCWpe

t— wWyet, 2 — , E— U LD S n e g =

mec’

Thus the above equations (2.1) - (2.5) can be written in the normalized units as,

on  d(nv)

ot o, =0 (2.6)
% + v% =-F (2.7)
O Own) (23)
P - g (2.9)



Chapter 2. Excitation of relativistic electron beam driven wakefield in a cold
plasma in 1-D

oFE
08— (=n—m) (2.10)

The general solution of the above equations (2.6-2.10), which represents the
form of wake in terms of density, velocity, and the electric field has been obtained
numerically in this chapter. A one-dimensional fluid code based on flux-corrected
transport scheme given by Boris et al. [102] has been developed for solving these
equations. Flux-Corrected Transport scheme which is based on Lax Wendroff
method [103] is an accurate and easy to use algorithm for solving a nonlinear, time-
dependent generalized continuity equations which occur in fluid dynamics, reactive,
multiphase, elastic plastic flows, plasma dynamics, and magneto-hydrodynamics.
Using this scheme, Boris et al. [102]| developed a suite of subroutines known
as LCPFCT (Laboratory of Computational Physics, Flux-Corrected Transport)
which is a freely available code (https://www.nrl.navy.mil/lcp/LCPFCT) written
in Fortran language. This is a standard package whose stability properties has
already been established in a variety of contexts by many users [41,104]|. LCPFCT
solves the conservative form of equations or the generalized continuity equations
of type % + VI = S; where p and r represents the physical quantities and their
flux respectively. S refers to the source or sink in the equation. Therefore the con-
tinuity or advection type of equations can be solved using this suite of subroutine.
For solving the momentum equations, we have used CNVFCT suite of subroutine
which solves the convective form of equations of type g—’t) + (0.V).p = S; where @
is the instantaneous flow velocity associated with the physical quantities p. The
stability properties of this subroutine have also been checked reproducing several

well-known results e.g. plasma oscillations, acoustic modes etc. Poisson equation
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Figure 2.1: Plot of numerical and analytical normalized perturbed plasma density
(ny) profiles for n, = 0.3, v, = 0.99, I, = 4/27 at different times.

has been solved using tridiagonal matrix method. This is a simplified form of
Gaussian elimination that can be used to solve tridiagonal systems of equations.
Using these set of subroutines, we have developed our electrostatic fluid code for

the excitation of wakefield in a cold plasma.

In our simulation, the beam is allowed to propagate inside the plasma starting
from one end of the simulation window to the other end and the whole beam-plasma
system is evolved according to equations (2.1-2.5) with non-periodic (open) bound-
ary conditions. In open boundary conditions, the wave propagates to the boundary
and passes through without being reflected or absorbed at the boundary. The ex-

cited wave retains its shape accordingly with time. For the initialization of the
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simulation, the self-consistent profiles for density, electric field, and fluid velocity
have been taken from the analytical work of Rosenzweig et al. |31] . We have
also simulated cases where the Rosenzweig’s solution is not initialized (discussed
later). It is to be noted here, that the structure of the excited wakefield is inde-
pendent of the initial profiles and always converges to the Rosenzweig’s solution.

In the simulations, the spatial resolution Az has been chosen in such a way that
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Figure 2.2: Plot of numerical and analytical normalized electric field (E) profile
for ny, = 0.3, v, = 0.99, I, = 4/27 at different times.

the plasma wave-length (Z—’;:) is adequately resolved. The temporal resolution i.e.

time step (At) is then calculated from Courant-Friedrichs-Lewy (CFL) condition
Al = C, Az /Upae, Where t,,, and C,,, are the maximum fluid velocity and CFL
number [102]. In our simulations, the maximum fluid velocity .. = 1 as the

maximum velocity of any fluid element can reach up to is the speed of light and
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C, = 0.2 for a good temporal resolution and stability. The numerical observations
illustrating new physical effects have been also confirmed by changing the grid
size (Az), C,, and At to many orders. In time, we have followed the profiles of
electric field, velocity, plasma electron density and beam electron density at the
wake region as well as inside the beam. In the first set of the simulation, we have
excluded the beam evolution (rigid beam case) whereas in the second set we have
taken account of beam evolution. Both these cases are presented in the following

sections.

Numerical Observations

In this section, we present our simulation results obtained for different driver pa-
rameters. The simulations which have been performed here illuminates many phys-
ical aspects of relativistic electron beam driven wakefield in a cold plasma. Below

we have presented and discussed these results in detail.

Wake field excited by a rigid beam driver

In this set of simulations, the excitation of wakefield has been studied without
considering the beam evolution in the self-consistent electrostatic field. We have
ignored the equation (2.9) in the simulation. Therefore, the beam can propagate
with a constant velocity v,. This approximation is valid for a sufficiently energetic
beam (73 > 1) which moves as a rigid piston without losing any significant amount
of energy. In a realistic situation, this is not a typical case. The beam loses
significant amount of energy to create the wakefield. Figures (2.3, 2.4) and figures

(2.5, 2.6) present simulation (and analytical) results for a = 0.5 and o = 0.7
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Figure 2.3: Plot of Plot of numerical and analytical normalized perturbed plasma
density (n;) profiles for n, = 0.5, v, = 0.99, [, = 4/27 at different times.

respectively for I, < A,. Simulation runs are repeated for [, > X, ( beam length
greater than plasma wavelength ) for same values of « and similar results are
observed. In such cases, we have evolved equations (2.6,2.7, 2.8 and 2.10) for
different values of n, and v, and followed the electric field, velocity and electron
density in time. Figures (2.1) and (2.2) respectively show the perturbed electron
density and the electric field at different times for n, = 0.3 and for [, < A, (beam
length smaller than plasma wavelength). Numerical results are shown in magenta
and the analytical results ( derived later in this paper) are shown in blue. One of
the interesting feature observed in all these simulations is that at late times the
perturbed electron density show spiky features which are not discussed in analytical

work of Rosenzweig et al. |?]. We comment on this in a later section. Figure (2.7)
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Figure 2.4: Plot of numerical and analytical normalized electric field ( F) profiles
for n, = 0.5, v, = 0.99, I, = 4/27 at different times.

shows the variation of transformer ratio R ( ratio of peak accelerating field behind
the beam to the peak decelerating field inside the beam) as a function of « for
both I, > A, and I, < A,. The points are obtained from simulation whereas the

continuous line has been obtained analytically ( as derived later ).

Excitation of wake field including beam evolution

In this section, we present more generalized numerical observations where the self-
consistent evolution of the beam is included. We have included full set of beam
evolution equations (2.3, 2.4) in the simulation. These equations (2.1-2.5) are
solved using 1D fluid simulation code with non-periodic boundary conditions. For

different values of «, the evolution of wake field and beam profile is recorded in
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density (n;) profiles for n, = 0.7, v, = 0.99, [, = 4/27 at different times.

simulation. Figures (2.8) and (2.9) show the perturbed electron density and electric
field profile respectively for [, < A\, and o = 0.3 with 8, — 1. Except for a phase
difference, the results are similar to what is observed in figures (2.1) and (2.2). For
By — 1, the beam evolution is negligible within the simulation time. For 3, < 0.99
significant modification of beam density profile is observed with time which in turn
modifies the wake field structure. Modification of beam density density profile not
only depends on « (ratio of beam to plasma density ) but also on the ratio of beam
length () to plasma wave length (\,). Higher the beam density faster is the rate
of modification of the beam density profile. Figures (2.10) and (2.11) show the

perturbed electron density for i, < A, and [, > A, respectively for oo = 0.3.
We make here the following observations. For {;, < A, the beam get compressed
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and its velocity gradually decreases. For [, > \,, the beam splits into different
beam-lets with different amplitude, each moving with different speed ||. In the

next section, we give analytical description of the problem in the limit 3, — 1.

Analytical Description of Beam driven wakefield

In this section, we present the analytical solution of beam driven wake wave in
a cold plasma. The solution has been obtained in a stationary wave frame of
the wakefield equations in the rigid beam limit (i.e. neglecting beam evolution
equations) for arbitrary values of normalized beam density «. For the sake of
completeness the solution in the regime o < %, which had been obtained earlier
by Rosenzweig et al. [31] is also presented here. All the fluid variables (n, p and
FE) are assumed to be functions of wave frame variable 7, which is defined as
T=(t— 57), where z is the direction of propagation of the beam (and wake) and
Bpr 1s the normalized phase velocity of the wake, which is equal to the normalized
beam velocity /3. The beam density (=«) is assumed to be constant in the region
0 <7 < 74, where 74 = #; here I, is the normalized length of the beam. As the
beam moves into the region 7 < 0, it creates a wake in the region 7 > 0. The
schematic diagram of the beam propagation in the quasistatic frame 7 is shown in
figure (2.12).

In this frame, the space and time derivatives of physical quantities can be

replaced by,

0
0z Phdr
0_d
ot dr
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Using these above transformations, equation (2.1) can be written as,

2 (-2 <o o1

In terms of the variable 7, the above equation can be integrated to give,
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Figure 2.8: Numerical and analytical normalized perturbed density (n;) profiles
for the normalized beam density (n,) = 0.3 at different times, including beam
evolution for ,/\, = 4/27 with v, — 1.

o Do (2.12)

6ph_6

In 7- frame, the momentum equation (2.2) and poisson equation (2.5) can be

written as,
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d(v5)
dr

(Bon — ) = —F (2.13)

Ccll—f = =Bl =n—m) = B <Bphﬁ_ 5t nb) (2.14)

Differentiating both the side of the equation (2.13) w.r. t. 7, we have,

d d(vp) B dFE -
%(@nh - 5)7 =0 (2.15)

Therefore, the above equation can be written as,

&(y8)  d,d(B) dE
Proh — (B ) = (2.16)
Now, we have the following expressions,
dy B
dr 6
d(vB) _ 3@
dr 7 dr
Using the above relations in equation (2.16), we have,
d? d? dE
Bph 0p) _dn_ _dE (2.17)

dr? dr? dr

de

Substituting the form o in the above equation from equation (2.14), we have,

& (1= 35m\ ( £ )
= + « 2.18
a7 (m "\ B3 219
where 3 = v and B,, = vp,. In the rigid beam limit, 3,, = 8, — 1, where
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Figure 2.9: Numerical and analytical normalized electric field ( F) profiles for the
normalized beam density (n,) = 0.3 at different times, including beam evolution
for /A, = 4/27 with v, — 1.

By = vy, vy being the velocity of the beam. In this limit, defining a new variable

(1) =4/ %, equation (2.18) reduces to the following form

1/1

where ‘prime’ represents differentiation w.r.t variable 7. In terms of variable z,

plasma electron density n and wake electric field F are respectively given by,

11+ 22
n=—
2 a2

(2.20)
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8= ;—iz (2.21)
E(z) =2'(71) (2.22)

The electric field (equation (2.22)) is obtained by integrating the Poisson’s equation
and using the condition 2 = 0 at 7 = 0. It is clear from above that the equation
(2.19) has a finite discontinuity at the tail of the beam (7 = 7) and therefore
has to be solved separately in two different regimes : inside (o # 0) the beam
and behind (o = 0) the beam. In the following subsections (2.5.1 and 2.5.2), we

respectively present the solution of equation (2.19) in these two separate regimes.
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Figure 2.10: Numerical and analytical normalized perturbed density (n;) profiles
for the normalized beam density (n,) = 0.3 at different times, including beam
evolution for /), = 4/27 with v, = 0.99.
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Values at the turning points
x 1 1/(1 = 2a)
‘ da(a—1)
B 0 ((ESTLES]
n 1 20(a — 1)+ 1
E 0 0

Table 2.1: Value of plasma parameters at the turning points inside the beam.

Solution inside the beam

In this section, we present the analytical form of plasma parameters as a function
of 7 inside the beam (7 = 0 to 7 = 7). Multiplying equation (2.19) by 2’ and

using the condition 2’ =0 at z =1 (i.e. 5 =0), yields

(P2 = 201 — a) — é ~(1-2a)z (2.23)

which (using equation (2.22)) immediately gives the electric field inside the beam
as
1 1/2

E(x)=12"=— (2(1 —a) — i (1-— 2a)x> (2.24)
(The -ve sign is chosen as there are excess electrons in the region of the beam).
The turning points in the solutions inside the beam can be find out using ' = 0,
where the amplitude of the electric field vanishes. Form equation (2.23), we have
obtained two turning points, z_ = 1 and z; = 1/(1 — 2«a), which shows that
inside the beam oscillatory solution exists only for o < 1/2. The values of the
plasma parameters at the turning points are shown in the following table (2.1) At
the turning points perturbed densities are respectively given by ny =n—1 =10
and dn = —2a(1 — «). Therefore, for o = 1/2, at the second turning point beam

density is exactly neutralized by the perturbed plasma electron density; another
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indication that oscillatory solution exists only for o < 1/2. To obtain the electric
field and density profile inside the beam, equation (2.23) needs to be integrated,

which for a < % gives,

7'2(1—204)—1/2‘/1 \/(m_l)(l_lm _w)diE

Integrating the above equation, the final expression of 7 can be written as,

7=2(1 - 2a) ' [E(m) — E(¢,m)] (2.25)

where ¢ = cos™'[1/(x — 1)1522] and m = 2a. Here E(m) and E(, m) are respec-
tively the complete and incomplete elliptical integrals of second kind. Equation
(2.24) and (2.25) along with the expression for ¢ gives the electric field inside the
beam as a function of wave frame variable 7. The half-time periods of the oscilla-
tions in the plasma parameters inside the beam is obtained by integrating equation
(2.23) between the two turning points x_ = 1 (¢ = 7/2) and z, = 1/(1 — 2a)

(¢ =0) and is given by
(T/2) =2(1 = 20) ' [E(m) — E(0,m)]

where T is the time period of the oscillation with an angular frequency given by,

(1l —2a)
o= T (2.26)

This clearly indicates that as « increases, the oscillation frequency decreases

monotonically and approaches zero for a = % Substituting a = 1 in equation

2
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(2.23), the functional dependence of 7 on x inside the beam is given by

= [Va(zr—1)+In(vz+ Vo —1) (2.27)

which shows that for large =, 7 ~ x. Thus for a = 1/2, 2’ and hence electric field
inside the beam is nearly a constant.

For oo > 1/2, the expression for perturbed density at the second turning point
shows that the beam is not completely neutralized by the plasma density. Therefore
the electric field continuously grows without oscillating. For « > 1/2, the solution

of equation (2.23) can be expressed as,

7= (20 — 1)_1/2/1 \/(a: —1)(z + 2a1—1)dx

Therefore, integrating the above equation, the final solution can be written as,

—21 . -1 .
r= ﬁ[\/ﬁmmg, m™) —i(m — 1)¢] (2.28)

where £ = sinh™![y/(z — 1)2=2], i = V=1,m = 5225 and E(i,m) is the incom-
plete elliptic integral of second kind. Thus equation (2.24) and (2.28) along with

the expression for £ gives the electric field profile for av > 1/2.

Solution behind the beam

To evaluate the wake electric field behind the beam, we begin from equation (2.19)

with o = 0. The first integral yields

(2)?
2

+ 9= (2.29)
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Figure 2.11: Numerical and analytical normalized perturbed plasma density (n1)
profiles for the normalized beam density (n,) = 0.3 at different times, including
beam evolution for /A, = 3 with v, = 0.99.

where v = %(w + %) and 7, is the maximum value of ~.

Since z” has a finite discontinuity at 7 = 74, 2’ and x are continuous function
of 7. The electric field i.e. 2’ must be continuous at the end of the beam. Using

the continuity in 2’ at 7 = 7 and eqiuations (2.24) and (2.29), we can write,

Therefore the value of ~,, is given by

Ym = (1 — ) + azxy (2.30)
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where z; is the value of x at 7 = 74. Using this expression for 7,,, the electric field

behind the beam is given by

B(z) = £/2(1 - ) + 202, — (2 + 1/2) (2.31)

To obtain the electric field and density profile behind the beam, the equation (2.29)
is integrated to give 7 as a function of x. The equation (2.29) can be rearranged

in the following fashion,

dx 1
== % (x —a)(b—x) (2.32)

where b = v, + /72, — 1 and a = 7,,, — \/72, — 1. Integrating the equation 2.32,

we get,
/ _ / Ve (2.33)
Ty x5 \/ (:L‘—a)(b—:r:)
The solution of the above equation can be written as,
7 =17+ 2VB[E(¢5,m) — E(d,m)] (2.34)

where m = 24/72, — 1/band z(z) is related to ¢(¢r) as © = v +(1/72 — 1)cos(2¢).

Thus equation (2.31) and (2.34) along with the relation between x and ¢ gives the
wake electric field profile behind the beam. In the following table (2.2), we present

the values of plasma parameters at the turning points where ' = 0.

The oscillation frequency of the wake electric field is obtained by integrating

equation (2.29) between the two turning points x4 = v, £+/72 — 1 (e ¢ = 0,7/2)
-1

and is given by w =7 (2 \/ (Ym + /725 —1DE (m)) . Analytically obtained pro-

files of perturbed density and wake electric field is plotted in all the figures in blue,
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Values at the turning points

x a = Ym —|b = Ym -
m—1 Vm =1
ﬁ 1—a? 1-b2
14a? 1402

3
o
o

Table 2.2: Value of plasma parameters at the turning points outside the beam.

Beam movement in 7-frame

Beam direction

< Wake region

v

Figure 2.12: Schematic diagram of the beam-plasma interaction in 7— frame.

showing a reasonably good fit with numerical results. The deviations observed at
late times in the simulation is due to a phase mixing effect which is discussed in the
summary section. Using the expressions for wake electric fields inside (equation
(2.24)) and outside (equation (2.31)) the beam, the Transformer ratio ( R), which
is defined as the ratio of maximum accelerating field ( £, ) at the wake to the max-

imum decelerating field (£_) inside the beam can be evaluated. The expression of
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R in different regime of a are respectively given by
1
Rla < 5) = /2a(z; - /20— a) - 2VT—2a
1
R(a = 5) =/Zf

1, 2a(xy — 1)

The variation of transformer ratio (R) with respect to beam density («) for different
beam pulse length (74) is shown by a continuous line in figure (2.7). Here again
the analytical results show a good fit with numerical work. It is clear from the
figure that the transformer ratio R is maximum when the beam density is exactly

equal to the half of the plasma density.

Summary

We have studied the space-time evolution of wakefield excited by an ultra-relativistic
electron beam (3, — 1) numerically using fluid simulation as well as analytically
using stationary wave ansatz. Our simulation results show a reasonably good
match with the analytical work, for several plasma periods. It is observed that
at late times in the simulation, the perturbed density in all cases show spiky fea-
tures, which is accompanied by sawtooth-like structures in the electric field profile.
These features are well-known signatures of wave breaking [85-87,100,105|. In next
chapter, a detail study on the modification of wake wave resulting in the breaking
of wake wave has been discussed in detail. One of the most exciting features ob-
served in the simulation that the beam gets modified in the self-consistent electric

field during the propagation inside the plasma. Our simulation results with the
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normalized beam velocities 3, < 0.99 show that the modification of beam density
depends on the ratio of beam length to plasma wavelength. For [, < ), the beam
gets compressed and its velocity gradually decreases. For I, > A, the beam splits
into different beam-lets with different amplitude, each moving with different speed.
The splitting and bunching effect of a beam in the self-consistent electromagnetic

field is a well known effect as given in references |27, 106].
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Breaking of relativistic electron beam
driven longitudinal wake wave in a cold

plasma

The objective of this chapter * is to investigate the space-time evolution of lon-
gitudinal wakefield excited by a relativistic electron beam in a cold plasma. The
space-time evolution exhibits a gradual modification in the wakefield profile which
breaks due to phase mizing process after several plasma periods. The breaking of
wake wave has been understood in terms of phase mizing of Akhiezer-Polovin [81]

mode.

“ Ratan Kumar Bera, Arghya Mukherjee, Sudip Sengupta and Amita Das, Relativistic electron
beam driven longitudinal wake-wave breaking in a cold plasma, Physics of Plasmas 23, 083113
(2016)
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Introduction

In the previous chapter, one-dimensional fluid simulations have been performed to
study the longitudinal structure of the electron beam driven wakefield in a cold
plasma, over a wide range of beam parameters. In addition, an analytical work
was also presented in the quasistatic framework. It was shown that the simulation
results match with the analytical results over a wide range of beam parameters,
for several plasma periods. At late times, the simulation results deviate from the
analytical results. It is observed that, the plasma density and electric field profiles
gradually evolve with time and the density profile forms sharp structures which is

accompanied by the sawtooth like structures in the electric field profile.

In this chapter, we present a detailed study on the modification of the excited
wakefield and a plausible physical reason behind the formation of sharp structures
in the simulation. Therefore, we have carried out fluid simulation for different beam
parameters and follow the space and time evolution of the excitation for a long time.
In all cases, we have considered the excitation for a rigid beam (7, > 1) to avoid
the changes in the wake profile due to self-consistent beam evolution; where ~, =
1/+/1 — v? is the Lorentz factor associated with the beam velocity (). In the rigid
beam limit, the evolution of the driver beam has been ignored in the self-consistent
electric field. Therefore the electron beam propagates with a constant velocity for
a long time without any significant deformation. In the previous chapter, we
have shown that the rigidity of the beam is valid for hundreds of plasma periods
if the velocity of the beam is higher than 0.99. Therefore we have used v, =

0.99 in all the simulations presented here. It is observed that the density profile
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gradually modifies with time and form sharp spike structure which are accompanied
by sawtooth-like structures in the electric field profile after several plasma periods.
This is a clear signature of wave breaking [85-87,100,105]. For every beam density
(ny) and beam velocity (v,), the wake wave finally shows wave breaking, after
several plasma periods. An analytical calculation of wake wave breaking in terms
of input parameters (beam density, beam velocity, and beam length) is shown here.
The analytical dependence of wake wave breaking time on the beam parameters
verifies the wake wave breaking time obtained from simulation. Interestingly, the
wake wave structure matches with longitudinal Akhiezer-Polovin mode [81] before
it breaks (shown later). The analytical form of wake wave breaking time also
matches the existing Akhiezer-Polovin wave breaking time formula given by Arghya

et al. |88].

Governing Equations and Fluid simulation techniques

This section presents the basic equations governing the space and time evolution
of ultra-relativistic electron beam driven wakefield in a cold plasma.These equa-
tions are the relativistic fluid-Maxwell equations presented in the previous chapter.
These equations contain the continuity equations and the equation of motion for
both plasma electron and beam electron. These equations are also connected with
Poisson’s equation. We have used the same set of normalized form of equations
in this chapter to study the space-time evolution of the excitation (see chapter 2
). In all the cases, we have performed simulations ignoring the beam evolution
(2.1-2.5) in this study. This is true for a sufficiently energetic beam (rigid beam).

We have solved these equations for different beam parameters using 1-D fluid sim-
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ulation techniques (discussed in chapter 2). In the simulation, we have followed
the excited wakefield profile for longer periods of time. The observations made in

this study is presented below.

1 :

oo ('Opet:O Beam (—/__
< n, (numerical) \"‘
= 1t n,_ (beam) i

nl(analytical)
"360 370 380 390 400
4

390

Figure 3.1: Numerical and analytical normalized perturbed electron density (n;)
profile at different times for the normalized beam density (n,) =0.3, the beam
velocity (v =0) =0.99, and the beam length (I;)= 4

Numerical Observations and Discussions

In this section, we present the numerical observations made in the study of rela-
tivistic electron beam driven wakefield excitation in a cold plasma. The simulation
results are shown in figures (3.1-3.4)) for different values of beam density (n,) and
beam velocity (v,). In all cases, the simulation is carried out for a fixed normalized

beam length ()= 4. Figs. (3.1) and (3.2), respectively, show the perturbed elec-
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tron density and the wake electric field for n, = 0.3 and v, = 0.99. Same quantities
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Figure 3.2: Numerical and analytical normalized electric field ( E) profile at differ-
ent times for the normalized beam density (n,) =0.3, the beam velocity (v = b)
=0.99, and the beam length (I,)= 4

are shown in figures (3.3)) and (3.4)) for a different beam density n, = 0.4, keeping
the beam velocity fixed (at v, = 0.99). Finally, Figures (3.5)) and (3.6)) , respec-
tively, show the perturbed electron density and wake electric field for n, = 0.4 and
a different beam velocity v, = 0.8. In all the figures, the numerical results are
shown in magenta and the analytical results (derived in the previous chapter for

completeness) are shown in blue.

In every case, the excited wakefield profile matches quite well with the analytical

work by Rosenzweig et al. |80] and with numerical work by Ratan et al. [101], for
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Figure 3.3: Numerical and analytical normalized perturbed electron density (n1)
profile at different times for the normalized beam density (n,) =0.4, the beam
velocity (v =0) =0.99, and the beam length (1,)= 4

several plasma periods. As mentioned in the previous chapter, the wake wave
profile gradually modifies with space and time and finally breaks. Here we have
also observed the same response of the wakefield which finally breaks after several
plasma periods. (see figures (3.1)-(3.6)). The breaking of the wake wave is observed
when the density profile of the wake wave gets spiked. For different values of beam
density (n,) and beam velocity (v,) with a constant beam length (1), we have
performed simulations and scaled the wave breaking time (7,,;,.) of wake wave with

these parameters in figures ((3.7)- (3.9)).

We have identified that the breaking time of the wakefield is different for dif-
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ferent beam density (n;) and beam velocity (v,). The wake wave breaks earlier
for higher beam density (n;) than the lower beam density for constant v, and [,
and breaks later for higher beam velocity (v;) than the lower velocity for constant
ny and . It is observed that the amplitude of the density, electric field and ve-
locity profile of wakefield depends with the beam density (n;), beam length (1)
and its velocity (v,). Here we have carried out the simulation for beam density

smaller than half of the background plasma density. For the beam density equal
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Figure 3.4: Numerical and analytical normalized electric field ( E) profile at differ-
ent times for the normalized beam density (n,) =0.4, the beam velocity (v = b)
=0.99, and the beam length (,)= 4

or even higher than half of the plasma density, the wake wave breaks immediately
in simulation, before two or three plasma periods (see in ref. [101]). It is clearly

shown that the excited wakefield profile is also indistinguishable from the longi-
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in a cold plasma
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Figure 3.5: Numerical and analytical normalized perturbed electron density (n1)
profile at different times for the normalized beam density (n,) =0.4, the beam
velocity (v =0b) =0.8, and the beam length (I,)= 4

tudinal Akhiezer-Polovin (AP) mode (see figure (3.10). Analytically we can show

that the expression of frequency of wake wave and AP wave is exactly same. In

order to describe the physics behind the beam driven wake wave breaking, we have

adopted the well existing theory of phase mixing of longitudinal Akhiezer-Polovin

(AP) mode which is discussed in the following section. An analytical expression

of breaking time is also calculated in terms of these parameters. The simulation

results fit the analytical formula perfectly.
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Analysis of wake wave breaking

In this section, we have presented the physical mechanism behind breaking of
the wake waves in detail. It is to be noted that the equations (2.1-2.5) outside
the beam (i.e. n, = 0) are the same set of equations needed for examining the
structure and characteristics of an Akhiezer-Polovin (AP) mode (see equations
(1-3) in ref. [87]). It is well known that Akhiezer-Polovin (AP) mode is only
relativistically intense fundamental propagating mode that exists in a cold plasma.
The excitation and characteristics of Akhiezer-Polovin mode has been investigated
extensively by several authors [87,88,107]. AP mode can be parametrized by two

AP

40 and SB,p,, where uAP

parameters, u .0 and 3, represents maximum fluid velocity
and phase velocity of AP wave respectively. In ref. [107|, the solution of an AP
mode for a given value of u/f" and 3, was given in terms of plasma density (n.4p)

in a normalized form as,

ﬂph

Nap = ——"— 3.1
Bpn — wap (3.1)
where usp = \/17:_? is the velocity of the electrons having momentum p. The
expression of usp can be obtained as a function of 7 = (¢t — z/Sph) from the
following equation,
d2
P P _o (3.2)

R T ——
do* /1 + p?

Here the following transformation is used,
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The solution of equation 3.2 can be written as (see equations (18-27) in ref. [107]),

E(0, R)

, 2R
T = (QT —RK(&,R)) “Sn

sinf (3.3)

where (A — 1)sin?0 = A — \/1+p? R = ﬁ—;}, R = +v1—R? and A =
1/4/1 — (uAP)2. Here u/¥ is the maximum value of usp which determines the

amplitude of the AP mode. The frequency of the AP mode is given by,

B TR
“AP T RE(R) - RPK(R)

(3.4)

Therefore, for a given value of u,, and S, the structure of AP mode and its fre-
quency can be obtained using equations (3.1-3.4). As stated above, the equations
outside the beam are exactly similar to the equations required for exciting an AP
mode. Therefore there must exist an identical Akhiezer-Polovin mode correspond-
ing to the wake wave, which can be excited using the same value of u,, and Sy,
as that of the wake wave. In the previous chapter (section 2.5), we presented the
analytical expressions of plasma electron density (n), velocity (u) and electric field
(E) of the wake wave for different beam density (n;), beam length (I,) and beam
velocity (vp). The amplitude and phase velocity of the wake can be determined
from the beam parameters (ny, vy, and [,). Following our earlier analytical work

presented in chapter (2), we can write the analytical solutions of the relativistic

electron beam driven wakefield in 7 = (¢ — ﬁ) frame as,
11+ 2?
n = 5 72 (35)
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Figure 3.6: Numerical and analytical normalized electric field ( E) profile at differ-
ent times for the normalized beam density (n,) =0.4, the beam velocity (v = b)
=0.8, and the beam length (,)= 4

(3.6)

E=—a(r) (3.7)

where ’prime’ represents differentiation with respect to variable 7. n, v and F
represents the electron density, velocity and electric field respectively. The form of

“2” is obtained inside the bunch for §,, =1 as a function of 7 from,

(z)? = (2(1 —a)— 1o (1- 2a)x) (3.8)
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where « is beam density (n;,) and the form of = as a function of 7 outside the

bunch (wake region) is evaluated from,

(a')? = <2~,m . %) (3.9)

where 7, = “”2;2 +7v = (y/1 —u2,)"!, maximum value of Lorentz factor () associ-
ated with plasma electron velocity (u) and wu,, represents the maximum value of
u. Using the continuity condition of 2" at 7 = 74 (end of beam), we obtained the

value of ~,, as,
Ym = (V1 —12)"" = (1 —a)+ azy (3.10)

where z; = z(7), 74 = 27ly/\, and A\, = 22 plasma wavelength. Substituting

wpe’

the value of 7, in the expression of u,,, we have the following expression for wu,,.

1
um:\/l— (= o)+ az,)? (3.11)

where x; is obtained either from the solution of equation (3.8) at 7 = 7 or the
solution of equation (3.9) at 7;. In the previous chapter, equation (3.8) was solved
in three different regimes of beam density (o < 1/2, « = 1/2 and a > 1/2). In this
chapter, the simulations illustrating the breaking of wake wave have been carried
out for the beam density o < 1/2. Therefore, we only present the solution of the
equation (3.8) for av < 1/2. The solution of equation (3.8) for o < 1/2 was given
as,

7=2(1-2a) '[E(m) — E(y,m)] (3.12)

where ¢ = cos™![y/(z — 1)3522] and m? = 2a. Here E(m) and E(y,m) are

respectively the complete and incomplete elliptical integrals of second kind. We
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have obtained value of z; using equation (3.12) for a given value of a and I.
Finally, we have calculated w,, by substituting x; in equation (3.11). Substituting
the value of w,, in the equation (3.10), we have obtained the value of ~,, which
decides the structure of the wake wave (see equation (3.9)). The structure of wake

wave was found from the solution of equation(3.9) as,
™ =11+ 2VB[E(07,m) = E(6,m)] (3.13)

where b = v, + /72, — 1, m? = 2y/~2, — 1/b and x(z) is related to ¢(¢;) as
T =Ym + (/72 — 1)cos(2¢). The normalized frequency of the wake wave may be

written as,
7T

(26 VAE = D)

Note that using the identity of elliptical integral E(2vm//(1+m')) = (2E(m’) —

(3.14)

Wwake =

V1 —m2K(m')) [108], it can be easily shown that the expression of frequency of
the wake wave is exactly similar to the form of frequency of an AP mode (see
equation 3.4). We have estimated the value of u,, and j3,, = 3, of wake wave in
terms of beam density (np), beam length (1) and beam velocity (v,), where 3, is
taken to be equal to beam velocity (,). It is found that the analytically calculated
value of w,, matches the numerically obtained value for different beam parameters.

Furthermore, for a given beam parameters, we have used the value of u,, and j3,,

AP

m

of the wake wave as u/," and /3, in equations (3.1-3.3) and obtained the structure
of corresponding AP mode. Here we have shown the plot of perturbed density
(ny = n — 1) profile of a corresponding AP mode for an wake wave excited for
np = 0.3, [, = 4 and S, = 0.99 in Fig. (3.7). As expected, Fig.(3.7) shows that

the excited wake wave is exactly identical to the corresponding AP mode. In other
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Figure 3.7: Plot of perturbed density profile (n;) of wake wave (magenta) and
Akhiezer-Polovin mode (blue circles) for normalized beam density (n;) = 0.3, beam
velocity (vp) = 0.99, and beam length (1) = 4 at wyt 25

words, we can state that wake wave is nothing, but a longitudinal AP mode in a
cold plasma. Therefore, the characteristics of the wake wave can be studied by

analyzing the properties of an AP mode.

In simulation, we have observed that this wake wave (or AP wave) breaks via
phase mixing mechanism after several plasma periods. Hence a plausible explana-
tion for the appearance of density spikes in the wakefield structure lie in the basics
of phase mixing of longitudinal Akhiezer-Polovin (AP) wave. It is known that the
amplitude of any relativistically intense wave is limited by its wave breaking limit.
Extensive study on wave breaking phenomena has been addressed by several au-
thors [85-87,100,105]. The wave breaking mechanism is explained by the process
when frequency of the oscillation depends on space which results in the crossing

of fluid elements . The crossing of the fluid elements make the wave incoherent
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Figure 3.8: Plot for numerically obtained (circles) and fitted (solid) scaling of phase
mixing time (7.,;;) with the phase velocity (5,) for the normalized beam density
(np) =0.3 and the beam length (1,)= 4

and the energy contained in a coherent wave structure is transferred into random

particle motion [85-87,100, 105].

It is well known that a pure longitudinal AP mode does not break if its am-
plitude is restricted by the wave breaking limit (EWB = \/2(Vph — 1)), where
Vph = (, /1 — §h>_1, is the relativistic factor associated with the phase velocity
(vpn) of the AP wave with electric field of amplitude FEy . For a relativisti-
cally intense wave (/3,, — 1), the amplitude for wave breaking is extremely large
(Ewp — o0). Hence, we expect that AP mode or wake wave of arbitrary ampli-
tude should sustain for long time which is not observed in this context. In 2012,
Prabal et al. [87] shown that AP wave can break below its wave breaking limit
via the process of phase mixing if it is subjected to a small arbitrary longitudinal

perturbation. Recently Arghya et al. [88] presented an analytical formula for this
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Figure 3.9: Plot for numerically obtained (circles) and fitted (solid) scaling of phase
mixing time (7.,;;) with the phase velocity (f,) for the normalized beam density
(np) =0.4 and the beam length (1,)= 4

phase mixing time or wave breaking time of longitudinal AP wave, which depends
on the input parameters of the AP wave . The estimated phase mixing time (7,,;,)
depends on phase velocity of the wave (3,,) and peak value of fluid velocity w,y,

for a sinusoidal longitudinal perturbation of velocity amplitude ¢ as following,

2B, 1 1
min N [ S 3.15
7 % [u% n (3.15)

We have also identified the breaking of the wake waves for different beam
density (n,) and beam velocity (/3,,). For different beam parameters, we have
shown that the excited wake wave profile is identical with the corresponding AP

mode before it breaks. After several plasma periods, the perturbed plasma electron
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Figure 3.10: Plot for analytical (solid) and numerical (circles) scaling of phase
mixing time (7,,) as a function of maximum fluid velocity (w,,) for normalized
beam velocity (v,) = 0.99 and beam length () = 4.

density shows an irregular and spiky behavior and finally breaks (see figures (3.1)-
(3.6)). In simulations, we have measured the wake wave breaking time (minimum
time required to break) for different beam density (n;) and beam velocity (v;). The
breaking time in simulation refers such a time when the first density spike occurs.
Analytically, we have also determined the breaking time (7,,:;) using equation
(3.15) for different values of w,, and beam velocity(v,) where u,, is obtained from
equation (3.11). These results are plotted in figures (3.8) (3.9), and (3.10). Here we
see that the analytically obtained values show a good comparison to the numerical

values.
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Summary

Study of space-time evolution of relativistic electron beam driven wake wave shows
to the breaking of wake wave at late times. After several plasma periods, we have
observed that the numerical perturbed density profile of wake wave steepens which
is accompanied by the sawtooth structure in electric field profile. This is a well-
known effect called wave-breaking (or wake wave breaking) |85-87,100,105], which
arises due to the relativistic mass variation of electrons. It is shown that the wake
wave modifies gradually and breaks after a certain time (wave -breaking time)
via phase mixing mechanism. We have presented that the excited wake wave is
identical with the corresponding longitudinal Akhiezer-Polovin mode [81] (obtained
using same parameters value) in a cold plasma before it breaks. Therefore this
breaking of wake wave is well understood in terms of longitudinal AP wave breaking
phenomena. Analytically, we have scaled the wake wave breaking time (7,.)
in terms of beam parameters (beam density, beam length and beam velocity),
which was estimated earlier by Arghya et al. [88] in terms of AP wave parameter
(maximum fluid velocity and phase velocity of the wave). It is shown that the

numerically obtained breaking time matches with analytical predicted value.
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Accessibility and stability of an
electron-ion mode in plasma wakefield

acceleration

The objective in this chapter * is to investigate the excitation of wakefield driven
by a relativistic electron beam in a cold plasma, where the effect of ion motion is
included. Proposing three fluid description of the plasma, an 1-D fluid simulations
have been employed in this chapter. The simulation resulls have been also com-
pared with analytical results. The wave breaking limit for a longitudinal relativistic

electron-ion mode is also presented.

“ Ratan Kumar Bera, Sudip Sengupta, and Amita Das, Accessibility and stability of an
electron-ion mode in plasma wakefield acceleration, Ready for Submission
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Introduction

In chapters (2 and 3), the excitation of relativistic electron beam driven wakefield
has been studied for a wide range of beam parameters, where the effect of ion
motion was completely neglected. This is because of their heavy mass. Being
a heavy species, ions do not response much in the electron time scale. They
only provide a neutralizing background in the studies. Therefore, the equations
responsible for the dynamics of ions motion have been neglected in the previous
chapters and also in the several earlier works [31,78,79]. In 1998, Khachatryan
et al. [82] reported in the study of strong plasma waves (v > 1) that plasma
ions (even heavy ions) make an essential contribution to the process of charge
separation under the influence of such a strong field; where v = (1 — v?/c?)~1/2 is
the Lorentz factor associated with the velocity (v) of the electrons. Later in 2005,
Rosenzweig et. al. [83] reported that the motion of ions plays an important role in
PWFA which produces large perturbations in ion density, giving rise to transverse
fields that in turn disrupt the motion of the beam. Recently, in the study by Vieira
et al. [84], it was shown that ions can essentially affect the future proton driven
plasma wakefield acceleration. Their motion can limit the energy transfer from
the driver to the accelerated particles by reducing the accelerating gradient which
is a result of early saturation in the self-modulation instability (SMI). Therefore,
including the effect of ion motion, the study of PWFA or the excitation of strong
plasma waves requires a special attention. In terms of theoretical work, including
the effect of ions motion, a semi-analytical form (no exact solution) of the electron
beam driven wakefield in 1-D is presented using multiple fluid models in ref. [80].

They calculated an approximate value of the transformer ratio (ratio of maximum
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accelerating gradient behind the beam to the maximum decelerating gradient inside
the beam) which determines the efficiency of the excitation, only for beam density
equal to the half the plasma density and in the limit ;» << 1; where p represents
the ratio of electron to ion’s mass. For arbitrary beam parameters including the
effect of ion motion, a complete characterization of PWFA mechanism is still a

largely unexplored area of research.

In this chapter, we have employed one-dimensional fluid simulation to study
the electron beam driven wakefield (or strong plasma waves excite by relativistic
electron beam) over a wide range of beam parameters and mass ratios by proposing
three-fluid (plasma electron, plasma ion, and beam electrons) description of the
plasma wave excitation. It is observed that our simulation results show a good
agreement with the semi-analytical results given by Rosenzweig et al. || for dif-
ferent beam densities and mass ratios. We have also found that the excitation is
independent of the initialization of plasma parameters. The numerically excited
profile ultimately converts to Rosenzweig’s solution. Clearly, this again confirms
that Rosenzweig’s solution is the only solution (mode) available in the cold, ho-
mogeneous plasma when an electron beam passes through it. We have studied the
transformer ratio (R) which determines the efficiency of the acceleration process as
a function of mass ratio and beam density. In the simulation, it is observed that the
density profile of the excited wake deviates from the analytical solution after sev-
eral plasma periods. The excited wake gradually modifies with time and becomes
spiky after several plasma periods. The corresponding electric field profile turns
into a saw-tooth form which is a clear signature of wave breaking [85-87,105]. This

particular feature observed in the present simulation has been found to be absent
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in the analytical calculations given in ref. [80]. It is also seen that the Rosenzweig’s
solution outside the beam (or numerically excited wake before breaking) is iden-
tical to corresponding Khachtryan’s mode [82], excited using the same parameter
values of the wakefield. The wave breaking limit obtained from our simulation
lies much below the analytically estimated value given by [82] (see appendix A.2
for detail derivation). These observed differences between our simulation results
and analytically predicted results have been understood in terms of phase mixing
process [87,88|. In the analytical calculation given by Khachatryan, the possibility

of phase mixing was ignored.

Governing Equations

The basic equations governing the excitation of 1-D relativistic electron beam
driven wakefield in a cold plasma are the relativistic fluid-Maxwell equations.
These equations contain the continuity and momentum equations for electron
beam, plasma electrons and plasma ions. Poisson’s equation is used to calculate
the electric field. We have considered the the electron beam is moving along z-
direction in an infinite, homogeneous plasma channel. Here we focus on exciting a
relativistic electron beam driven wakefield only in the longitudinal direction (along
the beam propagation). Therefore, neglecting the variation of plasma parameters
(density, velocity and electric field for both the electrons and ions) in transverse
directions (transverse to the beam propagation), the basic normalized governing
equations in 1-D can be written as,

on N d(nv)
ot 0z

~0 (4.1)
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dp  Op

5 % 0 (4.3)
Ipi Opi B

o TV, E (4.4)
anb 8(nbvb) =
R (4:5)
Ipe Ope .
o Ty, = F 0
oFr
& e —n—m) (4.7)

where p = v, p; = ;v; and p, = YU, are the z-components of momentum of
plasma electron, plasma ion and beam electron having z-component of velocity v, v;
and vy respectively. Here, v = (1 — 02) "% v = (1 —02) " and v, = (1 — v2) "/
are the relativistic factors associated with plasma electron, plasma ion and beam
electron respectively. In the above equations, n, n; and n, represents the density

of plasma electron, plasma ion and electron beam respectively. F and u represents

the z-component of the electric field and mass ratio (ratio of electron to ion mass)

WpeZ
c

respectively. We have used the normalization factors as, t — wpet, 2 —

v = vy =

c?

E— £ 02

MeCwWpe ’ c?

%p%mLecapi%ﬂ{:Upb_)Ts:C)n%nﬂoa
n; — = and n, — 72 The normalization method was discussed in chapter (2) in
detail. Equations (4.1-4.7) are the key equations needed to examine the excitation

of 1-D relativistic electron beam driven wakefield in a cold plasma.
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Fluid simulation of the relativistic electron beam
driven wakefield

In this section, we present numerical techniques used to study the relativistic
electron beam driven wakefield excitation in a cold plasma. We have developed a
fluid code using LCPFCT subroutines, which is based on flux-corrected transport
scheme [102]. The basic principle of this scheme is based on the generalization of
two-step Lax-Wendroff method |103]. The detail simulation techniques have been

discussed in chapter 3.

t=0
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Figure 4.1: Plot of normalized perturbed electron density (n;) profile at different
times for the normalized beam density (n;)=0.1, [, = 4 beam velocity (v,) =0.99
and p = 1.

In this case, we have performed our simulation for a rigid beam. Rigid beam
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defines such a beam which can penetrate infinite length in plasma without any
significant deformation. This is true only for a sufficiently energetic beam. In
chapter (2), we showed that beam can be considered to be rigid only if the velocity
of the beam v, > 0.99. In this limit, beam evolution equations (4.5) and (4.6)
can be neglected. Therefore, in all the simulations, the beam propagates along
z— direction with a speed v, = 0.99 to avoid the self-consistent effect of the
beam. We have solved the equations ((4.1),(4.2), (4.3),(4.4) and (4.7)) with non-
periodic boundary conditions along z— direction. Here the driver beam is allowed
to propagate from one end of the simulation window to its other end. The effect of
beam has been included in equation (4.7). We have initialized our system in two
different ways, self-consistent way and also when the beam is “simply put” inside
the plasma. We find that our simulation results are independent of the initialization
method; the solution always converges to the same wake field profile in both the
cases. This fact, i.e. independence of wakefield profile to initialization method, is
also discussed in the chapter (2). In this chapter, we present the simulation results

when the beam is simply put in the plasma.
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Figure 4.2: Plot of normalized electric field (£) profile at different times for the
normalized beam density (n;)=0.1, beam velocity (v,) =0.99, [, =4 and p = 1.

Numerical observations and discussion

In this section, we present the numerically obtained profiles of perturbed electron
density (n1) and electric field (/) profile with time for different beam density and
mass ratio. In all our simulations, we have used beam velocity v, = 0.99 and
beam length [, = 4. The numerical perturbed density (n;) and electric field (E)
profiles of the excited wake wave are shown in figures (4.1) and (4.2) respectively
at different times for n, = 0.1 and p = 1.

The numerical perturbed density (n;) and electric field (/) profiles are plotted
in figures (4.3) and (4.4) respectively at different times for n, = 0.2 and p = 1.

We have obtained the corresponding analytical profiles of wakefield excited for

80



Chapter 4. Accessibility and stability of an electron-ion mode in plasma
wakefield acceleration

02+ t=0
— Beam density (nb) Beam
. . A —
L n, (simulation)
0 _
| L L Il
50 60 70 80 90 100

T
0ol =20

' . Beam |
n, (analytical) —
0 PN

.02 1 1 1
50 60 70 80 90
z
T T T
02 Beam t=40 i
Ae—
00 P N . . .
’ \/ e’ e Nes” P e M =
.02 I 1 1
50 60 70 80 90

Figure 4.3: Plot of normalized perturbed electron density (n) profile at different
times for the normalized beam density (n,)=0.2, beam velocity v, = 0.99, [, = 4
and p = 1.

the same parameters used in our simulation from the semi-analytical calculation
given in ref. [80]. These analytical profiles (in magenta lines) are shown in figures
(4.1-4.4). It is clear from figures (4.1-4.4) that the numerical profiles match well
with the analytical profiles for different beam densities and mass-ratios. In figure
(4.5), we have shown the plot of perturbed electron density profile (n;) obtained
for p = 1/1836, ny = 0.2 at wy.t = 50 along with the profile, where the effect of
ion motion is completely neglected [31,101,109]. It is clear from the figure (4.5)
that ion motion may be neglected for small values of p. In figure (4.6), we have
By

plotted analytical values of transformer ratio R = £* obtained from [80] along

with numerical values as a function of u for two different values of n, = 0.1 and
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Figure 4.4: Plot of normalized electric field (F) profile at different time for the
normalized beam density (n,)=0.2, beam velocity v, = 0.99, [, =4 and p = 1.

0.5; where F, and F_ are the maximum value of accelerating electric field behind
the beam and maximum decelerating electric field inside the beam respectively.
We have found that numerically obtained transformer ratio matches well with the
analytical values.

In figure (4.7), we have plotted the transformer ratio (shown in squares) ob-
tained from fluid simulation on the top of its analytical values (solid red line)
obtained from semi-analytical theory [80] for p = 1/1836 as a function of beam
density (np). In addition, we have also plotted the analytical result for the trans-
former ratio R vs. beam density ny, given in ref. [101] for 1 = 0 on top of the
i = 1/1836 curve. As expected the curve for p = 0 closely matches the curve for

p = 1/1836. Further, we have also plotted the semi-analytical values (shown in
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Figure 4.5: Plot of normalized perturbed electron density (n;) profile at different
times for the normalized beam density (n,)=0.3, beam velocity v, = 0.99 and
I, =4 and p = 1/1836.

dotted line) obtained for p = 1 from ref. [80] along with some values obtained from
simulation. We find a good match between theory and simulation. It is observed
that in both cases transformer ratio R settles down to unity for large values of ny.
This implies that there is no gain in 1-D for an over-dense beam. The transformer
ratio determines the energy gain of the acceleration along the dephasing length,
which is the maximum length over which electrons are accelerated. Typically,
higher the value of transformer ratio (R) larger the energy gain in the process of

acceleration.
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Figure 4.6: Plot of transformer ratio (R) vs. mass ratio (u) for n, = 0.5 and
ny = 0.1

Breaking of electron-ion wake waves in a cold plasma

We have observed in our simulation that the numerical profiles of perturbed elec-
tron density (n;) and electric field (F) match with the analytical results, for several
plasma periods (see figures (4.1-4.5)). After several plasma periods, subsequently,
they start to deviate. The amplitude of the electron density gradually increases
and shows spiky behavior at later times (wpt = 123) shown in figure (4.8). This
feature, indicating the density bursts, is known as wave breaking [85-87,105].

It is well known that, including the ion dynamics, the solution of 1-D relativistic
fluid-Maxwell equations (equations (1), (2), (3), (4) and without the beam term
in Poisson equation (7)) in a cold plasma is a “Khachatryan mode" [82] which is

parametrized in terms of p, Sy, and E,q,; where 3,, and E,,,, are respectively
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Figure 4.7: Plot of semi-analytical and numerical values of transformer ratio (R)
as a function of beam density (np) for 4 = 1 and p = 1/1836. The blue circles
indicate the values of transformer ratio obtained from the analytical expression
given by Ratan et. al. |Physics of Plasmas, 22, 073109 (2015)] for = 0.

the phase velocity and the maximum amplitude of the electric field associated
with the wave. Therefore the electron beam driven wakefield (structure behind
the beam) which is a solution of (equations (1-4, 7)) with n, = 0, should be a
corresponding Khachatryan mode excited using the same values of p, 3,, = v, and
E\ppaz of the wake wave. Using the value of p, 3,, and E,,., from the simulation,
we have plotted the corresponding Khachatryan’s mode on top of the wake wave
excited for n, = 0.1, v, = 0.99, I, = 4 and p = 1 in figure (4.9). It is seen
that the structure of the wake wave shows a good match with the corresponding
Khachatryan mode. Therefore the wake wave breaking can be understood in terms

of breaking of Khachatryan’s mode.

In 1998, Khachatryan et al. |82 analytically calculated the wave breaking limit

85



Chapter 4. Accessibility and stability of an electron-ion mode in plasma
wakefield acceleration

for a relativistically intense plasma wave (including ion motion) in terms of the
maximum amplitude of electric field as, Ewp = v27y,n[1 + (1 — 1/1% 1/2%) /p]; where
vy =14 p, vo =14 [p(ypn —1)/(vpn + 1)] and v, = (1 — /S’Eh)_% (see appendix
A.2 for detail calculation). For a wave in a medium, wave breaking limit decides
the maximum sustainable amplitude of the wave. If the amplitude exceeds that
limit, the wave breaks resulting in the destruction of coherent motion |85, 86, 105].

In simulation, at the point of wave breaking, we note the corresponding maximum
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Figure 4.8: Plot of plasma electron density (n;) at different times ¢ = 123 for
(= 1/1836, ny = 0.3, vy = 0.99 and I, = 4.

amplitude of electric field ( Eyy g) for different values of i, where n, = 0.2, [, = 4 and
vp = 0.99. In figure (4.10), we have plotted both numerical and theoretical values
of Ewp as a function of the mass ratio (x). It is seen that the wave-breaking limit
of numerically excited wake-wave lies much below the analytically estimated limit.
Here the wake wave breaks much below the analytical wave breaking limit. In other

words, the wake wave breaks before it reaches to its wave breaking amplitude. It is
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because of phase mixing process, which arises because of relativistic mass variation
effects |85-87|. Physically, the propagation of the non-evolving driver beam inside
the cold plasma, excites a wake wave along with small numerical perturbations
which are inevitably present in the simulations (and also in a realistic situation).
These perturbations result in a slow variation of physical quantities associated with
the wake wave and produce a real physical effect which is described by the phase
mixing process. Inside the beam, such a phenomenon does not occur as the wake

is forced to oscillate at a frequency which is decided by the beam density. These
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Figure 4.9: Comparison of numerical electric field profile (F) with the analytical
and Khachatryan mode for n, = 0.1, I, = 4, v, = 0.99 and p = 1.

perturbations to the Khachatryan mode, causes the frequency of the wake wave
to become a function of position. This is because the frequency of an oscillating
electron fluid element depends on relativistic mass (energy) which in turn becomes
a function of position because of the perturbations. The spatial dependence of

frequency eventually results in the crossing of electron fluid elements resulting in
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breaking of the wake wave even in a cold plasma [85-87,105]. In an earlier work
by Ratan et al. [101], for immobile ions, it was shown that the excited wake wave
is a corresponding Akhiezer -Polovin (AP) mode [81], before it breaks. In their
simulation, the wake breaks in the same way due to numerical fluctuations which
perturbs the AP mode and helps to break. For a perturbed Akhiezer-Polovin
mode (i.e. with immobile ions), the spatial dependence of frequency has been
explicitly shown numerically in refs. [87] and analytically in ref. [88]. Therefore, in
our simulation for mobile ions, it is clear that the wake wave breaks due to phase
mixing process before it reaches its wave breaking limit ( Fy p). Khachatryan et
al. [82] calculated the wave breaking limit without considering the contribution of

phase mixing process in their theory.

2 T T T T T T T T T

——Khachatryan's limit

-0~ Numerical limit

1 R |

Figure 4.10: Plot of maximum amplitude of wave breaking electric field ( Ewp) as
a function of mass ratio (u) for n, = 0.2, [, = 4 and v, = 0.99 or ~,, = 7.08.
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Summary

We have studied the excitation relativistic electron beam driven wakefield in a
cold plasma using fluid simulation techniques where the effect of ion motion is
included. We have shown that simulation results match with the analytical results
given by Rosenzweig et al. [80] for different beam density and mass ratio. It is found
that the excited wakefield in our simulation is independent of the initial choice of
plasma parameters. The excited wakefield ultimately converts to the Rosenzweig’s
solution, which is unique in nature. We have seen that, for an over-dense beam, the
transformer ratio saturates to unity for both the electron-positron and hydrogen
plasmas in 1-D. There will be no gain for the over-dense beam. At later times,
we have observed that the numerically excited wakefield profile gradually deviates
from the analytical result and finally breaks via phase mixing process. We have
shown that the excited wake wave is alike to the corresponding Khachatryan’s
wave [82]. We have numerically obtained the wave breaking limit which is found
to be much below the analytically estimated values by Khachatryan et al. [82].
This is so as Khachatryan et al. [82] were ignored the possibility of phase mixing

in the analytical work.
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2-D fluid simulation of relativistic electron

beam driven wakefield in a cold plasma

The objective of this chapter * is to investigate 2-D wakefields driven by a rel-
ativistic electron beam in cold plasma. A 2-D fully relativistic electromagnetic
fluid code has been developed and employed for the excitation of wakefield for sev-
eral beam configurations over a wide range of beam parameters. The effect of finite
transverse beam size on the excitation of 2-D wakefields is investigated. The excita-
tion of blow-out structure which has a key role for generating good quality energetic
beam is also presented in this chapter. Further, injecting test electrons in the fluid
simulations, the energy gain in the process of acceleration is studied which show a

good agreement with the experimental observations.

“ Ratan Kumar Bera, Amita Das, and Sudip Sengupta, 2-D fluid simulation of a rigid rela-
tivistic electron beam driven wakefield in a cold plasma, arXiv: 1803.00300
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Introduction

In plasma wakefield acceleration (PWFA), the charge particles get accelerated by
the electric field associated with the plasma wave excited by injecting an ultra-
relativistic electron beam in a plasma medium. This scheme offers a most suitable
way to boost the energy of the existing linacs. The success of PWFA scheme
has been demonstrated in a number of experiments by accelerating charged par-
ticles to GeV energies [66,69,72,73|. In terms of theoretical work, till date, both
linear and nonlinear theory in 1-D has been well established to examine PWFA
scheme for several driver configurations [31,78-80,101,109| (presented in the ear-
lier chapters). The excitation of two-dimensional beam driven wakefield has been
studied by several authors only in the linear regime |28,94,95,110]. In the non-
linear regime, the two-dimensional modeling of PWFA has been provided by the
work of Lu et al. |96] alone. Their theoretical work was modeled in a quasi-static
frame with several approximations which fails to predict the correct form of wake-
field near the edge of the blow-out structure after wave breaking. Therefore, in
higher dimensions, most of the experimental PWFA results have been guided by
the extensive numerical simulations. Till date, most of the simulations have been
performed using particle-in-Cell (PIC) techniques e.g. OSIRIS, EPOCH, QUICK-
PIC etc [64,72,73,84,96-99]. These PIC codes which model plasmas by calculating
the trajectories of billions of particles as they respond to external forces and to the
forces particles exert on each other work at the most fundamental and microscopic
level. These codes are fully explicit, multi-dimensional, fully parallelized, fully rela-
tivistic, PIC codes. The simulation using these codes in an ordinary computers are

computationally heavy and time-consuming. Therefore powerful computational fa-
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cilities are required for an efficient performance working with these sophisticated
PIC codes. In this chapter, we therefore seek the possibility of fluid simulations
which are much simpler and faster than any sophisticated PIC simulations, to

provide a reasonable empirical guidance in PWFA context.

In this chapter, a two-dimensional fluid simulations have been employed to
study the excitation of relativistic electron beam driven wakefield in a cold plasma
by proposing a two-fluid description of plasma wave excitation. We have performed
our simulations for several beam configurations. It is observed that for both under-
dense and an over-dense beam having a large transverse extension than the lon-
gitudinal extension, the axial profiles of the excited wakefield obtained from our
simulation show a good agreement with the 1-D results of Ratan et al. [101]. In
the other limit i.e. when the transverse dimensions of the beam are smaller or close
to its longitudinal extension, the simulation results deviate considerably from the
1-D results. This study clearly shows that the transverse size of the beam plays
an important role in the transformation of electro-static to an electromagnetic na-
ture of the excitation. A 2-D analytical study of the wakefield structure in the
linear regime is also presented and compared well with the fluid simulation result
for small amplitude excitations. Further, we have performed our simulations for
a short, over-dense beam where linear approximations are no longer valid. In this
regime, the excitations exhibit a “blowout” structure which is an ion cavity free
from cold plasma electron. This arises due to high space-charge force for a short
and over-dense beam which evacuates all the plasma electrons from its vicinity
and thereby creates a pure ion channel behind. The key features of this ion chan-

nel propagating near the speed of light and surrounded by a thin electron sheath
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are, i) the mono-energetic electron beam can self-generated, ii) the accelerating
gradients are nearly constant and the focusing fields are linear iii) driver beam
can propagate many betatron wavelengths without any significant spreading as
most of the electrons of the driver propagate in the ion channel. Therefore most
of the PWFA experiments are designed in this regime for producing high-quality
beams [69,72,73,90,96]. The analytical modeling of the blow-out in a quasi-static
frame has already been given by Lu et al. [96] where the surrounding electron
sheath has been modeled as a step profiles. In our simulation, we have observed
that the excited blowout structure in terms of electric field and density matches
with the analytically modeled results of Lu et al. [25,96]. These comparisons are
made before the wake wave breaks and fluid simulations subsequent to breaking
become irrelevant. The breaking of wake wave has been confirmed with several ob-
servations. It is well known that the wake wave breaks when the excursion length
of an electron in the wake exceeds the radius of curvature of the blowout [111]. Tt
is indeed seen in the fluid simulations that, after breaking, the excursion length
becomes higher than the radius of curvature of the blowout. Another strong ob-
servation is that we have observed the simultaneous spiky feature in the density
profile which is a clear signature of wave breaking in the fluid simulation. In addi-
tion, the wave breaking time has been identified in fluid simulations by tracking the
total energy of the system which does not remain conserved after breaking. When
the wave breaks, the blowout structure gets destroyed in our fluid simulations as
the crossing of the particles/ fluid elements can not be described in fluid theory.
However, it is seen that the excitation can survive hundred of plasma periods with-
out any significant deformation for Z—g < 5. For n, > 5, the blowout breaks and

destroys after few plasma periods. In all simulations, we have considered the beam
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density in the range, 0 < n;, < 5.

Next, we have injected test particles (electrons) in the fluid simulation to es-
timate the energy gain in the process of acceleration. The fluid simulations are
good enough for providing the potential structure in the wake for different beam
configurations. Due to the absence of particle characteristics in the fluid model,
fluid simulations are irrelevant to predict about energy gain in the process of ac-
celeration. Therefore, we have used test electrons in the fluid simulation for such
studies. It is observed that the test electrons from the back of the driver beam of
energy 28.5GeV can gain up to a maximum energy of 2.6 GeV in a 10 cm long
plasma channel. These results show a good conformity with the experimental re-
sults given in ref. [69], where an energy gain of 2.6 GeV in a 10 c¢m long plasma is
shown. This shows the fluid simulations which are much simpler and faster than
any sophisticated PIC simulations are pretty adequate representing the wakefield
structure and also prove a good estimation of the energy gain in the process of
acceleration. Furthermore, we have experimented with the location of injection of
the test electrons and observe that the energy gain can be doubled to ~ 5.2GeV

when they were placed near the axial edge of the first blowout potential structure.

Governing Equations

The basic equations governing the excitation of 2-D relativistic electron beam
driven wakefield in a cold plasma are the relativistic fluid-Maxwell equations. The
equations contain the equation of continuity and the equation of momentum for

both plasma electrons and beam electrons. We have used Maxwell’s equations
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for the evolution of electromagnetic fields. The dynamics of ion have been ignored
because of their heavy mass. They only provide a neutralizing background. There-
fore, the basic governing equations for the excitation of two-dimensional relativistic

electron beam driven wakefield in a cold plasma are,

% +V.(nt) =0 (5.1)
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where p'= m.yv and p, = meY0p, is the momentum of plasma electron and beam
—1/2
electron having density n and ny, respectively. Here v = (1 — Z—;) and vy, =
—1/2
( 1-— Z—z) is the relativistic factor associated with the plasma electron and beam

electron having velocity ¢ and w3 respectively. In the above equations, F and
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ny — =2, Using these normalizations in the above equations (5.1-5.8), we have,

E%—V.(nv):O
@ﬂﬁﬁ)ﬁ: —E — (¢ x B)
ot

on - B

8—;+V.(nbvb)_0
Opy T
Eﬁ—(va)pb—E—(be)
OE L
— = (n¥+nptp) + (V x B)
ot

0B L

g——(VXE)

(5.11)

(5.12)

(5.15)

(5.16)

Equations (5.9-5.16) are the key equations to study the 2-D excitation of relativis-

tic electron beam driven wakefield in a cold plasma. We have numerically and

analytically (in linear regime) solved the above equations to study the structure of

2-D wakefields.

2-D fluid simulation techniques

In this section, we present the 2-D fluid simulation techniques used for the excita-

tion of relativistic electron beam driven wakefield in a cold plasma. We have solved
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the equations (5.9-5.16) using two-dimensional fluid simulation techniques. The
equations are solved in 2-D geometry (“x-y” plane) and the electron beam is prop-
agating along z-direction. This means that the excitations are observed at z = 0
plane in a cylindrical geometry (r = \/m, ¢, x) having azimuthal symmetry
(see figure 5.3). We have developed a fully-explicit, relativistic, electromagnetic
fluid code using LCPFCT suite of subroutines based on flux-corrected transport
scheme [102|. The one-dimensional LCPFCT subroutines have been used repeti-
tively to construct the 2-D fluid code by splitting the time steps in the different
directions (z and y). The detail of the simulation techniques is discussed in the
appendix (A.1). In our simulation, we have used non-periodic boundary condi-
tions (open) to retain the form of wake wave at the boundary. Initially, we have
introduced the beam at one end of the simulation window which propagates with
a velocity along z-direction towards another end. The results have been recorded
in terms of the spatial profiles of n, ny, U, v, E, and B at each time step. At
each time step, it is checked that the results must satisfy the equations (5.15) and
(5.16). We have also checked the conservation of energy in the simulation using
equation (A.35) (see appendix A.1). We have used this code for several studies e.g.
electromagnetic soliton propagation in plasmas, non-linear plasma oscillations, and
finite beam-plasma systems.The results have been bench-marked for some standard

known results against the widely used Particle-In-Cell code OSIRIS [104, 112].

Simulation results

In this section, we present our numerical observations and a detail discussion based
on these observations. The excitation of wakefield is carried out for a bi-Gaussian

. . 2 2
beam having density profile n, = nboexp(—;Tg)e:z:p(—Qg’Ta); where o, and o, repre-
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sents the length of beam along longitudinal and transverse directions respectively.
In all the simulations, the evolution of the beam has been excluded. Therefore,
the beam is moving with a constant velocity inside the plasma. In this limit,
the equation (5.12) for the evolution of the beam in a self-consistent manner has
been ignored. The propagation of the beam having a constant velocity has been
taken into account by solving the continuity equation (5.11). Therefore the beam
propagates inside the plasma as a rigid piston. For an electron beam case, the
driver evolves on a length scale roughly given by the Betatron wavelength, which
is 2m/27, for a beam particle in an ion channel. Therefore the rigid beam approx-
imation is valid for a sufficiently energetic beam i.e. 7, >> 1. In our simulations,
the relativistic factor of the beam -, is indeed much larger as the velocity of the
beam v, > 0.9999, very close to the speed of light. This fact has been discussed in
several earlier works [25,101,109]. Thus we have ignored the self-consistent evolu-
tion of the driver in the time scale of wakefield generation. Below we present our
simulation results studying different aspects of relativistic electron beam driven

wakefield excitation.

Effect of finite transverse beam size

In this section, we have performed our simulations for different beam length ratios
which are defined as [, = 0, /0, the ratio of longitudinal beam length to transverse
beam length. Fig. (5.1) and (5.2) shows the excited wakefield profiles in terms of
electron density (n), longitudinal electric field (E,), and z-component of magnetic
field (B,) for Iy = 0.5/v/15 = 0.129 < 1 and I, = v/15/0.5 = 4.4 > 1 respectively;
where the peak density of the beam nyy = 0.1 and velocity v, = 0.9999 in both the

cases.
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Figure 5.1: Plot of (a) normalized electron density (n), (b) contour of longitudinal
electric field (E,), (¢) z— component of magnetic field (B,) profile, (d) axial profile
of analytical (solid black) and numerical (circle) longitudinal electric field at w,.t =
29 for a bi-Gaussian beam of normalized peak density (n4)=0.1, beam velocity
(vp) =0.9999, o, = 0.5 and 7, = V/15.

The last sub-plots (d) of these figures (5.1-5.2) show the axial profile of longi-
tudinal electric field (F,) obtained from our 2-D simulation by integrating along
the transverse directions and the 1-D profile given in ref. [101] for the same values
of the beam parameters. It is seen that the simulation results match with the
1-D results for I, < 1 and deviate for [, > 1. It indicates that, for a beam hav-
ing a small transverse extension compared to its longitudinal length, the effect of
transverse magnetic field plays an important role. The transverse magnetic field
bends the motion of the electrons. Hence the charge separation decreases in the

longitudinal direction and we observe a significant suppression in the amplitude
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Figure 5.2: Plot of (a) normalized electron density (n), (b) contour of longitudinal
electric field (E,), (¢) z— component of magnetic field (B,) profile, (d) axial profile
of analytical (solid black) and numerical (circle) longitudinal electric field at wy.t =
28.28 for a bi-Gaussian beam of normalized peak density (n;0)=0.1, beam velocity
(vp) =0.9999, o, = v/5 and o, = 0.5.

of the longitudinal electric field in 2-D than that obtained from 1-D theory. To
examine the numerical structure of the 2-D wakefields, we present an analytical

solution of wakefields in the next section.

2-D linear theory of electron beam driven wakefields

An analytical solution of relativistic electron beam driven wakefields in the linear
regime (i.e. m, << 1) is presented in this section. The analytical solutions are
obtained in cylindrical co-ordinate (r, 6, x) system, where r = \/y? + 2% and

0 = tan_l(i) represents the radial and azimuthal coordinates corresponding to
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cartesian co-ordinates (z, y, z) (see figure 5.3).

Figure 5.3: A schematic diagram of slab representation for cylindrical geometries.

We have also considered the azimuthal (#) symmetry in the derivation i.e.
/00 = 0. In the frame, ({ =« — vpt, 7) and v, = 1, the beam exists in the region
—&r < & <0 (see figure (5.4)); where £ = 2ml,/\, defines the value of £ at the
tail of the beam and A\, = WLpeiS the skin depth of the plasma. In this frame (¢,
r), the fluid-Maxwell equations (5.9-5.16) inside the beam can be reduced to the

following set of equations ( see appendix (A.3) for detail derivation).
agnzln(é-,r)_'_nzln(é-’r) = _nb(gar) _é.f §§ <0 (517)

(Vi = DAY = o7") = —ni" =& =£<0 (5.18)
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where n™ = n™ — 1, ¢" and A" represents the normalized perturbed values
of plasma density (n) scalar potential (¢) and z-component of vector potential
(A_{") inside the beam respectively. Clearly, the profile of n,(&,7) =0, (¢, r) =0,

E(&,r) = 0 and B(&,r) = 0, at the front of the beam (¢ > 0), as the beam

propagates equal to the speed of light. The solution of the above equation (5.17)

Beam dynamics in E - plane

Bi-parabolic beam

Head of the beam
‘ /
Tail of the beam /

/
>
\ | ;. §>0
<—Wake region —» \_//' "

/ Beam direction

A
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Figure 5.4: A schematic diagram of beam dynamics in (&, r)-plane.

for a given n, provides the form of perturbed plasma density n{"(&,r) inside the
beam —&; < & < 0. Substituting the form of n{" in the R.H.S of the equation
(5.18) and then integrating, the solution of (AYX — ¢%") can be obtained inside the
beam. Using the expression of (A7 — ¢i"), the longitudinal electric field (Fim)

inside the beam is then calculated from the following equation.
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Figure 5.5: Plot of (a) normalized electron density (n), (b) longitudinal electric
field (F,), (c) beam profile, (d) profile of analytical (solid black) and numerical
(circle) Axial profile of longitudinal electric field at wy,.t = 23 for a bi-parabolic
beam of normalized peak density (n40)—0.1, beam velocity (v,) —0.9999, b = 0.5

and a = /15.

At the wake of the beam (—oo < & < —¢&;), the equations (5.17) and (5.18) can be

re-written as,

Deny ™ (€ r) + 0y (g, r) =0, —c0 << ¢ (5.20)
(V2= AR —gp™) = —np™, —co <6< = (5.21)

It is to be noted that the solution of the equation (5.21) depends on the the form
of n¥e*¢ outside the beam which is obtained from equation (5.20) with a proper

boundary conditions. The longitudinal field ( E**) is then obtained from,
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Figure 5.6: Plot of (a) normalized electron density (n), (b) longitudinal electric field
(E.), (c) z— component of magnetic field (B,) profile, (d) Axial profile of analytical
(solid black) and numerical (circle) longitudinal electric field at wy.t = 17 for a bi-
parabolic beam of normalized peak density (ny0)=0.1, beam velocity (v;,) =0.9999,
b=+/5and a=0.5.

0
Ef;ake _ 8_€(A11U;k6 _ ¢71Uak6) (5.22)

The solutions of equations (5.17)-5.22) represent the analytical form of perturbed
plasma density and longitudinal electric field both inside and outside the beam.

Now we assume the separation of variables in n;, as following,

(&, 7) = nuog(§) S (r); =<0 (5.23)
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Substituting the form of ny in equation (5.17), we get,

Oeny" (€, 1) +ni" (€, 1) = —nwog() f(r) =& <60 (5.24)

The solution of the above equation can be written as (see appendix A.4.1),

‘ 13
ni" = =/ (r) / de'g(€)sin(€ — &) —&<E<0 (5.25)

o

Here sin(¢ — ¢') is the Green’s function corresponding to equation (5.24). As
& = x — uyt, therefore & has to be started from oo to £&. The Green’s function
goes to zero for & > £. Therefore, the solution of the equation (5.25) takes the

following form,

ny = o (1) /:O g(€)sin(g ~E)dg' = —mof(NG(): & <E<0 (5.26)

It is to be noted that the change in the lower limit in the integral implies the
causality in the system; forces applied in the future can not affect the solution at
any moment. However, at the front of the beam (£ > 0), the perturbed plasma
density nq(§,7) = 0, as the perturbation can not travel more than speed of light.

Therefore, the solution of G/(§) can be written as,
7 0
Gle) = [ al¢sin¢’ - )¢
1
Therefore, the form of the perturbed plasma density inside the beam is,

0
ny = —’flbof("')/5 9(&)sin(§" = €); £ <E<0 (5.27)
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Substituting the form of ni" in the equation (5.18), we get,
(V7= 1)(AT; = 61") = —naof (1) G (8); £ <E<0 (5.28)
The solution of the above equation (5.28) can be written as,
(A = 6) = —maGOF();  —& <E<0 (5.29)

Where F(r) = [ 7' f(r')Io(r)Ko(r)dr' + [ 7' f(r')o(r)Ko(r')dr'. Here Iy and

0

Ky represents modified Bessel function of first and second kind respectively (see
appendix A.4.2 for detail derivation). Therefore, the longitudinal field inside the

beam is,

Bt = a2 () (5.30)

At the wake of the beam, the solution of the equation (5.20) can be written as,
ny = A(r)sin(€) + B(r)cos(§) —o00 <¢< = (5.31)

where A(r) and B(r) are the integration constants. It is to be noted that the
plasma density (n1) and the derivative of the plasma density w.r.t. &, % has to
be continuous at the end of the beam ¢ = —&;. Therefore, we have the following

boundary conditions.

ntluake(_gfv T) = nzln(_gf7 T)

Oeny ke (=&5,r) = Oeni(—&5, 1)
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Using these two conditions, we get,

A(r)sin(=&y) + B(r)cos(=¢5) = —nmuo f(r)G(=£;)

A(r)cos(=E€5) — B(r)sin(=E5) = —mo f ()G (=&;)

Solving the above equations of A(r) and B(r), we get,

A(r) = —nmuof (r)(G(=2b)sin(—2b) + G'(§f)cos(—2b))

B(r) = —mpf (r)(G(=&p)cos(=&f) — G'(=&f)sin(—E))

wake

Substituting the form of n{’*** in equation (5.21), we have,

(V7 = (AR = 1) = —m f(r);  —0 SE<=§

The solution of the above equation is therefore,

(AfpEe — ¢pere) = M (r)sin(€) + N (r)cos(§); —00 <€ < &

where M (r) and N(r) can be obtained from,

M(r) = —npo F'(r)(G(—2b)sin(—2b) + G' (&) cos(—2b))

N(r) = = F(r)(G(=&y)cos(=&) — G'(=&f)sin(—=Ep))

The exact analytical solution is obtained here for a bi-parabolic beam having den-

(£+b)? )(1— 2

sity ny = npo(1 — 37— %) = nyog(§) f(r); where a and b defines the extension

b2

of the beam along & and r respectively. In (£, ) frame, the beam thus exists in
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the region —2b < & < 0, where the peak of the beam density is located at & = —b.

Therefore, the form of G(&) can be written as,

o(6) = [ 1= Egysinge — e

Integrating the above equation of G/(£), we have,

B (E+Db)?, 2 . 2 _
G =(1- 72 )+ gszn(f) + ﬁ(l —cos(€)) (5.38)

Finally, the form of ni" for the bi-parabolic beam inside the beam (—2b < £ < 0)

can be written as,

2 2
ni" = _nbO(l_%)X [(1 _ & —;b)

)+ %Sz’n(f) + %(1 _ cas(g))] <<
(5.39)

The form of F(r) can be obtained by integrating the following equation,

/2 a 2

F(r):/Orr’(l—Z—Q)Io(r')Ko(r)dr'—i-/ (1= =)o (r) Ko ) dr’

T

The solution of the above equation is,

P =20l + 50 - ) - 7]

Substituting the form of F'(r) in equation (5.29), we have,

(A7 = 61" = —2m0 (1= E525) + Fsin(€) + £ (1 — cos(9))

2

x [IO(T)KO(a)—l—%(l—%)—a%] 2 <E<0
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The longitudinal electric field inside the beam is,

B = 2(AL = 67) = 200 () Ko(@) + 31— ) = 2]
X [(—@) + %cos(f) + b%sm(f)] —20<€£<0

Using the form of G(§) and I'(r), one can easily derive the exact form of A(r),
B(r), M(r) and N(r) from equations (5.32, 5.33, 5.36, and 5.37). The perturbed

plasma density and the longitudinal electric field at wake can be written as,

nv*e = A(r)sin(€) + B(r)cos(€) —00<E< -2 (5.42)
B, 1) = 5p(Aie = 60) = M{r)oos(§) = N{rsin(e)  — oo << -2
(5.43)

We have also performed fluid simulations using a bi-parabolic beam for different
beam length ratios. The simulation results are shown in (5.5) and (5.6) for [, =
g = 0129 < 1 and [, = g = 4.4 > 1 respectively; where ny = 0.1 and v, =
0.9999 in both the cases. In the last subplots of figs.(5.5 (d)) and (5.6 (d)), we
have plotted the axial profile (y = 0 plane) of longitudinal electric field obtained
from our simulation along with the 2-D linear analytical profile obtained from
equations (5.41) and (5.43) at » = 0 and 1-D theoretical profiles given in ref. [101].
For the 1-D results, the equation (8) and equation (8) for @ = 0 given in ref.
[101], are solved numerically for a bi-parabolic beam profile; where « is the beam
density. We have observed that the 2-D results obtained from our simulation match
with the 2-D theoretical results for any arbitrary values of 0/a.This validates our
simulation result for the excitation of relativistic electron beam driven wakefield

in a cold plasma. An interesting observation has been made for a beam having

110



Chapter 5. 2-D fluid simulation of relativistic electron beam driven wakefield in
a cold plasma

Q|

> 1 (see figure 5.6). In this particular case, the longitudinal electric field profile
obtained from 2-D theory which also matches with the simulation results deviates
from 1-D result. This certainly concludes that the finite transverse size of the
beam plays an important role in the excitation. For a beam having transverse
size larger than the longitudinal extension, the excitation acquires electrostatic
characteristics. Whereas, excitations exhibit electromagnetic characteristics for a
beam having transverse size smaller or equal to the longitudinal extension. Due to
finite transverse size, the electric fields acquires curvature leading to the appearance
of the transverse magnetic fields. These transverse magnetic fields restrict the
movement electrons longitudinally and hence the longitudinal charge separation

decreases. Therefore, the amplitude of the longitudinal electric field decreases.

Fluid simulation in the blowout regime

Here we present the excitation of wakefield for a beam density larger than the
background plasma density. In figure (5.7), we plot the excitation of wakefield
in terms of longitudinal electric field and perturbed plasma density for ny, = 1,
v, = 0.9999, o, = v/2 and o, = 0.4. It is observed that the excitation exhibits
blowout structure in the simulation.

Fig (5.8) shows the excitation for ny = 1, v, = 0.9999, o, = V2 and o, =1
where we have also plotted the analytical profile of longitudinal electric field and
corresponding curve of blowout radius obtained from the analytical modeled results
presented in ref. [96]. In Fig (5.9), we have plotted the excitation for ny = 7,
v, = 0.9999, 0, = /2 and o, = 1 and the corresponding analytical curve of
blowout radius obtained from [96]. The analytical blowout curve and longitudinal

electric field profile are obtained by solving the equations (46) and (47) given in
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Figure 5.7: Plot of (a) normalized plasma electron density (n) profile,(b) axial
profile of density, electric longitudinal electric field ( F,) profile for a bi-Gaussian
beam of normalized peak density (ny)=1, beam velocity (v;) =0.9999, o, = /1
and o, = 0.4 at ¢ = 21.21.

ref. [96], using the same parameter values. It is seen that our simulation results
show a good agreement with the analytical results. However, for a beam density
no = 7, vy = 0.9999, o, = /2 and o, = 0.4, the numerical results deviate from
analytical theory after several plasma periods (see fig.( 5.10)). This size of the
excited blowout structure gradually increases and eventually destroys exhibiting
sharp spikes in the density profile and sawtooth-like structures in the electric field
profile, after several plasma periods (~ ¢ = 8). This is a clear signature of wave
breaking [85-88]. It is well known that the wake wave breaks when the excursion
length exceeds the value of the radius of curvature [111]. In fig. (5.10), it is clear

that the wave first breaks at the axial edge of the blowout. We have calculated
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Figure 5.8: Plot of (a) normalized perturbed electron density (n) profile, (b) lon-
gitudinal electric field (c¢) axial profile of analytical and numerical longitudinal elec-
tric field profile (d) analytical obtained blowout curve (red line) for a bi-Gaussian
beam of peak density (n0)—1, beam velocity (v;) —0.9999, 0, = v/2 and o, = 1
at wpet = 6.

the value of the radius of curvature R = 3.5 at the axial edge of the blowout by

fitting a circle. The excursion length is defined as [, E’"‘” ; where E,,,, and w is
the maximum electric field at the blowout and the characteristic frequency of the
wake [113]. Before the wave breaking time i.e. at ¢t = 2.8, the values of maximum
electric field Fy,.; = 2.9 and w ~ wy.. This implies that the excursion length
lo = E;";z = 2.9 is less than the radius of the curvature R. After the wake breaks
at ¢ = 8, the maximum amplitude of the electric field increases to I,,,, = 4.2.

Therefore the excursion length [, M = 4.2 becomes higher than the radius of

the curvature R. We have also found that, in fluid simulation, the total energy
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Figure 5.9: Plot of (a) normalized perturbed electron density (n;) profile and (b)
longitudinal electric field profile (c) analytically obtained blowout curve for a bi-
Gaussian beam of peak density (1) 7, beam velocity (v;) —0.9999, o, = /2 and
oy =1 at wyt =2.8.

drops down after the wave breaking as shown in Fig. (5.11). This happens because
wave breaking results in transfer of energy to high wave number which can not be
resolved by the grid. The fluid description does not remain valid after breaking.

However, in fluid simulation, it is observed that for a beam density nyy < 5, the

blowout can survive several plasma periods without any significant deformation.
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Figure 5.10: Plot of normalized perturbed electron density (n;) profile and analyt-
ical obtained blowout curve (solid green line) for a bi-Gaussian beam having peak
density (ny)=7, beam velocity (v;) =0.9999, o, = /2 and o, = 1 at different
times wyt = 2.8 and wpt = 8.
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Figure 5.11: Plot of normalized values of total energy, kinetic energy and field
energy vs. time for the normalized beam density (ny)=7.0, 0, = v/2 and 7, = 1.
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Test particle simulation

In this section, we have performed the test particle (electron) simulation to study
the energy gain in the process of acceleration. Test electrons are introduced into
the fluid simulation and studied their distribution of energy at different times. The

dynamics of the test electron are determined by the equation of motion, dd—zf = _F-—

(0; x B); where p; = v;(1—v2)~%/2

is the momentum of i-th electron having velocity
v;. The basic principle for advancing the position and velocity of the test particle
in time is based on the Boris pusher algorithm [114]. The self-consistent effect

of test electrons on the wakefield has been ignored. The detail of the simulation

techniques is presented in the appendix (A.5).

In our first numerical experiment (shown in (5.12)), we have randomly dis-
tributed 10000 electrons having initial velocity vo(t = 0) = 0 (extremely cold
electrons) in all over the simulation box. The beam having ny = 3, 0, = V2,
oy = 1, and v, = 0.99999999 propagates from one end to other end and creates
the wakefield in the plasma. The potential of the wake exhibiting the blowout
structure traps the nearby test electrons which get thereby accelerated to high
energies. The trapped electrons gain energy by the electric field in the blowout
and propagate near the speed of light. We have plotted the velocity distribution
function of these particles at ¢ = 0 and 50. It is observed that the test electrons

can gain maximum 40 MeV energy in a length of 50 ().
pe

Next, we have simulated the experimental results given in ref. [?| where an

electron beam having total number of electrons N = 1.8 x 10'°, o, = 20um, o, =
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Figure 5.12: Plot of (a) normalized values of perturbed plasma density (n,), elec-
tron beam density (ny = 3, 0, = V2, 0, = 1, v, = 0.99999999), and distribution
of test electrons at ¢ = 0, (b) normalized values of perturbed plasma density (n1),
electron beam density (n;), and distribution of test electrons at ¢ = 50, (c) the
speed distribution function (f(v)) of test electrons at ¢ = 0 and ¢ = 50 , (d) the
energy () distribution of test electrons at ¢ = 0 and ¢ = 50, (e) the distribution
of test electrons at the blowout structure.

104em and energy 28.5 GeV is injected in a plasma of density ngy = 2.8 x 107 em =3,
Therefore, we have, ny,y = N/ {(2#)%05%710} = 2, ouWwpe/C = 2, oywpe/c = 1,
vp = 0.9999999998461¢c. Using these normalized values and also with 10000 test
electrons having the initial energy of 28.5 GeV suspended just under the beam,
we have performed our simulation. It is observed that the electrons from the
front of the test beam lose their energy and the electrons from the back of the
beam gain the maximum energy of 200M eV in a length of 77 (wipe) (see fig. 5.13).

Therefore, the electrons can gain maximum energy up to ~ 2.6GeV in a 10 cm long
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Figure 5.13: Plot of (a) normalized values of perturbed plasma density (n;) and
electron beam density (n;) at ¢ = 0, (b) normalized values of perturbed plasma
density (n;) and electron beam density (n;) at ¢ = 77, (c) the speed distribution
function (f(v)) of test electrons at ¢ = 0, (d) the distribution of test electrons
at ¢ = 77 (e) the energy distribution of test electrons at ¢ = 0, (f) the energy
distribution of test electrons at ¢ =77 .

plasma. These results show a good conformity with the experimental results given
in ref. [69]. Further, using same beam parameters, we inject the test electrons
near the axial edge of the first blowout structure, where the amplitude of the
longitudinal electric field is maximum (shown in fig. (5.14)). It is observed that
the electrons can gain the maximum energy of 400 MeV in a length of 77 (w—;e)
Therefore, the max. energy gained by these test electrons placed near the blowout
can be doubled ~ 5.2 GeV after passing 10 cm long plasma. This shows that the
energy gain can be doubled when the witness beam is placed near the axial edge

of blowout instead of accelerating the electrons from the back of the driver beam.
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Figure 5.14: Plot of (a) normalized values of perturbed plasma density (n;), elec-
tron beam density (n;), and the distribution of test electrons at ¢ = 0, (b) normal-
ized values of perturbed plasma density (n;), electron beam density (ny), and the
distribution of test electrons at ¢t = 77, (c¢) the energy distribution and the driver
beam profile at ¢ = 0, (c) the energy distribution and the driver beam profile at
t="77

Summary

The 2-D excitation of relativistic electron beam driven wakefield in a cold plasma
is studied using fluid simulation techniques. The simulation results show a good
agreement with 1-D results |101] for a beam having larger transverse extension
compared to the longitudinal extension. It is also shown that, for short and over
dense beam, the structure of the excited wake field exhibits blowout structure
which also matches with the analytically modeled results given in ref. |25]. Further,

injecting the test particles in the simulation, we show that the maximum energy
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gains 2.6 GeV by an electron from the back of the beam of energy 28.5 in a 10
cm long plasma, matches with the earlier experimental observation presented in
ref. [69]. Using a discrete trailing beam instead of accelerating electrons from the
back of the driver, which is placed near the axial edge of the first blowout, the

maximum energy gain is found to be doubled ~ 5.2 GeV.
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Salient features of this thesis

In this thesis, we have carried out detailed linear and non-linear studies of rela-
tivistic electron beam driven wakefield excitation in a cold plasma, both in 1-D and
2-D using two electron fluid description. The wakefields excited using an ultra-
relativistic beam form the foundation in Plasma Wakefield Accelerators (PWFA)
which are capable of producing energetic electrons in almost thousand times shorter
distance compared to conventional accelerators. The success of PWFA has been
experimentally demonstrated by accelerating electrons to ~ 85GeV in a meter
long plasma channel |72|. Theoretical studies on wakefield description have, how-
ever, relied on quasi-static approximation where the self-consistent evolution of the
beam is ignored [31,80,94-96,98|. An electron beam would typically evolve on a

length scale of the betatron wavelength, which is \/2v,A, for a beam particle in an
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ion channel. Here v, and A, are the Lorentz factor associated with the beam elec-
trons and plasma wavelength respectively. Therefore, theoretical treatment which
ignore beam evolution would be valid for a beam which is sufficiently energetic. In
1-D, linear and non-linear theories have been put forth for under-dense beam pa-
rameters [31,78-80,101]. The 2-D analytical studies in the linear regime have been
carried out for special profiles of driver beam [94,95|. The structure of wakefields
driven by a relativistic electron beam in the non-linear regime has been provided
by the analytical model of Lu et al. [96]. In the recent PWFA experiments, the
driver beam is tightly focused to achieve “blow-out” structure, a highly non-linear
regime (“blow-out”), for better acceleration. The experimental designs and results
would have all these features (viz., multidimensionality, non-linear regime, evo-
lution of the driver ). So far PIC simulations have been carried out extensively
with OSIRIS, QUICKPIC, EPOCH etc [25,72,73,84,96-98] to provide guidance
to the experiments. The PIC simulations involve computation of trajectories of
billions of particles for hundreds of plasma periods. Clearly, these simulations are

computationally expensive and hence require powerful computational facilities [99].

This thesis investigates the excitation of wakefield driven by a relativistic elec-
tron beam over a wide range of beam parameters (both under-dense and over-
dense) by employing fluid description for beam and plasma electrons. The fluid
description is not only simple to implement numerically, but also provides ease in
physics comprehension. Our investigations in this thesis on electron beam driven
wakefield in a cold plasma reveal a number of important features in this field. For
example, study of the structure and dynamics of the wakefield over a wide range

of beam parameters, characterization of transformer ratio which determines the
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energy gain in the process of acceleration for different beam densities, the char-
acterization of wake wave breaking both in 1-D and 2-D, role of ion motion on
the excitation, effect of finite transverse beam size on the excitation of wakefield
etc. have been examined. These have been detailed in the various chapters of the

thesis. Here we summarize important observations made in the thesis.

In chapter 2, we have studied the excitation of relativistic electron beam driven
wakefield in a cold plasma in 1-D both analytically and numerically. The analytical
structure of the wakefield in 1-D has been given by Rosenzweig et al. [31] for a
rigid beam having density less than or equal to half the equilibrium background
plasma density. In rigid beam limit, the self-consistent evolution of the beam
gets ignored. The beam is assumed to penetrate infinite length inside the plasma
without deformation. We have extended the analytical work of Rosenzweig et
al. [31] for arbitrary beam to plasma electron density. The numerical simulations
have been performed using two fluid description for both rigid and non-rigid driver.
For a non-rigid beam, the self-consistent evolution is taken into account. Our
simulations show good agreement with the analytical results for the case of rigid
beam, thereby testifying the correctness of the numerical technique. Moreover,
for evolving non-rigid beam, many interesting features have been observed in the
simulation. We have observed that the beam gets compressed for [, < \,, and
gets split into different beam-lets for {, > \,; where [, is the length of the beam.
It is also seen that beam can propagate a long distance without any significant
deformation if the velocity of the beam is larger than 0.99¢c. Thus the energy limit

for the rigid beam approximation to be valid gets established.
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In chapter 3, the space-time evolution of relativistic electron beam driven wake
wave in a cold plasma has been investigated using 1-D fluid simulation techniques.
It is observed that the wake wave gradually modifies with time and eventually
breaks, exhibiting sharp spikes in the density profile and sawtooth-like features in
the electric field profile after several plasma periods. This is a clear indication of
wake wave breaking in a cold, homogeneous plasma [85-87,100, 105]. The simu-
lation has been performed for a long enough time for the excited wave to break.
The wave breaking process is a crucial mechanism in plasma-based acceleration
which helps to self-inject the plasma electrons in an appropriate phase [?] for ac-
celeration. Therefore, a complete knowledge of the wake wave breaking is required
for controlling and stabilizing the acceleration process. In this chapter, a complete
characterization of the longitudinal wake wave breaking has been investigated. It
has been found here that the excited wakefield before it breaks is identical to lon-
gitudinal Akhiezer-Polovin (AP) mode [81] excited using the same value of [,
(phase velocity) and w,, (maximum fluid velocity) of the wake wave [88]|. The
steepening (breaking) of this wake has been understood in terms of phase mixing
process of the AP mode. The wake wave breaking time has been studied as a
function of beam density and beam velocity. interestingly, it is found that the

wake wave breaking time follows the well-known scaling presented in ref. [8§]

In chapter4, we have addressed the role of ion motion on the relativistic electron
beam driven wakefield in a cold plasma. With the help of the 1-D fluid simulation
techniques, the excitation of relativistic electron beam driven wakefield is studied
where the effect of the ion motion is included. Rosenzweig et al. [80] have presented

a semi-analytical form of the electron beam driven wakefield in the presence of
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ions and estimated the approximate value of transformer ratio (for mass ratio
= mg/m; << 1). However, this has been done only for beam density equal to half
the plasma density, where m, and m; are the mass of electron and ion respectively.
In this thesis Rosenzweig’s work [80] has been extended to arbitrary mass ratio
and beam density. Simulation using three fluid description of the problem for
a rigid beam with a rectangular spatial profile. As mentioned in chapter 2, the
beam can be treated rigid if its velocity exceeds 0.99c.It is shown that simulation
results match with the semi-analytical results given by Rosenzweig et al. [30] in
the appropriate limits. The transformer ratio, which determines the gain in the
acceleration process, is also studied as a function of mass ratio and beam density.
For over-dense beam, the transformer ratio saturates at unity for both p = 1
p = 1/1836. We have also seen that he excited wave breaks via the gradual
process of phase mixing after several plasma periods, exhibiting sharp spikes in
the density profile. The corresponding electric field profile turns into the sawtooth
form which is a clear signature of wave breaking. This particular feature observed
in the present simulation has been found to be absent in the analytical calculations
given in ref. [80]. However, it is shown that the wake wave, before it breaks, is
identical to the Khachatryan mode [82| obtained for same parameters values of
the wake wave (i.e. mass ratio, phase velocity and maximum value of the electric
field). The physical mechanism behind the wave breaking has been understood
in terms of phase mixing process of the Khachatryan mode. It is seen here that
the numerically obtained wave breaking limit lies much below the analytically

estimated value given in ref. [82] due to the possibility of phase mixing.

In numerical (via PIC simulations) and experimental PWFA studies, the wake-

127



Chapter 6. Conclusion and Future Scope

field excitations for a short, intense beam has been considered. The nonlinear
structure in this case has been termed as “blowout" structure. This is essentially
an ion cavity totally free from cold plasma electrons [?,64,72,73,89,90,96]. Keep-
ing this in view we have employed fluid simulations in chapter 5, to study the
excitation of 2-D wakefield structures. In our 2-D simulations, e have shown that
the 1-D limit is recovered when the transverse size of the beam is much larger than
the longitudinal extension. The 2-D effects starts showing up when the transverse
extension is chosen to be finite. We choose a few specific spatial forms of the
beam profile such as bi-Gaussian and bi parabolic for our studies. The beam has
been treated as rigid. The observations are shown to agree with linear 2-D analysis
when the beam density is much smaller than the plasma electron density. At higher
beam density the blow out regime has been observed. The radius of the blowout
structure as well as the longitudinal electric field profile matches with the analyti-
cal form given by Lu et al. [96]. However, we observe that in this case too the blow
out structure ultimately shows the tendency to break. The fluid description is no
longer valid beyond this limit. Using the expression for the analytical excursion
length of the electrons we have been able to show that it exceeds the curvature of
the blow out structure just before the onset of wave breaking process [111]. We
have added and studied the evolution of test particles in the blow out structure.
This provides for an estimate of the energy gained by the particles in these struc-
tures. In fact a quantitative comparison with one of the recent experiments has
been made (Hogan et al. [70]). We have shown in the simulation that maximum
energy gain of 2.6GeV is possible in a 10 cm long plasma. This is in conformity
with the experiments where the electrons at the back of a driver beam of energy

28.5 GeV gain around 2.7 GeV in a 10 cm long plasma. We have also shown that
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the test particles can gain more energy if they are placed appropriately in the wake
structure. In fact when they are placed near the axial edge of the first blow out

structure the energy gain has been observed to get doubled.

This thesis focuses on the fluid simulation of relativistic electron beam driven
wakefield excitation in a cold plasma. We show that the fluid simulations which
are much simpler and faster than any sophisticated PIC simulations are pretty
adequate at representing the wakefield structure both in 1-D and 2-D. These sim-
ulations are also found to be good enough for describing the basic physics involved
in PWFA settings including the structure of wakefields, breaking of wake wave,
role of ion motion, effect of the transverse beam dimensions, and the acceleration
of witness beams etc. The results presented in this thesis show a good agreement
with the PIC results and experimental findings or analytical results, only before
wave-breaking occurs. This is because the results obtained from our fluid simu-
lations, which solve coupled fluid-Maxwell equations, subsequent to the breaking
become irrelevant. In our simulations, the wave breaking has been identified in
terms of spiky features in the density profile which is accompanied by sawtooth-
like structures in the corresponding electric field profile. It is well known that the
peak of the electron density theoretically goes to infinity and coherent electrostatic
energy starts to convert into the random kinetic energy of the system at the on-
set of this critical amplitude (wave-breaking amplitude). In kinetic simulations
which compute the microscopic properties of the system including the particle
velocity distributions and randomness, it can be seen that, subsequently, all the
electrostatic energy would get converted into random kinetic energy of the particles

once the coherent oscillations are broken. Therefore, at the onset of the breaking,
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the fluid behavior of the plasma’s completely breaks and the kinetic description
dominates. Therefore, the particle-based simulations (PIC simulations or kinetic
simulations) would be more relevant to describe the phenomena after breaking in
the plasmas. As we observed in our fluid simulation, the total energy of the system
drops down after the wave breaking due to the formation of the fine (smaller than
the size of the grid) structure. Whereas, in the kinetic simulation, the particles
get heated up simultaneously as the wave exceeds the critical amplitude and then
form new structures. Due to the absence of wave-particle interaction, the fluid
simulation fails to predict the correct structure after the wave breaking. Recently,
we have reported comparing the results of 1-D fluid with 1-D PIC simulations even
after wave breaking [104]. It was shown that the amount of energy dropped in the
fluid simulation after breaking matches with the amount of thermal energy carried

by the particles in the in PIC simulation.

Future scope

The beam plasma interaction is an important topic of investigation with applica-
tions not merely in the context of particle acceleration but also in areas as diverse
as fast ignition, astrophysical electron jets etc. We provide some scope of future

possible studies in the area of beam plasma interaction.

e The extension of 2-D fluid code to 3-D would help investigate a more realistic
scenario for the understanding of beam plasma interaction. This will help
understand the implication on the wake structure that permitting variations

along the third dimension would provide.

e One of the recent proposed plan at CERN is to have a proton-driven wake-
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fields (PDPWFA) for acceleration. It would be interesting to study such a

possibility with our fluid description.

However, it would mimic more realistic scenario of PWFA if one can include
the ion dynamics in 2-D geometry rather than that considered in 1-D settings.
Typically, the ion motions become more important for the studies which
include the relativistic dynamics of the electron. Due to relativistic motion
of the electrons, the electron-plasma frequency can be comparable to the
ion-plasma frequency. Hence both the electrons and ions can play important
role in the plasma dynamics. Including the ion dynamics in our 1-D fluid
simulation, we have shown that the effect of ion motion can be ignored for
hydrogen plasma even for beam velocity close to 0.9999¢; where c is the speed
of light. It was also shown that the efficiency of the acceleration (measured
by transformer ratio) settles down to unity in the over-dense regime for both
the electron-positron and hydrogen plasmas. We, therefore, believe that the
study including the effect of ion dynamics in 2-D could be important for
studying many problems in plasma wakefield acceleration scheme. It could
be more relevant for investigating self-modulation instability in proton-driven
plasma wakefield acceleration (PDPWFA) which has been recently proposed
by AWAKE, CERN for the acceleration of electrons to meet the criteria of

LHC regime.

In the fast ignition (FI) fusion scheme, one relies on energetic electrons for
the creation of ignition spark in the compressed core where lasers cannot pen-
etrate. Thus the propagation and stopping of electron beam in compressed
over-dense plasma are important to understand. This includes a proper un-

derstanding of instabilities associated with the beam propagation in plasma
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medium, the possibility of magnetic field generation and turbulence excita-
tions which may lead to anomalous transport of electrons. In fact as an aside
we would like to mention that we have already made progress in identifying
a novel finite beam instability in the beam plasma system in addition to
Weibel and Kelvin Helmholtz which gets excited when the electron beam is

of a finite size [112|. This work is in progress and not the part of this thesis

Furthermore, in the FI scenario the compressed core is inhomogeneous and
highly dense. It is likely that the dense cool plasma in such a case be in
strongly coupled regime. Thus effect of plasma density inhomogeneity and
the role of strongly coupled background plasma on beam propagation needs

to be looked at carefully.

In the recent impressive developments of ultra-short lasers (femtosecond and,
more recently, attosecond), it is possible that the de-Broglie wavelength of
the charge carriers becomes equal to or greater than the dimension of the
quantum plasma system. In such cases, the quantum effects become impor-
tant in the behavior of the charged particles in plasmas. For example, the
interaction of ultra-fast lasers with metallic nano-structures constitute an
ideal arena to study the dynamical properties of quantum plasmas. There-
fore, including the quantum effects to the fluid equations would be important

and fruitful to study.

The fluid code can also be used to study the interaction of laser pulse with
the plasma. we have recently demonstrated it in the context of studying
the evolution of the exact nonlinear solutions of the laser plasma coupled

system (see refs. |41, 104|which again is not the part of this thesis) in 2-
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D. Further studies in this direction incorporating inhomogeneous plasmas,

quantum effects, strongly coupled behavior is desirable.
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Appendix

2-D fully relativistic electromagnetic fluid simula-

tion techniques

In this section, we present the 2-D fluid simulation techniques used for the exci-
tation of relativistic electron beam driven wakefield in a cold plasma. The basic
equations governing the excitation of 2-D relativistic electron beam driven wake-
field in a cold plasma are the relativistic fluid-Maxwell equations. The equations
contain the equation of continuity and the equation of momentum for both plasma
electrons and beam electrons. We have used Maxwell’s equations for the evolution
of electro-magnetic fields. The dynamics of ion have been ignored because of their
heavy mass. They only provide a neutralizing background. Therefore, the basic

governing equations for the excitation of two-dimensional relativistic electron beam
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driven wakefield in a cold plasma are,

on L
a5t V.(nv) =0 (A.1)
a—ﬁ+(vﬁ)*— —eF — (¢ x B) (A.2)
ot P= c
0 =
% —|—V.(nb'ub) =0 (A3>
B | (5.5 = —eB — (i3 x B) (A.4)
N b-V )Py = o\ :
= o= dme, 10E -
(V x B) —T(nv + nyp) + - (A.5)
- o 198
)= --"Z2 A.
(@ xB=—2 (A0
V.E = 4re(ng —n — ny) (A.7)
V.B=0 (A.8)

where p = m.y0 and p, = m.y0;, is the momentum of plasma electron and beam
electron having density n and n; respectively. Here v = (1 — Z—§>_1/2 and v, =
(1 — Z—;) e is the relativistic factor associated with the plasma electron and beam
electron having velocity ¢ and v, respectively. In the above equations, E and B
represents the electric and magnetic field respectively. The equations are solved in
2-D geometry (“x-y” plane) and the electron beam is propagating along z-direction.

Now, we have made the following replacements in the physical quantities, ¢ — wp.t,

Wpe (T,Y nl E 5] B — — 77 — 5 —
(x,y)%%,E% - B — -0 = %o, =t p = By —

Pb
MeCWpe ’ MeCWpe ec’?

m

n — -, and n, — . Using these normalizations in the above equations (A.1-
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A.8), we have,
on =,
N +V.(nv) =0 (A.9)
oo = 5 B
g + (WV)p=—-F— (Vx B) (A.10)
0 = S
St Vi) =0 (A.11)
oy e o
% + (6. V)py = E — (5 x B) (A.12)
oE . . Lo
e (n¥ + nyvp) + (V x B) (A.13)
a_f — (VX F) (A.14)
VE=(1-n—-n) (A.15)
V.B=0 (A.16)

Equations (A.9-A.16) are the key equations to study the 2-D excitation of rela-
tivistic electron beam driven wakefield in a cold plasma. These normalized set of
equations (A.9-A.16) are solved using two-dimensional fluid simulation techniques.
Therefore, a fully relativistic electromagnetic fluid code has been developed us-
ing LCPFCT suite of subroutines based on flux-corrected transport scheme [102].
The basic principle of this scheme is based on the generalization of two-step Lax-
Wendroff method [103]. As the observations are made in (“x-y”)-plane, therefore,

we have written the above equations in Cartesian geometries (z — y) as,

on 0 0
ETd %(nvw) + a—y(nvy) =0 (A.17)
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Ops ) 0
ot + (Um% + (Uya_y)pm = —Iy — (v, B, — Byv.)
Opy 0
v + ( o5 + vyay)py = —-FE, — (v.B, — B,v,)
Op. 0 P
T + (vx% + vya—y)pz —E, — (v,By — Byvy)
ony, O 0
E + 9 (nbvbz) + a—y(nbvby) =0
OPba
g:; =+ (vbwa + ’Ubya )pbx _Ex - (Ubsz
Opy 0 0
th + (’be% + Uby@)pby _Ey - (szBx - Bzvbw)
Opys 0 0
ot + (Ubr% + Ubya_y)pz =—-F, - ('szBy - Bx'Uby)
e o+ mun) + 25
ot = (MU, NpVpy ay
oF 0B,
8—; = (nvy + nbvby) — W
oL, = (nv, + v, )—i—(%—aBz
ot e oxr Oy
0B,  OF.
ot oy

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.26)

(A.27)

(A.28)



Appendix A. Appendix

OB, O,
oB.  0E, OF,
ot (81: 8y) (A.30)
0E, 0B,
W—i_%_(l_n_nb) (A.31)
9B, OB,
o oy 0 (A.32)

The right sides of the above equations are separated into two parts, the z-direction
terms and the y-direction terms. This arrangement in each of the equations sepa-
rates the z-derivatives and the y-derivatives in the divergence and gradient terms
into parts which can be treated sequentially by a general one-dimensional conti-
nuity equation solver (LCPFCT). Therefore, we split the above equations in two
different directions and use LCPFCT techniques for solving the equations. Using
the above methodology, the one-dimensional LCPFCT subroutines have been used
repetitively to construct the 2-D fluid code by splitting the time steps in the dif-
ferent directions (x and y). First we solve the integration along z-direction and
then, subsequently, along y-direction in the same time interval ¢ to ¢t + At. The
method of integration using time-step splitting is discussed in detail in ref. [102].
The approach can also be extended to three dimensions and to fully general ge-
ometries. To use this split-step approach, the time step must be small enough that
the distinct components of the fluxes do not change the cell-averaged values ap-
preciably during the time steps ¢ to ¢ + /. This approach is second-order accurate
as long as the time step is small and changed slowly, but there is still a bias built

in depending on which direction, x or y, is integrated first. To remove this bias,
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the results from two calculations for each time step can be averaged to obtain an

expensive but effective solution.

In our simulation, we have used non-periodic boundary conditions (open) to
retain the form of wake wave at the boundary. Initially, we have introduced the
beam at one end of the simulation window which propagates with a velocity along
z-direction towards another end. The spatial resolution Az or Ay has been chosen
in such a way that the skin depth (wipe) is adequately resolved in both the directions.
The temporal resolution i.e. time step (At) is then calculated from Courant-
Friedrichs-Lewy (CFL) condition At = Cp,(A)/tUmaz, Where t,,q, and C,, are the
maximum fluid velocity and CFL number [102]. Here A is the minimum value
between Az and Ay. In our simulations, the maximum fluid velocity ., = 1
as the maximum velocity of any fluid element can reach up to the speed of light
and C,, = 0.2 for a good temporal resolution and stability. Therefore, the value of
Al has been fixed through out the simulation. The numerical observations have
been also repeated by changing the grid size Ax or Ay, C,, and At and the results

have been recorded at each time step in terms of n, ng, v, 05, F/, and B with their

components.

At each time step, it is checked that the results must satisfy the following

equations,
oE, 0F, -
Oz +a—y —(1—n—nb) (A33>
0B, 0B, B

At each time step, we have also checked the conservation of energy principle in

the simulation. It is seen that the total energy (7},;) of the system is conserved at
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each time steps. The total energy of the system is defined as,

Tiot = Thin + Tticia (A.35)

where Tj;, and T¥eq are the kinetic and field energy of the system. The kinetic

energy of the system is given by,

N, Ny Ny, Ny
Toin = Y > [n(i, 5)(3(0,5) = D] AxAy + > ¥ [na(i, ) (w(i. ) — 1)] AzAy
i=1 j=1 i=1 j=1

(A.36)

The field energy of the system can be written as,

Tpiera = Z i [E2 i) (i’j)] AzAy (A.37)

i=1 j=1

where E? = E2+E}+E? and B* = B+ B_+B? are the square of the magnitude
of the electric and magnetic field respectively. here ¢ and j represents the index
corresponding to the grid numbers along z and y-directions respectively. N, and

N, are the total number of grid points along  and y- directions respectively.

Derivation of wave breaking limit for a relativis-
tic electron-ion mode (Khachtryan) in a cold

plasma

In this section we present a detailed derivation of an relativistic electron ion mode
excited in a cold homogeneous plasma. This derivation has already presented by

Khachtryan et al. briefly earlier |82]. Here we have re-derived the expression for
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wave breaking limit of an Khachatryan mode [82] in detail. The basic normalized
equations governing the electron and ion in a plasma in 1-D (z-direction) can be

written as (see chapter 4),

o 5 =0 (A.38)
Ope  Ope _
g =0 (A.40)
Ipi Op; .
g + Uia = ,uE (A41>
oE
E = (n, — ne) (A42)

where p. = v.v. and p; = ~v;v; are the z-components of momentum of plasma
electron and plasma ion having z-component of velocity v, and v; respectively.
Here, 7, = (1 — v2) "2 and v, = (1 — v2)""/? are the relativistic factors associated
with plasma electron and plasma ion respectively. In the above equations, n and
n; represents the density of plasma electron and plasma ion respectively. E and
p represents the z-component of the electric field and mass ratio (ratio of electron
to ion mass) respectively. We have used the normalization factors as, ¢ — wpt,

WpeZ

z—

ek v v p Pi n n;
, B = Ve = S5, U = L Pe = 5 Di T g, Me 2 05, My = L

c MeCWpe e mec’ no’

Using the frame £ = (z — vy,t) transformation, the operators can be written as,

2: J— i
ot = e
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o _d
0z  d§

where vy, is the phase velocity of the wave which is normalized to speed of the
light ¢. Using the above operator transformations, equations (A.38-A.42) can be

expressed as,

dne  d(neve)

— — A4
'Uph df d€ ( 3)
d(Yeve
R (A44)
dn; d(n,"l)i) <
Uph TR =0 (A.45)
d U
(= o) 202 — (4.46)
dE
— = (n; —n, A4
= (=) (A7
The electric field can also be written as, F = —g—f, where ¢ is the electrostatic

potential normalized to m.c®*/e. We now define, ® = &®_ = 1+ ¢ and ¢, =
1—pp =1+ pu(1—®) . Using the frame transformation, the electric field thus can

be written as,
od 0. 10d,

B=-2 = - A48
T TR (449
Substituting the form of electric field in equation (A.44), we have,
d(Vee 1 0Pb_
(Ue - Uph) (7 ) = (A49)

s w2, 06
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This equation can also be written as,

d(Yeve) B d(veve)  OP_
Fag T ae T

We know the following relation,

o, A0eve) _ dye
©odg dg

Therefore using the above expression, the equation (A.51) can be written as,

d o0d_
€& (Ve(1 = vevpn)) = ra (A.51)

We have then integrated the above equation using the boundary condition v, =0

and ¢ =0 at £ = 0. Therefore, we have,

A/e(l - Ue/Uph) = (A52>

Substituting the value of 7. = 1/4/1 — v2, the above equation can be written
as,

(1 — vevpn)? = (1 — 2% (A.53)

Re-arranging the terms of the above equation , we have,

(vph + P2 )02 = 2up0, + (1 — ¢ ) =0 (A.54)
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The solutions of the quadratic equation of v, can be written as,

Qv & \/4vgh — 41— 92)(02, + B2)
Ve =
Q(Ugh + ®2)

The maximum phase velocity (v,,) of the wave can reach up to the speed of
light. The maximum velocity of the electron v, can not exceed the speed of light.
Therefore we only consider “-” sign in the above equation. Thus the solution of the

equation (A.54) is,

20, & \/4vgh —4(1 - 92)(02, + B2)

Ve (A.56)
Q(Ugh + ®2)
The solution again can be re-arranged as,
Uph + ((I)_ o2 — ’)/p_hQ)
Ve = (A.57)

(v, +@2)

It is to be noted that for a real solution of v., ®_ > 1/~,,. Similarly, the velocity

of the ion v; can be written as,

U £ (P4 /PF — )
(A.58)

V; =
(v, + @2)

Now, integrating the the continuity equation (A.43) for electron we get,
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Substituting the form of v, from equation (A.57), we get,

n — ’Uph(F2 -+ 1)
(v P24 FD)

(A.60)

where F? = &2 —~° % and v, + ®* = F?+1. We can also re-arrange the equation

in following form,
Uph(F2 + 1)(UphF — CI)_)

Ne = F(UghFQ — (I)Q_) (AG].)

Substituting ®2 = [ + fyp_hQ and rearranging the above equation, we get,

B D F - @)

e = A.62
" F(F2+1) (4.62)
The final form of the equation for density n. therefore can be written as,
d_
.= 2 — A.63
e =t | (g7 2 ] 0
The density of ion similarly can be derived as,
)
2 +
n; = Upn?Y — — Upp, (A.64)
o [(@1 D ]

Substituting the form of n, and n; in equation (A.47) and using equation (A.48),

we have the following differential equation,

d*®

, o, o
— - _ - (A.65)
d£2 P ph [(q)a- - 7ph2)_1/2 (@2_ - /thz)_l/Ql

Using the expression, U = vy,72, ((vpn — (93 — fy;hQ)l/Q)/M — (v, — (®* — ’Y;hz)l/Q))a
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the differential equation can be written as,

2o dU

d_§2 + ﬁ = (A.GG)

The above equation describes the one-dimensional motion of a particle in a field
with potential U(®); the values ® and F correspond to the coordinate and velocity
of this fictitious particle respectively. Now we choose U(®) =0 at & = 1. We also

integrate both side of the above equation (A.66) w. r. t. £&. We finally get,

do B 1/2
d_é- =—-F=x [2(Umaz - U)] (A67)

where U,,,, defines the maximum value of U. The value of U,,,, defines the wave
breaking amplitude in electric field. The wave breaking limit can be written as,
Ewp = V2U,ae; Where E — W B is the maximum electric field supported by an
electron-ion mode. It can be shown that, the value of U,,,, can be obtained at
® = 1/79,n. Substituting the value of ® = 1/v,), in the expression of U, we can
write the maximum amplitude of electric field which is wave breaking limit as a

function of pand v,,as,

Ewp = V25 (1+ (1 = /) /p) (A.68)

Where vy = 1+p and vo = 1+ [u(ypn — 1)/ (pn +1)]. Clearly, the above expression

for ;i << 1 can be reduced to the following form,
FEwp = 2(“/ph —1) (A.69)

This is the well known expression of wave breaking limit for an Akhiezer-Polovin
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mode (immobile ions) [87].

Analytical formalism for 2-D linear relativistic elec-

tron beam wakefields

Here we present an analytical forms of relativistic electron beam driven wakefields
in the linear regime. Clearly, the linear calculations are valid for a low amplitude
excitations which have been excited for a beam having density n, << 1. In this
derivation, we have ignored the evolution of the beam in the self-consistent elec-
tric and magnetic field. In the time scale of excitation, the perturbation in the
beam is negligibly small. This approximation is valid for a sufficiently energetic
beam (discussed in chapter (5) in detail). As the beam velocity is equal to the
speed of light which implies the beam is infinitely massive. Therefore, the plasma

parameters can be expressed as,

n=mng+n

U =105+ 01
Ezgo+51
B=B,+ B

It is assumed that the unperturbed plasma velocity vy be zero and the perturbed
plasma density n; be much smaller than its unperturbed density ng = 1. The

unperturbed electric field ( Ep) and magnetic field (Bp) is zero. Therefore, the final
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expression of these quantities are,

n=14+n
U =1
Ezﬁl
Ezgl

Applying the above linearizations, the normalized equations (A.9) and (A.10)

can be written as,

on >
001 -

In the frame transformation (§ = x — vpt, y, z ) and v, = 1, we have, 9/0x =
0/0¢ and 0/0t = —0/IJ¢. A schematic diagram of the beam dynamics in this
frame is shown in figure (5.4). Using these transformations, the above equations

(A.70) and (A.71) can be written as,

o o
8%1 V=0 (A.72)

001 o

1 _F A.
e (A73)
Operating 9/0¢ both side in equation (A.72) and using equations (A.73) and

(A.13), we have,
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Pny(&,r)

8—52 +n1(& 1) = —mp(E,7) (A.74)

E=—-V¢—0A/ot (A.75)

where A and ¢ is the vector potential and scalar potential respectively. Therefore

the equation (A.13) in the Coulomb gauge V.A = 0 takes the following form.
V2 = —(ny + ny) (A.76)

Similarly the equation (A.13) can be written as,

—

T OF
(VXVXA):—(nU—knbv?,)—i—E

Using the Coulomb gauge V.A =0 and equation (A.75), the above equation can
be expressed as,

—V2A = —(nT 4 nyt3) + %(—ﬁqﬁ — 0A/ot)

Now, we have, V? = 9%/0x? + V2. Therefore, we have the following form,

DA %A

0 FA L PA,
Oz2 Ot?

~V3A = —(n¥+ nyvp) — a(ﬂb) +(

In the (&, r) frame, we have the following form of the above equation,

= . . 0 =
V2 A = (nt + nyty) — a_g(W)
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Operating 0/0¢ both the sides and using linearized forms of the quantities in the

above equation, we get,

oA, 0 02
e R T

Lo o€

Substituting dv;/0¢ from equation (A.73), we have,

oA, - 8, . &
2 ! = El + —(nbvb) — 8_62

Vide 7€

(Vén)

Therefore, the above equation can be re-written as,

, 04, _9A 8, .. & =

J_a_g =-Vo1 + — + —(ntp) — 8_52(v¢1)

v oc " oe

Taking the z-component of the equation, we have,

5 0A1, 0 0Ay, 0 ok

T :—a—£¢1+ o€ +a_£(nbva)_a_£3

(¢1)

Integrating over £ with the boundary conditions that A = 0, 1 =0, n, =0 at

¢ =0 (head of the beam), we have,

2

viAlz = —¢1 + A1z + (Npp) — ()—52

(¢1)

In the other way, this equation can be written as,

ViAlx = _¢1 + Alx + (nbva) - V2¢1 + Vigbl
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Therefore, using equation (A.76), the above equation can be written as,
V3Ay =—¢1+ A + (mpope) — iy — np + Vi
Using v, = 1, the above equation finally can be written as,
(V3 = 1)(Ae — 1) = —m (A.77)
The expression of longitudinal electric field can also be obtained from following

equation from equation (A.75).

The equations (A.74) and (A.77) are the key equations to obtain the analytical
solution of electron beam driven wakefield in the linear regime for a given form of

Np.

Method of Green’s function for solving ODE’s

Solution of forced SHO like equation
Let us look for solution to the equation,

A’z
W + w%x = f(t) (A79)

Here wp and f(t) represents the natural frequency of the oscillator and the driving

term respectively. The solution of the above equation can be written in terms of
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Green’s function G(z,z’) as,

o(t) = /t _tf Gt ) (1) (A.80)

Here ¢; and ¢; are the initial and final time of the integration. Notice that ¢;
can be —oo and ¢y can be oo if the solution at all times is desired. The solu-
tion of Green’s function can be obtained by solving the following equation with

appropriate boundary conditions.

2

%G(t,t’) +wiG(t, ) = 0(t —t') (A.81)

If we are thinking about the differential equations in time, there will often be a
different boundary condition, which is set by the fact of causality. This suggests
that any physical system can not respond before it is hit. The response of the
system at any time ¢ can be obtained by integrating the equation (A.80) from ¢;

(initial time) to ¢. One can expect a boundary condition for such system as,

Gt t') = 0; >t

This choice of the condition will give us a Green’s function that will be called
the ‘retarded Green’s function’, which says that any effects of force appear only
after the force is applied. The causal Green’s function is particularly easy to find
because we only need to think about the behavior at ¢’ < ¢. For the differential
equations in space, we have to integrate over all space. Now, for ¢’ < ¢, the equation

(A.81) can be written as,

d? , ,
%G(t,t ) +wiG(t,t) =0 (A.82)
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Therefore, the solution of G(t,t') is,
G(t,t") = A(t')sin(wot) + B(t")cos(wot); <t (A.83)

Integrating equation (A.81) both the sides over a small interval ¢ — e to ¢’ + ¢

containing the origin at ', where ¢ — 0, we get,

t'+e€ dQG { t, t'+e t'+e
/ dgj; )dt + w? G(t,t)dt = / ot —t)dt (A.84)
' t'—e v

—€ —€

The second term in LHS of the equation (A.84) will be negligibly small because,
t'+e
|/ G(t,t")dt| < max|G(t,1")]2¢ — 0
t'—e
In the limit ¢ — 0, we therefore get,

—iG(t,t/) ’t:t/—E: 1 (A85>

d /
EG(tvt ) |t:t/+e dt

Since %G (t,t') =0 for t =t — ¢, we find the following expression for ¢ — 0 ,

d
aG(t t) |t:t’+6: 1 (A86)

Now, we can write,

t'+e
| 6 = GO = Gl
t/

The LHS of the above equation goes to zero in the limit ¢ — 0 since

' +e d
]/ —Gt t)dt| < max]— (t,t")|2¢
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Thus we can write,

G(t, tl)|t:t/+€ - G(t, tl)|t:t/_€ - O (A87)

The continuity of G(¢,t') at t =1’ + ¢(— 0) implies,

A(t")sin(wot") + B(t")cos(wot’) = 0 (A.88)

Using equation (A.86), we can write in the limit ¢ — 0,

A(t wocos(wot") — B(t )wosin(wet') = 1 (A.89)

Solving equation (A.88) and (A.89), we have,

1 1
A= —cos(wpt"), B=——sin(wot")
wo Wo

Using equation (A.83), the solution for Green’s function can be written as,

Gt 1) = wism(wo[t _ ) (A.90)

Therefore the motion of SHO can be determined by solving the following equation,

() = wio /t dt'sin(unlt — ¢1) S (1) (A.91)

Solution of Poisson like equation in cylindrical geometry

Let us look for solution to the equation,

(V7= 1o(r) = f(r) (A.92)
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In cylindrical geometry, equation (A.92) can be written as,
(52 + -5, —Dolr) = f(r) (A.93)
The solution of the equation (A.93) can be written as,
o(r) :/ r'dr’ f(r"YR(r,r") (A.94)
0

where R(r,r’) is the Green’s function corresponding to the equation (A.93) which

satisfies the following equation,
(_ + -5 1)R(T7 T/) = 5(T7 T,) (A95>

The differential equation for r # 7’ looks exactly similar to the ODE of modified

Bessel function |?|. The solution of the above equation can be written as,
R(r,r") = Io(r<)Ko(rs) (A.96)

Here r- defines r < ' and r~ defines r > 1'. Iy(r) and Ky(r) represents the
modified Bessel function of first and second kind respectively. The detail derivation
is given in ref. [115] (see Eq. (9.196)). The solution of equation (A.92) therefore

takes the following form,

o(r) = /OT r'dr’ f(r') o (r") Ko(r) + /00 r'dr’ f(r') o (r) Ko(r') (A.97)
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Test particle simulation techniques

In this section, we present the test particle simulation techniques which have been
used to estimate the energy gain in the process of acceleration. Test-particle sim-
ulations provide a useful complement to the kinetic simulations of many-body
systems (plasma) and their approximate treatment with multiple moments. In a
kinetic approach, systems are described at a microscopic level in terms of a large
number of degrees of freedom. Fluid or multiple moment approaches provide a
description at the macroscopic level, in terms of relatively few physical param-
eters involving averages or moments of particle distribution functions. Ideally,
fully kinetic descriptions are the more appropriate description for describing the
physical phenomena in a system. But, due to their complexity, the use of these
approaches is often impractical in many cases of interest. In comparison, the fluid
approximation is much simpler to implement and solve. It can be used to de-
scribe complex phenomena in multi-dimensional geometry with realistic boundary
conditions. The main drawback of fluid descriptions that they are inadequate for
describing the phenomena taking place on fine space or time-scales (individual
particle level), or phenomena involving nonlocal transport or heating. With the
test-particle method, particle trajectories are calculated using approximated fields
obtained from a low-level approach (fluid or macroscopic description). Assuming
that these fields are representative of actual systems, various kinetic and statisti-
cal properties of the system can then be calculated, such as particle distribution

functions and moments etc.

The fluid simulations which are extensively used for the excitation of relativistic
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electron beam driven wakefields provide the structure of the electric and magnetic
fields in the system by defining the values at each cell center and interfaces in
the computation domain (see the section (A.1)). These fields are then used for
determining the motion of the test particles injected in the fluid simulations. The
motion of these test electrons is completely guided by the fields obtained from our
fluid simulation.Therefore, the study including test particles in the fluid simulation
provides a complete characterization for estimating the energy gain in the process
of acceleration in plasma wakefield acceleration. The equation which determines
the dynamics of the test electrons is the equation of motion in a normalized form,
dd—{i — —F — (v; x B); where p; = v0; = v;(1 — 02) Y2 and +; is the momentum
and relativistic factor of i-th test electron having velocity v;. FE and B are the
electric and magnetic field acting on i-th particle which are obtained from fluid
simulation. The contribution of the mutual interactions between the test electrons
are ignored here. However, the test electrons do not react back to the system. It is
to be noted that the fields obtained from the fluid simulation are defined at the cell
interfaces. Therefore, we have calculated the fields at the position of the particle
by the method of interpolation using the values in the corresponding nearest grids
at each time step for each individual test particles. After distributing the fields
to the location of the particle, the test particles are then pushed according to the

equation of motion.

The basic principle for advancing the position and velocity of the test particle
in time is based on the Boris pusher algorithm [114]. In Fig. (A.1), a schematic di-
agram of simulation techniques in 2-D simulation domain for a single test electron

is shown. Initially at t = 0, we distribute the test particles in the simulation pro-
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viding their initial positions (z,0(2), y0(2)) and velocities (vpz0(i), vpyo(i)); Where
xpo(i) and yyo(7), are the position of the i-th test electrons having velocities v,,,0(7)

and wvp,0(i) in z and y-directions respectively.

Y
A

Test particle

yp_ 5 {j Cell Interfaces

yz near
Na | /

I

A

x1 | x2 near e . .
near | Grids
=

X X

Figure A.1: A schematic diagram of test particle simulation techniques.

Next, we identify the nearest grid interfaces and cell centres to the test par-
ticles where the fields are known from the fluid simulation. Therefore, we first
start to find out the nearest grid interfaces to the i -th electron in z-direction
by calculating Az, which is the minimum value of Az, defined as, Ax,(ii) =
|(zp0(2) — @ine(it))|; where (i) defines the position of the i-th grid interfaces
in the fluid simulation. Therefore the most nearest grid interface in xz—direction
to the i—th test electron is, z1,e4(4) = po(i1) — Apmin. Again we define, A(i) =
Tlpear (i) — @po(7). It is clear that the nearest interface lies at the left side of

the test electrons if A(i) < 0. Otherwise, the nearest grid interface lies at the
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right to the test electron. Therefore the i-th test electron lies in z -axis be-
tween, &1,eqr(7) and 22,00, (7); where 22,607 (7) = lpear (i) + Az, for A < 0, and
2pear (1) = T1peqr (1) — Az for A > 0. Following this method of calculating nearest
grid interfaces, we also calculate the nearest grid interfaces in y-direction yl,,eq(7)
and y2,.q-- Once these interfaces in x and y are calculated properly, we then de-
fine the fields at the location of the particle by averaging the fields defined at the
nearest grid interfaces and cell centres as,

E(i) = {[E(@near (1), Y lncar (i) + E(@Lncar (1), y2nc0r (7))

] g (A.98)
+E(22near (1), Y1near () + E(22near (1), Y2near (7))

B(i) = §[B(«Lncar (1) YLnear (1)) + B2 Lnear (i), y2ncar (1))

. g (A.99)
+B(22near (i), YLnear () + B(22near (1), Y2near (1))]

Following the Boris pusher algorithm (see ref. ()), the momentum of the i—th

test electrons from time ¢ to ¢t + At is advanced by following equation,

—

Al + 51 =7t — 89 — AL[E() + (7() x B()] (A.100)

.

The velocity of the test electrons can then be obtained from, ,(i) = %; where
v = /1 + p?. Therefore, the position (z,, y,) of the i—th test electrons from time

t to t + At is advanced by following equations,

At
m;}t-‘f-At)(i) _ 33;(2) + At’l);()?_ 2 ) (Al(]].)
At
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The flow-chart of the above techniques is shown in Fig. (A.2). The above

Distribute test particles,
specify positions x, (i) and y,(i)
specify velocities v_(i) and v_ (i)

Advance position and
velocities of the test At
particles integrating
equation of motion

Find nearest grid
interfaces specified
in fluid simulation

' Interpolate fields to the
particle position from grid
interfaces

Figure A.2: Flow chart of test particle simulation techniques.

technique and its stability has been verified by reproducing the dynamics of a

charge particle in several known configurations (see ref. [12]).
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